1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 *    Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD$");
30
31#include <dev/drm2/drmP.h>
32#include <dev/drm2/i915/i915_drm.h>
33#include <dev/drm2/i915/i915_drv.h>
34
35#include <sys/sf_buf.h>
36
37/** @file i915_gem_tiling.c
38 *
39 * Support for managing tiling state of buffer objects.
40 *
41 * The idea behind tiling is to increase cache hit rates by rearranging
42 * pixel data so that a group of pixel accesses are in the same cacheline.
43 * Performance improvement from doing this on the back/depth buffer are on
44 * the order of 30%.
45 *
46 * Intel architectures make this somewhat more complicated, though, by
47 * adjustments made to addressing of data when the memory is in interleaved
48 * mode (matched pairs of DIMMS) to improve memory bandwidth.
49 * For interleaved memory, the CPU sends every sequential 64 bytes
50 * to an alternate memory channel so it can get the bandwidth from both.
51 *
52 * The GPU also rearranges its accesses for increased bandwidth to interleaved
53 * memory, and it matches what the CPU does for non-tiled.  However, when tiled
54 * it does it a little differently, since one walks addresses not just in the
55 * X direction but also Y.  So, along with alternating channels when bit
56 * 6 of the address flips, it also alternates when other bits flip --  Bits 9
57 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
58 * are common to both the 915 and 965-class hardware.
59 *
60 * The CPU also sometimes XORs in higher bits as well, to improve
61 * bandwidth doing strided access like we do so frequently in graphics.  This
62 * is called "Channel XOR Randomization" in the MCH documentation.  The result
63 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
64 * decode.
65 *
66 * All of this bit 6 XORing has an effect on our memory management,
67 * as we need to make sure that the 3d driver can correctly address object
68 * contents.
69 *
70 * If we don't have interleaved memory, all tiling is safe and no swizzling is
71 * required.
72 *
73 * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
74 * 17 is not just a page offset, so as we page an objet out and back in,
75 * individual pages in it will have different bit 17 addresses, resulting in
76 * each 64 bytes being swapped with its neighbor!
77 *
78 * Otherwise, if interleaved, we have to tell the 3d driver what the address
79 * swizzling it needs to do is, since it's writing with the CPU to the pages
80 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
81 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
82 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
83 * to match what the GPU expects.
84 */
85
86/**
87 * Detects bit 6 swizzling of address lookup between IGD access and CPU
88 * access through main memory.
89 */
90void
91i915_gem_detect_bit_6_swizzle(struct drm_device *dev)
92{
93	drm_i915_private_t *dev_priv = dev->dev_private;
94	uint32_t swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
95	uint32_t swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
96
97	if (IS_VALLEYVIEW(dev)) {
98		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
99		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
100	} else if (INTEL_INFO(dev)->gen >= 6) {
101		uint32_t dimm_c0, dimm_c1;
102		dimm_c0 = I915_READ(MAD_DIMM_C0);
103		dimm_c1 = I915_READ(MAD_DIMM_C1);
104		dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
105		dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
106		/* Enable swizzling when the channels are populated with
107		 * identically sized dimms. We don't need to check the 3rd
108		 * channel because no cpu with gpu attached ships in that
109		 * configuration. Also, swizzling only makes sense for 2
110		 * channels anyway. */
111		if (dimm_c0 == dimm_c1) {
112			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
113			swizzle_y = I915_BIT_6_SWIZZLE_9;
114		} else {
115			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
116			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
117		}
118	} else if (IS_GEN5(dev)) {
119		/* On Ironlake whatever DRAM config, GPU always do
120		 * same swizzling setup.
121		 */
122		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
123		swizzle_y = I915_BIT_6_SWIZZLE_9;
124	} else if (IS_GEN2(dev)) {
125		/* As far as we know, the 865 doesn't have these bit 6
126		 * swizzling issues.
127		 */
128		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
129		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
130	} else if (IS_MOBILE(dev) || (IS_GEN3(dev) && !IS_G33(dev))) {
131		uint32_t dcc;
132
133		/* On 9xx chipsets, channel interleave by the CPU is
134		 * determined by DCC.  For single-channel, neither the CPU
135		 * nor the GPU do swizzling.  For dual channel interleaved,
136		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
137		 * 9 for Y tiled.  The CPU's interleave is independent, and
138		 * can be based on either bit 11 (haven't seen this yet) or
139		 * bit 17 (common).
140		 */
141		dcc = I915_READ(DCC);
142		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
143		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
144		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
145			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
146			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
147			break;
148		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
149			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
150				/* This is the base swizzling by the GPU for
151				 * tiled buffers.
152				 */
153				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
154				swizzle_y = I915_BIT_6_SWIZZLE_9;
155			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
156				/* Bit 11 swizzling by the CPU in addition. */
157				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
158				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
159			} else {
160				/* Bit 17 swizzling by the CPU in addition. */
161				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
162				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
163			}
164			break;
165		}
166		if (dcc == 0xffffffff) {
167			DRM_ERROR("Couldn't read from MCHBAR.  "
168				  "Disabling tiling.\n");
169			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
170			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
171		}
172	} else {
173		/* The 965, G33, and newer, have a very flexible memory
174		 * configuration.  It will enable dual-channel mode
175		 * (interleaving) on as much memory as it can, and the GPU
176		 * will additionally sometimes enable different bit 6
177		 * swizzling for tiled objects from the CPU.
178		 *
179		 * Here's what I found on the G965:
180		 *    slot fill         memory size  swizzling
181		 * 0A   0B   1A   1B    1-ch   2-ch
182		 * 512  0    0    0     512    0     O
183		 * 512  0    512  0     16     1008  X
184		 * 512  0    0    512   16     1008  X
185		 * 0    512  0    512   16     1008  X
186		 * 1024 1024 1024 0     2048   1024  O
187		 *
188		 * We could probably detect this based on either the DRB
189		 * matching, which was the case for the swizzling required in
190		 * the table above, or from the 1-ch value being less than
191		 * the minimum size of a rank.
192		 */
193		if (I915_READ16(C0DRB3) != I915_READ16(C1DRB3)) {
194			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
195			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
196		} else {
197			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
198			swizzle_y = I915_BIT_6_SWIZZLE_9;
199		}
200	}
201
202	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
203	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
204}
205
206/* Check pitch constriants for all chips & tiling formats */
207static bool
208i915_tiling_ok(struct drm_device *dev, int stride, int size, int tiling_mode)
209{
210	int tile_width;
211
212	/* Linear is always fine */
213	if (tiling_mode == I915_TILING_NONE)
214		return true;
215
216	if (IS_GEN2(dev) ||
217	    (tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev)))
218		tile_width = 128;
219	else
220		tile_width = 512;
221
222	/* check maximum stride & object size */
223	if (INTEL_INFO(dev)->gen >= 4) {
224		/* i965 stores the end address of the gtt mapping in the fence
225		 * reg, so dont bother to check the size */
226		if (stride / 128 > I965_FENCE_MAX_PITCH_VAL)
227			return false;
228	} else {
229		if (stride > 8192)
230			return false;
231
232		if (IS_GEN3(dev)) {
233			if (size > I830_FENCE_MAX_SIZE_VAL << 20)
234				return false;
235		} else {
236			if (size > I830_FENCE_MAX_SIZE_VAL << 19)
237				return false;
238		}
239	}
240
241	/* 965+ just needs multiples of tile width */
242	if (INTEL_INFO(dev)->gen >= 4) {
243		if (stride & (tile_width - 1))
244			return false;
245		return true;
246	}
247
248	/* Pre-965 needs power of two tile widths */
249	if (stride < tile_width)
250		return false;
251
252	if (stride & (stride - 1))
253		return false;
254
255	return true;
256}
257
258/* Is the current GTT allocation valid for the change in tiling? */
259static bool
260i915_gem_object_fence_ok(struct drm_i915_gem_object *obj, int tiling_mode)
261{
262	u32 size;
263
264	if (tiling_mode == I915_TILING_NONE)
265		return true;
266
267	if (INTEL_INFO(obj->base.dev)->gen >= 4)
268		return true;
269
270	if (INTEL_INFO(obj->base.dev)->gen == 3) {
271		if (obj->gtt_offset & ~I915_FENCE_START_MASK)
272			return false;
273	} else {
274		if (obj->gtt_offset & ~I830_FENCE_START_MASK)
275			return false;
276	}
277
278	/*
279	 * Previous chips need to be aligned to the size of the smallest
280	 * fence register that can contain the object.
281	 */
282	if (INTEL_INFO(obj->base.dev)->gen == 3)
283		size = 1024*1024;
284	else
285		size = 512*1024;
286
287	while (size < obj->base.size)
288		size <<= 1;
289
290	if (obj->gtt_space->size != size)
291		return false;
292
293	if (obj->gtt_offset & (size - 1))
294		return false;
295
296	return true;
297}
298
299/**
300 * Sets the tiling mode of an object, returning the required swizzling of
301 * bit 6 of addresses in the object.
302 */
303int
304i915_gem_set_tiling(struct drm_device *dev, void *data,
305		   struct drm_file *file)
306{
307	struct drm_i915_gem_set_tiling *args = data;
308	drm_i915_private_t *dev_priv = dev->dev_private;
309	struct drm_i915_gem_object *obj;
310	int ret = 0;
311
312	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
313	if (&obj->base == NULL)
314		return -ENOENT;
315
316	if (!i915_tiling_ok(dev,
317			    args->stride, obj->base.size, args->tiling_mode)) {
318		drm_gem_object_unreference_unlocked(&obj->base);
319		return -EINVAL;
320	}
321
322	if (obj->pin_count) {
323		drm_gem_object_unreference_unlocked(&obj->base);
324		return -EBUSY;
325	}
326
327	if (args->tiling_mode == I915_TILING_NONE) {
328		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
329		args->stride = 0;
330	} else {
331		if (args->tiling_mode == I915_TILING_X)
332			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
333		else
334			args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
335
336		/* Hide bit 17 swizzling from the user.  This prevents old Mesa
337		 * from aborting the application on sw fallbacks to bit 17,
338		 * and we use the pread/pwrite bit17 paths to swizzle for it.
339		 * If there was a user that was relying on the swizzle
340		 * information for drm_intel_bo_map()ed reads/writes this would
341		 * break it, but we don't have any of those.
342		 */
343		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
344			args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
345		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
346			args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
347
348		/* If we can't handle the swizzling, make it untiled. */
349		if (args->swizzle_mode == I915_BIT_6_SWIZZLE_UNKNOWN) {
350			args->tiling_mode = I915_TILING_NONE;
351			args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
352			args->stride = 0;
353		}
354	}
355
356	DRM_LOCK(dev);
357	if (args->tiling_mode != obj->tiling_mode ||
358	    args->stride != obj->stride) {
359		/* We need to rebind the object if its current allocation
360		 * no longer meets the alignment restrictions for its new
361		 * tiling mode. Otherwise we can just leave it alone, but
362		 * need to ensure that any fence register is updated before
363		 * the next fenced (either through the GTT or by the BLT unit
364		 * on older GPUs) access.
365		 *
366		 * After updating the tiling parameters, we then flag whether
367		 * we need to update an associated fence register. Note this
368		 * has to also include the unfenced register the GPU uses
369		 * whilst executing a fenced command for an untiled object.
370		 */
371
372		obj->map_and_fenceable =
373			obj->gtt_space == NULL ||
374			(obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end &&
375			 i915_gem_object_fence_ok(obj, args->tiling_mode));
376
377		/* Rebind if we need a change of alignment */
378		if (!obj->map_and_fenceable) {
379			u32 unfenced_alignment =
380				i915_gem_get_unfenced_gtt_alignment(dev,
381								    obj->base.size,
382								    args->tiling_mode);
383			if (obj->gtt_offset & (unfenced_alignment - 1))
384				ret = i915_gem_object_unbind(obj);
385		}
386
387		if (ret == 0) {
388			obj->fence_dirty =
389				obj->fenced_gpu_access ||
390				obj->fence_reg != I915_FENCE_REG_NONE;
391
392			obj->tiling_mode = args->tiling_mode;
393			obj->stride = args->stride;
394
395			/* Force the fence to be reacquired for GTT access */
396			i915_gem_release_mmap(obj);
397		}
398	}
399	/* we have to maintain this existing ABI... */
400	args->stride = obj->stride;
401	args->tiling_mode = obj->tiling_mode;
402	drm_gem_object_unreference(&obj->base);
403	DRM_UNLOCK(dev);
404
405	return ret;
406}
407
408/**
409 * Returns the current tiling mode and required bit 6 swizzling for the object.
410 */
411int
412i915_gem_get_tiling(struct drm_device *dev, void *data,
413		   struct drm_file *file)
414{
415	struct drm_i915_gem_get_tiling *args = data;
416	drm_i915_private_t *dev_priv = dev->dev_private;
417	struct drm_i915_gem_object *obj;
418
419	obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
420	if (&obj->base == NULL)
421		return -ENOENT;
422
423	DRM_LOCK(dev);
424
425	args->tiling_mode = obj->tiling_mode;
426	switch (obj->tiling_mode) {
427	case I915_TILING_X:
428		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_x;
429		break;
430	case I915_TILING_Y:
431		args->swizzle_mode = dev_priv->mm.bit_6_swizzle_y;
432		break;
433	case I915_TILING_NONE:
434		args->swizzle_mode = I915_BIT_6_SWIZZLE_NONE;
435		break;
436	default:
437		DRM_ERROR("unknown tiling mode\n");
438	}
439
440	/* Hide bit 17 from the user -- see comment in i915_gem_set_tiling */
441	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_17)
442		args->swizzle_mode = I915_BIT_6_SWIZZLE_9;
443	if (args->swizzle_mode == I915_BIT_6_SWIZZLE_9_10_17)
444		args->swizzle_mode = I915_BIT_6_SWIZZLE_9_10;
445
446	drm_gem_object_unreference(&obj->base);
447	DRM_UNLOCK(dev);
448
449	return 0;
450}
451
452/**
453 * Swap every 64 bytes of this page around, to account for it having a new
454 * bit 17 of its physical address and therefore being interpreted differently
455 * by the GPU.
456 */
457static void
458i915_gem_swizzle_page(vm_page_t page)
459{
460	char temp[64];
461	struct sf_buf *sf;
462	char *vaddr;
463	int i;
464
465	/* XXXKIB sleep */
466	sf = sf_buf_alloc(page, SFB_DEFAULT);
467	vaddr = (char *)sf_buf_kva(sf);
468
469	for (i = 0; i < PAGE_SIZE; i += 128) {
470		memcpy(temp, &vaddr[i], 64);
471		memcpy(&vaddr[i], &vaddr[i + 64], 64);
472		memcpy(&vaddr[i + 64], temp, 64);
473	}
474
475	sf_buf_free(sf);
476}
477
478void
479i915_gem_object_do_bit_17_swizzle_page(struct drm_i915_gem_object *obj,
480    vm_page_t m)
481{
482	char new_bit_17;
483
484	if (obj->bit_17 == NULL)
485		return;
486
487	new_bit_17 = VM_PAGE_TO_PHYS(m) >> 17;
488	if ((new_bit_17 & 0x1) !=
489	    (test_bit(m->pindex, obj->bit_17) != 0)) {
490		i915_gem_swizzle_page(m);
491		vm_page_dirty(m);
492	}
493}
494
495void
496i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj)
497{
498	int page_count = obj->base.size >> PAGE_SHIFT;
499	int i;
500
501	if (obj->bit_17 == NULL)
502		return;
503
504	for (i = 0; i < page_count; i++) {
505		vm_page_t page = obj->pages[i];
506		char new_bit_17 = VM_PAGE_TO_PHYS(page) >> 17;
507		if ((new_bit_17 & 0x1) !=
508		    (test_bit(i, obj->bit_17) != 0)) {
509			i915_gem_swizzle_page(page);
510			vm_page_dirty(page);
511		}
512	}
513}
514
515void
516i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj)
517{
518	int page_count = obj->base.size >> PAGE_SHIFT;
519	int i;
520
521	if (obj->bit_17 == NULL) {
522		obj->bit_17 = malloc(BITS_TO_LONGS(page_count) *
523					   sizeof(long), DRM_I915_GEM, M_WAITOK);
524		if (obj->bit_17 == NULL) {
525			DRM_ERROR("Failed to allocate memory for bit 17 "
526				  "record\n");
527			return;
528		}
529	}
530
531	/* XXXKIB: review locking, atomics might be not needed there */
532	for (i = 0; i < page_count; i++) {
533		vm_page_t page = obj->pages[i];
534		if (VM_PAGE_TO_PHYS(page) & (1 << 17))
535			__set_bit(i, obj->bit_17);
536		else
537			__clear_bit(i, obj->bit_17);
538	}
539}
540