1/*
2 * Copyright (c) Red Hat Inc.
3
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sub license,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the
12 * next paragraph) shall be included in all copies or substantial portions
13 * of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors: Dave Airlie <airlied@redhat.com>
24 *          Jerome Glisse <jglisse@redhat.com>
25 *          Pauli Nieminen <suokkos@gmail.com>
26 */
27/*
28 * Copyright (c) 2013 The FreeBSD Foundation
29 * All rights reserved.
30 *
31 * Portions of this software were developed by Konstantin Belousov
32 * <kib@FreeBSD.org> under sponsorship from the FreeBSD Foundation.
33 */
34
35/* simple list based uncached page pool
36 * - Pool collects resently freed pages for reuse
37 * - Use page->lru to keep a free list
38 * - doesn't track currently in use pages
39 */
40
41#include <sys/cdefs.h>
42__FBSDID("$FreeBSD: stable/11/sys/dev/drm2/ttm/ttm_page_alloc.c 318848 2017-05-25 01:17:07Z markj $");
43
44#include <dev/drm2/drmP.h>
45#include <dev/drm2/ttm/ttm_bo_driver.h>
46#include <dev/drm2/ttm/ttm_page_alloc.h>
47#include <vm/vm_pageout.h>
48
49#define NUM_PAGES_TO_ALLOC		(PAGE_SIZE/sizeof(vm_page_t))
50#define SMALL_ALLOCATION		16
51#define FREE_ALL_PAGES			(~0U)
52/* times are in msecs */
53#define PAGE_FREE_INTERVAL		1000
54
55/**
56 * struct ttm_page_pool - Pool to reuse recently allocated uc/wc pages.
57 *
58 * @lock: Protects the shared pool from concurrnet access. Must be used with
59 * irqsave/irqrestore variants because pool allocator maybe called from
60 * delayed work.
61 * @fill_lock: Prevent concurrent calls to fill.
62 * @list: Pool of free uc/wc pages for fast reuse.
63 * @gfp_flags: Flags to pass for alloc_page.
64 * @npages: Number of pages in pool.
65 */
66struct ttm_page_pool {
67	struct mtx		lock;
68	bool			fill_lock;
69	bool			dma32;
70	struct pglist		list;
71	int			ttm_page_alloc_flags;
72	unsigned		npages;
73	char			*name;
74	unsigned long		nfrees;
75	unsigned long		nrefills;
76};
77
78/**
79 * Limits for the pool. They are handled without locks because only place where
80 * they may change is in sysfs store. They won't have immediate effect anyway
81 * so forcing serialization to access them is pointless.
82 */
83
84struct ttm_pool_opts {
85	unsigned	alloc_size;
86	unsigned	max_size;
87	unsigned	small;
88};
89
90#define NUM_POOLS 4
91
92/**
93 * struct ttm_pool_manager - Holds memory pools for fst allocation
94 *
95 * Manager is read only object for pool code so it doesn't need locking.
96 *
97 * @free_interval: minimum number of jiffies between freeing pages from pool.
98 * @page_alloc_inited: reference counting for pool allocation.
99 * @work: Work that is used to shrink the pool. Work is only run when there is
100 * some pages to free.
101 * @small_allocation: Limit in number of pages what is small allocation.
102 *
103 * @pools: All pool objects in use.
104 **/
105struct ttm_pool_manager {
106	unsigned int kobj_ref;
107	eventhandler_tag lowmem_handler;
108	struct ttm_pool_opts	options;
109
110	union {
111		struct ttm_page_pool	u_pools[NUM_POOLS];
112		struct _utag {
113			struct ttm_page_pool	u_wc_pool;
114			struct ttm_page_pool	u_uc_pool;
115			struct ttm_page_pool	u_wc_pool_dma32;
116			struct ttm_page_pool	u_uc_pool_dma32;
117		} _ut;
118	} _u;
119};
120
121#define	pools _u.u_pools
122#define	wc_pool _u._ut.u_wc_pool
123#define	uc_pool _u._ut.u_uc_pool
124#define	wc_pool_dma32 _u._ut.u_wc_pool_dma32
125#define	uc_pool_dma32 _u._ut.u_uc_pool_dma32
126
127MALLOC_DEFINE(M_TTM_POOLMGR, "ttm_poolmgr", "TTM Pool Manager");
128
129static void
130ttm_vm_page_free(vm_page_t m)
131{
132
133	KASSERT(m->object == NULL, ("ttm page %p is owned", m));
134	KASSERT(m->wire_count == 1, ("ttm lost wire %p", m));
135	KASSERT((m->flags & PG_FICTITIOUS) != 0, ("ttm lost fictitious %p", m));
136	KASSERT((m->oflags & VPO_UNMANAGED) == 0, ("ttm got unmanaged %p", m));
137	m->flags &= ~PG_FICTITIOUS;
138	m->oflags |= VPO_UNMANAGED;
139	vm_page_unwire(m, PQ_NONE);
140	vm_page_free(m);
141}
142
143static vm_memattr_t
144ttm_caching_state_to_vm(enum ttm_caching_state cstate)
145{
146
147	switch (cstate) {
148	case tt_uncached:
149		return (VM_MEMATTR_UNCACHEABLE);
150	case tt_wc:
151		return (VM_MEMATTR_WRITE_COMBINING);
152	case tt_cached:
153		return (VM_MEMATTR_WRITE_BACK);
154	}
155	panic("caching state %d\n", cstate);
156}
157
158static vm_page_t
159ttm_vm_page_alloc_dma32(int req, vm_memattr_t memattr)
160{
161	vm_page_t p;
162	int tries;
163
164	for (tries = 0; ; tries++) {
165		p = vm_page_alloc_contig(NULL, 0, req, 1, 0, 0xffffffff,
166		    PAGE_SIZE, 0, memattr);
167		if (p != NULL || tries > 2)
168			return (p);
169		if (!vm_page_reclaim_contig(req, 1, 0, 0xffffffff,
170		    PAGE_SIZE, 0))
171			VM_WAIT;
172	}
173}
174
175static vm_page_t
176ttm_vm_page_alloc_any(int req, vm_memattr_t memattr)
177{
178	vm_page_t p;
179
180	while (1) {
181		p = vm_page_alloc(NULL, 0, req);
182		if (p != NULL)
183			break;
184		VM_WAIT;
185	}
186	pmap_page_set_memattr(p, memattr);
187	return (p);
188}
189
190static vm_page_t
191ttm_vm_page_alloc(int flags, enum ttm_caching_state cstate)
192{
193	vm_page_t p;
194	vm_memattr_t memattr;
195	int req;
196
197	memattr = ttm_caching_state_to_vm(cstate);
198	req = VM_ALLOC_NORMAL | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ;
199	if ((flags & TTM_PAGE_FLAG_ZERO_ALLOC) != 0)
200		req |= VM_ALLOC_ZERO;
201
202	if ((flags & TTM_PAGE_FLAG_DMA32) != 0)
203		p = ttm_vm_page_alloc_dma32(req, memattr);
204	else
205		p = ttm_vm_page_alloc_any(req, memattr);
206
207	if (p != NULL) {
208		p->oflags &= ~VPO_UNMANAGED;
209		p->flags |= PG_FICTITIOUS;
210	}
211	return (p);
212}
213
214static void ttm_pool_kobj_release(struct ttm_pool_manager *m)
215{
216
217	free(m, M_TTM_POOLMGR);
218}
219
220#if 0
221/* XXXKIB sysctl */
222static ssize_t ttm_pool_store(struct ttm_pool_manager *m,
223		struct attribute *attr, const char *buffer, size_t size)
224{
225	int chars;
226	unsigned val;
227	chars = sscanf(buffer, "%u", &val);
228	if (chars == 0)
229		return size;
230
231	/* Convert kb to number of pages */
232	val = val / (PAGE_SIZE >> 10);
233
234	if (attr == &ttm_page_pool_max)
235		m->options.max_size = val;
236	else if (attr == &ttm_page_pool_small)
237		m->options.small = val;
238	else if (attr == &ttm_page_pool_alloc_size) {
239		if (val > NUM_PAGES_TO_ALLOC*8) {
240			pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
241			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
242			       NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
243			return size;
244		} else if (val > NUM_PAGES_TO_ALLOC) {
245			pr_warn("Setting allocation size to larger than %lu is not recommended\n",
246				NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
247		}
248		m->options.alloc_size = val;
249	}
250
251	return size;
252}
253
254static ssize_t ttm_pool_show(struct ttm_pool_manager *m,
255		struct attribute *attr, char *buffer)
256{
257	unsigned val = 0;
258
259	if (attr == &ttm_page_pool_max)
260		val = m->options.max_size;
261	else if (attr == &ttm_page_pool_small)
262		val = m->options.small;
263	else if (attr == &ttm_page_pool_alloc_size)
264		val = m->options.alloc_size;
265
266	val = val * (PAGE_SIZE >> 10);
267
268	return snprintf(buffer, PAGE_SIZE, "%u\n", val);
269}
270#endif
271
272static struct ttm_pool_manager *_manager;
273
274static int set_pages_array_wb(vm_page_t *pages, int addrinarray)
275{
276#ifdef TTM_HAS_AGP
277	int i;
278
279	for (i = 0; i < addrinarray; i++)
280		pmap_page_set_memattr(pages[i], VM_MEMATTR_WRITE_BACK);
281#endif
282	return 0;
283}
284
285static int set_pages_array_wc(vm_page_t *pages, int addrinarray)
286{
287#ifdef TTM_HAS_AGP
288	int i;
289
290	for (i = 0; i < addrinarray; i++)
291		pmap_page_set_memattr(pages[i], VM_MEMATTR_WRITE_COMBINING);
292#endif
293	return 0;
294}
295
296static int set_pages_array_uc(vm_page_t *pages, int addrinarray)
297{
298#ifdef TTM_HAS_AGP
299	int i;
300
301	for (i = 0; i < addrinarray; i++)
302		pmap_page_set_memattr(pages[i], VM_MEMATTR_UNCACHEABLE);
303#endif
304	return 0;
305}
306
307/**
308 * Select the right pool or requested caching state and ttm flags. */
309static struct ttm_page_pool *ttm_get_pool(int flags,
310		enum ttm_caching_state cstate)
311{
312	int pool_index;
313
314	if (cstate == tt_cached)
315		return NULL;
316
317	if (cstate == tt_wc)
318		pool_index = 0x0;
319	else
320		pool_index = 0x1;
321
322	if (flags & TTM_PAGE_FLAG_DMA32)
323		pool_index |= 0x2;
324
325	return &_manager->pools[pool_index];
326}
327
328/* set memory back to wb and free the pages. */
329static void ttm_pages_put(vm_page_t *pages, unsigned npages)
330{
331	unsigned i;
332
333	/* Our VM handles vm memattr automatically on the page free. */
334	if (set_pages_array_wb(pages, npages))
335		printf("[TTM] Failed to set %d pages to wb!\n", npages);
336	for (i = 0; i < npages; ++i)
337		ttm_vm_page_free(pages[i]);
338}
339
340static void ttm_pool_update_free_locked(struct ttm_page_pool *pool,
341		unsigned freed_pages)
342{
343	pool->npages -= freed_pages;
344	pool->nfrees += freed_pages;
345}
346
347/**
348 * Free pages from pool.
349 *
350 * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
351 * number of pages in one go.
352 *
353 * @pool: to free the pages from
354 * @free_all: If set to true will free all pages in pool
355 **/
356static int ttm_page_pool_free(struct ttm_page_pool *pool, unsigned nr_free)
357{
358	vm_page_t p, p1;
359	vm_page_t *pages_to_free;
360	unsigned freed_pages = 0,
361		 npages_to_free = nr_free;
362	unsigned i;
363
364	if (NUM_PAGES_TO_ALLOC < nr_free)
365		npages_to_free = NUM_PAGES_TO_ALLOC;
366
367	pages_to_free = malloc(npages_to_free * sizeof(vm_page_t),
368	    M_TEMP, M_WAITOK | M_ZERO);
369
370restart:
371	mtx_lock(&pool->lock);
372
373	TAILQ_FOREACH_REVERSE_SAFE(p, &pool->list, pglist, plinks.q, p1) {
374		if (freed_pages >= npages_to_free)
375			break;
376
377		pages_to_free[freed_pages++] = p;
378		/* We can only remove NUM_PAGES_TO_ALLOC at a time. */
379		if (freed_pages >= NUM_PAGES_TO_ALLOC) {
380			/* remove range of pages from the pool */
381			for (i = 0; i < freed_pages; i++)
382				TAILQ_REMOVE(&pool->list, pages_to_free[i], plinks.q);
383
384			ttm_pool_update_free_locked(pool, freed_pages);
385			/**
386			 * Because changing page caching is costly
387			 * we unlock the pool to prevent stalling.
388			 */
389			mtx_unlock(&pool->lock);
390
391			ttm_pages_put(pages_to_free, freed_pages);
392			if (likely(nr_free != FREE_ALL_PAGES))
393				nr_free -= freed_pages;
394
395			if (NUM_PAGES_TO_ALLOC >= nr_free)
396				npages_to_free = nr_free;
397			else
398				npages_to_free = NUM_PAGES_TO_ALLOC;
399
400			freed_pages = 0;
401
402			/* free all so restart the processing */
403			if (nr_free)
404				goto restart;
405
406			/* Not allowed to fall through or break because
407			 * following context is inside spinlock while we are
408			 * outside here.
409			 */
410			goto out;
411
412		}
413	}
414
415	/* remove range of pages from the pool */
416	if (freed_pages) {
417		for (i = 0; i < freed_pages; i++)
418			TAILQ_REMOVE(&pool->list, pages_to_free[i], plinks.q);
419
420		ttm_pool_update_free_locked(pool, freed_pages);
421		nr_free -= freed_pages;
422	}
423
424	mtx_unlock(&pool->lock);
425
426	if (freed_pages)
427		ttm_pages_put(pages_to_free, freed_pages);
428out:
429	free(pages_to_free, M_TEMP);
430	return nr_free;
431}
432
433/* Get good estimation how many pages are free in pools */
434static int ttm_pool_get_num_unused_pages(void)
435{
436	unsigned i;
437	int total = 0;
438	for (i = 0; i < NUM_POOLS; ++i)
439		total += _manager->pools[i].npages;
440
441	return total;
442}
443
444/**
445 * Callback for mm to request pool to reduce number of page held.
446 */
447static int ttm_pool_mm_shrink(void *arg)
448{
449	static unsigned int start_pool = 0;
450	unsigned i;
451	unsigned pool_offset = atomic_fetchadd_int(&start_pool, 1);
452	struct ttm_page_pool *pool;
453	int shrink_pages = 100; /* XXXKIB */
454
455	pool_offset = pool_offset % NUM_POOLS;
456	/* select start pool in round robin fashion */
457	for (i = 0; i < NUM_POOLS; ++i) {
458		unsigned nr_free = shrink_pages;
459		if (shrink_pages == 0)
460			break;
461		pool = &_manager->pools[(i + pool_offset)%NUM_POOLS];
462		shrink_pages = ttm_page_pool_free(pool, nr_free);
463	}
464	/* return estimated number of unused pages in pool */
465	return ttm_pool_get_num_unused_pages();
466}
467
468static void ttm_pool_mm_shrink_init(struct ttm_pool_manager *manager)
469{
470
471	manager->lowmem_handler = EVENTHANDLER_REGISTER(vm_lowmem,
472	    ttm_pool_mm_shrink, manager, EVENTHANDLER_PRI_ANY);
473}
474
475static void ttm_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
476{
477
478	EVENTHANDLER_DEREGISTER(vm_lowmem, manager->lowmem_handler);
479}
480
481static int ttm_set_pages_caching(vm_page_t *pages,
482		enum ttm_caching_state cstate, unsigned cpages)
483{
484	int r = 0;
485	/* Set page caching */
486	switch (cstate) {
487	case tt_uncached:
488		r = set_pages_array_uc(pages, cpages);
489		if (r)
490			printf("[TTM] Failed to set %d pages to uc!\n", cpages);
491		break;
492	case tt_wc:
493		r = set_pages_array_wc(pages, cpages);
494		if (r)
495			printf("[TTM] Failed to set %d pages to wc!\n", cpages);
496		break;
497	default:
498		break;
499	}
500	return r;
501}
502
503/**
504 * Free pages the pages that failed to change the caching state. If there is
505 * any pages that have changed their caching state already put them to the
506 * pool.
507 */
508static void ttm_handle_caching_state_failure(struct pglist *pages,
509		int ttm_flags, enum ttm_caching_state cstate,
510		vm_page_t *failed_pages, unsigned cpages)
511{
512	unsigned i;
513	/* Failed pages have to be freed */
514	for (i = 0; i < cpages; ++i) {
515		TAILQ_REMOVE(pages, failed_pages[i], plinks.q);
516		ttm_vm_page_free(failed_pages[i]);
517	}
518}
519
520/**
521 * Allocate new pages with correct caching.
522 *
523 * This function is reentrant if caller updates count depending on number of
524 * pages returned in pages array.
525 */
526static int ttm_alloc_new_pages(struct pglist *pages, int ttm_alloc_flags,
527		int ttm_flags, enum ttm_caching_state cstate, unsigned count)
528{
529	vm_page_t *caching_array;
530	vm_page_t p;
531	int r = 0;
532	unsigned i, cpages;
533	unsigned max_cpages = min(count,
534			(unsigned)(PAGE_SIZE/sizeof(vm_page_t)));
535
536	/* allocate array for page caching change */
537	caching_array = malloc(max_cpages * sizeof(vm_page_t), M_TEMP,
538	    M_WAITOK | M_ZERO);
539
540	for (i = 0, cpages = 0; i < count; ++i) {
541		p = ttm_vm_page_alloc(ttm_alloc_flags, cstate);
542		if (!p) {
543			printf("[TTM] Unable to get page %u\n", i);
544
545			/* store already allocated pages in the pool after
546			 * setting the caching state */
547			if (cpages) {
548				r = ttm_set_pages_caching(caching_array,
549							  cstate, cpages);
550				if (r)
551					ttm_handle_caching_state_failure(pages,
552						ttm_flags, cstate,
553						caching_array, cpages);
554			}
555			r = -ENOMEM;
556			goto out;
557		}
558
559#ifdef CONFIG_HIGHMEM /* KIB: nop */
560		/* gfp flags of highmem page should never be dma32 so we
561		 * we should be fine in such case
562		 */
563		if (!PageHighMem(p))
564#endif
565		{
566			caching_array[cpages++] = p;
567			if (cpages == max_cpages) {
568
569				r = ttm_set_pages_caching(caching_array,
570						cstate, cpages);
571				if (r) {
572					ttm_handle_caching_state_failure(pages,
573						ttm_flags, cstate,
574						caching_array, cpages);
575					goto out;
576				}
577				cpages = 0;
578			}
579		}
580
581		TAILQ_INSERT_HEAD(pages, p, plinks.q);
582	}
583
584	if (cpages) {
585		r = ttm_set_pages_caching(caching_array, cstate, cpages);
586		if (r)
587			ttm_handle_caching_state_failure(pages,
588					ttm_flags, cstate,
589					caching_array, cpages);
590	}
591out:
592	free(caching_array, M_TEMP);
593
594	return r;
595}
596
597/**
598 * Fill the given pool if there aren't enough pages and the requested number of
599 * pages is small.
600 */
601static void ttm_page_pool_fill_locked(struct ttm_page_pool *pool,
602    int ttm_flags, enum ttm_caching_state cstate, unsigned count)
603{
604	vm_page_t p;
605	int r;
606	unsigned cpages = 0;
607	/**
608	 * Only allow one pool fill operation at a time.
609	 * If pool doesn't have enough pages for the allocation new pages are
610	 * allocated from outside of pool.
611	 */
612	if (pool->fill_lock)
613		return;
614
615	pool->fill_lock = true;
616
617	/* If allocation request is small and there are not enough
618	 * pages in a pool we fill the pool up first. */
619	if (count < _manager->options.small
620		&& count > pool->npages) {
621		struct pglist new_pages;
622		unsigned alloc_size = _manager->options.alloc_size;
623
624		/**
625		 * Can't change page caching if in irqsave context. We have to
626		 * drop the pool->lock.
627		 */
628		mtx_unlock(&pool->lock);
629
630		TAILQ_INIT(&new_pages);
631		r = ttm_alloc_new_pages(&new_pages, pool->ttm_page_alloc_flags,
632		    ttm_flags, cstate, alloc_size);
633		mtx_lock(&pool->lock);
634
635		if (!r) {
636			TAILQ_CONCAT(&pool->list, &new_pages, plinks.q);
637			++pool->nrefills;
638			pool->npages += alloc_size;
639		} else {
640			printf("[TTM] Failed to fill pool (%p)\n", pool);
641			/* If we have any pages left put them to the pool. */
642			TAILQ_FOREACH(p, &pool->list, plinks.q) {
643				++cpages;
644			}
645			TAILQ_CONCAT(&pool->list, &new_pages, plinks.q);
646			pool->npages += cpages;
647		}
648
649	}
650	pool->fill_lock = false;
651}
652
653/**
654 * Cut 'count' number of pages from the pool and put them on the return list.
655 *
656 * @return count of pages still required to fulfill the request.
657 */
658static unsigned ttm_page_pool_get_pages(struct ttm_page_pool *pool,
659					struct pglist *pages,
660					int ttm_flags,
661					enum ttm_caching_state cstate,
662					unsigned count)
663{
664	vm_page_t p;
665	unsigned i;
666
667	mtx_lock(&pool->lock);
668	ttm_page_pool_fill_locked(pool, ttm_flags, cstate, count);
669
670	if (count >= pool->npages) {
671		/* take all pages from the pool */
672		TAILQ_CONCAT(pages, &pool->list, plinks.q);
673		count -= pool->npages;
674		pool->npages = 0;
675		goto out;
676	}
677	for (i = 0; i < count; i++) {
678		p = TAILQ_FIRST(&pool->list);
679		TAILQ_REMOVE(&pool->list, p, plinks.q);
680		TAILQ_INSERT_TAIL(pages, p, plinks.q);
681	}
682	pool->npages -= count;
683	count = 0;
684out:
685	mtx_unlock(&pool->lock);
686	return count;
687}
688
689/* Put all pages in pages list to correct pool to wait for reuse */
690static void ttm_put_pages(vm_page_t *pages, unsigned npages, int flags,
691			  enum ttm_caching_state cstate)
692{
693	struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
694	unsigned i;
695
696	if (pool == NULL) {
697		/* No pool for this memory type so free the pages */
698		for (i = 0; i < npages; i++) {
699			if (pages[i]) {
700				ttm_vm_page_free(pages[i]);
701				pages[i] = NULL;
702			}
703		}
704		return;
705	}
706
707	mtx_lock(&pool->lock);
708	for (i = 0; i < npages; i++) {
709		if (pages[i]) {
710			TAILQ_INSERT_TAIL(&pool->list, pages[i], plinks.q);
711			pages[i] = NULL;
712			pool->npages++;
713		}
714	}
715	/* Check that we don't go over the pool limit */
716	npages = 0;
717	if (pool->npages > _manager->options.max_size) {
718		npages = pool->npages - _manager->options.max_size;
719		/* free at least NUM_PAGES_TO_ALLOC number of pages
720		 * to reduce calls to set_memory_wb */
721		if (npages < NUM_PAGES_TO_ALLOC)
722			npages = NUM_PAGES_TO_ALLOC;
723	}
724	mtx_unlock(&pool->lock);
725	if (npages)
726		ttm_page_pool_free(pool, npages);
727}
728
729/*
730 * On success pages list will hold count number of correctly
731 * cached pages.
732 */
733static int ttm_get_pages(vm_page_t *pages, unsigned npages, int flags,
734			 enum ttm_caching_state cstate)
735{
736	struct ttm_page_pool *pool = ttm_get_pool(flags, cstate);
737	struct pglist plist;
738	vm_page_t p = NULL;
739	int gfp_flags;
740	unsigned count;
741	int r;
742
743	/* No pool for cached pages */
744	if (pool == NULL) {
745		for (r = 0; r < npages; ++r) {
746			p = ttm_vm_page_alloc(flags, cstate);
747			if (!p) {
748				printf("[TTM] Unable to allocate page\n");
749				return -ENOMEM;
750			}
751			pages[r] = p;
752		}
753		return 0;
754	}
755
756	/* combine zero flag to pool flags */
757	gfp_flags = flags | pool->ttm_page_alloc_flags;
758
759	/* First we take pages from the pool */
760	TAILQ_INIT(&plist);
761	npages = ttm_page_pool_get_pages(pool, &plist, flags, cstate, npages);
762	count = 0;
763	TAILQ_FOREACH(p, &plist, plinks.q) {
764		pages[count++] = p;
765	}
766
767	/* clear the pages coming from the pool if requested */
768	if (flags & TTM_PAGE_FLAG_ZERO_ALLOC) {
769		TAILQ_FOREACH(p, &plist, plinks.q) {
770			pmap_zero_page(p);
771		}
772	}
773
774	/* If pool didn't have enough pages allocate new one. */
775	if (npages > 0) {
776		/* ttm_alloc_new_pages doesn't reference pool so we can run
777		 * multiple requests in parallel.
778		 **/
779		TAILQ_INIT(&plist);
780		r = ttm_alloc_new_pages(&plist, gfp_flags, flags, cstate,
781		    npages);
782		TAILQ_FOREACH(p, &plist, plinks.q) {
783			pages[count++] = p;
784		}
785		if (r) {
786			/* If there is any pages in the list put them back to
787			 * the pool. */
788			printf("[TTM] Failed to allocate extra pages for large request\n");
789			ttm_put_pages(pages, count, flags, cstate);
790			return r;
791		}
792	}
793
794	return 0;
795}
796
797static void ttm_page_pool_init_locked(struct ttm_page_pool *pool, int flags,
798				      char *name)
799{
800	mtx_init(&pool->lock, "ttmpool", NULL, MTX_DEF);
801	pool->fill_lock = false;
802	TAILQ_INIT(&pool->list);
803	pool->npages = pool->nfrees = 0;
804	pool->ttm_page_alloc_flags = flags;
805	pool->name = name;
806}
807
808int ttm_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
809{
810
811	if (_manager != NULL)
812		printf("[TTM] manager != NULL\n");
813	printf("[TTM] Initializing pool allocator\n");
814
815	_manager = malloc(sizeof(*_manager), M_TTM_POOLMGR, M_WAITOK | M_ZERO);
816
817	ttm_page_pool_init_locked(&_manager->wc_pool, 0, "wc");
818	ttm_page_pool_init_locked(&_manager->uc_pool, 0, "uc");
819	ttm_page_pool_init_locked(&_manager->wc_pool_dma32,
820	    TTM_PAGE_FLAG_DMA32, "wc dma");
821	ttm_page_pool_init_locked(&_manager->uc_pool_dma32,
822	    TTM_PAGE_FLAG_DMA32, "uc dma");
823
824	_manager->options.max_size = max_pages;
825	_manager->options.small = SMALL_ALLOCATION;
826	_manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
827
828	refcount_init(&_manager->kobj_ref, 1);
829	ttm_pool_mm_shrink_init(_manager);
830
831	return 0;
832}
833
834void ttm_page_alloc_fini(void)
835{
836	int i;
837
838	printf("[TTM] Finalizing pool allocator\n");
839	ttm_pool_mm_shrink_fini(_manager);
840
841	for (i = 0; i < NUM_POOLS; ++i)
842		ttm_page_pool_free(&_manager->pools[i], FREE_ALL_PAGES);
843
844	if (refcount_release(&_manager->kobj_ref))
845		ttm_pool_kobj_release(_manager);
846	_manager = NULL;
847}
848
849int ttm_pool_populate(struct ttm_tt *ttm)
850{
851	struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
852	unsigned i;
853	int ret;
854
855	if (ttm->state != tt_unpopulated)
856		return 0;
857
858	for (i = 0; i < ttm->num_pages; ++i) {
859		ret = ttm_get_pages(&ttm->pages[i], 1,
860				    ttm->page_flags,
861				    ttm->caching_state);
862		if (ret != 0) {
863			ttm_pool_unpopulate(ttm);
864			return -ENOMEM;
865		}
866
867		ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
868						false, false);
869		if (unlikely(ret != 0)) {
870			ttm_pool_unpopulate(ttm);
871			return -ENOMEM;
872		}
873	}
874
875	if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
876		ret = ttm_tt_swapin(ttm);
877		if (unlikely(ret != 0)) {
878			ttm_pool_unpopulate(ttm);
879			return ret;
880		}
881	}
882
883	ttm->state = tt_unbound;
884	return 0;
885}
886
887void ttm_pool_unpopulate(struct ttm_tt *ttm)
888{
889	unsigned i;
890
891	for (i = 0; i < ttm->num_pages; ++i) {
892		if (ttm->pages[i]) {
893			ttm_mem_global_free_page(ttm->glob->mem_glob,
894						 ttm->pages[i]);
895			ttm_put_pages(&ttm->pages[i], 1,
896				      ttm->page_flags,
897				      ttm->caching_state);
898		}
899	}
900	ttm->state = tt_unpopulated;
901}
902
903#if 0
904/* XXXKIB sysctl */
905int ttm_page_alloc_debugfs(struct seq_file *m, void *data)
906{
907	struct ttm_page_pool *p;
908	unsigned i;
909	char *h[] = {"pool", "refills", "pages freed", "size"};
910	if (!_manager) {
911		seq_printf(m, "No pool allocator running.\n");
912		return 0;
913	}
914	seq_printf(m, "%6s %12s %13s %8s\n",
915			h[0], h[1], h[2], h[3]);
916	for (i = 0; i < NUM_POOLS; ++i) {
917		p = &_manager->pools[i];
918
919		seq_printf(m, "%6s %12ld %13ld %8d\n",
920				p->name, p->nrefills,
921				p->nfrees, p->npages);
922	}
923	return 0;
924}
925#endif
926