t4_sge.c revision 234833
1/*-
2 * Copyright (c) 2011 Chelsio Communications, Inc.
3 * All rights reserved.
4 * Written by: Navdeep Parhar <np@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/cxgbe/t4_sge.c 234833 2012-04-30 09:46:05Z np $");
30
31#include "opt_inet.h"
32
33#include <sys/types.h>
34#include <sys/mbuf.h>
35#include <sys/socket.h>
36#include <sys/kernel.h>
37#include <sys/malloc.h>
38#include <sys/queue.h>
39#include <sys/taskqueue.h>
40#include <sys/sysctl.h>
41#include <sys/smp.h>
42#include <net/bpf.h>
43#include <net/ethernet.h>
44#include <net/if.h>
45#include <net/if_vlan_var.h>
46#include <netinet/in.h>
47#include <netinet/ip.h>
48#include <netinet/tcp.h>
49
50#include "common/common.h"
51#include "common/t4_regs.h"
52#include "common/t4_regs_values.h"
53#include "common/t4_msg.h"
54#include "t4_l2t.h"
55
56struct fl_buf_info {
57	int size;
58	int type;
59	uma_zone_t zone;
60};
61
62/* Filled up by t4_sge_modload */
63static struct fl_buf_info fl_buf_info[FL_BUF_SIZES];
64
65#define FL_BUF_SIZE(x)	(fl_buf_info[x].size)
66#define FL_BUF_TYPE(x)	(fl_buf_info[x].type)
67#define FL_BUF_ZONE(x)	(fl_buf_info[x].zone)
68
69enum {
70	FL_PKTSHIFT = 2
71};
72
73#define FL_ALIGN	min(CACHE_LINE_SIZE, 32)
74#if CACHE_LINE_SIZE > 64
75#define SPG_LEN		128
76#else
77#define SPG_LEN		64
78#endif
79
80/* Used to track coalesced tx work request */
81struct txpkts {
82	uint64_t *flitp;	/* ptr to flit where next pkt should start */
83	uint8_t npkt;		/* # of packets in this work request */
84	uint8_t nflits;		/* # of flits used by this work request */
85	uint16_t plen;		/* total payload (sum of all packets) */
86};
87
88/* A packet's SGL.  This + m_pkthdr has all info needed for tx */
89struct sgl {
90	int nsegs;		/* # of segments in the SGL, 0 means imm. tx */
91	int nflits;		/* # of flits needed for the SGL */
92	bus_dma_segment_t seg[TX_SGL_SEGS];
93};
94
95static int service_iq(struct sge_iq *, int);
96static struct mbuf *get_fl_payload(struct adapter *, struct sge_fl *, uint32_t,
97    int *);
98static int t4_eth_rx(struct sge_iq *, const struct rss_header *, struct mbuf *);
99static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
100    int, char *);
101static inline void init_fl(struct sge_fl *, int, int, char *);
102static inline void init_eq(struct sge_eq *, int, int, uint8_t, uint16_t,
103    char *);
104static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
105    bus_addr_t *, void **);
106static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
107    void *);
108static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
109    int, int);
110static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
111static int alloc_fwq(struct adapter *);
112static int free_fwq(struct adapter *);
113static int alloc_mgmtq(struct adapter *);
114static int free_mgmtq(struct adapter *);
115static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int,
116    struct sysctl_oid *);
117static int free_rxq(struct port_info *, struct sge_rxq *);
118#ifndef TCP_OFFLOAD_DISABLE
119static int alloc_ofld_rxq(struct port_info *, struct sge_ofld_rxq *, int, int,
120    struct sysctl_oid *);
121static int free_ofld_rxq(struct port_info *, struct sge_ofld_rxq *);
122#endif
123static int ctrl_eq_alloc(struct adapter *, struct sge_eq *);
124static int eth_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
125#ifndef TCP_OFFLOAD_DISABLE
126static int ofld_eq_alloc(struct adapter *, struct port_info *, struct sge_eq *);
127#endif
128static int alloc_eq(struct adapter *, struct port_info *, struct sge_eq *);
129static int free_eq(struct adapter *, struct sge_eq *);
130static int alloc_wrq(struct adapter *, struct port_info *, struct sge_wrq *,
131    struct sysctl_oid *);
132static int free_wrq(struct adapter *, struct sge_wrq *);
133static int alloc_txq(struct port_info *, struct sge_txq *, int,
134    struct sysctl_oid *);
135static int free_txq(struct port_info *, struct sge_txq *);
136static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
137static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **);
138static inline void iq_next(struct sge_iq *);
139static inline void ring_fl_db(struct adapter *, struct sge_fl *);
140static int refill_fl(struct adapter *, struct sge_fl *, int);
141static void refill_sfl(void *);
142static int alloc_fl_sdesc(struct sge_fl *);
143static void free_fl_sdesc(struct sge_fl *);
144static void set_fl_tag_idx(struct sge_fl *, int);
145static void add_fl_to_sfl(struct adapter *, struct sge_fl *);
146
147static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
148static int free_pkt_sgl(struct sge_txq *, struct sgl *);
149static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
150    struct sgl *);
151static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
152    struct mbuf *, struct sgl *);
153static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
154static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
155    struct txpkts *, struct mbuf *, struct sgl *);
156static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
157static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
158static inline void ring_eq_db(struct adapter *, struct sge_eq *);
159static inline int reclaimable(struct sge_eq *);
160static int reclaim_tx_descs(struct sge_txq *, int, int);
161static void write_eqflush_wr(struct sge_eq *);
162static __be64 get_flit(bus_dma_segment_t *, int, int);
163static int handle_sge_egr_update(struct sge_iq *, const struct rss_header *,
164    struct mbuf *);
165static int handle_fw_rpl(struct sge_iq *, const struct rss_header *,
166    struct mbuf *);
167
168static int sysctl_uint16(SYSCTL_HANDLER_ARGS);
169
170/*
171 * Called on MOD_LOAD and fills up fl_buf_info[].
172 */
173void
174t4_sge_modload(void)
175{
176	int i;
177	int bufsize[FL_BUF_SIZES] = {
178		MCLBYTES,
179#if MJUMPAGESIZE != MCLBYTES
180		MJUMPAGESIZE,
181#endif
182		MJUM9BYTES,
183		MJUM16BYTES
184	};
185
186	for (i = 0; i < FL_BUF_SIZES; i++) {
187		FL_BUF_SIZE(i) = bufsize[i];
188		FL_BUF_TYPE(i) = m_gettype(bufsize[i]);
189		FL_BUF_ZONE(i) = m_getzone(bufsize[i]);
190	}
191}
192
193/**
194 *	t4_sge_init - initialize SGE
195 *	@sc: the adapter
196 *
197 *	Performs SGE initialization needed every time after a chip reset.
198 *	We do not initialize any of the queues here, instead the driver
199 *	top-level must request them individually.
200 */
201int
202t4_sge_init(struct adapter *sc)
203{
204	struct sge *s = &sc->sge;
205	int i, rc = 0;
206	uint32_t ctrl_mask, ctrl_val, hpsize, v;
207
208	ctrl_mask = V_PKTSHIFT(M_PKTSHIFT) | F_RXPKTCPLMODE |
209	    V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
210	    F_EGRSTATUSPAGESIZE;
211	ctrl_val = V_PKTSHIFT(FL_PKTSHIFT) | F_RXPKTCPLMODE |
212	    V_INGPADBOUNDARY(ilog2(FL_ALIGN) - 5) |
213	    V_EGRSTATUSPAGESIZE(SPG_LEN == 128);
214
215	hpsize = V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10) |
216	    V_HOSTPAGESIZEPF1(PAGE_SHIFT - 10) |
217	    V_HOSTPAGESIZEPF2(PAGE_SHIFT - 10) |
218	    V_HOSTPAGESIZEPF3(PAGE_SHIFT - 10) |
219	    V_HOSTPAGESIZEPF4(PAGE_SHIFT - 10) |
220	    V_HOSTPAGESIZEPF5(PAGE_SHIFT - 10) |
221	    V_HOSTPAGESIZEPF6(PAGE_SHIFT - 10) |
222	    V_HOSTPAGESIZEPF7(PAGE_SHIFT - 10);
223
224	if (sc->flags & MASTER_PF) {
225		int intr_timer[SGE_NTIMERS] = {1, 5, 10, 50, 100, 200};
226		int intr_pktcount[SGE_NCOUNTERS] = {1, 8, 16, 32}; /* 63 max */
227
228		t4_set_reg_field(sc, A_SGE_CONTROL, ctrl_mask, ctrl_val);
229		t4_write_reg(sc, A_SGE_HOST_PAGE_SIZE, hpsize);
230		for (i = 0; i < FL_BUF_SIZES; i++) {
231			t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
232			    FL_BUF_SIZE(i));
233		}
234
235		t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD,
236		    V_THRESHOLD_0(intr_pktcount[0]) |
237		    V_THRESHOLD_1(intr_pktcount[1]) |
238		    V_THRESHOLD_2(intr_pktcount[2]) |
239		    V_THRESHOLD_3(intr_pktcount[3]));
240
241		t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1,
242		    V_TIMERVALUE0(us_to_core_ticks(sc, intr_timer[0])) |
243		    V_TIMERVALUE1(us_to_core_ticks(sc, intr_timer[1])));
244		t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3,
245		    V_TIMERVALUE2(us_to_core_ticks(sc, intr_timer[2])) |
246		    V_TIMERVALUE3(us_to_core_ticks(sc, intr_timer[3])));
247		t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5,
248		    V_TIMERVALUE4(us_to_core_ticks(sc, intr_timer[4])) |
249		    V_TIMERVALUE5(us_to_core_ticks(sc, intr_timer[5])));
250	}
251
252	v = t4_read_reg(sc, A_SGE_CONTROL);
253	if ((v & ctrl_mask) != ctrl_val) {
254		device_printf(sc->dev, "invalid SGE_CONTROL(0x%x)\n", v);
255		rc = EINVAL;
256	}
257
258	v = t4_read_reg(sc, A_SGE_HOST_PAGE_SIZE);
259	if (v != hpsize) {
260		device_printf(sc->dev, "invalid SGE_HOST_PAGE_SIZE(0x%x)\n", v);
261		rc = EINVAL;
262	}
263
264	for (i = 0; i < FL_BUF_SIZES; i++) {
265		v = t4_read_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i));
266		if (v != FL_BUF_SIZE(i)) {
267			device_printf(sc->dev,
268			    "invalid SGE_FL_BUFFER_SIZE[%d](0x%x)\n", i, v);
269			rc = EINVAL;
270		}
271	}
272
273	v = t4_read_reg(sc, A_SGE_CONM_CTRL);
274	s->fl_starve_threshold = G_EGRTHRESHOLD(v) * 2 + 1;
275
276	v = t4_read_reg(sc, A_SGE_INGRESS_RX_THRESHOLD);
277	sc->sge.counter_val[0] = G_THRESHOLD_0(v);
278	sc->sge.counter_val[1] = G_THRESHOLD_1(v);
279	sc->sge.counter_val[2] = G_THRESHOLD_2(v);
280	sc->sge.counter_val[3] = G_THRESHOLD_3(v);
281
282	v = t4_read_reg(sc, A_SGE_TIMER_VALUE_0_AND_1);
283	sc->sge.timer_val[0] = G_TIMERVALUE0(v) / core_ticks_per_usec(sc);
284	sc->sge.timer_val[1] = G_TIMERVALUE1(v) / core_ticks_per_usec(sc);
285	v = t4_read_reg(sc, A_SGE_TIMER_VALUE_2_AND_3);
286	sc->sge.timer_val[2] = G_TIMERVALUE2(v) / core_ticks_per_usec(sc);
287	sc->sge.timer_val[3] = G_TIMERVALUE3(v) / core_ticks_per_usec(sc);
288	v = t4_read_reg(sc, A_SGE_TIMER_VALUE_4_AND_5);
289	sc->sge.timer_val[4] = G_TIMERVALUE4(v) / core_ticks_per_usec(sc);
290	sc->sge.timer_val[5] = G_TIMERVALUE5(v) / core_ticks_per_usec(sc);
291
292	t4_register_cpl_handler(sc, CPL_FW4_MSG, handle_fw_rpl);
293	t4_register_cpl_handler(sc, CPL_FW6_MSG, handle_fw_rpl);
294	t4_register_cpl_handler(sc, CPL_SGE_EGR_UPDATE, handle_sge_egr_update);
295	t4_register_cpl_handler(sc, CPL_RX_PKT, t4_eth_rx);
296
297	return (rc);
298}
299
300int
301t4_create_dma_tag(struct adapter *sc)
302{
303	int rc;
304
305	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
306	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
307	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
308	    NULL, &sc->dmat);
309	if (rc != 0) {
310		device_printf(sc->dev,
311		    "failed to create main DMA tag: %d\n", rc);
312	}
313
314	return (rc);
315}
316
317int
318t4_destroy_dma_tag(struct adapter *sc)
319{
320	if (sc->dmat)
321		bus_dma_tag_destroy(sc->dmat);
322
323	return (0);
324}
325
326/*
327 * Allocate and initialize the firmware event queue and the management queue.
328 *
329 * Returns errno on failure.  Resources allocated up to that point may still be
330 * allocated.  Caller is responsible for cleanup in case this function fails.
331 */
332int
333t4_setup_adapter_queues(struct adapter *sc)
334{
335	int rc;
336
337	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
338
339	sysctl_ctx_init(&sc->ctx);
340	sc->flags |= ADAP_SYSCTL_CTX;
341
342	/*
343	 * Firmware event queue
344	 */
345	rc = alloc_fwq(sc);
346	if (rc != 0) {
347		device_printf(sc->dev,
348		    "failed to create firmware event queue: %d\n", rc);
349		return (rc);
350	}
351
352	/*
353	 * Management queue.  This is just a control queue that uses the fwq as
354	 * its associated iq.
355	 */
356	rc = alloc_mgmtq(sc);
357	if (rc != 0) {
358		device_printf(sc->dev,
359		    "failed to create management queue: %d\n", rc);
360		return (rc);
361	}
362
363	return (rc);
364}
365
366/*
367 * Idempotent
368 */
369int
370t4_teardown_adapter_queues(struct adapter *sc)
371{
372
373	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
374
375	/* Do this before freeing the queue */
376	if (sc->flags & ADAP_SYSCTL_CTX) {
377		sysctl_ctx_free(&sc->ctx);
378		sc->flags &= ~ADAP_SYSCTL_CTX;
379	}
380
381	free_mgmtq(sc);
382	free_fwq(sc);
383
384	return (0);
385}
386
387static inline int
388first_vector(struct port_info *pi)
389{
390	struct adapter *sc = pi->adapter;
391	int rc = T4_EXTRA_INTR, i;
392
393	if (sc->intr_count == 1)
394		return (0);
395
396	for_each_port(sc, i) {
397		if (i == pi->port_id)
398			break;
399
400#ifndef TCP_OFFLOAD_DISABLE
401		if (sc->flags & INTR_DIRECT)
402			rc += pi->nrxq + pi->nofldrxq;
403		else
404			rc += max(pi->nrxq, pi->nofldrxq);
405#else
406		/*
407		 * Not compiled with offload support and intr_count > 1.  Only
408		 * NIC queues exist and they'd better be taking direct
409		 * interrupts.
410		 */
411		KASSERT(sc->flags & INTR_DIRECT,
412		    ("%s: intr_count %d, !INTR_DIRECT", __func__,
413		    sc->intr_count));
414
415		rc += pi->nrxq;
416#endif
417	}
418
419	return (rc);
420}
421
422/*
423 * Given an arbitrary "index," come up with an iq that can be used by other
424 * queues (of this port) for interrupt forwarding, SGE egress updates, etc.
425 * The iq returned is guaranteed to be something that takes direct interrupts.
426 */
427static struct sge_iq *
428port_intr_iq(struct port_info *pi, int idx)
429{
430	struct adapter *sc = pi->adapter;
431	struct sge *s = &sc->sge;
432	struct sge_iq *iq = NULL;
433
434	if (sc->intr_count == 1)
435		return (&sc->sge.fwq);
436
437#ifndef TCP_OFFLOAD_DISABLE
438	if (sc->flags & INTR_DIRECT) {
439		idx %= pi->nrxq + pi->nofldrxq;
440
441		if (idx >= pi->nrxq) {
442			idx -= pi->nrxq;
443			iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
444		} else
445			iq = &s->rxq[pi->first_rxq + idx].iq;
446
447	} else {
448		idx %= max(pi->nrxq, pi->nofldrxq);
449
450		if (pi->nrxq >= pi->nofldrxq)
451			iq = &s->rxq[pi->first_rxq + idx].iq;
452		else
453			iq = &s->ofld_rxq[pi->first_ofld_rxq + idx].iq;
454	}
455#else
456	/*
457	 * Not compiled with offload support and intr_count > 1.  Only NIC
458	 * queues exist and they'd better be taking direct interrupts.
459	 */
460	KASSERT(sc->flags & INTR_DIRECT,
461	    ("%s: intr_count %d, !INTR_DIRECT", __func__, sc->intr_count));
462
463	idx %= pi->nrxq;
464	iq = &s->rxq[pi->first_rxq + idx].iq;
465#endif
466
467	KASSERT(iq->flags & IQ_INTR, ("%s: EDOOFUS", __func__));
468	return (iq);
469}
470
471int
472t4_setup_port_queues(struct port_info *pi)
473{
474	int rc = 0, i, j, intr_idx, iqid;
475	struct sge_rxq *rxq;
476	struct sge_txq *txq;
477	struct sge_wrq *ctrlq;
478#ifndef TCP_OFFLOAD_DISABLE
479	struct sge_ofld_rxq *ofld_rxq;
480	struct sge_wrq *ofld_txq;
481#endif
482	char name[16];
483	struct adapter *sc = pi->adapter;
484	struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev), *oid2 = NULL;
485	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
486
487	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "rxq", CTLFLAG_RD,
488	    NULL, "rx queues");
489
490#ifndef TCP_OFFLOAD_DISABLE
491	if (is_offload(sc)) {
492		oid2 = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_rxq",
493		    CTLFLAG_RD, NULL,
494		    "rx queues for offloaded TCP connections");
495	}
496#endif
497
498	/* Interrupt vector to start from (when using multiple vectors) */
499	intr_idx = first_vector(pi);
500
501	/*
502	 * First pass over all rx queues (NIC and TOE):
503	 * a) initialize iq and fl
504	 * b) allocate queue iff it will take direct interrupts.
505	 */
506	for_each_rxq(pi, i, rxq) {
507
508		snprintf(name, sizeof(name), "%s rxq%d-iq",
509		    device_get_nameunit(pi->dev), i);
510		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx, pi->qsize_rxq,
511		    RX_IQ_ESIZE, name);
512
513		snprintf(name, sizeof(name), "%s rxq%d-fl",
514		    device_get_nameunit(pi->dev), i);
515		init_fl(&rxq->fl, pi->qsize_rxq / 8, pi->ifp->if_mtu, name);
516
517		if (sc->flags & INTR_DIRECT
518#ifndef TCP_OFFLOAD_DISABLE
519		    || (sc->intr_count > 1 && pi->nrxq >= pi->nofldrxq)
520#endif
521		   ) {
522			rxq->iq.flags |= IQ_INTR;
523			rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
524			if (rc != 0)
525				goto done;
526			intr_idx++;
527		}
528	}
529
530#ifndef TCP_OFFLOAD_DISABLE
531	for_each_ofld_rxq(pi, i, ofld_rxq) {
532
533		snprintf(name, sizeof(name), "%s ofld_rxq%d-iq",
534		    device_get_nameunit(pi->dev), i);
535		init_iq(&ofld_rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
536		    pi->qsize_rxq, RX_IQ_ESIZE, name);
537
538		snprintf(name, sizeof(name), "%s ofld_rxq%d-fl",
539		    device_get_nameunit(pi->dev), i);
540		init_fl(&ofld_rxq->fl, pi->qsize_rxq / 8, MJUM16BYTES, name);
541
542		if (sc->flags & INTR_DIRECT ||
543		    (sc->intr_count > 1 && pi->nofldrxq > pi->nrxq)) {
544			ofld_rxq->iq.flags |= IQ_INTR;
545			rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2);
546			if (rc != 0)
547				goto done;
548			intr_idx++;
549		}
550	}
551#endif
552
553	/*
554	 * Second pass over all rx queues (NIC and TOE).  The queues forwarding
555	 * their interrupts are allocated now.
556	 */
557	j = 0;
558	for_each_rxq(pi, i, rxq) {
559		if (rxq->iq.flags & IQ_INTR)
560			continue;
561
562		intr_idx = port_intr_iq(pi, j)->abs_id;
563
564		rc = alloc_rxq(pi, rxq, intr_idx, i, oid);
565		if (rc != 0)
566			goto done;
567		j++;
568	}
569
570#ifndef TCP_OFFLOAD_DISABLE
571	for_each_ofld_rxq(pi, i, ofld_rxq) {
572		if (ofld_rxq->iq.flags & IQ_INTR)
573			continue;
574
575		intr_idx = port_intr_iq(pi, j)->abs_id;
576
577		rc = alloc_ofld_rxq(pi, ofld_rxq, intr_idx, i, oid2);
578		if (rc != 0)
579			goto done;
580		j++;
581	}
582#endif
583
584	/*
585	 * Now the tx queues.  Only one pass needed.
586	 */
587	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "txq", CTLFLAG_RD,
588	    NULL, "tx queues");
589	j = 0;
590	for_each_txq(pi, i, txq) {
591		uint16_t iqid;
592
593		iqid = port_intr_iq(pi, j)->cntxt_id;
594
595		snprintf(name, sizeof(name), "%s txq%d",
596		    device_get_nameunit(pi->dev), i);
597		init_eq(&txq->eq, EQ_ETH, pi->qsize_txq, pi->tx_chan, iqid,
598		    name);
599
600		rc = alloc_txq(pi, txq, i, oid);
601		if (rc != 0)
602			goto done;
603		j++;
604	}
605
606#ifndef TCP_OFFLOAD_DISABLE
607	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ofld_txq",
608	    CTLFLAG_RD, NULL, "tx queues for offloaded TCP connections");
609	for_each_ofld_txq(pi, i, ofld_txq) {
610		uint16_t iqid;
611
612		iqid = port_intr_iq(pi, j)->cntxt_id;
613
614		snprintf(name, sizeof(name), "%s ofld_txq%d",
615		    device_get_nameunit(pi->dev), i);
616		init_eq(&ofld_txq->eq, EQ_OFLD, pi->qsize_txq, pi->tx_chan,
617		    iqid, name);
618
619		snprintf(name, sizeof(name), "%d", i);
620		oid2 = SYSCTL_ADD_NODE(&pi->ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
621		    name, CTLFLAG_RD, NULL, "offload tx queue");
622
623		rc = alloc_wrq(sc, pi, ofld_txq, oid2);
624		if (rc != 0)
625			goto done;
626		j++;
627	}
628#endif
629
630	/*
631	 * Finally, the control queue.
632	 */
633	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "ctrlq", CTLFLAG_RD,
634	    NULL, "ctrl queue");
635	ctrlq = &sc->sge.ctrlq[pi->port_id];
636	iqid = port_intr_iq(pi, 0)->cntxt_id;
637	snprintf(name, sizeof(name), "%s ctrlq", device_get_nameunit(pi->dev));
638	init_eq(&ctrlq->eq, EQ_CTRL, CTRL_EQ_QSIZE, pi->tx_chan, iqid, name);
639	rc = alloc_wrq(sc, pi, ctrlq, oid);
640
641done:
642	if (rc)
643		t4_teardown_port_queues(pi);
644
645	return (rc);
646}
647
648/*
649 * Idempotent
650 */
651int
652t4_teardown_port_queues(struct port_info *pi)
653{
654	int i;
655	struct adapter *sc = pi->adapter;
656	struct sge_rxq *rxq;
657	struct sge_txq *txq;
658#ifndef TCP_OFFLOAD_DISABLE
659	struct sge_ofld_rxq *ofld_rxq;
660	struct sge_wrq *ofld_txq;
661#endif
662
663	/* Do this before freeing the queues */
664	if (pi->flags & PORT_SYSCTL_CTX) {
665		sysctl_ctx_free(&pi->ctx);
666		pi->flags &= ~PORT_SYSCTL_CTX;
667	}
668
669	/*
670	 * Take down all the tx queues first, as they reference the rx queues
671	 * (for egress updates, etc.).
672	 */
673
674	free_wrq(sc, &sc->sge.ctrlq[pi->port_id]);
675
676	for_each_txq(pi, i, txq) {
677		free_txq(pi, txq);
678	}
679
680#ifndef TCP_OFFLOAD_DISABLE
681	for_each_ofld_txq(pi, i, ofld_txq) {
682		free_wrq(sc, ofld_txq);
683	}
684#endif
685
686	/*
687	 * Then take down the rx queues that forward their interrupts, as they
688	 * reference other rx queues.
689	 */
690
691	for_each_rxq(pi, i, rxq) {
692		if ((rxq->iq.flags & IQ_INTR) == 0)
693			free_rxq(pi, rxq);
694	}
695
696#ifndef TCP_OFFLOAD_DISABLE
697	for_each_ofld_rxq(pi, i, ofld_rxq) {
698		if ((ofld_rxq->iq.flags & IQ_INTR) == 0)
699			free_ofld_rxq(pi, ofld_rxq);
700	}
701#endif
702
703	/*
704	 * Then take down the rx queues that take direct interrupts.
705	 */
706
707	for_each_rxq(pi, i, rxq) {
708		if (rxq->iq.flags & IQ_INTR)
709			free_rxq(pi, rxq);
710	}
711
712#ifndef TCP_OFFLOAD_DISABLE
713	for_each_ofld_rxq(pi, i, ofld_rxq) {
714		if (ofld_rxq->iq.flags & IQ_INTR)
715			free_ofld_rxq(pi, ofld_rxq);
716	}
717#endif
718
719	return (0);
720}
721
722/*
723 * Deals with errors and the firmware event queue.  All data rx queues forward
724 * their interrupt to the firmware event queue.
725 */
726void
727t4_intr_all(void *arg)
728{
729	struct adapter *sc = arg;
730	struct sge_iq *fwq = &sc->sge.fwq;
731
732	t4_intr_err(arg);
733	if (atomic_cmpset_int(&fwq->state, IQS_IDLE, IQS_BUSY)) {
734		service_iq(fwq, 0);
735		atomic_cmpset_int(&fwq->state, IQS_BUSY, IQS_IDLE);
736	}
737}
738
739/* Deals with error interrupts */
740void
741t4_intr_err(void *arg)
742{
743	struct adapter *sc = arg;
744
745	t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
746	t4_slow_intr_handler(sc);
747}
748
749void
750t4_intr_evt(void *arg)
751{
752	struct sge_iq *iq = arg;
753
754	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
755		service_iq(iq, 0);
756		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
757	}
758}
759
760void
761t4_intr(void *arg)
762{
763	struct sge_iq *iq = arg;
764
765	if (atomic_cmpset_int(&iq->state, IQS_IDLE, IQS_BUSY)) {
766		service_iq(iq, 0);
767		atomic_cmpset_int(&iq->state, IQS_BUSY, IQS_IDLE);
768	}
769}
770
771/*
772 * Deals with anything and everything on the given ingress queue.
773 */
774static int
775service_iq(struct sge_iq *iq, int budget)
776{
777	struct sge_iq *q;
778	struct sge_rxq *rxq = (void *)iq;	/* Use iff iq is part of rxq */
779	struct sge_fl *fl = &rxq->fl;		/* Use iff IQ_HAS_FL */
780	struct adapter *sc = iq->adapter;
781	struct rsp_ctrl *ctrl;
782	const struct rss_header *rss;
783	int ndescs = 0, limit, fl_bufs_used = 0;
784	int rsp_type;
785	uint32_t lq;
786	struct mbuf *m0;
787	STAILQ_HEAD(, sge_iq) iql = STAILQ_HEAD_INITIALIZER(iql);
788
789	limit = budget ? budget : iq->qsize / 8;
790
791	KASSERT(iq->state == IQS_BUSY, ("%s: iq %p not BUSY", __func__, iq));
792
793	/*
794	 * We always come back and check the descriptor ring for new indirect
795	 * interrupts and other responses after running a single handler.
796	 */
797	for (;;) {
798		while (is_new_response(iq, &ctrl)) {
799
800			rmb();
801
802			m0 = NULL;
803			rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
804			lq = be32toh(ctrl->pldbuflen_qid);
805			rss = (const void *)iq->cdesc;
806
807			switch (rsp_type) {
808			case X_RSPD_TYPE_FLBUF:
809
810				KASSERT(iq->flags & IQ_HAS_FL,
811				    ("%s: data for an iq (%p) with no freelist",
812				    __func__, iq));
813
814				m0 = get_fl_payload(sc, fl, lq, &fl_bufs_used);
815#ifdef T4_PKT_TIMESTAMP
816				/*
817				 * 60 bit timestamp for the payload is
818				 * *(uint64_t *)m0->m_pktdat.  Note that it is
819				 * in the leading free-space in the mbuf.  The
820				 * kernel can clobber it during a pullup,
821				 * m_copymdata, etc.  You need to make sure that
822				 * the mbuf reaches you unmolested if you care
823				 * about the timestamp.
824				 */
825				*(uint64_t *)m0->m_pktdat =
826				    be64toh(ctrl->u.last_flit) &
827				    0xfffffffffffffff;
828#endif
829
830				/* fall through */
831
832			case X_RSPD_TYPE_CPL:
833				KASSERT(rss->opcode < NUM_CPL_CMDS,
834				    ("%s: bad opcode %02x.", __func__,
835				    rss->opcode));
836				sc->cpl_handler[rss->opcode](iq, rss, m0);
837				break;
838
839			case X_RSPD_TYPE_INTR:
840
841				/*
842				 * Interrupts should be forwarded only to queues
843				 * that are not forwarding their interrupts.
844				 * This means service_iq can recurse but only 1
845				 * level deep.
846				 */
847				KASSERT(budget == 0,
848				    ("%s: budget %u, rsp_type %u", __func__,
849				    budget, rsp_type));
850
851				q = sc->sge.iqmap[lq - sc->sge.iq_start];
852				if (atomic_cmpset_int(&q->state, IQS_IDLE,
853				    IQS_BUSY)) {
854					if (service_iq(q, q->qsize / 8) == 0) {
855						atomic_cmpset_int(&q->state,
856						    IQS_BUSY, IQS_IDLE);
857					} else {
858						STAILQ_INSERT_TAIL(&iql, q,
859						    link);
860					}
861				}
862				break;
863
864			default:
865				panic("%s: rsp_type %u", __func__, rsp_type);
866			}
867
868			iq_next(iq);
869			if (++ndescs == limit) {
870				t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
871				    V_CIDXINC(ndescs) |
872				    V_INGRESSQID(iq->cntxt_id) |
873				    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
874				ndescs = 0;
875
876				if (fl_bufs_used > 0) {
877					FL_LOCK(fl);
878					fl->needed += fl_bufs_used;
879					refill_fl(sc, fl, fl->cap / 8);
880					FL_UNLOCK(fl);
881					fl_bufs_used = 0;
882				}
883
884				if (budget)
885					return (EINPROGRESS);
886			}
887		}
888
889		if (STAILQ_EMPTY(&iql))
890			break;
891
892		/*
893		 * Process the head only, and send it to the back of the list if
894		 * it's still not done.
895		 */
896		q = STAILQ_FIRST(&iql);
897		STAILQ_REMOVE_HEAD(&iql, link);
898		if (service_iq(q, q->qsize / 8) == 0)
899			atomic_cmpset_int(&q->state, IQS_BUSY, IQS_IDLE);
900		else
901			STAILQ_INSERT_TAIL(&iql, q, link);
902	}
903
904#ifdef INET
905	if (iq->flags & IQ_LRO_ENABLED) {
906		struct lro_ctrl *lro = &rxq->lro;
907		struct lro_entry *l;
908
909		while (!SLIST_EMPTY(&lro->lro_active)) {
910			l = SLIST_FIRST(&lro->lro_active);
911			SLIST_REMOVE_HEAD(&lro->lro_active, next);
912			tcp_lro_flush(lro, l);
913		}
914	}
915#endif
916
917	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
918	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_params));
919
920	if (iq->flags & IQ_HAS_FL) {
921		int starved;
922
923		FL_LOCK(fl);
924		fl->needed += fl_bufs_used;
925		starved = refill_fl(sc, fl, fl->cap / 4);
926		FL_UNLOCK(fl);
927		if (__predict_false(starved != 0))
928			add_fl_to_sfl(sc, fl);
929	}
930
931	return (0);
932}
933
934
935#ifdef T4_PKT_TIMESTAMP
936#define RX_COPY_THRESHOLD (MINCLSIZE - 8)
937#else
938#define RX_COPY_THRESHOLD MINCLSIZE
939#endif
940
941static struct mbuf *
942get_fl_payload(struct adapter *sc, struct sge_fl *fl, uint32_t len_newbuf,
943    int *fl_bufs_used)
944{
945	struct mbuf *m0, *m;
946	struct fl_sdesc *sd = &fl->sdesc[fl->cidx];
947	unsigned int nbuf, len;
948
949	/*
950	 * No assertion for the fl lock because we don't need it.  This routine
951	 * is called only from the rx interrupt handler and it only updates
952	 * fl->cidx.  (Contrast that with fl->pidx/fl->needed which could be
953	 * updated in the rx interrupt handler or the starvation helper routine.
954	 * That's why code that manipulates fl->pidx/fl->needed needs the fl
955	 * lock but this routine does not).
956	 */
957
958	if (__predict_false((len_newbuf & F_RSPD_NEWBUF) == 0))
959		panic("%s: cannot handle packed frames", __func__);
960	len = G_RSPD_LEN(len_newbuf);
961
962	m0 = sd->m;
963	sd->m = NULL;	/* consumed */
964
965	bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, BUS_DMASYNC_POSTREAD);
966	m_init(m0, NULL, 0, M_NOWAIT, MT_DATA, M_PKTHDR);
967#ifdef T4_PKT_TIMESTAMP
968	/* Leave room for a timestamp */
969	m0->m_data += 8;
970#endif
971
972	if (len < RX_COPY_THRESHOLD) {
973		/* copy data to mbuf, buffer will be recycled */
974		bcopy(sd->cl, mtod(m0, caddr_t), len);
975		m0->m_len = len;
976	} else {
977		bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
978		m_cljset(m0, sd->cl, FL_BUF_TYPE(sd->tag_idx));
979		sd->cl = NULL;	/* consumed */
980		m0->m_len = min(len, FL_BUF_SIZE(sd->tag_idx));
981	}
982	m0->m_pkthdr.len = len;
983
984	sd++;
985	if (__predict_false(++fl->cidx == fl->cap)) {
986		sd = fl->sdesc;
987		fl->cidx = 0;
988	}
989
990	m = m0;
991	len -= m->m_len;
992	nbuf = 1;	/* # of fl buffers used */
993
994	while (len > 0) {
995		m->m_next = sd->m;
996		sd->m = NULL;	/* consumed */
997		m = m->m_next;
998
999		bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map,
1000		    BUS_DMASYNC_POSTREAD);
1001
1002		m_init(m, NULL, 0, M_NOWAIT, MT_DATA, 0);
1003		if (len <= MLEN) {
1004			bcopy(sd->cl, mtod(m, caddr_t), len);
1005			m->m_len = len;
1006		} else {
1007			bus_dmamap_unload(fl->tag[sd->tag_idx],
1008			    sd->map);
1009			m_cljset(m, sd->cl, FL_BUF_TYPE(sd->tag_idx));
1010			sd->cl = NULL;	/* consumed */
1011			m->m_len = min(len, FL_BUF_SIZE(sd->tag_idx));
1012		}
1013
1014		sd++;
1015		if (__predict_false(++fl->cidx == fl->cap)) {
1016			sd = fl->sdesc;
1017			fl->cidx = 0;
1018		}
1019
1020		len -= m->m_len;
1021		nbuf++;
1022	}
1023
1024	(*fl_bufs_used) += nbuf;
1025
1026	return (m0);
1027}
1028
1029static int
1030t4_eth_rx(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m0)
1031{
1032	struct sge_rxq *rxq = (void *)iq;
1033	struct ifnet *ifp = rxq->ifp;
1034	const struct cpl_rx_pkt *cpl = (const void *)(rss + 1);
1035#ifdef INET
1036	struct lro_ctrl *lro = &rxq->lro;
1037#endif
1038
1039	KASSERT(m0 != NULL, ("%s: no payload with opcode %02x", __func__,
1040	    rss->opcode));
1041
1042	m0->m_pkthdr.len -= FL_PKTSHIFT;
1043	m0->m_len -= FL_PKTSHIFT;
1044	m0->m_data += FL_PKTSHIFT;
1045
1046	m0->m_pkthdr.rcvif = ifp;
1047	m0->m_flags |= M_FLOWID;
1048	m0->m_pkthdr.flowid = rss->hash_val;
1049
1050	if (cpl->csum_calc && !cpl->err_vec &&
1051	    ifp->if_capenable & IFCAP_RXCSUM) {
1052		m0->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
1053		    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
1054		if (cpl->ip_frag)
1055			m0->m_pkthdr.csum_data = be16toh(cpl->csum);
1056		else
1057			m0->m_pkthdr.csum_data = 0xffff;
1058		rxq->rxcsum++;
1059	}
1060
1061	if (cpl->vlan_ex) {
1062		m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
1063		m0->m_flags |= M_VLANTAG;
1064		rxq->vlan_extraction++;
1065	}
1066
1067#ifdef INET
1068	if (cpl->l2info & htobe32(F_RXF_LRO) &&
1069	    iq->flags & IQ_LRO_ENABLED &&
1070	    tcp_lro_rx(lro, m0, 0) == 0) {
1071		/* queued for LRO */
1072	} else
1073#endif
1074	ifp->if_input(ifp, m0);
1075
1076	return (0);
1077}
1078
1079int
1080t4_mgmt_tx(struct adapter *sc, struct mbuf *m)
1081{
1082	return t4_wrq_tx(sc, &sc->sge.mgmtq, m);
1083}
1084
1085/*
1086 * Doesn't fail.  Holds on to work requests it can't send right away.
1087 */
1088int
1089t4_wrq_tx_locked(struct adapter *sc, struct sge_wrq *wrq, struct mbuf *m0)
1090{
1091	struct sge_eq *eq = &wrq->eq;
1092	int can_reclaim;
1093	caddr_t dst;
1094	struct mbuf *wr, *next;
1095
1096	TXQ_LOCK_ASSERT_OWNED(wrq);
1097	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_OFLD ||
1098	    (eq->flags & EQ_TYPEMASK) == EQ_CTRL,
1099	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1100
1101	if (__predict_true(m0 != NULL)) {
1102		if (wrq->head)
1103			wrq->tail->m_nextpkt = m0;
1104		else
1105			wrq->head = m0;
1106		while (m0->m_nextpkt)
1107			m0 = m0->m_nextpkt;
1108		wrq->tail = m0;
1109	}
1110
1111	can_reclaim = reclaimable(eq);
1112	if (__predict_false(eq->flags & EQ_STALLED)) {
1113		if (can_reclaim < tx_resume_threshold(eq))
1114			return (0);
1115		eq->flags &= ~EQ_STALLED;
1116		eq->unstalled++;
1117	}
1118	eq->cidx += can_reclaim;
1119	eq->avail += can_reclaim;
1120	if (__predict_false(eq->cidx >= eq->cap))
1121		eq->cidx -= eq->cap;
1122
1123	for (wr = wrq->head; wr; wr = next) {
1124		int ndesc;
1125		struct mbuf *m;
1126
1127		next = wr->m_nextpkt;
1128		wr->m_nextpkt = NULL;
1129
1130		M_ASSERTPKTHDR(wr);
1131		KASSERT(wr->m_pkthdr.len > 0 && (wr->m_pkthdr.len & 0x7) == 0,
1132		    ("%s: work request len %d.", __func__, wr->m_pkthdr.len));
1133
1134		if (wr->m_pkthdr.len > SGE_MAX_WR_LEN) {
1135#ifdef INVARIANTS
1136			panic("%s: oversized work request", __func__);
1137#else
1138			log(LOG_ERR, "%s: %s work request too long (%d)",
1139			    device_get_nameunit(sc->dev), __func__,
1140			    wr->m_pkthdr.len);
1141			m_freem(wr);
1142			continue;
1143#endif
1144		}
1145
1146		ndesc = howmany(wr->m_pkthdr.len, EQ_ESIZE);
1147		if (eq->avail < ndesc) {
1148			wr->m_nextpkt = next;
1149			wrq->no_desc++;
1150			break;
1151		}
1152
1153		dst = (void *)&eq->desc[eq->pidx];
1154		for (m = wr; m; m = m->m_next)
1155			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
1156
1157		eq->pidx += ndesc;
1158		eq->avail -= ndesc;
1159		if (__predict_false(eq->pidx >= eq->cap))
1160			eq->pidx -= eq->cap;
1161
1162		eq->pending += ndesc;
1163		if (eq->pending > 16)
1164			ring_eq_db(sc, eq);
1165
1166		wrq->tx_wrs++;
1167		m_freem(wr);
1168
1169		if (eq->avail < 8) {
1170			can_reclaim = reclaimable(eq);
1171			eq->cidx += can_reclaim;
1172			eq->avail += can_reclaim;
1173			if (__predict_false(eq->cidx >= eq->cap))
1174				eq->cidx -= eq->cap;
1175		}
1176	}
1177
1178	if (eq->pending)
1179		ring_eq_db(sc, eq);
1180
1181	if (wr == NULL)
1182		wrq->head = wrq->tail = NULL;
1183	else {
1184		wrq->head = wr;
1185
1186		KASSERT(wrq->tail->m_nextpkt == NULL,
1187		    ("%s: wrq->tail grew a tail of its own", __func__));
1188
1189		eq->flags |= EQ_STALLED;
1190		if (callout_pending(&eq->tx_callout) == 0)
1191			callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1192	}
1193
1194	return (0);
1195}
1196
1197/* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
1198#define TXPKTS_PKT_HDR ((\
1199    sizeof(struct ulp_txpkt) + \
1200    sizeof(struct ulptx_idata) + \
1201    sizeof(struct cpl_tx_pkt_core) \
1202    ) / 8)
1203
1204/* Header of a coalesced tx WR, before SGL of first packet (in flits) */
1205#define TXPKTS_WR_HDR (\
1206    sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
1207    TXPKTS_PKT_HDR)
1208
1209/* Header of a tx WR, before SGL of first packet (in flits) */
1210#define TXPKT_WR_HDR ((\
1211    sizeof(struct fw_eth_tx_pkt_wr) + \
1212    sizeof(struct cpl_tx_pkt_core) \
1213    ) / 8 )
1214
1215/* Header of a tx LSO WR, before SGL of first packet (in flits) */
1216#define TXPKT_LSO_WR_HDR ((\
1217    sizeof(struct fw_eth_tx_pkt_wr) + \
1218    sizeof(struct cpl_tx_pkt_lso) + \
1219    sizeof(struct cpl_tx_pkt_core) \
1220    ) / 8 )
1221
1222int
1223t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
1224{
1225	struct port_info *pi = (void *)ifp->if_softc;
1226	struct adapter *sc = pi->adapter;
1227	struct sge_eq *eq = &txq->eq;
1228	struct buf_ring *br = txq->br;
1229	struct mbuf *next;
1230	int rc, coalescing, can_reclaim;
1231	struct txpkts txpkts;
1232	struct sgl sgl;
1233
1234	TXQ_LOCK_ASSERT_OWNED(txq);
1235	KASSERT(m, ("%s: called with nothing to do.", __func__));
1236	KASSERT((eq->flags & EQ_TYPEMASK) == EQ_ETH,
1237	    ("%s: eq type %d", __func__, eq->flags & EQ_TYPEMASK));
1238
1239	prefetch(&eq->desc[eq->pidx]);
1240	prefetch(&txq->sdesc[eq->pidx]);
1241
1242	txpkts.npkt = 0;/* indicates there's nothing in txpkts */
1243	coalescing = 0;
1244
1245	can_reclaim = reclaimable(eq);
1246	if (__predict_false(eq->flags & EQ_STALLED)) {
1247		if (can_reclaim < tx_resume_threshold(eq)) {
1248			txq->m = m;
1249			return (0);
1250		}
1251		eq->flags &= ~EQ_STALLED;
1252		eq->unstalled++;
1253	}
1254
1255	if (__predict_false(eq->flags & EQ_DOOMED)) {
1256		m_freem(m);
1257		while ((m = buf_ring_dequeue_sc(txq->br)) != NULL)
1258			m_freem(m);
1259		return (ENETDOWN);
1260	}
1261
1262	if (eq->avail < 8 && can_reclaim)
1263		reclaim_tx_descs(txq, can_reclaim, 32);
1264
1265	for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
1266
1267		if (eq->avail < 8)
1268			break;
1269
1270		next = m->m_nextpkt;
1271		m->m_nextpkt = NULL;
1272
1273		if (next || buf_ring_peek(br))
1274			coalescing = 1;
1275
1276		rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
1277		if (rc != 0) {
1278			if (rc == ENOMEM) {
1279
1280				/* Short of resources, suspend tx */
1281
1282				m->m_nextpkt = next;
1283				break;
1284			}
1285
1286			/*
1287			 * Unrecoverable error for this packet, throw it away
1288			 * and move on to the next.  get_pkt_sgl may already
1289			 * have freed m (it will be NULL in that case and the
1290			 * m_freem here is still safe).
1291			 */
1292
1293			m_freem(m);
1294			continue;
1295		}
1296
1297		if (coalescing &&
1298		    add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
1299
1300			/* Successfully absorbed into txpkts */
1301
1302			write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
1303			goto doorbell;
1304		}
1305
1306		/*
1307		 * We weren't coalescing to begin with, or current frame could
1308		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
1309		 * given to it can't be coalesced).  Either way there should be
1310		 * nothing in txpkts.
1311		 */
1312		KASSERT(txpkts.npkt == 0,
1313		    ("%s: txpkts not empty: %d", __func__, txpkts.npkt));
1314
1315		/* We're sending out individual packets now */
1316		coalescing = 0;
1317
1318		if (eq->avail < 8)
1319			reclaim_tx_descs(txq, 0, 8);
1320		rc = write_txpkt_wr(pi, txq, m, &sgl);
1321		if (rc != 0) {
1322
1323			/* Short of hardware descriptors, suspend tx */
1324
1325			/*
1326			 * This is an unlikely but expensive failure.  We've
1327			 * done all the hard work (DMA mappings etc.) and now we
1328			 * can't send out the packet.  What's worse, we have to
1329			 * spend even more time freeing up everything in sgl.
1330			 */
1331			txq->no_desc++;
1332			free_pkt_sgl(txq, &sgl);
1333
1334			m->m_nextpkt = next;
1335			break;
1336		}
1337
1338		ETHER_BPF_MTAP(ifp, m);
1339		if (sgl.nsegs == 0)
1340			m_freem(m);
1341doorbell:
1342		if (eq->pending >= 64)
1343		    ring_eq_db(sc, eq);
1344
1345		can_reclaim = reclaimable(eq);
1346		if (can_reclaim >= 32)
1347			reclaim_tx_descs(txq, can_reclaim, 64);
1348	}
1349
1350	if (txpkts.npkt > 0)
1351		write_txpkts_wr(txq, &txpkts);
1352
1353	/*
1354	 * m not NULL means there was an error but we haven't thrown it away.
1355	 * This can happen when we're short of tx descriptors (no_desc) or maybe
1356	 * even DMA maps (no_dmamap).  Either way, a credit flush and reclaim
1357	 * will get things going again.
1358	 */
1359	if (m && !(eq->flags & EQ_CRFLUSHED)) {
1360		struct tx_sdesc *txsd = &txq->sdesc[eq->pidx];
1361
1362		/*
1363		 * If EQ_CRFLUSHED is not set then we know we have at least one
1364		 * available descriptor because any WR that reduces eq->avail to
1365		 * 0 also sets EQ_CRFLUSHED.
1366		 */
1367		KASSERT(eq->avail > 0, ("%s: no space for eqflush.", __func__));
1368
1369		txsd->desc_used = 1;
1370		txsd->credits = 0;
1371		write_eqflush_wr(eq);
1372	}
1373	txq->m = m;
1374
1375	if (eq->pending)
1376		ring_eq_db(sc, eq);
1377
1378	reclaim_tx_descs(txq, 0, 128);
1379
1380	if (eq->flags & EQ_STALLED && callout_pending(&eq->tx_callout) == 0)
1381		callout_reset(&eq->tx_callout, 1, t4_tx_callout, eq);
1382
1383	return (0);
1384}
1385
1386void
1387t4_update_fl_bufsize(struct ifnet *ifp)
1388{
1389	struct port_info *pi = ifp->if_softc;
1390	struct sge_rxq *rxq;
1391	struct sge_fl *fl;
1392	int i, bufsize;
1393
1394	/* large enough for a frame even when VLAN extraction is disabled */
1395	bufsize = FL_PKTSHIFT + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN +
1396	    ifp->if_mtu;
1397	for_each_rxq(pi, i, rxq) {
1398		fl = &rxq->fl;
1399
1400		FL_LOCK(fl);
1401		set_fl_tag_idx(fl, bufsize);
1402		FL_UNLOCK(fl);
1403	}
1404}
1405
1406int
1407can_resume_tx(struct sge_eq *eq)
1408{
1409	return (reclaimable(eq) >= tx_resume_threshold(eq));
1410}
1411
1412static inline void
1413init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
1414    int qsize, int esize, char *name)
1415{
1416	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
1417	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
1418	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
1419	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
1420
1421	iq->flags = 0;
1422	iq->adapter = sc;
1423	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx);
1424	iq->intr_pktc_idx = SGE_NCOUNTERS - 1;
1425	if (pktc_idx >= 0) {
1426		iq->intr_params |= F_QINTR_CNT_EN;
1427		iq->intr_pktc_idx = pktc_idx;
1428	}
1429	iq->qsize = roundup(qsize, 16);		/* See FW_IQ_CMD/iqsize */
1430	iq->esize = max(esize, 16);		/* See FW_IQ_CMD/iqesize */
1431	strlcpy(iq->lockname, name, sizeof(iq->lockname));
1432}
1433
1434static inline void
1435init_fl(struct sge_fl *fl, int qsize, int bufsize, char *name)
1436{
1437	fl->qsize = qsize;
1438	strlcpy(fl->lockname, name, sizeof(fl->lockname));
1439	set_fl_tag_idx(fl, bufsize);
1440}
1441
1442static inline void
1443init_eq(struct sge_eq *eq, int eqtype, int qsize, uint8_t tx_chan,
1444    uint16_t iqid, char *name)
1445{
1446	KASSERT(tx_chan < NCHAN, ("%s: bad tx channel %d", __func__, tx_chan));
1447	KASSERT(eqtype <= EQ_TYPEMASK, ("%s: bad qtype %d", __func__, eqtype));
1448
1449	eq->flags = eqtype & EQ_TYPEMASK;
1450	eq->tx_chan = tx_chan;
1451	eq->iqid = iqid;
1452	eq->qsize = qsize;
1453	strlcpy(eq->lockname, name, sizeof(eq->lockname));
1454
1455	TASK_INIT(&eq->tx_task, 0, t4_tx_task, eq);
1456	callout_init(&eq->tx_callout, CALLOUT_MPSAFE);
1457}
1458
1459static int
1460alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
1461    bus_dmamap_t *map, bus_addr_t *pa, void **va)
1462{
1463	int rc;
1464
1465	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
1466	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
1467	if (rc != 0) {
1468		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
1469		goto done;
1470	}
1471
1472	rc = bus_dmamem_alloc(*tag, va,
1473	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
1474	if (rc != 0) {
1475		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
1476		goto done;
1477	}
1478
1479	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
1480	if (rc != 0) {
1481		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
1482		goto done;
1483	}
1484done:
1485	if (rc)
1486		free_ring(sc, *tag, *map, *pa, *va);
1487
1488	return (rc);
1489}
1490
1491static int
1492free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
1493    bus_addr_t pa, void *va)
1494{
1495	if (pa)
1496		bus_dmamap_unload(tag, map);
1497	if (va)
1498		bus_dmamem_free(tag, va, map);
1499	if (tag)
1500		bus_dma_tag_destroy(tag);
1501
1502	return (0);
1503}
1504
1505/*
1506 * Allocates the ring for an ingress queue and an optional freelist.  If the
1507 * freelist is specified it will be allocated and then associated with the
1508 * ingress queue.
1509 *
1510 * Returns errno on failure.  Resources allocated up to that point may still be
1511 * allocated.  Caller is responsible for cleanup in case this function fails.
1512 *
1513 * If the ingress queue will take interrupts directly (iq->flags & IQ_INTR) then
1514 * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
1515 * the abs_id of the ingress queue to which its interrupts should be forwarded.
1516 */
1517static int
1518alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
1519    int intr_idx, int cong)
1520{
1521	int rc, i, cntxt_id;
1522	size_t len;
1523	struct fw_iq_cmd c;
1524	struct adapter *sc = iq->adapter;
1525	__be32 v = 0;
1526
1527	len = iq->qsize * iq->esize;
1528	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
1529	    (void **)&iq->desc);
1530	if (rc != 0)
1531		return (rc);
1532
1533	bzero(&c, sizeof(c));
1534	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
1535	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
1536	    V_FW_IQ_CMD_VFN(0));
1537
1538	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
1539	    FW_LEN16(c));
1540
1541	/* Special handling for firmware event queue */
1542	if (iq == &sc->sge.fwq)
1543		v |= F_FW_IQ_CMD_IQASYNCH;
1544
1545	if (iq->flags & IQ_INTR) {
1546		KASSERT(intr_idx < sc->intr_count,
1547		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
1548	} else
1549		v |= F_FW_IQ_CMD_IQANDST;
1550	v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
1551
1552	c.type_to_iqandstindex = htobe32(v |
1553	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1554	    V_FW_IQ_CMD_VIID(pi->viid) |
1555	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
1556	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
1557	    F_FW_IQ_CMD_IQGTSMODE |
1558	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
1559	    V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
1560	c.iqsize = htobe16(iq->qsize);
1561	c.iqaddr = htobe64(iq->ba);
1562	if (cong >= 0)
1563		c.iqns_to_fl0congen = htobe32(F_FW_IQ_CMD_IQFLINTCONGEN);
1564
1565	if (fl) {
1566		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
1567
1568		for (i = 0; i < FL_BUF_SIZES; i++) {
1569
1570			/*
1571			 * A freelist buffer must be 16 byte aligned as the SGE
1572			 * uses the low 4 bits of the bus addr to figure out the
1573			 * buffer size.
1574			 */
1575			rc = bus_dma_tag_create(sc->dmat, 16, 0,
1576			    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1577			    FL_BUF_SIZE(i), 1, FL_BUF_SIZE(i), BUS_DMA_ALLOCNOW,
1578			    NULL, NULL, &fl->tag[i]);
1579			if (rc != 0) {
1580				device_printf(sc->dev,
1581				    "failed to create fl DMA tag[%d]: %d\n",
1582				    i, rc);
1583				return (rc);
1584			}
1585		}
1586		len = fl->qsize * RX_FL_ESIZE;
1587		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
1588		    &fl->ba, (void **)&fl->desc);
1589		if (rc)
1590			return (rc);
1591
1592		/* Allocate space for one software descriptor per buffer. */
1593		fl->cap = (fl->qsize - SPG_LEN / RX_FL_ESIZE) * 8;
1594		FL_LOCK(fl);
1595		rc = alloc_fl_sdesc(fl);
1596		FL_UNLOCK(fl);
1597		if (rc != 0) {
1598			device_printf(sc->dev,
1599			    "failed to setup fl software descriptors: %d\n",
1600			    rc);
1601			return (rc);
1602		}
1603		fl->needed = fl->cap;
1604		fl->lowat = roundup(sc->sge.fl_starve_threshold, 8);
1605
1606		c.iqns_to_fl0congen |=
1607		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) |
1608			F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO |
1609			F_FW_IQ_CMD_FL0PADEN);
1610		if (cong >= 0) {
1611			c.iqns_to_fl0congen |=
1612				htobe32(V_FW_IQ_CMD_FL0CNGCHMAP(cong) |
1613				    F_FW_IQ_CMD_FL0CONGCIF |
1614				    F_FW_IQ_CMD_FL0CONGEN);
1615		}
1616		c.fl0dcaen_to_fl0cidxfthresh =
1617		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
1618			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
1619		c.fl0size = htobe16(fl->qsize);
1620		c.fl0addr = htobe64(fl->ba);
1621	}
1622
1623	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
1624	if (rc != 0) {
1625		device_printf(sc->dev,
1626		    "failed to create ingress queue: %d\n", rc);
1627		return (rc);
1628	}
1629
1630	iq->cdesc = iq->desc;
1631	iq->cidx = 0;
1632	iq->gen = 1;
1633	iq->intr_next = iq->intr_params;
1634	iq->cntxt_id = be16toh(c.iqid);
1635	iq->abs_id = be16toh(c.physiqid);
1636	iq->flags |= IQ_ALLOCATED;
1637
1638	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
1639	if (cntxt_id >= sc->sge.niq) {
1640		panic ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
1641		    cntxt_id, sc->sge.niq - 1);
1642	}
1643	sc->sge.iqmap[cntxt_id] = iq;
1644
1645	if (fl) {
1646		fl->cntxt_id = be16toh(c.fl0id);
1647		fl->pidx = fl->cidx = 0;
1648
1649		cntxt_id = fl->cntxt_id - sc->sge.eq_start;
1650		if (cntxt_id >= sc->sge.neq) {
1651			panic("%s: fl->cntxt_id (%d) more than the max (%d)",
1652			    __func__, cntxt_id, sc->sge.neq - 1);
1653		}
1654		sc->sge.eqmap[cntxt_id] = (void *)fl;
1655
1656		FL_LOCK(fl);
1657		/* Enough to make sure the SGE doesn't think it's starved */
1658		refill_fl(sc, fl, fl->lowat);
1659		FL_UNLOCK(fl);
1660
1661		iq->flags |= IQ_HAS_FL;
1662	}
1663
1664	/* Enable IQ interrupts */
1665	atomic_store_rel_int(&iq->state, IQS_IDLE);
1666	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
1667	    V_INGRESSQID(iq->cntxt_id));
1668
1669	return (0);
1670}
1671
1672static int
1673free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
1674{
1675	int i, rc;
1676	struct adapter *sc = iq->adapter;
1677	device_t dev;
1678
1679	if (sc == NULL)
1680		return (0);	/* nothing to do */
1681
1682	dev = pi ? pi->dev : sc->dev;
1683
1684	if (iq->flags & IQ_ALLOCATED) {
1685		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
1686		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
1687		    fl ? fl->cntxt_id : 0xffff, 0xffff);
1688		if (rc != 0) {
1689			device_printf(dev,
1690			    "failed to free queue %p: %d\n", iq, rc);
1691			return (rc);
1692		}
1693		iq->flags &= ~IQ_ALLOCATED;
1694	}
1695
1696	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
1697
1698	bzero(iq, sizeof(*iq));
1699
1700	if (fl) {
1701		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
1702		    fl->desc);
1703
1704		if (fl->sdesc) {
1705			FL_LOCK(fl);
1706			free_fl_sdesc(fl);
1707			FL_UNLOCK(fl);
1708		}
1709
1710		if (mtx_initialized(&fl->fl_lock))
1711			mtx_destroy(&fl->fl_lock);
1712
1713		for (i = 0; i < FL_BUF_SIZES; i++) {
1714			if (fl->tag[i])
1715				bus_dma_tag_destroy(fl->tag[i]);
1716		}
1717
1718		bzero(fl, sizeof(*fl));
1719	}
1720
1721	return (0);
1722}
1723
1724static int
1725alloc_fwq(struct adapter *sc)
1726{
1727	int rc, intr_idx;
1728	struct sge_iq *fwq = &sc->sge.fwq;
1729	char name[16];
1730	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
1731	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1732
1733	snprintf(name, sizeof(name), "%s fwq", device_get_nameunit(sc->dev));
1734	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE, name);
1735	fwq->flags |= IQ_INTR;	/* always */
1736	intr_idx = sc->intr_count > 1 ? 1 : 0;
1737	rc = alloc_iq_fl(sc->port[0], fwq, NULL, intr_idx, -1);
1738	if (rc != 0) {
1739		device_printf(sc->dev,
1740		    "failed to create firmware event queue: %d\n", rc);
1741		return (rc);
1742	}
1743
1744	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "fwq", CTLFLAG_RD,
1745	    NULL, "firmware event queue");
1746	children = SYSCTL_CHILDREN(oid);
1747
1748	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "abs_id",
1749	    CTLTYPE_INT | CTLFLAG_RD, &fwq->abs_id, 0, sysctl_uint16, "I",
1750	    "absolute id of the queue");
1751	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cntxt_id",
1752	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cntxt_id, 0, sysctl_uint16, "I",
1753	    "SGE context id of the queue");
1754	SYSCTL_ADD_PROC(&sc->ctx, children, OID_AUTO, "cidx",
1755	    CTLTYPE_INT | CTLFLAG_RD, &fwq->cidx, 0, sysctl_uint16, "I",
1756	    "consumer index");
1757
1758	return (0);
1759}
1760
1761static int
1762free_fwq(struct adapter *sc)
1763{
1764	return free_iq_fl(NULL, &sc->sge.fwq, NULL);
1765}
1766
1767static int
1768alloc_mgmtq(struct adapter *sc)
1769{
1770	int rc;
1771	struct sge_wrq *mgmtq = &sc->sge.mgmtq;
1772	char name[16];
1773	struct sysctl_oid *oid = device_get_sysctl_tree(sc->dev);
1774	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
1775
1776	oid = SYSCTL_ADD_NODE(&sc->ctx, children, OID_AUTO, "mgmtq", CTLFLAG_RD,
1777	    NULL, "management queue");
1778
1779	snprintf(name, sizeof(name), "%s mgmtq", device_get_nameunit(sc->dev));
1780	init_eq(&mgmtq->eq, EQ_CTRL, CTRL_EQ_QSIZE, sc->port[0]->tx_chan,
1781	    sc->sge.fwq.cntxt_id, name);
1782	rc = alloc_wrq(sc, NULL, mgmtq, oid);
1783	if (rc != 0) {
1784		device_printf(sc->dev,
1785		    "failed to create management queue: %d\n", rc);
1786		return (rc);
1787	}
1788
1789	return (0);
1790}
1791
1792static int
1793free_mgmtq(struct adapter *sc)
1794{
1795	return free_wrq(sc, &sc->sge.mgmtq);
1796}
1797
1798static int
1799alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx,
1800    struct sysctl_oid *oid)
1801{
1802	int rc;
1803	struct sysctl_oid_list *children;
1804	char name[16];
1805
1806	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx, 1 << pi->tx_chan);
1807	if (rc != 0)
1808		return (rc);
1809
1810	FL_LOCK(&rxq->fl);
1811	refill_fl(pi->adapter, &rxq->fl, rxq->fl.needed / 8);
1812	FL_UNLOCK(&rxq->fl);
1813
1814#ifdef INET
1815	rc = tcp_lro_init(&rxq->lro);
1816	if (rc != 0)
1817		return (rc);
1818	rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
1819
1820	if (pi->ifp->if_capenable & IFCAP_LRO)
1821		rxq->iq.flags |= IQ_LRO_ENABLED;
1822#endif
1823	rxq->ifp = pi->ifp;
1824
1825	children = SYSCTL_CHILDREN(oid);
1826
1827	snprintf(name, sizeof(name), "%d", idx);
1828	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
1829	    NULL, "rx queue");
1830	children = SYSCTL_CHILDREN(oid);
1831
1832	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
1833	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.abs_id, 0, sysctl_uint16, "I",
1834	    "absolute id of the queue");
1835	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
1836	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cntxt_id, 0, sysctl_uint16, "I",
1837	    "SGE context id of the queue");
1838	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
1839	    CTLTYPE_INT | CTLFLAG_RD, &rxq->iq.cidx, 0, sysctl_uint16, "I",
1840	    "consumer index");
1841#ifdef INET
1842	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
1843	    &rxq->lro.lro_queued, 0, NULL);
1844	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
1845	    &rxq->lro.lro_flushed, 0, NULL);
1846#endif
1847	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
1848	    &rxq->rxcsum, "# of times hardware assisted with checksum");
1849	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
1850	    CTLFLAG_RD, &rxq->vlan_extraction,
1851	    "# of times hardware extracted 802.1Q tag");
1852
1853	children = SYSCTL_CHILDREN(oid);
1854	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD,
1855	    NULL, "freelist");
1856	children = SYSCTL_CHILDREN(oid);
1857
1858	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
1859	    CTLTYPE_INT | CTLFLAG_RD, &rxq->fl.cntxt_id, 0, sysctl_uint16, "I",
1860	    "SGE context id of the queue");
1861	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
1862	    &rxq->fl.cidx, 0, "consumer index");
1863	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
1864	    &rxq->fl.pidx, 0, "producer index");
1865
1866	return (rc);
1867}
1868
1869static int
1870free_rxq(struct port_info *pi, struct sge_rxq *rxq)
1871{
1872	int rc;
1873
1874#ifdef INET
1875	if (rxq->lro.ifp) {
1876		tcp_lro_free(&rxq->lro);
1877		rxq->lro.ifp = NULL;
1878	}
1879#endif
1880
1881	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
1882	if (rc == 0)
1883		bzero(rxq, sizeof(*rxq));
1884
1885	return (rc);
1886}
1887
1888#ifndef TCP_OFFLOAD_DISABLE
1889static int
1890alloc_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq,
1891    int intr_idx, int idx, struct sysctl_oid *oid)
1892{
1893	int rc;
1894	struct sysctl_oid_list *children;
1895	char name[16];
1896
1897	rc = alloc_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl, intr_idx,
1898	    1 << pi->tx_chan);
1899	if (rc != 0)
1900		return (rc);
1901
1902	children = SYSCTL_CHILDREN(oid);
1903
1904	snprintf(name, sizeof(name), "%d", idx);
1905	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
1906	    NULL, "rx queue");
1907	children = SYSCTL_CHILDREN(oid);
1908
1909	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "abs_id",
1910	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.abs_id, 0, sysctl_uint16,
1911	    "I", "absolute id of the queue");
1912	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
1913	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cntxt_id, 0, sysctl_uint16,
1914	    "I", "SGE context id of the queue");
1915	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
1916	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->iq.cidx, 0, sysctl_uint16, "I",
1917	    "consumer index");
1918
1919	children = SYSCTL_CHILDREN(oid);
1920	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, "fl", CTLFLAG_RD,
1921	    NULL, "freelist");
1922	children = SYSCTL_CHILDREN(oid);
1923
1924	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cntxt_id",
1925	    CTLTYPE_INT | CTLFLAG_RD, &ofld_rxq->fl.cntxt_id, 0, sysctl_uint16,
1926	    "I", "SGE context id of the queue");
1927	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cidx", CTLFLAG_RD,
1928	    &ofld_rxq->fl.cidx, 0, "consumer index");
1929	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "pidx", CTLFLAG_RD,
1930	    &ofld_rxq->fl.pidx, 0, "producer index");
1931
1932	return (rc);
1933}
1934
1935static int
1936free_ofld_rxq(struct port_info *pi, struct sge_ofld_rxq *ofld_rxq)
1937{
1938	int rc;
1939
1940	rc = free_iq_fl(pi, &ofld_rxq->iq, &ofld_rxq->fl);
1941	if (rc == 0)
1942		bzero(ofld_rxq, sizeof(*ofld_rxq));
1943
1944	return (rc);
1945}
1946#endif
1947
1948static int
1949ctrl_eq_alloc(struct adapter *sc, struct sge_eq *eq)
1950{
1951	int rc, cntxt_id;
1952	struct fw_eq_ctrl_cmd c;
1953
1954	bzero(&c, sizeof(c));
1955
1956	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST |
1957	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_CTRL_CMD_PFN(sc->pf) |
1958	    V_FW_EQ_CTRL_CMD_VFN(0));
1959	c.alloc_to_len16 = htobe32(F_FW_EQ_CTRL_CMD_ALLOC |
1960	    F_FW_EQ_CTRL_CMD_EQSTART | FW_LEN16(c));
1961	c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(eq->iqid)); /* XXX */
1962	c.physeqid_pkd = htobe32(0);
1963	c.fetchszm_to_iqid =
1964	    htobe32(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1965		V_FW_EQ_CTRL_CMD_PCIECHN(eq->tx_chan) |
1966		F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(eq->iqid));
1967	c.dcaen_to_eqsize =
1968	    htobe32(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1969		V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1970		V_FW_EQ_CTRL_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1971		V_FW_EQ_CTRL_CMD_EQSIZE(eq->qsize));
1972	c.eqaddr = htobe64(eq->ba);
1973
1974	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
1975	if (rc != 0) {
1976		device_printf(sc->dev,
1977		    "failed to create control queue %d: %d\n", eq->tx_chan, rc);
1978		return (rc);
1979	}
1980	eq->flags |= EQ_ALLOCATED;
1981
1982	eq->cntxt_id = G_FW_EQ_CTRL_CMD_EQID(be32toh(c.cmpliqid_eqid));
1983	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1984	if (cntxt_id >= sc->sge.neq)
1985	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1986		cntxt_id, sc->sge.neq - 1);
1987	sc->sge.eqmap[cntxt_id] = eq;
1988
1989	return (rc);
1990}
1991
1992static int
1993eth_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
1994{
1995	int rc, cntxt_id;
1996	struct fw_eq_eth_cmd c;
1997
1998	bzero(&c, sizeof(c));
1999
2000	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
2001	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
2002	    V_FW_EQ_ETH_CMD_VFN(0));
2003	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
2004	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
2005	c.viid_pkd = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
2006	c.fetchszm_to_iqid =
2007	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2008		V_FW_EQ_ETH_CMD_PCIECHN(eq->tx_chan) | F_FW_EQ_ETH_CMD_FETCHRO |
2009		V_FW_EQ_ETH_CMD_IQID(eq->iqid));
2010	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2011		      V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2012		      V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2013		      V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
2014	c.eqaddr = htobe64(eq->ba);
2015
2016	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2017	if (rc != 0) {
2018		device_printf(pi->dev,
2019		    "failed to create Ethernet egress queue: %d\n", rc);
2020		return (rc);
2021	}
2022	eq->flags |= EQ_ALLOCATED;
2023
2024	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
2025	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2026	if (cntxt_id >= sc->sge.neq)
2027	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2028		cntxt_id, sc->sge.neq - 1);
2029	sc->sge.eqmap[cntxt_id] = eq;
2030
2031	return (rc);
2032}
2033
2034#ifndef TCP_OFFLOAD_DISABLE
2035static int
2036ofld_eq_alloc(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2037{
2038	int rc, cntxt_id;
2039	struct fw_eq_ofld_cmd c;
2040
2041	bzero(&c, sizeof(c));
2042
2043	c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_OFLD_CMD) | F_FW_CMD_REQUEST |
2044	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_OFLD_CMD_PFN(sc->pf) |
2045	    V_FW_EQ_OFLD_CMD_VFN(0));
2046	c.alloc_to_len16 = htonl(F_FW_EQ_OFLD_CMD_ALLOC |
2047	    F_FW_EQ_OFLD_CMD_EQSTART | FW_LEN16(c));
2048	c.fetchszm_to_iqid =
2049		htonl(V_FW_EQ_OFLD_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
2050		    V_FW_EQ_OFLD_CMD_PCIECHN(eq->tx_chan) |
2051		    F_FW_EQ_OFLD_CMD_FETCHRO | V_FW_EQ_OFLD_CMD_IQID(eq->iqid));
2052	c.dcaen_to_eqsize =
2053	    htobe32(V_FW_EQ_OFLD_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
2054		V_FW_EQ_OFLD_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
2055		V_FW_EQ_OFLD_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
2056		V_FW_EQ_OFLD_CMD_EQSIZE(eq->qsize));
2057	c.eqaddr = htobe64(eq->ba);
2058
2059	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
2060	if (rc != 0) {
2061		device_printf(pi->dev,
2062		    "failed to create egress queue for TCP offload: %d\n", rc);
2063		return (rc);
2064	}
2065	eq->flags |= EQ_ALLOCATED;
2066
2067	eq->cntxt_id = G_FW_EQ_OFLD_CMD_EQID(be32toh(c.eqid_pkd));
2068	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
2069	if (cntxt_id >= sc->sge.neq)
2070	    panic("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
2071		cntxt_id, sc->sge.neq - 1);
2072	sc->sge.eqmap[cntxt_id] = eq;
2073
2074	return (rc);
2075}
2076#endif
2077
2078static int
2079alloc_eq(struct adapter *sc, struct port_info *pi, struct sge_eq *eq)
2080{
2081	int rc;
2082	size_t len;
2083
2084	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
2085
2086	len = eq->qsize * EQ_ESIZE;
2087	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
2088	    &eq->ba, (void **)&eq->desc);
2089	if (rc)
2090		return (rc);
2091
2092	eq->cap = eq->qsize - SPG_LEN / EQ_ESIZE;
2093	eq->spg = (void *)&eq->desc[eq->cap];
2094	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
2095	eq->pidx = eq->cidx = 0;
2096
2097	switch (eq->flags & EQ_TYPEMASK) {
2098	case EQ_CTRL:
2099		rc = ctrl_eq_alloc(sc, eq);
2100		break;
2101
2102	case EQ_ETH:
2103		rc = eth_eq_alloc(sc, pi, eq);
2104		break;
2105
2106#ifndef TCP_OFFLOAD_DISABLE
2107	case EQ_OFLD:
2108		rc = ofld_eq_alloc(sc, pi, eq);
2109		break;
2110#endif
2111
2112	default:
2113		panic("%s: invalid eq type %d.", __func__,
2114		    eq->flags & EQ_TYPEMASK);
2115	}
2116	if (rc != 0) {
2117		device_printf(sc->dev,
2118		    "failed to allocate egress queue(%d): %d",
2119		    eq->flags & EQ_TYPEMASK, rc);
2120	}
2121
2122	eq->tx_callout.c_cpu = eq->cntxt_id % mp_ncpus;
2123
2124	return (rc);
2125}
2126
2127static int
2128free_eq(struct adapter *sc, struct sge_eq *eq)
2129{
2130	int rc;
2131
2132	if (eq->flags & EQ_ALLOCATED) {
2133		switch (eq->flags & EQ_TYPEMASK) {
2134		case EQ_CTRL:
2135			rc = -t4_ctrl_eq_free(sc, sc->mbox, sc->pf, 0,
2136			    eq->cntxt_id);
2137			break;
2138
2139		case EQ_ETH:
2140			rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0,
2141			    eq->cntxt_id);
2142			break;
2143
2144#ifndef TCP_OFFLOAD_DISABLE
2145		case EQ_OFLD:
2146			rc = -t4_ofld_eq_free(sc, sc->mbox, sc->pf, 0,
2147			    eq->cntxt_id);
2148			break;
2149#endif
2150
2151		default:
2152			panic("%s: invalid eq type %d.", __func__,
2153			    eq->flags & EQ_TYPEMASK);
2154		}
2155		if (rc != 0) {
2156			device_printf(sc->dev,
2157			    "failed to free egress queue (%d): %d\n",
2158			    eq->flags & EQ_TYPEMASK, rc);
2159			return (rc);
2160		}
2161		eq->flags &= ~EQ_ALLOCATED;
2162	}
2163
2164	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
2165
2166	if (mtx_initialized(&eq->eq_lock))
2167		mtx_destroy(&eq->eq_lock);
2168
2169	bzero(eq, sizeof(*eq));
2170	return (0);
2171}
2172
2173static int
2174alloc_wrq(struct adapter *sc, struct port_info *pi, struct sge_wrq *wrq,
2175    struct sysctl_oid *oid)
2176{
2177	int rc;
2178	struct sysctl_ctx_list *ctx = pi ? &pi->ctx : &sc->ctx;
2179	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2180
2181	rc = alloc_eq(sc, pi, &wrq->eq);
2182	if (rc)
2183		return (rc);
2184
2185	wrq->adapter = sc;
2186
2187	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2188	    &wrq->eq.cntxt_id, 0, "SGE context id of the queue");
2189	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "cidx",
2190	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.cidx, 0, sysctl_uint16, "I",
2191	    "consumer index");
2192	SYSCTL_ADD_PROC(ctx, children, OID_AUTO, "pidx",
2193	    CTLTYPE_INT | CTLFLAG_RD, &wrq->eq.pidx, 0, sysctl_uint16, "I",
2194	    "producer index");
2195	SYSCTL_ADD_UQUAD(ctx, children, OID_AUTO, "tx_wrs", CTLFLAG_RD,
2196	    &wrq->tx_wrs, "# of work requests");
2197	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
2198	    &wrq->no_desc, 0,
2199	    "# of times queue ran out of hardware descriptors");
2200	SYSCTL_ADD_UINT(ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
2201	    &wrq->eq.unstalled, 0, "# of times queue recovered after stall");
2202
2203
2204	return (rc);
2205}
2206
2207static int
2208free_wrq(struct adapter *sc, struct sge_wrq *wrq)
2209{
2210	int rc;
2211
2212	rc = free_eq(sc, &wrq->eq);
2213	if (rc)
2214		return (rc);
2215
2216	bzero(wrq, sizeof(*wrq));
2217	return (0);
2218}
2219
2220static int
2221alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx,
2222    struct sysctl_oid *oid)
2223{
2224	int rc;
2225	struct adapter *sc = pi->adapter;
2226	struct sge_eq *eq = &txq->eq;
2227	char name[16];
2228	struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
2229
2230	rc = alloc_eq(sc, pi, eq);
2231	if (rc)
2232		return (rc);
2233
2234	txq->ifp = pi->ifp;
2235
2236	txq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
2237	    M_ZERO | M_WAITOK);
2238	txq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
2239
2240	rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
2241	    BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
2242	    BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &txq->tx_tag);
2243	if (rc != 0) {
2244		device_printf(sc->dev,
2245		    "failed to create tx DMA tag: %d\n", rc);
2246		return (rc);
2247	}
2248
2249	/*
2250	 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
2251	 * limit for any WR).  txq->no_dmamap events shouldn't occur if maps is
2252	 * sized for the worst case.
2253	 */
2254	rc = t4_alloc_tx_maps(&txq->txmaps, txq->tx_tag, eq->qsize * 10 / 8,
2255	    M_WAITOK);
2256	if (rc != 0) {
2257		device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
2258		return (rc);
2259	}
2260
2261	snprintf(name, sizeof(name), "%d", idx);
2262	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
2263	    NULL, "tx queue");
2264	children = SYSCTL_CHILDREN(oid);
2265
2266	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "cntxt_id", CTLFLAG_RD,
2267	    &eq->cntxt_id, 0, "SGE context id of the queue");
2268	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "cidx",
2269	    CTLTYPE_INT | CTLFLAG_RD, &eq->cidx, 0, sysctl_uint16, "I",
2270	    "consumer index");
2271	SYSCTL_ADD_PROC(&pi->ctx, children, OID_AUTO, "pidx",
2272	    CTLTYPE_INT | CTLFLAG_RD, &eq->pidx, 0, sysctl_uint16, "I",
2273	    "producer index");
2274
2275	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
2276	    &txq->txcsum, "# of times hardware assisted with checksum");
2277	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
2278	    CTLFLAG_RD, &txq->vlan_insertion,
2279	    "# of times hardware inserted 802.1Q tag");
2280	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
2281	    &txq->tso_wrs, "# of IPv4 TSO work requests");
2282	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
2283	    &txq->imm_wrs, "# of work requests with immediate data");
2284	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
2285	    &txq->sgl_wrs, "# of work requests with direct SGL");
2286	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
2287	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
2288	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
2289	    &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
2290	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
2291	    &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
2292
2293	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
2294	    &txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
2295	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
2296	    &txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
2297	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
2298	    &eq->egr_update, 0, "egress update notifications from the SGE");
2299	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "unstalled", CTLFLAG_RD,
2300	    &eq->unstalled, 0, "# of times txq recovered after stall");
2301
2302	return (rc);
2303}
2304
2305static int
2306free_txq(struct port_info *pi, struct sge_txq *txq)
2307{
2308	int rc;
2309	struct adapter *sc = pi->adapter;
2310	struct sge_eq *eq = &txq->eq;
2311
2312	rc = free_eq(sc, eq);
2313	if (rc)
2314		return (rc);
2315
2316	free(txq->sdesc, M_CXGBE);
2317
2318	if (txq->txmaps.maps)
2319		t4_free_tx_maps(&txq->txmaps, txq->tx_tag);
2320
2321	buf_ring_free(txq->br, M_CXGBE);
2322
2323	if (txq->tx_tag)
2324		bus_dma_tag_destroy(txq->tx_tag);
2325
2326	bzero(txq, sizeof(*txq));
2327	return (0);
2328}
2329
2330static void
2331oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
2332{
2333	bus_addr_t *ba = arg;
2334
2335	KASSERT(nseg == 1,
2336	    ("%s meant for single segment mappings only.", __func__));
2337
2338	*ba = error ? 0 : segs->ds_addr;
2339}
2340
2341static inline bool
2342is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
2343{
2344	*ctrl = (void *)((uintptr_t)iq->cdesc +
2345	    (iq->esize - sizeof(struct rsp_ctrl)));
2346
2347	return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen);
2348}
2349
2350static inline void
2351iq_next(struct sge_iq *iq)
2352{
2353	iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
2354	if (__predict_false(++iq->cidx == iq->qsize - 1)) {
2355		iq->cidx = 0;
2356		iq->gen ^= 1;
2357		iq->cdesc = iq->desc;
2358	}
2359}
2360
2361#define FL_HW_IDX(x) ((x) >> 3)
2362static inline void
2363ring_fl_db(struct adapter *sc, struct sge_fl *fl)
2364{
2365	int ndesc = fl->pending / 8;
2366
2367	if (FL_HW_IDX(fl->pidx) == FL_HW_IDX(fl->cidx))
2368		ndesc--;	/* hold back one credit */
2369
2370	if (ndesc <= 0)
2371		return;		/* nothing to do */
2372
2373	wmb();
2374
2375	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), F_DBPRIO |
2376	    V_QID(fl->cntxt_id) | V_PIDX(ndesc));
2377	fl->pending -= ndesc * 8;
2378}
2379
2380/*
2381 * Fill up the freelist by upto nbufs and maybe ring its doorbell.
2382 *
2383 * Returns non-zero to indicate that it should be added to the list of starving
2384 * freelists.
2385 */
2386static int
2387refill_fl(struct adapter *sc, struct sge_fl *fl, int nbufs)
2388{
2389	__be64 *d = &fl->desc[fl->pidx];
2390	struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
2391	bus_dma_tag_t tag;
2392	bus_addr_t pa;
2393	caddr_t cl;
2394	int rc;
2395
2396	FL_LOCK_ASSERT_OWNED(fl);
2397
2398	if (nbufs > fl->needed)
2399		nbufs = fl->needed;
2400
2401	while (nbufs--) {
2402
2403		if (sd->cl != NULL) {
2404
2405			/*
2406			 * This happens when a frame small enough to fit
2407			 * entirely in an mbuf was received in cl last time.
2408			 * We'd held on to cl and can reuse it now.  Note that
2409			 * we reuse a cluster of the old size if fl->tag_idx is
2410			 * no longer the same as sd->tag_idx.
2411			 */
2412
2413			KASSERT(*d == sd->ba_tag,
2414			    ("%s: recyling problem at pidx %d",
2415			    __func__, fl->pidx));
2416
2417			d++;
2418			goto recycled;
2419		}
2420
2421
2422		if (fl->tag_idx != sd->tag_idx) {
2423			bus_dmamap_t map;
2424			bus_dma_tag_t newtag = fl->tag[fl->tag_idx];
2425			bus_dma_tag_t oldtag = fl->tag[sd->tag_idx];
2426
2427			/*
2428			 * An MTU change can get us here.  Discard the old map
2429			 * which was created with the old tag, but only if
2430			 * we're able to get a new one.
2431			 */
2432			rc = bus_dmamap_create(newtag, 0, &map);
2433			if (rc == 0) {
2434				bus_dmamap_destroy(oldtag, sd->map);
2435				sd->map = map;
2436				sd->tag_idx = fl->tag_idx;
2437			}
2438		}
2439
2440		tag = fl->tag[sd->tag_idx];
2441
2442		cl = m_cljget(NULL, M_NOWAIT, FL_BUF_SIZE(sd->tag_idx));
2443		if (cl == NULL)
2444			break;
2445
2446		rc = bus_dmamap_load(tag, sd->map, cl, FL_BUF_SIZE(sd->tag_idx),
2447		    oneseg_dma_callback, &pa, 0);
2448		if (rc != 0 || pa == 0) {
2449			fl->dmamap_failed++;
2450			uma_zfree(FL_BUF_ZONE(sd->tag_idx), cl);
2451			break;
2452		}
2453
2454		sd->cl = cl;
2455		*d++ = htobe64(pa | sd->tag_idx);
2456
2457#ifdef INVARIANTS
2458		sd->ba_tag = htobe64(pa | sd->tag_idx);
2459#endif
2460
2461recycled:
2462		/* sd->m is never recycled, should always be NULL */
2463		KASSERT(sd->m == NULL, ("%s: stray mbuf", __func__));
2464
2465		sd->m = m_gethdr(M_NOWAIT, MT_NOINIT);
2466		if (sd->m == NULL)
2467			break;
2468
2469		fl->pending++;
2470		fl->needed--;
2471		sd++;
2472		if (++fl->pidx == fl->cap) {
2473			fl->pidx = 0;
2474			sd = fl->sdesc;
2475			d = fl->desc;
2476		}
2477	}
2478
2479	if (fl->pending >= 8)
2480		ring_fl_db(sc, fl);
2481
2482	return (FL_RUNNING_LOW(fl) && !(fl->flags & FL_STARVING));
2483}
2484
2485/*
2486 * Attempt to refill all starving freelists.
2487 */
2488static void
2489refill_sfl(void *arg)
2490{
2491	struct adapter *sc = arg;
2492	struct sge_fl *fl, *fl_temp;
2493
2494	mtx_lock(&sc->sfl_lock);
2495	TAILQ_FOREACH_SAFE(fl, &sc->sfl, link, fl_temp) {
2496		FL_LOCK(fl);
2497		refill_fl(sc, fl, 64);
2498		if (FL_NOT_RUNNING_LOW(fl) || fl->flags & FL_DOOMED) {
2499			TAILQ_REMOVE(&sc->sfl, fl, link);
2500			fl->flags &= ~FL_STARVING;
2501		}
2502		FL_UNLOCK(fl);
2503	}
2504
2505	if (!TAILQ_EMPTY(&sc->sfl))
2506		callout_schedule(&sc->sfl_callout, hz / 5);
2507	mtx_unlock(&sc->sfl_lock);
2508}
2509
2510static int
2511alloc_fl_sdesc(struct sge_fl *fl)
2512{
2513	struct fl_sdesc *sd;
2514	bus_dma_tag_t tag;
2515	int i, rc;
2516
2517	FL_LOCK_ASSERT_OWNED(fl);
2518
2519	fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE,
2520	    M_ZERO | M_WAITOK);
2521
2522	tag = fl->tag[fl->tag_idx];
2523	sd = fl->sdesc;
2524	for (i = 0; i < fl->cap; i++, sd++) {
2525
2526		sd->tag_idx = fl->tag_idx;
2527		rc = bus_dmamap_create(tag, 0, &sd->map);
2528		if (rc != 0)
2529			goto failed;
2530	}
2531
2532	return (0);
2533failed:
2534	while (--i >= 0) {
2535		sd--;
2536		bus_dmamap_destroy(tag, sd->map);
2537		if (sd->m) {
2538			m_init(sd->m, NULL, 0, M_NOWAIT, MT_DATA, 0);
2539			m_free(sd->m);
2540			sd->m = NULL;
2541		}
2542	}
2543	KASSERT(sd == fl->sdesc, ("%s: EDOOFUS", __func__));
2544
2545	free(fl->sdesc, M_CXGBE);
2546	fl->sdesc = NULL;
2547
2548	return (rc);
2549}
2550
2551static void
2552free_fl_sdesc(struct sge_fl *fl)
2553{
2554	struct fl_sdesc *sd;
2555	int i;
2556
2557	FL_LOCK_ASSERT_OWNED(fl);
2558
2559	sd = fl->sdesc;
2560	for (i = 0; i < fl->cap; i++, sd++) {
2561
2562		if (sd->m) {
2563			m_init(sd->m, NULL, 0, M_NOWAIT, MT_DATA, 0);
2564			m_free(sd->m);
2565			sd->m = NULL;
2566		}
2567
2568		if (sd->cl) {
2569			bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
2570			uma_zfree(FL_BUF_ZONE(sd->tag_idx), sd->cl);
2571			sd->cl = NULL;
2572		}
2573
2574		bus_dmamap_destroy(fl->tag[sd->tag_idx], sd->map);
2575	}
2576
2577	free(fl->sdesc, M_CXGBE);
2578	fl->sdesc = NULL;
2579}
2580
2581int
2582t4_alloc_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag, int count,
2583    int flags)
2584{
2585	struct tx_map *txm;
2586	int i, rc;
2587
2588	txmaps->map_total = txmaps->map_avail = count;
2589	txmaps->map_cidx = txmaps->map_pidx = 0;
2590
2591	txmaps->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
2592	    M_ZERO | flags);
2593
2594	txm = txmaps->maps;
2595	for (i = 0; i < count; i++, txm++) {
2596		rc = bus_dmamap_create(tx_tag, 0, &txm->map);
2597		if (rc != 0)
2598			goto failed;
2599	}
2600
2601	return (0);
2602failed:
2603	while (--i >= 0) {
2604		txm--;
2605		bus_dmamap_destroy(tx_tag, txm->map);
2606	}
2607	KASSERT(txm == txmaps->maps, ("%s: EDOOFUS", __func__));
2608
2609	free(txmaps->maps, M_CXGBE);
2610	txmaps->maps = NULL;
2611
2612	return (rc);
2613}
2614
2615void
2616t4_free_tx_maps(struct tx_maps *txmaps, bus_dma_tag_t tx_tag)
2617{
2618	struct tx_map *txm;
2619	int i;
2620
2621	txm = txmaps->maps;
2622	for (i = 0; i < txmaps->map_total; i++, txm++) {
2623
2624		if (txm->m) {
2625			bus_dmamap_unload(tx_tag, txm->map);
2626			m_freem(txm->m);
2627			txm->m = NULL;
2628		}
2629
2630		bus_dmamap_destroy(tx_tag, txm->map);
2631	}
2632
2633	free(txmaps->maps, M_CXGBE);
2634	txmaps->maps = NULL;
2635}
2636
2637/*
2638 * We'll do immediate data tx for non-TSO, but only when not coalescing.  We're
2639 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
2640 * of immediate data.
2641 */
2642#define IMM_LEN ( \
2643      2 * EQ_ESIZE \
2644    - sizeof(struct fw_eth_tx_pkt_wr) \
2645    - sizeof(struct cpl_tx_pkt_core))
2646
2647/*
2648 * Returns non-zero on failure, no need to cleanup anything in that case.
2649 *
2650 * Note 1: We always try to defrag the mbuf if required and return EFBIG only
2651 * if the resulting chain still won't fit in a tx descriptor.
2652 *
2653 * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
2654 * does not have the TCP header in it.
2655 */
2656static int
2657get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
2658    int sgl_only)
2659{
2660	struct mbuf *m = *fp;
2661	struct tx_maps *txmaps;
2662	struct tx_map *txm;
2663	int rc, defragged = 0, n;
2664
2665	TXQ_LOCK_ASSERT_OWNED(txq);
2666
2667	if (m->m_pkthdr.tso_segsz)
2668		sgl_only = 1;	/* Do not allow immediate data with LSO */
2669
2670start:	sgl->nsegs = 0;
2671
2672	if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
2673		return (0);	/* nsegs = 0 tells caller to use imm. tx */
2674
2675	txmaps = &txq->txmaps;
2676	if (txmaps->map_avail == 0) {
2677		txq->no_dmamap++;
2678		return (ENOMEM);
2679	}
2680	txm = &txmaps->maps[txmaps->map_pidx];
2681
2682	if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
2683		*fp = m_pullup(m, 50);
2684		m = *fp;
2685		if (m == NULL)
2686			return (ENOBUFS);
2687	}
2688
2689	rc = bus_dmamap_load_mbuf_sg(txq->tx_tag, txm->map, m, sgl->seg,
2690	    &sgl->nsegs, BUS_DMA_NOWAIT);
2691	if (rc == EFBIG && defragged == 0) {
2692		m = m_defrag(m, M_DONTWAIT);
2693		if (m == NULL)
2694			return (EFBIG);
2695
2696		defragged = 1;
2697		*fp = m;
2698		goto start;
2699	}
2700	if (rc != 0)
2701		return (rc);
2702
2703	txm->m = m;
2704	txmaps->map_avail--;
2705	if (++txmaps->map_pidx == txmaps->map_total)
2706		txmaps->map_pidx = 0;
2707
2708	KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
2709	    ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
2710
2711	/*
2712	 * Store the # of flits required to hold this frame's SGL in nflits.  An
2713	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
2714	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
2715	 * then len1 must be set to 0.
2716	 */
2717	n = sgl->nsegs - 1;
2718	sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
2719
2720	return (0);
2721}
2722
2723
2724/*
2725 * Releases all the txq resources used up in the specified sgl.
2726 */
2727static int
2728free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
2729{
2730	struct tx_maps *txmaps;
2731	struct tx_map *txm;
2732
2733	TXQ_LOCK_ASSERT_OWNED(txq);
2734
2735	if (sgl->nsegs == 0)
2736		return (0);	/* didn't use any map */
2737
2738	txmaps = &txq->txmaps;
2739
2740	/* 1 pkt uses exactly 1 map, back it out */
2741
2742	txmaps->map_avail++;
2743	if (txmaps->map_pidx > 0)
2744		txmaps->map_pidx--;
2745	else
2746		txmaps->map_pidx = txmaps->map_total - 1;
2747
2748	txm = &txmaps->maps[txmaps->map_pidx];
2749	bus_dmamap_unload(txq->tx_tag, txm->map);
2750	txm->m = NULL;
2751
2752	return (0);
2753}
2754
2755static int
2756write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
2757    struct sgl *sgl)
2758{
2759	struct sge_eq *eq = &txq->eq;
2760	struct fw_eth_tx_pkt_wr *wr;
2761	struct cpl_tx_pkt_core *cpl;
2762	uint32_t ctrl;	/* used in many unrelated places */
2763	uint64_t ctrl1;
2764	int nflits, ndesc, pktlen;
2765	struct tx_sdesc *txsd;
2766	caddr_t dst;
2767
2768	TXQ_LOCK_ASSERT_OWNED(txq);
2769
2770	pktlen = m->m_pkthdr.len;
2771
2772	/*
2773	 * Do we have enough flits to send this frame out?
2774	 */
2775	ctrl = sizeof(struct cpl_tx_pkt_core);
2776	if (m->m_pkthdr.tso_segsz) {
2777		nflits = TXPKT_LSO_WR_HDR;
2778		ctrl += sizeof(struct cpl_tx_pkt_lso);
2779	} else
2780		nflits = TXPKT_WR_HDR;
2781	if (sgl->nsegs > 0)
2782		nflits += sgl->nflits;
2783	else {
2784		nflits += howmany(pktlen, 8);
2785		ctrl += pktlen;
2786	}
2787	ndesc = howmany(nflits, 8);
2788	if (ndesc > eq->avail)
2789		return (ENOMEM);
2790
2791	/* Firmware work request header */
2792	wr = (void *)&eq->desc[eq->pidx];
2793	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
2794	    V_FW_ETH_TX_PKT_WR_IMMDLEN(ctrl));
2795	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
2796	if (eq->avail == ndesc) {
2797		if (!(eq->flags & EQ_CRFLUSHED)) {
2798			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2799			eq->flags |= EQ_CRFLUSHED;
2800		}
2801		eq->flags |= EQ_STALLED;
2802	}
2803
2804	wr->equiq_to_len16 = htobe32(ctrl);
2805	wr->r3 = 0;
2806
2807	if (m->m_pkthdr.tso_segsz) {
2808		struct cpl_tx_pkt_lso *lso = (void *)(wr + 1);
2809		struct ether_header *eh;
2810		struct ip *ip;
2811		struct tcphdr *tcp;
2812
2813		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
2814		    F_LSO_LAST_SLICE;
2815
2816		eh = mtod(m, struct ether_header *);
2817		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
2818			ctrl |= V_LSO_ETHHDR_LEN(1);
2819			ip = (void *)((struct ether_vlan_header *)eh + 1);
2820		} else
2821			ip = (void *)(eh + 1);
2822
2823		tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
2824		ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
2825		    V_LSO_TCPHDR_LEN(tcp->th_off);
2826
2827		lso->lso_ctrl = htobe32(ctrl);
2828		lso->ipid_ofst = htobe16(0);
2829		lso->mss = htobe16(m->m_pkthdr.tso_segsz);
2830		lso->seqno_offset = htobe32(0);
2831		lso->len = htobe32(pktlen);
2832
2833		cpl = (void *)(lso + 1);
2834
2835		txq->tso_wrs++;
2836	} else
2837		cpl = (void *)(wr + 1);
2838
2839	/* Checksum offload */
2840	ctrl1 = 0;
2841	if (!(m->m_pkthdr.csum_flags & CSUM_IP))
2842		ctrl1 |= F_TXPKT_IPCSUM_DIS;
2843	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)))
2844		ctrl1 |= F_TXPKT_L4CSUM_DIS;
2845	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP))
2846		txq->txcsum++;	/* some hardware assistance provided */
2847
2848	/* VLAN tag insertion */
2849	if (m->m_flags & M_VLANTAG) {
2850		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
2851		txq->vlan_insertion++;
2852	}
2853
2854	/* CPL header */
2855	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
2856	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
2857	cpl->pack = 0;
2858	cpl->len = htobe16(pktlen);
2859	cpl->ctrl1 = htobe64(ctrl1);
2860
2861	/* Software descriptor */
2862	txsd = &txq->sdesc[eq->pidx];
2863	txsd->desc_used = ndesc;
2864
2865	eq->pending += ndesc;
2866	eq->avail -= ndesc;
2867	eq->pidx += ndesc;
2868	if (eq->pidx >= eq->cap)
2869		eq->pidx -= eq->cap;
2870
2871	/* SGL */
2872	dst = (void *)(cpl + 1);
2873	if (sgl->nsegs > 0) {
2874		txsd->credits = 1;
2875		txq->sgl_wrs++;
2876		write_sgl_to_txd(eq, sgl, &dst);
2877	} else {
2878		txsd->credits = 0;
2879		txq->imm_wrs++;
2880		for (; m; m = m->m_next) {
2881			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
2882#ifdef INVARIANTS
2883			pktlen -= m->m_len;
2884#endif
2885		}
2886#ifdef INVARIANTS
2887		KASSERT(pktlen == 0, ("%s: %d bytes left.", __func__, pktlen));
2888#endif
2889
2890	}
2891
2892	txq->txpkt_wrs++;
2893	return (0);
2894}
2895
2896/*
2897 * Returns 0 to indicate that m has been accepted into a coalesced tx work
2898 * request.  It has either been folded into txpkts or txpkts was flushed and m
2899 * has started a new coalesced work request (as the first frame in a fresh
2900 * txpkts).
2901 *
2902 * Returns non-zero to indicate a failure - caller is responsible for
2903 * transmitting m, if there was anything in txpkts it has been flushed.
2904 */
2905static int
2906add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
2907    struct mbuf *m, struct sgl *sgl)
2908{
2909	struct sge_eq *eq = &txq->eq;
2910	int can_coalesce;
2911	struct tx_sdesc *txsd;
2912	int flits;
2913
2914	TXQ_LOCK_ASSERT_OWNED(txq);
2915
2916	KASSERT(sgl->nsegs, ("%s: can't coalesce imm data", __func__));
2917
2918	if (txpkts->npkt > 0) {
2919		flits = TXPKTS_PKT_HDR + sgl->nflits;
2920		can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
2921		    txpkts->nflits + flits <= TX_WR_FLITS &&
2922		    txpkts->nflits + flits <= eq->avail * 8 &&
2923		    txpkts->plen + m->m_pkthdr.len < 65536;
2924
2925		if (can_coalesce) {
2926			txpkts->npkt++;
2927			txpkts->nflits += flits;
2928			txpkts->plen += m->m_pkthdr.len;
2929
2930			txsd = &txq->sdesc[eq->pidx];
2931			txsd->credits++;
2932
2933			return (0);
2934		}
2935
2936		/*
2937		 * Couldn't coalesce m into txpkts.  The first order of business
2938		 * is to send txpkts on its way.  Then we'll revisit m.
2939		 */
2940		write_txpkts_wr(txq, txpkts);
2941	}
2942
2943	/*
2944	 * Check if we can start a new coalesced tx work request with m as
2945	 * the first packet in it.
2946	 */
2947
2948	KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
2949
2950	flits = TXPKTS_WR_HDR + sgl->nflits;
2951	can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
2952	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
2953
2954	if (can_coalesce == 0)
2955		return (EINVAL);
2956
2957	/*
2958	 * Start a fresh coalesced tx WR with m as the first frame in it.
2959	 */
2960	txpkts->npkt = 1;
2961	txpkts->nflits = flits;
2962	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
2963	txpkts->plen = m->m_pkthdr.len;
2964
2965	txsd = &txq->sdesc[eq->pidx];
2966	txsd->credits = 1;
2967
2968	return (0);
2969}
2970
2971/*
2972 * Note that write_txpkts_wr can never run out of hardware descriptors (but
2973 * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
2974 * coalescing only if sufficient hardware descriptors are available.
2975 */
2976static void
2977write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
2978{
2979	struct sge_eq *eq = &txq->eq;
2980	struct fw_eth_tx_pkts_wr *wr;
2981	struct tx_sdesc *txsd;
2982	uint32_t ctrl;
2983	int ndesc;
2984
2985	TXQ_LOCK_ASSERT_OWNED(txq);
2986
2987	ndesc = howmany(txpkts->nflits, 8);
2988
2989	wr = (void *)&eq->desc[eq->pidx];
2990	wr->op_pkd = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR));
2991	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
2992	if (eq->avail == ndesc) {
2993		if (!(eq->flags & EQ_CRFLUSHED)) {
2994			ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2995			eq->flags |= EQ_CRFLUSHED;
2996		}
2997		eq->flags |= EQ_STALLED;
2998	}
2999	wr->equiq_to_len16 = htobe32(ctrl);
3000	wr->plen = htobe16(txpkts->plen);
3001	wr->npkt = txpkts->npkt;
3002	wr->r3 = wr->type = 0;
3003
3004	/* Everything else already written */
3005
3006	txsd = &txq->sdesc[eq->pidx];
3007	txsd->desc_used = ndesc;
3008
3009	KASSERT(eq->avail >= ndesc, ("%s: out of descriptors", __func__));
3010
3011	eq->pending += ndesc;
3012	eq->avail -= ndesc;
3013	eq->pidx += ndesc;
3014	if (eq->pidx >= eq->cap)
3015		eq->pidx -= eq->cap;
3016
3017	txq->txpkts_pkts += txpkts->npkt;
3018	txq->txpkts_wrs++;
3019	txpkts->npkt = 0;	/* emptied */
3020}
3021
3022static inline void
3023write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
3024    struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
3025{
3026	struct ulp_txpkt *ulpmc;
3027	struct ulptx_idata *ulpsc;
3028	struct cpl_tx_pkt_core *cpl;
3029	struct sge_eq *eq = &txq->eq;
3030	uintptr_t flitp, start, end;
3031	uint64_t ctrl;
3032	caddr_t dst;
3033
3034	KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
3035
3036	start = (uintptr_t)eq->desc;
3037	end = (uintptr_t)eq->spg;
3038
3039	/* Checksum offload */
3040	ctrl = 0;
3041	if (!(m->m_pkthdr.csum_flags & CSUM_IP))
3042		ctrl |= F_TXPKT_IPCSUM_DIS;
3043	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)))
3044		ctrl |= F_TXPKT_L4CSUM_DIS;
3045	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP))
3046		txq->txcsum++;	/* some hardware assistance provided */
3047
3048	/* VLAN tag insertion */
3049	if (m->m_flags & M_VLANTAG) {
3050		ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
3051		txq->vlan_insertion++;
3052	}
3053
3054	/*
3055	 * The previous packet's SGL must have ended at a 16 byte boundary (this
3056	 * is required by the firmware/hardware).  It follows that flitp cannot
3057	 * wrap around between the ULPTX master command and ULPTX subcommand (8
3058	 * bytes each), and that it can not wrap around in the middle of the
3059	 * cpl_tx_pkt_core either.
3060	 */
3061	flitp = (uintptr_t)txpkts->flitp;
3062	KASSERT((flitp & 0xf) == 0,
3063	    ("%s: last SGL did not end at 16 byte boundary: %p",
3064	    __func__, txpkts->flitp));
3065
3066	/* ULP master command */
3067	ulpmc = (void *)flitp;
3068	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0) |
3069	    V_ULP_TXPKT_FID(eq->iqid));
3070	ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
3071	    sizeof(*cpl) + 8 * sgl->nflits, 16));
3072
3073	/* ULP subcommand */
3074	ulpsc = (void *)(ulpmc + 1);
3075	ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
3076	    F_ULP_TX_SC_MORE);
3077	ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
3078
3079	flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
3080	if (flitp == end)
3081		flitp = start;
3082
3083	/* CPL_TX_PKT */
3084	cpl = (void *)flitp;
3085	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
3086	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
3087	cpl->pack = 0;
3088	cpl->len = htobe16(m->m_pkthdr.len);
3089	cpl->ctrl1 = htobe64(ctrl);
3090
3091	flitp += sizeof(*cpl);
3092	if (flitp == end)
3093		flitp = start;
3094
3095	/* SGL for this frame */
3096	dst = (caddr_t)flitp;
3097	txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
3098	txpkts->flitp = (void *)dst;
3099
3100	KASSERT(((uintptr_t)dst & 0xf) == 0,
3101	    ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
3102}
3103
3104/*
3105 * If the SGL ends on an address that is not 16 byte aligned, this function will
3106 * add a 0 filled flit at the end.  It returns 1 in that case.
3107 */
3108static int
3109write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
3110{
3111	__be64 *flitp, *end;
3112	struct ulptx_sgl *usgl;
3113	bus_dma_segment_t *seg;
3114	int i, padded;
3115
3116	KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
3117	    ("%s: bad SGL - nsegs=%d, nflits=%d",
3118	    __func__, sgl->nsegs, sgl->nflits));
3119
3120	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
3121	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
3122
3123	flitp = (__be64 *)(*to);
3124	end = flitp + sgl->nflits;
3125	seg = &sgl->seg[0];
3126	usgl = (void *)flitp;
3127
3128	/*
3129	 * We start at a 16 byte boundary somewhere inside the tx descriptor
3130	 * ring, so we're at least 16 bytes away from the status page.  There is
3131	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
3132	 */
3133
3134	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
3135	    V_ULPTX_NSGE(sgl->nsegs));
3136	usgl->len0 = htobe32(seg->ds_len);
3137	usgl->addr0 = htobe64(seg->ds_addr);
3138	seg++;
3139
3140	if ((uintptr_t)end <= (uintptr_t)eq->spg) {
3141
3142		/* Won't wrap around at all */
3143
3144		for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
3145			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
3146			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
3147		}
3148		if (i & 1)
3149			usgl->sge[i / 2].len[1] = htobe32(0);
3150	} else {
3151
3152		/* Will wrap somewhere in the rest of the SGL */
3153
3154		/* 2 flits already written, write the rest flit by flit */
3155		flitp = (void *)(usgl + 1);
3156		for (i = 0; i < sgl->nflits - 2; i++) {
3157			if ((uintptr_t)flitp == (uintptr_t)eq->spg)
3158				flitp = (void *)eq->desc;
3159			*flitp++ = get_flit(seg, sgl->nsegs - 1, i);
3160		}
3161		end = flitp;
3162	}
3163
3164	if ((uintptr_t)end & 0xf) {
3165		*(uint64_t *)end = 0;
3166		end++;
3167		padded = 1;
3168	} else
3169		padded = 0;
3170
3171	if ((uintptr_t)end == (uintptr_t)eq->spg)
3172		*to = (void *)eq->desc;
3173	else
3174		*to = (void *)end;
3175
3176	return (padded);
3177}
3178
3179static inline void
3180copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
3181{
3182	if ((uintptr_t)(*to) + len <= (uintptr_t)eq->spg) {
3183		bcopy(from, *to, len);
3184		(*to) += len;
3185	} else {
3186		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
3187
3188		bcopy(from, *to, portion);
3189		from += portion;
3190		portion = len - portion;	/* remaining */
3191		bcopy(from, (void *)eq->desc, portion);
3192		(*to) = (caddr_t)eq->desc + portion;
3193	}
3194}
3195
3196static inline void
3197ring_eq_db(struct adapter *sc, struct sge_eq *eq)
3198{
3199	wmb();
3200	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
3201	    V_QID(eq->cntxt_id) | V_PIDX(eq->pending));
3202	eq->pending = 0;
3203}
3204
3205static inline int
3206reclaimable(struct sge_eq *eq)
3207{
3208	unsigned int cidx;
3209
3210	cidx = eq->spg->cidx;	/* stable snapshot */
3211	cidx = be16toh(cidx);
3212
3213	if (cidx >= eq->cidx)
3214		return (cidx - eq->cidx);
3215	else
3216		return (cidx + eq->cap - eq->cidx);
3217}
3218
3219/*
3220 * There are "can_reclaim" tx descriptors ready to be reclaimed.  Reclaim as
3221 * many as possible but stop when there are around "n" mbufs to free.
3222 *
3223 * The actual number reclaimed is provided as the return value.
3224 */
3225static int
3226reclaim_tx_descs(struct sge_txq *txq, int can_reclaim, int n)
3227{
3228	struct tx_sdesc *txsd;
3229	struct tx_maps *txmaps;
3230	struct tx_map *txm;
3231	unsigned int reclaimed, maps;
3232	struct sge_eq *eq = &txq->eq;
3233
3234	TXQ_LOCK_ASSERT_OWNED(txq);
3235
3236	if (can_reclaim == 0)
3237		can_reclaim = reclaimable(eq);
3238
3239	maps = reclaimed = 0;
3240	while (can_reclaim && maps < n) {
3241		int ndesc;
3242
3243		txsd = &txq->sdesc[eq->cidx];
3244		ndesc = txsd->desc_used;
3245
3246		/* Firmware doesn't return "partial" credits. */
3247		KASSERT(can_reclaim >= ndesc,
3248		    ("%s: unexpected number of credits: %d, %d",
3249		    __func__, can_reclaim, ndesc));
3250
3251		maps += txsd->credits;
3252
3253		reclaimed += ndesc;
3254		can_reclaim -= ndesc;
3255
3256		eq->cidx += ndesc;
3257		if (__predict_false(eq->cidx >= eq->cap))
3258			eq->cidx -= eq->cap;
3259	}
3260
3261	txmaps = &txq->txmaps;
3262	txm = &txmaps->maps[txmaps->map_cidx];
3263	if (maps)
3264		prefetch(txm->m);
3265
3266	eq->avail += reclaimed;
3267	KASSERT(eq->avail < eq->cap,	/* avail tops out at (cap - 1) */
3268	    ("%s: too many descriptors available", __func__));
3269
3270	txmaps->map_avail += maps;
3271	KASSERT(txmaps->map_avail <= txmaps->map_total,
3272	    ("%s: too many maps available", __func__));
3273
3274	while (maps--) {
3275		struct tx_map *next;
3276
3277		next = txm + 1;
3278		if (__predict_false(txmaps->map_cidx + 1 == txmaps->map_total))
3279			next = txmaps->maps;
3280		prefetch(next->m);
3281
3282		bus_dmamap_unload(txq->tx_tag, txm->map);
3283		m_freem(txm->m);
3284		txm->m = NULL;
3285
3286		txm = next;
3287		if (__predict_false(++txmaps->map_cidx == txmaps->map_total))
3288			txmaps->map_cidx = 0;
3289	}
3290
3291	return (reclaimed);
3292}
3293
3294static void
3295write_eqflush_wr(struct sge_eq *eq)
3296{
3297	struct fw_eq_flush_wr *wr;
3298
3299	EQ_LOCK_ASSERT_OWNED(eq);
3300	KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
3301	KASSERT(!(eq->flags & EQ_CRFLUSHED), ("%s: flushed already", __func__));
3302
3303	wr = (void *)&eq->desc[eq->pidx];
3304	bzero(wr, sizeof(*wr));
3305	wr->opcode = FW_EQ_FLUSH_WR;
3306	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
3307	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
3308
3309	eq->flags |= (EQ_CRFLUSHED | EQ_STALLED);
3310	eq->pending++;
3311	eq->avail--;
3312	if (++eq->pidx == eq->cap)
3313		eq->pidx = 0;
3314}
3315
3316static __be64
3317get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
3318{
3319	int i = (idx / 3) * 2;
3320
3321	switch (idx % 3) {
3322	case 0: {
3323		__be64 rc;
3324
3325		rc = htobe32(sgl[i].ds_len);
3326		if (i + 1 < nsegs)
3327			rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
3328
3329		return (rc);
3330	}
3331	case 1:
3332		return htobe64(sgl[i].ds_addr);
3333	case 2:
3334		return htobe64(sgl[i + 1].ds_addr);
3335	}
3336
3337	return (0);
3338}
3339
3340static void
3341set_fl_tag_idx(struct sge_fl *fl, int bufsize)
3342{
3343	int i;
3344
3345	for (i = 0; i < FL_BUF_SIZES - 1; i++) {
3346		if (FL_BUF_SIZE(i) >= bufsize)
3347			break;
3348	}
3349
3350	fl->tag_idx = i;
3351}
3352
3353static void
3354add_fl_to_sfl(struct adapter *sc, struct sge_fl *fl)
3355{
3356	mtx_lock(&sc->sfl_lock);
3357	FL_LOCK(fl);
3358	if ((fl->flags & FL_DOOMED) == 0) {
3359		fl->flags |= FL_STARVING;
3360		TAILQ_INSERT_TAIL(&sc->sfl, fl, link);
3361		callout_reset(&sc->sfl_callout, hz / 5, refill_sfl, sc);
3362	}
3363	FL_UNLOCK(fl);
3364	mtx_unlock(&sc->sfl_lock);
3365}
3366
3367static int
3368handle_sge_egr_update(struct sge_iq *iq, const struct rss_header *rss,
3369    struct mbuf *m)
3370{
3371	const struct cpl_sge_egr_update *cpl = (const void *)(rss + 1);
3372	unsigned int qid = G_EGR_QID(ntohl(cpl->opcode_qid));
3373	struct adapter *sc = iq->adapter;
3374	struct sge *s = &sc->sge;
3375	struct sge_eq *eq;
3376
3377	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
3378	    rss->opcode));
3379
3380	eq = s->eqmap[qid - s->eq_start];
3381	EQ_LOCK(eq);
3382	KASSERT(eq->flags & EQ_CRFLUSHED,
3383	    ("%s: unsolicited egress update", __func__));
3384	eq->flags &= ~EQ_CRFLUSHED;
3385	eq->egr_update++;
3386
3387	if (__predict_false(eq->flags & EQ_DOOMED))
3388		wakeup_one(eq);
3389	else if (eq->flags & EQ_STALLED && can_resume_tx(eq))
3390		taskqueue_enqueue(sc->tq[eq->tx_chan], &eq->tx_task);
3391	EQ_UNLOCK(eq);
3392
3393	return (0);
3394}
3395
3396static int
3397handle_fw_rpl(struct sge_iq *iq, const struct rss_header *rss, struct mbuf *m)
3398{
3399	const struct cpl_fw6_msg *cpl = (const void *)(rss + 1);
3400
3401	KASSERT(m == NULL, ("%s: payload with opcode %02x", __func__,
3402	    rss->opcode));
3403
3404	if (cpl->type == FW6_TYPE_CMD_RPL)
3405		t4_handle_fw_rpl(iq->adapter, cpl->data);
3406
3407	return (0);
3408}
3409
3410static int
3411sysctl_uint16(SYSCTL_HANDLER_ARGS)
3412{
3413	uint16_t *id = arg1;
3414	int i = *id;
3415
3416	return sysctl_handle_int(oidp, &i, 0, req);
3417}
3418