t4_sge.c revision 267600
1/*-
2 * Copyright (c) 2011 Chelsio Communications, Inc.
3 * All rights reserved.
4 * Written by: Navdeep Parhar <np@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/cxgbe/t4_sge.c 267600 2014-06-18 00:16:35Z np $");
30
31#include "opt_inet.h"
32#include "opt_inet6.h"
33
34#include <sys/types.h>
35#include <sys/eventhandler.h>
36#include <sys/mbuf.h>
37#include <sys/socket.h>
38#include <sys/kernel.h>
39#include <sys/kdb.h>
40#include <sys/malloc.h>
41#include <sys/queue.h>
42#include <sys/sbuf.h>
43#include <sys/taskqueue.h>
44#include <sys/time.h>
45#include <sys/sysctl.h>
46#include <sys/smp.h>
47#include <net/bpf.h>
48#include <net/ethernet.h>
49#include <net/if.h>
50#include <net/if_vlan_var.h>
51#include <netinet/in.h>
52#include <netinet/ip.h>
53#include <netinet/ip6.h>
54#include <netinet/tcp.h>
55#include <machine/md_var.h>
56#include <vm/vm.h>
57#include <vm/pmap.h>
58#ifdef DEV_NETMAP
59#include <machine/bus.h>
60#include <sys/selinfo.h>
61#include <net/if_var.h>
62#include <net/netmap.h>
63#include <dev/netmap/netmap_kern.h>
64#endif
65
66#include "common/common.h"
67#include "common/t4_regs.h"
68#include "common/t4_regs_values.h"
69#include "common/t4_msg.h"
70
71#ifdef T4_PKT_TIMESTAMP
72#define RX_COPY_THRESHOLD (MINCLSIZE - 8)
73#else
74#define RX_COPY_THRESHOLD MINCLSIZE
75#endif
76
77/*
78 * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
79 * 0-7 are valid values.
80 */
81int fl_pktshift = 2;
82TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
83
84/*
85 * Pad ethernet payload up to this boundary.
86 * -1: driver should figure out a good value.
87 *  0: disable padding.
88 *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
89 */
90int fl_pad = -1;
91TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
92
93/*
94 * Status page length.
95 * -1: driver should figure out a good value.
96 *  64 or 128 are the only other valid values.
97 */
98int spg_len = -1;
99TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
100
101/*
102 * Congestion drops.
103 * -1: no congestion feedback (not recommended).
104 *  0: backpressure the channel instead of dropping packets right away.
105 *  1: no backpressure, drop packets for the congested queue immediately.
106 */
107static int cong_drop = 0;
108TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
109
110/*
111 * Deliver multiple frames in the same free list buffer if they fit.
112 * -1: let the driver decide whether to enable buffer packing or not.
113 *  0: disable buffer packing.
114 *  1: enable buffer packing.
115 */
116static int buffer_packing = -1;
117TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
118
119/*
120 * Start next frame in a packed buffer at this boundary.
121 * -1: driver should figure out a good value.
122 * T4:
123 * ---
124 * if fl_pad != 0
125 * 	value specified here will be overridden by fl_pad.
126 * else
127 * 	power of 2 from 32 to 4096 (both inclusive) is a valid value here.
128 * T5:
129 * ---
130 * 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
131 */
132static int fl_pack = -1;
133static int t4_fl_pack;
134static int t5_fl_pack;
135TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
136
137/*
138 * Allow the driver to create mbuf(s) in a cluster allocated for rx.
139 * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
140 * 1: ok to create mbuf(s) within a cluster if there is room.
141 */
142static int allow_mbufs_in_cluster = 1;
143TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
144
145/*
146 * Largest rx cluster size that the driver is allowed to allocate.
147 */
148static int largest_rx_cluster = MJUM16BYTES;
149TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
150
151/*
152 * Size of cluster allocation that's most likely to succeed.  The driver will
153 * fall back to this size if it fails to allocate clusters larger than this.
154 */
155static int safest_rx_cluster = PAGE_SIZE;
156TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
157
158/* Used to track coalesced tx work request */
159struct txpkts {
160	uint64_t *flitp;	/* ptr to flit where next pkt should start */
161	uint8_t npkt;		/* # of packets in this work request */
162	uint8_t nflits;		/* # of flits used by this work request */
163	uint16_t plen;		/* total payload (sum of all packets) */
164};
165
166/* A packet's SGL.  This + m_pkthdr has all info needed for tx */
167struct sgl {
168	int nsegs;		/* # of segments in the SGL, 0 means imm. tx */
169	int nflits;		/* # of flits needed for the SGL */
170	bus_dma_segment_t seg[TX_SGL_SEGS];
171};
172
173static int service_iq(struct sge_iq *, int);
174static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t,
175    int *);
176static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
177static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
178    int);
179static inline void init_fl(struct adapter *, struct sge_fl *, int, int, int,
180    char *);
181static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t,
182    char *);
183static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
184    bus_addr_t *, void **);
185static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
186    void *);
187static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
188    int, int);
189static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
190static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
191    struct sge_fl *);
192static int alloc_fwq(struct adapter *);
193static int free_fwq(struct adapter *);
194static int alloc_mgmtq(struct adapter *);
195static int free_mgmtq(struct adapter *);
196static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int,
197    struct sysctl_oid *);
198static int free_rxq(struct port_info *, struct sge_rxq *);
199#ifdef TCP_OFFLOAD
200static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int,
201    struct sysctl_oid *);
202static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *);
203#endif
204#ifdef DEV_NETMAP
205static int alloc_nm_rxq(struct port_info *, struct sge_nm_rxq *, int, int,
206    struct sysctl_oid *);
207static int free_nm_rxq(struct port_info *, struct sge_nm_rxq *);
208static int alloc_nm_txq(struct port_info *, struct sge_nm_txq *, int, int,
209    struct sysctl_oid *);
210static int free_nm_txq(struct port_info *, struct sge_nm_txq *);
211#endif
212static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
213static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
214#ifdef TCP_OFFLOAD
215static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
216#endif
217static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *);
218static int free_eq(struct adapter *, struct sge_eq *);
219static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *,
220    struct sysctl_oid *);
221static int free_wrq(struct adapter *, struct sge_wrq *);
222static int alloc_txq(struct port_info *, struct sge_txq *, int,
223    struct sysctl_oid *);
224static int free_txq(struct port_info *, struct sge_txq *);
225static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
226static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **);
227static inline void iq_next(struct sge_iq *);
228static inline void ring_fl_db(struct adapter *, struct sge_fl *);
229static int refill_fl(struct adapter *, struct sge_fl *, int);
230static void refill_sfl(void *);
231static int alloc_fl_sdesc(struct sge_fl *);
232static void free_fl_sdesc(struct adapter *, struct sge_fl *);
233static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
234static void find_safe_refill_source(struct adapter *, struct sge_fl *);
235static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
236
237static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
238static int free_pkt_sgl(struct sge_txq *, struct sgl *);
239static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
240    struct sgl *);
241static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
242    struct mbuf *, struct sgl *);
243static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
244static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
245    struct txpkts *, struct mbuf *, struct sgl *);
246static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
247static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
248static inline void ring_eq_db(struct adapter *, struct sge_eq *);
249static inline int reclaimable(struct sge_eq *);
250static int reclaim_tx_descs(struct sge_txq *, int, int);
251static void write_eqflush_wr(struct sge_eq *);
252static __be64 get_flit(bus_dma_segment_t *, int, int);
253static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
254    struct mbuf *);
255static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
256    struct mbuf *);
257
258static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
259static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
260
261/*
262 * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
263 */
264void
265t4_sge_modload(void)
266{
267	int pad;
268
269	/* set pad to a reasonable powerof2 between 16 and 4096 (inclusive) */
270#if defined(__i386__) || defined(__amd64__)
271	pad = max(cpu_clflush_line_size, 16);
272#else
273	pad = max(CACHE_LINE_SIZE, 16);
274#endif
275	pad = min(pad, 4096);
276
277	if (fl_pktshift < 0 || fl_pktshift > 7) {
278		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
279		    " using 2 instead.\n", fl_pktshift);
280		fl_pktshift = 2;
281	}
282
283	if (fl_pad != 0 &&
284	    (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad))) {
285
286		if (fl_pad != -1) {
287			printf("Invalid hw.cxgbe.fl_pad value (%d),"
288			    " using %d instead.\n", fl_pad, max(pad, 32));
289		}
290		fl_pad = max(pad, 32);
291	}
292
293	/*
294	 * T4 has the same pad and pack boundary.  If a pad boundary is set,
295	 * pack boundary must be set to the same value.  Otherwise take the
296	 * specified value or auto-calculate something reasonable.
297	 */
298	if (fl_pad)
299		t4_fl_pack = fl_pad;
300	else if (fl_pack < 32 || fl_pack > 4096 || !powerof2(fl_pack))
301		t4_fl_pack = max(pad, 32);
302	else
303		t4_fl_pack = fl_pack;
304
305	/* T5's pack boundary is independent of the pad boundary. */
306	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
307	    !powerof2(fl_pack))
308	       t5_fl_pack = max(pad, CACHE_LINE_SIZE);
309	else
310	       t5_fl_pack = fl_pack;
311
312	if (spg_len != 64 && spg_len != 128) {
313		int len;
314
315#if defined(__i386__) || defined(__amd64__)
316		len = cpu_clflush_line_size > 64 ? 128 : 64;
317#else
318		len = 64;
319#endif
320		if (spg_len != -1) {
321			printf("Invalid hw.cxgbe.spg_len value (%d),"
322			    " using %d instead.\n", spg_len, len);
323		}
324		spg_len = len;
325	}
326
327	if (cong_drop < -1 || cong_drop > 1) {
328		printf("Invalid hw.cxgbe.cong_drop value (%d),"
329		    " using 0 instead.\n", cong_drop);
330		cong_drop = 0;
331	}
332}
333
334void
335t4_init_sge_cpl_handlers(struct adapter *sc)
336{
337
338	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
339	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
340	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
341	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
342	t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
343}
344
345/*
346 * adap->params.vpd.cclk must be set up before this is called.
347 */
348void
349t4_tweak_chip_settings(struct adapter *sc)
350{
351	int i;
352	uint32_t v, m;
353	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
354	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
355	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
356	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
357	static int sge_flbuf_sizes[] = {
358		MCLBYTES,
359#if MJUMPAGESIZE != MCLBYTES
360		MJUMPAGESIZE,
361		MJUMPAGESIZE - CL_METADATA_SIZE,
362		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
363#endif
364		MJUM9BYTES,
365		MJUM16BYTES,
366		MCLBYTES - MSIZE - CL_METADATA_SIZE,
367		MJUM9BYTES - CL_METADATA_SIZE,
368		MJUM16BYTES - CL_METADATA_SIZE,
369	};
370
371	KASSERT(sc->flags & MASTER_PF,
372	    ("%s: trying to change chip settings when not master.", __func__));
373
374	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
375	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
376	    V_EGRSTATUSPAGESIZE(spg_len == 128);
377	if (is_t4(sc) && (fl_pad || buffer_packing)) {
378		/* t4_fl_pack has the correct value even when fl_pad = 0 */
379		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
380		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
381	} else if (is_t5(sc) && fl_pad) {
382		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
383		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
384	}
385	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
386
387	if (is_t5(sc) && buffer_packing) {
388		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
389		if (t5_fl_pack == 16)
390			v = V_INGPACKBOUNDARY(0);
391		else
392			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
393		t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
394	}
395
396	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
397	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
398	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
399	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
400	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
401	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
402	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
403	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
404	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
405
406	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
407	    ("%s: hw buffer size table too big", __func__));
408	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
409		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
410		    sge_flbuf_sizes[i]);
411	}
412
413	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
414	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
415	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
416
417	KASSERT(intr_timer[0] <= timer_max,
418	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
419	    timer_max));
420	for (i = 1; i < nitems(intr_timer); i++) {
421		KASSERT(intr_timer[i] >= intr_timer[i - 1],
422		    ("%s: timers not listed in increasing order (%d)",
423		    __func__, i));
424
425		while (intr_timer[i] > timer_max) {
426			if (i == nitems(intr_timer) - 1) {
427				intr_timer[i] = timer_max;
428				break;
429			}
430			intr_timer[i] += intr_timer[i - 1];
431			intr_timer[i] /= 2;
432		}
433	}
434
435	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
436	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
437	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
438	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
439	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
440	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
441	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
442	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
443	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
444
445	if (cong_drop == 0) {
446		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
447		    F_TUNNELCNGDROP3;
448		t4_set_reg_field(sc, A_TP_PARA_REG3, m, 0);
449	}
450
451	/* 4K, 16K, 64K, 256K DDP "page sizes" */
452	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
453	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
454
455	m = v = F_TDDPTAGTCB;
456	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
457
458	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
459	    F_RESETDDPOFFSET;
460	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
461	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
462}
463
464/*
465 * SGE wants the buffer to be at least 64B and then a multiple of the pad
466 * boundary or 16, whichever is greater.
467 */
468static inline int
469hwsz_ok(int hwsz)
470{
471	int mask = max(fl_pad, 16) - 1;
472
473	return (hwsz >= 64 && (hwsz & mask) == 0);
474}
475
476/*
477 * XXX: driver really should be able to deal with unexpected settings.
478 */
479int
480t4_read_chip_settings(struct adapter *sc)
481{
482	struct sge *s = &sc->sge;
483	int i, j, n, rc = 0;
484	uint32_t m, v, r;
485	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
486	static int sw_buf_sizes[] = {	/* Sorted by size */
487		MCLBYTES,
488#if MJUMPAGESIZE != MCLBYTES
489		MJUMPAGESIZE,
490#endif
491		MJUM9BYTES,
492		MJUM16BYTES
493	};
494	struct sw_zone_info *swz, *safe_swz;
495	struct hw_buf_info *hwb;
496
497	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
498	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
499	    V_EGRSTATUSPAGESIZE(spg_len == 128);
500	if (is_t4(sc) && (fl_pad || buffer_packing)) {
501		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
502		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
503	} else if (is_t5(sc) && fl_pad) {
504		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
505		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
506	}
507	r = t4_read_reg(sc, A_SGE_CONTROL);
508	if ((r & m) != v) {
509		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
510		rc = EINVAL;
511	}
512
513	if (is_t5(sc) && buffer_packing) {
514		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
515		if (t5_fl_pack == 16)
516			v = V_INGPACKBOUNDARY(0);
517		else
518			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
519		r = t4_read_reg(sc, A_SGE_CONTROL2);
520		if ((r & m) != v) {
521			device_printf(sc->dev,
522			    "invalid SGE_CONTROL2(0x%x)\n", r);
523			rc = EINVAL;
524		}
525	}
526	s->pack_boundary = is_t4(sc) ? t4_fl_pack : t5_fl_pack;
527
528	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
529	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
530	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
531	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
532	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
533	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
534	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
535	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
536	r = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE);
537	if (r != v) {
538		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
539		rc = EINVAL;
540	}
541
542	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
543	hwb = &s->hw_buf_info[0];
544	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
545		r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
546		hwb->size = r;
547		hwb->zidx = hwsz_ok(r) ? -1 : -2;
548		hwb->next = -1;
549	}
550
551	/*
552	 * Create a sorted list in decreasing order of hw buffer sizes (and so
553	 * increasing order of spare area) for each software zone.
554	 */
555	n = 0;	/* no usable buffer size to begin with */
556	swz = &s->sw_zone_info[0];
557	safe_swz = NULL;
558	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
559		int8_t head = -1, tail = -1;
560
561		swz->size = sw_buf_sizes[i];
562		swz->zone = m_getzone(swz->size);
563		swz->type = m_gettype(swz->size);
564
565		if (swz->size == safest_rx_cluster)
566			safe_swz = swz;
567
568		hwb = &s->hw_buf_info[0];
569		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
570			if (hwb->zidx != -1 || hwb->size > swz->size)
571				continue;
572			hwb->zidx = i;
573			if (head == -1)
574				head = tail = j;
575			else if (hwb->size < s->hw_buf_info[tail].size) {
576				s->hw_buf_info[tail].next = j;
577				tail = j;
578			} else {
579				int8_t *cur;
580				struct hw_buf_info *t;
581
582				for (cur = &head; *cur != -1; cur = &t->next) {
583					t = &s->hw_buf_info[*cur];
584					if (hwb->size == t->size) {
585						hwb->zidx = -2;
586						break;
587					}
588					if (hwb->size > t->size) {
589						hwb->next = *cur;
590						*cur = j;
591						break;
592					}
593				}
594			}
595		}
596		swz->head_hwidx = head;
597		swz->tail_hwidx = tail;
598
599		if (tail != -1) {
600			n++;
601			if (swz->size - s->hw_buf_info[tail].size >=
602			    CL_METADATA_SIZE)
603				sc->flags |= BUF_PACKING_OK;
604		}
605	}
606	if (n == 0) {
607		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
608		rc = EINVAL;
609	}
610
611	s->safe_hwidx1 = -1;
612	s->safe_hwidx2 = -1;
613	if (safe_swz != NULL) {
614		s->safe_hwidx1 = safe_swz->head_hwidx;
615		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
616			int spare;
617
618			hwb = &s->hw_buf_info[i];
619			spare = safe_swz->size - hwb->size;
620			if (spare < CL_METADATA_SIZE)
621				continue;
622			if (s->safe_hwidx2 == -1 ||
623			    spare == CL_METADATA_SIZE + MSIZE)
624				s->safe_hwidx2 = i;
625			if (spare >= CL_METADATA_SIZE + MSIZE)
626				break;
627		}
628	}
629
630	r = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD);
631	s->counter_val[0] = G_THRESHOLD_0(r);
632	s->counter_val[1] = G_THRESHOLD_1(r);
633	s->counter_val[2] = G_THRESHOLD_2(r);
634	s->counter_val[3] = G_THRESHOLD_3(r);
635
636	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1);
637	s->timer_val[0] = G_TIMERVALUE0(r) / core_ticks_per_usec(sc);
638	s->timer_val[1] = G_TIMERVALUE1(r) / core_ticks_per_usec(sc);
639	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3);
640	s->timer_val[2] = G_TIMERVALUE2(r) / core_ticks_per_usec(sc);
641	s->timer_val[3] = G_TIMERVALUE3(r) / core_ticks_per_usec(sc);
642	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5);
643	s->timer_val[4] = G_TIMERVALUE4(r) / core_ticks_per_usec(sc);
644	s->timer_val[5] = G_TIMERVALUE5(r) / core_ticks_per_usec(sc);
645
646	if (cong_drop == 0) {
647		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
648		    F_TUNNELCNGDROP3;
649		r = t4_read_reg(sc, A_TP_PARA_REG3);
650		if (r & m) {
651			device_printf(sc->dev,
652			    "invalid TP_PARA_REG3(0x%x)\n", r);
653			rc = EINVAL;
654		}
655	}
656
657	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
658	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
659	if (r != v) {
660		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
661		rc = EINVAL;
662	}
663
664	m = v = F_TDDPTAGTCB;
665	r = t4_read_reg(sc, A_ULP_RX_CTL);
666	if ((r & m) != v) {
667		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
668		rc = EINVAL;
669	}
670
671	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
672	    F_RESETDDPOFFSET;
673	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
674	r = t4_read_reg(sc, A_TP_PARA_REG5);
675	if ((r & m) != v) {
676		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
677		rc = EINVAL;
678	}
679
680	r = t4_read_reg(sc, A_SGE_CONM_CTRL);
681	s->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
682	if (is_t4(sc))
683		s->fl_starve_threshold2 = s->fl_starve_threshold;
684	else
685		s->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
686
687	/* egress queues: log2 of # of doorbells per BAR2 page */
688	r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
689	r >>= S_QUEUESPERPAGEPF0 +
690	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
691	s->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
692
693	/* ingress queues: log2 of # of doorbells per BAR2 page */
694	r = t4_read_reg(sc, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
695	r >>= S_QUEUESPERPAGEPF0 +
696	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
697	s->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
698
699	t4_init_tp_params(sc);
700
701	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
702	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
703
704	return (rc);
705}
706
707int
708t4_create_dma_tag(struct adapter *sc)
709{
710	int rc;
711
712	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
713	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
714	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
715	    NULL, &sc->dmat);
716	if (rc != 0) {
717		device_printf(sc->dev,
718		    "failed to create main DMA tag: %d\n", rc);
719	}
720
721	return (rc);
722}
723
724static inline int
725enable_buffer_packing(struct adapter *sc)
726{
727
728	if (sc->flags & BUF_PACKING_OK &&
729	    ((is_t5(sc) && buffer_packing) ||	/* 1 or -1 both ok for T5 */
730	    (is_t4(sc) && buffer_packing == 1)))
731		return (1);
732	return (0);
733}
734
735void
736t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
737    struct sysctl_oid_list *children)
738{
739
740	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
741	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
742	    "freelist buffer sizes");
743
744	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
745	    NULL, fl_pktshift, "payload DMA offset in rx buffer (bytes)");
746
747	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
748	    NULL, fl_pad, "payload pad boundary (bytes)");
749
750	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
751	    NULL, spg_len, "status page size (bytes)");
752
753	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
754	    NULL, cong_drop, "congestion drop setting");
755
756	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "buffer_packing", CTLFLAG_RD,
757	    NULL, enable_buffer_packing(sc),
758	    "pack multiple frames in one fl buffer");
759
760	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
761	    NULL, sc->sge.pack_boundary, "payload pack boundary (bytes)");
762}
763
764int
765t4_destroy_dma_tag(struct adapter *sc)
766{
767	if (sc->dmat)
768		bus_dma_tag_destroy(sc->dmat);
769
770	return (0);
771}
772
773/*
774 * Allocate and initialize the firmware event queue and the management queue.
775 *
776 * Returns errno on failure.  Resources allocated up to that point may still be
777 * allocated.  Caller is responsible for cleanup in case this function fails.
778 */
779int
780t4_setup_adapter_queues(struct adapter *sc)
781{
782	int rc;
783
784	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
785
786	sysctl_ctx_init(&sc->ctx);
787	sc->flags |= ADAP_SYSCTL_CTX;
788
789	/*
790	 * Firmware event queue
791	 */
792	rc = alloc_fwq(sc);
793	if (rc != 0)
794		return (rc);
795
796	/*
797	 * Management queue.  This is just a control queue that uses the fwq as
798	 * its associated iq.
799	 */
800	rc = alloc_mgmtq(sc);
801
802	return (rc);
803}
804
805/*
806 * Idempotent
807 */
808int
809t4_teardown_adapter_queues(struct adapter *sc)
810{
811
812	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
813
814	/* Do this before freeing the queue */
815	if (sc->flags & ADAP_SYSCTL_CTX) {
816		sysctl_ctx_free(&sc->ctx);
817		sc->flags &= ~ADAP_SYSCTL_CTX;
818	}
819
820	free_mgmtq(sc);
821	free_fwq(sc);
822
823	return (0);
824}
825
826static inline int
827port_intr_count(struct port_info *pi)
828{
829	int rc = 0;
830
831	if (pi->flags & INTR_RXQ)
832		rc += pi->nrxq;
833#ifdef TCP_OFFLOAD
834	if (pi->flags & INTR_OFLD_RXQ)
835		rc += pi->nofldrxq;
836#endif
837#ifdef DEV_NETMAP
838	if (pi->flags & INTR_NM_RXQ)
839		rc += pi->nnmrxq;
840#endif
841	return (rc);
842}
843
844static inline int
845first_vector(struct port_info *pi)
846{
847	struct adapter *sc = pi->adapter;
848	int rc = T4_EXTRA_INTR, i;
849
850	if (sc->intr_count == 1)
851		return (0);
852
853	for_each_port(sc, i) {
854		if (i == pi->port_id)
855			break;
856
857		rc += port_intr_count(sc->port[i]);
858	}
859
860	return (rc);
861}
862
863/*
864 * Given an arbitrary "index," come up with an iq that can be used by other
865 * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
866 * The iq returned is guaranteed to be something that takes direct interrupts.
867 */
868static struct sge_iq *
869port_intr_iq(struct port_info *pi, int idx)
870{
871	struct adapter *sc = pi->adapter;
872	struct sge *s = &sc->sge;
873	struct sge_iq *iq = NULL;
874	int nintr, i;
875
876	if (sc->intr_count == 1)
877		return (&sc->sge.fwq);
878
879	nintr = port_intr_count(pi);
880	KASSERT(nintr != 0,
881	    ("%s: pi %p has no exclusive interrupts, total interrupts = %d",
882	    __func__, pi, sc->intr_count));
883#ifdef DEV_NETMAP
884	/* Exclude netmap queues as they can't take anyone else's interrupts */
885	if (pi->flags & INTR_NM_RXQ)
886		nintr -= pi->nnmrxq;
887	KASSERT(nintr > 0,
888	    ("%s: pi %p has nintr %d after netmap adjustment of %d", __func__,
889	    pi, nintr, pi->nnmrxq));
890#endif
891	i = idx % nintr;
892
893	if (pi->flags & INTR_RXQ) {
894	       	if (i < pi->nrxq) {
895			iq = &s->rxq[pi->first_rxq + i].iq;
896			goto done;
897		}
898		i -= pi->nrxq;
899	}
900#ifdef TCP_OFFLOAD
901	if (pi->flags & INTR_OFLD_RXQ) {
902	       	if (i < pi->nofldrxq) {
903			iq = &s->ofld_rxq[pi->first_ofld_rxq + i].iq;
904			goto done;
905		}
906		i -= pi->nofldrxq;
907	}
908#endif
909	panic("%s: pi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__,
910	    pi, pi->flags & INTR_ALL, idx, nintr);
911done:
912	MPASS(iq != NULL);
913	KASSERT(iq->flags & IQ_INTR,
914	    ("%s: iq %p (port %p, intr_flags 0x%lx, idx %d)", __func__, iq, pi,
915	    pi->flags & INTR_ALL, idx));
916	return (iq);
917}
918
919/* Maximum payload that can be delivered with a single iq descriptor */
920static inline int
921mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
922{
923	int payload;
924
925#ifdef TCP_OFFLOAD
926	if (toe) {
927		payload = sc->tt.rx_coalesce ?
928		    G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu;
929	} else {
930#endif
931		/* large enough even when hw VLAN extraction is disabled */
932		payload = fl_pktshift + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
933		    mtu;
934#ifdef TCP_OFFLOAD
935	}
936#endif
937	payload = roundup2(payload, fl_pad);
938
939	return (payload);
940}
941
942int
943t4_setup_port_queues(struct port_info *pi)
944{
945	int rc = 0, i, j, intr_idx, iqid;
946	struct sge_rxq *rxq;
947	struct sge_txq *txq;
948	struct sge_wrq *ctrlq;
949#ifdef TCP_OFFLOAD
950	struct sge_ofld_rxq *ofld_rxq;
951	struct sge_wrq *ofld_txq;
952#endif
953#ifdef DEV_NETMAP
954	struct sge_nm_rxq *nm_rxq;
955	struct sge_nm_txq *nm_txq;
956#endif
957	char name[16];
958	struct adapter *sc = pi->adapter;
959	struct ifnet *ifp = pi->ifp;
960	struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
961	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
962	int maxp, pack, mtu = ifp->if_mtu;
963
964	/* Interrupt vector to start from (when using multiple vectors) */
965	intr_idx = first_vector(pi);
966
967	/*
968	 * First pass over all NIC and TOE rx queues:
969	 * a) initialize iq and fl
970	 * b) allocate queue iff it will take direct interrupts.
971	 */
972	maxp = mtu_to_max_payload(sc, mtu, 0);
973	pack = enable_buffer_packing(sc);
974	if (pi->flags & INTR_RXQ) {
975		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq",
976		    CTLFLAG_RD, NULL, "rx queues");
977	}
978	for_each_rxq(pi, i, rxq) {
979
980		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq,
981		    RX_IQ_ESIZE);
982
983		snprintf(name, sizeof(name), "%s rxq%d-fl",
984		    device_get_nameunit(pi->dev), i);
985		init_fl(sc, &rxq->fl, pi->qsize_rxq / 8, maxp, pack, name);
986
987		if (pi->flags & INTR_RXQ) {
988			rxq->iq.flags |= IQ_INTR;
989			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
990			if (rc != 0)
991				goto done;
992			intr_idx++;
993		}
994	}
995#ifdef TCP_OFFLOAD
996	maxp = mtu_to_max_payload(sc, mtu, 1);
997	if (is_offload(sc) && pi->flags & INTR_OFLD_RXQ) {
998		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
999		    CTLFLAG_RD, NULL,
1000		    "rx queues for offloaded TCP connections");
1001	}
1002	for_each_ofld_rxq(pi, i, ofld_rxq) {
1003
1004		init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
1005		    pi->qsize_rxq, RX_IQ_ESIZE);
1006
1007		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1008		    device_get_nameunit(pi->dev), i);
1009		init_fl(sc, &ofld_rxq->fl, pi->qsize_rxq / 8, maxp, pack, name);
1010
1011		if (pi->flags & INTR_OFLD_RXQ) {
1012			ofld_rxq->iq.flags |= IQ_INTR;
1013			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid);
1014			if (rc != 0)
1015				goto done;
1016			intr_idx++;
1017		}
1018	}
1019#endif
1020#ifdef DEV_NETMAP
1021	/*
1022	 * We don't have buffers to back the netmap rx queues right now so we
1023	 * create the queues in a way that doesn't set off any congestion signal
1024	 * in the chip.
1025	 */
1026	if (pi->flags & INTR_NM_RXQ) {
1027		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_rxq",
1028		    CTLFLAG_RD, NULL, "rx queues for netmap");
1029		for_each_nm_rxq(pi, i, nm_rxq) {
1030			rc = alloc_nm_rxq(pi, nm_rxq, intr_idx, i, oid);
1031			if (rc != 0)
1032				goto done;
1033			intr_idx++;
1034		}
1035	}
1036#endif
1037
1038	/*
1039	 * Second pass over all NIC and TOE rx queues.  The queues forwarding
1040	 * their interrupts are allocated now.
1041	 */
1042	j = 0;
1043	if (!(pi->flags & INTR_RXQ)) {
1044		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq",
1045		    CTLFLAG_RD, NULL, "rx queues");
1046		for_each_rxq(pi, i, rxq) {
1047			MPASS(!(rxq->iq.flags & IQ_INTR));
1048
1049			intr_idx = port_intr_iq(pi, j)->abs_id;
1050
1051			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
1052			if (rc != 0)
1053				goto done;
1054			j++;
1055		}
1056	}
1057#ifdef TCP_OFFLOAD
1058	if (is_offload(sc) && !(pi->flags & INTR_OFLD_RXQ)) {
1059		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
1060		    CTLFLAG_RD, NULL,
1061		    "rx queues for offloaded TCP connections");
1062		for_each_ofld_rxq(pi, i, ofld_rxq) {
1063			MPASS(!(ofld_rxq->iq.flags & IQ_INTR));
1064
1065			intr_idx = port_intr_iq(pi, j)->abs_id;
1066
1067			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid);
1068			if (rc != 0)
1069				goto done;
1070			j++;
1071		}
1072	}
1073#endif
1074#ifdef DEV_NETMAP
1075	if (!(pi->flags & INTR_NM_RXQ))
1076		CXGBE_UNIMPLEMENTED(__func__);
1077#endif
1078
1079	/*
1080	 * Now the tx queues.  Only one pass needed.
1081	 */
1082	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1083	    NULL, "tx queues");
1084	j = 0;
1085	for_each_txq(pi, i, txq) {
1086		iqid = port_intr_iq(pi, j)->cntxt_id;
1087		snprintf(name, sizeof(name), "%s txq%d",
1088		    device_get_nameunit(pi->dev), i);
1089		init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid,
1090		    name);
1091
1092		rc = alloc_txq(pi, txq, i, oid);
1093		if (rc != 0)
1094			goto done;
1095		j++;
1096	}
1097#ifdef TCP_OFFLOAD
1098	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq",
1099	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
1100	for_each_ofld_txq(pi, i, ofld_txq) {
1101		struct sysctl_oid *oid2;
1102
1103		iqid = port_intr_iq(pi, j)->cntxt_id;
1104		snprintf(name, sizeof(name), "%s ofld_txq%d",
1105		    device_get_nameunit(pi->dev), i);
1106		init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan,
1107		    iqid, name);
1108
1109		snprintf(name, sizeof(name), "%d", i);
1110		oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1111		    name, CTLFLAG_RD, NULL, "offload tx queue");
1112
1113		rc = alloc_wrq(sc, pi, ofld_txq, oid2);
1114		if (rc != 0)
1115			goto done;
1116		j++;
1117	}
1118#endif
1119#ifdef DEV_NETMAP
1120	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_txq",
1121	    CTLFLAG_RD, NULL, "tx queues for netmap use");
1122	for_each_nm_txq(pi, i, nm_txq) {
1123		iqid = pi->first_nm_rxq + (j % pi->nnmrxq);
1124		rc = alloc_nm_txq(pi, nm_txq, iqid, i, oid);
1125		if (rc != 0)
1126			goto done;
1127		j++;
1128	}
1129#endif
1130
1131	/*
1132	 * Finally, the control queue.
1133	 */
1134	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
1135	    NULL, "ctrl queue");
1136	ctrlq = &sc->sge.ctrlq[pi->port_id];
1137	iqid = port_intr_iq(pi, 0)->cntxt_id;
1138	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev));
1139	init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name);
1140	rc = alloc_wrq(sc, pi, ctrlq, oid);
1141
1142done:
1143	if (rc)
1144		t4_teardown_port_queues(pi);
1145
1146	return (rc);
1147}
1148
1149/*
1150 * Idempotent
1151 */
1152int
1153t4_teardown_port_queues(struct port_info *pi)
1154{
1155	int i;
1156	struct adapter *sc = pi->adapter;
1157	struct sge_rxq *rxq;
1158	struct sge_txq *txq;
1159#ifdef TCP_OFFLOAD
1160	struct sge_ofld_rxq *ofld_rxq;
1161	struct sge_wrq *ofld_txq;
1162#endif
1163#ifdef DEV_NETMAP
1164	struct sge_nm_rxq *nm_rxq;
1165	struct sge_nm_txq *nm_txq;
1166#endif
1167
1168	/* Do this before freeing the queues */
1169	if (pi->flags & PORT_SYSCTL_CTX) {
1170		sysctl_ctx_free(&pi->ctx);
1171		pi->flags &= ~PORT_SYSCTL_CTX;
1172	}
1173
1174	/*
1175	 * Take down all the tx queues first, as they reference the rx queues
1176	 * (for egress updates, etc.).
1177	 */
1178
1179	free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1180
1181	for_each_txq(pi, i, txq) {
1182		free_txq(pi, txq);
1183	}
1184#ifdef TCP_OFFLOAD
1185	for_each_ofld_txq(pi, i, ofld_txq) {
1186		free_wrq(sc, ofld_txq);
1187	}
1188#endif
1189#ifdef DEV_NETMAP
1190	for_each_nm_txq(pi, i, nm_txq)
1191	    free_nm_txq(pi, nm_txq);
1192#endif
1193
1194	/*
1195	 * Then take down the rx queues that forward their interrupts, as they
1196	 * reference other rx queues.
1197	 */
1198
1199	for_each_rxq(pi, i, rxq) {
1200		if ((rxq->iq.flags & IQ_INTR) == 0)
1201			free_rxq(pi, rxq);
1202	}
1203#ifdef TCP_OFFLOAD
1204	for_each_ofld_rxq(pi, i, ofld_rxq) {
1205		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
1206			free_ofld_rxq(pi, ofld_rxq);
1207	}
1208#endif
1209#ifdef DEV_NETMAP
1210	for_each_nm_rxq(pi, i, nm_rxq)
1211	    free_nm_rxq(pi, nm_rxq);
1212#endif
1213
1214	/*
1215	 * Then take down the rx queues that take direct interrupts.
1216	 */
1217
1218	for_each_rxq(pi, i, rxq) {
1219		if (rxq->iq.flags & IQ_INTR)
1220			free_rxq(pi, rxq);
1221	}
1222#ifdef TCP_OFFLOAD
1223	for_each_ofld_rxq(pi, i, ofld_rxq) {
1224		if (ofld_rxq->iq.flags & IQ_INTR)
1225			free_ofld_rxq(pi, ofld_rxq);
1226	}
1227#endif
1228#ifdef DEV_NETMAP
1229	CXGBE_UNIMPLEMENTED(__func__);
1230#endif
1231
1232	return (0);
1233}
1234
1235/*
1236 * Deals with errors and the firmware event queue.  All data rx queues forward
1237 * their interrupt to the firmware event queue.
1238 */
1239void
1240t4_intr_all(void *arg)
1241{
1242	struct adapter *sc = arg;
1243	struct sge_iq *fwq = &sc->sge.fwq;
1244
1245	t4_intr_err(arg);
1246	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1247		service_iq(fwq, 0);
1248		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1249	}
1250}
1251
1252/* Deals with error interrupts */
1253void
1254t4_intr_err(void *arg)
1255{
1256	struct adapter *sc = arg;
1257
1258	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1259	t4_slow_intr_handler(sc);
1260}
1261
1262void
1263t4_intr_evt(void *arg)
1264{
1265	struct sge_iq *iq = arg;
1266
1267	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1268		service_iq(iq, 0);
1269		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1270	}
1271}
1272
1273void
1274t4_intr(void *arg)
1275{
1276	struct sge_iq *iq = arg;
1277
1278	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1279		service_iq(iq, 0);
1280		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1281	}
1282}
1283
1284/*
1285 * Deals with anything and everything on the given ingress queue.
1286 */
1287static int
1288service_iq(struct sge_iq *iq, int budget)
1289{
1290	struct sge_iq *q;
1291	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1292	struct sge_fl *fl = &rxq->fl;		/* Use iff IQ_HAS_FL */
1293	struct adapter *sc = iq->adapter;
1294	struct rsp_ctrl *ctrl;
1295	const struct rss_header *rss;
1296	int ndescs = 0, limit, fl_bufs_used = 0;
1297	int rsp_type;
1298	uint32_t lq;
1299	struct mbuf *m0;
1300	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1301#if defined(INET) || defined(INET6)
1302	const struct timeval lro_timeout = {0, sc->lro_timeout};
1303#endif
1304
1305	limit = budget ? budget : iq->qsize / 8;
1306
1307	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1308
1309	/*
1310	 * We always come back and check the descriptor ring for new indirect
1311	 * interrupts and other responses after running a single handler.
1312	 */
1313	for (;;) {
1314		while (is_new_response(iq, &ctrl)) {
1315
1316			rmb();
1317
1318			m0 = NULL;
1319			rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
1320			lq = be32toh(ctrl->pldbuflen_qid);
1321			rss = (const void *)iq->cdesc;
1322
1323			switch (rsp_type) {
1324			case X_RSPD_TYPE_FLBUF:
1325
1326				KASSERT(iq->flags & IQ_HAS_FL,
1327				    ("%s: data for an iq (%p) with no freelist",
1328				    __func__, iq));
1329
1330				m0 = get_fl_payload(sc, fl, lq, &fl_bufs_used);
1331				if (__predict_false(m0 == NULL))
1332					goto process_iql;
1333#ifdef T4_PKT_TIMESTAMP
1334				/*
1335				 * 60 bit timestamp for the payload is
1336				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1337				 * in the leading free-space in the mbuf.  The
1338				 * kernel can clobber it during a pullup,
1339				 * m_copymdata, etc.  You need to make sure that
1340				 * the mbuf reaches you unmolested if you care
1341				 * about the timestamp.
1342				 */
1343				*(uint64_t *)m0->m_pktdat =
1344				    be64toh(ctrl->u.last_flit) &
1345				    0xfffffffffffffff;
1346#endif
1347
1348				/* fall through */
1349
1350			case X_RSPD_TYPE_CPL:
1351				KASSERT(rss->opcode < NUM_CPL_CMDS,
1352				    ("%s: bad opcode %02x.", __func__,
1353				    rss->opcode));
1354				sc->cpl_handler[rss->opcode](iq, rss, m0);
1355				break;
1356
1357			case X_RSPD_TYPE_INTR:
1358
1359				/*
1360				 * Interrupts should be forwarded only to queues
1361				 * that are not forwarding their interrupts.
1362				 * This means service_iq can recurse but only 1
1363				 * level deep.
1364				 */
1365				KASSERT(budget == 0,
1366				    ("%s: budget %u, rsp_type %u", __func__,
1367				    budget, rsp_type));
1368
1369				/*
1370				 * There are 1K interrupt-capable queues (qids 0
1371				 * through 1023).  A response type indicating a
1372				 * forwarded interrupt with a qid >= 1K is an
1373				 * iWARP async notification.
1374				 */
1375				if (lq >= 1024) {
1376                                        sc->an_handler(iq, ctrl);
1377                                        break;
1378                                }
1379
1380				q = sc->sge.iqmap[lq - sc->sge.iq_start];
1381				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1382				    IQS_BUSY)) {
1383					if (service_iq(q, q->qsize / 8) == 0) {
1384						atomic_cmpset_int(&q->state,
1385						    IQS_BUSY, IQS_IDLE);
1386					} else {
1387						STAILQ_INSERT_TAIL(&iql, q,
1388						    link);
1389					}
1390				}
1391				break;
1392
1393			default:
1394				KASSERT(0,
1395				    ("%s: illegal response type %d on iq %p",
1396				    __func__, rsp_type, iq));
1397				log(LOG_ERR,
1398				    "%s: illegal response type %d on iq %p",
1399				    device_get_nameunit(sc->dev), rsp_type, iq);
1400				break;
1401			}
1402
1403			if (fl_bufs_used >= 16) {
1404				FL_LOCK(fl);
1405				fl->needed += fl_bufs_used;
1406				refill_fl(sc, fl, 32);
1407				FL_UNLOCK(fl);
1408				fl_bufs_used = 0;
1409			}
1410
1411			iq_next(iq);
1412			if (++ndescs == limit) {
1413				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
1414				    V_CIDXINC(ndescs) |
1415				    V_INGRESSQID(iq->cntxt_id) |
1416				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1417				ndescs = 0;
1418
1419#if defined(INET) || defined(INET6)
1420				if (iq->flags & IQ_LRO_ENABLED &&
1421				    sc->lro_timeout != 0) {
1422					tcp_lro_flush_inactive(&rxq->lro,
1423					    &lro_timeout);
1424				}
1425#endif
1426
1427				if (budget) {
1428					if (fl_bufs_used) {
1429						FL_LOCK(fl);
1430						fl->needed += fl_bufs_used;
1431						refill_fl(sc, fl, 32);
1432						FL_UNLOCK(fl);
1433					}
1434					return (EINPROGRESS);
1435				}
1436			}
1437		}
1438
1439process_iql:
1440		if (STAILQ_EMPTY(&iql))
1441			break;
1442
1443		/*
1444		 * Process the head only, and send it to the back of the list if
1445		 * it's still not done.
1446		 */
1447		q = STAILQ_FIRST(&iql);
1448		STAILQ_REMOVE_HEAD(&iql, link);
1449		if (service_iq(q, q->qsize / 8) == 0)
1450			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1451		else
1452			STAILQ_INSERT_TAIL(&iql, q, link);
1453	}
1454
1455#if defined(INET) || defined(INET6)
1456	if (iq->flags & IQ_LRO_ENABLED) {
1457		struct lro_ctrl *lro = &rxq->lro;
1458		struct lro_entry *l;
1459
1460		while (!SLIST_EMPTY(&lro->lro_active)) {
1461			l = SLIST_FIRST(&lro->lro_active);
1462			SLIST_REMOVE_HEAD(&lro->lro_active, next);
1463			tcp_lro_flush(lro, l);
1464		}
1465	}
1466#endif
1467
1468	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1469	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1470
1471	if (iq->flags & IQ_HAS_FL) {
1472		int starved;
1473
1474		FL_LOCK(fl);
1475		fl->needed += fl_bufs_used;
1476		starved = refill_fl(sc, fl, 64);
1477		FL_UNLOCK(fl);
1478		if (__predict_false(starved != 0))
1479			add_fl_to_sfl(sc, fl);
1480	}
1481
1482	return (0);
1483}
1484
1485static inline int
1486cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1487{
1488	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1489
1490	if (rc)
1491		MPASS(cll->region3 >= CL_METADATA_SIZE);
1492
1493	return (rc);
1494}
1495
1496static inline struct cluster_metadata *
1497cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1498    caddr_t cl)
1499{
1500
1501	if (cl_has_metadata(fl, cll)) {
1502		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1503
1504		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1505	}
1506	return (NULL);
1507}
1508
1509static int
1510rxb_free(struct mbuf *m, void *arg1, void *arg2)
1511{
1512	uma_zone_t zone = arg1;
1513	caddr_t cl = arg2;
1514
1515	uma_zfree(zone, cl);
1516
1517	return (EXT_FREE_OK);
1518}
1519
1520/*
1521 * The mbuf returned by this function could be allocated from zone_mbuf or
1522 * constructed in spare room in the cluster.
1523 *
1524 * The mbuf carries the payload in one of these ways
1525 * a) frame inside the mbuf (mbuf from zone_mbuf)
1526 * b) m_cljset (for clusters without metadata) zone_mbuf
1527 * c) m_extaddref (cluster with metadata) inline mbuf
1528 * d) m_extaddref (cluster with metadata) zone_mbuf
1529 */
1530static struct mbuf *
1531get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int total, int flags)
1532{
1533	struct mbuf *m;
1534	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1535	struct cluster_layout *cll = &sd->cll;
1536	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1537	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1538	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1539	int len, padded_len;
1540	caddr_t payload;
1541
1542	len = min(total, hwb->size - fl->rx_offset);
1543	padded_len = roundup2(len, fl_pad);
1544	payload = sd->cl + cll->region1 + fl->rx_offset;
1545
1546	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1547
1548		/*
1549		 * Copy payload into a freshly allocated mbuf.
1550		 */
1551
1552		m = flags & M_PKTHDR ?
1553		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1554		if (m == NULL)
1555			return (NULL);
1556		fl->mbuf_allocated++;
1557#ifdef T4_PKT_TIMESTAMP
1558		/* Leave room for a timestamp */
1559		m->m_data += 8;
1560#endif
1561		/* copy data to mbuf */
1562		bcopy(payload, mtod(m, caddr_t), len);
1563
1564	} else if (sd->nimbuf * MSIZE < cll->region1) {
1565
1566		/*
1567		 * There's spare room in the cluster for an mbuf.  Create one
1568		 * and associate it with the payload that's in the cluster.
1569		 */
1570
1571		MPASS(clm != NULL);
1572		m = (struct mbuf *)(sd->cl + sd->nimbuf * MSIZE);
1573		/* No bzero required */
1574		if (m_init(m, NULL, 0, M_NOWAIT, MT_DATA, flags | M_NOFREE))
1575			return (NULL);
1576		fl->mbuf_inlined++;
1577		m_extaddref(m, payload, padded_len, &clm->refcount, rxb_free,
1578		    swz->zone, sd->cl);
1579		sd->nimbuf++;
1580
1581	} else {
1582
1583		/*
1584		 * Grab an mbuf from zone_mbuf and associate it with the
1585		 * payload in the cluster.
1586		 */
1587
1588		m = flags & M_PKTHDR ?
1589		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1590		if (m == NULL)
1591			return (NULL);
1592		fl->mbuf_allocated++;
1593		if (clm != NULL) {
1594			m_extaddref(m, payload, padded_len, &clm->refcount,
1595			    rxb_free, swz->zone, sd->cl);
1596			sd->nembuf++;
1597		} else {
1598			m_cljset(m, sd->cl, swz->type);
1599			sd->cl = NULL;	/* consumed, not a recycle candidate */
1600		}
1601	}
1602	if (flags & M_PKTHDR)
1603		m->m_pkthdr.len = total;
1604	m->m_len = len;
1605
1606	if (fl->flags & FL_BUF_PACKING) {
1607		fl->rx_offset += roundup2(padded_len, sc->sge.pack_boundary);
1608		MPASS(fl->rx_offset <= hwb->size);
1609		if (fl->rx_offset < hwb->size)
1610			return (m);	/* without advancing the cidx */
1611	}
1612
1613	if (__predict_false(++fl->cidx == fl->cap))
1614		fl->cidx = 0;
1615	fl->rx_offset = 0;
1616
1617	return (m);
1618}
1619
1620static struct mbuf *
1621get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf,
1622    int *fl_bufs_used)
1623{
1624	struct mbuf *m0, *m, **pnext;
1625	u_int nbuf, len;
1626
1627	/*
1628	 * No assertion for the fl lock because we don't need it.  This routine
1629	 * is called only from the rx interrupt handler and it only updates
1630	 * fl->cidx.  (Contrast that with fl->pidx/fl->needed which could be
1631	 * updated in the rx interrupt handler or the starvation helper routine.
1632	 * That's why code that manipulates fl->pidx/fl->needed needs the fl
1633	 * lock but this routine does not).
1634	 */
1635
1636	nbuf = 0;
1637	len = G_RSPD_LEN(len_newbuf);
1638	if (__predict_false(fl->m0 != NULL)) {
1639		M_ASSERTPKTHDR(fl->m0);
1640		MPASS(len == fl->m0->m_pkthdr.len);
1641		MPASS(fl->remaining < len);
1642
1643		m0 = fl->m0;
1644		pnext = fl->pnext;
1645		len = fl->remaining;
1646		fl->m0 = NULL;
1647		goto get_segment;
1648	}
1649
1650	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1651		nbuf++;
1652		fl->rx_offset = 0;
1653		if (__predict_false(++fl->cidx == fl->cap))
1654			fl->cidx = 0;
1655	}
1656
1657	/*
1658	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1659	 * 'len' and it may span multiple hw buffers.
1660	 */
1661
1662	m0 = get_scatter_segment(sc, fl, len, M_PKTHDR);
1663	if (m0 == NULL)
1664		goto done;
1665	len -= m0->m_len;
1666	pnext = &m0->m_next;
1667	while (len > 0) {
1668		nbuf++;
1669get_segment:
1670		MPASS(fl->rx_offset == 0);
1671		m = get_scatter_segment(sc, fl, len, 0);
1672		if (m == NULL) {
1673			fl->m0 = m0;
1674			fl->pnext = pnext;
1675			fl->remaining = len;
1676			m0 = NULL;
1677			goto done;
1678		}
1679		*pnext = m;
1680		pnext = &m->m_next;
1681		len -= m->m_len;
1682	}
1683	*pnext = NULL;
1684	if (fl->rx_offset == 0)
1685		nbuf++;
1686done:
1687	(*fl_bufs_used) += nbuf;
1688	return (m0);
1689}
1690
1691static int
1692t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1693{
1694	struct sge_rxq *rxq = iq_to_rxq(iq);
1695	struct ifnet *ifp = rxq->ifp;
1696	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1697#if defined(INET) || defined(INET6)
1698	struct lro_ctrl *lro = &rxq->lro;
1699#endif
1700
1701	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1702	    rss->opcode));
1703
1704	m0->m_pkthdr.len -= fl_pktshift;
1705	m0->m_len -= fl_pktshift;
1706	m0->m_data += fl_pktshift;
1707
1708	m0->m_pkthdr.rcvif = ifp;
1709	m0->m_flags |= M_FLOWID;
1710	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1711
1712	if (cpl->csum_calc && !cpl->err_vec) {
1713		if (ifp->if_capenable & IFCAP_RXCSUM &&
1714		    cpl->l2info & htobe32(F_RXF_IP)) {
1715			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1716			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1717			rxq->rxcsum++;
1718		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1719		    cpl->l2info & htobe32(F_RXF_IP6)) {
1720			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1721			    CSUM_PSEUDO_HDR);
1722			rxq->rxcsum++;
1723		}
1724
1725		if (__predict_false(cpl->ip_frag))
1726			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1727		else
1728			m0->m_pkthdr.csum_data = 0xffff;
1729	}
1730
1731	if (cpl->vlan_ex) {
1732		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1733		m0->m_flags |= M_VLANTAG;
1734		rxq->vlan_extraction++;
1735	}
1736
1737#if defined(INET) || defined(INET6)
1738	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1739	    iq->flags & IQ_LRO_ENABLED &&
1740	    tcp_lro_rx(lro, m0, 0) == 0) {
1741		/* queued for LRO */
1742	} else
1743#endif
1744	ifp->if_input(ifp, m0);
1745
1746	return (0);
1747}
1748
1749/*
1750 * Doesn't fail.  Holds on to work requests it can't send right away.
1751 */
1752void
1753t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1754{
1755	struct sge_eq *eq = &wrq->eq;
1756	int can_reclaim;
1757	caddr_t dst;
1758
1759	TXQ_LOCK_ASSERT_OWNED(wrq);
1760#ifdef TCP_OFFLOAD
1761	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
1762	    (eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1763	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1764#else
1765	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1766	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1767#endif
1768
1769	if (__predict_true(wr != NULL))
1770		STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1771
1772	can_reclaim = reclaimable(eq);
1773	if (__predict_false(eq->flags & EQ_STALLED)) {
1774		if (can_reclaim < tx_resume_threshold(eq))
1775			return;
1776		eq->flags &= ~EQ_STALLED;
1777		eq->unstalled++;
1778	}
1779	eq->cidx += can_reclaim;
1780	eq->avail += can_reclaim;
1781	if (__predict_false(eq->cidx >= eq->cap))
1782		eq->cidx -= eq->cap;
1783
1784	while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
1785		int ndesc;
1786
1787		if (__predict_false(wr->wr_len < 0 ||
1788		    wr->wr_len > SGE_MAX_WR_LEN || (wr->wr_len & 0x7))) {
1789
1790#ifdef INVARIANTS
1791			panic("%s: work request with length %d", __func__,
1792			    wr->wr_len);
1793#endif
1794#ifdef KDB
1795			kdb_backtrace();
1796#endif
1797			log(LOG_ERR, "%s: %s work request with length %d",
1798			    device_get_nameunit(sc->dev), __func__, wr->wr_len);
1799			STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1800			free_wrqe(wr);
1801			continue;
1802		}
1803
1804		ndesc = howmany(wr->wr_len, EQ_ESIZE);
1805		if (eq->avail < ndesc) {
1806			wrq->no_desc++;
1807			break;
1808		}
1809
1810		dst = (void *)&eq->desc[eq->pidx];
1811		copy_to_txd(eq, wrtod(wr), &dst, wr->wr_len);
1812
1813		eq->pidx += ndesc;
1814		eq->avail -= ndesc;
1815		if (__predict_false(eq->pidx >= eq->cap))
1816			eq->pidx -= eq->cap;
1817
1818		eq->pending += ndesc;
1819		if (eq->pending >= 8)
1820			ring_eq_db(sc, eq);
1821
1822		wrq->tx_wrs++;
1823		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1824		free_wrqe(wr);
1825
1826		if (eq->avail < 8) {
1827			can_reclaim = reclaimable(eq);
1828			eq->cidx += can_reclaim;
1829			eq->avail += can_reclaim;
1830			if (__predict_false(eq->cidx >= eq->cap))
1831				eq->cidx -= eq->cap;
1832		}
1833	}
1834
1835	if (eq->pending)
1836		ring_eq_db(sc, eq);
1837
1838	if (wr != NULL) {
1839		eq->flags |= EQ_STALLED;
1840		if (callout_pending(&eq->tx_callout) == 0)
1841			callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1842	}
1843}
1844
1845/* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
1846#define TXPKTS_PKT_HDR ((\
1847    sizeof(struct ulp_txpkt) + \
1848    sizeof(struct ulptx_idata) + \
1849    sizeof(struct cpl_tx_pkt_core) \
1850    ) / 8)
1851
1852/* Header of a coalesced tx WR, before SGL of first packet (in flits) */
1853#define TXPKTS_WR_HDR (\
1854    sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
1855    TXPKTS_PKT_HDR)
1856
1857/* Header of a tx WR, before SGL of first packet (in flits) */
1858#define TXPKT_WR_HDR ((\
1859    sizeof(struct fw_eth_tx_pkt_wr) + \
1860    sizeof(struct cpl_tx_pkt_core) \
1861    ) / 8 )
1862
1863/* Header of a tx LSO WR, before SGL of first packet (in flits) */
1864#define TXPKT_LSO_WR_HDR ((\
1865    sizeof(struct fw_eth_tx_pkt_wr) + \
1866    sizeof(struct cpl_tx_pkt_lso_core) + \
1867    sizeof(struct cpl_tx_pkt_core) \
1868    ) / 8 )
1869
1870int
1871t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
1872{
1873	struct port_info *pi = (void *)ifp->if_softc;
1874	struct adapter *sc = pi->adapter;
1875	struct sge_eq *eq = &txq->eq;
1876	struct buf_ring *br = txq->br;
1877	struct mbuf *next;
1878	int rc, coalescing, can_reclaim;
1879	struct txpkts txpkts;
1880	struct sgl sgl;
1881
1882	TXQ_LOCK_ASSERT_OWNED(txq);
1883	KASSERT(m, ("%s: called with nothing to do.", __func__));
1884	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH,
1885	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1886
1887	prefetch(&eq->desc[eq->pidx]);
1888	prefetch(&txq->sdesc[eq->pidx]);
1889
1890	txpkts.npkt = 0;/* indicates there's nothing in txpkts */
1891	coalescing = 0;
1892
1893	can_reclaim = reclaimable(eq);
1894	if (__predict_false(eq->flags & EQ_STALLED)) {
1895		if (can_reclaim < tx_resume_threshold(eq)) {
1896			txq->m = m;
1897			return (0);
1898		}
1899		eq->flags &= ~EQ_STALLED;
1900		eq->unstalled++;
1901	}
1902
1903	if (__predict_false(eq->flags & EQ_DOOMED)) {
1904		m_freem(m);
1905		while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
1906			m_freem(m);
1907		return (ENETDOWN);
1908	}
1909
1910	if (eq->avail < 8 && can_reclaim)
1911		reclaim_tx_descs(txq, can_reclaim, 32);
1912
1913	for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
1914
1915		if (eq->avail < 8)
1916			break;
1917
1918		next = m->m_nextpkt;
1919		m->m_nextpkt = NULL;
1920
1921		if (next || buf_ring_peek(br))
1922			coalescing = 1;
1923
1924		rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
1925		if (rc != 0) {
1926			if (rc == ENOMEM) {
1927
1928				/* Short of resources, suspend tx */
1929
1930				m->m_nextpkt = next;
1931				break;
1932			}
1933
1934			/*
1935			 * Unrecoverable error for this packet, throw it away
1936			 * and move on to the next.  get_pkt_sgl may already
1937			 * have freed m (it will be NULL in that case and the
1938			 * m_freem here is still safe).
1939			 */
1940
1941			m_freem(m);
1942			continue;
1943		}
1944
1945		if (coalescing &&
1946		    add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
1947
1948			/* Successfully absorbed into txpkts */
1949
1950			write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
1951			goto doorbell;
1952		}
1953
1954		/*
1955		 * We weren't coalescing to begin with, or current frame could
1956		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
1957		 * given to it can't be coalesced).  Either way there should be
1958		 * nothing in txpkts.
1959		 */
1960		KASSERT(txpkts.npkt == 0,
1961		    ("%s: txpkts not empty: %d", __func__, txpkts.npkt));
1962
1963		/* We're sending out individual packets now */
1964		coalescing = 0;
1965
1966		if (eq->avail < 8)
1967			reclaim_tx_descs(txq, 0, 8);
1968		rc = write_txpkt_wr(pi, txq, m, &sgl);
1969		if (rc != 0) {
1970
1971			/* Short of hardware descriptors, suspend tx */
1972
1973			/*
1974			 * This is an unlikely but expensive failure.  We've
1975			 * done all the hard work (DMA mappings etc.) and now we
1976			 * can't send out the packet.  What's worse, we have to
1977			 * spend even more time freeing up everything in sgl.
1978			 */
1979			txq->no_desc++;
1980			free_pkt_sgl(txq, &sgl);
1981
1982			m->m_nextpkt = next;
1983			break;
1984		}
1985
1986		ETHER_BPF_MTAP(ifp, m);
1987		if (sgl.nsegs == 0)
1988			m_freem(m);
1989doorbell:
1990		if (eq->pending >= 8)
1991			ring_eq_db(sc, eq);
1992
1993		can_reclaim = reclaimable(eq);
1994		if (can_reclaim >= 32)
1995			reclaim_tx_descs(txq, can_reclaim, 64);
1996	}
1997
1998	if (txpkts.npkt > 0)
1999		write_txpkts_wr(txq, &txpkts);
2000
2001	/*
2002	 * m not NULL means there was an error but we haven't thrown it away.
2003	 * This can happen when we're short of tx descriptors (no_desc) or maybe
2004	 * even DMA maps (no_dmamap).  Either way, a credit flush and reclaim
2005	 * will get things going again.
2006	 */
2007	if (m && !(eq->flags & EQ_CRFLUSHED)) {
2008		struct tx_sdesc *txsd = &txq->sdesc[eq->pidx];
2009
2010		/*
2011		 * If EQ_CRFLUSHED is not set then we know we have at least one
2012		 * available descriptor because any WR that reduces eq->avail to
2013		 * 0 also sets EQ_CRFLUSHED.
2014		 */
2015		KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__));
2016
2017		txsd->desc_used = 1;
2018		txsd->credits = 0;
2019		write_eqflush_wr(eq);
2020	}
2021	txq->m = m;
2022
2023	if (eq->pending)
2024		ring_eq_db(sc, eq);
2025
2026	reclaim_tx_descs(txq, 0, 128);
2027
2028	if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0)
2029		callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
2030
2031	return (0);
2032}
2033
2034void
2035t4_update_fl_bufsize(struct ifnet *ifp)
2036{
2037	struct port_info *pi = ifp->if_softc;
2038	struct adapter *sc = pi->adapter;
2039	struct sge_rxq *rxq;
2040#ifdef TCP_OFFLOAD
2041	struct sge_ofld_rxq *ofld_rxq;
2042#endif
2043	struct sge_fl *fl;
2044	int i, maxp, mtu = ifp->if_mtu;
2045
2046	maxp = mtu_to_max_payload(sc, mtu, 0);
2047	for_each_rxq(pi, i, rxq) {
2048		fl = &rxq->fl;
2049
2050		FL_LOCK(fl);
2051		find_best_refill_source(sc, fl, maxp);
2052		FL_UNLOCK(fl);
2053	}
2054#ifdef TCP_OFFLOAD
2055	maxp = mtu_to_max_payload(sc, mtu, 1);
2056	for_each_ofld_rxq(pi, i, ofld_rxq) {
2057		fl = &ofld_rxq->fl;
2058
2059		FL_LOCK(fl);
2060		find_best_refill_source(sc, fl, maxp);
2061		FL_UNLOCK(fl);
2062	}
2063#endif
2064}
2065
2066int
2067can_resume_tx(struct sge_eq *eq)
2068{
2069	return (reclaimable(eq) >= tx_resume_threshold(eq));
2070}
2071
2072static inline void
2073init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2074    int qsize, int esize)
2075{
2076	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2077	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2078	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2079	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2080
2081	iq->flags = 0;
2082	iq->adapter = sc;
2083	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2084	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2085	if (pktc_idx >= 0) {
2086		iq->intr_params |= F_QINTR_CNT_EN;
2087		iq->intr_pktc_idx = pktc_idx;
2088	}
2089	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2090	iq->esize = max(esize, 16);		/* See FW_IQ_CMD/iqesize */
2091}
2092
2093static inline void
2094init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, int pack,
2095    char *name)
2096{
2097
2098	fl->qsize = qsize;
2099	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2100	if (pack)
2101		fl->flags |= FL_BUF_PACKING;
2102	find_best_refill_source(sc, fl, maxp);
2103	find_safe_refill_source(sc, fl);
2104}
2105
2106static inline void
2107init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan,
2108    uint16_t iqid, char *name)
2109{
2110	KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan));
2111	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2112
2113	eq->flags = eqtype & EQ_TYPEMASK;
2114	eq->tx_chan = tx_chan;
2115	eq->iqid = iqid;
2116	eq->qsize = qsize;
2117	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2118
2119	TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq);
2120	callout_init(&eq->tx_callout, CALLOUT_MPSAFE);
2121}
2122
2123static int
2124alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2125    bus_dmamap_t *map, bus_addr_t *pa, void **va)
2126{
2127	int rc;
2128
2129	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2130	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2131	if (rc != 0) {
2132		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2133		goto done;
2134	}
2135
2136	rc = bus_dmamem_alloc(*tag, va,
2137	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2138	if (rc != 0) {
2139		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2140		goto done;
2141	}
2142
2143	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2144	if (rc != 0) {
2145		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2146		goto done;
2147	}
2148done:
2149	if (rc)
2150		free_ring(sc, *tag, *map, *pa, *va);
2151
2152	return (rc);
2153}
2154
2155static int
2156free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2157    bus_addr_t pa, void *va)
2158{
2159	if (pa)
2160		bus_dmamap_unload(tag, map);
2161	if (va)
2162		bus_dmamem_free(tag, va, map);
2163	if (tag)
2164		bus_dma_tag_destroy(tag);
2165
2166	return (0);
2167}
2168
2169/*
2170 * Allocates the ring for an ingress queue and an optional freelist.  If the
2171 * freelist is specified it will be allocated and then associated with the
2172 * ingress queue.
2173 *
2174 * Returns errno on failure.  Resources allocated up to that point may still be
2175 * allocated.  Caller is responsible for cleanup in case this function fails.
2176 *
2177 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
2178 * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
2179 * the abs_id of the ingress queue to which its interrupts should be forwarded.
2180 */
2181static int
2182alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
2183    int intr_idx, int cong)
2184{
2185	int rc, i, cntxt_id;
2186	size_t len;
2187	struct fw_iq_cmd c;
2188	struct adapter *sc = iq->adapter;
2189	__be32 v = 0;
2190
2191	len = iq->qsize * iq->esize;
2192	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2193	    (void **)&iq->desc);
2194	if (rc != 0)
2195		return (rc);
2196
2197	bzero(&c, sizeof(c));
2198	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2199	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2200	    V_FW_IQ_CMD_VFN(0));
2201
2202	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2203	    FW_LEN16(c));
2204
2205	/* Special handling for firmware event queue */
2206	if (iq == &sc->sge.fwq)
2207		v |= F_FW_IQ_CMD_IQASYNCH;
2208
2209	if (iq->flags & IQ_INTR) {
2210		KASSERT(intr_idx < sc->intr_count,
2211		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2212	} else
2213		v |= F_FW_IQ_CMD_IQANDST;
2214	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2215
2216	c.type_to_iqandstindex = htobe32(v |
2217	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2218	    V_FW_IQ_CMD_VIID(pi->viid) |
2219	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2220	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2221	    F_FW_IQ_CMD_IQGTSMODE |
2222	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2223	    V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
2224	c.iqsize = htobe16(iq->qsize);
2225	c.iqaddr = htobe64(iq->ba);
2226	if (cong >= 0)
2227		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2228
2229	if (fl) {
2230		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2231
2232		len = fl->qsize * RX_FL_ESIZE;
2233		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2234		    &fl->ba, (void **)&fl->desc);
2235		if (rc)
2236			return (rc);
2237
2238		/* Allocate space for one software descriptor per buffer. */
2239		fl->cap = (fl->qsize - spg_len / RX_FL_ESIZE) * 8;
2240		rc = alloc_fl_sdesc(fl);
2241		if (rc != 0) {
2242			device_printf(sc->dev,
2243			    "failed to setup fl software descriptors: %d\n",
2244			    rc);
2245			return (rc);
2246		}
2247		fl->needed = fl->cap;
2248		fl->lowat = fl->flags & FL_BUF_PACKING ?
2249		    roundup2(sc->sge.fl_starve_threshold2, 8) :
2250		    roundup2(sc->sge.fl_starve_threshold, 8);
2251
2252		c.iqns_to_fl0congen |=
2253		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2254			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2255			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2256			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2257			    0));
2258		if (cong >= 0) {
2259			c.iqns_to_fl0congen |=
2260				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2261				    F_FW_IQ_CMD_FL0CONGCIF |
2262				    F_FW_IQ_CMD_FL0CONGEN);
2263		}
2264		c.fl0dcaen_to_fl0cidxfthresh =
2265		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
2266			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
2267		c.fl0size = htobe16(fl->qsize);
2268		c.fl0addr = htobe64(fl->ba);
2269	}
2270
2271	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2272	if (rc != 0) {
2273		device_printf(sc->dev,
2274		    "failed to create ingress queue: %d\n", rc);
2275		return (rc);
2276	}
2277
2278	iq->cdesc = iq->desc;
2279	iq->cidx = 0;
2280	iq->gen = 1;
2281	iq->intr_next = iq->intr_params;
2282	iq->cntxt_id = be16toh(c.iqid);
2283	iq->abs_id = be16toh(c.physiqid);
2284	iq->flags |= IQ_ALLOCATED;
2285
2286	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2287	if (cntxt_id >= sc->sge.niq) {
2288		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2289		    cntxt_id, sc->sge.niq - 1);
2290	}
2291	sc->sge.iqmap[cntxt_id] = iq;
2292
2293	if (fl) {
2294		fl->cntxt_id = be16toh(c.fl0id);
2295		fl->pidx = fl->cidx = 0;
2296
2297		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2298		if (cntxt_id >= sc->sge.neq) {
2299			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2300			    __func__, cntxt_id, sc->sge.neq - 1);
2301		}
2302		sc->sge.eqmap[cntxt_id] = (void *)fl;
2303
2304		FL_LOCK(fl);
2305		/* Enough to make sure the SGE doesn't think it's starved */
2306		refill_fl(sc, fl, fl->lowat);
2307		FL_UNLOCK(fl);
2308
2309		iq->flags |= IQ_HAS_FL;
2310	}
2311
2312	if (is_t5(sc) && cong >= 0) {
2313		uint32_t param, val;
2314
2315		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2316		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2317		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2318		if (cong == 0)
2319			val = 1 << 19;
2320		else {
2321			val = 2 << 19;
2322			for (i = 0; i < 4; i++) {
2323				if (cong & (1 << i))
2324					val |= 1 << (i << 2);
2325			}
2326		}
2327
2328		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2329		if (rc != 0) {
2330			/* report error but carry on */
2331			device_printf(sc->dev,
2332			    "failed to set congestion manager context for "
2333			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2334		}
2335	}
2336
2337	/* Enable IQ interrupts */
2338	atomic_store_rel_int(&iq->state, IQS_IDLE);
2339	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
2340	    V_INGRESSQID(iq->cntxt_id));
2341
2342	return (0);
2343}
2344
2345static int
2346free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
2347{
2348	int rc;
2349	struct adapter *sc = iq->adapter;
2350	device_t dev;
2351
2352	if (sc == NULL)
2353		return (0);	/* nothing to do */
2354
2355	dev = pi ? pi->dev : sc->dev;
2356
2357	if (iq->flags & IQ_ALLOCATED) {
2358		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2359		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2360		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2361		if (rc != 0) {
2362			device_printf(dev,
2363			    "failed to free queue %p: %d\n", iq, rc);
2364			return (rc);
2365		}
2366		iq->flags &= ~IQ_ALLOCATED;
2367	}
2368
2369	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2370
2371	bzero(iq, sizeof(*iq));
2372
2373	if (fl) {
2374		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2375		    fl->desc);
2376
2377		if (fl->sdesc)
2378			free_fl_sdesc(sc, fl);
2379
2380		if (mtx_initialized(&fl->fl_lock))
2381			mtx_destroy(&fl->fl_lock);
2382
2383		bzero(fl, sizeof(*fl));
2384	}
2385
2386	return (0);
2387}
2388
2389static void
2390add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
2391    struct sge_fl *fl)
2392{
2393	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2394
2395	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2396	    "freelist");
2397	children = SYSCTL_CHILDREN(oid);
2398
2399	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2400	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
2401	    "SGE context id of the freelist");
2402	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
2403	    0, "consumer index");
2404	if (fl->flags & FL_BUF_PACKING) {
2405		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
2406		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
2407	}
2408	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
2409	    0, "producer index");
2410	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
2411	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
2412	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
2413	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
2414	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
2415	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
2416	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
2417	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
2418	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
2419	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
2420}
2421
2422static int
2423alloc_fwq(struct adapter *sc)
2424{
2425	int rc, intr_idx;
2426	struct sge_iq *fwq = &sc->sge.fwq;
2427	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2428	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2429
2430	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
2431	fwq->flags |= IQ_INTR;	/* always */
2432	intr_idx = sc->intr_count > 1 ? 1 : 0;
2433	rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
2434	if (rc != 0) {
2435		device_printf(sc->dev,
2436		    "failed to create firmware event queue: %d\n", rc);
2437		return (rc);
2438	}
2439
2440	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2441	    NULL, "firmware event queue");
2442	children = SYSCTL_CHILDREN(oid);
2443
2444	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
2445	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
2446	    "absolute id of the queue");
2447	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
2448	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
2449	    "SGE context id of the queue");
2450	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
2451	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
2452	    "consumer index");
2453
2454	return (0);
2455}
2456
2457static int
2458free_fwq(struct adapter *sc)
2459{
2460	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
2461}
2462
2463static int
2464alloc_mgmtq(struct adapter *sc)
2465{
2466	int rc;
2467	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
2468	char name[16];
2469	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2470	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2471
2472	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
2473	    NULL, "management queue");
2474
2475	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
2476	init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
2477	    sc->sge.fwq.cntxt_id, name);
2478	rc = alloc_wrq(sc, NULL, mgmtq, oid);
2479	if (rc != 0) {
2480		device_printf(sc->dev,
2481		    "failed to create management queue: %d\n", rc);
2482		return (rc);
2483	}
2484
2485	return (0);
2486}
2487
2488static int
2489free_mgmtq(struct adapter *sc)
2490{
2491
2492	return free_wrq(sc, &sc->sge.mgmtq);
2493}
2494
2495static inline int
2496tnl_cong(struct port_info *pi)
2497{
2498
2499	if (cong_drop == -1)
2500		return (-1);
2501	else if (cong_drop == 1)
2502		return (0);
2503	else
2504		return (pi->rx_chan_map);
2505}
2506
2507static int
2508alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx,
2509    struct sysctl_oid *oid)
2510{
2511	int rc;
2512	struct sysctl_oid_list *children;
2513	char name[16];
2514
2515	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(pi));
2516	if (rc != 0)
2517		return (rc);
2518
2519	FL_LOCK(&rxq->fl);
2520	refill_fl(pi->adapter, &rxq->fl, rxq->fl.needed / 8);
2521	FL_UNLOCK(&rxq->fl);
2522
2523#if defined(INET) || defined(INET6)
2524	rc = tcp_lro_init(&rxq->lro);
2525	if (rc != 0)
2526		return (rc);
2527	rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
2528
2529	if (pi->ifp->if_capenable & IFCAP_LRO)
2530		rxq->iq.flags |= IQ_LRO_ENABLED;
2531#endif
2532	rxq->ifp = pi->ifp;
2533
2534	children = SYSCTL_CHILDREN(oid);
2535
2536	snprintf(name, sizeof(name), "%d", idx);
2537	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2538	    NULL, "rx queue");
2539	children = SYSCTL_CHILDREN(oid);
2540
2541	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2542	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
2543	    "absolute id of the queue");
2544	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2545	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
2546	    "SGE context id of the queue");
2547	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2548	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
2549	    "consumer index");
2550#if defined(INET) || defined(INET6)
2551	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
2552	    &rxq->lro.lro_queued, 0, NULL);
2553	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
2554	    &rxq->lro.lro_flushed, 0, NULL);
2555#endif
2556	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
2557	    &rxq->rxcsum, "# of times hardware assisted with checksum");
2558	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
2559	    CTLFLAG_RD, &rxq->vlan_extraction,
2560	    "# of times hardware extracted 802.1Q tag");
2561
2562	add_fl_sysctls(&pi->ctx, oid, &rxq->fl);
2563
2564	return (rc);
2565}
2566
2567static int
2568free_rxq(struct port_info *pi, struct sge_rxq *rxq)
2569{
2570	int rc;
2571
2572#if defined(INET) || defined(INET6)
2573	if (rxq->lro.ifp) {
2574		tcp_lro_free(&rxq->lro);
2575		rxq->lro.ifp = NULL;
2576	}
2577#endif
2578
2579	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
2580	if (rc == 0)
2581		bzero(rxq, sizeof(*rxq));
2582
2583	return (rc);
2584}
2585
2586#ifdef TCP_OFFLOAD
2587static int
2588alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
2589    int intr_idx, int idx, struct sysctl_oid *oid)
2590{
2591	int rc;
2592	struct sysctl_oid_list *children;
2593	char name[16];
2594
2595	rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
2596	    pi->rx_chan_map);
2597	if (rc != 0)
2598		return (rc);
2599
2600	children = SYSCTL_CHILDREN(oid);
2601
2602	snprintf(name, sizeof(name), "%d", idx);
2603	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2604	    NULL, "rx queue");
2605	children = SYSCTL_CHILDREN(oid);
2606
2607	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2608	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
2609	    "I", "absolute id of the queue");
2610	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2611	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
2612	    "I", "SGE context id of the queue");
2613	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2614	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
2615	    "consumer index");
2616
2617	add_fl_sysctls(&pi->ctx, oid, &ofld_rxq->fl);
2618
2619	return (rc);
2620}
2621
2622static int
2623free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
2624{
2625	int rc;
2626
2627	rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
2628	if (rc == 0)
2629		bzero(ofld_rxq, sizeof(*ofld_rxq));
2630
2631	return (rc);
2632}
2633#endif
2634
2635#ifdef DEV_NETMAP
2636static int
2637alloc_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq, int intr_idx,
2638    int idx, struct sysctl_oid *oid)
2639{
2640	int rc;
2641	struct sysctl_oid_list *children;
2642	struct sysctl_ctx_list *ctx;
2643	char name[16];
2644	size_t len;
2645	struct adapter *sc = pi->adapter;
2646	struct netmap_adapter *na = NA(pi->nm_ifp);
2647
2648	MPASS(na != NULL);
2649
2650	len = pi->qsize_rxq * RX_IQ_ESIZE;
2651	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
2652	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
2653	if (rc != 0)
2654		return (rc);
2655
2656	len = na->num_rx_desc * RX_FL_ESIZE + spg_len;
2657	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
2658	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
2659	if (rc != 0)
2660		return (rc);
2661
2662	nm_rxq->pi = pi;
2663	nm_rxq->nid = idx;
2664	nm_rxq->iq_cidx = 0;
2665	nm_rxq->iq_sidx = pi->qsize_rxq - spg_len / RX_IQ_ESIZE;
2666	nm_rxq->iq_gen = F_RSPD_GEN;
2667	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
2668	nm_rxq->fl_sidx = na->num_rx_desc;
2669	nm_rxq->intr_idx = intr_idx;
2670
2671	ctx = &pi->ctx;
2672	children = SYSCTL_CHILDREN(oid);
2673
2674	snprintf(name, sizeof(name), "%d", idx);
2675	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
2676	    "rx queue");
2677	children = SYSCTL_CHILDREN(oid);
2678
2679	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
2680	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
2681	    "I", "absolute id of the queue");
2682	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2683	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
2684	    "I", "SGE context id of the queue");
2685	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
2686	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
2687	    "consumer index");
2688
2689	children = SYSCTL_CHILDREN(oid);
2690	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2691	    "freelist");
2692	children = SYSCTL_CHILDREN(oid);
2693
2694	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2695	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
2696	    "I", "SGE context id of the freelist");
2697	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
2698	    &nm_rxq->fl_cidx, 0, "consumer index");
2699	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
2700	    &nm_rxq->fl_pidx, 0, "producer index");
2701
2702	return (rc);
2703}
2704
2705
2706static int
2707free_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq)
2708{
2709	struct adapter *sc = pi->adapter;
2710
2711	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
2712	    nm_rxq->iq_desc);
2713	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
2714	    nm_rxq->fl_desc);
2715
2716	return (0);
2717}
2718
2719static int
2720alloc_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
2721    struct sysctl_oid *oid)
2722{
2723	int rc;
2724	size_t len;
2725	struct adapter *sc = pi->adapter;
2726	struct netmap_adapter *na = NA(pi->nm_ifp);
2727	char name[16];
2728	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2729
2730	len = na->num_tx_desc * EQ_ESIZE + spg_len;
2731	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
2732	    &nm_txq->ba, (void **)&nm_txq->desc);
2733	if (rc)
2734		return (rc);
2735
2736	nm_txq->pidx = nm_txq->cidx = 0;
2737	nm_txq->sidx = na->num_tx_desc;
2738	nm_txq->nid = idx;
2739	nm_txq->iqidx = iqidx;
2740	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
2741	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf));
2742
2743	snprintf(name, sizeof(name), "%d", idx);
2744	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2745	    NULL, "netmap tx queue");
2746	children = SYSCTL_CHILDREN(oid);
2747
2748	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2749	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
2750	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2751	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
2752	    "consumer index");
2753	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
2754	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
2755	    "producer index");
2756
2757	return (rc);
2758}
2759
2760static int
2761free_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq)
2762{
2763	struct adapter *sc = pi->adapter;
2764
2765	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
2766	    nm_txq->desc);
2767
2768	return (0);
2769}
2770#endif
2771
2772static int
2773ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
2774{
2775	int rc, cntxt_id;
2776	struct fw_eq_ctrl_cmd c;
2777
2778	bzero(&c, sizeof(c));
2779
2780	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
2781	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
2782	    V_FW_EQ_CTRL_CMD_VFN(0));
2783	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
2784	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2785	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */
2786	c.physeqid_pkd = htobe32(0);
2787	c.fetchszm_to_iqid =
2788	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2789		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
2790		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
2791	c.dcaen_to_eqsize =
2792	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2793		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2794		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2795		V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
2796	c.eqaddr = htobe64(eq->ba);
2797
2798	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2799	if (rc != 0) {
2800		device_printf(sc->dev,
2801		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
2802		return (rc);
2803	}
2804	eq->flags |= EQ_ALLOCATED;
2805
2806	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
2807	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2808	if (cntxt_id >= sc->sge.neq)
2809	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2810		cntxt_id, sc->sge.neq - 1);
2811	sc->sge.eqmap[cntxt_id] = eq;
2812
2813	return (rc);
2814}
2815
2816static int
2817eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2818{
2819	int rc, cntxt_id;
2820	struct fw_eq_eth_cmd c;
2821
2822	bzero(&c, sizeof(c));
2823
2824	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
2825	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
2826	    V_FW_EQ_ETH_CMD_VFN(0));
2827	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
2828	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2829	c.viid_pkd = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
2830	c.fetchszm_to_iqid =
2831	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2832		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
2833		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
2834	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2835		      V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2836		      V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2837		      V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
2838	c.eqaddr = htobe64(eq->ba);
2839
2840	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2841	if (rc != 0) {
2842		device_printf(pi->dev,
2843		    "failed to create Ethernet egress queue: %d\n", rc);
2844		return (rc);
2845	}
2846	eq->flags |= EQ_ALLOCATED;
2847
2848	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
2849	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2850	if (cntxt_id >= sc->sge.neq)
2851	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2852		cntxt_id, sc->sge.neq - 1);
2853	sc->sge.eqmap[cntxt_id] = eq;
2854
2855	return (rc);
2856}
2857
2858#ifdef TCP_OFFLOAD
2859static int
2860ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2861{
2862	int rc, cntxt_id;
2863	struct fw_eq_ofld_cmd c;
2864
2865	bzero(&c, sizeof(c));
2866
2867	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
2868	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
2869	    V_FW_EQ_OFLD_CMD_VFN(0));
2870	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
2871	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2872	c.fetchszm_to_iqid =
2873		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2874		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
2875		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
2876	c.dcaen_to_eqsize =
2877	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2878		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2879		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2880		V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
2881	c.eqaddr = htobe64(eq->ba);
2882
2883	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2884	if (rc != 0) {
2885		device_printf(pi->dev,
2886		    "failed to create egress queue for TCP offload: %d\n", rc);
2887		return (rc);
2888	}
2889	eq->flags |= EQ_ALLOCATED;
2890
2891	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
2892	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2893	if (cntxt_id >= sc->sge.neq)
2894	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2895		cntxt_id, sc->sge.neq - 1);
2896	sc->sge.eqmap[cntxt_id] = eq;
2897
2898	return (rc);
2899}
2900#endif
2901
2902static int
2903alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2904{
2905	int rc;
2906	size_t len;
2907
2908	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
2909
2910	len = eq->qsize * EQ_ESIZE;
2911	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
2912	    &eq->ba, (void **)&eq->desc);
2913	if (rc)
2914		return (rc);
2915
2916	eq->cap = eq->qsize - spg_len / EQ_ESIZE;
2917	eq->spg = (void *)&eq->desc[eq->cap];
2918	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
2919	eq->pidx = eq->cidx = 0;
2920	eq->doorbells = sc->doorbells;
2921
2922	switch (eq->flags & EQ_TYPEMASK) {
2923	case EQ_CTRL:
2924		rc = ctrl_eq_alloc(sc, eq);
2925		break;
2926
2927	case EQ_ETH:
2928		rc = eth_eq_alloc(sc, pi, eq);
2929		break;
2930
2931#ifdef TCP_OFFLOAD
2932	case EQ_OFLD:
2933		rc = ofld_eq_alloc(sc, pi, eq);
2934		break;
2935#endif
2936
2937	default:
2938		panic("%s: invalid eq type %d.", __func__,
2939		    eq->flags & EQ_TYPEMASK);
2940	}
2941	if (rc != 0) {
2942		device_printf(sc->dev,
2943		    "failed to allocate egress queue(%d): %d",
2944		    eq->flags & EQ_TYPEMASK, rc);
2945	}
2946
2947	eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus;
2948
2949	if (isset(&eq->doorbells, DOORBELL_UDB) ||
2950	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
2951	    isset(&eq->doorbells, DOORBELL_WCWR)) {
2952		uint32_t s_qpp = sc->sge.eq_s_qpp;
2953		uint32_t mask = (1 << s_qpp) - 1;
2954		volatile uint8_t *udb;
2955
2956		udb = sc->udbs_base + UDBS_DB_OFFSET;
2957		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
2958		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
2959		if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE)
2960	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
2961		else {
2962			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
2963			eq->udb_qid = 0;
2964		}
2965		eq->udb = (volatile void *)udb;
2966	}
2967
2968	return (rc);
2969}
2970
2971static int
2972free_eq(struct adapter *sc, struct sge_eq *eq)
2973{
2974	int rc;
2975
2976	if (eq->flags & EQ_ALLOCATED) {
2977		switch (eq->flags & EQ_TYPEMASK) {
2978		case EQ_CTRL:
2979			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
2980			    eq->cntxt_id);
2981			break;
2982
2983		case EQ_ETH:
2984			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
2985			    eq->cntxt_id);
2986			break;
2987
2988#ifdef TCP_OFFLOAD
2989		case EQ_OFLD:
2990			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
2991			    eq->cntxt_id);
2992			break;
2993#endif
2994
2995		default:
2996			panic("%s: invalid eq type %d.", __func__,
2997			    eq->flags & EQ_TYPEMASK);
2998		}
2999		if (rc != 0) {
3000			device_printf(sc->dev,
3001			    "failed to free egress queue (%d): %d\n",
3002			    eq->flags & EQ_TYPEMASK, rc);
3003			return (rc);
3004		}
3005		eq->flags &= ~EQ_ALLOCATED;
3006	}
3007
3008	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3009
3010	if (mtx_initialized(&eq->eq_lock))
3011		mtx_destroy(&eq->eq_lock);
3012
3013	bzero(eq, sizeof(*eq));
3014	return (0);
3015}
3016
3017static int
3018alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
3019    struct sysctl_oid *oid)
3020{
3021	int rc;
3022	struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx;
3023	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3024
3025	rc = alloc_eq(sc, pi, &wrq->eq);
3026	if (rc)
3027		return (rc);
3028
3029	wrq->adapter = sc;
3030	STAILQ_INIT(&wrq->wr_list);
3031
3032	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3033	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3034	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3035	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3036	    "consumer index");
3037	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3038	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3039	    "producer index");
3040	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD,
3041	    &wrq->tx_wrs, "# of work requests");
3042	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
3043	    &wrq->no_desc, 0,
3044	    "# of times queue ran out of hardware descriptors");
3045	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
3046	    &wrq->eq.unstalled, 0, "# of times queue recovered after stall");
3047
3048	return (rc);
3049}
3050
3051static int
3052free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3053{
3054	int rc;
3055
3056	rc = free_eq(sc, &wrq->eq);
3057	if (rc)
3058		return (rc);
3059
3060	bzero(wrq, sizeof(*wrq));
3061	return (0);
3062}
3063
3064static int
3065alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx,
3066    struct sysctl_oid *oid)
3067{
3068	int rc;
3069	struct adapter *sc = pi->adapter;
3070	struct sge_eq *eq = &txq->eq;
3071	char name[16];
3072	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3073
3074	rc = alloc_eq(sc, pi, eq);
3075	if (rc)
3076		return (rc);
3077
3078	txq->ifp = pi->ifp;
3079
3080	txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
3081	    M_ZERO | M_WAITOK);
3082	txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
3083
3084	rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
3085	    BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
3086	    BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag);
3087	if (rc != 0) {
3088		device_printf(sc->dev,
3089		    "failed to create tx DMA tag: %d\n", rc);
3090		return (rc);
3091	}
3092
3093	/*
3094	 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
3095	 * limit for any WR).  txq->no_dmamap events shouldn't occur if maps is
3096	 * sized for the worst case.
3097	 */
3098	rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8,
3099	    M_WAITOK);
3100	if (rc != 0) {
3101		device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
3102		return (rc);
3103	}
3104
3105	snprintf(name, sizeof(name), "%d", idx);
3106	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3107	    NULL, "tx queue");
3108	children = SYSCTL_CHILDREN(oid);
3109
3110	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3111	    &eq->cntxt_id, 0, "SGE context id of the queue");
3112	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
3113	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3114	    "consumer index");
3115	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
3116	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3117	    "producer index");
3118
3119	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3120	    &txq->txcsum, "# of times hardware assisted with checksum");
3121	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
3122	    CTLFLAG_RD, &txq->vlan_insertion,
3123	    "# of times hardware inserted 802.1Q tag");
3124	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3125	    &txq->tso_wrs, "# of TSO work requests");
3126	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3127	    &txq->imm_wrs, "# of work requests with immediate data");
3128	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3129	    &txq->sgl_wrs, "# of work requests with direct SGL");
3130	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3131	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3132	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
3133	    &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
3134	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
3135	    &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
3136
3137	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "br_drops", CTLFLAG_RD,
3138	    &txq->br->br_drops, "# of drops in the buf_ring for this queue");
3139	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
3140	    &txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
3141	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
3142	    &txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
3143	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
3144	    &eq->egr_update, 0, "egress update notifications from the SGE");
3145	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
3146	    &eq->unstalled, 0, "# of times txq recovered after stall");
3147
3148	return (rc);
3149}
3150
3151static int
3152free_txq(struct port_info *pi, struct sge_txq *txq)
3153{
3154	int rc;
3155	struct adapter *sc = pi->adapter;
3156	struct sge_eq *eq = &txq->eq;
3157
3158	rc = free_eq(sc, eq);
3159	if (rc)
3160		return (rc);
3161
3162	free(txq->sdesc, M_CXGBE);
3163
3164	if (txq->txmaps.maps)
3165		t4_free_tx_maps(&txq->txmaps, txq->tx_tag);
3166
3167	buf_ring_free(txq->br, M_CXGBE);
3168
3169	if (txq->tx_tag)
3170		bus_dma_tag_destroy(txq->tx_tag);
3171
3172	bzero(txq, sizeof(*txq));
3173	return (0);
3174}
3175
3176static void
3177oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3178{
3179	bus_addr_t *ba = arg;
3180
3181	KASSERT(nseg == 1,
3182	    ("%s meant for single segment mappings only.", __func__));
3183
3184	*ba = error ? 0 : segs->ds_addr;
3185}
3186
3187static inline bool
3188is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
3189{
3190	*ctrl = (void *)((uintptr_t)iq->cdesc +
3191	    (iq->esize - sizeof(struct rsp_ctrl)));
3192
3193	return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen);
3194}
3195
3196static inline void
3197iq_next(struct sge_iq *iq)
3198{
3199	iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
3200	if (__predict_false(++iq->cidx == iq->qsize - spg_len / iq->esize)) {
3201		iq->cidx = 0;
3202		iq->gen ^= 1;
3203		iq->cdesc = iq->desc;
3204	}
3205}
3206
3207#define FL_HW_IDX(x) ((x) >> 3)
3208static inline void
3209ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3210{
3211	int ndesc = fl->pending / 8;
3212	uint32_t v;
3213
3214	if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
3215		ndesc--;	/* hold back one credit */
3216
3217	if (ndesc <= 0)
3218		return;		/* nothing to do */
3219
3220	v = F_DBPRIO | V_QID(fl->cntxt_id) | V_PIDX(ndesc);
3221	if (is_t5(sc))
3222		v |= F_DBTYPE;
3223
3224	wmb();
3225
3226	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3227	fl->pending -= ndesc * 8;
3228}
3229
3230/*
3231 * Fill up the freelist by upto nbufs and maybe ring its doorbell.
3232 *
3233 * Returns non-zero to indicate that it should be added to the list of starving
3234 * freelists.
3235 */
3236static int
3237refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
3238{
3239	__be64 *d = &fl->desc[fl->pidx];
3240	struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
3241	uintptr_t pa;
3242	caddr_t cl;
3243	struct cluster_layout *cll = &fl->cll_def;	/* default layout */
3244	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
3245	struct cluster_metadata *clm;
3246
3247	FL_LOCK_ASSERT_OWNED(fl);
3248
3249	if (nbufs > fl->needed)
3250		nbufs = fl->needed;
3251	nbufs -= (fl->pidx + nbufs) % 8;
3252
3253	while (nbufs--) {
3254
3255		if (sd->cl != NULL) {
3256
3257			if (sd->nimbuf + sd->nembuf == 0) {
3258				/*
3259				 * Fast recycle without involving any atomics on
3260				 * the cluster's metadata (if the cluster has
3261				 * metadata).  This happens when all frames
3262				 * received in the cluster were small enough to
3263				 * fit within a single mbuf each.
3264				 */
3265				fl->cl_fast_recycled++;
3266#ifdef INVARIANTS
3267				clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3268				if (clm != NULL)
3269					MPASS(clm->refcount == 1);
3270#endif
3271				goto recycled_fast;
3272			}
3273
3274			/*
3275			 * Cluster is guaranteed to have metadata.  Clusters
3276			 * without metadata always take the fast recycle path
3277			 * when they're recycled.
3278			 */
3279			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3280			MPASS(clm != NULL);
3281
3282			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3283				fl->cl_recycled++;
3284				goto recycled;
3285			}
3286			sd->cl = NULL;	/* gave up my reference */
3287		}
3288		MPASS(sd->cl == NULL);
3289alloc:
3290		cl = uma_zalloc(swz->zone, M_NOWAIT);
3291		if (__predict_false(cl == NULL)) {
3292			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
3293			    fl->cll_def.zidx == fl->cll_alt.zidx)
3294				break;
3295
3296			/* fall back to the safe zone */
3297			cll = &fl->cll_alt;
3298			swz = &sc->sge.sw_zone_info[cll->zidx];
3299			goto alloc;
3300		}
3301		fl->cl_allocated++;
3302
3303		pa = pmap_kextract((vm_offset_t)cl);
3304		pa += cll->region1;
3305		sd->cl = cl;
3306		sd->cll = *cll;
3307		*d = htobe64(pa | cll->hwidx);
3308		clm = cl_metadata(sc, fl, cll, cl);
3309		if (clm != NULL) {
3310recycled:
3311#ifdef INVARIANTS
3312			clm->sd = sd;
3313#endif
3314			clm->refcount = 1;
3315		}
3316		sd->nimbuf = 0;
3317		sd->nembuf = 0;
3318recycled_fast:
3319		fl->pending++;
3320		fl->needed--;
3321		d++;
3322		sd++;
3323		if (__predict_false(++fl->pidx == fl->cap)) {
3324			fl->pidx = 0;
3325			sd = fl->sdesc;
3326			d = fl->desc;
3327		}
3328	}
3329
3330	if (fl->pending >= 8)
3331		ring_fl_db(sc, fl);
3332
3333	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3334}
3335
3336/*
3337 * Attempt to refill all starving freelists.
3338 */
3339static void
3340refill_sfl(void *arg)
3341{
3342	struct adapter *sc = arg;
3343	struct sge_fl *fl, *fl_temp;
3344
3345	mtx_lock(&sc->sfl_lock);
3346	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3347		FL_LOCK(fl);
3348		refill_fl(sc, fl, 64);
3349		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3350			TAILQ_REMOVE(&sc->sfl, fl, link);
3351			fl->flags &= ~FL_STARVING;
3352		}
3353		FL_UNLOCK(fl);
3354	}
3355
3356	if (!TAILQ_EMPTY(&sc->sfl))
3357		callout_schedule(&sc->sfl_callout, hz / 5);
3358	mtx_unlock(&sc->sfl_lock);
3359}
3360
3361static int
3362alloc_fl_sdesc(struct sge_fl *fl)
3363{
3364
3365	fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE,
3366	    M_ZERO | M_WAITOK);
3367
3368	return (0);
3369}
3370
3371static void
3372free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3373{
3374	struct fl_sdesc *sd;
3375	struct cluster_metadata *clm;
3376	struct cluster_layout *cll;
3377	int i;
3378
3379	sd = fl->sdesc;
3380	for (i = 0; i < fl->cap; i++, sd++) {
3381		if (sd->cl == NULL)
3382			continue;
3383
3384		cll = &sd->cll;
3385		clm = cl_metadata(sc, fl, cll, sd->cl);
3386		if (sd->nimbuf + sd->nembuf == 0 ||
3387		    (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1)) {
3388			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3389		}
3390		sd->cl = NULL;
3391	}
3392
3393	free(fl->sdesc, M_CXGBE);
3394	fl->sdesc = NULL;
3395}
3396
3397int
3398t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count,
3399    int flags)
3400{
3401	struct tx_map *txm;
3402	int i, rc;
3403
3404	txmaps->map_total = txmaps->map_avail = count;
3405	txmaps->map_cidx = txmaps->map_pidx = 0;
3406
3407	txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
3408	    M_ZERO | flags);
3409
3410	txm = txmaps->maps;
3411	for (i = 0; i < count; i++, txm++) {
3412		rc = bus_dmamap_create(tx_tag, 0, &txm->map);
3413		if (rc != 0)
3414			goto failed;
3415	}
3416
3417	return (0);
3418failed:
3419	while (--i >= 0) {
3420		txm--;
3421		bus_dmamap_destroy(tx_tag, txm->map);
3422	}
3423	KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__));
3424
3425	free(txmaps->maps, M_CXGBE);
3426	txmaps->maps = NULL;
3427
3428	return (rc);
3429}
3430
3431void
3432t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag)
3433{
3434	struct tx_map *txm;
3435	int i;
3436
3437	txm = txmaps->maps;
3438	for (i = 0; i < txmaps->map_total; i++, txm++) {
3439
3440		if (txm->m) {
3441			bus_dmamap_unload(tx_tag, txm->map);
3442			m_freem(txm->m);
3443			txm->m = NULL;
3444		}
3445
3446		bus_dmamap_destroy(tx_tag, txm->map);
3447	}
3448
3449	free(txmaps->maps, M_CXGBE);
3450	txmaps->maps = NULL;
3451}
3452
3453/*
3454 * We'll do immediate data tx for non-TSO, but only when not coalescing.  We're
3455 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
3456 * of immediate data.
3457 */
3458#define IMM_LEN ( \
3459      2 * EQ_ESIZE \
3460    - sizeof(struct fw_eth_tx_pkt_wr) \
3461    - sizeof(struct cpl_tx_pkt_core))
3462
3463/*
3464 * Returns non-zero on failure, no need to cleanup anything in that case.
3465 *
3466 * Note 1: We always try to defrag the mbuf if required and return EFBIG only
3467 * if the resulting chain still won't fit in a tx descriptor.
3468 *
3469 * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
3470 * does not have the TCP header in it.
3471 */
3472static int
3473get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
3474    int sgl_only)
3475{
3476	struct mbuf *m = *fp;
3477	struct tx_maps *txmaps;
3478	struct tx_map *txm;
3479	int rc, defragged = 0, n;
3480
3481	TXQ_LOCK_ASSERT_OWNED(txq);
3482
3483	if (m->m_pkthdr.tso_segsz)
3484		sgl_only = 1;	/* Do not allow immediate data with LSO */
3485
3486start:	sgl->nsegs = 0;
3487
3488	if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
3489		return (0);	/* nsegs = 0 tells caller to use imm. tx */
3490
3491	txmaps = &txq->txmaps;
3492	if (txmaps->map_avail == 0) {
3493		txq->no_dmamap++;
3494		return (ENOMEM);
3495	}
3496	txm = &txmaps->maps[txmaps->map_pidx];
3497
3498	if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
3499		*fp = m_pullup(m, 50);
3500		m = *fp;
3501		if (m == NULL)
3502			return (ENOBUFS);
3503	}
3504
3505	rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg,
3506	    &sgl->nsegs, BUS_DMA_NOWAIT);
3507	if (rc == EFBIG && defragged == 0) {
3508		m = m_defrag(m, M_NOWAIT);
3509		if (m == NULL)
3510			return (EFBIG);
3511
3512		defragged = 1;
3513		*fp = m;
3514		goto start;
3515	}
3516	if (rc != 0)
3517		return (rc);
3518
3519	txm->m = m;
3520	txmaps->map_avail--;
3521	if (++txmaps->map_pidx == txmaps->map_total)
3522		txmaps->map_pidx = 0;
3523
3524	KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
3525	    ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
3526
3527	/*
3528	 * Store the # of flits required to hold this frame's SGL in nflits.  An
3529	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
3530	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
3531	 * then len1 must be set to 0.
3532	 */
3533	n = sgl->nsegs - 1;
3534	sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
3535
3536	return (0);
3537}
3538
3539
3540/*
3541 * Releases all the txq resources used up in the specified sgl.
3542 */
3543static int
3544free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
3545{
3546	struct tx_maps *txmaps;
3547	struct tx_map *txm;
3548
3549	TXQ_LOCK_ASSERT_OWNED(txq);
3550
3551	if (sgl->nsegs == 0)
3552		return (0);	/* didn't use any map */
3553
3554	txmaps = &txq->txmaps;
3555
3556	/* 1 pkt uses exactly 1 map, back it out */
3557
3558	txmaps->map_avail++;
3559	if (txmaps->map_pidx > 0)
3560		txmaps->map_pidx--;
3561	else
3562		txmaps->map_pidx = txmaps->map_total - 1;
3563
3564	txm = &txmaps->maps[txmaps->map_pidx];
3565	bus_dmamap_unload(txq->tx_tag, txm->map);
3566	txm->m = NULL;
3567
3568	return (0);
3569}
3570
3571static int
3572write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
3573    struct sgl *sgl)
3574{
3575	struct sge_eq *eq = &txq->eq;
3576	struct fw_eth_tx_pkt_wr *wr;
3577	struct cpl_tx_pkt_core *cpl;
3578	uint32_t ctrl;	/* used in many unrelated places */
3579	uint64_t ctrl1;
3580	int nflits, ndesc, pktlen;
3581	struct tx_sdesc *txsd;
3582	caddr_t dst;
3583
3584	TXQ_LOCK_ASSERT_OWNED(txq);
3585
3586	pktlen = m->m_pkthdr.len;
3587
3588	/*
3589	 * Do we have enough flits to send this frame out?
3590	 */
3591	ctrl = sizeof(struct cpl_tx_pkt_core);
3592	if (m->m_pkthdr.tso_segsz) {
3593		nflits = TXPKT_LSO_WR_HDR;
3594		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
3595	} else
3596		nflits = TXPKT_WR_HDR;
3597	if (sgl->nsegs > 0)
3598		nflits += sgl->nflits;
3599	else {
3600		nflits += howmany(pktlen, 8);
3601		ctrl += pktlen;
3602	}
3603	ndesc = howmany(nflits, 8);
3604	if (ndesc > eq->avail)
3605		return (ENOMEM);
3606
3607	/* Firmware work request header */
3608	wr = (void *)&eq->desc[eq->pidx];
3609	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
3610	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
3611	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
3612	if (eq->avail == ndesc) {
3613		if (!(eq->flags & EQ_CRFLUSHED)) {
3614			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3615			eq->flags |= EQ_CRFLUSHED;
3616		}
3617		eq->flags |= EQ_STALLED;
3618	}
3619
3620	wr->equiq_to_len16 = htobe32(ctrl);
3621	wr->r3 = 0;
3622
3623	if (m->m_pkthdr.tso_segsz) {
3624		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
3625		struct ether_header *eh;
3626		void *l3hdr;
3627#if defined(INET) || defined(INET6)
3628		struct tcphdr *tcp;
3629#endif
3630		uint16_t eh_type;
3631
3632		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
3633		    F_LSO_LAST_SLICE;
3634
3635		eh = mtod(m, struct ether_header *);
3636		eh_type = ntohs(eh->ether_type);
3637		if (eh_type == ETHERTYPE_VLAN) {
3638			struct ether_vlan_header *evh = (void *)eh;
3639
3640			ctrl |= V_LSO_ETHHDR_LEN(1);
3641			l3hdr = evh + 1;
3642			eh_type = ntohs(evh->evl_proto);
3643		} else
3644			l3hdr = eh + 1;
3645
3646		switch (eh_type) {
3647#ifdef INET6
3648		case ETHERTYPE_IPV6:
3649		{
3650			struct ip6_hdr *ip6 = l3hdr;
3651
3652			/*
3653			 * XXX-BZ For now we do not pretend to support
3654			 * IPv6 extension headers.
3655			 */
3656			KASSERT(ip6->ip6_nxt == IPPROTO_TCP, ("%s: CSUM_TSO "
3657			    "with ip6_nxt != TCP: %u", __func__, ip6->ip6_nxt));
3658			tcp = (struct tcphdr *)(ip6 + 1);
3659			ctrl |= F_LSO_IPV6;
3660			ctrl |= V_LSO_IPHDR_LEN(sizeof(*ip6) >> 2) |
3661			    V_LSO_TCPHDR_LEN(tcp->th_off);
3662			break;
3663		}
3664#endif
3665#ifdef INET
3666		case ETHERTYPE_IP:
3667		{
3668			struct ip *ip = l3hdr;
3669
3670			tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
3671			ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
3672			    V_LSO_TCPHDR_LEN(tcp->th_off);
3673			break;
3674		}
3675#endif
3676		default:
3677			panic("%s: CSUM_TSO but no supported IP version "
3678			    "(0x%04x)", __func__, eh_type);
3679		}
3680
3681		lso->lso_ctrl = htobe32(ctrl);
3682		lso->ipid_ofst = htobe16(0);
3683		lso->mss = htobe16(m->m_pkthdr.tso_segsz);
3684		lso->seqno_offset = htobe32(0);
3685		lso->len = htobe32(pktlen);
3686
3687		cpl = (void *)(lso + 1);
3688
3689		txq->tso_wrs++;
3690	} else
3691		cpl = (void *)(wr + 1);
3692
3693	/* Checksum offload */
3694	ctrl1 = 0;
3695	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3696		ctrl1 |= F_TXPKT_IPCSUM_DIS;
3697	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3698	    CSUM_TCP_IPV6 | CSUM_TSO)))
3699		ctrl1 |= F_TXPKT_L4CSUM_DIS;
3700	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3701	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3702		txq->txcsum++;	/* some hardware assistance provided */
3703
3704	/* VLAN tag insertion */
3705	if (m->m_flags & M_VLANTAG) {
3706		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3707		txq->vlan_insertion++;
3708	}
3709
3710	/* CPL header */
3711	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3712	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3713	cpl->pack = 0;
3714	cpl->len = htobe16(pktlen);
3715	cpl->ctrl1 = htobe64(ctrl1);
3716
3717	/* Software descriptor */
3718	txsd = &txq->sdesc[eq->pidx];
3719	txsd->desc_used = ndesc;
3720
3721	eq->pending += ndesc;
3722	eq->avail -= ndesc;
3723	eq->pidx += ndesc;
3724	if (eq->pidx >= eq->cap)
3725		eq->pidx -= eq->cap;
3726
3727	/* SGL */
3728	dst = (void *)(cpl + 1);
3729	if (sgl->nsegs > 0) {
3730		txsd->credits = 1;
3731		txq->sgl_wrs++;
3732		write_sgl_to_txd(eq, sgl, &dst);
3733	} else {
3734		txsd->credits = 0;
3735		txq->imm_wrs++;
3736		for (; m; m = m->m_next) {
3737			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
3738#ifdef INVARIANTS
3739			pktlen -= m->m_len;
3740#endif
3741		}
3742#ifdef INVARIANTS
3743		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
3744#endif
3745
3746	}
3747
3748	txq->txpkt_wrs++;
3749	return (0);
3750}
3751
3752/*
3753 * Returns 0 to indicate that m has been accepted into a coalesced tx work
3754 * request.  It has either been folded into txpkts or txpkts was flushed and m
3755 * has started a new coalesced work request (as the first frame in a fresh
3756 * txpkts).
3757 *
3758 * Returns non-zero to indicate a failure - caller is responsible for
3759 * transmitting m, if there was anything in txpkts it has been flushed.
3760 */
3761static int
3762add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
3763    struct mbuf *m, struct sgl *sgl)
3764{
3765	struct sge_eq *eq = &txq->eq;
3766	int can_coalesce;
3767	struct tx_sdesc *txsd;
3768	int flits;
3769
3770	TXQ_LOCK_ASSERT_OWNED(txq);
3771
3772	KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__));
3773
3774	if (txpkts->npkt > 0) {
3775		flits = TXPKTS_PKT_HDR + sgl->nflits;
3776		can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3777		    txpkts->nflits + flits <= TX_WR_FLITS &&
3778		    txpkts->nflits + flits <= eq->avail * 8 &&
3779		    txpkts->plen + m->m_pkthdr.len < 65536;
3780
3781		if (can_coalesce) {
3782			txpkts->npkt++;
3783			txpkts->nflits += flits;
3784			txpkts->plen += m->m_pkthdr.len;
3785
3786			txsd = &txq->sdesc[eq->pidx];
3787			txsd->credits++;
3788
3789			return (0);
3790		}
3791
3792		/*
3793		 * Couldn't coalesce m into txpkts.  The first order of business
3794		 * is to send txpkts on its way.  Then we'll revisit m.
3795		 */
3796		write_txpkts_wr(txq, txpkts);
3797	}
3798
3799	/*
3800	 * Check if we can start a new coalesced tx work request with m as
3801	 * the first packet in it.
3802	 */
3803
3804	KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
3805
3806	flits = TXPKTS_WR_HDR + sgl->nflits;
3807	can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3808	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
3809
3810	if (can_coalesce == 0)
3811		return (EINVAL);
3812
3813	/*
3814	 * Start a fresh coalesced tx WR with m as the first frame in it.
3815	 */
3816	txpkts->npkt = 1;
3817	txpkts->nflits = flits;
3818	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
3819	txpkts->plen = m->m_pkthdr.len;
3820
3821	txsd = &txq->sdesc[eq->pidx];
3822	txsd->credits = 1;
3823
3824	return (0);
3825}
3826
3827/*
3828 * Note that write_txpkts_wr can never run out of hardware descriptors (but
3829 * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
3830 * coalescing only if sufficient hardware descriptors are available.
3831 */
3832static void
3833write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
3834{
3835	struct sge_eq *eq = &txq->eq;
3836	struct fw_eth_tx_pkts_wr *wr;
3837	struct tx_sdesc *txsd;
3838	uint32_t ctrl;
3839	int ndesc;
3840
3841	TXQ_LOCK_ASSERT_OWNED(txq);
3842
3843	ndesc = howmany(txpkts->nflits, 8);
3844
3845	wr = (void *)&eq->desc[eq->pidx];
3846	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
3847	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
3848	if (eq->avail == ndesc) {
3849		if (!(eq->flags & EQ_CRFLUSHED)) {
3850			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3851			eq->flags |= EQ_CRFLUSHED;
3852		}
3853		eq->flags |= EQ_STALLED;
3854	}
3855	wr->equiq_to_len16 = htobe32(ctrl);
3856	wr->plen = htobe16(txpkts->plen);
3857	wr->npkt = txpkts->npkt;
3858	wr->r3 = wr->type = 0;
3859
3860	/* Everything else already written */
3861
3862	txsd = &txq->sdesc[eq->pidx];
3863	txsd->desc_used = ndesc;
3864
3865	KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__));
3866
3867	eq->pending += ndesc;
3868	eq->avail -= ndesc;
3869	eq->pidx += ndesc;
3870	if (eq->pidx >= eq->cap)
3871		eq->pidx -= eq->cap;
3872
3873	txq->txpkts_pkts += txpkts->npkt;
3874	txq->txpkts_wrs++;
3875	txpkts->npkt = 0;	/* emptied */
3876}
3877
3878static inline void
3879write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
3880    struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
3881{
3882	struct ulp_txpkt *ulpmc;
3883	struct ulptx_idata *ulpsc;
3884	struct cpl_tx_pkt_core *cpl;
3885	struct sge_eq *eq = &txq->eq;
3886	uintptr_t flitp, start, end;
3887	uint64_t ctrl;
3888	caddr_t dst;
3889
3890	KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
3891
3892	start = (uintptr_t)eq->desc;
3893	end = (uintptr_t)eq->spg;
3894
3895	/* Checksum offload */
3896	ctrl = 0;
3897	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3898		ctrl |= F_TXPKT_IPCSUM_DIS;
3899	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3900	    CSUM_TCP_IPV6 | CSUM_TSO)))
3901		ctrl |= F_TXPKT_L4CSUM_DIS;
3902	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3903	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3904		txq->txcsum++;	/* some hardware assistance provided */
3905
3906	/* VLAN tag insertion */
3907	if (m->m_flags & M_VLANTAG) {
3908		ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3909		txq->vlan_insertion++;
3910	}
3911
3912	/*
3913	 * The previous packet's SGL must have ended at a 16 byte boundary (this
3914	 * is required by the firmware/hardware).  It follows that flitp cannot
3915	 * wrap around between the ULPTX master command and ULPTX subcommand (8
3916	 * bytes each), and that it can not wrap around in the middle of the
3917	 * cpl_tx_pkt_core either.
3918	 */
3919	flitp = (uintptr_t)txpkts->flitp;
3920	KASSERT((flitp & 0xf) == 0,
3921	    ("%s: last SGL did not end at 16 byte boundary: %p",
3922	    __func__, txpkts->flitp));
3923
3924	/* ULP master command */
3925	ulpmc = (void *)flitp;
3926	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) |
3927	    V_ULP_TXPKT_FID(eq->iqid));
3928	ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
3929	    sizeof(*cpl) + 8 * sgl->nflits, 16));
3930
3931	/* ULP subcommand */
3932	ulpsc = (void *)(ulpmc + 1);
3933	ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
3934	    F_ULP_TX_SC_MORE);
3935	ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
3936
3937	flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
3938	if (flitp == end)
3939		flitp = start;
3940
3941	/* CPL_TX_PKT */
3942	cpl = (void *)flitp;
3943	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3944	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3945	cpl->pack = 0;
3946	cpl->len = htobe16(m->m_pkthdr.len);
3947	cpl->ctrl1 = htobe64(ctrl);
3948
3949	flitp += sizeof(*cpl);
3950	if (flitp == end)
3951		flitp = start;
3952
3953	/* SGL for this frame */
3954	dst = (caddr_t)flitp;
3955	txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
3956	txpkts->flitp = (void *)dst;
3957
3958	KASSERT(((uintptr_t)dst & 0xf) == 0,
3959	    ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
3960}
3961
3962/*
3963 * If the SGL ends on an address that is not 16 byte aligned, this function will
3964 * add a 0 filled flit at the end.  It returns 1 in that case.
3965 */
3966static int
3967write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
3968{
3969	__be64 *flitp, *end;
3970	struct ulptx_sgl *usgl;
3971	bus_dma_segment_t *seg;
3972	int i, padded;
3973
3974	KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
3975	    ("%s: bad SGL - nsegs=%d, nflits=%d",
3976	    __func__, sgl->nsegs, sgl->nflits));
3977
3978	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
3979	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
3980
3981	flitp = (__be64 *)(*to);
3982	end = flitp + sgl->nflits;
3983	seg = &sgl->seg[0];
3984	usgl = (void *)flitp;
3985
3986	/*
3987	 * We start at a 16 byte boundary somewhere inside the tx descriptor
3988	 * ring, so we're at least 16 bytes away from the status page.  There is
3989	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
3990	 */
3991
3992	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
3993	    V_ULPTX_NSGE(sgl->nsegs));
3994	usgl->len0 = htobe32(seg->ds_len);
3995	usgl->addr0 = htobe64(seg->ds_addr);
3996	seg++;
3997
3998	if ((uintptr_t)end <= (uintptr_t)eq->spg) {
3999
4000		/* Won't wrap around at all */
4001
4002		for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
4003			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
4004			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
4005		}
4006		if (i & 1)
4007			usgl->sge[i / 2].len[1] = htobe32(0);
4008	} else {
4009
4010		/* Will wrap somewhere in the rest of the SGL */
4011
4012		/* 2 flits already written, write the rest flit by flit */
4013		flitp = (void *)(usgl + 1);
4014		for (i = 0; i < sgl->nflits - 2; i++) {
4015			if ((uintptr_t)flitp == (uintptr_t)eq->spg)
4016				flitp = (void *)eq->desc;
4017			*flitp++ = get_flit(seg, sgl->nsegs - 1, i);
4018		}
4019		end = flitp;
4020	}
4021
4022	if ((uintptr_t)end & 0xf) {
4023		*(uint64_t *)end = 0;
4024		end++;
4025		padded = 1;
4026	} else
4027		padded = 0;
4028
4029	if ((uintptr_t)end == (uintptr_t)eq->spg)
4030		*to = (void *)eq->desc;
4031	else
4032		*to = (void *)end;
4033
4034	return (padded);
4035}
4036
4037static inline void
4038copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4039{
4040	if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)eq->spg)) {
4041		bcopy(from, *to, len);
4042		(*to) += len;
4043	} else {
4044		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
4045
4046		bcopy(from, *to, portion);
4047		from += portion;
4048		portion = len - portion;	/* remaining */
4049		bcopy(from, (void *)eq->desc, portion);
4050		(*to) = (caddr_t)eq->desc + portion;
4051	}
4052}
4053
4054static inline void
4055ring_eq_db(struct adapter *sc, struct sge_eq *eq)
4056{
4057	u_int db, pending;
4058
4059	db = eq->doorbells;
4060	pending = eq->pending;
4061	if (pending > 1)
4062		clrbit(&db, DOORBELL_WCWR);
4063	eq->pending = 0;
4064	wmb();
4065
4066	switch (ffs(db) - 1) {
4067	case DOORBELL_UDB:
4068		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
4069		return;
4070
4071	case DOORBELL_WCWR: {
4072		volatile uint64_t *dst, *src;
4073		int i;
4074
4075		/*
4076		 * Queues whose 128B doorbell segment fits in the page do not
4077		 * use relative qid (udb_qid is always 0).  Only queues with
4078		 * doorbell segments can do WCWR.
4079		 */
4080		KASSERT(eq->udb_qid == 0 && pending == 1,
4081		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4082		    __func__, eq->doorbells, pending, eq->pidx, eq));
4083
4084		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4085		    UDBS_DB_OFFSET);
4086		i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
4087		src = (void *)&eq->desc[i];
4088		while (src != (void *)&eq->desc[i + 1])
4089			*dst++ = *src++;
4090		wmb();
4091		return;
4092	}
4093
4094	case DOORBELL_UDBWC:
4095		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
4096		wmb();
4097		return;
4098
4099	case DOORBELL_KDB:
4100		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
4101		    V_QID(eq->cntxt_id) | V_PIDX(pending));
4102		return;
4103	}
4104}
4105
4106static inline int
4107reclaimable(struct sge_eq *eq)
4108{
4109	unsigned int cidx;
4110
4111	cidx = eq->spg->cidx;	/* stable snapshot */
4112	cidx = be16toh(cidx);
4113
4114	if (cidx >= eq->cidx)
4115		return (cidx - eq->cidx);
4116	else
4117		return (cidx + eq->cap - eq->cidx);
4118}
4119
4120/*
4121 * There are "can_reclaim" tx descriptors ready to be reclaimed.  Reclaim as
4122 * many as possible but stop when there are around "n" mbufs to free.
4123 *
4124 * The actual number reclaimed is provided as the return value.
4125 */
4126static int
4127reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n)
4128{
4129	struct tx_sdesc *txsd;
4130	struct tx_maps *txmaps;
4131	struct tx_map *txm;
4132	unsigned int reclaimed, maps;
4133	struct sge_eq *eq = &txq->eq;
4134
4135	TXQ_LOCK_ASSERT_OWNED(txq);
4136
4137	if (can_reclaim == 0)
4138		can_reclaim = reclaimable(eq);
4139
4140	maps = reclaimed = 0;
4141	while (can_reclaim && maps < n) {
4142		int ndesc;
4143
4144		txsd = &txq->sdesc[eq->cidx];
4145		ndesc = txsd->desc_used;
4146
4147		/* Firmware doesn't return "partial" credits. */
4148		KASSERT(can_reclaim >= ndesc,
4149		    ("%s: unexpected number of credits: %d, %d",
4150		    __func__, can_reclaim, ndesc));
4151
4152		maps += txsd->credits;
4153
4154		reclaimed += ndesc;
4155		can_reclaim -= ndesc;
4156
4157		eq->cidx += ndesc;
4158		if (__predict_false(eq->cidx >= eq->cap))
4159			eq->cidx -= eq->cap;
4160	}
4161
4162	txmaps = &txq->txmaps;
4163	txm = &txmaps->maps[txmaps->map_cidx];
4164	if (maps)
4165		prefetch(txm->m);
4166
4167	eq->avail += reclaimed;
4168	KASSERT(eq->avail < eq->cap,	/* avail tops out at (cap - 1) */
4169	    ("%s: too many descriptors available", __func__));
4170
4171	txmaps->map_avail += maps;
4172	KASSERT(txmaps->map_avail <= txmaps->map_total,
4173	    ("%s: too many maps available", __func__));
4174
4175	while (maps--) {
4176		struct tx_map *next;
4177
4178		next = txm + 1;
4179		if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total))
4180			next = txmaps->maps;
4181		prefetch(next->m);
4182
4183		bus_dmamap_unload(txq->tx_tag, txm->map);
4184		m_freem(txm->m);
4185		txm->m = NULL;
4186
4187		txm = next;
4188		if (__predict_false(++txmaps->map_cidx == txmaps->map_total))
4189			txmaps->map_cidx = 0;
4190	}
4191
4192	return (reclaimed);
4193}
4194
4195static void
4196write_eqflush_wr(struct sge_eq *eq)
4197{
4198	struct fw_eq_flush_wr *wr;
4199
4200	EQ_LOCK_ASSERT_OWNED(eq);
4201	KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
4202	KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__));
4203
4204	wr = (void *)&eq->desc[eq->pidx];
4205	bzero(wr, sizeof(*wr));
4206	wr->opcode = FW_EQ_FLUSH_WR;
4207	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
4208	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
4209
4210	eq->flags |= (EQ_CRFLUSHED | EQ_STALLED);
4211	eq->pending++;
4212	eq->avail--;
4213	if (++eq->pidx == eq->cap)
4214		eq->pidx = 0;
4215}
4216
4217static __be64
4218get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
4219{
4220	int i = (idx / 3) * 2;
4221
4222	switch (idx % 3) {
4223	case 0: {
4224		__be64 rc;
4225
4226		rc = htobe32(sgl[i].ds_len);
4227		if (i + 1 < nsegs)
4228			rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
4229
4230		return (rc);
4231	}
4232	case 1:
4233		return htobe64(sgl[i].ds_addr);
4234	case 2:
4235		return htobe64(sgl[i + 1].ds_addr);
4236	}
4237
4238	return (0);
4239}
4240
4241static void
4242find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
4243{
4244	int8_t zidx, hwidx, idx;
4245	uint16_t region1, region3;
4246	int spare, spare_needed, n;
4247	struct sw_zone_info *swz;
4248	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
4249
4250	/*
4251	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
4252	 * large enough for the max payload and cluster metadata.  Otherwise
4253	 * settle for the largest bufsize that leaves enough room in the cluster
4254	 * for metadata.
4255	 *
4256	 * Without buffer packing: Look for the smallest zone which has a
4257	 * bufsize large enough for the max payload.  Settle for the largest
4258	 * bufsize available if there's nothing big enough for max payload.
4259	 */
4260	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
4261	swz = &sc->sge.sw_zone_info[0];
4262	hwidx = -1;
4263	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
4264		if (swz->size > largest_rx_cluster) {
4265			if (__predict_true(hwidx != -1))
4266				break;
4267
4268			/*
4269			 * This is a misconfiguration.  largest_rx_cluster is
4270			 * preventing us from finding a refill source.  See
4271			 * dev.t5nex.<n>.buffer_sizes to figure out why.
4272			 */
4273			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
4274			    " refill source for fl %p (dma %u).  Ignored.\n",
4275			    largest_rx_cluster, fl, maxp);
4276		}
4277		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
4278			hwb = &hwb_list[idx];
4279			spare = swz->size - hwb->size;
4280			if (spare < spare_needed)
4281				continue;
4282
4283			hwidx = idx;		/* best option so far */
4284			if (hwb->size >= maxp) {
4285
4286				if ((fl->flags & FL_BUF_PACKING) == 0)
4287					goto done; /* stop looking (not packing) */
4288
4289				if (swz->size >= safest_rx_cluster)
4290					goto done; /* stop looking (packing) */
4291			}
4292			break;		/* keep looking, next zone */
4293		}
4294	}
4295done:
4296	/* A usable hwidx has been located. */
4297	MPASS(hwidx != -1);
4298	hwb = &hwb_list[hwidx];
4299	zidx = hwb->zidx;
4300	swz = &sc->sge.sw_zone_info[zidx];
4301	region1 = 0;
4302	region3 = swz->size - hwb->size;
4303
4304	/*
4305	 * Stay within this zone and see if there is a better match when mbuf
4306	 * inlining is allowed.  Remember that the hwidx's are sorted in
4307	 * decreasing order of size (so in increasing order of spare area).
4308	 */
4309	for (idx = hwidx; idx != -1; idx = hwb->next) {
4310		hwb = &hwb_list[idx];
4311		spare = swz->size - hwb->size;
4312
4313		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
4314			break;
4315		if (spare < CL_METADATA_SIZE + MSIZE)
4316			continue;
4317		n = (spare - CL_METADATA_SIZE) / MSIZE;
4318		if (n > howmany(hwb->size, maxp))
4319			break;
4320
4321		hwidx = idx;
4322		if (fl->flags & FL_BUF_PACKING) {
4323			region1 = n * MSIZE;
4324			region3 = spare - region1;
4325		} else {
4326			region1 = MSIZE;
4327			region3 = spare - region1;
4328			break;
4329		}
4330	}
4331
4332	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
4333	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
4334	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
4335	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
4336	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
4337	    sc->sge.sw_zone_info[zidx].size,
4338	    ("%s: bad buffer layout for fl %p, maxp %d. "
4339		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4340		sc->sge.sw_zone_info[zidx].size, region1,
4341		sc->sge.hw_buf_info[hwidx].size, region3));
4342	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
4343		KASSERT(region3 >= CL_METADATA_SIZE,
4344		    ("%s: no room for metadata.  fl %p, maxp %d; "
4345		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4346		    sc->sge.sw_zone_info[zidx].size, region1,
4347		    sc->sge.hw_buf_info[hwidx].size, region3));
4348		KASSERT(region1 % MSIZE == 0,
4349		    ("%s: bad mbuf region for fl %p, maxp %d. "
4350		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4351		    sc->sge.sw_zone_info[zidx].size, region1,
4352		    sc->sge.hw_buf_info[hwidx].size, region3));
4353	}
4354
4355	fl->cll_def.zidx = zidx;
4356	fl->cll_def.hwidx = hwidx;
4357	fl->cll_def.region1 = region1;
4358	fl->cll_def.region3 = region3;
4359}
4360
4361static void
4362find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
4363{
4364	struct sge *s = &sc->sge;
4365	struct hw_buf_info *hwb;
4366	struct sw_zone_info *swz;
4367	int spare;
4368	int8_t hwidx;
4369
4370	if (fl->flags & FL_BUF_PACKING)
4371		hwidx = s->safe_hwidx2;	/* with room for metadata */
4372	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
4373		hwidx = s->safe_hwidx2;
4374		hwb = &s->hw_buf_info[hwidx];
4375		swz = &s->sw_zone_info[hwb->zidx];
4376		spare = swz->size - hwb->size;
4377
4378		/* no good if there isn't room for an mbuf as well */
4379		if (spare < CL_METADATA_SIZE + MSIZE)
4380			hwidx = s->safe_hwidx1;
4381	} else
4382		hwidx = s->safe_hwidx1;
4383
4384	if (hwidx == -1) {
4385		/* No fallback source */
4386		fl->cll_alt.hwidx = -1;
4387		fl->cll_alt.zidx = -1;
4388
4389		return;
4390	}
4391
4392	hwb = &s->hw_buf_info[hwidx];
4393	swz = &s->sw_zone_info[hwb->zidx];
4394	spare = swz->size - hwb->size;
4395	fl->cll_alt.hwidx = hwidx;
4396	fl->cll_alt.zidx = hwb->zidx;
4397	if (allow_mbufs_in_cluster)
4398		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
4399	else
4400		fl->cll_alt.region1 = 0;
4401	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
4402}
4403
4404static void
4405add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
4406{
4407	mtx_lock(&sc->sfl_lock);
4408	FL_LOCK(fl);
4409	if ((fl->flags & FL_DOOMED) == 0) {
4410		fl->flags |= FL_STARVING;
4411		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
4412		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
4413	}
4414	FL_UNLOCK(fl);
4415	mtx_unlock(&sc->sfl_lock);
4416}
4417
4418static int
4419handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
4420    struct mbuf *m)
4421{
4422	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
4423	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
4424	struct adapter *sc = iq->adapter;
4425	struct sge *s = &sc->sge;
4426	struct sge_eq *eq;
4427
4428	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4429	    rss->opcode));
4430
4431	eq = s->eqmap[qid - s->eq_start];
4432	EQ_LOCK(eq);
4433	KASSERT(eq->flags & EQ_CRFLUSHED,
4434	    ("%s: unsolicited egress update", __func__));
4435	eq->flags &= ~EQ_CRFLUSHED;
4436	eq->egr_update++;
4437
4438	if (__predict_false(eq->flags & EQ_DOOMED))
4439		wakeup_one(eq);
4440	else if (eq->flags & EQ_STALLED && can_resume_tx(eq))
4441		taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task);
4442	EQ_UNLOCK(eq);
4443
4444	return (0);
4445}
4446
4447/* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
4448CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
4449    offsetof(struct cpl_fw6_msg, data));
4450
4451static int
4452handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
4453{
4454	struct adapter *sc = iq->adapter;
4455	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
4456
4457	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4458	    rss->opcode));
4459
4460	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
4461		const struct rss_header *rss2;
4462
4463		rss2 = (const struct rss_header *)&cpl->data[0];
4464		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
4465	}
4466
4467	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
4468}
4469
4470static int
4471sysctl_uint16(SYSCTL_HANDLER_ARGS)
4472{
4473	uint16_t *id = arg1;
4474	int i = *id;
4475
4476	return sysctl_handle_int(oidp, &i, 0, req);
4477}
4478
4479static int
4480sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
4481{
4482	struct sge *s = arg1;
4483	struct hw_buf_info *hwb = &s->hw_buf_info[0];
4484	struct sw_zone_info *swz = &s->sw_zone_info[0];
4485	int i, rc;
4486	struct sbuf sb;
4487	char c;
4488
4489	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
4490	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
4491		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
4492			c = '*';
4493		else
4494			c = '\0';
4495
4496		sbuf_printf(&sb, "%u%c ", hwb->size, c);
4497	}
4498	sbuf_trim(&sb);
4499	sbuf_finish(&sb);
4500	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
4501	sbuf_delete(&sb);
4502	return (rc);
4503}
4504