t4_sge.c revision 269411
1/*-
2 * Copyright (c) 2011 Chelsio Communications, Inc.
3 * All rights reserved.
4 * Written by: Navdeep Parhar <np@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/cxgbe/t4_sge.c 269411 2014-08-02 00:56:34Z np $");
30
31#include "opt_inet.h"
32#include "opt_inet6.h"
33
34#include <sys/types.h>
35#include <sys/eventhandler.h>
36#include <sys/mbuf.h>
37#include <sys/socket.h>
38#include <sys/kernel.h>
39#include <sys/kdb.h>
40#include <sys/malloc.h>
41#include <sys/queue.h>
42#include <sys/sbuf.h>
43#include <sys/taskqueue.h>
44#include <sys/time.h>
45#include <sys/sysctl.h>
46#include <sys/smp.h>
47#include <sys/counter.h>
48#include <net/bpf.h>
49#include <net/ethernet.h>
50#include <net/if.h>
51#include <net/if_vlan_var.h>
52#include <netinet/in.h>
53#include <netinet/ip.h>
54#include <netinet/ip6.h>
55#include <netinet/tcp.h>
56#include <machine/md_var.h>
57#include <vm/vm.h>
58#include <vm/pmap.h>
59#ifdef DEV_NETMAP
60#include <machine/bus.h>
61#include <sys/selinfo.h>
62#include <net/if_var.h>
63#include <net/netmap.h>
64#include <dev/netmap/netmap_kern.h>
65#endif
66
67#include "common/common.h"
68#include "common/t4_regs.h"
69#include "common/t4_regs_values.h"
70#include "common/t4_msg.h"
71
72#ifdef T4_PKT_TIMESTAMP
73#define RX_COPY_THRESHOLD (MINCLSIZE - 8)
74#else
75#define RX_COPY_THRESHOLD MINCLSIZE
76#endif
77
78/*
79 * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
80 * 0-7 are valid values.
81 */
82int fl_pktshift = 2;
83TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
84
85/*
86 * Pad ethernet payload up to this boundary.
87 * -1: driver should figure out a good value.
88 *  0: disable padding.
89 *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
90 */
91int fl_pad = -1;
92TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
93
94/*
95 * Status page length.
96 * -1: driver should figure out a good value.
97 *  64 or 128 are the only other valid values.
98 */
99int spg_len = -1;
100TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
101
102/*
103 * Congestion drops.
104 * -1: no congestion feedback (not recommended).
105 *  0: backpressure the channel instead of dropping packets right away.
106 *  1: no backpressure, drop packets for the congested queue immediately.
107 */
108static int cong_drop = 0;
109TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
110
111/*
112 * Deliver multiple frames in the same free list buffer if they fit.
113 * -1: let the driver decide whether to enable buffer packing or not.
114 *  0: disable buffer packing.
115 *  1: enable buffer packing.
116 */
117static int buffer_packing = -1;
118TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
119
120/*
121 * Start next frame in a packed buffer at this boundary.
122 * -1: driver should figure out a good value.
123 * T4:
124 * ---
125 * if fl_pad != 0
126 * 	value specified here will be overridden by fl_pad.
127 * else
128 * 	power of 2 from 32 to 4096 (both inclusive) is a valid value here.
129 * T5:
130 * ---
131 * 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
132 */
133static int fl_pack = -1;
134static int t4_fl_pack;
135static int t5_fl_pack;
136TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
137
138/*
139 * Allow the driver to create mbuf(s) in a cluster allocated for rx.
140 * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
141 * 1: ok to create mbuf(s) within a cluster if there is room.
142 */
143static int allow_mbufs_in_cluster = 1;
144TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
145
146/*
147 * Largest rx cluster size that the driver is allowed to allocate.
148 */
149static int largest_rx_cluster = MJUM16BYTES;
150TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
151
152/*
153 * Size of cluster allocation that's most likely to succeed.  The driver will
154 * fall back to this size if it fails to allocate clusters larger than this.
155 */
156static int safest_rx_cluster = PAGE_SIZE;
157TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
158
159/* Used to track coalesced tx work request */
160struct txpkts {
161	uint64_t *flitp;	/* ptr to flit where next pkt should start */
162	uint8_t npkt;		/* # of packets in this work request */
163	uint8_t nflits;		/* # of flits used by this work request */
164	uint16_t plen;		/* total payload (sum of all packets) */
165};
166
167/* A packet's SGL.  This + m_pkthdr has all info needed for tx */
168struct sgl {
169	int nsegs;		/* # of segments in the SGL, 0 means imm. tx */
170	int nflits;		/* # of flits needed for the SGL */
171	bus_dma_segment_t seg[TX_SGL_SEGS];
172};
173
174static int service_iq(struct sge_iq *, int);
175static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t,
176    int *);
177static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
178static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int);
179static inline void init_fl(struct adapter *, struct sge_fl *, int, int, int,
180    char *);
181static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t,
182    char *);
183static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
184    bus_addr_t *, void **);
185static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
186    void *);
187static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
188    int, int);
189static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
190static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
191    struct sge_fl *);
192static int alloc_fwq(struct adapter *);
193static int free_fwq(struct adapter *);
194static int alloc_mgmtq(struct adapter *);
195static int free_mgmtq(struct adapter *);
196static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int,
197    struct sysctl_oid *);
198static int free_rxq(struct port_info *, struct sge_rxq *);
199#ifdef TCP_OFFLOAD
200static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int,
201    struct sysctl_oid *);
202static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *);
203#endif
204#ifdef DEV_NETMAP
205static int alloc_nm_rxq(struct port_info *, struct sge_nm_rxq *, int, int,
206    struct sysctl_oid *);
207static int free_nm_rxq(struct port_info *, struct sge_nm_rxq *);
208static int alloc_nm_txq(struct port_info *, struct sge_nm_txq *, int, int,
209    struct sysctl_oid *);
210static int free_nm_txq(struct port_info *, struct sge_nm_txq *);
211#endif
212static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
213static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
214#ifdef TCP_OFFLOAD
215static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
216#endif
217static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *);
218static int free_eq(struct adapter *, struct sge_eq *);
219static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *,
220    struct sysctl_oid *);
221static int free_wrq(struct adapter *, struct sge_wrq *);
222static int alloc_txq(struct port_info *, struct sge_txq *, int,
223    struct sysctl_oid *);
224static int free_txq(struct port_info *, struct sge_txq *);
225static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
226static inline void ring_fl_db(struct adapter *, struct sge_fl *);
227static int refill_fl(struct adapter *, struct sge_fl *, int);
228static void refill_sfl(void *);
229static int alloc_fl_sdesc(struct sge_fl *);
230static void free_fl_sdesc(struct adapter *, struct sge_fl *);
231static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
232static void find_safe_refill_source(struct adapter *, struct sge_fl *);
233static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
234
235static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
236static int free_pkt_sgl(struct sge_txq *, struct sgl *);
237static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
238    struct sgl *);
239static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
240    struct mbuf *, struct sgl *);
241static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
242static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
243    struct txpkts *, struct mbuf *, struct sgl *);
244static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
245static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
246static inline void ring_eq_db(struct adapter *, struct sge_eq *);
247static inline int reclaimable(struct sge_eq *);
248static int reclaim_tx_descs(struct sge_txq *, int, int);
249static void write_eqflush_wr(struct sge_eq *);
250static __be64 get_flit(bus_dma_segment_t *, int, int);
251static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
252    struct mbuf *);
253static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
254    struct mbuf *);
255
256static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
257static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
258
259static counter_u64_t extfree_refs;
260static counter_u64_t extfree_rels;
261
262/*
263 * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
264 */
265void
266t4_sge_modload(void)
267{
268	int pad;
269
270	/* set pad to a reasonable powerof2 between 16 and 4096 (inclusive) */
271#if defined(__i386__) || defined(__amd64__)
272	pad = max(cpu_clflush_line_size, 16);
273#else
274	pad = max(CACHE_LINE_SIZE, 16);
275#endif
276	pad = min(pad, 4096);
277
278	if (fl_pktshift < 0 || fl_pktshift > 7) {
279		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
280		    " using 2 instead.\n", fl_pktshift);
281		fl_pktshift = 2;
282	}
283
284	if (fl_pad != 0 &&
285	    (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad))) {
286
287		if (fl_pad != -1) {
288			printf("Invalid hw.cxgbe.fl_pad value (%d),"
289			    " using %d instead.\n", fl_pad, max(pad, 32));
290		}
291		fl_pad = max(pad, 32);
292	}
293
294	/*
295	 * T4 has the same pad and pack boundary.  If a pad boundary is set,
296	 * pack boundary must be set to the same value.  Otherwise take the
297	 * specified value or auto-calculate something reasonable.
298	 */
299	if (fl_pad)
300		t4_fl_pack = fl_pad;
301	else if (fl_pack < 32 || fl_pack > 4096 || !powerof2(fl_pack))
302		t4_fl_pack = max(pad, 32);
303	else
304		t4_fl_pack = fl_pack;
305
306	/* T5's pack boundary is independent of the pad boundary. */
307	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
308	    !powerof2(fl_pack))
309	       t5_fl_pack = max(pad, CACHE_LINE_SIZE);
310	else
311	       t5_fl_pack = fl_pack;
312
313	if (spg_len != 64 && spg_len != 128) {
314		int len;
315
316#if defined(__i386__) || defined(__amd64__)
317		len = cpu_clflush_line_size > 64 ? 128 : 64;
318#else
319		len = 64;
320#endif
321		if (spg_len != -1) {
322			printf("Invalid hw.cxgbe.spg_len value (%d),"
323			    " using %d instead.\n", spg_len, len);
324		}
325		spg_len = len;
326	}
327
328	if (cong_drop < -1 || cong_drop > 1) {
329		printf("Invalid hw.cxgbe.cong_drop value (%d),"
330		    " using 0 instead.\n", cong_drop);
331		cong_drop = 0;
332	}
333
334	extfree_refs = counter_u64_alloc(M_WAITOK);
335	extfree_rels = counter_u64_alloc(M_WAITOK);
336	counter_u64_zero(extfree_refs);
337	counter_u64_zero(extfree_rels);
338}
339
340void
341t4_sge_modunload(void)
342{
343
344	counter_u64_free(extfree_refs);
345	counter_u64_free(extfree_rels);
346}
347
348uint64_t
349t4_sge_extfree_refs(void)
350{
351	uint64_t refs, rels;
352
353	rels = counter_u64_fetch(extfree_rels);
354	refs = counter_u64_fetch(extfree_refs);
355
356	return (refs - rels);
357}
358
359void
360t4_init_sge_cpl_handlers(struct adapter *sc)
361{
362
363	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
364	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
365	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
366	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
367	t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
368}
369
370/*
371 * adap->params.vpd.cclk must be set up before this is called.
372 */
373void
374t4_tweak_chip_settings(struct adapter *sc)
375{
376	int i;
377	uint32_t v, m;
378	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
379	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
380	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
381	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
382	static int sge_flbuf_sizes[] = {
383		MCLBYTES,
384#if MJUMPAGESIZE != MCLBYTES
385		MJUMPAGESIZE,
386		MJUMPAGESIZE - CL_METADATA_SIZE,
387		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
388#endif
389		MJUM9BYTES,
390		MJUM16BYTES,
391		MCLBYTES - MSIZE - CL_METADATA_SIZE,
392		MJUM9BYTES - CL_METADATA_SIZE,
393		MJUM16BYTES - CL_METADATA_SIZE,
394	};
395
396	KASSERT(sc->flags & MASTER_PF,
397	    ("%s: trying to change chip settings when not master.", __func__));
398
399	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
400	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
401	    V_EGRSTATUSPAGESIZE(spg_len == 128);
402	if (is_t4(sc) && (fl_pad || buffer_packing)) {
403		/* t4_fl_pack has the correct value even when fl_pad = 0 */
404		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
405		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
406	} else if (is_t5(sc) && fl_pad) {
407		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
408		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
409	}
410	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
411
412	if (is_t5(sc) && buffer_packing) {
413		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
414		if (t5_fl_pack == 16)
415			v = V_INGPACKBOUNDARY(0);
416		else
417			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
418		t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
419	}
420
421	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
422	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
423	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
424	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
425	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
426	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
427	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
428	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
429	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
430
431	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
432	    ("%s: hw buffer size table too big", __func__));
433	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
434		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
435		    sge_flbuf_sizes[i]);
436	}
437
438	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
439	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
440	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
441
442	KASSERT(intr_timer[0] <= timer_max,
443	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
444	    timer_max));
445	for (i = 1; i < nitems(intr_timer); i++) {
446		KASSERT(intr_timer[i] >= intr_timer[i - 1],
447		    ("%s: timers not listed in increasing order (%d)",
448		    __func__, i));
449
450		while (intr_timer[i] > timer_max) {
451			if (i == nitems(intr_timer) - 1) {
452				intr_timer[i] = timer_max;
453				break;
454			}
455			intr_timer[i] += intr_timer[i - 1];
456			intr_timer[i] /= 2;
457		}
458	}
459
460	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
461	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
462	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
463	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
464	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
465	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
466	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
467	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
468	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
469
470	if (cong_drop == 0) {
471		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
472		    F_TUNNELCNGDROP3;
473		t4_set_reg_field(sc, A_TP_PARA_REG3, m, 0);
474	}
475
476	/* 4K, 16K, 64K, 256K DDP "page sizes" */
477	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
478	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
479
480	m = v = F_TDDPTAGTCB;
481	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
482
483	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
484	    F_RESETDDPOFFSET;
485	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
486	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
487}
488
489/*
490 * SGE wants the buffer to be at least 64B and then a multiple of the pad
491 * boundary or 16, whichever is greater.
492 */
493static inline int
494hwsz_ok(int hwsz)
495{
496	int mask = max(fl_pad, 16) - 1;
497
498	return (hwsz >= 64 && (hwsz & mask) == 0);
499}
500
501/*
502 * XXX: driver really should be able to deal with unexpected settings.
503 */
504int
505t4_read_chip_settings(struct adapter *sc)
506{
507	struct sge *s = &sc->sge;
508	int i, j, n, rc = 0;
509	uint32_t m, v, r;
510	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
511	static int sw_buf_sizes[] = {	/* Sorted by size */
512		MCLBYTES,
513#if MJUMPAGESIZE != MCLBYTES
514		MJUMPAGESIZE,
515#endif
516		MJUM9BYTES,
517		MJUM16BYTES
518	};
519	struct sw_zone_info *swz, *safe_swz;
520	struct hw_buf_info *hwb;
521
522	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
523	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
524	    V_EGRSTATUSPAGESIZE(spg_len == 128);
525	if (is_t4(sc) && (fl_pad || buffer_packing)) {
526		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
527		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
528	} else if (is_t5(sc) && fl_pad) {
529		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
530		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
531	}
532	r = t4_read_reg(sc, A_SGE_CONTROL);
533	if ((r & m) != v) {
534		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
535		rc = EINVAL;
536	}
537
538	if (is_t5(sc) && buffer_packing) {
539		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
540		if (t5_fl_pack == 16)
541			v = V_INGPACKBOUNDARY(0);
542		else
543			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
544		r = t4_read_reg(sc, A_SGE_CONTROL2);
545		if ((r & m) != v) {
546			device_printf(sc->dev,
547			    "invalid SGE_CONTROL2(0x%x)\n", r);
548			rc = EINVAL;
549		}
550	}
551	s->pack_boundary = is_t4(sc) ? t4_fl_pack : t5_fl_pack;
552
553	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
554	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
555	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
556	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
557	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
558	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
559	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
560	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
561	r = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE);
562	if (r != v) {
563		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
564		rc = EINVAL;
565	}
566
567	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
568	hwb = &s->hw_buf_info[0];
569	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
570		r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
571		hwb->size = r;
572		hwb->zidx = hwsz_ok(r) ? -1 : -2;
573		hwb->next = -1;
574	}
575
576	/*
577	 * Create a sorted list in decreasing order of hw buffer sizes (and so
578	 * increasing order of spare area) for each software zone.
579	 */
580	n = 0;	/* no usable buffer size to begin with */
581	swz = &s->sw_zone_info[0];
582	safe_swz = NULL;
583	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
584		int8_t head = -1, tail = -1;
585
586		swz->size = sw_buf_sizes[i];
587		swz->zone = m_getzone(swz->size);
588		swz->type = m_gettype(swz->size);
589
590		if (swz->size == safest_rx_cluster)
591			safe_swz = swz;
592
593		hwb = &s->hw_buf_info[0];
594		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
595			if (hwb->zidx != -1 || hwb->size > swz->size)
596				continue;
597			hwb->zidx = i;
598			if (head == -1)
599				head = tail = j;
600			else if (hwb->size < s->hw_buf_info[tail].size) {
601				s->hw_buf_info[tail].next = j;
602				tail = j;
603			} else {
604				int8_t *cur;
605				struct hw_buf_info *t;
606
607				for (cur = &head; *cur != -1; cur = &t->next) {
608					t = &s->hw_buf_info[*cur];
609					if (hwb->size == t->size) {
610						hwb->zidx = -2;
611						break;
612					}
613					if (hwb->size > t->size) {
614						hwb->next = *cur;
615						*cur = j;
616						break;
617					}
618				}
619			}
620		}
621		swz->head_hwidx = head;
622		swz->tail_hwidx = tail;
623
624		if (tail != -1) {
625			n++;
626			if (swz->size - s->hw_buf_info[tail].size >=
627			    CL_METADATA_SIZE)
628				sc->flags |= BUF_PACKING_OK;
629		}
630	}
631	if (n == 0) {
632		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
633		rc = EINVAL;
634	}
635
636	s->safe_hwidx1 = -1;
637	s->safe_hwidx2 = -1;
638	if (safe_swz != NULL) {
639		s->safe_hwidx1 = safe_swz->head_hwidx;
640		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
641			int spare;
642
643			hwb = &s->hw_buf_info[i];
644			spare = safe_swz->size - hwb->size;
645			if (spare < CL_METADATA_SIZE)
646				continue;
647			if (s->safe_hwidx2 == -1 ||
648			    spare == CL_METADATA_SIZE + MSIZE)
649				s->safe_hwidx2 = i;
650			if (spare >= CL_METADATA_SIZE + MSIZE)
651				break;
652		}
653	}
654
655	r = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD);
656	s->counter_val[0] = G_THRESHOLD_0(r);
657	s->counter_val[1] = G_THRESHOLD_1(r);
658	s->counter_val[2] = G_THRESHOLD_2(r);
659	s->counter_val[3] = G_THRESHOLD_3(r);
660
661	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1);
662	s->timer_val[0] = G_TIMERVALUE0(r) / core_ticks_per_usec(sc);
663	s->timer_val[1] = G_TIMERVALUE1(r) / core_ticks_per_usec(sc);
664	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3);
665	s->timer_val[2] = G_TIMERVALUE2(r) / core_ticks_per_usec(sc);
666	s->timer_val[3] = G_TIMERVALUE3(r) / core_ticks_per_usec(sc);
667	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5);
668	s->timer_val[4] = G_TIMERVALUE4(r) / core_ticks_per_usec(sc);
669	s->timer_val[5] = G_TIMERVALUE5(r) / core_ticks_per_usec(sc);
670
671	if (cong_drop == 0) {
672		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
673		    F_TUNNELCNGDROP3;
674		r = t4_read_reg(sc, A_TP_PARA_REG3);
675		if (r & m) {
676			device_printf(sc->dev,
677			    "invalid TP_PARA_REG3(0x%x)\n", r);
678			rc = EINVAL;
679		}
680	}
681
682	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
683	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
684	if (r != v) {
685		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
686		rc = EINVAL;
687	}
688
689	m = v = F_TDDPTAGTCB;
690	r = t4_read_reg(sc, A_ULP_RX_CTL);
691	if ((r & m) != v) {
692		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
693		rc = EINVAL;
694	}
695
696	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
697	    F_RESETDDPOFFSET;
698	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
699	r = t4_read_reg(sc, A_TP_PARA_REG5);
700	if ((r & m) != v) {
701		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
702		rc = EINVAL;
703	}
704
705	r = t4_read_reg(sc, A_SGE_CONM_CTRL);
706	s->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
707	if (is_t4(sc))
708		s->fl_starve_threshold2 = s->fl_starve_threshold;
709	else
710		s->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
711
712	/* egress queues: log2 of # of doorbells per BAR2 page */
713	r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
714	r >>= S_QUEUESPERPAGEPF0 +
715	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
716	s->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
717
718	/* ingress queues: log2 of # of doorbells per BAR2 page */
719	r = t4_read_reg(sc, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
720	r >>= S_QUEUESPERPAGEPF0 +
721	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
722	s->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
723
724	t4_init_tp_params(sc);
725
726	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
727	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
728
729	return (rc);
730}
731
732int
733t4_create_dma_tag(struct adapter *sc)
734{
735	int rc;
736
737	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
738	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
739	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
740	    NULL, &sc->dmat);
741	if (rc != 0) {
742		device_printf(sc->dev,
743		    "failed to create main DMA tag: %d\n", rc);
744	}
745
746	return (rc);
747}
748
749static inline int
750enable_buffer_packing(struct adapter *sc)
751{
752
753	if (sc->flags & BUF_PACKING_OK &&
754	    ((is_t5(sc) && buffer_packing) ||	/* 1 or -1 both ok for T5 */
755	    (is_t4(sc) && buffer_packing == 1)))
756		return (1);
757	return (0);
758}
759
760void
761t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
762    struct sysctl_oid_list *children)
763{
764
765	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
766	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
767	    "freelist buffer sizes");
768
769	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
770	    NULL, fl_pktshift, "payload DMA offset in rx buffer (bytes)");
771
772	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
773	    NULL, fl_pad, "payload pad boundary (bytes)");
774
775	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
776	    NULL, spg_len, "status page size (bytes)");
777
778	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
779	    NULL, cong_drop, "congestion drop setting");
780
781	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "buffer_packing", CTLFLAG_RD,
782	    NULL, enable_buffer_packing(sc),
783	    "pack multiple frames in one fl buffer");
784
785	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
786	    NULL, sc->sge.pack_boundary, "payload pack boundary (bytes)");
787}
788
789int
790t4_destroy_dma_tag(struct adapter *sc)
791{
792	if (sc->dmat)
793		bus_dma_tag_destroy(sc->dmat);
794
795	return (0);
796}
797
798/*
799 * Allocate and initialize the firmware event queue and the management queue.
800 *
801 * Returns errno on failure.  Resources allocated up to that point may still be
802 * allocated.  Caller is responsible for cleanup in case this function fails.
803 */
804int
805t4_setup_adapter_queues(struct adapter *sc)
806{
807	int rc;
808
809	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
810
811	sysctl_ctx_init(&sc->ctx);
812	sc->flags |= ADAP_SYSCTL_CTX;
813
814	/*
815	 * Firmware event queue
816	 */
817	rc = alloc_fwq(sc);
818	if (rc != 0)
819		return (rc);
820
821	/*
822	 * Management queue.  This is just a control queue that uses the fwq as
823	 * its associated iq.
824	 */
825	rc = alloc_mgmtq(sc);
826
827	return (rc);
828}
829
830/*
831 * Idempotent
832 */
833int
834t4_teardown_adapter_queues(struct adapter *sc)
835{
836
837	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
838
839	/* Do this before freeing the queue */
840	if (sc->flags & ADAP_SYSCTL_CTX) {
841		sysctl_ctx_free(&sc->ctx);
842		sc->flags &= ~ADAP_SYSCTL_CTX;
843	}
844
845	free_mgmtq(sc);
846	free_fwq(sc);
847
848	return (0);
849}
850
851static inline int
852port_intr_count(struct port_info *pi)
853{
854	int rc = 0;
855
856	if (pi->flags & INTR_RXQ)
857		rc += pi->nrxq;
858#ifdef TCP_OFFLOAD
859	if (pi->flags & INTR_OFLD_RXQ)
860		rc += pi->nofldrxq;
861#endif
862#ifdef DEV_NETMAP
863	if (pi->flags & INTR_NM_RXQ)
864		rc += pi->nnmrxq;
865#endif
866	return (rc);
867}
868
869static inline int
870first_vector(struct port_info *pi)
871{
872	struct adapter *sc = pi->adapter;
873	int rc = T4_EXTRA_INTR, i;
874
875	if (sc->intr_count == 1)
876		return (0);
877
878	for_each_port(sc, i) {
879		if (i == pi->port_id)
880			break;
881
882		rc += port_intr_count(sc->port[i]);
883	}
884
885	return (rc);
886}
887
888/*
889 * Given an arbitrary "index," come up with an iq that can be used by other
890 * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
891 * The iq returned is guaranteed to be something that takes direct interrupts.
892 */
893static struct sge_iq *
894port_intr_iq(struct port_info *pi, int idx)
895{
896	struct adapter *sc = pi->adapter;
897	struct sge *s = &sc->sge;
898	struct sge_iq *iq = NULL;
899	int nintr, i;
900
901	if (sc->intr_count == 1)
902		return (&sc->sge.fwq);
903
904	nintr = port_intr_count(pi);
905	KASSERT(nintr != 0,
906	    ("%s: pi %p has no exclusive interrupts, total interrupts = %d",
907	    __func__, pi, sc->intr_count));
908#ifdef DEV_NETMAP
909	/* Exclude netmap queues as they can't take anyone else's interrupts */
910	if (pi->flags & INTR_NM_RXQ)
911		nintr -= pi->nnmrxq;
912	KASSERT(nintr > 0,
913	    ("%s: pi %p has nintr %d after netmap adjustment of %d", __func__,
914	    pi, nintr, pi->nnmrxq));
915#endif
916	i = idx % nintr;
917
918	if (pi->flags & INTR_RXQ) {
919	       	if (i < pi->nrxq) {
920			iq = &s->rxq[pi->first_rxq + i].iq;
921			goto done;
922		}
923		i -= pi->nrxq;
924	}
925#ifdef TCP_OFFLOAD
926	if (pi->flags & INTR_OFLD_RXQ) {
927	       	if (i < pi->nofldrxq) {
928			iq = &s->ofld_rxq[pi->first_ofld_rxq + i].iq;
929			goto done;
930		}
931		i -= pi->nofldrxq;
932	}
933#endif
934	panic("%s: pi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__,
935	    pi, pi->flags & INTR_ALL, idx, nintr);
936done:
937	MPASS(iq != NULL);
938	KASSERT(iq->flags & IQ_INTR,
939	    ("%s: iq %p (port %p, intr_flags 0x%lx, idx %d)", __func__, iq, pi,
940	    pi->flags & INTR_ALL, idx));
941	return (iq);
942}
943
944/* Maximum payload that can be delivered with a single iq descriptor */
945static inline int
946mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
947{
948	int payload;
949
950#ifdef TCP_OFFLOAD
951	if (toe) {
952		payload = sc->tt.rx_coalesce ?
953		    G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu;
954	} else {
955#endif
956		/* large enough even when hw VLAN extraction is disabled */
957		payload = fl_pktshift + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
958		    mtu;
959#ifdef TCP_OFFLOAD
960	}
961#endif
962	payload = roundup2(payload, fl_pad);
963
964	return (payload);
965}
966
967int
968t4_setup_port_queues(struct port_info *pi)
969{
970	int rc = 0, i, j, intr_idx, iqid;
971	struct sge_rxq *rxq;
972	struct sge_txq *txq;
973	struct sge_wrq *ctrlq;
974#ifdef TCP_OFFLOAD
975	struct sge_ofld_rxq *ofld_rxq;
976	struct sge_wrq *ofld_txq;
977#endif
978#ifdef DEV_NETMAP
979	struct sge_nm_rxq *nm_rxq;
980	struct sge_nm_txq *nm_txq;
981#endif
982	char name[16];
983	struct adapter *sc = pi->adapter;
984	struct ifnet *ifp = pi->ifp;
985	struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
986	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
987	int maxp, pack, mtu = ifp->if_mtu;
988
989	/* Interrupt vector to start from (when using multiple vectors) */
990	intr_idx = first_vector(pi);
991
992	/*
993	 * First pass over all NIC and TOE rx queues:
994	 * a) initialize iq and fl
995	 * b) allocate queue iff it will take direct interrupts.
996	 */
997	maxp = mtu_to_max_payload(sc, mtu, 0);
998	pack = enable_buffer_packing(sc);
999	if (pi->flags & INTR_RXQ) {
1000		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq",
1001		    CTLFLAG_RD, NULL, "rx queues");
1002	}
1003	for_each_rxq(pi, i, rxq) {
1004
1005		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq);
1006
1007		snprintf(name, sizeof(name), "%s rxq%d-fl",
1008		    device_get_nameunit(pi->dev), i);
1009		init_fl(sc, &rxq->fl, pi->qsize_rxq / 8, maxp, pack, name);
1010
1011		if (pi->flags & INTR_RXQ) {
1012			rxq->iq.flags |= IQ_INTR;
1013			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
1014			if (rc != 0)
1015				goto done;
1016			intr_idx++;
1017		}
1018	}
1019#ifdef TCP_OFFLOAD
1020	maxp = mtu_to_max_payload(sc, mtu, 1);
1021	if (is_offload(sc) && pi->flags & INTR_OFLD_RXQ) {
1022		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
1023		    CTLFLAG_RD, NULL,
1024		    "rx queues for offloaded TCP connections");
1025	}
1026	for_each_ofld_rxq(pi, i, ofld_rxq) {
1027
1028		init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
1029		    pi->qsize_rxq);
1030
1031		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1032		    device_get_nameunit(pi->dev), i);
1033		init_fl(sc, &ofld_rxq->fl, pi->qsize_rxq / 8, maxp, pack, name);
1034
1035		if (pi->flags & INTR_OFLD_RXQ) {
1036			ofld_rxq->iq.flags |= IQ_INTR;
1037			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid);
1038			if (rc != 0)
1039				goto done;
1040			intr_idx++;
1041		}
1042	}
1043#endif
1044#ifdef DEV_NETMAP
1045	/*
1046	 * We don't have buffers to back the netmap rx queues right now so we
1047	 * create the queues in a way that doesn't set off any congestion signal
1048	 * in the chip.
1049	 */
1050	if (pi->flags & INTR_NM_RXQ) {
1051		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_rxq",
1052		    CTLFLAG_RD, NULL, "rx queues for netmap");
1053		for_each_nm_rxq(pi, i, nm_rxq) {
1054			rc = alloc_nm_rxq(pi, nm_rxq, intr_idx, i, oid);
1055			if (rc != 0)
1056				goto done;
1057			intr_idx++;
1058		}
1059	}
1060#endif
1061
1062	/*
1063	 * Second pass over all NIC and TOE rx queues.  The queues forwarding
1064	 * their interrupts are allocated now.
1065	 */
1066	j = 0;
1067	if (!(pi->flags & INTR_RXQ)) {
1068		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq",
1069		    CTLFLAG_RD, NULL, "rx queues");
1070		for_each_rxq(pi, i, rxq) {
1071			MPASS(!(rxq->iq.flags & IQ_INTR));
1072
1073			intr_idx = port_intr_iq(pi, j)->abs_id;
1074
1075			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
1076			if (rc != 0)
1077				goto done;
1078			j++;
1079		}
1080	}
1081#ifdef TCP_OFFLOAD
1082	if (is_offload(sc) && !(pi->flags & INTR_OFLD_RXQ)) {
1083		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
1084		    CTLFLAG_RD, NULL,
1085		    "rx queues for offloaded TCP connections");
1086		for_each_ofld_rxq(pi, i, ofld_rxq) {
1087			MPASS(!(ofld_rxq->iq.flags & IQ_INTR));
1088
1089			intr_idx = port_intr_iq(pi, j)->abs_id;
1090
1091			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid);
1092			if (rc != 0)
1093				goto done;
1094			j++;
1095		}
1096	}
1097#endif
1098#ifdef DEV_NETMAP
1099	if (!(pi->flags & INTR_NM_RXQ))
1100		CXGBE_UNIMPLEMENTED(__func__);
1101#endif
1102
1103	/*
1104	 * Now the tx queues.  Only one pass needed.
1105	 */
1106	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1107	    NULL, "tx queues");
1108	j = 0;
1109	for_each_txq(pi, i, txq) {
1110		iqid = port_intr_iq(pi, j)->cntxt_id;
1111		snprintf(name, sizeof(name), "%s txq%d",
1112		    device_get_nameunit(pi->dev), i);
1113		init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid,
1114		    name);
1115
1116		rc = alloc_txq(pi, txq, i, oid);
1117		if (rc != 0)
1118			goto done;
1119		j++;
1120	}
1121#ifdef TCP_OFFLOAD
1122	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq",
1123	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
1124	for_each_ofld_txq(pi, i, ofld_txq) {
1125		struct sysctl_oid *oid2;
1126
1127		iqid = port_intr_iq(pi, j)->cntxt_id;
1128		snprintf(name, sizeof(name), "%s ofld_txq%d",
1129		    device_get_nameunit(pi->dev), i);
1130		init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan,
1131		    iqid, name);
1132
1133		snprintf(name, sizeof(name), "%d", i);
1134		oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1135		    name, CTLFLAG_RD, NULL, "offload tx queue");
1136
1137		rc = alloc_wrq(sc, pi, ofld_txq, oid2);
1138		if (rc != 0)
1139			goto done;
1140		j++;
1141	}
1142#endif
1143#ifdef DEV_NETMAP
1144	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_txq",
1145	    CTLFLAG_RD, NULL, "tx queues for netmap use");
1146	for_each_nm_txq(pi, i, nm_txq) {
1147		iqid = pi->first_nm_rxq + (j % pi->nnmrxq);
1148		rc = alloc_nm_txq(pi, nm_txq, iqid, i, oid);
1149		if (rc != 0)
1150			goto done;
1151		j++;
1152	}
1153#endif
1154
1155	/*
1156	 * Finally, the control queue.
1157	 */
1158	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
1159	    NULL, "ctrl queue");
1160	ctrlq = &sc->sge.ctrlq[pi->port_id];
1161	iqid = port_intr_iq(pi, 0)->cntxt_id;
1162	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev));
1163	init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name);
1164	rc = alloc_wrq(sc, pi, ctrlq, oid);
1165
1166done:
1167	if (rc)
1168		t4_teardown_port_queues(pi);
1169
1170	return (rc);
1171}
1172
1173/*
1174 * Idempotent
1175 */
1176int
1177t4_teardown_port_queues(struct port_info *pi)
1178{
1179	int i;
1180	struct adapter *sc = pi->adapter;
1181	struct sge_rxq *rxq;
1182	struct sge_txq *txq;
1183#ifdef TCP_OFFLOAD
1184	struct sge_ofld_rxq *ofld_rxq;
1185	struct sge_wrq *ofld_txq;
1186#endif
1187#ifdef DEV_NETMAP
1188	struct sge_nm_rxq *nm_rxq;
1189	struct sge_nm_txq *nm_txq;
1190#endif
1191
1192	/* Do this before freeing the queues */
1193	if (pi->flags & PORT_SYSCTL_CTX) {
1194		sysctl_ctx_free(&pi->ctx);
1195		pi->flags &= ~PORT_SYSCTL_CTX;
1196	}
1197
1198	/*
1199	 * Take down all the tx queues first, as they reference the rx queues
1200	 * (for egress updates, etc.).
1201	 */
1202
1203	free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1204
1205	for_each_txq(pi, i, txq) {
1206		free_txq(pi, txq);
1207	}
1208#ifdef TCP_OFFLOAD
1209	for_each_ofld_txq(pi, i, ofld_txq) {
1210		free_wrq(sc, ofld_txq);
1211	}
1212#endif
1213#ifdef DEV_NETMAP
1214	for_each_nm_txq(pi, i, nm_txq)
1215	    free_nm_txq(pi, nm_txq);
1216#endif
1217
1218	/*
1219	 * Then take down the rx queues that forward their interrupts, as they
1220	 * reference other rx queues.
1221	 */
1222
1223	for_each_rxq(pi, i, rxq) {
1224		if ((rxq->iq.flags & IQ_INTR) == 0)
1225			free_rxq(pi, rxq);
1226	}
1227#ifdef TCP_OFFLOAD
1228	for_each_ofld_rxq(pi, i, ofld_rxq) {
1229		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
1230			free_ofld_rxq(pi, ofld_rxq);
1231	}
1232#endif
1233#ifdef DEV_NETMAP
1234	for_each_nm_rxq(pi, i, nm_rxq)
1235	    free_nm_rxq(pi, nm_rxq);
1236#endif
1237
1238	/*
1239	 * Then take down the rx queues that take direct interrupts.
1240	 */
1241
1242	for_each_rxq(pi, i, rxq) {
1243		if (rxq->iq.flags & IQ_INTR)
1244			free_rxq(pi, rxq);
1245	}
1246#ifdef TCP_OFFLOAD
1247	for_each_ofld_rxq(pi, i, ofld_rxq) {
1248		if (ofld_rxq->iq.flags & IQ_INTR)
1249			free_ofld_rxq(pi, ofld_rxq);
1250	}
1251#endif
1252#ifdef DEV_NETMAP
1253	CXGBE_UNIMPLEMENTED(__func__);
1254#endif
1255
1256	return (0);
1257}
1258
1259/*
1260 * Deals with errors and the firmware event queue.  All data rx queues forward
1261 * their interrupt to the firmware event queue.
1262 */
1263void
1264t4_intr_all(void *arg)
1265{
1266	struct adapter *sc = arg;
1267	struct sge_iq *fwq = &sc->sge.fwq;
1268
1269	t4_intr_err(arg);
1270	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1271		service_iq(fwq, 0);
1272		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1273	}
1274}
1275
1276/* Deals with error interrupts */
1277void
1278t4_intr_err(void *arg)
1279{
1280	struct adapter *sc = arg;
1281
1282	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1283	t4_slow_intr_handler(sc);
1284}
1285
1286void
1287t4_intr_evt(void *arg)
1288{
1289	struct sge_iq *iq = arg;
1290
1291	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1292		service_iq(iq, 0);
1293		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1294	}
1295}
1296
1297void
1298t4_intr(void *arg)
1299{
1300	struct sge_iq *iq = arg;
1301
1302	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1303		service_iq(iq, 0);
1304		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1305	}
1306}
1307
1308/*
1309 * Deals with anything and everything on the given ingress queue.
1310 */
1311static int
1312service_iq(struct sge_iq *iq, int budget)
1313{
1314	struct sge_iq *q;
1315	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1316	struct sge_fl *fl = &rxq->fl;		/* Use iff IQ_HAS_FL */
1317	struct adapter *sc = iq->adapter;
1318	struct iq_desc *d = &iq->desc[iq->cidx];
1319	int ndescs = 0, limit, fl_bufs_used = 0;
1320	int rsp_type;
1321	uint32_t lq;
1322	struct mbuf *m0;
1323	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1324#if defined(INET) || defined(INET6)
1325	const struct timeval lro_timeout = {0, sc->lro_timeout};
1326#endif
1327
1328	limit = budget ? budget : iq->qsize / 8;
1329
1330	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1331
1332	/*
1333	 * We always come back and check the descriptor ring for new indirect
1334	 * interrupts and other responses after running a single handler.
1335	 */
1336	for (;;) {
1337		while ((d->rsp.u.type_gen & F_RSPD_GEN) == iq->gen) {
1338
1339			rmb();
1340
1341			m0 = NULL;
1342			rsp_type = G_RSPD_TYPE(d->rsp.u.type_gen);
1343			lq = be32toh(d->rsp.pldbuflen_qid);
1344
1345			switch (rsp_type) {
1346			case X_RSPD_TYPE_FLBUF:
1347
1348				KASSERT(iq->flags & IQ_HAS_FL,
1349				    ("%s: data for an iq (%p) with no freelist",
1350				    __func__, iq));
1351
1352				m0 = get_fl_payload(sc, fl, lq, &fl_bufs_used);
1353				if (__predict_false(m0 == NULL))
1354					goto process_iql;
1355#ifdef T4_PKT_TIMESTAMP
1356				/*
1357				 * 60 bit timestamp for the payload is
1358				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1359				 * in the leading free-space in the mbuf.  The
1360				 * kernel can clobber it during a pullup,
1361				 * m_copymdata, etc.  You need to make sure that
1362				 * the mbuf reaches you unmolested if you care
1363				 * about the timestamp.
1364				 */
1365				*(uint64_t *)m0->m_pktdat =
1366				    be64toh(ctrl->u.last_flit) &
1367				    0xfffffffffffffff;
1368#endif
1369
1370				/* fall through */
1371
1372			case X_RSPD_TYPE_CPL:
1373				KASSERT(d->rss.opcode < NUM_CPL_CMDS,
1374				    ("%s: bad opcode %02x.", __func__,
1375				    d->rss.opcode));
1376				sc->cpl_handler[d->rss.opcode](iq, &d->rss, m0);
1377				break;
1378
1379			case X_RSPD_TYPE_INTR:
1380
1381				/*
1382				 * Interrupts should be forwarded only to queues
1383				 * that are not forwarding their interrupts.
1384				 * This means service_iq can recurse but only 1
1385				 * level deep.
1386				 */
1387				KASSERT(budget == 0,
1388				    ("%s: budget %u, rsp_type %u", __func__,
1389				    budget, rsp_type));
1390
1391				/*
1392				 * There are 1K interrupt-capable queues (qids 0
1393				 * through 1023).  A response type indicating a
1394				 * forwarded interrupt with a qid >= 1K is an
1395				 * iWARP async notification.
1396				 */
1397				if (lq >= 1024) {
1398                                        sc->an_handler(iq, &d->rsp);
1399                                        break;
1400                                }
1401
1402				q = sc->sge.iqmap[lq - sc->sge.iq_start];
1403				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1404				    IQS_BUSY)) {
1405					if (service_iq(q, q->qsize / 8) == 0) {
1406						atomic_cmpset_int(&q->state,
1407						    IQS_BUSY, IQS_IDLE);
1408					} else {
1409						STAILQ_INSERT_TAIL(&iql, q,
1410						    link);
1411					}
1412				}
1413				break;
1414
1415			default:
1416				KASSERT(0,
1417				    ("%s: illegal response type %d on iq %p",
1418				    __func__, rsp_type, iq));
1419				log(LOG_ERR,
1420				    "%s: illegal response type %d on iq %p",
1421				    device_get_nameunit(sc->dev), rsp_type, iq);
1422				break;
1423			}
1424
1425			if (fl_bufs_used >= 16) {
1426				FL_LOCK(fl);
1427				fl->needed += fl_bufs_used;
1428				refill_fl(sc, fl, 32);
1429				FL_UNLOCK(fl);
1430				fl_bufs_used = 0;
1431			}
1432
1433			d++;
1434			if (__predict_false(++iq->cidx == iq->sidx)) {
1435				iq->cidx = 0;
1436				iq->gen ^= F_RSPD_GEN;
1437				d = &iq->desc[0];
1438			}
1439			if (__predict_false(++ndescs == limit)) {
1440				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
1441				    V_CIDXINC(ndescs) |
1442				    V_INGRESSQID(iq->cntxt_id) |
1443				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1444				ndescs = 0;
1445
1446#if defined(INET) || defined(INET6)
1447				if (iq->flags & IQ_LRO_ENABLED &&
1448				    sc->lro_timeout != 0) {
1449					tcp_lro_flush_inactive(&rxq->lro,
1450					    &lro_timeout);
1451				}
1452#endif
1453
1454				if (budget) {
1455					if (fl_bufs_used) {
1456						FL_LOCK(fl);
1457						fl->needed += fl_bufs_used;
1458						refill_fl(sc, fl, 32);
1459						FL_UNLOCK(fl);
1460					}
1461					return (EINPROGRESS);
1462				}
1463			}
1464		}
1465
1466process_iql:
1467		if (STAILQ_EMPTY(&iql))
1468			break;
1469
1470		/*
1471		 * Process the head only, and send it to the back of the list if
1472		 * it's still not done.
1473		 */
1474		q = STAILQ_FIRST(&iql);
1475		STAILQ_REMOVE_HEAD(&iql, link);
1476		if (service_iq(q, q->qsize / 8) == 0)
1477			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1478		else
1479			STAILQ_INSERT_TAIL(&iql, q, link);
1480	}
1481
1482#if defined(INET) || defined(INET6)
1483	if (iq->flags & IQ_LRO_ENABLED) {
1484		struct lro_ctrl *lro = &rxq->lro;
1485		struct lro_entry *l;
1486
1487		while (!SLIST_EMPTY(&lro->lro_active)) {
1488			l = SLIST_FIRST(&lro->lro_active);
1489			SLIST_REMOVE_HEAD(&lro->lro_active, next);
1490			tcp_lro_flush(lro, l);
1491		}
1492	}
1493#endif
1494
1495	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1496	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1497
1498	if (iq->flags & IQ_HAS_FL) {
1499		int starved;
1500
1501		FL_LOCK(fl);
1502		fl->needed += fl_bufs_used;
1503		starved = refill_fl(sc, fl, 64);
1504		FL_UNLOCK(fl);
1505		if (__predict_false(starved != 0))
1506			add_fl_to_sfl(sc, fl);
1507	}
1508
1509	return (0);
1510}
1511
1512static inline int
1513cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1514{
1515	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1516
1517	if (rc)
1518		MPASS(cll->region3 >= CL_METADATA_SIZE);
1519
1520	return (rc);
1521}
1522
1523static inline struct cluster_metadata *
1524cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1525    caddr_t cl)
1526{
1527
1528	if (cl_has_metadata(fl, cll)) {
1529		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1530
1531		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1532	}
1533	return (NULL);
1534}
1535
1536static void
1537rxb_free(struct mbuf *m, void *arg1, void *arg2)
1538{
1539	uma_zone_t zone = arg1;
1540	caddr_t cl = arg2;
1541
1542	uma_zfree(zone, cl);
1543	counter_u64_add(extfree_rels, 1);
1544}
1545
1546/*
1547 * The mbuf returned by this function could be allocated from zone_mbuf or
1548 * constructed in spare room in the cluster.
1549 *
1550 * The mbuf carries the payload in one of these ways
1551 * a) frame inside the mbuf (mbuf from zone_mbuf)
1552 * b) m_cljset (for clusters without metadata) zone_mbuf
1553 * c) m_extaddref (cluster with metadata) inline mbuf
1554 * d) m_extaddref (cluster with metadata) zone_mbuf
1555 */
1556static struct mbuf *
1557get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int total, int flags)
1558{
1559	struct mbuf *m;
1560	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1561	struct cluster_layout *cll = &sd->cll;
1562	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1563	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1564	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1565	int len, padded_len;
1566	caddr_t payload;
1567
1568	len = min(total, hwb->size - fl->rx_offset);
1569	padded_len = roundup2(len, fl_pad);
1570	payload = sd->cl + cll->region1 + fl->rx_offset;
1571
1572	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1573
1574		/*
1575		 * Copy payload into a freshly allocated mbuf.
1576		 */
1577
1578		m = flags & M_PKTHDR ?
1579		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1580		if (m == NULL)
1581			return (NULL);
1582		fl->mbuf_allocated++;
1583#ifdef T4_PKT_TIMESTAMP
1584		/* Leave room for a timestamp */
1585		m->m_data += 8;
1586#endif
1587		/* copy data to mbuf */
1588		bcopy(payload, mtod(m, caddr_t), len);
1589
1590	} else if (sd->nmbuf * MSIZE < cll->region1) {
1591
1592		/*
1593		 * There's spare room in the cluster for an mbuf.  Create one
1594		 * and associate it with the payload that's in the cluster.
1595		 */
1596
1597		MPASS(clm != NULL);
1598		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1599		/* No bzero required */
1600		if (m_init(m, NULL, 0, M_NOWAIT, MT_DATA, flags | M_NOFREE))
1601			return (NULL);
1602		fl->mbuf_inlined++;
1603		m_extaddref(m, payload, padded_len, &clm->refcount, rxb_free,
1604		    swz->zone, sd->cl);
1605		if (sd->nmbuf++ == 0)
1606			counter_u64_add(extfree_refs, 1);
1607
1608	} else {
1609
1610		/*
1611		 * Grab an mbuf from zone_mbuf and associate it with the
1612		 * payload in the cluster.
1613		 */
1614
1615		m = flags & M_PKTHDR ?
1616		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1617		if (m == NULL)
1618			return (NULL);
1619		fl->mbuf_allocated++;
1620		if (clm != NULL) {
1621			m_extaddref(m, payload, padded_len, &clm->refcount,
1622			    rxb_free, swz->zone, sd->cl);
1623			if (sd->nmbuf++ == 0)
1624				counter_u64_add(extfree_refs, 1);
1625		} else {
1626			m_cljset(m, sd->cl, swz->type);
1627			sd->cl = NULL;	/* consumed, not a recycle candidate */
1628		}
1629	}
1630	if (flags & M_PKTHDR)
1631		m->m_pkthdr.len = total;
1632	m->m_len = len;
1633
1634	if (fl->flags & FL_BUF_PACKING) {
1635		fl->rx_offset += roundup2(padded_len, sc->sge.pack_boundary);
1636		MPASS(fl->rx_offset <= hwb->size);
1637		if (fl->rx_offset < hwb->size)
1638			return (m);	/* without advancing the cidx */
1639	}
1640
1641	if (__predict_false(++fl->cidx == fl->cap))
1642		fl->cidx = 0;
1643	fl->rx_offset = 0;
1644
1645	return (m);
1646}
1647
1648static struct mbuf *
1649get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf,
1650    int *fl_bufs_used)
1651{
1652	struct mbuf *m0, *m, **pnext;
1653	u_int nbuf, len;
1654
1655	/*
1656	 * No assertion for the fl lock because we don't need it.  This routine
1657	 * is called only from the rx interrupt handler and it only updates
1658	 * fl->cidx.  (Contrast that with fl->pidx/fl->needed which could be
1659	 * updated in the rx interrupt handler or the starvation helper routine.
1660	 * That's why code that manipulates fl->pidx/fl->needed needs the fl
1661	 * lock but this routine does not).
1662	 */
1663
1664	nbuf = 0;
1665	len = G_RSPD_LEN(len_newbuf);
1666	if (__predict_false(fl->m0 != NULL)) {
1667		M_ASSERTPKTHDR(fl->m0);
1668		MPASS(len == fl->m0->m_pkthdr.len);
1669		MPASS(fl->remaining < len);
1670
1671		m0 = fl->m0;
1672		pnext = fl->pnext;
1673		len = fl->remaining;
1674		fl->m0 = NULL;
1675		goto get_segment;
1676	}
1677
1678	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1679		nbuf++;
1680		fl->rx_offset = 0;
1681		if (__predict_false(++fl->cidx == fl->cap))
1682			fl->cidx = 0;
1683	}
1684
1685	/*
1686	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1687	 * 'len' and it may span multiple hw buffers.
1688	 */
1689
1690	m0 = get_scatter_segment(sc, fl, len, M_PKTHDR);
1691	if (m0 == NULL)
1692		goto done;
1693	len -= m0->m_len;
1694	pnext = &m0->m_next;
1695	while (len > 0) {
1696		nbuf++;
1697get_segment:
1698		MPASS(fl->rx_offset == 0);
1699		m = get_scatter_segment(sc, fl, len, 0);
1700		if (m == NULL) {
1701			fl->m0 = m0;
1702			fl->pnext = pnext;
1703			fl->remaining = len;
1704			m0 = NULL;
1705			goto done;
1706		}
1707		*pnext = m;
1708		pnext = &m->m_next;
1709		len -= m->m_len;
1710	}
1711	*pnext = NULL;
1712	if (fl->rx_offset == 0)
1713		nbuf++;
1714done:
1715	(*fl_bufs_used) += nbuf;
1716	return (m0);
1717}
1718
1719static int
1720t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1721{
1722	struct sge_rxq *rxq = iq_to_rxq(iq);
1723	struct ifnet *ifp = rxq->ifp;
1724	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1725#if defined(INET) || defined(INET6)
1726	struct lro_ctrl *lro = &rxq->lro;
1727#endif
1728
1729	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1730	    rss->opcode));
1731
1732	m0->m_pkthdr.len -= fl_pktshift;
1733	m0->m_len -= fl_pktshift;
1734	m0->m_data += fl_pktshift;
1735
1736	m0->m_pkthdr.rcvif = ifp;
1737	m0->m_flags |= M_FLOWID;
1738	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1739
1740	if (cpl->csum_calc && !cpl->err_vec) {
1741		if (ifp->if_capenable & IFCAP_RXCSUM &&
1742		    cpl->l2info & htobe32(F_RXF_IP)) {
1743			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1744			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1745			rxq->rxcsum++;
1746		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1747		    cpl->l2info & htobe32(F_RXF_IP6)) {
1748			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1749			    CSUM_PSEUDO_HDR);
1750			rxq->rxcsum++;
1751		}
1752
1753		if (__predict_false(cpl->ip_frag))
1754			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1755		else
1756			m0->m_pkthdr.csum_data = 0xffff;
1757	}
1758
1759	if (cpl->vlan_ex) {
1760		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1761		m0->m_flags |= M_VLANTAG;
1762		rxq->vlan_extraction++;
1763	}
1764
1765#if defined(INET) || defined(INET6)
1766	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1767	    iq->flags & IQ_LRO_ENABLED &&
1768	    tcp_lro_rx(lro, m0, 0) == 0) {
1769		/* queued for LRO */
1770	} else
1771#endif
1772	ifp->if_input(ifp, m0);
1773
1774	return (0);
1775}
1776
1777/*
1778 * Doesn't fail.  Holds on to work requests it can't send right away.
1779 */
1780void
1781t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1782{
1783	struct sge_eq *eq = &wrq->eq;
1784	int can_reclaim;
1785	caddr_t dst;
1786
1787	TXQ_LOCK_ASSERT_OWNED(wrq);
1788#ifdef TCP_OFFLOAD
1789	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
1790	    (eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1791	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1792#else
1793	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1794	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1795#endif
1796
1797	if (__predict_true(wr != NULL))
1798		STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1799
1800	can_reclaim = reclaimable(eq);
1801	if (__predict_false(eq->flags & EQ_STALLED)) {
1802		if (eq->avail + can_reclaim < tx_resume_threshold(eq))
1803			return;
1804		eq->flags &= ~EQ_STALLED;
1805		eq->unstalled++;
1806	}
1807	eq->cidx += can_reclaim;
1808	eq->avail += can_reclaim;
1809	if (__predict_false(eq->cidx >= eq->cap))
1810		eq->cidx -= eq->cap;
1811
1812	while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
1813		int ndesc;
1814
1815		if (__predict_false(wr->wr_len < 0 ||
1816		    wr->wr_len > SGE_MAX_WR_LEN || (wr->wr_len & 0x7))) {
1817
1818#ifdef INVARIANTS
1819			panic("%s: work request with length %d", __func__,
1820			    wr->wr_len);
1821#endif
1822#ifdef KDB
1823			kdb_backtrace();
1824#endif
1825			log(LOG_ERR, "%s: %s work request with length %d",
1826			    device_get_nameunit(sc->dev), __func__, wr->wr_len);
1827			STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1828			free_wrqe(wr);
1829			continue;
1830		}
1831
1832		ndesc = howmany(wr->wr_len, EQ_ESIZE);
1833		if (eq->avail < ndesc) {
1834			wrq->no_desc++;
1835			break;
1836		}
1837
1838		dst = (void *)&eq->desc[eq->pidx];
1839		copy_to_txd(eq, wrtod(wr), &dst, wr->wr_len);
1840
1841		eq->pidx += ndesc;
1842		eq->avail -= ndesc;
1843		if (__predict_false(eq->pidx >= eq->cap))
1844			eq->pidx -= eq->cap;
1845
1846		eq->pending += ndesc;
1847		if (eq->pending >= 8)
1848			ring_eq_db(sc, eq);
1849
1850		wrq->tx_wrs++;
1851		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1852		free_wrqe(wr);
1853
1854		if (eq->avail < 8) {
1855			can_reclaim = reclaimable(eq);
1856			eq->cidx += can_reclaim;
1857			eq->avail += can_reclaim;
1858			if (__predict_false(eq->cidx >= eq->cap))
1859				eq->cidx -= eq->cap;
1860		}
1861	}
1862
1863	if (eq->pending)
1864		ring_eq_db(sc, eq);
1865
1866	if (wr != NULL) {
1867		eq->flags |= EQ_STALLED;
1868		if (callout_pending(&eq->tx_callout) == 0)
1869			callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1870	}
1871}
1872
1873/* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
1874#define TXPKTS_PKT_HDR ((\
1875    sizeof(struct ulp_txpkt) + \
1876    sizeof(struct ulptx_idata) + \
1877    sizeof(struct cpl_tx_pkt_core) \
1878    ) / 8)
1879
1880/* Header of a coalesced tx WR, before SGL of first packet (in flits) */
1881#define TXPKTS_WR_HDR (\
1882    sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
1883    TXPKTS_PKT_HDR)
1884
1885/* Header of a tx WR, before SGL of first packet (in flits) */
1886#define TXPKT_WR_HDR ((\
1887    sizeof(struct fw_eth_tx_pkt_wr) + \
1888    sizeof(struct cpl_tx_pkt_core) \
1889    ) / 8 )
1890
1891/* Header of a tx LSO WR, before SGL of first packet (in flits) */
1892#define TXPKT_LSO_WR_HDR ((\
1893    sizeof(struct fw_eth_tx_pkt_wr) + \
1894    sizeof(struct cpl_tx_pkt_lso_core) + \
1895    sizeof(struct cpl_tx_pkt_core) \
1896    ) / 8 )
1897
1898int
1899t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
1900{
1901	struct port_info *pi = (void *)ifp->if_softc;
1902	struct adapter *sc = pi->adapter;
1903	struct sge_eq *eq = &txq->eq;
1904	struct buf_ring *br = txq->br;
1905	struct mbuf *next;
1906	int rc, coalescing, can_reclaim;
1907	struct txpkts txpkts;
1908	struct sgl sgl;
1909
1910	TXQ_LOCK_ASSERT_OWNED(txq);
1911	KASSERT(m, ("%s: called with nothing to do.", __func__));
1912	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH,
1913	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1914
1915	prefetch(&eq->desc[eq->pidx]);
1916	prefetch(&txq->sdesc[eq->pidx]);
1917
1918	txpkts.npkt = 0;/* indicates there's nothing in txpkts */
1919	coalescing = 0;
1920
1921	can_reclaim = reclaimable(eq);
1922	if (__predict_false(eq->flags & EQ_STALLED)) {
1923		if (eq->avail + can_reclaim < tx_resume_threshold(eq)) {
1924			txq->m = m;
1925			return (0);
1926		}
1927		eq->flags &= ~EQ_STALLED;
1928		eq->unstalled++;
1929	}
1930
1931	if (__predict_false(eq->flags & EQ_DOOMED)) {
1932		m_freem(m);
1933		while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
1934			m_freem(m);
1935		return (ENETDOWN);
1936	}
1937
1938	if (eq->avail < 8 && can_reclaim)
1939		reclaim_tx_descs(txq, can_reclaim, 32);
1940
1941	for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
1942
1943		if (eq->avail < 8)
1944			break;
1945
1946		next = m->m_nextpkt;
1947		m->m_nextpkt = NULL;
1948
1949		if (next || buf_ring_peek(br))
1950			coalescing = 1;
1951
1952		rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
1953		if (rc != 0) {
1954			if (rc == ENOMEM) {
1955
1956				/* Short of resources, suspend tx */
1957
1958				m->m_nextpkt = next;
1959				break;
1960			}
1961
1962			/*
1963			 * Unrecoverable error for this packet, throw it away
1964			 * and move on to the next.  get_pkt_sgl may already
1965			 * have freed m (it will be NULL in that case and the
1966			 * m_freem here is still safe).
1967			 */
1968
1969			m_freem(m);
1970			continue;
1971		}
1972
1973		if (coalescing &&
1974		    add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
1975
1976			/* Successfully absorbed into txpkts */
1977
1978			write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
1979			goto doorbell;
1980		}
1981
1982		/*
1983		 * We weren't coalescing to begin with, or current frame could
1984		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
1985		 * given to it can't be coalesced).  Either way there should be
1986		 * nothing in txpkts.
1987		 */
1988		KASSERT(txpkts.npkt == 0,
1989		    ("%s: txpkts not empty: %d", __func__, txpkts.npkt));
1990
1991		/* We're sending out individual packets now */
1992		coalescing = 0;
1993
1994		if (eq->avail < 8)
1995			reclaim_tx_descs(txq, 0, 8);
1996		rc = write_txpkt_wr(pi, txq, m, &sgl);
1997		if (rc != 0) {
1998
1999			/* Short of hardware descriptors, suspend tx */
2000
2001			/*
2002			 * This is an unlikely but expensive failure.  We've
2003			 * done all the hard work (DMA mappings etc.) and now we
2004			 * can't send out the packet.  What's worse, we have to
2005			 * spend even more time freeing up everything in sgl.
2006			 */
2007			txq->no_desc++;
2008			free_pkt_sgl(txq, &sgl);
2009
2010			m->m_nextpkt = next;
2011			break;
2012		}
2013
2014		ETHER_BPF_MTAP(ifp, m);
2015		if (sgl.nsegs == 0)
2016			m_freem(m);
2017doorbell:
2018		if (eq->pending >= 8)
2019			ring_eq_db(sc, eq);
2020
2021		can_reclaim = reclaimable(eq);
2022		if (can_reclaim >= 32)
2023			reclaim_tx_descs(txq, can_reclaim, 64);
2024	}
2025
2026	if (txpkts.npkt > 0)
2027		write_txpkts_wr(txq, &txpkts);
2028
2029	/*
2030	 * m not NULL means there was an error but we haven't thrown it away.
2031	 * This can happen when we're short of tx descriptors (no_desc) or maybe
2032	 * even DMA maps (no_dmamap).  Either way, a credit flush and reclaim
2033	 * will get things going again.
2034	 */
2035	if (m && !(eq->flags & EQ_CRFLUSHED)) {
2036		struct tx_sdesc *txsd = &txq->sdesc[eq->pidx];
2037
2038		/*
2039		 * If EQ_CRFLUSHED is not set then we know we have at least one
2040		 * available descriptor because any WR that reduces eq->avail to
2041		 * 0 also sets EQ_CRFLUSHED.
2042		 */
2043		KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__));
2044
2045		txsd->desc_used = 1;
2046		txsd->credits = 0;
2047		write_eqflush_wr(eq);
2048	}
2049	txq->m = m;
2050
2051	if (eq->pending)
2052		ring_eq_db(sc, eq);
2053
2054	reclaim_tx_descs(txq, 0, 128);
2055
2056	if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0)
2057		callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
2058
2059	return (0);
2060}
2061
2062void
2063t4_update_fl_bufsize(struct ifnet *ifp)
2064{
2065	struct port_info *pi = ifp->if_softc;
2066	struct adapter *sc = pi->adapter;
2067	struct sge_rxq *rxq;
2068#ifdef TCP_OFFLOAD
2069	struct sge_ofld_rxq *ofld_rxq;
2070#endif
2071	struct sge_fl *fl;
2072	int i, maxp, mtu = ifp->if_mtu;
2073
2074	maxp = mtu_to_max_payload(sc, mtu, 0);
2075	for_each_rxq(pi, i, rxq) {
2076		fl = &rxq->fl;
2077
2078		FL_LOCK(fl);
2079		find_best_refill_source(sc, fl, maxp);
2080		FL_UNLOCK(fl);
2081	}
2082#ifdef TCP_OFFLOAD
2083	maxp = mtu_to_max_payload(sc, mtu, 1);
2084	for_each_ofld_rxq(pi, i, ofld_rxq) {
2085		fl = &ofld_rxq->fl;
2086
2087		FL_LOCK(fl);
2088		find_best_refill_source(sc, fl, maxp);
2089		FL_UNLOCK(fl);
2090	}
2091#endif
2092}
2093
2094int
2095can_resume_tx(struct sge_eq *eq)
2096{
2097
2098	return (eq->avail + reclaimable(eq) >= tx_resume_threshold(eq));
2099}
2100
2101static inline void
2102init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2103    int qsize)
2104{
2105
2106	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2107	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2108	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2109	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2110
2111	iq->flags = 0;
2112	iq->adapter = sc;
2113	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2114	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2115	if (pktc_idx >= 0) {
2116		iq->intr_params |= F_QINTR_CNT_EN;
2117		iq->intr_pktc_idx = pktc_idx;
2118	}
2119	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2120	iq->sidx = iq->qsize - spg_len / IQ_ESIZE;
2121}
2122
2123static inline void
2124init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, int pack,
2125    char *name)
2126{
2127
2128	fl->qsize = qsize;
2129	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2130	if (pack)
2131		fl->flags |= FL_BUF_PACKING;
2132	find_best_refill_source(sc, fl, maxp);
2133	find_safe_refill_source(sc, fl);
2134}
2135
2136static inline void
2137init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan,
2138    uint16_t iqid, char *name)
2139{
2140	KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan));
2141	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2142
2143	eq->flags = eqtype & EQ_TYPEMASK;
2144	eq->tx_chan = tx_chan;
2145	eq->iqid = iqid;
2146	eq->qsize = qsize;
2147	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2148
2149	TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq);
2150	callout_init(&eq->tx_callout, CALLOUT_MPSAFE);
2151}
2152
2153static int
2154alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2155    bus_dmamap_t *map, bus_addr_t *pa, void **va)
2156{
2157	int rc;
2158
2159	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2160	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2161	if (rc != 0) {
2162		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2163		goto done;
2164	}
2165
2166	rc = bus_dmamem_alloc(*tag, va,
2167	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2168	if (rc != 0) {
2169		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2170		goto done;
2171	}
2172
2173	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2174	if (rc != 0) {
2175		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2176		goto done;
2177	}
2178done:
2179	if (rc)
2180		free_ring(sc, *tag, *map, *pa, *va);
2181
2182	return (rc);
2183}
2184
2185static int
2186free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2187    bus_addr_t pa, void *va)
2188{
2189	if (pa)
2190		bus_dmamap_unload(tag, map);
2191	if (va)
2192		bus_dmamem_free(tag, va, map);
2193	if (tag)
2194		bus_dma_tag_destroy(tag);
2195
2196	return (0);
2197}
2198
2199/*
2200 * Allocates the ring for an ingress queue and an optional freelist.  If the
2201 * freelist is specified it will be allocated and then associated with the
2202 * ingress queue.
2203 *
2204 * Returns errno on failure.  Resources allocated up to that point may still be
2205 * allocated.  Caller is responsible for cleanup in case this function fails.
2206 *
2207 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
2208 * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
2209 * the abs_id of the ingress queue to which its interrupts should be forwarded.
2210 */
2211static int
2212alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
2213    int intr_idx, int cong)
2214{
2215	int rc, i, cntxt_id;
2216	size_t len;
2217	struct fw_iq_cmd c;
2218	struct adapter *sc = iq->adapter;
2219	__be32 v = 0;
2220
2221	len = iq->qsize * IQ_ESIZE;
2222	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2223	    (void **)&iq->desc);
2224	if (rc != 0)
2225		return (rc);
2226
2227	bzero(&c, sizeof(c));
2228	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2229	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2230	    V_FW_IQ_CMD_VFN(0));
2231
2232	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2233	    FW_LEN16(c));
2234
2235	/* Special handling for firmware event queue */
2236	if (iq == &sc->sge.fwq)
2237		v |= F_FW_IQ_CMD_IQASYNCH;
2238
2239	if (iq->flags & IQ_INTR) {
2240		KASSERT(intr_idx < sc->intr_count,
2241		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2242	} else
2243		v |= F_FW_IQ_CMD_IQANDST;
2244	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2245
2246	c.type_to_iqandstindex = htobe32(v |
2247	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2248	    V_FW_IQ_CMD_VIID(pi->viid) |
2249	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2250	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2251	    F_FW_IQ_CMD_IQGTSMODE |
2252	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2253	    V_FW_IQ_CMD_IQESIZE(ilog2(IQ_ESIZE) - 4));
2254	c.iqsize = htobe16(iq->qsize);
2255	c.iqaddr = htobe64(iq->ba);
2256	if (cong >= 0)
2257		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2258
2259	if (fl) {
2260		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2261
2262		len = fl->qsize * EQ_ESIZE;
2263		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2264		    &fl->ba, (void **)&fl->desc);
2265		if (rc)
2266			return (rc);
2267
2268		/* Allocate space for one software descriptor per buffer. */
2269		fl->cap = (fl->qsize - spg_len / EQ_ESIZE) * 8;
2270		rc = alloc_fl_sdesc(fl);
2271		if (rc != 0) {
2272			device_printf(sc->dev,
2273			    "failed to setup fl software descriptors: %d\n",
2274			    rc);
2275			return (rc);
2276		}
2277		fl->needed = fl->cap;
2278		fl->lowat = fl->flags & FL_BUF_PACKING ?
2279		    roundup2(sc->sge.fl_starve_threshold2, 8) :
2280		    roundup2(sc->sge.fl_starve_threshold, 8);
2281
2282		c.iqns_to_fl0congen |=
2283		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2284			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2285			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2286			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2287			    0));
2288		if (cong >= 0) {
2289			c.iqns_to_fl0congen |=
2290				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2291				    F_FW_IQ_CMD_FL0CONGCIF |
2292				    F_FW_IQ_CMD_FL0CONGEN);
2293		}
2294		c.fl0dcaen_to_fl0cidxfthresh =
2295		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
2296			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
2297		c.fl0size = htobe16(fl->qsize);
2298		c.fl0addr = htobe64(fl->ba);
2299	}
2300
2301	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2302	if (rc != 0) {
2303		device_printf(sc->dev,
2304		    "failed to create ingress queue: %d\n", rc);
2305		return (rc);
2306	}
2307
2308	iq->cidx = 0;
2309	iq->gen = F_RSPD_GEN;
2310	iq->intr_next = iq->intr_params;
2311	iq->cntxt_id = be16toh(c.iqid);
2312	iq->abs_id = be16toh(c.physiqid);
2313	iq->flags |= IQ_ALLOCATED;
2314
2315	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2316	if (cntxt_id >= sc->sge.niq) {
2317		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2318		    cntxt_id, sc->sge.niq - 1);
2319	}
2320	sc->sge.iqmap[cntxt_id] = iq;
2321
2322	if (fl) {
2323		fl->cntxt_id = be16toh(c.fl0id);
2324		fl->pidx = fl->cidx = 0;
2325
2326		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2327		if (cntxt_id >= sc->sge.neq) {
2328			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2329			    __func__, cntxt_id, sc->sge.neq - 1);
2330		}
2331		sc->sge.eqmap[cntxt_id] = (void *)fl;
2332
2333		FL_LOCK(fl);
2334		/* Enough to make sure the SGE doesn't think it's starved */
2335		refill_fl(sc, fl, fl->lowat);
2336		FL_UNLOCK(fl);
2337
2338		iq->flags |= IQ_HAS_FL;
2339	}
2340
2341	if (is_t5(sc) && cong >= 0) {
2342		uint32_t param, val;
2343
2344		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2345		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2346		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2347		if (cong == 0)
2348			val = 1 << 19;
2349		else {
2350			val = 2 << 19;
2351			for (i = 0; i < 4; i++) {
2352				if (cong & (1 << i))
2353					val |= 1 << (i << 2);
2354			}
2355		}
2356
2357		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2358		if (rc != 0) {
2359			/* report error but carry on */
2360			device_printf(sc->dev,
2361			    "failed to set congestion manager context for "
2362			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2363		}
2364	}
2365
2366	/* Enable IQ interrupts */
2367	atomic_store_rel_int(&iq->state, IQS_IDLE);
2368	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
2369	    V_INGRESSQID(iq->cntxt_id));
2370
2371	return (0);
2372}
2373
2374static int
2375free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
2376{
2377	int rc;
2378	struct adapter *sc = iq->adapter;
2379	device_t dev;
2380
2381	if (sc == NULL)
2382		return (0);	/* nothing to do */
2383
2384	dev = pi ? pi->dev : sc->dev;
2385
2386	if (iq->flags & IQ_ALLOCATED) {
2387		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2388		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2389		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2390		if (rc != 0) {
2391			device_printf(dev,
2392			    "failed to free queue %p: %d\n", iq, rc);
2393			return (rc);
2394		}
2395		iq->flags &= ~IQ_ALLOCATED;
2396	}
2397
2398	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2399
2400	bzero(iq, sizeof(*iq));
2401
2402	if (fl) {
2403		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2404		    fl->desc);
2405
2406		if (fl->sdesc)
2407			free_fl_sdesc(sc, fl);
2408
2409		if (mtx_initialized(&fl->fl_lock))
2410			mtx_destroy(&fl->fl_lock);
2411
2412		bzero(fl, sizeof(*fl));
2413	}
2414
2415	return (0);
2416}
2417
2418static void
2419add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
2420    struct sge_fl *fl)
2421{
2422	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2423
2424	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2425	    "freelist");
2426	children = SYSCTL_CHILDREN(oid);
2427
2428	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2429	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
2430	    "SGE context id of the freelist");
2431	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
2432	    0, "consumer index");
2433	if (fl->flags & FL_BUF_PACKING) {
2434		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
2435		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
2436	}
2437	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
2438	    0, "producer index");
2439	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
2440	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
2441	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
2442	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
2443	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
2444	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
2445	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
2446	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
2447	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
2448	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
2449}
2450
2451static int
2452alloc_fwq(struct adapter *sc)
2453{
2454	int rc, intr_idx;
2455	struct sge_iq *fwq = &sc->sge.fwq;
2456	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2457	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2458
2459	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE);
2460	fwq->flags |= IQ_INTR;	/* always */
2461	intr_idx = sc->intr_count > 1 ? 1 : 0;
2462	rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
2463	if (rc != 0) {
2464		device_printf(sc->dev,
2465		    "failed to create firmware event queue: %d\n", rc);
2466		return (rc);
2467	}
2468
2469	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2470	    NULL, "firmware event queue");
2471	children = SYSCTL_CHILDREN(oid);
2472
2473	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
2474	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
2475	    "absolute id of the queue");
2476	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
2477	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
2478	    "SGE context id of the queue");
2479	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
2480	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
2481	    "consumer index");
2482
2483	return (0);
2484}
2485
2486static int
2487free_fwq(struct adapter *sc)
2488{
2489	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
2490}
2491
2492static int
2493alloc_mgmtq(struct adapter *sc)
2494{
2495	int rc;
2496	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
2497	char name[16];
2498	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2499	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2500
2501	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
2502	    NULL, "management queue");
2503
2504	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
2505	init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
2506	    sc->sge.fwq.cntxt_id, name);
2507	rc = alloc_wrq(sc, NULL, mgmtq, oid);
2508	if (rc != 0) {
2509		device_printf(sc->dev,
2510		    "failed to create management queue: %d\n", rc);
2511		return (rc);
2512	}
2513
2514	return (0);
2515}
2516
2517static int
2518free_mgmtq(struct adapter *sc)
2519{
2520
2521	return free_wrq(sc, &sc->sge.mgmtq);
2522}
2523
2524static inline int
2525tnl_cong(struct port_info *pi)
2526{
2527
2528	if (cong_drop == -1)
2529		return (-1);
2530	else if (cong_drop == 1)
2531		return (0);
2532	else
2533		return (pi->rx_chan_map);
2534}
2535
2536static int
2537alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx,
2538    struct sysctl_oid *oid)
2539{
2540	int rc;
2541	struct sysctl_oid_list *children;
2542	char name[16];
2543
2544	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(pi));
2545	if (rc != 0)
2546		return (rc);
2547
2548	FL_LOCK(&rxq->fl);
2549	refill_fl(pi->adapter, &rxq->fl, rxq->fl.needed / 8);
2550	FL_UNLOCK(&rxq->fl);
2551
2552#if defined(INET) || defined(INET6)
2553	rc = tcp_lro_init(&rxq->lro);
2554	if (rc != 0)
2555		return (rc);
2556	rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
2557
2558	if (pi->ifp->if_capenable & IFCAP_LRO)
2559		rxq->iq.flags |= IQ_LRO_ENABLED;
2560#endif
2561	rxq->ifp = pi->ifp;
2562
2563	children = SYSCTL_CHILDREN(oid);
2564
2565	snprintf(name, sizeof(name), "%d", idx);
2566	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2567	    NULL, "rx queue");
2568	children = SYSCTL_CHILDREN(oid);
2569
2570	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2571	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
2572	    "absolute id of the queue");
2573	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2574	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
2575	    "SGE context id of the queue");
2576	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2577	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
2578	    "consumer index");
2579#if defined(INET) || defined(INET6)
2580	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
2581	    &rxq->lro.lro_queued, 0, NULL);
2582	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
2583	    &rxq->lro.lro_flushed, 0, NULL);
2584#endif
2585	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
2586	    &rxq->rxcsum, "# of times hardware assisted with checksum");
2587	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
2588	    CTLFLAG_RD, &rxq->vlan_extraction,
2589	    "# of times hardware extracted 802.1Q tag");
2590
2591	add_fl_sysctls(&pi->ctx, oid, &rxq->fl);
2592
2593	return (rc);
2594}
2595
2596static int
2597free_rxq(struct port_info *pi, struct sge_rxq *rxq)
2598{
2599	int rc;
2600
2601#if defined(INET) || defined(INET6)
2602	if (rxq->lro.ifp) {
2603		tcp_lro_free(&rxq->lro);
2604		rxq->lro.ifp = NULL;
2605	}
2606#endif
2607
2608	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
2609	if (rc == 0)
2610		bzero(rxq, sizeof(*rxq));
2611
2612	return (rc);
2613}
2614
2615#ifdef TCP_OFFLOAD
2616static int
2617alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
2618    int intr_idx, int idx, struct sysctl_oid *oid)
2619{
2620	int rc;
2621	struct sysctl_oid_list *children;
2622	char name[16];
2623
2624	rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
2625	    pi->rx_chan_map);
2626	if (rc != 0)
2627		return (rc);
2628
2629	children = SYSCTL_CHILDREN(oid);
2630
2631	snprintf(name, sizeof(name), "%d", idx);
2632	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2633	    NULL, "rx queue");
2634	children = SYSCTL_CHILDREN(oid);
2635
2636	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2637	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
2638	    "I", "absolute id of the queue");
2639	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2640	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
2641	    "I", "SGE context id of the queue");
2642	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2643	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
2644	    "consumer index");
2645
2646	add_fl_sysctls(&pi->ctx, oid, &ofld_rxq->fl);
2647
2648	return (rc);
2649}
2650
2651static int
2652free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
2653{
2654	int rc;
2655
2656	rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
2657	if (rc == 0)
2658		bzero(ofld_rxq, sizeof(*ofld_rxq));
2659
2660	return (rc);
2661}
2662#endif
2663
2664#ifdef DEV_NETMAP
2665static int
2666alloc_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq, int intr_idx,
2667    int idx, struct sysctl_oid *oid)
2668{
2669	int rc;
2670	struct sysctl_oid_list *children;
2671	struct sysctl_ctx_list *ctx;
2672	char name[16];
2673	size_t len;
2674	struct adapter *sc = pi->adapter;
2675	struct netmap_adapter *na = NA(pi->nm_ifp);
2676
2677	MPASS(na != NULL);
2678
2679	len = pi->qsize_rxq * IQ_ESIZE;
2680	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
2681	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
2682	if (rc != 0)
2683		return (rc);
2684
2685	len = na->num_rx_desc * EQ_ESIZE + spg_len;
2686	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
2687	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
2688	if (rc != 0)
2689		return (rc);
2690
2691	nm_rxq->pi = pi;
2692	nm_rxq->nid = idx;
2693	nm_rxq->iq_cidx = 0;
2694	nm_rxq->iq_sidx = pi->qsize_rxq - spg_len / IQ_ESIZE;
2695	nm_rxq->iq_gen = F_RSPD_GEN;
2696	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
2697	nm_rxq->fl_sidx = na->num_rx_desc;
2698	nm_rxq->intr_idx = intr_idx;
2699
2700	ctx = &pi->ctx;
2701	children = SYSCTL_CHILDREN(oid);
2702
2703	snprintf(name, sizeof(name), "%d", idx);
2704	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
2705	    "rx queue");
2706	children = SYSCTL_CHILDREN(oid);
2707
2708	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
2709	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
2710	    "I", "absolute id of the queue");
2711	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2712	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
2713	    "I", "SGE context id of the queue");
2714	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
2715	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
2716	    "consumer index");
2717
2718	children = SYSCTL_CHILDREN(oid);
2719	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2720	    "freelist");
2721	children = SYSCTL_CHILDREN(oid);
2722
2723	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2724	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
2725	    "I", "SGE context id of the freelist");
2726	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
2727	    &nm_rxq->fl_cidx, 0, "consumer index");
2728	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
2729	    &nm_rxq->fl_pidx, 0, "producer index");
2730
2731	return (rc);
2732}
2733
2734
2735static int
2736free_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq)
2737{
2738	struct adapter *sc = pi->adapter;
2739
2740	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
2741	    nm_rxq->iq_desc);
2742	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
2743	    nm_rxq->fl_desc);
2744
2745	return (0);
2746}
2747
2748static int
2749alloc_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
2750    struct sysctl_oid *oid)
2751{
2752	int rc;
2753	size_t len;
2754	struct adapter *sc = pi->adapter;
2755	struct netmap_adapter *na = NA(pi->nm_ifp);
2756	char name[16];
2757	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2758
2759	len = na->num_tx_desc * EQ_ESIZE + spg_len;
2760	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
2761	    &nm_txq->ba, (void **)&nm_txq->desc);
2762	if (rc)
2763		return (rc);
2764
2765	nm_txq->pidx = nm_txq->cidx = 0;
2766	nm_txq->sidx = na->num_tx_desc;
2767	nm_txq->nid = idx;
2768	nm_txq->iqidx = iqidx;
2769	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
2770	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf));
2771
2772	snprintf(name, sizeof(name), "%d", idx);
2773	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2774	    NULL, "netmap tx queue");
2775	children = SYSCTL_CHILDREN(oid);
2776
2777	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2778	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
2779	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2780	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
2781	    "consumer index");
2782	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
2783	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
2784	    "producer index");
2785
2786	return (rc);
2787}
2788
2789static int
2790free_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq)
2791{
2792	struct adapter *sc = pi->adapter;
2793
2794	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
2795	    nm_txq->desc);
2796
2797	return (0);
2798}
2799#endif
2800
2801static int
2802ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
2803{
2804	int rc, cntxt_id;
2805	struct fw_eq_ctrl_cmd c;
2806
2807	bzero(&c, sizeof(c));
2808
2809	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
2810	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
2811	    V_FW_EQ_CTRL_CMD_VFN(0));
2812	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
2813	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2814	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */
2815	c.physeqid_pkd = htobe32(0);
2816	c.fetchszm_to_iqid =
2817	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2818		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
2819		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
2820	c.dcaen_to_eqsize =
2821	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2822		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2823		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2824		V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
2825	c.eqaddr = htobe64(eq->ba);
2826
2827	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2828	if (rc != 0) {
2829		device_printf(sc->dev,
2830		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
2831		return (rc);
2832	}
2833	eq->flags |= EQ_ALLOCATED;
2834
2835	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
2836	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2837	if (cntxt_id >= sc->sge.neq)
2838	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2839		cntxt_id, sc->sge.neq - 1);
2840	sc->sge.eqmap[cntxt_id] = eq;
2841
2842	return (rc);
2843}
2844
2845static int
2846eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2847{
2848	int rc, cntxt_id;
2849	struct fw_eq_eth_cmd c;
2850
2851	bzero(&c, sizeof(c));
2852
2853	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
2854	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
2855	    V_FW_EQ_ETH_CMD_VFN(0));
2856	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
2857	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2858	c.autoequiqe_to_viid = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
2859	c.fetchszm_to_iqid =
2860	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2861		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
2862		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
2863	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2864		      V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2865		      V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2866		      V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
2867	c.eqaddr = htobe64(eq->ba);
2868
2869	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2870	if (rc != 0) {
2871		device_printf(pi->dev,
2872		    "failed to create Ethernet egress queue: %d\n", rc);
2873		return (rc);
2874	}
2875	eq->flags |= EQ_ALLOCATED;
2876
2877	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
2878	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2879	if (cntxt_id >= sc->sge.neq)
2880	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2881		cntxt_id, sc->sge.neq - 1);
2882	sc->sge.eqmap[cntxt_id] = eq;
2883
2884	return (rc);
2885}
2886
2887#ifdef TCP_OFFLOAD
2888static int
2889ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2890{
2891	int rc, cntxt_id;
2892	struct fw_eq_ofld_cmd c;
2893
2894	bzero(&c, sizeof(c));
2895
2896	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
2897	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
2898	    V_FW_EQ_OFLD_CMD_VFN(0));
2899	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
2900	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2901	c.fetchszm_to_iqid =
2902		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2903		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
2904		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
2905	c.dcaen_to_eqsize =
2906	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2907		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2908		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2909		V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
2910	c.eqaddr = htobe64(eq->ba);
2911
2912	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2913	if (rc != 0) {
2914		device_printf(pi->dev,
2915		    "failed to create egress queue for TCP offload: %d\n", rc);
2916		return (rc);
2917	}
2918	eq->flags |= EQ_ALLOCATED;
2919
2920	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
2921	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2922	if (cntxt_id >= sc->sge.neq)
2923	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2924		cntxt_id, sc->sge.neq - 1);
2925	sc->sge.eqmap[cntxt_id] = eq;
2926
2927	return (rc);
2928}
2929#endif
2930
2931static int
2932alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2933{
2934	int rc;
2935	size_t len;
2936
2937	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
2938
2939	len = eq->qsize * EQ_ESIZE;
2940	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
2941	    &eq->ba, (void **)&eq->desc);
2942	if (rc)
2943		return (rc);
2944
2945	eq->cap = eq->qsize - spg_len / EQ_ESIZE;
2946	eq->spg = (void *)&eq->desc[eq->cap];
2947	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
2948	eq->pidx = eq->cidx = 0;
2949	eq->doorbells = sc->doorbells;
2950
2951	switch (eq->flags & EQ_TYPEMASK) {
2952	case EQ_CTRL:
2953		rc = ctrl_eq_alloc(sc, eq);
2954		break;
2955
2956	case EQ_ETH:
2957		rc = eth_eq_alloc(sc, pi, eq);
2958		break;
2959
2960#ifdef TCP_OFFLOAD
2961	case EQ_OFLD:
2962		rc = ofld_eq_alloc(sc, pi, eq);
2963		break;
2964#endif
2965
2966	default:
2967		panic("%s: invalid eq type %d.", __func__,
2968		    eq->flags & EQ_TYPEMASK);
2969	}
2970	if (rc != 0) {
2971		device_printf(sc->dev,
2972		    "failed to allocate egress queue(%d): %d\n",
2973		    eq->flags & EQ_TYPEMASK, rc);
2974	}
2975
2976	eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus;
2977
2978	if (isset(&eq->doorbells, DOORBELL_UDB) ||
2979	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
2980	    isset(&eq->doorbells, DOORBELL_WCWR)) {
2981		uint32_t s_qpp = sc->sge.eq_s_qpp;
2982		uint32_t mask = (1 << s_qpp) - 1;
2983		volatile uint8_t *udb;
2984
2985		udb = sc->udbs_base + UDBS_DB_OFFSET;
2986		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
2987		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
2988		if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE)
2989	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
2990		else {
2991			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
2992			eq->udb_qid = 0;
2993		}
2994		eq->udb = (volatile void *)udb;
2995	}
2996
2997	return (rc);
2998}
2999
3000static int
3001free_eq(struct adapter *sc, struct sge_eq *eq)
3002{
3003	int rc;
3004
3005	if (eq->flags & EQ_ALLOCATED) {
3006		switch (eq->flags & EQ_TYPEMASK) {
3007		case EQ_CTRL:
3008			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
3009			    eq->cntxt_id);
3010			break;
3011
3012		case EQ_ETH:
3013			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
3014			    eq->cntxt_id);
3015			break;
3016
3017#ifdef TCP_OFFLOAD
3018		case EQ_OFLD:
3019			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
3020			    eq->cntxt_id);
3021			break;
3022#endif
3023
3024		default:
3025			panic("%s: invalid eq type %d.", __func__,
3026			    eq->flags & EQ_TYPEMASK);
3027		}
3028		if (rc != 0) {
3029			device_printf(sc->dev,
3030			    "failed to free egress queue (%d): %d\n",
3031			    eq->flags & EQ_TYPEMASK, rc);
3032			return (rc);
3033		}
3034		eq->flags &= ~EQ_ALLOCATED;
3035	}
3036
3037	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3038
3039	if (mtx_initialized(&eq->eq_lock))
3040		mtx_destroy(&eq->eq_lock);
3041
3042	bzero(eq, sizeof(*eq));
3043	return (0);
3044}
3045
3046static int
3047alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
3048    struct sysctl_oid *oid)
3049{
3050	int rc;
3051	struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx;
3052	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3053
3054	rc = alloc_eq(sc, pi, &wrq->eq);
3055	if (rc)
3056		return (rc);
3057
3058	wrq->adapter = sc;
3059	STAILQ_INIT(&wrq->wr_list);
3060
3061	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3062	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3063	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3064	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3065	    "consumer index");
3066	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3067	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3068	    "producer index");
3069	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD,
3070	    &wrq->tx_wrs, "# of work requests");
3071	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
3072	    &wrq->no_desc, 0,
3073	    "# of times queue ran out of hardware descriptors");
3074	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
3075	    &wrq->eq.unstalled, 0, "# of times queue recovered after stall");
3076
3077	return (rc);
3078}
3079
3080static int
3081free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3082{
3083	int rc;
3084
3085	rc = free_eq(sc, &wrq->eq);
3086	if (rc)
3087		return (rc);
3088
3089	bzero(wrq, sizeof(*wrq));
3090	return (0);
3091}
3092
3093static int
3094alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx,
3095    struct sysctl_oid *oid)
3096{
3097	int rc;
3098	struct adapter *sc = pi->adapter;
3099	struct sge_eq *eq = &txq->eq;
3100	char name[16];
3101	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3102
3103	rc = alloc_eq(sc, pi, eq);
3104	if (rc)
3105		return (rc);
3106
3107	txq->ifp = pi->ifp;
3108
3109	txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
3110	    M_ZERO | M_WAITOK);
3111	txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
3112
3113	rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
3114	    BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
3115	    BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag);
3116	if (rc != 0) {
3117		device_printf(sc->dev,
3118		    "failed to create tx DMA tag: %d\n", rc);
3119		return (rc);
3120	}
3121
3122	/*
3123	 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
3124	 * limit for any WR).  txq->no_dmamap events shouldn't occur if maps is
3125	 * sized for the worst case.
3126	 */
3127	rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8,
3128	    M_WAITOK);
3129	if (rc != 0) {
3130		device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
3131		return (rc);
3132	}
3133
3134	snprintf(name, sizeof(name), "%d", idx);
3135	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3136	    NULL, "tx queue");
3137	children = SYSCTL_CHILDREN(oid);
3138
3139	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3140	    &eq->cntxt_id, 0, "SGE context id of the queue");
3141	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
3142	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3143	    "consumer index");
3144	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
3145	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3146	    "producer index");
3147
3148	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3149	    &txq->txcsum, "# of times hardware assisted with checksum");
3150	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
3151	    CTLFLAG_RD, &txq->vlan_insertion,
3152	    "# of times hardware inserted 802.1Q tag");
3153	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3154	    &txq->tso_wrs, "# of TSO work requests");
3155	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3156	    &txq->imm_wrs, "# of work requests with immediate data");
3157	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3158	    &txq->sgl_wrs, "# of work requests with direct SGL");
3159	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3160	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3161	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
3162	    &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
3163	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
3164	    &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
3165
3166	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "br_drops", CTLFLAG_RD,
3167	    &txq->br->br_drops, "# of drops in the buf_ring for this queue");
3168	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
3169	    &txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
3170	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
3171	    &txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
3172	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
3173	    &eq->egr_update, 0, "egress update notifications from the SGE");
3174	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
3175	    &eq->unstalled, 0, "# of times txq recovered after stall");
3176
3177	return (rc);
3178}
3179
3180static int
3181free_txq(struct port_info *pi, struct sge_txq *txq)
3182{
3183	int rc;
3184	struct adapter *sc = pi->adapter;
3185	struct sge_eq *eq = &txq->eq;
3186
3187	rc = free_eq(sc, eq);
3188	if (rc)
3189		return (rc);
3190
3191	free(txq->sdesc, M_CXGBE);
3192
3193	if (txq->txmaps.maps)
3194		t4_free_tx_maps(&txq->txmaps, txq->tx_tag);
3195
3196	buf_ring_free(txq->br, M_CXGBE);
3197
3198	if (txq->tx_tag)
3199		bus_dma_tag_destroy(txq->tx_tag);
3200
3201	bzero(txq, sizeof(*txq));
3202	return (0);
3203}
3204
3205static void
3206oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3207{
3208	bus_addr_t *ba = arg;
3209
3210	KASSERT(nseg == 1,
3211	    ("%s meant for single segment mappings only.", __func__));
3212
3213	*ba = error ? 0 : segs->ds_addr;
3214}
3215
3216#define FL_HW_IDX(x) ((x) >> 3)
3217static inline void
3218ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3219{
3220	int ndesc = fl->pending / 8;
3221	uint32_t v;
3222
3223	if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
3224		ndesc--;	/* hold back one credit */
3225
3226	if (ndesc <= 0)
3227		return;		/* nothing to do */
3228
3229	v = F_DBPRIO | V_QID(fl->cntxt_id) | V_PIDX(ndesc);
3230	if (is_t5(sc))
3231		v |= F_DBTYPE;
3232
3233	wmb();
3234
3235	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3236	fl->pending -= ndesc * 8;
3237}
3238
3239/*
3240 * Fill up the freelist by upto nbufs and maybe ring its doorbell.
3241 *
3242 * Returns non-zero to indicate that it should be added to the list of starving
3243 * freelists.
3244 */
3245static int
3246refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
3247{
3248	__be64 *d = &fl->desc[fl->pidx];
3249	struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
3250	uintptr_t pa;
3251	caddr_t cl;
3252	struct cluster_layout *cll = &fl->cll_def;	/* default layout */
3253	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
3254	struct cluster_metadata *clm;
3255
3256	FL_LOCK_ASSERT_OWNED(fl);
3257
3258	if (nbufs > fl->needed)
3259		nbufs = fl->needed;
3260	nbufs -= (fl->pidx + nbufs) % 8;
3261
3262	while (nbufs--) {
3263
3264		if (sd->cl != NULL) {
3265
3266			if (sd->nmbuf == 0) {
3267				/*
3268				 * Fast recycle without involving any atomics on
3269				 * the cluster's metadata (if the cluster has
3270				 * metadata).  This happens when all frames
3271				 * received in the cluster were small enough to
3272				 * fit within a single mbuf each.
3273				 */
3274				fl->cl_fast_recycled++;
3275#ifdef INVARIANTS
3276				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3277				if (clm != NULL)
3278					MPASS(clm->refcount == 1);
3279#endif
3280				goto recycled_fast;
3281			}
3282
3283			/*
3284			 * Cluster is guaranteed to have metadata.  Clusters
3285			 * without metadata always take the fast recycle path
3286			 * when they're recycled.
3287			 */
3288			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3289			MPASS(clm != NULL);
3290
3291			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3292				fl->cl_recycled++;
3293				counter_u64_add(extfree_rels, 1);
3294				goto recycled;
3295			}
3296			sd->cl = NULL;	/* gave up my reference */
3297		}
3298		MPASS(sd->cl == NULL);
3299alloc:
3300		cl = uma_zalloc(swz->zone, M_NOWAIT);
3301		if (__predict_false(cl == NULL)) {
3302			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
3303			    fl->cll_def.zidx == fl->cll_alt.zidx)
3304				break;
3305
3306			/* fall back to the safe zone */
3307			cll = &fl->cll_alt;
3308			swz = &sc->sge.sw_zone_info[cll->zidx];
3309			goto alloc;
3310		}
3311		fl->cl_allocated++;
3312
3313		pa = pmap_kextract((vm_offset_t)cl);
3314		pa += cll->region1;
3315		sd->cl = cl;
3316		sd->cll = *cll;
3317		*d = htobe64(pa | cll->hwidx);
3318		clm = cl_metadata(sc, fl, cll, cl);
3319		if (clm != NULL) {
3320recycled:
3321#ifdef INVARIANTS
3322			clm->sd = sd;
3323#endif
3324			clm->refcount = 1;
3325		}
3326		sd->nmbuf = 0;
3327recycled_fast:
3328		fl->pending++;
3329		fl->needed--;
3330		d++;
3331		sd++;
3332		if (__predict_false(++fl->pidx == fl->cap)) {
3333			fl->pidx = 0;
3334			sd = fl->sdesc;
3335			d = fl->desc;
3336		}
3337	}
3338
3339	if (fl->pending >= 8)
3340		ring_fl_db(sc, fl);
3341
3342	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3343}
3344
3345/*
3346 * Attempt to refill all starving freelists.
3347 */
3348static void
3349refill_sfl(void *arg)
3350{
3351	struct adapter *sc = arg;
3352	struct sge_fl *fl, *fl_temp;
3353
3354	mtx_lock(&sc->sfl_lock);
3355	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3356		FL_LOCK(fl);
3357		refill_fl(sc, fl, 64);
3358		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3359			TAILQ_REMOVE(&sc->sfl, fl, link);
3360			fl->flags &= ~FL_STARVING;
3361		}
3362		FL_UNLOCK(fl);
3363	}
3364
3365	if (!TAILQ_EMPTY(&sc->sfl))
3366		callout_schedule(&sc->sfl_callout, hz / 5);
3367	mtx_unlock(&sc->sfl_lock);
3368}
3369
3370static int
3371alloc_fl_sdesc(struct sge_fl *fl)
3372{
3373
3374	fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE,
3375	    M_ZERO | M_WAITOK);
3376
3377	return (0);
3378}
3379
3380static void
3381free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3382{
3383	struct fl_sdesc *sd;
3384	struct cluster_metadata *clm;
3385	struct cluster_layout *cll;
3386	int i;
3387
3388	sd = fl->sdesc;
3389	for (i = 0; i < fl->cap; i++, sd++) {
3390		if (sd->cl == NULL)
3391			continue;
3392
3393		cll = &sd->cll;
3394		clm = cl_metadata(sc, fl, cll, sd->cl);
3395		if (sd->nmbuf == 0)
3396			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3397		else if (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3398			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3399			counter_u64_add(extfree_rels, 1);
3400		}
3401		sd->cl = NULL;
3402	}
3403
3404	free(fl->sdesc, M_CXGBE);
3405	fl->sdesc = NULL;
3406}
3407
3408int
3409t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count,
3410    int flags)
3411{
3412	struct tx_map *txm;
3413	int i, rc;
3414
3415	txmaps->map_total = txmaps->map_avail = count;
3416	txmaps->map_cidx = txmaps->map_pidx = 0;
3417
3418	txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
3419	    M_ZERO | flags);
3420
3421	txm = txmaps->maps;
3422	for (i = 0; i < count; i++, txm++) {
3423		rc = bus_dmamap_create(tx_tag, 0, &txm->map);
3424		if (rc != 0)
3425			goto failed;
3426	}
3427
3428	return (0);
3429failed:
3430	while (--i >= 0) {
3431		txm--;
3432		bus_dmamap_destroy(tx_tag, txm->map);
3433	}
3434	KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__));
3435
3436	free(txmaps->maps, M_CXGBE);
3437	txmaps->maps = NULL;
3438
3439	return (rc);
3440}
3441
3442void
3443t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag)
3444{
3445	struct tx_map *txm;
3446	int i;
3447
3448	txm = txmaps->maps;
3449	for (i = 0; i < txmaps->map_total; i++, txm++) {
3450
3451		if (txm->m) {
3452			bus_dmamap_unload(tx_tag, txm->map);
3453			m_freem(txm->m);
3454			txm->m = NULL;
3455		}
3456
3457		bus_dmamap_destroy(tx_tag, txm->map);
3458	}
3459
3460	free(txmaps->maps, M_CXGBE);
3461	txmaps->maps = NULL;
3462}
3463
3464/*
3465 * We'll do immediate data tx for non-TSO, but only when not coalescing.  We're
3466 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
3467 * of immediate data.
3468 */
3469#define IMM_LEN ( \
3470      2 * EQ_ESIZE \
3471    - sizeof(struct fw_eth_tx_pkt_wr) \
3472    - sizeof(struct cpl_tx_pkt_core))
3473
3474/*
3475 * Returns non-zero on failure, no need to cleanup anything in that case.
3476 *
3477 * Note 1: We always try to defrag the mbuf if required and return EFBIG only
3478 * if the resulting chain still won't fit in a tx descriptor.
3479 *
3480 * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
3481 * does not have the TCP header in it.
3482 */
3483static int
3484get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
3485    int sgl_only)
3486{
3487	struct mbuf *m = *fp;
3488	struct tx_maps *txmaps;
3489	struct tx_map *txm;
3490	int rc, defragged = 0, n;
3491
3492	TXQ_LOCK_ASSERT_OWNED(txq);
3493
3494	if (m->m_pkthdr.tso_segsz)
3495		sgl_only = 1;	/* Do not allow immediate data with LSO */
3496
3497start:	sgl->nsegs = 0;
3498
3499	if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
3500		return (0);	/* nsegs = 0 tells caller to use imm. tx */
3501
3502	txmaps = &txq->txmaps;
3503	if (txmaps->map_avail == 0) {
3504		txq->no_dmamap++;
3505		return (ENOMEM);
3506	}
3507	txm = &txmaps->maps[txmaps->map_pidx];
3508
3509	if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
3510		*fp = m_pullup(m, 50);
3511		m = *fp;
3512		if (m == NULL)
3513			return (ENOBUFS);
3514	}
3515
3516	rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg,
3517	    &sgl->nsegs, BUS_DMA_NOWAIT);
3518	if (rc == EFBIG && defragged == 0) {
3519		m = m_defrag(m, M_NOWAIT);
3520		if (m == NULL)
3521			return (EFBIG);
3522
3523		defragged = 1;
3524		*fp = m;
3525		goto start;
3526	}
3527	if (rc != 0)
3528		return (rc);
3529
3530	txm->m = m;
3531	txmaps->map_avail--;
3532	if (++txmaps->map_pidx == txmaps->map_total)
3533		txmaps->map_pidx = 0;
3534
3535	KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
3536	    ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
3537
3538	/*
3539	 * Store the # of flits required to hold this frame's SGL in nflits.  An
3540	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
3541	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
3542	 * then len1 must be set to 0.
3543	 */
3544	n = sgl->nsegs - 1;
3545	sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
3546
3547	return (0);
3548}
3549
3550
3551/*
3552 * Releases all the txq resources used up in the specified sgl.
3553 */
3554static int
3555free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
3556{
3557	struct tx_maps *txmaps;
3558	struct tx_map *txm;
3559
3560	TXQ_LOCK_ASSERT_OWNED(txq);
3561
3562	if (sgl->nsegs == 0)
3563		return (0);	/* didn't use any map */
3564
3565	txmaps = &txq->txmaps;
3566
3567	/* 1 pkt uses exactly 1 map, back it out */
3568
3569	txmaps->map_avail++;
3570	if (txmaps->map_pidx > 0)
3571		txmaps->map_pidx--;
3572	else
3573		txmaps->map_pidx = txmaps->map_total - 1;
3574
3575	txm = &txmaps->maps[txmaps->map_pidx];
3576	bus_dmamap_unload(txq->tx_tag, txm->map);
3577	txm->m = NULL;
3578
3579	return (0);
3580}
3581
3582static int
3583write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
3584    struct sgl *sgl)
3585{
3586	struct sge_eq *eq = &txq->eq;
3587	struct fw_eth_tx_pkt_wr *wr;
3588	struct cpl_tx_pkt_core *cpl;
3589	uint32_t ctrl;	/* used in many unrelated places */
3590	uint64_t ctrl1;
3591	int nflits, ndesc, pktlen;
3592	struct tx_sdesc *txsd;
3593	caddr_t dst;
3594
3595	TXQ_LOCK_ASSERT_OWNED(txq);
3596
3597	pktlen = m->m_pkthdr.len;
3598
3599	/*
3600	 * Do we have enough flits to send this frame out?
3601	 */
3602	ctrl = sizeof(struct cpl_tx_pkt_core);
3603	if (m->m_pkthdr.tso_segsz) {
3604		nflits = TXPKT_LSO_WR_HDR;
3605		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
3606	} else
3607		nflits = TXPKT_WR_HDR;
3608	if (sgl->nsegs > 0)
3609		nflits += sgl->nflits;
3610	else {
3611		nflits += howmany(pktlen, 8);
3612		ctrl += pktlen;
3613	}
3614	ndesc = howmany(nflits, 8);
3615	if (ndesc > eq->avail)
3616		return (ENOMEM);
3617
3618	/* Firmware work request header */
3619	wr = (void *)&eq->desc[eq->pidx];
3620	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
3621	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
3622	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
3623	if (eq->avail == ndesc) {
3624		if (!(eq->flags & EQ_CRFLUSHED)) {
3625			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3626			eq->flags |= EQ_CRFLUSHED;
3627		}
3628		eq->flags |= EQ_STALLED;
3629	}
3630
3631	wr->equiq_to_len16 = htobe32(ctrl);
3632	wr->r3 = 0;
3633
3634	if (m->m_pkthdr.tso_segsz) {
3635		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
3636		struct ether_header *eh;
3637		void *l3hdr;
3638#if defined(INET) || defined(INET6)
3639		struct tcphdr *tcp;
3640#endif
3641		uint16_t eh_type;
3642
3643		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
3644		    F_LSO_LAST_SLICE;
3645
3646		eh = mtod(m, struct ether_header *);
3647		eh_type = ntohs(eh->ether_type);
3648		if (eh_type == ETHERTYPE_VLAN) {
3649			struct ether_vlan_header *evh = (void *)eh;
3650
3651			ctrl |= V_LSO_ETHHDR_LEN(1);
3652			l3hdr = evh + 1;
3653			eh_type = ntohs(evh->evl_proto);
3654		} else
3655			l3hdr = eh + 1;
3656
3657		switch (eh_type) {
3658#ifdef INET6
3659		case ETHERTYPE_IPV6:
3660		{
3661			struct ip6_hdr *ip6 = l3hdr;
3662
3663			/*
3664			 * XXX-BZ For now we do not pretend to support
3665			 * IPv6 extension headers.
3666			 */
3667			KASSERT(ip6->ip6_nxt == IPPROTO_TCP, ("%s: CSUM_TSO "
3668			    "with ip6_nxt != TCP: %u", __func__, ip6->ip6_nxt));
3669			tcp = (struct tcphdr *)(ip6 + 1);
3670			ctrl |= F_LSO_IPV6;
3671			ctrl |= V_LSO_IPHDR_LEN(sizeof(*ip6) >> 2) |
3672			    V_LSO_TCPHDR_LEN(tcp->th_off);
3673			break;
3674		}
3675#endif
3676#ifdef INET
3677		case ETHERTYPE_IP:
3678		{
3679			struct ip *ip = l3hdr;
3680
3681			tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
3682			ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
3683			    V_LSO_TCPHDR_LEN(tcp->th_off);
3684			break;
3685		}
3686#endif
3687		default:
3688			panic("%s: CSUM_TSO but no supported IP version "
3689			    "(0x%04x)", __func__, eh_type);
3690		}
3691
3692		lso->lso_ctrl = htobe32(ctrl);
3693		lso->ipid_ofst = htobe16(0);
3694		lso->mss = htobe16(m->m_pkthdr.tso_segsz);
3695		lso->seqno_offset = htobe32(0);
3696		lso->len = htobe32(pktlen);
3697
3698		cpl = (void *)(lso + 1);
3699
3700		txq->tso_wrs++;
3701	} else
3702		cpl = (void *)(wr + 1);
3703
3704	/* Checksum offload */
3705	ctrl1 = 0;
3706	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3707		ctrl1 |= F_TXPKT_IPCSUM_DIS;
3708	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3709	    CSUM_TCP_IPV6 | CSUM_TSO)))
3710		ctrl1 |= F_TXPKT_L4CSUM_DIS;
3711	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3712	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3713		txq->txcsum++;	/* some hardware assistance provided */
3714
3715	/* VLAN tag insertion */
3716	if (m->m_flags & M_VLANTAG) {
3717		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3718		txq->vlan_insertion++;
3719	}
3720
3721	/* CPL header */
3722	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3723	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3724	cpl->pack = 0;
3725	cpl->len = htobe16(pktlen);
3726	cpl->ctrl1 = htobe64(ctrl1);
3727
3728	/* Software descriptor */
3729	txsd = &txq->sdesc[eq->pidx];
3730	txsd->desc_used = ndesc;
3731
3732	eq->pending += ndesc;
3733	eq->avail -= ndesc;
3734	eq->pidx += ndesc;
3735	if (eq->pidx >= eq->cap)
3736		eq->pidx -= eq->cap;
3737
3738	/* SGL */
3739	dst = (void *)(cpl + 1);
3740	if (sgl->nsegs > 0) {
3741		txsd->credits = 1;
3742		txq->sgl_wrs++;
3743		write_sgl_to_txd(eq, sgl, &dst);
3744	} else {
3745		txsd->credits = 0;
3746		txq->imm_wrs++;
3747		for (; m; m = m->m_next) {
3748			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
3749#ifdef INVARIANTS
3750			pktlen -= m->m_len;
3751#endif
3752		}
3753#ifdef INVARIANTS
3754		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
3755#endif
3756
3757	}
3758
3759	txq->txpkt_wrs++;
3760	return (0);
3761}
3762
3763/*
3764 * Returns 0 to indicate that m has been accepted into a coalesced tx work
3765 * request.  It has either been folded into txpkts or txpkts was flushed and m
3766 * has started a new coalesced work request (as the first frame in a fresh
3767 * txpkts).
3768 *
3769 * Returns non-zero to indicate a failure - caller is responsible for
3770 * transmitting m, if there was anything in txpkts it has been flushed.
3771 */
3772static int
3773add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
3774    struct mbuf *m, struct sgl *sgl)
3775{
3776	struct sge_eq *eq = &txq->eq;
3777	int can_coalesce;
3778	struct tx_sdesc *txsd;
3779	int flits;
3780
3781	TXQ_LOCK_ASSERT_OWNED(txq);
3782
3783	KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__));
3784
3785	if (txpkts->npkt > 0) {
3786		flits = TXPKTS_PKT_HDR + sgl->nflits;
3787		can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3788		    txpkts->nflits + flits <= TX_WR_FLITS &&
3789		    txpkts->nflits + flits <= eq->avail * 8 &&
3790		    txpkts->plen + m->m_pkthdr.len < 65536;
3791
3792		if (can_coalesce) {
3793			txpkts->npkt++;
3794			txpkts->nflits += flits;
3795			txpkts->plen += m->m_pkthdr.len;
3796
3797			txsd = &txq->sdesc[eq->pidx];
3798			txsd->credits++;
3799
3800			return (0);
3801		}
3802
3803		/*
3804		 * Couldn't coalesce m into txpkts.  The first order of business
3805		 * is to send txpkts on its way.  Then we'll revisit m.
3806		 */
3807		write_txpkts_wr(txq, txpkts);
3808	}
3809
3810	/*
3811	 * Check if we can start a new coalesced tx work request with m as
3812	 * the first packet in it.
3813	 */
3814
3815	KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
3816
3817	flits = TXPKTS_WR_HDR + sgl->nflits;
3818	can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3819	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
3820
3821	if (can_coalesce == 0)
3822		return (EINVAL);
3823
3824	/*
3825	 * Start a fresh coalesced tx WR with m as the first frame in it.
3826	 */
3827	txpkts->npkt = 1;
3828	txpkts->nflits = flits;
3829	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
3830	txpkts->plen = m->m_pkthdr.len;
3831
3832	txsd = &txq->sdesc[eq->pidx];
3833	txsd->credits = 1;
3834
3835	return (0);
3836}
3837
3838/*
3839 * Note that write_txpkts_wr can never run out of hardware descriptors (but
3840 * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
3841 * coalescing only if sufficient hardware descriptors are available.
3842 */
3843static void
3844write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
3845{
3846	struct sge_eq *eq = &txq->eq;
3847	struct fw_eth_tx_pkts_wr *wr;
3848	struct tx_sdesc *txsd;
3849	uint32_t ctrl;
3850	int ndesc;
3851
3852	TXQ_LOCK_ASSERT_OWNED(txq);
3853
3854	ndesc = howmany(txpkts->nflits, 8);
3855
3856	wr = (void *)&eq->desc[eq->pidx];
3857	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
3858	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
3859	if (eq->avail == ndesc) {
3860		if (!(eq->flags & EQ_CRFLUSHED)) {
3861			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3862			eq->flags |= EQ_CRFLUSHED;
3863		}
3864		eq->flags |= EQ_STALLED;
3865	}
3866	wr->equiq_to_len16 = htobe32(ctrl);
3867	wr->plen = htobe16(txpkts->plen);
3868	wr->npkt = txpkts->npkt;
3869	wr->r3 = wr->type = 0;
3870
3871	/* Everything else already written */
3872
3873	txsd = &txq->sdesc[eq->pidx];
3874	txsd->desc_used = ndesc;
3875
3876	KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__));
3877
3878	eq->pending += ndesc;
3879	eq->avail -= ndesc;
3880	eq->pidx += ndesc;
3881	if (eq->pidx >= eq->cap)
3882		eq->pidx -= eq->cap;
3883
3884	txq->txpkts_pkts += txpkts->npkt;
3885	txq->txpkts_wrs++;
3886	txpkts->npkt = 0;	/* emptied */
3887}
3888
3889static inline void
3890write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
3891    struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
3892{
3893	struct ulp_txpkt *ulpmc;
3894	struct ulptx_idata *ulpsc;
3895	struct cpl_tx_pkt_core *cpl;
3896	struct sge_eq *eq = &txq->eq;
3897	uintptr_t flitp, start, end;
3898	uint64_t ctrl;
3899	caddr_t dst;
3900
3901	KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
3902
3903	start = (uintptr_t)eq->desc;
3904	end = (uintptr_t)eq->spg;
3905
3906	/* Checksum offload */
3907	ctrl = 0;
3908	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3909		ctrl |= F_TXPKT_IPCSUM_DIS;
3910	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3911	    CSUM_TCP_IPV6 | CSUM_TSO)))
3912		ctrl |= F_TXPKT_L4CSUM_DIS;
3913	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3914	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3915		txq->txcsum++;	/* some hardware assistance provided */
3916
3917	/* VLAN tag insertion */
3918	if (m->m_flags & M_VLANTAG) {
3919		ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3920		txq->vlan_insertion++;
3921	}
3922
3923	/*
3924	 * The previous packet's SGL must have ended at a 16 byte boundary (this
3925	 * is required by the firmware/hardware).  It follows that flitp cannot
3926	 * wrap around between the ULPTX master command and ULPTX subcommand (8
3927	 * bytes each), and that it can not wrap around in the middle of the
3928	 * cpl_tx_pkt_core either.
3929	 */
3930	flitp = (uintptr_t)txpkts->flitp;
3931	KASSERT((flitp & 0xf) == 0,
3932	    ("%s: last SGL did not end at 16 byte boundary: %p",
3933	    __func__, txpkts->flitp));
3934
3935	/* ULP master command */
3936	ulpmc = (void *)flitp;
3937	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) |
3938	    V_ULP_TXPKT_FID(eq->iqid));
3939	ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
3940	    sizeof(*cpl) + 8 * sgl->nflits, 16));
3941
3942	/* ULP subcommand */
3943	ulpsc = (void *)(ulpmc + 1);
3944	ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
3945	    F_ULP_TX_SC_MORE);
3946	ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
3947
3948	flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
3949	if (flitp == end)
3950		flitp = start;
3951
3952	/* CPL_TX_PKT */
3953	cpl = (void *)flitp;
3954	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3955	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3956	cpl->pack = 0;
3957	cpl->len = htobe16(m->m_pkthdr.len);
3958	cpl->ctrl1 = htobe64(ctrl);
3959
3960	flitp += sizeof(*cpl);
3961	if (flitp == end)
3962		flitp = start;
3963
3964	/* SGL for this frame */
3965	dst = (caddr_t)flitp;
3966	txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
3967	txpkts->flitp = (void *)dst;
3968
3969	KASSERT(((uintptr_t)dst & 0xf) == 0,
3970	    ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
3971}
3972
3973/*
3974 * If the SGL ends on an address that is not 16 byte aligned, this function will
3975 * add a 0 filled flit at the end.  It returns 1 in that case.
3976 */
3977static int
3978write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
3979{
3980	__be64 *flitp, *end;
3981	struct ulptx_sgl *usgl;
3982	bus_dma_segment_t *seg;
3983	int i, padded;
3984
3985	KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
3986	    ("%s: bad SGL - nsegs=%d, nflits=%d",
3987	    __func__, sgl->nsegs, sgl->nflits));
3988
3989	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
3990	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
3991
3992	flitp = (__be64 *)(*to);
3993	end = flitp + sgl->nflits;
3994	seg = &sgl->seg[0];
3995	usgl = (void *)flitp;
3996
3997	/*
3998	 * We start at a 16 byte boundary somewhere inside the tx descriptor
3999	 * ring, so we're at least 16 bytes away from the status page.  There is
4000	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
4001	 */
4002
4003	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
4004	    V_ULPTX_NSGE(sgl->nsegs));
4005	usgl->len0 = htobe32(seg->ds_len);
4006	usgl->addr0 = htobe64(seg->ds_addr);
4007	seg++;
4008
4009	if ((uintptr_t)end <= (uintptr_t)eq->spg) {
4010
4011		/* Won't wrap around at all */
4012
4013		for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
4014			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
4015			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
4016		}
4017		if (i & 1)
4018			usgl->sge[i / 2].len[1] = htobe32(0);
4019	} else {
4020
4021		/* Will wrap somewhere in the rest of the SGL */
4022
4023		/* 2 flits already written, write the rest flit by flit */
4024		flitp = (void *)(usgl + 1);
4025		for (i = 0; i < sgl->nflits - 2; i++) {
4026			if ((uintptr_t)flitp == (uintptr_t)eq->spg)
4027				flitp = (void *)eq->desc;
4028			*flitp++ = get_flit(seg, sgl->nsegs - 1, i);
4029		}
4030		end = flitp;
4031	}
4032
4033	if ((uintptr_t)end & 0xf) {
4034		*(uint64_t *)end = 0;
4035		end++;
4036		padded = 1;
4037	} else
4038		padded = 0;
4039
4040	if ((uintptr_t)end == (uintptr_t)eq->spg)
4041		*to = (void *)eq->desc;
4042	else
4043		*to = (void *)end;
4044
4045	return (padded);
4046}
4047
4048static inline void
4049copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4050{
4051	if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)eq->spg)) {
4052		bcopy(from, *to, len);
4053		(*to) += len;
4054	} else {
4055		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
4056
4057		bcopy(from, *to, portion);
4058		from += portion;
4059		portion = len - portion;	/* remaining */
4060		bcopy(from, (void *)eq->desc, portion);
4061		(*to) = (caddr_t)eq->desc + portion;
4062	}
4063}
4064
4065static inline void
4066ring_eq_db(struct adapter *sc, struct sge_eq *eq)
4067{
4068	u_int db, pending;
4069
4070	db = eq->doorbells;
4071	pending = eq->pending;
4072	if (pending > 1)
4073		clrbit(&db, DOORBELL_WCWR);
4074	eq->pending = 0;
4075	wmb();
4076
4077	switch (ffs(db) - 1) {
4078	case DOORBELL_UDB:
4079		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
4080		return;
4081
4082	case DOORBELL_WCWR: {
4083		volatile uint64_t *dst, *src;
4084		int i;
4085
4086		/*
4087		 * Queues whose 128B doorbell segment fits in the page do not
4088		 * use relative qid (udb_qid is always 0).  Only queues with
4089		 * doorbell segments can do WCWR.
4090		 */
4091		KASSERT(eq->udb_qid == 0 && pending == 1,
4092		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4093		    __func__, eq->doorbells, pending, eq->pidx, eq));
4094
4095		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4096		    UDBS_DB_OFFSET);
4097		i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
4098		src = (void *)&eq->desc[i];
4099		while (src != (void *)&eq->desc[i + 1])
4100			*dst++ = *src++;
4101		wmb();
4102		return;
4103	}
4104
4105	case DOORBELL_UDBWC:
4106		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
4107		wmb();
4108		return;
4109
4110	case DOORBELL_KDB:
4111		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
4112		    V_QID(eq->cntxt_id) | V_PIDX(pending));
4113		return;
4114	}
4115}
4116
4117static inline int
4118reclaimable(struct sge_eq *eq)
4119{
4120	unsigned int cidx;
4121
4122	cidx = eq->spg->cidx;	/* stable snapshot */
4123	cidx = be16toh(cidx);
4124
4125	if (cidx >= eq->cidx)
4126		return (cidx - eq->cidx);
4127	else
4128		return (cidx + eq->cap - eq->cidx);
4129}
4130
4131/*
4132 * There are "can_reclaim" tx descriptors ready to be reclaimed.  Reclaim as
4133 * many as possible but stop when there are around "n" mbufs to free.
4134 *
4135 * The actual number reclaimed is provided as the return value.
4136 */
4137static int
4138reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n)
4139{
4140	struct tx_sdesc *txsd;
4141	struct tx_maps *txmaps;
4142	struct tx_map *txm;
4143	unsigned int reclaimed, maps;
4144	struct sge_eq *eq = &txq->eq;
4145
4146	TXQ_LOCK_ASSERT_OWNED(txq);
4147
4148	if (can_reclaim == 0)
4149		can_reclaim = reclaimable(eq);
4150
4151	maps = reclaimed = 0;
4152	while (can_reclaim && maps < n) {
4153		int ndesc;
4154
4155		txsd = &txq->sdesc[eq->cidx];
4156		ndesc = txsd->desc_used;
4157
4158		/* Firmware doesn't return "partial" credits. */
4159		KASSERT(can_reclaim >= ndesc,
4160		    ("%s: unexpected number of credits: %d, %d",
4161		    __func__, can_reclaim, ndesc));
4162
4163		maps += txsd->credits;
4164
4165		reclaimed += ndesc;
4166		can_reclaim -= ndesc;
4167
4168		eq->cidx += ndesc;
4169		if (__predict_false(eq->cidx >= eq->cap))
4170			eq->cidx -= eq->cap;
4171	}
4172
4173	txmaps = &txq->txmaps;
4174	txm = &txmaps->maps[txmaps->map_cidx];
4175	if (maps)
4176		prefetch(txm->m);
4177
4178	eq->avail += reclaimed;
4179	KASSERT(eq->avail < eq->cap,	/* avail tops out at (cap - 1) */
4180	    ("%s: too many descriptors available", __func__));
4181
4182	txmaps->map_avail += maps;
4183	KASSERT(txmaps->map_avail <= txmaps->map_total,
4184	    ("%s: too many maps available", __func__));
4185
4186	while (maps--) {
4187		struct tx_map *next;
4188
4189		next = txm + 1;
4190		if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total))
4191			next = txmaps->maps;
4192		prefetch(next->m);
4193
4194		bus_dmamap_unload(txq->tx_tag, txm->map);
4195		m_freem(txm->m);
4196		txm->m = NULL;
4197
4198		txm = next;
4199		if (__predict_false(++txmaps->map_cidx == txmaps->map_total))
4200			txmaps->map_cidx = 0;
4201	}
4202
4203	return (reclaimed);
4204}
4205
4206static void
4207write_eqflush_wr(struct sge_eq *eq)
4208{
4209	struct fw_eq_flush_wr *wr;
4210
4211	EQ_LOCK_ASSERT_OWNED(eq);
4212	KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
4213	KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__));
4214
4215	wr = (void *)&eq->desc[eq->pidx];
4216	bzero(wr, sizeof(*wr));
4217	wr->opcode = FW_EQ_FLUSH_WR;
4218	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
4219	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
4220
4221	eq->flags |= (EQ_CRFLUSHED | EQ_STALLED);
4222	eq->pending++;
4223	eq->avail--;
4224	if (++eq->pidx == eq->cap)
4225		eq->pidx = 0;
4226}
4227
4228static __be64
4229get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
4230{
4231	int i = (idx / 3) * 2;
4232
4233	switch (idx % 3) {
4234	case 0: {
4235		__be64 rc;
4236
4237		rc = htobe32(sgl[i].ds_len);
4238		if (i + 1 < nsegs)
4239			rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
4240
4241		return (rc);
4242	}
4243	case 1:
4244		return htobe64(sgl[i].ds_addr);
4245	case 2:
4246		return htobe64(sgl[i + 1].ds_addr);
4247	}
4248
4249	return (0);
4250}
4251
4252static void
4253find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
4254{
4255	int8_t zidx, hwidx, idx;
4256	uint16_t region1, region3;
4257	int spare, spare_needed, n;
4258	struct sw_zone_info *swz;
4259	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
4260
4261	/*
4262	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
4263	 * large enough for the max payload and cluster metadata.  Otherwise
4264	 * settle for the largest bufsize that leaves enough room in the cluster
4265	 * for metadata.
4266	 *
4267	 * Without buffer packing: Look for the smallest zone which has a
4268	 * bufsize large enough for the max payload.  Settle for the largest
4269	 * bufsize available if there's nothing big enough for max payload.
4270	 */
4271	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
4272	swz = &sc->sge.sw_zone_info[0];
4273	hwidx = -1;
4274	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
4275		if (swz->size > largest_rx_cluster) {
4276			if (__predict_true(hwidx != -1))
4277				break;
4278
4279			/*
4280			 * This is a misconfiguration.  largest_rx_cluster is
4281			 * preventing us from finding a refill source.  See
4282			 * dev.t5nex.<n>.buffer_sizes to figure out why.
4283			 */
4284			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
4285			    " refill source for fl %p (dma %u).  Ignored.\n",
4286			    largest_rx_cluster, fl, maxp);
4287		}
4288		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
4289			hwb = &hwb_list[idx];
4290			spare = swz->size - hwb->size;
4291			if (spare < spare_needed)
4292				continue;
4293
4294			hwidx = idx;		/* best option so far */
4295			if (hwb->size >= maxp) {
4296
4297				if ((fl->flags & FL_BUF_PACKING) == 0)
4298					goto done; /* stop looking (not packing) */
4299
4300				if (swz->size >= safest_rx_cluster)
4301					goto done; /* stop looking (packing) */
4302			}
4303			break;		/* keep looking, next zone */
4304		}
4305	}
4306done:
4307	/* A usable hwidx has been located. */
4308	MPASS(hwidx != -1);
4309	hwb = &hwb_list[hwidx];
4310	zidx = hwb->zidx;
4311	swz = &sc->sge.sw_zone_info[zidx];
4312	region1 = 0;
4313	region3 = swz->size - hwb->size;
4314
4315	/*
4316	 * Stay within this zone and see if there is a better match when mbuf
4317	 * inlining is allowed.  Remember that the hwidx's are sorted in
4318	 * decreasing order of size (so in increasing order of spare area).
4319	 */
4320	for (idx = hwidx; idx != -1; idx = hwb->next) {
4321		hwb = &hwb_list[idx];
4322		spare = swz->size - hwb->size;
4323
4324		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
4325			break;
4326		if (spare < CL_METADATA_SIZE + MSIZE)
4327			continue;
4328		n = (spare - CL_METADATA_SIZE) / MSIZE;
4329		if (n > howmany(hwb->size, maxp))
4330			break;
4331
4332		hwidx = idx;
4333		if (fl->flags & FL_BUF_PACKING) {
4334			region1 = n * MSIZE;
4335			region3 = spare - region1;
4336		} else {
4337			region1 = MSIZE;
4338			region3 = spare - region1;
4339			break;
4340		}
4341	}
4342
4343	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
4344	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
4345	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
4346	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
4347	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
4348	    sc->sge.sw_zone_info[zidx].size,
4349	    ("%s: bad buffer layout for fl %p, maxp %d. "
4350		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4351		sc->sge.sw_zone_info[zidx].size, region1,
4352		sc->sge.hw_buf_info[hwidx].size, region3));
4353	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
4354		KASSERT(region3 >= CL_METADATA_SIZE,
4355		    ("%s: no room for metadata.  fl %p, maxp %d; "
4356		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4357		    sc->sge.sw_zone_info[zidx].size, region1,
4358		    sc->sge.hw_buf_info[hwidx].size, region3));
4359		KASSERT(region1 % MSIZE == 0,
4360		    ("%s: bad mbuf region for fl %p, maxp %d. "
4361		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4362		    sc->sge.sw_zone_info[zidx].size, region1,
4363		    sc->sge.hw_buf_info[hwidx].size, region3));
4364	}
4365
4366	fl->cll_def.zidx = zidx;
4367	fl->cll_def.hwidx = hwidx;
4368	fl->cll_def.region1 = region1;
4369	fl->cll_def.region3 = region3;
4370}
4371
4372static void
4373find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
4374{
4375	struct sge *s = &sc->sge;
4376	struct hw_buf_info *hwb;
4377	struct sw_zone_info *swz;
4378	int spare;
4379	int8_t hwidx;
4380
4381	if (fl->flags & FL_BUF_PACKING)
4382		hwidx = s->safe_hwidx2;	/* with room for metadata */
4383	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
4384		hwidx = s->safe_hwidx2;
4385		hwb = &s->hw_buf_info[hwidx];
4386		swz = &s->sw_zone_info[hwb->zidx];
4387		spare = swz->size - hwb->size;
4388
4389		/* no good if there isn't room for an mbuf as well */
4390		if (spare < CL_METADATA_SIZE + MSIZE)
4391			hwidx = s->safe_hwidx1;
4392	} else
4393		hwidx = s->safe_hwidx1;
4394
4395	if (hwidx == -1) {
4396		/* No fallback source */
4397		fl->cll_alt.hwidx = -1;
4398		fl->cll_alt.zidx = -1;
4399
4400		return;
4401	}
4402
4403	hwb = &s->hw_buf_info[hwidx];
4404	swz = &s->sw_zone_info[hwb->zidx];
4405	spare = swz->size - hwb->size;
4406	fl->cll_alt.hwidx = hwidx;
4407	fl->cll_alt.zidx = hwb->zidx;
4408	if (allow_mbufs_in_cluster)
4409		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
4410	else
4411		fl->cll_alt.region1 = 0;
4412	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
4413}
4414
4415static void
4416add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
4417{
4418	mtx_lock(&sc->sfl_lock);
4419	FL_LOCK(fl);
4420	if ((fl->flags & FL_DOOMED) == 0) {
4421		fl->flags |= FL_STARVING;
4422		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
4423		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
4424	}
4425	FL_UNLOCK(fl);
4426	mtx_unlock(&sc->sfl_lock);
4427}
4428
4429static int
4430handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
4431    struct mbuf *m)
4432{
4433	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
4434	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
4435	struct adapter *sc = iq->adapter;
4436	struct sge *s = &sc->sge;
4437	struct sge_eq *eq;
4438
4439	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4440	    rss->opcode));
4441
4442	eq = s->eqmap[qid - s->eq_start];
4443	EQ_LOCK(eq);
4444	KASSERT(eq->flags & EQ_CRFLUSHED,
4445	    ("%s: unsolicited egress update", __func__));
4446	eq->flags &= ~EQ_CRFLUSHED;
4447	eq->egr_update++;
4448
4449	if (__predict_false(eq->flags & EQ_DOOMED))
4450		wakeup_one(eq);
4451	else if (eq->flags & EQ_STALLED && can_resume_tx(eq))
4452		taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task);
4453	EQ_UNLOCK(eq);
4454
4455	return (0);
4456}
4457
4458/* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
4459CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
4460    offsetof(struct cpl_fw6_msg, data));
4461
4462static int
4463handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
4464{
4465	struct adapter *sc = iq->adapter;
4466	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
4467
4468	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4469	    rss->opcode));
4470
4471	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
4472		const struct rss_header *rss2;
4473
4474		rss2 = (const struct rss_header *)&cpl->data[0];
4475		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
4476	}
4477
4478	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
4479}
4480
4481static int
4482sysctl_uint16(SYSCTL_HANDLER_ARGS)
4483{
4484	uint16_t *id = arg1;
4485	int i = *id;
4486
4487	return sysctl_handle_int(oidp, &i, 0, req);
4488}
4489
4490static int
4491sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
4492{
4493	struct sge *s = arg1;
4494	struct hw_buf_info *hwb = &s->hw_buf_info[0];
4495	struct sw_zone_info *swz = &s->sw_zone_info[0];
4496	int i, rc;
4497	struct sbuf sb;
4498	char c;
4499
4500	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
4501	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
4502		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
4503			c = '*';
4504		else
4505			c = '\0';
4506
4507		sbuf_printf(&sb, "%u%c ", hwb->size, c);
4508	}
4509	sbuf_trim(&sb);
4510	sbuf_finish(&sb);
4511	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
4512	sbuf_delete(&sb);
4513	return (rc);
4514}
4515