t4_sge.c revision 268529
1/*-
2 * Copyright (c) 2011 Chelsio Communications, Inc.
3 * All rights reserved.
4 * Written by: Navdeep Parhar <np@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/cxgbe/t4_sge.c 268529 2014-07-11 13:58:48Z glebius $");
30
31#include "opt_inet.h"
32#include "opt_inet6.h"
33
34#include <sys/types.h>
35#include <sys/eventhandler.h>
36#include <sys/mbuf.h>
37#include <sys/socket.h>
38#include <sys/kernel.h>
39#include <sys/kdb.h>
40#include <sys/malloc.h>
41#include <sys/queue.h>
42#include <sys/sbuf.h>
43#include <sys/taskqueue.h>
44#include <sys/time.h>
45#include <sys/sysctl.h>
46#include <sys/smp.h>
47#include <net/bpf.h>
48#include <net/ethernet.h>
49#include <net/if.h>
50#include <net/if_vlan_var.h>
51#include <netinet/in.h>
52#include <netinet/ip.h>
53#include <netinet/ip6.h>
54#include <netinet/tcp.h>
55#include <machine/md_var.h>
56#include <vm/vm.h>
57#include <vm/pmap.h>
58#ifdef DEV_NETMAP
59#include <machine/bus.h>
60#include <sys/selinfo.h>
61#include <net/if_var.h>
62#include <net/netmap.h>
63#include <dev/netmap/netmap_kern.h>
64#endif
65
66#include "common/common.h"
67#include "common/t4_regs.h"
68#include "common/t4_regs_values.h"
69#include "common/t4_msg.h"
70
71#ifdef T4_PKT_TIMESTAMP
72#define RX_COPY_THRESHOLD (MINCLSIZE - 8)
73#else
74#define RX_COPY_THRESHOLD MINCLSIZE
75#endif
76
77/*
78 * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
79 * 0-7 are valid values.
80 */
81int fl_pktshift = 2;
82TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
83
84/*
85 * Pad ethernet payload up to this boundary.
86 * -1: driver should figure out a good value.
87 *  0: disable padding.
88 *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
89 */
90int fl_pad = -1;
91TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
92
93/*
94 * Status page length.
95 * -1: driver should figure out a good value.
96 *  64 or 128 are the only other valid values.
97 */
98int spg_len = -1;
99TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
100
101/*
102 * Congestion drops.
103 * -1: no congestion feedback (not recommended).
104 *  0: backpressure the channel instead of dropping packets right away.
105 *  1: no backpressure, drop packets for the congested queue immediately.
106 */
107static int cong_drop = 0;
108TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
109
110/*
111 * Deliver multiple frames in the same free list buffer if they fit.
112 * -1: let the driver decide whether to enable buffer packing or not.
113 *  0: disable buffer packing.
114 *  1: enable buffer packing.
115 */
116static int buffer_packing = -1;
117TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
118
119/*
120 * Start next frame in a packed buffer at this boundary.
121 * -1: driver should figure out a good value.
122 * T4:
123 * ---
124 * if fl_pad != 0
125 * 	value specified here will be overridden by fl_pad.
126 * else
127 * 	power of 2 from 32 to 4096 (both inclusive) is a valid value here.
128 * T5:
129 * ---
130 * 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
131 */
132static int fl_pack = -1;
133static int t4_fl_pack;
134static int t5_fl_pack;
135TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
136
137/*
138 * Allow the driver to create mbuf(s) in a cluster allocated for rx.
139 * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
140 * 1: ok to create mbuf(s) within a cluster if there is room.
141 */
142static int allow_mbufs_in_cluster = 1;
143TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
144
145/*
146 * Largest rx cluster size that the driver is allowed to allocate.
147 */
148static int largest_rx_cluster = MJUM16BYTES;
149TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
150
151/*
152 * Size of cluster allocation that's most likely to succeed.  The driver will
153 * fall back to this size if it fails to allocate clusters larger than this.
154 */
155static int safest_rx_cluster = PAGE_SIZE;
156TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
157
158/* Used to track coalesced tx work request */
159struct txpkts {
160	uint64_t *flitp;	/* ptr to flit where next pkt should start */
161	uint8_t npkt;		/* # of packets in this work request */
162	uint8_t nflits;		/* # of flits used by this work request */
163	uint16_t plen;		/* total payload (sum of all packets) */
164};
165
166/* A packet's SGL.  This + m_pkthdr has all info needed for tx */
167struct sgl {
168	int nsegs;		/* # of segments in the SGL, 0 means imm. tx */
169	int nflits;		/* # of flits needed for the SGL */
170	bus_dma_segment_t seg[TX_SGL_SEGS];
171};
172
173static int service_iq(struct sge_iq *, int);
174static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t,
175    int *);
176static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
177static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
178    int);
179static inline void init_fl(struct adapter *, struct sge_fl *, int, int, int,
180    char *);
181static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t,
182    char *);
183static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
184    bus_addr_t *, void **);
185static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
186    void *);
187static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
188    int, int);
189static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
190static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
191    struct sge_fl *);
192static int alloc_fwq(struct adapter *);
193static int free_fwq(struct adapter *);
194static int alloc_mgmtq(struct adapter *);
195static int free_mgmtq(struct adapter *);
196static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int,
197    struct sysctl_oid *);
198static int free_rxq(struct port_info *, struct sge_rxq *);
199#ifdef TCP_OFFLOAD
200static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int,
201    struct sysctl_oid *);
202static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *);
203#endif
204#ifdef DEV_NETMAP
205static int alloc_nm_rxq(struct port_info *, struct sge_nm_rxq *, int, int,
206    struct sysctl_oid *);
207static int free_nm_rxq(struct port_info *, struct sge_nm_rxq *);
208static int alloc_nm_txq(struct port_info *, struct sge_nm_txq *, int, int,
209    struct sysctl_oid *);
210static int free_nm_txq(struct port_info *, struct sge_nm_txq *);
211#endif
212static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
213static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
214#ifdef TCP_OFFLOAD
215static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
216#endif
217static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *);
218static int free_eq(struct adapter *, struct sge_eq *);
219static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *,
220    struct sysctl_oid *);
221static int free_wrq(struct adapter *, struct sge_wrq *);
222static int alloc_txq(struct port_info *, struct sge_txq *, int,
223    struct sysctl_oid *);
224static int free_txq(struct port_info *, struct sge_txq *);
225static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
226static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **);
227static inline void iq_next(struct sge_iq *);
228static inline void ring_fl_db(struct adapter *, struct sge_fl *);
229static int refill_fl(struct adapter *, struct sge_fl *, int);
230static void refill_sfl(void *);
231static int alloc_fl_sdesc(struct sge_fl *);
232static void free_fl_sdesc(struct adapter *, struct sge_fl *);
233static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
234static void find_safe_refill_source(struct adapter *, struct sge_fl *);
235static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
236
237static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
238static int free_pkt_sgl(struct sge_txq *, struct sgl *);
239static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
240    struct sgl *);
241static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
242    struct mbuf *, struct sgl *);
243static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
244static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
245    struct txpkts *, struct mbuf *, struct sgl *);
246static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
247static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
248static inline void ring_eq_db(struct adapter *, struct sge_eq *);
249static inline int reclaimable(struct sge_eq *);
250static int reclaim_tx_descs(struct sge_txq *, int, int);
251static void write_eqflush_wr(struct sge_eq *);
252static __be64 get_flit(bus_dma_segment_t *, int, int);
253static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
254    struct mbuf *);
255static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
256    struct mbuf *);
257
258static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
259static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
260
261/*
262 * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
263 */
264void
265t4_sge_modload(void)
266{
267	int pad;
268
269	/* set pad to a reasonable powerof2 between 16 and 4096 (inclusive) */
270#if defined(__i386__) || defined(__amd64__)
271	pad = max(cpu_clflush_line_size, 16);
272#else
273	pad = max(CACHE_LINE_SIZE, 16);
274#endif
275	pad = min(pad, 4096);
276
277	if (fl_pktshift < 0 || fl_pktshift > 7) {
278		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
279		    " using 2 instead.\n", fl_pktshift);
280		fl_pktshift = 2;
281	}
282
283	if (fl_pad != 0 &&
284	    (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad))) {
285
286		if (fl_pad != -1) {
287			printf("Invalid hw.cxgbe.fl_pad value (%d),"
288			    " using %d instead.\n", fl_pad, max(pad, 32));
289		}
290		fl_pad = max(pad, 32);
291	}
292
293	/*
294	 * T4 has the same pad and pack boundary.  If a pad boundary is set,
295	 * pack boundary must be set to the same value.  Otherwise take the
296	 * specified value or auto-calculate something reasonable.
297	 */
298	if (fl_pad)
299		t4_fl_pack = fl_pad;
300	else if (fl_pack < 32 || fl_pack > 4096 || !powerof2(fl_pack))
301		t4_fl_pack = max(pad, 32);
302	else
303		t4_fl_pack = fl_pack;
304
305	/* T5's pack boundary is independent of the pad boundary. */
306	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
307	    !powerof2(fl_pack))
308	       t5_fl_pack = max(pad, CACHE_LINE_SIZE);
309	else
310	       t5_fl_pack = fl_pack;
311
312	if (spg_len != 64 && spg_len != 128) {
313		int len;
314
315#if defined(__i386__) || defined(__amd64__)
316		len = cpu_clflush_line_size > 64 ? 128 : 64;
317#else
318		len = 64;
319#endif
320		if (spg_len != -1) {
321			printf("Invalid hw.cxgbe.spg_len value (%d),"
322			    " using %d instead.\n", spg_len, len);
323		}
324		spg_len = len;
325	}
326
327	if (cong_drop < -1 || cong_drop > 1) {
328		printf("Invalid hw.cxgbe.cong_drop value (%d),"
329		    " using 0 instead.\n", cong_drop);
330		cong_drop = 0;
331	}
332}
333
334void
335t4_init_sge_cpl_handlers(struct adapter *sc)
336{
337
338	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
339	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
340	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
341	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
342	t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
343}
344
345/*
346 * adap->params.vpd.cclk must be set up before this is called.
347 */
348void
349t4_tweak_chip_settings(struct adapter *sc)
350{
351	int i;
352	uint32_t v, m;
353	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
354	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
355	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
356	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
357	static int sge_flbuf_sizes[] = {
358		MCLBYTES,
359#if MJUMPAGESIZE != MCLBYTES
360		MJUMPAGESIZE,
361		MJUMPAGESIZE - CL_METADATA_SIZE,
362		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
363#endif
364		MJUM9BYTES,
365		MJUM16BYTES,
366		MCLBYTES - MSIZE - CL_METADATA_SIZE,
367		MJUM9BYTES - CL_METADATA_SIZE,
368		MJUM16BYTES - CL_METADATA_SIZE,
369	};
370
371	KASSERT(sc->flags & MASTER_PF,
372	    ("%s: trying to change chip settings when not master.", __func__));
373
374	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
375	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
376	    V_EGRSTATUSPAGESIZE(spg_len == 128);
377	if (is_t4(sc) && (fl_pad || buffer_packing)) {
378		/* t4_fl_pack has the correct value even when fl_pad = 0 */
379		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
380		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
381	} else if (is_t5(sc) && fl_pad) {
382		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
383		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
384	}
385	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
386
387	if (is_t5(sc) && buffer_packing) {
388		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
389		if (t5_fl_pack == 16)
390			v = V_INGPACKBOUNDARY(0);
391		else
392			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
393		t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
394	}
395
396	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
397	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
398	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
399	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
400	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
401	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
402	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
403	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
404	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
405
406	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
407	    ("%s: hw buffer size table too big", __func__));
408	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
409		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
410		    sge_flbuf_sizes[i]);
411	}
412
413	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
414	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
415	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
416
417	KASSERT(intr_timer[0] <= timer_max,
418	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
419	    timer_max));
420	for (i = 1; i < nitems(intr_timer); i++) {
421		KASSERT(intr_timer[i] >= intr_timer[i - 1],
422		    ("%s: timers not listed in increasing order (%d)",
423		    __func__, i));
424
425		while (intr_timer[i] > timer_max) {
426			if (i == nitems(intr_timer) - 1) {
427				intr_timer[i] = timer_max;
428				break;
429			}
430			intr_timer[i] += intr_timer[i - 1];
431			intr_timer[i] /= 2;
432		}
433	}
434
435	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
436	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
437	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
438	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
439	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
440	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
441	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
442	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
443	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
444
445	if (cong_drop == 0) {
446		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
447		    F_TUNNELCNGDROP3;
448		t4_set_reg_field(sc, A_TP_PARA_REG3, m, 0);
449	}
450
451	/* 4K, 16K, 64K, 256K DDP "page sizes" */
452	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
453	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
454
455	m = v = F_TDDPTAGTCB;
456	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
457
458	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
459	    F_RESETDDPOFFSET;
460	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
461	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
462}
463
464/*
465 * SGE wants the buffer to be at least 64B and then a multiple of the pad
466 * boundary or 16, whichever is greater.
467 */
468static inline int
469hwsz_ok(int hwsz)
470{
471	int mask = max(fl_pad, 16) - 1;
472
473	return (hwsz >= 64 && (hwsz & mask) == 0);
474}
475
476/*
477 * XXX: driver really should be able to deal with unexpected settings.
478 */
479int
480t4_read_chip_settings(struct adapter *sc)
481{
482	struct sge *s = &sc->sge;
483	int i, j, n, rc = 0;
484	uint32_t m, v, r;
485	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
486	static int sw_buf_sizes[] = {	/* Sorted by size */
487		MCLBYTES,
488#if MJUMPAGESIZE != MCLBYTES
489		MJUMPAGESIZE,
490#endif
491		MJUM9BYTES,
492		MJUM16BYTES
493	};
494	struct sw_zone_info *swz, *safe_swz;
495	struct hw_buf_info *hwb;
496
497	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
498	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
499	    V_EGRSTATUSPAGESIZE(spg_len == 128);
500	if (is_t4(sc) && (fl_pad || buffer_packing)) {
501		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
502		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
503	} else if (is_t5(sc) && fl_pad) {
504		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
505		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
506	}
507	r = t4_read_reg(sc, A_SGE_CONTROL);
508	if ((r & m) != v) {
509		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
510		rc = EINVAL;
511	}
512
513	if (is_t5(sc) && buffer_packing) {
514		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
515		if (t5_fl_pack == 16)
516			v = V_INGPACKBOUNDARY(0);
517		else
518			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
519		r = t4_read_reg(sc, A_SGE_CONTROL2);
520		if ((r & m) != v) {
521			device_printf(sc->dev,
522			    "invalid SGE_CONTROL2(0x%x)\n", r);
523			rc = EINVAL;
524		}
525	}
526	s->pack_boundary = is_t4(sc) ? t4_fl_pack : t5_fl_pack;
527
528	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
529	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
530	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
531	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
532	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
533	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
534	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
535	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
536	r = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE);
537	if (r != v) {
538		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
539		rc = EINVAL;
540	}
541
542	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
543	hwb = &s->hw_buf_info[0];
544	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
545		r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
546		hwb->size = r;
547		hwb->zidx = hwsz_ok(r) ? -1 : -2;
548		hwb->next = -1;
549	}
550
551	/*
552	 * Create a sorted list in decreasing order of hw buffer sizes (and so
553	 * increasing order of spare area) for each software zone.
554	 */
555	n = 0;	/* no usable buffer size to begin with */
556	swz = &s->sw_zone_info[0];
557	safe_swz = NULL;
558	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
559		int8_t head = -1, tail = -1;
560
561		swz->size = sw_buf_sizes[i];
562		swz->zone = m_getzone(swz->size);
563		swz->type = m_gettype(swz->size);
564
565		if (swz->size == safest_rx_cluster)
566			safe_swz = swz;
567
568		hwb = &s->hw_buf_info[0];
569		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
570			if (hwb->zidx != -1 || hwb->size > swz->size)
571				continue;
572			hwb->zidx = i;
573			if (head == -1)
574				head = tail = j;
575			else if (hwb->size < s->hw_buf_info[tail].size) {
576				s->hw_buf_info[tail].next = j;
577				tail = j;
578			} else {
579				int8_t *cur;
580				struct hw_buf_info *t;
581
582				for (cur = &head; *cur != -1; cur = &t->next) {
583					t = &s->hw_buf_info[*cur];
584					if (hwb->size == t->size) {
585						hwb->zidx = -2;
586						break;
587					}
588					if (hwb->size > t->size) {
589						hwb->next = *cur;
590						*cur = j;
591						break;
592					}
593				}
594			}
595		}
596		swz->head_hwidx = head;
597		swz->tail_hwidx = tail;
598
599		if (tail != -1) {
600			n++;
601			if (swz->size - s->hw_buf_info[tail].size >=
602			    CL_METADATA_SIZE)
603				sc->flags |= BUF_PACKING_OK;
604		}
605	}
606	if (n == 0) {
607		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
608		rc = EINVAL;
609	}
610
611	s->safe_hwidx1 = -1;
612	s->safe_hwidx2 = -1;
613	if (safe_swz != NULL) {
614		s->safe_hwidx1 = safe_swz->head_hwidx;
615		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
616			int spare;
617
618			hwb = &s->hw_buf_info[i];
619			spare = safe_swz->size - hwb->size;
620			if (spare < CL_METADATA_SIZE)
621				continue;
622			if (s->safe_hwidx2 == -1 ||
623			    spare == CL_METADATA_SIZE + MSIZE)
624				s->safe_hwidx2 = i;
625			if (spare >= CL_METADATA_SIZE + MSIZE)
626				break;
627		}
628	}
629
630	r = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD);
631	s->counter_val[0] = G_THRESHOLD_0(r);
632	s->counter_val[1] = G_THRESHOLD_1(r);
633	s->counter_val[2] = G_THRESHOLD_2(r);
634	s->counter_val[3] = G_THRESHOLD_3(r);
635
636	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1);
637	s->timer_val[0] = G_TIMERVALUE0(r) / core_ticks_per_usec(sc);
638	s->timer_val[1] = G_TIMERVALUE1(r) / core_ticks_per_usec(sc);
639	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3);
640	s->timer_val[2] = G_TIMERVALUE2(r) / core_ticks_per_usec(sc);
641	s->timer_val[3] = G_TIMERVALUE3(r) / core_ticks_per_usec(sc);
642	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5);
643	s->timer_val[4] = G_TIMERVALUE4(r) / core_ticks_per_usec(sc);
644	s->timer_val[5] = G_TIMERVALUE5(r) / core_ticks_per_usec(sc);
645
646	if (cong_drop == 0) {
647		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
648		    F_TUNNELCNGDROP3;
649		r = t4_read_reg(sc, A_TP_PARA_REG3);
650		if (r & m) {
651			device_printf(sc->dev,
652			    "invalid TP_PARA_REG3(0x%x)\n", r);
653			rc = EINVAL;
654		}
655	}
656
657	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
658	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
659	if (r != v) {
660		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
661		rc = EINVAL;
662	}
663
664	m = v = F_TDDPTAGTCB;
665	r = t4_read_reg(sc, A_ULP_RX_CTL);
666	if ((r & m) != v) {
667		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
668		rc = EINVAL;
669	}
670
671	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
672	    F_RESETDDPOFFSET;
673	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
674	r = t4_read_reg(sc, A_TP_PARA_REG5);
675	if ((r & m) != v) {
676		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
677		rc = EINVAL;
678	}
679
680	r = t4_read_reg(sc, A_SGE_CONM_CTRL);
681	s->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
682	if (is_t4(sc))
683		s->fl_starve_threshold2 = s->fl_starve_threshold;
684	else
685		s->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
686
687	/* egress queues: log2 of # of doorbells per BAR2 page */
688	r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
689	r >>= S_QUEUESPERPAGEPF0 +
690	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
691	s->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
692
693	/* ingress queues: log2 of # of doorbells per BAR2 page */
694	r = t4_read_reg(sc, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
695	r >>= S_QUEUESPERPAGEPF0 +
696	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
697	s->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
698
699	t4_init_tp_params(sc);
700
701	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
702	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
703
704	return (rc);
705}
706
707int
708t4_create_dma_tag(struct adapter *sc)
709{
710	int rc;
711
712	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
713	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
714	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
715	    NULL, &sc->dmat);
716	if (rc != 0) {
717		device_printf(sc->dev,
718		    "failed to create main DMA tag: %d\n", rc);
719	}
720
721	return (rc);
722}
723
724static inline int
725enable_buffer_packing(struct adapter *sc)
726{
727
728	if (sc->flags & BUF_PACKING_OK &&
729	    ((is_t5(sc) && buffer_packing) ||	/* 1 or -1 both ok for T5 */
730	    (is_t4(sc) && buffer_packing == 1)))
731		return (1);
732	return (0);
733}
734
735void
736t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
737    struct sysctl_oid_list *children)
738{
739
740	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
741	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
742	    "freelist buffer sizes");
743
744	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
745	    NULL, fl_pktshift, "payload DMA offset in rx buffer (bytes)");
746
747	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
748	    NULL, fl_pad, "payload pad boundary (bytes)");
749
750	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
751	    NULL, spg_len, "status page size (bytes)");
752
753	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
754	    NULL, cong_drop, "congestion drop setting");
755
756	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "buffer_packing", CTLFLAG_RD,
757	    NULL, enable_buffer_packing(sc),
758	    "pack multiple frames in one fl buffer");
759
760	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
761	    NULL, sc->sge.pack_boundary, "payload pack boundary (bytes)");
762}
763
764int
765t4_destroy_dma_tag(struct adapter *sc)
766{
767	if (sc->dmat)
768		bus_dma_tag_destroy(sc->dmat);
769
770	return (0);
771}
772
773/*
774 * Allocate and initialize the firmware event queue and the management queue.
775 *
776 * Returns errno on failure.  Resources allocated up to that point may still be
777 * allocated.  Caller is responsible for cleanup in case this function fails.
778 */
779int
780t4_setup_adapter_queues(struct adapter *sc)
781{
782	int rc;
783
784	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
785
786	sysctl_ctx_init(&sc->ctx);
787	sc->flags |= ADAP_SYSCTL_CTX;
788
789	/*
790	 * Firmware event queue
791	 */
792	rc = alloc_fwq(sc);
793	if (rc != 0)
794		return (rc);
795
796	/*
797	 * Management queue.  This is just a control queue that uses the fwq as
798	 * its associated iq.
799	 */
800	rc = alloc_mgmtq(sc);
801
802	return (rc);
803}
804
805/*
806 * Idempotent
807 */
808int
809t4_teardown_adapter_queues(struct adapter *sc)
810{
811
812	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
813
814	/* Do this before freeing the queue */
815	if (sc->flags & ADAP_SYSCTL_CTX) {
816		sysctl_ctx_free(&sc->ctx);
817		sc->flags &= ~ADAP_SYSCTL_CTX;
818	}
819
820	free_mgmtq(sc);
821	free_fwq(sc);
822
823	return (0);
824}
825
826static inline int
827port_intr_count(struct port_info *pi)
828{
829	int rc = 0;
830
831	if (pi->flags & INTR_RXQ)
832		rc += pi->nrxq;
833#ifdef TCP_OFFLOAD
834	if (pi->flags & INTR_OFLD_RXQ)
835		rc += pi->nofldrxq;
836#endif
837#ifdef DEV_NETMAP
838	if (pi->flags & INTR_NM_RXQ)
839		rc += pi->nnmrxq;
840#endif
841	return (rc);
842}
843
844static inline int
845first_vector(struct port_info *pi)
846{
847	struct adapter *sc = pi->adapter;
848	int rc = T4_EXTRA_INTR, i;
849
850	if (sc->intr_count == 1)
851		return (0);
852
853	for_each_port(sc, i) {
854		if (i == pi->port_id)
855			break;
856
857		rc += port_intr_count(sc->port[i]);
858	}
859
860	return (rc);
861}
862
863/*
864 * Given an arbitrary "index," come up with an iq that can be used by other
865 * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
866 * The iq returned is guaranteed to be something that takes direct interrupts.
867 */
868static struct sge_iq *
869port_intr_iq(struct port_info *pi, int idx)
870{
871	struct adapter *sc = pi->adapter;
872	struct sge *s = &sc->sge;
873	struct sge_iq *iq = NULL;
874	int nintr, i;
875
876	if (sc->intr_count == 1)
877		return (&sc->sge.fwq);
878
879	nintr = port_intr_count(pi);
880	KASSERT(nintr != 0,
881	    ("%s: pi %p has no exclusive interrupts, total interrupts = %d",
882	    __func__, pi, sc->intr_count));
883#ifdef DEV_NETMAP
884	/* Exclude netmap queues as they can't take anyone else's interrupts */
885	if (pi->flags & INTR_NM_RXQ)
886		nintr -= pi->nnmrxq;
887	KASSERT(nintr > 0,
888	    ("%s: pi %p has nintr %d after netmap adjustment of %d", __func__,
889	    pi, nintr, pi->nnmrxq));
890#endif
891	i = idx % nintr;
892
893	if (pi->flags & INTR_RXQ) {
894	       	if (i < pi->nrxq) {
895			iq = &s->rxq[pi->first_rxq + i].iq;
896			goto done;
897		}
898		i -= pi->nrxq;
899	}
900#ifdef TCP_OFFLOAD
901	if (pi->flags & INTR_OFLD_RXQ) {
902	       	if (i < pi->nofldrxq) {
903			iq = &s->ofld_rxq[pi->first_ofld_rxq + i].iq;
904			goto done;
905		}
906		i -= pi->nofldrxq;
907	}
908#endif
909	panic("%s: pi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__,
910	    pi, pi->flags & INTR_ALL, idx, nintr);
911done:
912	MPASS(iq != NULL);
913	KASSERT(iq->flags & IQ_INTR,
914	    ("%s: iq %p (port %p, intr_flags 0x%lx, idx %d)", __func__, iq, pi,
915	    pi->flags & INTR_ALL, idx));
916	return (iq);
917}
918
919/* Maximum payload that can be delivered with a single iq descriptor */
920static inline int
921mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
922{
923	int payload;
924
925#ifdef TCP_OFFLOAD
926	if (toe) {
927		payload = sc->tt.rx_coalesce ?
928		    G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu;
929	} else {
930#endif
931		/* large enough even when hw VLAN extraction is disabled */
932		payload = fl_pktshift + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
933		    mtu;
934#ifdef TCP_OFFLOAD
935	}
936#endif
937	payload = roundup2(payload, fl_pad);
938
939	return (payload);
940}
941
942int
943t4_setup_port_queues(struct port_info *pi)
944{
945	int rc = 0, i, j, intr_idx, iqid;
946	struct sge_rxq *rxq;
947	struct sge_txq *txq;
948	struct sge_wrq *ctrlq;
949#ifdef TCP_OFFLOAD
950	struct sge_ofld_rxq *ofld_rxq;
951	struct sge_wrq *ofld_txq;
952#endif
953#ifdef DEV_NETMAP
954	struct sge_nm_rxq *nm_rxq;
955	struct sge_nm_txq *nm_txq;
956#endif
957	char name[16];
958	struct adapter *sc = pi->adapter;
959	struct ifnet *ifp = pi->ifp;
960	struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
961	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
962	int maxp, pack, mtu = ifp->if_mtu;
963
964	/* Interrupt vector to start from (when using multiple vectors) */
965	intr_idx = first_vector(pi);
966
967	/*
968	 * First pass over all NIC and TOE rx queues:
969	 * a) initialize iq and fl
970	 * b) allocate queue iff it will take direct interrupts.
971	 */
972	maxp = mtu_to_max_payload(sc, mtu, 0);
973	pack = enable_buffer_packing(sc);
974	if (pi->flags & INTR_RXQ) {
975		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq",
976		    CTLFLAG_RD, NULL, "rx queues");
977	}
978	for_each_rxq(pi, i, rxq) {
979
980		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq,
981		    RX_IQ_ESIZE);
982
983		snprintf(name, sizeof(name), "%s rxq%d-fl",
984		    device_get_nameunit(pi->dev), i);
985		init_fl(sc, &rxq->fl, pi->qsize_rxq / 8, maxp, pack, name);
986
987		if (pi->flags & INTR_RXQ) {
988			rxq->iq.flags |= IQ_INTR;
989			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
990			if (rc != 0)
991				goto done;
992			intr_idx++;
993		}
994	}
995#ifdef TCP_OFFLOAD
996	maxp = mtu_to_max_payload(sc, mtu, 1);
997	if (is_offload(sc) && pi->flags & INTR_OFLD_RXQ) {
998		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
999		    CTLFLAG_RD, NULL,
1000		    "rx queues for offloaded TCP connections");
1001	}
1002	for_each_ofld_rxq(pi, i, ofld_rxq) {
1003
1004		init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
1005		    pi->qsize_rxq, RX_IQ_ESIZE);
1006
1007		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1008		    device_get_nameunit(pi->dev), i);
1009		init_fl(sc, &ofld_rxq->fl, pi->qsize_rxq / 8, maxp, pack, name);
1010
1011		if (pi->flags & INTR_OFLD_RXQ) {
1012			ofld_rxq->iq.flags |= IQ_INTR;
1013			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid);
1014			if (rc != 0)
1015				goto done;
1016			intr_idx++;
1017		}
1018	}
1019#endif
1020#ifdef DEV_NETMAP
1021	/*
1022	 * We don't have buffers to back the netmap rx queues right now so we
1023	 * create the queues in a way that doesn't set off any congestion signal
1024	 * in the chip.
1025	 */
1026	if (pi->flags & INTR_NM_RXQ) {
1027		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_rxq",
1028		    CTLFLAG_RD, NULL, "rx queues for netmap");
1029		for_each_nm_rxq(pi, i, nm_rxq) {
1030			rc = alloc_nm_rxq(pi, nm_rxq, intr_idx, i, oid);
1031			if (rc != 0)
1032				goto done;
1033			intr_idx++;
1034		}
1035	}
1036#endif
1037
1038	/*
1039	 * Second pass over all NIC and TOE rx queues.  The queues forwarding
1040	 * their interrupts are allocated now.
1041	 */
1042	j = 0;
1043	if (!(pi->flags & INTR_RXQ)) {
1044		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq",
1045		    CTLFLAG_RD, NULL, "rx queues");
1046		for_each_rxq(pi, i, rxq) {
1047			MPASS(!(rxq->iq.flags & IQ_INTR));
1048
1049			intr_idx = port_intr_iq(pi, j)->abs_id;
1050
1051			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
1052			if (rc != 0)
1053				goto done;
1054			j++;
1055		}
1056	}
1057#ifdef TCP_OFFLOAD
1058	if (is_offload(sc) && !(pi->flags & INTR_OFLD_RXQ)) {
1059		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
1060		    CTLFLAG_RD, NULL,
1061		    "rx queues for offloaded TCP connections");
1062		for_each_ofld_rxq(pi, i, ofld_rxq) {
1063			MPASS(!(ofld_rxq->iq.flags & IQ_INTR));
1064
1065			intr_idx = port_intr_iq(pi, j)->abs_id;
1066
1067			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid);
1068			if (rc != 0)
1069				goto done;
1070			j++;
1071		}
1072	}
1073#endif
1074#ifdef DEV_NETMAP
1075	if (!(pi->flags & INTR_NM_RXQ))
1076		CXGBE_UNIMPLEMENTED(__func__);
1077#endif
1078
1079	/*
1080	 * Now the tx queues.  Only one pass needed.
1081	 */
1082	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1083	    NULL, "tx queues");
1084	j = 0;
1085	for_each_txq(pi, i, txq) {
1086		iqid = port_intr_iq(pi, j)->cntxt_id;
1087		snprintf(name, sizeof(name), "%s txq%d",
1088		    device_get_nameunit(pi->dev), i);
1089		init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid,
1090		    name);
1091
1092		rc = alloc_txq(pi, txq, i, oid);
1093		if (rc != 0)
1094			goto done;
1095		j++;
1096	}
1097#ifdef TCP_OFFLOAD
1098	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq",
1099	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
1100	for_each_ofld_txq(pi, i, ofld_txq) {
1101		struct sysctl_oid *oid2;
1102
1103		iqid = port_intr_iq(pi, j)->cntxt_id;
1104		snprintf(name, sizeof(name), "%s ofld_txq%d",
1105		    device_get_nameunit(pi->dev), i);
1106		init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan,
1107		    iqid, name);
1108
1109		snprintf(name, sizeof(name), "%d", i);
1110		oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1111		    name, CTLFLAG_RD, NULL, "offload tx queue");
1112
1113		rc = alloc_wrq(sc, pi, ofld_txq, oid2);
1114		if (rc != 0)
1115			goto done;
1116		j++;
1117	}
1118#endif
1119#ifdef DEV_NETMAP
1120	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_txq",
1121	    CTLFLAG_RD, NULL, "tx queues for netmap use");
1122	for_each_nm_txq(pi, i, nm_txq) {
1123		iqid = pi->first_nm_rxq + (j % pi->nnmrxq);
1124		rc = alloc_nm_txq(pi, nm_txq, iqid, i, oid);
1125		if (rc != 0)
1126			goto done;
1127		j++;
1128	}
1129#endif
1130
1131	/*
1132	 * Finally, the control queue.
1133	 */
1134	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
1135	    NULL, "ctrl queue");
1136	ctrlq = &sc->sge.ctrlq[pi->port_id];
1137	iqid = port_intr_iq(pi, 0)->cntxt_id;
1138	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev));
1139	init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name);
1140	rc = alloc_wrq(sc, pi, ctrlq, oid);
1141
1142done:
1143	if (rc)
1144		t4_teardown_port_queues(pi);
1145
1146	return (rc);
1147}
1148
1149/*
1150 * Idempotent
1151 */
1152int
1153t4_teardown_port_queues(struct port_info *pi)
1154{
1155	int i;
1156	struct adapter *sc = pi->adapter;
1157	struct sge_rxq *rxq;
1158	struct sge_txq *txq;
1159#ifdef TCP_OFFLOAD
1160	struct sge_ofld_rxq *ofld_rxq;
1161	struct sge_wrq *ofld_txq;
1162#endif
1163#ifdef DEV_NETMAP
1164	struct sge_nm_rxq *nm_rxq;
1165	struct sge_nm_txq *nm_txq;
1166#endif
1167
1168	/* Do this before freeing the queues */
1169	if (pi->flags & PORT_SYSCTL_CTX) {
1170		sysctl_ctx_free(&pi->ctx);
1171		pi->flags &= ~PORT_SYSCTL_CTX;
1172	}
1173
1174	/*
1175	 * Take down all the tx queues first, as they reference the rx queues
1176	 * (for egress updates, etc.).
1177	 */
1178
1179	free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1180
1181	for_each_txq(pi, i, txq) {
1182		free_txq(pi, txq);
1183	}
1184#ifdef TCP_OFFLOAD
1185	for_each_ofld_txq(pi, i, ofld_txq) {
1186		free_wrq(sc, ofld_txq);
1187	}
1188#endif
1189#ifdef DEV_NETMAP
1190	for_each_nm_txq(pi, i, nm_txq)
1191	    free_nm_txq(pi, nm_txq);
1192#endif
1193
1194	/*
1195	 * Then take down the rx queues that forward their interrupts, as they
1196	 * reference other rx queues.
1197	 */
1198
1199	for_each_rxq(pi, i, rxq) {
1200		if ((rxq->iq.flags & IQ_INTR) == 0)
1201			free_rxq(pi, rxq);
1202	}
1203#ifdef TCP_OFFLOAD
1204	for_each_ofld_rxq(pi, i, ofld_rxq) {
1205		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
1206			free_ofld_rxq(pi, ofld_rxq);
1207	}
1208#endif
1209#ifdef DEV_NETMAP
1210	for_each_nm_rxq(pi, i, nm_rxq)
1211	    free_nm_rxq(pi, nm_rxq);
1212#endif
1213
1214	/*
1215	 * Then take down the rx queues that take direct interrupts.
1216	 */
1217
1218	for_each_rxq(pi, i, rxq) {
1219		if (rxq->iq.flags & IQ_INTR)
1220			free_rxq(pi, rxq);
1221	}
1222#ifdef TCP_OFFLOAD
1223	for_each_ofld_rxq(pi, i, ofld_rxq) {
1224		if (ofld_rxq->iq.flags & IQ_INTR)
1225			free_ofld_rxq(pi, ofld_rxq);
1226	}
1227#endif
1228#ifdef DEV_NETMAP
1229	CXGBE_UNIMPLEMENTED(__func__);
1230#endif
1231
1232	return (0);
1233}
1234
1235/*
1236 * Deals with errors and the firmware event queue.  All data rx queues forward
1237 * their interrupt to the firmware event queue.
1238 */
1239void
1240t4_intr_all(void *arg)
1241{
1242	struct adapter *sc = arg;
1243	struct sge_iq *fwq = &sc->sge.fwq;
1244
1245	t4_intr_err(arg);
1246	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1247		service_iq(fwq, 0);
1248		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1249	}
1250}
1251
1252/* Deals with error interrupts */
1253void
1254t4_intr_err(void *arg)
1255{
1256	struct adapter *sc = arg;
1257
1258	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1259	t4_slow_intr_handler(sc);
1260}
1261
1262void
1263t4_intr_evt(void *arg)
1264{
1265	struct sge_iq *iq = arg;
1266
1267	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1268		service_iq(iq, 0);
1269		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1270	}
1271}
1272
1273void
1274t4_intr(void *arg)
1275{
1276	struct sge_iq *iq = arg;
1277
1278	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1279		service_iq(iq, 0);
1280		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1281	}
1282}
1283
1284/*
1285 * Deals with anything and everything on the given ingress queue.
1286 */
1287static int
1288service_iq(struct sge_iq *iq, int budget)
1289{
1290	struct sge_iq *q;
1291	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1292	struct sge_fl *fl = &rxq->fl;		/* Use iff IQ_HAS_FL */
1293	struct adapter *sc = iq->adapter;
1294	struct rsp_ctrl *ctrl;
1295	const struct rss_header *rss;
1296	int ndescs = 0, limit, fl_bufs_used = 0;
1297	int rsp_type;
1298	uint32_t lq;
1299	struct mbuf *m0;
1300	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1301#if defined(INET) || defined(INET6)
1302	const struct timeval lro_timeout = {0, sc->lro_timeout};
1303#endif
1304
1305	limit = budget ? budget : iq->qsize / 8;
1306
1307	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1308
1309	/*
1310	 * We always come back and check the descriptor ring for new indirect
1311	 * interrupts and other responses after running a single handler.
1312	 */
1313	for (;;) {
1314		while (is_new_response(iq, &ctrl)) {
1315
1316			rmb();
1317
1318			m0 = NULL;
1319			rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
1320			lq = be32toh(ctrl->pldbuflen_qid);
1321			rss = (const void *)iq->cdesc;
1322
1323			switch (rsp_type) {
1324			case X_RSPD_TYPE_FLBUF:
1325
1326				KASSERT(iq->flags & IQ_HAS_FL,
1327				    ("%s: data for an iq (%p) with no freelist",
1328				    __func__, iq));
1329
1330				m0 = get_fl_payload(sc, fl, lq, &fl_bufs_used);
1331				if (__predict_false(m0 == NULL))
1332					goto process_iql;
1333#ifdef T4_PKT_TIMESTAMP
1334				/*
1335				 * 60 bit timestamp for the payload is
1336				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1337				 * in the leading free-space in the mbuf.  The
1338				 * kernel can clobber it during a pullup,
1339				 * m_copymdata, etc.  You need to make sure that
1340				 * the mbuf reaches you unmolested if you care
1341				 * about the timestamp.
1342				 */
1343				*(uint64_t *)m0->m_pktdat =
1344				    be64toh(ctrl->u.last_flit) &
1345				    0xfffffffffffffff;
1346#endif
1347
1348				/* fall through */
1349
1350			case X_RSPD_TYPE_CPL:
1351				KASSERT(rss->opcode < NUM_CPL_CMDS,
1352				    ("%s: bad opcode %02x.", __func__,
1353				    rss->opcode));
1354				sc->cpl_handler[rss->opcode](iq, rss, m0);
1355				break;
1356
1357			case X_RSPD_TYPE_INTR:
1358
1359				/*
1360				 * Interrupts should be forwarded only to queues
1361				 * that are not forwarding their interrupts.
1362				 * This means service_iq can recurse but only 1
1363				 * level deep.
1364				 */
1365				KASSERT(budget == 0,
1366				    ("%s: budget %u, rsp_type %u", __func__,
1367				    budget, rsp_type));
1368
1369				/*
1370				 * There are 1K interrupt-capable queues (qids 0
1371				 * through 1023).  A response type indicating a
1372				 * forwarded interrupt with a qid >= 1K is an
1373				 * iWARP async notification.
1374				 */
1375				if (lq >= 1024) {
1376                                        sc->an_handler(iq, ctrl);
1377                                        break;
1378                                }
1379
1380				q = sc->sge.iqmap[lq - sc->sge.iq_start];
1381				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1382				    IQS_BUSY)) {
1383					if (service_iq(q, q->qsize / 8) == 0) {
1384						atomic_cmpset_int(&q->state,
1385						    IQS_BUSY, IQS_IDLE);
1386					} else {
1387						STAILQ_INSERT_TAIL(&iql, q,
1388						    link);
1389					}
1390				}
1391				break;
1392
1393			default:
1394				KASSERT(0,
1395				    ("%s: illegal response type %d on iq %p",
1396				    __func__, rsp_type, iq));
1397				log(LOG_ERR,
1398				    "%s: illegal response type %d on iq %p",
1399				    device_get_nameunit(sc->dev), rsp_type, iq);
1400				break;
1401			}
1402
1403			if (fl_bufs_used >= 16) {
1404				FL_LOCK(fl);
1405				fl->needed += fl_bufs_used;
1406				refill_fl(sc, fl, 32);
1407				FL_UNLOCK(fl);
1408				fl_bufs_used = 0;
1409			}
1410
1411			iq_next(iq);
1412			if (++ndescs == limit) {
1413				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
1414				    V_CIDXINC(ndescs) |
1415				    V_INGRESSQID(iq->cntxt_id) |
1416				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1417				ndescs = 0;
1418
1419#if defined(INET) || defined(INET6)
1420				if (iq->flags & IQ_LRO_ENABLED &&
1421				    sc->lro_timeout != 0) {
1422					tcp_lro_flush_inactive(&rxq->lro,
1423					    &lro_timeout);
1424				}
1425#endif
1426
1427				if (budget) {
1428					if (fl_bufs_used) {
1429						FL_LOCK(fl);
1430						fl->needed += fl_bufs_used;
1431						refill_fl(sc, fl, 32);
1432						FL_UNLOCK(fl);
1433					}
1434					return (EINPROGRESS);
1435				}
1436			}
1437		}
1438
1439process_iql:
1440		if (STAILQ_EMPTY(&iql))
1441			break;
1442
1443		/*
1444		 * Process the head only, and send it to the back of the list if
1445		 * it's still not done.
1446		 */
1447		q = STAILQ_FIRST(&iql);
1448		STAILQ_REMOVE_HEAD(&iql, link);
1449		if (service_iq(q, q->qsize / 8) == 0)
1450			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1451		else
1452			STAILQ_INSERT_TAIL(&iql, q, link);
1453	}
1454
1455#if defined(INET) || defined(INET6)
1456	if (iq->flags & IQ_LRO_ENABLED) {
1457		struct lro_ctrl *lro = &rxq->lro;
1458		struct lro_entry *l;
1459
1460		while (!SLIST_EMPTY(&lro->lro_active)) {
1461			l = SLIST_FIRST(&lro->lro_active);
1462			SLIST_REMOVE_HEAD(&lro->lro_active, next);
1463			tcp_lro_flush(lro, l);
1464		}
1465	}
1466#endif
1467
1468	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1469	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1470
1471	if (iq->flags & IQ_HAS_FL) {
1472		int starved;
1473
1474		FL_LOCK(fl);
1475		fl->needed += fl_bufs_used;
1476		starved = refill_fl(sc, fl, 64);
1477		FL_UNLOCK(fl);
1478		if (__predict_false(starved != 0))
1479			add_fl_to_sfl(sc, fl);
1480	}
1481
1482	return (0);
1483}
1484
1485static inline int
1486cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1487{
1488	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1489
1490	if (rc)
1491		MPASS(cll->region3 >= CL_METADATA_SIZE);
1492
1493	return (rc);
1494}
1495
1496static inline struct cluster_metadata *
1497cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1498    caddr_t cl)
1499{
1500
1501	if (cl_has_metadata(fl, cll)) {
1502		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1503
1504		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1505	}
1506	return (NULL);
1507}
1508
1509static void
1510rxb_free(struct mbuf *m, void *arg1, void *arg2)
1511{
1512	uma_zone_t zone = arg1;
1513	caddr_t cl = arg2;
1514
1515	uma_zfree(zone, cl);
1516}
1517
1518/*
1519 * The mbuf returned by this function could be allocated from zone_mbuf or
1520 * constructed in spare room in the cluster.
1521 *
1522 * The mbuf carries the payload in one of these ways
1523 * a) frame inside the mbuf (mbuf from zone_mbuf)
1524 * b) m_cljset (for clusters without metadata) zone_mbuf
1525 * c) m_extaddref (cluster with metadata) inline mbuf
1526 * d) m_extaddref (cluster with metadata) zone_mbuf
1527 */
1528static struct mbuf *
1529get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int total, int flags)
1530{
1531	struct mbuf *m;
1532	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1533	struct cluster_layout *cll = &sd->cll;
1534	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1535	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1536	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1537	int len, padded_len;
1538	caddr_t payload;
1539
1540	len = min(total, hwb->size - fl->rx_offset);
1541	padded_len = roundup2(len, fl_pad);
1542	payload = sd->cl + cll->region1 + fl->rx_offset;
1543
1544	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1545
1546		/*
1547		 * Copy payload into a freshly allocated mbuf.
1548		 */
1549
1550		m = flags & M_PKTHDR ?
1551		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1552		if (m == NULL)
1553			return (NULL);
1554		fl->mbuf_allocated++;
1555#ifdef T4_PKT_TIMESTAMP
1556		/* Leave room for a timestamp */
1557		m->m_data += 8;
1558#endif
1559		/* copy data to mbuf */
1560		bcopy(payload, mtod(m, caddr_t), len);
1561
1562	} else if (sd->nimbuf * MSIZE < cll->region1) {
1563
1564		/*
1565		 * There's spare room in the cluster for an mbuf.  Create one
1566		 * and associate it with the payload that's in the cluster.
1567		 */
1568
1569		MPASS(clm != NULL);
1570		m = (struct mbuf *)(sd->cl + sd->nimbuf * MSIZE);
1571		/* No bzero required */
1572		if (m_init(m, NULL, 0, M_NOWAIT, MT_DATA, flags | M_NOFREE))
1573			return (NULL);
1574		fl->mbuf_inlined++;
1575		m_extaddref(m, payload, padded_len, &clm->refcount, rxb_free,
1576		    swz->zone, sd->cl);
1577		sd->nimbuf++;
1578
1579	} else {
1580
1581		/*
1582		 * Grab an mbuf from zone_mbuf and associate it with the
1583		 * payload in the cluster.
1584		 */
1585
1586		m = flags & M_PKTHDR ?
1587		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1588		if (m == NULL)
1589			return (NULL);
1590		fl->mbuf_allocated++;
1591		if (clm != NULL) {
1592			m_extaddref(m, payload, padded_len, &clm->refcount,
1593			    rxb_free, swz->zone, sd->cl);
1594			sd->nembuf++;
1595		} else {
1596			m_cljset(m, sd->cl, swz->type);
1597			sd->cl = NULL;	/* consumed, not a recycle candidate */
1598		}
1599	}
1600	if (flags & M_PKTHDR)
1601		m->m_pkthdr.len = total;
1602	m->m_len = len;
1603
1604	if (fl->flags & FL_BUF_PACKING) {
1605		fl->rx_offset += roundup2(padded_len, sc->sge.pack_boundary);
1606		MPASS(fl->rx_offset <= hwb->size);
1607		if (fl->rx_offset < hwb->size)
1608			return (m);	/* without advancing the cidx */
1609	}
1610
1611	if (__predict_false(++fl->cidx == fl->cap))
1612		fl->cidx = 0;
1613	fl->rx_offset = 0;
1614
1615	return (m);
1616}
1617
1618static struct mbuf *
1619get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf,
1620    int *fl_bufs_used)
1621{
1622	struct mbuf *m0, *m, **pnext;
1623	u_int nbuf, len;
1624
1625	/*
1626	 * No assertion for the fl lock because we don't need it.  This routine
1627	 * is called only from the rx interrupt handler and it only updates
1628	 * fl->cidx.  (Contrast that with fl->pidx/fl->needed which could be
1629	 * updated in the rx interrupt handler or the starvation helper routine.
1630	 * That's why code that manipulates fl->pidx/fl->needed needs the fl
1631	 * lock but this routine does not).
1632	 */
1633
1634	nbuf = 0;
1635	len = G_RSPD_LEN(len_newbuf);
1636	if (__predict_false(fl->m0 != NULL)) {
1637		M_ASSERTPKTHDR(fl->m0);
1638		MPASS(len == fl->m0->m_pkthdr.len);
1639		MPASS(fl->remaining < len);
1640
1641		m0 = fl->m0;
1642		pnext = fl->pnext;
1643		len = fl->remaining;
1644		fl->m0 = NULL;
1645		goto get_segment;
1646	}
1647
1648	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1649		nbuf++;
1650		fl->rx_offset = 0;
1651		if (__predict_false(++fl->cidx == fl->cap))
1652			fl->cidx = 0;
1653	}
1654
1655	/*
1656	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1657	 * 'len' and it may span multiple hw buffers.
1658	 */
1659
1660	m0 = get_scatter_segment(sc, fl, len, M_PKTHDR);
1661	if (m0 == NULL)
1662		goto done;
1663	len -= m0->m_len;
1664	pnext = &m0->m_next;
1665	while (len > 0) {
1666		nbuf++;
1667get_segment:
1668		MPASS(fl->rx_offset == 0);
1669		m = get_scatter_segment(sc, fl, len, 0);
1670		if (m == NULL) {
1671			fl->m0 = m0;
1672			fl->pnext = pnext;
1673			fl->remaining = len;
1674			m0 = NULL;
1675			goto done;
1676		}
1677		*pnext = m;
1678		pnext = &m->m_next;
1679		len -= m->m_len;
1680	}
1681	*pnext = NULL;
1682	if (fl->rx_offset == 0)
1683		nbuf++;
1684done:
1685	(*fl_bufs_used) += nbuf;
1686	return (m0);
1687}
1688
1689static int
1690t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1691{
1692	struct sge_rxq *rxq = iq_to_rxq(iq);
1693	struct ifnet *ifp = rxq->ifp;
1694	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1695#if defined(INET) || defined(INET6)
1696	struct lro_ctrl *lro = &rxq->lro;
1697#endif
1698
1699	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1700	    rss->opcode));
1701
1702	m0->m_pkthdr.len -= fl_pktshift;
1703	m0->m_len -= fl_pktshift;
1704	m0->m_data += fl_pktshift;
1705
1706	m0->m_pkthdr.rcvif = ifp;
1707	m0->m_flags |= M_FLOWID;
1708	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1709
1710	if (cpl->csum_calc && !cpl->err_vec) {
1711		if (ifp->if_capenable & IFCAP_RXCSUM &&
1712		    cpl->l2info & htobe32(F_RXF_IP)) {
1713			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1714			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1715			rxq->rxcsum++;
1716		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1717		    cpl->l2info & htobe32(F_RXF_IP6)) {
1718			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1719			    CSUM_PSEUDO_HDR);
1720			rxq->rxcsum++;
1721		}
1722
1723		if (__predict_false(cpl->ip_frag))
1724			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1725		else
1726			m0->m_pkthdr.csum_data = 0xffff;
1727	}
1728
1729	if (cpl->vlan_ex) {
1730		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1731		m0->m_flags |= M_VLANTAG;
1732		rxq->vlan_extraction++;
1733	}
1734
1735#if defined(INET) || defined(INET6)
1736	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1737	    iq->flags & IQ_LRO_ENABLED &&
1738	    tcp_lro_rx(lro, m0, 0) == 0) {
1739		/* queued for LRO */
1740	} else
1741#endif
1742	ifp->if_input(ifp, m0);
1743
1744	return (0);
1745}
1746
1747/*
1748 * Doesn't fail.  Holds on to work requests it can't send right away.
1749 */
1750void
1751t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1752{
1753	struct sge_eq *eq = &wrq->eq;
1754	int can_reclaim;
1755	caddr_t dst;
1756
1757	TXQ_LOCK_ASSERT_OWNED(wrq);
1758#ifdef TCP_OFFLOAD
1759	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
1760	    (eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1761	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1762#else
1763	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1764	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1765#endif
1766
1767	if (__predict_true(wr != NULL))
1768		STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1769
1770	can_reclaim = reclaimable(eq);
1771	if (__predict_false(eq->flags & EQ_STALLED)) {
1772		if (eq->avail + can_reclaim < tx_resume_threshold(eq))
1773			return;
1774		eq->flags &= ~EQ_STALLED;
1775		eq->unstalled++;
1776	}
1777	eq->cidx += can_reclaim;
1778	eq->avail += can_reclaim;
1779	if (__predict_false(eq->cidx >= eq->cap))
1780		eq->cidx -= eq->cap;
1781
1782	while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
1783		int ndesc;
1784
1785		if (__predict_false(wr->wr_len < 0 ||
1786		    wr->wr_len > SGE_MAX_WR_LEN || (wr->wr_len & 0x7))) {
1787
1788#ifdef INVARIANTS
1789			panic("%s: work request with length %d", __func__,
1790			    wr->wr_len);
1791#endif
1792#ifdef KDB
1793			kdb_backtrace();
1794#endif
1795			log(LOG_ERR, "%s: %s work request with length %d",
1796			    device_get_nameunit(sc->dev), __func__, wr->wr_len);
1797			STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1798			free_wrqe(wr);
1799			continue;
1800		}
1801
1802		ndesc = howmany(wr->wr_len, EQ_ESIZE);
1803		if (eq->avail < ndesc) {
1804			wrq->no_desc++;
1805			break;
1806		}
1807
1808		dst = (void *)&eq->desc[eq->pidx];
1809		copy_to_txd(eq, wrtod(wr), &dst, wr->wr_len);
1810
1811		eq->pidx += ndesc;
1812		eq->avail -= ndesc;
1813		if (__predict_false(eq->pidx >= eq->cap))
1814			eq->pidx -= eq->cap;
1815
1816		eq->pending += ndesc;
1817		if (eq->pending >= 8)
1818			ring_eq_db(sc, eq);
1819
1820		wrq->tx_wrs++;
1821		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1822		free_wrqe(wr);
1823
1824		if (eq->avail < 8) {
1825			can_reclaim = reclaimable(eq);
1826			eq->cidx += can_reclaim;
1827			eq->avail += can_reclaim;
1828			if (__predict_false(eq->cidx >= eq->cap))
1829				eq->cidx -= eq->cap;
1830		}
1831	}
1832
1833	if (eq->pending)
1834		ring_eq_db(sc, eq);
1835
1836	if (wr != NULL) {
1837		eq->flags |= EQ_STALLED;
1838		if (callout_pending(&eq->tx_callout) == 0)
1839			callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1840	}
1841}
1842
1843/* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
1844#define TXPKTS_PKT_HDR ((\
1845    sizeof(struct ulp_txpkt) + \
1846    sizeof(struct ulptx_idata) + \
1847    sizeof(struct cpl_tx_pkt_core) \
1848    ) / 8)
1849
1850/* Header of a coalesced tx WR, before SGL of first packet (in flits) */
1851#define TXPKTS_WR_HDR (\
1852    sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
1853    TXPKTS_PKT_HDR)
1854
1855/* Header of a tx WR, before SGL of first packet (in flits) */
1856#define TXPKT_WR_HDR ((\
1857    sizeof(struct fw_eth_tx_pkt_wr) + \
1858    sizeof(struct cpl_tx_pkt_core) \
1859    ) / 8 )
1860
1861/* Header of a tx LSO WR, before SGL of first packet (in flits) */
1862#define TXPKT_LSO_WR_HDR ((\
1863    sizeof(struct fw_eth_tx_pkt_wr) + \
1864    sizeof(struct cpl_tx_pkt_lso_core) + \
1865    sizeof(struct cpl_tx_pkt_core) \
1866    ) / 8 )
1867
1868int
1869t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
1870{
1871	struct port_info *pi = (void *)ifp->if_softc;
1872	struct adapter *sc = pi->adapter;
1873	struct sge_eq *eq = &txq->eq;
1874	struct buf_ring *br = txq->br;
1875	struct mbuf *next;
1876	int rc, coalescing, can_reclaim;
1877	struct txpkts txpkts;
1878	struct sgl sgl;
1879
1880	TXQ_LOCK_ASSERT_OWNED(txq);
1881	KASSERT(m, ("%s: called with nothing to do.", __func__));
1882	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH,
1883	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1884
1885	prefetch(&eq->desc[eq->pidx]);
1886	prefetch(&txq->sdesc[eq->pidx]);
1887
1888	txpkts.npkt = 0;/* indicates there's nothing in txpkts */
1889	coalescing = 0;
1890
1891	can_reclaim = reclaimable(eq);
1892	if (__predict_false(eq->flags & EQ_STALLED)) {
1893		if (eq->avail + can_reclaim < tx_resume_threshold(eq)) {
1894			txq->m = m;
1895			return (0);
1896		}
1897		eq->flags &= ~EQ_STALLED;
1898		eq->unstalled++;
1899	}
1900
1901	if (__predict_false(eq->flags & EQ_DOOMED)) {
1902		m_freem(m);
1903		while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
1904			m_freem(m);
1905		return (ENETDOWN);
1906	}
1907
1908	if (eq->avail < 8 && can_reclaim)
1909		reclaim_tx_descs(txq, can_reclaim, 32);
1910
1911	for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
1912
1913		if (eq->avail < 8)
1914			break;
1915
1916		next = m->m_nextpkt;
1917		m->m_nextpkt = NULL;
1918
1919		if (next || buf_ring_peek(br))
1920			coalescing = 1;
1921
1922		rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
1923		if (rc != 0) {
1924			if (rc == ENOMEM) {
1925
1926				/* Short of resources, suspend tx */
1927
1928				m->m_nextpkt = next;
1929				break;
1930			}
1931
1932			/*
1933			 * Unrecoverable error for this packet, throw it away
1934			 * and move on to the next.  get_pkt_sgl may already
1935			 * have freed m (it will be NULL in that case and the
1936			 * m_freem here is still safe).
1937			 */
1938
1939			m_freem(m);
1940			continue;
1941		}
1942
1943		if (coalescing &&
1944		    add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
1945
1946			/* Successfully absorbed into txpkts */
1947
1948			write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
1949			goto doorbell;
1950		}
1951
1952		/*
1953		 * We weren't coalescing to begin with, or current frame could
1954		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
1955		 * given to it can't be coalesced).  Either way there should be
1956		 * nothing in txpkts.
1957		 */
1958		KASSERT(txpkts.npkt == 0,
1959		    ("%s: txpkts not empty: %d", __func__, txpkts.npkt));
1960
1961		/* We're sending out individual packets now */
1962		coalescing = 0;
1963
1964		if (eq->avail < 8)
1965			reclaim_tx_descs(txq, 0, 8);
1966		rc = write_txpkt_wr(pi, txq, m, &sgl);
1967		if (rc != 0) {
1968
1969			/* Short of hardware descriptors, suspend tx */
1970
1971			/*
1972			 * This is an unlikely but expensive failure.  We've
1973			 * done all the hard work (DMA mappings etc.) and now we
1974			 * can't send out the packet.  What's worse, we have to
1975			 * spend even more time freeing up everything in sgl.
1976			 */
1977			txq->no_desc++;
1978			free_pkt_sgl(txq, &sgl);
1979
1980			m->m_nextpkt = next;
1981			break;
1982		}
1983
1984		ETHER_BPF_MTAP(ifp, m);
1985		if (sgl.nsegs == 0)
1986			m_freem(m);
1987doorbell:
1988		if (eq->pending >= 8)
1989			ring_eq_db(sc, eq);
1990
1991		can_reclaim = reclaimable(eq);
1992		if (can_reclaim >= 32)
1993			reclaim_tx_descs(txq, can_reclaim, 64);
1994	}
1995
1996	if (txpkts.npkt > 0)
1997		write_txpkts_wr(txq, &txpkts);
1998
1999	/*
2000	 * m not NULL means there was an error but we haven't thrown it away.
2001	 * This can happen when we're short of tx descriptors (no_desc) or maybe
2002	 * even DMA maps (no_dmamap).  Either way, a credit flush and reclaim
2003	 * will get things going again.
2004	 */
2005	if (m && !(eq->flags & EQ_CRFLUSHED)) {
2006		struct tx_sdesc *txsd = &txq->sdesc[eq->pidx];
2007
2008		/*
2009		 * If EQ_CRFLUSHED is not set then we know we have at least one
2010		 * available descriptor because any WR that reduces eq->avail to
2011		 * 0 also sets EQ_CRFLUSHED.
2012		 */
2013		KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__));
2014
2015		txsd->desc_used = 1;
2016		txsd->credits = 0;
2017		write_eqflush_wr(eq);
2018	}
2019	txq->m = m;
2020
2021	if (eq->pending)
2022		ring_eq_db(sc, eq);
2023
2024	reclaim_tx_descs(txq, 0, 128);
2025
2026	if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0)
2027		callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
2028
2029	return (0);
2030}
2031
2032void
2033t4_update_fl_bufsize(struct ifnet *ifp)
2034{
2035	struct port_info *pi = ifp->if_softc;
2036	struct adapter *sc = pi->adapter;
2037	struct sge_rxq *rxq;
2038#ifdef TCP_OFFLOAD
2039	struct sge_ofld_rxq *ofld_rxq;
2040#endif
2041	struct sge_fl *fl;
2042	int i, maxp, mtu = ifp->if_mtu;
2043
2044	maxp = mtu_to_max_payload(sc, mtu, 0);
2045	for_each_rxq(pi, i, rxq) {
2046		fl = &rxq->fl;
2047
2048		FL_LOCK(fl);
2049		find_best_refill_source(sc, fl, maxp);
2050		FL_UNLOCK(fl);
2051	}
2052#ifdef TCP_OFFLOAD
2053	maxp = mtu_to_max_payload(sc, mtu, 1);
2054	for_each_ofld_rxq(pi, i, ofld_rxq) {
2055		fl = &ofld_rxq->fl;
2056
2057		FL_LOCK(fl);
2058		find_best_refill_source(sc, fl, maxp);
2059		FL_UNLOCK(fl);
2060	}
2061#endif
2062}
2063
2064int
2065can_resume_tx(struct sge_eq *eq)
2066{
2067
2068	return (eq->avail + reclaimable(eq) >= tx_resume_threshold(eq));
2069}
2070
2071static inline void
2072init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2073    int qsize, int esize)
2074{
2075	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2076	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2077	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2078	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2079
2080	iq->flags = 0;
2081	iq->adapter = sc;
2082	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2083	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2084	if (pktc_idx >= 0) {
2085		iq->intr_params |= F_QINTR_CNT_EN;
2086		iq->intr_pktc_idx = pktc_idx;
2087	}
2088	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2089	iq->esize = max(esize, 16);		/* See FW_IQ_CMD/iqesize */
2090}
2091
2092static inline void
2093init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, int pack,
2094    char *name)
2095{
2096
2097	fl->qsize = qsize;
2098	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2099	if (pack)
2100		fl->flags |= FL_BUF_PACKING;
2101	find_best_refill_source(sc, fl, maxp);
2102	find_safe_refill_source(sc, fl);
2103}
2104
2105static inline void
2106init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan,
2107    uint16_t iqid, char *name)
2108{
2109	KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan));
2110	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2111
2112	eq->flags = eqtype & EQ_TYPEMASK;
2113	eq->tx_chan = tx_chan;
2114	eq->iqid = iqid;
2115	eq->qsize = qsize;
2116	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2117
2118	TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq);
2119	callout_init(&eq->tx_callout, CALLOUT_MPSAFE);
2120}
2121
2122static int
2123alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2124    bus_dmamap_t *map, bus_addr_t *pa, void **va)
2125{
2126	int rc;
2127
2128	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2129	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2130	if (rc != 0) {
2131		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2132		goto done;
2133	}
2134
2135	rc = bus_dmamem_alloc(*tag, va,
2136	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2137	if (rc != 0) {
2138		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2139		goto done;
2140	}
2141
2142	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2143	if (rc != 0) {
2144		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2145		goto done;
2146	}
2147done:
2148	if (rc)
2149		free_ring(sc, *tag, *map, *pa, *va);
2150
2151	return (rc);
2152}
2153
2154static int
2155free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2156    bus_addr_t pa, void *va)
2157{
2158	if (pa)
2159		bus_dmamap_unload(tag, map);
2160	if (va)
2161		bus_dmamem_free(tag, va, map);
2162	if (tag)
2163		bus_dma_tag_destroy(tag);
2164
2165	return (0);
2166}
2167
2168/*
2169 * Allocates the ring for an ingress queue and an optional freelist.  If the
2170 * freelist is specified it will be allocated and then associated with the
2171 * ingress queue.
2172 *
2173 * Returns errno on failure.  Resources allocated up to that point may still be
2174 * allocated.  Caller is responsible for cleanup in case this function fails.
2175 *
2176 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
2177 * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
2178 * the abs_id of the ingress queue to which its interrupts should be forwarded.
2179 */
2180static int
2181alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
2182    int intr_idx, int cong)
2183{
2184	int rc, i, cntxt_id;
2185	size_t len;
2186	struct fw_iq_cmd c;
2187	struct adapter *sc = iq->adapter;
2188	__be32 v = 0;
2189
2190	len = iq->qsize * iq->esize;
2191	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2192	    (void **)&iq->desc);
2193	if (rc != 0)
2194		return (rc);
2195
2196	bzero(&c, sizeof(c));
2197	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2198	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2199	    V_FW_IQ_CMD_VFN(0));
2200
2201	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2202	    FW_LEN16(c));
2203
2204	/* Special handling for firmware event queue */
2205	if (iq == &sc->sge.fwq)
2206		v |= F_FW_IQ_CMD_IQASYNCH;
2207
2208	if (iq->flags & IQ_INTR) {
2209		KASSERT(intr_idx < sc->intr_count,
2210		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2211	} else
2212		v |= F_FW_IQ_CMD_IQANDST;
2213	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2214
2215	c.type_to_iqandstindex = htobe32(v |
2216	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2217	    V_FW_IQ_CMD_VIID(pi->viid) |
2218	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2219	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2220	    F_FW_IQ_CMD_IQGTSMODE |
2221	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2222	    V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
2223	c.iqsize = htobe16(iq->qsize);
2224	c.iqaddr = htobe64(iq->ba);
2225	if (cong >= 0)
2226		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2227
2228	if (fl) {
2229		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2230
2231		len = fl->qsize * RX_FL_ESIZE;
2232		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2233		    &fl->ba, (void **)&fl->desc);
2234		if (rc)
2235			return (rc);
2236
2237		/* Allocate space for one software descriptor per buffer. */
2238		fl->cap = (fl->qsize - spg_len / RX_FL_ESIZE) * 8;
2239		rc = alloc_fl_sdesc(fl);
2240		if (rc != 0) {
2241			device_printf(sc->dev,
2242			    "failed to setup fl software descriptors: %d\n",
2243			    rc);
2244			return (rc);
2245		}
2246		fl->needed = fl->cap;
2247		fl->lowat = fl->flags & FL_BUF_PACKING ?
2248		    roundup2(sc->sge.fl_starve_threshold2, 8) :
2249		    roundup2(sc->sge.fl_starve_threshold, 8);
2250
2251		c.iqns_to_fl0congen |=
2252		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2253			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2254			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2255			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2256			    0));
2257		if (cong >= 0) {
2258			c.iqns_to_fl0congen |=
2259				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2260				    F_FW_IQ_CMD_FL0CONGCIF |
2261				    F_FW_IQ_CMD_FL0CONGEN);
2262		}
2263		c.fl0dcaen_to_fl0cidxfthresh =
2264		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
2265			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
2266		c.fl0size = htobe16(fl->qsize);
2267		c.fl0addr = htobe64(fl->ba);
2268	}
2269
2270	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2271	if (rc != 0) {
2272		device_printf(sc->dev,
2273		    "failed to create ingress queue: %d\n", rc);
2274		return (rc);
2275	}
2276
2277	iq->cdesc = iq->desc;
2278	iq->cidx = 0;
2279	iq->gen = 1;
2280	iq->intr_next = iq->intr_params;
2281	iq->cntxt_id = be16toh(c.iqid);
2282	iq->abs_id = be16toh(c.physiqid);
2283	iq->flags |= IQ_ALLOCATED;
2284
2285	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2286	if (cntxt_id >= sc->sge.niq) {
2287		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2288		    cntxt_id, sc->sge.niq - 1);
2289	}
2290	sc->sge.iqmap[cntxt_id] = iq;
2291
2292	if (fl) {
2293		fl->cntxt_id = be16toh(c.fl0id);
2294		fl->pidx = fl->cidx = 0;
2295
2296		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2297		if (cntxt_id >= sc->sge.neq) {
2298			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2299			    __func__, cntxt_id, sc->sge.neq - 1);
2300		}
2301		sc->sge.eqmap[cntxt_id] = (void *)fl;
2302
2303		FL_LOCK(fl);
2304		/* Enough to make sure the SGE doesn't think it's starved */
2305		refill_fl(sc, fl, fl->lowat);
2306		FL_UNLOCK(fl);
2307
2308		iq->flags |= IQ_HAS_FL;
2309	}
2310
2311	if (is_t5(sc) && cong >= 0) {
2312		uint32_t param, val;
2313
2314		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2315		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2316		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2317		if (cong == 0)
2318			val = 1 << 19;
2319		else {
2320			val = 2 << 19;
2321			for (i = 0; i < 4; i++) {
2322				if (cong & (1 << i))
2323					val |= 1 << (i << 2);
2324			}
2325		}
2326
2327		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2328		if (rc != 0) {
2329			/* report error but carry on */
2330			device_printf(sc->dev,
2331			    "failed to set congestion manager context for "
2332			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2333		}
2334	}
2335
2336	/* Enable IQ interrupts */
2337	atomic_store_rel_int(&iq->state, IQS_IDLE);
2338	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
2339	    V_INGRESSQID(iq->cntxt_id));
2340
2341	return (0);
2342}
2343
2344static int
2345free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
2346{
2347	int rc;
2348	struct adapter *sc = iq->adapter;
2349	device_t dev;
2350
2351	if (sc == NULL)
2352		return (0);	/* nothing to do */
2353
2354	dev = pi ? pi->dev : sc->dev;
2355
2356	if (iq->flags & IQ_ALLOCATED) {
2357		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2358		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2359		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2360		if (rc != 0) {
2361			device_printf(dev,
2362			    "failed to free queue %p: %d\n", iq, rc);
2363			return (rc);
2364		}
2365		iq->flags &= ~IQ_ALLOCATED;
2366	}
2367
2368	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2369
2370	bzero(iq, sizeof(*iq));
2371
2372	if (fl) {
2373		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2374		    fl->desc);
2375
2376		if (fl->sdesc)
2377			free_fl_sdesc(sc, fl);
2378
2379		if (mtx_initialized(&fl->fl_lock))
2380			mtx_destroy(&fl->fl_lock);
2381
2382		bzero(fl, sizeof(*fl));
2383	}
2384
2385	return (0);
2386}
2387
2388static void
2389add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
2390    struct sge_fl *fl)
2391{
2392	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2393
2394	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2395	    "freelist");
2396	children = SYSCTL_CHILDREN(oid);
2397
2398	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2399	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
2400	    "SGE context id of the freelist");
2401	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
2402	    0, "consumer index");
2403	if (fl->flags & FL_BUF_PACKING) {
2404		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
2405		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
2406	}
2407	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
2408	    0, "producer index");
2409	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
2410	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
2411	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
2412	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
2413	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
2414	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
2415	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
2416	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
2417	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
2418	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
2419}
2420
2421static int
2422alloc_fwq(struct adapter *sc)
2423{
2424	int rc, intr_idx;
2425	struct sge_iq *fwq = &sc->sge.fwq;
2426	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2427	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2428
2429	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
2430	fwq->flags |= IQ_INTR;	/* always */
2431	intr_idx = sc->intr_count > 1 ? 1 : 0;
2432	rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
2433	if (rc != 0) {
2434		device_printf(sc->dev,
2435		    "failed to create firmware event queue: %d\n", rc);
2436		return (rc);
2437	}
2438
2439	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2440	    NULL, "firmware event queue");
2441	children = SYSCTL_CHILDREN(oid);
2442
2443	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
2444	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
2445	    "absolute id of the queue");
2446	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
2447	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
2448	    "SGE context id of the queue");
2449	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
2450	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
2451	    "consumer index");
2452
2453	return (0);
2454}
2455
2456static int
2457free_fwq(struct adapter *sc)
2458{
2459	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
2460}
2461
2462static int
2463alloc_mgmtq(struct adapter *sc)
2464{
2465	int rc;
2466	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
2467	char name[16];
2468	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2469	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2470
2471	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
2472	    NULL, "management queue");
2473
2474	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
2475	init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
2476	    sc->sge.fwq.cntxt_id, name);
2477	rc = alloc_wrq(sc, NULL, mgmtq, oid);
2478	if (rc != 0) {
2479		device_printf(sc->dev,
2480		    "failed to create management queue: %d\n", rc);
2481		return (rc);
2482	}
2483
2484	return (0);
2485}
2486
2487static int
2488free_mgmtq(struct adapter *sc)
2489{
2490
2491	return free_wrq(sc, &sc->sge.mgmtq);
2492}
2493
2494static inline int
2495tnl_cong(struct port_info *pi)
2496{
2497
2498	if (cong_drop == -1)
2499		return (-1);
2500	else if (cong_drop == 1)
2501		return (0);
2502	else
2503		return (pi->rx_chan_map);
2504}
2505
2506static int
2507alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx,
2508    struct sysctl_oid *oid)
2509{
2510	int rc;
2511	struct sysctl_oid_list *children;
2512	char name[16];
2513
2514	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(pi));
2515	if (rc != 0)
2516		return (rc);
2517
2518	FL_LOCK(&rxq->fl);
2519	refill_fl(pi->adapter, &rxq->fl, rxq->fl.needed / 8);
2520	FL_UNLOCK(&rxq->fl);
2521
2522#if defined(INET) || defined(INET6)
2523	rc = tcp_lro_init(&rxq->lro);
2524	if (rc != 0)
2525		return (rc);
2526	rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
2527
2528	if (pi->ifp->if_capenable & IFCAP_LRO)
2529		rxq->iq.flags |= IQ_LRO_ENABLED;
2530#endif
2531	rxq->ifp = pi->ifp;
2532
2533	children = SYSCTL_CHILDREN(oid);
2534
2535	snprintf(name, sizeof(name), "%d", idx);
2536	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2537	    NULL, "rx queue");
2538	children = SYSCTL_CHILDREN(oid);
2539
2540	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2541	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
2542	    "absolute id of the queue");
2543	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2544	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
2545	    "SGE context id of the queue");
2546	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2547	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
2548	    "consumer index");
2549#if defined(INET) || defined(INET6)
2550	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
2551	    &rxq->lro.lro_queued, 0, NULL);
2552	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
2553	    &rxq->lro.lro_flushed, 0, NULL);
2554#endif
2555	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
2556	    &rxq->rxcsum, "# of times hardware assisted with checksum");
2557	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
2558	    CTLFLAG_RD, &rxq->vlan_extraction,
2559	    "# of times hardware extracted 802.1Q tag");
2560
2561	add_fl_sysctls(&pi->ctx, oid, &rxq->fl);
2562
2563	return (rc);
2564}
2565
2566static int
2567free_rxq(struct port_info *pi, struct sge_rxq *rxq)
2568{
2569	int rc;
2570
2571#if defined(INET) || defined(INET6)
2572	if (rxq->lro.ifp) {
2573		tcp_lro_free(&rxq->lro);
2574		rxq->lro.ifp = NULL;
2575	}
2576#endif
2577
2578	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
2579	if (rc == 0)
2580		bzero(rxq, sizeof(*rxq));
2581
2582	return (rc);
2583}
2584
2585#ifdef TCP_OFFLOAD
2586static int
2587alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
2588    int intr_idx, int idx, struct sysctl_oid *oid)
2589{
2590	int rc;
2591	struct sysctl_oid_list *children;
2592	char name[16];
2593
2594	rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
2595	    pi->rx_chan_map);
2596	if (rc != 0)
2597		return (rc);
2598
2599	children = SYSCTL_CHILDREN(oid);
2600
2601	snprintf(name, sizeof(name), "%d", idx);
2602	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2603	    NULL, "rx queue");
2604	children = SYSCTL_CHILDREN(oid);
2605
2606	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2607	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
2608	    "I", "absolute id of the queue");
2609	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2610	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
2611	    "I", "SGE context id of the queue");
2612	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2613	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
2614	    "consumer index");
2615
2616	add_fl_sysctls(&pi->ctx, oid, &ofld_rxq->fl);
2617
2618	return (rc);
2619}
2620
2621static int
2622free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
2623{
2624	int rc;
2625
2626	rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
2627	if (rc == 0)
2628		bzero(ofld_rxq, sizeof(*ofld_rxq));
2629
2630	return (rc);
2631}
2632#endif
2633
2634#ifdef DEV_NETMAP
2635static int
2636alloc_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq, int intr_idx,
2637    int idx, struct sysctl_oid *oid)
2638{
2639	int rc;
2640	struct sysctl_oid_list *children;
2641	struct sysctl_ctx_list *ctx;
2642	char name[16];
2643	size_t len;
2644	struct adapter *sc = pi->adapter;
2645	struct netmap_adapter *na = NA(pi->nm_ifp);
2646
2647	MPASS(na != NULL);
2648
2649	len = pi->qsize_rxq * RX_IQ_ESIZE;
2650	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
2651	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
2652	if (rc != 0)
2653		return (rc);
2654
2655	len = na->num_rx_desc * RX_FL_ESIZE + spg_len;
2656	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
2657	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
2658	if (rc != 0)
2659		return (rc);
2660
2661	nm_rxq->pi = pi;
2662	nm_rxq->nid = idx;
2663	nm_rxq->iq_cidx = 0;
2664	nm_rxq->iq_sidx = pi->qsize_rxq - spg_len / RX_IQ_ESIZE;
2665	nm_rxq->iq_gen = F_RSPD_GEN;
2666	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
2667	nm_rxq->fl_sidx = na->num_rx_desc;
2668	nm_rxq->intr_idx = intr_idx;
2669
2670	ctx = &pi->ctx;
2671	children = SYSCTL_CHILDREN(oid);
2672
2673	snprintf(name, sizeof(name), "%d", idx);
2674	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
2675	    "rx queue");
2676	children = SYSCTL_CHILDREN(oid);
2677
2678	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
2679	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
2680	    "I", "absolute id of the queue");
2681	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2682	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
2683	    "I", "SGE context id of the queue");
2684	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
2685	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
2686	    "consumer index");
2687
2688	children = SYSCTL_CHILDREN(oid);
2689	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2690	    "freelist");
2691	children = SYSCTL_CHILDREN(oid);
2692
2693	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2694	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
2695	    "I", "SGE context id of the freelist");
2696	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
2697	    &nm_rxq->fl_cidx, 0, "consumer index");
2698	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
2699	    &nm_rxq->fl_pidx, 0, "producer index");
2700
2701	return (rc);
2702}
2703
2704
2705static int
2706free_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq)
2707{
2708	struct adapter *sc = pi->adapter;
2709
2710	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
2711	    nm_rxq->iq_desc);
2712	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
2713	    nm_rxq->fl_desc);
2714
2715	return (0);
2716}
2717
2718static int
2719alloc_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
2720    struct sysctl_oid *oid)
2721{
2722	int rc;
2723	size_t len;
2724	struct adapter *sc = pi->adapter;
2725	struct netmap_adapter *na = NA(pi->nm_ifp);
2726	char name[16];
2727	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2728
2729	len = na->num_tx_desc * EQ_ESIZE + spg_len;
2730	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
2731	    &nm_txq->ba, (void **)&nm_txq->desc);
2732	if (rc)
2733		return (rc);
2734
2735	nm_txq->pidx = nm_txq->cidx = 0;
2736	nm_txq->sidx = na->num_tx_desc;
2737	nm_txq->nid = idx;
2738	nm_txq->iqidx = iqidx;
2739	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
2740	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf));
2741
2742	snprintf(name, sizeof(name), "%d", idx);
2743	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2744	    NULL, "netmap tx queue");
2745	children = SYSCTL_CHILDREN(oid);
2746
2747	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2748	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
2749	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2750	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
2751	    "consumer index");
2752	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
2753	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
2754	    "producer index");
2755
2756	return (rc);
2757}
2758
2759static int
2760free_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq)
2761{
2762	struct adapter *sc = pi->adapter;
2763
2764	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
2765	    nm_txq->desc);
2766
2767	return (0);
2768}
2769#endif
2770
2771static int
2772ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
2773{
2774	int rc, cntxt_id;
2775	struct fw_eq_ctrl_cmd c;
2776
2777	bzero(&c, sizeof(c));
2778
2779	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
2780	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
2781	    V_FW_EQ_CTRL_CMD_VFN(0));
2782	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
2783	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2784	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */
2785	c.physeqid_pkd = htobe32(0);
2786	c.fetchszm_to_iqid =
2787	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2788		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
2789		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
2790	c.dcaen_to_eqsize =
2791	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2792		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2793		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2794		V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
2795	c.eqaddr = htobe64(eq->ba);
2796
2797	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2798	if (rc != 0) {
2799		device_printf(sc->dev,
2800		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
2801		return (rc);
2802	}
2803	eq->flags |= EQ_ALLOCATED;
2804
2805	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
2806	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2807	if (cntxt_id >= sc->sge.neq)
2808	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2809		cntxt_id, sc->sge.neq - 1);
2810	sc->sge.eqmap[cntxt_id] = eq;
2811
2812	return (rc);
2813}
2814
2815static int
2816eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2817{
2818	int rc, cntxt_id;
2819	struct fw_eq_eth_cmd c;
2820
2821	bzero(&c, sizeof(c));
2822
2823	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
2824	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
2825	    V_FW_EQ_ETH_CMD_VFN(0));
2826	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
2827	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2828	c.autoequiqe_to_viid = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
2829	c.fetchszm_to_iqid =
2830	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2831		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
2832		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
2833	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2834		      V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2835		      V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2836		      V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
2837	c.eqaddr = htobe64(eq->ba);
2838
2839	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2840	if (rc != 0) {
2841		device_printf(pi->dev,
2842		    "failed to create Ethernet egress queue: %d\n", rc);
2843		return (rc);
2844	}
2845	eq->flags |= EQ_ALLOCATED;
2846
2847	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
2848	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2849	if (cntxt_id >= sc->sge.neq)
2850	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2851		cntxt_id, sc->sge.neq - 1);
2852	sc->sge.eqmap[cntxt_id] = eq;
2853
2854	return (rc);
2855}
2856
2857#ifdef TCP_OFFLOAD
2858static int
2859ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2860{
2861	int rc, cntxt_id;
2862	struct fw_eq_ofld_cmd c;
2863
2864	bzero(&c, sizeof(c));
2865
2866	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
2867	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
2868	    V_FW_EQ_OFLD_CMD_VFN(0));
2869	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
2870	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2871	c.fetchszm_to_iqid =
2872		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2873		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
2874		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
2875	c.dcaen_to_eqsize =
2876	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2877		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2878		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2879		V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
2880	c.eqaddr = htobe64(eq->ba);
2881
2882	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2883	if (rc != 0) {
2884		device_printf(pi->dev,
2885		    "failed to create egress queue for TCP offload: %d\n", rc);
2886		return (rc);
2887	}
2888	eq->flags |= EQ_ALLOCATED;
2889
2890	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
2891	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2892	if (cntxt_id >= sc->sge.neq)
2893	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2894		cntxt_id, sc->sge.neq - 1);
2895	sc->sge.eqmap[cntxt_id] = eq;
2896
2897	return (rc);
2898}
2899#endif
2900
2901static int
2902alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2903{
2904	int rc;
2905	size_t len;
2906
2907	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
2908
2909	len = eq->qsize * EQ_ESIZE;
2910	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
2911	    &eq->ba, (void **)&eq->desc);
2912	if (rc)
2913		return (rc);
2914
2915	eq->cap = eq->qsize - spg_len / EQ_ESIZE;
2916	eq->spg = (void *)&eq->desc[eq->cap];
2917	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
2918	eq->pidx = eq->cidx = 0;
2919	eq->doorbells = sc->doorbells;
2920
2921	switch (eq->flags & EQ_TYPEMASK) {
2922	case EQ_CTRL:
2923		rc = ctrl_eq_alloc(sc, eq);
2924		break;
2925
2926	case EQ_ETH:
2927		rc = eth_eq_alloc(sc, pi, eq);
2928		break;
2929
2930#ifdef TCP_OFFLOAD
2931	case EQ_OFLD:
2932		rc = ofld_eq_alloc(sc, pi, eq);
2933		break;
2934#endif
2935
2936	default:
2937		panic("%s: invalid eq type %d.", __func__,
2938		    eq->flags & EQ_TYPEMASK);
2939	}
2940	if (rc != 0) {
2941		device_printf(sc->dev,
2942		    "failed to allocate egress queue(%d): %d",
2943		    eq->flags & EQ_TYPEMASK, rc);
2944	}
2945
2946	eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus;
2947
2948	if (isset(&eq->doorbells, DOORBELL_UDB) ||
2949	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
2950	    isset(&eq->doorbells, DOORBELL_WCWR)) {
2951		uint32_t s_qpp = sc->sge.eq_s_qpp;
2952		uint32_t mask = (1 << s_qpp) - 1;
2953		volatile uint8_t *udb;
2954
2955		udb = sc->udbs_base + UDBS_DB_OFFSET;
2956		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
2957		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
2958		if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE)
2959	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
2960		else {
2961			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
2962			eq->udb_qid = 0;
2963		}
2964		eq->udb = (volatile void *)udb;
2965	}
2966
2967	return (rc);
2968}
2969
2970static int
2971free_eq(struct adapter *sc, struct sge_eq *eq)
2972{
2973	int rc;
2974
2975	if (eq->flags & EQ_ALLOCATED) {
2976		switch (eq->flags & EQ_TYPEMASK) {
2977		case EQ_CTRL:
2978			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
2979			    eq->cntxt_id);
2980			break;
2981
2982		case EQ_ETH:
2983			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
2984			    eq->cntxt_id);
2985			break;
2986
2987#ifdef TCP_OFFLOAD
2988		case EQ_OFLD:
2989			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
2990			    eq->cntxt_id);
2991			break;
2992#endif
2993
2994		default:
2995			panic("%s: invalid eq type %d.", __func__,
2996			    eq->flags & EQ_TYPEMASK);
2997		}
2998		if (rc != 0) {
2999			device_printf(sc->dev,
3000			    "failed to free egress queue (%d): %d\n",
3001			    eq->flags & EQ_TYPEMASK, rc);
3002			return (rc);
3003		}
3004		eq->flags &= ~EQ_ALLOCATED;
3005	}
3006
3007	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3008
3009	if (mtx_initialized(&eq->eq_lock))
3010		mtx_destroy(&eq->eq_lock);
3011
3012	bzero(eq, sizeof(*eq));
3013	return (0);
3014}
3015
3016static int
3017alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
3018    struct sysctl_oid *oid)
3019{
3020	int rc;
3021	struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx;
3022	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3023
3024	rc = alloc_eq(sc, pi, &wrq->eq);
3025	if (rc)
3026		return (rc);
3027
3028	wrq->adapter = sc;
3029	STAILQ_INIT(&wrq->wr_list);
3030
3031	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3032	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3033	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3034	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3035	    "consumer index");
3036	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3037	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3038	    "producer index");
3039	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD,
3040	    &wrq->tx_wrs, "# of work requests");
3041	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
3042	    &wrq->no_desc, 0,
3043	    "# of times queue ran out of hardware descriptors");
3044	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
3045	    &wrq->eq.unstalled, 0, "# of times queue recovered after stall");
3046
3047	return (rc);
3048}
3049
3050static int
3051free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3052{
3053	int rc;
3054
3055	rc = free_eq(sc, &wrq->eq);
3056	if (rc)
3057		return (rc);
3058
3059	bzero(wrq, sizeof(*wrq));
3060	return (0);
3061}
3062
3063static int
3064alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx,
3065    struct sysctl_oid *oid)
3066{
3067	int rc;
3068	struct adapter *sc = pi->adapter;
3069	struct sge_eq *eq = &txq->eq;
3070	char name[16];
3071	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3072
3073	rc = alloc_eq(sc, pi, eq);
3074	if (rc)
3075		return (rc);
3076
3077	txq->ifp = pi->ifp;
3078
3079	txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
3080	    M_ZERO | M_WAITOK);
3081	txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
3082
3083	rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
3084	    BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
3085	    BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag);
3086	if (rc != 0) {
3087		device_printf(sc->dev,
3088		    "failed to create tx DMA tag: %d\n", rc);
3089		return (rc);
3090	}
3091
3092	/*
3093	 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
3094	 * limit for any WR).  txq->no_dmamap events shouldn't occur if maps is
3095	 * sized for the worst case.
3096	 */
3097	rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8,
3098	    M_WAITOK);
3099	if (rc != 0) {
3100		device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
3101		return (rc);
3102	}
3103
3104	snprintf(name, sizeof(name), "%d", idx);
3105	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3106	    NULL, "tx queue");
3107	children = SYSCTL_CHILDREN(oid);
3108
3109	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3110	    &eq->cntxt_id, 0, "SGE context id of the queue");
3111	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
3112	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3113	    "consumer index");
3114	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
3115	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3116	    "producer index");
3117
3118	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3119	    &txq->txcsum, "# of times hardware assisted with checksum");
3120	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
3121	    CTLFLAG_RD, &txq->vlan_insertion,
3122	    "# of times hardware inserted 802.1Q tag");
3123	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3124	    &txq->tso_wrs, "# of TSO work requests");
3125	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3126	    &txq->imm_wrs, "# of work requests with immediate data");
3127	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3128	    &txq->sgl_wrs, "# of work requests with direct SGL");
3129	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3130	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3131	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
3132	    &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
3133	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
3134	    &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
3135
3136	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "br_drops", CTLFLAG_RD,
3137	    &txq->br->br_drops, "# of drops in the buf_ring for this queue");
3138	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
3139	    &txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
3140	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
3141	    &txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
3142	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
3143	    &eq->egr_update, 0, "egress update notifications from the SGE");
3144	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
3145	    &eq->unstalled, 0, "# of times txq recovered after stall");
3146
3147	return (rc);
3148}
3149
3150static int
3151free_txq(struct port_info *pi, struct sge_txq *txq)
3152{
3153	int rc;
3154	struct adapter *sc = pi->adapter;
3155	struct sge_eq *eq = &txq->eq;
3156
3157	rc = free_eq(sc, eq);
3158	if (rc)
3159		return (rc);
3160
3161	free(txq->sdesc, M_CXGBE);
3162
3163	if (txq->txmaps.maps)
3164		t4_free_tx_maps(&txq->txmaps, txq->tx_tag);
3165
3166	buf_ring_free(txq->br, M_CXGBE);
3167
3168	if (txq->tx_tag)
3169		bus_dma_tag_destroy(txq->tx_tag);
3170
3171	bzero(txq, sizeof(*txq));
3172	return (0);
3173}
3174
3175static void
3176oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3177{
3178	bus_addr_t *ba = arg;
3179
3180	KASSERT(nseg == 1,
3181	    ("%s meant for single segment mappings only.", __func__));
3182
3183	*ba = error ? 0 : segs->ds_addr;
3184}
3185
3186static inline bool
3187is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
3188{
3189	*ctrl = (void *)((uintptr_t)iq->cdesc +
3190	    (iq->esize - sizeof(struct rsp_ctrl)));
3191
3192	return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen);
3193}
3194
3195static inline void
3196iq_next(struct sge_iq *iq)
3197{
3198	iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
3199	if (__predict_false(++iq->cidx == iq->qsize - spg_len / iq->esize)) {
3200		iq->cidx = 0;
3201		iq->gen ^= 1;
3202		iq->cdesc = iq->desc;
3203	}
3204}
3205
3206#define FL_HW_IDX(x) ((x) >> 3)
3207static inline void
3208ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3209{
3210	int ndesc = fl->pending / 8;
3211	uint32_t v;
3212
3213	if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
3214		ndesc--;	/* hold back one credit */
3215
3216	if (ndesc <= 0)
3217		return;		/* nothing to do */
3218
3219	v = F_DBPRIO | V_QID(fl->cntxt_id) | V_PIDX(ndesc);
3220	if (is_t5(sc))
3221		v |= F_DBTYPE;
3222
3223	wmb();
3224
3225	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3226	fl->pending -= ndesc * 8;
3227}
3228
3229/*
3230 * Fill up the freelist by upto nbufs and maybe ring its doorbell.
3231 *
3232 * Returns non-zero to indicate that it should be added to the list of starving
3233 * freelists.
3234 */
3235static int
3236refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
3237{
3238	__be64 *d = &fl->desc[fl->pidx];
3239	struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
3240	uintptr_t pa;
3241	caddr_t cl;
3242	struct cluster_layout *cll = &fl->cll_def;	/* default layout */
3243	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
3244	struct cluster_metadata *clm;
3245
3246	FL_LOCK_ASSERT_OWNED(fl);
3247
3248	if (nbufs > fl->needed)
3249		nbufs = fl->needed;
3250	nbufs -= (fl->pidx + nbufs) % 8;
3251
3252	while (nbufs--) {
3253
3254		if (sd->cl != NULL) {
3255
3256			if (sd->nimbuf + sd->nembuf == 0) {
3257				/*
3258				 * Fast recycle without involving any atomics on
3259				 * the cluster's metadata (if the cluster has
3260				 * metadata).  This happens when all frames
3261				 * received in the cluster were small enough to
3262				 * fit within a single mbuf each.
3263				 */
3264				fl->cl_fast_recycled++;
3265#ifdef INVARIANTS
3266				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3267				if (clm != NULL)
3268					MPASS(clm->refcount == 1);
3269#endif
3270				goto recycled_fast;
3271			}
3272
3273			/*
3274			 * Cluster is guaranteed to have metadata.  Clusters
3275			 * without metadata always take the fast recycle path
3276			 * when they're recycled.
3277			 */
3278			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3279			MPASS(clm != NULL);
3280
3281			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3282				fl->cl_recycled++;
3283				goto recycled;
3284			}
3285			sd->cl = NULL;	/* gave up my reference */
3286		}
3287		MPASS(sd->cl == NULL);
3288alloc:
3289		cl = uma_zalloc(swz->zone, M_NOWAIT);
3290		if (__predict_false(cl == NULL)) {
3291			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
3292			    fl->cll_def.zidx == fl->cll_alt.zidx)
3293				break;
3294
3295			/* fall back to the safe zone */
3296			cll = &fl->cll_alt;
3297			swz = &sc->sge.sw_zone_info[cll->zidx];
3298			goto alloc;
3299		}
3300		fl->cl_allocated++;
3301
3302		pa = pmap_kextract((vm_offset_t)cl);
3303		pa += cll->region1;
3304		sd->cl = cl;
3305		sd->cll = *cll;
3306		*d = htobe64(pa | cll->hwidx);
3307		clm = cl_metadata(sc, fl, cll, cl);
3308		if (clm != NULL) {
3309recycled:
3310#ifdef INVARIANTS
3311			clm->sd = sd;
3312#endif
3313			clm->refcount = 1;
3314		}
3315		sd->nimbuf = 0;
3316		sd->nembuf = 0;
3317recycled_fast:
3318		fl->pending++;
3319		fl->needed--;
3320		d++;
3321		sd++;
3322		if (__predict_false(++fl->pidx == fl->cap)) {
3323			fl->pidx = 0;
3324			sd = fl->sdesc;
3325			d = fl->desc;
3326		}
3327	}
3328
3329	if (fl->pending >= 8)
3330		ring_fl_db(sc, fl);
3331
3332	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3333}
3334
3335/*
3336 * Attempt to refill all starving freelists.
3337 */
3338static void
3339refill_sfl(void *arg)
3340{
3341	struct adapter *sc = arg;
3342	struct sge_fl *fl, *fl_temp;
3343
3344	mtx_lock(&sc->sfl_lock);
3345	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3346		FL_LOCK(fl);
3347		refill_fl(sc, fl, 64);
3348		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3349			TAILQ_REMOVE(&sc->sfl, fl, link);
3350			fl->flags &= ~FL_STARVING;
3351		}
3352		FL_UNLOCK(fl);
3353	}
3354
3355	if (!TAILQ_EMPTY(&sc->sfl))
3356		callout_schedule(&sc->sfl_callout, hz / 5);
3357	mtx_unlock(&sc->sfl_lock);
3358}
3359
3360static int
3361alloc_fl_sdesc(struct sge_fl *fl)
3362{
3363
3364	fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE,
3365	    M_ZERO | M_WAITOK);
3366
3367	return (0);
3368}
3369
3370static void
3371free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3372{
3373	struct fl_sdesc *sd;
3374	struct cluster_metadata *clm;
3375	struct cluster_layout *cll;
3376	int i;
3377
3378	sd = fl->sdesc;
3379	for (i = 0; i < fl->cap; i++, sd++) {
3380		if (sd->cl == NULL)
3381			continue;
3382
3383		cll = &sd->cll;
3384		clm = cl_metadata(sc, fl, cll, sd->cl);
3385		if (sd->nimbuf + sd->nembuf == 0 ||
3386		    (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1)) {
3387			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3388		}
3389		sd->cl = NULL;
3390	}
3391
3392	free(fl->sdesc, M_CXGBE);
3393	fl->sdesc = NULL;
3394}
3395
3396int
3397t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count,
3398    int flags)
3399{
3400	struct tx_map *txm;
3401	int i, rc;
3402
3403	txmaps->map_total = txmaps->map_avail = count;
3404	txmaps->map_cidx = txmaps->map_pidx = 0;
3405
3406	txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
3407	    M_ZERO | flags);
3408
3409	txm = txmaps->maps;
3410	for (i = 0; i < count; i++, txm++) {
3411		rc = bus_dmamap_create(tx_tag, 0, &txm->map);
3412		if (rc != 0)
3413			goto failed;
3414	}
3415
3416	return (0);
3417failed:
3418	while (--i >= 0) {
3419		txm--;
3420		bus_dmamap_destroy(tx_tag, txm->map);
3421	}
3422	KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__));
3423
3424	free(txmaps->maps, M_CXGBE);
3425	txmaps->maps = NULL;
3426
3427	return (rc);
3428}
3429
3430void
3431t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag)
3432{
3433	struct tx_map *txm;
3434	int i;
3435
3436	txm = txmaps->maps;
3437	for (i = 0; i < txmaps->map_total; i++, txm++) {
3438
3439		if (txm->m) {
3440			bus_dmamap_unload(tx_tag, txm->map);
3441			m_freem(txm->m);
3442			txm->m = NULL;
3443		}
3444
3445		bus_dmamap_destroy(tx_tag, txm->map);
3446	}
3447
3448	free(txmaps->maps, M_CXGBE);
3449	txmaps->maps = NULL;
3450}
3451
3452/*
3453 * We'll do immediate data tx for non-TSO, but only when not coalescing.  We're
3454 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
3455 * of immediate data.
3456 */
3457#define IMM_LEN ( \
3458      2 * EQ_ESIZE \
3459    - sizeof(struct fw_eth_tx_pkt_wr) \
3460    - sizeof(struct cpl_tx_pkt_core))
3461
3462/*
3463 * Returns non-zero on failure, no need to cleanup anything in that case.
3464 *
3465 * Note 1: We always try to defrag the mbuf if required and return EFBIG only
3466 * if the resulting chain still won't fit in a tx descriptor.
3467 *
3468 * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
3469 * does not have the TCP header in it.
3470 */
3471static int
3472get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
3473    int sgl_only)
3474{
3475	struct mbuf *m = *fp;
3476	struct tx_maps *txmaps;
3477	struct tx_map *txm;
3478	int rc, defragged = 0, n;
3479
3480	TXQ_LOCK_ASSERT_OWNED(txq);
3481
3482	if (m->m_pkthdr.tso_segsz)
3483		sgl_only = 1;	/* Do not allow immediate data with LSO */
3484
3485start:	sgl->nsegs = 0;
3486
3487	if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
3488		return (0);	/* nsegs = 0 tells caller to use imm. tx */
3489
3490	txmaps = &txq->txmaps;
3491	if (txmaps->map_avail == 0) {
3492		txq->no_dmamap++;
3493		return (ENOMEM);
3494	}
3495	txm = &txmaps->maps[txmaps->map_pidx];
3496
3497	if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
3498		*fp = m_pullup(m, 50);
3499		m = *fp;
3500		if (m == NULL)
3501			return (ENOBUFS);
3502	}
3503
3504	rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg,
3505	    &sgl->nsegs, BUS_DMA_NOWAIT);
3506	if (rc == EFBIG && defragged == 0) {
3507		m = m_defrag(m, M_NOWAIT);
3508		if (m == NULL)
3509			return (EFBIG);
3510
3511		defragged = 1;
3512		*fp = m;
3513		goto start;
3514	}
3515	if (rc != 0)
3516		return (rc);
3517
3518	txm->m = m;
3519	txmaps->map_avail--;
3520	if (++txmaps->map_pidx == txmaps->map_total)
3521		txmaps->map_pidx = 0;
3522
3523	KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
3524	    ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
3525
3526	/*
3527	 * Store the # of flits required to hold this frame's SGL in nflits.  An
3528	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
3529	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
3530	 * then len1 must be set to 0.
3531	 */
3532	n = sgl->nsegs - 1;
3533	sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
3534
3535	return (0);
3536}
3537
3538
3539/*
3540 * Releases all the txq resources used up in the specified sgl.
3541 */
3542static int
3543free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
3544{
3545	struct tx_maps *txmaps;
3546	struct tx_map *txm;
3547
3548	TXQ_LOCK_ASSERT_OWNED(txq);
3549
3550	if (sgl->nsegs == 0)
3551		return (0);	/* didn't use any map */
3552
3553	txmaps = &txq->txmaps;
3554
3555	/* 1 pkt uses exactly 1 map, back it out */
3556
3557	txmaps->map_avail++;
3558	if (txmaps->map_pidx > 0)
3559		txmaps->map_pidx--;
3560	else
3561		txmaps->map_pidx = txmaps->map_total - 1;
3562
3563	txm = &txmaps->maps[txmaps->map_pidx];
3564	bus_dmamap_unload(txq->tx_tag, txm->map);
3565	txm->m = NULL;
3566
3567	return (0);
3568}
3569
3570static int
3571write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
3572    struct sgl *sgl)
3573{
3574	struct sge_eq *eq = &txq->eq;
3575	struct fw_eth_tx_pkt_wr *wr;
3576	struct cpl_tx_pkt_core *cpl;
3577	uint32_t ctrl;	/* used in many unrelated places */
3578	uint64_t ctrl1;
3579	int nflits, ndesc, pktlen;
3580	struct tx_sdesc *txsd;
3581	caddr_t dst;
3582
3583	TXQ_LOCK_ASSERT_OWNED(txq);
3584
3585	pktlen = m->m_pkthdr.len;
3586
3587	/*
3588	 * Do we have enough flits to send this frame out?
3589	 */
3590	ctrl = sizeof(struct cpl_tx_pkt_core);
3591	if (m->m_pkthdr.tso_segsz) {
3592		nflits = TXPKT_LSO_WR_HDR;
3593		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
3594	} else
3595		nflits = TXPKT_WR_HDR;
3596	if (sgl->nsegs > 0)
3597		nflits += sgl->nflits;
3598	else {
3599		nflits += howmany(pktlen, 8);
3600		ctrl += pktlen;
3601	}
3602	ndesc = howmany(nflits, 8);
3603	if (ndesc > eq->avail)
3604		return (ENOMEM);
3605
3606	/* Firmware work request header */
3607	wr = (void *)&eq->desc[eq->pidx];
3608	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
3609	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
3610	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
3611	if (eq->avail == ndesc) {
3612		if (!(eq->flags & EQ_CRFLUSHED)) {
3613			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3614			eq->flags |= EQ_CRFLUSHED;
3615		}
3616		eq->flags |= EQ_STALLED;
3617	}
3618
3619	wr->equiq_to_len16 = htobe32(ctrl);
3620	wr->r3 = 0;
3621
3622	if (m->m_pkthdr.tso_segsz) {
3623		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
3624		struct ether_header *eh;
3625		void *l3hdr;
3626#if defined(INET) || defined(INET6)
3627		struct tcphdr *tcp;
3628#endif
3629		uint16_t eh_type;
3630
3631		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
3632		    F_LSO_LAST_SLICE;
3633
3634		eh = mtod(m, struct ether_header *);
3635		eh_type = ntohs(eh->ether_type);
3636		if (eh_type == ETHERTYPE_VLAN) {
3637			struct ether_vlan_header *evh = (void *)eh;
3638
3639			ctrl |= V_LSO_ETHHDR_LEN(1);
3640			l3hdr = evh + 1;
3641			eh_type = ntohs(evh->evl_proto);
3642		} else
3643			l3hdr = eh + 1;
3644
3645		switch (eh_type) {
3646#ifdef INET6
3647		case ETHERTYPE_IPV6:
3648		{
3649			struct ip6_hdr *ip6 = l3hdr;
3650
3651			/*
3652			 * XXX-BZ For now we do not pretend to support
3653			 * IPv6 extension headers.
3654			 */
3655			KASSERT(ip6->ip6_nxt == IPPROTO_TCP, ("%s: CSUM_TSO "
3656			    "with ip6_nxt != TCP: %u", __func__, ip6->ip6_nxt));
3657			tcp = (struct tcphdr *)(ip6 + 1);
3658			ctrl |= F_LSO_IPV6;
3659			ctrl |= V_LSO_IPHDR_LEN(sizeof(*ip6) >> 2) |
3660			    V_LSO_TCPHDR_LEN(tcp->th_off);
3661			break;
3662		}
3663#endif
3664#ifdef INET
3665		case ETHERTYPE_IP:
3666		{
3667			struct ip *ip = l3hdr;
3668
3669			tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
3670			ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
3671			    V_LSO_TCPHDR_LEN(tcp->th_off);
3672			break;
3673		}
3674#endif
3675		default:
3676			panic("%s: CSUM_TSO but no supported IP version "
3677			    "(0x%04x)", __func__, eh_type);
3678		}
3679
3680		lso->lso_ctrl = htobe32(ctrl);
3681		lso->ipid_ofst = htobe16(0);
3682		lso->mss = htobe16(m->m_pkthdr.tso_segsz);
3683		lso->seqno_offset = htobe32(0);
3684		lso->len = htobe32(pktlen);
3685
3686		cpl = (void *)(lso + 1);
3687
3688		txq->tso_wrs++;
3689	} else
3690		cpl = (void *)(wr + 1);
3691
3692	/* Checksum offload */
3693	ctrl1 = 0;
3694	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3695		ctrl1 |= F_TXPKT_IPCSUM_DIS;
3696	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3697	    CSUM_TCP_IPV6 | CSUM_TSO)))
3698		ctrl1 |= F_TXPKT_L4CSUM_DIS;
3699	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3700	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3701		txq->txcsum++;	/* some hardware assistance provided */
3702
3703	/* VLAN tag insertion */
3704	if (m->m_flags & M_VLANTAG) {
3705		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3706		txq->vlan_insertion++;
3707	}
3708
3709	/* CPL header */
3710	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3711	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3712	cpl->pack = 0;
3713	cpl->len = htobe16(pktlen);
3714	cpl->ctrl1 = htobe64(ctrl1);
3715
3716	/* Software descriptor */
3717	txsd = &txq->sdesc[eq->pidx];
3718	txsd->desc_used = ndesc;
3719
3720	eq->pending += ndesc;
3721	eq->avail -= ndesc;
3722	eq->pidx += ndesc;
3723	if (eq->pidx >= eq->cap)
3724		eq->pidx -= eq->cap;
3725
3726	/* SGL */
3727	dst = (void *)(cpl + 1);
3728	if (sgl->nsegs > 0) {
3729		txsd->credits = 1;
3730		txq->sgl_wrs++;
3731		write_sgl_to_txd(eq, sgl, &dst);
3732	} else {
3733		txsd->credits = 0;
3734		txq->imm_wrs++;
3735		for (; m; m = m->m_next) {
3736			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
3737#ifdef INVARIANTS
3738			pktlen -= m->m_len;
3739#endif
3740		}
3741#ifdef INVARIANTS
3742		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
3743#endif
3744
3745	}
3746
3747	txq->txpkt_wrs++;
3748	return (0);
3749}
3750
3751/*
3752 * Returns 0 to indicate that m has been accepted into a coalesced tx work
3753 * request.  It has either been folded into txpkts or txpkts was flushed and m
3754 * has started a new coalesced work request (as the first frame in a fresh
3755 * txpkts).
3756 *
3757 * Returns non-zero to indicate a failure - caller is responsible for
3758 * transmitting m, if there was anything in txpkts it has been flushed.
3759 */
3760static int
3761add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
3762    struct mbuf *m, struct sgl *sgl)
3763{
3764	struct sge_eq *eq = &txq->eq;
3765	int can_coalesce;
3766	struct tx_sdesc *txsd;
3767	int flits;
3768
3769	TXQ_LOCK_ASSERT_OWNED(txq);
3770
3771	KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__));
3772
3773	if (txpkts->npkt > 0) {
3774		flits = TXPKTS_PKT_HDR + sgl->nflits;
3775		can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3776		    txpkts->nflits + flits <= TX_WR_FLITS &&
3777		    txpkts->nflits + flits <= eq->avail * 8 &&
3778		    txpkts->plen + m->m_pkthdr.len < 65536;
3779
3780		if (can_coalesce) {
3781			txpkts->npkt++;
3782			txpkts->nflits += flits;
3783			txpkts->plen += m->m_pkthdr.len;
3784
3785			txsd = &txq->sdesc[eq->pidx];
3786			txsd->credits++;
3787
3788			return (0);
3789		}
3790
3791		/*
3792		 * Couldn't coalesce m into txpkts.  The first order of business
3793		 * is to send txpkts on its way.  Then we'll revisit m.
3794		 */
3795		write_txpkts_wr(txq, txpkts);
3796	}
3797
3798	/*
3799	 * Check if we can start a new coalesced tx work request with m as
3800	 * the first packet in it.
3801	 */
3802
3803	KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
3804
3805	flits = TXPKTS_WR_HDR + sgl->nflits;
3806	can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3807	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
3808
3809	if (can_coalesce == 0)
3810		return (EINVAL);
3811
3812	/*
3813	 * Start a fresh coalesced tx WR with m as the first frame in it.
3814	 */
3815	txpkts->npkt = 1;
3816	txpkts->nflits = flits;
3817	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
3818	txpkts->plen = m->m_pkthdr.len;
3819
3820	txsd = &txq->sdesc[eq->pidx];
3821	txsd->credits = 1;
3822
3823	return (0);
3824}
3825
3826/*
3827 * Note that write_txpkts_wr can never run out of hardware descriptors (but
3828 * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
3829 * coalescing only if sufficient hardware descriptors are available.
3830 */
3831static void
3832write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
3833{
3834	struct sge_eq *eq = &txq->eq;
3835	struct fw_eth_tx_pkts_wr *wr;
3836	struct tx_sdesc *txsd;
3837	uint32_t ctrl;
3838	int ndesc;
3839
3840	TXQ_LOCK_ASSERT_OWNED(txq);
3841
3842	ndesc = howmany(txpkts->nflits, 8);
3843
3844	wr = (void *)&eq->desc[eq->pidx];
3845	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
3846	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
3847	if (eq->avail == ndesc) {
3848		if (!(eq->flags & EQ_CRFLUSHED)) {
3849			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3850			eq->flags |= EQ_CRFLUSHED;
3851		}
3852		eq->flags |= EQ_STALLED;
3853	}
3854	wr->equiq_to_len16 = htobe32(ctrl);
3855	wr->plen = htobe16(txpkts->plen);
3856	wr->npkt = txpkts->npkt;
3857	wr->r3 = wr->type = 0;
3858
3859	/* Everything else already written */
3860
3861	txsd = &txq->sdesc[eq->pidx];
3862	txsd->desc_used = ndesc;
3863
3864	KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__));
3865
3866	eq->pending += ndesc;
3867	eq->avail -= ndesc;
3868	eq->pidx += ndesc;
3869	if (eq->pidx >= eq->cap)
3870		eq->pidx -= eq->cap;
3871
3872	txq->txpkts_pkts += txpkts->npkt;
3873	txq->txpkts_wrs++;
3874	txpkts->npkt = 0;	/* emptied */
3875}
3876
3877static inline void
3878write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
3879    struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
3880{
3881	struct ulp_txpkt *ulpmc;
3882	struct ulptx_idata *ulpsc;
3883	struct cpl_tx_pkt_core *cpl;
3884	struct sge_eq *eq = &txq->eq;
3885	uintptr_t flitp, start, end;
3886	uint64_t ctrl;
3887	caddr_t dst;
3888
3889	KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
3890
3891	start = (uintptr_t)eq->desc;
3892	end = (uintptr_t)eq->spg;
3893
3894	/* Checksum offload */
3895	ctrl = 0;
3896	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3897		ctrl |= F_TXPKT_IPCSUM_DIS;
3898	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3899	    CSUM_TCP_IPV6 | CSUM_TSO)))
3900		ctrl |= F_TXPKT_L4CSUM_DIS;
3901	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3902	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3903		txq->txcsum++;	/* some hardware assistance provided */
3904
3905	/* VLAN tag insertion */
3906	if (m->m_flags & M_VLANTAG) {
3907		ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3908		txq->vlan_insertion++;
3909	}
3910
3911	/*
3912	 * The previous packet's SGL must have ended at a 16 byte boundary (this
3913	 * is required by the firmware/hardware).  It follows that flitp cannot
3914	 * wrap around between the ULPTX master command and ULPTX subcommand (8
3915	 * bytes each), and that it can not wrap around in the middle of the
3916	 * cpl_tx_pkt_core either.
3917	 */
3918	flitp = (uintptr_t)txpkts->flitp;
3919	KASSERT((flitp & 0xf) == 0,
3920	    ("%s: last SGL did not end at 16 byte boundary: %p",
3921	    __func__, txpkts->flitp));
3922
3923	/* ULP master command */
3924	ulpmc = (void *)flitp;
3925	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) |
3926	    V_ULP_TXPKT_FID(eq->iqid));
3927	ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
3928	    sizeof(*cpl) + 8 * sgl->nflits, 16));
3929
3930	/* ULP subcommand */
3931	ulpsc = (void *)(ulpmc + 1);
3932	ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
3933	    F_ULP_TX_SC_MORE);
3934	ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
3935
3936	flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
3937	if (flitp == end)
3938		flitp = start;
3939
3940	/* CPL_TX_PKT */
3941	cpl = (void *)flitp;
3942	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3943	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3944	cpl->pack = 0;
3945	cpl->len = htobe16(m->m_pkthdr.len);
3946	cpl->ctrl1 = htobe64(ctrl);
3947
3948	flitp += sizeof(*cpl);
3949	if (flitp == end)
3950		flitp = start;
3951
3952	/* SGL for this frame */
3953	dst = (caddr_t)flitp;
3954	txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
3955	txpkts->flitp = (void *)dst;
3956
3957	KASSERT(((uintptr_t)dst & 0xf) == 0,
3958	    ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
3959}
3960
3961/*
3962 * If the SGL ends on an address that is not 16 byte aligned, this function will
3963 * add a 0 filled flit at the end.  It returns 1 in that case.
3964 */
3965static int
3966write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
3967{
3968	__be64 *flitp, *end;
3969	struct ulptx_sgl *usgl;
3970	bus_dma_segment_t *seg;
3971	int i, padded;
3972
3973	KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
3974	    ("%s: bad SGL - nsegs=%d, nflits=%d",
3975	    __func__, sgl->nsegs, sgl->nflits));
3976
3977	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
3978	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
3979
3980	flitp = (__be64 *)(*to);
3981	end = flitp + sgl->nflits;
3982	seg = &sgl->seg[0];
3983	usgl = (void *)flitp;
3984
3985	/*
3986	 * We start at a 16 byte boundary somewhere inside the tx descriptor
3987	 * ring, so we're at least 16 bytes away from the status page.  There is
3988	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
3989	 */
3990
3991	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
3992	    V_ULPTX_NSGE(sgl->nsegs));
3993	usgl->len0 = htobe32(seg->ds_len);
3994	usgl->addr0 = htobe64(seg->ds_addr);
3995	seg++;
3996
3997	if ((uintptr_t)end <= (uintptr_t)eq->spg) {
3998
3999		/* Won't wrap around at all */
4000
4001		for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
4002			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
4003			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
4004		}
4005		if (i & 1)
4006			usgl->sge[i / 2].len[1] = htobe32(0);
4007	} else {
4008
4009		/* Will wrap somewhere in the rest of the SGL */
4010
4011		/* 2 flits already written, write the rest flit by flit */
4012		flitp = (void *)(usgl + 1);
4013		for (i = 0; i < sgl->nflits - 2; i++) {
4014			if ((uintptr_t)flitp == (uintptr_t)eq->spg)
4015				flitp = (void *)eq->desc;
4016			*flitp++ = get_flit(seg, sgl->nsegs - 1, i);
4017		}
4018		end = flitp;
4019	}
4020
4021	if ((uintptr_t)end & 0xf) {
4022		*(uint64_t *)end = 0;
4023		end++;
4024		padded = 1;
4025	} else
4026		padded = 0;
4027
4028	if ((uintptr_t)end == (uintptr_t)eq->spg)
4029		*to = (void *)eq->desc;
4030	else
4031		*to = (void *)end;
4032
4033	return (padded);
4034}
4035
4036static inline void
4037copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4038{
4039	if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)eq->spg)) {
4040		bcopy(from, *to, len);
4041		(*to) += len;
4042	} else {
4043		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
4044
4045		bcopy(from, *to, portion);
4046		from += portion;
4047		portion = len - portion;	/* remaining */
4048		bcopy(from, (void *)eq->desc, portion);
4049		(*to) = (caddr_t)eq->desc + portion;
4050	}
4051}
4052
4053static inline void
4054ring_eq_db(struct adapter *sc, struct sge_eq *eq)
4055{
4056	u_int db, pending;
4057
4058	db = eq->doorbells;
4059	pending = eq->pending;
4060	if (pending > 1)
4061		clrbit(&db, DOORBELL_WCWR);
4062	eq->pending = 0;
4063	wmb();
4064
4065	switch (ffs(db) - 1) {
4066	case DOORBELL_UDB:
4067		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
4068		return;
4069
4070	case DOORBELL_WCWR: {
4071		volatile uint64_t *dst, *src;
4072		int i;
4073
4074		/*
4075		 * Queues whose 128B doorbell segment fits in the page do not
4076		 * use relative qid (udb_qid is always 0).  Only queues with
4077		 * doorbell segments can do WCWR.
4078		 */
4079		KASSERT(eq->udb_qid == 0 && pending == 1,
4080		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4081		    __func__, eq->doorbells, pending, eq->pidx, eq));
4082
4083		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4084		    UDBS_DB_OFFSET);
4085		i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
4086		src = (void *)&eq->desc[i];
4087		while (src != (void *)&eq->desc[i + 1])
4088			*dst++ = *src++;
4089		wmb();
4090		return;
4091	}
4092
4093	case DOORBELL_UDBWC:
4094		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
4095		wmb();
4096		return;
4097
4098	case DOORBELL_KDB:
4099		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
4100		    V_QID(eq->cntxt_id) | V_PIDX(pending));
4101		return;
4102	}
4103}
4104
4105static inline int
4106reclaimable(struct sge_eq *eq)
4107{
4108	unsigned int cidx;
4109
4110	cidx = eq->spg->cidx;	/* stable snapshot */
4111	cidx = be16toh(cidx);
4112
4113	if (cidx >= eq->cidx)
4114		return (cidx - eq->cidx);
4115	else
4116		return (cidx + eq->cap - eq->cidx);
4117}
4118
4119/*
4120 * There are "can_reclaim" tx descriptors ready to be reclaimed.  Reclaim as
4121 * many as possible but stop when there are around "n" mbufs to free.
4122 *
4123 * The actual number reclaimed is provided as the return value.
4124 */
4125static int
4126reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n)
4127{
4128	struct tx_sdesc *txsd;
4129	struct tx_maps *txmaps;
4130	struct tx_map *txm;
4131	unsigned int reclaimed, maps;
4132	struct sge_eq *eq = &txq->eq;
4133
4134	TXQ_LOCK_ASSERT_OWNED(txq);
4135
4136	if (can_reclaim == 0)
4137		can_reclaim = reclaimable(eq);
4138
4139	maps = reclaimed = 0;
4140	while (can_reclaim && maps < n) {
4141		int ndesc;
4142
4143		txsd = &txq->sdesc[eq->cidx];
4144		ndesc = txsd->desc_used;
4145
4146		/* Firmware doesn't return "partial" credits. */
4147		KASSERT(can_reclaim >= ndesc,
4148		    ("%s: unexpected number of credits: %d, %d",
4149		    __func__, can_reclaim, ndesc));
4150
4151		maps += txsd->credits;
4152
4153		reclaimed += ndesc;
4154		can_reclaim -= ndesc;
4155
4156		eq->cidx += ndesc;
4157		if (__predict_false(eq->cidx >= eq->cap))
4158			eq->cidx -= eq->cap;
4159	}
4160
4161	txmaps = &txq->txmaps;
4162	txm = &txmaps->maps[txmaps->map_cidx];
4163	if (maps)
4164		prefetch(txm->m);
4165
4166	eq->avail += reclaimed;
4167	KASSERT(eq->avail < eq->cap,	/* avail tops out at (cap - 1) */
4168	    ("%s: too many descriptors available", __func__));
4169
4170	txmaps->map_avail += maps;
4171	KASSERT(txmaps->map_avail <= txmaps->map_total,
4172	    ("%s: too many maps available", __func__));
4173
4174	while (maps--) {
4175		struct tx_map *next;
4176
4177		next = txm + 1;
4178		if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total))
4179			next = txmaps->maps;
4180		prefetch(next->m);
4181
4182		bus_dmamap_unload(txq->tx_tag, txm->map);
4183		m_freem(txm->m);
4184		txm->m = NULL;
4185
4186		txm = next;
4187		if (__predict_false(++txmaps->map_cidx == txmaps->map_total))
4188			txmaps->map_cidx = 0;
4189	}
4190
4191	return (reclaimed);
4192}
4193
4194static void
4195write_eqflush_wr(struct sge_eq *eq)
4196{
4197	struct fw_eq_flush_wr *wr;
4198
4199	EQ_LOCK_ASSERT_OWNED(eq);
4200	KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
4201	KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__));
4202
4203	wr = (void *)&eq->desc[eq->pidx];
4204	bzero(wr, sizeof(*wr));
4205	wr->opcode = FW_EQ_FLUSH_WR;
4206	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
4207	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
4208
4209	eq->flags |= (EQ_CRFLUSHED | EQ_STALLED);
4210	eq->pending++;
4211	eq->avail--;
4212	if (++eq->pidx == eq->cap)
4213		eq->pidx = 0;
4214}
4215
4216static __be64
4217get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
4218{
4219	int i = (idx / 3) * 2;
4220
4221	switch (idx % 3) {
4222	case 0: {
4223		__be64 rc;
4224
4225		rc = htobe32(sgl[i].ds_len);
4226		if (i + 1 < nsegs)
4227			rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
4228
4229		return (rc);
4230	}
4231	case 1:
4232		return htobe64(sgl[i].ds_addr);
4233	case 2:
4234		return htobe64(sgl[i + 1].ds_addr);
4235	}
4236
4237	return (0);
4238}
4239
4240static void
4241find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
4242{
4243	int8_t zidx, hwidx, idx;
4244	uint16_t region1, region3;
4245	int spare, spare_needed, n;
4246	struct sw_zone_info *swz;
4247	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
4248
4249	/*
4250	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
4251	 * large enough for the max payload and cluster metadata.  Otherwise
4252	 * settle for the largest bufsize that leaves enough room in the cluster
4253	 * for metadata.
4254	 *
4255	 * Without buffer packing: Look for the smallest zone which has a
4256	 * bufsize large enough for the max payload.  Settle for the largest
4257	 * bufsize available if there's nothing big enough for max payload.
4258	 */
4259	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
4260	swz = &sc->sge.sw_zone_info[0];
4261	hwidx = -1;
4262	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
4263		if (swz->size > largest_rx_cluster) {
4264			if (__predict_true(hwidx != -1))
4265				break;
4266
4267			/*
4268			 * This is a misconfiguration.  largest_rx_cluster is
4269			 * preventing us from finding a refill source.  See
4270			 * dev.t5nex.<n>.buffer_sizes to figure out why.
4271			 */
4272			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
4273			    " refill source for fl %p (dma %u).  Ignored.\n",
4274			    largest_rx_cluster, fl, maxp);
4275		}
4276		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
4277			hwb = &hwb_list[idx];
4278			spare = swz->size - hwb->size;
4279			if (spare < spare_needed)
4280				continue;
4281
4282			hwidx = idx;		/* best option so far */
4283			if (hwb->size >= maxp) {
4284
4285				if ((fl->flags & FL_BUF_PACKING) == 0)
4286					goto done; /* stop looking (not packing) */
4287
4288				if (swz->size >= safest_rx_cluster)
4289					goto done; /* stop looking (packing) */
4290			}
4291			break;		/* keep looking, next zone */
4292		}
4293	}
4294done:
4295	/* A usable hwidx has been located. */
4296	MPASS(hwidx != -1);
4297	hwb = &hwb_list[hwidx];
4298	zidx = hwb->zidx;
4299	swz = &sc->sge.sw_zone_info[zidx];
4300	region1 = 0;
4301	region3 = swz->size - hwb->size;
4302
4303	/*
4304	 * Stay within this zone and see if there is a better match when mbuf
4305	 * inlining is allowed.  Remember that the hwidx's are sorted in
4306	 * decreasing order of size (so in increasing order of spare area).
4307	 */
4308	for (idx = hwidx; idx != -1; idx = hwb->next) {
4309		hwb = &hwb_list[idx];
4310		spare = swz->size - hwb->size;
4311
4312		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
4313			break;
4314		if (spare < CL_METADATA_SIZE + MSIZE)
4315			continue;
4316		n = (spare - CL_METADATA_SIZE) / MSIZE;
4317		if (n > howmany(hwb->size, maxp))
4318			break;
4319
4320		hwidx = idx;
4321		if (fl->flags & FL_BUF_PACKING) {
4322			region1 = n * MSIZE;
4323			region3 = spare - region1;
4324		} else {
4325			region1 = MSIZE;
4326			region3 = spare - region1;
4327			break;
4328		}
4329	}
4330
4331	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
4332	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
4333	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
4334	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
4335	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
4336	    sc->sge.sw_zone_info[zidx].size,
4337	    ("%s: bad buffer layout for fl %p, maxp %d. "
4338		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4339		sc->sge.sw_zone_info[zidx].size, region1,
4340		sc->sge.hw_buf_info[hwidx].size, region3));
4341	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
4342		KASSERT(region3 >= CL_METADATA_SIZE,
4343		    ("%s: no room for metadata.  fl %p, maxp %d; "
4344		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4345		    sc->sge.sw_zone_info[zidx].size, region1,
4346		    sc->sge.hw_buf_info[hwidx].size, region3));
4347		KASSERT(region1 % MSIZE == 0,
4348		    ("%s: bad mbuf region for fl %p, maxp %d. "
4349		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4350		    sc->sge.sw_zone_info[zidx].size, region1,
4351		    sc->sge.hw_buf_info[hwidx].size, region3));
4352	}
4353
4354	fl->cll_def.zidx = zidx;
4355	fl->cll_def.hwidx = hwidx;
4356	fl->cll_def.region1 = region1;
4357	fl->cll_def.region3 = region3;
4358}
4359
4360static void
4361find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
4362{
4363	struct sge *s = &sc->sge;
4364	struct hw_buf_info *hwb;
4365	struct sw_zone_info *swz;
4366	int spare;
4367	int8_t hwidx;
4368
4369	if (fl->flags & FL_BUF_PACKING)
4370		hwidx = s->safe_hwidx2;	/* with room for metadata */
4371	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
4372		hwidx = s->safe_hwidx2;
4373		hwb = &s->hw_buf_info[hwidx];
4374		swz = &s->sw_zone_info[hwb->zidx];
4375		spare = swz->size - hwb->size;
4376
4377		/* no good if there isn't room for an mbuf as well */
4378		if (spare < CL_METADATA_SIZE + MSIZE)
4379			hwidx = s->safe_hwidx1;
4380	} else
4381		hwidx = s->safe_hwidx1;
4382
4383	if (hwidx == -1) {
4384		/* No fallback source */
4385		fl->cll_alt.hwidx = -1;
4386		fl->cll_alt.zidx = -1;
4387
4388		return;
4389	}
4390
4391	hwb = &s->hw_buf_info[hwidx];
4392	swz = &s->sw_zone_info[hwb->zidx];
4393	spare = swz->size - hwb->size;
4394	fl->cll_alt.hwidx = hwidx;
4395	fl->cll_alt.zidx = hwb->zidx;
4396	if (allow_mbufs_in_cluster)
4397		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
4398	else
4399		fl->cll_alt.region1 = 0;
4400	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
4401}
4402
4403static void
4404add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
4405{
4406	mtx_lock(&sc->sfl_lock);
4407	FL_LOCK(fl);
4408	if ((fl->flags & FL_DOOMED) == 0) {
4409		fl->flags |= FL_STARVING;
4410		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
4411		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
4412	}
4413	FL_UNLOCK(fl);
4414	mtx_unlock(&sc->sfl_lock);
4415}
4416
4417static int
4418handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
4419    struct mbuf *m)
4420{
4421	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
4422	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
4423	struct adapter *sc = iq->adapter;
4424	struct sge *s = &sc->sge;
4425	struct sge_eq *eq;
4426
4427	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4428	    rss->opcode));
4429
4430	eq = s->eqmap[qid - s->eq_start];
4431	EQ_LOCK(eq);
4432	KASSERT(eq->flags & EQ_CRFLUSHED,
4433	    ("%s: unsolicited egress update", __func__));
4434	eq->flags &= ~EQ_CRFLUSHED;
4435	eq->egr_update++;
4436
4437	if (__predict_false(eq->flags & EQ_DOOMED))
4438		wakeup_one(eq);
4439	else if (eq->flags & EQ_STALLED && can_resume_tx(eq))
4440		taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task);
4441	EQ_UNLOCK(eq);
4442
4443	return (0);
4444}
4445
4446/* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
4447CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
4448    offsetof(struct cpl_fw6_msg, data));
4449
4450static int
4451handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
4452{
4453	struct adapter *sc = iq->adapter;
4454	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
4455
4456	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4457	    rss->opcode));
4458
4459	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
4460		const struct rss_header *rss2;
4461
4462		rss2 = (const struct rss_header *)&cpl->data[0];
4463		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
4464	}
4465
4466	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
4467}
4468
4469static int
4470sysctl_uint16(SYSCTL_HANDLER_ARGS)
4471{
4472	uint16_t *id = arg1;
4473	int i = *id;
4474
4475	return sysctl_handle_int(oidp, &i, 0, req);
4476}
4477
4478static int
4479sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
4480{
4481	struct sge *s = arg1;
4482	struct hw_buf_info *hwb = &s->hw_buf_info[0];
4483	struct sw_zone_info *swz = &s->sw_zone_info[0];
4484	int i, rc;
4485	struct sbuf sb;
4486	char c;
4487
4488	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
4489	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
4490		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
4491			c = '*';
4492		else
4493			c = '\0';
4494
4495		sbuf_printf(&sb, "%u%c ", hwb->size, c);
4496	}
4497	sbuf_trim(&sb);
4498	sbuf_finish(&sb);
4499	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
4500	sbuf_delete(&sb);
4501	return (rc);
4502}
4503