t4_sge.c revision 291665
1/*-
2 * Copyright (c) 2011 Chelsio Communications, Inc.
3 * All rights reserved.
4 * Written by: Navdeep Parhar <np@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/cxgbe/t4_sge.c 291665 2015-12-03 00:02:01Z jhb $");
30
31#include "opt_inet.h"
32#include "opt_inet6.h"
33
34#include <sys/types.h>
35#include <sys/eventhandler.h>
36#include <sys/mbuf.h>
37#include <sys/socket.h>
38#include <sys/kernel.h>
39#include <sys/malloc.h>
40#include <sys/queue.h>
41#include <sys/sbuf.h>
42#include <sys/taskqueue.h>
43#include <sys/time.h>
44#include <sys/sglist.h>
45#include <sys/sysctl.h>
46#include <sys/smp.h>
47#include <sys/counter.h>
48#include <net/bpf.h>
49#include <net/ethernet.h>
50#include <net/if.h>
51#include <net/if_vlan_var.h>
52#include <netinet/in.h>
53#include <netinet/ip.h>
54#include <netinet/ip6.h>
55#include <netinet/tcp.h>
56#include <machine/md_var.h>
57#include <vm/vm.h>
58#include <vm/pmap.h>
59#ifdef DEV_NETMAP
60#include <machine/bus.h>
61#include <sys/selinfo.h>
62#include <net/if_var.h>
63#include <net/netmap.h>
64#include <dev/netmap/netmap_kern.h>
65#endif
66
67#include "common/common.h"
68#include "common/t4_regs.h"
69#include "common/t4_regs_values.h"
70#include "common/t4_msg.h"
71#include "t4_mp_ring.h"
72
73#ifdef T4_PKT_TIMESTAMP
74#define RX_COPY_THRESHOLD (MINCLSIZE - 8)
75#else
76#define RX_COPY_THRESHOLD MINCLSIZE
77#endif
78
79/*
80 * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
81 * 0-7 are valid values.
82 */
83int fl_pktshift = 2;
84TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
85
86/*
87 * Pad ethernet payload up to this boundary.
88 * -1: driver should figure out a good value.
89 *  0: disable padding.
90 *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
91 */
92int fl_pad = -1;
93TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
94
95/*
96 * Status page length.
97 * -1: driver should figure out a good value.
98 *  64 or 128 are the only other valid values.
99 */
100int spg_len = -1;
101TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
102
103/*
104 * Congestion drops.
105 * -1: no congestion feedback (not recommended).
106 *  0: backpressure the channel instead of dropping packets right away.
107 *  1: no backpressure, drop packets for the congested queue immediately.
108 */
109static int cong_drop = 0;
110TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
111
112/*
113 * Deliver multiple frames in the same free list buffer if they fit.
114 * -1: let the driver decide whether to enable buffer packing or not.
115 *  0: disable buffer packing.
116 *  1: enable buffer packing.
117 */
118static int buffer_packing = -1;
119TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
120
121/*
122 * Start next frame in a packed buffer at this boundary.
123 * -1: driver should figure out a good value.
124 * T4: driver will ignore this and use the same value as fl_pad above.
125 * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
126 */
127static int fl_pack = -1;
128TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
129
130/*
131 * Allow the driver to create mbuf(s) in a cluster allocated for rx.
132 * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
133 * 1: ok to create mbuf(s) within a cluster if there is room.
134 */
135static int allow_mbufs_in_cluster = 1;
136TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
137
138/*
139 * Largest rx cluster size that the driver is allowed to allocate.
140 */
141static int largest_rx_cluster = MJUM16BYTES;
142TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
143
144/*
145 * Size of cluster allocation that's most likely to succeed.  The driver will
146 * fall back to this size if it fails to allocate clusters larger than this.
147 */
148static int safest_rx_cluster = PAGE_SIZE;
149TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
150
151struct txpkts {
152	u_int wr_type;		/* type 0 or type 1 */
153	u_int npkt;		/* # of packets in this work request */
154	u_int plen;		/* total payload (sum of all packets) */
155	u_int len16;		/* # of 16B pieces used by this work request */
156};
157
158/* A packet's SGL.  This + m_pkthdr has all info needed for tx */
159struct sgl {
160	struct sglist sg;
161	struct sglist_seg seg[TX_SGL_SEGS];
162};
163
164static int service_iq(struct sge_iq *, int);
165static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
166static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
167static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
168static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
169static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t,
170    char *);
171static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
172    bus_addr_t *, void **);
173static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
174    void *);
175static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
176    int, int);
177static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
178static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
179    struct sge_fl *);
180static int alloc_fwq(struct adapter *);
181static int free_fwq(struct adapter *);
182static int alloc_mgmtq(struct adapter *);
183static int free_mgmtq(struct adapter *);
184static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
185    struct sysctl_oid *);
186static int free_rxq(struct vi_info *, struct sge_rxq *);
187#ifdef TCP_OFFLOAD
188static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
189    struct sysctl_oid *);
190static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
191#endif
192#ifdef DEV_NETMAP
193static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
194    struct sysctl_oid *);
195static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
196static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
197    struct sysctl_oid *);
198static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
199#endif
200static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
201static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
202#ifdef TCP_OFFLOAD
203static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
204#endif
205static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
206static int free_eq(struct adapter *, struct sge_eq *);
207static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
208    struct sysctl_oid *);
209static int free_wrq(struct adapter *, struct sge_wrq *);
210static int alloc_txq(struct vi_info *, struct sge_txq *, int,
211    struct sysctl_oid *);
212static int free_txq(struct vi_info *, struct sge_txq *);
213static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
214static inline void ring_fl_db(struct adapter *, struct sge_fl *);
215static int refill_fl(struct adapter *, struct sge_fl *, int);
216static void refill_sfl(void *);
217static int alloc_fl_sdesc(struct sge_fl *);
218static void free_fl_sdesc(struct adapter *, struct sge_fl *);
219static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
220static void find_safe_refill_source(struct adapter *, struct sge_fl *);
221static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
222
223static inline void get_pkt_gl(struct mbuf *, struct sglist *);
224static inline u_int txpkt_len16(u_int, u_int);
225static inline u_int txpkts0_len16(u_int);
226static inline u_int txpkts1_len16(void);
227static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *,
228    struct mbuf *, u_int);
229static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int);
230static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int);
231static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *,
232    struct mbuf *, const struct txpkts *, u_int);
233static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
234static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
235static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
236static inline uint16_t read_hw_cidx(struct sge_eq *);
237static inline u_int reclaimable_tx_desc(struct sge_eq *);
238static inline u_int total_available_tx_desc(struct sge_eq *);
239static u_int reclaim_tx_descs(struct sge_txq *, u_int);
240static void tx_reclaim(void *, int);
241static __be64 get_flit(struct sglist_seg *, int, int);
242static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
243    struct mbuf *);
244static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
245    struct mbuf *);
246static void wrq_tx_drain(void *, int);
247static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
248
249static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
250static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
251
252static counter_u64_t extfree_refs;
253static counter_u64_t extfree_rels;
254
255/*
256 * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
257 */
258void
259t4_sge_modload(void)
260{
261
262	if (fl_pktshift < 0 || fl_pktshift > 7) {
263		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
264		    " using 2 instead.\n", fl_pktshift);
265		fl_pktshift = 2;
266	}
267
268	if (spg_len != 64 && spg_len != 128) {
269		int len;
270
271#if defined(__i386__) || defined(__amd64__)
272		len = cpu_clflush_line_size > 64 ? 128 : 64;
273#else
274		len = 64;
275#endif
276		if (spg_len != -1) {
277			printf("Invalid hw.cxgbe.spg_len value (%d),"
278			    " using %d instead.\n", spg_len, len);
279		}
280		spg_len = len;
281	}
282
283	if (cong_drop < -1 || cong_drop > 1) {
284		printf("Invalid hw.cxgbe.cong_drop value (%d),"
285		    " using 0 instead.\n", cong_drop);
286		cong_drop = 0;
287	}
288
289	extfree_refs = counter_u64_alloc(M_WAITOK);
290	extfree_rels = counter_u64_alloc(M_WAITOK);
291	counter_u64_zero(extfree_refs);
292	counter_u64_zero(extfree_rels);
293}
294
295void
296t4_sge_modunload(void)
297{
298
299	counter_u64_free(extfree_refs);
300	counter_u64_free(extfree_rels);
301}
302
303uint64_t
304t4_sge_extfree_refs(void)
305{
306	uint64_t refs, rels;
307
308	rels = counter_u64_fetch(extfree_rels);
309	refs = counter_u64_fetch(extfree_refs);
310
311	return (refs - rels);
312}
313
314void
315t4_init_sge_cpl_handlers(struct adapter *sc)
316{
317
318	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
319	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
320	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
321	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
322	t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
323}
324
325static inline void
326setup_pad_and_pack_boundaries(struct adapter *sc)
327{
328	uint32_t v, m;
329	int pad, pack;
330
331	pad = fl_pad;
332	if (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad)) {
333		/*
334		 * If there is any chance that we might use buffer packing and
335		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
336		 * it to 32 in all other cases.
337		 */
338		pad = is_t4(sc) && buffer_packing ? 64 : 32;
339
340		/*
341		 * For fl_pad = 0 we'll still write a reasonable value to the
342		 * register but all the freelists will opt out of padding.
343		 * We'll complain here only if the user tried to set it to a
344		 * value greater than 0 that was invalid.
345		 */
346		if (fl_pad > 0) {
347			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
348			    " (%d), using %d instead.\n", fl_pad, pad);
349		}
350	}
351	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
352	v = V_INGPADBOUNDARY(ilog2(pad) - 5);
353	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
354
355	if (is_t4(sc)) {
356		if (fl_pack != -1 && fl_pack != pad) {
357			/* Complain but carry on. */
358			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
359			    " using %d instead.\n", fl_pack, pad);
360		}
361		return;
362	}
363
364	pack = fl_pack;
365	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
366	    !powerof2(fl_pack)) {
367		pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
368		MPASS(powerof2(pack));
369		if (pack < 16)
370			pack = 16;
371		if (pack == 32)
372			pack = 64;
373		if (pack > 4096)
374			pack = 4096;
375		if (fl_pack != -1) {
376			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
377			    " (%d), using %d instead.\n", fl_pack, pack);
378		}
379	}
380	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
381	if (pack == 16)
382		v = V_INGPACKBOUNDARY(0);
383	else
384		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
385
386	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
387	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
388}
389
390/*
391 * adap->params.vpd.cclk must be set up before this is called.
392 */
393void
394t4_tweak_chip_settings(struct adapter *sc)
395{
396	int i;
397	uint32_t v, m;
398	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
399	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
400	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
401	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
402	static int sge_flbuf_sizes[] = {
403		MCLBYTES,
404#if MJUMPAGESIZE != MCLBYTES
405		MJUMPAGESIZE,
406		MJUMPAGESIZE - CL_METADATA_SIZE,
407		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
408#endif
409		MJUM9BYTES,
410		MJUM16BYTES,
411		MCLBYTES - MSIZE - CL_METADATA_SIZE,
412		MJUM9BYTES - CL_METADATA_SIZE,
413		MJUM16BYTES - CL_METADATA_SIZE,
414	};
415
416	KASSERT(sc->flags & MASTER_PF,
417	    ("%s: trying to change chip settings when not master.", __func__));
418
419	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
420	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
421	    V_EGRSTATUSPAGESIZE(spg_len == 128);
422	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
423
424	setup_pad_and_pack_boundaries(sc);
425
426	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
427	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
428	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
429	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
430	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
431	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
432	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
433	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
434	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
435
436	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
437	    ("%s: hw buffer size table too big", __func__));
438	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
439		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
440		    sge_flbuf_sizes[i]);
441	}
442
443	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
444	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
445	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
446
447	KASSERT(intr_timer[0] <= timer_max,
448	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
449	    timer_max));
450	for (i = 1; i < nitems(intr_timer); i++) {
451		KASSERT(intr_timer[i] >= intr_timer[i - 1],
452		    ("%s: timers not listed in increasing order (%d)",
453		    __func__, i));
454
455		while (intr_timer[i] > timer_max) {
456			if (i == nitems(intr_timer) - 1) {
457				intr_timer[i] = timer_max;
458				break;
459			}
460			intr_timer[i] += intr_timer[i - 1];
461			intr_timer[i] /= 2;
462		}
463	}
464
465	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
466	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
467	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
468	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
469	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
470	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
471	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
472	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
473	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
474
475	/* 4K, 16K, 64K, 256K DDP "page sizes" */
476	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
477	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
478
479	m = v = F_TDDPTAGTCB;
480	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
481
482	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
483	    F_RESETDDPOFFSET;
484	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
485	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
486}
487
488/*
489 * SGE wants the buffer to be at least 64B and then a multiple of 16.  If
490 * padding is is use the buffer's start and end need to be aligned to the pad
491 * boundary as well.  We'll just make sure that the size is a multiple of the
492 * boundary here, it is up to the buffer allocation code to make sure the start
493 * of the buffer is aligned as well.
494 */
495static inline int
496hwsz_ok(struct adapter *sc, int hwsz)
497{
498	int mask = fl_pad ? sc->sge.pad_boundary - 1 : 16 - 1;
499
500	return (hwsz >= 64 && (hwsz & mask) == 0);
501}
502
503/*
504 * XXX: driver really should be able to deal with unexpected settings.
505 */
506int
507t4_read_chip_settings(struct adapter *sc)
508{
509	struct sge *s = &sc->sge;
510	int i, j, n, rc = 0;
511	uint32_t m, v, r;
512	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
513	static int sw_buf_sizes[] = {	/* Sorted by size */
514		MCLBYTES,
515#if MJUMPAGESIZE != MCLBYTES
516		MJUMPAGESIZE,
517#endif
518		MJUM9BYTES,
519		MJUM16BYTES
520	};
521	struct sw_zone_info *swz, *safe_swz;
522	struct hw_buf_info *hwb;
523
524	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
525	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
526	    V_EGRSTATUSPAGESIZE(spg_len == 128);
527	r = t4_read_reg(sc, A_SGE_CONTROL);
528	if ((r & m) != v) {
529		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
530		rc = EINVAL;
531	}
532	s->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 5);
533
534	if (is_t4(sc))
535		s->pack_boundary = s->pad_boundary;
536	else {
537		r = t4_read_reg(sc, A_SGE_CONTROL2);
538		if (G_INGPACKBOUNDARY(r) == 0)
539			s->pack_boundary = 16;
540		else
541			s->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
542	}
543
544	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
545	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
546	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
547	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
548	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
549	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
550	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
551	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
552	r = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE);
553	if (r != v) {
554		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
555		rc = EINVAL;
556	}
557
558	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
559	hwb = &s->hw_buf_info[0];
560	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
561		r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
562		hwb->size = r;
563		hwb->zidx = hwsz_ok(sc, r) ? -1 : -2;
564		hwb->next = -1;
565	}
566
567	/*
568	 * Create a sorted list in decreasing order of hw buffer sizes (and so
569	 * increasing order of spare area) for each software zone.
570	 *
571	 * If padding is enabled then the start and end of the buffer must align
572	 * to the pad boundary; if packing is enabled then they must align with
573	 * the pack boundary as well.  Allocations from the cluster zones are
574	 * aligned to min(size, 4K), so the buffer starts at that alignment and
575	 * ends at hwb->size alignment.  If mbuf inlining is allowed the
576	 * starting alignment will be reduced to MSIZE and the driver will
577	 * exercise appropriate caution when deciding on the best buffer layout
578	 * to use.
579	 */
580	n = 0;	/* no usable buffer size to begin with */
581	swz = &s->sw_zone_info[0];
582	safe_swz = NULL;
583	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
584		int8_t head = -1, tail = -1;
585
586		swz->size = sw_buf_sizes[i];
587		swz->zone = m_getzone(swz->size);
588		swz->type = m_gettype(swz->size);
589
590		if (swz->size < PAGE_SIZE) {
591			MPASS(powerof2(swz->size));
592			if (fl_pad && (swz->size % sc->sge.pad_boundary != 0))
593				continue;
594		}
595
596		if (swz->size == safest_rx_cluster)
597			safe_swz = swz;
598
599		hwb = &s->hw_buf_info[0];
600		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
601			if (hwb->zidx != -1 || hwb->size > swz->size)
602				continue;
603#ifdef INVARIANTS
604			if (fl_pad)
605				MPASS(hwb->size % sc->sge.pad_boundary == 0);
606#endif
607			hwb->zidx = i;
608			if (head == -1)
609				head = tail = j;
610			else if (hwb->size < s->hw_buf_info[tail].size) {
611				s->hw_buf_info[tail].next = j;
612				tail = j;
613			} else {
614				int8_t *cur;
615				struct hw_buf_info *t;
616
617				for (cur = &head; *cur != -1; cur = &t->next) {
618					t = &s->hw_buf_info[*cur];
619					if (hwb->size == t->size) {
620						hwb->zidx = -2;
621						break;
622					}
623					if (hwb->size > t->size) {
624						hwb->next = *cur;
625						*cur = j;
626						break;
627					}
628				}
629			}
630		}
631		swz->head_hwidx = head;
632		swz->tail_hwidx = tail;
633
634		if (tail != -1) {
635			n++;
636			if (swz->size - s->hw_buf_info[tail].size >=
637			    CL_METADATA_SIZE)
638				sc->flags |= BUF_PACKING_OK;
639		}
640	}
641	if (n == 0) {
642		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
643		rc = EINVAL;
644	}
645
646	s->safe_hwidx1 = -1;
647	s->safe_hwidx2 = -1;
648	if (safe_swz != NULL) {
649		s->safe_hwidx1 = safe_swz->head_hwidx;
650		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
651			int spare;
652
653			hwb = &s->hw_buf_info[i];
654#ifdef INVARIANTS
655			if (fl_pad)
656				MPASS(hwb->size % sc->sge.pad_boundary == 0);
657#endif
658			spare = safe_swz->size - hwb->size;
659			if (spare >= CL_METADATA_SIZE) {
660				s->safe_hwidx2 = i;
661				break;
662			}
663		}
664	}
665
666	r = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD);
667	s->counter_val[0] = G_THRESHOLD_0(r);
668	s->counter_val[1] = G_THRESHOLD_1(r);
669	s->counter_val[2] = G_THRESHOLD_2(r);
670	s->counter_val[3] = G_THRESHOLD_3(r);
671
672	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1);
673	s->timer_val[0] = G_TIMERVALUE0(r) / core_ticks_per_usec(sc);
674	s->timer_val[1] = G_TIMERVALUE1(r) / core_ticks_per_usec(sc);
675	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3);
676	s->timer_val[2] = G_TIMERVALUE2(r) / core_ticks_per_usec(sc);
677	s->timer_val[3] = G_TIMERVALUE3(r) / core_ticks_per_usec(sc);
678	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5);
679	s->timer_val[4] = G_TIMERVALUE4(r) / core_ticks_per_usec(sc);
680	s->timer_val[5] = G_TIMERVALUE5(r) / core_ticks_per_usec(sc);
681
682	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
683	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
684	if (r != v) {
685		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
686		rc = EINVAL;
687	}
688
689	m = v = F_TDDPTAGTCB;
690	r = t4_read_reg(sc, A_ULP_RX_CTL);
691	if ((r & m) != v) {
692		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
693		rc = EINVAL;
694	}
695
696	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
697	    F_RESETDDPOFFSET;
698	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
699	r = t4_read_reg(sc, A_TP_PARA_REG5);
700	if ((r & m) != v) {
701		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
702		rc = EINVAL;
703	}
704
705	r = t4_read_reg(sc, A_SGE_CONM_CTRL);
706	s->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
707	if (is_t4(sc))
708		s->fl_starve_threshold2 = s->fl_starve_threshold;
709	else
710		s->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
711
712	/* egress queues: log2 of # of doorbells per BAR2 page */
713	r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
714	r >>= S_QUEUESPERPAGEPF0 +
715	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
716	s->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
717
718	/* ingress queues: log2 of # of doorbells per BAR2 page */
719	r = t4_read_reg(sc, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
720	r >>= S_QUEUESPERPAGEPF0 +
721	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
722	s->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
723
724	t4_init_tp_params(sc);
725
726	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
727	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
728
729	return (rc);
730}
731
732int
733t4_create_dma_tag(struct adapter *sc)
734{
735	int rc;
736
737	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
738	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
739	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
740	    NULL, &sc->dmat);
741	if (rc != 0) {
742		device_printf(sc->dev,
743		    "failed to create main DMA tag: %d\n", rc);
744	}
745
746	return (rc);
747}
748
749void
750t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
751    struct sysctl_oid_list *children)
752{
753
754	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
755	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
756	    "freelist buffer sizes");
757
758	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
759	    NULL, fl_pktshift, "payload DMA offset in rx buffer (bytes)");
760
761	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
762	    NULL, sc->sge.pad_boundary, "payload pad boundary (bytes)");
763
764	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
765	    NULL, spg_len, "status page size (bytes)");
766
767	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
768	    NULL, cong_drop, "congestion drop setting");
769
770	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
771	    NULL, sc->sge.pack_boundary, "payload pack boundary (bytes)");
772}
773
774int
775t4_destroy_dma_tag(struct adapter *sc)
776{
777	if (sc->dmat)
778		bus_dma_tag_destroy(sc->dmat);
779
780	return (0);
781}
782
783/*
784 * Allocate and initialize the firmware event queue and the management queue.
785 *
786 * Returns errno on failure.  Resources allocated up to that point may still be
787 * allocated.  Caller is responsible for cleanup in case this function fails.
788 */
789int
790t4_setup_adapter_queues(struct adapter *sc)
791{
792	int rc;
793
794	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
795
796	sysctl_ctx_init(&sc->ctx);
797	sc->flags |= ADAP_SYSCTL_CTX;
798
799	/*
800	 * Firmware event queue
801	 */
802	rc = alloc_fwq(sc);
803	if (rc != 0)
804		return (rc);
805
806	/*
807	 * Management queue.  This is just a control queue that uses the fwq as
808	 * its associated iq.
809	 */
810	rc = alloc_mgmtq(sc);
811
812	return (rc);
813}
814
815/*
816 * Idempotent
817 */
818int
819t4_teardown_adapter_queues(struct adapter *sc)
820{
821
822	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
823
824	/* Do this before freeing the queue */
825	if (sc->flags & ADAP_SYSCTL_CTX) {
826		sysctl_ctx_free(&sc->ctx);
827		sc->flags &= ~ADAP_SYSCTL_CTX;
828	}
829
830	free_mgmtq(sc);
831	free_fwq(sc);
832
833	return (0);
834}
835
836static inline int
837first_vector(struct vi_info *vi)
838{
839	struct adapter *sc = vi->pi->adapter;
840
841	if (sc->intr_count == 1)
842		return (0);
843
844	return (vi->first_intr);
845}
846
847/*
848 * Given an arbitrary "index," come up with an iq that can be used by other
849 * queues (of this VI) for interrupt forwarding, SGE egress updates, etc.
850 * The iq returned is guaranteed to be something that takes direct interrupts.
851 */
852static struct sge_iq *
853vi_intr_iq(struct vi_info *vi, int idx)
854{
855	struct adapter *sc = vi->pi->adapter;
856	struct sge *s = &sc->sge;
857	struct sge_iq *iq = NULL;
858	int nintr, i;
859
860	if (sc->intr_count == 1)
861		return (&sc->sge.fwq);
862
863	KASSERT(!(vi->flags & VI_NETMAP),
864	    ("%s: called on netmap VI", __func__));
865	nintr = vi->nintr;
866	KASSERT(nintr != 0,
867	    ("%s: vi %p has no exclusive interrupts, total interrupts = %d",
868	    __func__, vi, sc->intr_count));
869	i = idx % nintr;
870
871	if (vi->flags & INTR_RXQ) {
872	       	if (i < vi->nrxq) {
873			iq = &s->rxq[vi->first_rxq + i].iq;
874			goto done;
875		}
876		i -= vi->nrxq;
877	}
878#ifdef TCP_OFFLOAD
879	if (vi->flags & INTR_OFLD_RXQ) {
880	       	if (i < vi->nofldrxq) {
881			iq = &s->ofld_rxq[vi->first_ofld_rxq + i].iq;
882			goto done;
883		}
884		i -= vi->nofldrxq;
885	}
886#endif
887	panic("%s: vi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__,
888	    vi, vi->flags & INTR_ALL, idx, nintr);
889done:
890	MPASS(iq != NULL);
891	KASSERT(iq->flags & IQ_INTR,
892	    ("%s: iq %p (vi %p, intr_flags 0x%lx, idx %d)", __func__, iq, vi,
893	    vi->flags & INTR_ALL, idx));
894	return (iq);
895}
896
897/* Maximum payload that can be delivered with a single iq descriptor */
898static inline int
899mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
900{
901	int payload;
902
903#ifdef TCP_OFFLOAD
904	if (toe) {
905		payload = sc->tt.rx_coalesce ?
906		    G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu;
907	} else {
908#endif
909		/* large enough even when hw VLAN extraction is disabled */
910		payload = fl_pktshift + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
911		    mtu;
912#ifdef TCP_OFFLOAD
913	}
914#endif
915
916	return (payload);
917}
918
919int
920t4_setup_vi_queues(struct vi_info *vi)
921{
922	int rc = 0, i, j, intr_idx, iqid;
923	struct sge_rxq *rxq;
924	struct sge_txq *txq;
925	struct sge_wrq *ctrlq;
926#ifdef TCP_OFFLOAD
927	struct sge_ofld_rxq *ofld_rxq;
928	struct sge_wrq *ofld_txq;
929#endif
930#ifdef DEV_NETMAP
931	struct sge_nm_rxq *nm_rxq;
932	struct sge_nm_txq *nm_txq;
933#endif
934	char name[16];
935	struct port_info *pi = vi->pi;
936	struct adapter *sc = pi->adapter;
937	struct ifnet *ifp = vi->ifp;
938	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
939	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
940	int maxp, mtu = ifp->if_mtu;
941
942	/* Interrupt vector to start from (when using multiple vectors) */
943	intr_idx = first_vector(vi);
944
945#ifdef DEV_NETMAP
946	if (vi->flags & VI_NETMAP) {
947		/*
948		 * We don't have buffers to back the netmap rx queues
949		 * right now so we create the queues in a way that
950		 * doesn't set off any congestion signal in the chip.
951		 */
952		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
953		    CTLFLAG_RD, NULL, "rx queues");
954		for_each_nm_rxq(vi, i, nm_rxq) {
955			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
956			if (rc != 0)
957				goto done;
958			intr_idx++;
959		}
960
961		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq",
962		    CTLFLAG_RD, NULL, "tx queues");
963		for_each_nm_txq(vi, i, nm_txq) {
964			iqid = vi->first_rxq + (i % vi->nrxq);
965			rc = alloc_nm_txq(vi, nm_txq, iqid, i, oid);
966			if (rc != 0)
967				goto done;
968		}
969		goto done;
970	}
971#endif
972
973	/*
974	 * First pass over all NIC and TOE rx queues:
975	 * a) initialize iq and fl
976	 * b) allocate queue iff it will take direct interrupts.
977	 */
978	maxp = mtu_to_max_payload(sc, mtu, 0);
979	if (vi->flags & INTR_RXQ) {
980		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
981		    CTLFLAG_RD, NULL, "rx queues");
982	}
983	for_each_rxq(vi, i, rxq) {
984
985		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
986
987		snprintf(name, sizeof(name), "%s rxq%d-fl",
988		    device_get_nameunit(vi->dev), i);
989		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
990
991		if (vi->flags & INTR_RXQ) {
992			rxq->iq.flags |= IQ_INTR;
993			rc = alloc_rxq(vi, rxq, intr_idx, i, oid);
994			if (rc != 0)
995				goto done;
996			intr_idx++;
997		}
998	}
999#ifdef TCP_OFFLOAD
1000	maxp = mtu_to_max_payload(sc, mtu, 1);
1001	if (vi->flags & INTR_OFLD_RXQ) {
1002		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1003		    CTLFLAG_RD, NULL,
1004		    "rx queues for offloaded TCP connections");
1005	}
1006	for_each_ofld_rxq(vi, i, ofld_rxq) {
1007
1008		init_iq(&ofld_rxq->iq, sc, vi->tmr_idx, vi->pktc_idx,
1009		    vi->qsize_rxq);
1010
1011		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1012		    device_get_nameunit(vi->dev), i);
1013		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
1014
1015		if (vi->flags & INTR_OFLD_RXQ) {
1016			ofld_rxq->iq.flags |= IQ_INTR;
1017			rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid);
1018			if (rc != 0)
1019				goto done;
1020			intr_idx++;
1021		}
1022	}
1023#endif
1024
1025	/*
1026	 * Second pass over all NIC and TOE rx queues.  The queues forwarding
1027	 * their interrupts are allocated now.
1028	 */
1029	j = 0;
1030	if (!(vi->flags & INTR_RXQ)) {
1031		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
1032		    CTLFLAG_RD, NULL, "rx queues");
1033		for_each_rxq(vi, i, rxq) {
1034			MPASS(!(rxq->iq.flags & IQ_INTR));
1035
1036			intr_idx = vi_intr_iq(vi, j)->abs_id;
1037
1038			rc = alloc_rxq(vi, rxq, intr_idx, i, oid);
1039			if (rc != 0)
1040				goto done;
1041			j++;
1042		}
1043	}
1044#ifdef TCP_OFFLOAD
1045	if (vi->nofldrxq != 0 && !(vi->flags & INTR_OFLD_RXQ)) {
1046		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1047		    CTLFLAG_RD, NULL,
1048		    "rx queues for offloaded TCP connections");
1049		for_each_ofld_rxq(vi, i, ofld_rxq) {
1050			MPASS(!(ofld_rxq->iq.flags & IQ_INTR));
1051
1052			intr_idx = vi_intr_iq(vi, j)->abs_id;
1053
1054			rc = alloc_ofld_rxq(vi, ofld_rxq, intr_idx, i, oid);
1055			if (rc != 0)
1056				goto done;
1057			j++;
1058		}
1059	}
1060#endif
1061
1062	/*
1063	 * Now the tx queues.  Only one pass needed.
1064	 */
1065	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1066	    NULL, "tx queues");
1067	j = 0;
1068	for_each_txq(vi, i, txq) {
1069		iqid = vi_intr_iq(vi, j)->cntxt_id;
1070		snprintf(name, sizeof(name), "%s txq%d",
1071		    device_get_nameunit(vi->dev), i);
1072		init_eq(&txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan, iqid,
1073		    name);
1074
1075		rc = alloc_txq(vi, txq, i, oid);
1076		if (rc != 0)
1077			goto done;
1078		j++;
1079	}
1080#ifdef TCP_OFFLOAD
1081	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1082	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
1083	for_each_ofld_txq(vi, i, ofld_txq) {
1084		struct sysctl_oid *oid2;
1085
1086		iqid = vi_intr_iq(vi, j)->cntxt_id;
1087		snprintf(name, sizeof(name), "%s ofld_txq%d",
1088		    device_get_nameunit(vi->dev), i);
1089		init_eq(&ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
1090		    iqid, name);
1091
1092		snprintf(name, sizeof(name), "%d", i);
1093		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1094		    name, CTLFLAG_RD, NULL, "offload tx queue");
1095
1096		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1097		if (rc != 0)
1098			goto done;
1099		j++;
1100	}
1101#endif
1102
1103	/*
1104	 * Finally, the control queue.
1105	 */
1106	if (!IS_MAIN_VI(vi))
1107		goto done;
1108	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
1109	    NULL, "ctrl queue");
1110	ctrlq = &sc->sge.ctrlq[pi->port_id];
1111	iqid = vi_intr_iq(vi, 0)->cntxt_id;
1112	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(vi->dev));
1113	init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name);
1114	rc = alloc_wrq(sc, vi, ctrlq, oid);
1115
1116done:
1117	if (rc)
1118		t4_teardown_vi_queues(vi);
1119
1120	return (rc);
1121}
1122
1123/*
1124 * Idempotent
1125 */
1126int
1127t4_teardown_vi_queues(struct vi_info *vi)
1128{
1129	int i;
1130	struct port_info *pi = vi->pi;
1131	struct adapter *sc = pi->adapter;
1132	struct sge_rxq *rxq;
1133	struct sge_txq *txq;
1134#ifdef TCP_OFFLOAD
1135	struct sge_ofld_rxq *ofld_rxq;
1136	struct sge_wrq *ofld_txq;
1137#endif
1138#ifdef DEV_NETMAP
1139	struct sge_nm_rxq *nm_rxq;
1140	struct sge_nm_txq *nm_txq;
1141#endif
1142
1143	/* Do this before freeing the queues */
1144	if (vi->flags & VI_SYSCTL_CTX) {
1145		sysctl_ctx_free(&vi->ctx);
1146		vi->flags &= ~VI_SYSCTL_CTX;
1147	}
1148
1149#ifdef DEV_NETMAP
1150	if (vi->flags & VI_NETMAP) {
1151		for_each_nm_txq(vi, i, nm_txq) {
1152			free_nm_txq(vi, nm_txq);
1153		}
1154
1155		for_each_nm_rxq(vi, i, nm_rxq) {
1156			free_nm_rxq(vi, nm_rxq);
1157		}
1158		return (0);
1159	}
1160#endif
1161
1162	/*
1163	 * Take down all the tx queues first, as they reference the rx queues
1164	 * (for egress updates, etc.).
1165	 */
1166
1167	if (IS_MAIN_VI(vi))
1168		free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1169
1170	for_each_txq(vi, i, txq) {
1171		free_txq(vi, txq);
1172	}
1173#ifdef TCP_OFFLOAD
1174	for_each_ofld_txq(vi, i, ofld_txq) {
1175		free_wrq(sc, ofld_txq);
1176	}
1177#endif
1178
1179	/*
1180	 * Then take down the rx queues that forward their interrupts, as they
1181	 * reference other rx queues.
1182	 */
1183
1184	for_each_rxq(vi, i, rxq) {
1185		if ((rxq->iq.flags & IQ_INTR) == 0)
1186			free_rxq(vi, rxq);
1187	}
1188#ifdef TCP_OFFLOAD
1189	for_each_ofld_rxq(vi, i, ofld_rxq) {
1190		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
1191			free_ofld_rxq(vi, ofld_rxq);
1192	}
1193#endif
1194
1195	/*
1196	 * Then take down the rx queues that take direct interrupts.
1197	 */
1198
1199	for_each_rxq(vi, i, rxq) {
1200		if (rxq->iq.flags & IQ_INTR)
1201			free_rxq(vi, rxq);
1202	}
1203#ifdef TCP_OFFLOAD
1204	for_each_ofld_rxq(vi, i, ofld_rxq) {
1205		if (ofld_rxq->iq.flags & IQ_INTR)
1206			free_ofld_rxq(vi, ofld_rxq);
1207	}
1208#endif
1209
1210	return (0);
1211}
1212
1213/*
1214 * Deals with errors and the firmware event queue.  All data rx queues forward
1215 * their interrupt to the firmware event queue.
1216 */
1217void
1218t4_intr_all(void *arg)
1219{
1220	struct adapter *sc = arg;
1221	struct sge_iq *fwq = &sc->sge.fwq;
1222
1223	t4_intr_err(arg);
1224	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1225		service_iq(fwq, 0);
1226		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1227	}
1228}
1229
1230/* Deals with error interrupts */
1231void
1232t4_intr_err(void *arg)
1233{
1234	struct adapter *sc = arg;
1235
1236	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1237	t4_slow_intr_handler(sc);
1238}
1239
1240void
1241t4_intr_evt(void *arg)
1242{
1243	struct sge_iq *iq = arg;
1244
1245	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1246		service_iq(iq, 0);
1247		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1248	}
1249}
1250
1251void
1252t4_intr(void *arg)
1253{
1254	struct sge_iq *iq = arg;
1255
1256	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1257		service_iq(iq, 0);
1258		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1259	}
1260}
1261
1262/*
1263 * Deals with anything and everything on the given ingress queue.
1264 */
1265static int
1266service_iq(struct sge_iq *iq, int budget)
1267{
1268	struct sge_iq *q;
1269	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1270	struct sge_fl *fl;			/* Use iff IQ_HAS_FL */
1271	struct adapter *sc = iq->adapter;
1272	struct iq_desc *d = &iq->desc[iq->cidx];
1273	int ndescs = 0, limit;
1274	int rsp_type, refill;
1275	uint32_t lq;
1276	uint16_t fl_hw_cidx;
1277	struct mbuf *m0;
1278	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1279#if defined(INET) || defined(INET6)
1280	const struct timeval lro_timeout = {0, sc->lro_timeout};
1281#endif
1282
1283	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1284
1285	limit = budget ? budget : iq->qsize / 16;
1286
1287	if (iq->flags & IQ_HAS_FL) {
1288		fl = &rxq->fl;
1289		fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1290	} else {
1291		fl = NULL;
1292		fl_hw_cidx = 0;			/* to silence gcc warning */
1293	}
1294
1295	/*
1296	 * We always come back and check the descriptor ring for new indirect
1297	 * interrupts and other responses after running a single handler.
1298	 */
1299	for (;;) {
1300		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1301
1302			rmb();
1303
1304			refill = 0;
1305			m0 = NULL;
1306			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1307			lq = be32toh(d->rsp.pldbuflen_qid);
1308
1309			switch (rsp_type) {
1310			case X_RSPD_TYPE_FLBUF:
1311
1312				KASSERT(iq->flags & IQ_HAS_FL,
1313				    ("%s: data for an iq (%p) with no freelist",
1314				    __func__, iq));
1315
1316				m0 = get_fl_payload(sc, fl, lq);
1317				if (__predict_false(m0 == NULL))
1318					goto process_iql;
1319				refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2;
1320#ifdef T4_PKT_TIMESTAMP
1321				/*
1322				 * 60 bit timestamp for the payload is
1323				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1324				 * in the leading free-space in the mbuf.  The
1325				 * kernel can clobber it during a pullup,
1326				 * m_copymdata, etc.  You need to make sure that
1327				 * the mbuf reaches you unmolested if you care
1328				 * about the timestamp.
1329				 */
1330				*(uint64_t *)m0->m_pktdat =
1331				    be64toh(ctrl->u.last_flit) &
1332				    0xfffffffffffffff;
1333#endif
1334
1335				/* fall through */
1336
1337			case X_RSPD_TYPE_CPL:
1338				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1339				    ("%s: bad opcode %02x.", __func__,
1340				    d->rss.opcode));
1341				sc->cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1342				break;
1343
1344			case X_RSPD_TYPE_INTR:
1345
1346				/*
1347				 * Interrupts should be forwarded only to queues
1348				 * that are not forwarding their interrupts.
1349				 * This means service_iq can recurse but only 1
1350				 * level deep.
1351				 */
1352				KASSERT(budget == 0,
1353				    ("%s: budget %u, rsp_type %u", __func__,
1354				    budget, rsp_type));
1355
1356				/*
1357				 * There are 1K interrupt-capable queues (qids 0
1358				 * through 1023).  A response type indicating a
1359				 * forwarded interrupt with a qid >= 1K is an
1360				 * iWARP async notification.
1361				 */
1362				if (lq >= 1024) {
1363                                        sc->an_handler(iq, &d->rsp);
1364                                        break;
1365                                }
1366
1367				q = sc->sge.iqmap[lq - sc->sge.iq_start];
1368				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1369				    IQS_BUSY)) {
1370					if (service_iq(q, q->qsize / 16) == 0) {
1371						atomic_cmpset_int(&q->state,
1372						    IQS_BUSY, IQS_IDLE);
1373					} else {
1374						STAILQ_INSERT_TAIL(&iql, q,
1375						    link);
1376					}
1377				}
1378				break;
1379
1380			default:
1381				KASSERT(0,
1382				    ("%s: illegal response type %d on iq %p",
1383				    __func__, rsp_type, iq));
1384				log(LOG_ERR,
1385				    "%s: illegal response type %d on iq %p",
1386				    device_get_nameunit(sc->dev), rsp_type, iq);
1387				break;
1388			}
1389
1390			d++;
1391			if (__predict_false(++iq->cidx == iq->sidx)) {
1392				iq->cidx = 0;
1393				iq->gen ^= F_RSPD_GEN;
1394				d = &iq->desc[0];
1395			}
1396			if (__predict_false(++ndescs == limit)) {
1397				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
1398				    V_CIDXINC(ndescs) |
1399				    V_INGRESSQID(iq->cntxt_id) |
1400				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1401				ndescs = 0;
1402
1403#if defined(INET) || defined(INET6)
1404				if (iq->flags & IQ_LRO_ENABLED &&
1405				    sc->lro_timeout != 0) {
1406					tcp_lro_flush_inactive(&rxq->lro,
1407					    &lro_timeout);
1408				}
1409#endif
1410
1411				if (budget) {
1412					if (iq->flags & IQ_HAS_FL) {
1413						FL_LOCK(fl);
1414						refill_fl(sc, fl, 32);
1415						FL_UNLOCK(fl);
1416					}
1417					return (EINPROGRESS);
1418				}
1419			}
1420			if (refill) {
1421				FL_LOCK(fl);
1422				refill_fl(sc, fl, 32);
1423				FL_UNLOCK(fl);
1424				fl_hw_cidx = fl->hw_cidx;
1425			}
1426		}
1427
1428process_iql:
1429		if (STAILQ_EMPTY(&iql))
1430			break;
1431
1432		/*
1433		 * Process the head only, and send it to the back of the list if
1434		 * it's still not done.
1435		 */
1436		q = STAILQ_FIRST(&iql);
1437		STAILQ_REMOVE_HEAD(&iql, link);
1438		if (service_iq(q, q->qsize / 8) == 0)
1439			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1440		else
1441			STAILQ_INSERT_TAIL(&iql, q, link);
1442	}
1443
1444#if defined(INET) || defined(INET6)
1445	if (iq->flags & IQ_LRO_ENABLED) {
1446		struct lro_ctrl *lro = &rxq->lro;
1447		struct lro_entry *l;
1448
1449		while (!SLIST_EMPTY(&lro->lro_active)) {
1450			l = SLIST_FIRST(&lro->lro_active);
1451			SLIST_REMOVE_HEAD(&lro->lro_active, next);
1452			tcp_lro_flush(lro, l);
1453		}
1454	}
1455#endif
1456
1457	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1458	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1459
1460	if (iq->flags & IQ_HAS_FL) {
1461		int starved;
1462
1463		FL_LOCK(fl);
1464		starved = refill_fl(sc, fl, 64);
1465		FL_UNLOCK(fl);
1466		if (__predict_false(starved != 0))
1467			add_fl_to_sfl(sc, fl);
1468	}
1469
1470	return (0);
1471}
1472
1473static inline int
1474cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1475{
1476	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1477
1478	if (rc)
1479		MPASS(cll->region3 >= CL_METADATA_SIZE);
1480
1481	return (rc);
1482}
1483
1484static inline struct cluster_metadata *
1485cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1486    caddr_t cl)
1487{
1488
1489	if (cl_has_metadata(fl, cll)) {
1490		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1491
1492		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1493	}
1494	return (NULL);
1495}
1496
1497static void
1498rxb_free(struct mbuf *m, void *arg1, void *arg2)
1499{
1500	uma_zone_t zone = arg1;
1501	caddr_t cl = arg2;
1502
1503	uma_zfree(zone, cl);
1504	counter_u64_add(extfree_rels, 1);
1505}
1506
1507/*
1508 * The mbuf returned by this function could be allocated from zone_mbuf or
1509 * constructed in spare room in the cluster.
1510 *
1511 * The mbuf carries the payload in one of these ways
1512 * a) frame inside the mbuf (mbuf from zone_mbuf)
1513 * b) m_cljset (for clusters without metadata) zone_mbuf
1514 * c) m_extaddref (cluster with metadata) inline mbuf
1515 * d) m_extaddref (cluster with metadata) zone_mbuf
1516 */
1517static struct mbuf *
1518get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1519    int remaining)
1520{
1521	struct mbuf *m;
1522	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1523	struct cluster_layout *cll = &sd->cll;
1524	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1525	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1526	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1527	int len, blen;
1528	caddr_t payload;
1529
1530	blen = hwb->size - fl->rx_offset;	/* max possible in this buf */
1531	len = min(remaining, blen);
1532	payload = sd->cl + cll->region1 + fl->rx_offset;
1533	if (fl->flags & FL_BUF_PACKING) {
1534		const u_int l = fr_offset + len;
1535		const u_int pad = roundup2(l, fl->buf_boundary) - l;
1536
1537		if (fl->rx_offset + len + pad < hwb->size)
1538			blen = len + pad;
1539		MPASS(fl->rx_offset + blen <= hwb->size);
1540	} else {
1541		MPASS(fl->rx_offset == 0);	/* not packing */
1542	}
1543
1544
1545	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1546
1547		/*
1548		 * Copy payload into a freshly allocated mbuf.
1549		 */
1550
1551		m = fr_offset == 0 ?
1552		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1553		if (m == NULL)
1554			return (NULL);
1555		fl->mbuf_allocated++;
1556#ifdef T4_PKT_TIMESTAMP
1557		/* Leave room for a timestamp */
1558		m->m_data += 8;
1559#endif
1560		/* copy data to mbuf */
1561		bcopy(payload, mtod(m, caddr_t), len);
1562
1563	} else if (sd->nmbuf * MSIZE < cll->region1) {
1564
1565		/*
1566		 * There's spare room in the cluster for an mbuf.  Create one
1567		 * and associate it with the payload that's in the cluster.
1568		 */
1569
1570		MPASS(clm != NULL);
1571		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1572		/* No bzero required */
1573		if (m_init(m, NULL, 0, M_NOWAIT, MT_DATA,
1574		    fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE))
1575			return (NULL);
1576		fl->mbuf_inlined++;
1577		m_extaddref(m, payload, blen, &clm->refcount, rxb_free,
1578		    swz->zone, sd->cl);
1579		if (sd->nmbuf++ == 0)
1580			counter_u64_add(extfree_refs, 1);
1581
1582	} else {
1583
1584		/*
1585		 * Grab an mbuf from zone_mbuf and associate it with the
1586		 * payload in the cluster.
1587		 */
1588
1589		m = fr_offset == 0 ?
1590		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1591		if (m == NULL)
1592			return (NULL);
1593		fl->mbuf_allocated++;
1594		if (clm != NULL) {
1595			m_extaddref(m, payload, blen, &clm->refcount,
1596			    rxb_free, swz->zone, sd->cl);
1597			if (sd->nmbuf++ == 0)
1598				counter_u64_add(extfree_refs, 1);
1599		} else {
1600			m_cljset(m, sd->cl, swz->type);
1601			sd->cl = NULL;	/* consumed, not a recycle candidate */
1602		}
1603	}
1604	if (fr_offset == 0)
1605		m->m_pkthdr.len = remaining;
1606	m->m_len = len;
1607
1608	if (fl->flags & FL_BUF_PACKING) {
1609		fl->rx_offset += blen;
1610		MPASS(fl->rx_offset <= hwb->size);
1611		if (fl->rx_offset < hwb->size)
1612			return (m);	/* without advancing the cidx */
1613	}
1614
1615	if (__predict_false(++fl->cidx % 8 == 0)) {
1616		uint16_t cidx = fl->cidx / 8;
1617
1618		if (__predict_false(cidx == fl->sidx))
1619			fl->cidx = cidx = 0;
1620		fl->hw_cidx = cidx;
1621	}
1622	fl->rx_offset = 0;
1623
1624	return (m);
1625}
1626
1627static struct mbuf *
1628get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf)
1629{
1630	struct mbuf *m0, *m, **pnext;
1631	u_int remaining;
1632	const u_int total = G_RSPD_LEN(len_newbuf);
1633
1634	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1635		M_ASSERTPKTHDR(fl->m0);
1636		MPASS(fl->m0->m_pkthdr.len == total);
1637		MPASS(fl->remaining < total);
1638
1639		m0 = fl->m0;
1640		pnext = fl->pnext;
1641		remaining = fl->remaining;
1642		fl->flags &= ~FL_BUF_RESUME;
1643		goto get_segment;
1644	}
1645
1646	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1647		fl->rx_offset = 0;
1648		if (__predict_false(++fl->cidx % 8 == 0)) {
1649			uint16_t cidx = fl->cidx / 8;
1650
1651			if (__predict_false(cidx == fl->sidx))
1652				fl->cidx = cidx = 0;
1653			fl->hw_cidx = cidx;
1654		}
1655	}
1656
1657	/*
1658	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1659	 * 'len' and it may span multiple hw buffers.
1660	 */
1661
1662	m0 = get_scatter_segment(sc, fl, 0, total);
1663	if (m0 == NULL)
1664		return (NULL);
1665	remaining = total - m0->m_len;
1666	pnext = &m0->m_next;
1667	while (remaining > 0) {
1668get_segment:
1669		MPASS(fl->rx_offset == 0);
1670		m = get_scatter_segment(sc, fl, total - remaining, remaining);
1671		if (__predict_false(m == NULL)) {
1672			fl->m0 = m0;
1673			fl->pnext = pnext;
1674			fl->remaining = remaining;
1675			fl->flags |= FL_BUF_RESUME;
1676			return (NULL);
1677		}
1678		*pnext = m;
1679		pnext = &m->m_next;
1680		remaining -= m->m_len;
1681	}
1682	*pnext = NULL;
1683
1684	M_ASSERTPKTHDR(m0);
1685	return (m0);
1686}
1687
1688static int
1689t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1690{
1691	struct sge_rxq *rxq = iq_to_rxq(iq);
1692	struct ifnet *ifp = rxq->ifp;
1693	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1694#if defined(INET) || defined(INET6)
1695	struct lro_ctrl *lro = &rxq->lro;
1696#endif
1697	static const int sw_hashtype[4][2] = {
1698		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1699		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1700		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1701		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1702	};
1703
1704	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1705	    rss->opcode));
1706
1707	m0->m_pkthdr.len -= fl_pktshift;
1708	m0->m_len -= fl_pktshift;
1709	m0->m_data += fl_pktshift;
1710
1711	m0->m_pkthdr.rcvif = ifp;
1712	M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]);
1713	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1714
1715	if (cpl->csum_calc && !cpl->err_vec) {
1716		if (ifp->if_capenable & IFCAP_RXCSUM &&
1717		    cpl->l2info & htobe32(F_RXF_IP)) {
1718			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1719			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1720			rxq->rxcsum++;
1721		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1722		    cpl->l2info & htobe32(F_RXF_IP6)) {
1723			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1724			    CSUM_PSEUDO_HDR);
1725			rxq->rxcsum++;
1726		}
1727
1728		if (__predict_false(cpl->ip_frag))
1729			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1730		else
1731			m0->m_pkthdr.csum_data = 0xffff;
1732	}
1733
1734	if (cpl->vlan_ex) {
1735		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1736		m0->m_flags |= M_VLANTAG;
1737		rxq->vlan_extraction++;
1738	}
1739
1740#if defined(INET) || defined(INET6)
1741	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1742	    iq->flags & IQ_LRO_ENABLED &&
1743	    tcp_lro_rx(lro, m0, 0) == 0) {
1744		/* queued for LRO */
1745	} else
1746#endif
1747	ifp->if_input(ifp, m0);
1748
1749	return (0);
1750}
1751
1752/*
1753 * Must drain the wrq or make sure that someone else will.
1754 */
1755static void
1756wrq_tx_drain(void *arg, int n)
1757{
1758	struct sge_wrq *wrq = arg;
1759	struct sge_eq *eq = &wrq->eq;
1760
1761	EQ_LOCK(eq);
1762	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
1763		drain_wrq_wr_list(wrq->adapter, wrq);
1764	EQ_UNLOCK(eq);
1765}
1766
1767static void
1768drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
1769{
1770	struct sge_eq *eq = &wrq->eq;
1771	u_int available, dbdiff;	/* # of hardware descriptors */
1772	u_int n;
1773	struct wrqe *wr;
1774	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
1775
1776	EQ_LOCK_ASSERT_OWNED(eq);
1777	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
1778	wr = STAILQ_FIRST(&wrq->wr_list);
1779	MPASS(wr != NULL);	/* Must be called with something useful to do */
1780	dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
1781
1782	do {
1783		eq->cidx = read_hw_cidx(eq);
1784		if (eq->pidx == eq->cidx)
1785			available = eq->sidx - 1;
1786		else
1787			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
1788
1789		MPASS(wr->wrq == wrq);
1790		n = howmany(wr->wr_len, EQ_ESIZE);
1791		if (available < n)
1792			return;
1793
1794		dst = (void *)&eq->desc[eq->pidx];
1795		if (__predict_true(eq->sidx - eq->pidx > n)) {
1796			/* Won't wrap, won't end exactly at the status page. */
1797			bcopy(&wr->wr[0], dst, wr->wr_len);
1798			eq->pidx += n;
1799		} else {
1800			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
1801
1802			bcopy(&wr->wr[0], dst, first_portion);
1803			if (wr->wr_len > first_portion) {
1804				bcopy(&wr->wr[first_portion], &eq->desc[0],
1805				    wr->wr_len - first_portion);
1806			}
1807			eq->pidx = n - (eq->sidx - eq->pidx);
1808		}
1809
1810		if (available < eq->sidx / 4 &&
1811		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
1812			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
1813			    F_FW_WR_EQUEQ);
1814			eq->equeqidx = eq->pidx;
1815		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
1816			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
1817			eq->equeqidx = eq->pidx;
1818		}
1819
1820		dbdiff += n;
1821		if (dbdiff >= 16) {
1822			ring_eq_db(sc, eq, dbdiff);
1823			dbdiff = 0;
1824		}
1825
1826		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1827		free_wrqe(wr);
1828		MPASS(wrq->nwr_pending > 0);
1829		wrq->nwr_pending--;
1830		MPASS(wrq->ndesc_needed >= n);
1831		wrq->ndesc_needed -= n;
1832	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
1833
1834	if (dbdiff)
1835		ring_eq_db(sc, eq, dbdiff);
1836}
1837
1838/*
1839 * Doesn't fail.  Holds on to work requests it can't send right away.
1840 */
1841void
1842t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1843{
1844#ifdef INVARIANTS
1845	struct sge_eq *eq = &wrq->eq;
1846#endif
1847
1848	EQ_LOCK_ASSERT_OWNED(eq);
1849	MPASS(wr != NULL);
1850	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
1851	MPASS((wr->wr_len & 0x7) == 0);
1852
1853	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1854	wrq->nwr_pending++;
1855	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
1856
1857	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
1858		return;	/* commit_wrq_wr will drain wr_list as well. */
1859
1860	drain_wrq_wr_list(sc, wrq);
1861
1862	/* Doorbell must have caught up to the pidx. */
1863	MPASS(eq->pidx == eq->dbidx);
1864}
1865
1866void
1867t4_update_fl_bufsize(struct ifnet *ifp)
1868{
1869	struct vi_info *vi = ifp->if_softc;
1870	struct adapter *sc = vi->pi->adapter;
1871	struct sge_rxq *rxq;
1872#ifdef TCP_OFFLOAD
1873	struct sge_ofld_rxq *ofld_rxq;
1874#endif
1875	struct sge_fl *fl;
1876	int i, maxp, mtu = ifp->if_mtu;
1877
1878	maxp = mtu_to_max_payload(sc, mtu, 0);
1879	for_each_rxq(vi, i, rxq) {
1880		fl = &rxq->fl;
1881
1882		FL_LOCK(fl);
1883		find_best_refill_source(sc, fl, maxp);
1884		FL_UNLOCK(fl);
1885	}
1886#ifdef TCP_OFFLOAD
1887	maxp = mtu_to_max_payload(sc, mtu, 1);
1888	for_each_ofld_rxq(vi, i, ofld_rxq) {
1889		fl = &ofld_rxq->fl;
1890
1891		FL_LOCK(fl);
1892		find_best_refill_source(sc, fl, maxp);
1893		FL_UNLOCK(fl);
1894	}
1895#endif
1896}
1897
1898static inline int
1899mbuf_nsegs(struct mbuf *m)
1900{
1901
1902	M_ASSERTPKTHDR(m);
1903	KASSERT(m->m_pkthdr.l5hlen > 0,
1904	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
1905
1906	return (m->m_pkthdr.l5hlen);
1907}
1908
1909static inline void
1910set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
1911{
1912
1913	M_ASSERTPKTHDR(m);
1914	m->m_pkthdr.l5hlen = nsegs;
1915}
1916
1917static inline int
1918mbuf_len16(struct mbuf *m)
1919{
1920	int n;
1921
1922	M_ASSERTPKTHDR(m);
1923	n = m->m_pkthdr.PH_loc.eight[0];
1924	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
1925
1926	return (n);
1927}
1928
1929static inline void
1930set_mbuf_len16(struct mbuf *m, uint8_t len16)
1931{
1932
1933	M_ASSERTPKTHDR(m);
1934	m->m_pkthdr.PH_loc.eight[0] = len16;
1935}
1936
1937static inline int
1938needs_tso(struct mbuf *m)
1939{
1940
1941	M_ASSERTPKTHDR(m);
1942
1943	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1944		KASSERT(m->m_pkthdr.tso_segsz > 0,
1945		    ("%s: TSO requested in mbuf %p but MSS not provided",
1946		    __func__, m));
1947		return (1);
1948	}
1949
1950	return (0);
1951}
1952
1953static inline int
1954needs_l3_csum(struct mbuf *m)
1955{
1956
1957	M_ASSERTPKTHDR(m);
1958
1959	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))
1960		return (1);
1961	return (0);
1962}
1963
1964static inline int
1965needs_l4_csum(struct mbuf *m)
1966{
1967
1968	M_ASSERTPKTHDR(m);
1969
1970	if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
1971	    CSUM_TCP_IPV6 | CSUM_TSO))
1972		return (1);
1973	return (0);
1974}
1975
1976static inline int
1977needs_vlan_insertion(struct mbuf *m)
1978{
1979
1980	M_ASSERTPKTHDR(m);
1981
1982	if (m->m_flags & M_VLANTAG) {
1983		KASSERT(m->m_pkthdr.ether_vtag != 0,
1984		    ("%s: HWVLAN requested in mbuf %p but tag not provided",
1985		    __func__, m));
1986		return (1);
1987	}
1988	return (0);
1989}
1990
1991static void *
1992m_advance(struct mbuf **pm, int *poffset, int len)
1993{
1994	struct mbuf *m = *pm;
1995	int offset = *poffset;
1996	uintptr_t p = 0;
1997
1998	MPASS(len > 0);
1999
2000	while (len) {
2001		if (offset + len < m->m_len) {
2002			offset += len;
2003			p = mtod(m, uintptr_t) + offset;
2004			break;
2005		}
2006		len -= m->m_len - offset;
2007		m = m->m_next;
2008		offset = 0;
2009		MPASS(m != NULL);
2010	}
2011	*poffset = offset;
2012	*pm = m;
2013	return ((void *)p);
2014}
2015
2016static inline int
2017same_paddr(char *a, char *b)
2018{
2019
2020	if (a == b)
2021		return (1);
2022	else if (a != NULL && b != NULL) {
2023		vm_offset_t x = (vm_offset_t)a;
2024		vm_offset_t y = (vm_offset_t)b;
2025
2026		if ((x & PAGE_MASK) == (y & PAGE_MASK) &&
2027		    pmap_kextract(x) == pmap_kextract(y))
2028			return (1);
2029	}
2030
2031	return (0);
2032}
2033
2034/*
2035 * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2036 * must have at least one mbuf that's not empty.
2037 */
2038static inline int
2039count_mbuf_nsegs(struct mbuf *m)
2040{
2041	char *prev_end, *start;
2042	int len, nsegs;
2043
2044	MPASS(m != NULL);
2045
2046	nsegs = 0;
2047	prev_end = NULL;
2048	for (; m; m = m->m_next) {
2049
2050		len = m->m_len;
2051		if (__predict_false(len == 0))
2052			continue;
2053		start = mtod(m, char *);
2054
2055		nsegs += sglist_count(start, len);
2056		if (same_paddr(prev_end, start))
2057			nsegs--;
2058		prev_end = start + len;
2059	}
2060
2061	MPASS(nsegs > 0);
2062	return (nsegs);
2063}
2064
2065/*
2066 * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2067 * a) caller can assume it's been freed if this function returns with an error.
2068 * b) it may get defragged up if the gather list is too long for the hardware.
2069 */
2070int
2071parse_pkt(struct mbuf **mp)
2072{
2073	struct mbuf *m0 = *mp, *m;
2074	int rc, nsegs, defragged = 0, offset;
2075	struct ether_header *eh;
2076	void *l3hdr;
2077#if defined(INET) || defined(INET6)
2078	struct tcphdr *tcp;
2079#endif
2080	uint16_t eh_type;
2081
2082	M_ASSERTPKTHDR(m0);
2083	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2084		rc = EINVAL;
2085fail:
2086		m_freem(m0);
2087		*mp = NULL;
2088		return (rc);
2089	}
2090restart:
2091	/*
2092	 * First count the number of gather list segments in the payload.
2093	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2094	 */
2095	M_ASSERTPKTHDR(m0);
2096	MPASS(m0->m_pkthdr.len > 0);
2097	nsegs = count_mbuf_nsegs(m0);
2098	if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
2099		if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
2100			rc = EFBIG;
2101			goto fail;
2102		}
2103		*mp = m0 = m;	/* update caller's copy after defrag */
2104		goto restart;
2105	}
2106
2107	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) {
2108		m0 = m_pullup(m0, m0->m_pkthdr.len);
2109		if (m0 == NULL) {
2110			/* Should have left well enough alone. */
2111			rc = EFBIG;
2112			goto fail;
2113		}
2114		*mp = m0;	/* update caller's copy after pullup */
2115		goto restart;
2116	}
2117	set_mbuf_nsegs(m0, nsegs);
2118	set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
2119
2120	if (!needs_tso(m0))
2121		return (0);
2122
2123	m = m0;
2124	eh = mtod(m, struct ether_header *);
2125	eh_type = ntohs(eh->ether_type);
2126	if (eh_type == ETHERTYPE_VLAN) {
2127		struct ether_vlan_header *evh = (void *)eh;
2128
2129		eh_type = ntohs(evh->evl_proto);
2130		m0->m_pkthdr.l2hlen = sizeof(*evh);
2131	} else
2132		m0->m_pkthdr.l2hlen = sizeof(*eh);
2133
2134	offset = 0;
2135	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2136
2137	switch (eh_type) {
2138#ifdef INET6
2139	case ETHERTYPE_IPV6:
2140	{
2141		struct ip6_hdr *ip6 = l3hdr;
2142
2143		MPASS(ip6->ip6_nxt == IPPROTO_TCP);
2144
2145		m0->m_pkthdr.l3hlen = sizeof(*ip6);
2146		break;
2147	}
2148#endif
2149#ifdef INET
2150	case ETHERTYPE_IP:
2151	{
2152		struct ip *ip = l3hdr;
2153
2154		m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
2155		break;
2156	}
2157#endif
2158	default:
2159		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2160		    " with the same INET/INET6 options as the kernel.",
2161		    __func__, eh_type);
2162	}
2163
2164#if defined(INET) || defined(INET6)
2165	tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2166	m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2167#endif
2168	MPASS(m0 == *mp);
2169	return (0);
2170}
2171
2172void *
2173start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2174{
2175	struct sge_eq *eq = &wrq->eq;
2176	struct adapter *sc = wrq->adapter;
2177	int ndesc, available;
2178	struct wrqe *wr;
2179	void *w;
2180
2181	MPASS(len16 > 0);
2182	ndesc = howmany(len16, EQ_ESIZE / 16);
2183	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2184
2185	EQ_LOCK(eq);
2186
2187	if (!STAILQ_EMPTY(&wrq->wr_list))
2188		drain_wrq_wr_list(sc, wrq);
2189
2190	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2191slowpath:
2192		EQ_UNLOCK(eq);
2193		wr = alloc_wrqe(len16 * 16, wrq);
2194		if (__predict_false(wr == NULL))
2195			return (NULL);
2196		cookie->pidx = -1;
2197		cookie->ndesc = ndesc;
2198		return (&wr->wr);
2199	}
2200
2201	eq->cidx = read_hw_cidx(eq);
2202	if (eq->pidx == eq->cidx)
2203		available = eq->sidx - 1;
2204	else
2205		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2206	if (available < ndesc)
2207		goto slowpath;
2208
2209	cookie->pidx = eq->pidx;
2210	cookie->ndesc = ndesc;
2211	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2212
2213	w = &eq->desc[eq->pidx];
2214	IDXINCR(eq->pidx, ndesc, eq->sidx);
2215	if (__predict_false(eq->pidx < ndesc - 1)) {
2216		w = &wrq->ss[0];
2217		wrq->ss_pidx = cookie->pidx;
2218		wrq->ss_len = len16 * 16;
2219	}
2220
2221	EQ_UNLOCK(eq);
2222
2223	return (w);
2224}
2225
2226void
2227commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2228{
2229	struct sge_eq *eq = &wrq->eq;
2230	struct adapter *sc = wrq->adapter;
2231	int ndesc, pidx;
2232	struct wrq_cookie *prev, *next;
2233
2234	if (cookie->pidx == -1) {
2235		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2236
2237		t4_wrq_tx(sc, wr);
2238		return;
2239	}
2240
2241	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2242	pidx = cookie->pidx;
2243	MPASS(pidx >= 0 && pidx < eq->sidx);
2244	if (__predict_false(w == &wrq->ss[0])) {
2245		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2246
2247		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2248		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2249		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2250		wrq->tx_wrs_ss++;
2251	} else
2252		wrq->tx_wrs_direct++;
2253
2254	EQ_LOCK(eq);
2255	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2256	next = TAILQ_NEXT(cookie, link);
2257	if (prev == NULL) {
2258		MPASS(pidx == eq->dbidx);
2259		if (next == NULL || ndesc >= 16)
2260			ring_eq_db(wrq->adapter, eq, ndesc);
2261		else {
2262			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
2263			next->pidx = pidx;
2264			next->ndesc += ndesc;
2265		}
2266	} else {
2267		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
2268		prev->ndesc += ndesc;
2269	}
2270	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
2271
2272	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2273		drain_wrq_wr_list(sc, wrq);
2274
2275#ifdef INVARIANTS
2276	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
2277		/* Doorbell must have caught up to the pidx. */
2278		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
2279	}
2280#endif
2281	EQ_UNLOCK(eq);
2282}
2283
2284static u_int
2285can_resume_eth_tx(struct mp_ring *r)
2286{
2287	struct sge_eq *eq = r->cookie;
2288
2289	return (total_available_tx_desc(eq) > eq->sidx / 8);
2290}
2291
2292static inline int
2293cannot_use_txpkts(struct mbuf *m)
2294{
2295	/* maybe put a GL limit too, to avoid silliness? */
2296
2297	return (needs_tso(m));
2298}
2299
2300/*
2301 * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
2302 * be consumed.  Return the actual number consumed.  0 indicates a stall.
2303 */
2304static u_int
2305eth_tx(struct mp_ring *r, u_int cidx, u_int pidx)
2306{
2307	struct sge_txq *txq = r->cookie;
2308	struct sge_eq *eq = &txq->eq;
2309	struct ifnet *ifp = txq->ifp;
2310	struct vi_info *vi = ifp->if_softc;
2311	struct port_info *pi = vi->pi;
2312	struct adapter *sc = pi->adapter;
2313	u_int total, remaining;		/* # of packets */
2314	u_int available, dbdiff;	/* # of hardware descriptors */
2315	u_int n, next_cidx;
2316	struct mbuf *m0, *tail;
2317	struct txpkts txp;
2318	struct fw_eth_tx_pkts_wr *wr;	/* any fw WR struct will do */
2319
2320	remaining = IDXDIFF(pidx, cidx, r->size);
2321	MPASS(remaining > 0);	/* Must not be called without work to do. */
2322	total = 0;
2323
2324	TXQ_LOCK(txq);
2325	if (__predict_false((eq->flags & EQ_ENABLED) == 0)) {
2326		while (cidx != pidx) {
2327			m0 = r->items[cidx];
2328			m_freem(m0);
2329			if (++cidx == r->size)
2330				cidx = 0;
2331		}
2332		reclaim_tx_descs(txq, 2048);
2333		total = remaining;
2334		goto done;
2335	}
2336
2337	/* How many hardware descriptors do we have readily available. */
2338	if (eq->pidx == eq->cidx)
2339		available = eq->sidx - 1;
2340	else
2341		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2342	dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
2343
2344	while (remaining > 0) {
2345
2346		m0 = r->items[cidx];
2347		M_ASSERTPKTHDR(m0);
2348		MPASS(m0->m_nextpkt == NULL);
2349
2350		if (available < SGE_MAX_WR_NDESC) {
2351			available += reclaim_tx_descs(txq, 64);
2352			if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16))
2353				break;	/* out of descriptors */
2354		}
2355
2356		next_cidx = cidx + 1;
2357		if (__predict_false(next_cidx == r->size))
2358			next_cidx = 0;
2359
2360		wr = (void *)&eq->desc[eq->pidx];
2361		if (remaining > 1 &&
2362		    try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) {
2363
2364			/* pkts at cidx, next_cidx should both be in txp. */
2365			MPASS(txp.npkt == 2);
2366			tail = r->items[next_cidx];
2367			MPASS(tail->m_nextpkt == NULL);
2368			ETHER_BPF_MTAP(ifp, m0);
2369			ETHER_BPF_MTAP(ifp, tail);
2370			m0->m_nextpkt = tail;
2371
2372			if (__predict_false(++next_cidx == r->size))
2373				next_cidx = 0;
2374
2375			while (next_cidx != pidx) {
2376				if (add_to_txpkts(r->items[next_cidx], &txp,
2377				    available) != 0)
2378					break;
2379				tail->m_nextpkt = r->items[next_cidx];
2380				tail = tail->m_nextpkt;
2381				ETHER_BPF_MTAP(ifp, tail);
2382				if (__predict_false(++next_cidx == r->size))
2383					next_cidx = 0;
2384			}
2385
2386			n = write_txpkts_wr(txq, wr, m0, &txp, available);
2387			total += txp.npkt;
2388			remaining -= txp.npkt;
2389		} else {
2390			total++;
2391			remaining--;
2392			n = write_txpkt_wr(txq, (void *)wr, m0, available);
2393			ETHER_BPF_MTAP(ifp, m0);
2394		}
2395		MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC);
2396
2397		available -= n;
2398		dbdiff += n;
2399		IDXINCR(eq->pidx, n, eq->sidx);
2400
2401		if (total_available_tx_desc(eq) < eq->sidx / 4 &&
2402		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2403			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2404			    F_FW_WR_EQUEQ);
2405			eq->equeqidx = eq->pidx;
2406		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2407			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2408			eq->equeqidx = eq->pidx;
2409		}
2410
2411		if (dbdiff >= 16 && remaining >= 4) {
2412			ring_eq_db(sc, eq, dbdiff);
2413			available += reclaim_tx_descs(txq, 4 * dbdiff);
2414			dbdiff = 0;
2415		}
2416
2417		cidx = next_cidx;
2418	}
2419	if (dbdiff != 0) {
2420		ring_eq_db(sc, eq, dbdiff);
2421		reclaim_tx_descs(txq, 32);
2422	}
2423done:
2424	TXQ_UNLOCK(txq);
2425
2426	return (total);
2427}
2428
2429static inline void
2430init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2431    int qsize)
2432{
2433
2434	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2435	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2436	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2437	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2438
2439	iq->flags = 0;
2440	iq->adapter = sc;
2441	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2442	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2443	if (pktc_idx >= 0) {
2444		iq->intr_params |= F_QINTR_CNT_EN;
2445		iq->intr_pktc_idx = pktc_idx;
2446	}
2447	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2448	iq->sidx = iq->qsize - spg_len / IQ_ESIZE;
2449}
2450
2451static inline void
2452init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
2453{
2454
2455	fl->qsize = qsize;
2456	fl->sidx = qsize - spg_len / EQ_ESIZE;
2457	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2458	if (sc->flags & BUF_PACKING_OK &&
2459	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
2460	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
2461		fl->flags |= FL_BUF_PACKING;
2462	find_best_refill_source(sc, fl, maxp);
2463	find_safe_refill_source(sc, fl);
2464}
2465
2466static inline void
2467init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan,
2468    uint16_t iqid, char *name)
2469{
2470	KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan));
2471	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2472
2473	eq->flags = eqtype & EQ_TYPEMASK;
2474	eq->tx_chan = tx_chan;
2475	eq->iqid = iqid;
2476	eq->sidx = qsize - spg_len / EQ_ESIZE;
2477	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2478}
2479
2480static int
2481alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2482    bus_dmamap_t *map, bus_addr_t *pa, void **va)
2483{
2484	int rc;
2485
2486	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2487	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2488	if (rc != 0) {
2489		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2490		goto done;
2491	}
2492
2493	rc = bus_dmamem_alloc(*tag, va,
2494	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2495	if (rc != 0) {
2496		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2497		goto done;
2498	}
2499
2500	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2501	if (rc != 0) {
2502		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2503		goto done;
2504	}
2505done:
2506	if (rc)
2507		free_ring(sc, *tag, *map, *pa, *va);
2508
2509	return (rc);
2510}
2511
2512static int
2513free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2514    bus_addr_t pa, void *va)
2515{
2516	if (pa)
2517		bus_dmamap_unload(tag, map);
2518	if (va)
2519		bus_dmamem_free(tag, va, map);
2520	if (tag)
2521		bus_dma_tag_destroy(tag);
2522
2523	return (0);
2524}
2525
2526/*
2527 * Allocates the ring for an ingress queue and an optional freelist.  If the
2528 * freelist is specified it will be allocated and then associated with the
2529 * ingress queue.
2530 *
2531 * Returns errno on failure.  Resources allocated up to that point may still be
2532 * allocated.  Caller is responsible for cleanup in case this function fails.
2533 *
2534 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
2535 * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
2536 * the abs_id of the ingress queue to which its interrupts should be forwarded.
2537 */
2538static int
2539alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
2540    int intr_idx, int cong)
2541{
2542	int rc, i, cntxt_id;
2543	size_t len;
2544	struct fw_iq_cmd c;
2545	struct port_info *pi = vi->pi;
2546	struct adapter *sc = iq->adapter;
2547	__be32 v = 0;
2548
2549	len = iq->qsize * IQ_ESIZE;
2550	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2551	    (void **)&iq->desc);
2552	if (rc != 0)
2553		return (rc);
2554
2555	bzero(&c, sizeof(c));
2556	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2557	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2558	    V_FW_IQ_CMD_VFN(0));
2559
2560	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2561	    FW_LEN16(c));
2562
2563	/* Special handling for firmware event queue */
2564	if (iq == &sc->sge.fwq)
2565		v |= F_FW_IQ_CMD_IQASYNCH;
2566
2567	if (iq->flags & IQ_INTR) {
2568		KASSERT(intr_idx < sc->intr_count,
2569		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2570	} else
2571		v |= F_FW_IQ_CMD_IQANDST;
2572	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2573
2574	c.type_to_iqandstindex = htobe32(v |
2575	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2576	    V_FW_IQ_CMD_VIID(vi->viid) |
2577	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2578	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2579	    F_FW_IQ_CMD_IQGTSMODE |
2580	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2581	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
2582	c.iqsize = htobe16(iq->qsize);
2583	c.iqaddr = htobe64(iq->ba);
2584	if (cong >= 0)
2585		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2586
2587	if (fl) {
2588		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2589
2590		len = fl->qsize * EQ_ESIZE;
2591		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2592		    &fl->ba, (void **)&fl->desc);
2593		if (rc)
2594			return (rc);
2595
2596		/* Allocate space for one software descriptor per buffer. */
2597		rc = alloc_fl_sdesc(fl);
2598		if (rc != 0) {
2599			device_printf(sc->dev,
2600			    "failed to setup fl software descriptors: %d\n",
2601			    rc);
2602			return (rc);
2603		}
2604
2605		if (fl->flags & FL_BUF_PACKING) {
2606			fl->lowat = roundup2(sc->sge.fl_starve_threshold2, 8);
2607			fl->buf_boundary = sc->sge.pack_boundary;
2608		} else {
2609			fl->lowat = roundup2(sc->sge.fl_starve_threshold, 8);
2610			fl->buf_boundary = 16;
2611		}
2612		if (fl_pad && fl->buf_boundary < sc->sge.pad_boundary)
2613			fl->buf_boundary = sc->sge.pad_boundary;
2614
2615		c.iqns_to_fl0congen |=
2616		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2617			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2618			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2619			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2620			    0));
2621		if (cong >= 0) {
2622			c.iqns_to_fl0congen |=
2623				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2624				    F_FW_IQ_CMD_FL0CONGCIF |
2625				    F_FW_IQ_CMD_FL0CONGEN);
2626		}
2627		c.fl0dcaen_to_fl0cidxfthresh =
2628		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_128B) |
2629			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
2630		c.fl0size = htobe16(fl->qsize);
2631		c.fl0addr = htobe64(fl->ba);
2632	}
2633
2634	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2635	if (rc != 0) {
2636		device_printf(sc->dev,
2637		    "failed to create ingress queue: %d\n", rc);
2638		return (rc);
2639	}
2640
2641	iq->cidx = 0;
2642	iq->gen = F_RSPD_GEN;
2643	iq->intr_next = iq->intr_params;
2644	iq->cntxt_id = be16toh(c.iqid);
2645	iq->abs_id = be16toh(c.physiqid);
2646	iq->flags |= IQ_ALLOCATED;
2647
2648	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2649	if (cntxt_id >= sc->sge.niq) {
2650		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2651		    cntxt_id, sc->sge.niq - 1);
2652	}
2653	sc->sge.iqmap[cntxt_id] = iq;
2654
2655	if (fl) {
2656		u_int qid;
2657
2658		iq->flags |= IQ_HAS_FL;
2659		fl->cntxt_id = be16toh(c.fl0id);
2660		fl->pidx = fl->cidx = 0;
2661
2662		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2663		if (cntxt_id >= sc->sge.neq) {
2664			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2665			    __func__, cntxt_id, sc->sge.neq - 1);
2666		}
2667		sc->sge.eqmap[cntxt_id] = (void *)fl;
2668
2669		qid = fl->cntxt_id;
2670		if (isset(&sc->doorbells, DOORBELL_UDB)) {
2671			uint32_t s_qpp = sc->sge.eq_s_qpp;
2672			uint32_t mask = (1 << s_qpp) - 1;
2673			volatile uint8_t *udb;
2674
2675			udb = sc->udbs_base + UDBS_DB_OFFSET;
2676			udb += (qid >> s_qpp) << PAGE_SHIFT;
2677			qid &= mask;
2678			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
2679				udb += qid << UDBS_SEG_SHIFT;
2680				qid = 0;
2681			}
2682			fl->udb = (volatile void *)udb;
2683		}
2684		fl->dbval = F_DBPRIO | V_QID(qid);
2685		if (is_t5(sc))
2686			fl->dbval |= F_DBTYPE;
2687
2688		FL_LOCK(fl);
2689		/* Enough to make sure the SGE doesn't think it's starved */
2690		refill_fl(sc, fl, fl->lowat);
2691		FL_UNLOCK(fl);
2692	}
2693
2694	if (is_t5(sc) && cong >= 0) {
2695		uint32_t param, val;
2696
2697		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2698		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2699		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2700		if (cong == 0)
2701			val = 1 << 19;
2702		else {
2703			val = 2 << 19;
2704			for (i = 0; i < 4; i++) {
2705				if (cong & (1 << i))
2706					val |= 1 << (i << 2);
2707			}
2708		}
2709
2710		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2711		if (rc != 0) {
2712			/* report error but carry on */
2713			device_printf(sc->dev,
2714			    "failed to set congestion manager context for "
2715			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2716		}
2717	}
2718
2719	/* Enable IQ interrupts */
2720	atomic_store_rel_int(&iq->state, IQS_IDLE);
2721	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
2722	    V_INGRESSQID(iq->cntxt_id));
2723
2724	return (0);
2725}
2726
2727static int
2728free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
2729{
2730	int rc;
2731	struct adapter *sc = iq->adapter;
2732	device_t dev;
2733
2734	if (sc == NULL)
2735		return (0);	/* nothing to do */
2736
2737	dev = vi ? vi->dev : sc->dev;
2738
2739	if (iq->flags & IQ_ALLOCATED) {
2740		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2741		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2742		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2743		if (rc != 0) {
2744			device_printf(dev,
2745			    "failed to free queue %p: %d\n", iq, rc);
2746			return (rc);
2747		}
2748		iq->flags &= ~IQ_ALLOCATED;
2749	}
2750
2751	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2752
2753	bzero(iq, sizeof(*iq));
2754
2755	if (fl) {
2756		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2757		    fl->desc);
2758
2759		if (fl->sdesc)
2760			free_fl_sdesc(sc, fl);
2761
2762		if (mtx_initialized(&fl->fl_lock))
2763			mtx_destroy(&fl->fl_lock);
2764
2765		bzero(fl, sizeof(*fl));
2766	}
2767
2768	return (0);
2769}
2770
2771static void
2772add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
2773    struct sge_fl *fl)
2774{
2775	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2776
2777	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2778	    "freelist");
2779	children = SYSCTL_CHILDREN(oid);
2780
2781	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2782	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
2783	    "SGE context id of the freelist");
2784	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
2785	    fl_pad ? 1 : 0, "padding enabled");
2786	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
2787	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
2788	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
2789	    0, "consumer index");
2790	if (fl->flags & FL_BUF_PACKING) {
2791		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
2792		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
2793	}
2794	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
2795	    0, "producer index");
2796	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
2797	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
2798	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
2799	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
2800	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
2801	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
2802	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
2803	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
2804	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
2805	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
2806}
2807
2808static int
2809alloc_fwq(struct adapter *sc)
2810{
2811	int rc, intr_idx;
2812	struct sge_iq *fwq = &sc->sge.fwq;
2813	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2814	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2815
2816	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
2817	fwq->flags |= IQ_INTR;	/* always */
2818	intr_idx = sc->intr_count > 1 ? 1 : 0;
2819	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
2820	if (rc != 0) {
2821		device_printf(sc->dev,
2822		    "failed to create firmware event queue: %d\n", rc);
2823		return (rc);
2824	}
2825
2826	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2827	    NULL, "firmware event queue");
2828	children = SYSCTL_CHILDREN(oid);
2829
2830	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
2831	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
2832	    "absolute id of the queue");
2833	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
2834	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
2835	    "SGE context id of the queue");
2836	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
2837	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
2838	    "consumer index");
2839
2840	return (0);
2841}
2842
2843static int
2844free_fwq(struct adapter *sc)
2845{
2846	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
2847}
2848
2849static int
2850alloc_mgmtq(struct adapter *sc)
2851{
2852	int rc;
2853	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
2854	char name[16];
2855	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2856	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2857
2858	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
2859	    NULL, "management queue");
2860
2861	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
2862	init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
2863	    sc->sge.fwq.cntxt_id, name);
2864	rc = alloc_wrq(sc, NULL, mgmtq, oid);
2865	if (rc != 0) {
2866		device_printf(sc->dev,
2867		    "failed to create management queue: %d\n", rc);
2868		return (rc);
2869	}
2870
2871	return (0);
2872}
2873
2874static int
2875free_mgmtq(struct adapter *sc)
2876{
2877
2878	return free_wrq(sc, &sc->sge.mgmtq);
2879}
2880
2881int
2882tnl_cong(struct port_info *pi, int drop)
2883{
2884
2885	if (drop == -1)
2886		return (-1);
2887	else if (drop == 1)
2888		return (0);
2889	else
2890		return (pi->rx_chan_map);
2891}
2892
2893static int
2894alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
2895    struct sysctl_oid *oid)
2896{
2897	int rc;
2898	struct sysctl_oid_list *children;
2899	char name[16];
2900
2901	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
2902	    tnl_cong(vi->pi, cong_drop));
2903	if (rc != 0)
2904		return (rc);
2905
2906	/*
2907	 * The freelist is just barely above the starvation threshold right now,
2908	 * fill it up a bit more.
2909	 */
2910	FL_LOCK(&rxq->fl);
2911	refill_fl(vi->pi->adapter, &rxq->fl, 128);
2912	FL_UNLOCK(&rxq->fl);
2913
2914#if defined(INET) || defined(INET6)
2915	rc = tcp_lro_init(&rxq->lro);
2916	if (rc != 0)
2917		return (rc);
2918	rxq->lro.ifp = vi->ifp; /* also indicates LRO init'ed */
2919
2920	if (vi->ifp->if_capenable & IFCAP_LRO)
2921		rxq->iq.flags |= IQ_LRO_ENABLED;
2922#endif
2923	rxq->ifp = vi->ifp;
2924
2925	children = SYSCTL_CHILDREN(oid);
2926
2927	snprintf(name, sizeof(name), "%d", idx);
2928	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2929	    NULL, "rx queue");
2930	children = SYSCTL_CHILDREN(oid);
2931
2932	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id",
2933	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
2934	    "absolute id of the queue");
2935	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id",
2936	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
2937	    "SGE context id of the queue");
2938	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
2939	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
2940	    "consumer index");
2941#if defined(INET) || defined(INET6)
2942	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
2943	    &rxq->lro.lro_queued, 0, NULL);
2944	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
2945	    &rxq->lro.lro_flushed, 0, NULL);
2946#endif
2947	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
2948	    &rxq->rxcsum, "# of times hardware assisted with checksum");
2949	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
2950	    CTLFLAG_RD, &rxq->vlan_extraction,
2951	    "# of times hardware extracted 802.1Q tag");
2952
2953	add_fl_sysctls(&vi->ctx, oid, &rxq->fl);
2954
2955	return (rc);
2956}
2957
2958static int
2959free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
2960{
2961	int rc;
2962
2963#if defined(INET) || defined(INET6)
2964	if (rxq->lro.ifp) {
2965		tcp_lro_free(&rxq->lro);
2966		rxq->lro.ifp = NULL;
2967	}
2968#endif
2969
2970	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
2971	if (rc == 0)
2972		bzero(rxq, sizeof(*rxq));
2973
2974	return (rc);
2975}
2976
2977#ifdef TCP_OFFLOAD
2978static int
2979alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
2980    int intr_idx, int idx, struct sysctl_oid *oid)
2981{
2982	int rc;
2983	struct sysctl_oid_list *children;
2984	char name[16];
2985
2986	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
2987	    vi->pi->rx_chan_map);
2988	if (rc != 0)
2989		return (rc);
2990
2991	children = SYSCTL_CHILDREN(oid);
2992
2993	snprintf(name, sizeof(name), "%d", idx);
2994	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2995	    NULL, "rx queue");
2996	children = SYSCTL_CHILDREN(oid);
2997
2998	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "abs_id",
2999	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
3000	    "I", "absolute id of the queue");
3001	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cntxt_id",
3002	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
3003	    "I", "SGE context id of the queue");
3004	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3005	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
3006	    "consumer index");
3007
3008	add_fl_sysctls(&vi->ctx, oid, &ofld_rxq->fl);
3009
3010	return (rc);
3011}
3012
3013static int
3014free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
3015{
3016	int rc;
3017
3018	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
3019	if (rc == 0)
3020		bzero(ofld_rxq, sizeof(*ofld_rxq));
3021
3022	return (rc);
3023}
3024#endif
3025
3026#ifdef DEV_NETMAP
3027static int
3028alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
3029    int idx, struct sysctl_oid *oid)
3030{
3031	int rc;
3032	struct sysctl_oid_list *children;
3033	struct sysctl_ctx_list *ctx;
3034	char name[16];
3035	size_t len;
3036	struct adapter *sc = vi->pi->adapter;
3037	struct netmap_adapter *na = NA(vi->ifp);
3038
3039	MPASS(na != NULL);
3040
3041	len = vi->qsize_rxq * IQ_ESIZE;
3042	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
3043	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
3044	if (rc != 0)
3045		return (rc);
3046
3047	len = na->num_rx_desc * EQ_ESIZE + spg_len;
3048	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
3049	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
3050	if (rc != 0)
3051		return (rc);
3052
3053	nm_rxq->vi = vi;
3054	nm_rxq->nid = idx;
3055	nm_rxq->iq_cidx = 0;
3056	nm_rxq->iq_sidx = vi->qsize_rxq - spg_len / IQ_ESIZE;
3057	nm_rxq->iq_gen = F_RSPD_GEN;
3058	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3059	nm_rxq->fl_sidx = na->num_rx_desc;
3060	nm_rxq->intr_idx = intr_idx;
3061
3062	ctx = &vi->ctx;
3063	children = SYSCTL_CHILDREN(oid);
3064
3065	snprintf(name, sizeof(name), "%d", idx);
3066	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
3067	    "rx queue");
3068	children = SYSCTL_CHILDREN(oid);
3069
3070	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3071	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
3072	    "I", "absolute id of the queue");
3073	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3074	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
3075	    "I", "SGE context id of the queue");
3076	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3077	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
3078	    "consumer index");
3079
3080	children = SYSCTL_CHILDREN(oid);
3081	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3082	    "freelist");
3083	children = SYSCTL_CHILDREN(oid);
3084
3085	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3086	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
3087	    "I", "SGE context id of the freelist");
3088	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
3089	    &nm_rxq->fl_cidx, 0, "consumer index");
3090	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
3091	    &nm_rxq->fl_pidx, 0, "producer index");
3092
3093	return (rc);
3094}
3095
3096
3097static int
3098free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
3099{
3100	struct adapter *sc = vi->pi->adapter;
3101
3102	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
3103	    nm_rxq->iq_desc);
3104	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
3105	    nm_rxq->fl_desc);
3106
3107	return (0);
3108}
3109
3110static int
3111alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
3112    struct sysctl_oid *oid)
3113{
3114	int rc;
3115	size_t len;
3116	struct port_info *pi = vi->pi;
3117	struct adapter *sc = pi->adapter;
3118	struct netmap_adapter *na = NA(vi->ifp);
3119	char name[16];
3120	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3121
3122	len = na->num_tx_desc * EQ_ESIZE + spg_len;
3123	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
3124	    &nm_txq->ba, (void **)&nm_txq->desc);
3125	if (rc)
3126		return (rc);
3127
3128	nm_txq->pidx = nm_txq->cidx = 0;
3129	nm_txq->sidx = na->num_tx_desc;
3130	nm_txq->nid = idx;
3131	nm_txq->iqidx = iqidx;
3132	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3133	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_VF_VLD(1) |
3134	    V_TXPKT_VF(vi->viid));
3135
3136	snprintf(name, sizeof(name), "%d", idx);
3137	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3138	    NULL, "netmap tx queue");
3139	children = SYSCTL_CHILDREN(oid);
3140
3141	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3142	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
3143	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3144	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
3145	    "consumer index");
3146	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3147	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
3148	    "producer index");
3149
3150	return (rc);
3151}
3152
3153static int
3154free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
3155{
3156	struct adapter *sc = vi->pi->adapter;
3157
3158	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
3159	    nm_txq->desc);
3160
3161	return (0);
3162}
3163#endif
3164
3165static int
3166ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
3167{
3168	int rc, cntxt_id;
3169	struct fw_eq_ctrl_cmd c;
3170	int qsize = eq->sidx + spg_len / EQ_ESIZE;
3171
3172	bzero(&c, sizeof(c));
3173
3174	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
3175	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
3176	    V_FW_EQ_CTRL_CMD_VFN(0));
3177	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
3178	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
3179	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
3180	c.physeqid_pkd = htobe32(0);
3181	c.fetchszm_to_iqid =
3182	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3183		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
3184		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
3185	c.dcaen_to_eqsize =
3186	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3187		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3188		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
3189	c.eqaddr = htobe64(eq->ba);
3190
3191	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3192	if (rc != 0) {
3193		device_printf(sc->dev,
3194		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
3195		return (rc);
3196	}
3197	eq->flags |= EQ_ALLOCATED;
3198
3199	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
3200	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3201	if (cntxt_id >= sc->sge.neq)
3202	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3203		cntxt_id, sc->sge.neq - 1);
3204	sc->sge.eqmap[cntxt_id] = eq;
3205
3206	return (rc);
3207}
3208
3209static int
3210eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3211{
3212	int rc, cntxt_id;
3213	struct fw_eq_eth_cmd c;
3214	int qsize = eq->sidx + spg_len / EQ_ESIZE;
3215
3216	bzero(&c, sizeof(c));
3217
3218	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
3219	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
3220	    V_FW_EQ_ETH_CMD_VFN(0));
3221	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
3222	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
3223	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
3224	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
3225	c.fetchszm_to_iqid =
3226	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3227		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
3228		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
3229	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3230	    V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3231	    V_FW_EQ_ETH_CMD_EQSIZE(qsize));
3232	c.eqaddr = htobe64(eq->ba);
3233
3234	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3235	if (rc != 0) {
3236		device_printf(vi->dev,
3237		    "failed to create Ethernet egress queue: %d\n", rc);
3238		return (rc);
3239	}
3240	eq->flags |= EQ_ALLOCATED;
3241
3242	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
3243	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3244	if (cntxt_id >= sc->sge.neq)
3245	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3246		cntxt_id, sc->sge.neq - 1);
3247	sc->sge.eqmap[cntxt_id] = eq;
3248
3249	return (rc);
3250}
3251
3252#ifdef TCP_OFFLOAD
3253static int
3254ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3255{
3256	int rc, cntxt_id;
3257	struct fw_eq_ofld_cmd c;
3258	int qsize = eq->sidx + spg_len / EQ_ESIZE;
3259
3260	bzero(&c, sizeof(c));
3261
3262	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
3263	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
3264	    V_FW_EQ_OFLD_CMD_VFN(0));
3265	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
3266	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
3267	c.fetchszm_to_iqid =
3268		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3269		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
3270		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
3271	c.dcaen_to_eqsize =
3272	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3273		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3274		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
3275	c.eqaddr = htobe64(eq->ba);
3276
3277	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3278	if (rc != 0) {
3279		device_printf(vi->dev,
3280		    "failed to create egress queue for TCP offload: %d\n", rc);
3281		return (rc);
3282	}
3283	eq->flags |= EQ_ALLOCATED;
3284
3285	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
3286	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3287	if (cntxt_id >= sc->sge.neq)
3288	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3289		cntxt_id, sc->sge.neq - 1);
3290	sc->sge.eqmap[cntxt_id] = eq;
3291
3292	return (rc);
3293}
3294#endif
3295
3296static int
3297alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3298{
3299	int rc, qsize;
3300	size_t len;
3301
3302	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3303
3304	qsize = eq->sidx + spg_len / EQ_ESIZE;
3305	len = qsize * EQ_ESIZE;
3306	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
3307	    &eq->ba, (void **)&eq->desc);
3308	if (rc)
3309		return (rc);
3310
3311	eq->pidx = eq->cidx = 0;
3312	eq->equeqidx = eq->dbidx = 0;
3313	eq->doorbells = sc->doorbells;
3314
3315	switch (eq->flags & EQ_TYPEMASK) {
3316	case EQ_CTRL:
3317		rc = ctrl_eq_alloc(sc, eq);
3318		break;
3319
3320	case EQ_ETH:
3321		rc = eth_eq_alloc(sc, vi, eq);
3322		break;
3323
3324#ifdef TCP_OFFLOAD
3325	case EQ_OFLD:
3326		rc = ofld_eq_alloc(sc, vi, eq);
3327		break;
3328#endif
3329
3330	default:
3331		panic("%s: invalid eq type %d.", __func__,
3332		    eq->flags & EQ_TYPEMASK);
3333	}
3334	if (rc != 0) {
3335		device_printf(sc->dev,
3336		    "failed to allocate egress queue(%d): %d\n",
3337		    eq->flags & EQ_TYPEMASK, rc);
3338	}
3339
3340	if (isset(&eq->doorbells, DOORBELL_UDB) ||
3341	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
3342	    isset(&eq->doorbells, DOORBELL_WCWR)) {
3343		uint32_t s_qpp = sc->sge.eq_s_qpp;
3344		uint32_t mask = (1 << s_qpp) - 1;
3345		volatile uint8_t *udb;
3346
3347		udb = sc->udbs_base + UDBS_DB_OFFSET;
3348		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
3349		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
3350		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
3351	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
3352		else {
3353			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
3354			eq->udb_qid = 0;
3355		}
3356		eq->udb = (volatile void *)udb;
3357	}
3358
3359	return (rc);
3360}
3361
3362static int
3363free_eq(struct adapter *sc, struct sge_eq *eq)
3364{
3365	int rc;
3366
3367	if (eq->flags & EQ_ALLOCATED) {
3368		switch (eq->flags & EQ_TYPEMASK) {
3369		case EQ_CTRL:
3370			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
3371			    eq->cntxt_id);
3372			break;
3373
3374		case EQ_ETH:
3375			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
3376			    eq->cntxt_id);
3377			break;
3378
3379#ifdef TCP_OFFLOAD
3380		case EQ_OFLD:
3381			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
3382			    eq->cntxt_id);
3383			break;
3384#endif
3385
3386		default:
3387			panic("%s: invalid eq type %d.", __func__,
3388			    eq->flags & EQ_TYPEMASK);
3389		}
3390		if (rc != 0) {
3391			device_printf(sc->dev,
3392			    "failed to free egress queue (%d): %d\n",
3393			    eq->flags & EQ_TYPEMASK, rc);
3394			return (rc);
3395		}
3396		eq->flags &= ~EQ_ALLOCATED;
3397	}
3398
3399	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3400
3401	if (mtx_initialized(&eq->eq_lock))
3402		mtx_destroy(&eq->eq_lock);
3403
3404	bzero(eq, sizeof(*eq));
3405	return (0);
3406}
3407
3408static int
3409alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
3410    struct sysctl_oid *oid)
3411{
3412	int rc;
3413	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
3414	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3415
3416	rc = alloc_eq(sc, vi, &wrq->eq);
3417	if (rc)
3418		return (rc);
3419
3420	wrq->adapter = sc;
3421	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
3422	TAILQ_INIT(&wrq->incomplete_wrs);
3423	STAILQ_INIT(&wrq->wr_list);
3424	wrq->nwr_pending = 0;
3425	wrq->ndesc_needed = 0;
3426
3427	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3428	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3429	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3430	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3431	    "consumer index");
3432	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3433	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3434	    "producer index");
3435	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
3436	    &wrq->tx_wrs_direct, "# of work requests (direct)");
3437	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
3438	    &wrq->tx_wrs_copied, "# of work requests (copied)");
3439
3440	return (rc);
3441}
3442
3443static int
3444free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3445{
3446	int rc;
3447
3448	rc = free_eq(sc, &wrq->eq);
3449	if (rc)
3450		return (rc);
3451
3452	bzero(wrq, sizeof(*wrq));
3453	return (0);
3454}
3455
3456static int
3457alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
3458    struct sysctl_oid *oid)
3459{
3460	int rc;
3461	struct port_info *pi = vi->pi;
3462	struct adapter *sc = pi->adapter;
3463	struct sge_eq *eq = &txq->eq;
3464	char name[16];
3465	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3466
3467	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
3468	    M_CXGBE, M_WAITOK);
3469	if (rc != 0) {
3470		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
3471		return (rc);
3472	}
3473
3474	rc = alloc_eq(sc, vi, eq);
3475	if (rc != 0) {
3476		mp_ring_free(txq->r);
3477		txq->r = NULL;
3478		return (rc);
3479	}
3480
3481	/* Can't fail after this point. */
3482
3483	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
3484	txq->ifp = vi->ifp;
3485	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
3486	txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3487	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_VF_VLD(1) |
3488	    V_TXPKT_VF(vi->viid));
3489	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
3490	    M_ZERO | M_WAITOK);
3491
3492	snprintf(name, sizeof(name), "%d", idx);
3493	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3494	    NULL, "tx queue");
3495	children = SYSCTL_CHILDREN(oid);
3496
3497	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3498	    &eq->cntxt_id, 0, "SGE context id of the queue");
3499	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3500	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3501	    "consumer index");
3502	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3503	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3504	    "producer index");
3505
3506	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3507	    &txq->txcsum, "# of times hardware assisted with checksum");
3508	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
3509	    CTLFLAG_RD, &txq->vlan_insertion,
3510	    "# of times hardware inserted 802.1Q tag");
3511	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3512	    &txq->tso_wrs, "# of TSO work requests");
3513	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3514	    &txq->imm_wrs, "# of work requests with immediate data");
3515	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3516	    &txq->sgl_wrs, "# of work requests with direct SGL");
3517	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3518	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3519	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
3520	    CTLFLAG_RD, &txq->txpkts0_wrs,
3521	    "# of txpkts (type 0) work requests");
3522	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
3523	    CTLFLAG_RD, &txq->txpkts1_wrs,
3524	    "# of txpkts (type 1) work requests");
3525	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
3526	    CTLFLAG_RD, &txq->txpkts0_pkts,
3527	    "# of frames tx'd using type0 txpkts work requests");
3528	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
3529	    CTLFLAG_RD, &txq->txpkts1_pkts,
3530	    "# of frames tx'd using type1 txpkts work requests");
3531
3532	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues",
3533	    CTLFLAG_RD, &txq->r->enqueues,
3534	    "# of enqueues to the mp_ring for this queue");
3535	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops",
3536	    CTLFLAG_RD, &txq->r->drops,
3537	    "# of drops in the mp_ring for this queue");
3538	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts",
3539	    CTLFLAG_RD, &txq->r->starts,
3540	    "# of normal consumer starts in the mp_ring for this queue");
3541	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls",
3542	    CTLFLAG_RD, &txq->r->stalls,
3543	    "# of consumer stalls in the mp_ring for this queue");
3544	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts",
3545	    CTLFLAG_RD, &txq->r->restarts,
3546	    "# of consumer restarts in the mp_ring for this queue");
3547	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications",
3548	    CTLFLAG_RD, &txq->r->abdications,
3549	    "# of consumer abdications in the mp_ring for this queue");
3550
3551	return (0);
3552}
3553
3554static int
3555free_txq(struct vi_info *vi, struct sge_txq *txq)
3556{
3557	int rc;
3558	struct adapter *sc = vi->pi->adapter;
3559	struct sge_eq *eq = &txq->eq;
3560
3561	rc = free_eq(sc, eq);
3562	if (rc)
3563		return (rc);
3564
3565	sglist_free(txq->gl);
3566	free(txq->sdesc, M_CXGBE);
3567	mp_ring_free(txq->r);
3568
3569	bzero(txq, sizeof(*txq));
3570	return (0);
3571}
3572
3573static void
3574oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3575{
3576	bus_addr_t *ba = arg;
3577
3578	KASSERT(nseg == 1,
3579	    ("%s meant for single segment mappings only.", __func__));
3580
3581	*ba = error ? 0 : segs->ds_addr;
3582}
3583
3584static inline void
3585ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3586{
3587	uint32_t n, v;
3588
3589	n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx);
3590	MPASS(n > 0);
3591
3592	wmb();
3593	v = fl->dbval | V_PIDX(n);
3594	if (fl->udb)
3595		*fl->udb = htole32(v);
3596	else
3597		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3598	IDXINCR(fl->dbidx, n, fl->sidx);
3599}
3600
3601/*
3602 * Fills up the freelist by allocating upto 'n' buffers.  Buffers that are
3603 * recycled do not count towards this allocation budget.
3604 *
3605 * Returns non-zero to indicate that this freelist should be added to the list
3606 * of starving freelists.
3607 */
3608static int
3609refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
3610{
3611	__be64 *d;
3612	struct fl_sdesc *sd;
3613	uintptr_t pa;
3614	caddr_t cl;
3615	struct cluster_layout *cll;
3616	struct sw_zone_info *swz;
3617	struct cluster_metadata *clm;
3618	uint16_t max_pidx;
3619	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
3620
3621	FL_LOCK_ASSERT_OWNED(fl);
3622
3623	/*
3624	 * We always stop at the begining of the hardware descriptor that's just
3625	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
3626	 * which would mean an empty freelist to the chip.
3627	 */
3628	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
3629	if (fl->pidx == max_pidx * 8)
3630		return (0);
3631
3632	d = &fl->desc[fl->pidx];
3633	sd = &fl->sdesc[fl->pidx];
3634	cll = &fl->cll_def;	/* default layout */
3635	swz = &sc->sge.sw_zone_info[cll->zidx];
3636
3637	while (n > 0) {
3638
3639		if (sd->cl != NULL) {
3640
3641			if (sd->nmbuf == 0) {
3642				/*
3643				 * Fast recycle without involving any atomics on
3644				 * the cluster's metadata (if the cluster has
3645				 * metadata).  This happens when all frames
3646				 * received in the cluster were small enough to
3647				 * fit within a single mbuf each.
3648				 */
3649				fl->cl_fast_recycled++;
3650#ifdef INVARIANTS
3651				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3652				if (clm != NULL)
3653					MPASS(clm->refcount == 1);
3654#endif
3655				goto recycled_fast;
3656			}
3657
3658			/*
3659			 * Cluster is guaranteed to have metadata.  Clusters
3660			 * without metadata always take the fast recycle path
3661			 * when they're recycled.
3662			 */
3663			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3664			MPASS(clm != NULL);
3665
3666			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3667				fl->cl_recycled++;
3668				counter_u64_add(extfree_rels, 1);
3669				goto recycled;
3670			}
3671			sd->cl = NULL;	/* gave up my reference */
3672		}
3673		MPASS(sd->cl == NULL);
3674alloc:
3675		cl = uma_zalloc(swz->zone, M_NOWAIT);
3676		if (__predict_false(cl == NULL)) {
3677			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
3678			    fl->cll_def.zidx == fl->cll_alt.zidx)
3679				break;
3680
3681			/* fall back to the safe zone */
3682			cll = &fl->cll_alt;
3683			swz = &sc->sge.sw_zone_info[cll->zidx];
3684			goto alloc;
3685		}
3686		fl->cl_allocated++;
3687		n--;
3688
3689		pa = pmap_kextract((vm_offset_t)cl);
3690		pa += cll->region1;
3691		sd->cl = cl;
3692		sd->cll = *cll;
3693		*d = htobe64(pa | cll->hwidx);
3694		clm = cl_metadata(sc, fl, cll, cl);
3695		if (clm != NULL) {
3696recycled:
3697#ifdef INVARIANTS
3698			clm->sd = sd;
3699#endif
3700			clm->refcount = 1;
3701		}
3702		sd->nmbuf = 0;
3703recycled_fast:
3704		d++;
3705		sd++;
3706		if (__predict_false(++fl->pidx % 8 == 0)) {
3707			uint16_t pidx = fl->pidx / 8;
3708
3709			if (__predict_false(pidx == fl->sidx)) {
3710				fl->pidx = 0;
3711				pidx = 0;
3712				sd = fl->sdesc;
3713				d = fl->desc;
3714			}
3715			if (pidx == max_pidx)
3716				break;
3717
3718			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
3719				ring_fl_db(sc, fl);
3720		}
3721	}
3722
3723	if (fl->pidx / 8 != fl->dbidx)
3724		ring_fl_db(sc, fl);
3725
3726	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3727}
3728
3729/*
3730 * Attempt to refill all starving freelists.
3731 */
3732static void
3733refill_sfl(void *arg)
3734{
3735	struct adapter *sc = arg;
3736	struct sge_fl *fl, *fl_temp;
3737
3738	mtx_assert(&sc->sfl_lock, MA_OWNED);
3739	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3740		FL_LOCK(fl);
3741		refill_fl(sc, fl, 64);
3742		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3743			TAILQ_REMOVE(&sc->sfl, fl, link);
3744			fl->flags &= ~FL_STARVING;
3745		}
3746		FL_UNLOCK(fl);
3747	}
3748
3749	if (!TAILQ_EMPTY(&sc->sfl))
3750		callout_schedule(&sc->sfl_callout, hz / 5);
3751}
3752
3753static int
3754alloc_fl_sdesc(struct sge_fl *fl)
3755{
3756
3757	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
3758	    M_ZERO | M_WAITOK);
3759
3760	return (0);
3761}
3762
3763static void
3764free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3765{
3766	struct fl_sdesc *sd;
3767	struct cluster_metadata *clm;
3768	struct cluster_layout *cll;
3769	int i;
3770
3771	sd = fl->sdesc;
3772	for (i = 0; i < fl->sidx * 8; i++, sd++) {
3773		if (sd->cl == NULL)
3774			continue;
3775
3776		cll = &sd->cll;
3777		clm = cl_metadata(sc, fl, cll, sd->cl);
3778		if (sd->nmbuf == 0)
3779			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3780		else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3781			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3782			counter_u64_add(extfree_rels, 1);
3783		}
3784		sd->cl = NULL;
3785	}
3786
3787	free(fl->sdesc, M_CXGBE);
3788	fl->sdesc = NULL;
3789}
3790
3791static inline void
3792get_pkt_gl(struct mbuf *m, struct sglist *gl)
3793{
3794	int rc;
3795
3796	M_ASSERTPKTHDR(m);
3797
3798	sglist_reset(gl);
3799	rc = sglist_append_mbuf(gl, m);
3800	if (__predict_false(rc != 0)) {
3801		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
3802		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
3803	}
3804
3805	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
3806	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
3807	    mbuf_nsegs(m), gl->sg_nseg));
3808	KASSERT(gl->sg_nseg > 0 &&
3809	    gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
3810	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
3811		gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
3812}
3813
3814/*
3815 * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
3816 */
3817static inline u_int
3818txpkt_len16(u_int nsegs, u_int tso)
3819{
3820	u_int n;
3821
3822	MPASS(nsegs > 0);
3823
3824	nsegs--; /* first segment is part of ulptx_sgl */
3825	n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
3826	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
3827	if (tso)
3828		n += sizeof(struct cpl_tx_pkt_lso_core);
3829
3830	return (howmany(n, 16));
3831}
3832
3833/*
3834 * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
3835 * request header.
3836 */
3837static inline u_int
3838txpkts0_len16(u_int nsegs)
3839{
3840	u_int n;
3841
3842	MPASS(nsegs > 0);
3843
3844	nsegs--; /* first segment is part of ulptx_sgl */
3845	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
3846	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
3847	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
3848
3849	return (howmany(n, 16));
3850}
3851
3852/*
3853 * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
3854 * request header.
3855 */
3856static inline u_int
3857txpkts1_len16(void)
3858{
3859	u_int n;
3860
3861	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
3862
3863	return (howmany(n, 16));
3864}
3865
3866static inline u_int
3867imm_payload(u_int ndesc)
3868{
3869	u_int n;
3870
3871	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
3872	    sizeof(struct cpl_tx_pkt_core);
3873
3874	return (n);
3875}
3876
3877/*
3878 * Write a txpkt WR for this packet to the hardware descriptors, update the
3879 * software descriptor, and advance the pidx.  It is guaranteed that enough
3880 * descriptors are available.
3881 *
3882 * The return value is the # of hardware descriptors used.
3883 */
3884static u_int
3885write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr,
3886    struct mbuf *m0, u_int available)
3887{
3888	struct sge_eq *eq = &txq->eq;
3889	struct tx_sdesc *txsd;
3890	struct cpl_tx_pkt_core *cpl;
3891	uint32_t ctrl;	/* used in many unrelated places */
3892	uint64_t ctrl1;
3893	int len16, ndesc, pktlen, nsegs;
3894	caddr_t dst;
3895
3896	TXQ_LOCK_ASSERT_OWNED(txq);
3897	M_ASSERTPKTHDR(m0);
3898	MPASS(available > 0 && available < eq->sidx);
3899
3900	len16 = mbuf_len16(m0);
3901	nsegs = mbuf_nsegs(m0);
3902	pktlen = m0->m_pkthdr.len;
3903	ctrl = sizeof(struct cpl_tx_pkt_core);
3904	if (needs_tso(m0))
3905		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
3906	else if (pktlen <= imm_payload(2) && available >= 2) {
3907		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
3908		ctrl += pktlen;
3909		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
3910		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
3911		nsegs = 0;
3912	}
3913	ndesc = howmany(len16, EQ_ESIZE / 16);
3914	MPASS(ndesc <= available);
3915
3916	/* Firmware work request header */
3917	MPASS(wr == (void *)&eq->desc[eq->pidx]);
3918	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
3919	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
3920
3921	ctrl = V_FW_WR_LEN16(len16);
3922	wr->equiq_to_len16 = htobe32(ctrl);
3923	wr->r3 = 0;
3924
3925	if (needs_tso(m0)) {
3926		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
3927
3928		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
3929		    m0->m_pkthdr.l4hlen > 0,
3930		    ("%s: mbuf %p needs TSO but missing header lengths",
3931			__func__, m0));
3932
3933		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
3934		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
3935		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
3936		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
3937			ctrl |= V_LSO_ETHHDR_LEN(1);
3938		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
3939			ctrl |= F_LSO_IPV6;
3940
3941		lso->lso_ctrl = htobe32(ctrl);
3942		lso->ipid_ofst = htobe16(0);
3943		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
3944		lso->seqno_offset = htobe32(0);
3945		lso->len = htobe32(pktlen);
3946
3947		cpl = (void *)(lso + 1);
3948
3949		txq->tso_wrs++;
3950	} else
3951		cpl = (void *)(wr + 1);
3952
3953	/* Checksum offload */
3954	ctrl1 = 0;
3955	if (needs_l3_csum(m0) == 0)
3956		ctrl1 |= F_TXPKT_IPCSUM_DIS;
3957	if (needs_l4_csum(m0) == 0)
3958		ctrl1 |= F_TXPKT_L4CSUM_DIS;
3959	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3960	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3961		txq->txcsum++;	/* some hardware assistance provided */
3962
3963	/* VLAN tag insertion */
3964	if (needs_vlan_insertion(m0)) {
3965		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
3966		txq->vlan_insertion++;
3967	}
3968
3969	/* CPL header */
3970	cpl->ctrl0 = txq->cpl_ctrl0;
3971	cpl->pack = 0;
3972	cpl->len = htobe16(pktlen);
3973	cpl->ctrl1 = htobe64(ctrl1);
3974
3975	/* SGL */
3976	dst = (void *)(cpl + 1);
3977	if (nsegs > 0) {
3978
3979		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
3980		txq->sgl_wrs++;
3981	} else {
3982		struct mbuf *m;
3983
3984		for (m = m0; m != NULL; m = m->m_next) {
3985			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
3986#ifdef INVARIANTS
3987			pktlen -= m->m_len;
3988#endif
3989		}
3990#ifdef INVARIANTS
3991		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
3992#endif
3993		txq->imm_wrs++;
3994	}
3995
3996	txq->txpkt_wrs++;
3997
3998	txsd = &txq->sdesc[eq->pidx];
3999	txsd->m = m0;
4000	txsd->desc_used = ndesc;
4001
4002	return (ndesc);
4003}
4004
4005static int
4006try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available)
4007{
4008	u_int needed, nsegs1, nsegs2, l1, l2;
4009
4010	if (cannot_use_txpkts(m) || cannot_use_txpkts(n))
4011		return (1);
4012
4013	nsegs1 = mbuf_nsegs(m);
4014	nsegs2 = mbuf_nsegs(n);
4015	if (nsegs1 + nsegs2 == 2) {
4016		txp->wr_type = 1;
4017		l1 = l2 = txpkts1_len16();
4018	} else {
4019		txp->wr_type = 0;
4020		l1 = txpkts0_len16(nsegs1);
4021		l2 = txpkts0_len16(nsegs2);
4022	}
4023	txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2;
4024	needed = howmany(txp->len16, EQ_ESIZE / 16);
4025	if (needed > SGE_MAX_WR_NDESC || needed > available)
4026		return (1);
4027
4028	txp->plen = m->m_pkthdr.len + n->m_pkthdr.len;
4029	if (txp->plen > 65535)
4030		return (1);
4031
4032	txp->npkt = 2;
4033	set_mbuf_len16(m, l1);
4034	set_mbuf_len16(n, l2);
4035
4036	return (0);
4037}
4038
4039static int
4040add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available)
4041{
4042	u_int plen, len16, needed, nsegs;
4043
4044	MPASS(txp->wr_type == 0 || txp->wr_type == 1);
4045
4046	nsegs = mbuf_nsegs(m);
4047	if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1))
4048		return (1);
4049
4050	plen = txp->plen + m->m_pkthdr.len;
4051	if (plen > 65535)
4052		return (1);
4053
4054	if (txp->wr_type == 0)
4055		len16 = txpkts0_len16(nsegs);
4056	else
4057		len16 = txpkts1_len16();
4058	needed = howmany(txp->len16 + len16, EQ_ESIZE / 16);
4059	if (needed > SGE_MAX_WR_NDESC || needed > available)
4060		return (1);
4061
4062	txp->npkt++;
4063	txp->plen = plen;
4064	txp->len16 += len16;
4065	set_mbuf_len16(m, len16);
4066
4067	return (0);
4068}
4069
4070/*
4071 * Write a txpkts WR for the packets in txp to the hardware descriptors, update
4072 * the software descriptor, and advance the pidx.  It is guaranteed that enough
4073 * descriptors are available.
4074 *
4075 * The return value is the # of hardware descriptors used.
4076 */
4077static u_int
4078write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr,
4079    struct mbuf *m0, const struct txpkts *txp, u_int available)
4080{
4081	struct sge_eq *eq = &txq->eq;
4082	struct tx_sdesc *txsd;
4083	struct cpl_tx_pkt_core *cpl;
4084	uint32_t ctrl;
4085	uint64_t ctrl1;
4086	int ndesc, checkwrap;
4087	struct mbuf *m;
4088	void *flitp;
4089
4090	TXQ_LOCK_ASSERT_OWNED(txq);
4091	MPASS(txp->npkt > 0);
4092	MPASS(txp->plen < 65536);
4093	MPASS(m0 != NULL);
4094	MPASS(m0->m_nextpkt != NULL);
4095	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
4096	MPASS(available > 0 && available < eq->sidx);
4097
4098	ndesc = howmany(txp->len16, EQ_ESIZE / 16);
4099	MPASS(ndesc <= available);
4100
4101	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4102	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
4103	ctrl = V_FW_WR_LEN16(txp->len16);
4104	wr->equiq_to_len16 = htobe32(ctrl);
4105	wr->plen = htobe16(txp->plen);
4106	wr->npkt = txp->npkt;
4107	wr->r3 = 0;
4108	wr->type = txp->wr_type;
4109	flitp = wr + 1;
4110
4111	/*
4112	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
4113	 * set then we know the WR is going to wrap around somewhere.  We'll
4114	 * check for that at appropriate points.
4115	 */
4116	checkwrap = eq->sidx - ndesc < eq->pidx;
4117	for (m = m0; m != NULL; m = m->m_nextpkt) {
4118		if (txp->wr_type == 0) {
4119			struct ulp_txpkt *ulpmc;
4120			struct ulptx_idata *ulpsc;
4121
4122			/* ULP master command */
4123			ulpmc = flitp;
4124			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
4125			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
4126			ulpmc->len = htobe32(mbuf_len16(m));
4127
4128			/* ULP subcommand */
4129			ulpsc = (void *)(ulpmc + 1);
4130			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
4131			    F_ULP_TX_SC_MORE);
4132			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
4133
4134			cpl = (void *)(ulpsc + 1);
4135			if (checkwrap &&
4136			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
4137				cpl = (void *)&eq->desc[0];
4138			txq->txpkts0_pkts += txp->npkt;
4139			txq->txpkts0_wrs++;
4140		} else {
4141			cpl = flitp;
4142			txq->txpkts1_pkts += txp->npkt;
4143			txq->txpkts1_wrs++;
4144		}
4145
4146		/* Checksum offload */
4147		ctrl1 = 0;
4148		if (needs_l3_csum(m) == 0)
4149			ctrl1 |= F_TXPKT_IPCSUM_DIS;
4150		if (needs_l4_csum(m) == 0)
4151			ctrl1 |= F_TXPKT_L4CSUM_DIS;
4152		if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4153		    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4154			txq->txcsum++;	/* some hardware assistance provided */
4155
4156		/* VLAN tag insertion */
4157		if (needs_vlan_insertion(m)) {
4158			ctrl1 |= F_TXPKT_VLAN_VLD |
4159			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
4160			txq->vlan_insertion++;
4161		}
4162
4163		/* CPL header */
4164		cpl->ctrl0 = txq->cpl_ctrl0;
4165		cpl->pack = 0;
4166		cpl->len = htobe16(m->m_pkthdr.len);
4167		cpl->ctrl1 = htobe64(ctrl1);
4168
4169		flitp = cpl + 1;
4170		if (checkwrap &&
4171		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
4172			flitp = (void *)&eq->desc[0];
4173
4174		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
4175
4176	}
4177
4178	txsd = &txq->sdesc[eq->pidx];
4179	txsd->m = m0;
4180	txsd->desc_used = ndesc;
4181
4182	return (ndesc);
4183}
4184
4185/*
4186 * If the SGL ends on an address that is not 16 byte aligned, this function will
4187 * add a 0 filled flit at the end.
4188 */
4189static void
4190write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
4191{
4192	struct sge_eq *eq = &txq->eq;
4193	struct sglist *gl = txq->gl;
4194	struct sglist_seg *seg;
4195	__be64 *flitp, *wrap;
4196	struct ulptx_sgl *usgl;
4197	int i, nflits, nsegs;
4198
4199	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
4200	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
4201	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4202	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4203
4204	get_pkt_gl(m, gl);
4205	nsegs = gl->sg_nseg;
4206	MPASS(nsegs > 0);
4207
4208	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
4209	flitp = (__be64 *)(*to);
4210	wrap = (__be64 *)(&eq->desc[eq->sidx]);
4211	seg = &gl->sg_segs[0];
4212	usgl = (void *)flitp;
4213
4214	/*
4215	 * We start at a 16 byte boundary somewhere inside the tx descriptor
4216	 * ring, so we're at least 16 bytes away from the status page.  There is
4217	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
4218	 */
4219
4220	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
4221	    V_ULPTX_NSGE(nsegs));
4222	usgl->len0 = htobe32(seg->ss_len);
4223	usgl->addr0 = htobe64(seg->ss_paddr);
4224	seg++;
4225
4226	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
4227
4228		/* Won't wrap around at all */
4229
4230		for (i = 0; i < nsegs - 1; i++, seg++) {
4231			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
4232			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
4233		}
4234		if (i & 1)
4235			usgl->sge[i / 2].len[1] = htobe32(0);
4236		flitp += nflits;
4237	} else {
4238
4239		/* Will wrap somewhere in the rest of the SGL */
4240
4241		/* 2 flits already written, write the rest flit by flit */
4242		flitp = (void *)(usgl + 1);
4243		for (i = 0; i < nflits - 2; i++) {
4244			if (flitp == wrap)
4245				flitp = (void *)eq->desc;
4246			*flitp++ = get_flit(seg, nsegs - 1, i);
4247		}
4248	}
4249
4250	if (nflits & 1) {
4251		MPASS(((uintptr_t)flitp) & 0xf);
4252		*flitp++ = 0;
4253	}
4254
4255	MPASS((((uintptr_t)flitp) & 0xf) == 0);
4256	if (__predict_false(flitp == wrap))
4257		*to = (void *)eq->desc;
4258	else
4259		*to = (void *)flitp;
4260}
4261
4262static inline void
4263copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4264{
4265
4266	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4267	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4268
4269	if (__predict_true((uintptr_t)(*to) + len <=
4270	    (uintptr_t)&eq->desc[eq->sidx])) {
4271		bcopy(from, *to, len);
4272		(*to) += len;
4273	} else {
4274		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
4275
4276		bcopy(from, *to, portion);
4277		from += portion;
4278		portion = len - portion;	/* remaining */
4279		bcopy(from, (void *)eq->desc, portion);
4280		(*to) = (caddr_t)eq->desc + portion;
4281	}
4282}
4283
4284static inline void
4285ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
4286{
4287	u_int db;
4288
4289	MPASS(n > 0);
4290
4291	db = eq->doorbells;
4292	if (n > 1)
4293		clrbit(&db, DOORBELL_WCWR);
4294	wmb();
4295
4296	switch (ffs(db) - 1) {
4297	case DOORBELL_UDB:
4298		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4299		break;
4300
4301	case DOORBELL_WCWR: {
4302		volatile uint64_t *dst, *src;
4303		int i;
4304
4305		/*
4306		 * Queues whose 128B doorbell segment fits in the page do not
4307		 * use relative qid (udb_qid is always 0).  Only queues with
4308		 * doorbell segments can do WCWR.
4309		 */
4310		KASSERT(eq->udb_qid == 0 && n == 1,
4311		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4312		    __func__, eq->doorbells, n, eq->dbidx, eq));
4313
4314		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4315		    UDBS_DB_OFFSET);
4316		i = eq->dbidx;
4317		src = (void *)&eq->desc[i];
4318		while (src != (void *)&eq->desc[i + 1])
4319			*dst++ = *src++;
4320		wmb();
4321		break;
4322	}
4323
4324	case DOORBELL_UDBWC:
4325		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4326		wmb();
4327		break;
4328
4329	case DOORBELL_KDB:
4330		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
4331		    V_QID(eq->cntxt_id) | V_PIDX(n));
4332		break;
4333	}
4334
4335	IDXINCR(eq->dbidx, n, eq->sidx);
4336}
4337
4338static inline u_int
4339reclaimable_tx_desc(struct sge_eq *eq)
4340{
4341	uint16_t hw_cidx;
4342
4343	hw_cidx = read_hw_cidx(eq);
4344	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
4345}
4346
4347static inline u_int
4348total_available_tx_desc(struct sge_eq *eq)
4349{
4350	uint16_t hw_cidx, pidx;
4351
4352	hw_cidx = read_hw_cidx(eq);
4353	pidx = eq->pidx;
4354
4355	if (pidx == hw_cidx)
4356		return (eq->sidx - 1);
4357	else
4358		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
4359}
4360
4361static inline uint16_t
4362read_hw_cidx(struct sge_eq *eq)
4363{
4364	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
4365	uint16_t cidx = spg->cidx;	/* stable snapshot */
4366
4367	return (be16toh(cidx));
4368}
4369
4370/*
4371 * Reclaim 'n' descriptors approximately.
4372 */
4373static u_int
4374reclaim_tx_descs(struct sge_txq *txq, u_int n)
4375{
4376	struct tx_sdesc *txsd;
4377	struct sge_eq *eq = &txq->eq;
4378	u_int can_reclaim, reclaimed;
4379
4380	TXQ_LOCK_ASSERT_OWNED(txq);
4381	MPASS(n > 0);
4382
4383	reclaimed = 0;
4384	can_reclaim = reclaimable_tx_desc(eq);
4385	while (can_reclaim && reclaimed < n) {
4386		int ndesc;
4387		struct mbuf *m, *nextpkt;
4388
4389		txsd = &txq->sdesc[eq->cidx];
4390		ndesc = txsd->desc_used;
4391
4392		/* Firmware doesn't return "partial" credits. */
4393		KASSERT(can_reclaim >= ndesc,
4394		    ("%s: unexpected number of credits: %d, %d",
4395		    __func__, can_reclaim, ndesc));
4396
4397		for (m = txsd->m; m != NULL; m = nextpkt) {
4398			nextpkt = m->m_nextpkt;
4399			m->m_nextpkt = NULL;
4400			m_freem(m);
4401		}
4402		reclaimed += ndesc;
4403		can_reclaim -= ndesc;
4404		IDXINCR(eq->cidx, ndesc, eq->sidx);
4405	}
4406
4407	return (reclaimed);
4408}
4409
4410static void
4411tx_reclaim(void *arg, int n)
4412{
4413	struct sge_txq *txq = arg;
4414	struct sge_eq *eq = &txq->eq;
4415
4416	do {
4417		if (TXQ_TRYLOCK(txq) == 0)
4418			break;
4419		n = reclaim_tx_descs(txq, 32);
4420		if (eq->cidx == eq->pidx)
4421			eq->equeqidx = eq->pidx;
4422		TXQ_UNLOCK(txq);
4423	} while (n > 0);
4424}
4425
4426static __be64
4427get_flit(struct sglist_seg *segs, int nsegs, int idx)
4428{
4429	int i = (idx / 3) * 2;
4430
4431	switch (idx % 3) {
4432	case 0: {
4433		__be64 rc;
4434
4435		rc = htobe32(segs[i].ss_len);
4436		if (i + 1 < nsegs)
4437			rc |= (uint64_t)htobe32(segs[i + 1].ss_len) << 32;
4438
4439		return (rc);
4440	}
4441	case 1:
4442		return (htobe64(segs[i].ss_paddr));
4443	case 2:
4444		return (htobe64(segs[i + 1].ss_paddr));
4445	}
4446
4447	return (0);
4448}
4449
4450static void
4451find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
4452{
4453	int8_t zidx, hwidx, idx;
4454	uint16_t region1, region3;
4455	int spare, spare_needed, n;
4456	struct sw_zone_info *swz;
4457	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
4458
4459	/*
4460	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
4461	 * large enough for the max payload and cluster metadata.  Otherwise
4462	 * settle for the largest bufsize that leaves enough room in the cluster
4463	 * for metadata.
4464	 *
4465	 * Without buffer packing: Look for the smallest zone which has a
4466	 * bufsize large enough for the max payload.  Settle for the largest
4467	 * bufsize available if there's nothing big enough for max payload.
4468	 */
4469	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
4470	swz = &sc->sge.sw_zone_info[0];
4471	hwidx = -1;
4472	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
4473		if (swz->size > largest_rx_cluster) {
4474			if (__predict_true(hwidx != -1))
4475				break;
4476
4477			/*
4478			 * This is a misconfiguration.  largest_rx_cluster is
4479			 * preventing us from finding a refill source.  See
4480			 * dev.t5nex.<n>.buffer_sizes to figure out why.
4481			 */
4482			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
4483			    " refill source for fl %p (dma %u).  Ignored.\n",
4484			    largest_rx_cluster, fl, maxp);
4485		}
4486		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
4487			hwb = &hwb_list[idx];
4488			spare = swz->size - hwb->size;
4489			if (spare < spare_needed)
4490				continue;
4491
4492			hwidx = idx;		/* best option so far */
4493			if (hwb->size >= maxp) {
4494
4495				if ((fl->flags & FL_BUF_PACKING) == 0)
4496					goto done; /* stop looking (not packing) */
4497
4498				if (swz->size >= safest_rx_cluster)
4499					goto done; /* stop looking (packing) */
4500			}
4501			break;		/* keep looking, next zone */
4502		}
4503	}
4504done:
4505	/* A usable hwidx has been located. */
4506	MPASS(hwidx != -1);
4507	hwb = &hwb_list[hwidx];
4508	zidx = hwb->zidx;
4509	swz = &sc->sge.sw_zone_info[zidx];
4510	region1 = 0;
4511	region3 = swz->size - hwb->size;
4512
4513	/*
4514	 * Stay within this zone and see if there is a better match when mbuf
4515	 * inlining is allowed.  Remember that the hwidx's are sorted in
4516	 * decreasing order of size (so in increasing order of spare area).
4517	 */
4518	for (idx = hwidx; idx != -1; idx = hwb->next) {
4519		hwb = &hwb_list[idx];
4520		spare = swz->size - hwb->size;
4521
4522		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
4523			break;
4524
4525		/*
4526		 * Do not inline mbufs if doing so would violate the pad/pack
4527		 * boundary alignment requirement.
4528		 */
4529		if (fl_pad && (MSIZE % sc->sge.pad_boundary) != 0)
4530			continue;
4531		if (fl->flags & FL_BUF_PACKING &&
4532		    (MSIZE % sc->sge.pack_boundary) != 0)
4533			continue;
4534
4535		if (spare < CL_METADATA_SIZE + MSIZE)
4536			continue;
4537		n = (spare - CL_METADATA_SIZE) / MSIZE;
4538		if (n > howmany(hwb->size, maxp))
4539			break;
4540
4541		hwidx = idx;
4542		if (fl->flags & FL_BUF_PACKING) {
4543			region1 = n * MSIZE;
4544			region3 = spare - region1;
4545		} else {
4546			region1 = MSIZE;
4547			region3 = spare - region1;
4548			break;
4549		}
4550	}
4551
4552	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
4553	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
4554	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
4555	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
4556	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
4557	    sc->sge.sw_zone_info[zidx].size,
4558	    ("%s: bad buffer layout for fl %p, maxp %d. "
4559		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4560		sc->sge.sw_zone_info[zidx].size, region1,
4561		sc->sge.hw_buf_info[hwidx].size, region3));
4562	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
4563		KASSERT(region3 >= CL_METADATA_SIZE,
4564		    ("%s: no room for metadata.  fl %p, maxp %d; "
4565		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4566		    sc->sge.sw_zone_info[zidx].size, region1,
4567		    sc->sge.hw_buf_info[hwidx].size, region3));
4568		KASSERT(region1 % MSIZE == 0,
4569		    ("%s: bad mbuf region for fl %p, maxp %d. "
4570		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4571		    sc->sge.sw_zone_info[zidx].size, region1,
4572		    sc->sge.hw_buf_info[hwidx].size, region3));
4573	}
4574
4575	fl->cll_def.zidx = zidx;
4576	fl->cll_def.hwidx = hwidx;
4577	fl->cll_def.region1 = region1;
4578	fl->cll_def.region3 = region3;
4579}
4580
4581static void
4582find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
4583{
4584	struct sge *s = &sc->sge;
4585	struct hw_buf_info *hwb;
4586	struct sw_zone_info *swz;
4587	int spare;
4588	int8_t hwidx;
4589
4590	if (fl->flags & FL_BUF_PACKING)
4591		hwidx = s->safe_hwidx2;	/* with room for metadata */
4592	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
4593		hwidx = s->safe_hwidx2;
4594		hwb = &s->hw_buf_info[hwidx];
4595		swz = &s->sw_zone_info[hwb->zidx];
4596		spare = swz->size - hwb->size;
4597
4598		/* no good if there isn't room for an mbuf as well */
4599		if (spare < CL_METADATA_SIZE + MSIZE)
4600			hwidx = s->safe_hwidx1;
4601	} else
4602		hwidx = s->safe_hwidx1;
4603
4604	if (hwidx == -1) {
4605		/* No fallback source */
4606		fl->cll_alt.hwidx = -1;
4607		fl->cll_alt.zidx = -1;
4608
4609		return;
4610	}
4611
4612	hwb = &s->hw_buf_info[hwidx];
4613	swz = &s->sw_zone_info[hwb->zidx];
4614	spare = swz->size - hwb->size;
4615	fl->cll_alt.hwidx = hwidx;
4616	fl->cll_alt.zidx = hwb->zidx;
4617	if (allow_mbufs_in_cluster &&
4618	    (fl_pad == 0 || (MSIZE % sc->sge.pad_boundary) == 0))
4619		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
4620	else
4621		fl->cll_alt.region1 = 0;
4622	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
4623}
4624
4625static void
4626add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
4627{
4628	mtx_lock(&sc->sfl_lock);
4629	FL_LOCK(fl);
4630	if ((fl->flags & FL_DOOMED) == 0) {
4631		fl->flags |= FL_STARVING;
4632		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
4633		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
4634	}
4635	FL_UNLOCK(fl);
4636	mtx_unlock(&sc->sfl_lock);
4637}
4638
4639static void
4640handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
4641{
4642	struct sge_wrq *wrq = (void *)eq;
4643
4644	atomic_readandclear_int(&eq->equiq);
4645	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
4646}
4647
4648static void
4649handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
4650{
4651	struct sge_txq *txq = (void *)eq;
4652
4653	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
4654
4655	atomic_readandclear_int(&eq->equiq);
4656	mp_ring_check_drainage(txq->r, 0);
4657	taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
4658}
4659
4660static int
4661handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
4662    struct mbuf *m)
4663{
4664	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
4665	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
4666	struct adapter *sc = iq->adapter;
4667	struct sge *s = &sc->sge;
4668	struct sge_eq *eq;
4669	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
4670		&handle_wrq_egr_update, &handle_eth_egr_update,
4671		&handle_wrq_egr_update};
4672
4673	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4674	    rss->opcode));
4675
4676	eq = s->eqmap[qid - s->eq_start];
4677	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
4678
4679	return (0);
4680}
4681
4682/* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
4683CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
4684    offsetof(struct cpl_fw6_msg, data));
4685
4686static int
4687handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
4688{
4689	struct adapter *sc = iq->adapter;
4690	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
4691
4692	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4693	    rss->opcode));
4694
4695	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
4696		const struct rss_header *rss2;
4697
4698		rss2 = (const struct rss_header *)&cpl->data[0];
4699		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
4700	}
4701
4702	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
4703}
4704
4705static int
4706sysctl_uint16(SYSCTL_HANDLER_ARGS)
4707{
4708	uint16_t *id = arg1;
4709	int i = *id;
4710
4711	return sysctl_handle_int(oidp, &i, 0, req);
4712}
4713
4714static int
4715sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
4716{
4717	struct sge *s = arg1;
4718	struct hw_buf_info *hwb = &s->hw_buf_info[0];
4719	struct sw_zone_info *swz = &s->sw_zone_info[0];
4720	int i, rc;
4721	struct sbuf sb;
4722	char c;
4723
4724	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
4725	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
4726		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
4727			c = '*';
4728		else
4729			c = '\0';
4730
4731		sbuf_printf(&sb, "%u%c ", hwb->size, c);
4732	}
4733	sbuf_trim(&sb);
4734	sbuf_finish(&sb);
4735	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
4736	sbuf_delete(&sb);
4737	return (rc);
4738}
4739