t4_sge.c revision 266908
1/*-
2 * Copyright (c) 2011 Chelsio Communications, Inc.
3 * All rights reserved.
4 * Written by: Navdeep Parhar <np@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/cxgbe/t4_sge.c 266908 2014-05-30 22:59:45Z np $");
30
31#include "opt_inet.h"
32#include "opt_inet6.h"
33
34#include <sys/types.h>
35#include <sys/eventhandler.h>
36#include <sys/mbuf.h>
37#include <sys/socket.h>
38#include <sys/kernel.h>
39#include <sys/kdb.h>
40#include <sys/malloc.h>
41#include <sys/queue.h>
42#include <sys/sbuf.h>
43#include <sys/taskqueue.h>
44#include <sys/time.h>
45#include <sys/sysctl.h>
46#include <sys/smp.h>
47#include <net/bpf.h>
48#include <net/ethernet.h>
49#include <net/if.h>
50#include <net/if_vlan_var.h>
51#include <netinet/in.h>
52#include <netinet/ip.h>
53#include <netinet/ip6.h>
54#include <netinet/tcp.h>
55#include <machine/md_var.h>
56#include <vm/vm.h>
57#include <vm/pmap.h>
58#ifdef DEV_NETMAP
59#include <machine/bus.h>
60#include <sys/selinfo.h>
61#include <net/if_var.h>
62#include <net/netmap.h>
63#include <dev/netmap/netmap_kern.h>
64#endif
65
66#include "common/common.h"
67#include "common/t4_regs.h"
68#include "common/t4_regs_values.h"
69#include "common/t4_msg.h"
70
71#ifdef T4_PKT_TIMESTAMP
72#define RX_COPY_THRESHOLD (MINCLSIZE - 8)
73#else
74#define RX_COPY_THRESHOLD MINCLSIZE
75#endif
76
77/*
78 * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
79 * 0-7 are valid values.
80 */
81int fl_pktshift = 2;
82TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
83
84/*
85 * Pad ethernet payload up to this boundary.
86 * -1: driver should figure out a good value.
87 *  0: disable padding.
88 *  Any power of 2 from 32 to 4096 (both inclusive) is also a valid value.
89 */
90int fl_pad = -1;
91TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
92
93/*
94 * Status page length.
95 * -1: driver should figure out a good value.
96 *  64 or 128 are the only other valid values.
97 */
98int spg_len = -1;
99TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
100
101/*
102 * Congestion drops.
103 * -1: no congestion feedback (not recommended).
104 *  0: backpressure the channel instead of dropping packets right away.
105 *  1: no backpressure, drop packets for the congested queue immediately.
106 */
107static int cong_drop = 0;
108TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
109
110/*
111 * Deliver multiple frames in the same free list buffer if they fit.
112 * -1: let the driver decide whether to enable buffer packing or not.
113 *  0: disable buffer packing.
114 *  1: enable buffer packing.
115 */
116static int buffer_packing = -1;
117TUNABLE_INT("hw.cxgbe.buffer_packing", &buffer_packing);
118
119/*
120 * Start next frame in a packed buffer at this boundary.
121 * -1: driver should figure out a good value.
122 * T4:
123 * ---
124 * if fl_pad != 0
125 * 	value specified here will be overridden by fl_pad.
126 * else
127 * 	power of 2 from 32 to 4096 (both inclusive) is a valid value here.
128 * T5:
129 * ---
130 * 16, or a power of 2 from 64 to 4096 (both inclusive) is a valid value.
131 */
132static int fl_pack = -1;
133static int t4_fl_pack;
134static int t5_fl_pack;
135TUNABLE_INT("hw.cxgbe.fl_pack", &fl_pack);
136
137/*
138 * Allow the driver to create mbuf(s) in a cluster allocated for rx.
139 * 0: never; always allocate mbufs from the zone_mbuf UMA zone.
140 * 1: ok to create mbuf(s) within a cluster if there is room.
141 */
142static int allow_mbufs_in_cluster = 1;
143TUNABLE_INT("hw.cxgbe.allow_mbufs_in_cluster", &allow_mbufs_in_cluster);
144
145/*
146 * Largest rx cluster size that the driver is allowed to allocate.
147 */
148static int largest_rx_cluster = MJUM16BYTES;
149TUNABLE_INT("hw.cxgbe.largest_rx_cluster", &largest_rx_cluster);
150
151/*
152 * Size of cluster allocation that's most likely to succeed.  The driver will
153 * fall back to this size if it fails to allocate clusters larger than this.
154 */
155static int safest_rx_cluster = PAGE_SIZE;
156TUNABLE_INT("hw.cxgbe.safest_rx_cluster", &safest_rx_cluster);
157
158/* Used to track coalesced tx work request */
159struct txpkts {
160	uint64_t *flitp;	/* ptr to flit where next pkt should start */
161	uint8_t npkt;		/* # of packets in this work request */
162	uint8_t nflits;		/* # of flits used by this work request */
163	uint16_t plen;		/* total payload (sum of all packets) */
164};
165
166/* A packet's SGL.  This + m_pkthdr has all info needed for tx */
167struct sgl {
168	int nsegs;		/* # of segments in the SGL, 0 means imm. tx */
169	int nflits;		/* # of flits needed for the SGL */
170	bus_dma_segment_t seg[TX_SGL_SEGS];
171};
172
173static int service_iq(struct sge_iq *, int);
174static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t,
175    int *);
176static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
177static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
178    int);
179static inline void init_fl(struct adapter *, struct sge_fl *, int, int, int,
180    char *);
181static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t,
182    char *);
183static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
184    bus_addr_t *, void **);
185static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
186    void *);
187static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
188    int, int);
189static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
190static void add_fl_sysctls(struct sysctl_ctx_list *, struct sysctl_oid *,
191    struct sge_fl *);
192static int alloc_fwq(struct adapter *);
193static int free_fwq(struct adapter *);
194static int alloc_mgmtq(struct adapter *);
195static int free_mgmtq(struct adapter *);
196static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int,
197    struct sysctl_oid *);
198static int free_rxq(struct port_info *, struct sge_rxq *);
199#ifdef TCP_OFFLOAD
200static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int,
201    struct sysctl_oid *);
202static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *);
203#endif
204#ifdef DEV_NETMAP
205static int alloc_nm_rxq(struct port_info *, struct sge_nm_rxq *, int, int,
206    struct sysctl_oid *);
207static int free_nm_rxq(struct port_info *, struct sge_nm_rxq *);
208static int alloc_nm_txq(struct port_info *, struct sge_nm_txq *, int, int,
209    struct sysctl_oid *);
210static int free_nm_txq(struct port_info *, struct sge_nm_txq *);
211#endif
212static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
213static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
214#ifdef TCP_OFFLOAD
215static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
216#endif
217static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *);
218static int free_eq(struct adapter *, struct sge_eq *);
219static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *,
220    struct sysctl_oid *);
221static int free_wrq(struct adapter *, struct sge_wrq *);
222static int alloc_txq(struct port_info *, struct sge_txq *, int,
223    struct sysctl_oid *);
224static int free_txq(struct port_info *, struct sge_txq *);
225static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
226static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **);
227static inline void iq_next(struct sge_iq *);
228static inline void ring_fl_db(struct adapter *, struct sge_fl *);
229static int refill_fl(struct adapter *, struct sge_fl *, int);
230static void refill_sfl(void *);
231static int alloc_fl_sdesc(struct sge_fl *);
232static void free_fl_sdesc(struct adapter *, struct sge_fl *);
233static void find_best_refill_source(struct adapter *, struct sge_fl *, int);
234static void find_safe_refill_source(struct adapter *, struct sge_fl *);
235static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
236
237static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
238static int free_pkt_sgl(struct sge_txq *, struct sgl *);
239static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
240    struct sgl *);
241static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
242    struct mbuf *, struct sgl *);
243static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
244static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
245    struct txpkts *, struct mbuf *, struct sgl *);
246static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
247static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
248static inline void ring_eq_db(struct adapter *, struct sge_eq *);
249static inline int reclaimable(struct sge_eq *);
250static int reclaim_tx_descs(struct sge_txq *, int, int);
251static void write_eqflush_wr(struct sge_eq *);
252static __be64 get_flit(bus_dma_segment_t *, int, int);
253static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
254    struct mbuf *);
255static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
256    struct mbuf *);
257
258static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
259static int sysctl_bufsizes(SYSCTL_HANDLER_ARGS);
260
261/*
262 * Called on MOD_LOAD.  Validates and calculates the SGE tunables.
263 */
264void
265t4_sge_modload(void)
266{
267	int pad;
268
269	/* set pad to a reasonable powerof2 between 16 and 4096 (inclusive) */
270#if defined(__i386__) || defined(__amd64__)
271	pad = max(cpu_clflush_line_size, 16);
272#else
273	pad = max(CACHE_LINE_SIZE, 16);
274#endif
275	pad = min(pad, 4096);
276
277	if (fl_pktshift < 0 || fl_pktshift > 7) {
278		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
279		    " using 2 instead.\n", fl_pktshift);
280		fl_pktshift = 2;
281	}
282
283	if (fl_pad != 0 &&
284	    (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad))) {
285
286		if (fl_pad != -1) {
287			printf("Invalid hw.cxgbe.fl_pad value (%d),"
288			    " using %d instead.\n", fl_pad, max(pad, 32));
289		}
290		fl_pad = max(pad, 32);
291	}
292
293	/*
294	 * T4 has the same pad and pack boundary.  If a pad boundary is set,
295	 * pack boundary must be set to the same value.  Otherwise take the
296	 * specified value or auto-calculate something reasonable.
297	 */
298	if (fl_pad)
299		t4_fl_pack = fl_pad;
300	else if (fl_pack < 32 || fl_pack > 4096 || !powerof2(fl_pack))
301		t4_fl_pack = max(pad, 32);
302	else
303		t4_fl_pack = fl_pack;
304
305	/* T5's pack boundary is independent of the pad boundary. */
306	if (fl_pack < 16 || fl_pack == 32 || fl_pack > 4096 ||
307	    !powerof2(fl_pack))
308	       t5_fl_pack = max(pad, CACHE_LINE_SIZE);
309	else
310	       t5_fl_pack = fl_pack;
311
312	if (spg_len != 64 && spg_len != 128) {
313		int len;
314
315#if defined(__i386__) || defined(__amd64__)
316		len = cpu_clflush_line_size > 64 ? 128 : 64;
317#else
318		len = 64;
319#endif
320		if (spg_len != -1) {
321			printf("Invalid hw.cxgbe.spg_len value (%d),"
322			    " using %d instead.\n", spg_len, len);
323		}
324		spg_len = len;
325	}
326
327	if (cong_drop < -1 || cong_drop > 1) {
328		printf("Invalid hw.cxgbe.cong_drop value (%d),"
329		    " using 0 instead.\n", cong_drop);
330		cong_drop = 0;
331	}
332}
333
334void
335t4_init_sge_cpl_handlers(struct adapter *sc)
336{
337
338	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
339	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
340	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
341	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
342	t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
343}
344
345/*
346 * adap->params.vpd.cclk must be set up before this is called.
347 */
348void
349t4_tweak_chip_settings(struct adapter *sc)
350{
351	int i;
352	uint32_t v, m;
353	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
354	int timer_max = M_TIMERVALUE0 * 1000 / sc->params.vpd.cclk;
355	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
356	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
357	static int sge_flbuf_sizes[] = {
358		MCLBYTES,
359#if MJUMPAGESIZE != MCLBYTES
360		MJUMPAGESIZE,
361		MJUMPAGESIZE - CL_METADATA_SIZE,
362		MJUMPAGESIZE - 2 * MSIZE - CL_METADATA_SIZE,
363#endif
364		MJUM9BYTES,
365		MJUM16BYTES,
366		MCLBYTES - MSIZE - CL_METADATA_SIZE,
367		MJUM9BYTES - CL_METADATA_SIZE,
368		MJUM16BYTES - CL_METADATA_SIZE,
369	};
370
371	KASSERT(sc->flags & MASTER_PF,
372	    ("%s: trying to change chip settings when not master.", __func__));
373
374	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
375	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
376	    V_EGRSTATUSPAGESIZE(spg_len == 128);
377	if (is_t4(sc) && (fl_pad || buffer_packing)) {
378		/* t4_fl_pack has the correct value even when fl_pad = 0 */
379		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
380		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
381	} else if (is_t5(sc) && fl_pad) {
382		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
383		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
384	}
385	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
386
387	if (is_t5(sc) && buffer_packing) {
388		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
389		if (t5_fl_pack == 16)
390			v = V_INGPACKBOUNDARY(0);
391		else
392			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
393		t4_set_reg_field(sc, A_SGE_CONTROL2, m, v);
394	}
395
396	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
397	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
398	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
399	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
400	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
401	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
402	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
403	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
404	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
405
406	KASSERT(nitems(sge_flbuf_sizes) <= SGE_FLBUF_SIZES,
407	    ("%s: hw buffer size table too big", __func__));
408	for (i = 0; i < min(nitems(sge_flbuf_sizes), SGE_FLBUF_SIZES); i++) {
409		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
410		    sge_flbuf_sizes[i]);
411	}
412
413	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
414	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
415	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
416
417	KASSERT(intr_timer[0] <= timer_max,
418	    ("%s: not a single usable timer (%d, %d)", __func__, intr_timer[0],
419	    timer_max));
420	for (i = 1; i < nitems(intr_timer); i++) {
421		KASSERT(intr_timer[i] >= intr_timer[i - 1],
422		    ("%s: timers not listed in increasing order (%d)",
423		    __func__, i));
424
425		while (intr_timer[i] > timer_max) {
426			if (i == nitems(intr_timer) - 1) {
427				intr_timer[i] = timer_max;
428				break;
429			}
430			intr_timer[i] += intr_timer[i - 1];
431			intr_timer[i] /= 2;
432		}
433	}
434
435	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
436	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
437	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
438	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
439	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
440	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
441	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
442	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
443	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
444
445	if (cong_drop == 0) {
446		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
447		    F_TUNNELCNGDROP3;
448		t4_set_reg_field(sc, A_TP_PARA_REG3, m, 0);
449	}
450
451	/* 4K, 16K, 64K, 256K DDP "page sizes" */
452	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
453	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
454
455	m = v = F_TDDPTAGTCB;
456	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
457
458	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
459	    F_RESETDDPOFFSET;
460	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
461	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
462}
463
464/*
465 * SGE wants the buffer to be at least 64B and then a multiple of the pad
466 * boundary or 16, whichever is greater.
467 */
468static inline int
469hwsz_ok(int hwsz)
470{
471	int mask = max(fl_pad, 16) - 1;
472
473	return (hwsz >= 64 && (hwsz & mask) == 0);
474}
475
476/*
477 * XXX: driver really should be able to deal with unexpected settings.
478 */
479int
480t4_read_chip_settings(struct adapter *sc)
481{
482	struct sge *s = &sc->sge;
483	int i, j, n, rc = 0;
484	uint32_t m, v, r;
485	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
486	static int sw_buf_sizes[] = {	/* Sorted by size */
487		MCLBYTES,
488#if MJUMPAGESIZE != MCLBYTES
489		MJUMPAGESIZE,
490#endif
491		MJUM9BYTES,
492		MJUM16BYTES
493	};
494	struct sw_zone_info *swz, *safe_swz;
495	struct hw_buf_info *hwb;
496
497	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE | F_EGRSTATUSPAGESIZE;
498	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
499	    V_EGRSTATUSPAGESIZE(spg_len == 128);
500	if (is_t4(sc) && (fl_pad || buffer_packing)) {
501		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
502		v |= V_INGPADBOUNDARY(ilog2(t4_fl_pack) - 5);
503	} else if (is_t5(sc) && fl_pad) {
504		m |= V_INGPADBOUNDARY(M_INGPADBOUNDARY);
505		v |= V_INGPADBOUNDARY(ilog2(fl_pad) - 5);
506	}
507	r = t4_read_reg(sc, A_SGE_CONTROL);
508	if ((r & m) != v) {
509		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
510		rc = EINVAL;
511	}
512
513	if (is_t5(sc) && buffer_packing) {
514		m = V_INGPACKBOUNDARY(M_INGPACKBOUNDARY);
515		if (t5_fl_pack == 16)
516			v = V_INGPACKBOUNDARY(0);
517		else
518			v = V_INGPACKBOUNDARY(ilog2(t5_fl_pack) - 5);
519		r = t4_read_reg(sc, A_SGE_CONTROL2);
520		if ((r & m) != v) {
521			device_printf(sc->dev,
522			    "invalid SGE_CONTROL2(0x%x)\n", r);
523			rc = EINVAL;
524		}
525	}
526	s->pack_boundary = is_t4(sc) ? t4_fl_pack : t5_fl_pack;
527
528	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
529	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
530	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
531	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
532	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
533	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
534	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
535	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
536	r = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE);
537	if (r != v) {
538		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
539		rc = EINVAL;
540	}
541
542	/* Filter out unusable hw buffer sizes entirely (mark with -2). */
543	hwb = &s->hw_buf_info[0];
544	for (i = 0; i < nitems(s->hw_buf_info); i++, hwb++) {
545		r = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
546		hwb->size = r;
547		hwb->zidx = hwsz_ok(r) ? -1 : -2;
548		hwb->next = -1;
549	}
550
551	/*
552	 * Create a sorted list in decreasing order of hw buffer sizes (and so
553	 * increasing order of spare area) for each software zone.
554	 */
555	n = 0;	/* no usable buffer size to begin with */
556	swz = &s->sw_zone_info[0];
557	safe_swz = NULL;
558	for (i = 0; i < SW_ZONE_SIZES; i++, swz++) {
559		int8_t head = -1, tail = -1;
560
561		swz->size = sw_buf_sizes[i];
562		swz->zone = m_getzone(swz->size);
563		swz->type = m_gettype(swz->size);
564
565		if (swz->size == safest_rx_cluster)
566			safe_swz = swz;
567
568		hwb = &s->hw_buf_info[0];
569		for (j = 0; j < SGE_FLBUF_SIZES; j++, hwb++) {
570			if (hwb->zidx != -1 || hwb->size > swz->size)
571				continue;
572			hwb->zidx = i;
573			if (head == -1)
574				head = tail = j;
575			else if (hwb->size < s->hw_buf_info[tail].size) {
576				s->hw_buf_info[tail].next = j;
577				tail = j;
578			} else {
579				int8_t *cur;
580				struct hw_buf_info *t;
581
582				for (cur = &head; *cur != -1; cur = &t->next) {
583					t = &s->hw_buf_info[*cur];
584					if (hwb->size == t->size) {
585						hwb->zidx = -2;
586						break;
587					}
588					if (hwb->size > t->size) {
589						hwb->next = *cur;
590						*cur = j;
591						break;
592					}
593				}
594			}
595		}
596		swz->head_hwidx = head;
597		swz->tail_hwidx = tail;
598
599		if (tail != -1) {
600			n++;
601			if (swz->size - s->hw_buf_info[tail].size >=
602			    CL_METADATA_SIZE)
603				sc->flags |= BUF_PACKING_OK;
604		}
605	}
606	if (n == 0) {
607		device_printf(sc->dev, "no usable SGE FL buffer size.\n");
608		rc = EINVAL;
609	}
610
611	s->safe_hwidx1 = -1;
612	s->safe_hwidx2 = -1;
613	if (safe_swz != NULL) {
614		s->safe_hwidx1 = safe_swz->head_hwidx;
615		for (i = safe_swz->head_hwidx; i != -1; i = hwb->next) {
616			int spare;
617
618			hwb = &s->hw_buf_info[i];
619			spare = safe_swz->size - hwb->size;
620			if (spare < CL_METADATA_SIZE)
621				continue;
622			if (s->safe_hwidx2 == -1 ||
623			    spare == CL_METADATA_SIZE + MSIZE)
624				s->safe_hwidx2 = i;
625			if (spare >= CL_METADATA_SIZE + MSIZE)
626				break;
627		}
628	}
629
630	r = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD);
631	s->counter_val[0] = G_THRESHOLD_0(r);
632	s->counter_val[1] = G_THRESHOLD_1(r);
633	s->counter_val[2] = G_THRESHOLD_2(r);
634	s->counter_val[3] = G_THRESHOLD_3(r);
635
636	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1);
637	s->timer_val[0] = G_TIMERVALUE0(r) / core_ticks_per_usec(sc);
638	s->timer_val[1] = G_TIMERVALUE1(r) / core_ticks_per_usec(sc);
639	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3);
640	s->timer_val[2] = G_TIMERVALUE2(r) / core_ticks_per_usec(sc);
641	s->timer_val[3] = G_TIMERVALUE3(r) / core_ticks_per_usec(sc);
642	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5);
643	s->timer_val[4] = G_TIMERVALUE4(r) / core_ticks_per_usec(sc);
644	s->timer_val[5] = G_TIMERVALUE5(r) / core_ticks_per_usec(sc);
645
646	if (cong_drop == 0) {
647		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
648		    F_TUNNELCNGDROP3;
649		r = t4_read_reg(sc, A_TP_PARA_REG3);
650		if (r & m) {
651			device_printf(sc->dev,
652			    "invalid TP_PARA_REG3(0x%x)\n", r);
653			rc = EINVAL;
654		}
655	}
656
657	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
658	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
659	if (r != v) {
660		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
661		rc = EINVAL;
662	}
663
664	m = v = F_TDDPTAGTCB;
665	r = t4_read_reg(sc, A_ULP_RX_CTL);
666	if ((r & m) != v) {
667		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
668		rc = EINVAL;
669	}
670
671	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
672	    F_RESETDDPOFFSET;
673	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
674	r = t4_read_reg(sc, A_TP_PARA_REG5);
675	if ((r & m) != v) {
676		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
677		rc = EINVAL;
678	}
679
680	r = t4_read_reg(sc, A_SGE_CONM_CTRL);
681	s->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
682	if (is_t4(sc))
683		s->fl_starve_threshold2 = s->fl_starve_threshold;
684	else
685		s->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
686
687	/* egress queues: log2 of # of doorbells per BAR2 page */
688	r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
689	r >>= S_QUEUESPERPAGEPF0 +
690	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
691	s->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
692
693	/* ingress queues: log2 of # of doorbells per BAR2 page */
694	r = t4_read_reg(sc, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
695	r >>= S_QUEUESPERPAGEPF0 +
696	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
697	s->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
698
699	t4_init_tp_params(sc);
700
701	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
702	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
703
704	return (rc);
705}
706
707int
708t4_create_dma_tag(struct adapter *sc)
709{
710	int rc;
711
712	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
713	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
714	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
715	    NULL, &sc->dmat);
716	if (rc != 0) {
717		device_printf(sc->dev,
718		    "failed to create main DMA tag: %d\n", rc);
719	}
720
721	return (rc);
722}
723
724static inline int
725enable_buffer_packing(struct adapter *sc)
726{
727
728	if (sc->flags & BUF_PACKING_OK &&
729	    ((is_t5(sc) && buffer_packing) ||	/* 1 or -1 both ok for T5 */
730	    (is_t4(sc) && buffer_packing == 1)))
731		return (1);
732	return (0);
733}
734
735void
736t4_sge_sysctls(struct adapter *sc, struct sysctl_ctx_list *ctx,
737    struct sysctl_oid_list *children)
738{
739
740	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "buffer_sizes",
741	    CTLTYPE_STRING | CTLFLAG_RD, &sc->sge, 0, sysctl_bufsizes, "A",
742	    "freelist buffer sizes");
743
744	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pktshift", CTLFLAG_RD,
745	    NULL, fl_pktshift, "payload DMA offset in rx buffer (bytes)");
746
747	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pad", CTLFLAG_RD,
748	    NULL, fl_pad, "payload pad boundary (bytes)");
749
750	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "spg_len", CTLFLAG_RD,
751	    NULL, spg_len, "status page size (bytes)");
752
753	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "cong_drop", CTLFLAG_RD,
754	    NULL, cong_drop, "congestion drop setting");
755
756	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "buffer_packing", CTLFLAG_RD,
757	    NULL, enable_buffer_packing(sc),
758	    "pack multiple frames in one fl buffer");
759
760	SYSCTL_ADD_INT(ctx, children, OID_AUTO, "fl_pack", CTLFLAG_RD,
761	    NULL, sc->sge.pack_boundary, "payload pack boundary (bytes)");
762}
763
764int
765t4_destroy_dma_tag(struct adapter *sc)
766{
767	if (sc->dmat)
768		bus_dma_tag_destroy(sc->dmat);
769
770	return (0);
771}
772
773/*
774 * Allocate and initialize the firmware event queue and the management queue.
775 *
776 * Returns errno on failure.  Resources allocated up to that point may still be
777 * allocated.  Caller is responsible for cleanup in case this function fails.
778 */
779int
780t4_setup_adapter_queues(struct adapter *sc)
781{
782	int rc;
783
784	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
785
786	sysctl_ctx_init(&sc->ctx);
787	sc->flags |= ADAP_SYSCTL_CTX;
788
789	/*
790	 * Firmware event queue
791	 */
792	rc = alloc_fwq(sc);
793	if (rc != 0)
794		return (rc);
795
796	/*
797	 * Management queue.  This is just a control queue that uses the fwq as
798	 * its associated iq.
799	 */
800	rc = alloc_mgmtq(sc);
801
802	return (rc);
803}
804
805/*
806 * Idempotent
807 */
808int
809t4_teardown_adapter_queues(struct adapter *sc)
810{
811
812	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
813
814	/* Do this before freeing the queue */
815	if (sc->flags & ADAP_SYSCTL_CTX) {
816		sysctl_ctx_free(&sc->ctx);
817		sc->flags &= ~ADAP_SYSCTL_CTX;
818	}
819
820	free_mgmtq(sc);
821	free_fwq(sc);
822
823	return (0);
824}
825
826static inline int
827port_intr_count(struct port_info *pi)
828{
829	int rc = 0;
830
831	if (pi->flags & INTR_RXQ)
832		rc += pi->nrxq;
833#ifdef TCP_OFFLOAD
834	if (pi->flags & INTR_OFLD_RXQ)
835		rc += pi->nofldrxq;
836#endif
837#ifdef DEV_NETMAP
838	if (pi->flags & INTR_NM_RXQ)
839		rc += pi->nnmrxq;
840#endif
841	return (rc);
842}
843
844static inline int
845first_vector(struct port_info *pi)
846{
847	struct adapter *sc = pi->adapter;
848	int rc = T4_EXTRA_INTR, i;
849
850	if (sc->intr_count == 1)
851		return (0);
852
853	for_each_port(sc, i) {
854		if (i == pi->port_id)
855			break;
856
857		rc += port_intr_count(sc->port[i]);
858	}
859
860	return (rc);
861}
862
863/*
864 * Given an arbitrary "index," come up with an iq that can be used by other
865 * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
866 * The iq returned is guaranteed to be something that takes direct interrupts.
867 */
868static struct sge_iq *
869port_intr_iq(struct port_info *pi, int idx)
870{
871	struct adapter *sc = pi->adapter;
872	struct sge *s = &sc->sge;
873	struct sge_iq *iq = NULL;
874	int nintr, i;
875
876	if (sc->intr_count == 1)
877		return (&sc->sge.fwq);
878
879	nintr = port_intr_count(pi);
880	KASSERT(nintr != 0,
881	    ("%s: pi %p has no exclusive interrupts, total interrupts = %d",
882	    __func__, pi, sc->intr_count));
883#ifdef DEV_NETMAP
884	/* Exclude netmap queues as they can't take anyone else's interrupts */
885	if (pi->flags & INTR_NM_RXQ)
886		nintr -= pi->nnmrxq;
887	KASSERT(nintr > 0,
888	    ("%s: pi %p has nintr %d after netmap adjustment of %d", __func__,
889	    pi, nintr, pi->nnmrxq));
890#endif
891	i = idx % nintr;
892
893	if (pi->flags & INTR_RXQ) {
894	       	if (i < pi->nrxq) {
895			iq = &s->rxq[pi->first_rxq + i].iq;
896			goto done;
897		}
898		i -= pi->nrxq;
899	}
900#ifdef TCP_OFFLOAD
901	if (pi->flags & INTR_OFLD_RXQ) {
902	       	if (i < pi->nofldrxq) {
903			iq = &s->ofld_rxq[pi->first_ofld_rxq + i].iq;
904			goto done;
905		}
906		i -= pi->nofldrxq;
907	}
908#endif
909	panic("%s: pi %p, intr_flags 0x%lx, idx %d, total intr %d\n", __func__,
910	    pi, pi->flags & INTR_ALL, idx, nintr);
911done:
912	MPASS(iq != NULL);
913	KASSERT(iq->flags & IQ_INTR,
914	    ("%s: iq %p (port %p, intr_flags 0x%lx, idx %d)", __func__, iq, pi,
915	    pi->flags & INTR_ALL, idx));
916	return (iq);
917}
918
919/* Maximum payload that can be delivered with a single iq descriptor */
920static inline int
921mtu_to_max_payload(struct adapter *sc, int mtu, const int toe)
922{
923	int payload;
924
925#ifdef TCP_OFFLOAD
926	if (toe) {
927		payload = sc->tt.rx_coalesce ?
928		    G_RXCOALESCESIZE(t4_read_reg(sc, A_TP_PARA_REG2)) : mtu;
929	} else {
930#endif
931		/* large enough even when hw VLAN extraction is disabled */
932		payload = fl_pktshift + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
933		    mtu;
934#ifdef TCP_OFFLOAD
935	}
936#endif
937	payload = roundup2(payload, fl_pad);
938
939	return (payload);
940}
941
942int
943t4_setup_port_queues(struct port_info *pi)
944{
945	int rc = 0, i, j, intr_idx, iqid;
946	struct sge_rxq *rxq;
947	struct sge_txq *txq;
948	struct sge_wrq *ctrlq;
949#ifdef TCP_OFFLOAD
950	struct sge_ofld_rxq *ofld_rxq;
951	struct sge_wrq *ofld_txq;
952#endif
953#ifdef DEV_NETMAP
954	struct sge_nm_rxq *nm_rxq;
955	struct sge_nm_txq *nm_txq;
956#endif
957	char name[16];
958	struct adapter *sc = pi->adapter;
959	struct ifnet *ifp = pi->ifp;
960	struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
961	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
962	int maxp, pack, mtu = ifp->if_mtu;
963
964	/* Interrupt vector to start from (when using multiple vectors) */
965	intr_idx = first_vector(pi);
966
967	/*
968	 * First pass over all NIC and TOE rx queues:
969	 * a) initialize iq and fl
970	 * b) allocate queue iff it will take direct interrupts.
971	 */
972	maxp = mtu_to_max_payload(sc, mtu, 0);
973	pack = enable_buffer_packing(sc);
974	if (pi->flags & INTR_RXQ) {
975		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq",
976		    CTLFLAG_RD, NULL, "rx queues");
977	}
978	for_each_rxq(pi, i, rxq) {
979
980		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq,
981		    RX_IQ_ESIZE);
982
983		snprintf(name, sizeof(name), "%s rxq%d-fl",
984		    device_get_nameunit(pi->dev), i);
985		init_fl(sc, &rxq->fl, pi->qsize_rxq / 8, maxp, pack, name);
986
987		if (pi->flags & INTR_RXQ) {
988			rxq->iq.flags |= IQ_INTR;
989			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
990			if (rc != 0)
991				goto done;
992			intr_idx++;
993		}
994	}
995#ifdef TCP_OFFLOAD
996	maxp = mtu_to_max_payload(sc, mtu, 1);
997	if (is_offload(sc) && pi->flags & INTR_OFLD_RXQ) {
998		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
999		    CTLFLAG_RD, NULL,
1000		    "rx queues for offloaded TCP connections");
1001	}
1002	for_each_ofld_rxq(pi, i, ofld_rxq) {
1003
1004		init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
1005		    pi->qsize_rxq, RX_IQ_ESIZE);
1006
1007		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
1008		    device_get_nameunit(pi->dev), i);
1009		init_fl(sc, &ofld_rxq->fl, pi->qsize_rxq / 8, maxp, pack, name);
1010
1011		if (pi->flags & INTR_OFLD_RXQ) {
1012			ofld_rxq->iq.flags |= IQ_INTR;
1013			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid);
1014			if (rc != 0)
1015				goto done;
1016			intr_idx++;
1017		}
1018	}
1019#endif
1020#ifdef DEV_NETMAP
1021	/*
1022	 * We don't have buffers to back the netmap rx queues right now so we
1023	 * create the queues in a way that doesn't set off any congestion signal
1024	 * in the chip.
1025	 */
1026	if (pi->flags & INTR_NM_RXQ) {
1027		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_rxq",
1028		    CTLFLAG_RD, NULL, "rx queues for netmap");
1029		for_each_nm_rxq(pi, i, nm_rxq) {
1030			rc = alloc_nm_rxq(pi, nm_rxq, intr_idx, i, oid);
1031			if (rc != 0)
1032				goto done;
1033			intr_idx++;
1034		}
1035	}
1036#endif
1037
1038	/*
1039	 * Second pass over all NIC and TOE rx queues.  The queues forwarding
1040	 * their interrupts are allocated now.
1041	 */
1042	j = 0;
1043	if (!(pi->flags & INTR_RXQ)) {
1044		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq",
1045		    CTLFLAG_RD, NULL, "rx queues");
1046		for_each_rxq(pi, i, rxq) {
1047			MPASS(!(rxq->iq.flags & IQ_INTR));
1048
1049			intr_idx = port_intr_iq(pi, j)->abs_id;
1050
1051			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
1052			if (rc != 0)
1053				goto done;
1054			j++;
1055		}
1056	}
1057#ifdef TCP_OFFLOAD
1058	if (is_offload(sc) && !(pi->flags & INTR_OFLD_RXQ)) {
1059		oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
1060		    CTLFLAG_RD, NULL,
1061		    "rx queues for offloaded TCP connections");
1062		for_each_ofld_rxq(pi, i, ofld_rxq) {
1063			MPASS(!(ofld_rxq->iq.flags & IQ_INTR));
1064
1065			intr_idx = port_intr_iq(pi, j)->abs_id;
1066
1067			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid);
1068			if (rc != 0)
1069				goto done;
1070			j++;
1071		}
1072	}
1073#endif
1074#ifdef DEV_NETMAP
1075	if (!(pi->flags & INTR_NM_RXQ))
1076		CXGBE_UNIMPLEMENTED(__func__);
1077#endif
1078
1079	/*
1080	 * Now the tx queues.  Only one pass needed.
1081	 */
1082	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
1083	    NULL, "tx queues");
1084	j = 0;
1085	for_each_txq(pi, i, txq) {
1086		iqid = port_intr_iq(pi, j)->cntxt_id;
1087		snprintf(name, sizeof(name), "%s txq%d",
1088		    device_get_nameunit(pi->dev), i);
1089		init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid,
1090		    name);
1091
1092		rc = alloc_txq(pi, txq, i, oid);
1093		if (rc != 0)
1094			goto done;
1095		j++;
1096	}
1097#ifdef TCP_OFFLOAD
1098	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq",
1099	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
1100	for_each_ofld_txq(pi, i, ofld_txq) {
1101		struct sysctl_oid *oid2;
1102
1103		iqid = port_intr_iq(pi, j)->cntxt_id;
1104		snprintf(name, sizeof(name), "%s ofld_txq%d",
1105		    device_get_nameunit(pi->dev), i);
1106		init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan,
1107		    iqid, name);
1108
1109		snprintf(name, sizeof(name), "%d", i);
1110		oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1111		    name, CTLFLAG_RD, NULL, "offload tx queue");
1112
1113		rc = alloc_wrq(sc, pi, ofld_txq, oid2);
1114		if (rc != 0)
1115			goto done;
1116		j++;
1117	}
1118#endif
1119#ifdef DEV_NETMAP
1120	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "nm_txq",
1121	    CTLFLAG_RD, NULL, "tx queues for netmap use");
1122	for_each_nm_txq(pi, i, nm_txq) {
1123		iqid = pi->first_nm_rxq + (j % pi->nnmrxq);
1124		rc = alloc_nm_txq(pi, nm_txq, iqid, i, oid);
1125		if (rc != 0)
1126			goto done;
1127		j++;
1128	}
1129#endif
1130
1131	/*
1132	 * Finally, the control queue.
1133	 */
1134	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
1135	    NULL, "ctrl queue");
1136	ctrlq = &sc->sge.ctrlq[pi->port_id];
1137	iqid = port_intr_iq(pi, 0)->cntxt_id;
1138	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev));
1139	init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name);
1140	rc = alloc_wrq(sc, pi, ctrlq, oid);
1141
1142done:
1143	if (rc)
1144		t4_teardown_port_queues(pi);
1145
1146	return (rc);
1147}
1148
1149/*
1150 * Idempotent
1151 */
1152int
1153t4_teardown_port_queues(struct port_info *pi)
1154{
1155	int i;
1156	struct adapter *sc = pi->adapter;
1157	struct sge_rxq *rxq;
1158	struct sge_txq *txq;
1159#ifdef TCP_OFFLOAD
1160	struct sge_ofld_rxq *ofld_rxq;
1161	struct sge_wrq *ofld_txq;
1162#endif
1163#ifdef DEV_NETMAP
1164	struct sge_nm_rxq *nm_rxq;
1165	struct sge_nm_txq *nm_txq;
1166#endif
1167
1168	/* Do this before freeing the queues */
1169	if (pi->flags & PORT_SYSCTL_CTX) {
1170		sysctl_ctx_free(&pi->ctx);
1171		pi->flags &= ~PORT_SYSCTL_CTX;
1172	}
1173
1174	/*
1175	 * Take down all the tx queues first, as they reference the rx queues
1176	 * (for egress updates, etc.).
1177	 */
1178
1179	free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
1180
1181	for_each_txq(pi, i, txq) {
1182		free_txq(pi, txq);
1183	}
1184#ifdef TCP_OFFLOAD
1185	for_each_ofld_txq(pi, i, ofld_txq) {
1186		free_wrq(sc, ofld_txq);
1187	}
1188#endif
1189#ifdef DEV_NETMAP
1190	for_each_nm_txq(pi, i, nm_txq)
1191	    free_nm_txq(pi, nm_txq);
1192#endif
1193
1194	/*
1195	 * Then take down the rx queues that forward their interrupts, as they
1196	 * reference other rx queues.
1197	 */
1198
1199	for_each_rxq(pi, i, rxq) {
1200		if ((rxq->iq.flags & IQ_INTR) == 0)
1201			free_rxq(pi, rxq);
1202	}
1203#ifdef TCP_OFFLOAD
1204	for_each_ofld_rxq(pi, i, ofld_rxq) {
1205		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
1206			free_ofld_rxq(pi, ofld_rxq);
1207	}
1208#endif
1209#ifdef DEV_NETMAP
1210	for_each_nm_rxq(pi, i, nm_rxq)
1211	    free_nm_rxq(pi, nm_rxq);
1212#endif
1213
1214	/*
1215	 * Then take down the rx queues that take direct interrupts.
1216	 */
1217
1218	for_each_rxq(pi, i, rxq) {
1219		if (rxq->iq.flags & IQ_INTR)
1220			free_rxq(pi, rxq);
1221	}
1222#ifdef TCP_OFFLOAD
1223	for_each_ofld_rxq(pi, i, ofld_rxq) {
1224		if (ofld_rxq->iq.flags & IQ_INTR)
1225			free_ofld_rxq(pi, ofld_rxq);
1226	}
1227#endif
1228#ifdef DEV_NETMAP
1229	CXGBE_UNIMPLEMENTED(__func__);
1230#endif
1231
1232	return (0);
1233}
1234
1235/*
1236 * Deals with errors and the firmware event queue.  All data rx queues forward
1237 * their interrupt to the firmware event queue.
1238 */
1239void
1240t4_intr_all(void *arg)
1241{
1242	struct adapter *sc = arg;
1243	struct sge_iq *fwq = &sc->sge.fwq;
1244
1245	t4_intr_err(arg);
1246	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
1247		service_iq(fwq, 0);
1248		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
1249	}
1250}
1251
1252/* Deals with error interrupts */
1253void
1254t4_intr_err(void *arg)
1255{
1256	struct adapter *sc = arg;
1257
1258	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
1259	t4_slow_intr_handler(sc);
1260}
1261
1262void
1263t4_intr_evt(void *arg)
1264{
1265	struct sge_iq *iq = arg;
1266
1267	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1268		service_iq(iq, 0);
1269		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1270	}
1271}
1272
1273void
1274t4_intr(void *arg)
1275{
1276	struct sge_iq *iq = arg;
1277
1278	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
1279		service_iq(iq, 0);
1280		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
1281	}
1282}
1283
1284/*
1285 * Deals with anything and everything on the given ingress queue.
1286 */
1287static int
1288service_iq(struct sge_iq *iq, int budget)
1289{
1290	struct sge_iq *q;
1291	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
1292	struct sge_fl *fl = &rxq->fl;		/* Use iff IQ_HAS_FL */
1293	struct adapter *sc = iq->adapter;
1294	struct rsp_ctrl *ctrl;
1295	const struct rss_header *rss;
1296	int ndescs = 0, limit, fl_bufs_used = 0;
1297	int rsp_type;
1298	uint32_t lq;
1299	struct mbuf *m0;
1300	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
1301#if defined(INET) || defined(INET6)
1302	const struct timeval lro_timeout = {0, sc->lro_timeout};
1303#endif
1304
1305	limit = budget ? budget : iq->qsize / 8;
1306
1307	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
1308
1309	/*
1310	 * We always come back and check the descriptor ring for new indirect
1311	 * interrupts and other responses after running a single handler.
1312	 */
1313	for (;;) {
1314		while (is_new_response(iq, &ctrl)) {
1315
1316			rmb();
1317
1318			m0 = NULL;
1319			rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
1320			lq = be32toh(ctrl->pldbuflen_qid);
1321			rss = (const void *)iq->cdesc;
1322
1323			switch (rsp_type) {
1324			case X_RSPD_TYPE_FLBUF:
1325
1326				KASSERT(iq->flags & IQ_HAS_FL,
1327				    ("%s: data for an iq (%p) with no freelist",
1328				    __func__, iq));
1329
1330				m0 = get_fl_payload(sc, fl, lq, &fl_bufs_used);
1331				if (__predict_false(m0 == NULL))
1332					goto process_iql;
1333#ifdef T4_PKT_TIMESTAMP
1334				/*
1335				 * 60 bit timestamp for the payload is
1336				 * *(uint64_t *)m0->m_pktdat.  Note that it is
1337				 * in the leading free-space in the mbuf.  The
1338				 * kernel can clobber it during a pullup,
1339				 * m_copymdata, etc.  You need to make sure that
1340				 * the mbuf reaches you unmolested if you care
1341				 * about the timestamp.
1342				 */
1343				*(uint64_t *)m0->m_pktdat =
1344				    be64toh(ctrl->u.last_flit) &
1345				    0xfffffffffffffff;
1346#endif
1347
1348				/* fall through */
1349
1350			case X_RSPD_TYPE_CPL:
1351				KASSERT(rss->opcode < NUM_CPL_CMDS,
1352				    ("%s: bad opcode %02x.", __func__,
1353				    rss->opcode));
1354				sc->cpl_handler[rss->opcode](iq, rss, m0);
1355				break;
1356
1357			case X_RSPD_TYPE_INTR:
1358
1359				/*
1360				 * Interrupts should be forwarded only to queues
1361				 * that are not forwarding their interrupts.
1362				 * This means service_iq can recurse but only 1
1363				 * level deep.
1364				 */
1365				KASSERT(budget == 0,
1366				    ("%s: budget %u, rsp_type %u", __func__,
1367				    budget, rsp_type));
1368
1369				/*
1370				 * There are 1K interrupt-capable queues (qids 0
1371				 * through 1023).  A response type indicating a
1372				 * forwarded interrupt with a qid >= 1K is an
1373				 * iWARP async notification.
1374				 */
1375				if (lq >= 1024) {
1376                                        sc->an_handler(iq, ctrl);
1377                                        break;
1378                                }
1379
1380				q = sc->sge.iqmap[lq - sc->sge.iq_start];
1381				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1382				    IQS_BUSY)) {
1383					if (service_iq(q, q->qsize / 8) == 0) {
1384						atomic_cmpset_int(&q->state,
1385						    IQS_BUSY, IQS_IDLE);
1386					} else {
1387						STAILQ_INSERT_TAIL(&iql, q,
1388						    link);
1389					}
1390				}
1391				break;
1392
1393			default:
1394				KASSERT(0,
1395				    ("%s: illegal response type %d on iq %p",
1396				    __func__, rsp_type, iq));
1397				log(LOG_ERR,
1398				    "%s: illegal response type %d on iq %p",
1399				    device_get_nameunit(sc->dev), rsp_type, iq);
1400				break;
1401			}
1402
1403			if (fl_bufs_used >= 16) {
1404				FL_LOCK(fl);
1405				fl->needed += fl_bufs_used;
1406				refill_fl(sc, fl, 32);
1407				FL_UNLOCK(fl);
1408				fl_bufs_used = 0;
1409			}
1410
1411			iq_next(iq);
1412			if (++ndescs == limit) {
1413				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
1414				    V_CIDXINC(ndescs) |
1415				    V_INGRESSQID(iq->cntxt_id) |
1416				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1417				ndescs = 0;
1418
1419#if defined(INET) || defined(INET6)
1420				if (iq->flags & IQ_LRO_ENABLED &&
1421				    sc->lro_timeout != 0) {
1422					tcp_lro_flush_inactive(&rxq->lro,
1423					    &lro_timeout);
1424				}
1425#endif
1426
1427				if (budget)
1428					return (EINPROGRESS);
1429			}
1430		}
1431
1432process_iql:
1433		if (STAILQ_EMPTY(&iql))
1434			break;
1435
1436		/*
1437		 * Process the head only, and send it to the back of the list if
1438		 * it's still not done.
1439		 */
1440		q = STAILQ_FIRST(&iql);
1441		STAILQ_REMOVE_HEAD(&iql, link);
1442		if (service_iq(q, q->qsize / 8) == 0)
1443			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1444		else
1445			STAILQ_INSERT_TAIL(&iql, q, link);
1446	}
1447
1448#if defined(INET) || defined(INET6)
1449	if (iq->flags & IQ_LRO_ENABLED) {
1450		struct lro_ctrl *lro = &rxq->lro;
1451		struct lro_entry *l;
1452
1453		while (!SLIST_EMPTY(&lro->lro_active)) {
1454			l = SLIST_FIRST(&lro->lro_active);
1455			SLIST_REMOVE_HEAD(&lro->lro_active, next);
1456			tcp_lro_flush(lro, l);
1457		}
1458	}
1459#endif
1460
1461	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1462	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1463
1464	if (iq->flags & IQ_HAS_FL) {
1465		int starved;
1466
1467		FL_LOCK(fl);
1468		fl->needed += fl_bufs_used;
1469		starved = refill_fl(sc, fl, 64);
1470		FL_UNLOCK(fl);
1471		if (__predict_false(starved != 0))
1472			add_fl_to_sfl(sc, fl);
1473	}
1474
1475	return (0);
1476}
1477
1478static inline int
1479cl_has_metadata(struct sge_fl *fl, struct cluster_layout *cll)
1480{
1481	int rc = fl->flags & FL_BUF_PACKING || cll->region1 > 0;
1482
1483	if (rc)
1484		MPASS(cll->region3 >= CL_METADATA_SIZE);
1485
1486	return (rc);
1487}
1488
1489static inline struct cluster_metadata *
1490cl_metadata(struct adapter *sc, struct sge_fl *fl, struct cluster_layout *cll,
1491    caddr_t cl)
1492{
1493
1494	if (cl_has_metadata(fl, cll)) {
1495		struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1496
1497		return ((struct cluster_metadata *)(cl + swz->size) - 1);
1498	}
1499	return (NULL);
1500}
1501
1502static int
1503rxb_free(struct mbuf *m, void *arg1, void *arg2)
1504{
1505	uma_zone_t zone = arg1;
1506	caddr_t cl = arg2;
1507
1508	uma_zfree(zone, cl);
1509
1510	return (EXT_FREE_OK);
1511}
1512
1513/*
1514 * The mbuf returned by this function could be allocated from zone_mbuf or
1515 * constructed in spare room in the cluster.
1516 *
1517 * The mbuf carries the payload in one of these ways
1518 * a) frame inside the mbuf (mbuf from zone_mbuf)
1519 * b) m_cljset (for clusters without metadata) zone_mbuf
1520 * c) m_extaddref (cluster with metadata) inline mbuf
1521 * d) m_extaddref (cluster with metadata) zone_mbuf
1522 */
1523static struct mbuf *
1524get_scatter_segment(struct adapter *sc, struct sge_fl *fl, int total, int flags)
1525{
1526	struct mbuf *m;
1527	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1528	struct cluster_layout *cll = &sd->cll;
1529	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
1530	struct hw_buf_info *hwb = &sc->sge.hw_buf_info[cll->hwidx];
1531	struct cluster_metadata *clm = cl_metadata(sc, fl, cll, sd->cl);
1532	int len, padded_len;
1533	caddr_t payload;
1534
1535	len = min(total, hwb->size - fl->rx_offset);
1536	padded_len = roundup2(len, fl_pad);
1537	payload = sd->cl + cll->region1 + fl->rx_offset;
1538
1539	if (sc->sc_do_rxcopy && len < RX_COPY_THRESHOLD) {
1540
1541		/*
1542		 * Copy payload into a freshly allocated mbuf.
1543		 */
1544
1545		m = flags & M_PKTHDR ?
1546		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1547		if (m == NULL)
1548			return (NULL);
1549		fl->mbuf_allocated++;
1550#ifdef T4_PKT_TIMESTAMP
1551		/* Leave room for a timestamp */
1552		m->m_data += 8;
1553#endif
1554		/* copy data to mbuf */
1555		bcopy(payload, mtod(m, caddr_t), len);
1556
1557	} else if (sd->nmbuf * MSIZE < cll->region1) {
1558
1559		/*
1560		 * There's spare room in the cluster for an mbuf.  Create one
1561		 * and associate it with the payload that's in the cluster too.
1562		 */
1563
1564		MPASS(clm != NULL);
1565		m = (struct mbuf *)(sd->cl + sd->nmbuf * MSIZE);
1566		/* No bzero required */
1567		if (m_init(m, NULL, 0, M_NOWAIT, MT_DATA, flags | M_NOFREE))
1568			return (NULL);
1569		fl->mbuf_inlined++;
1570		m_extaddref(m, payload, padded_len, &clm->refcount, rxb_free,
1571		    swz->zone, sd->cl);
1572		sd->nmbuf++;
1573
1574	} else {
1575
1576		/*
1577		 * Grab an mbuf from zone_mbuf and associate it with the
1578		 * payload in the cluster.
1579		 */
1580
1581		m = flags & M_PKTHDR ?
1582		    m_gethdr(M_NOWAIT, MT_DATA) : m_get(M_NOWAIT, MT_DATA);
1583		if (m == NULL)
1584			return (NULL);
1585		fl->mbuf_allocated++;
1586		if (clm != NULL)
1587			m_extaddref(m, payload, padded_len, &clm->refcount,
1588			    rxb_free, swz->zone, sd->cl);
1589		else {
1590			m_cljset(m, sd->cl, swz->type);
1591			sd->cl = NULL;	/* consumed, not a recycle candidate */
1592		}
1593	}
1594	if (flags & M_PKTHDR)
1595		m->m_pkthdr.len = total;
1596	m->m_len = len;
1597
1598	if (fl->flags & FL_BUF_PACKING) {
1599		fl->rx_offset += roundup2(padded_len, sc->sge.pack_boundary);
1600		MPASS(fl->rx_offset <= hwb->size);
1601		if (fl->rx_offset < hwb->size)
1602			return (m);	/* without advancing the cidx */
1603	}
1604
1605	if (__predict_false(++fl->cidx == fl->cap))
1606		fl->cidx = 0;
1607	fl->rx_offset = 0;
1608
1609	return (m);
1610}
1611
1612static struct mbuf *
1613get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf,
1614    int *fl_bufs_used)
1615{
1616	struct mbuf *m0, *m, **pnext;
1617	u_int nbuf, len;
1618
1619	/*
1620	 * No assertion for the fl lock because we don't need it.  This routine
1621	 * is called only from the rx interrupt handler and it only updates
1622	 * fl->cidx.  (Contrast that with fl->pidx/fl->needed which could be
1623	 * updated in the rx interrupt handler or the starvation helper routine.
1624	 * That's why code that manipulates fl->pidx/fl->needed needs the fl
1625	 * lock but this routine does not).
1626	 */
1627
1628	nbuf = 0;
1629	len = G_RSPD_LEN(len_newbuf);
1630	if (__predict_false(fl->m0 != NULL)) {
1631		M_ASSERTPKTHDR(fl->m0);
1632		MPASS(len == fl->m0->m_pkthdr.len);
1633		MPASS(fl->remaining < len);
1634
1635		m0 = fl->m0;
1636		pnext = fl->pnext;
1637		len = fl->remaining;
1638		fl->m0 = NULL;
1639		goto get_segment;
1640	}
1641
1642	if (fl->rx_offset > 0 && len_newbuf & F_RSPD_NEWBUF) {
1643		nbuf++;
1644		fl->rx_offset = 0;
1645		if (__predict_false(++fl->cidx == fl->cap))
1646			fl->cidx = 0;
1647	}
1648
1649	/*
1650	 * Payload starts at rx_offset in the current hw buffer.  Its length is
1651	 * 'len' and it may span multiple hw buffers.
1652	 */
1653
1654	m0 = get_scatter_segment(sc, fl, len, M_PKTHDR);
1655	if (m0 == NULL)
1656		goto done;
1657	len -= m0->m_len;
1658	pnext = &m0->m_next;
1659	while (len > 0) {
1660		nbuf++;
1661get_segment:
1662		MPASS(fl->rx_offset == 0);
1663		m = get_scatter_segment(sc, fl, len, 0);
1664		if (m == NULL) {
1665			fl->m0 = m0;
1666			fl->pnext = pnext;
1667			fl->remaining = len;
1668			m0 = NULL;
1669			goto done;
1670		}
1671		*pnext = m;
1672		pnext = &m->m_next;
1673		len -= m->m_len;
1674	}
1675	*pnext = NULL;
1676	if (fl->rx_offset == 0)
1677		nbuf++;
1678done:
1679	(*fl_bufs_used) += nbuf;
1680	return (m0);
1681}
1682
1683static int
1684t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1685{
1686	struct sge_rxq *rxq = iq_to_rxq(iq);
1687	struct ifnet *ifp = rxq->ifp;
1688	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1689#if defined(INET) || defined(INET6)
1690	struct lro_ctrl *lro = &rxq->lro;
1691#endif
1692
1693	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1694	    rss->opcode));
1695
1696	m0->m_pkthdr.len -= fl_pktshift;
1697	m0->m_len -= fl_pktshift;
1698	m0->m_data += fl_pktshift;
1699
1700	m0->m_pkthdr.rcvif = ifp;
1701	m0->m_flags |= M_FLOWID;
1702	m0->m_pkthdr.flowid = be32toh(rss->hash_val);
1703
1704	if (cpl->csum_calc && !cpl->err_vec) {
1705		if (ifp->if_capenable & IFCAP_RXCSUM &&
1706		    cpl->l2info & htobe32(F_RXF_IP)) {
1707			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1708			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1709			rxq->rxcsum++;
1710		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1711		    cpl->l2info & htobe32(F_RXF_IP6)) {
1712			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1713			    CSUM_PSEUDO_HDR);
1714			rxq->rxcsum++;
1715		}
1716
1717		if (__predict_false(cpl->ip_frag))
1718			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1719		else
1720			m0->m_pkthdr.csum_data = 0xffff;
1721	}
1722
1723	if (cpl->vlan_ex) {
1724		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1725		m0->m_flags |= M_VLANTAG;
1726		rxq->vlan_extraction++;
1727	}
1728
1729#if defined(INET) || defined(INET6)
1730	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1731	    iq->flags & IQ_LRO_ENABLED &&
1732	    tcp_lro_rx(lro, m0, 0) == 0) {
1733		/* queued for LRO */
1734	} else
1735#endif
1736	ifp->if_input(ifp, m0);
1737
1738	return (0);
1739}
1740
1741/*
1742 * Doesn't fail.  Holds on to work requests it can't send right away.
1743 */
1744void
1745t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1746{
1747	struct sge_eq *eq = &wrq->eq;
1748	int can_reclaim;
1749	caddr_t dst;
1750
1751	TXQ_LOCK_ASSERT_OWNED(wrq);
1752#ifdef TCP_OFFLOAD
1753	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
1754	    (eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1755	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1756#else
1757	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1758	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1759#endif
1760
1761	if (__predict_true(wr != NULL))
1762		STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1763
1764	can_reclaim = reclaimable(eq);
1765	if (__predict_false(eq->flags & EQ_STALLED)) {
1766		if (can_reclaim < tx_resume_threshold(eq))
1767			return;
1768		eq->flags &= ~EQ_STALLED;
1769		eq->unstalled++;
1770	}
1771	eq->cidx += can_reclaim;
1772	eq->avail += can_reclaim;
1773	if (__predict_false(eq->cidx >= eq->cap))
1774		eq->cidx -= eq->cap;
1775
1776	while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
1777		int ndesc;
1778
1779		if (__predict_false(wr->wr_len < 0 ||
1780		    wr->wr_len > SGE_MAX_WR_LEN || (wr->wr_len & 0x7))) {
1781
1782#ifdef INVARIANTS
1783			panic("%s: work request with length %d", __func__,
1784			    wr->wr_len);
1785#endif
1786#ifdef KDB
1787			kdb_backtrace();
1788#endif
1789			log(LOG_ERR, "%s: %s work request with length %d",
1790			    device_get_nameunit(sc->dev), __func__, wr->wr_len);
1791			STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1792			free_wrqe(wr);
1793			continue;
1794		}
1795
1796		ndesc = howmany(wr->wr_len, EQ_ESIZE);
1797		if (eq->avail < ndesc) {
1798			wrq->no_desc++;
1799			break;
1800		}
1801
1802		dst = (void *)&eq->desc[eq->pidx];
1803		copy_to_txd(eq, wrtod(wr), &dst, wr->wr_len);
1804
1805		eq->pidx += ndesc;
1806		eq->avail -= ndesc;
1807		if (__predict_false(eq->pidx >= eq->cap))
1808			eq->pidx -= eq->cap;
1809
1810		eq->pending += ndesc;
1811		if (eq->pending >= 8)
1812			ring_eq_db(sc, eq);
1813
1814		wrq->tx_wrs++;
1815		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1816		free_wrqe(wr);
1817
1818		if (eq->avail < 8) {
1819			can_reclaim = reclaimable(eq);
1820			eq->cidx += can_reclaim;
1821			eq->avail += can_reclaim;
1822			if (__predict_false(eq->cidx >= eq->cap))
1823				eq->cidx -= eq->cap;
1824		}
1825	}
1826
1827	if (eq->pending)
1828		ring_eq_db(sc, eq);
1829
1830	if (wr != NULL) {
1831		eq->flags |= EQ_STALLED;
1832		if (callout_pending(&eq->tx_callout) == 0)
1833			callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1834	}
1835}
1836
1837/* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
1838#define TXPKTS_PKT_HDR ((\
1839    sizeof(struct ulp_txpkt) + \
1840    sizeof(struct ulptx_idata) + \
1841    sizeof(struct cpl_tx_pkt_core) \
1842    ) / 8)
1843
1844/* Header of a coalesced tx WR, before SGL of first packet (in flits) */
1845#define TXPKTS_WR_HDR (\
1846    sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
1847    TXPKTS_PKT_HDR)
1848
1849/* Header of a tx WR, before SGL of first packet (in flits) */
1850#define TXPKT_WR_HDR ((\
1851    sizeof(struct fw_eth_tx_pkt_wr) + \
1852    sizeof(struct cpl_tx_pkt_core) \
1853    ) / 8 )
1854
1855/* Header of a tx LSO WR, before SGL of first packet (in flits) */
1856#define TXPKT_LSO_WR_HDR ((\
1857    sizeof(struct fw_eth_tx_pkt_wr) + \
1858    sizeof(struct cpl_tx_pkt_lso_core) + \
1859    sizeof(struct cpl_tx_pkt_core) \
1860    ) / 8 )
1861
1862int
1863t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
1864{
1865	struct port_info *pi = (void *)ifp->if_softc;
1866	struct adapter *sc = pi->adapter;
1867	struct sge_eq *eq = &txq->eq;
1868	struct buf_ring *br = txq->br;
1869	struct mbuf *next;
1870	int rc, coalescing, can_reclaim;
1871	struct txpkts txpkts;
1872	struct sgl sgl;
1873
1874	TXQ_LOCK_ASSERT_OWNED(txq);
1875	KASSERT(m, ("%s: called with nothing to do.", __func__));
1876	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH,
1877	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1878
1879	prefetch(&eq->desc[eq->pidx]);
1880	prefetch(&txq->sdesc[eq->pidx]);
1881
1882	txpkts.npkt = 0;/* indicates there's nothing in txpkts */
1883	coalescing = 0;
1884
1885	can_reclaim = reclaimable(eq);
1886	if (__predict_false(eq->flags & EQ_STALLED)) {
1887		if (can_reclaim < tx_resume_threshold(eq)) {
1888			txq->m = m;
1889			return (0);
1890		}
1891		eq->flags &= ~EQ_STALLED;
1892		eq->unstalled++;
1893	}
1894
1895	if (__predict_false(eq->flags & EQ_DOOMED)) {
1896		m_freem(m);
1897		while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
1898			m_freem(m);
1899		return (ENETDOWN);
1900	}
1901
1902	if (eq->avail < 8 && can_reclaim)
1903		reclaim_tx_descs(txq, can_reclaim, 32);
1904
1905	for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
1906
1907		if (eq->avail < 8)
1908			break;
1909
1910		next = m->m_nextpkt;
1911		m->m_nextpkt = NULL;
1912
1913		if (next || buf_ring_peek(br))
1914			coalescing = 1;
1915
1916		rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
1917		if (rc != 0) {
1918			if (rc == ENOMEM) {
1919
1920				/* Short of resources, suspend tx */
1921
1922				m->m_nextpkt = next;
1923				break;
1924			}
1925
1926			/*
1927			 * Unrecoverable error for this packet, throw it away
1928			 * and move on to the next.  get_pkt_sgl may already
1929			 * have freed m (it will be NULL in that case and the
1930			 * m_freem here is still safe).
1931			 */
1932
1933			m_freem(m);
1934			continue;
1935		}
1936
1937		if (coalescing &&
1938		    add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
1939
1940			/* Successfully absorbed into txpkts */
1941
1942			write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
1943			goto doorbell;
1944		}
1945
1946		/*
1947		 * We weren't coalescing to begin with, or current frame could
1948		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
1949		 * given to it can't be coalesced).  Either way there should be
1950		 * nothing in txpkts.
1951		 */
1952		KASSERT(txpkts.npkt == 0,
1953		    ("%s: txpkts not empty: %d", __func__, txpkts.npkt));
1954
1955		/* We're sending out individual packets now */
1956		coalescing = 0;
1957
1958		if (eq->avail < 8)
1959			reclaim_tx_descs(txq, 0, 8);
1960		rc = write_txpkt_wr(pi, txq, m, &sgl);
1961		if (rc != 0) {
1962
1963			/* Short of hardware descriptors, suspend tx */
1964
1965			/*
1966			 * This is an unlikely but expensive failure.  We've
1967			 * done all the hard work (DMA mappings etc.) and now we
1968			 * can't send out the packet.  What's worse, we have to
1969			 * spend even more time freeing up everything in sgl.
1970			 */
1971			txq->no_desc++;
1972			free_pkt_sgl(txq, &sgl);
1973
1974			m->m_nextpkt = next;
1975			break;
1976		}
1977
1978		ETHER_BPF_MTAP(ifp, m);
1979		if (sgl.nsegs == 0)
1980			m_freem(m);
1981doorbell:
1982		if (eq->pending >= 8)
1983			ring_eq_db(sc, eq);
1984
1985		can_reclaim = reclaimable(eq);
1986		if (can_reclaim >= 32)
1987			reclaim_tx_descs(txq, can_reclaim, 64);
1988	}
1989
1990	if (txpkts.npkt > 0)
1991		write_txpkts_wr(txq, &txpkts);
1992
1993	/*
1994	 * m not NULL means there was an error but we haven't thrown it away.
1995	 * This can happen when we're short of tx descriptors (no_desc) or maybe
1996	 * even DMA maps (no_dmamap).  Either way, a credit flush and reclaim
1997	 * will get things going again.
1998	 */
1999	if (m && !(eq->flags & EQ_CRFLUSHED)) {
2000		struct tx_sdesc *txsd = &txq->sdesc[eq->pidx];
2001
2002		/*
2003		 * If EQ_CRFLUSHED is not set then we know we have at least one
2004		 * available descriptor because any WR that reduces eq->avail to
2005		 * 0 also sets EQ_CRFLUSHED.
2006		 */
2007		KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__));
2008
2009		txsd->desc_used = 1;
2010		txsd->credits = 0;
2011		write_eqflush_wr(eq);
2012	}
2013	txq->m = m;
2014
2015	if (eq->pending)
2016		ring_eq_db(sc, eq);
2017
2018	reclaim_tx_descs(txq, 0, 128);
2019
2020	if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0)
2021		callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
2022
2023	return (0);
2024}
2025
2026void
2027t4_update_fl_bufsize(struct ifnet *ifp)
2028{
2029	struct port_info *pi = ifp->if_softc;
2030	struct adapter *sc = pi->adapter;
2031	struct sge_rxq *rxq;
2032#ifdef TCP_OFFLOAD
2033	struct sge_ofld_rxq *ofld_rxq;
2034#endif
2035	struct sge_fl *fl;
2036	int i, maxp, mtu = ifp->if_mtu;
2037
2038	maxp = mtu_to_max_payload(sc, mtu, 0);
2039	for_each_rxq(pi, i, rxq) {
2040		fl = &rxq->fl;
2041
2042		FL_LOCK(fl);
2043		find_best_refill_source(sc, fl, maxp);
2044		FL_UNLOCK(fl);
2045	}
2046#ifdef TCP_OFFLOAD
2047	maxp = mtu_to_max_payload(sc, mtu, 1);
2048	for_each_ofld_rxq(pi, i, ofld_rxq) {
2049		fl = &ofld_rxq->fl;
2050
2051		FL_LOCK(fl);
2052		find_best_refill_source(sc, fl, maxp);
2053		FL_UNLOCK(fl);
2054	}
2055#endif
2056}
2057
2058int
2059can_resume_tx(struct sge_eq *eq)
2060{
2061	return (reclaimable(eq) >= tx_resume_threshold(eq));
2062}
2063
2064static inline void
2065init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
2066    int qsize, int esize)
2067{
2068	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
2069	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
2070	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
2071	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
2072
2073	iq->flags = 0;
2074	iq->adapter = sc;
2075	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
2076	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
2077	if (pktc_idx >= 0) {
2078		iq->intr_params |= F_QINTR_CNT_EN;
2079		iq->intr_pktc_idx = pktc_idx;
2080	}
2081	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
2082	iq->esize = max(esize, 16);		/* See FW_IQ_CMD/iqesize */
2083}
2084
2085static inline void
2086init_fl(struct adapter *sc, struct sge_fl *fl, int qsize, int maxp, int pack,
2087    char *name)
2088{
2089
2090	fl->qsize = qsize;
2091	strlcpy(fl->lockname, name, sizeof(fl->lockname));
2092	if (pack)
2093		fl->flags |= FL_BUF_PACKING;
2094	find_best_refill_source(sc, fl, maxp);
2095	find_safe_refill_source(sc, fl);
2096}
2097
2098static inline void
2099init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan,
2100    uint16_t iqid, char *name)
2101{
2102	KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan));
2103	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
2104
2105	eq->flags = eqtype & EQ_TYPEMASK;
2106	eq->tx_chan = tx_chan;
2107	eq->iqid = iqid;
2108	eq->qsize = qsize;
2109	strlcpy(eq->lockname, name, sizeof(eq->lockname));
2110
2111	TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq);
2112	callout_init(&eq->tx_callout, CALLOUT_MPSAFE);
2113}
2114
2115static int
2116alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
2117    bus_dmamap_t *map, bus_addr_t *pa, void **va)
2118{
2119	int rc;
2120
2121	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
2122	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
2123	if (rc != 0) {
2124		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
2125		goto done;
2126	}
2127
2128	rc = bus_dmamem_alloc(*tag, va,
2129	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
2130	if (rc != 0) {
2131		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
2132		goto done;
2133	}
2134
2135	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
2136	if (rc != 0) {
2137		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
2138		goto done;
2139	}
2140done:
2141	if (rc)
2142		free_ring(sc, *tag, *map, *pa, *va);
2143
2144	return (rc);
2145}
2146
2147static int
2148free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
2149    bus_addr_t pa, void *va)
2150{
2151	if (pa)
2152		bus_dmamap_unload(tag, map);
2153	if (va)
2154		bus_dmamem_free(tag, va, map);
2155	if (tag)
2156		bus_dma_tag_destroy(tag);
2157
2158	return (0);
2159}
2160
2161/*
2162 * Allocates the ring for an ingress queue and an optional freelist.  If the
2163 * freelist is specified it will be allocated and then associated with the
2164 * ingress queue.
2165 *
2166 * Returns errno on failure.  Resources allocated up to that point may still be
2167 * allocated.  Caller is responsible for cleanup in case this function fails.
2168 *
2169 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
2170 * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
2171 * the abs_id of the ingress queue to which its interrupts should be forwarded.
2172 */
2173static int
2174alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
2175    int intr_idx, int cong)
2176{
2177	int rc, i, cntxt_id;
2178	size_t len;
2179	struct fw_iq_cmd c;
2180	struct adapter *sc = iq->adapter;
2181	__be32 v = 0;
2182
2183	len = iq->qsize * iq->esize;
2184	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
2185	    (void **)&iq->desc);
2186	if (rc != 0)
2187		return (rc);
2188
2189	bzero(&c, sizeof(c));
2190	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
2191	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
2192	    V_FW_IQ_CMD_VFN(0));
2193
2194	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
2195	    FW_LEN16(c));
2196
2197	/* Special handling for firmware event queue */
2198	if (iq == &sc->sge.fwq)
2199		v |= F_FW_IQ_CMD_IQASYNCH;
2200
2201	if (iq->flags & IQ_INTR) {
2202		KASSERT(intr_idx < sc->intr_count,
2203		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
2204	} else
2205		v |= F_FW_IQ_CMD_IQANDST;
2206	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
2207
2208	c.type_to_iqandstindex = htobe32(v |
2209	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
2210	    V_FW_IQ_CMD_VIID(pi->viid) |
2211	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
2212	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
2213	    F_FW_IQ_CMD_IQGTSMODE |
2214	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
2215	    V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
2216	c.iqsize = htobe16(iq->qsize);
2217	c.iqaddr = htobe64(iq->ba);
2218	if (cong >= 0)
2219		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
2220
2221	if (fl) {
2222		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
2223
2224		len = fl->qsize * RX_FL_ESIZE;
2225		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
2226		    &fl->ba, (void **)&fl->desc);
2227		if (rc)
2228			return (rc);
2229
2230		/* Allocate space for one software descriptor per buffer. */
2231		fl->cap = (fl->qsize - spg_len / RX_FL_ESIZE) * 8;
2232		rc = alloc_fl_sdesc(fl);
2233		if (rc != 0) {
2234			device_printf(sc->dev,
2235			    "failed to setup fl software descriptors: %d\n",
2236			    rc);
2237			return (rc);
2238		}
2239		fl->needed = fl->cap;
2240		fl->lowat = fl->flags & FL_BUF_PACKING ?
2241		    roundup2(sc->sge.fl_starve_threshold2, 8) :
2242		    roundup2(sc->sge.fl_starve_threshold, 8);
2243
2244		c.iqns_to_fl0congen |=
2245		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
2246			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
2247			(fl_pad ? F_FW_IQ_CMD_FL0PADEN : 0) |
2248			(fl->flags & FL_BUF_PACKING ? F_FW_IQ_CMD_FL0PACKEN :
2249			    0));
2250		if (cong >= 0) {
2251			c.iqns_to_fl0congen |=
2252				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
2253				    F_FW_IQ_CMD_FL0CONGCIF |
2254				    F_FW_IQ_CMD_FL0CONGEN);
2255		}
2256		c.fl0dcaen_to_fl0cidxfthresh =
2257		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
2258			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
2259		c.fl0size = htobe16(fl->qsize);
2260		c.fl0addr = htobe64(fl->ba);
2261	}
2262
2263	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2264	if (rc != 0) {
2265		device_printf(sc->dev,
2266		    "failed to create ingress queue: %d\n", rc);
2267		return (rc);
2268	}
2269
2270	iq->cdesc = iq->desc;
2271	iq->cidx = 0;
2272	iq->gen = 1;
2273	iq->intr_next = iq->intr_params;
2274	iq->cntxt_id = be16toh(c.iqid);
2275	iq->abs_id = be16toh(c.physiqid);
2276	iq->flags |= IQ_ALLOCATED;
2277
2278	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
2279	if (cntxt_id >= sc->sge.niq) {
2280		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
2281		    cntxt_id, sc->sge.niq - 1);
2282	}
2283	sc->sge.iqmap[cntxt_id] = iq;
2284
2285	if (fl) {
2286		fl->cntxt_id = be16toh(c.fl0id);
2287		fl->pidx = fl->cidx = 0;
2288
2289		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
2290		if (cntxt_id >= sc->sge.neq) {
2291			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
2292			    __func__, cntxt_id, sc->sge.neq - 1);
2293		}
2294		sc->sge.eqmap[cntxt_id] = (void *)fl;
2295
2296		FL_LOCK(fl);
2297		/* Enough to make sure the SGE doesn't think it's starved */
2298		refill_fl(sc, fl, fl->lowat);
2299		FL_UNLOCK(fl);
2300
2301		iq->flags |= IQ_HAS_FL;
2302	}
2303
2304	if (is_t5(sc) && cong >= 0) {
2305		uint32_t param, val;
2306
2307		param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) |
2308		    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) |
2309		    V_FW_PARAMS_PARAM_YZ(iq->cntxt_id);
2310		if (cong == 0)
2311			val = 1 << 19;
2312		else {
2313			val = 2 << 19;
2314			for (i = 0; i < 4; i++) {
2315				if (cong & (1 << i))
2316					val |= 1 << (i << 2);
2317			}
2318		}
2319
2320		rc = -t4_set_params(sc, sc->mbox, sc->pf, 0, 1, &param, &val);
2321		if (rc != 0) {
2322			/* report error but carry on */
2323			device_printf(sc->dev,
2324			    "failed to set congestion manager context for "
2325			    "ingress queue %d: %d\n", iq->cntxt_id, rc);
2326		}
2327	}
2328
2329	/* Enable IQ interrupts */
2330	atomic_store_rel_int(&iq->state, IQS_IDLE);
2331	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
2332	    V_INGRESSQID(iq->cntxt_id));
2333
2334	return (0);
2335}
2336
2337static int
2338free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
2339{
2340	int rc;
2341	struct adapter *sc = iq->adapter;
2342	device_t dev;
2343
2344	if (sc == NULL)
2345		return (0);	/* nothing to do */
2346
2347	dev = pi ? pi->dev : sc->dev;
2348
2349	if (iq->flags & IQ_ALLOCATED) {
2350		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
2351		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
2352		    fl ? fl->cntxt_id : 0xffff, 0xffff);
2353		if (rc != 0) {
2354			device_printf(dev,
2355			    "failed to free queue %p: %d\n", iq, rc);
2356			return (rc);
2357		}
2358		iq->flags &= ~IQ_ALLOCATED;
2359	}
2360
2361	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
2362
2363	bzero(iq, sizeof(*iq));
2364
2365	if (fl) {
2366		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
2367		    fl->desc);
2368
2369		if (fl->sdesc)
2370			free_fl_sdesc(sc, fl);
2371
2372		if (mtx_initialized(&fl->fl_lock))
2373			mtx_destroy(&fl->fl_lock);
2374
2375		bzero(fl, sizeof(*fl));
2376	}
2377
2378	return (0);
2379}
2380
2381static void
2382add_fl_sysctls(struct sysctl_ctx_list *ctx, struct sysctl_oid *oid,
2383    struct sge_fl *fl)
2384{
2385	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2386
2387	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2388	    "freelist");
2389	children = SYSCTL_CHILDREN(oid);
2390
2391	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2392	    CTLTYPE_INT | CTLFLAG_RD, &fl->cntxt_id, 0, sysctl_uint16, "I",
2393	    "SGE context id of the freelist");
2394	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD, &fl->cidx,
2395	    0, "consumer index");
2396	if (fl->flags & FL_BUF_PACKING) {
2397		SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "rx_offset",
2398		    CTLFLAG_RD, &fl->rx_offset, 0, "packing rx offset");
2399	}
2400	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD, &fl->pidx,
2401	    0, "producer index");
2402	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_allocated",
2403	    CTLFLAG_RD, &fl->mbuf_allocated, "# of mbuf allocated");
2404	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "mbuf_inlined",
2405	    CTLFLAG_RD, &fl->mbuf_inlined, "# of mbuf inlined in clusters");
2406	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_allocated",
2407	    CTLFLAG_RD, &fl->cl_allocated, "# of clusters allocated");
2408	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_recycled",
2409	    CTLFLAG_RD, &fl->cl_recycled, "# of clusters recycled");
2410	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "cluster_fast_recycled",
2411	    CTLFLAG_RD, &fl->cl_fast_recycled, "# of clusters recycled (fast)");
2412}
2413
2414static int
2415alloc_fwq(struct adapter *sc)
2416{
2417	int rc, intr_idx;
2418	struct sge_iq *fwq = &sc->sge.fwq;
2419	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2420	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2421
2422	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
2423	fwq->flags |= IQ_INTR;	/* always */
2424	intr_idx = sc->intr_count > 1 ? 1 : 0;
2425	rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
2426	if (rc != 0) {
2427		device_printf(sc->dev,
2428		    "failed to create firmware event queue: %d\n", rc);
2429		return (rc);
2430	}
2431
2432	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
2433	    NULL, "firmware event queue");
2434	children = SYSCTL_CHILDREN(oid);
2435
2436	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
2437	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
2438	    "absolute id of the queue");
2439	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
2440	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
2441	    "SGE context id of the queue");
2442	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
2443	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
2444	    "consumer index");
2445
2446	return (0);
2447}
2448
2449static int
2450free_fwq(struct adapter *sc)
2451{
2452	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
2453}
2454
2455static int
2456alloc_mgmtq(struct adapter *sc)
2457{
2458	int rc;
2459	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
2460	char name[16];
2461	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
2462	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2463
2464	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
2465	    NULL, "management queue");
2466
2467	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
2468	init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
2469	    sc->sge.fwq.cntxt_id, name);
2470	rc = alloc_wrq(sc, NULL, mgmtq, oid);
2471	if (rc != 0) {
2472		device_printf(sc->dev,
2473		    "failed to create management queue: %d\n", rc);
2474		return (rc);
2475	}
2476
2477	return (0);
2478}
2479
2480static int
2481free_mgmtq(struct adapter *sc)
2482{
2483
2484	return free_wrq(sc, &sc->sge.mgmtq);
2485}
2486
2487static inline int
2488tnl_cong(struct port_info *pi)
2489{
2490
2491	if (cong_drop == -1)
2492		return (-1);
2493	else if (cong_drop == 1)
2494		return (0);
2495	else
2496		return (pi->rx_chan_map);
2497}
2498
2499static int
2500alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx,
2501    struct sysctl_oid *oid)
2502{
2503	int rc;
2504	struct sysctl_oid_list *children;
2505	char name[16];
2506
2507	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(pi));
2508	if (rc != 0)
2509		return (rc);
2510
2511	FL_LOCK(&rxq->fl);
2512	refill_fl(pi->adapter, &rxq->fl, rxq->fl.needed / 8);
2513	FL_UNLOCK(&rxq->fl);
2514
2515#if defined(INET) || defined(INET6)
2516	rc = tcp_lro_init(&rxq->lro);
2517	if (rc != 0)
2518		return (rc);
2519	rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
2520
2521	if (pi->ifp->if_capenable & IFCAP_LRO)
2522		rxq->iq.flags |= IQ_LRO_ENABLED;
2523#endif
2524	rxq->ifp = pi->ifp;
2525
2526	children = SYSCTL_CHILDREN(oid);
2527
2528	snprintf(name, sizeof(name), "%d", idx);
2529	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2530	    NULL, "rx queue");
2531	children = SYSCTL_CHILDREN(oid);
2532
2533	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2534	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
2535	    "absolute id of the queue");
2536	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2537	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
2538	    "SGE context id of the queue");
2539	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2540	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
2541	    "consumer index");
2542#if defined(INET) || defined(INET6)
2543	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
2544	    &rxq->lro.lro_queued, 0, NULL);
2545	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
2546	    &rxq->lro.lro_flushed, 0, NULL);
2547#endif
2548	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
2549	    &rxq->rxcsum, "# of times hardware assisted with checksum");
2550	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
2551	    CTLFLAG_RD, &rxq->vlan_extraction,
2552	    "# of times hardware extracted 802.1Q tag");
2553
2554	add_fl_sysctls(&pi->ctx, oid, &rxq->fl);
2555
2556	return (rc);
2557}
2558
2559static int
2560free_rxq(struct port_info *pi, struct sge_rxq *rxq)
2561{
2562	int rc;
2563
2564#if defined(INET) || defined(INET6)
2565	if (rxq->lro.ifp) {
2566		tcp_lro_free(&rxq->lro);
2567		rxq->lro.ifp = NULL;
2568	}
2569#endif
2570
2571	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
2572	if (rc == 0)
2573		bzero(rxq, sizeof(*rxq));
2574
2575	return (rc);
2576}
2577
2578#ifdef TCP_OFFLOAD
2579static int
2580alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
2581    int intr_idx, int idx, struct sysctl_oid *oid)
2582{
2583	int rc;
2584	struct sysctl_oid_list *children;
2585	char name[16];
2586
2587	rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
2588	    pi->rx_chan_map);
2589	if (rc != 0)
2590		return (rc);
2591
2592	children = SYSCTL_CHILDREN(oid);
2593
2594	snprintf(name, sizeof(name), "%d", idx);
2595	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2596	    NULL, "rx queue");
2597	children = SYSCTL_CHILDREN(oid);
2598
2599	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2600	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
2601	    "I", "absolute id of the queue");
2602	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2603	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
2604	    "I", "SGE context id of the queue");
2605	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2606	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
2607	    "consumer index");
2608
2609	add_fl_sysctls(&pi->ctx, oid, &ofld_rxq->fl);
2610
2611	return (rc);
2612}
2613
2614static int
2615free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
2616{
2617	int rc;
2618
2619	rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
2620	if (rc == 0)
2621		bzero(ofld_rxq, sizeof(*ofld_rxq));
2622
2623	return (rc);
2624}
2625#endif
2626
2627#ifdef DEV_NETMAP
2628static int
2629alloc_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq, int intr_idx,
2630    int idx, struct sysctl_oid *oid)
2631{
2632	int rc;
2633	struct sysctl_oid_list *children;
2634	struct sysctl_ctx_list *ctx;
2635	char name[16];
2636	size_t len;
2637	struct adapter *sc = pi->adapter;
2638	struct netmap_adapter *na = NA(pi->nm_ifp);
2639
2640	MPASS(na != NULL);
2641
2642	len = pi->qsize_rxq * RX_IQ_ESIZE;
2643	rc = alloc_ring(sc, len, &nm_rxq->iq_desc_tag, &nm_rxq->iq_desc_map,
2644	    &nm_rxq->iq_ba, (void **)&nm_rxq->iq_desc);
2645	if (rc != 0)
2646		return (rc);
2647
2648	len = na->num_rx_desc * RX_FL_ESIZE + spg_len;
2649	rc = alloc_ring(sc, len, &nm_rxq->fl_desc_tag, &nm_rxq->fl_desc_map,
2650	    &nm_rxq->fl_ba, (void **)&nm_rxq->fl_desc);
2651	if (rc != 0)
2652		return (rc);
2653
2654	nm_rxq->pi = pi;
2655	nm_rxq->nid = idx;
2656	nm_rxq->iq_cidx = 0;
2657	nm_rxq->iq_sidx = pi->qsize_rxq - spg_len / RX_IQ_ESIZE;
2658	nm_rxq->iq_gen = F_RSPD_GEN;
2659	nm_rxq->fl_pidx = nm_rxq->fl_cidx = 0;
2660	nm_rxq->fl_sidx = na->num_rx_desc;
2661	nm_rxq->intr_idx = intr_idx;
2662
2663	ctx = &pi->ctx;
2664	children = SYSCTL_CHILDREN(oid);
2665
2666	snprintf(name, sizeof(name), "%d", idx);
2667	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, name, CTLFLAG_RD, NULL,
2668	    "rx queue");
2669	children = SYSCTL_CHILDREN(oid);
2670
2671	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "abs_id",
2672	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_abs_id, 0, sysctl_uint16,
2673	    "I", "absolute id of the queue");
2674	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2675	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cntxt_id, 0, sysctl_uint16,
2676	    "I", "SGE context id of the queue");
2677	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
2678	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->iq_cidx, 0, sysctl_uint16, "I",
2679	    "consumer index");
2680
2681	children = SYSCTL_CHILDREN(oid);
2682	oid = SYSCTL_ADD_NODE(ctx, children, OID_AUTO, "fl", CTLFLAG_RD, NULL,
2683	    "freelist");
2684	children = SYSCTL_CHILDREN(oid);
2685
2686	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cntxt_id",
2687	    CTLTYPE_INT | CTLFLAG_RD, &nm_rxq->fl_cntxt_id, 0, sysctl_uint16,
2688	    "I", "SGE context id of the freelist");
2689	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
2690	    &nm_rxq->fl_cidx, 0, "consumer index");
2691	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
2692	    &nm_rxq->fl_pidx, 0, "producer index");
2693
2694	return (rc);
2695}
2696
2697
2698static int
2699free_nm_rxq(struct port_info *pi, struct sge_nm_rxq *nm_rxq)
2700{
2701	struct adapter *sc = pi->adapter;
2702
2703	free_ring(sc, nm_rxq->iq_desc_tag, nm_rxq->iq_desc_map, nm_rxq->iq_ba,
2704	    nm_rxq->iq_desc);
2705	free_ring(sc, nm_rxq->fl_desc_tag, nm_rxq->fl_desc_map, nm_rxq->fl_ba,
2706	    nm_rxq->fl_desc);
2707
2708	return (0);
2709}
2710
2711static int
2712alloc_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq, int iqidx, int idx,
2713    struct sysctl_oid *oid)
2714{
2715	int rc;
2716	size_t len;
2717	struct adapter *sc = pi->adapter;
2718	struct netmap_adapter *na = NA(pi->nm_ifp);
2719	char name[16];
2720	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2721
2722	len = na->num_tx_desc * EQ_ESIZE + spg_len;
2723	rc = alloc_ring(sc, len, &nm_txq->desc_tag, &nm_txq->desc_map,
2724	    &nm_txq->ba, (void **)&nm_txq->desc);
2725	if (rc)
2726		return (rc);
2727
2728	nm_txq->pidx = nm_txq->cidx = 0;
2729	nm_txq->sidx = na->num_tx_desc;
2730	nm_txq->nid = idx;
2731	nm_txq->iqidx = iqidx;
2732	nm_txq->cpl_ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
2733	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(sc->pf));
2734
2735	snprintf(name, sizeof(name), "%d", idx);
2736	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2737	    NULL, "netmap tx queue");
2738	children = SYSCTL_CHILDREN(oid);
2739
2740	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2741	    &nm_txq->cntxt_id, 0, "SGE context id of the queue");
2742	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2743	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->cidx, 0, sysctl_uint16, "I",
2744	    "consumer index");
2745	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
2746	    CTLTYPE_INT | CTLFLAG_RD, &nm_txq->pidx, 0, sysctl_uint16, "I",
2747	    "producer index");
2748
2749	return (rc);
2750}
2751
2752static int
2753free_nm_txq(struct port_info *pi, struct sge_nm_txq *nm_txq)
2754{
2755	struct adapter *sc = pi->adapter;
2756
2757	free_ring(sc, nm_txq->desc_tag, nm_txq->desc_map, nm_txq->ba,
2758	    nm_txq->desc);
2759
2760	return (0);
2761}
2762#endif
2763
2764static int
2765ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
2766{
2767	int rc, cntxt_id;
2768	struct fw_eq_ctrl_cmd c;
2769
2770	bzero(&c, sizeof(c));
2771
2772	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
2773	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
2774	    V_FW_EQ_CTRL_CMD_VFN(0));
2775	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
2776	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2777	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */
2778	c.physeqid_pkd = htobe32(0);
2779	c.fetchszm_to_iqid =
2780	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2781		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
2782		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
2783	c.dcaen_to_eqsize =
2784	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2785		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2786		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2787		V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
2788	c.eqaddr = htobe64(eq->ba);
2789
2790	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2791	if (rc != 0) {
2792		device_printf(sc->dev,
2793		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
2794		return (rc);
2795	}
2796	eq->flags |= EQ_ALLOCATED;
2797
2798	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
2799	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2800	if (cntxt_id >= sc->sge.neq)
2801	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2802		cntxt_id, sc->sge.neq - 1);
2803	sc->sge.eqmap[cntxt_id] = eq;
2804
2805	return (rc);
2806}
2807
2808static int
2809eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2810{
2811	int rc, cntxt_id;
2812	struct fw_eq_eth_cmd c;
2813
2814	bzero(&c, sizeof(c));
2815
2816	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
2817	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
2818	    V_FW_EQ_ETH_CMD_VFN(0));
2819	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
2820	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2821	c.viid_pkd = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
2822	c.fetchszm_to_iqid =
2823	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2824		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
2825		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
2826	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2827		      V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2828		      V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2829		      V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
2830	c.eqaddr = htobe64(eq->ba);
2831
2832	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2833	if (rc != 0) {
2834		device_printf(pi->dev,
2835		    "failed to create Ethernet egress queue: %d\n", rc);
2836		return (rc);
2837	}
2838	eq->flags |= EQ_ALLOCATED;
2839
2840	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
2841	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2842	if (cntxt_id >= sc->sge.neq)
2843	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2844		cntxt_id, sc->sge.neq - 1);
2845	sc->sge.eqmap[cntxt_id] = eq;
2846
2847	return (rc);
2848}
2849
2850#ifdef TCP_OFFLOAD
2851static int
2852ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2853{
2854	int rc, cntxt_id;
2855	struct fw_eq_ofld_cmd c;
2856
2857	bzero(&c, sizeof(c));
2858
2859	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
2860	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
2861	    V_FW_EQ_OFLD_CMD_VFN(0));
2862	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
2863	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2864	c.fetchszm_to_iqid =
2865		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2866		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
2867		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
2868	c.dcaen_to_eqsize =
2869	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2870		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2871		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2872		V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
2873	c.eqaddr = htobe64(eq->ba);
2874
2875	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2876	if (rc != 0) {
2877		device_printf(pi->dev,
2878		    "failed to create egress queue for TCP offload: %d\n", rc);
2879		return (rc);
2880	}
2881	eq->flags |= EQ_ALLOCATED;
2882
2883	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
2884	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2885	if (cntxt_id >= sc->sge.neq)
2886	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2887		cntxt_id, sc->sge.neq - 1);
2888	sc->sge.eqmap[cntxt_id] = eq;
2889
2890	return (rc);
2891}
2892#endif
2893
2894static int
2895alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2896{
2897	int rc;
2898	size_t len;
2899
2900	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
2901
2902	len = eq->qsize * EQ_ESIZE;
2903	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
2904	    &eq->ba, (void **)&eq->desc);
2905	if (rc)
2906		return (rc);
2907
2908	eq->cap = eq->qsize - spg_len / EQ_ESIZE;
2909	eq->spg = (void *)&eq->desc[eq->cap];
2910	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
2911	eq->pidx = eq->cidx = 0;
2912	eq->doorbells = sc->doorbells;
2913
2914	switch (eq->flags & EQ_TYPEMASK) {
2915	case EQ_CTRL:
2916		rc = ctrl_eq_alloc(sc, eq);
2917		break;
2918
2919	case EQ_ETH:
2920		rc = eth_eq_alloc(sc, pi, eq);
2921		break;
2922
2923#ifdef TCP_OFFLOAD
2924	case EQ_OFLD:
2925		rc = ofld_eq_alloc(sc, pi, eq);
2926		break;
2927#endif
2928
2929	default:
2930		panic("%s: invalid eq type %d.", __func__,
2931		    eq->flags & EQ_TYPEMASK);
2932	}
2933	if (rc != 0) {
2934		device_printf(sc->dev,
2935		    "failed to allocate egress queue(%d): %d",
2936		    eq->flags & EQ_TYPEMASK, rc);
2937	}
2938
2939	eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus;
2940
2941	if (isset(&eq->doorbells, DOORBELL_UDB) ||
2942	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
2943	    isset(&eq->doorbells, DOORBELL_WCWR)) {
2944		uint32_t s_qpp = sc->sge.eq_s_qpp;
2945		uint32_t mask = (1 << s_qpp) - 1;
2946		volatile uint8_t *udb;
2947
2948		udb = sc->udbs_base + UDBS_DB_OFFSET;
2949		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
2950		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
2951		if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE)
2952	    		clrbit(&eq->doorbells, DOORBELL_WCWR);
2953		else {
2954			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
2955			eq->udb_qid = 0;
2956		}
2957		eq->udb = (volatile void *)udb;
2958	}
2959
2960	return (rc);
2961}
2962
2963static int
2964free_eq(struct adapter *sc, struct sge_eq *eq)
2965{
2966	int rc;
2967
2968	if (eq->flags & EQ_ALLOCATED) {
2969		switch (eq->flags & EQ_TYPEMASK) {
2970		case EQ_CTRL:
2971			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
2972			    eq->cntxt_id);
2973			break;
2974
2975		case EQ_ETH:
2976			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
2977			    eq->cntxt_id);
2978			break;
2979
2980#ifdef TCP_OFFLOAD
2981		case EQ_OFLD:
2982			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
2983			    eq->cntxt_id);
2984			break;
2985#endif
2986
2987		default:
2988			panic("%s: invalid eq type %d.", __func__,
2989			    eq->flags & EQ_TYPEMASK);
2990		}
2991		if (rc != 0) {
2992			device_printf(sc->dev,
2993			    "failed to free egress queue (%d): %d\n",
2994			    eq->flags & EQ_TYPEMASK, rc);
2995			return (rc);
2996		}
2997		eq->flags &= ~EQ_ALLOCATED;
2998	}
2999
3000	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
3001
3002	if (mtx_initialized(&eq->eq_lock))
3003		mtx_destroy(&eq->eq_lock);
3004
3005	bzero(eq, sizeof(*eq));
3006	return (0);
3007}
3008
3009static int
3010alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
3011    struct sysctl_oid *oid)
3012{
3013	int rc;
3014	struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx;
3015	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3016
3017	rc = alloc_eq(sc, pi, &wrq->eq);
3018	if (rc)
3019		return (rc);
3020
3021	wrq->adapter = sc;
3022	STAILQ_INIT(&wrq->wr_list);
3023
3024	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3025	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
3026	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
3027	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
3028	    "consumer index");
3029	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
3030	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
3031	    "producer index");
3032	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD,
3033	    &wrq->tx_wrs, "# of work requests");
3034	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
3035	    &wrq->no_desc, 0,
3036	    "# of times queue ran out of hardware descriptors");
3037	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
3038	    &wrq->eq.unstalled, 0, "# of times queue recovered after stall");
3039
3040	return (rc);
3041}
3042
3043static int
3044free_wrq(struct adapter *sc, struct sge_wrq *wrq)
3045{
3046	int rc;
3047
3048	rc = free_eq(sc, &wrq->eq);
3049	if (rc)
3050		return (rc);
3051
3052	bzero(wrq, sizeof(*wrq));
3053	return (0);
3054}
3055
3056static int
3057alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx,
3058    struct sysctl_oid *oid)
3059{
3060	int rc;
3061	struct adapter *sc = pi->adapter;
3062	struct sge_eq *eq = &txq->eq;
3063	char name[16];
3064	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
3065
3066	rc = alloc_eq(sc, pi, eq);
3067	if (rc)
3068		return (rc);
3069
3070	txq->ifp = pi->ifp;
3071
3072	txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
3073	    M_ZERO | M_WAITOK);
3074	txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
3075
3076	rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
3077	    BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
3078	    BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag);
3079	if (rc != 0) {
3080		device_printf(sc->dev,
3081		    "failed to create tx DMA tag: %d\n", rc);
3082		return (rc);
3083	}
3084
3085	/*
3086	 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
3087	 * limit for any WR).  txq->no_dmamap events shouldn't occur if maps is
3088	 * sized for the worst case.
3089	 */
3090	rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8,
3091	    M_WAITOK);
3092	if (rc != 0) {
3093		device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
3094		return (rc);
3095	}
3096
3097	snprintf(name, sizeof(name), "%d", idx);
3098	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
3099	    NULL, "tx queue");
3100	children = SYSCTL_CHILDREN(oid);
3101
3102	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
3103	    &eq->cntxt_id, 0, "SGE context id of the queue");
3104	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
3105	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
3106	    "consumer index");
3107	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
3108	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
3109	    "producer index");
3110
3111	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
3112	    &txq->txcsum, "# of times hardware assisted with checksum");
3113	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
3114	    CTLFLAG_RD, &txq->vlan_insertion,
3115	    "# of times hardware inserted 802.1Q tag");
3116	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
3117	    &txq->tso_wrs, "# of TSO work requests");
3118	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
3119	    &txq->imm_wrs, "# of work requests with immediate data");
3120	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
3121	    &txq->sgl_wrs, "# of work requests with direct SGL");
3122	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
3123	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
3124	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
3125	    &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
3126	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
3127	    &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
3128
3129	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "br_drops", CTLFLAG_RD,
3130	    &txq->br->br_drops, "# of drops in the buf_ring for this queue");
3131	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
3132	    &txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
3133	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
3134	    &txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
3135	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
3136	    &eq->egr_update, 0, "egress update notifications from the SGE");
3137	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
3138	    &eq->unstalled, 0, "# of times txq recovered after stall");
3139
3140	return (rc);
3141}
3142
3143static int
3144free_txq(struct port_info *pi, struct sge_txq *txq)
3145{
3146	int rc;
3147	struct adapter *sc = pi->adapter;
3148	struct sge_eq *eq = &txq->eq;
3149
3150	rc = free_eq(sc, eq);
3151	if (rc)
3152		return (rc);
3153
3154	free(txq->sdesc, M_CXGBE);
3155
3156	if (txq->txmaps.maps)
3157		t4_free_tx_maps(&txq->txmaps, txq->tx_tag);
3158
3159	buf_ring_free(txq->br, M_CXGBE);
3160
3161	if (txq->tx_tag)
3162		bus_dma_tag_destroy(txq->tx_tag);
3163
3164	bzero(txq, sizeof(*txq));
3165	return (0);
3166}
3167
3168static void
3169oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
3170{
3171	bus_addr_t *ba = arg;
3172
3173	KASSERT(nseg == 1,
3174	    ("%s meant for single segment mappings only.", __func__));
3175
3176	*ba = error ? 0 : segs->ds_addr;
3177}
3178
3179static inline bool
3180is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
3181{
3182	*ctrl = (void *)((uintptr_t)iq->cdesc +
3183	    (iq->esize - sizeof(struct rsp_ctrl)));
3184
3185	return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen);
3186}
3187
3188static inline void
3189iq_next(struct sge_iq *iq)
3190{
3191	iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
3192	if (__predict_false(++iq->cidx == iq->qsize - spg_len / iq->esize)) {
3193		iq->cidx = 0;
3194		iq->gen ^= 1;
3195		iq->cdesc = iq->desc;
3196	}
3197}
3198
3199#define FL_HW_IDX(x) ((x) >> 3)
3200static inline void
3201ring_fl_db(struct adapter *sc, struct sge_fl *fl)
3202{
3203	int ndesc = fl->pending / 8;
3204	uint32_t v;
3205
3206	if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
3207		ndesc--;	/* hold back one credit */
3208
3209	if (ndesc <= 0)
3210		return;		/* nothing to do */
3211
3212	v = F_DBPRIO | V_QID(fl->cntxt_id) | V_PIDX(ndesc);
3213	if (is_t5(sc))
3214		v |= F_DBTYPE;
3215
3216	wmb();
3217
3218	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
3219	fl->pending -= ndesc * 8;
3220}
3221
3222/*
3223 * Fill up the freelist by upto nbufs and maybe ring its doorbell.
3224 *
3225 * Returns non-zero to indicate that it should be added to the list of starving
3226 * freelists.
3227 */
3228static int
3229refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
3230{
3231	__be64 *d = &fl->desc[fl->pidx];
3232	struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
3233	uintptr_t pa;
3234	caddr_t cl;
3235	struct cluster_layout *cll = &fl->cll_def;	/* default layout */
3236	struct sw_zone_info *swz = &sc->sge.sw_zone_info[cll->zidx];
3237	struct cluster_metadata *clm;
3238
3239	FL_LOCK_ASSERT_OWNED(fl);
3240
3241	if (nbufs > fl->needed)
3242		nbufs = fl->needed;
3243	nbufs -= (fl->pidx + nbufs) % 8;
3244
3245	while (nbufs--) {
3246
3247		if (sd->cl != NULL) {
3248
3249			if (sd->nmbuf == 0) {
3250				/*
3251				 * Fast recycle without involving any atomics on
3252				 * the cluster's metadata (if the cluster has
3253				 * metadata).  This happens when all frames
3254				 * received in the cluster were small enough to
3255				 * fit within a single mbuf each.
3256				 */
3257				fl->cl_fast_recycled++;
3258				goto recycled_fast;
3259			}
3260
3261			/*
3262			 * Cluster is guaranteed to have metadata.  Clusters
3263			 * without metadata always take the fast recycle path
3264			 * when they're recycled.
3265			 */
3266			clm = cl_metadata(sc, fl, &sd->cll, sd->cl);
3267			MPASS(clm != NULL);
3268
3269			if (atomic_fetchadd_int(&clm->refcount, -1) == 1) {
3270				fl->cl_recycled++;
3271				goto recycled;
3272			}
3273			sd->cl = NULL;	/* gave up my reference */
3274		}
3275		MPASS(sd->cl == NULL);
3276alloc:
3277		cl = uma_zalloc(swz->zone, M_NOWAIT);
3278		if (__predict_false(cl == NULL)) {
3279			if (cll == &fl->cll_alt || fl->cll_alt.zidx == -1 ||
3280			    fl->cll_def.zidx == fl->cll_alt.zidx)
3281				break;
3282
3283			/* fall back to the safe zone */
3284			cll = &fl->cll_alt;
3285			swz = &sc->sge.sw_zone_info[cll->zidx];
3286			goto alloc;
3287		}
3288		fl->cl_allocated++;
3289
3290		pa = pmap_kextract((vm_offset_t)cl);
3291		pa += cll->region1;
3292		sd->cl = cl;
3293		sd->cll = *cll;
3294		*d = htobe64(pa | cll->hwidx);
3295		clm = cl_metadata(sc, fl, cll, cl);
3296		if (clm != NULL) {
3297recycled:
3298#ifdef INVARIANTS
3299			clm->sd = sd;
3300#endif
3301			clm->refcount = 1;
3302		}
3303		sd->nmbuf = 0;
3304recycled_fast:
3305		fl->pending++;
3306		fl->needed--;
3307		d++;
3308		sd++;
3309		if (__predict_false(++fl->pidx == fl->cap)) {
3310			fl->pidx = 0;
3311			sd = fl->sdesc;
3312			d = fl->desc;
3313		}
3314	}
3315
3316	if (fl->pending >= 8)
3317		ring_fl_db(sc, fl);
3318
3319	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
3320}
3321
3322/*
3323 * Attempt to refill all starving freelists.
3324 */
3325static void
3326refill_sfl(void *arg)
3327{
3328	struct adapter *sc = arg;
3329	struct sge_fl *fl, *fl_temp;
3330
3331	mtx_lock(&sc->sfl_lock);
3332	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
3333		FL_LOCK(fl);
3334		refill_fl(sc, fl, 64);
3335		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
3336			TAILQ_REMOVE(&sc->sfl, fl, link);
3337			fl->flags &= ~FL_STARVING;
3338		}
3339		FL_UNLOCK(fl);
3340	}
3341
3342	if (!TAILQ_EMPTY(&sc->sfl))
3343		callout_schedule(&sc->sfl_callout, hz / 5);
3344	mtx_unlock(&sc->sfl_lock);
3345}
3346
3347static int
3348alloc_fl_sdesc(struct sge_fl *fl)
3349{
3350
3351	fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE,
3352	    M_ZERO | M_WAITOK);
3353
3354	return (0);
3355}
3356
3357static void
3358free_fl_sdesc(struct adapter *sc, struct sge_fl *fl)
3359{
3360	struct fl_sdesc *sd;
3361	struct cluster_metadata *clm;
3362	struct cluster_layout *cll;
3363	int i;
3364
3365	sd = fl->sdesc;
3366	for (i = 0; i < fl->cap; i++, sd++) {
3367		if (sd->cl == NULL)
3368			continue;
3369
3370		cll = &sd->cll;
3371		clm = cl_metadata(sc, fl, cll, sd->cl);
3372		if (sd->nmbuf == 0 ||
3373		    (clm && atomic_fetchadd_int(&clm->refcount, -1) == 1)) {
3374			uma_zfree(sc->sge.sw_zone_info[cll->zidx].zone, sd->cl);
3375		}
3376		sd->cl = NULL;
3377	}
3378
3379	free(fl->sdesc, M_CXGBE);
3380	fl->sdesc = NULL;
3381}
3382
3383int
3384t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count,
3385    int flags)
3386{
3387	struct tx_map *txm;
3388	int i, rc;
3389
3390	txmaps->map_total = txmaps->map_avail = count;
3391	txmaps->map_cidx = txmaps->map_pidx = 0;
3392
3393	txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
3394	    M_ZERO | flags);
3395
3396	txm = txmaps->maps;
3397	for (i = 0; i < count; i++, txm++) {
3398		rc = bus_dmamap_create(tx_tag, 0, &txm->map);
3399		if (rc != 0)
3400			goto failed;
3401	}
3402
3403	return (0);
3404failed:
3405	while (--i >= 0) {
3406		txm--;
3407		bus_dmamap_destroy(tx_tag, txm->map);
3408	}
3409	KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__));
3410
3411	free(txmaps->maps, M_CXGBE);
3412	txmaps->maps = NULL;
3413
3414	return (rc);
3415}
3416
3417void
3418t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag)
3419{
3420	struct tx_map *txm;
3421	int i;
3422
3423	txm = txmaps->maps;
3424	for (i = 0; i < txmaps->map_total; i++, txm++) {
3425
3426		if (txm->m) {
3427			bus_dmamap_unload(tx_tag, txm->map);
3428			m_freem(txm->m);
3429			txm->m = NULL;
3430		}
3431
3432		bus_dmamap_destroy(tx_tag, txm->map);
3433	}
3434
3435	free(txmaps->maps, M_CXGBE);
3436	txmaps->maps = NULL;
3437}
3438
3439/*
3440 * We'll do immediate data tx for non-TSO, but only when not coalescing.  We're
3441 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
3442 * of immediate data.
3443 */
3444#define IMM_LEN ( \
3445      2 * EQ_ESIZE \
3446    - sizeof(struct fw_eth_tx_pkt_wr) \
3447    - sizeof(struct cpl_tx_pkt_core))
3448
3449/*
3450 * Returns non-zero on failure, no need to cleanup anything in that case.
3451 *
3452 * Note 1: We always try to defrag the mbuf if required and return EFBIG only
3453 * if the resulting chain still won't fit in a tx descriptor.
3454 *
3455 * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
3456 * does not have the TCP header in it.
3457 */
3458static int
3459get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
3460    int sgl_only)
3461{
3462	struct mbuf *m = *fp;
3463	struct tx_maps *txmaps;
3464	struct tx_map *txm;
3465	int rc, defragged = 0, n;
3466
3467	TXQ_LOCK_ASSERT_OWNED(txq);
3468
3469	if (m->m_pkthdr.tso_segsz)
3470		sgl_only = 1;	/* Do not allow immediate data with LSO */
3471
3472start:	sgl->nsegs = 0;
3473
3474	if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
3475		return (0);	/* nsegs = 0 tells caller to use imm. tx */
3476
3477	txmaps = &txq->txmaps;
3478	if (txmaps->map_avail == 0) {
3479		txq->no_dmamap++;
3480		return (ENOMEM);
3481	}
3482	txm = &txmaps->maps[txmaps->map_pidx];
3483
3484	if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
3485		*fp = m_pullup(m, 50);
3486		m = *fp;
3487		if (m == NULL)
3488			return (ENOBUFS);
3489	}
3490
3491	rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg,
3492	    &sgl->nsegs, BUS_DMA_NOWAIT);
3493	if (rc == EFBIG && defragged == 0) {
3494		m = m_defrag(m, M_NOWAIT);
3495		if (m == NULL)
3496			return (EFBIG);
3497
3498		defragged = 1;
3499		*fp = m;
3500		goto start;
3501	}
3502	if (rc != 0)
3503		return (rc);
3504
3505	txm->m = m;
3506	txmaps->map_avail--;
3507	if (++txmaps->map_pidx == txmaps->map_total)
3508		txmaps->map_pidx = 0;
3509
3510	KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
3511	    ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
3512
3513	/*
3514	 * Store the # of flits required to hold this frame's SGL in nflits.  An
3515	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
3516	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
3517	 * then len1 must be set to 0.
3518	 */
3519	n = sgl->nsegs - 1;
3520	sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
3521
3522	return (0);
3523}
3524
3525
3526/*
3527 * Releases all the txq resources used up in the specified sgl.
3528 */
3529static int
3530free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
3531{
3532	struct tx_maps *txmaps;
3533	struct tx_map *txm;
3534
3535	TXQ_LOCK_ASSERT_OWNED(txq);
3536
3537	if (sgl->nsegs == 0)
3538		return (0);	/* didn't use any map */
3539
3540	txmaps = &txq->txmaps;
3541
3542	/* 1 pkt uses exactly 1 map, back it out */
3543
3544	txmaps->map_avail++;
3545	if (txmaps->map_pidx > 0)
3546		txmaps->map_pidx--;
3547	else
3548		txmaps->map_pidx = txmaps->map_total - 1;
3549
3550	txm = &txmaps->maps[txmaps->map_pidx];
3551	bus_dmamap_unload(txq->tx_tag, txm->map);
3552	txm->m = NULL;
3553
3554	return (0);
3555}
3556
3557static int
3558write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
3559    struct sgl *sgl)
3560{
3561	struct sge_eq *eq = &txq->eq;
3562	struct fw_eth_tx_pkt_wr *wr;
3563	struct cpl_tx_pkt_core *cpl;
3564	uint32_t ctrl;	/* used in many unrelated places */
3565	uint64_t ctrl1;
3566	int nflits, ndesc, pktlen;
3567	struct tx_sdesc *txsd;
3568	caddr_t dst;
3569
3570	TXQ_LOCK_ASSERT_OWNED(txq);
3571
3572	pktlen = m->m_pkthdr.len;
3573
3574	/*
3575	 * Do we have enough flits to send this frame out?
3576	 */
3577	ctrl = sizeof(struct cpl_tx_pkt_core);
3578	if (m->m_pkthdr.tso_segsz) {
3579		nflits = TXPKT_LSO_WR_HDR;
3580		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
3581	} else
3582		nflits = TXPKT_WR_HDR;
3583	if (sgl->nsegs > 0)
3584		nflits += sgl->nflits;
3585	else {
3586		nflits += howmany(pktlen, 8);
3587		ctrl += pktlen;
3588	}
3589	ndesc = howmany(nflits, 8);
3590	if (ndesc > eq->avail)
3591		return (ENOMEM);
3592
3593	/* Firmware work request header */
3594	wr = (void *)&eq->desc[eq->pidx];
3595	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
3596	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
3597	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
3598	if (eq->avail == ndesc) {
3599		if (!(eq->flags & EQ_CRFLUSHED)) {
3600			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3601			eq->flags |= EQ_CRFLUSHED;
3602		}
3603		eq->flags |= EQ_STALLED;
3604	}
3605
3606	wr->equiq_to_len16 = htobe32(ctrl);
3607	wr->r3 = 0;
3608
3609	if (m->m_pkthdr.tso_segsz) {
3610		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
3611		struct ether_header *eh;
3612		void *l3hdr;
3613#if defined(INET) || defined(INET6)
3614		struct tcphdr *tcp;
3615#endif
3616		uint16_t eh_type;
3617
3618		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
3619		    F_LSO_LAST_SLICE;
3620
3621		eh = mtod(m, struct ether_header *);
3622		eh_type = ntohs(eh->ether_type);
3623		if (eh_type == ETHERTYPE_VLAN) {
3624			struct ether_vlan_header *evh = (void *)eh;
3625
3626			ctrl |= V_LSO_ETHHDR_LEN(1);
3627			l3hdr = evh + 1;
3628			eh_type = ntohs(evh->evl_proto);
3629		} else
3630			l3hdr = eh + 1;
3631
3632		switch (eh_type) {
3633#ifdef INET6
3634		case ETHERTYPE_IPV6:
3635		{
3636			struct ip6_hdr *ip6 = l3hdr;
3637
3638			/*
3639			 * XXX-BZ For now we do not pretend to support
3640			 * IPv6 extension headers.
3641			 */
3642			KASSERT(ip6->ip6_nxt == IPPROTO_TCP, ("%s: CSUM_TSO "
3643			    "with ip6_nxt != TCP: %u", __func__, ip6->ip6_nxt));
3644			tcp = (struct tcphdr *)(ip6 + 1);
3645			ctrl |= F_LSO_IPV6;
3646			ctrl |= V_LSO_IPHDR_LEN(sizeof(*ip6) >> 2) |
3647			    V_LSO_TCPHDR_LEN(tcp->th_off);
3648			break;
3649		}
3650#endif
3651#ifdef INET
3652		case ETHERTYPE_IP:
3653		{
3654			struct ip *ip = l3hdr;
3655
3656			tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
3657			ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
3658			    V_LSO_TCPHDR_LEN(tcp->th_off);
3659			break;
3660		}
3661#endif
3662		default:
3663			panic("%s: CSUM_TSO but no supported IP version "
3664			    "(0x%04x)", __func__, eh_type);
3665		}
3666
3667		lso->lso_ctrl = htobe32(ctrl);
3668		lso->ipid_ofst = htobe16(0);
3669		lso->mss = htobe16(m->m_pkthdr.tso_segsz);
3670		lso->seqno_offset = htobe32(0);
3671		lso->len = htobe32(pktlen);
3672
3673		cpl = (void *)(lso + 1);
3674
3675		txq->tso_wrs++;
3676	} else
3677		cpl = (void *)(wr + 1);
3678
3679	/* Checksum offload */
3680	ctrl1 = 0;
3681	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3682		ctrl1 |= F_TXPKT_IPCSUM_DIS;
3683	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3684	    CSUM_TCP_IPV6 | CSUM_TSO)))
3685		ctrl1 |= F_TXPKT_L4CSUM_DIS;
3686	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3687	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3688		txq->txcsum++;	/* some hardware assistance provided */
3689
3690	/* VLAN tag insertion */
3691	if (m->m_flags & M_VLANTAG) {
3692		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3693		txq->vlan_insertion++;
3694	}
3695
3696	/* CPL header */
3697	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3698	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3699	cpl->pack = 0;
3700	cpl->len = htobe16(pktlen);
3701	cpl->ctrl1 = htobe64(ctrl1);
3702
3703	/* Software descriptor */
3704	txsd = &txq->sdesc[eq->pidx];
3705	txsd->desc_used = ndesc;
3706
3707	eq->pending += ndesc;
3708	eq->avail -= ndesc;
3709	eq->pidx += ndesc;
3710	if (eq->pidx >= eq->cap)
3711		eq->pidx -= eq->cap;
3712
3713	/* SGL */
3714	dst = (void *)(cpl + 1);
3715	if (sgl->nsegs > 0) {
3716		txsd->credits = 1;
3717		txq->sgl_wrs++;
3718		write_sgl_to_txd(eq, sgl, &dst);
3719	} else {
3720		txsd->credits = 0;
3721		txq->imm_wrs++;
3722		for (; m; m = m->m_next) {
3723			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
3724#ifdef INVARIANTS
3725			pktlen -= m->m_len;
3726#endif
3727		}
3728#ifdef INVARIANTS
3729		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
3730#endif
3731
3732	}
3733
3734	txq->txpkt_wrs++;
3735	return (0);
3736}
3737
3738/*
3739 * Returns 0 to indicate that m has been accepted into a coalesced tx work
3740 * request.  It has either been folded into txpkts or txpkts was flushed and m
3741 * has started a new coalesced work request (as the first frame in a fresh
3742 * txpkts).
3743 *
3744 * Returns non-zero to indicate a failure - caller is responsible for
3745 * transmitting m, if there was anything in txpkts it has been flushed.
3746 */
3747static int
3748add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
3749    struct mbuf *m, struct sgl *sgl)
3750{
3751	struct sge_eq *eq = &txq->eq;
3752	int can_coalesce;
3753	struct tx_sdesc *txsd;
3754	int flits;
3755
3756	TXQ_LOCK_ASSERT_OWNED(txq);
3757
3758	KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__));
3759
3760	if (txpkts->npkt > 0) {
3761		flits = TXPKTS_PKT_HDR + sgl->nflits;
3762		can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3763		    txpkts->nflits + flits <= TX_WR_FLITS &&
3764		    txpkts->nflits + flits <= eq->avail * 8 &&
3765		    txpkts->plen + m->m_pkthdr.len < 65536;
3766
3767		if (can_coalesce) {
3768			txpkts->npkt++;
3769			txpkts->nflits += flits;
3770			txpkts->plen += m->m_pkthdr.len;
3771
3772			txsd = &txq->sdesc[eq->pidx];
3773			txsd->credits++;
3774
3775			return (0);
3776		}
3777
3778		/*
3779		 * Couldn't coalesce m into txpkts.  The first order of business
3780		 * is to send txpkts on its way.  Then we'll revisit m.
3781		 */
3782		write_txpkts_wr(txq, txpkts);
3783	}
3784
3785	/*
3786	 * Check if we can start a new coalesced tx work request with m as
3787	 * the first packet in it.
3788	 */
3789
3790	KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
3791
3792	flits = TXPKTS_WR_HDR + sgl->nflits;
3793	can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3794	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
3795
3796	if (can_coalesce == 0)
3797		return (EINVAL);
3798
3799	/*
3800	 * Start a fresh coalesced tx WR with m as the first frame in it.
3801	 */
3802	txpkts->npkt = 1;
3803	txpkts->nflits = flits;
3804	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
3805	txpkts->plen = m->m_pkthdr.len;
3806
3807	txsd = &txq->sdesc[eq->pidx];
3808	txsd->credits = 1;
3809
3810	return (0);
3811}
3812
3813/*
3814 * Note that write_txpkts_wr can never run out of hardware descriptors (but
3815 * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
3816 * coalescing only if sufficient hardware descriptors are available.
3817 */
3818static void
3819write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
3820{
3821	struct sge_eq *eq = &txq->eq;
3822	struct fw_eth_tx_pkts_wr *wr;
3823	struct tx_sdesc *txsd;
3824	uint32_t ctrl;
3825	int ndesc;
3826
3827	TXQ_LOCK_ASSERT_OWNED(txq);
3828
3829	ndesc = howmany(txpkts->nflits, 8);
3830
3831	wr = (void *)&eq->desc[eq->pidx];
3832	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
3833	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
3834	if (eq->avail == ndesc) {
3835		if (!(eq->flags & EQ_CRFLUSHED)) {
3836			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3837			eq->flags |= EQ_CRFLUSHED;
3838		}
3839		eq->flags |= EQ_STALLED;
3840	}
3841	wr->equiq_to_len16 = htobe32(ctrl);
3842	wr->plen = htobe16(txpkts->plen);
3843	wr->npkt = txpkts->npkt;
3844	wr->r3 = wr->type = 0;
3845
3846	/* Everything else already written */
3847
3848	txsd = &txq->sdesc[eq->pidx];
3849	txsd->desc_used = ndesc;
3850
3851	KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__));
3852
3853	eq->pending += ndesc;
3854	eq->avail -= ndesc;
3855	eq->pidx += ndesc;
3856	if (eq->pidx >= eq->cap)
3857		eq->pidx -= eq->cap;
3858
3859	txq->txpkts_pkts += txpkts->npkt;
3860	txq->txpkts_wrs++;
3861	txpkts->npkt = 0;	/* emptied */
3862}
3863
3864static inline void
3865write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
3866    struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
3867{
3868	struct ulp_txpkt *ulpmc;
3869	struct ulptx_idata *ulpsc;
3870	struct cpl_tx_pkt_core *cpl;
3871	struct sge_eq *eq = &txq->eq;
3872	uintptr_t flitp, start, end;
3873	uint64_t ctrl;
3874	caddr_t dst;
3875
3876	KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
3877
3878	start = (uintptr_t)eq->desc;
3879	end = (uintptr_t)eq->spg;
3880
3881	/* Checksum offload */
3882	ctrl = 0;
3883	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3884		ctrl |= F_TXPKT_IPCSUM_DIS;
3885	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3886	    CSUM_TCP_IPV6 | CSUM_TSO)))
3887		ctrl |= F_TXPKT_L4CSUM_DIS;
3888	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3889	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3890		txq->txcsum++;	/* some hardware assistance provided */
3891
3892	/* VLAN tag insertion */
3893	if (m->m_flags & M_VLANTAG) {
3894		ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3895		txq->vlan_insertion++;
3896	}
3897
3898	/*
3899	 * The previous packet's SGL must have ended at a 16 byte boundary (this
3900	 * is required by the firmware/hardware).  It follows that flitp cannot
3901	 * wrap around between the ULPTX master command and ULPTX subcommand (8
3902	 * bytes each), and that it can not wrap around in the middle of the
3903	 * cpl_tx_pkt_core either.
3904	 */
3905	flitp = (uintptr_t)txpkts->flitp;
3906	KASSERT((flitp & 0xf) == 0,
3907	    ("%s: last SGL did not end at 16 byte boundary: %p",
3908	    __func__, txpkts->flitp));
3909
3910	/* ULP master command */
3911	ulpmc = (void *)flitp;
3912	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) |
3913	    V_ULP_TXPKT_FID(eq->iqid));
3914	ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
3915	    sizeof(*cpl) + 8 * sgl->nflits, 16));
3916
3917	/* ULP subcommand */
3918	ulpsc = (void *)(ulpmc + 1);
3919	ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
3920	    F_ULP_TX_SC_MORE);
3921	ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
3922
3923	flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
3924	if (flitp == end)
3925		flitp = start;
3926
3927	/* CPL_TX_PKT */
3928	cpl = (void *)flitp;
3929	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3930	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3931	cpl->pack = 0;
3932	cpl->len = htobe16(m->m_pkthdr.len);
3933	cpl->ctrl1 = htobe64(ctrl);
3934
3935	flitp += sizeof(*cpl);
3936	if (flitp == end)
3937		flitp = start;
3938
3939	/* SGL for this frame */
3940	dst = (caddr_t)flitp;
3941	txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
3942	txpkts->flitp = (void *)dst;
3943
3944	KASSERT(((uintptr_t)dst & 0xf) == 0,
3945	    ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
3946}
3947
3948/*
3949 * If the SGL ends on an address that is not 16 byte aligned, this function will
3950 * add a 0 filled flit at the end.  It returns 1 in that case.
3951 */
3952static int
3953write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
3954{
3955	__be64 *flitp, *end;
3956	struct ulptx_sgl *usgl;
3957	bus_dma_segment_t *seg;
3958	int i, padded;
3959
3960	KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
3961	    ("%s: bad SGL - nsegs=%d, nflits=%d",
3962	    __func__, sgl->nsegs, sgl->nflits));
3963
3964	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
3965	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
3966
3967	flitp = (__be64 *)(*to);
3968	end = flitp + sgl->nflits;
3969	seg = &sgl->seg[0];
3970	usgl = (void *)flitp;
3971
3972	/*
3973	 * We start at a 16 byte boundary somewhere inside the tx descriptor
3974	 * ring, so we're at least 16 bytes away from the status page.  There is
3975	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
3976	 */
3977
3978	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
3979	    V_ULPTX_NSGE(sgl->nsegs));
3980	usgl->len0 = htobe32(seg->ds_len);
3981	usgl->addr0 = htobe64(seg->ds_addr);
3982	seg++;
3983
3984	if ((uintptr_t)end <= (uintptr_t)eq->spg) {
3985
3986		/* Won't wrap around at all */
3987
3988		for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
3989			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
3990			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
3991		}
3992		if (i & 1)
3993			usgl->sge[i / 2].len[1] = htobe32(0);
3994	} else {
3995
3996		/* Will wrap somewhere in the rest of the SGL */
3997
3998		/* 2 flits already written, write the rest flit by flit */
3999		flitp = (void *)(usgl + 1);
4000		for (i = 0; i < sgl->nflits - 2; i++) {
4001			if ((uintptr_t)flitp == (uintptr_t)eq->spg)
4002				flitp = (void *)eq->desc;
4003			*flitp++ = get_flit(seg, sgl->nsegs - 1, i);
4004		}
4005		end = flitp;
4006	}
4007
4008	if ((uintptr_t)end & 0xf) {
4009		*(uint64_t *)end = 0;
4010		end++;
4011		padded = 1;
4012	} else
4013		padded = 0;
4014
4015	if ((uintptr_t)end == (uintptr_t)eq->spg)
4016		*to = (void *)eq->desc;
4017	else
4018		*to = (void *)end;
4019
4020	return (padded);
4021}
4022
4023static inline void
4024copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
4025{
4026	if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)eq->spg)) {
4027		bcopy(from, *to, len);
4028		(*to) += len;
4029	} else {
4030		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
4031
4032		bcopy(from, *to, portion);
4033		from += portion;
4034		portion = len - portion;	/* remaining */
4035		bcopy(from, (void *)eq->desc, portion);
4036		(*to) = (caddr_t)eq->desc + portion;
4037	}
4038}
4039
4040static inline void
4041ring_eq_db(struct adapter *sc, struct sge_eq *eq)
4042{
4043	u_int db, pending;
4044
4045	db = eq->doorbells;
4046	pending = eq->pending;
4047	if (pending > 1)
4048		clrbit(&db, DOORBELL_WCWR);
4049	eq->pending = 0;
4050	wmb();
4051
4052	switch (ffs(db) - 1) {
4053	case DOORBELL_UDB:
4054		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
4055		return;
4056
4057	case DOORBELL_WCWR: {
4058		volatile uint64_t *dst, *src;
4059		int i;
4060
4061		/*
4062		 * Queues whose 128B doorbell segment fits in the page do not
4063		 * use relative qid (udb_qid is always 0).  Only queues with
4064		 * doorbell segments can do WCWR.
4065		 */
4066		KASSERT(eq->udb_qid == 0 && pending == 1,
4067		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
4068		    __func__, eq->doorbells, pending, eq->pidx, eq));
4069
4070		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
4071		    UDBS_DB_OFFSET);
4072		i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
4073		src = (void *)&eq->desc[i];
4074		while (src != (void *)&eq->desc[i + 1])
4075			*dst++ = *src++;
4076		wmb();
4077		return;
4078	}
4079
4080	case DOORBELL_UDBWC:
4081		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
4082		wmb();
4083		return;
4084
4085	case DOORBELL_KDB:
4086		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
4087		    V_QID(eq->cntxt_id) | V_PIDX(pending));
4088		return;
4089	}
4090}
4091
4092static inline int
4093reclaimable(struct sge_eq *eq)
4094{
4095	unsigned int cidx;
4096
4097	cidx = eq->spg->cidx;	/* stable snapshot */
4098	cidx = be16toh(cidx);
4099
4100	if (cidx >= eq->cidx)
4101		return (cidx - eq->cidx);
4102	else
4103		return (cidx + eq->cap - eq->cidx);
4104}
4105
4106/*
4107 * There are "can_reclaim" tx descriptors ready to be reclaimed.  Reclaim as
4108 * many as possible but stop when there are around "n" mbufs to free.
4109 *
4110 * The actual number reclaimed is provided as the return value.
4111 */
4112static int
4113reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n)
4114{
4115	struct tx_sdesc *txsd;
4116	struct tx_maps *txmaps;
4117	struct tx_map *txm;
4118	unsigned int reclaimed, maps;
4119	struct sge_eq *eq = &txq->eq;
4120
4121	TXQ_LOCK_ASSERT_OWNED(txq);
4122
4123	if (can_reclaim == 0)
4124		can_reclaim = reclaimable(eq);
4125
4126	maps = reclaimed = 0;
4127	while (can_reclaim && maps < n) {
4128		int ndesc;
4129
4130		txsd = &txq->sdesc[eq->cidx];
4131		ndesc = txsd->desc_used;
4132
4133		/* Firmware doesn't return "partial" credits. */
4134		KASSERT(can_reclaim >= ndesc,
4135		    ("%s: unexpected number of credits: %d, %d",
4136		    __func__, can_reclaim, ndesc));
4137
4138		maps += txsd->credits;
4139
4140		reclaimed += ndesc;
4141		can_reclaim -= ndesc;
4142
4143		eq->cidx += ndesc;
4144		if (__predict_false(eq->cidx >= eq->cap))
4145			eq->cidx -= eq->cap;
4146	}
4147
4148	txmaps = &txq->txmaps;
4149	txm = &txmaps->maps[txmaps->map_cidx];
4150	if (maps)
4151		prefetch(txm->m);
4152
4153	eq->avail += reclaimed;
4154	KASSERT(eq->avail < eq->cap,	/* avail tops out at (cap - 1) */
4155	    ("%s: too many descriptors available", __func__));
4156
4157	txmaps->map_avail += maps;
4158	KASSERT(txmaps->map_avail <= txmaps->map_total,
4159	    ("%s: too many maps available", __func__));
4160
4161	while (maps--) {
4162		struct tx_map *next;
4163
4164		next = txm + 1;
4165		if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total))
4166			next = txmaps->maps;
4167		prefetch(next->m);
4168
4169		bus_dmamap_unload(txq->tx_tag, txm->map);
4170		m_freem(txm->m);
4171		txm->m = NULL;
4172
4173		txm = next;
4174		if (__predict_false(++txmaps->map_cidx == txmaps->map_total))
4175			txmaps->map_cidx = 0;
4176	}
4177
4178	return (reclaimed);
4179}
4180
4181static void
4182write_eqflush_wr(struct sge_eq *eq)
4183{
4184	struct fw_eq_flush_wr *wr;
4185
4186	EQ_LOCK_ASSERT_OWNED(eq);
4187	KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
4188	KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__));
4189
4190	wr = (void *)&eq->desc[eq->pidx];
4191	bzero(wr, sizeof(*wr));
4192	wr->opcode = FW_EQ_FLUSH_WR;
4193	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
4194	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
4195
4196	eq->flags |= (EQ_CRFLUSHED | EQ_STALLED);
4197	eq->pending++;
4198	eq->avail--;
4199	if (++eq->pidx == eq->cap)
4200		eq->pidx = 0;
4201}
4202
4203static __be64
4204get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
4205{
4206	int i = (idx / 3) * 2;
4207
4208	switch (idx % 3) {
4209	case 0: {
4210		__be64 rc;
4211
4212		rc = htobe32(sgl[i].ds_len);
4213		if (i + 1 < nsegs)
4214			rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
4215
4216		return (rc);
4217	}
4218	case 1:
4219		return htobe64(sgl[i].ds_addr);
4220	case 2:
4221		return htobe64(sgl[i + 1].ds_addr);
4222	}
4223
4224	return (0);
4225}
4226
4227static void
4228find_best_refill_source(struct adapter *sc, struct sge_fl *fl, int maxp)
4229{
4230	int8_t zidx, hwidx, idx;
4231	uint16_t region1, region3;
4232	int spare, spare_needed, n;
4233	struct sw_zone_info *swz;
4234	struct hw_buf_info *hwb, *hwb_list = &sc->sge.hw_buf_info[0];
4235
4236	/*
4237	 * Buffer Packing: Look for PAGE_SIZE or larger zone which has a bufsize
4238	 * large enough for the max payload and cluster metadata.  Otherwise
4239	 * settle for the largest bufsize that leaves enough room in the cluster
4240	 * for metadata.
4241	 *
4242	 * Without buffer packing: Look for the smallest zone which has a
4243	 * bufsize large enough for the max payload.  Settle for the largest
4244	 * bufsize available if there's nothing big enough for max payload.
4245	 */
4246	spare_needed = fl->flags & FL_BUF_PACKING ? CL_METADATA_SIZE : 0;
4247	swz = &sc->sge.sw_zone_info[0];
4248	hwidx = -1;
4249	for (zidx = 0; zidx < SW_ZONE_SIZES; zidx++, swz++) {
4250		if (swz->size > largest_rx_cluster) {
4251			if (__predict_true(hwidx != -1))
4252				break;
4253
4254			/*
4255			 * This is a misconfiguration.  largest_rx_cluster is
4256			 * preventing us from finding a refill source.  See
4257			 * dev.t5nex.<n>.buffer_sizes to figure out why.
4258			 */
4259			device_printf(sc->dev, "largest_rx_cluster=%u leaves no"
4260			    " refill source for fl %p (dma %u).  Ignored.\n",
4261			    largest_rx_cluster, fl, maxp);
4262		}
4263		for (idx = swz->head_hwidx; idx != -1; idx = hwb->next) {
4264			hwb = &hwb_list[idx];
4265			spare = swz->size - hwb->size;
4266			if (spare < spare_needed)
4267				continue;
4268
4269			hwidx = idx;		/* best option so far */
4270			if (hwb->size >= maxp) {
4271
4272				if ((fl->flags & FL_BUF_PACKING) == 0)
4273					goto done; /* stop looking (not packing) */
4274
4275				if (swz->size >= safest_rx_cluster)
4276					goto done; /* stop looking (packing) */
4277			}
4278			break;		/* keep looking, next zone */
4279		}
4280	}
4281done:
4282	/* A usable hwidx has been located. */
4283	MPASS(hwidx != -1);
4284	hwb = &hwb_list[hwidx];
4285	zidx = hwb->zidx;
4286	swz = &sc->sge.sw_zone_info[zidx];
4287	region1 = 0;
4288	region3 = swz->size - hwb->size;
4289
4290	/*
4291	 * Stay within this zone and see if there is a better match when mbuf
4292	 * inlining is allowed.  Remember that the hwidx's are sorted in
4293	 * decreasing order of size (so in increasing order of spare area).
4294	 */
4295	for (idx = hwidx; idx != -1; idx = hwb->next) {
4296		hwb = &hwb_list[idx];
4297		spare = swz->size - hwb->size;
4298
4299		if (allow_mbufs_in_cluster == 0 || hwb->size < maxp)
4300			break;
4301		if (spare < CL_METADATA_SIZE + MSIZE)
4302			continue;
4303		n = (spare - CL_METADATA_SIZE) / MSIZE;
4304		if (n > howmany(hwb->size, maxp))
4305			break;
4306
4307		hwidx = idx;
4308		if (fl->flags & FL_BUF_PACKING) {
4309			region1 = n * MSIZE;
4310			region3 = spare - region1;
4311		} else {
4312			region1 = MSIZE;
4313			region3 = spare - region1;
4314			break;
4315		}
4316	}
4317
4318	KASSERT(zidx >= 0 && zidx < SW_ZONE_SIZES,
4319	    ("%s: bad zone %d for fl %p, maxp %d", __func__, zidx, fl, maxp));
4320	KASSERT(hwidx >= 0 && hwidx <= SGE_FLBUF_SIZES,
4321	    ("%s: bad hwidx %d for fl %p, maxp %d", __func__, hwidx, fl, maxp));
4322	KASSERT(region1 + sc->sge.hw_buf_info[hwidx].size + region3 ==
4323	    sc->sge.sw_zone_info[zidx].size,
4324	    ("%s: bad buffer layout for fl %p, maxp %d. "
4325		"cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4326		sc->sge.sw_zone_info[zidx].size, region1,
4327		sc->sge.hw_buf_info[hwidx].size, region3));
4328	if (fl->flags & FL_BUF_PACKING || region1 > 0) {
4329		KASSERT(region3 >= CL_METADATA_SIZE,
4330		    ("%s: no room for metadata.  fl %p, maxp %d; "
4331		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4332		    sc->sge.sw_zone_info[zidx].size, region1,
4333		    sc->sge.hw_buf_info[hwidx].size, region3));
4334		KASSERT(region1 % MSIZE == 0,
4335		    ("%s: bad mbuf region for fl %p, maxp %d. "
4336		    "cl %d; r1 %d, payload %d, r3 %d", __func__, fl, maxp,
4337		    sc->sge.sw_zone_info[zidx].size, region1,
4338		    sc->sge.hw_buf_info[hwidx].size, region3));
4339	}
4340
4341	fl->cll_def.zidx = zidx;
4342	fl->cll_def.hwidx = hwidx;
4343	fl->cll_def.region1 = region1;
4344	fl->cll_def.region3 = region3;
4345}
4346
4347static void
4348find_safe_refill_source(struct adapter *sc, struct sge_fl *fl)
4349{
4350	struct sge *s = &sc->sge;
4351	struct hw_buf_info *hwb;
4352	struct sw_zone_info *swz;
4353	int spare;
4354	int8_t hwidx;
4355
4356	if (fl->flags & FL_BUF_PACKING)
4357		hwidx = s->safe_hwidx2;	/* with room for metadata */
4358	else if (allow_mbufs_in_cluster && s->safe_hwidx2 != -1) {
4359		hwidx = s->safe_hwidx2;
4360		hwb = &s->hw_buf_info[hwidx];
4361		swz = &s->sw_zone_info[hwb->zidx];
4362		spare = swz->size - hwb->size;
4363
4364		/* no good if there isn't room for an mbuf as well */
4365		if (spare < CL_METADATA_SIZE + MSIZE)
4366			hwidx = s->safe_hwidx1;
4367	} else
4368		hwidx = s->safe_hwidx1;
4369
4370	if (hwidx == -1) {
4371		/* No fallback source */
4372		fl->cll_alt.hwidx = -1;
4373		fl->cll_alt.zidx = -1;
4374
4375		return;
4376	}
4377
4378	hwb = &s->hw_buf_info[hwidx];
4379	swz = &s->sw_zone_info[hwb->zidx];
4380	spare = swz->size - hwb->size;
4381	fl->cll_alt.hwidx = hwidx;
4382	fl->cll_alt.zidx = hwb->zidx;
4383	if (allow_mbufs_in_cluster)
4384		fl->cll_alt.region1 = ((spare - CL_METADATA_SIZE) / MSIZE) * MSIZE;
4385	else
4386		fl->cll_alt.region1 = 0;
4387	fl->cll_alt.region3 = spare - fl->cll_alt.region1;
4388}
4389
4390static void
4391add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
4392{
4393	mtx_lock(&sc->sfl_lock);
4394	FL_LOCK(fl);
4395	if ((fl->flags & FL_DOOMED) == 0) {
4396		fl->flags |= FL_STARVING;
4397		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
4398		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
4399	}
4400	FL_UNLOCK(fl);
4401	mtx_unlock(&sc->sfl_lock);
4402}
4403
4404static int
4405handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
4406    struct mbuf *m)
4407{
4408	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
4409	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
4410	struct adapter *sc = iq->adapter;
4411	struct sge *s = &sc->sge;
4412	struct sge_eq *eq;
4413
4414	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4415	    rss->opcode));
4416
4417	eq = s->eqmap[qid - s->eq_start];
4418	EQ_LOCK(eq);
4419	KASSERT(eq->flags & EQ_CRFLUSHED,
4420	    ("%s: unsolicited egress update", __func__));
4421	eq->flags &= ~EQ_CRFLUSHED;
4422	eq->egr_update++;
4423
4424	if (__predict_false(eq->flags & EQ_DOOMED))
4425		wakeup_one(eq);
4426	else if (eq->flags & EQ_STALLED && can_resume_tx(eq))
4427		taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task);
4428	EQ_UNLOCK(eq);
4429
4430	return (0);
4431}
4432
4433/* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
4434CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
4435    offsetof(struct cpl_fw6_msg, data));
4436
4437static int
4438handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
4439{
4440	struct adapter *sc = iq->adapter;
4441	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
4442
4443	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
4444	    rss->opcode));
4445
4446	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
4447		const struct rss_header *rss2;
4448
4449		rss2 = (const struct rss_header *)&cpl->data[0];
4450		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
4451	}
4452
4453	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
4454}
4455
4456static int
4457sysctl_uint16(SYSCTL_HANDLER_ARGS)
4458{
4459	uint16_t *id = arg1;
4460	int i = *id;
4461
4462	return sysctl_handle_int(oidp, &i, 0, req);
4463}
4464
4465static int
4466sysctl_bufsizes(SYSCTL_HANDLER_ARGS)
4467{
4468	struct sge *s = arg1;
4469	struct hw_buf_info *hwb = &s->hw_buf_info[0];
4470	struct sw_zone_info *swz = &s->sw_zone_info[0];
4471	int i, rc;
4472	struct sbuf sb;
4473	char c;
4474
4475	sbuf_new(&sb, NULL, 32, SBUF_AUTOEXTEND);
4476	for (i = 0; i < SGE_FLBUF_SIZES; i++, hwb++) {
4477		if (hwb->zidx >= 0 && swz[hwb->zidx].size <= largest_rx_cluster)
4478			c = '*';
4479		else
4480			c = '\0';
4481
4482		sbuf_printf(&sb, "%u%c ", hwb->size, c);
4483	}
4484	sbuf_trim(&sb);
4485	sbuf_finish(&sb);
4486	rc = sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
4487	sbuf_delete(&sb);
4488	return (rc);
4489}
4490