1/*-
2 * Copyright (c) 2011 Chelsio Communications, Inc.
3 * All rights reserved.
4 * Written by: Navdeep Parhar <np@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/11/sys/dev/cxgbe/t4_sge.c 355250 2019-11-30 20:42:18Z np $");
30
31#include "opt_inet.h"
32#include "opt_inet6.h"
33
34#include <sys/types.h>
35#include <sys/eventhandler.h>
36#include <sys/mbuf.h>
37#include <sys/socket.h>
38#include <sys/kernel.h>
39#include <sys/malloc.h>
40#include <sys/queue.h>
41#include <sys/sbuf.h>
42#include <sys/taskqueue.h>
43#include <sys/time.h>
44#include <sys/sglist.h>
45#include <sys/sysctl.h>
46#include <sys/smp.h>
47#include <sys/counter.h>
48#include <net/bpf.h>
49#include <net/ethernet.h>
50#include <net/if.h>
51#include <net/if_vlan_var.h>
52#include <netinet/in.h>
53#include <netinet/ip.h>
54#include <netinet/ip6.h>
55#include <netinet/tcp.h>
56#include <machine/in_cksum.h>
57#include <machine/md_var.h>
58#include <vm/vm.h>
59#include <vm/pmap.h>
60#ifdef DEV_NETMAP
61#include <machine/bus.h>
62#include <sys/selinfo.h>
63#include <net/if_var.h>
64#include <net/netmap.h>
65#include <dev/netmap/netmap_kern.h>
66#endif
67
68#include "common/common.h"
69#include "common/t4_regs.h"
70#include "common/t4_regs_values.h"
71#include "common/t4_msg.h"
72#include "t4_l2t.h"
73#include "t4_mp_ring.h"
74
75#ifdef T4_PKT_TIMESTAMP
76#define RX_COPY_THRESHOLD (MINCLSIZE - 8)
77#else
78#define RX_COPY_THRESHOLD MINCLSIZE
79#endif
80
81/*
82 * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
83 * 0-7 are valid values.
84 */
85static int fl_pktshift = 2;
86SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pktshift, CTLFLAG_RDTUN, &fl_pktshift, 0,
87    "payload DMA offset in rx buffer (bytes)");
88
89/*
90 * Pad ethernet payload up to this boundary.
91 * -1: driver should figure out a good value.
92 *  0: disable padding.
93 *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
94 */
95int fl_pad = -1;
96SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pad, CTLFLAG_RDTUN, &fl_pad, 0,
97    "payload pad boundary (bytes)");
98
99/*
100 * Status page length.
101 * -1: driver should figure out a good value.
102 *  64 or 128 are the only other valid values.
103 */
104static int spg_len = -1;
105SYSCTL_INT(_hw_cxgbe, OID_AUTO, spg_len, CTLFLAG_RDTUN, &spg_len, 0,
106    "status page size (bytes)");
107
108/*
109 * Congestion drops.
110 * -1: no congestion feedback (not recommended).
111 *  0: backpressure the channel instead of dropping packets right away.
112 *  1: no backpressure, drop packets for the congested queue immediately.
113 */
114static int cong_drop = 0;
115SYSCTL_INT(_hw_cxgbe, OID_AUTO, cong_drop, CTLFLAG_RDTUN, &cong_drop, 0,
116    "Congestion control for RX queues (0 = backpressure, 1 = drop");
117
118/*
119 * Deliver multiple frames in the same free list buffer if they fit.
120 * -1: let the driver decide whether to enable buffer packing or not.
121 *  0: disable buffer packing.
122 *  1: enable buffer packing.
123 */
124static int buffer_packing = -1;
125SYSCTL_INT(_hw_cxgbe, OID_AUTO, buffer_packing, CTLFLAG_RDTUN, &buffer_packing,
126    0, "Enable buffer packing");
127
128/*
129 * Start next frame in a packed buffer at this boundary.
130 * -1: driver should figure out a good value.
131 * T4: driver will ignore this and use the same value as fl_pad above.
132 * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
133 */
134static int fl_pack = -1;
135SYSCTL_INT(_hw_cxgbe, OID_AUTO, fl_pack, CTLFLAG_RDTUN, &fl_pack, 0,
136    "payload pack boundary (bytes)");
137
138/*
139 * Allow the driver to create mbuf(s) in a cluster allocated for rx.
140 * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
141 * 1: ok to create mbuf(s) within a cluster if there is room.
142 */
143static int allow_mbufs_in_cluster = 1;
144SYSCTL_INT(_hw_cxgbe, OID_AUTO, allow_mbufs_in_cluster, CTLFLAG_RDTUN,
145    &allow_mbufs_in_cluster, 0,
146    "Allow driver to create mbufs within a rx cluster");
147
148/*
149 * Largest rx cluster size that the driver is allowed to allocate.
150 */
151static int largest_rx_cluster = MJUM16BYTES;
152SYSCTL_INT(_hw_cxgbe, OID_AUTO, largest_rx_cluster, CTLFLAG_RDTUN,
153    &largest_rx_cluster, 0, "Largest rx cluster (bytes)");
154
155/*
156 * Size of cluster allocation that's most likely to succeed.  The driver will
157 * fall back to this size if it fails to allocate clusters larger than this.
158 */
159static int safest_rx_cluster = PAGE_SIZE;
160SYSCTL_INT(_hw_cxgbe, OID_AUTO, safest_rx_cluster, CTLFLAG_RDTUN,
161    &safest_rx_cluster, 0, "Safe rx cluster (bytes)");
162
163/*
164 * The interrupt holdoff timers are multiplied by this value on T6+.
165 * 1 and 3-17 (both inclusive) are legal values.
166 */
167static int tscale = 1;
168SYSCTL_INT(_hw_cxgbe, OID_AUTO, tscale, CTLFLAG_RDTUN, &tscale, 0,
169    "Interrupt holdoff timer scale on T6+");
170
171/*
172 * Number of LRO entries in the lro_ctrl structure per rx queue.
173 */
174static int lro_entries = TCP_LRO_ENTRIES;
175SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_entries, CTLFLAG_RDTUN, &lro_entries, 0,
176    "Number of LRO entries per RX queue");
177
178/*
179 * This enables presorting of frames before they're fed into tcp_lro_rx.
180 */
181static int lro_mbufs = 0;
182SYSCTL_INT(_hw_cxgbe, OID_AUTO, lro_mbufs, CTLFLAG_RDTUN, &lro_mbufs, 0,
183    "Enable presorting of LRO frames");
184
185struct txpkts {
186	u_int wr_type;		/* type 0 or type 1 */
187	u_int npkt;		/* # of packets in this work request */
188	u_int plen;		/* total payload (sum of all packets) */
189	u_int len16;		/* # of 16B pieces used by this work request */
190};
191
192/* A packet's SGL.  This + m_pkthdr has all info needed for tx */
193struct sgl {
194	struct sglist sg;
195	struct sglist_seg seg[TX_SGL_SEGS];
196};
197
198static int service_iq(struct sge_iq *, int);
199static int service_iq_fl(struct sge_iq *, int);
200static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
201static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
202static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
203static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
204static inline void init_eq(struct adapter *, struct sge_eq *, int, int, uint8_t,
205    uint16_t, char *);
206static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
207    bus_addr_t *, void **);
208static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
209    void *);
210static int alloc_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *,
211    int, int);
212static int free_iq_fl(struct vi_info *, struct sge_iq *, struct sge_fl *);
213static void add_iq_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
214    struct sge_iq *);
215static void add_fl_sysctls(struct adapter *, struct sysctl_ctx_list *,
216    struct sysctl_oid *, struct sge_fl *);
217static int alloc_fwq(struct adapter *);
218static int free_fwq(struct adapter *);
219static int alloc_ctrlq(struct adapter *, struct sge_wrq *, int,
220    struct sysctl_oid *);
221static int alloc_rxq(struct vi_info *, struct sge_rxq *, int, int,
222    struct sysctl_oid *);
223static int free_rxq(struct vi_info *, struct sge_rxq *);
224#ifdef TCP_OFFLOAD
225static int alloc_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *, int, int,
226    struct sysctl_oid *);
227static int free_ofld_rxq(struct vi_info *, struct sge_ofld_rxq *);
228#endif
229#ifdef DEV_NETMAP
230static int alloc_nm_rxq(struct vi_info *, struct sge_nm_rxq *, int, int,
231    struct sysctl_oid *);
232static int free_nm_rxq(struct vi_info *, struct sge_nm_rxq *);
233static int alloc_nm_txq(struct vi_info *, struct sge_nm_txq *, int, int,
234    struct sysctl_oid *);
235static int free_nm_txq(struct vi_info *, struct sge_nm_txq *);
236#endif
237static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
238static int eth_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
239#ifdef TCP_OFFLOAD
240static int ofld_eq_alloc(struct adapter *, struct vi_info *, struct sge_eq *);
241#endif
242static int alloc_eq(struct adapter *, struct vi_info *, struct sge_eq *);
243static int free_eq(struct adapter *, struct sge_eq *);
244static int alloc_wrq(struct adapter *, struct vi_info *, struct sge_wrq *,
245    struct sysctl_oid *);
246static int free_wrq(struct adapter *, struct sge_wrq *);
247static int alloc_txq(struct vi_info *, struct sge_txq *, int,
248    struct sysctl_oid *);
249static int free_txq(struct vi_info *, struct sge_txq *);
250static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
251static inline void ring_fl_db(struct adapter *, struct sge_fl *);
252static int refill_fl(struct adapter *, struct sge_fl *, int);
253static void refill_sfl(void *);
254static int alloc_fl_sdesc(struct sge_fl *);
255static void free_fl_sdesc(struct adapter *, struct sge_fl *);
256static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
257static void find_safe_refill_source(struct adapter *, struct sge_fl *);
258static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
259
260static inline void get_pkt_gl(struct mbuf *, struct sglist *);
261static inline u_int txpkt_len16(u_int, u_int);
262static inline u_int txpkt_vm_len16(u_int, u_int);
263static inline u_int txpkts0_len16(u_int);
264static inline u_int txpkts1_len16(void);
265static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *,
266    struct mbuf *, u_int);
267static u_int write_txpkt_vm_wr(struct adapter *, struct sge_txq *,
268    struct fw_eth_tx_pkt_vm_wr *, struct mbuf *, u_int);
269static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int);
270static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int);
271static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *,
272    struct mbuf *, const struct txpkts *, u_int);
273static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
274static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
275static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
276static inline uint16_t read_hw_cidx(struct sge_eq *);
277static inline u_int reclaimable_tx_desc(struct sge_eq *);
278static inline u_int total_available_tx_desc(struct sge_eq *);
279static u_int reclaim_tx_descs(struct sge_txq *, u_int);
280static void tx_reclaim(void *, int);
281static __be64 get_flit(struct sglist_seg *, int, int);
282static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
283    struct mbuf *);
284static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
285    struct mbuf *);
286static int t4_handle_wrerr_rpl(struct adapter *, const __be64 *);
287static void wrq_tx_drain(void *, int);
288static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
289
290static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
291static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
292
293static counter_u64_t extfree_refs;
294static counter_u64_t extfree_rels;
295
296an_handler_t t4_an_handler;
297fw_msg_handler_t t4_fw_msg_handler[NUM_FW6_TYPES];
298cpl_handler_t t4_cpl_handler[NUM_CPL_CMDS];
299cpl_handler_t set_tcb_rpl_handlers[NUM_CPL_COOKIES];
300cpl_handler_t l2t_write_rpl_handlers[NUM_CPL_COOKIES];
301cpl_handler_t act_open_rpl_handlers[NUM_CPL_COOKIES];
302cpl_handler_t abort_rpl_rss_handlers[NUM_CPL_COOKIES];
303cpl_handler_t fw4_ack_handlers[NUM_CPL_COOKIES];
304
305void
306t4_register_an_handler(an_handler_t h)
307{
308	uintptr_t *loc;
309
310	MPASS(h == NULL || t4_an_handler == NULL);
311
312	loc = (uintptr_t *)&t4_an_handler;
313	atomic_store_rel_ptr(loc, (uintptr_t)h);
314}
315
316void
317t4_register_fw_msg_handler(int type, fw_msg_handler_t h)
318{
319	uintptr_t *loc;
320
321	MPASS(type < nitems(t4_fw_msg_handler));
322	MPASS(h == NULL || t4_fw_msg_handler[type] == NULL);
323	/*
324	 * These are dispatched by the handler for FW{4|6}_CPL_MSG using the CPL
325	 * handler dispatch table.  Reject any attempt to install a handler for
326	 * this subtype.
327	 */
328	MPASS(type != FW_TYPE_RSSCPL);
329	MPASS(type != FW6_TYPE_RSSCPL);
330
331	loc = (uintptr_t *)&t4_fw_msg_handler[type];
332	atomic_store_rel_ptr(loc, (uintptr_t)h);
333}
334
335void
336t4_register_cpl_handler(int opcode, cpl_handler_t h)
337{
338	uintptr_t *loc;
339
340	MPASS(opcode < nitems(t4_cpl_handler));
341	MPASS(h == NULL || t4_cpl_handler[opcode] == NULL);
342
343	loc = (uintptr_t *)&t4_cpl_handler[opcode];
344	atomic_store_rel_ptr(loc, (uintptr_t)h);
345}
346
347static int
348set_tcb_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
349    struct mbuf *m)
350{
351	const struct cpl_set_tcb_rpl *cpl = (const void *)(rss + 1);
352	u_int tid;
353	int cookie;
354
355	MPASS(m == NULL);
356
357	tid = GET_TID(cpl);
358	if (is_hpftid(iq->adapter, tid) || is_ftid(iq->adapter, tid)) {
359		/*
360		 * The return code for filter-write is put in the CPL cookie so
361		 * we have to rely on the hardware tid (is_ftid) to determine
362		 * that this is a response to a filter.
363		 */
364		cookie = CPL_COOKIE_FILTER;
365	} else {
366		cookie = G_COOKIE(cpl->cookie);
367	}
368	MPASS(cookie > CPL_COOKIE_RESERVED);
369	MPASS(cookie < nitems(set_tcb_rpl_handlers));
370
371	return (set_tcb_rpl_handlers[cookie](iq, rss, m));
372}
373
374static int
375l2t_write_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
376    struct mbuf *m)
377{
378	const struct cpl_l2t_write_rpl *rpl = (const void *)(rss + 1);
379	unsigned int cookie;
380
381	MPASS(m == NULL);
382
383	cookie = GET_TID(rpl) & F_SYNC_WR ? CPL_COOKIE_TOM : CPL_COOKIE_FILTER;
384	return (l2t_write_rpl_handlers[cookie](iq, rss, m));
385}
386
387static int
388act_open_rpl_handler(struct sge_iq *iq, const struct rss_header *rss,
389    struct mbuf *m)
390{
391	const struct cpl_act_open_rpl *cpl = (const void *)(rss + 1);
392	u_int cookie = G_TID_COOKIE(G_AOPEN_ATID(be32toh(cpl->atid_status)));
393
394	MPASS(m == NULL);
395	MPASS(cookie != CPL_COOKIE_RESERVED);
396
397	return (act_open_rpl_handlers[cookie](iq, rss, m));
398}
399
400static int
401abort_rpl_rss_handler(struct sge_iq *iq, const struct rss_header *rss,
402    struct mbuf *m)
403{
404	struct adapter *sc = iq->adapter;
405	u_int cookie;
406
407	MPASS(m == NULL);
408	if (is_hashfilter(sc))
409		cookie = CPL_COOKIE_HASHFILTER;
410	else
411		cookie = CPL_COOKIE_TOM;
412
413	return (abort_rpl_rss_handlers[cookie](iq, rss, m));
414}
415
416static int
417fw4_ack_handler(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
418{
419	struct adapter *sc = iq->adapter;
420	const struct cpl_fw4_ack *cpl = (const void *)(rss + 1);
421	unsigned int tid = G_CPL_FW4_ACK_FLOWID(be32toh(OPCODE_TID(cpl)));
422	u_int cookie;
423
424	MPASS(m == NULL);
425	if (is_etid(sc, tid))
426		cookie = CPL_COOKIE_ETHOFLD;
427	else
428		cookie = CPL_COOKIE_TOM;
429
430	return (fw4_ack_handlers[cookie](iq, rss, m));
431}
432
433static void
434t4_init_shared_cpl_handlers(void)
435{
436
437	t4_register_cpl_handler(CPL_SET_TCB_RPL, set_tcb_rpl_handler);
438	t4_register_cpl_handler(CPL_L2T_WRITE_RPL, l2t_write_rpl_handler);
439	t4_register_cpl_handler(CPL_ACT_OPEN_RPL, act_open_rpl_handler);
440	t4_register_cpl_handler(CPL_ABORT_RPL_RSS, abort_rpl_rss_handler);
441	t4_register_cpl_handler(CPL_FW4_ACK, fw4_ack_handler);
442}
443
444void
445t4_register_shared_cpl_handler(int opcode, cpl_handler_t h, int cookie)
446{
447	uintptr_t *loc;
448
449	MPASS(opcode < nitems(t4_cpl_handler));
450	MPASS(cookie > CPL_COOKIE_RESERVED);
451	MPASS(cookie < NUM_CPL_COOKIES);
452	MPASS(t4_cpl_handler[opcode] != NULL);
453
454	switch (opcode) {
455	case CPL_SET_TCB_RPL:
456		loc = (uintptr_t *)&set_tcb_rpl_handlers[cookie];
457		break;
458	case CPL_L2T_WRITE_RPL:
459		loc = (uintptr_t *)&l2t_write_rpl_handlers[cookie];
460		break;
461	case CPL_ACT_OPEN_RPL:
462		loc = (uintptr_t *)&act_open_rpl_handlers[cookie];
463		break;
464	case CPL_ABORT_RPL_RSS:
465		loc = (uintptr_t *)&abort_rpl_rss_handlers[cookie];
466		break;
467	case CPL_FW4_ACK:
468		loc = (uintptr_t *)&fw4_ack_handlers[cookie];
469		break;
470	default:
471		MPASS(0);
472		return;
473	}
474	MPASS(h == NULL || *loc == (uintptr_t)NULL);
475	atomic_store_rel_ptr(loc, (uintptr_t)h);
476}
477
478/*
479 * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
480 */
481void
482t4_sge_modload(void)
483{
484
485	if (fl_pktshift < 0 || fl_pktshift > 7) {
486		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
487		    " using 2 instead.\n", fl_pktshift);
488		fl_pktshift = 2;
489	}
490
491	if (spg_len != 64 && spg_len != 128) {
492		int len;
493
494#if defined(__i386__) || defined(__amd64__)
495		len = cpu_clflush_line_size > 64 ? 128 : 64;
496#else
497		len = 64;
498#endif
499		if (spg_len != -1) {
500			printf("Invalid hw.cxgbe.spg_len value (%d),"
501			    " using %d instead.\n", spg_len, len);
502		}
503		spg_len = len;
504	}
505
506	if (cong_drop < -1 || cong_drop > 1) {
507		printf("Invalid hw.cxgbe.cong_drop value (%d),"
508		    " using 0 instead.\n", cong_drop);
509		cong_drop = 0;
510	}
511
512	if (tscale != 1 && (tscale < 3 || tscale > 17)) {
513		printf("Invalid hw.cxgbe.tscale value (%d),"
514		    " using 1 instead.\n", tscale);
515		tscale = 1;
516	}
517
518	extfree_refs = counter_u64_alloc(M_WAITOK);
519	extfree_rels = counter_u64_alloc(M_WAITOK);
520	counter_u64_zero(extfree_refs);
521	counter_u64_zero(extfree_rels);
522
523	t4_init_shared_cpl_handlers();
524	t4_register_cpl_handler(CPL_FW4_MSG, handle_fw_msg);
525	t4_register_cpl_handler(CPL_FW6_MSG, handle_fw_msg);
526	t4_register_cpl_handler(CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
527	t4_register_cpl_handler(CPL_RX_PKT, t4_eth_rx);
528	t4_register_fw_msg_handler(FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
529	t4_register_fw_msg_handler(FW6_TYPE_WRERR_RPL, t4_handle_wrerr_rpl);
530}
531
532void
533t4_sge_modunload(void)
534{
535
536	counter_u64_free(extfree_refs);
537	counter_u64_free(extfree_rels);
538}
539
540uint64_t
541t4_sge_extfree_refs(void)
542{
543	uint64_t refs, rels;
544
545	rels = counter_u64_fetch(extfree_rels);
546	refs = counter_u64_fetch(extfree_refs);
547
548	return (refs - rels);
549}
550
551static inline void
552setup_pad_and_pack_boundaries(struct adapter *sc)
553{
554	uint32_t v, m;
555	int pad, pack, pad_shift;
556
557	pad_shift = chip_id(sc) > CHELSIO_T5 ? X_T6_INGPADBOUNDARY_SHIFT :
558	    X_INGPADBOUNDARY_SHIFT;
559	pad = fl_pad;
560	if (fl_pad < (1 << pad_shift) ||
561	    fl_pad > (1 << (pad_shift + M_INGPADBOUNDARY)) ||
562	    !powerof2(fl_pad)) {
563		/*
564		 * If there is any chance that we might use buffer packing and
565		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
566		 * it to the minimum allowed in all other cases.
567		 */
568		pad = is_t4(sc) && buffer_packing ? 64 : 1 << pad_shift;
569
570		/*
571		 * For fl_pad = 0 we'll still write a reasonable value to the
572		 * register but all the freelists will opt out of padding.
573		 * We'll complain here only if the user tried to set it to a
574		 * value greater than 0 that was invalid.
575		 */
576		if (fl_pad > 0) {
577			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
578			    " (%d), using %d instead.\n", fl_pad, pad);
579		}
580	}
581	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
582	v = V_INGPADBOUNDARY(ilog2(pad) - pad_shift);
583	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
584
585	if (is_t4(sc)) {
586		if (fl_pack != -1 && fl_pack != pad) {
587			/* Complain but carry on. */
588			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
589			    " using %d instead.\n", fl_pack, pad);
590		}
591		return;
592	}
593
594	pack = fl_pack;
595	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
596	    !powerof2(fl_pack)) {
597		pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
598		MPASS(powerof2(pack));
599		if (pack < 16)
600			pack = 16;
601		if (pack == 32)
602			pack = 64;
603		if (pack > 4096)
604			pack = 4096;
605		if (fl_pack != -1) {
606			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
607			    " (%d), using %d instead.\n", fl_pack, pack);
608		}
609	}
610	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
611	if (pack == 16)
612		v = V_INGPACKBOUNDARY(0);
613	else
614		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
615
616	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
617	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
618}
619
620/*
621 * adap->params.vpd.cclk must be set up before this is called.
622 */
623void
624t4_tweak_chip_settings(struct adapter *sc)
625{
626	int i;
627	uint32_t v, m;
628	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
629	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
630	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
631	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
632	static int sge_flbuf_sizes[] = {
633		MCLBYTES,
634#if MJUMPAGESIZE != MCLBYTES
635		MJUMPAGESIZE,
636		MJUMPAGESIZE - CL_METADATA_SIZE,
637		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
638#endif
639		MJUM9BYTES,
640		MJUM16BYTES,
641		MCLBYTES - MSIZE - CL_METADATA_SIZE,
642		MJUM9BYTES - CL_METADATA_SIZE,
643		MJUM16BYTES - CL_METADATA_SIZE,
644	};
645
646	KASSERT(sc->flags & MASTER_PF,
647	    ("%s: trying to change chip settings when not master.", __func__));
648
649	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
650	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
651	    V_EGRSTATUSPAGESIZE(spg_len == 128);
652	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
653
654	setup_pad_and_pack_boundaries(sc);
655
656	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
657	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
658	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
659	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
660	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
661	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
662	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
663	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
664	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
665
666	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
667	    ("%s: hw buffer size table too big", __func__));
668	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0, 4096);
669	t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE1, 65536);
670	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
671		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE15 - (4 * i),
672		    sge_flbuf_sizes[i]);
673	}
674
675	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
676	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
677	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
678
679	KASSERT(intr_timer[0] <= timer_max,
680	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
681	    timer_max));
682	for (i = 1; i < nitems(intr_timer); i++) {
683		KASSERT(intr_timer[i] >= intr_timer[i - 1],
684		    ("%s: timers not listed in increasing order (%d)",
685		    __func__, i));
686
687		while (intr_timer[i] > timer_max) {
688			if (i == nitems(intr_timer) - 1) {
689				intr_timer[i] = timer_max;
690				break;
691			}
692			intr_timer[i] += intr_timer[i - 1];
693			intr_timer[i] /= 2;
694		}
695	}
696
697	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
698	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
699	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
700	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
701	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
702	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
703	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
704	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
705	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
706
707	if (chip_id(sc) >= CHELSIO_T6) {
708		m = V_TSCALE(M_TSCALE);
709		if (tscale == 1)
710			v = 0;
711		else
712			v = V_TSCALE(tscale - 2);
713		t4_set_reg_field(sc, A_SGE_ITP_CONTROL, m, v);
714
715		if (sc->debug_flags & DF_DISABLE_TCB_CACHE) {
716			m = V_RDTHRESHOLD(M_RDTHRESHOLD) | F_WRTHRTHRESHEN |
717			    V_WRTHRTHRESH(M_WRTHRTHRESH);
718			t4_tp_pio_read(sc, &v, 1, A_TP_CMM_CONFIG, 1);
719			v &= ~m;
720			v |= V_RDTHRESHOLD(1) | F_WRTHRTHRESHEN |
721			    V_WRTHRTHRESH(16);
722			t4_tp_pio_write(sc, &v, 1, A_TP_CMM_CONFIG, 1);
723		}
724	}
725
726	/* 4K, 16K, 64K, 256K DDP "page sizes" */
727	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
728	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
729
730	m = v = F_TDDPTAGTCB;
731	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
732
733	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
734	    F_RESETDDPOFFSET;
735	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
736	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
737}
738
739/*
740 * SGE wants the buffer to be at least 64B and then a multiple of 16.  If
741 * padding is in use, the buffer's start and end need to be aligned to the pad
742 * boundary as well.  We'll just make sure that the size is a multiple of the
743 * boundary here, it is up to the buffer allocation code to make sure the start
744 * of the buffer is aligned as well.
745 */
746static inline int
747hwsz_ok(struct adapter *sc, int hwsz)
748{
749	int mask = fl_pad ? sc->params.sge.pad_boundary - 1 : 16 - 1;
750
751	return (hwsz >= 64 && (hwsz & mask) == 0);
752}
753
754/*
755 * XXX: driver really should be able to deal with unexpected settings.
756 */
757int
758t4_read_chip_settings(struct adapter *sc)
759{
760	struct sge *s = &sc->sge;
761	struct sge_params *sp = &sc->params.sge;
762	int i, j, n, rc = 0;
763	uint32_t m, v, r;
764	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
765	static int sw_buf_sizes[] = {	/* Sorted by size */
766		MCLBYTES,
767#if MJUMPAGESIZE != MCLBYTES
768		MJUMPAGESIZE,
769#endif
770		MJUM9BYTES,
771		MJUM16BYTES
772	};
773	struct sw_zone_info *swz, *safe_swz;
774	struct hw_buf_info *hwb;
775
776	m = F_RXPKTCPLMODE;
777	v = F_RXPKTCPLMODE;
778	r = sc->params.sge.sge_control;
779	if ((r & m) != v) {
780		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
781		rc = EINVAL;
782	}
783
784	/*
785	 * If this changes then every single use of PAGE_SHIFT in the driver
786	 * needs to be carefully reviewed for PAGE_SHIFT vs sp->page_shift.
787	 */
788	if (sp->page_shift != PAGE_SHIFT) {
789		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
790		rc = EINVAL;
791	}
792
793	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
794	hwb = &s->hw_buf_info[0];
795	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
796		r = sc->params.sge.sge_fl_buffer_size[i];
797		hwb->size = r;
798		hwb->zidx = hwsz_ok(sc, r) ? -1 : -2;
799		hwb->next = -1;
800	}
801
802	/*
803	 * Create a sorted list in decreasing order of hw buffer sizes (and so
804	 * increasing order of spare area) for each software zone.
805	 *
806	 * If padding is enabled then the start and end of the buffer must align
807	 * to the pad boundary; if packing is enabled then they must align with
808	 * the pack boundary as well.  Allocations from the cluster zones are
809	 * aligned to min(size, 4K), so the buffer starts at that alignment and
810	 * ends at hwb->size alignment.  If mbuf inlining is allowed the
811	 * starting alignment will be reduced to MSIZE and the driver will
812	 * exercise appropriate caution when deciding on the best buffer layout
813	 * to use.
814	 */
815	n = 0;	/* no usable buffer size to begin with */
816	swz = &s->sw_zone_info[0];
817	safe_swz = NULL;
818	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
819		int8_t head = -1, tail = -1;
820
821		swz->size = sw_buf_sizes[i];
822		swz->zone = m_getzone(swz->size);
823		swz->type = m_gettype(swz->size);
824
825		if (swz->size < PAGE_SIZE) {
826			MPASS(powerof2(swz->size));
827			if (fl_pad && (swz->size % sp->pad_boundary != 0))
828				continue;
829		}
830
831		if (swz->size == safest_rx_cluster)
832			safe_swz = swz;
833
834		hwb = &s->hw_buf_info[0];
835		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
836			if (hwb->zidx != -1 || hwb->size > swz->size)
837				continue;
838#ifdef INVARIANTS
839			if (fl_pad)
840				MPASS(hwb->size % sp->pad_boundary == 0);
841#endif
842			hwb->zidx = i;
843			if (head == -1)
844				head = tail = j;
845			else if (hwb->size < s->hw_buf_info[tail].size) {
846				s->hw_buf_info[tail].next = j;
847				tail = j;
848			} else {
849				int8_t *cur;
850				struct hw_buf_info *t;
851
852				for (cur = &head; *cur != -1; cur = &t->next) {
853					t = &s->hw_buf_info[*cur];
854					if (hwb->size == t->size) {
855						hwb->zidx = -2;
856						break;
857					}
858					if (hwb->size > t->size) {
859						hwb->next = *cur;
860						*cur = j;
861						break;
862					}
863				}
864			}
865		}
866		swz->head_hwidx = head;
867		swz->tail_hwidx = tail;
868
869		if (tail != -1) {
870			n++;
871			if (swz->size - s->hw_buf_info[tail].size >=
872			    CL_METADATA_SIZE)
873				sc->flags |= BUF_PACKING_OK;
874		}
875	}
876	if (n == 0) {
877		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
878		rc = EINVAL;
879	}
880
881	s->safe_hwidx1 = -1;
882	s->safe_hwidx2 = -1;
883	if (safe_swz != NULL) {
884		s->safe_hwidx1 = safe_swz->head_hwidx;
885		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
886			int spare;
887
888			hwb = &s->hw_buf_info[i];
889#ifdef INVARIANTS
890			if (fl_pad)
891				MPASS(hwb->size % sp->pad_boundary == 0);
892#endif
893			spare = safe_swz->size - hwb->size;
894			if (spare >= CL_METADATA_SIZE) {
895				s->safe_hwidx2 = i;
896				break;
897			}
898		}
899	}
900
901	if (sc->flags & IS_VF)
902		return (0);
903
904	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
905	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
906	if (r != v) {
907		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
908		rc = EINVAL;
909	}
910
911	m = v = F_TDDPTAGTCB;
912	r = t4_read_reg(sc, A_ULP_RX_CTL);
913	if ((r & m) != v) {
914		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
915		rc = EINVAL;
916	}
917
918	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
919	    F_RESETDDPOFFSET;
920	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
921	r = t4_read_reg(sc, A_TP_PARA_REG5);
922	if ((r & m) != v) {
923		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
924		rc = EINVAL;
925	}
926
927	t4_init_tp_params(sc, 1);
928
929	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
930	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
931
932	return (rc);
933}
934
935int
936t4_create_dma_tag(struct adapter *sc)
937{
938	int rc;
939
940	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
941	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
942	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
943	    NULL, &sc->dmat);
944	if (rc != 0) {
945		device_printf(sc->dev,
946		    "failed to create main DMA tag: %d\n", rc);
947	}
948
949	return (rc);
950}
951
952void
953t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
954    struct sysctl_oid_list *children)
955{
956	struct sge_params *sp = &sc->params.sge;
957
958	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
959	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
960	    "freelist buffer sizes");
961
962	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
963	    NULL, sp->fl_pktshift, "payload DMA offset in rx buffer (bytes)");
964
965	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
966	    NULL, sp->pad_boundary, "payload pad boundary (bytes)");
967
968	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
969	    NULL, sp->spg_len, "status page size (bytes)");
970
971	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
972	    NULL, cong_drop, "congestion drop setting");
973
974	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
975	    NULL, sp->pack_boundary, "payload pack boundary (bytes)");
976}
977
978int
979t4_destroy_dma_tag(struct adapter *sc)
980{
981	if (sc->dmat)
982		bus_dma_tag_destroy(sc->dmat);
983
984	return (0);
985}
986
987/*
988 * Allocate and initialize the firmware event queue, control queues, and special
989 * purpose rx queues owned by the adapter.
990 *
991 * Returns errno on failure.  Resources allocated up to that point may still be
992 * allocated.  Caller is responsible for cleanup in case this function fails.
993 */
994int
995t4_setup_adapter_queues(struct adapter *sc)
996{
997	struct sysctl_oid *oid;
998	struct sysctl_oid_list *children;
999	int rc, i;
1000
1001	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1002
1003	sysctl_ctx_init(&sc->ctx);
1004	sc->flags |= ADAP_SYSCTL_CTX;
1005
1006	/*
1007	 * Firmware event queue
1008	 */
1009	rc = alloc_fwq(sc);
1010	if (rc != 0)
1011		return (rc);
1012
1013	/*
1014	 * That's all for the VF driver.
1015	 */
1016	if (sc->flags & IS_VF)
1017		return (rc);
1018
1019	oid = device_get_sysctl_tree(sc->dev);
1020	children = SYSCTL_CHILDREN(oid);
1021
1022	/*
1023	 * XXX: General purpose rx queues, one per port.
1024	 */
1025
1026	/*
1027	 * Control queues, one per port.
1028	 */
1029	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "ctrlq",
1030	    CTLFLAG_RD, NULL, "control queues");
1031	for_each_port(sc, i) {
1032		struct sge_wrq *ctrlq = &sc->sge.ctrlq[i];
1033
1034		rc = alloc_ctrlq(sc, ctrlq, i, oid);
1035		if (rc != 0)
1036			return (rc);
1037	}
1038
1039	return (rc);
1040}
1041
1042/*
1043 * Idempotent
1044 */
1045int
1046t4_teardown_adapter_queues(struct adapter *sc)
1047{
1048	int i;
1049
1050	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
1051
1052	/* Do this before freeing the queue */
1053	if (sc->flags & ADAP_SYSCTL_CTX) {
1054		sysctl_ctx_free(&sc->ctx);
1055		sc->flags &= ~ADAP_SYSCTL_CTX;
1056	}
1057
1058	if (!(sc->flags & IS_VF)) {
1059		for_each_port(sc, i)
1060			free_wrq(sc, &sc->sge.ctrlq[i]);
1061	}
1062	free_fwq(sc);
1063
1064	return (0);
1065}
1066
1067/* Maximum payload that can be delivered with a single iq descriptor */
1068static inline int
1069mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
1070{
1071	int payload;
1072
1073#ifdef TCP_OFFLOAD
1074	if (toe) {
1075		int rxcs = G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2));
1076
1077		/* Note that COP can set rx_coalesce on/off per connection. */
1078		payload = max(mtu, rxcs);
1079	} else {
1080#endif
1081		/* large enough even when hw VLAN extraction is disabled */
1082		payload = sc->params.sge.fl_pktshift + ETHER_HDR_LEN +
1083		    ETHER_VLAN_ENCAP_LEN + mtu;
1084#ifdef TCP_OFFLOAD
1085	}
1086#endif
1087
1088	return (payload);
1089}
1090
1091int
1092t4_setup_vi_queues(struct vi_info *vi)
1093{
1094	int rc = 0, i, intr_idx, iqidx;
1095	struct sge_rxq *rxq;
1096	struct sge_txq *txq;
1097#ifdef TCP_OFFLOAD
1098	struct sge_ofld_rxq *ofld_rxq;
1099	struct sge_wrq *ofld_txq;
1100#endif
1101#ifdef DEV_NETMAP
1102	int saved_idx;
1103	struct sge_nm_rxq *nm_rxq;
1104	struct sge_nm_txq *nm_txq;
1105#endif
1106	char name[16];
1107	struct port_info *pi = vi->pi;
1108	struct adapter *sc = pi->adapter;
1109	struct ifnet *ifp = vi->ifp;
1110	struct sysctl_oid *oid = device_get_sysctl_tree(vi->dev);
1111	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1112	int maxp, mtu = ifp->if_mtu;
1113
1114	/* Interrupt vector to start from (when using multiple vectors) */
1115	intr_idx = vi->first_intr;
1116
1117#ifdef DEV_NETMAP
1118	saved_idx = intr_idx;
1119	if (ifp->if_capabilities & IFCAP_NETMAP) {
1120
1121		/* netmap is supported with direct interrupts only. */
1122		MPASS(!forwarding_intr_to_fwq(sc));
1123
1124		/*
1125		 * We don't have buffers to back the netmap rx queues
1126		 * right now so we create the queues in a way that
1127		 * doesn't set off any congestion signal in the chip.
1128		 */
1129		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_rxq",
1130		    CTLFLAG_RD, NULL, "rx queues");
1131		for_each_nm_rxq(vi, i, nm_rxq) {
1132			rc = alloc_nm_rxq(vi, nm_rxq, intr_idx, i, oid);
1133			if (rc != 0)
1134				goto done;
1135			intr_idx++;
1136		}
1137
1138		oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "nm_txq",
1139		    CTLFLAG_RD, NULL, "tx queues");
1140		for_each_nm_txq(vi, i, nm_txq) {
1141			iqidx = vi->first_nm_rxq + (i % vi->nnmrxq);
1142			rc = alloc_nm_txq(vi, nm_txq, iqidx, i, oid);
1143			if (rc != 0)
1144				goto done;
1145		}
1146	}
1147
1148	/* Normal rx queues and netmap rx queues share the same interrupts. */
1149	intr_idx = saved_idx;
1150#endif
1151
1152	/*
1153	 * Allocate rx queues first because a default iqid is required when
1154	 * creating a tx queue.
1155	 */
1156	maxp = mtu_to_max_payload(sc, mtu, 0);
1157	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "rxq",
1158	    CTLFLAG_RD, NULL, "rx queues");
1159	for_each_rxq(vi, i, rxq) {
1160
1161		init_iq(&rxq->iq, sc, vi->tmr_idx, vi->pktc_idx, vi->qsize_rxq);
1162
1163		snprintf(name, sizeof(name), "%s rxq%d-fl",
1164		    device_get_nameunit(vi->dev), i);
1165		init_fl(sc, &rxq->fl, vi->qsize_rxq / 8, maxp, name);
1166
1167		rc = alloc_rxq(vi, rxq,
1168		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1169		if (rc != 0)
1170			goto done;
1171		intr_idx++;
1172	}
1173#ifdef DEV_NETMAP
1174	if (ifp->if_capabilities & IFCAP_NETMAP)
1175		intr_idx = saved_idx + max(vi->nrxq, vi->nnmrxq);
1176#endif
1177#ifdef TCP_OFFLOAD
1178	maxp = mtu_to_max_payload(sc, mtu, 1);
1179	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_rxq",
1180	    CTLFLAG_RD, NULL, "rx queues for offloaded TCP connections");
1181	for_each_ofld_rxq(vi, i, ofld_rxq) {
1182
1183		init_iq(&ofld_rxq->iq, sc, vi->ofld_tmr_idx, vi->ofld_pktc_idx,
1184		    vi->qsize_rxq);
1185
1186		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1187		    device_get_nameunit(vi->dev), i);
1188		init_fl(sc, &ofld_rxq->fl, vi->qsize_rxq / 8, maxp, name);
1189
1190		rc = alloc_ofld_rxq(vi, ofld_rxq,
1191		    forwarding_intr_to_fwq(sc) ? -1 : intr_idx, i, oid);
1192		if (rc != 0)
1193			goto done;
1194		intr_idx++;
1195	}
1196#endif
1197
1198	/*
1199	 * Now the tx queues.
1200	 */
1201	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1202	    NULL, "tx queues");
1203	for_each_txq(vi, i, txq) {
1204		iqidx = vi->first_rxq + (i % vi->nrxq);
1205		snprintf(name, sizeof(name), "%s txq%d",
1206		    device_get_nameunit(vi->dev), i);
1207		init_eq(sc, &txq->eq, EQ_ETH, vi->qsize_txq, pi->tx_chan,
1208		    sc->sge.rxq[iqidx].iq.cntxt_id, name);
1209
1210		rc = alloc_txq(vi, txq, i, oid);
1211		if (rc != 0)
1212			goto done;
1213	}
1214#ifdef TCP_OFFLOAD
1215	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, "ofld_txq",
1216	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
1217	for_each_ofld_txq(vi, i, ofld_txq) {
1218		struct sysctl_oid *oid2;
1219
1220		iqidx = vi->first_ofld_rxq + (i % vi->nofldrxq);
1221		snprintf(name, sizeof(name), "%s ofld_txq%d",
1222		    device_get_nameunit(vi->dev), i);
1223		init_eq(sc, &ofld_txq->eq, EQ_OFLD, vi->qsize_txq, pi->tx_chan,
1224		    sc->sge.ofld_rxq[iqidx].iq.cntxt_id, name);
1225
1226		snprintf(name, sizeof(name), "%d", i);
1227		oid2 = SYSCTL_ADD_NODE(&vi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1228		    name, CTLFLAG_RD, NULL, "offload tx queue");
1229
1230		rc = alloc_wrq(sc, vi, ofld_txq, oid2);
1231		if (rc != 0)
1232			goto done;
1233	}
1234#endif
1235done:
1236	if (rc)
1237		t4_teardown_vi_queues(vi);
1238
1239	return (rc);
1240}
1241
1242/*
1243 * Idempotent
1244 */
1245int
1246t4_teardown_vi_queues(struct vi_info *vi)
1247{
1248	int i;
1249	struct sge_rxq *rxq;
1250	struct sge_txq *txq;
1251#if defined(TCP_OFFLOAD) || defined(RATELIMIT)
1252	struct port_info *pi = vi->pi;
1253	struct adapter *sc = pi->adapter;
1254	struct sge_wrq *ofld_txq;
1255#endif
1256#ifdef TCP_OFFLOAD
1257	struct sge_ofld_rxq *ofld_rxq;
1258#endif
1259#ifdef DEV_NETMAP
1260	struct sge_nm_rxq *nm_rxq;
1261	struct sge_nm_txq *nm_txq;
1262#endif
1263
1264	/* Do this before freeing the queues */
1265	if (vi->flags & VI_SYSCTL_CTX) {
1266		sysctl_ctx_free(&vi->ctx);
1267		vi->flags &= ~VI_SYSCTL_CTX;
1268	}
1269
1270#ifdef DEV_NETMAP
1271	if (vi->ifp->if_capabilities & IFCAP_NETMAP) {
1272		for_each_nm_txq(vi, i, nm_txq) {
1273			free_nm_txq(vi, nm_txq);
1274		}
1275
1276		for_each_nm_rxq(vi, i, nm_rxq) {
1277			free_nm_rxq(vi, nm_rxq);
1278		}
1279	}
1280#endif
1281
1282	/*
1283	 * Take down all the tx queues first, as they reference the rx queues
1284	 * (for egress updates, etc.).
1285	 */
1286
1287	for_each_txq(vi, i, txq) {
1288		free_txq(vi, txq);
1289	}
1290#ifdef TCP_OFFLOAD
1291	for_each_ofld_txq(vi, i, ofld_txq) {
1292		free_wrq(sc, ofld_txq);
1293	}
1294#endif
1295
1296	/*
1297	 * Then take down the rx queues.
1298	 */
1299
1300	for_each_rxq(vi, i, rxq) {
1301		free_rxq(vi, rxq);
1302	}
1303#ifdef TCP_OFFLOAD
1304	for_each_ofld_rxq(vi, i, ofld_rxq) {
1305		free_ofld_rxq(vi, ofld_rxq);
1306	}
1307#endif
1308
1309	return (0);
1310}
1311
1312/*
1313 * Interrupt handler when the driver is using only 1 interrupt.  This is a very
1314 * unusual scenario.
1315 *
1316 * a) Deals with errors, if any.
1317 * b) Services firmware event queue, which is taking interrupts for all other
1318 *    queues.
1319 */
1320void
1321t4_intr_all(void *arg)
1322{
1323	struct adapter *sc = arg;
1324	struct sge_iq *fwq = &sc->sge.fwq;
1325
1326	MPASS(sc->intr_count == 1);
1327
1328	if (sc->intr_type == INTR_INTX)
1329		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1330
1331	t4_intr_err(arg);
1332	t4_intr_evt(fwq);
1333}
1334
1335/*
1336 * Interrupt handler for errors (installed directly when multiple interrupts are
1337 * being used, or called by t4_intr_all).
1338 */
1339void
1340t4_intr_err(void *arg)
1341{
1342	struct adapter *sc = arg;
1343	uint32_t v;
1344	const bool verbose = (sc->debug_flags & DF_VERBOSE_SLOWINTR) != 0;
1345
1346	if (sc->flags & ADAP_ERR)
1347		return;
1348
1349	v = t4_read_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE));
1350	if (v & F_PFSW) {
1351		sc->swintr++;
1352		t4_write_reg(sc, MYPF_REG(A_PL_PF_INT_CAUSE), v);
1353	}
1354
1355	t4_slow_intr_handler(sc, verbose);
1356}
1357
1358/*
1359 * Interrupt handler for iq-only queues.  The firmware event queue is the only
1360 * such queue right now.
1361 */
1362void
1363t4_intr_evt(void *arg)
1364{
1365	struct sge_iq *iq = arg;
1366
1367	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1368		service_iq(iq, 0);
1369		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1370	}
1371}
1372
1373/*
1374 * Interrupt handler for iq+fl queues.
1375 */
1376void
1377t4_intr(void *arg)
1378{
1379	struct sge_iq *iq = arg;
1380
1381	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1382		service_iq_fl(iq, 0);
1383		(void) atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1384	}
1385}
1386
1387#ifdef DEV_NETMAP
1388/*
1389 * Interrupt handler for netmap rx queues.
1390 */
1391void
1392t4_nm_intr(void *arg)
1393{
1394	struct sge_nm_rxq *nm_rxq = arg;
1395
1396	if (atomic_cmpset_int(&nm_rxq->nm_state, NM_ON, NM_BUSY)) {
1397		service_nm_rxq(nm_rxq);
1398		(void) atomic_cmpset_int(&nm_rxq->nm_state, NM_BUSY, NM_ON);
1399	}
1400}
1401
1402/*
1403 * Interrupt handler for vectors shared between NIC and netmap rx queues.
1404 */
1405void
1406t4_vi_intr(void *arg)
1407{
1408	struct irq *irq = arg;
1409
1410	MPASS(irq->nm_rxq != NULL);
1411	t4_nm_intr(irq->nm_rxq);
1412
1413	MPASS(irq->rxq != NULL);
1414	t4_intr(irq->rxq);
1415}
1416#endif
1417
1418/*
1419 * Deals with interrupts on an iq-only (no freelist) queue.
1420 */
1421static int
1422service_iq(struct sge_iq *iq, int budget)
1423{
1424	struct sge_iq *q;
1425	struct adapter *sc = iq->adapter;
1426	struct iq_desc *d = &iq->desc[iq->cidx];
1427	int ndescs = 0, limit;
1428	int rsp_type;
1429	uint32_t lq;
1430	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1431
1432	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1433	KASSERT((iq->flags & IQ_HAS_FL) == 0,
1434	    ("%s: called for iq %p with fl (iq->flags 0x%x)", __func__, iq,
1435	    iq->flags));
1436	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1437	MPASS((iq->flags & IQ_LRO_ENABLED) == 0);
1438
1439	limit = budget ? budget : iq->qsize / 16;
1440
1441	/*
1442	 * We always come back and check the descriptor ring for new indirect
1443	 * interrupts and other responses after running a single handler.
1444	 */
1445	for (;;) {
1446		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1447
1448			rmb();
1449
1450			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1451			lq = be32toh(d->rsp.pldbuflen_qid);
1452
1453			switch (rsp_type) {
1454			case X_RSPD_TYPE_FLBUF:
1455				panic("%s: data for an iq (%p) with no freelist",
1456				    __func__, iq);
1457
1458				/* NOTREACHED */
1459
1460			case X_RSPD_TYPE_CPL:
1461				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1462				    ("%s: bad opcode %02x.", __func__,
1463				    d->rss.opcode));
1464				t4_cpl_handler[d->rss.opcode](iq, &d->rss, NULL);
1465				break;
1466
1467			case X_RSPD_TYPE_INTR:
1468				/*
1469				 * There are 1K interrupt-capable queues (qids 0
1470				 * through 1023).  A response type indicating a
1471				 * forwarded interrupt with a qid >= 1K is an
1472				 * iWARP async notification.
1473				 */
1474				if (__predict_true(lq >= 1024)) {
1475					t4_an_handler(iq, &d->rsp);
1476					break;
1477				}
1478
1479				q = sc->sge.iqmap[lq - sc->sge.iq_start -
1480				    sc->sge.iq_base];
1481				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1482				    IQS_BUSY)) {
1483					if (service_iq_fl(q, q->qsize / 16) == 0) {
1484						(void) atomic_cmpset_int(&q->state,
1485						    IQS_BUSY, IQS_IDLE);
1486					} else {
1487						STAILQ_INSERT_TAIL(&iql, q,
1488						    link);
1489					}
1490				}
1491				break;
1492
1493			default:
1494				KASSERT(0,
1495				    ("%s: illegal response type %d on iq %p",
1496				    __func__, rsp_type, iq));
1497				log(LOG_ERR,
1498				    "%s: illegal response type %d on iq %p",
1499				    device_get_nameunit(sc->dev), rsp_type, iq);
1500				break;
1501			}
1502
1503			d++;
1504			if (__predict_false(++iq->cidx == iq->sidx)) {
1505				iq->cidx = 0;
1506				iq->gen ^= F_RSPD_GEN;
1507				d = &iq->desc[0];
1508			}
1509			if (__predict_false(++ndescs == limit)) {
1510				t4_write_reg(sc, sc->sge_gts_reg,
1511				    V_CIDXINC(ndescs) |
1512				    V_INGRESSQID(iq->cntxt_id) |
1513				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1514				ndescs = 0;
1515
1516				if (budget) {
1517					return (EINPROGRESS);
1518				}
1519			}
1520		}
1521
1522		if (STAILQ_EMPTY(&iql))
1523			break;
1524
1525		/*
1526		 * Process the head only, and send it to the back of the list if
1527		 * it's still not done.
1528		 */
1529		q = STAILQ_FIRST(&iql);
1530		STAILQ_REMOVE_HEAD(&iql, link);
1531		if (service_iq_fl(q, q->qsize / 8) == 0)
1532			(void) atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1533		else
1534			STAILQ_INSERT_TAIL(&iql, q, link);
1535	}
1536
1537	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1538	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1539
1540	return (0);
1541}
1542
1543static inline int
1544sort_before_lro(struct lro_ctrl *lro)
1545{
1546
1547	return (lro->lro_mbuf_max != 0);
1548}
1549
1550/*
1551 * Deals with interrupts on an iq+fl queue.
1552 */
1553static int
1554service_iq_fl(struct sge_iq *iq, int budget)
1555{
1556	struct sge_rxq *rxq = iq_to_rxq(iq);
1557	struct sge_fl *fl;
1558	struct adapter *sc = iq->adapter;
1559	struct iq_desc *d = &iq->desc[iq->cidx];
1560	int ndescs = 0, limit;
1561	int rsp_type, refill, starved;
1562	uint32_t lq;
1563	uint16_t fl_hw_cidx;
1564	struct mbuf *m0;
1565#if defined(INET) || defined(INET6)
1566	const struct timeval lro_timeout = {0, sc->lro_timeout};
1567	struct lro_ctrl *lro = &rxq->lro;
1568#endif
1569
1570	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1571	MPASS(iq->flags & IQ_HAS_FL);
1572
1573	limit = budget ? budget : iq->qsize / 16;
1574	fl = &rxq->fl;
1575	fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1576
1577#if defined(INET) || defined(INET6)
1578	if (iq->flags & IQ_ADJ_CREDIT) {
1579		MPASS(sort_before_lro(lro));
1580		iq->flags &= ~IQ_ADJ_CREDIT;
1581		if ((d->rsp.u.type_gen & F_RSPD_GEN) != iq->gen) {
1582			tcp_lro_flush_all(lro);
1583			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(1) |
1584			    V_INGRESSQID((u32)iq->cntxt_id) |
1585			    V_SEINTARM(iq->intr_params));
1586			return (0);
1587		}
1588		ndescs = 1;
1589	}
1590#else
1591	MPASS((iq->flags & IQ_ADJ_CREDIT) == 0);
1592#endif
1593
1594	while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1595
1596		rmb();
1597
1598		refill = 0;
1599		m0 = NULL;
1600		rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1601		lq = be32toh(d->rsp.pldbuflen_qid);
1602
1603		switch (rsp_type) {
1604		case X_RSPD_TYPE_FLBUF:
1605
1606			m0 = get_fl_payload(sc, fl, lq);
1607			if (__predict_false(m0 == NULL))
1608				goto out;
1609			refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2;
1610#ifdef T4_PKT_TIMESTAMP
1611			/*
1612			 * 60 bit timestamp for the payload is
1613			 * *(uint64_t *)m0->m_pktdat.  Note that it is
1614			 * in the leading free-space in the mbuf.  The
1615			 * kernel can clobber it during a pullup,
1616			 * m_copymdata, etc.  You need to make sure that
1617			 * the mbuf reaches you unmolested if you care
1618			 * about the timestamp.
1619			 */
1620			*(uint64_t *)m0->m_pktdat =
1621			    be64toh(ctrl->u.last_flit) & 0xfffffffffffffff;
1622#endif
1623
1624			/* fall through */
1625
1626		case X_RSPD_TYPE_CPL:
1627			KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1628			    ("%s: bad opcode %02x.", __func__, d->rss.opcode));
1629			t4_cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1630			break;
1631
1632		case X_RSPD_TYPE_INTR:
1633
1634			/*
1635			 * There are 1K interrupt-capable queues (qids 0
1636			 * through 1023).  A response type indicating a
1637			 * forwarded interrupt with a qid >= 1K is an
1638			 * iWARP async notification.  That is the only
1639			 * acceptable indirect interrupt on this queue.
1640			 */
1641			if (__predict_false(lq < 1024)) {
1642				panic("%s: indirect interrupt on iq_fl %p "
1643				    "with qid %u", __func__, iq, lq);
1644			}
1645
1646			t4_an_handler(iq, &d->rsp);
1647			break;
1648
1649		default:
1650			KASSERT(0, ("%s: illegal response type %d on iq %p",
1651			    __func__, rsp_type, iq));
1652			log(LOG_ERR, "%s: illegal response type %d on iq %p",
1653			    device_get_nameunit(sc->dev), rsp_type, iq);
1654			break;
1655		}
1656
1657		d++;
1658		if (__predict_false(++iq->cidx == iq->sidx)) {
1659			iq->cidx = 0;
1660			iq->gen ^= F_RSPD_GEN;
1661			d = &iq->desc[0];
1662		}
1663		if (__predict_false(++ndescs == limit)) {
1664			t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1665			    V_INGRESSQID(iq->cntxt_id) |
1666			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1667			ndescs = 0;
1668
1669#if defined(INET) || defined(INET6)
1670			if (iq->flags & IQ_LRO_ENABLED &&
1671			    !sort_before_lro(lro) &&
1672			    sc->lro_timeout != 0) {
1673				tcp_lro_flush_inactive(lro, &lro_timeout);
1674			}
1675#endif
1676			if (budget) {
1677				FL_LOCK(fl);
1678				refill_fl(sc, fl, 32);
1679				FL_UNLOCK(fl);
1680
1681				return (EINPROGRESS);
1682			}
1683		}
1684		if (refill) {
1685			FL_LOCK(fl);
1686			refill_fl(sc, fl, 32);
1687			FL_UNLOCK(fl);
1688			fl_hw_cidx = fl->hw_cidx;
1689		}
1690	}
1691out:
1692#if defined(INET) || defined(INET6)
1693	if (iq->flags & IQ_LRO_ENABLED) {
1694		if (ndescs > 0 && lro->lro_mbuf_count > 8) {
1695			MPASS(sort_before_lro(lro));
1696			/* hold back one credit and don't flush LRO state */
1697			iq->flags |= IQ_ADJ_CREDIT;
1698			ndescs--;
1699		} else {
1700			tcp_lro_flush_all(lro);
1701		}
1702	}
1703#endif
1704
1705	t4_write_reg(sc, sc->sge_gts_reg, V_CIDXINC(ndescs) |
1706	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1707
1708	FL_LOCK(fl);
1709	starved = refill_fl(sc, fl, 64);
1710	FL_UNLOCK(fl);
1711	if (__predict_false(starved != 0))
1712		add_fl_to_sfl(sc, fl);
1713
1714	return (0);
1715}
1716
1717static inline int
1718cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1719{
1720	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1721
1722	if (rc)
1723		MPASS(cll->region3 >= CL_METADATA_SIZE);
1724
1725	return (rc);
1726}
1727
1728static inline struct cluster_metadata *
1729cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1730    caddr_t cl)
1731{
1732
1733	if (cl_has_metadata(fl, cll)) {
1734		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1735
1736		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1737	}
1738	return (NULL);
1739}
1740
1741static void
1742rxb_free(struct mbuf *m, void *arg1, void *arg2)
1743{
1744	uma_zone_t zone = arg1;
1745	caddr_t cl = arg2;
1746
1747	uma_zfree(zone, cl);
1748	counter_u64_add(extfree_rels, 1);
1749}
1750
1751/*
1752 * The mbuf returned by this function could be allocated from zone_mbuf or
1753 * constructed in spare room in the cluster.
1754 *
1755 * The mbuf carries the payload in one of these ways
1756 * a) frame inside the mbuf (mbuf from zone_mbuf)
1757 * b) m_cljset (for clusters without metadata) zone_mbuf
1758 * c) m_extaddref (cluster with metadata) inline mbuf
1759 * d) m_extaddref (cluster with metadata) zone_mbuf
1760 */
1761static struct mbuf *
1762get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1763    int remaining)
1764{
1765	struct mbuf *m;
1766	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1767	struct cluster_layout *cll = &sd->cll;
1768	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1769	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1770	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1771	int len, blen;
1772	caddr_t payload;
1773
1774	blen = hwb->size - fl->rx_offset;	/* max possible in this buf */
1775	len = min(remaining, blen);
1776	payload = sd->cl + cll->region1 + fl->rx_offset;
1777	if (fl->flags & FL_BUF_PACKING) {
1778		const u_int l = fr_offset + len;
1779		const u_int pad = roundup2(l, fl->buf_boundary) - l;
1780
1781		if (fl->rx_offset + len + pad < hwb->size)
1782			blen = len + pad;
1783		MPASS(fl->rx_offset + blen <= hwb->size);
1784	} else {
1785		MPASS(fl->rx_offset == 0);	/* not packing */
1786	}
1787
1788
1789	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1790
1791		/*
1792		 * Copy payload into a freshly allocated mbuf.
1793		 */
1794
1795		m = fr_offset == 0 ?
1796		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1797		if (m == NULL)
1798			return (NULL);
1799		fl->mbuf_allocated++;
1800#ifdef T4_PKT_TIMESTAMP
1801		/* Leave room for a timestamp */
1802		m->m_data += 8;
1803#endif
1804		/* copy data to mbuf */
1805		bcopy(payload, mtod(m, caddr_t), len);
1806
1807	} else if (sd->nmbuf * MSIZE < cll->region1) {
1808
1809		/*
1810		 * There's spare room in the cluster for an mbuf.  Create one
1811		 * and associate it with the payload that's in the cluster.
1812		 */
1813
1814		MPASS(clm != NULL);
1815		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1816		/* No bzero required */
1817		if (m_init(m, M_NOWAIT, MT_DATA,
1818		    fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE))
1819			return (NULL);
1820		fl->mbuf_inlined++;
1821		m_extaddref(m, payload, blen, &clm->refcount, rxb_free,
1822		    swz->zone, sd->cl);
1823		if (sd->nmbuf++ == 0)
1824			counter_u64_add(extfree_refs, 1);
1825
1826	} else {
1827
1828		/*
1829		 * Grab an mbuf from zone_mbuf and associate it with the
1830		 * payload in the cluster.
1831		 */
1832
1833		m = fr_offset == 0 ?
1834		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1835		if (m == NULL)
1836			return (NULL);
1837		fl->mbuf_allocated++;
1838		if (clm != NULL) {
1839			m_extaddref(m, payload, blen, &clm->refcount,
1840			    rxb_free, swz->zone, sd->cl);
1841			if (sd->nmbuf++ == 0)
1842				counter_u64_add(extfree_refs, 1);
1843		} else {
1844			m_cljset(m, sd->cl, swz->type);
1845			sd->cl = NULL;	/* consumed, not a recycle candidate */
1846		}
1847	}
1848	if (fr_offset == 0)
1849		m->m_pkthdr.len = remaining;
1850	m->m_len = len;
1851
1852	if (fl->flags & FL_BUF_PACKING) {
1853		fl->rx_offset += blen;
1854		MPASS(fl->rx_offset <= hwb->size);
1855		if (fl->rx_offset < hwb->size)
1856			return (m);	/* without advancing the cidx */
1857	}
1858
1859	if (__predict_false(++fl->cidx % 8 == 0)) {
1860		uint16_t cidx = fl->cidx / 8;
1861
1862		if (__predict_false(cidx == fl->sidx))
1863			fl->cidx = cidx = 0;
1864		fl->hw_cidx = cidx;
1865	}
1866	fl->rx_offset = 0;
1867
1868	return (m);
1869}
1870
1871static struct mbuf *
1872get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf)
1873{
1874	struct mbuf *m0, *m, **pnext;
1875	u_int remaining;
1876	const u_int total = G_RSPD_LEN(len_newbuf);
1877
1878	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1879		M_ASSERTPKTHDR(fl->m0);
1880		MPASS(fl->m0->m_pkthdr.len == total);
1881		MPASS(fl->remaining < total);
1882
1883		m0 = fl->m0;
1884		pnext = fl->pnext;
1885		remaining = fl->remaining;
1886		fl->flags &= ~FL_BUF_RESUME;
1887		goto get_segment;
1888	}
1889
1890	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1891		fl->rx_offset = 0;
1892		if (__predict_false(++fl->cidx % 8 == 0)) {
1893			uint16_t cidx = fl->cidx / 8;
1894
1895			if (__predict_false(cidx == fl->sidx))
1896				fl->cidx = cidx = 0;
1897			fl->hw_cidx = cidx;
1898		}
1899	}
1900
1901	/*
1902	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1903	 * 'len' and it may span multiple hw buffers.
1904	 */
1905
1906	m0 = get_scatter_segment(sc, fl, 0, total);
1907	if (m0 == NULL)
1908		return (NULL);
1909	remaining = total - m0->m_len;
1910	pnext = &m0->m_next;
1911	while (remaining > 0) {
1912get_segment:
1913		MPASS(fl->rx_offset == 0);
1914		m = get_scatter_segment(sc, fl, total - remaining, remaining);
1915		if (__predict_false(m == NULL)) {
1916			fl->m0 = m0;
1917			fl->pnext = pnext;
1918			fl->remaining = remaining;
1919			fl->flags |= FL_BUF_RESUME;
1920			return (NULL);
1921		}
1922		*pnext = m;
1923		pnext = &m->m_next;
1924		remaining -= m->m_len;
1925	}
1926	*pnext = NULL;
1927
1928	M_ASSERTPKTHDR(m0);
1929	return (m0);
1930}
1931
1932static int
1933t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1934{
1935	struct sge_rxq *rxq = iq_to_rxq(iq);
1936	struct ifnet *ifp = rxq->ifp;
1937	struct adapter *sc = iq->adapter;
1938	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1939#if defined(INET) || defined(INET6)
1940	struct lro_ctrl *lro = &rxq->lro;
1941#endif
1942	static const int sw_hashtype[4][2] = {
1943		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1944		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1945		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1946		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1947	};
1948
1949	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1950	    rss->opcode));
1951
1952	m0->m_pkthdr.len -= sc->params.sge.fl_pktshift;
1953	m0->m_len -= sc->params.sge.fl_pktshift;
1954	m0->m_data += sc->params.sge.fl_pktshift;
1955
1956	m0->m_pkthdr.rcvif = ifp;
1957	M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]);
1958	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1959
1960	if (cpl->csum_calc && !(cpl->err_vec & sc->params.tp.err_vec_mask)) {
1961		if (ifp->if_capenable & IFCAP_RXCSUM &&
1962		    cpl->l2info & htobe32(F_RXF_IP)) {
1963			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1964			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1965			rxq->rxcsum++;
1966		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1967		    cpl->l2info & htobe32(F_RXF_IP6)) {
1968			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1969			    CSUM_PSEUDO_HDR);
1970			rxq->rxcsum++;
1971		}
1972
1973		if (__predict_false(cpl->ip_frag))
1974			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1975		else
1976			m0->m_pkthdr.csum_data = 0xffff;
1977	}
1978
1979	if (cpl->vlan_ex) {
1980		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1981		m0->m_flags |= M_VLANTAG;
1982		rxq->vlan_extraction++;
1983	}
1984
1985#if defined(INET) || defined(INET6)
1986	if (iq->flags & IQ_LRO_ENABLED) {
1987		if (sort_before_lro(lro)) {
1988			tcp_lro_queue_mbuf(lro, m0);
1989			return (0); /* queued for sort, then LRO */
1990		}
1991		if (tcp_lro_rx(lro, m0, 0) == 0)
1992			return (0); /* queued for LRO */
1993	}
1994#endif
1995	ifp->if_input(ifp, m0);
1996
1997	return (0);
1998}
1999
2000/*
2001 * Must drain the wrq or make sure that someone else will.
2002 */
2003static void
2004wrq_tx_drain(void *arg, int n)
2005{
2006	struct sge_wrq *wrq = arg;
2007	struct sge_eq *eq = &wrq->eq;
2008
2009	EQ_LOCK(eq);
2010	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2011		drain_wrq_wr_list(wrq->adapter, wrq);
2012	EQ_UNLOCK(eq);
2013}
2014
2015static void
2016drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
2017{
2018	struct sge_eq *eq = &wrq->eq;
2019	u_int available, dbdiff;	/* # of hardware descriptors */
2020	u_int n;
2021	struct wrqe *wr;
2022	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2023
2024	EQ_LOCK_ASSERT_OWNED(eq);
2025	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
2026	wr = STAILQ_FIRST(&wrq->wr_list);
2027	MPASS(wr != NULL);	/* Must be called with something useful to do */
2028	MPASS(eq->pidx == eq->dbidx);
2029	dbdiff = 0;
2030
2031	do {
2032		eq->cidx = read_hw_cidx(eq);
2033		if (eq->pidx == eq->cidx)
2034			available = eq->sidx - 1;
2035		else
2036			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2037
2038		MPASS(wr->wrq == wrq);
2039		n = howmany(wr->wr_len, EQ_ESIZE);
2040		if (available < n)
2041			break;
2042
2043		dst = (void *)&eq->desc[eq->pidx];
2044		if (__predict_true(eq->sidx - eq->pidx > n)) {
2045			/* Won't wrap, won't end exactly at the status page. */
2046			bcopy(&wr->wr[0], dst, wr->wr_len);
2047			eq->pidx += n;
2048		} else {
2049			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
2050
2051			bcopy(&wr->wr[0], dst, first_portion);
2052			if (wr->wr_len > first_portion) {
2053				bcopy(&wr->wr[first_portion], &eq->desc[0],
2054				    wr->wr_len - first_portion);
2055			}
2056			eq->pidx = n - (eq->sidx - eq->pidx);
2057		}
2058		wrq->tx_wrs_copied++;
2059
2060		if (available < eq->sidx / 4 &&
2061		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2062				/*
2063				 * XXX: This is not 100% reliable with some
2064				 * types of WRs.  But this is a very unusual
2065				 * situation for an ofld/ctrl queue anyway.
2066				 */
2067			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2068			    F_FW_WR_EQUEQ);
2069		}
2070
2071		dbdiff += n;
2072		if (dbdiff >= 16) {
2073			ring_eq_db(sc, eq, dbdiff);
2074			dbdiff = 0;
2075		}
2076
2077		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
2078		free_wrqe(wr);
2079		MPASS(wrq->nwr_pending > 0);
2080		wrq->nwr_pending--;
2081		MPASS(wrq->ndesc_needed >= n);
2082		wrq->ndesc_needed -= n;
2083	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
2084
2085	if (dbdiff)
2086		ring_eq_db(sc, eq, dbdiff);
2087}
2088
2089/*
2090 * Doesn't fail.  Holds on to work requests it can't send right away.
2091 */
2092void
2093t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
2094{
2095#ifdef INVARIANTS
2096	struct sge_eq *eq = &wrq->eq;
2097#endif
2098
2099	EQ_LOCK_ASSERT_OWNED(eq);
2100	MPASS(wr != NULL);
2101	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
2102	MPASS((wr->wr_len & 0x7) == 0);
2103
2104	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
2105	wrq->nwr_pending++;
2106	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
2107
2108	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
2109		return;	/* commit_wrq_wr will drain wr_list as well. */
2110
2111	drain_wrq_wr_list(sc, wrq);
2112
2113	/* Doorbell must have caught up to the pidx. */
2114	MPASS(eq->pidx == eq->dbidx);
2115}
2116
2117void
2118t4_update_fl_bufsize(struct ifnet *ifp)
2119{
2120	struct vi_info *vi = ifp->if_softc;
2121	struct adapter *sc = vi->pi->adapter;
2122	struct sge_rxq *rxq;
2123#ifdef TCP_OFFLOAD
2124	struct sge_ofld_rxq *ofld_rxq;
2125#endif
2126	struct sge_fl *fl;
2127	int i, maxp, mtu = ifp->if_mtu;
2128
2129	maxp = mtu_to_max_payload(sc, mtu, 0);
2130	for_each_rxq(vi, i, rxq) {
2131		fl = &rxq->fl;
2132
2133		FL_LOCK(fl);
2134		find_best_refill_source(sc, fl, maxp);
2135		FL_UNLOCK(fl);
2136	}
2137#ifdef TCP_OFFLOAD
2138	maxp = mtu_to_max_payload(sc, mtu, 1);
2139	for_each_ofld_rxq(vi, i, ofld_rxq) {
2140		fl = &ofld_rxq->fl;
2141
2142		FL_LOCK(fl);
2143		find_best_refill_source(sc, fl, maxp);
2144		FL_UNLOCK(fl);
2145	}
2146#endif
2147}
2148
2149static inline int
2150mbuf_nsegs(struct mbuf *m)
2151{
2152
2153	M_ASSERTPKTHDR(m);
2154	KASSERT(m->m_pkthdr.l5hlen > 0,
2155	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
2156
2157	return (m->m_pkthdr.l5hlen);
2158}
2159
2160static inline void
2161set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
2162{
2163
2164	M_ASSERTPKTHDR(m);
2165	m->m_pkthdr.l5hlen = nsegs;
2166}
2167
2168static inline int
2169mbuf_len16(struct mbuf *m)
2170{
2171	int n;
2172
2173	M_ASSERTPKTHDR(m);
2174	n = m->m_pkthdr.PH_loc.eight[0];
2175	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
2176
2177	return (n);
2178}
2179
2180static inline void
2181set_mbuf_len16(struct mbuf *m, uint8_t len16)
2182{
2183
2184	M_ASSERTPKTHDR(m);
2185	m->m_pkthdr.PH_loc.eight[0] = len16;
2186}
2187
2188static inline int
2189needs_tso(struct mbuf *m)
2190{
2191
2192	M_ASSERTPKTHDR(m);
2193
2194	return (m->m_pkthdr.csum_flags & CSUM_TSO);
2195}
2196
2197static inline int
2198needs_l3_csum(struct mbuf *m)
2199{
2200
2201	M_ASSERTPKTHDR(m);
2202
2203	return (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO));
2204}
2205
2206static inline int
2207needs_l4_csum(struct mbuf *m)
2208{
2209
2210	M_ASSERTPKTHDR(m);
2211
2212	return (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
2213	    CSUM_TCP_IPV6 | CSUM_TSO));
2214}
2215
2216static inline int
2217needs_vlan_insertion(struct mbuf *m)
2218{
2219
2220	M_ASSERTPKTHDR(m);
2221
2222	return (m->m_flags & M_VLANTAG);
2223}
2224
2225static void *
2226m_advance(struct mbuf **pm, int *poffset, int len)
2227{
2228	struct mbuf *m = *pm;
2229	int offset = *poffset;
2230	uintptr_t p = 0;
2231
2232	MPASS(len > 0);
2233
2234	for (;;) {
2235		if (offset + len < m->m_len) {
2236			offset += len;
2237			p = mtod(m, uintptr_t) + offset;
2238			break;
2239		}
2240		len -= m->m_len - offset;
2241		m = m->m_next;
2242		offset = 0;
2243		MPASS(m != NULL);
2244	}
2245	*poffset = offset;
2246	*pm = m;
2247	return ((void *)p);
2248}
2249
2250/*
2251 * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2252 * must have at least one mbuf that's not empty.
2253 */
2254static inline int
2255count_mbuf_nsegs(struct mbuf *m)
2256{
2257	vm_paddr_t lastb, next;
2258	vm_offset_t va;
2259	int len, nsegs;
2260
2261	MPASS(m != NULL);
2262
2263	nsegs = 0;
2264	lastb = 0;
2265	for (; m; m = m->m_next) {
2266
2267		len = m->m_len;
2268		if (__predict_false(len == 0))
2269			continue;
2270		va = mtod(m, vm_offset_t);
2271		next = pmap_kextract(va);
2272		nsegs += sglist_count(m->m_data, len);
2273		if (lastb + 1 == next)
2274			nsegs--;
2275		lastb = pmap_kextract(va + len - 1);
2276	}
2277
2278	MPASS(nsegs > 0);
2279	return (nsegs);
2280}
2281
2282/*
2283 * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2284 * a) caller can assume it's been freed if this function returns with an error.
2285 * b) it may get defragged up if the gather list is too long for the hardware.
2286 */
2287int
2288parse_pkt(struct adapter *sc, struct mbuf **mp)
2289{
2290	struct mbuf *m0 = *mp, *m;
2291	int rc, nsegs, defragged = 0, offset;
2292	struct ether_header *eh;
2293	void *l3hdr;
2294#if defined(INET) || defined(INET6)
2295	struct tcphdr *tcp;
2296#endif
2297	uint16_t eh_type;
2298
2299	M_ASSERTPKTHDR(m0);
2300	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2301		rc = EINVAL;
2302fail:
2303		m_freem(m0);
2304		*mp = NULL;
2305		return (rc);
2306	}
2307restart:
2308	/*
2309	 * First count the number of gather list segments in the payload.
2310	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2311	 */
2312	M_ASSERTPKTHDR(m0);
2313	MPASS(m0->m_pkthdr.len > 0);
2314	nsegs = count_mbuf_nsegs(m0);
2315	if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
2316		if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
2317			rc = EFBIG;
2318			goto fail;
2319		}
2320		*mp = m0 = m;	/* update caller's copy after defrag */
2321		goto restart;
2322	}
2323
2324	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) {
2325		m0 = m_pullup(m0, m0->m_pkthdr.len);
2326		if (m0 == NULL) {
2327			/* Should have left well enough alone. */
2328			rc = EFBIG;
2329			goto fail;
2330		}
2331		*mp = m0;	/* update caller's copy after pullup */
2332		goto restart;
2333	}
2334	set_mbuf_nsegs(m0, nsegs);
2335	if (sc->flags & IS_VF)
2336		set_mbuf_len16(m0, txpkt_vm_len16(nsegs, needs_tso(m0)));
2337	else
2338		set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
2339
2340	if (!needs_tso(m0) &&
2341	    !(sc->flags & IS_VF && (needs_l3_csum(m0) || needs_l4_csum(m0))))
2342		return (0);
2343
2344	m = m0;
2345	eh = mtod(m, struct ether_header *);
2346	eh_type = ntohs(eh->ether_type);
2347	if (eh_type == ETHERTYPE_VLAN) {
2348		struct ether_vlan_header *evh = (void *)eh;
2349
2350		eh_type = ntohs(evh->evl_proto);
2351		m0->m_pkthdr.l2hlen = sizeof(*evh);
2352	} else
2353		m0->m_pkthdr.l2hlen = sizeof(*eh);
2354
2355	offset = 0;
2356	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2357
2358	switch (eh_type) {
2359#ifdef INET6
2360	case ETHERTYPE_IPV6:
2361	{
2362		struct ip6_hdr *ip6 = l3hdr;
2363
2364		MPASS(!needs_tso(m0) || ip6->ip6_nxt == IPPROTO_TCP);
2365
2366		m0->m_pkthdr.l3hlen = sizeof(*ip6);
2367		break;
2368	}
2369#endif
2370#ifdef INET
2371	case ETHERTYPE_IP:
2372	{
2373		struct ip *ip = l3hdr;
2374
2375		m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
2376		break;
2377	}
2378#endif
2379	default:
2380		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2381		    " with the same INET/INET6 options as the kernel.",
2382		    __func__, eh_type);
2383	}
2384
2385#if defined(INET) || defined(INET6)
2386	if (needs_tso(m0)) {
2387		tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2388		m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2389	}
2390#endif
2391	MPASS(m0 == *mp);
2392	return (0);
2393}
2394
2395void *
2396start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2397{
2398	struct sge_eq *eq = &wrq->eq;
2399	struct adapter *sc = wrq->adapter;
2400	int ndesc, available;
2401	struct wrqe *wr;
2402	void *w;
2403
2404	MPASS(len16 > 0);
2405	ndesc = howmany(len16, EQ_ESIZE / 16);
2406	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2407
2408	EQ_LOCK(eq);
2409
2410	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2411		drain_wrq_wr_list(sc, wrq);
2412
2413	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2414slowpath:
2415		EQ_UNLOCK(eq);
2416		wr = alloc_wrqe(len16 * 16, wrq);
2417		if (__predict_false(wr == NULL))
2418			return (NULL);
2419		cookie->pidx = -1;
2420		cookie->ndesc = ndesc;
2421		return (&wr->wr);
2422	}
2423
2424	eq->cidx = read_hw_cidx(eq);
2425	if (eq->pidx == eq->cidx)
2426		available = eq->sidx - 1;
2427	else
2428		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2429	if (available < ndesc)
2430		goto slowpath;
2431
2432	cookie->pidx = eq->pidx;
2433	cookie->ndesc = ndesc;
2434	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2435
2436	w = &eq->desc[eq->pidx];
2437	IDXINCR(eq->pidx, ndesc, eq->sidx);
2438	if (__predict_false(cookie->pidx + ndesc > eq->sidx)) {
2439		w = &wrq->ss[0];
2440		wrq->ss_pidx = cookie->pidx;
2441		wrq->ss_len = len16 * 16;
2442	}
2443
2444	EQ_UNLOCK(eq);
2445
2446	return (w);
2447}
2448
2449void
2450commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2451{
2452	struct sge_eq *eq = &wrq->eq;
2453	struct adapter *sc = wrq->adapter;
2454	int ndesc, pidx;
2455	struct wrq_cookie *prev, *next;
2456
2457	if (cookie->pidx == -1) {
2458		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2459
2460		t4_wrq_tx(sc, wr);
2461		return;
2462	}
2463
2464	if (__predict_false(w == &wrq->ss[0])) {
2465		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2466
2467		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2468		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2469		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2470		wrq->tx_wrs_ss++;
2471	} else
2472		wrq->tx_wrs_direct++;
2473
2474	EQ_LOCK(eq);
2475	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2476	pidx = cookie->pidx;
2477	MPASS(pidx >= 0 && pidx < eq->sidx);
2478	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2479	next = TAILQ_NEXT(cookie, link);
2480	if (prev == NULL) {
2481		MPASS(pidx == eq->dbidx);
2482		if (next == NULL || ndesc >= 16) {
2483			int available;
2484			struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
2485
2486			/*
2487			 * Note that the WR via which we'll request tx updates
2488			 * is at pidx and not eq->pidx, which has moved on
2489			 * already.
2490			 */
2491			dst = (void *)&eq->desc[pidx];
2492			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2493			if (available < eq->sidx / 4 &&
2494			    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2495				/*
2496				 * XXX: This is not 100% reliable with some
2497				 * types of WRs.  But this is a very unusual
2498				 * situation for an ofld/ctrl queue anyway.
2499				 */
2500				dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2501				    F_FW_WR_EQUEQ);
2502			}
2503
2504			ring_eq_db(wrq->adapter, eq, ndesc);
2505		} else {
2506			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
2507			next->pidx = pidx;
2508			next->ndesc += ndesc;
2509		}
2510	} else {
2511		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
2512		prev->ndesc += ndesc;
2513	}
2514	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
2515
2516	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2517		drain_wrq_wr_list(sc, wrq);
2518
2519#ifdef INVARIANTS
2520	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
2521		/* Doorbell must have caught up to the pidx. */
2522		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
2523	}
2524#endif
2525	EQ_UNLOCK(eq);
2526}
2527
2528static u_int
2529can_resume_eth_tx(struct mp_ring *r)
2530{
2531	struct sge_eq *eq = r->cookie;
2532
2533	return (total_available_tx_desc(eq) > eq->sidx / 8);
2534}
2535
2536static inline int
2537cannot_use_txpkts(struct mbuf *m)
2538{
2539	/* maybe put a GL limit too, to avoid silliness? */
2540
2541	return (needs_tso(m));
2542}
2543
2544static inline int
2545discard_tx(struct sge_eq *eq)
2546{
2547
2548	return ((eq->flags & (EQ_ENABLED | EQ_QFLUSH)) != EQ_ENABLED);
2549}
2550
2551/*
2552 * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
2553 * be consumed.  Return the actual number consumed.  0 indicates a stall.
2554 */
2555static u_int
2556eth_tx(struct mp_ring *r, u_int cidx, u_int pidx)
2557{
2558	struct sge_txq *txq = r->cookie;
2559	struct sge_eq *eq = &txq->eq;
2560	struct ifnet *ifp = txq->ifp;
2561	struct vi_info *vi = ifp->if_softc;
2562	struct port_info *pi = vi->pi;
2563	struct adapter *sc = pi->adapter;
2564	u_int total, remaining;		/* # of packets */
2565	u_int available, dbdiff;	/* # of hardware descriptors */
2566	u_int n, next_cidx;
2567	struct mbuf *m0, *tail;
2568	struct txpkts txp;
2569	struct fw_eth_tx_pkts_wr *wr;	/* any fw WR struct will do */
2570
2571	remaining = IDXDIFF(pidx, cidx, r->size);
2572	MPASS(remaining > 0);	/* Must not be called without work to do. */
2573	total = 0;
2574
2575	TXQ_LOCK(txq);
2576	if (__predict_false(discard_tx(eq))) {
2577		while (cidx != pidx) {
2578			m0 = r->items[cidx];
2579			m_freem(m0);
2580			if (++cidx == r->size)
2581				cidx = 0;
2582		}
2583		reclaim_tx_descs(txq, 2048);
2584		total = remaining;
2585		goto done;
2586	}
2587
2588	/* How many hardware descriptors do we have readily available. */
2589	if (eq->pidx == eq->cidx)
2590		available = eq->sidx - 1;
2591	else
2592		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2593	dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
2594
2595	while (remaining > 0) {
2596
2597		m0 = r->items[cidx];
2598		M_ASSERTPKTHDR(m0);
2599		MPASS(m0->m_nextpkt == NULL);
2600
2601		if (available < SGE_MAX_WR_NDESC) {
2602			available += reclaim_tx_descs(txq, 64);
2603			if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16))
2604				break;	/* out of descriptors */
2605		}
2606
2607		next_cidx = cidx + 1;
2608		if (__predict_false(next_cidx == r->size))
2609			next_cidx = 0;
2610
2611		wr = (void *)&eq->desc[eq->pidx];
2612		if (sc->flags & IS_VF) {
2613			total++;
2614			remaining--;
2615			ETHER_BPF_MTAP(ifp, m0);
2616			n = write_txpkt_vm_wr(sc, txq, (void *)wr, m0,
2617			    available);
2618		} else if (remaining > 1 &&
2619		    try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) {
2620
2621			/* pkts at cidx, next_cidx should both be in txp. */
2622			MPASS(txp.npkt == 2);
2623			tail = r->items[next_cidx];
2624			MPASS(tail->m_nextpkt == NULL);
2625			ETHER_BPF_MTAP(ifp, m0);
2626			ETHER_BPF_MTAP(ifp, tail);
2627			m0->m_nextpkt = tail;
2628
2629			if (__predict_false(++next_cidx == r->size))
2630				next_cidx = 0;
2631
2632			while (next_cidx != pidx) {
2633				if (add_to_txpkts(r->items[next_cidx], &txp,
2634				    available) != 0)
2635					break;
2636				tail->m_nextpkt = r->items[next_cidx];
2637				tail = tail->m_nextpkt;
2638				ETHER_BPF_MTAP(ifp, tail);
2639				if (__predict_false(++next_cidx == r->size))
2640					next_cidx = 0;
2641			}
2642
2643			n = write_txpkts_wr(txq, wr, m0, &txp, available);
2644			total += txp.npkt;
2645			remaining -= txp.npkt;
2646		} else {
2647			total++;
2648			remaining--;
2649			ETHER_BPF_MTAP(ifp, m0);
2650			n = write_txpkt_wr(txq, (void *)wr, m0, available);
2651		}
2652		MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC);
2653
2654		available -= n;
2655		dbdiff += n;
2656		IDXINCR(eq->pidx, n, eq->sidx);
2657
2658		if (total_available_tx_desc(eq) < eq->sidx / 4 &&
2659		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2660			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2661			    F_FW_WR_EQUEQ);
2662			eq->equeqidx = eq->pidx;
2663		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2664			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2665			eq->equeqidx = eq->pidx;
2666		}
2667
2668		if (dbdiff >= 16 && remaining >= 4) {
2669			ring_eq_db(sc, eq, dbdiff);
2670			available += reclaim_tx_descs(txq, 4 * dbdiff);
2671			dbdiff = 0;
2672		}
2673
2674		cidx = next_cidx;
2675	}
2676	if (dbdiff != 0) {
2677		ring_eq_db(sc, eq, dbdiff);
2678		reclaim_tx_descs(txq, 32);
2679	}
2680done:
2681	TXQ_UNLOCK(txq);
2682
2683	return (total);
2684}
2685
2686static inline void
2687init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2688    int qsize)
2689{
2690
2691	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2692	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2693	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2694	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2695
2696	iq->flags = 0;
2697	iq->adapter = sc;
2698	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2699	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2700	if (pktc_idx >= 0) {
2701		iq->intr_params |= F_QINTR_CNT_EN;
2702		iq->intr_pktc_idx = pktc_idx;
2703	}
2704	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2705	iq->sidx = iq->qsize - sc->params.sge.spg_len / IQ_ESIZE;
2706}
2707
2708static inline void
2709init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
2710{
2711
2712	fl->qsize = qsize;
2713	fl->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2714	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2715	if (sc->flags & BUF_PACKING_OK &&
2716	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
2717	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
2718		fl->flags |= FL_BUF_PACKING;
2719	find_best_refill_source(sc, fl, maxp);
2720	find_safe_refill_source(sc, fl);
2721}
2722
2723static inline void
2724init_eq(struct adapter *sc, struct sge_eq *eq, int eqtype, int qsize,
2725    uint8_t tx_chan, uint16_t iqid, char *name)
2726{
2727	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2728
2729	eq->flags = eqtype & EQ_TYPEMASK;
2730	eq->tx_chan = tx_chan;
2731	eq->iqid = iqid;
2732	eq->sidx = qsize - sc->params.sge.spg_len / EQ_ESIZE;
2733	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2734}
2735
2736static int
2737alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2738    bus_dmamap_t *map, bus_addr_t *pa, void **va)
2739{
2740	int rc;
2741
2742	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2743	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2744	if (rc != 0) {
2745		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2746		goto done;
2747	}
2748
2749	rc = bus_dmamem_alloc(*tag, va,
2750	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2751	if (rc != 0) {
2752		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2753		goto done;
2754	}
2755
2756	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2757	if (rc != 0) {
2758		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2759		goto done;
2760	}
2761done:
2762	if (rc)
2763		free_ring(sc, *tag, *map, *pa, *va);
2764
2765	return (rc);
2766}
2767
2768static int
2769free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2770    bus_addr_t pa, void *va)
2771{
2772	if (pa)
2773		bus_dmamap_unload(tag, map);
2774	if (va)
2775		bus_dmamem_free(tag, va, map);
2776	if (tag)
2777		bus_dma_tag_destroy(tag);
2778
2779	return (0);
2780}
2781
2782/*
2783 * Allocates the ring for an ingress queue and an optional freelist.  If the
2784 * freelist is specified it will be allocated and then associated with the
2785 * ingress queue.
2786 *
2787 * Returns errno on failure.  Resources allocated up to that point may still be
2788 * allocated.  Caller is responsible for cleanup in case this function fails.
2789 *
2790 * If the ingress queue will take interrupts directly then the intr_idx
2791 * specifies the vector, starting from 0.  -1 means the interrupts for this
2792 * queue should be forwarded to the fwq.
2793 */
2794static int
2795alloc_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl,
2796    int intr_idx, int cong)
2797{
2798	int rc, i, cntxt_id;
2799	size_t len;
2800	struct fw_iq_cmd c;
2801	struct port_info *pi = vi->pi;
2802	struct adapter *sc = iq->adapter;
2803	struct sge_params *sp = &sc->params.sge;
2804	__be32 v = 0;
2805
2806	len = iq->qsize * IQ_ESIZE;
2807	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2808	    (void **)&iq->desc);
2809	if (rc != 0)
2810		return (rc);
2811
2812	bzero(&c, sizeof(c));
2813	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2814	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2815	    V_FW_IQ_CMD_VFN(0));
2816
2817	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2818	    FW_LEN16(c));
2819
2820	/* Special handling for firmware event queue */
2821	if (iq == &sc->sge.fwq)
2822		v |= F_FW_IQ_CMD_IQASYNCH;
2823
2824	if (intr_idx < 0) {
2825		/* Forwarded interrupts, all headed to fwq */
2826		v |= F_FW_IQ_CMD_IQANDST;
2827		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fwq.cntxt_id);
2828	} else {
2829		KASSERT(intr_idx < sc->intr_count,
2830		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2831		v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2832	}
2833
2834	c.type_to_iqandstindex = htobe32(v |
2835	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2836	    V_FW_IQ_CMD_VIID(vi->viid) |
2837	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2838	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2839	    F_FW_IQ_CMD_IQGTSMODE |
2840	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2841	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
2842	c.iqsize = htobe16(iq->qsize);
2843	c.iqaddr = htobe64(iq->ba);
2844	if (cong >= 0)
2845		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2846
2847	if (fl) {
2848		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2849
2850		len = fl->qsize * EQ_ESIZE;
2851		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2852		    &fl->ba, (void **)&fl->desc);
2853		if (rc)
2854			return (rc);
2855
2856		/* Allocate space for one software descriptor per buffer. */
2857		rc = alloc_fl_sdesc(fl);
2858		if (rc != 0) {
2859			device_printf(sc->dev,
2860			    "failed to setup fl software descriptors: %d\n",
2861			    rc);
2862			return (rc);
2863		}
2864
2865		if (fl->flags & FL_BUF_PACKING) {
2866			fl->lowat = roundup2(sp->fl_starve_threshold2, 8);
2867			fl->buf_boundary = sp->pack_boundary;
2868		} else {
2869			fl->lowat = roundup2(sp->fl_starve_threshold, 8);
2870			fl->buf_boundary = 16;
2871		}
2872		if (fl_pad && fl->buf_boundary < sp->pad_boundary)
2873			fl->buf_boundary = sp->pad_boundary;
2874
2875		c.iqns_to_fl0congen |=
2876		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2877			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2878			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2879			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2880			    0));
2881		if (cong >= 0) {
2882			c.iqns_to_fl0congen |=
2883				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2884				    F_FW_IQ_CMD_FL0CONGCIF |
2885				    F_FW_IQ_CMD_FL0CONGEN);
2886		}
2887		c.fl0dcaen_to_fl0cidxfthresh =
2888		    htobe16(V_FW_IQ_CMD_FL0FBMIN(chip_id(sc) <= CHELSIO_T5 ?
2889			X_FETCHBURSTMIN_128B : X_FETCHBURSTMIN_64B_T6) |
2890			V_FW_IQ_CMD_FL0FBMAX(chip_id(sc) <= CHELSIO_T5 ?
2891			X_FETCHBURSTMAX_512B : X_FETCHBURSTMAX_256B));
2892		c.fl0size = htobe16(fl->qsize);
2893		c.fl0addr = htobe64(fl->ba);
2894	}
2895
2896	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2897	if (rc != 0) {
2898		device_printf(sc->dev,
2899		    "failed to create ingress queue: %d\n", rc);
2900		return (rc);
2901	}
2902
2903	iq->cidx = 0;
2904	iq->gen = F_RSPD_GEN;
2905	iq->intr_next = iq->intr_params;
2906	iq->cntxt_id = be16toh(c.iqid);
2907	iq->abs_id = be16toh(c.physiqid);
2908	iq->flags |= IQ_ALLOCATED;
2909
2910	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2911	if (cntxt_id >= sc->sge.niq) {
2912		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2913		    cntxt_id, sc->sge.niq - 1);
2914	}
2915	sc->sge.iqmap[cntxt_id] = iq;
2916
2917	if (fl) {
2918		u_int qid;
2919
2920		iq->flags |= IQ_HAS_FL;
2921		fl->cntxt_id = be16toh(c.fl0id);
2922		fl->pidx = fl->cidx = 0;
2923
2924		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2925		if (cntxt_id >= sc->sge.neq) {
2926			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2927			    __func__, cntxt_id, sc->sge.neq - 1);
2928		}
2929		sc->sge.eqmap[cntxt_id] = (void *)fl;
2930
2931		qid = fl->cntxt_id;
2932		if (isset(&sc->doorbells, DOORBELL_UDB)) {
2933			uint32_t s_qpp = sc->params.sge.eq_s_qpp;
2934			uint32_t mask = (1 << s_qpp) - 1;
2935			volatile uint8_t *udb;
2936
2937			udb = sc->udbs_base + UDBS_DB_OFFSET;
2938			udb += (qid >> s_qpp) << PAGE_SHIFT;
2939			qid &= mask;
2940			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
2941				udb += qid << UDBS_SEG_SHIFT;
2942				qid = 0;
2943			}
2944			fl->udb = (volatile void *)udb;
2945		}
2946		fl->dbval = V_QID(qid) | sc->chip_params->sge_fl_db;
2947
2948		FL_LOCK(fl);
2949		/* Enough to make sure the SGE doesn't think it's starved */
2950		refill_fl(sc, fl, fl->lowat);
2951		FL_UNLOCK(fl);
2952	}
2953
2954	if (chip_id(sc) >= CHELSIO_T5 && !(sc->flags & IS_VF) && cong >= 0) {
2955		uint32_t param, val;
2956
2957		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2958		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2959		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2960		if (cong == 0)
2961			val = 1 << 19;
2962		else {
2963			val = 2 << 19;
2964			for (i = 0; i < 4; i++) {
2965				if (cong & (1 << i))
2966					val |= 1 << (i << 2);
2967			}
2968		}
2969
2970		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2971		if (rc != 0) {
2972			/* report error but carry on */
2973			device_printf(sc->dev,
2974			    "failed to set congestion manager context for "
2975			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2976		}
2977	}
2978
2979	/* Enable IQ interrupts */
2980	atomic_store_rel_int(&iq->state, IQS_IDLE);
2981	t4_write_reg(sc, sc->sge_gts_reg, V_SEINTARM(iq->intr_params) |
2982	    V_INGRESSQID(iq->cntxt_id));
2983
2984	return (0);
2985}
2986
2987static int
2988free_iq_fl(struct vi_info *vi, struct sge_iq *iq, struct sge_fl *fl)
2989{
2990	int rc;
2991	struct adapter *sc = iq->adapter;
2992	device_t dev;
2993
2994	if (sc == NULL)
2995		return (0);	/* nothing to do */
2996
2997	dev = vi ? vi->dev : sc->dev;
2998
2999	if (iq->flags & IQ_ALLOCATED) {
3000		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
3001		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
3002		    fl ? fl->cntxt_id : 0xffff, 0xffff);
3003		if (rc != 0) {
3004			device_printf(dev,
3005			    "failed to free queue %p: %d\n", iq, rc);
3006			return (rc);
3007		}
3008		iq->flags &= ~IQ_ALLOCATED;
3009	}
3010
3011	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
3012
3013	bzero(iq, sizeof(*iq));
3014
3015	if (fl) {
3016		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
3017		    fl->desc);
3018
3019		if (fl->sdesc)
3020			free_fl_sdesc(sc, fl);
3021
3022		if (mtx_initialized(&fl->fl_lock))
3023			mtx_destroy(&fl->fl_lock);
3024
3025		bzero(fl, sizeof(*fl));
3026	}
3027
3028	return (0);
3029}
3030
3031static void
3032add_iq_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
3033    struct sge_iq *iq)
3034{
3035	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3036
3037	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD, &iq->ba,
3038	    "bus address of descriptor ring");
3039	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3040	    iq->qsize * IQ_ESIZE, "descriptor ring size in bytes");
3041	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3042	    CTLTYPE_INT | CTLFLAG_RD, &iq->abs_id, 0, sysctl_uint16, "I",
3043	    "absolute id of the queue");
3044	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3045	    CTLTYPE_INT | CTLFLAG_RD, &iq->cntxt_id, 0, sysctl_uint16, "I",
3046	    "SGE context id of the queue");
3047	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3048	    CTLTYPE_INT | CTLFLAG_RD, &iq->cidx, 0, sysctl_uint16, "I",
3049	    "consumer index");
3050}
3051
3052static void
3053add_fl_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
3054    struct sysctl_oid *oid, struct sge_fl *fl)
3055{
3056	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3057
3058	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3059	    "freelist");
3060	children = SYSCTL_CHILDREN(oid);
3061
3062	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3063	    &fl->ba, "bus address of descriptor ring");
3064	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3065	    fl->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3066	    "desc ring size in bytes");
3067	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3068	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
3069	    "SGE context id of the freelist");
3070	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
3071	    fl_pad ? 1 : 0, "padding enabled");
3072	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
3073	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
3074	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
3075	    0, "consumer index");
3076	if (fl->flags & FL_BUF_PACKING) {
3077		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
3078		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
3079	}
3080	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
3081	    0, "producer index");
3082	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
3083	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
3084	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
3085	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
3086	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
3087	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
3088	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
3089	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
3090	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
3091	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
3092}
3093
3094static int
3095alloc_fwq(struct adapter *sc)
3096{
3097	int rc, intr_idx;
3098	struct sge_iq *fwq = &sc->sge.fwq;
3099	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
3100	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3101
3102	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
3103	if (sc->flags & IS_VF)
3104		intr_idx = 0;
3105	else
3106		intr_idx = sc->intr_count > 1 ? 1 : 0;
3107	rc = alloc_iq_fl(&sc->port[0]->vi[0], fwq, NULL, intr_idx, -1);
3108	if (rc != 0) {
3109		device_printf(sc->dev,
3110		    "failed to create firmware event queue: %d\n", rc);
3111		return (rc);
3112	}
3113
3114	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
3115	    NULL, "firmware event queue");
3116	add_iq_sysctls(&sc->ctx, oid, fwq);
3117
3118	return (0);
3119}
3120
3121static int
3122free_fwq(struct adapter *sc)
3123{
3124	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
3125}
3126
3127static int
3128alloc_ctrlq(struct adapter *sc, struct sge_wrq *ctrlq, int idx,
3129    struct sysctl_oid *oid)
3130{
3131	int rc;
3132	char name[16];
3133	struct sysctl_oid_list *children;
3134
3135	snprintf(name, sizeof(name), "%s ctrlq%d", device_get_nameunit(sc->dev),
3136	    idx);
3137	init_eq(sc, &ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[idx]->tx_chan,
3138	    sc->sge.fwq.cntxt_id, name);
3139
3140	children = SYSCTL_CHILDREN(oid);
3141	snprintf(name, sizeof(name), "%d", idx);
3142	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3143	    NULL, "ctrl queue");
3144	rc = alloc_wrq(sc, NULL, ctrlq, oid);
3145
3146	return (rc);
3147}
3148
3149int
3150tnl_cong(struct port_info *pi, int drop)
3151{
3152
3153	if (drop == -1)
3154		return (-1);
3155	else if (drop == 1)
3156		return (0);
3157	else
3158		return (pi->rx_e_chan_map);
3159}
3160
3161static int
3162alloc_rxq(struct vi_info *vi, struct sge_rxq *rxq, int intr_idx, int idx,
3163    struct sysctl_oid *oid)
3164{
3165	int rc;
3166	struct adapter *sc = vi->pi->adapter;
3167	struct sysctl_oid_list *children;
3168	char name[16];
3169
3170	rc = alloc_iq_fl(vi, &rxq->iq, &rxq->fl, intr_idx,
3171	    tnl_cong(vi->pi, cong_drop));
3172	if (rc != 0)
3173		return (rc);
3174
3175	if (idx == 0)
3176		sc->sge.iq_base = rxq->iq.abs_id - rxq->iq.cntxt_id;
3177	else
3178		KASSERT(rxq->iq.cntxt_id + sc->sge.iq_base == rxq->iq.abs_id,
3179		    ("iq_base mismatch"));
3180	KASSERT(sc->sge.iq_base == 0 || sc->flags & IS_VF,
3181	    ("PF with non-zero iq_base"));
3182
3183	/*
3184	 * The freelist is just barely above the starvation threshold right now,
3185	 * fill it up a bit more.
3186	 */
3187	FL_LOCK(&rxq->fl);
3188	refill_fl(sc, &rxq->fl, 128);
3189	FL_UNLOCK(&rxq->fl);
3190
3191#if defined(INET) || defined(INET6)
3192	rc = tcp_lro_init_args(&rxq->lro, vi->ifp, lro_entries, lro_mbufs);
3193	if (rc != 0)
3194		return (rc);
3195	MPASS(rxq->lro.ifp == vi->ifp);	/* also indicates LRO init'ed */
3196
3197	if (vi->ifp->if_capenable & IFCAP_LRO)
3198		rxq->iq.flags |= IQ_LRO_ENABLED;
3199#endif
3200	rxq->ifp = vi->ifp;
3201
3202	children = SYSCTL_CHILDREN(oid);
3203
3204	snprintf(name, sizeof(name), "%d", idx);
3205	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3206	    NULL, "rx queue");
3207	children = SYSCTL_CHILDREN(oid);
3208
3209	add_iq_sysctls(&vi->ctx, oid, &rxq->iq);
3210#if defined(INET) || defined(INET6)
3211	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
3212	    &rxq->lro.lro_queued, 0, NULL);
3213	SYSCTL_ADD_U64(&vi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
3214	    &rxq->lro.lro_flushed, 0, NULL);
3215#endif
3216	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
3217	    &rxq->rxcsum, "# of times hardware assisted with checksum");
3218	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_extraction",
3219	    CTLFLAG_RD, &rxq->vlan_extraction,
3220	    "# of times hardware extracted 802.1Q tag");
3221
3222	add_fl_sysctls(sc, &vi->ctx, oid, &rxq->fl);
3223
3224	return (rc);
3225}
3226
3227static int
3228free_rxq(struct vi_info *vi, struct sge_rxq *rxq)
3229{
3230	int rc;
3231
3232#if defined(INET) || defined(INET6)
3233	if (rxq->lro.ifp) {
3234		tcp_lro_free(&rxq->lro);
3235		rxq->lro.ifp = NULL;
3236	}
3237#endif
3238
3239	rc = free_iq_fl(vi, &rxq->iq, &rxq->fl);
3240	if (rc == 0)
3241		bzero(rxq, sizeof(*rxq));
3242
3243	return (rc);
3244}
3245
3246#ifdef TCP_OFFLOAD
3247static int
3248alloc_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq,
3249    int intr_idx, int idx, struct sysctl_oid *oid)
3250{
3251	struct port_info *pi = vi->pi;
3252	int rc;
3253	struct sysctl_oid_list *children;
3254	char name[16];
3255
3256	rc = alloc_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx, 0);
3257	if (rc != 0)
3258		return (rc);
3259
3260	children = SYSCTL_CHILDREN(oid);
3261
3262	snprintf(name, sizeof(name), "%d", idx);
3263	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3264	    NULL, "rx queue");
3265	add_iq_sysctls(&vi->ctx, oid, &ofld_rxq->iq);
3266	add_fl_sysctls(pi->adapter, &vi->ctx, oid, &ofld_rxq->fl);
3267
3268	return (rc);
3269}
3270
3271static int
3272free_ofld_rxq(struct vi_info *vi, struct sge_ofld_rxq *ofld_rxq)
3273{
3274	int rc;
3275
3276	rc = free_iq_fl(vi, &ofld_rxq->iq, &ofld_rxq->fl);
3277	if (rc == 0)
3278		bzero(ofld_rxq, sizeof(*ofld_rxq));
3279
3280	return (rc);
3281}
3282#endif
3283
3284#ifdef DEV_NETMAP
3285static int
3286alloc_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq, int intr_idx,
3287    int idx, struct sysctl_oid *oid)
3288{
3289	int rc;
3290	struct sysctl_oid_list *children;
3291	struct sysctl_ctx_list *ctx;
3292	char name[16];
3293	size_t len;
3294	struct adapter *sc = vi->pi->adapter;
3295	struct netmap_adapter *na = NA(vi->ifp);
3296
3297	MPASS(na != NULL);
3298
3299	len = vi->qsize_rxq * IQ_ESIZE;
3300	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
3301	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
3302	if (rc != 0)
3303		return (rc);
3304
3305	len = na->num_rx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3306	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
3307	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
3308	if (rc != 0)
3309		return (rc);
3310
3311	nm_rxq->vi = vi;
3312	nm_rxq->nid = idx;
3313	nm_rxq->iq_cidx = 0;
3314	nm_rxq->iq_sidx = vi->qsize_rxq - sc->params.sge.spg_len / IQ_ESIZE;
3315	nm_rxq->iq_gen = F_RSPD_GEN;
3316	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3317	nm_rxq->fl_sidx = na->num_rx_desc;
3318	nm_rxq->intr_idx = intr_idx;
3319
3320	ctx = &vi->ctx;
3321	children = SYSCTL_CHILDREN(oid);
3322
3323	snprintf(name, sizeof(name), "%d", idx);
3324	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
3325	    "rx queue");
3326	children = SYSCTL_CHILDREN(oid);
3327
3328	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3329	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
3330	    "I", "absolute id of the queue");
3331	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3332	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
3333	    "I", "SGE context id of the queue");
3334	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3335	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
3336	    "consumer index");
3337
3338	children = SYSCTL_CHILDREN(oid);
3339	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3340	    "freelist");
3341	children = SYSCTL_CHILDREN(oid);
3342
3343	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3344	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
3345	    "I", "SGE context id of the freelist");
3346	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
3347	    &nm_rxq->fl_cidx, 0, "consumer index");
3348	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
3349	    &nm_rxq->fl_pidx, 0, "producer index");
3350
3351	return (rc);
3352}
3353
3354
3355static int
3356free_nm_rxq(struct vi_info *vi, struct sge_nm_rxq *nm_rxq)
3357{
3358	struct adapter *sc = vi->pi->adapter;
3359
3360	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
3361	    nm_rxq->iq_desc);
3362	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
3363	    nm_rxq->fl_desc);
3364
3365	return (0);
3366}
3367
3368static int
3369alloc_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
3370    struct sysctl_oid *oid)
3371{
3372	int rc;
3373	size_t len;
3374	struct port_info *pi = vi->pi;
3375	struct adapter *sc = pi->adapter;
3376	struct netmap_adapter *na = NA(vi->ifp);
3377	char name[16];
3378	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3379
3380	len = na->num_tx_desc * EQ_ESIZE + sc->params.sge.spg_len;
3381	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
3382	    &nm_txq->ba, (void **)&nm_txq->desc);
3383	if (rc)
3384		return (rc);
3385
3386	nm_txq->pidx = nm_txq->cidx = 0;
3387	nm_txq->sidx = na->num_tx_desc;
3388	nm_txq->nid = idx;
3389	nm_txq->iqidx = iqidx;
3390	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3391	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
3392	    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
3393
3394	snprintf(name, sizeof(name), "%d", idx);
3395	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3396	    NULL, "netmap tx queue");
3397	children = SYSCTL_CHILDREN(oid);
3398
3399	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3400	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
3401	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3402	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
3403	    "consumer index");
3404	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3405	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
3406	    "producer index");
3407
3408	return (rc);
3409}
3410
3411static int
3412free_nm_txq(struct vi_info *vi, struct sge_nm_txq *nm_txq)
3413{
3414	struct adapter *sc = vi->pi->adapter;
3415
3416	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
3417	    nm_txq->desc);
3418
3419	return (0);
3420}
3421#endif
3422
3423/*
3424 * Returns a reasonable automatic cidx flush threshold for a given queue size.
3425 */
3426static u_int
3427qsize_to_fthresh(int qsize)
3428{
3429	u_int fthresh;
3430
3431	while (!powerof2(qsize))
3432		qsize++;
3433	fthresh = ilog2(qsize);
3434	if (fthresh > X_CIDXFLUSHTHRESH_128)
3435		fthresh = X_CIDXFLUSHTHRESH_128;
3436
3437	return (fthresh);
3438}
3439
3440static int
3441ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
3442{
3443	int rc, cntxt_id;
3444	struct fw_eq_ctrl_cmd c;
3445	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3446
3447	bzero(&c, sizeof(c));
3448
3449	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
3450	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
3451	    V_FW_EQ_CTRL_CMD_VFN(0));
3452	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
3453	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
3454	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
3455	c.physeqid_pkd = htobe32(0);
3456	c.fetchszm_to_iqid =
3457	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
3458		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
3459		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
3460	c.dcaen_to_eqsize =
3461	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3462		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
3463		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3464		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
3465		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
3466	c.eqaddr = htobe64(eq->ba);
3467
3468	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3469	if (rc != 0) {
3470		device_printf(sc->dev,
3471		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
3472		return (rc);
3473	}
3474	eq->flags |= EQ_ALLOCATED;
3475
3476	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
3477	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3478	if (cntxt_id >= sc->sge.neq)
3479	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3480		cntxt_id, sc->sge.neq - 1);
3481	sc->sge.eqmap[cntxt_id] = eq;
3482
3483	return (rc);
3484}
3485
3486static int
3487eth_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3488{
3489	int rc, cntxt_id;
3490	struct fw_eq_eth_cmd c;
3491	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3492
3493	bzero(&c, sizeof(c));
3494
3495	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
3496	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
3497	    V_FW_EQ_ETH_CMD_VFN(0));
3498	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
3499	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
3500	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
3501	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(vi->viid));
3502	c.fetchszm_to_iqid =
3503	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3504		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
3505		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
3506	c.dcaen_to_eqsize =
3507	    htobe32(V_FW_EQ_ETH_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3508		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
3509		V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3510		V_FW_EQ_ETH_CMD_EQSIZE(qsize));
3511	c.eqaddr = htobe64(eq->ba);
3512
3513	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3514	if (rc != 0) {
3515		device_printf(vi->dev,
3516		    "failed to create Ethernet egress queue: %d\n", rc);
3517		return (rc);
3518	}
3519	eq->flags |= EQ_ALLOCATED;
3520
3521	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
3522	eq->abs_id = G_FW_EQ_ETH_CMD_PHYSEQID(be32toh(c.physeqid_pkd));
3523	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3524	if (cntxt_id >= sc->sge.neq)
3525	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3526		cntxt_id, sc->sge.neq - 1);
3527	sc->sge.eqmap[cntxt_id] = eq;
3528
3529	return (rc);
3530}
3531
3532#ifdef TCP_OFFLOAD
3533static int
3534ofld_eq_alloc(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3535{
3536	int rc, cntxt_id;
3537	struct fw_eq_ofld_cmd c;
3538	int qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3539
3540	bzero(&c, sizeof(c));
3541
3542	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
3543	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
3544	    V_FW_EQ_OFLD_CMD_VFN(0));
3545	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
3546	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
3547	c.fetchszm_to_iqid =
3548		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
3549		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
3550		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
3551	c.dcaen_to_eqsize =
3552	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(chip_id(sc) <= CHELSIO_T5 ?
3553		X_FETCHBURSTMIN_64B : X_FETCHBURSTMIN_64B_T6) |
3554		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3555		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(qsize_to_fthresh(qsize)) |
3556		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
3557	c.eqaddr = htobe64(eq->ba);
3558
3559	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3560	if (rc != 0) {
3561		device_printf(vi->dev,
3562		    "failed to create egress queue for TCP offload: %d\n", rc);
3563		return (rc);
3564	}
3565	eq->flags |= EQ_ALLOCATED;
3566
3567	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
3568	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3569	if (cntxt_id >= sc->sge.neq)
3570	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3571		cntxt_id, sc->sge.neq - 1);
3572	sc->sge.eqmap[cntxt_id] = eq;
3573
3574	return (rc);
3575}
3576#endif
3577
3578static int
3579alloc_eq(struct adapter *sc, struct vi_info *vi, struct sge_eq *eq)
3580{
3581	int rc, qsize;
3582	size_t len;
3583
3584	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3585
3586	qsize = eq->sidx + sc->params.sge.spg_len / EQ_ESIZE;
3587	len = qsize * EQ_ESIZE;
3588	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
3589	    &eq->ba, (void **)&eq->desc);
3590	if (rc)
3591		return (rc);
3592
3593	eq->pidx = eq->cidx = eq->dbidx = 0;
3594	/* Note that equeqidx is not used with sge_wrq (OFLD/CTRL) queues. */
3595	eq->equeqidx = 0;
3596	eq->doorbells = sc->doorbells;
3597
3598	switch (eq->flags & EQ_TYPEMASK) {
3599	case EQ_CTRL:
3600		rc = ctrl_eq_alloc(sc, eq);
3601		break;
3602
3603	case EQ_ETH:
3604		rc = eth_eq_alloc(sc, vi, eq);
3605		break;
3606
3607#ifdef TCP_OFFLOAD
3608	case EQ_OFLD:
3609		rc = ofld_eq_alloc(sc, vi, eq);
3610		break;
3611#endif
3612
3613	default:
3614		panic("%s: invalid eq type %d.", __func__,
3615		    eq->flags & EQ_TYPEMASK);
3616	}
3617	if (rc != 0) {
3618		device_printf(sc->dev,
3619		    "failed to allocate egress queue(%d): %d\n",
3620		    eq->flags & EQ_TYPEMASK, rc);
3621	}
3622
3623	if (isset(&eq->doorbells, DOORBELL_UDB) ||
3624	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
3625	    isset(&eq->doorbells, DOORBELL_WCWR)) {
3626		uint32_t s_qpp = sc->params.sge.eq_s_qpp;
3627		uint32_t mask = (1 << s_qpp) - 1;
3628		volatile uint8_t *udb;
3629
3630		udb = sc->udbs_base + UDBS_DB_OFFSET;
3631		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
3632		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
3633		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
3634	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
3635		else {
3636			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
3637			eq->udb_qid = 0;
3638		}
3639		eq->udb = (volatile void *)udb;
3640	}
3641
3642	return (rc);
3643}
3644
3645static int
3646free_eq(struct adapter *sc, struct sge_eq *eq)
3647{
3648	int rc;
3649
3650	if (eq->flags & EQ_ALLOCATED) {
3651		switch (eq->flags & EQ_TYPEMASK) {
3652		case EQ_CTRL:
3653			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
3654			    eq->cntxt_id);
3655			break;
3656
3657		case EQ_ETH:
3658			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
3659			    eq->cntxt_id);
3660			break;
3661
3662#ifdef TCP_OFFLOAD
3663		case EQ_OFLD:
3664			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
3665			    eq->cntxt_id);
3666			break;
3667#endif
3668
3669		default:
3670			panic("%s: invalid eq type %d.", __func__,
3671			    eq->flags & EQ_TYPEMASK);
3672		}
3673		if (rc != 0) {
3674			device_printf(sc->dev,
3675			    "failed to free egress queue (%d): %d\n",
3676			    eq->flags & EQ_TYPEMASK, rc);
3677			return (rc);
3678		}
3679		eq->flags &= ~EQ_ALLOCATED;
3680	}
3681
3682	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3683
3684	if (mtx_initialized(&eq->eq_lock))
3685		mtx_destroy(&eq->eq_lock);
3686
3687	bzero(eq, sizeof(*eq));
3688	return (0);
3689}
3690
3691static int
3692alloc_wrq(struct adapter *sc, struct vi_info *vi, struct sge_wrq *wrq,
3693    struct sysctl_oid *oid)
3694{
3695	int rc;
3696	struct sysctl_ctx_list *ctx = vi ? &vi->ctx : &sc->ctx;
3697	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3698
3699	rc = alloc_eq(sc, vi, &wrq->eq);
3700	if (rc)
3701		return (rc);
3702
3703	wrq->adapter = sc;
3704	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
3705	TAILQ_INIT(&wrq->incomplete_wrs);
3706	STAILQ_INIT(&wrq->wr_list);
3707	wrq->nwr_pending = 0;
3708	wrq->ndesc_needed = 0;
3709
3710	SYSCTL_ADD_UAUTO(ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3711	    &wrq->eq.ba, "bus address of descriptor ring");
3712	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3713	    wrq->eq.sidx * EQ_ESIZE + sc->params.sge.spg_len,
3714	    "desc ring size in bytes");
3715	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3716	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3717	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3718	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3719	    "consumer index");
3720	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3721	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3722	    "producer index");
3723	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
3724	    wrq->eq.sidx, "status page index");
3725	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
3726	    &wrq->tx_wrs_direct, "# of work requests (direct)");
3727	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
3728	    &wrq->tx_wrs_copied, "# of work requests (copied)");
3729	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_sspace", CTLFLAG_RD,
3730	    &wrq->tx_wrs_ss, "# of work requests (copied from scratch space)");
3731
3732	return (rc);
3733}
3734
3735static int
3736free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3737{
3738	int rc;
3739
3740	rc = free_eq(sc, &wrq->eq);
3741	if (rc)
3742		return (rc);
3743
3744	bzero(wrq, sizeof(*wrq));
3745	return (0);
3746}
3747
3748static int
3749alloc_txq(struct vi_info *vi, struct sge_txq *txq, int idx,
3750    struct sysctl_oid *oid)
3751{
3752	int rc;
3753	struct port_info *pi = vi->pi;
3754	struct adapter *sc = pi->adapter;
3755	struct sge_eq *eq = &txq->eq;
3756	char name[16];
3757	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3758
3759	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
3760	    M_CXGBE, M_WAITOK);
3761	if (rc != 0) {
3762		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
3763		return (rc);
3764	}
3765
3766	rc = alloc_eq(sc, vi, eq);
3767	if (rc != 0) {
3768		mp_ring_free(txq->r);
3769		txq->r = NULL;
3770		return (rc);
3771	}
3772
3773	/* Can't fail after this point. */
3774
3775	if (idx == 0)
3776		sc->sge.eq_base = eq->abs_id - eq->cntxt_id;
3777	else
3778		KASSERT(eq->cntxt_id + sc->sge.eq_base == eq->abs_id,
3779		    ("eq_base mismatch"));
3780	KASSERT(sc->sge.eq_base == 0 || sc->flags & IS_VF,
3781	    ("PF with non-zero eq_base"));
3782
3783	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
3784	txq->ifp = vi->ifp;
3785	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
3786	if (sc->flags & IS_VF)
3787		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT_XT) |
3788		    V_TXPKT_INTF(pi->tx_chan));
3789	else
3790		txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3791		    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf) |
3792		    V_TXPKT_VF(vi->vin) | V_TXPKT_VF_VLD(vi->vfvld));
3793	txq->tc_idx = -1;
3794	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
3795	    M_ZERO | M_WAITOK);
3796
3797	snprintf(name, sizeof(name), "%d", idx);
3798	oid = SYSCTL_ADD_NODE(&vi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3799	    NULL, "tx queue");
3800	children = SYSCTL_CHILDREN(oid);
3801
3802	SYSCTL_ADD_UAUTO(&vi->ctx, children, OID_AUTO, "ba", CTLFLAG_RD,
3803	    &eq->ba, "bus address of descriptor ring");
3804	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "dmalen", CTLFLAG_RD, NULL,
3805	    eq->sidx * EQ_ESIZE + sc->params.sge.spg_len,
3806	    "desc ring size in bytes");
3807	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "abs_id", CTLFLAG_RD,
3808	    &eq->abs_id, 0, "absolute id of the queue");
3809	SYSCTL_ADD_UINT(&vi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3810	    &eq->cntxt_id, 0, "SGE context id of the queue");
3811	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "cidx",
3812	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3813	    "consumer index");
3814	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "pidx",
3815	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3816	    "producer index");
3817	SYSCTL_ADD_INT(&vi->ctx, children, OID_AUTO, "sidx", CTLFLAG_RD, NULL,
3818	    eq->sidx, "status page index");
3819
3820	SYSCTL_ADD_PROC(&vi->ctx, children, OID_AUTO, "tc",
3821	    CTLTYPE_INT | CTLFLAG_RW, vi, idx, sysctl_tc, "I",
3822	    "traffic class (-1 means none)");
3823
3824	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3825	    &txq->txcsum, "# of times hardware assisted with checksum");
3826	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "vlan_insertion",
3827	    CTLFLAG_RD, &txq->vlan_insertion,
3828	    "# of times hardware inserted 802.1Q tag");
3829	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3830	    &txq->tso_wrs, "# of TSO work requests");
3831	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3832	    &txq->imm_wrs, "# of work requests with immediate data");
3833	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3834	    &txq->sgl_wrs, "# of work requests with direct SGL");
3835	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3836	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3837	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_wrs",
3838	    CTLFLAG_RD, &txq->txpkts0_wrs,
3839	    "# of txpkts (type 0) work requests");
3840	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_wrs",
3841	    CTLFLAG_RD, &txq->txpkts1_wrs,
3842	    "# of txpkts (type 1) work requests");
3843	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts0_pkts",
3844	    CTLFLAG_RD, &txq->txpkts0_pkts,
3845	    "# of frames tx'd using type0 txpkts work requests");
3846	SYSCTL_ADD_UQUAD(&vi->ctx, children, OID_AUTO, "txpkts1_pkts",
3847	    CTLFLAG_RD, &txq->txpkts1_pkts,
3848	    "# of frames tx'd using type1 txpkts work requests");
3849
3850	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_enqueues",
3851	    CTLFLAG_RD, &txq->r->enqueues,
3852	    "# of enqueues to the mp_ring for this queue");
3853	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_drops",
3854	    CTLFLAG_RD, &txq->r->drops,
3855	    "# of drops in the mp_ring for this queue");
3856	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_starts",
3857	    CTLFLAG_RD, &txq->r->starts,
3858	    "# of normal consumer starts in the mp_ring for this queue");
3859	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_stalls",
3860	    CTLFLAG_RD, &txq->r->stalls,
3861	    "# of consumer stalls in the mp_ring for this queue");
3862	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_restarts",
3863	    CTLFLAG_RD, &txq->r->restarts,
3864	    "# of consumer restarts in the mp_ring for this queue");
3865	SYSCTL_ADD_COUNTER_U64(&vi->ctx, children, OID_AUTO, "r_abdications",
3866	    CTLFLAG_RD, &txq->r->abdications,
3867	    "# of consumer abdications in the mp_ring for this queue");
3868
3869	return (0);
3870}
3871
3872static int
3873free_txq(struct vi_info *vi, struct sge_txq *txq)
3874{
3875	int rc;
3876	struct adapter *sc = vi->pi->adapter;
3877	struct sge_eq *eq = &txq->eq;
3878
3879	rc = free_eq(sc, eq);
3880	if (rc)
3881		return (rc);
3882
3883	sglist_free(txq->gl);
3884	free(txq->sdesc, M_CXGBE);
3885	mp_ring_free(txq->r);
3886
3887	bzero(txq, sizeof(*txq));
3888	return (0);
3889}
3890
3891static void
3892oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3893{
3894	bus_addr_t *ba = arg;
3895
3896	KASSERT(nseg == 1,
3897	    ("%s meant for single segment mappings only.", __func__));
3898
3899	*ba = error ? 0 : segs->ds_addr;
3900}
3901
3902static inline void
3903ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3904{
3905	uint32_t n, v;
3906
3907	n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx);
3908	MPASS(n > 0);
3909
3910	wmb();
3911	v = fl->dbval | V_PIDX(n);
3912	if (fl->udb)
3913		*fl->udb = htole32(v);
3914	else
3915		t4_write_reg(sc, sc->sge_kdoorbell_reg, v);
3916	IDXINCR(fl->dbidx, n, fl->sidx);
3917}
3918
3919/*
3920 * Fills up the freelist by allocating up to 'n' buffers.  Buffers that are
3921 * recycled do not count towards this allocation budget.
3922 *
3923 * Returns non-zero to indicate that this freelist should be added to the list
3924 * of starving freelists.
3925 */
3926static int
3927refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
3928{
3929	__be64 *d;
3930	struct fl_sdesc *sd;
3931	uintptr_t pa;
3932	caddr_t cl;
3933	struct cluster_layout *cll;
3934	struct sw_zone_info *swz;
3935	struct cluster_metadata *clm;
3936	uint16_t max_pidx;
3937	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
3938
3939	FL_LOCK_ASSERT_OWNED(fl);
3940
3941	/*
3942	 * We always stop at the beginning of the hardware descriptor that's just
3943	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
3944	 * which would mean an empty freelist to the chip.
3945	 */
3946	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
3947	if (fl->pidx == max_pidx * 8)
3948		return (0);
3949
3950	d = &fl->desc[fl->pidx];
3951	sd = &fl->sdesc[fl->pidx];
3952	cll = &fl->cll_def;	/* default layout */
3953	swz = &sc->sge.sw_zone_info[cll->zidx];
3954
3955	while (n > 0) {
3956
3957		if (sd->cl != NULL) {
3958
3959			if (sd->nmbuf == 0) {
3960				/*
3961				 * Fast recycle without involving any atomics on
3962				 * the cluster's metadata (if the cluster has
3963				 * metadata).  This happens when all frames
3964				 * received in the cluster were small enough to
3965				 * fit within a single mbuf each.
3966				 */
3967				fl->cl_fast_recycled++;
3968#ifdef INVARIANTS
3969				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3970				if (clm != NULL)
3971					MPASS(clm->refcount == 1);
3972#endif
3973				goto recycled_fast;
3974			}
3975
3976			/*
3977			 * Cluster is guaranteed to have metadata.  Clusters
3978			 * without metadata always take the fast recycle path
3979			 * when they're recycled.
3980			 */
3981			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3982			MPASS(clm != NULL);
3983
3984			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3985				fl->cl_recycled++;
3986				counter_u64_add(extfree_rels, 1);
3987				goto recycled;
3988			}
3989			sd->cl = NULL;	/* gave up my reference */
3990		}
3991		MPASS(sd->cl == NULL);
3992alloc:
3993		cl = uma_zalloc(swz->zone, M_NOWAIT);
3994		if (__predict_false(cl == NULL)) {
3995			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
3996			    fl->cll_def.zidx == fl->cll_alt.zidx)
3997				break;
3998
3999			/* fall back to the safe zone */
4000			cll = &fl->cll_alt;
4001			swz = &sc->sge.sw_zone_info[cll->zidx];
4002			goto alloc;
4003		}
4004		fl->cl_allocated++;
4005		n--;
4006
4007		pa = pmap_kextract((vm_offset_t)cl);
4008		pa += cll->region1;
4009		sd->cl = cl;
4010		sd->cll = *cll;
4011		*d = htobe64(pa | cll->hwidx);
4012		clm = cl_metadata(sc, fl, cll, cl);
4013		if (clm != NULL) {
4014recycled:
4015#ifdef INVARIANTS
4016			clm->sd = sd;
4017#endif
4018			clm->refcount = 1;
4019		}
4020		sd->nmbuf = 0;
4021recycled_fast:
4022		d++;
4023		sd++;
4024		if (__predict_false(++fl->pidx % 8 == 0)) {
4025			uint16_t pidx = fl->pidx / 8;
4026
4027			if (__predict_false(pidx == fl->sidx)) {
4028				fl->pidx = 0;
4029				pidx = 0;
4030				sd = fl->sdesc;
4031				d = fl->desc;
4032			}
4033			if (pidx == max_pidx)
4034				break;
4035
4036			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
4037				ring_fl_db(sc, fl);
4038		}
4039	}
4040
4041	if (fl->pidx / 8 != fl->dbidx)
4042		ring_fl_db(sc, fl);
4043
4044	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
4045}
4046
4047/*
4048 * Attempt to refill all starving freelists.
4049 */
4050static void
4051refill_sfl(void *arg)
4052{
4053	struct adapter *sc = arg;
4054	struct sge_fl *fl, *fl_temp;
4055
4056	mtx_assert(&sc->sfl_lock, MA_OWNED);
4057	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
4058		FL_LOCK(fl);
4059		refill_fl(sc, fl, 64);
4060		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
4061			TAILQ_REMOVE(&sc->sfl, fl, link);
4062			fl->flags &= ~FL_STARVING;
4063		}
4064		FL_UNLOCK(fl);
4065	}
4066
4067	if (!TAILQ_EMPTY(&sc->sfl))
4068		callout_schedule(&sc->sfl_callout, hz / 5);
4069}
4070
4071static int
4072alloc_fl_sdesc(struct sge_fl *fl)
4073{
4074
4075	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
4076	    M_ZERO | M_WAITOK);
4077
4078	return (0);
4079}
4080
4081static void
4082free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
4083{
4084	struct fl_sdesc *sd;
4085	struct cluster_metadata *clm;
4086	struct cluster_layout *cll;
4087	int i;
4088
4089	sd = fl->sdesc;
4090	for (i = 0; i < fl->sidx * 8; i++, sd++) {
4091		if (sd->cl == NULL)
4092			continue;
4093
4094		cll = &sd->cll;
4095		clm = cl_metadata(sc, fl, cll, sd->cl);
4096		if (sd->nmbuf == 0)
4097			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
4098		else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
4099			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
4100			counter_u64_add(extfree_rels, 1);
4101		}
4102		sd->cl = NULL;
4103	}
4104
4105	free(fl->sdesc, M_CXGBE);
4106	fl->sdesc = NULL;
4107}
4108
4109static inline void
4110get_pkt_gl(struct mbuf *m, struct sglist *gl)
4111{
4112	int rc;
4113
4114	M_ASSERTPKTHDR(m);
4115
4116	sglist_reset(gl);
4117	rc = sglist_append_mbuf(gl, m);
4118	if (__predict_false(rc != 0)) {
4119		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
4120		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
4121	}
4122
4123	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
4124	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
4125	    mbuf_nsegs(m), gl->sg_nseg));
4126	KASSERT(gl->sg_nseg > 0 &&
4127	    gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
4128	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
4129		gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
4130}
4131
4132/*
4133 * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
4134 */
4135static inline u_int
4136txpkt_len16(u_int nsegs, u_int tso)
4137{
4138	u_int n;
4139
4140	MPASS(nsegs > 0);
4141
4142	nsegs--; /* first segment is part of ulptx_sgl */
4143	n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
4144	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4145	if (tso)
4146		n += sizeof(struct cpl_tx_pkt_lso_core);
4147
4148	return (howmany(n, 16));
4149}
4150
4151/*
4152 * len16 for a txpkt_vm WR with a GL.  Includes the firmware work
4153 * request header.
4154 */
4155static inline u_int
4156txpkt_vm_len16(u_int nsegs, u_int tso)
4157{
4158	u_int n;
4159
4160	MPASS(nsegs > 0);
4161
4162	nsegs--; /* first segment is part of ulptx_sgl */
4163	n = sizeof(struct fw_eth_tx_pkt_vm_wr) +
4164	    sizeof(struct cpl_tx_pkt_core) +
4165	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
4166	if (tso)
4167		n += sizeof(struct cpl_tx_pkt_lso_core);
4168
4169	return (howmany(n, 16));
4170}
4171
4172/*
4173 * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
4174 * request header.
4175 */
4176static inline u_int
4177txpkts0_len16(u_int nsegs)
4178{
4179	u_int n;
4180
4181	MPASS(nsegs > 0);
4182
4183	nsegs--; /* first segment is part of ulptx_sgl */
4184	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
4185	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
4186	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
4187
4188	return (howmany(n, 16));
4189}
4190
4191/*
4192 * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
4193 * request header.
4194 */
4195static inline u_int
4196txpkts1_len16(void)
4197{
4198	u_int n;
4199
4200	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
4201
4202	return (howmany(n, 16));
4203}
4204
4205static inline u_int
4206imm_payload(u_int ndesc)
4207{
4208	u_int n;
4209
4210	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
4211	    sizeof(struct cpl_tx_pkt_core);
4212
4213	return (n);
4214}
4215
4216/*
4217 * Write a VM txpkt WR for this packet to the hardware descriptors, update the
4218 * software descriptor, and advance the pidx.  It is guaranteed that enough
4219 * descriptors are available.
4220 *
4221 * The return value is the # of hardware descriptors used.
4222 */
4223static u_int
4224write_txpkt_vm_wr(struct adapter *sc, struct sge_txq *txq,
4225    struct fw_eth_tx_pkt_vm_wr *wr, struct mbuf *m0, u_int available)
4226{
4227	struct sge_eq *eq = &txq->eq;
4228	struct tx_sdesc *txsd;
4229	struct cpl_tx_pkt_core *cpl;
4230	uint32_t ctrl;	/* used in many unrelated places */
4231	uint64_t ctrl1;
4232	int csum_type, len16, ndesc, pktlen, nsegs;
4233	caddr_t dst;
4234
4235	TXQ_LOCK_ASSERT_OWNED(txq);
4236	M_ASSERTPKTHDR(m0);
4237	MPASS(available > 0 && available < eq->sidx);
4238
4239	len16 = mbuf_len16(m0);
4240	nsegs = mbuf_nsegs(m0);
4241	pktlen = m0->m_pkthdr.len;
4242	ctrl = sizeof(struct cpl_tx_pkt_core);
4243	if (needs_tso(m0))
4244		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4245	ndesc = howmany(len16, EQ_ESIZE / 16);
4246	MPASS(ndesc <= available);
4247
4248	/* Firmware work request header */
4249	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4250	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_VM_WR) |
4251	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4252
4253	ctrl = V_FW_WR_LEN16(len16);
4254	wr->equiq_to_len16 = htobe32(ctrl);
4255	wr->r3[0] = 0;
4256	wr->r3[1] = 0;
4257
4258	/*
4259	 * Copy over ethmacdst, ethmacsrc, ethtype, and vlantci.
4260	 * vlantci is ignored unless the ethtype is 0x8100, so it's
4261	 * simpler to always copy it rather than making it
4262	 * conditional.  Also, it seems that we do not have to set
4263	 * vlantci or fake the ethtype when doing VLAN tag insertion.
4264	 */
4265	m_copydata(m0, 0, sizeof(struct ether_header) + 2, wr->ethmacdst);
4266
4267	csum_type = -1;
4268	if (needs_tso(m0)) {
4269		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4270
4271		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4272		    m0->m_pkthdr.l4hlen > 0,
4273		    ("%s: mbuf %p needs TSO but missing header lengths",
4274			__func__, m0));
4275
4276		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4277		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
4278		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4279		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
4280			ctrl |= V_LSO_ETHHDR_LEN(1);
4281		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4282			ctrl |= F_LSO_IPV6;
4283
4284		lso->lso_ctrl = htobe32(ctrl);
4285		lso->ipid_ofst = htobe16(0);
4286		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4287		lso->seqno_offset = htobe32(0);
4288		lso->len = htobe32(pktlen);
4289
4290		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4291			csum_type = TX_CSUM_TCPIP6;
4292		else
4293			csum_type = TX_CSUM_TCPIP;
4294
4295		cpl = (void *)(lso + 1);
4296
4297		txq->tso_wrs++;
4298	} else {
4299		if (m0->m_pkthdr.csum_flags & CSUM_IP_TCP)
4300			csum_type = TX_CSUM_TCPIP;
4301		else if (m0->m_pkthdr.csum_flags & CSUM_IP_UDP)
4302			csum_type = TX_CSUM_UDPIP;
4303		else if (m0->m_pkthdr.csum_flags & CSUM_IP6_TCP)
4304			csum_type = TX_CSUM_TCPIP6;
4305		else if (m0->m_pkthdr.csum_flags & CSUM_IP6_UDP)
4306			csum_type = TX_CSUM_UDPIP6;
4307#if defined(INET)
4308		else if (m0->m_pkthdr.csum_flags & CSUM_IP) {
4309			/*
4310			 * XXX: The firmware appears to stomp on the
4311			 * fragment/flags field of the IP header when
4312			 * using TX_CSUM_IP.  Fall back to doing
4313			 * software checksums.
4314			 */
4315			u_short *sump;
4316			struct mbuf *m;
4317			int offset;
4318
4319			m = m0;
4320			offset = 0;
4321			sump = m_advance(&m, &offset, m0->m_pkthdr.l2hlen +
4322			    offsetof(struct ip, ip_sum));
4323			*sump = in_cksum_skip(m0, m0->m_pkthdr.l2hlen +
4324			    m0->m_pkthdr.l3hlen, m0->m_pkthdr.l2hlen);
4325			m0->m_pkthdr.csum_flags &= ~CSUM_IP;
4326		}
4327#endif
4328
4329		cpl = (void *)(wr + 1);
4330	}
4331
4332	/* Checksum offload */
4333	ctrl1 = 0;
4334	if (needs_l3_csum(m0) == 0)
4335		ctrl1 |= F_TXPKT_IPCSUM_DIS;
4336	if (csum_type >= 0) {
4337		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0,
4338	    ("%s: mbuf %p needs checksum offload but missing header lengths",
4339			__func__, m0));
4340
4341		if (chip_id(sc) <= CHELSIO_T5) {
4342			ctrl1 |= V_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
4343			    ETHER_HDR_LEN);
4344		} else {
4345			ctrl1 |= V_T6_TXPKT_ETHHDR_LEN(m0->m_pkthdr.l2hlen -
4346			    ETHER_HDR_LEN);
4347		}
4348		ctrl1 |= V_TXPKT_IPHDR_LEN(m0->m_pkthdr.l3hlen);
4349		ctrl1 |= V_TXPKT_CSUM_TYPE(csum_type);
4350	} else
4351		ctrl1 |= F_TXPKT_L4CSUM_DIS;
4352	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4353	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4354		txq->txcsum++;	/* some hardware assistance provided */
4355
4356	/* VLAN tag insertion */
4357	if (needs_vlan_insertion(m0)) {
4358		ctrl1 |= F_TXPKT_VLAN_VLD |
4359		    V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4360		txq->vlan_insertion++;
4361	}
4362
4363	/* CPL header */
4364	cpl->ctrl0 = txq->cpl_ctrl0;
4365	cpl->pack = 0;
4366	cpl->len = htobe16(pktlen);
4367	cpl->ctrl1 = htobe64(ctrl1);
4368
4369	/* SGL */
4370	dst = (void *)(cpl + 1);
4371
4372	/*
4373	 * A packet using TSO will use up an entire descriptor for the
4374	 * firmware work request header, LSO CPL, and TX_PKT_XT CPL.
4375	 * If this descriptor is the last descriptor in the ring, wrap
4376	 * around to the front of the ring explicitly for the start of
4377	 * the sgl.
4378	 */
4379	if (dst == (void *)&eq->desc[eq->sidx]) {
4380		dst = (void *)&eq->desc[0];
4381		write_gl_to_txd(txq, m0, &dst, 0);
4382	} else
4383		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4384	txq->sgl_wrs++;
4385
4386	txq->txpkt_wrs++;
4387
4388	txsd = &txq->sdesc[eq->pidx];
4389	txsd->m = m0;
4390	txsd->desc_used = ndesc;
4391
4392	return (ndesc);
4393}
4394
4395/*
4396 * Write a txpkt WR for this packet to the hardware descriptors, update the
4397 * software descriptor, and advance the pidx.  It is guaranteed that enough
4398 * descriptors are available.
4399 *
4400 * The return value is the # of hardware descriptors used.
4401 */
4402static u_int
4403write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr,
4404    struct mbuf *m0, u_int available)
4405{
4406	struct sge_eq *eq = &txq->eq;
4407	struct tx_sdesc *txsd;
4408	struct cpl_tx_pkt_core *cpl;
4409	uint32_t ctrl;	/* used in many unrelated places */
4410	uint64_t ctrl1;
4411	int len16, ndesc, pktlen, nsegs;
4412	caddr_t dst;
4413
4414	TXQ_LOCK_ASSERT_OWNED(txq);
4415	M_ASSERTPKTHDR(m0);
4416	MPASS(available > 0 && available < eq->sidx);
4417
4418	len16 = mbuf_len16(m0);
4419	nsegs = mbuf_nsegs(m0);
4420	pktlen = m0->m_pkthdr.len;
4421	ctrl = sizeof(struct cpl_tx_pkt_core);
4422	if (needs_tso(m0))
4423		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
4424	else if (pktlen <= imm_payload(2) && available >= 2) {
4425		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
4426		ctrl += pktlen;
4427		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
4428		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
4429		nsegs = 0;
4430	}
4431	ndesc = howmany(len16, EQ_ESIZE / 16);
4432	MPASS(ndesc <= available);
4433
4434	/* Firmware work request header */
4435	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4436	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
4437	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
4438
4439	ctrl = V_FW_WR_LEN16(len16);
4440	wr->equiq_to_len16 = htobe32(ctrl);
4441	wr->r3 = 0;
4442
4443	if (needs_tso(m0)) {
4444		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
4445
4446		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
4447		    m0->m_pkthdr.l4hlen > 0,
4448		    ("%s: mbuf %p needs TSO but missing header lengths",
4449			__func__, m0));
4450
4451		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
4452		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
4453		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
4454		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
4455			ctrl |= V_LSO_ETHHDR_LEN(1);
4456		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
4457			ctrl |= F_LSO_IPV6;
4458
4459		lso->lso_ctrl = htobe32(ctrl);
4460		lso->ipid_ofst = htobe16(0);
4461		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
4462		lso->seqno_offset = htobe32(0);
4463		lso->len = htobe32(pktlen);
4464
4465		cpl = (void *)(lso + 1);
4466
4467		txq->tso_wrs++;
4468	} else
4469		cpl = (void *)(wr + 1);
4470
4471	/* Checksum offload */
4472	ctrl1 = 0;
4473	if (needs_l3_csum(m0) == 0)
4474		ctrl1 |= F_TXPKT_IPCSUM_DIS;
4475	if (needs_l4_csum(m0) == 0)
4476		ctrl1 |= F_TXPKT_L4CSUM_DIS;
4477	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4478	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4479		txq->txcsum++;	/* some hardware assistance provided */
4480
4481	/* VLAN tag insertion */
4482	if (needs_vlan_insertion(m0)) {
4483		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4484		txq->vlan_insertion++;
4485	}
4486
4487	/* CPL header */
4488	cpl->ctrl0 = txq->cpl_ctrl0;
4489	cpl->pack = 0;
4490	cpl->len = htobe16(pktlen);
4491	cpl->ctrl1 = htobe64(ctrl1);
4492
4493	/* SGL */
4494	dst = (void *)(cpl + 1);
4495	if (nsegs > 0) {
4496
4497		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4498		txq->sgl_wrs++;
4499	} else {
4500		struct mbuf *m;
4501
4502		for (m = m0; m != NULL; m = m->m_next) {
4503			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
4504#ifdef INVARIANTS
4505			pktlen -= m->m_len;
4506#endif
4507		}
4508#ifdef INVARIANTS
4509		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
4510#endif
4511		txq->imm_wrs++;
4512	}
4513
4514	txq->txpkt_wrs++;
4515
4516	txsd = &txq->sdesc[eq->pidx];
4517	txsd->m = m0;
4518	txsd->desc_used = ndesc;
4519
4520	return (ndesc);
4521}
4522
4523static int
4524try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available)
4525{
4526	u_int needed, nsegs1, nsegs2, l1, l2;
4527
4528	if (cannot_use_txpkts(m) || cannot_use_txpkts(n))
4529		return (1);
4530
4531	nsegs1 = mbuf_nsegs(m);
4532	nsegs2 = mbuf_nsegs(n);
4533	if (nsegs1 + nsegs2 == 2) {
4534		txp->wr_type = 1;
4535		l1 = l2 = txpkts1_len16();
4536	} else {
4537		txp->wr_type = 0;
4538		l1 = txpkts0_len16(nsegs1);
4539		l2 = txpkts0_len16(nsegs2);
4540	}
4541	txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2;
4542	needed = howmany(txp->len16, EQ_ESIZE / 16);
4543	if (needed > SGE_MAX_WR_NDESC || needed > available)
4544		return (1);
4545
4546	txp->plen = m->m_pkthdr.len + n->m_pkthdr.len;
4547	if (txp->plen > 65535)
4548		return (1);
4549
4550	txp->npkt = 2;
4551	set_mbuf_len16(m, l1);
4552	set_mbuf_len16(n, l2);
4553
4554	return (0);
4555}
4556
4557static int
4558add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available)
4559{
4560	u_int plen, len16, needed, nsegs;
4561
4562	MPASS(txp->wr_type == 0 || txp->wr_type == 1);
4563
4564	nsegs = mbuf_nsegs(m);
4565	if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1))
4566		return (1);
4567
4568	plen = txp->plen + m->m_pkthdr.len;
4569	if (plen > 65535)
4570		return (1);
4571
4572	if (txp->wr_type == 0)
4573		len16 = txpkts0_len16(nsegs);
4574	else
4575		len16 = txpkts1_len16();
4576	needed = howmany(txp->len16 + len16, EQ_ESIZE / 16);
4577	if (needed > SGE_MAX_WR_NDESC || needed > available)
4578		return (1);
4579
4580	txp->npkt++;
4581	txp->plen = plen;
4582	txp->len16 += len16;
4583	set_mbuf_len16(m, len16);
4584
4585	return (0);
4586}
4587
4588/*
4589 * Write a txpkts WR for the packets in txp to the hardware descriptors, update
4590 * the software descriptor, and advance the pidx.  It is guaranteed that enough
4591 * descriptors are available.
4592 *
4593 * The return value is the # of hardware descriptors used.
4594 */
4595static u_int
4596write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr,
4597    struct mbuf *m0, const struct txpkts *txp, u_int available)
4598{
4599	struct sge_eq *eq = &txq->eq;
4600	struct tx_sdesc *txsd;
4601	struct cpl_tx_pkt_core *cpl;
4602	uint32_t ctrl;
4603	uint64_t ctrl1;
4604	int ndesc, checkwrap;
4605	struct mbuf *m;
4606	void *flitp;
4607
4608	TXQ_LOCK_ASSERT_OWNED(txq);
4609	MPASS(txp->npkt > 0);
4610	MPASS(txp->plen < 65536);
4611	MPASS(m0 != NULL);
4612	MPASS(m0->m_nextpkt != NULL);
4613	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
4614	MPASS(available > 0 && available < eq->sidx);
4615
4616	ndesc = howmany(txp->len16, EQ_ESIZE / 16);
4617	MPASS(ndesc <= available);
4618
4619	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4620	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
4621	ctrl = V_FW_WR_LEN16(txp->len16);
4622	wr->equiq_to_len16 = htobe32(ctrl);
4623	wr->plen = htobe16(txp->plen);
4624	wr->npkt = txp->npkt;
4625	wr->r3 = 0;
4626	wr->type = txp->wr_type;
4627	flitp = wr + 1;
4628
4629	/*
4630	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
4631	 * set then we know the WR is going to wrap around somewhere.  We'll
4632	 * check for that at appropriate points.
4633	 */
4634	checkwrap = eq->sidx - ndesc < eq->pidx;
4635	for (m = m0; m != NULL; m = m->m_nextpkt) {
4636		if (txp->wr_type == 0) {
4637			struct ulp_txpkt *ulpmc;
4638			struct ulptx_idata *ulpsc;
4639
4640			/* ULP master command */
4641			ulpmc = flitp;
4642			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
4643			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
4644			ulpmc->len = htobe32(mbuf_len16(m));
4645
4646			/* ULP subcommand */
4647			ulpsc = (void *)(ulpmc + 1);
4648			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
4649			    F_ULP_TX_SC_MORE);
4650			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
4651
4652			cpl = (void *)(ulpsc + 1);
4653			if (checkwrap &&
4654			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
4655				cpl = (void *)&eq->desc[0];
4656		} else {
4657			cpl = flitp;
4658		}
4659
4660		/* Checksum offload */
4661		ctrl1 = 0;
4662		if (needs_l3_csum(m) == 0)
4663			ctrl1 |= F_TXPKT_IPCSUM_DIS;
4664		if (needs_l4_csum(m) == 0)
4665			ctrl1 |= F_TXPKT_L4CSUM_DIS;
4666		if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4667		    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4668			txq->txcsum++;	/* some hardware assistance provided */
4669
4670		/* VLAN tag insertion */
4671		if (needs_vlan_insertion(m)) {
4672			ctrl1 |= F_TXPKT_VLAN_VLD |
4673			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
4674			txq->vlan_insertion++;
4675		}
4676
4677		/* CPL header */
4678		cpl->ctrl0 = txq->cpl_ctrl0;
4679		cpl->pack = 0;
4680		cpl->len = htobe16(m->m_pkthdr.len);
4681		cpl->ctrl1 = htobe64(ctrl1);
4682
4683		flitp = cpl + 1;
4684		if (checkwrap &&
4685		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
4686			flitp = (void *)&eq->desc[0];
4687
4688		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
4689
4690	}
4691
4692	if (txp->wr_type == 0) {
4693		txq->txpkts0_pkts += txp->npkt;
4694		txq->txpkts0_wrs++;
4695	} else {
4696		txq->txpkts1_pkts += txp->npkt;
4697		txq->txpkts1_wrs++;
4698	}
4699
4700	txsd = &txq->sdesc[eq->pidx];
4701	txsd->m = m0;
4702	txsd->desc_used = ndesc;
4703
4704	return (ndesc);
4705}
4706
4707/*
4708 * If the SGL ends on an address that is not 16 byte aligned, this function will
4709 * add a 0 filled flit at the end.
4710 */
4711static void
4712write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
4713{
4714	struct sge_eq *eq = &txq->eq;
4715	struct sglist *gl = txq->gl;
4716	struct sglist_seg *seg;
4717	__be64 *flitp, *wrap;
4718	struct ulptx_sgl *usgl;
4719	int i, nflits, nsegs;
4720
4721	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
4722	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
4723	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4724	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4725
4726	get_pkt_gl(m, gl);
4727	nsegs = gl->sg_nseg;
4728	MPASS(nsegs > 0);
4729
4730	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
4731	flitp = (__be64 *)(*to);
4732	wrap = (__be64 *)(&eq->desc[eq->sidx]);
4733	seg = &gl->sg_segs[0];
4734	usgl = (void *)flitp;
4735
4736	/*
4737	 * We start at a 16 byte boundary somewhere inside the tx descriptor
4738	 * ring, so we're at least 16 bytes away from the status page.  There is
4739	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
4740	 */
4741
4742	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
4743	    V_ULPTX_NSGE(nsegs));
4744	usgl->len0 = htobe32(seg->ss_len);
4745	usgl->addr0 = htobe64(seg->ss_paddr);
4746	seg++;
4747
4748	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
4749
4750		/* Won't wrap around at all */
4751
4752		for (i = 0; i < nsegs - 1; i++, seg++) {
4753			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
4754			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
4755		}
4756		if (i & 1)
4757			usgl->sge[i / 2].len[1] = htobe32(0);
4758		flitp += nflits;
4759	} else {
4760
4761		/* Will wrap somewhere in the rest of the SGL */
4762
4763		/* 2 flits already written, write the rest flit by flit */
4764		flitp = (void *)(usgl + 1);
4765		for (i = 0; i < nflits - 2; i++) {
4766			if (flitp == wrap)
4767				flitp = (void *)eq->desc;
4768			*flitp++ = get_flit(seg, nsegs - 1, i);
4769		}
4770	}
4771
4772	if (nflits & 1) {
4773		MPASS(((uintptr_t)flitp) & 0xf);
4774		*flitp++ = 0;
4775	}
4776
4777	MPASS((((uintptr_t)flitp) & 0xf) == 0);
4778	if (__predict_false(flitp == wrap))
4779		*to = (void *)eq->desc;
4780	else
4781		*to = (void *)flitp;
4782}
4783
4784static inline void
4785copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4786{
4787
4788	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4789	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4790
4791	if (__predict_true((uintptr_t)(*to) + len <=
4792	    (uintptr_t)&eq->desc[eq->sidx])) {
4793		bcopy(from, *to, len);
4794		(*to) += len;
4795	} else {
4796		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
4797
4798		bcopy(from, *to, portion);
4799		from += portion;
4800		portion = len - portion;	/* remaining */
4801		bcopy(from, (void *)eq->desc, portion);
4802		(*to) = (caddr_t)eq->desc + portion;
4803	}
4804}
4805
4806static inline void
4807ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
4808{
4809	u_int db;
4810
4811	MPASS(n > 0);
4812
4813	db = eq->doorbells;
4814	if (n > 1)
4815		clrbit(&db, DOORBELL_WCWR);
4816	wmb();
4817
4818	switch (ffs(db) - 1) {
4819	case DOORBELL_UDB:
4820		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4821		break;
4822
4823	case DOORBELL_WCWR: {
4824		volatile uint64_t *dst, *src;
4825		int i;
4826
4827		/*
4828		 * Queues whose 128B doorbell segment fits in the page do not
4829		 * use relative qid (udb_qid is always 0).  Only queues with
4830		 * doorbell segments can do WCWR.
4831		 */
4832		KASSERT(eq->udb_qid == 0 && n == 1,
4833		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4834		    __func__, eq->doorbells, n, eq->dbidx, eq));
4835
4836		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4837		    UDBS_DB_OFFSET);
4838		i = eq->dbidx;
4839		src = (void *)&eq->desc[i];
4840		while (src != (void *)&eq->desc[i + 1])
4841			*dst++ = *src++;
4842		wmb();
4843		break;
4844	}
4845
4846	case DOORBELL_UDBWC:
4847		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4848		wmb();
4849		break;
4850
4851	case DOORBELL_KDB:
4852		t4_write_reg(sc, sc->sge_kdoorbell_reg,
4853		    V_QID(eq->cntxt_id) | V_PIDX(n));
4854		break;
4855	}
4856
4857	IDXINCR(eq->dbidx, n, eq->sidx);
4858}
4859
4860static inline u_int
4861reclaimable_tx_desc(struct sge_eq *eq)
4862{
4863	uint16_t hw_cidx;
4864
4865	hw_cidx = read_hw_cidx(eq);
4866	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
4867}
4868
4869static inline u_int
4870total_available_tx_desc(struct sge_eq *eq)
4871{
4872	uint16_t hw_cidx, pidx;
4873
4874	hw_cidx = read_hw_cidx(eq);
4875	pidx = eq->pidx;
4876
4877	if (pidx == hw_cidx)
4878		return (eq->sidx - 1);
4879	else
4880		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
4881}
4882
4883static inline uint16_t
4884read_hw_cidx(struct sge_eq *eq)
4885{
4886	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
4887	uint16_t cidx = spg->cidx;	/* stable snapshot */
4888
4889	return (be16toh(cidx));
4890}
4891
4892/*
4893 * Reclaim 'n' descriptors approximately.
4894 */
4895static u_int
4896reclaim_tx_descs(struct sge_txq *txq, u_int n)
4897{
4898	struct tx_sdesc *txsd;
4899	struct sge_eq *eq = &txq->eq;
4900	u_int can_reclaim, reclaimed;
4901
4902	TXQ_LOCK_ASSERT_OWNED(txq);
4903	MPASS(n > 0);
4904
4905	reclaimed = 0;
4906	can_reclaim = reclaimable_tx_desc(eq);
4907	while (can_reclaim && reclaimed < n) {
4908		int ndesc;
4909		struct mbuf *m, *nextpkt;
4910
4911		txsd = &txq->sdesc[eq->cidx];
4912		ndesc = txsd->desc_used;
4913
4914		/* Firmware doesn't return "partial" credits. */
4915		KASSERT(can_reclaim >= ndesc,
4916		    ("%s: unexpected number of credits: %d, %d",
4917		    __func__, can_reclaim, ndesc));
4918		KASSERT(ndesc != 0,
4919		    ("%s: descriptor with no credits: cidx %d",
4920		    __func__, eq->cidx));
4921
4922		for (m = txsd->m; m != NULL; m = nextpkt) {
4923			nextpkt = m->m_nextpkt;
4924			m->m_nextpkt = NULL;
4925			m_freem(m);
4926		}
4927		reclaimed += ndesc;
4928		can_reclaim -= ndesc;
4929		IDXINCR(eq->cidx, ndesc, eq->sidx);
4930	}
4931
4932	return (reclaimed);
4933}
4934
4935static void
4936tx_reclaim(void *arg, int n)
4937{
4938	struct sge_txq *txq = arg;
4939	struct sge_eq *eq = &txq->eq;
4940
4941	do {
4942		if (TXQ_TRYLOCK(txq) == 0)
4943			break;
4944		n = reclaim_tx_descs(txq, 32);
4945		if (eq->cidx == eq->pidx)
4946			eq->equeqidx = eq->pidx;
4947		TXQ_UNLOCK(txq);
4948	} while (n > 0);
4949}
4950
4951static __be64
4952get_flit(struct sglist_seg *segs, int nsegs, int idx)
4953{
4954	int i = (idx / 3) * 2;
4955
4956	switch (idx % 3) {
4957	case 0: {
4958		uint64_t rc;
4959
4960		rc = (uint64_t)segs[i].ss_len << 32;
4961		if (i + 1 < nsegs)
4962			rc |= (uint64_t)(segs[i + 1].ss_len);
4963
4964		return (htobe64(rc));
4965	}
4966	case 1:
4967		return (htobe64(segs[i].ss_paddr));
4968	case 2:
4969		return (htobe64(segs[i + 1].ss_paddr));
4970	}
4971
4972	return (0);
4973}
4974
4975static void
4976find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
4977{
4978	int8_t zidx, hwidx, idx;
4979	uint16_t region1, region3;
4980	int spare, spare_needed, n;
4981	struct sw_zone_info *swz;
4982	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
4983
4984	/*
4985	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
4986	 * large enough for the max payload and cluster metadata.  Otherwise
4987	 * settle for the largest bufsize that leaves enough room in the cluster
4988	 * for metadata.
4989	 *
4990	 * Without buffer packing: Look for the smallest zone which has a
4991	 * bufsize large enough for the max payload.  Settle for the largest
4992	 * bufsize available if there's nothing big enough for max payload.
4993	 */
4994	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
4995	swz = &sc->sge.sw_zone_info[0];
4996	hwidx = -1;
4997	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
4998		if (swz->size > largest_rx_cluster) {
4999			if (__predict_true(hwidx != -1))
5000				break;
5001
5002			/*
5003			 * This is a misconfiguration.  largest_rx_cluster is
5004			 * preventing us from finding a refill source.  See
5005			 * dev.t5nex.<n>.buffer_sizes to figure out why.
5006			 */
5007			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
5008			    " refill source for fl %p (dma %u).  Ignored.\n",
5009			    largest_rx_cluster, fl, maxp);
5010		}
5011		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
5012			hwb = &hwb_list[idx];
5013			spare = swz->size - hwb->size;
5014			if (spare < spare_needed)
5015				continue;
5016
5017			hwidx = idx;		/* best option so far */
5018			if (hwb->size >= maxp) {
5019
5020				if ((fl->flags & FL_BUF_PACKING) == 0)
5021					goto done; /* stop looking (not packing) */
5022
5023				if (swz->size >= safest_rx_cluster)
5024					goto done; /* stop looking (packing) */
5025			}
5026			break;		/* keep looking, next zone */
5027		}
5028	}
5029done:
5030	/* A usable hwidx has been located. */
5031	MPASS(hwidx != -1);
5032	hwb = &hwb_list[hwidx];
5033	zidx = hwb->zidx;
5034	swz = &sc->sge.sw_zone_info[zidx];
5035	region1 = 0;
5036	region3 = swz->size - hwb->size;
5037
5038	/*
5039	 * Stay within this zone and see if there is a better match when mbuf
5040	 * inlining is allowed.  Remember that the hwidx's are sorted in
5041	 * decreasing order of size (so in increasing order of spare area).
5042	 */
5043	for (idx = hwidx; idx != -1; idx = hwb->next) {
5044		hwb = &hwb_list[idx];
5045		spare = swz->size - hwb->size;
5046
5047		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
5048			break;
5049
5050		/*
5051		 * Do not inline mbufs if doing so would violate the pad/pack
5052		 * boundary alignment requirement.
5053		 */
5054		if (fl_pad && (MSIZE % sc->params.sge.pad_boundary) != 0)
5055			continue;
5056		if (fl->flags & FL_BUF_PACKING &&
5057		    (MSIZE % sc->params.sge.pack_boundary) != 0)
5058			continue;
5059
5060		if (spare < CL_METADATA_SIZE + MSIZE)
5061			continue;
5062		n = (spare - CL_METADATA_SIZE) / MSIZE;
5063		if (n > howmany(hwb->size, maxp))
5064			break;
5065
5066		hwidx = idx;
5067		if (fl->flags & FL_BUF_PACKING) {
5068			region1 = n * MSIZE;
5069			region3 = spare - region1;
5070		} else {
5071			region1 = MSIZE;
5072			region3 = spare - region1;
5073			break;
5074		}
5075	}
5076
5077	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
5078	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
5079	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
5080	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
5081	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
5082	    sc->sge.sw_zone_info[zidx].size,
5083	    ("%s: bad buffer layout for fl %p, maxp %d. "
5084		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
5085		sc->sge.sw_zone_info[zidx].size, region1,
5086		sc->sge.hw_buf_info[hwidx].size, region3));
5087	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
5088		KASSERT(region3 >= CL_METADATA_SIZE,
5089		    ("%s: no room for metadata.  fl %p, maxp %d; "
5090		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
5091		    sc->sge.sw_zone_info[zidx].size, region1,
5092		    sc->sge.hw_buf_info[hwidx].size, region3));
5093		KASSERT(region1 % MSIZE == 0,
5094		    ("%s: bad mbuf region for fl %p, maxp %d. "
5095		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
5096		    sc->sge.sw_zone_info[zidx].size, region1,
5097		    sc->sge.hw_buf_info[hwidx].size, region3));
5098	}
5099
5100	fl->cll_def.zidx = zidx;
5101	fl->cll_def.hwidx = hwidx;
5102	fl->cll_def.region1 = region1;
5103	fl->cll_def.region3 = region3;
5104}
5105
5106static void
5107find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
5108{
5109	struct sge *s = &sc->sge;
5110	struct hw_buf_info *hwb;
5111	struct sw_zone_info *swz;
5112	int spare;
5113	int8_t hwidx;
5114
5115	if (fl->flags & FL_BUF_PACKING)
5116		hwidx = s->safe_hwidx2;	/* with room for metadata */
5117	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
5118		hwidx = s->safe_hwidx2;
5119		hwb = &s->hw_buf_info[hwidx];
5120		swz = &s->sw_zone_info[hwb->zidx];
5121		spare = swz->size - hwb->size;
5122
5123		/* no good if there isn't room for an mbuf as well */
5124		if (spare < CL_METADATA_SIZE + MSIZE)
5125			hwidx = s->safe_hwidx1;
5126	} else
5127		hwidx = s->safe_hwidx1;
5128
5129	if (hwidx == -1) {
5130		/* No fallback source */
5131		fl->cll_alt.hwidx = -1;
5132		fl->cll_alt.zidx = -1;
5133
5134		return;
5135	}
5136
5137	hwb = &s->hw_buf_info[hwidx];
5138	swz = &s->sw_zone_info[hwb->zidx];
5139	spare = swz->size - hwb->size;
5140	fl->cll_alt.hwidx = hwidx;
5141	fl->cll_alt.zidx = hwb->zidx;
5142	if (allow_mbufs_in_cluster &&
5143	    (fl_pad == 0 || (MSIZE % sc->params.sge.pad_boundary) == 0))
5144		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
5145	else
5146		fl->cll_alt.region1 = 0;
5147	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
5148}
5149
5150static void
5151add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
5152{
5153	mtx_lock(&sc->sfl_lock);
5154	FL_LOCK(fl);
5155	if ((fl->flags & FL_DOOMED) == 0) {
5156		fl->flags |= FL_STARVING;
5157		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
5158		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
5159	}
5160	FL_UNLOCK(fl);
5161	mtx_unlock(&sc->sfl_lock);
5162}
5163
5164static void
5165handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
5166{
5167	struct sge_wrq *wrq = (void *)eq;
5168
5169	atomic_readandclear_int(&eq->equiq);
5170	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
5171}
5172
5173static void
5174handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
5175{
5176	struct sge_txq *txq = (void *)eq;
5177
5178	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
5179
5180	atomic_readandclear_int(&eq->equiq);
5181	mp_ring_check_drainage(txq->r, 0);
5182	taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
5183}
5184
5185static int
5186handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
5187    struct mbuf *m)
5188{
5189	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
5190	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
5191	struct adapter *sc = iq->adapter;
5192	struct sge *s = &sc->sge;
5193	struct sge_eq *eq;
5194	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
5195		&handle_wrq_egr_update, &handle_eth_egr_update,
5196		&handle_wrq_egr_update};
5197
5198	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5199	    rss->opcode));
5200
5201	eq = s->eqmap[qid - s->eq_start - s->eq_base];
5202	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
5203
5204	return (0);
5205}
5206
5207/* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
5208CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
5209    offsetof(struct cpl_fw6_msg, data));
5210
5211static int
5212handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
5213{
5214	struct adapter *sc = iq->adapter;
5215	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
5216
5217	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
5218	    rss->opcode));
5219
5220	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
5221		const struct rss_header *rss2;
5222
5223		rss2 = (const struct rss_header *)&cpl->data[0];
5224		return (t4_cpl_handler[rss2->opcode](iq, rss2, m));
5225	}
5226
5227	return (t4_fw_msg_handler[cpl->type](sc, &cpl->data[0]));
5228}
5229
5230/**
5231 *	t4_handle_wrerr_rpl - process a FW work request error message
5232 *	@adap: the adapter
5233 *	@rpl: start of the FW message
5234 */
5235static int
5236t4_handle_wrerr_rpl(struct adapter *adap, const __be64 *rpl)
5237{
5238	u8 opcode = *(const u8 *)rpl;
5239	const struct fw_error_cmd *e = (const void *)rpl;
5240	unsigned int i;
5241
5242	if (opcode != FW_ERROR_CMD) {
5243		log(LOG_ERR,
5244		    "%s: Received WRERR_RPL message with opcode %#x\n",
5245		    device_get_nameunit(adap->dev), opcode);
5246		return (EINVAL);
5247	}
5248	log(LOG_ERR, "%s: FW_ERROR (%s) ", device_get_nameunit(adap->dev),
5249	    G_FW_ERROR_CMD_FATAL(be32toh(e->op_to_type)) ? "fatal" :
5250	    "non-fatal");
5251	switch (G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type))) {
5252	case FW_ERROR_TYPE_EXCEPTION:
5253		log(LOG_ERR, "exception info:\n");
5254		for (i = 0; i < nitems(e->u.exception.info); i++)
5255			log(LOG_ERR, "%s%08x", i == 0 ? "\t" : " ",
5256			    be32toh(e->u.exception.info[i]));
5257		log(LOG_ERR, "\n");
5258		break;
5259	case FW_ERROR_TYPE_HWMODULE:
5260		log(LOG_ERR, "HW module regaddr %08x regval %08x\n",
5261		    be32toh(e->u.hwmodule.regaddr),
5262		    be32toh(e->u.hwmodule.regval));
5263		break;
5264	case FW_ERROR_TYPE_WR:
5265		log(LOG_ERR, "WR cidx %d PF %d VF %d eqid %d hdr:\n",
5266		    be16toh(e->u.wr.cidx),
5267		    G_FW_ERROR_CMD_PFN(be16toh(e->u.wr.pfn_vfn)),
5268		    G_FW_ERROR_CMD_VFN(be16toh(e->u.wr.pfn_vfn)),
5269		    be32toh(e->u.wr.eqid));
5270		for (i = 0; i < nitems(e->u.wr.wrhdr); i++)
5271			log(LOG_ERR, "%s%02x", i == 0 ? "\t" : " ",
5272			    e->u.wr.wrhdr[i]);
5273		log(LOG_ERR, "\n");
5274		break;
5275	case FW_ERROR_TYPE_ACL:
5276		log(LOG_ERR, "ACL cidx %d PF %d VF %d eqid %d %s",
5277		    be16toh(e->u.acl.cidx),
5278		    G_FW_ERROR_CMD_PFN(be16toh(e->u.acl.pfn_vfn)),
5279		    G_FW_ERROR_CMD_VFN(be16toh(e->u.acl.pfn_vfn)),
5280		    be32toh(e->u.acl.eqid),
5281		    G_FW_ERROR_CMD_MV(be16toh(e->u.acl.mv_pkd)) ? "vlanid" :
5282		    "MAC");
5283		for (i = 0; i < nitems(e->u.acl.val); i++)
5284			log(LOG_ERR, " %02x", e->u.acl.val[i]);
5285		log(LOG_ERR, "\n");
5286		break;
5287	default:
5288		log(LOG_ERR, "type %#x\n",
5289		    G_FW_ERROR_CMD_TYPE(be32toh(e->op_to_type)));
5290		return (EINVAL);
5291	}
5292	return (0);
5293}
5294
5295static int
5296sysctl_uint16(SYSCTL_HANDLER_ARGS)
5297{
5298	uint16_t *id = arg1;
5299	int i = *id;
5300
5301	return sysctl_handle_int(oidp, &i, 0, req);
5302}
5303
5304static int
5305sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
5306{
5307	struct sge *s = arg1;
5308	struct hw_buf_info *hwb = &s->hw_buf_info[0];
5309	struct sw_zone_info *swz = &s->sw_zone_info[0];
5310	int i, rc;
5311	struct sbuf sb;
5312	char c;
5313
5314	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
5315	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
5316		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
5317			c = '*';
5318		else
5319			c = '\0';
5320
5321		sbuf_printf(&sb, "%u%c ", hwb->size, c);
5322	}
5323	sbuf_trim(&sb);
5324	sbuf_finish(&sb);
5325	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
5326	sbuf_delete(&sb);
5327	return (rc);
5328}
5329