t4_sge.c revision 248925
1/*-
2 * Copyright (c) 2011 Chelsio Communications, Inc.
3 * All rights reserved.
4 * Written by: Navdeep Parhar <np@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/cxgbe/t4_sge.c 248925 2013-03-30 02:26:20Z np $");
30
31#include "opt_inet.h"
32#include "opt_inet6.h"
33
34#include <sys/types.h>
35#include <sys/mbuf.h>
36#include <sys/socket.h>
37#include <sys/kernel.h>
38#include <sys/kdb.h>
39#include <sys/malloc.h>
40#include <sys/queue.h>
41#include <sys/taskqueue.h>
42#include <sys/sysctl.h>
43#include <sys/smp.h>
44#include <net/bpf.h>
45#include <net/ethernet.h>
46#include <net/if.h>
47#include <net/if_vlan_var.h>
48#include <netinet/in.h>
49#include <netinet/ip.h>
50#include <netinet/ip6.h>
51#include <netinet/tcp.h>
52
53#include "common/common.h"
54#include "common/t4_regs.h"
55#include "common/t4_regs_values.h"
56#include "common/t4_msg.h"
57
58struct fl_buf_info {
59	int size;
60	int type;
61	uma_zone_t zone;
62};
63
64/* Filled up by t4_sge_modload */
65static struct fl_buf_info fl_buf_info[FL_BUF_SIZES];
66
67#define FL_BUF_SIZE(x)	(fl_buf_info[x].size)
68#define FL_BUF_TYPE(x)	(fl_buf_info[x].type)
69#define FL_BUF_ZONE(x)	(fl_buf_info[x].zone)
70
71#ifdef T4_PKT_TIMESTAMP
72#define RX_COPY_THRESHOLD (MINCLSIZE - 8)
73#else
74#define RX_COPY_THRESHOLD MINCLSIZE
75#endif
76
77/*
78 * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
79 * 0-7 are valid values.
80 */
81static int fl_pktshift = 2;
82TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
83
84/*
85 * Pad ethernet payload up to this boundary.
86 * -1: driver should figure out a good value.
87 *  Any power of 2, from 32 to 4096 (both inclusive) is a valid value.
88 */
89static int fl_pad = -1;
90TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
91
92/*
93 * Status page length.
94 * -1: driver should figure out a good value.
95 *  64 or 128 are the only other valid values.
96 */
97static int spg_len = -1;
98TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
99
100/*
101 * Congestion drops.
102 * -1: no congestion feedback (not recommended).
103 *  0: backpressure the channel instead of dropping packets right away.
104 *  1: no backpressure, drop packets for the congested queue immediately.
105 */
106static int cong_drop = 0;
107TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
108
109/* Used to track coalesced tx work request */
110struct txpkts {
111	uint64_t *flitp;	/* ptr to flit where next pkt should start */
112	uint8_t npkt;		/* # of packets in this work request */
113	uint8_t nflits;		/* # of flits used by this work request */
114	uint16_t plen;		/* total payload (sum of all packets) */
115};
116
117/* A packet's SGL.  This + m_pkthdr has all info needed for tx */
118struct sgl {
119	int nsegs;		/* # of segments in the SGL, 0 means imm. tx */
120	int nflits;		/* # of flits needed for the SGL */
121	bus_dma_segment_t seg[TX_SGL_SEGS];
122};
123
124static int service_iq(struct sge_iq *, int);
125static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t,
126    int *);
127static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
128static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
129    int);
130static inline void init_fl(struct sge_fl *, int, int, char *);
131static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t,
132    char *);
133static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
134    bus_addr_t *, void **);
135static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
136    void *);
137static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
138    int, int);
139static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
140static int alloc_fwq(struct adapter *);
141static int free_fwq(struct adapter *);
142static int alloc_mgmtq(struct adapter *);
143static int free_mgmtq(struct adapter *);
144static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int,
145    struct sysctl_oid *);
146static int free_rxq(struct port_info *, struct sge_rxq *);
147#ifdef TCP_OFFLOAD
148static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int,
149    struct sysctl_oid *);
150static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *);
151#endif
152static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
153static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
154#ifdef TCP_OFFLOAD
155static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
156#endif
157static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *);
158static int free_eq(struct adapter *, struct sge_eq *);
159static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *,
160    struct sysctl_oid *);
161static int free_wrq(struct adapter *, struct sge_wrq *);
162static int alloc_txq(struct port_info *, struct sge_txq *, int,
163    struct sysctl_oid *);
164static int free_txq(struct port_info *, struct sge_txq *);
165static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
166static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **);
167static inline void iq_next(struct sge_iq *);
168static inline void ring_fl_db(struct adapter *, struct sge_fl *);
169static int refill_fl(struct adapter *, struct sge_fl *, int);
170static void refill_sfl(void *);
171static int alloc_fl_sdesc(struct sge_fl *);
172static void free_fl_sdesc(struct sge_fl *);
173static void set_fl_tag_idx(struct sge_fl *, int);
174static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
175
176static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
177static int free_pkt_sgl(struct sge_txq *, struct sgl *);
178static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
179    struct sgl *);
180static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
181    struct mbuf *, struct sgl *);
182static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
183static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
184    struct txpkts *, struct mbuf *, struct sgl *);
185static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
186static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
187static inline void ring_eq_db(struct adapter *, struct sge_eq *);
188static inline int reclaimable(struct sge_eq *);
189static int reclaim_tx_descs(struct sge_txq *, int, int);
190static void write_eqflush_wr(struct sge_eq *);
191static __be64 get_flit(bus_dma_segment_t *, int, int);
192static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
193    struct mbuf *);
194static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
195    struct mbuf *);
196
197static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
198
199#if defined(__i386__) || defined(__amd64__)
200extern u_int cpu_clflush_line_size;
201#endif
202
203/*
204 * Called on MOD_LOAD.  Fills up fl_buf_info[] and validates/calculates the SGE
205 * tunables.
206 */
207void
208t4_sge_modload(void)
209{
210	int i;
211	int bufsize[FL_BUF_SIZES] = {
212		MCLBYTES,
213#if MJUMPAGESIZE != MCLBYTES
214		MJUMPAGESIZE,
215#endif
216		MJUM9BYTES,
217		MJUM16BYTES
218	};
219
220	for (i = 0; i < FL_BUF_SIZES; i++) {
221		FL_BUF_SIZE(i) = bufsize[i];
222		FL_BUF_TYPE(i) = m_gettype(bufsize[i]);
223		FL_BUF_ZONE(i) = m_getzone(bufsize[i]);
224	}
225
226	if (fl_pktshift < 0 || fl_pktshift > 7) {
227		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
228		    " using 2 instead.\n", fl_pktshift);
229		fl_pktshift = 2;
230	}
231
232	if (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad)) {
233		int pad;
234
235#if defined(__i386__) || defined(__amd64__)
236		pad = max(cpu_clflush_line_size, 32);
237#else
238		pad = max(CACHE_LINE_SIZE, 32);
239#endif
240		pad = min(pad, 4096);
241
242		if (fl_pad != -1) {
243			printf("Invalid hw.cxgbe.fl_pad value (%d),"
244			    " using %d instead.\n", fl_pad, pad);
245		}
246		fl_pad = pad;
247	}
248
249	if (spg_len != 64 && spg_len != 128) {
250		int len;
251
252#if defined(__i386__) || defined(__amd64__)
253		len = cpu_clflush_line_size > 64 ? 128 : 64;
254#else
255		len = 64;
256#endif
257		if (spg_len != -1) {
258			printf("Invalid hw.cxgbe.spg_len value (%d),"
259			    " using %d instead.\n", spg_len, len);
260		}
261		spg_len = len;
262	}
263
264	if (cong_drop < -1 || cong_drop > 1) {
265		printf("Invalid hw.cxgbe.cong_drop value (%d),"
266		    " using 0 instead.\n", cong_drop);
267		cong_drop = 0;
268	}
269}
270
271void
272t4_init_sge_cpl_handlers(struct adapter *sc)
273{
274
275	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
276	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
277	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
278	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
279
280	t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
281}
282
283void
284t4_tweak_chip_settings(struct adapter *sc)
285{
286	int i;
287	uint32_t v, m;
288	int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
289	int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
290	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
291
292	KASSERT(sc->flags & MASTER_PF,
293	    ("%s: trying to change chip settings when not master.", __func__));
294
295	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE |
296	    V_INGPADBOUNDARY(M_INGPADBOUNDARY) | F_EGRSTATUSPAGESIZE;
297	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
298	    V_INGPADBOUNDARY(ilog2(fl_pad) - 5) |
299	    V_EGRSTATUSPAGESIZE(spg_len == 128);
300	t4_set_reg_field(sc, A_SGE_CONTROL, m, v);
301
302	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
303	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
304	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
305	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
306	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
307	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
308	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
309	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
310	t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, v);
311
312	for (i = 0; i < FL_BUF_SIZES; i++) {
313		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
314		    FL_BUF_SIZE(i));
315	}
316
317	v = V_THRESHOLD_0(intr_pktcount[0]) | V_THRESHOLD_1(intr_pktcount[1]) |
318	    V_THRESHOLD_2(intr_pktcount[2]) | V_THRESHOLD_3(intr_pktcount[3]);
319	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD, v);
320
321	/* adap->params.vpd.cclk must be set up before this */
322	v = V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
323	    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1]));
324	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1, v);
325	v = V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
326	    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3]));
327	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3, v);
328	v = V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
329	    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5]));
330	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5, v);
331
332	if (cong_drop == 0) {
333		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
334		    F_TUNNELCNGDROP3;
335		t4_set_reg_field(sc, A_TP_PARA_REG3, m, 0);
336	}
337
338	/* 4K, 16K, 64K, 256K DDP "page sizes" */
339	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
340	t4_write_reg(sc, A_ULP_RX_TDDP_PSZ, v);
341
342	m = v = F_TDDPTAGTCB;
343	t4_set_reg_field(sc, A_ULP_RX_CTL, m, v);
344
345	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
346	    F_RESETDDPOFFSET;
347	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
348	t4_set_reg_field(sc, A_TP_PARA_REG5, m, v);
349}
350
351/*
352 * XXX: driver really should be able to deal with unexpected settings.
353 */
354int
355t4_read_chip_settings(struct adapter *sc)
356{
357	struct sge *s = &sc->sge;
358	int i, rc = 0;
359	uint32_t m, v, r;
360	uint16_t indsz = min(RX_COPY_THRESHOLD - 1, M_INDICATESIZE);
361
362	m = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE |
363	    V_INGPADBOUNDARY(M_INGPADBOUNDARY) | F_EGRSTATUSPAGESIZE;
364	v = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
365	    V_INGPADBOUNDARY(ilog2(fl_pad) - 5) |
366	    V_EGRSTATUSPAGESIZE(spg_len == 128);
367	r = t4_read_reg(sc, A_SGE_CONTROL);
368	if ((r & m) != v) {
369		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", r);
370		rc = EINVAL;
371	}
372
373	v = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
374	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
375	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
376	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
377	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
378	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
379	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
380	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
381	r = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE);
382	if (r != v) {
383		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", r);
384		rc = EINVAL;
385	}
386
387	for (i = 0; i < FL_BUF_SIZES; i++) {
388		v = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
389		if (v != FL_BUF_SIZE(i)) {
390			device_printf(sc->dev,
391			    "invalid SGE_FL_BUFFER_SIZE[%d](0x%x)\n", i, v);
392			rc = EINVAL;
393		}
394	}
395
396	r = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD);
397	s->counter_val[0] = G_THRESHOLD_0(r);
398	s->counter_val[1] = G_THRESHOLD_1(r);
399	s->counter_val[2] = G_THRESHOLD_2(r);
400	s->counter_val[3] = G_THRESHOLD_3(r);
401
402	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1);
403	s->timer_val[0] = G_TIMERVALUE0(r) / core_ticks_per_usec(sc);
404	s->timer_val[1] = G_TIMERVALUE1(r) / core_ticks_per_usec(sc);
405	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3);
406	s->timer_val[2] = G_TIMERVALUE2(r) / core_ticks_per_usec(sc);
407	s->timer_val[3] = G_TIMERVALUE3(r) / core_ticks_per_usec(sc);
408	r = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5);
409	s->timer_val[4] = G_TIMERVALUE4(r) / core_ticks_per_usec(sc);
410	s->timer_val[5] = G_TIMERVALUE5(r) / core_ticks_per_usec(sc);
411
412	if (cong_drop == 0) {
413		m = F_TUNNELCNGDROP0 | F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
414		    F_TUNNELCNGDROP3;
415		r = t4_read_reg(sc, A_TP_PARA_REG3);
416		if (r & m) {
417			device_printf(sc->dev,
418			    "invalid TP_PARA_REG3(0x%x)\n", r);
419			rc = EINVAL;
420		}
421	}
422
423	v = V_HPZ0(0) | V_HPZ1(2) | V_HPZ2(4) | V_HPZ3(6);
424	r = t4_read_reg(sc, A_ULP_RX_TDDP_PSZ);
425	if (r != v) {
426		device_printf(sc->dev, "invalid ULP_RX_TDDP_PSZ(0x%x)\n", r);
427		rc = EINVAL;
428	}
429
430	m = v = F_TDDPTAGTCB;
431	r = t4_read_reg(sc, A_ULP_RX_CTL);
432	if ((r & m) != v) {
433		device_printf(sc->dev, "invalid ULP_RX_CTL(0x%x)\n", r);
434		rc = EINVAL;
435	}
436
437	m = V_INDICATESIZE(M_INDICATESIZE) | F_REARMDDPOFFSET |
438	    F_RESETDDPOFFSET;
439	v = V_INDICATESIZE(indsz) | F_REARMDDPOFFSET | F_RESETDDPOFFSET;
440	r = t4_read_reg(sc, A_TP_PARA_REG5);
441	if ((r & m) != v) {
442		device_printf(sc->dev, "invalid TP_PARA_REG5(0x%x)\n", r);
443		rc = EINVAL;
444	}
445
446	r = t4_read_reg(sc, A_SGE_CONM_CTRL);
447	s->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
448
449	if (is_t5(sc)) {
450		r = t4_read_reg(sc, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
451		r >>= S_QUEUESPERPAGEPF0 +
452		    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * sc->pf;
453		s->s_qpp = r & M_QUEUESPERPAGEPF0;
454	}
455
456	r = t4_read_reg(sc, A_TP_TIMER_RESOLUTION);
457	sc->params.tp.tre = G_TIMERRESOLUTION(r);
458	sc->params.tp.dack_re = G_DELAYEDACKRESOLUTION(r);
459
460	t4_read_mtu_tbl(sc, sc->params.mtus, NULL);
461	t4_load_mtus(sc, sc->params.mtus, sc->params.a_wnd, sc->params.b_wnd);
462
463	t4_read_indirect(sc, A_TP_PIO_ADDR, A_TP_PIO_DATA, &sc->filter_mode, 1,
464	    A_TP_VLAN_PRI_MAP);
465
466	return (rc);
467}
468
469int
470t4_create_dma_tag(struct adapter *sc)
471{
472	int rc;
473
474	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
475	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
476	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
477	    NULL, &sc->dmat);
478	if (rc != 0) {
479		device_printf(sc->dev,
480		    "failed to create main DMA tag: %d\n", rc);
481	}
482
483	return (rc);
484}
485
486int
487t4_destroy_dma_tag(struct adapter *sc)
488{
489	if (sc->dmat)
490		bus_dma_tag_destroy(sc->dmat);
491
492	return (0);
493}
494
495/*
496 * Allocate and initialize the firmware event queue and the management queue.
497 *
498 * Returns errno on failure.  Resources allocated up to that point may still be
499 * allocated.  Caller is responsible for cleanup in case this function fails.
500 */
501int
502t4_setup_adapter_queues(struct adapter *sc)
503{
504	int rc;
505
506	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
507
508	sysctl_ctx_init(&sc->ctx);
509	sc->flags |= ADAP_SYSCTL_CTX;
510
511	/*
512	 * Firmware event queue
513	 */
514	rc = alloc_fwq(sc);
515	if (rc != 0)
516		return (rc);
517
518	/*
519	 * Management queue.  This is just a control queue that uses the fwq as
520	 * its associated iq.
521	 */
522	rc = alloc_mgmtq(sc);
523
524	return (rc);
525}
526
527/*
528 * Idempotent
529 */
530int
531t4_teardown_adapter_queues(struct adapter *sc)
532{
533
534	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
535
536	/* Do this before freeing the queue */
537	if (sc->flags & ADAP_SYSCTL_CTX) {
538		sysctl_ctx_free(&sc->ctx);
539		sc->flags &= ~ADAP_SYSCTL_CTX;
540	}
541
542	free_mgmtq(sc);
543	free_fwq(sc);
544
545	return (0);
546}
547
548static inline int
549first_vector(struct port_info *pi)
550{
551	struct adapter *sc = pi->adapter;
552	int rc = T4_EXTRA_INTR, i;
553
554	if (sc->intr_count == 1)
555		return (0);
556
557	for_each_port(sc, i) {
558		struct port_info *p = sc->port[i];
559
560		if (i == pi->port_id)
561			break;
562
563#ifdef TCP_OFFLOAD
564		if (sc->flags & INTR_DIRECT)
565			rc += p->nrxq + p->nofldrxq;
566		else
567			rc += max(p->nrxq, p->nofldrxq);
568#else
569		/*
570		 * Not compiled with offload support and intr_count > 1.  Only
571		 * NIC queues exist and they'd better be taking direct
572		 * interrupts.
573		 */
574		KASSERT(sc->flags & INTR_DIRECT,
575		    ("%s: intr_count %d, !INTR_DIRECT", __func__,
576		    sc->intr_count));
577
578		rc += p->nrxq;
579#endif
580	}
581
582	return (rc);
583}
584
585/*
586 * Given an arbitrary "index," come up with an iq that can be used by other
587 * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
588 * The iq returned is guaranteed to be something that takes direct interrupts.
589 */
590static struct sge_iq *
591port_intr_iq(struct port_info *pi, int idx)
592{
593	struct adapter *sc = pi->adapter;
594	struct sge *s = &sc->sge;
595	struct sge_iq *iq = NULL;
596
597	if (sc->intr_count == 1)
598		return (&sc->sge.fwq);
599
600#ifdef TCP_OFFLOAD
601	if (sc->flags & INTR_DIRECT) {
602		idx %= pi->nrxq + pi->nofldrxq;
603
604		if (idx >= pi->nrxq) {
605			idx -= pi->nrxq;
606			iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
607		} else
608			iq = &s->rxq[pi->first_rxq + idx].iq;
609
610	} else {
611		idx %= max(pi->nrxq, pi->nofldrxq);
612
613		if (pi->nrxq >= pi->nofldrxq)
614			iq = &s->rxq[pi->first_rxq + idx].iq;
615		else
616			iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
617	}
618#else
619	/*
620	 * Not compiled with offload support and intr_count > 1.  Only NIC
621	 * queues exist and they'd better be taking direct interrupts.
622	 */
623	KASSERT(sc->flags & INTR_DIRECT,
624	    ("%s: intr_count %d, !INTR_DIRECT", __func__, sc->intr_count));
625
626	idx %= pi->nrxq;
627	iq = &s->rxq[pi->first_rxq + idx].iq;
628#endif
629
630	KASSERT(iq->flags & IQ_INTR, ("%s: EDOOFUS", __func__));
631	return (iq);
632}
633
634static inline int
635mtu_to_bufsize(int mtu)
636{
637	int bufsize;
638
639	/* large enough for a frame even when VLAN extraction is disabled */
640	bufsize = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + mtu;
641	bufsize = roundup2(bufsize + fl_pktshift, fl_pad);
642
643	return (bufsize);
644}
645
646int
647t4_setup_port_queues(struct port_info *pi)
648{
649	int rc = 0, i, j, intr_idx, iqid;
650	struct sge_rxq *rxq;
651	struct sge_txq *txq;
652	struct sge_wrq *ctrlq;
653#ifdef TCP_OFFLOAD
654	struct sge_ofld_rxq *ofld_rxq;
655	struct sge_wrq *ofld_txq;
656	struct sysctl_oid *oid2 = NULL;
657#endif
658	char name[16];
659	struct adapter *sc = pi->adapter;
660	struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
661	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
662	int bufsize = mtu_to_bufsize(pi->ifp->if_mtu);
663
664	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq", CTLFLAG_RD,
665	    NULL, "rx queues");
666
667#ifdef TCP_OFFLOAD
668	if (is_offload(sc)) {
669		oid2 = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
670		    CTLFLAG_RD, NULL,
671		    "rx queues for offloaded TCP connections");
672	}
673#endif
674
675	/* Interrupt vector to start from (when using multiple vectors) */
676	intr_idx = first_vector(pi);
677
678	/*
679	 * First pass over all rx queues (NIC and TOE):
680	 * a) initialize iq and fl
681	 * b) allocate queue iff it will take direct interrupts.
682	 */
683	for_each_rxq(pi, i, rxq) {
684
685		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq,
686		    RX_IQ_ESIZE);
687
688		snprintf(name, sizeof(name), "%s rxq%d-fl",
689		    device_get_nameunit(pi->dev), i);
690		init_fl(&rxq->fl, pi->qsize_rxq / 8, bufsize, name);
691
692		if (sc->flags & INTR_DIRECT
693#ifdef TCP_OFFLOAD
694		    || (sc->intr_count > 1 && pi->nrxq >= pi->nofldrxq)
695#endif
696		   ) {
697			rxq->iq.flags |= IQ_INTR;
698			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
699			if (rc != 0)
700				goto done;
701			intr_idx++;
702		}
703	}
704
705#ifdef TCP_OFFLOAD
706	for_each_ofld_rxq(pi, i, ofld_rxq) {
707
708		init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
709		    pi->qsize_rxq, RX_IQ_ESIZE);
710
711		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
712		    device_get_nameunit(pi->dev), i);
713		init_fl(&ofld_rxq->fl, pi->qsize_rxq / 8, OFLD_BUF_SIZE, name);
714
715		if (sc->flags & INTR_DIRECT ||
716		    (sc->intr_count > 1 && pi->nofldrxq > pi->nrxq)) {
717			ofld_rxq->iq.flags |= IQ_INTR;
718			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2);
719			if (rc != 0)
720				goto done;
721			intr_idx++;
722		}
723	}
724#endif
725
726	/*
727	 * Second pass over all rx queues (NIC and TOE).  The queues forwarding
728	 * their interrupts are allocated now.
729	 */
730	j = 0;
731	for_each_rxq(pi, i, rxq) {
732		if (rxq->iq.flags & IQ_INTR)
733			continue;
734
735		intr_idx = port_intr_iq(pi, j)->abs_id;
736
737		rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
738		if (rc != 0)
739			goto done;
740		j++;
741	}
742
743#ifdef TCP_OFFLOAD
744	for_each_ofld_rxq(pi, i, ofld_rxq) {
745		if (ofld_rxq->iq.flags & IQ_INTR)
746			continue;
747
748		intr_idx = port_intr_iq(pi, j)->abs_id;
749
750		rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2);
751		if (rc != 0)
752			goto done;
753		j++;
754	}
755#endif
756
757	/*
758	 * Now the tx queues.  Only one pass needed.
759	 */
760	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
761	    NULL, "tx queues");
762	j = 0;
763	for_each_txq(pi, i, txq) {
764		uint16_t iqid;
765
766		iqid = port_intr_iq(pi, j)->cntxt_id;
767
768		snprintf(name, sizeof(name), "%s txq%d",
769		    device_get_nameunit(pi->dev), i);
770		init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid,
771		    name);
772
773		rc = alloc_txq(pi, txq, i, oid);
774		if (rc != 0)
775			goto done;
776		j++;
777	}
778
779#ifdef TCP_OFFLOAD
780	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq",
781	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
782	for_each_ofld_txq(pi, i, ofld_txq) {
783		uint16_t iqid;
784
785		iqid = port_intr_iq(pi, j)->cntxt_id;
786
787		snprintf(name, sizeof(name), "%s ofld_txq%d",
788		    device_get_nameunit(pi->dev), i);
789		init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan,
790		    iqid, name);
791
792		snprintf(name, sizeof(name), "%d", i);
793		oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
794		    name, CTLFLAG_RD, NULL, "offload tx queue");
795
796		rc = alloc_wrq(sc, pi, ofld_txq, oid2);
797		if (rc != 0)
798			goto done;
799		j++;
800	}
801#endif
802
803	/*
804	 * Finally, the control queue.
805	 */
806	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
807	    NULL, "ctrl queue");
808	ctrlq = &sc->sge.ctrlq[pi->port_id];
809	iqid = port_intr_iq(pi, 0)->cntxt_id;
810	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev));
811	init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name);
812	rc = alloc_wrq(sc, pi, ctrlq, oid);
813
814done:
815	if (rc)
816		t4_teardown_port_queues(pi);
817
818	return (rc);
819}
820
821/*
822 * Idempotent
823 */
824int
825t4_teardown_port_queues(struct port_info *pi)
826{
827	int i;
828	struct adapter *sc = pi->adapter;
829	struct sge_rxq *rxq;
830	struct sge_txq *txq;
831#ifdef TCP_OFFLOAD
832	struct sge_ofld_rxq *ofld_rxq;
833	struct sge_wrq *ofld_txq;
834#endif
835
836	/* Do this before freeing the queues */
837	if (pi->flags & PORT_SYSCTL_CTX) {
838		sysctl_ctx_free(&pi->ctx);
839		pi->flags &= ~PORT_SYSCTL_CTX;
840	}
841
842	/*
843	 * Take down all the tx queues first, as they reference the rx queues
844	 * (for egress updates, etc.).
845	 */
846
847	free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
848
849	for_each_txq(pi, i, txq) {
850		free_txq(pi, txq);
851	}
852
853#ifdef TCP_OFFLOAD
854	for_each_ofld_txq(pi, i, ofld_txq) {
855		free_wrq(sc, ofld_txq);
856	}
857#endif
858
859	/*
860	 * Then take down the rx queues that forward their interrupts, as they
861	 * reference other rx queues.
862	 */
863
864	for_each_rxq(pi, i, rxq) {
865		if ((rxq->iq.flags & IQ_INTR) == 0)
866			free_rxq(pi, rxq);
867	}
868
869#ifdef TCP_OFFLOAD
870	for_each_ofld_rxq(pi, i, ofld_rxq) {
871		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
872			free_ofld_rxq(pi, ofld_rxq);
873	}
874#endif
875
876	/*
877	 * Then take down the rx queues that take direct interrupts.
878	 */
879
880	for_each_rxq(pi, i, rxq) {
881		if (rxq->iq.flags & IQ_INTR)
882			free_rxq(pi, rxq);
883	}
884
885#ifdef TCP_OFFLOAD
886	for_each_ofld_rxq(pi, i, ofld_rxq) {
887		if (ofld_rxq->iq.flags & IQ_INTR)
888			free_ofld_rxq(pi, ofld_rxq);
889	}
890#endif
891
892	return (0);
893}
894
895/*
896 * Deals with errors and the firmware event queue.  All data rx queues forward
897 * their interrupt to the firmware event queue.
898 */
899void
900t4_intr_all(void *arg)
901{
902	struct adapter *sc = arg;
903	struct sge_iq *fwq = &sc->sge.fwq;
904
905	t4_intr_err(arg);
906	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
907		service_iq(fwq, 0);
908		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
909	}
910}
911
912/* Deals with error interrupts */
913void
914t4_intr_err(void *arg)
915{
916	struct adapter *sc = arg;
917
918	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
919	t4_slow_intr_handler(sc);
920}
921
922void
923t4_intr_evt(void *arg)
924{
925	struct sge_iq *iq = arg;
926
927	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
928		service_iq(iq, 0);
929		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
930	}
931}
932
933void
934t4_intr(void *arg)
935{
936	struct sge_iq *iq = arg;
937
938	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
939		service_iq(iq, 0);
940		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
941	}
942}
943
944/*
945 * Deals with anything and everything on the given ingress queue.
946 */
947static int
948service_iq(struct sge_iq *iq, int budget)
949{
950	struct sge_iq *q;
951	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
952	struct sge_fl *fl = &rxq->fl;		/* Use iff IQ_HAS_FL */
953	struct adapter *sc = iq->adapter;
954	struct rsp_ctrl *ctrl;
955	const struct rss_header *rss;
956	int ndescs = 0, limit, fl_bufs_used = 0;
957	int rsp_type;
958	uint32_t lq;
959	struct mbuf *m0;
960	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
961
962	limit = budget ? budget : iq->qsize / 8;
963
964	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
965
966	/*
967	 * We always come back and check the descriptor ring for new indirect
968	 * interrupts and other responses after running a single handler.
969	 */
970	for (;;) {
971		while (is_new_response(iq, &ctrl)) {
972
973			rmb();
974
975			m0 = NULL;
976			rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
977			lq = be32toh(ctrl->pldbuflen_qid);
978			rss = (const void *)iq->cdesc;
979
980			switch (rsp_type) {
981			case X_RSPD_TYPE_FLBUF:
982
983				KASSERT(iq->flags & IQ_HAS_FL,
984				    ("%s: data for an iq (%p) with no freelist",
985				    __func__, iq));
986
987				m0 = get_fl_payload(sc, fl, lq, &fl_bufs_used);
988#ifdef T4_PKT_TIMESTAMP
989				/*
990				 * 60 bit timestamp for the payload is
991				 * *(uint64_t *)m0->m_pktdat.  Note that it is
992				 * in the leading free-space in the mbuf.  The
993				 * kernel can clobber it during a pullup,
994				 * m_copymdata, etc.  You need to make sure that
995				 * the mbuf reaches you unmolested if you care
996				 * about the timestamp.
997				 */
998				*(uint64_t *)m0->m_pktdat =
999				    be64toh(ctrl->u.last_flit) &
1000				    0xfffffffffffffff;
1001#endif
1002
1003				/* fall through */
1004
1005			case X_RSPD_TYPE_CPL:
1006				KASSERT(rss->opcode < NUM_CPL_CMDS,
1007				    ("%s: bad opcode %02x.", __func__,
1008				    rss->opcode));
1009				sc->cpl_handler[rss->opcode](iq, rss, m0);
1010				break;
1011
1012			case X_RSPD_TYPE_INTR:
1013
1014				/*
1015				 * Interrupts should be forwarded only to queues
1016				 * that are not forwarding their interrupts.
1017				 * This means service_iq can recurse but only 1
1018				 * level deep.
1019				 */
1020				KASSERT(budget == 0,
1021				    ("%s: budget %u, rsp_type %u", __func__,
1022				    budget, rsp_type));
1023
1024				q = sc->sge.iqmap[lq - sc->sge.iq_start];
1025				if (atomic_cmpset_int(&q->state, IQS_IDLE,
1026				    IQS_BUSY)) {
1027					if (service_iq(q, q->qsize / 8) == 0) {
1028						atomic_cmpset_int(&q->state,
1029						    IQS_BUSY, IQS_IDLE);
1030					} else {
1031						STAILQ_INSERT_TAIL(&iql, q,
1032						    link);
1033					}
1034				}
1035				break;
1036
1037			default:
1038				sc->an_handler(iq, ctrl);
1039				break;
1040			}
1041
1042			iq_next(iq);
1043			if (++ndescs == limit) {
1044				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
1045				    V_CIDXINC(ndescs) |
1046				    V_INGRESSQID(iq->cntxt_id) |
1047				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
1048				ndescs = 0;
1049
1050				if (fl_bufs_used > 0) {
1051					FL_LOCK(fl);
1052					fl->needed += fl_bufs_used;
1053					refill_fl(sc, fl, fl->cap / 8);
1054					FL_UNLOCK(fl);
1055					fl_bufs_used = 0;
1056				}
1057
1058				if (budget)
1059					return (EINPROGRESS);
1060			}
1061		}
1062
1063		if (STAILQ_EMPTY(&iql))
1064			break;
1065
1066		/*
1067		 * Process the head only, and send it to the back of the list if
1068		 * it's still not done.
1069		 */
1070		q = STAILQ_FIRST(&iql);
1071		STAILQ_REMOVE_HEAD(&iql, link);
1072		if (service_iq(q, q->qsize / 8) == 0)
1073			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
1074		else
1075			STAILQ_INSERT_TAIL(&iql, q, link);
1076	}
1077
1078#if defined(INET) || defined(INET6)
1079	if (iq->flags & IQ_LRO_ENABLED) {
1080		struct lro_ctrl *lro = &rxq->lro;
1081		struct lro_entry *l;
1082
1083		while (!SLIST_EMPTY(&lro->lro_active)) {
1084			l = SLIST_FIRST(&lro->lro_active);
1085			SLIST_REMOVE_HEAD(&lro->lro_active, next);
1086			tcp_lro_flush(lro, l);
1087		}
1088	}
1089#endif
1090
1091	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1092	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1093
1094	if (iq->flags & IQ_HAS_FL) {
1095		int starved;
1096
1097		FL_LOCK(fl);
1098		fl->needed += fl_bufs_used;
1099		starved = refill_fl(sc, fl, fl->cap / 4);
1100		FL_UNLOCK(fl);
1101		if (__predict_false(starved != 0))
1102			add_fl_to_sfl(sc, fl);
1103	}
1104
1105	return (0);
1106}
1107
1108static struct mbuf *
1109get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf,
1110    int *fl_bufs_used)
1111{
1112	struct mbuf *m0, *m;
1113	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1114	unsigned int nbuf, len;
1115
1116	/*
1117	 * No assertion for the fl lock because we don't need it.  This routine
1118	 * is called only from the rx interrupt handler and it only updates
1119	 * fl->cidx.  (Contrast that with fl->pidx/fl->needed which could be
1120	 * updated in the rx interrupt handler or the starvation helper routine.
1121	 * That's why code that manipulates fl->pidx/fl->needed needs the fl
1122	 * lock but this routine does not).
1123	 */
1124
1125	if (__predict_false((len_newbuf & F_RSPD_NEWBUF) == 0))
1126		panic("%s: cannot handle packed frames", __func__);
1127	len = G_RSPD_LEN(len_newbuf);
1128
1129	m0 = sd->m;
1130	sd->m = NULL;	/* consumed */
1131
1132	bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, BUS_DMASYNC_POSTREAD);
1133	m_init(m0, NULL, 0, M_NOWAIT, MT_DATA, M_PKTHDR);
1134#ifdef T4_PKT_TIMESTAMP
1135	/* Leave room for a timestamp */
1136	m0->m_data += 8;
1137#endif
1138
1139	if (len < RX_COPY_THRESHOLD) {
1140		/* copy data to mbuf, buffer will be recycled */
1141		bcopy(sd->cl, mtod(m0, caddr_t), len);
1142		m0->m_len = len;
1143	} else {
1144		bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
1145		m_cljset(m0, sd->cl, FL_BUF_TYPE(sd->tag_idx));
1146		sd->cl = NULL;	/* consumed */
1147		m0->m_len = min(len, FL_BUF_SIZE(sd->tag_idx));
1148	}
1149	m0->m_pkthdr.len = len;
1150
1151	sd++;
1152	if (__predict_false(++fl->cidx == fl->cap)) {
1153		sd = fl->sdesc;
1154		fl->cidx = 0;
1155	}
1156
1157	m = m0;
1158	len -= m->m_len;
1159	nbuf = 1;	/* # of fl buffers used */
1160
1161	while (len > 0) {
1162		m->m_next = sd->m;
1163		sd->m = NULL;	/* consumed */
1164		m = m->m_next;
1165
1166		bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map,
1167		    BUS_DMASYNC_POSTREAD);
1168
1169		m_init(m, NULL, 0, M_NOWAIT, MT_DATA, 0);
1170		if (len <= MLEN) {
1171			bcopy(sd->cl, mtod(m, caddr_t), len);
1172			m->m_len = len;
1173		} else {
1174			bus_dmamap_unload(fl->tag[sd->tag_idx],
1175			    sd->map);
1176			m_cljset(m, sd->cl, FL_BUF_TYPE(sd->tag_idx));
1177			sd->cl = NULL;	/* consumed */
1178			m->m_len = min(len, FL_BUF_SIZE(sd->tag_idx));
1179		}
1180
1181		sd++;
1182		if (__predict_false(++fl->cidx == fl->cap)) {
1183			sd = fl->sdesc;
1184			fl->cidx = 0;
1185		}
1186
1187		len -= m->m_len;
1188		nbuf++;
1189	}
1190
1191	(*fl_bufs_used) += nbuf;
1192
1193	return (m0);
1194}
1195
1196static int
1197t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1198{
1199	struct sge_rxq *rxq = iq_to_rxq(iq);
1200	struct ifnet *ifp = rxq->ifp;
1201	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1202#if defined(INET) || defined(INET6)
1203	struct lro_ctrl *lro = &rxq->lro;
1204#endif
1205
1206	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1207	    rss->opcode));
1208
1209	m0->m_pkthdr.len -= fl_pktshift;
1210	m0->m_len -= fl_pktshift;
1211	m0->m_data += fl_pktshift;
1212
1213	m0->m_pkthdr.rcvif = ifp;
1214	m0->m_flags |= M_FLOWID;
1215	m0->m_pkthdr.flowid = rss->hash_val;
1216
1217	if (cpl->csum_calc && !cpl->err_vec) {
1218		if (ifp->if_capenable & IFCAP_RXCSUM &&
1219		    cpl->l2info & htobe32(F_RXF_IP)) {
1220			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1221			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1222			rxq->rxcsum++;
1223		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1224		    cpl->l2info & htobe32(F_RXF_IP6)) {
1225			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1226			    CSUM_PSEUDO_HDR);
1227			rxq->rxcsum++;
1228		}
1229
1230		if (__predict_false(cpl->ip_frag))
1231			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1232		else
1233			m0->m_pkthdr.csum_data = 0xffff;
1234	}
1235
1236	if (cpl->vlan_ex) {
1237		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1238		m0->m_flags |= M_VLANTAG;
1239		rxq->vlan_extraction++;
1240	}
1241
1242#if defined(INET) || defined(INET6)
1243	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1244	    iq->flags & IQ_LRO_ENABLED &&
1245	    tcp_lro_rx(lro, m0, 0) == 0) {
1246		/* queued for LRO */
1247	} else
1248#endif
1249	ifp->if_input(ifp, m0);
1250
1251	return (0);
1252}
1253
1254/*
1255 * Doesn't fail.  Holds on to work requests it can't send right away.
1256 */
1257void
1258t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1259{
1260	struct sge_eq *eq = &wrq->eq;
1261	int can_reclaim;
1262	caddr_t dst;
1263
1264	TXQ_LOCK_ASSERT_OWNED(wrq);
1265#ifdef TCP_OFFLOAD
1266	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
1267	    (eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1268	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1269#else
1270	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1271	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1272#endif
1273
1274	if (__predict_true(wr != NULL))
1275		STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1276
1277	can_reclaim = reclaimable(eq);
1278	if (__predict_false(eq->flags & EQ_STALLED)) {
1279		if (can_reclaim < tx_resume_threshold(eq))
1280			return;
1281		eq->flags &= ~EQ_STALLED;
1282		eq->unstalled++;
1283	}
1284	eq->cidx += can_reclaim;
1285	eq->avail += can_reclaim;
1286	if (__predict_false(eq->cidx >= eq->cap))
1287		eq->cidx -= eq->cap;
1288
1289	while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
1290		int ndesc;
1291
1292		if (__predict_false(wr->wr_len < 0 ||
1293		    wr->wr_len > SGE_MAX_WR_LEN || (wr->wr_len & 0x7))) {
1294
1295#ifdef INVARIANTS
1296			panic("%s: work request with length %d", __func__,
1297			    wr->wr_len);
1298#endif
1299#ifdef KDB
1300			kdb_backtrace();
1301#endif
1302			log(LOG_ERR, "%s: %s work request with length %d",
1303			    device_get_nameunit(sc->dev), __func__, wr->wr_len);
1304			STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1305			free_wrqe(wr);
1306			continue;
1307		}
1308
1309		ndesc = howmany(wr->wr_len, EQ_ESIZE);
1310		if (eq->avail < ndesc) {
1311			wrq->no_desc++;
1312			break;
1313		}
1314
1315		dst = (void *)&eq->desc[eq->pidx];
1316		copy_to_txd(eq, wrtod(wr), &dst, wr->wr_len);
1317
1318		eq->pidx += ndesc;
1319		eq->avail -= ndesc;
1320		if (__predict_false(eq->pidx >= eq->cap))
1321			eq->pidx -= eq->cap;
1322
1323		eq->pending += ndesc;
1324		if (eq->pending > 16)
1325			ring_eq_db(sc, eq);
1326
1327		wrq->tx_wrs++;
1328		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1329		free_wrqe(wr);
1330
1331		if (eq->avail < 8) {
1332			can_reclaim = reclaimable(eq);
1333			eq->cidx += can_reclaim;
1334			eq->avail += can_reclaim;
1335			if (__predict_false(eq->cidx >= eq->cap))
1336				eq->cidx -= eq->cap;
1337		}
1338	}
1339
1340	if (eq->pending)
1341		ring_eq_db(sc, eq);
1342
1343	if (wr != NULL) {
1344		eq->flags |= EQ_STALLED;
1345		if (callout_pending(&eq->tx_callout) == 0)
1346			callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1347	}
1348}
1349
1350/* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
1351#define TXPKTS_PKT_HDR ((\
1352    sizeof(struct ulp_txpkt) + \
1353    sizeof(struct ulptx_idata) + \
1354    sizeof(struct cpl_tx_pkt_core) \
1355    ) / 8)
1356
1357/* Header of a coalesced tx WR, before SGL of first packet (in flits) */
1358#define TXPKTS_WR_HDR (\
1359    sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
1360    TXPKTS_PKT_HDR)
1361
1362/* Header of a tx WR, before SGL of first packet (in flits) */
1363#define TXPKT_WR_HDR ((\
1364    sizeof(struct fw_eth_tx_pkt_wr) + \
1365    sizeof(struct cpl_tx_pkt_core) \
1366    ) / 8 )
1367
1368/* Header of a tx LSO WR, before SGL of first packet (in flits) */
1369#define TXPKT_LSO_WR_HDR ((\
1370    sizeof(struct fw_eth_tx_pkt_wr) + \
1371    sizeof(struct cpl_tx_pkt_lso_core) + \
1372    sizeof(struct cpl_tx_pkt_core) \
1373    ) / 8 )
1374
1375int
1376t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
1377{
1378	struct port_info *pi = (void *)ifp->if_softc;
1379	struct adapter *sc = pi->adapter;
1380	struct sge_eq *eq = &txq->eq;
1381	struct buf_ring *br = txq->br;
1382	struct mbuf *next;
1383	int rc, coalescing, can_reclaim;
1384	struct txpkts txpkts;
1385	struct sgl sgl;
1386
1387	TXQ_LOCK_ASSERT_OWNED(txq);
1388	KASSERT(m, ("%s: called with nothing to do.", __func__));
1389	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH,
1390	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1391
1392	prefetch(&eq->desc[eq->pidx]);
1393	prefetch(&txq->sdesc[eq->pidx]);
1394
1395	txpkts.npkt = 0;/* indicates there's nothing in txpkts */
1396	coalescing = 0;
1397
1398	can_reclaim = reclaimable(eq);
1399	if (__predict_false(eq->flags & EQ_STALLED)) {
1400		if (can_reclaim < tx_resume_threshold(eq)) {
1401			txq->m = m;
1402			return (0);
1403		}
1404		eq->flags &= ~EQ_STALLED;
1405		eq->unstalled++;
1406	}
1407
1408	if (__predict_false(eq->flags & EQ_DOOMED)) {
1409		m_freem(m);
1410		while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
1411			m_freem(m);
1412		return (ENETDOWN);
1413	}
1414
1415	if (eq->avail < 8 && can_reclaim)
1416		reclaim_tx_descs(txq, can_reclaim, 32);
1417
1418	for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
1419
1420		if (eq->avail < 8)
1421			break;
1422
1423		next = m->m_nextpkt;
1424		m->m_nextpkt = NULL;
1425
1426		if (next || buf_ring_peek(br))
1427			coalescing = 1;
1428
1429		rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
1430		if (rc != 0) {
1431			if (rc == ENOMEM) {
1432
1433				/* Short of resources, suspend tx */
1434
1435				m->m_nextpkt = next;
1436				break;
1437			}
1438
1439			/*
1440			 * Unrecoverable error for this packet, throw it away
1441			 * and move on to the next.  get_pkt_sgl may already
1442			 * have freed m (it will be NULL in that case and the
1443			 * m_freem here is still safe).
1444			 */
1445
1446			m_freem(m);
1447			continue;
1448		}
1449
1450		if (coalescing &&
1451		    add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
1452
1453			/* Successfully absorbed into txpkts */
1454
1455			write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
1456			goto doorbell;
1457		}
1458
1459		/*
1460		 * We weren't coalescing to begin with, or current frame could
1461		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
1462		 * given to it can't be coalesced).  Either way there should be
1463		 * nothing in txpkts.
1464		 */
1465		KASSERT(txpkts.npkt == 0,
1466		    ("%s: txpkts not empty: %d", __func__, txpkts.npkt));
1467
1468		/* We're sending out individual packets now */
1469		coalescing = 0;
1470
1471		if (eq->avail < 8)
1472			reclaim_tx_descs(txq, 0, 8);
1473		rc = write_txpkt_wr(pi, txq, m, &sgl);
1474		if (rc != 0) {
1475
1476			/* Short of hardware descriptors, suspend tx */
1477
1478			/*
1479			 * This is an unlikely but expensive failure.  We've
1480			 * done all the hard work (DMA mappings etc.) and now we
1481			 * can't send out the packet.  What's worse, we have to
1482			 * spend even more time freeing up everything in sgl.
1483			 */
1484			txq->no_desc++;
1485			free_pkt_sgl(txq, &sgl);
1486
1487			m->m_nextpkt = next;
1488			break;
1489		}
1490
1491		ETHER_BPF_MTAP(ifp, m);
1492		if (sgl.nsegs == 0)
1493			m_freem(m);
1494doorbell:
1495		if (eq->pending >= 64)
1496		    ring_eq_db(sc, eq);
1497
1498		can_reclaim = reclaimable(eq);
1499		if (can_reclaim >= 32)
1500			reclaim_tx_descs(txq, can_reclaim, 64);
1501	}
1502
1503	if (txpkts.npkt > 0)
1504		write_txpkts_wr(txq, &txpkts);
1505
1506	/*
1507	 * m not NULL means there was an error but we haven't thrown it away.
1508	 * This can happen when we're short of tx descriptors (no_desc) or maybe
1509	 * even DMA maps (no_dmamap).  Either way, a credit flush and reclaim
1510	 * will get things going again.
1511	 */
1512	if (m && !(eq->flags & EQ_CRFLUSHED)) {
1513		struct tx_sdesc *txsd = &txq->sdesc[eq->pidx];
1514
1515		/*
1516		 * If EQ_CRFLUSHED is not set then we know we have at least one
1517		 * available descriptor because any WR that reduces eq->avail to
1518		 * 0 also sets EQ_CRFLUSHED.
1519		 */
1520		KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__));
1521
1522		txsd->desc_used = 1;
1523		txsd->credits = 0;
1524		write_eqflush_wr(eq);
1525	}
1526	txq->m = m;
1527
1528	if (eq->pending)
1529		ring_eq_db(sc, eq);
1530
1531	reclaim_tx_descs(txq, 0, 128);
1532
1533	if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0)
1534		callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1535
1536	return (0);
1537}
1538
1539void
1540t4_update_fl_bufsize(struct ifnet *ifp)
1541{
1542	struct port_info *pi = ifp->if_softc;
1543	struct sge_rxq *rxq;
1544	struct sge_fl *fl;
1545	int i, bufsize = mtu_to_bufsize(ifp->if_mtu);
1546
1547	for_each_rxq(pi, i, rxq) {
1548		fl = &rxq->fl;
1549
1550		FL_LOCK(fl);
1551		set_fl_tag_idx(fl, bufsize);
1552		FL_UNLOCK(fl);
1553	}
1554}
1555
1556int
1557can_resume_tx(struct sge_eq *eq)
1558{
1559	return (reclaimable(eq) >= tx_resume_threshold(eq));
1560}
1561
1562static inline void
1563init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
1564    int qsize, int esize)
1565{
1566	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
1567	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
1568	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
1569	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
1570
1571	iq->flags = 0;
1572	iq->adapter = sc;
1573	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
1574	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
1575	if (pktc_idx >= 0) {
1576		iq->intr_params |= F_QINTR_CNT_EN;
1577		iq->intr_pktc_idx = pktc_idx;
1578	}
1579	iq->qsize = roundup2(qsize, 16);	/* See FW_IQ_CMD/iqsize */
1580	iq->esize = max(esize, 16);		/* See FW_IQ_CMD/iqesize */
1581}
1582
1583static inline void
1584init_fl(struct sge_fl *fl, int qsize, int bufsize, char *name)
1585{
1586	fl->qsize = qsize;
1587	strlcpy(fl->lockname, name, sizeof(fl->lockname));
1588	set_fl_tag_idx(fl, bufsize);
1589}
1590
1591static inline void
1592init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan,
1593    uint16_t iqid, char *name)
1594{
1595	KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan));
1596	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
1597
1598	eq->flags = eqtype & EQ_TYPEMASK;
1599	eq->tx_chan = tx_chan;
1600	eq->iqid = iqid;
1601	eq->qsize = qsize;
1602	strlcpy(eq->lockname, name, sizeof(eq->lockname));
1603
1604	TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq);
1605	callout_init(&eq->tx_callout, CALLOUT_MPSAFE);
1606}
1607
1608static int
1609alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
1610    bus_dmamap_t *map, bus_addr_t *pa, void **va)
1611{
1612	int rc;
1613
1614	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
1615	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
1616	if (rc != 0) {
1617		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
1618		goto done;
1619	}
1620
1621	rc = bus_dmamem_alloc(*tag, va,
1622	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
1623	if (rc != 0) {
1624		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
1625		goto done;
1626	}
1627
1628	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
1629	if (rc != 0) {
1630		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
1631		goto done;
1632	}
1633done:
1634	if (rc)
1635		free_ring(sc, *tag, *map, *pa, *va);
1636
1637	return (rc);
1638}
1639
1640static int
1641free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
1642    bus_addr_t pa, void *va)
1643{
1644	if (pa)
1645		bus_dmamap_unload(tag, map);
1646	if (va)
1647		bus_dmamem_free(tag, va, map);
1648	if (tag)
1649		bus_dma_tag_destroy(tag);
1650
1651	return (0);
1652}
1653
1654/*
1655 * Allocates the ring for an ingress queue and an optional freelist.  If the
1656 * freelist is specified it will be allocated and then associated with the
1657 * ingress queue.
1658 *
1659 * Returns errno on failure.  Resources allocated up to that point may still be
1660 * allocated.  Caller is responsible for cleanup in case this function fails.
1661 *
1662 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
1663 * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
1664 * the abs_id of the ingress queue to which its interrupts should be forwarded.
1665 */
1666static int
1667alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
1668    int intr_idx, int cong)
1669{
1670	int rc, i, cntxt_id;
1671	size_t len;
1672	struct fw_iq_cmd c;
1673	struct adapter *sc = iq->adapter;
1674	__be32 v = 0;
1675
1676	len = iq->qsize * iq->esize;
1677	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
1678	    (void **)&iq->desc);
1679	if (rc != 0)
1680		return (rc);
1681
1682	bzero(&c, sizeof(c));
1683	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
1684	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
1685	    V_FW_IQ_CMD_VFN(0));
1686
1687	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
1688	    FW_LEN16(c));
1689
1690	/* Special handling for firmware event queue */
1691	if (iq == &sc->sge.fwq)
1692		v |= F_FW_IQ_CMD_IQASYNCH;
1693
1694	if (iq->flags & IQ_INTR) {
1695		KASSERT(intr_idx < sc->intr_count,
1696		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
1697	} else
1698		v |= F_FW_IQ_CMD_IQANDST;
1699	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
1700
1701	c.type_to_iqandstindex = htobe32(v |
1702	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1703	    V_FW_IQ_CMD_VIID(pi->viid) |
1704	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
1705	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
1706	    F_FW_IQ_CMD_IQGTSMODE |
1707	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
1708	    V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
1709	c.iqsize = htobe16(iq->qsize);
1710	c.iqaddr = htobe64(iq->ba);
1711	if (cong >= 0)
1712		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
1713
1714	if (fl) {
1715		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
1716
1717		for (i = 0; i < FL_BUF_SIZES; i++) {
1718
1719			/*
1720			 * A freelist buffer must be 16 byte aligned as the SGE
1721			 * uses the low 4 bits of the bus addr to figure out the
1722			 * buffer size.
1723			 */
1724			rc = bus_dma_tag_create(sc->dmat, 16, 0,
1725			    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1726			    FL_BUF_SIZE(i), 1, FL_BUF_SIZE(i), BUS_DMA_ALLOCNOW,
1727			    NULL, NULL, &fl->tag[i]);
1728			if (rc != 0) {
1729				device_printf(sc->dev,
1730				    "failed to create fl DMA tag[%d]: %d\n",
1731				    i, rc);
1732				return (rc);
1733			}
1734		}
1735		len = fl->qsize * RX_FL_ESIZE;
1736		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
1737		    &fl->ba, (void **)&fl->desc);
1738		if (rc)
1739			return (rc);
1740
1741		/* Allocate space for one software descriptor per buffer. */
1742		fl->cap = (fl->qsize - spg_len / RX_FL_ESIZE) * 8;
1743		FL_LOCK(fl);
1744		rc = alloc_fl_sdesc(fl);
1745		FL_UNLOCK(fl);
1746		if (rc != 0) {
1747			device_printf(sc->dev,
1748			    "failed to setup fl software descriptors: %d\n",
1749			    rc);
1750			return (rc);
1751		}
1752		fl->needed = fl->cap;
1753		fl->lowat = roundup2(sc->sge.fl_starve_threshold, 8);
1754
1755		c.iqns_to_fl0congen |=
1756		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
1757			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
1758			F_FW_IQ_CMD_FL0PADEN);
1759		if (cong >= 0) {
1760			c.iqns_to_fl0congen |=
1761				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
1762				    F_FW_IQ_CMD_FL0CONGCIF |
1763				    F_FW_IQ_CMD_FL0CONGEN);
1764		}
1765		c.fl0dcaen_to_fl0cidxfthresh =
1766		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
1767			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
1768		c.fl0size = htobe16(fl->qsize);
1769		c.fl0addr = htobe64(fl->ba);
1770	}
1771
1772	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
1773	if (rc != 0) {
1774		device_printf(sc->dev,
1775		    "failed to create ingress queue: %d\n", rc);
1776		return (rc);
1777	}
1778
1779	iq->cdesc = iq->desc;
1780	iq->cidx = 0;
1781	iq->gen = 1;
1782	iq->intr_next = iq->intr_params;
1783	iq->cntxt_id = be16toh(c.iqid);
1784	iq->abs_id = be16toh(c.physiqid);
1785	iq->flags |= IQ_ALLOCATED;
1786
1787	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
1788	if (cntxt_id >= sc->sge.niq) {
1789		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
1790		    cntxt_id, sc->sge.niq - 1);
1791	}
1792	sc->sge.iqmap[cntxt_id] = iq;
1793
1794	if (fl) {
1795		fl->cntxt_id = be16toh(c.fl0id);
1796		fl->pidx = fl->cidx = 0;
1797
1798		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
1799		if (cntxt_id >= sc->sge.neq) {
1800			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
1801			    __func__, cntxt_id, sc->sge.neq - 1);
1802		}
1803		sc->sge.eqmap[cntxt_id] = (void *)fl;
1804
1805		FL_LOCK(fl);
1806		/* Enough to make sure the SGE doesn't think it's starved */
1807		refill_fl(sc, fl, fl->lowat);
1808		FL_UNLOCK(fl);
1809
1810		iq->flags |= IQ_HAS_FL;
1811	}
1812
1813	/* Enable IQ interrupts */
1814	atomic_store_rel_int(&iq->state, IQS_IDLE);
1815	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
1816	    V_INGRESSQID(iq->cntxt_id));
1817
1818	return (0);
1819}
1820
1821static int
1822free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
1823{
1824	int i, rc;
1825	struct adapter *sc = iq->adapter;
1826	device_t dev;
1827
1828	if (sc == NULL)
1829		return (0);	/* nothing to do */
1830
1831	dev = pi ? pi->dev : sc->dev;
1832
1833	if (iq->flags & IQ_ALLOCATED) {
1834		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
1835		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
1836		    fl ? fl->cntxt_id : 0xffff, 0xffff);
1837		if (rc != 0) {
1838			device_printf(dev,
1839			    "failed to free queue %p: %d\n", iq, rc);
1840			return (rc);
1841		}
1842		iq->flags &= ~IQ_ALLOCATED;
1843	}
1844
1845	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
1846
1847	bzero(iq, sizeof(*iq));
1848
1849	if (fl) {
1850		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
1851		    fl->desc);
1852
1853		if (fl->sdesc) {
1854			FL_LOCK(fl);
1855			free_fl_sdesc(fl);
1856			FL_UNLOCK(fl);
1857		}
1858
1859		if (mtx_initialized(&fl->fl_lock))
1860			mtx_destroy(&fl->fl_lock);
1861
1862		for (i = 0; i < FL_BUF_SIZES; i++) {
1863			if (fl->tag[i])
1864				bus_dma_tag_destroy(fl->tag[i]);
1865		}
1866
1867		bzero(fl, sizeof(*fl));
1868	}
1869
1870	return (0);
1871}
1872
1873static int
1874alloc_fwq(struct adapter *sc)
1875{
1876	int rc, intr_idx;
1877	struct sge_iq *fwq = &sc->sge.fwq;
1878	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
1879	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1880
1881	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
1882	fwq->flags |= IQ_INTR;	/* always */
1883	intr_idx = sc->intr_count > 1 ? 1 : 0;
1884	rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
1885	if (rc != 0) {
1886		device_printf(sc->dev,
1887		    "failed to create firmware event queue: %d\n", rc);
1888		return (rc);
1889	}
1890
1891	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
1892	    NULL, "firmware event queue");
1893	children = SYSCTL_CHILDREN(oid);
1894
1895	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
1896	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
1897	    "absolute id of the queue");
1898	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
1899	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
1900	    "SGE context id of the queue");
1901	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
1902	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
1903	    "consumer index");
1904
1905	return (0);
1906}
1907
1908static int
1909free_fwq(struct adapter *sc)
1910{
1911	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
1912}
1913
1914static int
1915alloc_mgmtq(struct adapter *sc)
1916{
1917	int rc;
1918	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
1919	char name[16];
1920	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
1921	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1922
1923	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
1924	    NULL, "management queue");
1925
1926	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
1927	init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
1928	    sc->sge.fwq.cntxt_id, name);
1929	rc = alloc_wrq(sc, NULL, mgmtq, oid);
1930	if (rc != 0) {
1931		device_printf(sc->dev,
1932		    "failed to create management queue: %d\n", rc);
1933		return (rc);
1934	}
1935
1936	return (0);
1937}
1938
1939static int
1940free_mgmtq(struct adapter *sc)
1941{
1942
1943	return free_wrq(sc, &sc->sge.mgmtq);
1944}
1945
1946static inline int
1947tnl_cong(struct port_info *pi)
1948{
1949
1950	if (cong_drop == -1)
1951		return (-1);
1952	else if (cong_drop == 1)
1953		return (0);
1954	else
1955		return (1 << pi->tx_chan);
1956}
1957
1958static int
1959alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx,
1960    struct sysctl_oid *oid)
1961{
1962	int rc;
1963	struct sysctl_oid_list *children;
1964	char name[16];
1965
1966	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(pi));
1967	if (rc != 0)
1968		return (rc);
1969
1970	FL_LOCK(&rxq->fl);
1971	refill_fl(pi->adapter, &rxq->fl, rxq->fl.needed / 8);
1972	FL_UNLOCK(&rxq->fl);
1973
1974#if defined(INET) || defined(INET6)
1975	rc = tcp_lro_init(&rxq->lro);
1976	if (rc != 0)
1977		return (rc);
1978	rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
1979
1980	if (pi->ifp->if_capenable & IFCAP_LRO)
1981		rxq->iq.flags |= IQ_LRO_ENABLED;
1982#endif
1983	rxq->ifp = pi->ifp;
1984
1985	children = SYSCTL_CHILDREN(oid);
1986
1987	snprintf(name, sizeof(name), "%d", idx);
1988	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
1989	    NULL, "rx queue");
1990	children = SYSCTL_CHILDREN(oid);
1991
1992	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
1993	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
1994	    "absolute id of the queue");
1995	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
1996	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
1997	    "SGE context id of the queue");
1998	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
1999	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
2000	    "consumer index");
2001#if defined(INET) || defined(INET6)
2002	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
2003	    &rxq->lro.lro_queued, 0, NULL);
2004	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
2005	    &rxq->lro.lro_flushed, 0, NULL);
2006#endif
2007	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
2008	    &rxq->rxcsum, "# of times hardware assisted with checksum");
2009	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
2010	    CTLFLAG_RD, &rxq->vlan_extraction,
2011	    "# of times hardware extracted 802.1Q tag");
2012
2013	children = SYSCTL_CHILDREN(oid);
2014	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD,
2015	    NULL, "freelist");
2016	children = SYSCTL_CHILDREN(oid);
2017
2018	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2019	    CTLTYPE_INT | CTLFLAG_RD, &rxq->fl.cntxt_id, 0, sysctl_uint16, "I",
2020	    "SGE context id of the queue");
2021	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
2022	    &rxq->fl.cidx, 0, "consumer index");
2023	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
2024	    &rxq->fl.pidx, 0, "producer index");
2025
2026	return (rc);
2027}
2028
2029static int
2030free_rxq(struct port_info *pi, struct sge_rxq *rxq)
2031{
2032	int rc;
2033
2034#if defined(INET) || defined(INET6)
2035	if (rxq->lro.ifp) {
2036		tcp_lro_free(&rxq->lro);
2037		rxq->lro.ifp = NULL;
2038	}
2039#endif
2040
2041	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
2042	if (rc == 0)
2043		bzero(rxq, sizeof(*rxq));
2044
2045	return (rc);
2046}
2047
2048#ifdef TCP_OFFLOAD
2049static int
2050alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
2051    int intr_idx, int idx, struct sysctl_oid *oid)
2052{
2053	int rc;
2054	struct sysctl_oid_list *children;
2055	char name[16];
2056
2057	rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
2058	    1 << pi->tx_chan);
2059	if (rc != 0)
2060		return (rc);
2061
2062	children = SYSCTL_CHILDREN(oid);
2063
2064	snprintf(name, sizeof(name), "%d", idx);
2065	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2066	    NULL, "rx queue");
2067	children = SYSCTL_CHILDREN(oid);
2068
2069	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
2070	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
2071	    "I", "absolute id of the queue");
2072	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2073	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
2074	    "I", "SGE context id of the queue");
2075	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2076	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
2077	    "consumer index");
2078
2079	children = SYSCTL_CHILDREN(oid);
2080	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD,
2081	    NULL, "freelist");
2082	children = SYSCTL_CHILDREN(oid);
2083
2084	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
2085	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->fl.cntxt_id, 0, sysctl_uint16,
2086	    "I", "SGE context id of the queue");
2087	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
2088	    &ofld_rxq->fl.cidx, 0, "consumer index");
2089	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
2090	    &ofld_rxq->fl.pidx, 0, "producer index");
2091
2092	return (rc);
2093}
2094
2095static int
2096free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
2097{
2098	int rc;
2099
2100	rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
2101	if (rc == 0)
2102		bzero(ofld_rxq, sizeof(*ofld_rxq));
2103
2104	return (rc);
2105}
2106#endif
2107
2108static int
2109ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
2110{
2111	int rc, cntxt_id;
2112	struct fw_eq_ctrl_cmd c;
2113
2114	bzero(&c, sizeof(c));
2115
2116	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
2117	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
2118	    V_FW_EQ_CTRL_CMD_VFN(0));
2119	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
2120	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2121	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */
2122	c.physeqid_pkd = htobe32(0);
2123	c.fetchszm_to_iqid =
2124	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2125		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
2126		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
2127	c.dcaen_to_eqsize =
2128	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2129		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2130		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2131		V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
2132	c.eqaddr = htobe64(eq->ba);
2133
2134	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2135	if (rc != 0) {
2136		device_printf(sc->dev,
2137		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
2138		return (rc);
2139	}
2140	eq->flags |= EQ_ALLOCATED;
2141
2142	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
2143	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2144	if (cntxt_id >= sc->sge.neq)
2145	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2146		cntxt_id, sc->sge.neq - 1);
2147	sc->sge.eqmap[cntxt_id] = eq;
2148
2149	return (rc);
2150}
2151
2152static int
2153eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2154{
2155	int rc, cntxt_id;
2156	struct fw_eq_eth_cmd c;
2157
2158	bzero(&c, sizeof(c));
2159
2160	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
2161	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
2162	    V_FW_EQ_ETH_CMD_VFN(0));
2163	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
2164	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2165	c.viid_pkd = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
2166	c.fetchszm_to_iqid =
2167	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2168		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
2169		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
2170	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2171		      V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2172		      V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2173		      V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
2174	c.eqaddr = htobe64(eq->ba);
2175
2176	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2177	if (rc != 0) {
2178		device_printf(pi->dev,
2179		    "failed to create Ethernet egress queue: %d\n", rc);
2180		return (rc);
2181	}
2182	eq->flags |= EQ_ALLOCATED;
2183
2184	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
2185	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2186	if (cntxt_id >= sc->sge.neq)
2187	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2188		cntxt_id, sc->sge.neq - 1);
2189	sc->sge.eqmap[cntxt_id] = eq;
2190
2191	return (rc);
2192}
2193
2194#ifdef TCP_OFFLOAD
2195static int
2196ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2197{
2198	int rc, cntxt_id;
2199	struct fw_eq_ofld_cmd c;
2200
2201	bzero(&c, sizeof(c));
2202
2203	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
2204	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
2205	    V_FW_EQ_OFLD_CMD_VFN(0));
2206	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
2207	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2208	c.fetchszm_to_iqid =
2209		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2210		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
2211		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
2212	c.dcaen_to_eqsize =
2213	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2214		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2215		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2216		V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
2217	c.eqaddr = htobe64(eq->ba);
2218
2219	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2220	if (rc != 0) {
2221		device_printf(pi->dev,
2222		    "failed to create egress queue for TCP offload: %d\n", rc);
2223		return (rc);
2224	}
2225	eq->flags |= EQ_ALLOCATED;
2226
2227	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
2228	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2229	if (cntxt_id >= sc->sge.neq)
2230	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2231		cntxt_id, sc->sge.neq - 1);
2232	sc->sge.eqmap[cntxt_id] = eq;
2233
2234	return (rc);
2235}
2236#endif
2237
2238static int
2239alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2240{
2241	int rc;
2242	size_t len;
2243
2244	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
2245
2246	len = eq->qsize * EQ_ESIZE;
2247	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
2248	    &eq->ba, (void **)&eq->desc);
2249	if (rc)
2250		return (rc);
2251
2252	eq->cap = eq->qsize - spg_len / EQ_ESIZE;
2253	eq->spg = (void *)&eq->desc[eq->cap];
2254	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
2255	eq->pidx = eq->cidx = 0;
2256	eq->doorbells = sc->doorbells;
2257
2258	switch (eq->flags & EQ_TYPEMASK) {
2259	case EQ_CTRL:
2260		rc = ctrl_eq_alloc(sc, eq);
2261		break;
2262
2263	case EQ_ETH:
2264		rc = eth_eq_alloc(sc, pi, eq);
2265		break;
2266
2267#ifdef TCP_OFFLOAD
2268	case EQ_OFLD:
2269		rc = ofld_eq_alloc(sc, pi, eq);
2270		break;
2271#endif
2272
2273	default:
2274		panic("%s: invalid eq type %d.", __func__,
2275		    eq->flags & EQ_TYPEMASK);
2276	}
2277	if (rc != 0) {
2278		device_printf(sc->dev,
2279		    "failed to allocate egress queue(%d): %d",
2280		    eq->flags & EQ_TYPEMASK, rc);
2281	}
2282
2283	eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus;
2284
2285	if (isset(&eq->doorbells, DOORBELL_UDB) ||
2286	    isset(&eq->doorbells, DOORBELL_UDBWC) ||
2287	    isset(&eq->doorbells, DOORBELL_WRWC)) {
2288		uint32_t s_qpp = sc->sge.s_qpp;
2289		uint32_t mask = (1 << s_qpp) - 1;
2290		volatile uint8_t *udb;
2291
2292		udb = sc->udbs_base + UDBS_DB_OFFSET;
2293		udb += (eq->cntxt_id >> s_qpp) << PAGE_SHIFT;	/* pg offset */
2294		eq->udb_qid = eq->cntxt_id & mask;		/* id in page */
2295		if (eq->udb_qid > PAGE_SIZE / UDBS_SEG_SIZE)
2296	    		clrbit(&eq->doorbells, DOORBELL_WRWC);
2297		else {
2298			udb += eq->udb_qid << UDBS_SEG_SHIFT;	/* seg offset */
2299			eq->udb_qid = 0;
2300		}
2301		eq->udb = (volatile void *)udb;
2302	}
2303
2304	return (rc);
2305}
2306
2307static int
2308free_eq(struct adapter *sc, struct sge_eq *eq)
2309{
2310	int rc;
2311
2312	if (eq->flags & EQ_ALLOCATED) {
2313		switch (eq->flags & EQ_TYPEMASK) {
2314		case EQ_CTRL:
2315			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
2316			    eq->cntxt_id);
2317			break;
2318
2319		case EQ_ETH:
2320			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
2321			    eq->cntxt_id);
2322			break;
2323
2324#ifdef TCP_OFFLOAD
2325		case EQ_OFLD:
2326			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
2327			    eq->cntxt_id);
2328			break;
2329#endif
2330
2331		default:
2332			panic("%s: invalid eq type %d.", __func__,
2333			    eq->flags & EQ_TYPEMASK);
2334		}
2335		if (rc != 0) {
2336			device_printf(sc->dev,
2337			    "failed to free egress queue (%d): %d\n",
2338			    eq->flags & EQ_TYPEMASK, rc);
2339			return (rc);
2340		}
2341		eq->flags &= ~EQ_ALLOCATED;
2342	}
2343
2344	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
2345
2346	if (mtx_initialized(&eq->eq_lock))
2347		mtx_destroy(&eq->eq_lock);
2348
2349	bzero(eq, sizeof(*eq));
2350	return (0);
2351}
2352
2353static int
2354alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
2355    struct sysctl_oid *oid)
2356{
2357	int rc;
2358	struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx;
2359	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2360
2361	rc = alloc_eq(sc, pi, &wrq->eq);
2362	if (rc)
2363		return (rc);
2364
2365	wrq->adapter = sc;
2366	STAILQ_INIT(&wrq->wr_list);
2367
2368	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2369	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
2370	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
2371	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
2372	    "consumer index");
2373	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
2374	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
2375	    "producer index");
2376	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD,
2377	    &wrq->tx_wrs, "# of work requests");
2378	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
2379	    &wrq->no_desc, 0,
2380	    "# of times queue ran out of hardware descriptors");
2381	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
2382	    &wrq->eq.unstalled, 0, "# of times queue recovered after stall");
2383
2384
2385	return (rc);
2386}
2387
2388static int
2389free_wrq(struct adapter *sc, struct sge_wrq *wrq)
2390{
2391	int rc;
2392
2393	rc = free_eq(sc, &wrq->eq);
2394	if (rc)
2395		return (rc);
2396
2397	bzero(wrq, sizeof(*wrq));
2398	return (0);
2399}
2400
2401static int
2402alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx,
2403    struct sysctl_oid *oid)
2404{
2405	int rc;
2406	struct adapter *sc = pi->adapter;
2407	struct sge_eq *eq = &txq->eq;
2408	char name[16];
2409	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2410
2411	rc = alloc_eq(sc, pi, eq);
2412	if (rc)
2413		return (rc);
2414
2415	txq->ifp = pi->ifp;
2416
2417	txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
2418	    M_ZERO | M_WAITOK);
2419	txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
2420
2421	rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
2422	    BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
2423	    BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag);
2424	if (rc != 0) {
2425		device_printf(sc->dev,
2426		    "failed to create tx DMA tag: %d\n", rc);
2427		return (rc);
2428	}
2429
2430	/*
2431	 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
2432	 * limit for any WR).  txq->no_dmamap events shouldn't occur if maps is
2433	 * sized for the worst case.
2434	 */
2435	rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8,
2436	    M_WAITOK);
2437	if (rc != 0) {
2438		device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
2439		return (rc);
2440	}
2441
2442	snprintf(name, sizeof(name), "%d", idx);
2443	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2444	    NULL, "tx queue");
2445	children = SYSCTL_CHILDREN(oid);
2446
2447	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2448	    &eq->cntxt_id, 0, "SGE context id of the queue");
2449	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2450	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
2451	    "consumer index");
2452	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
2453	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
2454	    "producer index");
2455
2456	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
2457	    &txq->txcsum, "# of times hardware assisted with checksum");
2458	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
2459	    CTLFLAG_RD, &txq->vlan_insertion,
2460	    "# of times hardware inserted 802.1Q tag");
2461	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
2462	    &txq->tso_wrs, "# of TSO work requests");
2463	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
2464	    &txq->imm_wrs, "# of work requests with immediate data");
2465	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
2466	    &txq->sgl_wrs, "# of work requests with direct SGL");
2467	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
2468	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
2469	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
2470	    &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
2471	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
2472	    &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
2473
2474	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "br_drops", CTLFLAG_RD,
2475	    &txq->br->br_drops, "# of drops in the buf_ring for this queue");
2476	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
2477	    &txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
2478	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
2479	    &txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
2480	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
2481	    &eq->egr_update, 0, "egress update notifications from the SGE");
2482	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
2483	    &eq->unstalled, 0, "# of times txq recovered after stall");
2484
2485	return (rc);
2486}
2487
2488static int
2489free_txq(struct port_info *pi, struct sge_txq *txq)
2490{
2491	int rc;
2492	struct adapter *sc = pi->adapter;
2493	struct sge_eq *eq = &txq->eq;
2494
2495	rc = free_eq(sc, eq);
2496	if (rc)
2497		return (rc);
2498
2499	free(txq->sdesc, M_CXGBE);
2500
2501	if (txq->txmaps.maps)
2502		t4_free_tx_maps(&txq->txmaps, txq->tx_tag);
2503
2504	buf_ring_free(txq->br, M_CXGBE);
2505
2506	if (txq->tx_tag)
2507		bus_dma_tag_destroy(txq->tx_tag);
2508
2509	bzero(txq, sizeof(*txq));
2510	return (0);
2511}
2512
2513static void
2514oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2515{
2516	bus_addr_t *ba = arg;
2517
2518	KASSERT(nseg == 1,
2519	    ("%s meant for single segment mappings only.", __func__));
2520
2521	*ba = error ? 0 : segs->ds_addr;
2522}
2523
2524static inline bool
2525is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
2526{
2527	*ctrl = (void *)((uintptr_t)iq->cdesc +
2528	    (iq->esize - sizeof(struct rsp_ctrl)));
2529
2530	return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen);
2531}
2532
2533static inline void
2534iq_next(struct sge_iq *iq)
2535{
2536	iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
2537	if (__predict_false(++iq->cidx == iq->qsize - 1)) {
2538		iq->cidx = 0;
2539		iq->gen ^= 1;
2540		iq->cdesc = iq->desc;
2541	}
2542}
2543
2544#define FL_HW_IDX(x) ((x) >> 3)
2545static inline void
2546ring_fl_db(struct adapter *sc, struct sge_fl *fl)
2547{
2548	int ndesc = fl->pending / 8;
2549	uint32_t v;
2550
2551	if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
2552		ndesc--;	/* hold back one credit */
2553
2554	if (ndesc <= 0)
2555		return;		/* nothing to do */
2556
2557	v = F_DBPRIO | V_QID(fl->cntxt_id) | V_PIDX(ndesc);
2558	if (is_t5(sc))
2559		v |= F_DBTYPE;
2560
2561	wmb();
2562
2563	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), v);
2564	fl->pending -= ndesc * 8;
2565}
2566
2567/*
2568 * Fill up the freelist by upto nbufs and maybe ring its doorbell.
2569 *
2570 * Returns non-zero to indicate that it should be added to the list of starving
2571 * freelists.
2572 */
2573static int
2574refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
2575{
2576	__be64 *d = &fl->desc[fl->pidx];
2577	struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
2578	bus_dma_tag_t tag;
2579	bus_addr_t pa;
2580	caddr_t cl;
2581	int rc;
2582
2583	FL_LOCK_ASSERT_OWNED(fl);
2584
2585	if (nbufs > fl->needed)
2586		nbufs = fl->needed;
2587
2588	while (nbufs--) {
2589
2590		if (sd->cl != NULL) {
2591
2592			/*
2593			 * This happens when a frame small enough to fit
2594			 * entirely in an mbuf was received in cl last time.
2595			 * We'd held on to cl and can reuse it now.  Note that
2596			 * we reuse a cluster of the old size if fl->tag_idx is
2597			 * no longer the same as sd->tag_idx.
2598			 */
2599
2600			KASSERT(*d == sd->ba_tag,
2601			    ("%s: recyling problem at pidx %d",
2602			    __func__, fl->pidx));
2603
2604			d++;
2605			goto recycled;
2606		}
2607
2608
2609		if (fl->tag_idx != sd->tag_idx) {
2610			bus_dmamap_t map;
2611			bus_dma_tag_t newtag = fl->tag[fl->tag_idx];
2612			bus_dma_tag_t oldtag = fl->tag[sd->tag_idx];
2613
2614			/*
2615			 * An MTU change can get us here.  Discard the old map
2616			 * which was created with the old tag, but only if
2617			 * we're able to get a new one.
2618			 */
2619			rc = bus_dmamap_create(newtag, 0, &map);
2620			if (rc == 0) {
2621				bus_dmamap_destroy(oldtag, sd->map);
2622				sd->map = map;
2623				sd->tag_idx = fl->tag_idx;
2624			}
2625		}
2626
2627		tag = fl->tag[sd->tag_idx];
2628
2629		cl = m_cljget(NULL, M_NOWAIT, FL_BUF_SIZE(sd->tag_idx));
2630		if (cl == NULL)
2631			break;
2632
2633		rc = bus_dmamap_load(tag, sd->map, cl, FL_BUF_SIZE(sd->tag_idx),
2634		    oneseg_dma_callback, &pa, 0);
2635		if (rc != 0 || pa == 0) {
2636			fl->dmamap_failed++;
2637			uma_zfree(FL_BUF_ZONE(sd->tag_idx), cl);
2638			break;
2639		}
2640
2641		sd->cl = cl;
2642		*d++ = htobe64(pa | sd->tag_idx);
2643
2644#ifdef INVARIANTS
2645		sd->ba_tag = htobe64(pa | sd->tag_idx);
2646#endif
2647
2648recycled:
2649		/* sd->m is never recycled, should always be NULL */
2650		KASSERT(sd->m == NULL, ("%s: stray mbuf", __func__));
2651
2652		sd->m = m_gethdr(M_NOWAIT, MT_NOINIT);
2653		if (sd->m == NULL)
2654			break;
2655
2656		fl->pending++;
2657		fl->needed--;
2658		sd++;
2659		if (++fl->pidx == fl->cap) {
2660			fl->pidx = 0;
2661			sd = fl->sdesc;
2662			d = fl->desc;
2663		}
2664	}
2665
2666	if (fl->pending >= 8)
2667		ring_fl_db(sc, fl);
2668
2669	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
2670}
2671
2672/*
2673 * Attempt to refill all starving freelists.
2674 */
2675static void
2676refill_sfl(void *arg)
2677{
2678	struct adapter *sc = arg;
2679	struct sge_fl *fl, *fl_temp;
2680
2681	mtx_lock(&sc->sfl_lock);
2682	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
2683		FL_LOCK(fl);
2684		refill_fl(sc, fl, 64);
2685		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
2686			TAILQ_REMOVE(&sc->sfl, fl, link);
2687			fl->flags &= ~FL_STARVING;
2688		}
2689		FL_UNLOCK(fl);
2690	}
2691
2692	if (!TAILQ_EMPTY(&sc->sfl))
2693		callout_schedule(&sc->sfl_callout, hz / 5);
2694	mtx_unlock(&sc->sfl_lock);
2695}
2696
2697static int
2698alloc_fl_sdesc(struct sge_fl *fl)
2699{
2700	struct fl_sdesc *sd;
2701	bus_dma_tag_t tag;
2702	int i, rc;
2703
2704	FL_LOCK_ASSERT_OWNED(fl);
2705
2706	fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE,
2707	    M_ZERO | M_WAITOK);
2708
2709	tag = fl->tag[fl->tag_idx];
2710	sd = fl->sdesc;
2711	for (i = 0; i < fl->cap; i++, sd++) {
2712
2713		sd->tag_idx = fl->tag_idx;
2714		rc = bus_dmamap_create(tag, 0, &sd->map);
2715		if (rc != 0)
2716			goto failed;
2717	}
2718
2719	return (0);
2720failed:
2721	while (--i >= 0) {
2722		sd--;
2723		bus_dmamap_destroy(tag, sd->map);
2724		if (sd->m) {
2725			m_init(sd->m, NULL, 0, M_NOWAIT, MT_DATA, 0);
2726			m_free(sd->m);
2727			sd->m = NULL;
2728		}
2729	}
2730	KASSERT(sd == fl->sdesc, ("%s: EDOOFUS", __func__));
2731
2732	free(fl->sdesc, M_CXGBE);
2733	fl->sdesc = NULL;
2734
2735	return (rc);
2736}
2737
2738static void
2739free_fl_sdesc(struct sge_fl *fl)
2740{
2741	struct fl_sdesc *sd;
2742	int i;
2743
2744	FL_LOCK_ASSERT_OWNED(fl);
2745
2746	sd = fl->sdesc;
2747	for (i = 0; i < fl->cap; i++, sd++) {
2748
2749		if (sd->m) {
2750			m_init(sd->m, NULL, 0, M_NOWAIT, MT_DATA, 0);
2751			m_free(sd->m);
2752			sd->m = NULL;
2753		}
2754
2755		if (sd->cl) {
2756			bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
2757			uma_zfree(FL_BUF_ZONE(sd->tag_idx), sd->cl);
2758			sd->cl = NULL;
2759		}
2760
2761		bus_dmamap_destroy(fl->tag[sd->tag_idx], sd->map);
2762	}
2763
2764	free(fl->sdesc, M_CXGBE);
2765	fl->sdesc = NULL;
2766}
2767
2768int
2769t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count,
2770    int flags)
2771{
2772	struct tx_map *txm;
2773	int i, rc;
2774
2775	txmaps->map_total = txmaps->map_avail = count;
2776	txmaps->map_cidx = txmaps->map_pidx = 0;
2777
2778	txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
2779	    M_ZERO | flags);
2780
2781	txm = txmaps->maps;
2782	for (i = 0; i < count; i++, txm++) {
2783		rc = bus_dmamap_create(tx_tag, 0, &txm->map);
2784		if (rc != 0)
2785			goto failed;
2786	}
2787
2788	return (0);
2789failed:
2790	while (--i >= 0) {
2791		txm--;
2792		bus_dmamap_destroy(tx_tag, txm->map);
2793	}
2794	KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__));
2795
2796	free(txmaps->maps, M_CXGBE);
2797	txmaps->maps = NULL;
2798
2799	return (rc);
2800}
2801
2802void
2803t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag)
2804{
2805	struct tx_map *txm;
2806	int i;
2807
2808	txm = txmaps->maps;
2809	for (i = 0; i < txmaps->map_total; i++, txm++) {
2810
2811		if (txm->m) {
2812			bus_dmamap_unload(tx_tag, txm->map);
2813			m_freem(txm->m);
2814			txm->m = NULL;
2815		}
2816
2817		bus_dmamap_destroy(tx_tag, txm->map);
2818	}
2819
2820	free(txmaps->maps, M_CXGBE);
2821	txmaps->maps = NULL;
2822}
2823
2824/*
2825 * We'll do immediate data tx for non-TSO, but only when not coalescing.  We're
2826 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
2827 * of immediate data.
2828 */
2829#define IMM_LEN ( \
2830      2 * EQ_ESIZE \
2831    - sizeof(struct fw_eth_tx_pkt_wr) \
2832    - sizeof(struct cpl_tx_pkt_core))
2833
2834/*
2835 * Returns non-zero on failure, no need to cleanup anything in that case.
2836 *
2837 * Note 1: We always try to defrag the mbuf if required and return EFBIG only
2838 * if the resulting chain still won't fit in a tx descriptor.
2839 *
2840 * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
2841 * does not have the TCP header in it.
2842 */
2843static int
2844get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
2845    int sgl_only)
2846{
2847	struct mbuf *m = *fp;
2848	struct tx_maps *txmaps;
2849	struct tx_map *txm;
2850	int rc, defragged = 0, n;
2851
2852	TXQ_LOCK_ASSERT_OWNED(txq);
2853
2854	if (m->m_pkthdr.tso_segsz)
2855		sgl_only = 1;	/* Do not allow immediate data with LSO */
2856
2857start:	sgl->nsegs = 0;
2858
2859	if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
2860		return (0);	/* nsegs = 0 tells caller to use imm. tx */
2861
2862	txmaps = &txq->txmaps;
2863	if (txmaps->map_avail == 0) {
2864		txq->no_dmamap++;
2865		return (ENOMEM);
2866	}
2867	txm = &txmaps->maps[txmaps->map_pidx];
2868
2869	if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
2870		*fp = m_pullup(m, 50);
2871		m = *fp;
2872		if (m == NULL)
2873			return (ENOBUFS);
2874	}
2875
2876	rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg,
2877	    &sgl->nsegs, BUS_DMA_NOWAIT);
2878	if (rc == EFBIG && defragged == 0) {
2879		m = m_defrag(m, M_NOWAIT);
2880		if (m == NULL)
2881			return (EFBIG);
2882
2883		defragged = 1;
2884		*fp = m;
2885		goto start;
2886	}
2887	if (rc != 0)
2888		return (rc);
2889
2890	txm->m = m;
2891	txmaps->map_avail--;
2892	if (++txmaps->map_pidx == txmaps->map_total)
2893		txmaps->map_pidx = 0;
2894
2895	KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
2896	    ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
2897
2898	/*
2899	 * Store the # of flits required to hold this frame's SGL in nflits.  An
2900	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
2901	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
2902	 * then len1 must be set to 0.
2903	 */
2904	n = sgl->nsegs - 1;
2905	sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
2906
2907	return (0);
2908}
2909
2910
2911/*
2912 * Releases all the txq resources used up in the specified sgl.
2913 */
2914static int
2915free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
2916{
2917	struct tx_maps *txmaps;
2918	struct tx_map *txm;
2919
2920	TXQ_LOCK_ASSERT_OWNED(txq);
2921
2922	if (sgl->nsegs == 0)
2923		return (0);	/* didn't use any map */
2924
2925	txmaps = &txq->txmaps;
2926
2927	/* 1 pkt uses exactly 1 map, back it out */
2928
2929	txmaps->map_avail++;
2930	if (txmaps->map_pidx > 0)
2931		txmaps->map_pidx--;
2932	else
2933		txmaps->map_pidx = txmaps->map_total - 1;
2934
2935	txm = &txmaps->maps[txmaps->map_pidx];
2936	bus_dmamap_unload(txq->tx_tag, txm->map);
2937	txm->m = NULL;
2938
2939	return (0);
2940}
2941
2942static int
2943write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
2944    struct sgl *sgl)
2945{
2946	struct sge_eq *eq = &txq->eq;
2947	struct fw_eth_tx_pkt_wr *wr;
2948	struct cpl_tx_pkt_core *cpl;
2949	uint32_t ctrl;	/* used in many unrelated places */
2950	uint64_t ctrl1;
2951	int nflits, ndesc, pktlen;
2952	struct tx_sdesc *txsd;
2953	caddr_t dst;
2954
2955	TXQ_LOCK_ASSERT_OWNED(txq);
2956
2957	pktlen = m->m_pkthdr.len;
2958
2959	/*
2960	 * Do we have enough flits to send this frame out?
2961	 */
2962	ctrl = sizeof(struct cpl_tx_pkt_core);
2963	if (m->m_pkthdr.tso_segsz) {
2964		nflits = TXPKT_LSO_WR_HDR;
2965		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
2966	} else
2967		nflits = TXPKT_WR_HDR;
2968	if (sgl->nsegs > 0)
2969		nflits += sgl->nflits;
2970	else {
2971		nflits += howmany(pktlen, 8);
2972		ctrl += pktlen;
2973	}
2974	ndesc = howmany(nflits, 8);
2975	if (ndesc > eq->avail)
2976		return (ENOMEM);
2977
2978	/* Firmware work request header */
2979	wr = (void *)&eq->desc[eq->pidx];
2980	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
2981	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
2982	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
2983	if (eq->avail == ndesc) {
2984		if (!(eq->flags & EQ_CRFLUSHED)) {
2985			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2986			eq->flags |= EQ_CRFLUSHED;
2987		}
2988		eq->flags |= EQ_STALLED;
2989	}
2990
2991	wr->equiq_to_len16 = htobe32(ctrl);
2992	wr->r3 = 0;
2993
2994	if (m->m_pkthdr.tso_segsz) {
2995		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2996		struct ether_header *eh;
2997		void *l3hdr;
2998#if defined(INET) || defined(INET6)
2999		struct tcphdr *tcp;
3000#endif
3001		uint16_t eh_type;
3002
3003		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
3004		    F_LSO_LAST_SLICE;
3005
3006		eh = mtod(m, struct ether_header *);
3007		eh_type = ntohs(eh->ether_type);
3008		if (eh_type == ETHERTYPE_VLAN) {
3009			struct ether_vlan_header *evh = (void *)eh;
3010
3011			ctrl |= V_LSO_ETHHDR_LEN(1);
3012			l3hdr = evh + 1;
3013			eh_type = ntohs(evh->evl_proto);
3014		} else
3015			l3hdr = eh + 1;
3016
3017		switch (eh_type) {
3018#ifdef INET6
3019		case ETHERTYPE_IPV6:
3020		{
3021			struct ip6_hdr *ip6 = l3hdr;
3022
3023			/*
3024			 * XXX-BZ For now we do not pretend to support
3025			 * IPv6 extension headers.
3026			 */
3027			KASSERT(ip6->ip6_nxt == IPPROTO_TCP, ("%s: CSUM_TSO "
3028			    "with ip6_nxt != TCP: %u", __func__, ip6->ip6_nxt));
3029			tcp = (struct tcphdr *)(ip6 + 1);
3030			ctrl |= F_LSO_IPV6;
3031			ctrl |= V_LSO_IPHDR_LEN(sizeof(*ip6) >> 2) |
3032			    V_LSO_TCPHDR_LEN(tcp->th_off);
3033			break;
3034		}
3035#endif
3036#ifdef INET
3037		case ETHERTYPE_IP:
3038		{
3039			struct ip *ip = l3hdr;
3040
3041			tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
3042			ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
3043			    V_LSO_TCPHDR_LEN(tcp->th_off);
3044			break;
3045		}
3046#endif
3047		default:
3048			panic("%s: CSUM_TSO but no supported IP version "
3049			    "(0x%04x)", __func__, eh_type);
3050		}
3051
3052		lso->lso_ctrl = htobe32(ctrl);
3053		lso->ipid_ofst = htobe16(0);
3054		lso->mss = htobe16(m->m_pkthdr.tso_segsz);
3055		lso->seqno_offset = htobe32(0);
3056		lso->len = htobe32(pktlen);
3057
3058		cpl = (void *)(lso + 1);
3059
3060		txq->tso_wrs++;
3061	} else
3062		cpl = (void *)(wr + 1);
3063
3064	/* Checksum offload */
3065	ctrl1 = 0;
3066	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3067		ctrl1 |= F_TXPKT_IPCSUM_DIS;
3068	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3069	    CSUM_TCP_IPV6 | CSUM_TSO)))
3070		ctrl1 |= F_TXPKT_L4CSUM_DIS;
3071	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3072	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3073		txq->txcsum++;	/* some hardware assistance provided */
3074
3075	/* VLAN tag insertion */
3076	if (m->m_flags & M_VLANTAG) {
3077		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3078		txq->vlan_insertion++;
3079	}
3080
3081	/* CPL header */
3082	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3083	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3084	cpl->pack = 0;
3085	cpl->len = htobe16(pktlen);
3086	cpl->ctrl1 = htobe64(ctrl1);
3087
3088	/* Software descriptor */
3089	txsd = &txq->sdesc[eq->pidx];
3090	txsd->desc_used = ndesc;
3091
3092	eq->pending += ndesc;
3093	eq->avail -= ndesc;
3094	eq->pidx += ndesc;
3095	if (eq->pidx >= eq->cap)
3096		eq->pidx -= eq->cap;
3097
3098	/* SGL */
3099	dst = (void *)(cpl + 1);
3100	if (sgl->nsegs > 0) {
3101		txsd->credits = 1;
3102		txq->sgl_wrs++;
3103		write_sgl_to_txd(eq, sgl, &dst);
3104	} else {
3105		txsd->credits = 0;
3106		txq->imm_wrs++;
3107		for (; m; m = m->m_next) {
3108			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
3109#ifdef INVARIANTS
3110			pktlen -= m->m_len;
3111#endif
3112		}
3113#ifdef INVARIANTS
3114		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
3115#endif
3116
3117	}
3118
3119	txq->txpkt_wrs++;
3120	return (0);
3121}
3122
3123/*
3124 * Returns 0 to indicate that m has been accepted into a coalesced tx work
3125 * request.  It has either been folded into txpkts or txpkts was flushed and m
3126 * has started a new coalesced work request (as the first frame in a fresh
3127 * txpkts).
3128 *
3129 * Returns non-zero to indicate a failure - caller is responsible for
3130 * transmitting m, if there was anything in txpkts it has been flushed.
3131 */
3132static int
3133add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
3134    struct mbuf *m, struct sgl *sgl)
3135{
3136	struct sge_eq *eq = &txq->eq;
3137	int can_coalesce;
3138	struct tx_sdesc *txsd;
3139	int flits;
3140
3141	TXQ_LOCK_ASSERT_OWNED(txq);
3142
3143	KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__));
3144
3145	if (txpkts->npkt > 0) {
3146		flits = TXPKTS_PKT_HDR + sgl->nflits;
3147		can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3148		    txpkts->nflits + flits <= TX_WR_FLITS &&
3149		    txpkts->nflits + flits <= eq->avail * 8 &&
3150		    txpkts->plen + m->m_pkthdr.len < 65536;
3151
3152		if (can_coalesce) {
3153			txpkts->npkt++;
3154			txpkts->nflits += flits;
3155			txpkts->plen += m->m_pkthdr.len;
3156
3157			txsd = &txq->sdesc[eq->pidx];
3158			txsd->credits++;
3159
3160			return (0);
3161		}
3162
3163		/*
3164		 * Couldn't coalesce m into txpkts.  The first order of business
3165		 * is to send txpkts on its way.  Then we'll revisit m.
3166		 */
3167		write_txpkts_wr(txq, txpkts);
3168	}
3169
3170	/*
3171	 * Check if we can start a new coalesced tx work request with m as
3172	 * the first packet in it.
3173	 */
3174
3175	KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
3176
3177	flits = TXPKTS_WR_HDR + sgl->nflits;
3178	can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3179	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
3180
3181	if (can_coalesce == 0)
3182		return (EINVAL);
3183
3184	/*
3185	 * Start a fresh coalesced tx WR with m as the first frame in it.
3186	 */
3187	txpkts->npkt = 1;
3188	txpkts->nflits = flits;
3189	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
3190	txpkts->plen = m->m_pkthdr.len;
3191
3192	txsd = &txq->sdesc[eq->pidx];
3193	txsd->credits = 1;
3194
3195	return (0);
3196}
3197
3198/*
3199 * Note that write_txpkts_wr can never run out of hardware descriptors (but
3200 * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
3201 * coalescing only if sufficient hardware descriptors are available.
3202 */
3203static void
3204write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
3205{
3206	struct sge_eq *eq = &txq->eq;
3207	struct fw_eth_tx_pkts_wr *wr;
3208	struct tx_sdesc *txsd;
3209	uint32_t ctrl;
3210	int ndesc;
3211
3212	TXQ_LOCK_ASSERT_OWNED(txq);
3213
3214	ndesc = howmany(txpkts->nflits, 8);
3215
3216	wr = (void *)&eq->desc[eq->pidx];
3217	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
3218	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
3219	if (eq->avail == ndesc) {
3220		if (!(eq->flags & EQ_CRFLUSHED)) {
3221			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3222			eq->flags |= EQ_CRFLUSHED;
3223		}
3224		eq->flags |= EQ_STALLED;
3225	}
3226	wr->equiq_to_len16 = htobe32(ctrl);
3227	wr->plen = htobe16(txpkts->plen);
3228	wr->npkt = txpkts->npkt;
3229	wr->r3 = wr->type = 0;
3230
3231	/* Everything else already written */
3232
3233	txsd = &txq->sdesc[eq->pidx];
3234	txsd->desc_used = ndesc;
3235
3236	KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__));
3237
3238	eq->pending += ndesc;
3239	eq->avail -= ndesc;
3240	eq->pidx += ndesc;
3241	if (eq->pidx >= eq->cap)
3242		eq->pidx -= eq->cap;
3243
3244	txq->txpkts_pkts += txpkts->npkt;
3245	txq->txpkts_wrs++;
3246	txpkts->npkt = 0;	/* emptied */
3247}
3248
3249static inline void
3250write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
3251    struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
3252{
3253	struct ulp_txpkt *ulpmc;
3254	struct ulptx_idata *ulpsc;
3255	struct cpl_tx_pkt_core *cpl;
3256	struct sge_eq *eq = &txq->eq;
3257	uintptr_t flitp, start, end;
3258	uint64_t ctrl;
3259	caddr_t dst;
3260
3261	KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
3262
3263	start = (uintptr_t)eq->desc;
3264	end = (uintptr_t)eq->spg;
3265
3266	/* Checksum offload */
3267	ctrl = 0;
3268	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3269		ctrl |= F_TXPKT_IPCSUM_DIS;
3270	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3271	    CSUM_TCP_IPV6 | CSUM_TSO)))
3272		ctrl |= F_TXPKT_L4CSUM_DIS;
3273	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3274	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3275		txq->txcsum++;	/* some hardware assistance provided */
3276
3277	/* VLAN tag insertion */
3278	if (m->m_flags & M_VLANTAG) {
3279		ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3280		txq->vlan_insertion++;
3281	}
3282
3283	/*
3284	 * The previous packet's SGL must have ended at a 16 byte boundary (this
3285	 * is required by the firmware/hardware).  It follows that flitp cannot
3286	 * wrap around between the ULPTX master command and ULPTX subcommand (8
3287	 * bytes each), and that it can not wrap around in the middle of the
3288	 * cpl_tx_pkt_core either.
3289	 */
3290	flitp = (uintptr_t)txpkts->flitp;
3291	KASSERT((flitp & 0xf) == 0,
3292	    ("%s: last SGL did not end at 16 byte boundary: %p",
3293	    __func__, txpkts->flitp));
3294
3295	/* ULP master command */
3296	ulpmc = (void *)flitp;
3297	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) |
3298	    V_ULP_TXPKT_FID(eq->iqid));
3299	ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
3300	    sizeof(*cpl) + 8 * sgl->nflits, 16));
3301
3302	/* ULP subcommand */
3303	ulpsc = (void *)(ulpmc + 1);
3304	ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
3305	    F_ULP_TX_SC_MORE);
3306	ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
3307
3308	flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
3309	if (flitp == end)
3310		flitp = start;
3311
3312	/* CPL_TX_PKT */
3313	cpl = (void *)flitp;
3314	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3315	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3316	cpl->pack = 0;
3317	cpl->len = htobe16(m->m_pkthdr.len);
3318	cpl->ctrl1 = htobe64(ctrl);
3319
3320	flitp += sizeof(*cpl);
3321	if (flitp == end)
3322		flitp = start;
3323
3324	/* SGL for this frame */
3325	dst = (caddr_t)flitp;
3326	txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
3327	txpkts->flitp = (void *)dst;
3328
3329	KASSERT(((uintptr_t)dst & 0xf) == 0,
3330	    ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
3331}
3332
3333/*
3334 * If the SGL ends on an address that is not 16 byte aligned, this function will
3335 * add a 0 filled flit at the end.  It returns 1 in that case.
3336 */
3337static int
3338write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
3339{
3340	__be64 *flitp, *end;
3341	struct ulptx_sgl *usgl;
3342	bus_dma_segment_t *seg;
3343	int i, padded;
3344
3345	KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
3346	    ("%s: bad SGL - nsegs=%d, nflits=%d",
3347	    __func__, sgl->nsegs, sgl->nflits));
3348
3349	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
3350	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
3351
3352	flitp = (__be64 *)(*to);
3353	end = flitp + sgl->nflits;
3354	seg = &sgl->seg[0];
3355	usgl = (void *)flitp;
3356
3357	/*
3358	 * We start at a 16 byte boundary somewhere inside the tx descriptor
3359	 * ring, so we're at least 16 bytes away from the status page.  There is
3360	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
3361	 */
3362
3363	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
3364	    V_ULPTX_NSGE(sgl->nsegs));
3365	usgl->len0 = htobe32(seg->ds_len);
3366	usgl->addr0 = htobe64(seg->ds_addr);
3367	seg++;
3368
3369	if ((uintptr_t)end <= (uintptr_t)eq->spg) {
3370
3371		/* Won't wrap around at all */
3372
3373		for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
3374			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
3375			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
3376		}
3377		if (i & 1)
3378			usgl->sge[i / 2].len[1] = htobe32(0);
3379	} else {
3380
3381		/* Will wrap somewhere in the rest of the SGL */
3382
3383		/* 2 flits already written, write the rest flit by flit */
3384		flitp = (void *)(usgl + 1);
3385		for (i = 0; i < sgl->nflits - 2; i++) {
3386			if ((uintptr_t)flitp == (uintptr_t)eq->spg)
3387				flitp = (void *)eq->desc;
3388			*flitp++ = get_flit(seg, sgl->nsegs - 1, i);
3389		}
3390		end = flitp;
3391	}
3392
3393	if ((uintptr_t)end & 0xf) {
3394		*(uint64_t *)end = 0;
3395		end++;
3396		padded = 1;
3397	} else
3398		padded = 0;
3399
3400	if ((uintptr_t)end == (uintptr_t)eq->spg)
3401		*to = (void *)eq->desc;
3402	else
3403		*to = (void *)end;
3404
3405	return (padded);
3406}
3407
3408static inline void
3409copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
3410{
3411	if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)eq->spg)) {
3412		bcopy(from, *to, len);
3413		(*to) += len;
3414	} else {
3415		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
3416
3417		bcopy(from, *to, portion);
3418		from += portion;
3419		portion = len - portion;	/* remaining */
3420		bcopy(from, (void *)eq->desc, portion);
3421		(*to) = (caddr_t)eq->desc + portion;
3422	}
3423}
3424
3425static inline void
3426ring_eq_db(struct adapter *sc, struct sge_eq *eq)
3427{
3428	u_int db, pending;
3429
3430	db = eq->doorbells;
3431	pending = eq->pending;
3432	if (pending > 1)
3433		clrbit(&db, DOORBELL_WRWC);
3434	eq->pending = 0;
3435	wmb();
3436
3437	switch (ffs(db) - 1) {
3438	case DOORBELL_UDB:
3439		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
3440		return;
3441
3442	case DOORBELL_WRWC: {
3443		volatile uint64_t *dst, *src;
3444		int i;
3445
3446		/*
3447		 * Queues whose 128B doorbell segment fits in the page do not
3448		 * use relative qid (udb_qid is always 0).  Only queues with
3449		 * doorbell segments can do WRWC.
3450		 */
3451		KASSERT(eq->udb_qid == 0 && pending == 1,
3452		    ("%s: inappropriate doorbell (0x%x, %d, %d) for eq %p",
3453		    __func__, eq->doorbells, pending, eq->pidx, eq));
3454
3455		dst = (volatile void *)((uintptr_t)eq->udb + UDBS_WR_OFFSET -
3456		    UDBS_DB_OFFSET);
3457		i = eq->pidx ? eq->pidx - 1 : eq->cap - 1;
3458		src = (void *)&eq->desc[i];
3459		while (src != (void *)&eq->desc[i + 1])
3460			*dst++ = *src++;
3461		wmb();
3462		return;
3463	}
3464
3465	case DOORBELL_UDBWC:
3466		*eq->udb = htole32(V_QID(eq->udb_qid) | V_PIDX(pending));
3467		wmb();
3468		return;
3469
3470	case DOORBELL_KDB:
3471		t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
3472		    V_QID(eq->cntxt_id) | V_PIDX(pending));
3473		return;
3474	}
3475}
3476
3477static inline int
3478reclaimable(struct sge_eq *eq)
3479{
3480	unsigned int cidx;
3481
3482	cidx = eq->spg->cidx;	/* stable snapshot */
3483	cidx = be16toh(cidx);
3484
3485	if (cidx >= eq->cidx)
3486		return (cidx - eq->cidx);
3487	else
3488		return (cidx + eq->cap - eq->cidx);
3489}
3490
3491/*
3492 * There are "can_reclaim" tx descriptors ready to be reclaimed.  Reclaim as
3493 * many as possible but stop when there are around "n" mbufs to free.
3494 *
3495 * The actual number reclaimed is provided as the return value.
3496 */
3497static int
3498reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n)
3499{
3500	struct tx_sdesc *txsd;
3501	struct tx_maps *txmaps;
3502	struct tx_map *txm;
3503	unsigned int reclaimed, maps;
3504	struct sge_eq *eq = &txq->eq;
3505
3506	TXQ_LOCK_ASSERT_OWNED(txq);
3507
3508	if (can_reclaim == 0)
3509		can_reclaim = reclaimable(eq);
3510
3511	maps = reclaimed = 0;
3512	while (can_reclaim && maps < n) {
3513		int ndesc;
3514
3515		txsd = &txq->sdesc[eq->cidx];
3516		ndesc = txsd->desc_used;
3517
3518		/* Firmware doesn't return "partial" credits. */
3519		KASSERT(can_reclaim >= ndesc,
3520		    ("%s: unexpected number of credits: %d, %d",
3521		    __func__, can_reclaim, ndesc));
3522
3523		maps += txsd->credits;
3524
3525		reclaimed += ndesc;
3526		can_reclaim -= ndesc;
3527
3528		eq->cidx += ndesc;
3529		if (__predict_false(eq->cidx >= eq->cap))
3530			eq->cidx -= eq->cap;
3531	}
3532
3533	txmaps = &txq->txmaps;
3534	txm = &txmaps->maps[txmaps->map_cidx];
3535	if (maps)
3536		prefetch(txm->m);
3537
3538	eq->avail += reclaimed;
3539	KASSERT(eq->avail < eq->cap,	/* avail tops out at (cap - 1) */
3540	    ("%s: too many descriptors available", __func__));
3541
3542	txmaps->map_avail += maps;
3543	KASSERT(txmaps->map_avail <= txmaps->map_total,
3544	    ("%s: too many maps available", __func__));
3545
3546	while (maps--) {
3547		struct tx_map *next;
3548
3549		next = txm + 1;
3550		if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total))
3551			next = txmaps->maps;
3552		prefetch(next->m);
3553
3554		bus_dmamap_unload(txq->tx_tag, txm->map);
3555		m_freem(txm->m);
3556		txm->m = NULL;
3557
3558		txm = next;
3559		if (__predict_false(++txmaps->map_cidx == txmaps->map_total))
3560			txmaps->map_cidx = 0;
3561	}
3562
3563	return (reclaimed);
3564}
3565
3566static void
3567write_eqflush_wr(struct sge_eq *eq)
3568{
3569	struct fw_eq_flush_wr *wr;
3570
3571	EQ_LOCK_ASSERT_OWNED(eq);
3572	KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
3573	KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__));
3574
3575	wr = (void *)&eq->desc[eq->pidx];
3576	bzero(wr, sizeof(*wr));
3577	wr->opcode = FW_EQ_FLUSH_WR;
3578	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
3579	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3580
3581	eq->flags |= (EQ_CRFLUSHED | EQ_STALLED);
3582	eq->pending++;
3583	eq->avail--;
3584	if (++eq->pidx == eq->cap)
3585		eq->pidx = 0;
3586}
3587
3588static __be64
3589get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
3590{
3591	int i = (idx / 3) * 2;
3592
3593	switch (idx % 3) {
3594	case 0: {
3595		__be64 rc;
3596
3597		rc = htobe32(sgl[i].ds_len);
3598		if (i + 1 < nsegs)
3599			rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
3600
3601		return (rc);
3602	}
3603	case 1:
3604		return htobe64(sgl[i].ds_addr);
3605	case 2:
3606		return htobe64(sgl[i + 1].ds_addr);
3607	}
3608
3609	return (0);
3610}
3611
3612static void
3613set_fl_tag_idx(struct sge_fl *fl, int bufsize)
3614{
3615	int i;
3616
3617	for (i = 0; i < FL_BUF_SIZES - 1; i++) {
3618		if (FL_BUF_SIZE(i) >= bufsize)
3619			break;
3620	}
3621
3622	fl->tag_idx = i;
3623}
3624
3625static void
3626add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
3627{
3628	mtx_lock(&sc->sfl_lock);
3629	FL_LOCK(fl);
3630	if ((fl->flags & FL_DOOMED) == 0) {
3631		fl->flags |= FL_STARVING;
3632		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
3633		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
3634	}
3635	FL_UNLOCK(fl);
3636	mtx_unlock(&sc->sfl_lock);
3637}
3638
3639static int
3640handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
3641    struct mbuf *m)
3642{
3643	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
3644	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
3645	struct adapter *sc = iq->adapter;
3646	struct sge *s = &sc->sge;
3647	struct sge_eq *eq;
3648
3649	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
3650	    rss->opcode));
3651
3652	eq = s->eqmap[qid - s->eq_start];
3653	EQ_LOCK(eq);
3654	KASSERT(eq->flags & EQ_CRFLUSHED,
3655	    ("%s: unsolicited egress update", __func__));
3656	eq->flags &= ~EQ_CRFLUSHED;
3657	eq->egr_update++;
3658
3659	if (__predict_false(eq->flags & EQ_DOOMED))
3660		wakeup_one(eq);
3661	else if (eq->flags & EQ_STALLED && can_resume_tx(eq))
3662		taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task);
3663	EQ_UNLOCK(eq);
3664
3665	return (0);
3666}
3667
3668/* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
3669CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
3670    offsetof(struct cpl_fw6_msg, data));
3671
3672static int
3673handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
3674{
3675	struct adapter *sc = iq->adapter;
3676	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
3677
3678	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
3679	    rss->opcode));
3680
3681	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
3682		const struct rss_header *rss2;
3683
3684		rss2 = (const struct rss_header *)&cpl->data[0];
3685		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
3686	}
3687
3688	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
3689}
3690
3691static int
3692sysctl_uint16(SYSCTL_HANDLER_ARGS)
3693{
3694	uint16_t *id = arg1;
3695	int i = *id;
3696
3697	return sysctl_handle_int(oidp, &i, 0, req);
3698}
3699