t4_sge.c revision 283858
1/*-
2 * Copyright (c) 2011 Chelsio Communications, Inc.
3 * All rights reserved.
4 * Written by: Navdeep Parhar <np@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/cxgbe/t4_sge.c 283858 2015-06-01 00:55:15Z np $");
30
31#include "opt_inet.h"
32#include "opt_inet6.h"
33
34#include <sys/types.h>
35#include <sys/eventhandler.h>
36#include <sys/mbuf.h>
37#include <sys/socket.h>
38#include <sys/kernel.h>
39#include <sys/malloc.h>
40#include <sys/queue.h>
41#include <sys/sbuf.h>
42#include <sys/taskqueue.h>
43#include <sys/time.h>
44#include <sys/sglist.h>
45#include <sys/sysctl.h>
46#include <sys/smp.h>
47#include <sys/counter.h>
48#include <net/bpf.h>
49#include <net/ethernet.h>
50#include <net/if.h>
51#include <net/if_vlan_var.h>
52#include <netinet/in.h>
53#include <netinet/ip.h>
54#include <netinet/ip6.h>
55#include <netinet/tcp.h>
56#include <machine/md_var.h>
57#include <vm/vm.h>
58#include <vm/pmap.h>
59#ifdef DEV_NETMAP
60#include <machine/bus.h>
61#include <sys/selinfo.h>
62#include <net/if_var.h>
63#include <net/netmap.h>
64#include <dev/netmap/netmap_kern.h>
65#endif
66
67#include "common/common.h"
68#include "common/t4_regs.h"
69#include "common/t4_regs_values.h"
70#include "common/t4_msg.h"
71#include "t4_mp_ring.h"
72
73#ifdef T4_PKT_TIMESTAMP
74#define RX_COPY_THRESHOLD (MINCLSIZE - 8)
75#else
76#define RX_COPY_THRESHOLD MINCLSIZE
77#endif
78
79/*
80 * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
81 * 0-7 are valid values.
82 */
83int fl_pktshift = 2;
84TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
85
86/*
87 * Pad ethernet payload up to this boundary.
88 * -1: driver should figure out a good value.
89 *  0: disable padding.
90 *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
91 */
92int fl_pad = -1;
93TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
94
95/*
96 * Status page length.
97 * -1: driver should figure out a good value.
98 *  64 or 128 are the only other valid values.
99 */
100int spg_len = -1;
101TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
102
103/*
104 * Congestion drops.
105 * -1: no congestion feedback (not recommended).
106 *  0: backpressure the channel instead of dropping packets right away.
107 *  1: no backpressure, drop packets for the congested queue immediately.
108 */
109static int cong_drop = 0;
110TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
111
112/*
113 * Deliver multiple frames in the same free list buffer if they fit.
114 * -1: let the driver decide whether to enable buffer packing or not.
115 *  0: disable buffer packing.
116 *  1: enable buffer packing.
117 */
118static int buffer_packing = -1;
119TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
120
121/*
122 * Start next frame in a packed buffer at this boundary.
123 * -1: driver should figure out a good value.
124 * T4: driver will ignore this and use the same value as fl_pad above.
125 * T5: 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
126 */
127static int fl_pack = -1;
128TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
129
130/*
131 * Allow the driver to create mbuf(s) in a cluster allocated for rx.
132 * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
133 * 1: ok to create mbuf(s) within a cluster if there is room.
134 */
135static int allow_mbufs_in_cluster = 1;
136TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
137
138/*
139 * Largest rx cluster size that the driver is allowed to allocate.
140 */
141static int largest_rx_cluster = MJUM16BYTES;
142TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
143
144/*
145 * Size of cluster allocation that's most likely to succeed.  The driver will
146 * fall back to this size if it fails to allocate clusters larger than this.
147 */
148static int safest_rx_cluster = PAGE_SIZE;
149TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
150
151struct txpkts {
152	u_int wr_type;		/* type 0 or type 1 */
153	u_int npkt;		/* # of packets in this work request */
154	u_int plen;		/* total payload (sum of all packets) */
155	u_int len16;		/* # of 16B pieces used by this work request */
156};
157
158/* A packet's SGL.  This + m_pkthdr has all info needed for tx */
159struct sgl {
160	struct sglist sg;
161	struct sglist_seg seg[TX_SGL_SEGS];
162};
163
164static int service_iq(struct sge_iq *, int);
165static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t);
166static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
167static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
168static inline void init_fl(struct adapter *, struct sge_fl *, int, int, char *);
169static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t,
170    char *);
171static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
172    bus_addr_t *, void **);
173static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
174    void *);
175static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
176    int, int);
177static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
178static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
179    struct sge_fl *);
180static int alloc_fwq(struct adapter *);
181static int free_fwq(struct adapter *);
182static int alloc_mgmtq(struct adapter *);
183static int free_mgmtq(struct adapter *);
184static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int,
185    struct sysctl_oid *);
186static int free_rxq(struct port_info *, struct sge_rxq *);
187#ifdef TCP_OFFLOAD
188static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int,
189    struct sysctl_oid *);
190static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *);
191#endif
192#ifdef DEV_NETMAP
193static int alloc_nm_rxq(struct port_info *, struct sge_nm_rxq *, int, int,
194    struct sysctl_oid *);
195static int free_nm_rxq(struct port_info *, struct sge_nm_rxq *);
196static int alloc_nm_txq(struct port_info *, struct sge_nm_txq *, int, int,
197    struct sysctl_oid *);
198static int free_nm_txq(struct port_info *, struct sge_nm_txq *);
199#endif
200static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
201static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
202#ifdef TCP_OFFLOAD
203static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
204#endif
205static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *);
206static int free_eq(struct adapter *, struct sge_eq *);
207static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *,
208    struct sysctl_oid *);
209static int free_wrq(struct adapter *, struct sge_wrq *);
210static int alloc_txq(struct port_info *, struct sge_txq *, int,
211    struct sysctl_oid *);
212static int free_txq(struct port_info *, struct sge_txq *);
213static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
214static inline void ring_fl_db(struct adapter *, struct sge_fl *);
215static int refill_fl(struct adapter *, struct sge_fl *, int);
216static void refill_sfl(void *);
217static int alloc_fl_sdesc(struct sge_fl *);
218static void free_fl_sdesc(struct adapter *, struct sge_fl *);
219static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
220static void find_safe_refill_source(struct adapter *, struct sge_fl *);
221static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
222
223static inline void get_pkt_gl(struct mbuf *, struct sglist *);
224static inline u_int txpkt_len16(u_int, u_int);
225static inline u_int txpkts0_len16(u_int);
226static inline u_int txpkts1_len16(void);
227static u_int write_txpkt_wr(struct sge_txq *, struct fw_eth_tx_pkt_wr *,
228    struct mbuf *, u_int);
229static int try_txpkts(struct mbuf *, struct mbuf *, struct txpkts *, u_int);
230static int add_to_txpkts(struct mbuf *, struct txpkts *, u_int);
231static u_int write_txpkts_wr(struct sge_txq *, struct fw_eth_tx_pkts_wr *,
232    struct mbuf *, const struct txpkts *, u_int);
233static void write_gl_to_txd(struct sge_txq *, struct mbuf *, caddr_t *, int);
234static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
235static inline void ring_eq_db(struct adapter *, struct sge_eq *, u_int);
236static inline uint16_t read_hw_cidx(struct sge_eq *);
237static inline u_int reclaimable_tx_desc(struct sge_eq *);
238static inline u_int total_available_tx_desc(struct sge_eq *);
239static u_int reclaim_tx_descs(struct sge_txq *, u_int);
240static void tx_reclaim(void *, int);
241static __be64 get_flit(struct sglist_seg *, int, int);
242static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
243    struct mbuf *);
244static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
245    struct mbuf *);
246static void wrq_tx_drain(void *, int);
247static void drain_wrq_wr_list(struct adapter *, struct sge_wrq *);
248
249static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
250static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
251
252static counter_u64_t extfree_refs;
253static counter_u64_t extfree_rels;
254
255/*
256 * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
257 */
258void
259t4_sge_modload(void)
260{
261
262	if (fl_pktshift < 0 || fl_pktshift > 7) {
263		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
264		    " using 2 instead.\n", fl_pktshift);
265		fl_pktshift = 2;
266	}
267
268	if (spg_len != 64 && spg_len != 128) {
269		int len;
270
271#if defined(__i386__) || defined(__amd64__)
272		len = cpu_clflush_line_size > 64 ? 128 : 64;
273#else
274		len = 64;
275#endif
276		if (spg_len != -1) {
277			printf("Invalid hw.cxgbe.spg_len value (%d),"
278			    " using %d instead.\n", spg_len, len);
279		}
280		spg_len = len;
281	}
282
283	if (cong_drop < -1 || cong_drop > 1) {
284		printf("Invalid hw.cxgbe.cong_drop value (%d),"
285		    " using 0 instead.\n", cong_drop);
286		cong_drop = 0;
287	}
288
289	extfree_refs = counter_u64_alloc(M_WAITOK);
290	extfree_rels = counter_u64_alloc(M_WAITOK);
291	counter_u64_zero(extfree_refs);
292	counter_u64_zero(extfree_rels);
293}
294
295void
296t4_sge_modunload(void)
297{
298
299	counter_u64_free(extfree_refs);
300	counter_u64_free(extfree_rels);
301}
302
303uint64_t
304t4_sge_extfree_refs(void)
305{
306	uint64_t refs, rels;
307
308	rels = counter_u64_fetch(extfree_rels);
309	refs = counter_u64_fetch(extfree_refs);
310
311	return (refs - rels);
312}
313
314void
315t4_init_sge_cpl_handlers(struct adapter *sc)
316{
317
318	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
319	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
320	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
321	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
322	t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
323}
324
325static inline void
326setup_pad_and_pack_boundaries(struct adapter *sc)
327{
328	uint32_t v, m;
329	int pad, pack;
330
331	pad = fl_pad;
332	if (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad)) {
333		/*
334		 * If there is any chance that we might use buffer packing and
335		 * the chip is a T4, then pick 64 as the pad/pack boundary.  Set
336		 * it to 32 in all other cases.
337		 */
338		pad = is_t4(sc) && buffer_packing ? 64 : 32;
339
340		/*
341		 * For fl_pad = 0 we'll still write a reasonable value to the
342		 * register but all the freelists will opt out of padding.
343		 * We'll complain here only if the user tried to set it to a
344		 * value greater than 0 that was invalid.
345		 */
346		if (fl_pad > 0) {
347			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pad value"
348			    " (%d), using %d instead.\n", fl_pad, pad);
349		}
350	}
351	m = V_INGPADBOUNDARY(M_INGPADBOUNDARY);
352	v = V_INGPADBOUNDARY(ilog2(pad) - 5);
353	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
354
355	if (is_t4(sc)) {
356		if (fl_pack != -1 && fl_pack != pad) {
357			/* Complain but carry on. */
358			device_printf(sc->dev, "hw.cxgbe.fl_pack (%d) ignored,"
359			    " using %d instead.\n", fl_pack, pad);
360		}
361		return;
362	}
363
364	pack = fl_pack;
365	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
366	    !powerof2(fl_pack)) {
367		pack = max(sc->params.pci.mps, CACHE_LINE_SIZE);
368		MPASS(powerof2(pack));
369		if (pack < 16)
370			pack = 16;
371		if (pack == 32)
372			pack = 64;
373		if (pack > 4096)
374			pack = 4096;
375		if (fl_pack != -1) {
376			device_printf(sc->dev, "Invalid hw.cxgbe.fl_pack value"
377			    " (%d), using %d instead.\n", fl_pack, pack);
378		}
379	}
380	m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
381	if (pack == 16)
382		v = V_INGPACKBOUNDARY(0);
383	else
384		v = V_INGPACKBOUNDARY(ilog2(pack) - 5);
385
386	MPASS(!is_t4(sc));	/* T4 doesn't have SGE_CONTROL2 */
387	t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
388}
389
390/*
391 * adap->params.vpd.cclk must be set up before this is called.
392 */
393void
394t4_tweak_chip_settings(struct adapter *sc)
395{
396	int i;
397	uint32_t v, m;
398	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
399	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
400	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
401	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
402	static int sge_flbuf_sizes[] = {
403		MCLBYTES,
404#if MJUMPAGESIZE != MCLBYTES
405		MJUMPAGESIZE,
406		MJUMPAGESIZE - CL_METADATA_SIZE,
407		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
408#endif
409		MJUM9BYTES,
410		MJUM16BYTES,
411		MCLBYTES - MSIZE - CL_METADATA_SIZE,
412		MJUM9BYTES - CL_METADATA_SIZE,
413		MJUM16BYTES - CL_METADATA_SIZE,
414	};
415
416	KASSERT(sc->flags & MASTER_PF,
417	    ("%s: trying to change chip settings when not master.", __func__));
418
419	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
420	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
421	    V_EGRSTATUSPAGESIZE(spg_len == 128);
422	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
423
424	setup_pad_and_pack_boundaries(sc);
425
426	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
427	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
428	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
429	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
430	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
431	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
432	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
433	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
434	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
435
436	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
437	    ("%s: hw buffer size table too big", __func__));
438	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
439		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
440		    sge_flbuf_sizes[i]);
441	}
442
443	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
444	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
445	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
446
447	KASSERT(intr_timer[0] <= timer_max,
448	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
449	    timer_max));
450	for (i = 1; i < nitems(intr_timer); i++) {
451		KASSERT(intr_timer[i] >= intr_timer[i - 1],
452		    ("%s: timers not listed in increasing order (%d)",
453		    __func__, i));
454
455		while (intr_timer[i] > timer_max) {
456			if (i == nitems(intr_timer) - 1) {
457				intr_timer[i] = timer_max;
458				break;
459			}
460			intr_timer[i] += intr_timer[i - 1];
461			intr_timer[i] /= 2;
462		}
463	}
464
465	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
466	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
467	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
468	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
469	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
470	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
471	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
472	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
473	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
474
475	if (cong_drop == 0) {
476		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
477		    F_TUNNELCNGDROP3;
478		t4_set_reg_field(sc, A_TP_PARA_REG3, m, 0);
479	}
480
481	/* 4K, 16K, 64K, 256K DDP "page sizes" */
482	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
483	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
484
485	m = v = F_TDDPTAGTCB;
486	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
487
488	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
489	    F_RESETDDPOFFSET;
490	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
491	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
492}
493
494/*
495 * SGE wants the buffer to be at least 64B and then a multiple of 16.  If
496 * padding is is use the buffer's start and end need to be aligned to the pad
497 * boundary as well.  We'll just make sure that the size is a multiple of the
498 * boundary here, it is up to the buffer allocation code to make sure the start
499 * of the buffer is aligned as well.
500 */
501static inline int
502hwsz_ok(struct adapter *sc, int hwsz)
503{
504	int mask = fl_pad ? sc->sge.pad_boundary - 1 : 16 - 1;
505
506	return (hwsz >= 64 && (hwsz & mask) == 0);
507}
508
509/*
510 * XXX: driver really should be able to deal with unexpected settings.
511 */
512int
513t4_read_chip_settings(struct adapter *sc)
514{
515	struct sge *s = &sc->sge;
516	int i, j, n, rc = 0;
517	uint32_t m, v, r;
518	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
519	static int sw_buf_sizes[] = {	/* Sorted by size */
520		MCLBYTES,
521#if MJUMPAGESIZE != MCLBYTES
522		MJUMPAGESIZE,
523#endif
524		MJUM9BYTES,
525		MJUM16BYTES
526	};
527	struct sw_zone_info *swz, *safe_swz;
528	struct hw_buf_info *hwb;
529
530	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
531	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
532	    V_EGRSTATUSPAGESIZE(spg_len == 128);
533	r = t4_read_reg(sc, A_SGE_CONTROL);
534	if ((r & m) != v) {
535		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
536		rc = EINVAL;
537	}
538	s->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 5);
539
540	if (is_t4(sc))
541		s->pack_boundary = s->pad_boundary;
542	else {
543		r = t4_read_reg(sc, A_SGE_CONTROL2);
544		if (G_INGPACKBOUNDARY(r) == 0)
545			s->pack_boundary = 16;
546		else
547			s->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
548	}
549
550	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
551	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
552	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
553	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
554	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
555	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
556	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
557	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
558	r = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE);
559	if (r != v) {
560		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
561		rc = EINVAL;
562	}
563
564	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
565	hwb = &s->hw_buf_info[0];
566	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
567		r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
568		hwb->size = r;
569		hwb->zidx = hwsz_ok(sc, r) ? -1 : -2;
570		hwb->next = -1;
571	}
572
573	/*
574	 * Create a sorted list in decreasing order of hw buffer sizes (and so
575	 * increasing order of spare area) for each software zone.
576	 *
577	 * If padding is enabled then the start and end of the buffer must align
578	 * to the pad boundary; if packing is enabled then they must align with
579	 * the pack boundary as well.  Allocations from the cluster zones are
580	 * aligned to min(size, 4K), so the buffer starts at that alignment and
581	 * ends at hwb->size alignment.  If mbuf inlining is allowed the
582	 * starting alignment will be reduced to MSIZE and the driver will
583	 * exercise appropriate caution when deciding on the best buffer layout
584	 * to use.
585	 */
586	n = 0;	/* no usable buffer size to begin with */
587	swz = &s->sw_zone_info[0];
588	safe_swz = NULL;
589	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
590		int8_t head = -1, tail = -1;
591
592		swz->size = sw_buf_sizes[i];
593		swz->zone = m_getzone(swz->size);
594		swz->type = m_gettype(swz->size);
595
596		if (swz->size < PAGE_SIZE) {
597			MPASS(powerof2(swz->size));
598			if (fl_pad && (swz->size % sc->sge.pad_boundary != 0))
599				continue;
600		}
601
602		if (swz->size == safest_rx_cluster)
603			safe_swz = swz;
604
605		hwb = &s->hw_buf_info[0];
606		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
607			if (hwb->zidx != -1 || hwb->size > swz->size)
608				continue;
609#ifdef INVARIANTS
610			if (fl_pad)
611				MPASS(hwb->size % sc->sge.pad_boundary == 0);
612#endif
613			hwb->zidx = i;
614			if (head == -1)
615				head = tail = j;
616			else if (hwb->size < s->hw_buf_info[tail].size) {
617				s->hw_buf_info[tail].next = j;
618				tail = j;
619			} else {
620				int8_t *cur;
621				struct hw_buf_info *t;
622
623				for (cur = &head; *cur != -1; cur = &t->next) {
624					t = &s->hw_buf_info[*cur];
625					if (hwb->size == t->size) {
626						hwb->zidx = -2;
627						break;
628					}
629					if (hwb->size > t->size) {
630						hwb->next = *cur;
631						*cur = j;
632						break;
633					}
634				}
635			}
636		}
637		swz->head_hwidx = head;
638		swz->tail_hwidx = tail;
639
640		if (tail != -1) {
641			n++;
642			if (swz->size - s->hw_buf_info[tail].size >=
643			    CL_METADATA_SIZE)
644				sc->flags |= BUF_PACKING_OK;
645		}
646	}
647	if (n == 0) {
648		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
649		rc = EINVAL;
650	}
651
652	s->safe_hwidx1 = -1;
653	s->safe_hwidx2 = -1;
654	if (safe_swz != NULL) {
655		s->safe_hwidx1 = safe_swz->head_hwidx;
656		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
657			int spare;
658
659			hwb = &s->hw_buf_info[i];
660#ifdef INVARIANTS
661			if (fl_pad)
662				MPASS(hwb->size % sc->sge.pad_boundary == 0);
663#endif
664			spare = safe_swz->size - hwb->size;
665			if (spare >= CL_METADATA_SIZE) {
666				s->safe_hwidx2 = i;
667				break;
668			}
669		}
670	}
671
672	r = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD);
673	s->counter_val[0] = G_THRESHOLD_0(r);
674	s->counter_val[1] = G_THRESHOLD_1(r);
675	s->counter_val[2] = G_THRESHOLD_2(r);
676	s->counter_val[3] = G_THRESHOLD_3(r);
677
678	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1);
679	s->timer_val[0] = G_TIMERVALUE0(r) / core_ticks_per_usec(sc);
680	s->timer_val[1] = G_TIMERVALUE1(r) / core_ticks_per_usec(sc);
681	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3);
682	s->timer_val[2] = G_TIMERVALUE2(r) / core_ticks_per_usec(sc);
683	s->timer_val[3] = G_TIMERVALUE3(r) / core_ticks_per_usec(sc);
684	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5);
685	s->timer_val[4] = G_TIMERVALUE4(r) / core_ticks_per_usec(sc);
686	s->timer_val[5] = G_TIMERVALUE5(r) / core_ticks_per_usec(sc);
687
688	if (cong_drop == 0) {
689		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
690		    F_TUNNELCNGDROP3;
691		r = t4_read_reg(sc, A_TP_PARA_REG3);
692		if (r & m) {
693			device_printf(sc->dev,
694			    "invalid TP_PARA_REG3(0x%x)\n", r);
695			rc = EINVAL;
696		}
697	}
698
699	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
700	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
701	if (r != v) {
702		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
703		rc = EINVAL;
704	}
705
706	m = v = F_TDDPTAGTCB;
707	r = t4_read_reg(sc, A_ULP_RX_CTL);
708	if ((r & m) != v) {
709		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
710		rc = EINVAL;
711	}
712
713	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
714	    F_RESETDDPOFFSET;
715	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
716	r = t4_read_reg(sc, A_TP_PARA_REG5);
717	if ((r & m) != v) {
718		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
719		rc = EINVAL;
720	}
721
722	r = t4_read_reg(sc, A_SGE_CONM_CTRL);
723	s->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
724	if (is_t4(sc))
725		s->fl_starve_threshold2 = s->fl_starve_threshold;
726	else
727		s->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
728
729	/* egress queues: log2 of # of doorbells per BAR2 page */
730	r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
731	r >>= S_QUEUESPERPAGEPF0 +
732	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
733	s->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
734
735	/* ingress queues: log2 of # of doorbells per BAR2 page */
736	r = t4_read_reg(sc, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
737	r >>= S_QUEUESPERPAGEPF0 +
738	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
739	s->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
740
741	t4_init_tp_params(sc);
742
743	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
744	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
745
746	return (rc);
747}
748
749int
750t4_create_dma_tag(struct adapter *sc)
751{
752	int rc;
753
754	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
755	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
756	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
757	    NULL, &sc->dmat);
758	if (rc != 0) {
759		device_printf(sc->dev,
760		    "failed to create main DMA tag: %d\n", rc);
761	}
762
763	return (rc);
764}
765
766void
767t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
768    struct sysctl_oid_list *children)
769{
770
771	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
772	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
773	    "freelist buffer sizes");
774
775	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
776	    NULL, fl_pktshift, "payload DMA offset in rx buffer (bytes)");
777
778	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
779	    NULL, sc->sge.pad_boundary, "payload pad boundary (bytes)");
780
781	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
782	    NULL, spg_len, "status page size (bytes)");
783
784	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
785	    NULL, cong_drop, "congestion drop setting");
786
787	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
788	    NULL, sc->sge.pack_boundary, "payload pack boundary (bytes)");
789}
790
791int
792t4_destroy_dma_tag(struct adapter *sc)
793{
794	if (sc->dmat)
795		bus_dma_tag_destroy(sc->dmat);
796
797	return (0);
798}
799
800/*
801 * Allocate and initialize the firmware event queue and the management queue.
802 *
803 * Returns errno on failure.  Resources allocated up to that point may still be
804 * allocated.  Caller is responsible for cleanup in case this function fails.
805 */
806int
807t4_setup_adapter_queues(struct adapter *sc)
808{
809	int rc;
810
811	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
812
813	sysctl_ctx_init(&sc->ctx);
814	sc->flags |= ADAP_SYSCTL_CTX;
815
816	/*
817	 * Firmware event queue
818	 */
819	rc = alloc_fwq(sc);
820	if (rc != 0)
821		return (rc);
822
823	/*
824	 * Management queue.  This is just a control queue that uses the fwq as
825	 * its associated iq.
826	 */
827	rc = alloc_mgmtq(sc);
828
829	return (rc);
830}
831
832/*
833 * Idempotent
834 */
835int
836t4_teardown_adapter_queues(struct adapter *sc)
837{
838
839	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
840
841	/* Do this before freeing the queue */
842	if (sc->flags & ADAP_SYSCTL_CTX) {
843		sysctl_ctx_free(&sc->ctx);
844		sc->flags &= ~ADAP_SYSCTL_CTX;
845	}
846
847	free_mgmtq(sc);
848	free_fwq(sc);
849
850	return (0);
851}
852
853static inline int
854port_intr_count(struct port_info *pi)
855{
856	int rc = 0;
857
858	if (pi->flags & INTR_RXQ)
859		rc += pi->nrxq;
860#ifdef TCP_OFFLOAD
861	if (pi->flags & INTR_OFLD_RXQ)
862		rc += pi->nofldrxq;
863#endif
864#ifdef DEV_NETMAP
865	if (pi->flags & INTR_NM_RXQ)
866		rc += pi->nnmrxq;
867#endif
868	return (rc);
869}
870
871static inline int
872first_vector(struct port_info *pi)
873{
874	struct adapter *sc = pi->adapter;
875	int rc = T4_EXTRA_INTR, i;
876
877	if (sc->intr_count == 1)
878		return (0);
879
880	for_each_port(sc, i) {
881		if (i == pi->port_id)
882			break;
883
884		rc += port_intr_count(sc->port[i]);
885	}
886
887	return (rc);
888}
889
890/*
891 * Given an arbitrary "index," come up with an iq that can be used by other
892 * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
893 * The iq returned is guaranteed to be something that takes direct interrupts.
894 */
895static struct sge_iq *
896port_intr_iq(struct port_info *pi, int idx)
897{
898	struct adapter *sc = pi->adapter;
899	struct sge *s = &sc->sge;
900	struct sge_iq *iq = NULL;
901	int nintr, i;
902
903	if (sc->intr_count == 1)
904		return (&sc->sge.fwq);
905
906	nintr = port_intr_count(pi);
907	KASSERT(nintr != 0,
908	    ("%s: pi %p has no exclusive interrupts, total interrupts = %d",
909	    __func__, pi, sc->intr_count));
910#ifdef DEV_NETMAP
911	/* Exclude netmap queues as they can't take anyone else's interrupts */
912	if (pi->flags & INTR_NM_RXQ)
913		nintr -= pi->nnmrxq;
914	KASSERT(nintr > 0,
915	    ("%s: pi %p has nintr %d after netmap adjustment of %d", __func__,
916	    pi, nintr, pi->nnmrxq));
917#endif
918	i = idx % nintr;
919
920	if (pi->flags & INTR_RXQ) {
921	       	if (i < pi->nrxq) {
922			iq = &s->rxq[pi->first_rxq + i].iq;
923			goto done;
924		}
925		i -= pi->nrxq;
926	}
927#ifdef TCP_OFFLOAD
928	if (pi->flags & INTR_OFLD_RXQ) {
929	       	if (i < pi->nofldrxq) {
930			iq = &s->ofld_rxq[pi->first_ofld_rxq + i].iq;
931			goto done;
932		}
933		i -= pi->nofldrxq;
934	}
935#endif
936	panic("%s: pi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__,
937	    pi, pi->flags & INTR_ALL, idx, nintr);
938done:
939	MPASS(iq != NULL);
940	KASSERT(iq->flags & IQ_INTR,
941	    ("%s: iq %p (port %p, intr_flags 0x%lx, idx %d)", __func__, iq, pi,
942	    pi->flags & INTR_ALL, idx));
943	return (iq);
944}
945
946/* Maximum payload that can be delivered with a single iq descriptor */
947static inline int
948mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
949{
950	int payload;
951
952#ifdef TCP_OFFLOAD
953	if (toe) {
954		payload = sc->tt.rx_coalesce ?
955		    G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu;
956	} else {
957#endif
958		/* large enough even when hw VLAN extraction is disabled */
959		payload = fl_pktshift + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
960		    mtu;
961#ifdef TCP_OFFLOAD
962	}
963#endif
964
965	return (payload);
966}
967
968int
969t4_setup_port_queues(struct port_info *pi)
970{
971	int rc = 0, i, j, intr_idx, iqid;
972	struct sge_rxq *rxq;
973	struct sge_txq *txq;
974	struct sge_wrq *ctrlq;
975#ifdef TCP_OFFLOAD
976	struct sge_ofld_rxq *ofld_rxq;
977	struct sge_wrq *ofld_txq;
978#endif
979#ifdef DEV_NETMAP
980	struct sge_nm_rxq *nm_rxq;
981	struct sge_nm_txq *nm_txq;
982#endif
983	char name[16];
984	struct adapter *sc = pi->adapter;
985	struct ifnet *ifp = pi->ifp;
986	struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
987	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
988	int maxp, mtu = ifp->if_mtu;
989
990	/* Interrupt vector to start from (when using multiple vectors) */
991	intr_idx = first_vector(pi);
992
993	/*
994	 * First pass over all NIC and TOE rx queues:
995	 * a) initialize iq and fl
996	 * b) allocate queue iff it will take direct interrupts.
997	 */
998	maxp = mtu_to_max_payload(sc, mtu, 0);
999	if (pi->flags & INTR_RXQ) {
1000		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq",
1001		    CTLFLAG_RD, NULL, "rx queues");
1002	}
1003	for_each_rxq(pi, i, rxq) {
1004
1005		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq);
1006
1007		snprintf(name, sizeof(name), "%s rxq%d-fl",
1008		    device_get_nameunit(pi->dev), i);
1009		init_fl(sc, &rxq->fl, pi->qsize_rxq / 8, maxp, name);
1010
1011		if (pi->flags & INTR_RXQ) {
1012			rxq->iq.flags |= IQ_INTR;
1013			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
1014			if (rc != 0)
1015				goto done;
1016			intr_idx++;
1017		}
1018	}
1019#ifdef TCP_OFFLOAD
1020	maxp = mtu_to_max_payload(sc, mtu, 1);
1021	if (is_offload(sc) && pi->flags & INTR_OFLD_RXQ) {
1022		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
1023		    CTLFLAG_RD, NULL,
1024		    "rx queues for offloaded TCP connections");
1025	}
1026	for_each_ofld_rxq(pi, i, ofld_rxq) {
1027
1028		init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
1029		    pi->qsize_rxq);
1030
1031		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1032		    device_get_nameunit(pi->dev), i);
1033		init_fl(sc, &ofld_rxq->fl, pi->qsize_rxq / 8, maxp, name);
1034
1035		if (pi->flags & INTR_OFLD_RXQ) {
1036			ofld_rxq->iq.flags |= IQ_INTR;
1037			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid);
1038			if (rc != 0)
1039				goto done;
1040			intr_idx++;
1041		}
1042	}
1043#endif
1044#ifdef DEV_NETMAP
1045	/*
1046	 * We don't have buffers to back the netmap rx queues right now so we
1047	 * create the queues in a way that doesn't set off any congestion signal
1048	 * in the chip.
1049	 */
1050	if (pi->flags & INTR_NM_RXQ) {
1051		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_rxq",
1052		    CTLFLAG_RD, NULL, "rx queues for netmap");
1053		for_each_nm_rxq(pi, i, nm_rxq) {
1054			rc = alloc_nm_rxq(pi, nm_rxq, intr_idx, i, oid);
1055			if (rc != 0)
1056				goto done;
1057			intr_idx++;
1058		}
1059	}
1060#endif
1061
1062	/*
1063	 * Second pass over all NIC and TOE rx queues.  The queues forwarding
1064	 * their interrupts are allocated now.
1065	 */
1066	j = 0;
1067	if (!(pi->flags & INTR_RXQ)) {
1068		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq",
1069		    CTLFLAG_RD, NULL, "rx queues");
1070		for_each_rxq(pi, i, rxq) {
1071			MPASS(!(rxq->iq.flags & IQ_INTR));
1072
1073			intr_idx = port_intr_iq(pi, j)->abs_id;
1074
1075			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
1076			if (rc != 0)
1077				goto done;
1078			j++;
1079		}
1080	}
1081#ifdef TCP_OFFLOAD
1082	if (is_offload(sc) && !(pi->flags & INTR_OFLD_RXQ)) {
1083		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
1084		    CTLFLAG_RD, NULL,
1085		    "rx queues for offloaded TCP connections");
1086		for_each_ofld_rxq(pi, i, ofld_rxq) {
1087			MPASS(!(ofld_rxq->iq.flags & IQ_INTR));
1088
1089			intr_idx = port_intr_iq(pi, j)->abs_id;
1090
1091			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid);
1092			if (rc != 0)
1093				goto done;
1094			j++;
1095		}
1096	}
1097#endif
1098#ifdef DEV_NETMAP
1099	if (!(pi->flags & INTR_NM_RXQ))
1100		CXGBE_UNIMPLEMENTED(__func__);
1101#endif
1102
1103	/*
1104	 * Now the tx queues.  Only one pass needed.
1105	 */
1106	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1107	    NULL, "tx queues");
1108	j = 0;
1109	for_each_txq(pi, i, txq) {
1110		iqid = port_intr_iq(pi, j)->cntxt_id;
1111		snprintf(name, sizeof(name), "%s txq%d",
1112		    device_get_nameunit(pi->dev), i);
1113		init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid,
1114		    name);
1115
1116		rc = alloc_txq(pi, txq, i, oid);
1117		if (rc != 0)
1118			goto done;
1119		j++;
1120	}
1121#ifdef TCP_OFFLOAD
1122	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq",
1123	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
1124	for_each_ofld_txq(pi, i, ofld_txq) {
1125		struct sysctl_oid *oid2;
1126
1127		iqid = port_intr_iq(pi, j)->cntxt_id;
1128		snprintf(name, sizeof(name), "%s ofld_txq%d",
1129		    device_get_nameunit(pi->dev), i);
1130		init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan,
1131		    iqid, name);
1132
1133		snprintf(name, sizeof(name), "%d", i);
1134		oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1135		    name, CTLFLAG_RD, NULL, "offload tx queue");
1136
1137		rc = alloc_wrq(sc, pi, ofld_txq, oid2);
1138		if (rc != 0)
1139			goto done;
1140		j++;
1141	}
1142#endif
1143#ifdef DEV_NETMAP
1144	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_txq",
1145	    CTLFLAG_RD, NULL, "tx queues for netmap use");
1146	for_each_nm_txq(pi, i, nm_txq) {
1147		iqid = pi->first_nm_rxq + (j % pi->nnmrxq);
1148		rc = alloc_nm_txq(pi, nm_txq, iqid, i, oid);
1149		if (rc != 0)
1150			goto done;
1151		j++;
1152	}
1153#endif
1154
1155	/*
1156	 * Finally, the control queue.
1157	 */
1158	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
1159	    NULL, "ctrl queue");
1160	ctrlq = &sc->sge.ctrlq[pi->port_id];
1161	iqid = port_intr_iq(pi, 0)->cntxt_id;
1162	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev));
1163	init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name);
1164	rc = alloc_wrq(sc, pi, ctrlq, oid);
1165
1166done:
1167	if (rc)
1168		t4_teardown_port_queues(pi);
1169
1170	return (rc);
1171}
1172
1173/*
1174 * Idempotent
1175 */
1176int
1177t4_teardown_port_queues(struct port_info *pi)
1178{
1179	int i;
1180	struct adapter *sc = pi->adapter;
1181	struct sge_rxq *rxq;
1182	struct sge_txq *txq;
1183#ifdef TCP_OFFLOAD
1184	struct sge_ofld_rxq *ofld_rxq;
1185	struct sge_wrq *ofld_txq;
1186#endif
1187#ifdef DEV_NETMAP
1188	struct sge_nm_rxq *nm_rxq;
1189	struct sge_nm_txq *nm_txq;
1190#endif
1191
1192	/* Do this before freeing the queues */
1193	if (pi->flags & PORT_SYSCTL_CTX) {
1194		sysctl_ctx_free(&pi->ctx);
1195		pi->flags &= ~PORT_SYSCTL_CTX;
1196	}
1197
1198	/*
1199	 * Take down all the tx queues first, as they reference the rx queues
1200	 * (for egress updates, etc.).
1201	 */
1202
1203	free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1204
1205	for_each_txq(pi, i, txq) {
1206		free_txq(pi, txq);
1207	}
1208#ifdef TCP_OFFLOAD
1209	for_each_ofld_txq(pi, i, ofld_txq) {
1210		free_wrq(sc, ofld_txq);
1211	}
1212#endif
1213#ifdef DEV_NETMAP
1214	for_each_nm_txq(pi, i, nm_txq)
1215	    free_nm_txq(pi, nm_txq);
1216#endif
1217
1218	/*
1219	 * Then take down the rx queues that forward their interrupts, as they
1220	 * reference other rx queues.
1221	 */
1222
1223	for_each_rxq(pi, i, rxq) {
1224		if ((rxq->iq.flags & IQ_INTR) == 0)
1225			free_rxq(pi, rxq);
1226	}
1227#ifdef TCP_OFFLOAD
1228	for_each_ofld_rxq(pi, i, ofld_rxq) {
1229		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
1230			free_ofld_rxq(pi, ofld_rxq);
1231	}
1232#endif
1233#ifdef DEV_NETMAP
1234	for_each_nm_rxq(pi, i, nm_rxq)
1235	    free_nm_rxq(pi, nm_rxq);
1236#endif
1237
1238	/*
1239	 * Then take down the rx queues that take direct interrupts.
1240	 */
1241
1242	for_each_rxq(pi, i, rxq) {
1243		if (rxq->iq.flags & IQ_INTR)
1244			free_rxq(pi, rxq);
1245	}
1246#ifdef TCP_OFFLOAD
1247	for_each_ofld_rxq(pi, i, ofld_rxq) {
1248		if (ofld_rxq->iq.flags & IQ_INTR)
1249			free_ofld_rxq(pi, ofld_rxq);
1250	}
1251#endif
1252
1253	return (0);
1254}
1255
1256/*
1257 * Deals with errors and the firmware event queue.  All data rx queues forward
1258 * their interrupt to the firmware event queue.
1259 */
1260void
1261t4_intr_all(void *arg)
1262{
1263	struct adapter *sc = arg;
1264	struct sge_iq *fwq = &sc->sge.fwq;
1265
1266	t4_intr_err(arg);
1267	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1268		service_iq(fwq, 0);
1269		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1270	}
1271}
1272
1273/* Deals with error interrupts */
1274void
1275t4_intr_err(void *arg)
1276{
1277	struct adapter *sc = arg;
1278
1279	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1280	t4_slow_intr_handler(sc);
1281}
1282
1283void
1284t4_intr_evt(void *arg)
1285{
1286	struct sge_iq *iq = arg;
1287
1288	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1289		service_iq(iq, 0);
1290		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1291	}
1292}
1293
1294void
1295t4_intr(void *arg)
1296{
1297	struct sge_iq *iq = arg;
1298
1299	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1300		service_iq(iq, 0);
1301		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1302	}
1303}
1304
1305/*
1306 * Deals with anything and everything on the given ingress queue.
1307 */
1308static int
1309service_iq(struct sge_iq *iq, int budget)
1310{
1311	struct sge_iq *q;
1312	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1313	struct sge_fl *fl;			/* Use iff IQ_HAS_FL */
1314	struct adapter *sc = iq->adapter;
1315	struct iq_desc *d = &iq->desc[iq->cidx];
1316	int ndescs = 0, limit;
1317	int rsp_type, refill;
1318	uint32_t lq;
1319	uint16_t fl_hw_cidx;
1320	struct mbuf *m0;
1321	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1322#if defined(INET) || defined(INET6)
1323	const struct timeval lro_timeout = {0, sc->lro_timeout};
1324#endif
1325
1326	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1327
1328	limit = budget ? budget : iq->qsize / 16;
1329
1330	if (iq->flags & IQ_HAS_FL) {
1331		fl = &rxq->fl;
1332		fl_hw_cidx = fl->hw_cidx;	/* stable snapshot */
1333	} else {
1334		fl = NULL;
1335		fl_hw_cidx = 0;			/* to silence gcc warning */
1336	}
1337
1338	/*
1339	 * We always come back and check the descriptor ring for new indirect
1340	 * interrupts and other responses after running a single handler.
1341	 */
1342	for (;;) {
1343		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1344
1345			rmb();
1346
1347			refill = 0;
1348			m0 = NULL;
1349			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1350			lq = be32toh(d->rsp.pldbuflen_qid);
1351
1352			switch (rsp_type) {
1353			case X_RSPD_TYPE_FLBUF:
1354
1355				KASSERT(iq->flags & IQ_HAS_FL,
1356				    ("%s: data for an iq (%p) with no freelist",
1357				    __func__, iq));
1358
1359				m0 = get_fl_payload(sc, fl, lq);
1360				if (__predict_false(m0 == NULL))
1361					goto process_iql;
1362				refill = IDXDIFF(fl->hw_cidx, fl_hw_cidx, fl->sidx) > 2;
1363#ifdef T4_PKT_TIMESTAMP
1364				/*
1365				 * 60 bit timestamp for the payload is
1366				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1367				 * in the leading free-space in the mbuf.  The
1368				 * kernel can clobber it during a pullup,
1369				 * m_copymdata, etc.  You need to make sure that
1370				 * the mbuf reaches you unmolested if you care
1371				 * about the timestamp.
1372				 */
1373				*(uint64_t *)m0->m_pktdat =
1374				    be64toh(ctrl->u.last_flit) &
1375				    0xfffffffffffffff;
1376#endif
1377
1378				/* fall through */
1379
1380			case X_RSPD_TYPE_CPL:
1381				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1382				    ("%s: bad opcode %02x.", __func__,
1383				    d->rss.opcode));
1384				sc->cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1385				break;
1386
1387			case X_RSPD_TYPE_INTR:
1388
1389				/*
1390				 * Interrupts should be forwarded only to queues
1391				 * that are not forwarding their interrupts.
1392				 * This means service_iq can recurse but only 1
1393				 * level deep.
1394				 */
1395				KASSERT(budget == 0,
1396				    ("%s: budget %u, rsp_type %u", __func__,
1397				    budget, rsp_type));
1398
1399				/*
1400				 * There are 1K interrupt-capable queues (qids 0
1401				 * through 1023).  A response type indicating a
1402				 * forwarded interrupt with a qid >= 1K is an
1403				 * iWARP async notification.
1404				 */
1405				if (lq >= 1024) {
1406                                        sc->an_handler(iq, &d->rsp);
1407                                        break;
1408                                }
1409
1410				q = sc->sge.iqmap[lq - sc->sge.iq_start];
1411				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1412				    IQS_BUSY)) {
1413					if (service_iq(q, q->qsize / 16) == 0) {
1414						atomic_cmpset_int(&q->state,
1415						    IQS_BUSY, IQS_IDLE);
1416					} else {
1417						STAILQ_INSERT_TAIL(&iql, q,
1418						    link);
1419					}
1420				}
1421				break;
1422
1423			default:
1424				KASSERT(0,
1425				    ("%s: illegal response type %d on iq %p",
1426				    __func__, rsp_type, iq));
1427				log(LOG_ERR,
1428				    "%s: illegal response type %d on iq %p",
1429				    device_get_nameunit(sc->dev), rsp_type, iq);
1430				break;
1431			}
1432
1433			d++;
1434			if (__predict_false(++iq->cidx == iq->sidx)) {
1435				iq->cidx = 0;
1436				iq->gen ^= F_RSPD_GEN;
1437				d = &iq->desc[0];
1438			}
1439			if (__predict_false(++ndescs == limit)) {
1440				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
1441				    V_CIDXINC(ndescs) |
1442				    V_INGRESSQID(iq->cntxt_id) |
1443				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1444				ndescs = 0;
1445
1446#if defined(INET) || defined(INET6)
1447				if (iq->flags & IQ_LRO_ENABLED &&
1448				    sc->lro_timeout != 0) {
1449					tcp_lro_flush_inactive(&rxq->lro,
1450					    &lro_timeout);
1451				}
1452#endif
1453
1454				if (budget) {
1455					if (iq->flags & IQ_HAS_FL) {
1456						FL_LOCK(fl);
1457						refill_fl(sc, fl, 32);
1458						FL_UNLOCK(fl);
1459					}
1460					return (EINPROGRESS);
1461				}
1462			}
1463			if (refill) {
1464				FL_LOCK(fl);
1465				refill_fl(sc, fl, 32);
1466				FL_UNLOCK(fl);
1467				fl_hw_cidx = fl->hw_cidx;
1468			}
1469		}
1470
1471process_iql:
1472		if (STAILQ_EMPTY(&iql))
1473			break;
1474
1475		/*
1476		 * Process the head only, and send it to the back of the list if
1477		 * it's still not done.
1478		 */
1479		q = STAILQ_FIRST(&iql);
1480		STAILQ_REMOVE_HEAD(&iql, link);
1481		if (service_iq(q, q->qsize / 8) == 0)
1482			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1483		else
1484			STAILQ_INSERT_TAIL(&iql, q, link);
1485	}
1486
1487#if defined(INET) || defined(INET6)
1488	if (iq->flags & IQ_LRO_ENABLED) {
1489		struct lro_ctrl *lro = &rxq->lro;
1490		struct lro_entry *l;
1491
1492		while (!SLIST_EMPTY(&lro->lro_active)) {
1493			l = SLIST_FIRST(&lro->lro_active);
1494			SLIST_REMOVE_HEAD(&lro->lro_active, next);
1495			tcp_lro_flush(lro, l);
1496		}
1497	}
1498#endif
1499
1500	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1501	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1502
1503	if (iq->flags & IQ_HAS_FL) {
1504		int starved;
1505
1506		FL_LOCK(fl);
1507		starved = refill_fl(sc, fl, 64);
1508		FL_UNLOCK(fl);
1509		if (__predict_false(starved != 0))
1510			add_fl_to_sfl(sc, fl);
1511	}
1512
1513	return (0);
1514}
1515
1516static inline int
1517cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1518{
1519	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1520
1521	if (rc)
1522		MPASS(cll->region3 >= CL_METADATA_SIZE);
1523
1524	return (rc);
1525}
1526
1527static inline struct cluster_metadata *
1528cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1529    caddr_t cl)
1530{
1531
1532	if (cl_has_metadata(fl, cll)) {
1533		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1534
1535		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1536	}
1537	return (NULL);
1538}
1539
1540static void
1541rxb_free(struct mbuf *m, void *arg1, void *arg2)
1542{
1543	uma_zone_t zone = arg1;
1544	caddr_t cl = arg2;
1545
1546	uma_zfree(zone, cl);
1547	counter_u64_add(extfree_rels, 1);
1548}
1549
1550/*
1551 * The mbuf returned by this function could be allocated from zone_mbuf or
1552 * constructed in spare room in the cluster.
1553 *
1554 * The mbuf carries the payload in one of these ways
1555 * a) frame inside the mbuf (mbuf from zone_mbuf)
1556 * b) m_cljset (for clusters without metadata) zone_mbuf
1557 * c) m_extaddref (cluster with metadata) inline mbuf
1558 * d) m_extaddref (cluster with metadata) zone_mbuf
1559 */
1560static struct mbuf *
1561get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int fr_offset,
1562    int remaining)
1563{
1564	struct mbuf *m;
1565	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1566	struct cluster_layout *cll = &sd->cll;
1567	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1568	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1569	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1570	int len, blen;
1571	caddr_t payload;
1572
1573	blen = hwb->size - fl->rx_offset;	/* max possible in this buf */
1574	len = min(remaining, blen);
1575	payload = sd->cl + cll->region1 + fl->rx_offset;
1576	if (fl->flags & FL_BUF_PACKING) {
1577		const u_int l = fr_offset + len;
1578		const u_int pad = roundup2(l, fl->buf_boundary) - l;
1579
1580		if (fl->rx_offset + len + pad < hwb->size)
1581			blen = len + pad;
1582		MPASS(fl->rx_offset + blen <= hwb->size);
1583	} else {
1584		MPASS(fl->rx_offset == 0);	/* not packing */
1585	}
1586
1587
1588	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1589
1590		/*
1591		 * Copy payload into a freshly allocated mbuf.
1592		 */
1593
1594		m = fr_offset == 0 ?
1595		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1596		if (m == NULL)
1597			return (NULL);
1598		fl->mbuf_allocated++;
1599#ifdef T4_PKT_TIMESTAMP
1600		/* Leave room for a timestamp */
1601		m->m_data += 8;
1602#endif
1603		/* copy data to mbuf */
1604		bcopy(payload, mtod(m, caddr_t), len);
1605
1606	} else if (sd->nmbuf * MSIZE < cll->region1) {
1607
1608		/*
1609		 * There's spare room in the cluster for an mbuf.  Create one
1610		 * and associate it with the payload that's in the cluster.
1611		 */
1612
1613		MPASS(clm != NULL);
1614		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1615		/* No bzero required */
1616		if (m_init(m, NULL, 0, M_NOWAIT, MT_DATA,
1617		    fr_offset == 0 ? M_PKTHDR | M_NOFREE : M_NOFREE))
1618			return (NULL);
1619		fl->mbuf_inlined++;
1620		m_extaddref(m, payload, blen, &clm->refcount, rxb_free,
1621		    swz->zone, sd->cl);
1622		if (sd->nmbuf++ == 0)
1623			counter_u64_add(extfree_refs, 1);
1624
1625	} else {
1626
1627		/*
1628		 * Grab an mbuf from zone_mbuf and associate it with the
1629		 * payload in the cluster.
1630		 */
1631
1632		m = fr_offset == 0 ?
1633		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1634		if (m == NULL)
1635			return (NULL);
1636		fl->mbuf_allocated++;
1637		if (clm != NULL) {
1638			m_extaddref(m, payload, blen, &clm->refcount,
1639			    rxb_free, swz->zone, sd->cl);
1640			if (sd->nmbuf++ == 0)
1641				counter_u64_add(extfree_refs, 1);
1642		} else {
1643			m_cljset(m, sd->cl, swz->type);
1644			sd->cl = NULL;	/* consumed, not a recycle candidate */
1645		}
1646	}
1647	if (fr_offset == 0)
1648		m->m_pkthdr.len = remaining;
1649	m->m_len = len;
1650
1651	if (fl->flags & FL_BUF_PACKING) {
1652		fl->rx_offset += blen;
1653		MPASS(fl->rx_offset <= hwb->size);
1654		if (fl->rx_offset < hwb->size)
1655			return (m);	/* without advancing the cidx */
1656	}
1657
1658	if (__predict_false(++fl->cidx % 8 == 0)) {
1659		uint16_t cidx = fl->cidx / 8;
1660
1661		if (__predict_false(cidx == fl->sidx))
1662			fl->cidx = cidx = 0;
1663		fl->hw_cidx = cidx;
1664	}
1665	fl->rx_offset = 0;
1666
1667	return (m);
1668}
1669
1670static struct mbuf *
1671get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf)
1672{
1673	struct mbuf *m0, *m, **pnext;
1674	u_int remaining;
1675	const u_int total = G_RSPD_LEN(len_newbuf);
1676
1677	if (__predict_false(fl->flags & FL_BUF_RESUME)) {
1678		M_ASSERTPKTHDR(fl->m0);
1679		MPASS(fl->m0->m_pkthdr.len == total);
1680		MPASS(fl->remaining < total);
1681
1682		m0 = fl->m0;
1683		pnext = fl->pnext;
1684		remaining = fl->remaining;
1685		fl->flags &= ~FL_BUF_RESUME;
1686		goto get_segment;
1687	}
1688
1689	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1690		fl->rx_offset = 0;
1691		if (__predict_false(++fl->cidx % 8 == 0)) {
1692			uint16_t cidx = fl->cidx / 8;
1693
1694			if (__predict_false(cidx == fl->sidx))
1695				fl->cidx = cidx = 0;
1696			fl->hw_cidx = cidx;
1697		}
1698	}
1699
1700	/*
1701	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1702	 * 'len' and it may span multiple hw buffers.
1703	 */
1704
1705	m0 = get_scatter_segment(sc, fl, 0, total);
1706	if (m0 == NULL)
1707		return (NULL);
1708	remaining = total - m0->m_len;
1709	pnext = &m0->m_next;
1710	while (remaining > 0) {
1711get_segment:
1712		MPASS(fl->rx_offset == 0);
1713		m = get_scatter_segment(sc, fl, total - remaining, remaining);
1714		if (__predict_false(m == NULL)) {
1715			fl->m0 = m0;
1716			fl->pnext = pnext;
1717			fl->remaining = remaining;
1718			fl->flags |= FL_BUF_RESUME;
1719			return (NULL);
1720		}
1721		*pnext = m;
1722		pnext = &m->m_next;
1723		remaining -= m->m_len;
1724	}
1725	*pnext = NULL;
1726
1727	return (m0);
1728}
1729
1730static int
1731t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1732{
1733	struct sge_rxq *rxq = iq_to_rxq(iq);
1734	struct ifnet *ifp = rxq->ifp;
1735	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1736#if defined(INET) || defined(INET6)
1737	struct lro_ctrl *lro = &rxq->lro;
1738#endif
1739	static const int sw_hashtype[4][2] = {
1740		{M_HASHTYPE_NONE, M_HASHTYPE_NONE},
1741		{M_HASHTYPE_RSS_IPV4, M_HASHTYPE_RSS_IPV6},
1742		{M_HASHTYPE_RSS_TCP_IPV4, M_HASHTYPE_RSS_TCP_IPV6},
1743		{M_HASHTYPE_RSS_UDP_IPV4, M_HASHTYPE_RSS_UDP_IPV6},
1744	};
1745
1746	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1747	    rss->opcode));
1748
1749	m0->m_pkthdr.len -= fl_pktshift;
1750	m0->m_len -= fl_pktshift;
1751	m0->m_data += fl_pktshift;
1752
1753	m0->m_pkthdr.rcvif = ifp;
1754	M_HASHTYPE_SET(m0, sw_hashtype[rss->hash_type][rss->ipv6]);
1755	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1756
1757	if (cpl->csum_calc && !cpl->err_vec) {
1758		if (ifp->if_capenable & IFCAP_RXCSUM &&
1759		    cpl->l2info & htobe32(F_RXF_IP)) {
1760			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1761			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1762			rxq->rxcsum++;
1763		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1764		    cpl->l2info & htobe32(F_RXF_IP6)) {
1765			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1766			    CSUM_PSEUDO_HDR);
1767			rxq->rxcsum++;
1768		}
1769
1770		if (__predict_false(cpl->ip_frag))
1771			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1772		else
1773			m0->m_pkthdr.csum_data = 0xffff;
1774	}
1775
1776	if (cpl->vlan_ex) {
1777		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1778		m0->m_flags |= M_VLANTAG;
1779		rxq->vlan_extraction++;
1780	}
1781
1782#if defined(INET) || defined(INET6)
1783	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1784	    iq->flags & IQ_LRO_ENABLED &&
1785	    tcp_lro_rx(lro, m0, 0) == 0) {
1786		/* queued for LRO */
1787	} else
1788#endif
1789	ifp->if_input(ifp, m0);
1790
1791	return (0);
1792}
1793
1794/*
1795 * Must drain the wrq or make sure that someone else will.
1796 */
1797static void
1798wrq_tx_drain(void *arg, int n)
1799{
1800	struct sge_wrq *wrq = arg;
1801	struct sge_eq *eq = &wrq->eq;
1802
1803	EQ_LOCK(eq);
1804	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
1805		drain_wrq_wr_list(wrq->adapter, wrq);
1806	EQ_UNLOCK(eq);
1807}
1808
1809static void
1810drain_wrq_wr_list(struct adapter *sc, struct sge_wrq *wrq)
1811{
1812	struct sge_eq *eq = &wrq->eq;
1813	u_int available, dbdiff;	/* # of hardware descriptors */
1814	u_int n;
1815	struct wrqe *wr;
1816	struct fw_eth_tx_pkt_wr *dst;	/* any fw WR struct will do */
1817
1818	EQ_LOCK_ASSERT_OWNED(eq);
1819	MPASS(TAILQ_EMPTY(&wrq->incomplete_wrs));
1820	wr = STAILQ_FIRST(&wrq->wr_list);
1821	MPASS(wr != NULL);	/* Must be called with something useful to do */
1822	dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
1823
1824	do {
1825		eq->cidx = read_hw_cidx(eq);
1826		if (eq->pidx == eq->cidx)
1827			available = eq->sidx - 1;
1828		else
1829			available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
1830
1831		MPASS(wr->wrq == wrq);
1832		n = howmany(wr->wr_len, EQ_ESIZE);
1833		if (available < n)
1834			return;
1835
1836		dst = (void *)&eq->desc[eq->pidx];
1837		if (__predict_true(eq->sidx - eq->pidx > n)) {
1838			/* Won't wrap, won't end exactly at the status page. */
1839			bcopy(&wr->wr[0], dst, wr->wr_len);
1840			eq->pidx += n;
1841		} else {
1842			int first_portion = (eq->sidx - eq->pidx) * EQ_ESIZE;
1843
1844			bcopy(&wr->wr[0], dst, first_portion);
1845			if (wr->wr_len > first_portion) {
1846				bcopy(&wr->wr[first_portion], &eq->desc[0],
1847				    wr->wr_len - first_portion);
1848			}
1849			eq->pidx = n - (eq->sidx - eq->pidx);
1850		}
1851
1852		if (available < eq->sidx / 4 &&
1853		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
1854			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
1855			    F_FW_WR_EQUEQ);
1856			eq->equeqidx = eq->pidx;
1857		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
1858			dst->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
1859			eq->equeqidx = eq->pidx;
1860		}
1861
1862		dbdiff += n;
1863		if (dbdiff >= 16) {
1864			ring_eq_db(sc, eq, dbdiff);
1865			dbdiff = 0;
1866		}
1867
1868		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1869		free_wrqe(wr);
1870		MPASS(wrq->nwr_pending > 0);
1871		wrq->nwr_pending--;
1872		MPASS(wrq->ndesc_needed >= n);
1873		wrq->ndesc_needed -= n;
1874	} while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL);
1875
1876	if (dbdiff)
1877		ring_eq_db(sc, eq, dbdiff);
1878}
1879
1880/*
1881 * Doesn't fail.  Holds on to work requests it can't send right away.
1882 */
1883void
1884t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1885{
1886#ifdef INVARIANTS
1887	struct sge_eq *eq = &wrq->eq;
1888#endif
1889
1890	EQ_LOCK_ASSERT_OWNED(eq);
1891	MPASS(wr != NULL);
1892	MPASS(wr->wr_len > 0 && wr->wr_len <= SGE_MAX_WR_LEN);
1893	MPASS((wr->wr_len & 0x7) == 0);
1894
1895	STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1896	wrq->nwr_pending++;
1897	wrq->ndesc_needed += howmany(wr->wr_len, EQ_ESIZE);
1898
1899	if (!TAILQ_EMPTY(&wrq->incomplete_wrs))
1900		return;	/* commit_wrq_wr will drain wr_list as well. */
1901
1902	drain_wrq_wr_list(sc, wrq);
1903
1904	/* Doorbell must have caught up to the pidx. */
1905	MPASS(eq->pidx == eq->dbidx);
1906}
1907
1908void
1909t4_update_fl_bufsize(struct ifnet *ifp)
1910{
1911	struct port_info *pi = ifp->if_softc;
1912	struct adapter *sc = pi->adapter;
1913	struct sge_rxq *rxq;
1914#ifdef TCP_OFFLOAD
1915	struct sge_ofld_rxq *ofld_rxq;
1916#endif
1917	struct sge_fl *fl;
1918	int i, maxp, mtu = ifp->if_mtu;
1919
1920	maxp = mtu_to_max_payload(sc, mtu, 0);
1921	for_each_rxq(pi, i, rxq) {
1922		fl = &rxq->fl;
1923
1924		FL_LOCK(fl);
1925		find_best_refill_source(sc, fl, maxp);
1926		FL_UNLOCK(fl);
1927	}
1928#ifdef TCP_OFFLOAD
1929	maxp = mtu_to_max_payload(sc, mtu, 1);
1930	for_each_ofld_rxq(pi, i, ofld_rxq) {
1931		fl = &ofld_rxq->fl;
1932
1933		FL_LOCK(fl);
1934		find_best_refill_source(sc, fl, maxp);
1935		FL_UNLOCK(fl);
1936	}
1937#endif
1938}
1939
1940static inline int
1941mbuf_nsegs(struct mbuf *m)
1942{
1943
1944	M_ASSERTPKTHDR(m);
1945	KASSERT(m->m_pkthdr.l5hlen > 0,
1946	    ("%s: mbuf %p missing information on # of segments.", __func__, m));
1947
1948	return (m->m_pkthdr.l5hlen);
1949}
1950
1951static inline void
1952set_mbuf_nsegs(struct mbuf *m, uint8_t nsegs)
1953{
1954
1955	M_ASSERTPKTHDR(m);
1956	m->m_pkthdr.l5hlen = nsegs;
1957}
1958
1959static inline int
1960mbuf_len16(struct mbuf *m)
1961{
1962	int n;
1963
1964	M_ASSERTPKTHDR(m);
1965	n = m->m_pkthdr.PH_loc.eight[0];
1966	MPASS(n > 0 && n <= SGE_MAX_WR_LEN / 16);
1967
1968	return (n);
1969}
1970
1971static inline void
1972set_mbuf_len16(struct mbuf *m, uint8_t len16)
1973{
1974
1975	M_ASSERTPKTHDR(m);
1976	m->m_pkthdr.PH_loc.eight[0] = len16;
1977}
1978
1979static inline int
1980needs_tso(struct mbuf *m)
1981{
1982
1983	M_ASSERTPKTHDR(m);
1984
1985	if (m->m_pkthdr.csum_flags & CSUM_TSO) {
1986		KASSERT(m->m_pkthdr.tso_segsz > 0,
1987		    ("%s: TSO requested in mbuf %p but MSS not provided",
1988		    __func__, m));
1989		return (1);
1990	}
1991
1992	return (0);
1993}
1994
1995static inline int
1996needs_l3_csum(struct mbuf *m)
1997{
1998
1999	M_ASSERTPKTHDR(m);
2000
2001	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO))
2002		return (1);
2003	return (0);
2004}
2005
2006static inline int
2007needs_l4_csum(struct mbuf *m)
2008{
2009
2010	M_ASSERTPKTHDR(m);
2011
2012	if (m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
2013	    CSUM_TCP_IPV6 | CSUM_TSO))
2014		return (1);
2015	return (0);
2016}
2017
2018static inline int
2019needs_vlan_insertion(struct mbuf *m)
2020{
2021
2022	M_ASSERTPKTHDR(m);
2023
2024	if (m->m_flags & M_VLANTAG) {
2025		KASSERT(m->m_pkthdr.ether_vtag != 0,
2026		    ("%s: HWVLAN requested in mbuf %p but tag not provided",
2027		    __func__, m));
2028		return (1);
2029	}
2030	return (0);
2031}
2032
2033static void *
2034m_advance(struct mbuf **pm, int *poffset, int len)
2035{
2036	struct mbuf *m = *pm;
2037	int offset = *poffset;
2038	uintptr_t p = 0;
2039
2040	MPASS(len > 0);
2041
2042	while (len) {
2043		if (offset + len < m->m_len) {
2044			offset += len;
2045			p = mtod(m, uintptr_t) + offset;
2046			break;
2047		}
2048		len -= m->m_len - offset;
2049		m = m->m_next;
2050		offset = 0;
2051		MPASS(m != NULL);
2052	}
2053	*poffset = offset;
2054	*pm = m;
2055	return ((void *)p);
2056}
2057
2058static inline int
2059same_paddr(char *a, char *b)
2060{
2061
2062	if (a == b)
2063		return (1);
2064	else if (a != NULL && b != NULL) {
2065		vm_offset_t x = (vm_offset_t)a;
2066		vm_offset_t y = (vm_offset_t)b;
2067
2068		if ((x & PAGE_MASK) == (y & PAGE_MASK) &&
2069		    pmap_kextract(x) == pmap_kextract(y))
2070			return (1);
2071	}
2072
2073	return (0);
2074}
2075
2076/*
2077 * Can deal with empty mbufs in the chain that have m_len = 0, but the chain
2078 * must have at least one mbuf that's not empty.
2079 */
2080static inline int
2081count_mbuf_nsegs(struct mbuf *m)
2082{
2083	char *prev_end, *start;
2084	int len, nsegs;
2085
2086	MPASS(m != NULL);
2087
2088	nsegs = 0;
2089	prev_end = NULL;
2090	for (; m; m = m->m_next) {
2091
2092		len = m->m_len;
2093		if (__predict_false(len == 0))
2094			continue;
2095		start = mtod(m, char *);
2096
2097		nsegs += sglist_count(start, len);
2098		if (same_paddr(prev_end, start))
2099			nsegs--;
2100		prev_end = start + len;
2101	}
2102
2103	MPASS(nsegs > 0);
2104	return (nsegs);
2105}
2106
2107/*
2108 * Analyze the mbuf to determine its tx needs.  The mbuf passed in may change:
2109 * a) caller can assume it's been freed if this function returns with an error.
2110 * b) it may get defragged up if the gather list is too long for the hardware.
2111 */
2112int
2113parse_pkt(struct mbuf **mp)
2114{
2115	struct mbuf *m0 = *mp, *m;
2116	int rc, nsegs, defragged = 0, offset;
2117	struct ether_header *eh;
2118	void *l3hdr;
2119#if defined(INET) || defined(INET6)
2120	struct tcphdr *tcp;
2121#endif
2122	uint16_t eh_type;
2123
2124	M_ASSERTPKTHDR(m0);
2125	if (__predict_false(m0->m_pkthdr.len < ETHER_HDR_LEN)) {
2126		rc = EINVAL;
2127fail:
2128		m_freem(m0);
2129		*mp = NULL;
2130		return (rc);
2131	}
2132restart:
2133	/*
2134	 * First count the number of gather list segments in the payload.
2135	 * Defrag the mbuf if nsegs exceeds the hardware limit.
2136	 */
2137	M_ASSERTPKTHDR(m0);
2138	MPASS(m0->m_pkthdr.len > 0);
2139	nsegs = count_mbuf_nsegs(m0);
2140	if (nsegs > (needs_tso(m0) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS)) {
2141		if (defragged++ > 0 || (m = m_defrag(m0, M_NOWAIT)) == NULL) {
2142			rc = EFBIG;
2143			goto fail;
2144		}
2145		*mp = m0 = m;	/* update caller's copy after defrag */
2146		goto restart;
2147	}
2148
2149	if (__predict_false(nsegs > 2 && m0->m_pkthdr.len <= MHLEN)) {
2150		m0 = m_pullup(m0, m0->m_pkthdr.len);
2151		if (m0 == NULL) {
2152			/* Should have left well enough alone. */
2153			rc = EFBIG;
2154			goto fail;
2155		}
2156		*mp = m0;	/* update caller's copy after pullup */
2157		goto restart;
2158	}
2159	set_mbuf_nsegs(m0, nsegs);
2160	set_mbuf_len16(m0, txpkt_len16(nsegs, needs_tso(m0)));
2161
2162	if (!needs_tso(m0))
2163		return (0);
2164
2165	m = m0;
2166	eh = mtod(m, struct ether_header *);
2167	eh_type = ntohs(eh->ether_type);
2168	if (eh_type == ETHERTYPE_VLAN) {
2169		struct ether_vlan_header *evh = (void *)eh;
2170
2171		eh_type = ntohs(evh->evl_proto);
2172		m0->m_pkthdr.l2hlen = sizeof(*evh);
2173	} else
2174		m0->m_pkthdr.l2hlen = sizeof(*eh);
2175
2176	offset = 0;
2177	l3hdr = m_advance(&m, &offset, m0->m_pkthdr.l2hlen);
2178
2179	switch (eh_type) {
2180#ifdef INET6
2181	case ETHERTYPE_IPV6:
2182	{
2183		struct ip6_hdr *ip6 = l3hdr;
2184
2185		MPASS(ip6->ip6_nxt == IPPROTO_TCP);
2186
2187		m0->m_pkthdr.l3hlen = sizeof(*ip6);
2188		break;
2189	}
2190#endif
2191#ifdef INET
2192	case ETHERTYPE_IP:
2193	{
2194		struct ip *ip = l3hdr;
2195
2196		m0->m_pkthdr.l3hlen = ip->ip_hl * 4;
2197		break;
2198	}
2199#endif
2200	default:
2201		panic("%s: ethertype 0x%04x unknown.  if_cxgbe must be compiled"
2202		    " with the same INET/INET6 options as the kernel.",
2203		    __func__, eh_type);
2204	}
2205
2206#if defined(INET) || defined(INET6)
2207	tcp = m_advance(&m, &offset, m0->m_pkthdr.l3hlen);
2208	m0->m_pkthdr.l4hlen = tcp->th_off * 4;
2209#endif
2210	MPASS(m0 == *mp);
2211	return (0);
2212}
2213
2214void *
2215start_wrq_wr(struct sge_wrq *wrq, int len16, struct wrq_cookie *cookie)
2216{
2217	struct sge_eq *eq = &wrq->eq;
2218	struct adapter *sc = wrq->adapter;
2219	int ndesc, available;
2220	struct wrqe *wr;
2221	void *w;
2222
2223	MPASS(len16 > 0);
2224	ndesc = howmany(len16, EQ_ESIZE / 16);
2225	MPASS(ndesc > 0 && ndesc <= SGE_MAX_WR_NDESC);
2226
2227	EQ_LOCK(eq);
2228
2229	if (!STAILQ_EMPTY(&wrq->wr_list))
2230		drain_wrq_wr_list(sc, wrq);
2231
2232	if (!STAILQ_EMPTY(&wrq->wr_list)) {
2233slowpath:
2234		EQ_UNLOCK(eq);
2235		wr = alloc_wrqe(len16 * 16, wrq);
2236		if (__predict_false(wr == NULL))
2237			return (NULL);
2238		cookie->pidx = -1;
2239		cookie->ndesc = ndesc;
2240		return (&wr->wr);
2241	}
2242
2243	eq->cidx = read_hw_cidx(eq);
2244	if (eq->pidx == eq->cidx)
2245		available = eq->sidx - 1;
2246	else
2247		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2248	if (available < ndesc)
2249		goto slowpath;
2250
2251	cookie->pidx = eq->pidx;
2252	cookie->ndesc = ndesc;
2253	TAILQ_INSERT_TAIL(&wrq->incomplete_wrs, cookie, link);
2254
2255	w = &eq->desc[eq->pidx];
2256	IDXINCR(eq->pidx, ndesc, eq->sidx);
2257	if (__predict_false(eq->pidx < ndesc - 1)) {
2258		w = &wrq->ss[0];
2259		wrq->ss_pidx = cookie->pidx;
2260		wrq->ss_len = len16 * 16;
2261	}
2262
2263	EQ_UNLOCK(eq);
2264
2265	return (w);
2266}
2267
2268void
2269commit_wrq_wr(struct sge_wrq *wrq, void *w, struct wrq_cookie *cookie)
2270{
2271	struct sge_eq *eq = &wrq->eq;
2272	struct adapter *sc = wrq->adapter;
2273	int ndesc, pidx;
2274	struct wrq_cookie *prev, *next;
2275
2276	if (cookie->pidx == -1) {
2277		struct wrqe *wr = __containerof(w, struct wrqe, wr);
2278
2279		t4_wrq_tx(sc, wr);
2280		return;
2281	}
2282
2283	ndesc = cookie->ndesc;	/* Can be more than SGE_MAX_WR_NDESC here. */
2284	pidx = cookie->pidx;
2285	MPASS(pidx >= 0 && pidx < eq->sidx);
2286	if (__predict_false(w == &wrq->ss[0])) {
2287		int n = (eq->sidx - wrq->ss_pidx) * EQ_ESIZE;
2288
2289		MPASS(wrq->ss_len > n);	/* WR had better wrap around. */
2290		bcopy(&wrq->ss[0], &eq->desc[wrq->ss_pidx], n);
2291		bcopy(&wrq->ss[n], &eq->desc[0], wrq->ss_len - n);
2292		wrq->tx_wrs_ss++;
2293	} else
2294		wrq->tx_wrs_direct++;
2295
2296	EQ_LOCK(eq);
2297	prev = TAILQ_PREV(cookie, wrq_incomplete_wrs, link);
2298	next = TAILQ_NEXT(cookie, link);
2299	if (prev == NULL) {
2300		MPASS(pidx == eq->dbidx);
2301		if (next == NULL || ndesc >= 16)
2302			ring_eq_db(wrq->adapter, eq, ndesc);
2303		else {
2304			MPASS(IDXDIFF(next->pidx, pidx, eq->sidx) == ndesc);
2305			next->pidx = pidx;
2306			next->ndesc += ndesc;
2307		}
2308	} else {
2309		MPASS(IDXDIFF(pidx, prev->pidx, eq->sidx) == prev->ndesc);
2310		prev->ndesc += ndesc;
2311	}
2312	TAILQ_REMOVE(&wrq->incomplete_wrs, cookie, link);
2313
2314	if (TAILQ_EMPTY(&wrq->incomplete_wrs) && !STAILQ_EMPTY(&wrq->wr_list))
2315		drain_wrq_wr_list(sc, wrq);
2316
2317#ifdef INVARIANTS
2318	if (TAILQ_EMPTY(&wrq->incomplete_wrs)) {
2319		/* Doorbell must have caught up to the pidx. */
2320		MPASS(wrq->eq.pidx == wrq->eq.dbidx);
2321	}
2322#endif
2323	EQ_UNLOCK(eq);
2324}
2325
2326static u_int
2327can_resume_eth_tx(struct mp_ring *r)
2328{
2329	struct sge_eq *eq = r->cookie;
2330
2331	return (total_available_tx_desc(eq) > eq->sidx / 8);
2332}
2333
2334static inline int
2335cannot_use_txpkts(struct mbuf *m)
2336{
2337	/* maybe put a GL limit too, to avoid silliness? */
2338
2339	return (needs_tso(m));
2340}
2341
2342/*
2343 * r->items[cidx] to r->items[pidx], with a wraparound at r->size, are ready to
2344 * be consumed.  Return the actual number consumed.  0 indicates a stall.
2345 */
2346static u_int
2347eth_tx(struct mp_ring *r, u_int cidx, u_int pidx)
2348{
2349	struct sge_txq *txq = r->cookie;
2350	struct sge_eq *eq = &txq->eq;
2351	struct ifnet *ifp = txq->ifp;
2352	struct port_info *pi = (void *)ifp->if_softc;
2353	struct adapter *sc = pi->adapter;
2354	u_int total, remaining;		/* # of packets */
2355	u_int available, dbdiff;	/* # of hardware descriptors */
2356	u_int n, next_cidx;
2357	struct mbuf *m0, *tail;
2358	struct txpkts txp;
2359	struct fw_eth_tx_pkts_wr *wr;	/* any fw WR struct will do */
2360
2361	remaining = IDXDIFF(pidx, cidx, r->size);
2362	MPASS(remaining > 0);	/* Must not be called without work to do. */
2363	total = 0;
2364
2365	TXQ_LOCK(txq);
2366	if (__predict_false((eq->flags & EQ_ENABLED) == 0)) {
2367		while (cidx != pidx) {
2368			m0 = r->items[cidx];
2369			m_freem(m0);
2370			if (++cidx == r->size)
2371				cidx = 0;
2372		}
2373		reclaim_tx_descs(txq, 2048);
2374		total = remaining;
2375		goto done;
2376	}
2377
2378	/* How many hardware descriptors do we have readily available. */
2379	if (eq->pidx == eq->cidx)
2380		available = eq->sidx - 1;
2381	else
2382		available = IDXDIFF(eq->cidx, eq->pidx, eq->sidx) - 1;
2383	dbdiff = IDXDIFF(eq->pidx, eq->dbidx, eq->sidx);
2384
2385	while (remaining > 0) {
2386
2387		m0 = r->items[cidx];
2388		M_ASSERTPKTHDR(m0);
2389		MPASS(m0->m_nextpkt == NULL);
2390
2391		if (available < SGE_MAX_WR_NDESC) {
2392			available += reclaim_tx_descs(txq, 64);
2393			if (available < howmany(mbuf_len16(m0), EQ_ESIZE / 16))
2394				break;	/* out of descriptors */
2395		}
2396
2397		next_cidx = cidx + 1;
2398		if (__predict_false(next_cidx == r->size))
2399			next_cidx = 0;
2400
2401		wr = (void *)&eq->desc[eq->pidx];
2402		if (remaining > 1 &&
2403		    try_txpkts(m0, r->items[next_cidx], &txp, available) == 0) {
2404
2405			/* pkts at cidx, next_cidx should both be in txp. */
2406			MPASS(txp.npkt == 2);
2407			tail = r->items[next_cidx];
2408			MPASS(tail->m_nextpkt == NULL);
2409			ETHER_BPF_MTAP(ifp, m0);
2410			ETHER_BPF_MTAP(ifp, tail);
2411			m0->m_nextpkt = tail;
2412
2413			if (__predict_false(++next_cidx == r->size))
2414				next_cidx = 0;
2415
2416			while (next_cidx != pidx) {
2417				if (add_to_txpkts(r->items[next_cidx], &txp,
2418				    available) != 0)
2419					break;
2420				tail->m_nextpkt = r->items[next_cidx];
2421				tail = tail->m_nextpkt;
2422				ETHER_BPF_MTAP(ifp, tail);
2423				if (__predict_false(++next_cidx == r->size))
2424					next_cidx = 0;
2425			}
2426
2427			n = write_txpkts_wr(txq, wr, m0, &txp, available);
2428			total += txp.npkt;
2429			remaining -= txp.npkt;
2430		} else {
2431			total++;
2432			remaining--;
2433			n = write_txpkt_wr(txq, (void *)wr, m0, available);
2434			ETHER_BPF_MTAP(ifp, m0);
2435		}
2436		MPASS(n >= 1 && n <= available && n <= SGE_MAX_WR_NDESC);
2437
2438		available -= n;
2439		dbdiff += n;
2440		IDXINCR(eq->pidx, n, eq->sidx);
2441
2442		if (total_available_tx_desc(eq) < eq->sidx / 4 &&
2443		    atomic_cmpset_int(&eq->equiq, 0, 1)) {
2444			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUIQ |
2445			    F_FW_WR_EQUEQ);
2446			eq->equeqidx = eq->pidx;
2447		} else if (IDXDIFF(eq->pidx, eq->equeqidx, eq->sidx) >= 32) {
2448			wr->equiq_to_len16 |= htobe32(F_FW_WR_EQUEQ);
2449			eq->equeqidx = eq->pidx;
2450		}
2451
2452		if (dbdiff >= 16 && remaining >= 4) {
2453			ring_eq_db(sc, eq, dbdiff);
2454			available += reclaim_tx_descs(txq, 4 * dbdiff);
2455			dbdiff = 0;
2456		}
2457
2458		cidx = next_cidx;
2459	}
2460	if (dbdiff != 0) {
2461		ring_eq_db(sc, eq, dbdiff);
2462		reclaim_tx_descs(txq, 32);
2463	}
2464done:
2465	TXQ_UNLOCK(txq);
2466
2467	return (total);
2468}
2469
2470static inline void
2471init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2472    int qsize)
2473{
2474
2475	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2476	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2477	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2478	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2479
2480	iq->flags = 0;
2481	iq->adapter = sc;
2482	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2483	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2484	if (pktc_idx >= 0) {
2485		iq->intr_params |= F_QINTR_CNT_EN;
2486		iq->intr_pktc_idx = pktc_idx;
2487	}
2488	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2489	iq->sidx = iq->qsize - spg_len / IQ_ESIZE;
2490}
2491
2492static inline void
2493init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, char *name)
2494{
2495
2496	fl->qsize = qsize;
2497	fl->sidx = qsize - spg_len / EQ_ESIZE;
2498	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2499	if (sc->flags & BUF_PACKING_OK &&
2500	    ((!is_t4(sc) && buffer_packing) ||	/* T5+: enabled unless 0 */
2501	    (is_t4(sc) && buffer_packing == 1)))/* T4: disabled unless 1 */
2502		fl->flags |= FL_BUF_PACKING;
2503	find_best_refill_source(sc, fl, maxp);
2504	find_safe_refill_source(sc, fl);
2505}
2506
2507static inline void
2508init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan,
2509    uint16_t iqid, char *name)
2510{
2511	KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan));
2512	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2513
2514	eq->flags = eqtype & EQ_TYPEMASK;
2515	eq->tx_chan = tx_chan;
2516	eq->iqid = iqid;
2517	eq->sidx = qsize - spg_len / EQ_ESIZE;
2518	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2519}
2520
2521static int
2522alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2523    bus_dmamap_t *map, bus_addr_t *pa, void **va)
2524{
2525	int rc;
2526
2527	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2528	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2529	if (rc != 0) {
2530		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2531		goto done;
2532	}
2533
2534	rc = bus_dmamem_alloc(*tag, va,
2535	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2536	if (rc != 0) {
2537		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2538		goto done;
2539	}
2540
2541	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2542	if (rc != 0) {
2543		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2544		goto done;
2545	}
2546done:
2547	if (rc)
2548		free_ring(sc, *tag, *map, *pa, *va);
2549
2550	return (rc);
2551}
2552
2553static int
2554free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2555    bus_addr_t pa, void *va)
2556{
2557	if (pa)
2558		bus_dmamap_unload(tag, map);
2559	if (va)
2560		bus_dmamem_free(tag, va, map);
2561	if (tag)
2562		bus_dma_tag_destroy(tag);
2563
2564	return (0);
2565}
2566
2567/*
2568 * Allocates the ring for an ingress queue and an optional freelist.  If the
2569 * freelist is specified it will be allocated and then associated with the
2570 * ingress queue.
2571 *
2572 * Returns errno on failure.  Resources allocated up to that point may still be
2573 * allocated.  Caller is responsible for cleanup in case this function fails.
2574 *
2575 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
2576 * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
2577 * the abs_id of the ingress queue to which its interrupts should be forwarded.
2578 */
2579static int
2580alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
2581    int intr_idx, int cong)
2582{
2583	int rc, i, cntxt_id;
2584	size_t len;
2585	struct fw_iq_cmd c;
2586	struct adapter *sc = iq->adapter;
2587	__be32 v = 0;
2588
2589	len = iq->qsize * IQ_ESIZE;
2590	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2591	    (void **)&iq->desc);
2592	if (rc != 0)
2593		return (rc);
2594
2595	bzero(&c, sizeof(c));
2596	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2597	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2598	    V_FW_IQ_CMD_VFN(0));
2599
2600	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2601	    FW_LEN16(c));
2602
2603	/* Special handling for firmware event queue */
2604	if (iq == &sc->sge.fwq)
2605		v |= F_FW_IQ_CMD_IQASYNCH;
2606
2607	if (iq->flags & IQ_INTR) {
2608		KASSERT(intr_idx < sc->intr_count,
2609		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2610	} else
2611		v |= F_FW_IQ_CMD_IQANDST;
2612	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2613
2614	c.type_to_iqandstindex = htobe32(v |
2615	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2616	    V_FW_IQ_CMD_VIID(pi->viid) |
2617	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2618	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2619	    F_FW_IQ_CMD_IQGTSMODE |
2620	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2621	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
2622	c.iqsize = htobe16(iq->qsize);
2623	c.iqaddr = htobe64(iq->ba);
2624	if (cong >= 0)
2625		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2626
2627	if (fl) {
2628		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2629
2630		len = fl->qsize * EQ_ESIZE;
2631		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2632		    &fl->ba, (void **)&fl->desc);
2633		if (rc)
2634			return (rc);
2635
2636		/* Allocate space for one software descriptor per buffer. */
2637		rc = alloc_fl_sdesc(fl);
2638		if (rc != 0) {
2639			device_printf(sc->dev,
2640			    "failed to setup fl software descriptors: %d\n",
2641			    rc);
2642			return (rc);
2643		}
2644
2645		if (fl->flags & FL_BUF_PACKING) {
2646			fl->lowat = roundup2(sc->sge.fl_starve_threshold2, 8);
2647			fl->buf_boundary = sc->sge.pack_boundary;
2648		} else {
2649			fl->lowat = roundup2(sc->sge.fl_starve_threshold, 8);
2650			fl->buf_boundary = 16;
2651		}
2652		if (fl_pad && fl->buf_boundary < sc->sge.pad_boundary)
2653			fl->buf_boundary = sc->sge.pad_boundary;
2654
2655		c.iqns_to_fl0congen |=
2656		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2657			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2658			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2659			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2660			    0));
2661		if (cong >= 0) {
2662			c.iqns_to_fl0congen |=
2663				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2664				    F_FW_IQ_CMD_FL0CONGCIF |
2665				    F_FW_IQ_CMD_FL0CONGEN);
2666		}
2667		c.fl0dcaen_to_fl0cidxfthresh =
2668		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_128B) |
2669			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
2670		c.fl0size = htobe16(fl->qsize);
2671		c.fl0addr = htobe64(fl->ba);
2672	}
2673
2674	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2675	if (rc != 0) {
2676		device_printf(sc->dev,
2677		    "failed to create ingress queue: %d\n", rc);
2678		return (rc);
2679	}
2680
2681	iq->cidx = 0;
2682	iq->gen = F_RSPD_GEN;
2683	iq->intr_next = iq->intr_params;
2684	iq->cntxt_id = be16toh(c.iqid);
2685	iq->abs_id = be16toh(c.physiqid);
2686	iq->flags |= IQ_ALLOCATED;
2687
2688	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2689	if (cntxt_id >= sc->sge.niq) {
2690		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2691		    cntxt_id, sc->sge.niq - 1);
2692	}
2693	sc->sge.iqmap[cntxt_id] = iq;
2694
2695	if (fl) {
2696		u_int qid;
2697
2698		iq->flags |= IQ_HAS_FL;
2699		fl->cntxt_id = be16toh(c.fl0id);
2700		fl->pidx = fl->cidx = 0;
2701
2702		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2703		if (cntxt_id >= sc->sge.neq) {
2704			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2705			    __func__, cntxt_id, sc->sge.neq - 1);
2706		}
2707		sc->sge.eqmap[cntxt_id] = (void *)fl;
2708
2709		qid = fl->cntxt_id;
2710		if (isset(&sc->doorbells, DOORBELL_UDB)) {
2711			uint32_t s_qpp = sc->sge.eq_s_qpp;
2712			uint32_t mask = (1 << s_qpp) - 1;
2713			volatile uint8_t *udb;
2714
2715			udb = sc->udbs_base + UDBS_DB_OFFSET;
2716			udb += (qid >> s_qpp) << PAGE_SHIFT;
2717			qid &= mask;
2718			if (qid < PAGE_SIZE / UDBS_SEG_SIZE) {
2719				udb += qid << UDBS_SEG_SHIFT;
2720				qid = 0;
2721			}
2722			fl->udb = (volatile void *)udb;
2723		}
2724		fl->dbval = F_DBPRIO | V_QID(qid);
2725		if (is_t5(sc))
2726			fl->dbval |= F_DBTYPE;
2727
2728		FL_LOCK(fl);
2729		/* Enough to make sure the SGE doesn't think it's starved */
2730		refill_fl(sc, fl, fl->lowat);
2731		FL_UNLOCK(fl);
2732	}
2733
2734	if (is_t5(sc) && cong >= 0) {
2735		uint32_t param, val;
2736
2737		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2738		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2739		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2740		if (cong == 0)
2741			val = 1 << 19;
2742		else {
2743			val = 2 << 19;
2744			for (i = 0; i < 4; i++) {
2745				if (cong & (1 << i))
2746					val |= 1 << (i << 2);
2747			}
2748		}
2749
2750		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2751		if (rc != 0) {
2752			/* report error but carry on */
2753			device_printf(sc->dev,
2754			    "failed to set congestion manager context for "
2755			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2756		}
2757	}
2758
2759	/* Enable IQ interrupts */
2760	atomic_store_rel_int(&iq->state, IQS_IDLE);
2761	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
2762	    V_INGRESSQID(iq->cntxt_id));
2763
2764	return (0);
2765}
2766
2767static int
2768free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
2769{
2770	int rc;
2771	struct adapter *sc = iq->adapter;
2772	device_t dev;
2773
2774	if (sc == NULL)
2775		return (0);	/* nothing to do */
2776
2777	dev = pi ? pi->dev : sc->dev;
2778
2779	if (iq->flags & IQ_ALLOCATED) {
2780		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2781		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2782		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2783		if (rc != 0) {
2784			device_printf(dev,
2785			    "failed to free queue %p: %d\n", iq, rc);
2786			return (rc);
2787		}
2788		iq->flags &= ~IQ_ALLOCATED;
2789	}
2790
2791	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2792
2793	bzero(iq, sizeof(*iq));
2794
2795	if (fl) {
2796		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2797		    fl->desc);
2798
2799		if (fl->sdesc)
2800			free_fl_sdesc(sc, fl);
2801
2802		if (mtx_initialized(&fl->fl_lock))
2803			mtx_destroy(&fl->fl_lock);
2804
2805		bzero(fl, sizeof(*fl));
2806	}
2807
2808	return (0);
2809}
2810
2811static void
2812add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
2813    struct sge_fl *fl)
2814{
2815	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2816
2817	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2818	    "freelist");
2819	children = SYSCTL_CHILDREN(oid);
2820
2821	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2822	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
2823	    "SGE context id of the freelist");
2824	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "padding", CTLFLAG_RD, NULL,
2825	    fl_pad ? 1 : 0, "padding enabled");
2826	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "packing", CTLFLAG_RD, NULL,
2827	    fl->flags & FL_BUF_PACKING ? 1 : 0, "packing enabled");
2828	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
2829	    0, "consumer index");
2830	if (fl->flags & FL_BUF_PACKING) {
2831		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
2832		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
2833	}
2834	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
2835	    0, "producer index");
2836	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
2837	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
2838	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
2839	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
2840	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
2841	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
2842	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
2843	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
2844	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
2845	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
2846}
2847
2848static int
2849alloc_fwq(struct adapter *sc)
2850{
2851	int rc, intr_idx;
2852	struct sge_iq *fwq = &sc->sge.fwq;
2853	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2854	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2855
2856	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
2857	fwq->flags |= IQ_INTR;	/* always */
2858	intr_idx = sc->intr_count > 1 ? 1 : 0;
2859	rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
2860	if (rc != 0) {
2861		device_printf(sc->dev,
2862		    "failed to create firmware event queue: %d\n", rc);
2863		return (rc);
2864	}
2865
2866	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2867	    NULL, "firmware event queue");
2868	children = SYSCTL_CHILDREN(oid);
2869
2870	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
2871	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
2872	    "absolute id of the queue");
2873	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
2874	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
2875	    "SGE context id of the queue");
2876	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
2877	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
2878	    "consumer index");
2879
2880	return (0);
2881}
2882
2883static int
2884free_fwq(struct adapter *sc)
2885{
2886	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
2887}
2888
2889static int
2890alloc_mgmtq(struct adapter *sc)
2891{
2892	int rc;
2893	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
2894	char name[16];
2895	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2896	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2897
2898	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
2899	    NULL, "management queue");
2900
2901	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
2902	init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
2903	    sc->sge.fwq.cntxt_id, name);
2904	rc = alloc_wrq(sc, NULL, mgmtq, oid);
2905	if (rc != 0) {
2906		device_printf(sc->dev,
2907		    "failed to create management queue: %d\n", rc);
2908		return (rc);
2909	}
2910
2911	return (0);
2912}
2913
2914static int
2915free_mgmtq(struct adapter *sc)
2916{
2917
2918	return free_wrq(sc, &sc->sge.mgmtq);
2919}
2920
2921int
2922tnl_cong(struct port_info *pi)
2923{
2924
2925	if (cong_drop == -1)
2926		return (-1);
2927	else if (cong_drop == 1)
2928		return (0);
2929	else
2930		return (pi->rx_chan_map);
2931}
2932
2933static int
2934alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx,
2935    struct sysctl_oid *oid)
2936{
2937	int rc;
2938	struct sysctl_oid_list *children;
2939	char name[16];
2940
2941	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(pi));
2942	if (rc != 0)
2943		return (rc);
2944
2945	/*
2946	 * The freelist is just barely above the starvation threshold right now,
2947	 * fill it up a bit more.
2948	 */
2949	FL_LOCK(&rxq->fl);
2950	refill_fl(pi->adapter, &rxq->fl, 128);
2951	FL_UNLOCK(&rxq->fl);
2952
2953#if defined(INET) || defined(INET6)
2954	rc = tcp_lro_init(&rxq->lro);
2955	if (rc != 0)
2956		return (rc);
2957	rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
2958
2959	if (pi->ifp->if_capenable & IFCAP_LRO)
2960		rxq->iq.flags |= IQ_LRO_ENABLED;
2961#endif
2962	rxq->ifp = pi->ifp;
2963
2964	children = SYSCTL_CHILDREN(oid);
2965
2966	snprintf(name, sizeof(name), "%d", idx);
2967	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2968	    NULL, "rx queue");
2969	children = SYSCTL_CHILDREN(oid);
2970
2971	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2972	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
2973	    "absolute id of the queue");
2974	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2975	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
2976	    "SGE context id of the queue");
2977	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2978	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
2979	    "consumer index");
2980#if defined(INET) || defined(INET6)
2981	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
2982	    &rxq->lro.lro_queued, 0, NULL);
2983	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
2984	    &rxq->lro.lro_flushed, 0, NULL);
2985#endif
2986	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
2987	    &rxq->rxcsum, "# of times hardware assisted with checksum");
2988	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
2989	    CTLFLAG_RD, &rxq->vlan_extraction,
2990	    "# of times hardware extracted 802.1Q tag");
2991
2992	add_fl_sysctls(&pi->ctx, oid, &rxq->fl);
2993
2994	return (rc);
2995}
2996
2997static int
2998free_rxq(struct port_info *pi, struct sge_rxq *rxq)
2999{
3000	int rc;
3001
3002#if defined(INET) || defined(INET6)
3003	if (rxq->lro.ifp) {
3004		tcp_lro_free(&rxq->lro);
3005		rxq->lro.ifp = NULL;
3006	}
3007#endif
3008
3009	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
3010	if (rc == 0)
3011		bzero(rxq, sizeof(*rxq));
3012
3013	return (rc);
3014}
3015
3016#ifdef TCP_OFFLOAD
3017static int
3018alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
3019    int intr_idx, int idx, struct sysctl_oid *oid)
3020{
3021	int rc;
3022	struct sysctl_oid_list *children;
3023	char name[16];
3024
3025	rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
3026	    pi->rx_chan_map);
3027	if (rc != 0)
3028		return (rc);
3029
3030	children = SYSCTL_CHILDREN(oid);
3031
3032	snprintf(name, sizeof(name), "%d", idx);
3033	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3034	    NULL, "rx queue");
3035	children = SYSCTL_CHILDREN(oid);
3036
3037	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
3038	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
3039	    "I", "absolute id of the queue");
3040	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
3041	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
3042	    "I", "SGE context id of the queue");
3043	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
3044	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
3045	    "consumer index");
3046
3047	add_fl_sysctls(&pi->ctx, oid, &ofld_rxq->fl);
3048
3049	return (rc);
3050}
3051
3052static int
3053free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
3054{
3055	int rc;
3056
3057	rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
3058	if (rc == 0)
3059		bzero(ofld_rxq, sizeof(*ofld_rxq));
3060
3061	return (rc);
3062}
3063#endif
3064
3065#ifdef DEV_NETMAP
3066static int
3067alloc_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq, int intr_idx,
3068    int idx, struct sysctl_oid *oid)
3069{
3070	int rc;
3071	struct sysctl_oid_list *children;
3072	struct sysctl_ctx_list *ctx;
3073	char name[16];
3074	size_t len;
3075	struct adapter *sc = pi->adapter;
3076	struct netmap_adapter *na = NA(pi->nm_ifp);
3077
3078	MPASS(na != NULL);
3079
3080	len = pi->qsize_rxq * IQ_ESIZE;
3081	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
3082	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
3083	if (rc != 0)
3084		return (rc);
3085
3086	len = na->num_rx_desc * EQ_ESIZE + spg_len;
3087	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
3088	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
3089	if (rc != 0)
3090		return (rc);
3091
3092	nm_rxq->pi = pi;
3093	nm_rxq->nid = idx;
3094	nm_rxq->iq_cidx = 0;
3095	nm_rxq->iq_sidx = pi->qsize_rxq - spg_len / IQ_ESIZE;
3096	nm_rxq->iq_gen = F_RSPD_GEN;
3097	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
3098	nm_rxq->fl_sidx = na->num_rx_desc;
3099	nm_rxq->intr_idx = intr_idx;
3100
3101	ctx = &pi->ctx;
3102	children = SYSCTL_CHILDREN(oid);
3103
3104	snprintf(name, sizeof(name), "%d", idx);
3105	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
3106	    "rx queue");
3107	children = SYSCTL_CHILDREN(oid);
3108
3109	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
3110	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
3111	    "I", "absolute id of the queue");
3112	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3113	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
3114	    "I", "SGE context id of the queue");
3115	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3116	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
3117	    "consumer index");
3118
3119	children = SYSCTL_CHILDREN(oid);
3120	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
3121	    "freelist");
3122	children = SYSCTL_CHILDREN(oid);
3123
3124	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
3125	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
3126	    "I", "SGE context id of the freelist");
3127	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
3128	    &nm_rxq->fl_cidx, 0, "consumer index");
3129	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
3130	    &nm_rxq->fl_pidx, 0, "producer index");
3131
3132	return (rc);
3133}
3134
3135
3136static int
3137free_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq)
3138{
3139	struct adapter *sc = pi->adapter;
3140
3141	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
3142	    nm_rxq->iq_desc);
3143	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
3144	    nm_rxq->fl_desc);
3145
3146	return (0);
3147}
3148
3149static int
3150alloc_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
3151    struct sysctl_oid *oid)
3152{
3153	int rc;
3154	size_t len;
3155	struct adapter *sc = pi->adapter;
3156	struct netmap_adapter *na = NA(pi->nm_ifp);
3157	char name[16];
3158	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3159
3160	len = na->num_tx_desc * EQ_ESIZE + spg_len;
3161	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
3162	    &nm_txq->ba, (void **)&nm_txq->desc);
3163	if (rc)
3164		return (rc);
3165
3166	nm_txq->pidx = nm_txq->cidx = 0;
3167	nm_txq->sidx = na->num_tx_desc;
3168	nm_txq->nid = idx;
3169	nm_txq->iqidx = iqidx;
3170	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3171	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf));
3172
3173	snprintf(name, sizeof(name), "%d", idx);
3174	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3175	    NULL, "netmap tx queue");
3176	children = SYSCTL_CHILDREN(oid);
3177
3178	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3179	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
3180	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
3181	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
3182	    "consumer index");
3183	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
3184	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
3185	    "producer index");
3186
3187	return (rc);
3188}
3189
3190static int
3191free_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq)
3192{
3193	struct adapter *sc = pi->adapter;
3194
3195	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
3196	    nm_txq->desc);
3197
3198	return (0);
3199}
3200#endif
3201
3202static int
3203ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
3204{
3205	int rc, cntxt_id;
3206	struct fw_eq_ctrl_cmd c;
3207	int qsize = eq->sidx + spg_len / EQ_ESIZE;
3208
3209	bzero(&c, sizeof(c));
3210
3211	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
3212	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
3213	    V_FW_EQ_CTRL_CMD_VFN(0));
3214	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
3215	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
3216	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid));
3217	c.physeqid_pkd = htobe32(0);
3218	c.fetchszm_to_iqid =
3219	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3220		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
3221		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
3222	c.dcaen_to_eqsize =
3223	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3224		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3225		V_FW_EQ_CTRL_CMD_EQSIZE(qsize));
3226	c.eqaddr = htobe64(eq->ba);
3227
3228	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3229	if (rc != 0) {
3230		device_printf(sc->dev,
3231		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
3232		return (rc);
3233	}
3234	eq->flags |= EQ_ALLOCATED;
3235
3236	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
3237	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3238	if (cntxt_id >= sc->sge.neq)
3239	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3240		cntxt_id, sc->sge.neq - 1);
3241	sc->sge.eqmap[cntxt_id] = eq;
3242
3243	return (rc);
3244}
3245
3246static int
3247eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
3248{
3249	int rc, cntxt_id;
3250	struct fw_eq_eth_cmd c;
3251	int qsize = eq->sidx + spg_len / EQ_ESIZE;
3252
3253	bzero(&c, sizeof(c));
3254
3255	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
3256	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
3257	    V_FW_EQ_ETH_CMD_VFN(0));
3258	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
3259	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
3260	c.autoequiqe_to_viid = htobe32(F_FW_EQ_ETH_CMD_AUTOEQUIQE |
3261	    F_FW_EQ_ETH_CMD_AUTOEQUEQE | V_FW_EQ_ETH_CMD_VIID(pi->viid));
3262	c.fetchszm_to_iqid =
3263	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3264		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
3265		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
3266	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3267	    V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3268	    V_FW_EQ_ETH_CMD_EQSIZE(qsize));
3269	c.eqaddr = htobe64(eq->ba);
3270
3271	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3272	if (rc != 0) {
3273		device_printf(pi->dev,
3274		    "failed to create Ethernet egress queue: %d\n", rc);
3275		return (rc);
3276	}
3277	eq->flags |= EQ_ALLOCATED;
3278
3279	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
3280	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3281	if (cntxt_id >= sc->sge.neq)
3282	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3283		cntxt_id, sc->sge.neq - 1);
3284	sc->sge.eqmap[cntxt_id] = eq;
3285
3286	return (rc);
3287}
3288
3289#ifdef TCP_OFFLOAD
3290static int
3291ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
3292{
3293	int rc, cntxt_id;
3294	struct fw_eq_ofld_cmd c;
3295	int qsize = eq->sidx + spg_len / EQ_ESIZE;
3296
3297	bzero(&c, sizeof(c));
3298
3299	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
3300	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
3301	    V_FW_EQ_OFLD_CMD_VFN(0));
3302	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
3303	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
3304	c.fetchszm_to_iqid =
3305		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) |
3306		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
3307		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
3308	c.dcaen_to_eqsize =
3309	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
3310		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
3311		V_FW_EQ_OFLD_CMD_EQSIZE(qsize));
3312	c.eqaddr = htobe64(eq->ba);
3313
3314	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
3315	if (rc != 0) {
3316		device_printf(pi->dev,
3317		    "failed to create egress queue for TCP offload: %d\n", rc);
3318		return (rc);
3319	}
3320	eq->flags |= EQ_ALLOCATED;
3321
3322	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
3323	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
3324	if (cntxt_id >= sc->sge.neq)
3325	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
3326		cntxt_id, sc->sge.neq - 1);
3327	sc->sge.eqmap[cntxt_id] = eq;
3328
3329	return (rc);
3330}
3331#endif
3332
3333static int
3334alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
3335{
3336	int rc, qsize;
3337	size_t len;
3338
3339	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
3340
3341	qsize = eq->sidx + spg_len / EQ_ESIZE;
3342	len = qsize * EQ_ESIZE;
3343	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
3344	    &eq->ba, (void **)&eq->desc);
3345	if (rc)
3346		return (rc);
3347
3348	eq->pidx = eq->cidx = 0;
3349	eq->equeqidx = eq->dbidx = 0;
3350	eq->doorbells = sc->doorbells;
3351
3352	switch (eq->flags & EQ_TYPEMASK) {
3353	case EQ_CTRL:
3354		rc = ctrl_eq_alloc(sc, eq);
3355		break;
3356
3357	case EQ_ETH:
3358		rc = eth_eq_alloc(sc, pi, eq);
3359		break;
3360
3361#ifdef TCP_OFFLOAD
3362	case EQ_OFLD:
3363		rc = ofld_eq_alloc(sc, pi, eq);
3364		break;
3365#endif
3366
3367	default:
3368		panic("%s: invalid eq type %d.", __func__,
3369		    eq->flags & EQ_TYPEMASK);
3370	}
3371	if (rc != 0) {
3372		device_printf(sc->dev,
3373		    "failed to allocate egress queue(%d): %d\n",
3374		    eq->flags & EQ_TYPEMASK, rc);
3375	}
3376
3377	if (isset(&eq->doorbells, DOORBELL_UDB) ||
3378	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
3379	    isset(&eq->doorbells, DOORBELL_WCWR)) {
3380		uint32_t s_qpp = sc->sge.eq_s_qpp;
3381		uint32_t mask = (1 << s_qpp) - 1;
3382		volatile uint8_t *udb;
3383
3384		udb = sc->udbs_base + UDBS_DB_OFFSET;
3385		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
3386		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
3387		if (eq->udb_qid >= PAGE_SIZE / UDBS_SEG_SIZE)
3388	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
3389		else {
3390			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
3391			eq->udb_qid = 0;
3392		}
3393		eq->udb = (volatile void *)udb;
3394	}
3395
3396	return (rc);
3397}
3398
3399static int
3400free_eq(struct adapter *sc, struct sge_eq *eq)
3401{
3402	int rc;
3403
3404	if (eq->flags & EQ_ALLOCATED) {
3405		switch (eq->flags & EQ_TYPEMASK) {
3406		case EQ_CTRL:
3407			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
3408			    eq->cntxt_id);
3409			break;
3410
3411		case EQ_ETH:
3412			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
3413			    eq->cntxt_id);
3414			break;
3415
3416#ifdef TCP_OFFLOAD
3417		case EQ_OFLD:
3418			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
3419			    eq->cntxt_id);
3420			break;
3421#endif
3422
3423		default:
3424			panic("%s: invalid eq type %d.", __func__,
3425			    eq->flags & EQ_TYPEMASK);
3426		}
3427		if (rc != 0) {
3428			device_printf(sc->dev,
3429			    "failed to free egress queue (%d): %d\n",
3430			    eq->flags & EQ_TYPEMASK, rc);
3431			return (rc);
3432		}
3433		eq->flags &= ~EQ_ALLOCATED;
3434	}
3435
3436	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3437
3438	if (mtx_initialized(&eq->eq_lock))
3439		mtx_destroy(&eq->eq_lock);
3440
3441	bzero(eq, sizeof(*eq));
3442	return (0);
3443}
3444
3445static int
3446alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
3447    struct sysctl_oid *oid)
3448{
3449	int rc;
3450	struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx;
3451	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3452
3453	rc = alloc_eq(sc, pi, &wrq->eq);
3454	if (rc)
3455		return (rc);
3456
3457	wrq->adapter = sc;
3458	TASK_INIT(&wrq->wrq_tx_task, 0, wrq_tx_drain, wrq);
3459	TAILQ_INIT(&wrq->incomplete_wrs);
3460	STAILQ_INIT(&wrq->wr_list);
3461	wrq->nwr_pending = 0;
3462	wrq->ndesc_needed = 0;
3463
3464	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3465	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3466	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3467	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3468	    "consumer index");
3469	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3470	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3471	    "producer index");
3472	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_direct", CTLFLAG_RD,
3473	    &wrq->tx_wrs_direct, "# of work requests (direct)");
3474	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs_copied", CTLFLAG_RD,
3475	    &wrq->tx_wrs_copied, "# of work requests (copied)");
3476
3477	return (rc);
3478}
3479
3480static int
3481free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3482{
3483	int rc;
3484
3485	rc = free_eq(sc, &wrq->eq);
3486	if (rc)
3487		return (rc);
3488
3489	bzero(wrq, sizeof(*wrq));
3490	return (0);
3491}
3492
3493static int
3494alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx,
3495    struct sysctl_oid *oid)
3496{
3497	int rc;
3498	struct adapter *sc = pi->adapter;
3499	struct sge_eq *eq = &txq->eq;
3500	char name[16];
3501	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3502
3503	rc = mp_ring_alloc(&txq->r, eq->sidx, txq, eth_tx, can_resume_eth_tx,
3504	    M_CXGBE, M_WAITOK);
3505	if (rc != 0) {
3506		device_printf(sc->dev, "failed to allocate mp_ring: %d\n", rc);
3507		return (rc);
3508	}
3509
3510	rc = alloc_eq(sc, pi, eq);
3511	if (rc != 0) {
3512		mp_ring_free(txq->r);
3513		txq->r = NULL;
3514		return (rc);
3515	}
3516
3517	/* Can't fail after this point. */
3518
3519	TASK_INIT(&txq->tx_reclaim_task, 0, tx_reclaim, eq);
3520	txq->ifp = pi->ifp;
3521	txq->gl = sglist_alloc(TX_SGL_SEGS, M_WAITOK);
3522	txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3523	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf));
3524	txq->sdesc = malloc(eq->sidx * sizeof(struct tx_sdesc), M_CXGBE,
3525	    M_ZERO | M_WAITOK);
3526
3527	snprintf(name, sizeof(name), "%d", idx);
3528	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3529	    NULL, "tx queue");
3530	children = SYSCTL_CHILDREN(oid);
3531
3532	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3533	    &eq->cntxt_id, 0, "SGE context id of the queue");
3534	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
3535	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3536	    "consumer index");
3537	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
3538	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3539	    "producer index");
3540
3541	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3542	    &txq->txcsum, "# of times hardware assisted with checksum");
3543	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
3544	    CTLFLAG_RD, &txq->vlan_insertion,
3545	    "# of times hardware inserted 802.1Q tag");
3546	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3547	    &txq->tso_wrs, "# of TSO work requests");
3548	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3549	    &txq->imm_wrs, "# of work requests with immediate data");
3550	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3551	    &txq->sgl_wrs, "# of work requests with direct SGL");
3552	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3553	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3554	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts0_wrs",
3555	    CTLFLAG_RD, &txq->txpkts0_wrs,
3556	    "# of txpkts (type 0) work requests");
3557	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts1_wrs",
3558	    CTLFLAG_RD, &txq->txpkts1_wrs,
3559	    "# of txpkts (type 1) work requests");
3560	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts0_pkts",
3561	    CTLFLAG_RD, &txq->txpkts0_pkts,
3562	    "# of frames tx'd using type0 txpkts work requests");
3563	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts1_pkts",
3564	    CTLFLAG_RD, &txq->txpkts1_pkts,
3565	    "# of frames tx'd using type1 txpkts work requests");
3566
3567	SYSCTL_ADD_COUNTER_U64(&pi->ctx, children, OID_AUTO, "r_enqueues",
3568	    CTLFLAG_RD, &txq->r->enqueues,
3569	    "# of enqueues to the mp_ring for this queue");
3570	SYSCTL_ADD_COUNTER_U64(&pi->ctx, children, OID_AUTO, "r_drops",
3571	    CTLFLAG_RD, &txq->r->drops,
3572	    "# of drops in the mp_ring for this queue");
3573	SYSCTL_ADD_COUNTER_U64(&pi->ctx, children, OID_AUTO, "r_starts",
3574	    CTLFLAG_RD, &txq->r->starts,
3575	    "# of normal consumer starts in the mp_ring for this queue");
3576	SYSCTL_ADD_COUNTER_U64(&pi->ctx, children, OID_AUTO, "r_stalls",
3577	    CTLFLAG_RD, &txq->r->stalls,
3578	    "# of consumer stalls in the mp_ring for this queue");
3579	SYSCTL_ADD_COUNTER_U64(&pi->ctx, children, OID_AUTO, "r_restarts",
3580	    CTLFLAG_RD, &txq->r->restarts,
3581	    "# of consumer restarts in the mp_ring for this queue");
3582	SYSCTL_ADD_COUNTER_U64(&pi->ctx, children, OID_AUTO, "r_abdications",
3583	    CTLFLAG_RD, &txq->r->abdications,
3584	    "# of consumer abdications in the mp_ring for this queue");
3585
3586	return (0);
3587}
3588
3589static int
3590free_txq(struct port_info *pi, struct sge_txq *txq)
3591{
3592	int rc;
3593	struct adapter *sc = pi->adapter;
3594	struct sge_eq *eq = &txq->eq;
3595
3596	rc = free_eq(sc, eq);
3597	if (rc)
3598		return (rc);
3599
3600	sglist_free(txq->gl);
3601	free(txq->sdesc, M_CXGBE);
3602	mp_ring_free(txq->r);
3603
3604	bzero(txq, sizeof(*txq));
3605	return (0);
3606}
3607
3608static void
3609oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3610{
3611	bus_addr_t *ba = arg;
3612
3613	KASSERT(nseg == 1,
3614	    ("%s meant for single segment mappings only.", __func__));
3615
3616	*ba = error ? 0 : segs->ds_addr;
3617}
3618
3619static inline void
3620ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3621{
3622	uint32_t n, v;
3623
3624	n = IDXDIFF(fl->pidx / 8, fl->dbidx, fl->sidx);
3625	MPASS(n > 0);
3626
3627	wmb();
3628	v = fl->dbval | V_PIDX(n);
3629	if (fl->udb)
3630		*fl->udb = htole32(v);
3631	else
3632		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3633	IDXINCR(fl->dbidx, n, fl->sidx);
3634}
3635
3636/*
3637 * Fills up the freelist by allocating upto 'n' buffers.  Buffers that are
3638 * recycled do not count towards this allocation budget.
3639 *
3640 * Returns non-zero to indicate that this freelist should be added to the list
3641 * of starving freelists.
3642 */
3643static int
3644refill_fl(struct adapter *sc, struct sge_fl *fl, int n)
3645{
3646	__be64 *d;
3647	struct fl_sdesc *sd;
3648	uintptr_t pa;
3649	caddr_t cl;
3650	struct cluster_layout *cll;
3651	struct sw_zone_info *swz;
3652	struct cluster_metadata *clm;
3653	uint16_t max_pidx;
3654	uint16_t hw_cidx = fl->hw_cidx;		/* stable snapshot */
3655
3656	FL_LOCK_ASSERT_OWNED(fl);
3657
3658	/*
3659	 * We always stop at the begining of the hardware descriptor that's just
3660	 * before the one with the hw cidx.  This is to avoid hw pidx = hw cidx,
3661	 * which would mean an empty freelist to the chip.
3662	 */
3663	max_pidx = __predict_false(hw_cidx == 0) ? fl->sidx - 1 : hw_cidx - 1;
3664	if (fl->pidx == max_pidx * 8)
3665		return (0);
3666
3667	d = &fl->desc[fl->pidx];
3668	sd = &fl->sdesc[fl->pidx];
3669	cll = &fl->cll_def;	/* default layout */
3670	swz = &sc->sge.sw_zone_info[cll->zidx];
3671
3672	while (n > 0) {
3673
3674		if (sd->cl != NULL) {
3675
3676			if (sd->nmbuf == 0) {
3677				/*
3678				 * Fast recycle without involving any atomics on
3679				 * the cluster's metadata (if the cluster has
3680				 * metadata).  This happens when all frames
3681				 * received in the cluster were small enough to
3682				 * fit within a single mbuf each.
3683				 */
3684				fl->cl_fast_recycled++;
3685#ifdef INVARIANTS
3686				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3687				if (clm != NULL)
3688					MPASS(clm->refcount == 1);
3689#endif
3690				goto recycled_fast;
3691			}
3692
3693			/*
3694			 * Cluster is guaranteed to have metadata.  Clusters
3695			 * without metadata always take the fast recycle path
3696			 * when they're recycled.
3697			 */
3698			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3699			MPASS(clm != NULL);
3700
3701			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3702				fl->cl_recycled++;
3703				counter_u64_add(extfree_rels, 1);
3704				goto recycled;
3705			}
3706			sd->cl = NULL;	/* gave up my reference */
3707		}
3708		MPASS(sd->cl == NULL);
3709alloc:
3710		cl = uma_zalloc(swz->zone, M_NOWAIT);
3711		if (__predict_false(cl == NULL)) {
3712			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
3713			    fl->cll_def.zidx == fl->cll_alt.zidx)
3714				break;
3715
3716			/* fall back to the safe zone */
3717			cll = &fl->cll_alt;
3718			swz = &sc->sge.sw_zone_info[cll->zidx];
3719			goto alloc;
3720		}
3721		fl->cl_allocated++;
3722		n--;
3723
3724		pa = pmap_kextract((vm_offset_t)cl);
3725		pa += cll->region1;
3726		sd->cl = cl;
3727		sd->cll = *cll;
3728		*d = htobe64(pa | cll->hwidx);
3729		clm = cl_metadata(sc, fl, cll, cl);
3730		if (clm != NULL) {
3731recycled:
3732#ifdef INVARIANTS
3733			clm->sd = sd;
3734#endif
3735			clm->refcount = 1;
3736		}
3737		sd->nmbuf = 0;
3738recycled_fast:
3739		d++;
3740		sd++;
3741		if (__predict_false(++fl->pidx % 8 == 0)) {
3742			uint16_t pidx = fl->pidx / 8;
3743
3744			if (__predict_false(pidx == fl->sidx)) {
3745				fl->pidx = 0;
3746				pidx = 0;
3747				sd = fl->sdesc;
3748				d = fl->desc;
3749			}
3750			if (pidx == max_pidx)
3751				break;
3752
3753			if (IDXDIFF(pidx, fl->dbidx, fl->sidx) >= 4)
3754				ring_fl_db(sc, fl);
3755		}
3756	}
3757
3758	if (fl->pidx / 8 != fl->dbidx)
3759		ring_fl_db(sc, fl);
3760
3761	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3762}
3763
3764/*
3765 * Attempt to refill all starving freelists.
3766 */
3767static void
3768refill_sfl(void *arg)
3769{
3770	struct adapter *sc = arg;
3771	struct sge_fl *fl, *fl_temp;
3772
3773	mtx_lock(&sc->sfl_lock);
3774	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3775		FL_LOCK(fl);
3776		refill_fl(sc, fl, 64);
3777		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3778			TAILQ_REMOVE(&sc->sfl, fl, link);
3779			fl->flags &= ~FL_STARVING;
3780		}
3781		FL_UNLOCK(fl);
3782	}
3783
3784	if (!TAILQ_EMPTY(&sc->sfl))
3785		callout_schedule(&sc->sfl_callout, hz / 5);
3786	mtx_unlock(&sc->sfl_lock);
3787}
3788
3789static int
3790alloc_fl_sdesc(struct sge_fl *fl)
3791{
3792
3793	fl->sdesc = malloc(fl->sidx * 8 * sizeof(struct fl_sdesc), M_CXGBE,
3794	    M_ZERO | M_WAITOK);
3795
3796	return (0);
3797}
3798
3799static void
3800free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3801{
3802	struct fl_sdesc *sd;
3803	struct cluster_metadata *clm;
3804	struct cluster_layout *cll;
3805	int i;
3806
3807	sd = fl->sdesc;
3808	for (i = 0; i < fl->sidx * 8; i++, sd++) {
3809		if (sd->cl == NULL)
3810			continue;
3811
3812		cll = &sd->cll;
3813		clm = cl_metadata(sc, fl, cll, sd->cl);
3814		if (sd->nmbuf == 0)
3815			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3816		else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3817			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3818			counter_u64_add(extfree_rels, 1);
3819		}
3820		sd->cl = NULL;
3821	}
3822
3823	free(fl->sdesc, M_CXGBE);
3824	fl->sdesc = NULL;
3825}
3826
3827static inline void
3828get_pkt_gl(struct mbuf *m, struct sglist *gl)
3829{
3830	int rc;
3831
3832	M_ASSERTPKTHDR(m);
3833
3834	sglist_reset(gl);
3835	rc = sglist_append_mbuf(gl, m);
3836	if (__predict_false(rc != 0)) {
3837		panic("%s: mbuf %p (%d segs) was vetted earlier but now fails "
3838		    "with %d.", __func__, m, mbuf_nsegs(m), rc);
3839	}
3840
3841	KASSERT(gl->sg_nseg == mbuf_nsegs(m),
3842	    ("%s: nsegs changed for mbuf %p from %d to %d", __func__, m,
3843	    mbuf_nsegs(m), gl->sg_nseg));
3844	KASSERT(gl->sg_nseg > 0 &&
3845	    gl->sg_nseg <= (needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS),
3846	    ("%s: %d segments, should have been 1 <= nsegs <= %d", __func__,
3847		gl->sg_nseg, needs_tso(m) ? TX_SGL_SEGS_TSO : TX_SGL_SEGS));
3848}
3849
3850/*
3851 * len16 for a txpkt WR with a GL.  Includes the firmware work request header.
3852 */
3853static inline u_int
3854txpkt_len16(u_int nsegs, u_int tso)
3855{
3856	u_int n;
3857
3858	MPASS(nsegs > 0);
3859
3860	nsegs--; /* first segment is part of ulptx_sgl */
3861	n = sizeof(struct fw_eth_tx_pkt_wr) + sizeof(struct cpl_tx_pkt_core) +
3862	    sizeof(struct ulptx_sgl) + 8 * ((3 * nsegs) / 2 + (nsegs & 1));
3863	if (tso)
3864		n += sizeof(struct cpl_tx_pkt_lso_core);
3865
3866	return (howmany(n, 16));
3867}
3868
3869/*
3870 * len16 for a txpkts type 0 WR with a GL.  Does not include the firmware work
3871 * request header.
3872 */
3873static inline u_int
3874txpkts0_len16(u_int nsegs)
3875{
3876	u_int n;
3877
3878	MPASS(nsegs > 0);
3879
3880	nsegs--; /* first segment is part of ulptx_sgl */
3881	n = sizeof(struct ulp_txpkt) + sizeof(struct ulptx_idata) +
3882	    sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl) +
3883	    8 * ((3 * nsegs) / 2 + (nsegs & 1));
3884
3885	return (howmany(n, 16));
3886}
3887
3888/*
3889 * len16 for a txpkts type 1 WR with a GL.  Does not include the firmware work
3890 * request header.
3891 */
3892static inline u_int
3893txpkts1_len16(void)
3894{
3895	u_int n;
3896
3897	n = sizeof(struct cpl_tx_pkt_core) + sizeof(struct ulptx_sgl);
3898
3899	return (howmany(n, 16));
3900}
3901
3902static inline u_int
3903imm_payload(u_int ndesc)
3904{
3905	u_int n;
3906
3907	n = ndesc * EQ_ESIZE - sizeof(struct fw_eth_tx_pkt_wr) -
3908	    sizeof(struct cpl_tx_pkt_core);
3909
3910	return (n);
3911}
3912
3913/*
3914 * Write a txpkt WR for this packet to the hardware descriptors, update the
3915 * software descriptor, and advance the pidx.  It is guaranteed that enough
3916 * descriptors are available.
3917 *
3918 * The return value is the # of hardware descriptors used.
3919 */
3920static u_int
3921write_txpkt_wr(struct sge_txq *txq, struct fw_eth_tx_pkt_wr *wr,
3922    struct mbuf *m0, u_int available)
3923{
3924	struct sge_eq *eq = &txq->eq;
3925	struct tx_sdesc *txsd;
3926	struct cpl_tx_pkt_core *cpl;
3927	uint32_t ctrl;	/* used in many unrelated places */
3928	uint64_t ctrl1;
3929	int len16, ndesc, pktlen, nsegs;
3930	caddr_t dst;
3931
3932	TXQ_LOCK_ASSERT_OWNED(txq);
3933	M_ASSERTPKTHDR(m0);
3934	MPASS(available > 0 && available < eq->sidx);
3935
3936	len16 = mbuf_len16(m0);
3937	nsegs = mbuf_nsegs(m0);
3938	pktlen = m0->m_pkthdr.len;
3939	ctrl = sizeof(struct cpl_tx_pkt_core);
3940	if (needs_tso(m0))
3941		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
3942	else if (pktlen <= imm_payload(2) && available >= 2) {
3943		/* Immediate data.  Recalculate len16 and set nsegs to 0. */
3944		ctrl += pktlen;
3945		len16 = howmany(sizeof(struct fw_eth_tx_pkt_wr) +
3946		    sizeof(struct cpl_tx_pkt_core) + pktlen, 16);
3947		nsegs = 0;
3948	}
3949	ndesc = howmany(len16, EQ_ESIZE / 16);
3950	MPASS(ndesc <= available);
3951
3952	/* Firmware work request header */
3953	MPASS(wr == (void *)&eq->desc[eq->pidx]);
3954	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
3955	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
3956
3957	ctrl = V_FW_WR_LEN16(len16);
3958	wr->equiq_to_len16 = htobe32(ctrl);
3959	wr->r3 = 0;
3960
3961	if (needs_tso(m0)) {
3962		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
3963
3964		KASSERT(m0->m_pkthdr.l2hlen > 0 && m0->m_pkthdr.l3hlen > 0 &&
3965		    m0->m_pkthdr.l4hlen > 0,
3966		    ("%s: mbuf %p needs TSO but missing header lengths",
3967			__func__, m0));
3968
3969		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
3970		    F_LSO_LAST_SLICE | V_LSO_IPHDR_LEN(m0->m_pkthdr.l3hlen >> 2)
3971		    | V_LSO_TCPHDR_LEN(m0->m_pkthdr.l4hlen >> 2);
3972		if (m0->m_pkthdr.l2hlen == sizeof(struct ether_vlan_header))
3973			ctrl |= V_LSO_ETHHDR_LEN(1);
3974		if (m0->m_pkthdr.l3hlen == sizeof(struct ip6_hdr))
3975			ctrl |= F_LSO_IPV6;
3976
3977		lso->lso_ctrl = htobe32(ctrl);
3978		lso->ipid_ofst = htobe16(0);
3979		lso->mss = htobe16(m0->m_pkthdr.tso_segsz);
3980		lso->seqno_offset = htobe32(0);
3981		lso->len = htobe32(pktlen);
3982
3983		cpl = (void *)(lso + 1);
3984
3985		txq->tso_wrs++;
3986	} else
3987		cpl = (void *)(wr + 1);
3988
3989	/* Checksum offload */
3990	ctrl1 = 0;
3991	if (needs_l3_csum(m0) == 0)
3992		ctrl1 |= F_TXPKT_IPCSUM_DIS;
3993	if (needs_l4_csum(m0) == 0)
3994		ctrl1 |= F_TXPKT_L4CSUM_DIS;
3995	if (m0->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3996	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3997		txq->txcsum++;	/* some hardware assistance provided */
3998
3999	/* VLAN tag insertion */
4000	if (needs_vlan_insertion(m0)) {
4001		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m0->m_pkthdr.ether_vtag);
4002		txq->vlan_insertion++;
4003	}
4004
4005	/* CPL header */
4006	cpl->ctrl0 = txq->cpl_ctrl0;
4007	cpl->pack = 0;
4008	cpl->len = htobe16(pktlen);
4009	cpl->ctrl1 = htobe64(ctrl1);
4010
4011	/* SGL */
4012	dst = (void *)(cpl + 1);
4013	if (nsegs > 0) {
4014
4015		write_gl_to_txd(txq, m0, &dst, eq->sidx - ndesc < eq->pidx);
4016		txq->sgl_wrs++;
4017	} else {
4018		struct mbuf *m;
4019
4020		for (m = m0; m != NULL; m = m->m_next) {
4021			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
4022#ifdef INVARIANTS
4023			pktlen -= m->m_len;
4024#endif
4025		}
4026#ifdef INVARIANTS
4027		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
4028#endif
4029		txq->imm_wrs++;
4030	}
4031
4032	txq->txpkt_wrs++;
4033
4034	txsd = &txq->sdesc[eq->pidx];
4035	txsd->m = m0;
4036	txsd->desc_used = ndesc;
4037
4038	return (ndesc);
4039}
4040
4041static int
4042try_txpkts(struct mbuf *m, struct mbuf *n, struct txpkts *txp, u_int available)
4043{
4044	u_int needed, nsegs1, nsegs2, l1, l2;
4045
4046	if (cannot_use_txpkts(m) || cannot_use_txpkts(n))
4047		return (1);
4048
4049	nsegs1 = mbuf_nsegs(m);
4050	nsegs2 = mbuf_nsegs(n);
4051	if (nsegs1 + nsegs2 == 2) {
4052		txp->wr_type = 1;
4053		l1 = l2 = txpkts1_len16();
4054	} else {
4055		txp->wr_type = 0;
4056		l1 = txpkts0_len16(nsegs1);
4057		l2 = txpkts0_len16(nsegs2);
4058	}
4059	txp->len16 = howmany(sizeof(struct fw_eth_tx_pkts_wr), 16) + l1 + l2;
4060	needed = howmany(txp->len16, EQ_ESIZE / 16);
4061	if (needed > SGE_MAX_WR_NDESC || needed > available)
4062		return (1);
4063
4064	txp->plen = m->m_pkthdr.len + n->m_pkthdr.len;
4065	if (txp->plen > 65535)
4066		return (1);
4067
4068	txp->npkt = 2;
4069	set_mbuf_len16(m, l1);
4070	set_mbuf_len16(n, l2);
4071
4072	return (0);
4073}
4074
4075static int
4076add_to_txpkts(struct mbuf *m, struct txpkts *txp, u_int available)
4077{
4078	u_int plen, len16, needed, nsegs;
4079
4080	MPASS(txp->wr_type == 0 || txp->wr_type == 1);
4081
4082	nsegs = mbuf_nsegs(m);
4083	if (needs_tso(m) || (txp->wr_type == 1 && nsegs != 1))
4084		return (1);
4085
4086	plen = txp->plen + m->m_pkthdr.len;
4087	if (plen > 65535)
4088		return (1);
4089
4090	if (txp->wr_type == 0)
4091		len16 = txpkts0_len16(nsegs);
4092	else
4093		len16 = txpkts1_len16();
4094	needed = howmany(txp->len16 + len16, EQ_ESIZE / 16);
4095	if (needed > SGE_MAX_WR_NDESC || needed > available)
4096		return (1);
4097
4098	txp->npkt++;
4099	txp->plen = plen;
4100	txp->len16 += len16;
4101	set_mbuf_len16(m, len16);
4102
4103	return (0);
4104}
4105
4106/*
4107 * Write a txpkts WR for the packets in txp to the hardware descriptors, update
4108 * the software descriptor, and advance the pidx.  It is guaranteed that enough
4109 * descriptors are available.
4110 *
4111 * The return value is the # of hardware descriptors used.
4112 */
4113static u_int
4114write_txpkts_wr(struct sge_txq *txq, struct fw_eth_tx_pkts_wr *wr,
4115    struct mbuf *m0, const struct txpkts *txp, u_int available)
4116{
4117	struct sge_eq *eq = &txq->eq;
4118	struct tx_sdesc *txsd;
4119	struct cpl_tx_pkt_core *cpl;
4120	uint32_t ctrl;
4121	uint64_t ctrl1;
4122	int ndesc, checkwrap;
4123	struct mbuf *m;
4124	void *flitp;
4125
4126	TXQ_LOCK_ASSERT_OWNED(txq);
4127	MPASS(txp->npkt > 0);
4128	MPASS(txp->plen < 65536);
4129	MPASS(m0 != NULL);
4130	MPASS(m0->m_nextpkt != NULL);
4131	MPASS(txp->len16 <= howmany(SGE_MAX_WR_LEN, 16));
4132	MPASS(available > 0 && available < eq->sidx);
4133
4134	ndesc = howmany(txp->len16, EQ_ESIZE / 16);
4135	MPASS(ndesc <= available);
4136
4137	MPASS(wr == (void *)&eq->desc[eq->pidx]);
4138	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
4139	ctrl = V_FW_WR_LEN16(txp->len16);
4140	wr->equiq_to_len16 = htobe32(ctrl);
4141	wr->plen = htobe16(txp->plen);
4142	wr->npkt = txp->npkt;
4143	wr->r3 = 0;
4144	wr->type = txp->wr_type;
4145	flitp = wr + 1;
4146
4147	/*
4148	 * At this point we are 16B into a hardware descriptor.  If checkwrap is
4149	 * set then we know the WR is going to wrap around somewhere.  We'll
4150	 * check for that at appropriate points.
4151	 */
4152	checkwrap = eq->sidx - ndesc < eq->pidx;
4153	for (m = m0; m != NULL; m = m->m_nextpkt) {
4154		if (txp->wr_type == 0) {
4155			struct ulp_txpkt *ulpmc;
4156			struct ulptx_idata *ulpsc;
4157
4158			/* ULP master command */
4159			ulpmc = flitp;
4160			ulpmc->cmd_dest = htobe32(V_ULPTX_CMD(ULP_TX_PKT) |
4161			    V_ULP_TXPKT_DEST(0) | V_ULP_TXPKT_FID(eq->iqid));
4162			ulpmc->len = htobe32(mbuf_len16(m));
4163
4164			/* ULP subcommand */
4165			ulpsc = (void *)(ulpmc + 1);
4166			ulpsc->cmd_more = htobe32(V_ULPTX_CMD(ULP_TX_SC_IMM) |
4167			    F_ULP_TX_SC_MORE);
4168			ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
4169
4170			cpl = (void *)(ulpsc + 1);
4171			if (checkwrap &&
4172			    (uintptr_t)cpl == (uintptr_t)&eq->desc[eq->sidx])
4173				cpl = (void *)&eq->desc[0];
4174			txq->txpkts0_pkts += txp->npkt;
4175			txq->txpkts0_wrs++;
4176		} else {
4177			cpl = flitp;
4178			txq->txpkts1_pkts += txp->npkt;
4179			txq->txpkts1_wrs++;
4180		}
4181
4182		/* Checksum offload */
4183		ctrl1 = 0;
4184		if (needs_l3_csum(m) == 0)
4185			ctrl1 |= F_TXPKT_IPCSUM_DIS;
4186		if (needs_l4_csum(m) == 0)
4187			ctrl1 |= F_TXPKT_L4CSUM_DIS;
4188		if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
4189		    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
4190			txq->txcsum++;	/* some hardware assistance provided */
4191
4192		/* VLAN tag insertion */
4193		if (needs_vlan_insertion(m)) {
4194			ctrl1 |= F_TXPKT_VLAN_VLD |
4195			    V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
4196			txq->vlan_insertion++;
4197		}
4198
4199		/* CPL header */
4200		cpl->ctrl0 = txq->cpl_ctrl0;
4201		cpl->pack = 0;
4202		cpl->len = htobe16(m->m_pkthdr.len);
4203		cpl->ctrl1 = htobe64(ctrl1);
4204
4205		flitp = cpl + 1;
4206		if (checkwrap &&
4207		    (uintptr_t)flitp == (uintptr_t)&eq->desc[eq->sidx])
4208			flitp = (void *)&eq->desc[0];
4209
4210		write_gl_to_txd(txq, m, (caddr_t *)(&flitp), checkwrap);
4211
4212	}
4213
4214	txsd = &txq->sdesc[eq->pidx];
4215	txsd->m = m0;
4216	txsd->desc_used = ndesc;
4217
4218	return (ndesc);
4219}
4220
4221/*
4222 * If the SGL ends on an address that is not 16 byte aligned, this function will
4223 * add a 0 filled flit at the end.
4224 */
4225static void
4226write_gl_to_txd(struct sge_txq *txq, struct mbuf *m, caddr_t *to, int checkwrap)
4227{
4228	struct sge_eq *eq = &txq->eq;
4229	struct sglist *gl = txq->gl;
4230	struct sglist_seg *seg;
4231	__be64 *flitp, *wrap;
4232	struct ulptx_sgl *usgl;
4233	int i, nflits, nsegs;
4234
4235	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
4236	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
4237	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4238	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4239
4240	get_pkt_gl(m, gl);
4241	nsegs = gl->sg_nseg;
4242	MPASS(nsegs > 0);
4243
4244	nflits = (3 * (nsegs - 1)) / 2 + ((nsegs - 1) & 1) + 2;
4245	flitp = (__be64 *)(*to);
4246	wrap = (__be64 *)(&eq->desc[eq->sidx]);
4247	seg = &gl->sg_segs[0];
4248	usgl = (void *)flitp;
4249
4250	/*
4251	 * We start at a 16 byte boundary somewhere inside the tx descriptor
4252	 * ring, so we're at least 16 bytes away from the status page.  There is
4253	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
4254	 */
4255
4256	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
4257	    V_ULPTX_NSGE(nsegs));
4258	usgl->len0 = htobe32(seg->ss_len);
4259	usgl->addr0 = htobe64(seg->ss_paddr);
4260	seg++;
4261
4262	if (checkwrap == 0 || (uintptr_t)(flitp + nflits) <= (uintptr_t)wrap) {
4263
4264		/* Won't wrap around at all */
4265
4266		for (i = 0; i < nsegs - 1; i++, seg++) {
4267			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ss_len);
4268			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ss_paddr);
4269		}
4270		if (i & 1)
4271			usgl->sge[i / 2].len[1] = htobe32(0);
4272		flitp += nflits;
4273	} else {
4274
4275		/* Will wrap somewhere in the rest of the SGL */
4276
4277		/* 2 flits already written, write the rest flit by flit */
4278		flitp = (void *)(usgl + 1);
4279		for (i = 0; i < nflits - 2; i++) {
4280			if (flitp == wrap)
4281				flitp = (void *)eq->desc;
4282			*flitp++ = get_flit(seg, nsegs - 1, i);
4283		}
4284	}
4285
4286	if (nflits & 1) {
4287		MPASS(((uintptr_t)flitp) & 0xf);
4288		*flitp++ = 0;
4289	}
4290
4291	MPASS((((uintptr_t)flitp) & 0xf) == 0);
4292	if (__predict_false(flitp == wrap))
4293		*to = (void *)eq->desc;
4294	else
4295		*to = (void *)flitp;
4296}
4297
4298static inline void
4299copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4300{
4301
4302	MPASS((uintptr_t)(*to) >= (uintptr_t)&eq->desc[0]);
4303	MPASS((uintptr_t)(*to) < (uintptr_t)&eq->desc[eq->sidx]);
4304
4305	if (__predict_true((uintptr_t)(*to) + len <=
4306	    (uintptr_t)&eq->desc[eq->sidx])) {
4307		bcopy(from, *to, len);
4308		(*to) += len;
4309	} else {
4310		int portion = (uintptr_t)&eq->desc[eq->sidx] - (uintptr_t)(*to);
4311
4312		bcopy(from, *to, portion);
4313		from += portion;
4314		portion = len - portion;	/* remaining */
4315		bcopy(from, (void *)eq->desc, portion);
4316		(*to) = (caddr_t)eq->desc + portion;
4317	}
4318}
4319
4320static inline void
4321ring_eq_db(struct adapter *sc, struct sge_eq *eq, u_int n)
4322{
4323	u_int db;
4324
4325	MPASS(n > 0);
4326
4327	db = eq->doorbells;
4328	if (n > 1)
4329		clrbit(&db, DOORBELL_WCWR);
4330	wmb();
4331
4332	switch (ffs(db) - 1) {
4333	case DOORBELL_UDB:
4334		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4335		break;
4336
4337	case DOORBELL_WCWR: {
4338		volatile uint64_t *dst, *src;
4339		int i;
4340
4341		/*
4342		 * Queues whose 128B doorbell segment fits in the page do not
4343		 * use relative qid (udb_qid is always 0).  Only queues with
4344		 * doorbell segments can do WCWR.
4345		 */
4346		KASSERT(eq->udb_qid == 0 && n == 1,
4347		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4348		    __func__, eq->doorbells, n, eq->dbidx, eq));
4349
4350		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4351		    UDBS_DB_OFFSET);
4352		i = eq->dbidx;
4353		src = (void *)&eq->desc[i];
4354		while (src != (void *)&eq->desc[i + 1])
4355			*dst++ = *src++;
4356		wmb();
4357		break;
4358	}
4359
4360	case DOORBELL_UDBWC:
4361		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(n));
4362		wmb();
4363		break;
4364
4365	case DOORBELL_KDB:
4366		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
4367		    V_QID(eq->cntxt_id) | V_PIDX(n));
4368		break;
4369	}
4370
4371	IDXINCR(eq->dbidx, n, eq->sidx);
4372}
4373
4374static inline u_int
4375reclaimable_tx_desc(struct sge_eq *eq)
4376{
4377	uint16_t hw_cidx;
4378
4379	hw_cidx = read_hw_cidx(eq);
4380	return (IDXDIFF(hw_cidx, eq->cidx, eq->sidx));
4381}
4382
4383static inline u_int
4384total_available_tx_desc(struct sge_eq *eq)
4385{
4386	uint16_t hw_cidx, pidx;
4387
4388	hw_cidx = read_hw_cidx(eq);
4389	pidx = eq->pidx;
4390
4391	if (pidx == hw_cidx)
4392		return (eq->sidx - 1);
4393	else
4394		return (IDXDIFF(hw_cidx, pidx, eq->sidx) - 1);
4395}
4396
4397static inline uint16_t
4398read_hw_cidx(struct sge_eq *eq)
4399{
4400	struct sge_qstat *spg = (void *)&eq->desc[eq->sidx];
4401	uint16_t cidx = spg->cidx;	/* stable snapshot */
4402
4403	return (be16toh(cidx));
4404}
4405
4406/*
4407 * Reclaim 'n' descriptors approximately.
4408 */
4409static u_int
4410reclaim_tx_descs(struct sge_txq *txq, u_int n)
4411{
4412	struct tx_sdesc *txsd;
4413	struct sge_eq *eq = &txq->eq;
4414	u_int can_reclaim, reclaimed;
4415
4416	TXQ_LOCK_ASSERT_OWNED(txq);
4417	MPASS(n > 0);
4418
4419	reclaimed = 0;
4420	can_reclaim = reclaimable_tx_desc(eq);
4421	while (can_reclaim && reclaimed < n) {
4422		int ndesc;
4423		struct mbuf *m, *nextpkt;
4424
4425		txsd = &txq->sdesc[eq->cidx];
4426		ndesc = txsd->desc_used;
4427
4428		/* Firmware doesn't return "partial" credits. */
4429		KASSERT(can_reclaim >= ndesc,
4430		    ("%s: unexpected number of credits: %d, %d",
4431		    __func__, can_reclaim, ndesc));
4432
4433		for (m = txsd->m; m != NULL; m = nextpkt) {
4434			nextpkt = m->m_nextpkt;
4435			m->m_nextpkt = NULL;
4436			m_freem(m);
4437		}
4438		reclaimed += ndesc;
4439		can_reclaim -= ndesc;
4440		IDXINCR(eq->cidx, ndesc, eq->sidx);
4441	}
4442
4443	return (reclaimed);
4444}
4445
4446static void
4447tx_reclaim(void *arg, int n)
4448{
4449	struct sge_txq *txq = arg;
4450	struct sge_eq *eq = &txq->eq;
4451
4452	do {
4453		if (TXQ_TRYLOCK(txq) == 0)
4454			break;
4455		n = reclaim_tx_descs(txq, 32);
4456		if (eq->cidx == eq->pidx)
4457			eq->equeqidx = eq->pidx;
4458		TXQ_UNLOCK(txq);
4459	} while (n > 0);
4460}
4461
4462static __be64
4463get_flit(struct sglist_seg *segs, int nsegs, int idx)
4464{
4465	int i = (idx / 3) * 2;
4466
4467	switch (idx % 3) {
4468	case 0: {
4469		__be64 rc;
4470
4471		rc = htobe32(segs[i].ss_len);
4472		if (i + 1 < nsegs)
4473			rc |= (uint64_t)htobe32(segs[i + 1].ss_len) << 32;
4474
4475		return (rc);
4476	}
4477	case 1:
4478		return (htobe64(segs[i].ss_paddr));
4479	case 2:
4480		return (htobe64(segs[i + 1].ss_paddr));
4481	}
4482
4483	return (0);
4484}
4485
4486static void
4487find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
4488{
4489	int8_t zidx, hwidx, idx;
4490	uint16_t region1, region3;
4491	int spare, spare_needed, n;
4492	struct sw_zone_info *swz;
4493	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
4494
4495	/*
4496	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
4497	 * large enough for the max payload and cluster metadata.  Otherwise
4498	 * settle for the largest bufsize that leaves enough room in the cluster
4499	 * for metadata.
4500	 *
4501	 * Without buffer packing: Look for the smallest zone which has a
4502	 * bufsize large enough for the max payload.  Settle for the largest
4503	 * bufsize available if there's nothing big enough for max payload.
4504	 */
4505	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
4506	swz = &sc->sge.sw_zone_info[0];
4507	hwidx = -1;
4508	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
4509		if (swz->size > largest_rx_cluster) {
4510			if (__predict_true(hwidx != -1))
4511				break;
4512
4513			/*
4514			 * This is a misconfiguration.  largest_rx_cluster is
4515			 * preventing us from finding a refill source.  See
4516			 * dev.t5nex.<n>.buffer_sizes to figure out why.
4517			 */
4518			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
4519			    " refill source for fl %p (dma %u).  Ignored.\n",
4520			    largest_rx_cluster, fl, maxp);
4521		}
4522		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
4523			hwb = &hwb_list[idx];
4524			spare = swz->size - hwb->size;
4525			if (spare < spare_needed)
4526				continue;
4527
4528			hwidx = idx;		/* best option so far */
4529			if (hwb->size >= maxp) {
4530
4531				if ((fl->flags & FL_BUF_PACKING) == 0)
4532					goto done; /* stop looking (not packing) */
4533
4534				if (swz->size >= safest_rx_cluster)
4535					goto done; /* stop looking (packing) */
4536			}
4537			break;		/* keep looking, next zone */
4538		}
4539	}
4540done:
4541	/* A usable hwidx has been located. */
4542	MPASS(hwidx != -1);
4543	hwb = &hwb_list[hwidx];
4544	zidx = hwb->zidx;
4545	swz = &sc->sge.sw_zone_info[zidx];
4546	region1 = 0;
4547	region3 = swz->size - hwb->size;
4548
4549	/*
4550	 * Stay within this zone and see if there is a better match when mbuf
4551	 * inlining is allowed.  Remember that the hwidx's are sorted in
4552	 * decreasing order of size (so in increasing order of spare area).
4553	 */
4554	for (idx = hwidx; idx != -1; idx = hwb->next) {
4555		hwb = &hwb_list[idx];
4556		spare = swz->size - hwb->size;
4557
4558		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
4559			break;
4560
4561		/*
4562		 * Do not inline mbufs if doing so would violate the pad/pack
4563		 * boundary alignment requirement.
4564		 */
4565		if (fl_pad && (MSIZE % sc->sge.pad_boundary) != 0)
4566			continue;
4567		if (fl->flags & FL_BUF_PACKING &&
4568		    (MSIZE % sc->sge.pack_boundary) != 0)
4569			continue;
4570
4571		if (spare < CL_METADATA_SIZE + MSIZE)
4572			continue;
4573		n = (spare - CL_METADATA_SIZE) / MSIZE;
4574		if (n > howmany(hwb->size, maxp))
4575			break;
4576
4577		hwidx = idx;
4578		if (fl->flags & FL_BUF_PACKING) {
4579			region1 = n * MSIZE;
4580			region3 = spare - region1;
4581		} else {
4582			region1 = MSIZE;
4583			region3 = spare - region1;
4584			break;
4585		}
4586	}
4587
4588	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
4589	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
4590	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
4591	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
4592	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
4593	    sc->sge.sw_zone_info[zidx].size,
4594	    ("%s: bad buffer layout for fl %p, maxp %d. "
4595		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4596		sc->sge.sw_zone_info[zidx].size, region1,
4597		sc->sge.hw_buf_info[hwidx].size, region3));
4598	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
4599		KASSERT(region3 >= CL_METADATA_SIZE,
4600		    ("%s: no room for metadata.  fl %p, maxp %d; "
4601		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4602		    sc->sge.sw_zone_info[zidx].size, region1,
4603		    sc->sge.hw_buf_info[hwidx].size, region3));
4604		KASSERT(region1 % MSIZE == 0,
4605		    ("%s: bad mbuf region for fl %p, maxp %d. "
4606		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4607		    sc->sge.sw_zone_info[zidx].size, region1,
4608		    sc->sge.hw_buf_info[hwidx].size, region3));
4609	}
4610
4611	fl->cll_def.zidx = zidx;
4612	fl->cll_def.hwidx = hwidx;
4613	fl->cll_def.region1 = region1;
4614	fl->cll_def.region3 = region3;
4615}
4616
4617static void
4618find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
4619{
4620	struct sge *s = &sc->sge;
4621	struct hw_buf_info *hwb;
4622	struct sw_zone_info *swz;
4623	int spare;
4624	int8_t hwidx;
4625
4626	if (fl->flags & FL_BUF_PACKING)
4627		hwidx = s->safe_hwidx2;	/* with room for metadata */
4628	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
4629		hwidx = s->safe_hwidx2;
4630		hwb = &s->hw_buf_info[hwidx];
4631		swz = &s->sw_zone_info[hwb->zidx];
4632		spare = swz->size - hwb->size;
4633
4634		/* no good if there isn't room for an mbuf as well */
4635		if (spare < CL_METADATA_SIZE + MSIZE)
4636			hwidx = s->safe_hwidx1;
4637	} else
4638		hwidx = s->safe_hwidx1;
4639
4640	if (hwidx == -1) {
4641		/* No fallback source */
4642		fl->cll_alt.hwidx = -1;
4643		fl->cll_alt.zidx = -1;
4644
4645		return;
4646	}
4647
4648	hwb = &s->hw_buf_info[hwidx];
4649	swz = &s->sw_zone_info[hwb->zidx];
4650	spare = swz->size - hwb->size;
4651	fl->cll_alt.hwidx = hwidx;
4652	fl->cll_alt.zidx = hwb->zidx;
4653	if (allow_mbufs_in_cluster &&
4654	    (fl_pad == 0 || (MSIZE % sc->sge.pad_boundary) == 0))
4655		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
4656	else
4657		fl->cll_alt.region1 = 0;
4658	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
4659}
4660
4661static void
4662add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
4663{
4664	mtx_lock(&sc->sfl_lock);
4665	FL_LOCK(fl);
4666	if ((fl->flags & FL_DOOMED) == 0) {
4667		fl->flags |= FL_STARVING;
4668		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
4669		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
4670	}
4671	FL_UNLOCK(fl);
4672	mtx_unlock(&sc->sfl_lock);
4673}
4674
4675static void
4676handle_wrq_egr_update(struct adapter *sc, struct sge_eq *eq)
4677{
4678	struct sge_wrq *wrq = (void *)eq;
4679
4680	atomic_readandclear_int(&eq->equiq);
4681	taskqueue_enqueue(sc->tq[eq->tx_chan], &wrq->wrq_tx_task);
4682}
4683
4684static void
4685handle_eth_egr_update(struct adapter *sc, struct sge_eq *eq)
4686{
4687	struct sge_txq *txq = (void *)eq;
4688
4689	MPASS((eq->flags & EQ_TYPEMASK) == EQ_ETH);
4690
4691	atomic_readandclear_int(&eq->equiq);
4692	mp_ring_check_drainage(txq->r, 0);
4693	taskqueue_enqueue(sc->tq[eq->tx_chan], &txq->tx_reclaim_task);
4694}
4695
4696static int
4697handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
4698    struct mbuf *m)
4699{
4700	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
4701	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
4702	struct adapter *sc = iq->adapter;
4703	struct sge *s = &sc->sge;
4704	struct sge_eq *eq;
4705	static void (*h[])(struct adapter *, struct sge_eq *) = {NULL,
4706		&handle_wrq_egr_update, &handle_eth_egr_update,
4707		&handle_wrq_egr_update};
4708
4709	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4710	    rss->opcode));
4711
4712	eq = s->eqmap[qid - s->eq_start];
4713	(*h[eq->flags & EQ_TYPEMASK])(sc, eq);
4714
4715	return (0);
4716}
4717
4718/* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
4719CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
4720    offsetof(struct cpl_fw6_msg, data));
4721
4722static int
4723handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
4724{
4725	struct adapter *sc = iq->adapter;
4726	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
4727
4728	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4729	    rss->opcode));
4730
4731	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
4732		const struct rss_header *rss2;
4733
4734		rss2 = (const struct rss_header *)&cpl->data[0];
4735		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
4736	}
4737
4738	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
4739}
4740
4741static int
4742sysctl_uint16(SYSCTL_HANDLER_ARGS)
4743{
4744	uint16_t *id = arg1;
4745	int i = *id;
4746
4747	return sysctl_handle_int(oidp, &i, 0, req);
4748}
4749
4750static int
4751sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
4752{
4753	struct sge *s = arg1;
4754	struct hw_buf_info *hwb = &s->hw_buf_info[0];
4755	struct sw_zone_info *swz = &s->sw_zone_info[0];
4756	int i, rc;
4757	struct sbuf sb;
4758	char c;
4759
4760	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
4761	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
4762		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
4763			c = '*';
4764		else
4765			c = '\0';
4766
4767		sbuf_printf(&sb, "%u%c ", hwb->size, c);
4768	}
4769	sbuf_trim(&sb);
4770	sbuf_finish(&sb);
4771	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
4772	sbuf_delete(&sb);
4773	return (rc);
4774}
4775