t4_sge.c revision 247291
1/*-
2 * Copyright (c) 2011 Chelsio Communications, Inc.
3 * All rights reserved.
4 * Written by: Navdeep Parhar <np@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/cxgbe/t4_sge.c 247291 2013-02-26 00:27:27Z np $");
30
31#include "opt_inet.h"
32#include "opt_inet6.h"
33
34#include <sys/types.h>
35#include <sys/mbuf.h>
36#include <sys/socket.h>
37#include <sys/kernel.h>
38#include <sys/kdb.h>
39#include <sys/malloc.h>
40#include <sys/queue.h>
41#include <sys/taskqueue.h>
42#include <sys/sysctl.h>
43#include <sys/smp.h>
44#include <net/bpf.h>
45#include <net/ethernet.h>
46#include <net/if.h>
47#include <net/if_vlan_var.h>
48#include <netinet/in.h>
49#include <netinet/ip.h>
50#include <netinet/ip6.h>
51#include <netinet/tcp.h>
52
53#include "common/common.h"
54#include "common/t4_regs.h"
55#include "common/t4_regs_values.h"
56#include "common/t4_msg.h"
57
58struct fl_buf_info {
59	int size;
60	int type;
61	uma_zone_t zone;
62};
63
64/* Filled up by t4_sge_modload */
65static struct fl_buf_info fl_buf_info[FL_BUF_SIZES];
66
67#define FL_BUF_SIZE(x)	(fl_buf_info[x].size)
68#define FL_BUF_TYPE(x)	(fl_buf_info[x].type)
69#define FL_BUF_ZONE(x)	(fl_buf_info[x].zone)
70
71/*
72 * Ethernet frames are DMA'd at this byte offset into the freelist buffer.
73 * 0-7 are valid values.
74 */
75static int fl_pktshift = 2;
76TUNABLE_INT("hw.cxgbe.fl_pktshift", &fl_pktshift);
77
78/*
79 * Pad ethernet payload up to this boundary.
80 * -1: driver should figure out a good value.
81 *  Any power of 2, from 32 to 4096 (both inclusive) is a valid value.
82 */
83static int fl_pad = -1;
84TUNABLE_INT("hw.cxgbe.fl_pad", &fl_pad);
85
86/*
87 * Status page length.
88 * -1: driver should figure out a good value.
89 *  64 or 128 are the only other valid values.
90 */
91static int spg_len = -1;
92TUNABLE_INT("hw.cxgbe.spg_len", &spg_len);
93
94/*
95 * Congestion drops.
96 * -1: no congestion feedback (not recommended).
97 *  0: backpressure the channel instead of dropping packets right away.
98 *  1: no backpressure, drop packets for the congested queue immediately.
99 */
100static int cong_drop = 0;
101TUNABLE_INT("hw.cxgbe.cong_drop", &cong_drop);
102
103/* Used to track coalesced tx work request */
104struct txpkts {
105	uint64_t *flitp;	/* ptr to flit where next pkt should start */
106	uint8_t npkt;		/* # of packets in this work request */
107	uint8_t nflits;		/* # of flits used by this work request */
108	uint16_t plen;		/* total payload (sum of all packets) */
109};
110
111/* A packet's SGL.  This + m_pkthdr has all info needed for tx */
112struct sgl {
113	int nsegs;		/* # of segments in the SGL, 0 means imm. tx */
114	int nflits;		/* # of flits needed for the SGL */
115	bus_dma_segment_t seg[TX_SGL_SEGS];
116};
117
118static int service_iq(struct sge_iq *, int);
119static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t,
120    int *);
121static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
122static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
123    int);
124static inline void init_fl(struct sge_fl *, int, int, char *);
125static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t,
126    char *);
127static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
128    bus_addr_t *, void **);
129static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
130    void *);
131static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
132    int, int);
133static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
134static int alloc_fwq(struct adapter *);
135static int free_fwq(struct adapter *);
136static int alloc_mgmtq(struct adapter *);
137static int free_mgmtq(struct adapter *);
138static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int,
139    struct sysctl_oid *);
140static int free_rxq(struct port_info *, struct sge_rxq *);
141#ifdef TCP_OFFLOAD
142static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int,
143    struct sysctl_oid *);
144static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *);
145#endif
146static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
147static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
148#ifdef TCP_OFFLOAD
149static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
150#endif
151static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *);
152static int free_eq(struct adapter *, struct sge_eq *);
153static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *,
154    struct sysctl_oid *);
155static int free_wrq(struct adapter *, struct sge_wrq *);
156static int alloc_txq(struct port_info *, struct sge_txq *, int,
157    struct sysctl_oid *);
158static int free_txq(struct port_info *, struct sge_txq *);
159static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
160static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **);
161static inline void iq_next(struct sge_iq *);
162static inline void ring_fl_db(struct adapter *, struct sge_fl *);
163static int refill_fl(struct adapter *, struct sge_fl *, int);
164static void refill_sfl(void *);
165static int alloc_fl_sdesc(struct sge_fl *);
166static void free_fl_sdesc(struct sge_fl *);
167static void set_fl_tag_idx(struct sge_fl *, int);
168static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
169
170static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
171static int free_pkt_sgl(struct sge_txq *, struct sgl *);
172static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
173    struct sgl *);
174static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
175    struct mbuf *, struct sgl *);
176static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
177static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
178    struct txpkts *, struct mbuf *, struct sgl *);
179static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
180static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
181static inline void ring_eq_db(struct adapter *, struct sge_eq *);
182static inline int reclaimable(struct sge_eq *);
183static int reclaim_tx_descs(struct sge_txq *, int, int);
184static void write_eqflush_wr(struct sge_eq *);
185static __be64 get_flit(bus_dma_segment_t *, int, int);
186static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
187    struct mbuf *);
188static int handle_fw_msg(struct sge_iq *, const struct rss_header *,
189    struct mbuf *);
190
191static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
192
193#if defined(__i386__) || defined(__amd64__)
194extern u_int cpu_clflush_line_size;
195#endif
196
197/*
198 * Called on MOD_LOAD.  Fills up fl_buf_info[] and validates/calculates the SGE
199 * tunables.
200 */
201void
202t4_sge_modload(void)
203{
204	int i;
205	int bufsize[FL_BUF_SIZES] = {
206		MCLBYTES,
207#if MJUMPAGESIZE != MCLBYTES
208		MJUMPAGESIZE,
209#endif
210		MJUM9BYTES,
211		MJUM16BYTES
212	};
213
214	for (i = 0; i < FL_BUF_SIZES; i++) {
215		FL_BUF_SIZE(i) = bufsize[i];
216		FL_BUF_TYPE(i) = m_gettype(bufsize[i]);
217		FL_BUF_ZONE(i) = m_getzone(bufsize[i]);
218	}
219
220	if (fl_pktshift < 0 || fl_pktshift > 7) {
221		printf("Invalid hw.cxgbe.fl_pktshift value (%d),"
222		    " using 2 instead.\n", fl_pktshift);
223		fl_pktshift = 2;
224	}
225
226	if (fl_pad < 32 || fl_pad > 4096 || !powerof2(fl_pad)) {
227		int pad;
228
229#if defined(__i386__) || defined(__amd64__)
230		pad = max(cpu_clflush_line_size, 32);
231#else
232		pad = max(CACHE_LINE_SIZE, 32);
233#endif
234		pad = min(pad, 4096);
235
236		if (fl_pad != -1) {
237			printf("Invalid hw.cxgbe.fl_pad value (%d),"
238			    " using %d instead.\n", fl_pad, pad);
239		}
240		fl_pad = pad;
241	}
242
243	if (spg_len != 64 && spg_len != 128) {
244		int len;
245
246#if defined(__i386__) || defined(__amd64__)
247		len = cpu_clflush_line_size > 64 ? 128 : 64;
248#else
249		len = 64;
250#endif
251		if (spg_len != -1) {
252			printf("Invalid hw.cxgbe.spg_len value (%d),"
253			    " using %d instead.\n", spg_len, len);
254		}
255		spg_len = len;
256	}
257
258	if (cong_drop < -1 || cong_drop > 1) {
259		printf("Invalid hw.cxgbe.cong_drop value (%d),"
260		    " using 0 instead.\n", cong_drop);
261		cong_drop = 0;
262	}
263}
264
265/**
266 *	t4_sge_init - initialize SGE
267 *	@sc: the adapter
268 *
269 *	Performs SGE initialization needed every time after a chip reset.
270 *	We do not initialize any of the queues here, instead the driver
271 *	top-level must request them individually.
272 */
273int
274t4_sge_init(struct adapter *sc)
275{
276	struct sge *s = &sc->sge;
277	int i, rc = 0;
278	uint32_t ctrl_mask, ctrl_val, hpsize, v;
279
280	ctrl_mask = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE |
281	    V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
282	    F_EGRSTATUSPAGESIZE;
283	ctrl_val = V_PKTSHIFT(fl_pktshift) | F_RXPKTCPLMODE |
284	    V_INGPADBOUNDARY(ilog2(fl_pad) - 5) |
285	    V_EGRSTATUSPAGESIZE(spg_len == 128);
286
287	hpsize = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
288	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
289	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
290	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
291	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
292	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
293	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
294	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
295
296	if (sc->flags & MASTER_PF) {
297		int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
298		int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
299
300		t4_set_reg_field(sc, A_SGE_CONTROL, ctrl_mask, ctrl_val);
301		t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, hpsize);
302		for (i = 0; i < FL_BUF_SIZES; i++) {
303			t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
304			    FL_BUF_SIZE(i));
305		}
306
307		t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD,
308		    V_THRESHOLD_0(intr_pktcount[0]) |
309		    V_THRESHOLD_1(intr_pktcount[1]) |
310		    V_THRESHOLD_2(intr_pktcount[2]) |
311		    V_THRESHOLD_3(intr_pktcount[3]));
312
313		t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1,
314		    V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
315		    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1])));
316		t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3,
317		    V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
318		    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3])));
319		t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5,
320		    V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
321		    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5])));
322
323		if (cong_drop == 0) {
324			t4_set_reg_field(sc, A_TP_PARA_REG3, F_TUNNELCNGDROP0 |
325			    F_TUNNELCNGDROP1 | F_TUNNELCNGDROP2 |
326			    F_TUNNELCNGDROP3, 0);
327		}
328	}
329
330	v = t4_read_reg(sc, A_SGE_CONTROL);
331	if ((v & ctrl_mask) != ctrl_val) {
332		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", v);
333		rc = EINVAL;
334	}
335
336	v = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE);
337	if (v != hpsize) {
338		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", v);
339		rc = EINVAL;
340	}
341
342	for (i = 0; i < FL_BUF_SIZES; i++) {
343		v = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
344		if (v != FL_BUF_SIZE(i)) {
345			device_printf(sc->dev,
346			    "invalid SGE_FL_BUFFER_SIZE[%d](0x%x)\n", i, v);
347			rc = EINVAL;
348		}
349	}
350
351	v = t4_read_reg(sc, A_SGE_CONM_CTRL);
352	s->fl_starve_threshold = G_EGRTHRESHOLD(v) * 2 + 1;
353
354	v = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD);
355	sc->sge.counter_val[0] = G_THRESHOLD_0(v);
356	sc->sge.counter_val[1] = G_THRESHOLD_1(v);
357	sc->sge.counter_val[2] = G_THRESHOLD_2(v);
358	sc->sge.counter_val[3] = G_THRESHOLD_3(v);
359
360	v = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1);
361	sc->sge.timer_val[0] = G_TIMERVALUE0(v) / core_ticks_per_usec(sc);
362	sc->sge.timer_val[1] = G_TIMERVALUE1(v) / core_ticks_per_usec(sc);
363	v = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3);
364	sc->sge.timer_val[2] = G_TIMERVALUE2(v) / core_ticks_per_usec(sc);
365	sc->sge.timer_val[3] = G_TIMERVALUE3(v) / core_ticks_per_usec(sc);
366	v = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5);
367	sc->sge.timer_val[4] = G_TIMERVALUE4(v) / core_ticks_per_usec(sc);
368	sc->sge.timer_val[5] = G_TIMERVALUE5(v) / core_ticks_per_usec(sc);
369
370	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_msg);
371	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_msg);
372	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
373	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
374
375	t4_register_fw_msg_handler(sc, FW6_TYPE_CMD_RPL, t4_handle_fw_rpl);
376
377	return (rc);
378}
379
380int
381t4_create_dma_tag(struct adapter *sc)
382{
383	int rc;
384
385	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
386	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
387	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
388	    NULL, &sc->dmat);
389	if (rc != 0) {
390		device_printf(sc->dev,
391		    "failed to create main DMA tag: %d\n", rc);
392	}
393
394	return (rc);
395}
396
397int
398t4_destroy_dma_tag(struct adapter *sc)
399{
400	if (sc->dmat)
401		bus_dma_tag_destroy(sc->dmat);
402
403	return (0);
404}
405
406/*
407 * Allocate and initialize the firmware event queue and the management queue.
408 *
409 * Returns errno on failure.  Resources allocated up to that point may still be
410 * allocated.  Caller is responsible for cleanup in case this function fails.
411 */
412int
413t4_setup_adapter_queues(struct adapter *sc)
414{
415	int rc;
416
417	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
418
419	sysctl_ctx_init(&sc->ctx);
420	sc->flags |= ADAP_SYSCTL_CTX;
421
422	/*
423	 * Firmware event queue
424	 */
425	rc = alloc_fwq(sc);
426	if (rc != 0)
427		return (rc);
428
429	/*
430	 * Management queue.  This is just a control queue that uses the fwq as
431	 * its associated iq.
432	 */
433	rc = alloc_mgmtq(sc);
434
435	return (rc);
436}
437
438/*
439 * Idempotent
440 */
441int
442t4_teardown_adapter_queues(struct adapter *sc)
443{
444
445	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
446
447	/* Do this before freeing the queue */
448	if (sc->flags & ADAP_SYSCTL_CTX) {
449		sysctl_ctx_free(&sc->ctx);
450		sc->flags &= ~ADAP_SYSCTL_CTX;
451	}
452
453	free_mgmtq(sc);
454	free_fwq(sc);
455
456	return (0);
457}
458
459static inline int
460first_vector(struct port_info *pi)
461{
462	struct adapter *sc = pi->adapter;
463	int rc = T4_EXTRA_INTR, i;
464
465	if (sc->intr_count == 1)
466		return (0);
467
468	for_each_port(sc, i) {
469		struct port_info *p = sc->port[i];
470
471		if (i == pi->port_id)
472			break;
473
474#ifdef TCP_OFFLOAD
475		if (sc->flags & INTR_DIRECT)
476			rc += p->nrxq + p->nofldrxq;
477		else
478			rc += max(p->nrxq, p->nofldrxq);
479#else
480		/*
481		 * Not compiled with offload support and intr_count > 1.  Only
482		 * NIC queues exist and they'd better be taking direct
483		 * interrupts.
484		 */
485		KASSERT(sc->flags & INTR_DIRECT,
486		    ("%s: intr_count %d, !INTR_DIRECT", __func__,
487		    sc->intr_count));
488
489		rc += p->nrxq;
490#endif
491	}
492
493	return (rc);
494}
495
496/*
497 * Given an arbitrary "index," come up with an iq that can be used by other
498 * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
499 * The iq returned is guaranteed to be something that takes direct interrupts.
500 */
501static struct sge_iq *
502port_intr_iq(struct port_info *pi, int idx)
503{
504	struct adapter *sc = pi->adapter;
505	struct sge *s = &sc->sge;
506	struct sge_iq *iq = NULL;
507
508	if (sc->intr_count == 1)
509		return (&sc->sge.fwq);
510
511#ifdef TCP_OFFLOAD
512	if (sc->flags & INTR_DIRECT) {
513		idx %= pi->nrxq + pi->nofldrxq;
514
515		if (idx >= pi->nrxq) {
516			idx -= pi->nrxq;
517			iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
518		} else
519			iq = &s->rxq[pi->first_rxq + idx].iq;
520
521	} else {
522		idx %= max(pi->nrxq, pi->nofldrxq);
523
524		if (pi->nrxq >= pi->nofldrxq)
525			iq = &s->rxq[pi->first_rxq + idx].iq;
526		else
527			iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
528	}
529#else
530	/*
531	 * Not compiled with offload support and intr_count > 1.  Only NIC
532	 * queues exist and they'd better be taking direct interrupts.
533	 */
534	KASSERT(sc->flags & INTR_DIRECT,
535	    ("%s: intr_count %d, !INTR_DIRECT", __func__, sc->intr_count));
536
537	idx %= pi->nrxq;
538	iq = &s->rxq[pi->first_rxq + idx].iq;
539#endif
540
541	KASSERT(iq->flags & IQ_INTR, ("%s: EDOOFUS", __func__));
542	return (iq);
543}
544
545static inline int
546mtu_to_bufsize(int mtu)
547{
548	int bufsize;
549
550	/* large enough for a frame even when VLAN extraction is disabled */
551	bufsize = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN + mtu;
552	bufsize = roundup(bufsize + fl_pktshift, fl_pad);
553
554	return (bufsize);
555}
556
557int
558t4_setup_port_queues(struct port_info *pi)
559{
560	int rc = 0, i, j, intr_idx, iqid;
561	struct sge_rxq *rxq;
562	struct sge_txq *txq;
563	struct sge_wrq *ctrlq;
564#ifdef TCP_OFFLOAD
565	struct sge_ofld_rxq *ofld_rxq;
566	struct sge_wrq *ofld_txq;
567	struct sysctl_oid *oid2 = NULL;
568#endif
569	char name[16];
570	struct adapter *sc = pi->adapter;
571	struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
572	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
573	int bufsize = mtu_to_bufsize(pi->ifp->if_mtu);
574
575	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq", CTLFLAG_RD,
576	    NULL, "rx queues");
577
578#ifdef TCP_OFFLOAD
579	if (is_offload(sc)) {
580		oid2 = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
581		    CTLFLAG_RD, NULL,
582		    "rx queues for offloaded TCP connections");
583	}
584#endif
585
586	/* Interrupt vector to start from (when using multiple vectors) */
587	intr_idx = first_vector(pi);
588
589	/*
590	 * First pass over all rx queues (NIC and TOE):
591	 * a) initialize iq and fl
592	 * b) allocate queue iff it will take direct interrupts.
593	 */
594	for_each_rxq(pi, i, rxq) {
595
596		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq,
597		    RX_IQ_ESIZE);
598
599		snprintf(name, sizeof(name), "%s rxq%d-fl",
600		    device_get_nameunit(pi->dev), i);
601		init_fl(&rxq->fl, pi->qsize_rxq / 8, bufsize, name);
602
603		if (sc->flags & INTR_DIRECT
604#ifdef TCP_OFFLOAD
605		    || (sc->intr_count > 1 && pi->nrxq >= pi->nofldrxq)
606#endif
607		   ) {
608			rxq->iq.flags |= IQ_INTR;
609			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
610			if (rc != 0)
611				goto done;
612			intr_idx++;
613		}
614	}
615
616#ifdef TCP_OFFLOAD
617	for_each_ofld_rxq(pi, i, ofld_rxq) {
618
619		init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
620		    pi->qsize_rxq, RX_IQ_ESIZE);
621
622		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
623		    device_get_nameunit(pi->dev), i);
624		init_fl(&ofld_rxq->fl, pi->qsize_rxq / 8, OFLD_BUF_SIZE, name);
625
626		if (sc->flags & INTR_DIRECT ||
627		    (sc->intr_count > 1 && pi->nofldrxq > pi->nrxq)) {
628			ofld_rxq->iq.flags |= IQ_INTR;
629			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2);
630			if (rc != 0)
631				goto done;
632			intr_idx++;
633		}
634	}
635#endif
636
637	/*
638	 * Second pass over all rx queues (NIC and TOE).  The queues forwarding
639	 * their interrupts are allocated now.
640	 */
641	j = 0;
642	for_each_rxq(pi, i, rxq) {
643		if (rxq->iq.flags & IQ_INTR)
644			continue;
645
646		intr_idx = port_intr_iq(pi, j)->abs_id;
647
648		rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
649		if (rc != 0)
650			goto done;
651		j++;
652	}
653
654#ifdef TCP_OFFLOAD
655	for_each_ofld_rxq(pi, i, ofld_rxq) {
656		if (ofld_rxq->iq.flags & IQ_INTR)
657			continue;
658
659		intr_idx = port_intr_iq(pi, j)->abs_id;
660
661		rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2);
662		if (rc != 0)
663			goto done;
664		j++;
665	}
666#endif
667
668	/*
669	 * Now the tx queues.  Only one pass needed.
670	 */
671	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
672	    NULL, "tx queues");
673	j = 0;
674	for_each_txq(pi, i, txq) {
675		uint16_t iqid;
676
677		iqid = port_intr_iq(pi, j)->cntxt_id;
678
679		snprintf(name, sizeof(name), "%s txq%d",
680		    device_get_nameunit(pi->dev), i);
681		init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid,
682		    name);
683
684		rc = alloc_txq(pi, txq, i, oid);
685		if (rc != 0)
686			goto done;
687		j++;
688	}
689
690#ifdef TCP_OFFLOAD
691	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq",
692	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
693	for_each_ofld_txq(pi, i, ofld_txq) {
694		uint16_t iqid;
695
696		iqid = port_intr_iq(pi, j)->cntxt_id;
697
698		snprintf(name, sizeof(name), "%s ofld_txq%d",
699		    device_get_nameunit(pi->dev), i);
700		init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan,
701		    iqid, name);
702
703		snprintf(name, sizeof(name), "%d", i);
704		oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
705		    name, CTLFLAG_RD, NULL, "offload tx queue");
706
707		rc = alloc_wrq(sc, pi, ofld_txq, oid2);
708		if (rc != 0)
709			goto done;
710		j++;
711	}
712#endif
713
714	/*
715	 * Finally, the control queue.
716	 */
717	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
718	    NULL, "ctrl queue");
719	ctrlq = &sc->sge.ctrlq[pi->port_id];
720	iqid = port_intr_iq(pi, 0)->cntxt_id;
721	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev));
722	init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name);
723	rc = alloc_wrq(sc, pi, ctrlq, oid);
724
725done:
726	if (rc)
727		t4_teardown_port_queues(pi);
728
729	return (rc);
730}
731
732/*
733 * Idempotent
734 */
735int
736t4_teardown_port_queues(struct port_info *pi)
737{
738	int i;
739	struct adapter *sc = pi->adapter;
740	struct sge_rxq *rxq;
741	struct sge_txq *txq;
742#ifdef TCP_OFFLOAD
743	struct sge_ofld_rxq *ofld_rxq;
744	struct sge_wrq *ofld_txq;
745#endif
746
747	/* Do this before freeing the queues */
748	if (pi->flags & PORT_SYSCTL_CTX) {
749		sysctl_ctx_free(&pi->ctx);
750		pi->flags &= ~PORT_SYSCTL_CTX;
751	}
752
753	/*
754	 * Take down all the tx queues first, as they reference the rx queues
755	 * (for egress updates, etc.).
756	 */
757
758	free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
759
760	for_each_txq(pi, i, txq) {
761		free_txq(pi, txq);
762	}
763
764#ifdef TCP_OFFLOAD
765	for_each_ofld_txq(pi, i, ofld_txq) {
766		free_wrq(sc, ofld_txq);
767	}
768#endif
769
770	/*
771	 * Then take down the rx queues that forward their interrupts, as they
772	 * reference other rx queues.
773	 */
774
775	for_each_rxq(pi, i, rxq) {
776		if ((rxq->iq.flags & IQ_INTR) == 0)
777			free_rxq(pi, rxq);
778	}
779
780#ifdef TCP_OFFLOAD
781	for_each_ofld_rxq(pi, i, ofld_rxq) {
782		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
783			free_ofld_rxq(pi, ofld_rxq);
784	}
785#endif
786
787	/*
788	 * Then take down the rx queues that take direct interrupts.
789	 */
790
791	for_each_rxq(pi, i, rxq) {
792		if (rxq->iq.flags & IQ_INTR)
793			free_rxq(pi, rxq);
794	}
795
796#ifdef TCP_OFFLOAD
797	for_each_ofld_rxq(pi, i, ofld_rxq) {
798		if (ofld_rxq->iq.flags & IQ_INTR)
799			free_ofld_rxq(pi, ofld_rxq);
800	}
801#endif
802
803	return (0);
804}
805
806/*
807 * Deals with errors and the firmware event queue.  All data rx queues forward
808 * their interrupt to the firmware event queue.
809 */
810void
811t4_intr_all(void *arg)
812{
813	struct adapter *sc = arg;
814	struct sge_iq *fwq = &sc->sge.fwq;
815
816	t4_intr_err(arg);
817	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
818		service_iq(fwq, 0);
819		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
820	}
821}
822
823/* Deals with error interrupts */
824void
825t4_intr_err(void *arg)
826{
827	struct adapter *sc = arg;
828
829	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
830	t4_slow_intr_handler(sc);
831}
832
833void
834t4_intr_evt(void *arg)
835{
836	struct sge_iq *iq = arg;
837
838	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
839		service_iq(iq, 0);
840		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
841	}
842}
843
844void
845t4_intr(void *arg)
846{
847	struct sge_iq *iq = arg;
848
849	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
850		service_iq(iq, 0);
851		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
852	}
853}
854
855/*
856 * Deals with anything and everything on the given ingress queue.
857 */
858static int
859service_iq(struct sge_iq *iq, int budget)
860{
861	struct sge_iq *q;
862	struct sge_rxq *rxq = iq_to_rxq(iq);	/* Use iff iq is part of rxq */
863	struct sge_fl *fl = &rxq->fl;		/* Use iff IQ_HAS_FL */
864	struct adapter *sc = iq->adapter;
865	struct rsp_ctrl *ctrl;
866	const struct rss_header *rss;
867	int ndescs = 0, limit, fl_bufs_used = 0;
868	int rsp_type;
869	uint32_t lq;
870	struct mbuf *m0;
871	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
872
873	limit = budget ? budget : iq->qsize / 8;
874
875	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
876
877	/*
878	 * We always come back and check the descriptor ring for new indirect
879	 * interrupts and other responses after running a single handler.
880	 */
881	for (;;) {
882		while (is_new_response(iq, &ctrl)) {
883
884			rmb();
885
886			m0 = NULL;
887			rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
888			lq = be32toh(ctrl->pldbuflen_qid);
889			rss = (const void *)iq->cdesc;
890
891			switch (rsp_type) {
892			case X_RSPD_TYPE_FLBUF:
893
894				KASSERT(iq->flags & IQ_HAS_FL,
895				    ("%s: data for an iq (%p) with no freelist",
896				    __func__, iq));
897
898				m0 = get_fl_payload(sc, fl, lq, &fl_bufs_used);
899#ifdef T4_PKT_TIMESTAMP
900				/*
901				 * 60 bit timestamp for the payload is
902				 * *(uint64_t *)m0->m_pktdat.  Note that it is
903				 * in the leading free-space in the mbuf.  The
904				 * kernel can clobber it during a pullup,
905				 * m_copymdata, etc.  You need to make sure that
906				 * the mbuf reaches you unmolested if you care
907				 * about the timestamp.
908				 */
909				*(uint64_t *)m0->m_pktdat =
910				    be64toh(ctrl->u.last_flit) &
911				    0xfffffffffffffff;
912#endif
913
914				/* fall through */
915
916			case X_RSPD_TYPE_CPL:
917				KASSERT(rss->opcode < NUM_CPL_CMDS,
918				    ("%s: bad opcode %02x.", __func__,
919				    rss->opcode));
920				sc->cpl_handler[rss->opcode](iq, rss, m0);
921				break;
922
923			case X_RSPD_TYPE_INTR:
924
925				/*
926				 * Interrupts should be forwarded only to queues
927				 * that are not forwarding their interrupts.
928				 * This means service_iq can recurse but only 1
929				 * level deep.
930				 */
931				KASSERT(budget == 0,
932				    ("%s: budget %u, rsp_type %u", __func__,
933				    budget, rsp_type));
934
935				q = sc->sge.iqmap[lq - sc->sge.iq_start];
936				if (atomic_cmpset_int(&q->state, IQS_IDLE,
937				    IQS_BUSY)) {
938					if (service_iq(q, q->qsize / 8) == 0) {
939						atomic_cmpset_int(&q->state,
940						    IQS_BUSY, IQS_IDLE);
941					} else {
942						STAILQ_INSERT_TAIL(&iql, q,
943						    link);
944					}
945				}
946				break;
947
948			default:
949				sc->an_handler(iq, ctrl);
950				break;
951			}
952
953			iq_next(iq);
954			if (++ndescs == limit) {
955				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
956				    V_CIDXINC(ndescs) |
957				    V_INGRESSQID(iq->cntxt_id) |
958				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
959				ndescs = 0;
960
961				if (fl_bufs_used > 0) {
962					FL_LOCK(fl);
963					fl->needed += fl_bufs_used;
964					refill_fl(sc, fl, fl->cap / 8);
965					FL_UNLOCK(fl);
966					fl_bufs_used = 0;
967				}
968
969				if (budget)
970					return (EINPROGRESS);
971			}
972		}
973
974		if (STAILQ_EMPTY(&iql))
975			break;
976
977		/*
978		 * Process the head only, and send it to the back of the list if
979		 * it's still not done.
980		 */
981		q = STAILQ_FIRST(&iql);
982		STAILQ_REMOVE_HEAD(&iql, link);
983		if (service_iq(q, q->qsize / 8) == 0)
984			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
985		else
986			STAILQ_INSERT_TAIL(&iql, q, link);
987	}
988
989#if defined(INET) || defined(INET6)
990	if (iq->flags & IQ_LRO_ENABLED) {
991		struct lro_ctrl *lro = &rxq->lro;
992		struct lro_entry *l;
993
994		while (!SLIST_EMPTY(&lro->lro_active)) {
995			l = SLIST_FIRST(&lro->lro_active);
996			SLIST_REMOVE_HEAD(&lro->lro_active, next);
997			tcp_lro_flush(lro, l);
998		}
999	}
1000#endif
1001
1002	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
1003	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
1004
1005	if (iq->flags & IQ_HAS_FL) {
1006		int starved;
1007
1008		FL_LOCK(fl);
1009		fl->needed += fl_bufs_used;
1010		starved = refill_fl(sc, fl, fl->cap / 4);
1011		FL_UNLOCK(fl);
1012		if (__predict_false(starved != 0))
1013			add_fl_to_sfl(sc, fl);
1014	}
1015
1016	return (0);
1017}
1018
1019static struct mbuf *
1020get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf,
1021    int *fl_bufs_used)
1022{
1023	struct mbuf *m0, *m;
1024	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
1025	unsigned int nbuf, len;
1026
1027	/*
1028	 * No assertion for the fl lock because we don't need it.  This routine
1029	 * is called only from the rx interrupt handler and it only updates
1030	 * fl->cidx.  (Contrast that with fl->pidx/fl->needed which could be
1031	 * updated in the rx interrupt handler or the starvation helper routine.
1032	 * That's why code that manipulates fl->pidx/fl->needed needs the fl
1033	 * lock but this routine does not).
1034	 */
1035
1036	if (__predict_false((len_newbuf & F_RSPD_NEWBUF) == 0))
1037		panic("%s: cannot handle packed frames", __func__);
1038	len = G_RSPD_LEN(len_newbuf);
1039
1040	m0 = sd->m;
1041	sd->m = NULL;	/* consumed */
1042
1043	bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, BUS_DMASYNC_POSTREAD);
1044	m_init(m0, NULL, 0, M_NOWAIT, MT_DATA, M_PKTHDR);
1045#ifdef T4_PKT_TIMESTAMP
1046	/* Leave room for a timestamp */
1047	m0->m_data += 8;
1048#endif
1049
1050	if (len < RX_COPY_THRESHOLD) {
1051		/* copy data to mbuf, buffer will be recycled */
1052		bcopy(sd->cl, mtod(m0, caddr_t), len);
1053		m0->m_len = len;
1054	} else {
1055		bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
1056		m_cljset(m0, sd->cl, FL_BUF_TYPE(sd->tag_idx));
1057		sd->cl = NULL;	/* consumed */
1058		m0->m_len = min(len, FL_BUF_SIZE(sd->tag_idx));
1059	}
1060	m0->m_pkthdr.len = len;
1061
1062	sd++;
1063	if (__predict_false(++fl->cidx == fl->cap)) {
1064		sd = fl->sdesc;
1065		fl->cidx = 0;
1066	}
1067
1068	m = m0;
1069	len -= m->m_len;
1070	nbuf = 1;	/* # of fl buffers used */
1071
1072	while (len > 0) {
1073		m->m_next = sd->m;
1074		sd->m = NULL;	/* consumed */
1075		m = m->m_next;
1076
1077		bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map,
1078		    BUS_DMASYNC_POSTREAD);
1079
1080		m_init(m, NULL, 0, M_NOWAIT, MT_DATA, 0);
1081		if (len <= MLEN) {
1082			bcopy(sd->cl, mtod(m, caddr_t), len);
1083			m->m_len = len;
1084		} else {
1085			bus_dmamap_unload(fl->tag[sd->tag_idx],
1086			    sd->map);
1087			m_cljset(m, sd->cl, FL_BUF_TYPE(sd->tag_idx));
1088			sd->cl = NULL;	/* consumed */
1089			m->m_len = min(len, FL_BUF_SIZE(sd->tag_idx));
1090		}
1091
1092		sd++;
1093		if (__predict_false(++fl->cidx == fl->cap)) {
1094			sd = fl->sdesc;
1095			fl->cidx = 0;
1096		}
1097
1098		len -= m->m_len;
1099		nbuf++;
1100	}
1101
1102	(*fl_bufs_used) += nbuf;
1103
1104	return (m0);
1105}
1106
1107static int
1108t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1109{
1110	struct sge_rxq *rxq = iq_to_rxq(iq);
1111	struct ifnet *ifp = rxq->ifp;
1112	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1113#if defined(INET) || defined(INET6)
1114	struct lro_ctrl *lro = &rxq->lro;
1115#endif
1116
1117	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1118	    rss->opcode));
1119
1120	m0->m_pkthdr.len -= fl_pktshift;
1121	m0->m_len -= fl_pktshift;
1122	m0->m_data += fl_pktshift;
1123
1124	m0->m_pkthdr.rcvif = ifp;
1125	m0->m_flags |= M_FLOWID;
1126	m0->m_pkthdr.flowid = rss->hash_val;
1127
1128	if (cpl->csum_calc && !cpl->err_vec) {
1129		if (ifp->if_capenable & IFCAP_RXCSUM &&
1130		    cpl->l2info & htobe32(F_RXF_IP)) {
1131			m0->m_pkthdr.csum_flags = (CSUM_IP_CHECKED |
1132			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1133			rxq->rxcsum++;
1134		} else if (ifp->if_capenable & IFCAP_RXCSUM_IPV6 &&
1135		    cpl->l2info & htobe32(F_RXF_IP6)) {
1136			m0->m_pkthdr.csum_flags = (CSUM_DATA_VALID_IPV6 |
1137			    CSUM_PSEUDO_HDR);
1138			rxq->rxcsum++;
1139		}
1140
1141		if (__predict_false(cpl->ip_frag))
1142			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1143		else
1144			m0->m_pkthdr.csum_data = 0xffff;
1145	}
1146
1147	if (cpl->vlan_ex) {
1148		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1149		m0->m_flags |= M_VLANTAG;
1150		rxq->vlan_extraction++;
1151	}
1152
1153#if defined(INET) || defined(INET6)
1154	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1155	    iq->flags & IQ_LRO_ENABLED &&
1156	    tcp_lro_rx(lro, m0, 0) == 0) {
1157		/* queued for LRO */
1158	} else
1159#endif
1160	ifp->if_input(ifp, m0);
1161
1162	return (0);
1163}
1164
1165/*
1166 * Doesn't fail.  Holds on to work requests it can't send right away.
1167 */
1168void
1169t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct wrqe *wr)
1170{
1171	struct sge_eq *eq = &wrq->eq;
1172	int can_reclaim;
1173	caddr_t dst;
1174
1175	TXQ_LOCK_ASSERT_OWNED(wrq);
1176#ifdef TCP_OFFLOAD
1177	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
1178	    (eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1179	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1180#else
1181	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1182	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1183#endif
1184
1185	if (__predict_true(wr != NULL))
1186		STAILQ_INSERT_TAIL(&wrq->wr_list, wr, link);
1187
1188	can_reclaim = reclaimable(eq);
1189	if (__predict_false(eq->flags & EQ_STALLED)) {
1190		if (can_reclaim < tx_resume_threshold(eq))
1191			return;
1192		eq->flags &= ~EQ_STALLED;
1193		eq->unstalled++;
1194	}
1195	eq->cidx += can_reclaim;
1196	eq->avail += can_reclaim;
1197	if (__predict_false(eq->cidx >= eq->cap))
1198		eq->cidx -= eq->cap;
1199
1200	while ((wr = STAILQ_FIRST(&wrq->wr_list)) != NULL) {
1201		int ndesc;
1202
1203		if (__predict_false(wr->wr_len < 0 ||
1204		    wr->wr_len > SGE_MAX_WR_LEN || (wr->wr_len & 0x7))) {
1205
1206#ifdef INVARIANTS
1207			panic("%s: work request with length %d", __func__,
1208			    wr->wr_len);
1209#endif
1210#ifdef KDB
1211			kdb_backtrace();
1212#endif
1213			log(LOG_ERR, "%s: %s work request with length %d",
1214			    device_get_nameunit(sc->dev), __func__, wr->wr_len);
1215			STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1216			free_wrqe(wr);
1217			continue;
1218		}
1219
1220		ndesc = howmany(wr->wr_len, EQ_ESIZE);
1221		if (eq->avail < ndesc) {
1222			wrq->no_desc++;
1223			break;
1224		}
1225
1226		dst = (void *)&eq->desc[eq->pidx];
1227		copy_to_txd(eq, wrtod(wr), &dst, wr->wr_len);
1228
1229		eq->pidx += ndesc;
1230		eq->avail -= ndesc;
1231		if (__predict_false(eq->pidx >= eq->cap))
1232			eq->pidx -= eq->cap;
1233
1234		eq->pending += ndesc;
1235		if (eq->pending > 16)
1236			ring_eq_db(sc, eq);
1237
1238		wrq->tx_wrs++;
1239		STAILQ_REMOVE_HEAD(&wrq->wr_list, link);
1240		free_wrqe(wr);
1241
1242		if (eq->avail < 8) {
1243			can_reclaim = reclaimable(eq);
1244			eq->cidx += can_reclaim;
1245			eq->avail += can_reclaim;
1246			if (__predict_false(eq->cidx >= eq->cap))
1247				eq->cidx -= eq->cap;
1248		}
1249	}
1250
1251	if (eq->pending)
1252		ring_eq_db(sc, eq);
1253
1254	if (wr != NULL) {
1255		eq->flags |= EQ_STALLED;
1256		if (callout_pending(&eq->tx_callout) == 0)
1257			callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1258	}
1259}
1260
1261/* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
1262#define TXPKTS_PKT_HDR ((\
1263    sizeof(struct ulp_txpkt) + \
1264    sizeof(struct ulptx_idata) + \
1265    sizeof(struct cpl_tx_pkt_core) \
1266    ) / 8)
1267
1268/* Header of a coalesced tx WR, before SGL of first packet (in flits) */
1269#define TXPKTS_WR_HDR (\
1270    sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
1271    TXPKTS_PKT_HDR)
1272
1273/* Header of a tx WR, before SGL of first packet (in flits) */
1274#define TXPKT_WR_HDR ((\
1275    sizeof(struct fw_eth_tx_pkt_wr) + \
1276    sizeof(struct cpl_tx_pkt_core) \
1277    ) / 8 )
1278
1279/* Header of a tx LSO WR, before SGL of first packet (in flits) */
1280#define TXPKT_LSO_WR_HDR ((\
1281    sizeof(struct fw_eth_tx_pkt_wr) + \
1282    sizeof(struct cpl_tx_pkt_lso_core) + \
1283    sizeof(struct cpl_tx_pkt_core) \
1284    ) / 8 )
1285
1286int
1287t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
1288{
1289	struct port_info *pi = (void *)ifp->if_softc;
1290	struct adapter *sc = pi->adapter;
1291	struct sge_eq *eq = &txq->eq;
1292	struct buf_ring *br = txq->br;
1293	struct mbuf *next;
1294	int rc, coalescing, can_reclaim;
1295	struct txpkts txpkts;
1296	struct sgl sgl;
1297
1298	TXQ_LOCK_ASSERT_OWNED(txq);
1299	KASSERT(m, ("%s: called with nothing to do.", __func__));
1300	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH,
1301	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1302
1303	prefetch(&eq->desc[eq->pidx]);
1304	prefetch(&txq->sdesc[eq->pidx]);
1305
1306	txpkts.npkt = 0;/* indicates there's nothing in txpkts */
1307	coalescing = 0;
1308
1309	can_reclaim = reclaimable(eq);
1310	if (__predict_false(eq->flags & EQ_STALLED)) {
1311		if (can_reclaim < tx_resume_threshold(eq)) {
1312			txq->m = m;
1313			return (0);
1314		}
1315		eq->flags &= ~EQ_STALLED;
1316		eq->unstalled++;
1317	}
1318
1319	if (__predict_false(eq->flags & EQ_DOOMED)) {
1320		m_freem(m);
1321		while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
1322			m_freem(m);
1323		return (ENETDOWN);
1324	}
1325
1326	if (eq->avail < 8 && can_reclaim)
1327		reclaim_tx_descs(txq, can_reclaim, 32);
1328
1329	for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
1330
1331		if (eq->avail < 8)
1332			break;
1333
1334		next = m->m_nextpkt;
1335		m->m_nextpkt = NULL;
1336
1337		if (next || buf_ring_peek(br))
1338			coalescing = 1;
1339
1340		rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
1341		if (rc != 0) {
1342			if (rc == ENOMEM) {
1343
1344				/* Short of resources, suspend tx */
1345
1346				m->m_nextpkt = next;
1347				break;
1348			}
1349
1350			/*
1351			 * Unrecoverable error for this packet, throw it away
1352			 * and move on to the next.  get_pkt_sgl may already
1353			 * have freed m (it will be NULL in that case and the
1354			 * m_freem here is still safe).
1355			 */
1356
1357			m_freem(m);
1358			continue;
1359		}
1360
1361		if (coalescing &&
1362		    add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
1363
1364			/* Successfully absorbed into txpkts */
1365
1366			write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
1367			goto doorbell;
1368		}
1369
1370		/*
1371		 * We weren't coalescing to begin with, or current frame could
1372		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
1373		 * given to it can't be coalesced).  Either way there should be
1374		 * nothing in txpkts.
1375		 */
1376		KASSERT(txpkts.npkt == 0,
1377		    ("%s: txpkts not empty: %d", __func__, txpkts.npkt));
1378
1379		/* We're sending out individual packets now */
1380		coalescing = 0;
1381
1382		if (eq->avail < 8)
1383			reclaim_tx_descs(txq, 0, 8);
1384		rc = write_txpkt_wr(pi, txq, m, &sgl);
1385		if (rc != 0) {
1386
1387			/* Short of hardware descriptors, suspend tx */
1388
1389			/*
1390			 * This is an unlikely but expensive failure.  We've
1391			 * done all the hard work (DMA mappings etc.) and now we
1392			 * can't send out the packet.  What's worse, we have to
1393			 * spend even more time freeing up everything in sgl.
1394			 */
1395			txq->no_desc++;
1396			free_pkt_sgl(txq, &sgl);
1397
1398			m->m_nextpkt = next;
1399			break;
1400		}
1401
1402		ETHER_BPF_MTAP(ifp, m);
1403		if (sgl.nsegs == 0)
1404			m_freem(m);
1405doorbell:
1406		if (eq->pending >= 64)
1407		    ring_eq_db(sc, eq);
1408
1409		can_reclaim = reclaimable(eq);
1410		if (can_reclaim >= 32)
1411			reclaim_tx_descs(txq, can_reclaim, 64);
1412	}
1413
1414	if (txpkts.npkt > 0)
1415		write_txpkts_wr(txq, &txpkts);
1416
1417	/*
1418	 * m not NULL means there was an error but we haven't thrown it away.
1419	 * This can happen when we're short of tx descriptors (no_desc) or maybe
1420	 * even DMA maps (no_dmamap).  Either way, a credit flush and reclaim
1421	 * will get things going again.
1422	 */
1423	if (m && !(eq->flags & EQ_CRFLUSHED)) {
1424		struct tx_sdesc *txsd = &txq->sdesc[eq->pidx];
1425
1426		/*
1427		 * If EQ_CRFLUSHED is not set then we know we have at least one
1428		 * available descriptor because any WR that reduces eq->avail to
1429		 * 0 also sets EQ_CRFLUSHED.
1430		 */
1431		KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__));
1432
1433		txsd->desc_used = 1;
1434		txsd->credits = 0;
1435		write_eqflush_wr(eq);
1436	}
1437	txq->m = m;
1438
1439	if (eq->pending)
1440		ring_eq_db(sc, eq);
1441
1442	reclaim_tx_descs(txq, 0, 128);
1443
1444	if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0)
1445		callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1446
1447	return (0);
1448}
1449
1450void
1451t4_update_fl_bufsize(struct ifnet *ifp)
1452{
1453	struct port_info *pi = ifp->if_softc;
1454	struct sge_rxq *rxq;
1455	struct sge_fl *fl;
1456	int i, bufsize = mtu_to_bufsize(ifp->if_mtu);
1457
1458	for_each_rxq(pi, i, rxq) {
1459		fl = &rxq->fl;
1460
1461		FL_LOCK(fl);
1462		set_fl_tag_idx(fl, bufsize);
1463		FL_UNLOCK(fl);
1464	}
1465}
1466
1467int
1468can_resume_tx(struct sge_eq *eq)
1469{
1470	return (reclaimable(eq) >= tx_resume_threshold(eq));
1471}
1472
1473static inline void
1474init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
1475    int qsize, int esize)
1476{
1477	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
1478	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
1479	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
1480	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
1481
1482	iq->flags = 0;
1483	iq->adapter = sc;
1484	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
1485	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
1486	if (pktc_idx >= 0) {
1487		iq->intr_params |= F_QINTR_CNT_EN;
1488		iq->intr_pktc_idx = pktc_idx;
1489	}
1490	iq->qsize = roundup(qsize, 16);		/* See FW_IQ_CMD/iqsize */
1491	iq->esize = max(esize, 16);		/* See FW_IQ_CMD/iqesize */
1492}
1493
1494static inline void
1495init_fl(struct sge_fl *fl, int qsize, int bufsize, char *name)
1496{
1497	fl->qsize = qsize;
1498	strlcpy(fl->lockname, name, sizeof(fl->lockname));
1499	set_fl_tag_idx(fl, bufsize);
1500}
1501
1502static inline void
1503init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan,
1504    uint16_t iqid, char *name)
1505{
1506	KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan));
1507	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
1508
1509	eq->flags = eqtype & EQ_TYPEMASK;
1510	eq->tx_chan = tx_chan;
1511	eq->iqid = iqid;
1512	eq->qsize = qsize;
1513	strlcpy(eq->lockname, name, sizeof(eq->lockname));
1514
1515	TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq);
1516	callout_init(&eq->tx_callout, CALLOUT_MPSAFE);
1517}
1518
1519static int
1520alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
1521    bus_dmamap_t *map, bus_addr_t *pa, void **va)
1522{
1523	int rc;
1524
1525	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
1526	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
1527	if (rc != 0) {
1528		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
1529		goto done;
1530	}
1531
1532	rc = bus_dmamem_alloc(*tag, va,
1533	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
1534	if (rc != 0) {
1535		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
1536		goto done;
1537	}
1538
1539	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
1540	if (rc != 0) {
1541		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
1542		goto done;
1543	}
1544done:
1545	if (rc)
1546		free_ring(sc, *tag, *map, *pa, *va);
1547
1548	return (rc);
1549}
1550
1551static int
1552free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
1553    bus_addr_t pa, void *va)
1554{
1555	if (pa)
1556		bus_dmamap_unload(tag, map);
1557	if (va)
1558		bus_dmamem_free(tag, va, map);
1559	if (tag)
1560		bus_dma_tag_destroy(tag);
1561
1562	return (0);
1563}
1564
1565/*
1566 * Allocates the ring for an ingress queue and an optional freelist.  If the
1567 * freelist is specified it will be allocated and then associated with the
1568 * ingress queue.
1569 *
1570 * Returns errno on failure.  Resources allocated up to that point may still be
1571 * allocated.  Caller is responsible for cleanup in case this function fails.
1572 *
1573 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
1574 * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
1575 * the abs_id of the ingress queue to which its interrupts should be forwarded.
1576 */
1577static int
1578alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
1579    int intr_idx, int cong)
1580{
1581	int rc, i, cntxt_id;
1582	size_t len;
1583	struct fw_iq_cmd c;
1584	struct adapter *sc = iq->adapter;
1585	__be32 v = 0;
1586
1587	len = iq->qsize * iq->esize;
1588	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
1589	    (void **)&iq->desc);
1590	if (rc != 0)
1591		return (rc);
1592
1593	bzero(&c, sizeof(c));
1594	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
1595	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
1596	    V_FW_IQ_CMD_VFN(0));
1597
1598	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
1599	    FW_LEN16(c));
1600
1601	/* Special handling for firmware event queue */
1602	if (iq == &sc->sge.fwq)
1603		v |= F_FW_IQ_CMD_IQASYNCH;
1604
1605	if (iq->flags & IQ_INTR) {
1606		KASSERT(intr_idx < sc->intr_count,
1607		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
1608	} else
1609		v |= F_FW_IQ_CMD_IQANDST;
1610	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
1611
1612	c.type_to_iqandstindex = htobe32(v |
1613	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1614	    V_FW_IQ_CMD_VIID(pi->viid) |
1615	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
1616	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
1617	    F_FW_IQ_CMD_IQGTSMODE |
1618	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
1619	    V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
1620	c.iqsize = htobe16(iq->qsize);
1621	c.iqaddr = htobe64(iq->ba);
1622	if (cong >= 0)
1623		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
1624
1625	if (fl) {
1626		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
1627
1628		for (i = 0; i < FL_BUF_SIZES; i++) {
1629
1630			/*
1631			 * A freelist buffer must be 16 byte aligned as the SGE
1632			 * uses the low 4 bits of the bus addr to figure out the
1633			 * buffer size.
1634			 */
1635			rc = bus_dma_tag_create(sc->dmat, 16, 0,
1636			    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1637			    FL_BUF_SIZE(i), 1, FL_BUF_SIZE(i), BUS_DMA_ALLOCNOW,
1638			    NULL, NULL, &fl->tag[i]);
1639			if (rc != 0) {
1640				device_printf(sc->dev,
1641				    "failed to create fl DMA tag[%d]: %d\n",
1642				    i, rc);
1643				return (rc);
1644			}
1645		}
1646		len = fl->qsize * RX_FL_ESIZE;
1647		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
1648		    &fl->ba, (void **)&fl->desc);
1649		if (rc)
1650			return (rc);
1651
1652		/* Allocate space for one software descriptor per buffer. */
1653		fl->cap = (fl->qsize - spg_len / RX_FL_ESIZE) * 8;
1654		FL_LOCK(fl);
1655		rc = alloc_fl_sdesc(fl);
1656		FL_UNLOCK(fl);
1657		if (rc != 0) {
1658			device_printf(sc->dev,
1659			    "failed to setup fl software descriptors: %d\n",
1660			    rc);
1661			return (rc);
1662		}
1663		fl->needed = fl->cap;
1664		fl->lowat = roundup(sc->sge.fl_starve_threshold, 8);
1665
1666		c.iqns_to_fl0congen |=
1667		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
1668			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
1669			F_FW_IQ_CMD_FL0PADEN);
1670		if (cong >= 0) {
1671			c.iqns_to_fl0congen |=
1672				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
1673				    F_FW_IQ_CMD_FL0CONGCIF |
1674				    F_FW_IQ_CMD_FL0CONGEN);
1675		}
1676		c.fl0dcaen_to_fl0cidxfthresh =
1677		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
1678			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
1679		c.fl0size = htobe16(fl->qsize);
1680		c.fl0addr = htobe64(fl->ba);
1681	}
1682
1683	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
1684	if (rc != 0) {
1685		device_printf(sc->dev,
1686		    "failed to create ingress queue: %d\n", rc);
1687		return (rc);
1688	}
1689
1690	iq->cdesc = iq->desc;
1691	iq->cidx = 0;
1692	iq->gen = 1;
1693	iq->intr_next = iq->intr_params;
1694	iq->cntxt_id = be16toh(c.iqid);
1695	iq->abs_id = be16toh(c.physiqid);
1696	iq->flags |= IQ_ALLOCATED;
1697
1698	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
1699	if (cntxt_id >= sc->sge.niq) {
1700		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
1701		    cntxt_id, sc->sge.niq - 1);
1702	}
1703	sc->sge.iqmap[cntxt_id] = iq;
1704
1705	if (fl) {
1706		fl->cntxt_id = be16toh(c.fl0id);
1707		fl->pidx = fl->cidx = 0;
1708
1709		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
1710		if (cntxt_id >= sc->sge.neq) {
1711			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
1712			    __func__, cntxt_id, sc->sge.neq - 1);
1713		}
1714		sc->sge.eqmap[cntxt_id] = (void *)fl;
1715
1716		FL_LOCK(fl);
1717		/* Enough to make sure the SGE doesn't think it's starved */
1718		refill_fl(sc, fl, fl->lowat);
1719		FL_UNLOCK(fl);
1720
1721		iq->flags |= IQ_HAS_FL;
1722	}
1723
1724	/* Enable IQ interrupts */
1725	atomic_store_rel_int(&iq->state, IQS_IDLE);
1726	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
1727	    V_INGRESSQID(iq->cntxt_id));
1728
1729	return (0);
1730}
1731
1732static int
1733free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
1734{
1735	int i, rc;
1736	struct adapter *sc = iq->adapter;
1737	device_t dev;
1738
1739	if (sc == NULL)
1740		return (0);	/* nothing to do */
1741
1742	dev = pi ? pi->dev : sc->dev;
1743
1744	if (iq->flags & IQ_ALLOCATED) {
1745		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
1746		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
1747		    fl ? fl->cntxt_id : 0xffff, 0xffff);
1748		if (rc != 0) {
1749			device_printf(dev,
1750			    "failed to free queue %p: %d\n", iq, rc);
1751			return (rc);
1752		}
1753		iq->flags &= ~IQ_ALLOCATED;
1754	}
1755
1756	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
1757
1758	bzero(iq, sizeof(*iq));
1759
1760	if (fl) {
1761		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
1762		    fl->desc);
1763
1764		if (fl->sdesc) {
1765			FL_LOCK(fl);
1766			free_fl_sdesc(fl);
1767			FL_UNLOCK(fl);
1768		}
1769
1770		if (mtx_initialized(&fl->fl_lock))
1771			mtx_destroy(&fl->fl_lock);
1772
1773		for (i = 0; i < FL_BUF_SIZES; i++) {
1774			if (fl->tag[i])
1775				bus_dma_tag_destroy(fl->tag[i]);
1776		}
1777
1778		bzero(fl, sizeof(*fl));
1779	}
1780
1781	return (0);
1782}
1783
1784static int
1785alloc_fwq(struct adapter *sc)
1786{
1787	int rc, intr_idx;
1788	struct sge_iq *fwq = &sc->sge.fwq;
1789	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
1790	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1791
1792	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE);
1793	fwq->flags |= IQ_INTR;	/* always */
1794	intr_idx = sc->intr_count > 1 ? 1 : 0;
1795	rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
1796	if (rc != 0) {
1797		device_printf(sc->dev,
1798		    "failed to create firmware event queue: %d\n", rc);
1799		return (rc);
1800	}
1801
1802	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
1803	    NULL, "firmware event queue");
1804	children = SYSCTL_CHILDREN(oid);
1805
1806	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
1807	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
1808	    "absolute id of the queue");
1809	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
1810	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
1811	    "SGE context id of the queue");
1812	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
1813	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
1814	    "consumer index");
1815
1816	return (0);
1817}
1818
1819static int
1820free_fwq(struct adapter *sc)
1821{
1822	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
1823}
1824
1825static int
1826alloc_mgmtq(struct adapter *sc)
1827{
1828	int rc;
1829	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
1830	char name[16];
1831	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
1832	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1833
1834	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
1835	    NULL, "management queue");
1836
1837	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
1838	init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
1839	    sc->sge.fwq.cntxt_id, name);
1840	rc = alloc_wrq(sc, NULL, mgmtq, oid);
1841	if (rc != 0) {
1842		device_printf(sc->dev,
1843		    "failed to create management queue: %d\n", rc);
1844		return (rc);
1845	}
1846
1847	return (0);
1848}
1849
1850static int
1851free_mgmtq(struct adapter *sc)
1852{
1853
1854	return free_wrq(sc, &sc->sge.mgmtq);
1855}
1856
1857static inline int
1858tnl_cong(struct port_info *pi)
1859{
1860
1861	if (cong_drop == -1)
1862		return (-1);
1863	else if (cong_drop == 1)
1864		return (0);
1865	else
1866		return (1 << pi->tx_chan);
1867}
1868
1869static int
1870alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx,
1871    struct sysctl_oid *oid)
1872{
1873	int rc;
1874	struct sysctl_oid_list *children;
1875	char name[16];
1876
1877	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, tnl_cong(pi));
1878	if (rc != 0)
1879		return (rc);
1880
1881	FL_LOCK(&rxq->fl);
1882	refill_fl(pi->adapter, &rxq->fl, rxq->fl.needed / 8);
1883	FL_UNLOCK(&rxq->fl);
1884
1885#if defined(INET) || defined(INET6)
1886	rc = tcp_lro_init(&rxq->lro);
1887	if (rc != 0)
1888		return (rc);
1889	rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
1890
1891	if (pi->ifp->if_capenable & IFCAP_LRO)
1892		rxq->iq.flags |= IQ_LRO_ENABLED;
1893#endif
1894	rxq->ifp = pi->ifp;
1895
1896	children = SYSCTL_CHILDREN(oid);
1897
1898	snprintf(name, sizeof(name), "%d", idx);
1899	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
1900	    NULL, "rx queue");
1901	children = SYSCTL_CHILDREN(oid);
1902
1903	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
1904	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
1905	    "absolute id of the queue");
1906	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
1907	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
1908	    "SGE context id of the queue");
1909	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
1910	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
1911	    "consumer index");
1912#if defined(INET) || defined(INET6)
1913	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
1914	    &rxq->lro.lro_queued, 0, NULL);
1915	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
1916	    &rxq->lro.lro_flushed, 0, NULL);
1917#endif
1918	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
1919	    &rxq->rxcsum, "# of times hardware assisted with checksum");
1920	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
1921	    CTLFLAG_RD, &rxq->vlan_extraction,
1922	    "# of times hardware extracted 802.1Q tag");
1923
1924	children = SYSCTL_CHILDREN(oid);
1925	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD,
1926	    NULL, "freelist");
1927	children = SYSCTL_CHILDREN(oid);
1928
1929	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
1930	    CTLTYPE_INT | CTLFLAG_RD, &rxq->fl.cntxt_id, 0, sysctl_uint16, "I",
1931	    "SGE context id of the queue");
1932	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
1933	    &rxq->fl.cidx, 0, "consumer index");
1934	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
1935	    &rxq->fl.pidx, 0, "producer index");
1936
1937	return (rc);
1938}
1939
1940static int
1941free_rxq(struct port_info *pi, struct sge_rxq *rxq)
1942{
1943	int rc;
1944
1945#if defined(INET) || defined(INET6)
1946	if (rxq->lro.ifp) {
1947		tcp_lro_free(&rxq->lro);
1948		rxq->lro.ifp = NULL;
1949	}
1950#endif
1951
1952	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
1953	if (rc == 0)
1954		bzero(rxq, sizeof(*rxq));
1955
1956	return (rc);
1957}
1958
1959#ifdef TCP_OFFLOAD
1960static int
1961alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
1962    int intr_idx, int idx, struct sysctl_oid *oid)
1963{
1964	int rc;
1965	struct sysctl_oid_list *children;
1966	char name[16];
1967
1968	rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
1969	    1 << pi->tx_chan);
1970	if (rc != 0)
1971		return (rc);
1972
1973	children = SYSCTL_CHILDREN(oid);
1974
1975	snprintf(name, sizeof(name), "%d", idx);
1976	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
1977	    NULL, "rx queue");
1978	children = SYSCTL_CHILDREN(oid);
1979
1980	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
1981	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
1982	    "I", "absolute id of the queue");
1983	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
1984	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
1985	    "I", "SGE context id of the queue");
1986	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
1987	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
1988	    "consumer index");
1989
1990	children = SYSCTL_CHILDREN(oid);
1991	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD,
1992	    NULL, "freelist");
1993	children = SYSCTL_CHILDREN(oid);
1994
1995	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
1996	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->fl.cntxt_id, 0, sysctl_uint16,
1997	    "I", "SGE context id of the queue");
1998	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
1999	    &ofld_rxq->fl.cidx, 0, "consumer index");
2000	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
2001	    &ofld_rxq->fl.pidx, 0, "producer index");
2002
2003	return (rc);
2004}
2005
2006static int
2007free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
2008{
2009	int rc;
2010
2011	rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
2012	if (rc == 0)
2013		bzero(ofld_rxq, sizeof(*ofld_rxq));
2014
2015	return (rc);
2016}
2017#endif
2018
2019static int
2020ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
2021{
2022	int rc, cntxt_id;
2023	struct fw_eq_ctrl_cmd c;
2024
2025	bzero(&c, sizeof(c));
2026
2027	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
2028	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
2029	    V_FW_EQ_CTRL_CMD_VFN(0));
2030	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
2031	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
2032	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */
2033	c.physeqid_pkd = htobe32(0);
2034	c.fetchszm_to_iqid =
2035	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2036		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
2037		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
2038	c.dcaen_to_eqsize =
2039	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2040		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2041		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2042		V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
2043	c.eqaddr = htobe64(eq->ba);
2044
2045	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2046	if (rc != 0) {
2047		device_printf(sc->dev,
2048		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
2049		return (rc);
2050	}
2051	eq->flags |= EQ_ALLOCATED;
2052
2053	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
2054	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2055	if (cntxt_id >= sc->sge.neq)
2056	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2057		cntxt_id, sc->sge.neq - 1);
2058	sc->sge.eqmap[cntxt_id] = eq;
2059
2060	return (rc);
2061}
2062
2063static int
2064eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2065{
2066	int rc, cntxt_id;
2067	struct fw_eq_eth_cmd c;
2068
2069	bzero(&c, sizeof(c));
2070
2071	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
2072	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
2073	    V_FW_EQ_ETH_CMD_VFN(0));
2074	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
2075	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2076	c.viid_pkd = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
2077	c.fetchszm_to_iqid =
2078	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2079		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
2080		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
2081	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2082		      V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2083		      V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2084		      V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
2085	c.eqaddr = htobe64(eq->ba);
2086
2087	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2088	if (rc != 0) {
2089		device_printf(pi->dev,
2090		    "failed to create Ethernet egress queue: %d\n", rc);
2091		return (rc);
2092	}
2093	eq->flags |= EQ_ALLOCATED;
2094
2095	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
2096	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2097	if (cntxt_id >= sc->sge.neq)
2098	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2099		cntxt_id, sc->sge.neq - 1);
2100	sc->sge.eqmap[cntxt_id] = eq;
2101
2102	return (rc);
2103}
2104
2105#ifdef TCP_OFFLOAD
2106static int
2107ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2108{
2109	int rc, cntxt_id;
2110	struct fw_eq_ofld_cmd c;
2111
2112	bzero(&c, sizeof(c));
2113
2114	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
2115	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
2116	    V_FW_EQ_OFLD_CMD_VFN(0));
2117	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
2118	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2119	c.fetchszm_to_iqid =
2120		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2121		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
2122		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
2123	c.dcaen_to_eqsize =
2124	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2125		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2126		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2127		V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
2128	c.eqaddr = htobe64(eq->ba);
2129
2130	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2131	if (rc != 0) {
2132		device_printf(pi->dev,
2133		    "failed to create egress queue for TCP offload: %d\n", rc);
2134		return (rc);
2135	}
2136	eq->flags |= EQ_ALLOCATED;
2137
2138	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
2139	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2140	if (cntxt_id >= sc->sge.neq)
2141	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2142		cntxt_id, sc->sge.neq - 1);
2143	sc->sge.eqmap[cntxt_id] = eq;
2144
2145	return (rc);
2146}
2147#endif
2148
2149static int
2150alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2151{
2152	int rc;
2153	size_t len;
2154
2155	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
2156
2157	len = eq->qsize * EQ_ESIZE;
2158	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
2159	    &eq->ba, (void **)&eq->desc);
2160	if (rc)
2161		return (rc);
2162
2163	eq->cap = eq->qsize - spg_len / EQ_ESIZE;
2164	eq->spg = (void *)&eq->desc[eq->cap];
2165	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
2166	eq->pidx = eq->cidx = 0;
2167
2168	switch (eq->flags & EQ_TYPEMASK) {
2169	case EQ_CTRL:
2170		rc = ctrl_eq_alloc(sc, eq);
2171		break;
2172
2173	case EQ_ETH:
2174		rc = eth_eq_alloc(sc, pi, eq);
2175		break;
2176
2177#ifdef TCP_OFFLOAD
2178	case EQ_OFLD:
2179		rc = ofld_eq_alloc(sc, pi, eq);
2180		break;
2181#endif
2182
2183	default:
2184		panic("%s: invalid eq type %d.", __func__,
2185		    eq->flags & EQ_TYPEMASK);
2186	}
2187	if (rc != 0) {
2188		device_printf(sc->dev,
2189		    "failed to allocate egress queue(%d): %d",
2190		    eq->flags & EQ_TYPEMASK, rc);
2191	}
2192
2193	eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus;
2194
2195	return (rc);
2196}
2197
2198static int
2199free_eq(struct adapter *sc, struct sge_eq *eq)
2200{
2201	int rc;
2202
2203	if (eq->flags & EQ_ALLOCATED) {
2204		switch (eq->flags & EQ_TYPEMASK) {
2205		case EQ_CTRL:
2206			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
2207			    eq->cntxt_id);
2208			break;
2209
2210		case EQ_ETH:
2211			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
2212			    eq->cntxt_id);
2213			break;
2214
2215#ifdef TCP_OFFLOAD
2216		case EQ_OFLD:
2217			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
2218			    eq->cntxt_id);
2219			break;
2220#endif
2221
2222		default:
2223			panic("%s: invalid eq type %d.", __func__,
2224			    eq->flags & EQ_TYPEMASK);
2225		}
2226		if (rc != 0) {
2227			device_printf(sc->dev,
2228			    "failed to free egress queue (%d): %d\n",
2229			    eq->flags & EQ_TYPEMASK, rc);
2230			return (rc);
2231		}
2232		eq->flags &= ~EQ_ALLOCATED;
2233	}
2234
2235	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
2236
2237	if (mtx_initialized(&eq->eq_lock))
2238		mtx_destroy(&eq->eq_lock);
2239
2240	bzero(eq, sizeof(*eq));
2241	return (0);
2242}
2243
2244static int
2245alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
2246    struct sysctl_oid *oid)
2247{
2248	int rc;
2249	struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx;
2250	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2251
2252	rc = alloc_eq(sc, pi, &wrq->eq);
2253	if (rc)
2254		return (rc);
2255
2256	wrq->adapter = sc;
2257	STAILQ_INIT(&wrq->wr_list);
2258
2259	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2260	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
2261	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
2262	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
2263	    "consumer index");
2264	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
2265	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
2266	    "producer index");
2267	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD,
2268	    &wrq->tx_wrs, "# of work requests");
2269	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
2270	    &wrq->no_desc, 0,
2271	    "# of times queue ran out of hardware descriptors");
2272	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
2273	    &wrq->eq.unstalled, 0, "# of times queue recovered after stall");
2274
2275
2276	return (rc);
2277}
2278
2279static int
2280free_wrq(struct adapter *sc, struct sge_wrq *wrq)
2281{
2282	int rc;
2283
2284	rc = free_eq(sc, &wrq->eq);
2285	if (rc)
2286		return (rc);
2287
2288	bzero(wrq, sizeof(*wrq));
2289	return (0);
2290}
2291
2292static int
2293alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx,
2294    struct sysctl_oid *oid)
2295{
2296	int rc;
2297	struct adapter *sc = pi->adapter;
2298	struct sge_eq *eq = &txq->eq;
2299	char name[16];
2300	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2301
2302	rc = alloc_eq(sc, pi, eq);
2303	if (rc)
2304		return (rc);
2305
2306	txq->ifp = pi->ifp;
2307
2308	txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
2309	    M_ZERO | M_WAITOK);
2310	txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
2311
2312	rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
2313	    BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
2314	    BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag);
2315	if (rc != 0) {
2316		device_printf(sc->dev,
2317		    "failed to create tx DMA tag: %d\n", rc);
2318		return (rc);
2319	}
2320
2321	/*
2322	 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
2323	 * limit for any WR).  txq->no_dmamap events shouldn't occur if maps is
2324	 * sized for the worst case.
2325	 */
2326	rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8,
2327	    M_WAITOK);
2328	if (rc != 0) {
2329		device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
2330		return (rc);
2331	}
2332
2333	snprintf(name, sizeof(name), "%d", idx);
2334	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2335	    NULL, "tx queue");
2336	children = SYSCTL_CHILDREN(oid);
2337
2338	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2339	    &eq->cntxt_id, 0, "SGE context id of the queue");
2340	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2341	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
2342	    "consumer index");
2343	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
2344	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
2345	    "producer index");
2346
2347	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
2348	    &txq->txcsum, "# of times hardware assisted with checksum");
2349	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
2350	    CTLFLAG_RD, &txq->vlan_insertion,
2351	    "# of times hardware inserted 802.1Q tag");
2352	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
2353	    &txq->tso_wrs, "# of TSO work requests");
2354	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
2355	    &txq->imm_wrs, "# of work requests with immediate data");
2356	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
2357	    &txq->sgl_wrs, "# of work requests with direct SGL");
2358	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
2359	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
2360	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
2361	    &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
2362	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
2363	    &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
2364
2365	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "br_drops", CTLFLAG_RD,
2366	    &txq->br->br_drops, "# of drops in the buf_ring for this queue");
2367	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
2368	    &txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
2369	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
2370	    &txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
2371	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
2372	    &eq->egr_update, 0, "egress update notifications from the SGE");
2373	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
2374	    &eq->unstalled, 0, "# of times txq recovered after stall");
2375
2376	return (rc);
2377}
2378
2379static int
2380free_txq(struct port_info *pi, struct sge_txq *txq)
2381{
2382	int rc;
2383	struct adapter *sc = pi->adapter;
2384	struct sge_eq *eq = &txq->eq;
2385
2386	rc = free_eq(sc, eq);
2387	if (rc)
2388		return (rc);
2389
2390	free(txq->sdesc, M_CXGBE);
2391
2392	if (txq->txmaps.maps)
2393		t4_free_tx_maps(&txq->txmaps, txq->tx_tag);
2394
2395	buf_ring_free(txq->br, M_CXGBE);
2396
2397	if (txq->tx_tag)
2398		bus_dma_tag_destroy(txq->tx_tag);
2399
2400	bzero(txq, sizeof(*txq));
2401	return (0);
2402}
2403
2404static void
2405oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2406{
2407	bus_addr_t *ba = arg;
2408
2409	KASSERT(nseg == 1,
2410	    ("%s meant for single segment mappings only.", __func__));
2411
2412	*ba = error ? 0 : segs->ds_addr;
2413}
2414
2415static inline bool
2416is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
2417{
2418	*ctrl = (void *)((uintptr_t)iq->cdesc +
2419	    (iq->esize - sizeof(struct rsp_ctrl)));
2420
2421	return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen);
2422}
2423
2424static inline void
2425iq_next(struct sge_iq *iq)
2426{
2427	iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
2428	if (__predict_false(++iq->cidx == iq->qsize - 1)) {
2429		iq->cidx = 0;
2430		iq->gen ^= 1;
2431		iq->cdesc = iq->desc;
2432	}
2433}
2434
2435#define FL_HW_IDX(x) ((x) >> 3)
2436static inline void
2437ring_fl_db(struct adapter *sc, struct sge_fl *fl)
2438{
2439	int ndesc = fl->pending / 8;
2440
2441	if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
2442		ndesc--;	/* hold back one credit */
2443
2444	if (ndesc <= 0)
2445		return;		/* nothing to do */
2446
2447	wmb();
2448
2449	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), F_DBPRIO |
2450	    V_QID(fl->cntxt_id) | V_PIDX(ndesc));
2451	fl->pending -= ndesc * 8;
2452}
2453
2454/*
2455 * Fill up the freelist by upto nbufs and maybe ring its doorbell.
2456 *
2457 * Returns non-zero to indicate that it should be added to the list of starving
2458 * freelists.
2459 */
2460static int
2461refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
2462{
2463	__be64 *d = &fl->desc[fl->pidx];
2464	struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
2465	bus_dma_tag_t tag;
2466	bus_addr_t pa;
2467	caddr_t cl;
2468	int rc;
2469
2470	FL_LOCK_ASSERT_OWNED(fl);
2471
2472	if (nbufs > fl->needed)
2473		nbufs = fl->needed;
2474
2475	while (nbufs--) {
2476
2477		if (sd->cl != NULL) {
2478
2479			/*
2480			 * This happens when a frame small enough to fit
2481			 * entirely in an mbuf was received in cl last time.
2482			 * We'd held on to cl and can reuse it now.  Note that
2483			 * we reuse a cluster of the old size if fl->tag_idx is
2484			 * no longer the same as sd->tag_idx.
2485			 */
2486
2487			KASSERT(*d == sd->ba_tag,
2488			    ("%s: recyling problem at pidx %d",
2489			    __func__, fl->pidx));
2490
2491			d++;
2492			goto recycled;
2493		}
2494
2495
2496		if (fl->tag_idx != sd->tag_idx) {
2497			bus_dmamap_t map;
2498			bus_dma_tag_t newtag = fl->tag[fl->tag_idx];
2499			bus_dma_tag_t oldtag = fl->tag[sd->tag_idx];
2500
2501			/*
2502			 * An MTU change can get us here.  Discard the old map
2503			 * which was created with the old tag, but only if
2504			 * we're able to get a new one.
2505			 */
2506			rc = bus_dmamap_create(newtag, 0, &map);
2507			if (rc == 0) {
2508				bus_dmamap_destroy(oldtag, sd->map);
2509				sd->map = map;
2510				sd->tag_idx = fl->tag_idx;
2511			}
2512		}
2513
2514		tag = fl->tag[sd->tag_idx];
2515
2516		cl = m_cljget(NULL, M_NOWAIT, FL_BUF_SIZE(sd->tag_idx));
2517		if (cl == NULL)
2518			break;
2519
2520		rc = bus_dmamap_load(tag, sd->map, cl, FL_BUF_SIZE(sd->tag_idx),
2521		    oneseg_dma_callback, &pa, 0);
2522		if (rc != 0 || pa == 0) {
2523			fl->dmamap_failed++;
2524			uma_zfree(FL_BUF_ZONE(sd->tag_idx), cl);
2525			break;
2526		}
2527
2528		sd->cl = cl;
2529		*d++ = htobe64(pa | sd->tag_idx);
2530
2531#ifdef INVARIANTS
2532		sd->ba_tag = htobe64(pa | sd->tag_idx);
2533#endif
2534
2535recycled:
2536		/* sd->m is never recycled, should always be NULL */
2537		KASSERT(sd->m == NULL, ("%s: stray mbuf", __func__));
2538
2539		sd->m = m_gethdr(M_NOWAIT, MT_NOINIT);
2540		if (sd->m == NULL)
2541			break;
2542
2543		fl->pending++;
2544		fl->needed--;
2545		sd++;
2546		if (++fl->pidx == fl->cap) {
2547			fl->pidx = 0;
2548			sd = fl->sdesc;
2549			d = fl->desc;
2550		}
2551	}
2552
2553	if (fl->pending >= 8)
2554		ring_fl_db(sc, fl);
2555
2556	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
2557}
2558
2559/*
2560 * Attempt to refill all starving freelists.
2561 */
2562static void
2563refill_sfl(void *arg)
2564{
2565	struct adapter *sc = arg;
2566	struct sge_fl *fl, *fl_temp;
2567
2568	mtx_lock(&sc->sfl_lock);
2569	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
2570		FL_LOCK(fl);
2571		refill_fl(sc, fl, 64);
2572		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
2573			TAILQ_REMOVE(&sc->sfl, fl, link);
2574			fl->flags &= ~FL_STARVING;
2575		}
2576		FL_UNLOCK(fl);
2577	}
2578
2579	if (!TAILQ_EMPTY(&sc->sfl))
2580		callout_schedule(&sc->sfl_callout, hz / 5);
2581	mtx_unlock(&sc->sfl_lock);
2582}
2583
2584static int
2585alloc_fl_sdesc(struct sge_fl *fl)
2586{
2587	struct fl_sdesc *sd;
2588	bus_dma_tag_t tag;
2589	int i, rc;
2590
2591	FL_LOCK_ASSERT_OWNED(fl);
2592
2593	fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE,
2594	    M_ZERO | M_WAITOK);
2595
2596	tag = fl->tag[fl->tag_idx];
2597	sd = fl->sdesc;
2598	for (i = 0; i < fl->cap; i++, sd++) {
2599
2600		sd->tag_idx = fl->tag_idx;
2601		rc = bus_dmamap_create(tag, 0, &sd->map);
2602		if (rc != 0)
2603			goto failed;
2604	}
2605
2606	return (0);
2607failed:
2608	while (--i >= 0) {
2609		sd--;
2610		bus_dmamap_destroy(tag, sd->map);
2611		if (sd->m) {
2612			m_init(sd->m, NULL, 0, M_NOWAIT, MT_DATA, 0);
2613			m_free(sd->m);
2614			sd->m = NULL;
2615		}
2616	}
2617	KASSERT(sd == fl->sdesc, ("%s: EDOOFUS", __func__));
2618
2619	free(fl->sdesc, M_CXGBE);
2620	fl->sdesc = NULL;
2621
2622	return (rc);
2623}
2624
2625static void
2626free_fl_sdesc(struct sge_fl *fl)
2627{
2628	struct fl_sdesc *sd;
2629	int i;
2630
2631	FL_LOCK_ASSERT_OWNED(fl);
2632
2633	sd = fl->sdesc;
2634	for (i = 0; i < fl->cap; i++, sd++) {
2635
2636		if (sd->m) {
2637			m_init(sd->m, NULL, 0, M_NOWAIT, MT_DATA, 0);
2638			m_free(sd->m);
2639			sd->m = NULL;
2640		}
2641
2642		if (sd->cl) {
2643			bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
2644			uma_zfree(FL_BUF_ZONE(sd->tag_idx), sd->cl);
2645			sd->cl = NULL;
2646		}
2647
2648		bus_dmamap_destroy(fl->tag[sd->tag_idx], sd->map);
2649	}
2650
2651	free(fl->sdesc, M_CXGBE);
2652	fl->sdesc = NULL;
2653}
2654
2655int
2656t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count,
2657    int flags)
2658{
2659	struct tx_map *txm;
2660	int i, rc;
2661
2662	txmaps->map_total = txmaps->map_avail = count;
2663	txmaps->map_cidx = txmaps->map_pidx = 0;
2664
2665	txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
2666	    M_ZERO | flags);
2667
2668	txm = txmaps->maps;
2669	for (i = 0; i < count; i++, txm++) {
2670		rc = bus_dmamap_create(tx_tag, 0, &txm->map);
2671		if (rc != 0)
2672			goto failed;
2673	}
2674
2675	return (0);
2676failed:
2677	while (--i >= 0) {
2678		txm--;
2679		bus_dmamap_destroy(tx_tag, txm->map);
2680	}
2681	KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__));
2682
2683	free(txmaps->maps, M_CXGBE);
2684	txmaps->maps = NULL;
2685
2686	return (rc);
2687}
2688
2689void
2690t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag)
2691{
2692	struct tx_map *txm;
2693	int i;
2694
2695	txm = txmaps->maps;
2696	for (i = 0; i < txmaps->map_total; i++, txm++) {
2697
2698		if (txm->m) {
2699			bus_dmamap_unload(tx_tag, txm->map);
2700			m_freem(txm->m);
2701			txm->m = NULL;
2702		}
2703
2704		bus_dmamap_destroy(tx_tag, txm->map);
2705	}
2706
2707	free(txmaps->maps, M_CXGBE);
2708	txmaps->maps = NULL;
2709}
2710
2711/*
2712 * We'll do immediate data tx for non-TSO, but only when not coalescing.  We're
2713 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
2714 * of immediate data.
2715 */
2716#define IMM_LEN ( \
2717      2 * EQ_ESIZE \
2718    - sizeof(struct fw_eth_tx_pkt_wr) \
2719    - sizeof(struct cpl_tx_pkt_core))
2720
2721/*
2722 * Returns non-zero on failure, no need to cleanup anything in that case.
2723 *
2724 * Note 1: We always try to defrag the mbuf if required and return EFBIG only
2725 * if the resulting chain still won't fit in a tx descriptor.
2726 *
2727 * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
2728 * does not have the TCP header in it.
2729 */
2730static int
2731get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
2732    int sgl_only)
2733{
2734	struct mbuf *m = *fp;
2735	struct tx_maps *txmaps;
2736	struct tx_map *txm;
2737	int rc, defragged = 0, n;
2738
2739	TXQ_LOCK_ASSERT_OWNED(txq);
2740
2741	if (m->m_pkthdr.tso_segsz)
2742		sgl_only = 1;	/* Do not allow immediate data with LSO */
2743
2744start:	sgl->nsegs = 0;
2745
2746	if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
2747		return (0);	/* nsegs = 0 tells caller to use imm. tx */
2748
2749	txmaps = &txq->txmaps;
2750	if (txmaps->map_avail == 0) {
2751		txq->no_dmamap++;
2752		return (ENOMEM);
2753	}
2754	txm = &txmaps->maps[txmaps->map_pidx];
2755
2756	if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
2757		*fp = m_pullup(m, 50);
2758		m = *fp;
2759		if (m == NULL)
2760			return (ENOBUFS);
2761	}
2762
2763	rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg,
2764	    &sgl->nsegs, BUS_DMA_NOWAIT);
2765	if (rc == EFBIG && defragged == 0) {
2766		m = m_defrag(m, M_NOWAIT);
2767		if (m == NULL)
2768			return (EFBIG);
2769
2770		defragged = 1;
2771		*fp = m;
2772		goto start;
2773	}
2774	if (rc != 0)
2775		return (rc);
2776
2777	txm->m = m;
2778	txmaps->map_avail--;
2779	if (++txmaps->map_pidx == txmaps->map_total)
2780		txmaps->map_pidx = 0;
2781
2782	KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
2783	    ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
2784
2785	/*
2786	 * Store the # of flits required to hold this frame's SGL in nflits.  An
2787	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
2788	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
2789	 * then len1 must be set to 0.
2790	 */
2791	n = sgl->nsegs - 1;
2792	sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
2793
2794	return (0);
2795}
2796
2797
2798/*
2799 * Releases all the txq resources used up in the specified sgl.
2800 */
2801static int
2802free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
2803{
2804	struct tx_maps *txmaps;
2805	struct tx_map *txm;
2806
2807	TXQ_LOCK_ASSERT_OWNED(txq);
2808
2809	if (sgl->nsegs == 0)
2810		return (0);	/* didn't use any map */
2811
2812	txmaps = &txq->txmaps;
2813
2814	/* 1 pkt uses exactly 1 map, back it out */
2815
2816	txmaps->map_avail++;
2817	if (txmaps->map_pidx > 0)
2818		txmaps->map_pidx--;
2819	else
2820		txmaps->map_pidx = txmaps->map_total - 1;
2821
2822	txm = &txmaps->maps[txmaps->map_pidx];
2823	bus_dmamap_unload(txq->tx_tag, txm->map);
2824	txm->m = NULL;
2825
2826	return (0);
2827}
2828
2829static int
2830write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
2831    struct sgl *sgl)
2832{
2833	struct sge_eq *eq = &txq->eq;
2834	struct fw_eth_tx_pkt_wr *wr;
2835	struct cpl_tx_pkt_core *cpl;
2836	uint32_t ctrl;	/* used in many unrelated places */
2837	uint64_t ctrl1;
2838	int nflits, ndesc, pktlen;
2839	struct tx_sdesc *txsd;
2840	caddr_t dst;
2841
2842	TXQ_LOCK_ASSERT_OWNED(txq);
2843
2844	pktlen = m->m_pkthdr.len;
2845
2846	/*
2847	 * Do we have enough flits to send this frame out?
2848	 */
2849	ctrl = sizeof(struct cpl_tx_pkt_core);
2850	if (m->m_pkthdr.tso_segsz) {
2851		nflits = TXPKT_LSO_WR_HDR;
2852		ctrl += sizeof(struct cpl_tx_pkt_lso_core);
2853	} else
2854		nflits = TXPKT_WR_HDR;
2855	if (sgl->nsegs > 0)
2856		nflits += sgl->nflits;
2857	else {
2858		nflits += howmany(pktlen, 8);
2859		ctrl += pktlen;
2860	}
2861	ndesc = howmany(nflits, 8);
2862	if (ndesc > eq->avail)
2863		return (ENOMEM);
2864
2865	/* Firmware work request header */
2866	wr = (void *)&eq->desc[eq->pidx];
2867	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
2868	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
2869	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
2870	if (eq->avail == ndesc) {
2871		if (!(eq->flags & EQ_CRFLUSHED)) {
2872			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2873			eq->flags |= EQ_CRFLUSHED;
2874		}
2875		eq->flags |= EQ_STALLED;
2876	}
2877
2878	wr->equiq_to_len16 = htobe32(ctrl);
2879	wr->r3 = 0;
2880
2881	if (m->m_pkthdr.tso_segsz) {
2882		struct cpl_tx_pkt_lso_core *lso = (void *)(wr + 1);
2883		struct ether_header *eh;
2884		void *l3hdr;
2885#if defined(INET) || defined(INET6)
2886		struct tcphdr *tcp;
2887#endif
2888		uint16_t eh_type;
2889
2890		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
2891		    F_LSO_LAST_SLICE;
2892
2893		eh = mtod(m, struct ether_header *);
2894		eh_type = ntohs(eh->ether_type);
2895		if (eh_type == ETHERTYPE_VLAN) {
2896			struct ether_vlan_header *evh = (void *)eh;
2897
2898			ctrl |= V_LSO_ETHHDR_LEN(1);
2899			l3hdr = evh + 1;
2900			eh_type = ntohs(evh->evl_proto);
2901		} else
2902			l3hdr = eh + 1;
2903
2904		switch (eh_type) {
2905#ifdef INET6
2906		case ETHERTYPE_IPV6:
2907		{
2908			struct ip6_hdr *ip6 = l3hdr;
2909
2910			/*
2911			 * XXX-BZ For now we do not pretend to support
2912			 * IPv6 extension headers.
2913			 */
2914			KASSERT(ip6->ip6_nxt == IPPROTO_TCP, ("%s: CSUM_TSO "
2915			    "with ip6_nxt != TCP: %u", __func__, ip6->ip6_nxt));
2916			tcp = (struct tcphdr *)(ip6 + 1);
2917			ctrl |= F_LSO_IPV6;
2918			ctrl |= V_LSO_IPHDR_LEN(sizeof(*ip6) >> 2) |
2919			    V_LSO_TCPHDR_LEN(tcp->th_off);
2920			break;
2921		}
2922#endif
2923#ifdef INET
2924		case ETHERTYPE_IP:
2925		{
2926			struct ip *ip = l3hdr;
2927
2928			tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
2929			ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
2930			    V_LSO_TCPHDR_LEN(tcp->th_off);
2931			break;
2932		}
2933#endif
2934		default:
2935			panic("%s: CSUM_TSO but no supported IP version "
2936			    "(0x%04x)", __func__, eh_type);
2937		}
2938
2939		lso->lso_ctrl = htobe32(ctrl);
2940		lso->ipid_ofst = htobe16(0);
2941		lso->mss = htobe16(m->m_pkthdr.tso_segsz);
2942		lso->seqno_offset = htobe32(0);
2943		lso->len = htobe32(pktlen);
2944
2945		cpl = (void *)(lso + 1);
2946
2947		txq->tso_wrs++;
2948	} else
2949		cpl = (void *)(wr + 1);
2950
2951	/* Checksum offload */
2952	ctrl1 = 0;
2953	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
2954		ctrl1 |= F_TXPKT_IPCSUM_DIS;
2955	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
2956	    CSUM_TCP_IPV6 | CSUM_TSO)))
2957		ctrl1 |= F_TXPKT_L4CSUM_DIS;
2958	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
2959	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
2960		txq->txcsum++;	/* some hardware assistance provided */
2961
2962	/* VLAN tag insertion */
2963	if (m->m_flags & M_VLANTAG) {
2964		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
2965		txq->vlan_insertion++;
2966	}
2967
2968	/* CPL header */
2969	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
2970	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
2971	cpl->pack = 0;
2972	cpl->len = htobe16(pktlen);
2973	cpl->ctrl1 = htobe64(ctrl1);
2974
2975	/* Software descriptor */
2976	txsd = &txq->sdesc[eq->pidx];
2977	txsd->desc_used = ndesc;
2978
2979	eq->pending += ndesc;
2980	eq->avail -= ndesc;
2981	eq->pidx += ndesc;
2982	if (eq->pidx >= eq->cap)
2983		eq->pidx -= eq->cap;
2984
2985	/* SGL */
2986	dst = (void *)(cpl + 1);
2987	if (sgl->nsegs > 0) {
2988		txsd->credits = 1;
2989		txq->sgl_wrs++;
2990		write_sgl_to_txd(eq, sgl, &dst);
2991	} else {
2992		txsd->credits = 0;
2993		txq->imm_wrs++;
2994		for (; m; m = m->m_next) {
2995			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
2996#ifdef INVARIANTS
2997			pktlen -= m->m_len;
2998#endif
2999		}
3000#ifdef INVARIANTS
3001		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
3002#endif
3003
3004	}
3005
3006	txq->txpkt_wrs++;
3007	return (0);
3008}
3009
3010/*
3011 * Returns 0 to indicate that m has been accepted into a coalesced tx work
3012 * request.  It has either been folded into txpkts or txpkts was flushed and m
3013 * has started a new coalesced work request (as the first frame in a fresh
3014 * txpkts).
3015 *
3016 * Returns non-zero to indicate a failure - caller is responsible for
3017 * transmitting m, if there was anything in txpkts it has been flushed.
3018 */
3019static int
3020add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
3021    struct mbuf *m, struct sgl *sgl)
3022{
3023	struct sge_eq *eq = &txq->eq;
3024	int can_coalesce;
3025	struct tx_sdesc *txsd;
3026	int flits;
3027
3028	TXQ_LOCK_ASSERT_OWNED(txq);
3029
3030	KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__));
3031
3032	if (txpkts->npkt > 0) {
3033		flits = TXPKTS_PKT_HDR + sgl->nflits;
3034		can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3035		    txpkts->nflits + flits <= TX_WR_FLITS &&
3036		    txpkts->nflits + flits <= eq->avail * 8 &&
3037		    txpkts->plen + m->m_pkthdr.len < 65536;
3038
3039		if (can_coalesce) {
3040			txpkts->npkt++;
3041			txpkts->nflits += flits;
3042			txpkts->plen += m->m_pkthdr.len;
3043
3044			txsd = &txq->sdesc[eq->pidx];
3045			txsd->credits++;
3046
3047			return (0);
3048		}
3049
3050		/*
3051		 * Couldn't coalesce m into txpkts.  The first order of business
3052		 * is to send txpkts on its way.  Then we'll revisit m.
3053		 */
3054		write_txpkts_wr(txq, txpkts);
3055	}
3056
3057	/*
3058	 * Check if we can start a new coalesced tx work request with m as
3059	 * the first packet in it.
3060	 */
3061
3062	KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
3063
3064	flits = TXPKTS_WR_HDR + sgl->nflits;
3065	can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
3066	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
3067
3068	if (can_coalesce == 0)
3069		return (EINVAL);
3070
3071	/*
3072	 * Start a fresh coalesced tx WR with m as the first frame in it.
3073	 */
3074	txpkts->npkt = 1;
3075	txpkts->nflits = flits;
3076	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
3077	txpkts->plen = m->m_pkthdr.len;
3078
3079	txsd = &txq->sdesc[eq->pidx];
3080	txsd->credits = 1;
3081
3082	return (0);
3083}
3084
3085/*
3086 * Note that write_txpkts_wr can never run out of hardware descriptors (but
3087 * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
3088 * coalescing only if sufficient hardware descriptors are available.
3089 */
3090static void
3091write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
3092{
3093	struct sge_eq *eq = &txq->eq;
3094	struct fw_eth_tx_pkts_wr *wr;
3095	struct tx_sdesc *txsd;
3096	uint32_t ctrl;
3097	int ndesc;
3098
3099	TXQ_LOCK_ASSERT_OWNED(txq);
3100
3101	ndesc = howmany(txpkts->nflits, 8);
3102
3103	wr = (void *)&eq->desc[eq->pidx];
3104	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
3105	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
3106	if (eq->avail == ndesc) {
3107		if (!(eq->flags & EQ_CRFLUSHED)) {
3108			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
3109			eq->flags |= EQ_CRFLUSHED;
3110		}
3111		eq->flags |= EQ_STALLED;
3112	}
3113	wr->equiq_to_len16 = htobe32(ctrl);
3114	wr->plen = htobe16(txpkts->plen);
3115	wr->npkt = txpkts->npkt;
3116	wr->r3 = wr->type = 0;
3117
3118	/* Everything else already written */
3119
3120	txsd = &txq->sdesc[eq->pidx];
3121	txsd->desc_used = ndesc;
3122
3123	KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__));
3124
3125	eq->pending += ndesc;
3126	eq->avail -= ndesc;
3127	eq->pidx += ndesc;
3128	if (eq->pidx >= eq->cap)
3129		eq->pidx -= eq->cap;
3130
3131	txq->txpkts_pkts += txpkts->npkt;
3132	txq->txpkts_wrs++;
3133	txpkts->npkt = 0;	/* emptied */
3134}
3135
3136static inline void
3137write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
3138    struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
3139{
3140	struct ulp_txpkt *ulpmc;
3141	struct ulptx_idata *ulpsc;
3142	struct cpl_tx_pkt_core *cpl;
3143	struct sge_eq *eq = &txq->eq;
3144	uintptr_t flitp, start, end;
3145	uint64_t ctrl;
3146	caddr_t dst;
3147
3148	KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
3149
3150	start = (uintptr_t)eq->desc;
3151	end = (uintptr_t)eq->spg;
3152
3153	/* Checksum offload */
3154	ctrl = 0;
3155	if (!(m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TSO)))
3156		ctrl |= F_TXPKT_IPCSUM_DIS;
3157	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP | CSUM_UDP_IPV6 |
3158	    CSUM_TCP_IPV6 | CSUM_TSO)))
3159		ctrl |= F_TXPKT_L4CSUM_DIS;
3160	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP |
3161	    CSUM_UDP_IPV6 | CSUM_TCP_IPV6 | CSUM_TSO))
3162		txq->txcsum++;	/* some hardware assistance provided */
3163
3164	/* VLAN tag insertion */
3165	if (m->m_flags & M_VLANTAG) {
3166		ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3167		txq->vlan_insertion++;
3168	}
3169
3170	/*
3171	 * The previous packet's SGL must have ended at a 16 byte boundary (this
3172	 * is required by the firmware/hardware).  It follows that flitp cannot
3173	 * wrap around between the ULPTX master command and ULPTX subcommand (8
3174	 * bytes each), and that it can not wrap around in the middle of the
3175	 * cpl_tx_pkt_core either.
3176	 */
3177	flitp = (uintptr_t)txpkts->flitp;
3178	KASSERT((flitp & 0xf) == 0,
3179	    ("%s: last SGL did not end at 16 byte boundary: %p",
3180	    __func__, txpkts->flitp));
3181
3182	/* ULP master command */
3183	ulpmc = (void *)flitp;
3184	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) |
3185	    V_ULP_TXPKT_FID(eq->iqid));
3186	ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
3187	    sizeof(*cpl) + 8 * sgl->nflits, 16));
3188
3189	/* ULP subcommand */
3190	ulpsc = (void *)(ulpmc + 1);
3191	ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
3192	    F_ULP_TX_SC_MORE);
3193	ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
3194
3195	flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
3196	if (flitp == end)
3197		flitp = start;
3198
3199	/* CPL_TX_PKT */
3200	cpl = (void *)flitp;
3201	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3202	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3203	cpl->pack = 0;
3204	cpl->len = htobe16(m->m_pkthdr.len);
3205	cpl->ctrl1 = htobe64(ctrl);
3206
3207	flitp += sizeof(*cpl);
3208	if (flitp == end)
3209		flitp = start;
3210
3211	/* SGL for this frame */
3212	dst = (caddr_t)flitp;
3213	txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
3214	txpkts->flitp = (void *)dst;
3215
3216	KASSERT(((uintptr_t)dst & 0xf) == 0,
3217	    ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
3218}
3219
3220/*
3221 * If the SGL ends on an address that is not 16 byte aligned, this function will
3222 * add a 0 filled flit at the end.  It returns 1 in that case.
3223 */
3224static int
3225write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
3226{
3227	__be64 *flitp, *end;
3228	struct ulptx_sgl *usgl;
3229	bus_dma_segment_t *seg;
3230	int i, padded;
3231
3232	KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
3233	    ("%s: bad SGL - nsegs=%d, nflits=%d",
3234	    __func__, sgl->nsegs, sgl->nflits));
3235
3236	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
3237	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
3238
3239	flitp = (__be64 *)(*to);
3240	end = flitp + sgl->nflits;
3241	seg = &sgl->seg[0];
3242	usgl = (void *)flitp;
3243
3244	/*
3245	 * We start at a 16 byte boundary somewhere inside the tx descriptor
3246	 * ring, so we're at least 16 bytes away from the status page.  There is
3247	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
3248	 */
3249
3250	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
3251	    V_ULPTX_NSGE(sgl->nsegs));
3252	usgl->len0 = htobe32(seg->ds_len);
3253	usgl->addr0 = htobe64(seg->ds_addr);
3254	seg++;
3255
3256	if ((uintptr_t)end <= (uintptr_t)eq->spg) {
3257
3258		/* Won't wrap around at all */
3259
3260		for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
3261			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
3262			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
3263		}
3264		if (i & 1)
3265			usgl->sge[i / 2].len[1] = htobe32(0);
3266	} else {
3267
3268		/* Will wrap somewhere in the rest of the SGL */
3269
3270		/* 2 flits already written, write the rest flit by flit */
3271		flitp = (void *)(usgl + 1);
3272		for (i = 0; i < sgl->nflits - 2; i++) {
3273			if ((uintptr_t)flitp == (uintptr_t)eq->spg)
3274				flitp = (void *)eq->desc;
3275			*flitp++ = get_flit(seg, sgl->nsegs - 1, i);
3276		}
3277		end = flitp;
3278	}
3279
3280	if ((uintptr_t)end & 0xf) {
3281		*(uint64_t *)end = 0;
3282		end++;
3283		padded = 1;
3284	} else
3285		padded = 0;
3286
3287	if ((uintptr_t)end == (uintptr_t)eq->spg)
3288		*to = (void *)eq->desc;
3289	else
3290		*to = (void *)end;
3291
3292	return (padded);
3293}
3294
3295static inline void
3296copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
3297{
3298	if (__predict_true((uintptr_t)(*to) + len <= (uintptr_t)eq->spg)) {
3299		bcopy(from, *to, len);
3300		(*to) += len;
3301	} else {
3302		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
3303
3304		bcopy(from, *to, portion);
3305		from += portion;
3306		portion = len - portion;	/* remaining */
3307		bcopy(from, (void *)eq->desc, portion);
3308		(*to) = (caddr_t)eq->desc + portion;
3309	}
3310}
3311
3312static inline void
3313ring_eq_db(struct adapter *sc, struct sge_eq *eq)
3314{
3315	wmb();
3316	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
3317	    V_QID(eq->cntxt_id) | V_PIDX(eq->pending));
3318	eq->pending = 0;
3319}
3320
3321static inline int
3322reclaimable(struct sge_eq *eq)
3323{
3324	unsigned int cidx;
3325
3326	cidx = eq->spg->cidx;	/* stable snapshot */
3327	cidx = be16toh(cidx);
3328
3329	if (cidx >= eq->cidx)
3330		return (cidx - eq->cidx);
3331	else
3332		return (cidx + eq->cap - eq->cidx);
3333}
3334
3335/*
3336 * There are "can_reclaim" tx descriptors ready to be reclaimed.  Reclaim as
3337 * many as possible but stop when there are around "n" mbufs to free.
3338 *
3339 * The actual number reclaimed is provided as the return value.
3340 */
3341static int
3342reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n)
3343{
3344	struct tx_sdesc *txsd;
3345	struct tx_maps *txmaps;
3346	struct tx_map *txm;
3347	unsigned int reclaimed, maps;
3348	struct sge_eq *eq = &txq->eq;
3349
3350	TXQ_LOCK_ASSERT_OWNED(txq);
3351
3352	if (can_reclaim == 0)
3353		can_reclaim = reclaimable(eq);
3354
3355	maps = reclaimed = 0;
3356	while (can_reclaim && maps < n) {
3357		int ndesc;
3358
3359		txsd = &txq->sdesc[eq->cidx];
3360		ndesc = txsd->desc_used;
3361
3362		/* Firmware doesn't return "partial" credits. */
3363		KASSERT(can_reclaim >= ndesc,
3364		    ("%s: unexpected number of credits: %d, %d",
3365		    __func__, can_reclaim, ndesc));
3366
3367		maps += txsd->credits;
3368
3369		reclaimed += ndesc;
3370		can_reclaim -= ndesc;
3371
3372		eq->cidx += ndesc;
3373		if (__predict_false(eq->cidx >= eq->cap))
3374			eq->cidx -= eq->cap;
3375	}
3376
3377	txmaps = &txq->txmaps;
3378	txm = &txmaps->maps[txmaps->map_cidx];
3379	if (maps)
3380		prefetch(txm->m);
3381
3382	eq->avail += reclaimed;
3383	KASSERT(eq->avail < eq->cap,	/* avail tops out at (cap - 1) */
3384	    ("%s: too many descriptors available", __func__));
3385
3386	txmaps->map_avail += maps;
3387	KASSERT(txmaps->map_avail <= txmaps->map_total,
3388	    ("%s: too many maps available", __func__));
3389
3390	while (maps--) {
3391		struct tx_map *next;
3392
3393		next = txm + 1;
3394		if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total))
3395			next = txmaps->maps;
3396		prefetch(next->m);
3397
3398		bus_dmamap_unload(txq->tx_tag, txm->map);
3399		m_freem(txm->m);
3400		txm->m = NULL;
3401
3402		txm = next;
3403		if (__predict_false(++txmaps->map_cidx == txmaps->map_total))
3404			txmaps->map_cidx = 0;
3405	}
3406
3407	return (reclaimed);
3408}
3409
3410static void
3411write_eqflush_wr(struct sge_eq *eq)
3412{
3413	struct fw_eq_flush_wr *wr;
3414
3415	EQ_LOCK_ASSERT_OWNED(eq);
3416	KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
3417	KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__));
3418
3419	wr = (void *)&eq->desc[eq->pidx];
3420	bzero(wr, sizeof(*wr));
3421	wr->opcode = FW_EQ_FLUSH_WR;
3422	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
3423	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3424
3425	eq->flags |= (EQ_CRFLUSHED | EQ_STALLED);
3426	eq->pending++;
3427	eq->avail--;
3428	if (++eq->pidx == eq->cap)
3429		eq->pidx = 0;
3430}
3431
3432static __be64
3433get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
3434{
3435	int i = (idx / 3) * 2;
3436
3437	switch (idx % 3) {
3438	case 0: {
3439		__be64 rc;
3440
3441		rc = htobe32(sgl[i].ds_len);
3442		if (i + 1 < nsegs)
3443			rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
3444
3445		return (rc);
3446	}
3447	case 1:
3448		return htobe64(sgl[i].ds_addr);
3449	case 2:
3450		return htobe64(sgl[i + 1].ds_addr);
3451	}
3452
3453	return (0);
3454}
3455
3456static void
3457set_fl_tag_idx(struct sge_fl *fl, int bufsize)
3458{
3459	int i;
3460
3461	for (i = 0; i < FL_BUF_SIZES - 1; i++) {
3462		if (FL_BUF_SIZE(i) >= bufsize)
3463			break;
3464	}
3465
3466	fl->tag_idx = i;
3467}
3468
3469static void
3470add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
3471{
3472	mtx_lock(&sc->sfl_lock);
3473	FL_LOCK(fl);
3474	if ((fl->flags & FL_DOOMED) == 0) {
3475		fl->flags |= FL_STARVING;
3476		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
3477		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
3478	}
3479	FL_UNLOCK(fl);
3480	mtx_unlock(&sc->sfl_lock);
3481}
3482
3483static int
3484handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
3485    struct mbuf *m)
3486{
3487	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
3488	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
3489	struct adapter *sc = iq->adapter;
3490	struct sge *s = &sc->sge;
3491	struct sge_eq *eq;
3492
3493	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
3494	    rss->opcode));
3495
3496	eq = s->eqmap[qid - s->eq_start];
3497	EQ_LOCK(eq);
3498	KASSERT(eq->flags & EQ_CRFLUSHED,
3499	    ("%s: unsolicited egress update", __func__));
3500	eq->flags &= ~EQ_CRFLUSHED;
3501	eq->egr_update++;
3502
3503	if (__predict_false(eq->flags & EQ_DOOMED))
3504		wakeup_one(eq);
3505	else if (eq->flags & EQ_STALLED && can_resume_tx(eq))
3506		taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task);
3507	EQ_UNLOCK(eq);
3508
3509	return (0);
3510}
3511
3512/* handle_fw_msg works for both fw4_msg and fw6_msg because this is valid */
3513CTASSERT(offsetof(struct cpl_fw4_msg, data) == \
3514    offsetof(struct cpl_fw6_msg, data));
3515
3516static int
3517handle_fw_msg(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
3518{
3519	struct adapter *sc = iq->adapter;
3520	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
3521
3522	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
3523	    rss->opcode));
3524
3525	if (cpl->type == FW_TYPE_RSSCPL || cpl->type == FW6_TYPE_RSSCPL) {
3526		const struct rss_header *rss2;
3527
3528		rss2 = (const struct rss_header *)&cpl->data[0];
3529		return (sc->cpl_handler[rss2->opcode](iq, rss2, m));
3530	}
3531
3532	return (sc->fw_msg_handler[cpl->type](sc, &cpl->data[0]));
3533}
3534
3535static int
3536sysctl_uint16(SYSCTL_HANDLER_ARGS)
3537{
3538	uint16_t *id = arg1;
3539	int i = *id;
3540
3541	return sysctl_handle_int(oidp, &i, 0, req);
3542}
3543