t4_sge.c revision 218792
1/*-
2 * Copyright (c) 2011 Chelsio Communications, Inc.
3 * All rights reserved.
4 * Written by: Navdeep Parhar <np@FreeBSD.org>
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: head/sys/dev/cxgbe/t4_sge.c 218792 2011-02-18 08:00:26Z np $");
30
31#include "opt_inet.h"
32
33#include <sys/types.h>
34#include <sys/mbuf.h>
35#include <sys/socket.h>
36#include <sys/kernel.h>
37#include <sys/sysctl.h>
38#include <net/bpf.h>
39#include <net/ethernet.h>
40#include <net/if.h>
41#include <net/if_vlan_var.h>
42#include <netinet/in.h>
43#include <netinet/ip.h>
44#include <netinet/tcp.h>
45
46#include "common/common.h"
47#include "common/t4_regs.h"
48#include "common/t4_regs_values.h"
49#include "common/t4_msg.h"
50#include "common/t4fw_interface.h"
51
52struct fl_buf_info {
53	int size;
54	int type;
55	uma_zone_t zone;
56};
57
58/* t4_sge_init will fill up the zone */
59static struct fl_buf_info fl_buf_info[FL_BUF_SIZES] = {
60	{ MCLBYTES, EXT_CLUSTER, NULL},
61	{ MJUMPAGESIZE, EXT_JUMBOP, NULL},
62	{ MJUM9BYTES, EXT_JUMBO9, NULL},
63	{ MJUM16BYTES, EXT_JUMBO16, NULL}
64};
65#define FL_BUF_SIZE(x)	(fl_buf_info[x].size)
66#define FL_BUF_TYPE(x)	(fl_buf_info[x].type)
67#define FL_BUF_ZONE(x)	(fl_buf_info[x].zone)
68
69enum {
70	FL_PKTSHIFT = 2
71};
72
73#define FL_ALIGN	min(CACHE_LINE_SIZE, 32)
74#if CACHE_LINE_SIZE > 64
75#define SPG_LEN		128
76#else
77#define SPG_LEN		64
78#endif
79
80/* Used to track coalesced tx work request */
81struct txpkts {
82	uint64_t *flitp;	/* ptr to flit where next pkt should start */
83	uint8_t npkt;		/* # of packets in this work request */
84	uint8_t nflits;		/* # of flits used by this work request */
85	uint16_t plen;		/* total payload (sum of all packets) */
86};
87
88/* A packet's SGL.  This + m_pkthdr has all info needed for tx */
89struct sgl {
90	int nsegs;		/* # of segments in the SGL, 0 means imm. tx */
91	int nflits;		/* # of flits needed for the SGL */
92	bus_dma_segment_t seg[TX_SGL_SEGS];
93};
94
95static inline void init_iq(struct sge_iq *, struct adapter *, int, int, int,
96    int, iq_intr_handler_t *, char *);
97static inline void init_fl(struct sge_fl *, int, char *);
98static inline void init_txq(struct sge_txq *, int, char *);
99static int alloc_ring(struct adapter *, size_t, bus_dma_tag_t *, bus_dmamap_t *,
100    bus_addr_t *, void **);
101static int free_ring(struct adapter *, bus_dma_tag_t, bus_dmamap_t, bus_addr_t,
102    void *);
103static int alloc_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *,
104    int);
105static int free_iq_fl(struct port_info *, struct sge_iq *, struct sge_fl *);
106static int alloc_iq(struct sge_iq *, int);
107static int free_iq(struct sge_iq *);
108static int alloc_rxq(struct port_info *, struct sge_rxq *, int, int);
109static int free_rxq(struct port_info *, struct sge_rxq *);
110static int alloc_txq(struct port_info *, struct sge_txq *, int);
111static int free_txq(struct port_info *, struct sge_txq *);
112static void oneseg_dma_callback(void *, bus_dma_segment_t *, int, int);
113static inline bool is_new_response(const struct sge_iq *, struct rsp_ctrl **);
114static inline void iq_next(struct sge_iq *);
115static inline void ring_fl_db(struct adapter *, struct sge_fl *);
116static void refill_fl(struct sge_fl *, int);
117static int alloc_fl_sdesc(struct sge_fl *);
118static void free_fl_sdesc(struct sge_fl *);
119static int alloc_eq_maps(struct sge_eq *);
120static void free_eq_maps(struct sge_eq *);
121static struct mbuf *get_fl_sdesc_data(struct sge_fl *, int, int);
122static void set_fl_tag_idx(struct sge_fl *, int);
123
124static int get_pkt_sgl(struct sge_txq *, struct mbuf **, struct sgl *, int);
125static int free_pkt_sgl(struct sge_txq *, struct sgl *);
126static int write_txpkt_wr(struct port_info *, struct sge_txq *, struct mbuf *,
127    struct sgl *);
128static int add_to_txpkts(struct port_info *, struct sge_txq *, struct txpkts *,
129    struct mbuf *, struct sgl *);
130static void write_txpkts_wr(struct sge_txq *, struct txpkts *);
131static inline void write_ulp_cpl_sgl(struct port_info *, struct sge_txq *,
132    struct txpkts *, struct mbuf *, struct sgl *);
133static int write_sgl_to_txd(struct sge_eq *, struct sgl *, caddr_t *);
134static inline void copy_to_txd(struct sge_eq *, caddr_t, caddr_t *, int);
135static inline void ring_tx_db(struct adapter *, struct sge_eq *);
136static int reclaim_tx_descs(struct sge_eq *, int, int);
137static void write_eqflush_wr(struct sge_eq *);
138static __be64 get_flit(bus_dma_segment_t *, int, int);
139
140/**
141 *	t4_sge_init - initialize SGE
142 *	@sc: the adapter
143 *
144 *	Performs SGE initialization needed every time after a chip reset.
145 *	We do not initialize any of the queues here, instead the driver
146 *	top-level must request them individually.
147 */
148void
149t4_sge_init(struct adapter *sc)
150{
151	struct sge *s = &sc->sge;
152	int i;
153
154	FL_BUF_ZONE(0) = zone_clust;
155	FL_BUF_ZONE(1) = zone_jumbop;
156	FL_BUF_ZONE(2) = zone_jumbo9;
157	FL_BUF_ZONE(3) = zone_jumbo16;
158
159	t4_set_reg_field(sc, A_SGE_CONTROL, V_PKTSHIFT(M_PKTSHIFT) |
160			 V_INGPADBOUNDARY(M_INGPADBOUNDARY) |
161			 F_EGRSTATUSPAGESIZE,
162			 V_INGPADBOUNDARY(ilog2(FL_ALIGN) - 5) |
163			 V_PKTSHIFT(FL_PKTSHIFT) |
164			 F_RXPKTCPLMODE |
165			 V_EGRSTATUSPAGESIZE(SPG_LEN == 128));
166	t4_set_reg_field(sc, A_SGE_HOST_PAGE_SIZE,
167			 V_HOSTPAGESIZEPF0(M_HOSTPAGESIZEPF0),
168			 V_HOSTPAGESIZEPF0(PAGE_SHIFT - 10));
169
170	for (i = 0; i < FL_BUF_SIZES; i++) {
171		t4_write_reg(sc, A_SGE_FL_BUFFER_SIZE0 + (4 * i),
172		    FL_BUF_SIZE(i));
173	}
174
175	t4_write_reg(sc, A_SGE_INGRESS_RX_THRESHOLD,
176		     V_THRESHOLD_0(s->counter_val[0]) |
177		     V_THRESHOLD_1(s->counter_val[1]) |
178		     V_THRESHOLD_2(s->counter_val[2]) |
179		     V_THRESHOLD_3(s->counter_val[3]));
180
181	t4_write_reg(sc, A_SGE_TIMER_VALUE_0_AND_1,
182		     V_TIMERVALUE0(us_to_core_ticks(sc, s->timer_val[0])) |
183		     V_TIMERVALUE1(us_to_core_ticks(sc, s->timer_val[1])));
184	t4_write_reg(sc, A_SGE_TIMER_VALUE_2_AND_3,
185		     V_TIMERVALUE2(us_to_core_ticks(sc, s->timer_val[2])) |
186		     V_TIMERVALUE3(us_to_core_ticks(sc, s->timer_val[3])));
187	t4_write_reg(sc, A_SGE_TIMER_VALUE_4_AND_5,
188		     V_TIMERVALUE4(us_to_core_ticks(sc, s->timer_val[4])) |
189		     V_TIMERVALUE5(us_to_core_ticks(sc, s->timer_val[5])));
190}
191
192int
193t4_create_dma_tag(struct adapter *sc)
194{
195	int rc;
196
197	rc = bus_dma_tag_create(bus_get_dma_tag(sc->dev), 1, 0,
198	    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL, BUS_SPACE_MAXSIZE,
199	    BUS_SPACE_UNRESTRICTED, BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL,
200	    NULL, &sc->dmat);
201	if (rc != 0) {
202		device_printf(sc->dev,
203		    "failed to create main DMA tag: %d\n", rc);
204	}
205
206	return (rc);
207}
208
209int
210t4_destroy_dma_tag(struct adapter *sc)
211{
212	if (sc->dmat)
213		bus_dma_tag_destroy(sc->dmat);
214
215	return (0);
216}
217
218/*
219 * Allocate and initialize the firmware event queue and the forwarded interrupt
220 * queues, if any.  The adapter owns all these queues as they are not associated
221 * with any particular port.
222 *
223 * Returns errno on failure.  Resources allocated up to that point may still be
224 * allocated.  Caller is responsible for cleanup in case this function fails.
225 */
226int
227t4_setup_adapter_iqs(struct adapter *sc)
228{
229	int i, rc;
230	struct sge_iq *iq, *fwq;
231	iq_intr_handler_t *handler;
232	char name[16];
233
234	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
235
236	fwq = &sc->sge.fwq;
237	if (sc->flags & INTR_FWD) {
238		iq = &sc->sge.fiq[0];
239
240		/*
241		 * Forwarded interrupt queues - allocate 1 if there's only 1
242		 * vector available, one less than the number of vectors
243		 * otherwise (the first vector is reserved for the error
244		 * interrupt in that case).
245		 */
246		i = sc->intr_count > 1 ? 1 : 0;
247		for (; i < sc->intr_count; i++, iq++) {
248
249			snprintf(name, sizeof(name), "%s fiq%d",
250			    device_get_nameunit(sc->dev), i);
251			init_iq(iq, sc, 0, 0, (sc->sge.nrxq + 1) * 2, 16, NULL,
252			    name);
253
254			rc = alloc_iq(iq, i);
255			if (rc != 0) {
256				device_printf(sc->dev,
257				    "failed to create fwd intr queue %d: %d\n",
258				    i, rc);
259				return (rc);
260			}
261		}
262
263		handler = t4_intr_evt;
264		i = 0;	/* forward fwq's interrupt to the first fiq */
265	} else {
266		handler = NULL;
267		i = 1;	/* fwq should use vector 1 (0 is used by error) */
268	}
269
270	snprintf(name, sizeof(name), "%s fwq", device_get_nameunit(sc->dev));
271	init_iq(fwq, sc, 0, 0, FW_IQ_QSIZE, FW_IQ_ESIZE, handler, name);
272	rc = alloc_iq(fwq, i);
273	if (rc != 0) {
274		device_printf(sc->dev,
275		    "failed to create firmware event queue: %d\n", rc);
276	}
277
278	return (rc);
279}
280
281/*
282 * Idempotent
283 */
284int
285t4_teardown_adapter_iqs(struct adapter *sc)
286{
287	int i;
288	struct sge_iq *iq;
289
290	ADAPTER_LOCK_ASSERT_NOTOWNED(sc);
291
292	iq = &sc->sge.fwq;
293	free_iq(iq);
294	if (sc->flags & INTR_FWD) {
295		for (i = 0; i < NFIQ(sc); i++) {
296			iq = &sc->sge.fiq[i];
297			free_iq(iq);
298		}
299	}
300
301	return (0);
302}
303
304int
305t4_setup_eth_queues(struct port_info *pi)
306{
307	int rc = 0, i, intr_idx;
308	struct sge_rxq *rxq;
309	struct sge_txq *txq;
310	char name[16];
311	struct adapter *sc = pi->adapter;
312
313	if (sysctl_ctx_init(&pi->ctx) == 0) {
314		struct sysctl_oid *oid = device_get_sysctl_tree(pi->dev);
315		struct sysctl_oid_list *children = SYSCTL_CHILDREN(oid);
316
317		pi->oid_rxq = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO,
318		    "rxq", CTLFLAG_RD, NULL, "rx queues");
319		pi->oid_txq = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO,
320		    "txq", CTLFLAG_RD, NULL, "tx queues");
321	}
322
323	for_each_rxq(pi, i, rxq) {
324
325		snprintf(name, sizeof(name), "%s rxq%d-iq",
326		    device_get_nameunit(pi->dev), i);
327		init_iq(&rxq->iq, sc, pi->tmr_idx, pi->pktc_idx,
328		    pi->qsize_rxq, RX_IQ_ESIZE,
329		    sc->flags & INTR_FWD ? t4_intr_data: NULL, name);
330
331		snprintf(name, sizeof(name), "%s rxq%d-fl",
332		    device_get_nameunit(pi->dev), i);
333		init_fl(&rxq->fl, pi->qsize_rxq / 8, name);
334
335		if (sc->flags & INTR_FWD)
336			intr_idx = (pi->first_rxq + i) % NFIQ(sc);
337		else
338			intr_idx = pi->first_rxq + i + 2;
339
340		rc = alloc_rxq(pi, rxq, intr_idx, i);
341		if (rc != 0)
342			goto done;
343
344		intr_idx++;
345	}
346
347	for_each_txq(pi, i, txq) {
348
349		snprintf(name, sizeof(name), "%s txq%d",
350		    device_get_nameunit(pi->dev), i);
351		init_txq(txq, pi->qsize_txq, name);
352
353		rc = alloc_txq(pi, txq, i);
354		if (rc != 0)
355			goto done;
356	}
357
358done:
359	if (rc)
360		t4_teardown_eth_queues(pi);
361
362	return (rc);
363}
364
365/*
366 * Idempotent
367 */
368int
369t4_teardown_eth_queues(struct port_info *pi)
370{
371	int i;
372	struct sge_rxq *rxq;
373	struct sge_txq *txq;
374
375	/* Do this before freeing the queues */
376	if (pi->oid_txq || pi->oid_rxq) {
377		sysctl_ctx_free(&pi->ctx);
378		pi->oid_txq = pi->oid_rxq = NULL;
379	}
380
381	for_each_txq(pi, i, txq) {
382		free_txq(pi, txq);
383	}
384
385	for_each_rxq(pi, i, rxq) {
386		free_rxq(pi, rxq);
387	}
388
389	return (0);
390}
391
392/* Deals with errors and forwarded interrupts */
393void
394t4_intr_all(void *arg)
395{
396	struct adapter *sc = arg;
397
398	t4_intr_err(arg);
399	t4_intr_fwd(&sc->sge.fiq[0]);
400}
401
402/* Deals with forwarded interrupts on the given ingress queue */
403void
404t4_intr_fwd(void *arg)
405{
406	struct sge_iq *iq = arg, *q;
407	struct adapter *sc = iq->adapter;
408	struct rsp_ctrl *ctrl;
409	int ndesc_pending = 0, ndesc_total = 0;
410	int qid;
411
412	IQ_LOCK(iq);
413	while (is_new_response(iq, &ctrl)) {
414
415		rmb();
416
417		/* Only interrupt muxing expected on this queue */
418		KASSERT(G_RSPD_TYPE(ctrl->u.type_gen) == X_RSPD_TYPE_INTR,
419		    ("unexpected event on forwarded interrupt queue: %x",
420		    G_RSPD_TYPE(ctrl->u.type_gen)));
421
422		qid = ntohl(ctrl->pldbuflen_qid) - sc->sge.iq_start;
423		q = sc->sge.iqmap[qid];
424
425		q->handler(q);
426
427		ndesc_total++;
428		if (++ndesc_pending >= iq->qsize / 4) {
429			t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
430			    V_CIDXINC(ndesc_pending) |
431			    V_INGRESSQID(iq->cntxt_id) |
432			    V_SEINTARM(
433				V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
434			ndesc_pending = 0;
435		}
436
437		iq_next(iq);
438	}
439	IQ_UNLOCK(iq);
440
441	if (ndesc_total > 0) {
442		t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
443		    V_CIDXINC(ndesc_pending) | V_INGRESSQID((u32)iq->cntxt_id) |
444		    V_SEINTARM(iq->intr_params));
445	}
446}
447
448/* Deals with error interrupts */
449void
450t4_intr_err(void *arg)
451{
452	struct adapter *sc = arg;
453
454	if (sc->intr_type == 1)
455		t4_write_reg(sc, MYPF_REG(A_PCIE_PF_CLI), 0);
456
457	t4_slow_intr_handler(sc);
458}
459
460/* Deals with the firmware event queue */
461void
462t4_intr_evt(void *arg)
463{
464	struct sge_iq *iq = arg;
465	struct adapter *sc = iq->adapter;
466	struct rsp_ctrl *ctrl;
467	const struct rss_header *rss;
468	int ndesc_pending = 0, ndesc_total = 0;
469
470	KASSERT(iq == &sc->sge.fwq, ("%s: unexpected ingress queue", __func__));
471
472	IQ_LOCK(iq);
473	while (is_new_response(iq, &ctrl)) {
474
475		rmb();
476
477		rss = (const void *)iq->cdesc;
478
479		/* Should only get CPL on this queue */
480		KASSERT(G_RSPD_TYPE(ctrl->u.type_gen) == X_RSPD_TYPE_CPL,
481		    ("%s: unexpected type %d", __func__,
482		    G_RSPD_TYPE(ctrl->u.type_gen)));
483
484		switch (rss->opcode) {
485		case CPL_FW4_MSG:
486		case CPL_FW6_MSG: {
487			const struct cpl_fw6_msg *cpl;
488
489			cpl = (const void *)(rss + 1);
490			if (cpl->type == FW6_TYPE_CMD_RPL)
491				t4_handle_fw_rpl(sc, cpl->data);
492
493			break;
494			}
495		case CPL_SGE_EGR_UPDATE: {
496			const struct cpl_sge_egr_update *cpl;
497			unsigned int qid;
498			struct sge *s = &sc->sge;
499			struct sge_txq *txq;
500
501			cpl = (const void *)(rss + 1);
502			qid = G_EGR_QID(ntohl(cpl->opcode_qid));
503			txq = (void *)s->eqmap[qid - s->eq_start];
504			txq->egr_update++;
505
506			/* XXX: wake up stalled tx */
507
508			break;
509			}
510
511		default:
512			device_printf(sc->dev,
513			    "can't handle CPL opcode %d.", rss->opcode);
514		}
515
516		ndesc_total++;
517		if (++ndesc_pending >= iq->qsize / 4) {
518			t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
519			    V_CIDXINC(ndesc_pending) |
520			    V_INGRESSQID(iq->cntxt_id) |
521			    V_SEINTARM(
522				V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
523			ndesc_pending = 0;
524		}
525		iq_next(iq);
526	}
527	IQ_UNLOCK(iq);
528
529	if (ndesc_total > 0) {
530		t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
531		    V_CIDXINC(ndesc_pending) | V_INGRESSQID(iq->cntxt_id) |
532		    V_SEINTARM(iq->intr_params));
533	}
534}
535
536void
537t4_intr_data(void *arg)
538{
539	struct sge_rxq *rxq = arg;
540	struct sge_iq *iq = arg;
541	struct rsp_ctrl *ctrl;
542	struct sge_fl *fl = &rxq->fl;
543	struct port_info *pi = rxq->port;
544	struct ifnet *ifp = pi->ifp;
545	struct adapter *sc = pi->adapter;
546	const struct rss_header *rss;
547	const struct cpl_rx_pkt *cpl;
548	int ndescs = 0, rsp_type;
549	uint32_t len;
550	struct mbuf *m0, *m;
551#ifdef INET
552	struct lro_ctrl *lro = &rxq->lro;
553	struct lro_entry *l;
554#endif
555
556	IQ_LOCK(iq);
557	iq->intr_next = iq->intr_params;
558	while (is_new_response(iq, &ctrl)) {
559
560		rmb();
561
562		rss = (const void *)iq->cdesc;
563		cpl = (const void *)(rss + 1);
564
565		rsp_type = G_RSPD_TYPE(ctrl->u.type_gen);
566
567		if (__predict_false(rsp_type == X_RSPD_TYPE_CPL)) {
568			const struct cpl_sge_egr_update *p = (const void *)cpl;
569			unsigned int qid = G_EGR_QID(ntohl(p->opcode_qid));
570
571			KASSERT(cpl->opcode == CPL_SGE_EGR_UPDATE,
572			    ("unexpected opcode on data ingress queue: %x",
573			    cpl->opcode));
574
575			/* XXX: noone's waiting to be woken up... */
576			wakeup(sc->sge.eqmap[qid - sc->sge.eq_start]);
577
578			ndescs++;
579			iq_next(iq);
580
581			continue;
582		}
583
584		KASSERT(G_RSPD_TYPE(ctrl->u.type_gen) == X_RSPD_TYPE_FLBUF,
585		    ("unexpected event on data ingress queue: %x",
586		    G_RSPD_TYPE(ctrl->u.type_gen)));
587
588		len = be32toh(ctrl->pldbuflen_qid);
589
590		KASSERT(len & F_RSPD_NEWBUF,
591		    ("%s: T4 misconfigured to pack buffers.", __func__));
592
593		len = G_RSPD_LEN(len);
594		m0 = get_fl_sdesc_data(fl, len, M_PKTHDR);
595		if (m0 == NULL) {
596			iq->intr_next = V_QINTR_TIMER_IDX(SGE_NTIMERS - 1);
597			break;
598		}
599
600		len -= FL_PKTSHIFT;
601		m0->m_len -= FL_PKTSHIFT;
602		m0->m_data += FL_PKTSHIFT;
603
604		m0->m_pkthdr.len = len;
605		m0->m_pkthdr.rcvif = ifp;
606		m0->m_flags |= M_FLOWID;
607		m0->m_pkthdr.flowid = rss->hash_val;
608
609		if (cpl->csum_calc && !cpl->err_vec &&
610		    ifp->if_capenable & IFCAP_RXCSUM) {
611			m0->m_pkthdr.csum_flags |= (CSUM_IP_CHECKED |
612			    CSUM_IP_VALID | CSUM_DATA_VALID | CSUM_PSEUDO_HDR);
613			if (cpl->ip_frag)
614				m0->m_pkthdr.csum_data = be16toh(cpl->csum);
615			else
616				m0->m_pkthdr.csum_data = 0xffff;
617			rxq->rxcsum++;
618		}
619
620		if (cpl->vlan_ex) {
621			m0->m_pkthdr.ether_vtag = be16toh(cpl->vlan);
622			m0->m_flags |= M_VLANTAG;
623			rxq->vlan_extraction++;
624		}
625
626		len -= m0->m_len;
627		m = m0;
628		while (len) {
629			m->m_next = get_fl_sdesc_data(fl, len, 0);
630			if (m->m_next == NULL)
631				CXGBE_UNIMPLEMENTED("mbuf recovery");
632
633			m = m->m_next;
634			len -= m->m_len;
635		}
636#ifdef INET
637		if (cpl->l2info & htobe32(F_RXF_LRO) &&
638		    rxq->flags & RXQ_LRO_ENABLED &&
639		    tcp_lro_rx(lro, m0, 0) == 0) {
640			/* queued for LRO */
641		} else
642#endif
643			(*ifp->if_input)(ifp, m0);
644
645		FL_LOCK(fl);
646		if (fl->needed >= 32) {
647			refill_fl(fl, 64);
648			if (fl->pending >= 32)
649				ring_fl_db(sc, fl);
650		}
651		FL_UNLOCK(fl);
652
653		ndescs++;
654		iq_next(iq);
655
656		if (ndescs > 32) {
657			t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS),
658			    V_CIDXINC(ndescs) |
659			    V_INGRESSQID((u32)iq->cntxt_id) |
660			    V_SEINTARM(V_QINTR_TIMER_IDX(X_TIMERREG_UPDATE_CIDX)));
661			ndescs = 0;
662		}
663	}
664
665#ifdef INET
666	while (!SLIST_EMPTY(&lro->lro_active)) {
667		l = SLIST_FIRST(&lro->lro_active);
668		SLIST_REMOVE_HEAD(&lro->lro_active, next);
669		tcp_lro_flush(lro, l);
670	}
671#endif
672
673	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_CIDXINC(ndescs) |
674	    V_INGRESSQID((u32)iq->cntxt_id) | V_SEINTARM(iq->intr_next));
675
676	IQ_UNLOCK(iq);
677
678	FL_LOCK(fl);
679	if (fl->needed) {
680		refill_fl(fl, -1);
681		if (fl->pending >= 8)
682			ring_fl_db(sc, fl);
683	}
684	FL_UNLOCK(fl);
685}
686
687/* Per-packet header in a coalesced tx WR, before the SGL starts (in flits) */
688#define TXPKTS_PKT_HDR ((\
689    sizeof(struct ulp_txpkt) + \
690    sizeof(struct ulptx_idata) + \
691    sizeof(struct cpl_tx_pkt_core) \
692    ) / 8)
693
694/* Header of a coalesced tx WR, before SGL of first packet (in flits) */
695#define TXPKTS_WR_HDR (\
696    sizeof(struct fw_eth_tx_pkts_wr) / 8 + \
697    TXPKTS_PKT_HDR)
698
699/* Header of a tx WR, before SGL of first packet (in flits) */
700#define TXPKT_WR_HDR ((\
701    sizeof(struct fw_eth_tx_pkt_wr) + \
702    sizeof(struct cpl_tx_pkt_core) \
703    ) / 8 )
704
705/* Header of a tx LSO WR, before SGL of first packet (in flits) */
706#define TXPKT_LSO_WR_HDR ((\
707    sizeof(struct fw_eth_tx_pkt_wr) + \
708    sizeof(struct cpl_tx_pkt_lso) + \
709    sizeof(struct cpl_tx_pkt_core) \
710    ) / 8 )
711
712int
713t4_eth_tx(struct ifnet *ifp, struct sge_txq *txq, struct mbuf *m)
714{
715	struct port_info *pi = (void *)ifp->if_softc;
716	struct adapter *sc = pi->adapter;
717	struct sge_eq *eq = &txq->eq;
718	struct buf_ring *br = eq->br;
719	struct mbuf *next;
720	int rc, coalescing;
721	struct txpkts txpkts;
722	struct sgl sgl;
723
724	TXQ_LOCK_ASSERT_OWNED(txq);
725	KASSERT(m, ("%s: called with nothing to do.", __func__));
726
727	txpkts.npkt = 0;/* indicates there's nothing in txpkts */
728	coalescing = 0;
729
730	prefetch(&eq->sdesc[eq->pidx]);
731	prefetch(&eq->desc[eq->pidx]);
732	prefetch(&eq->maps[eq->map_pidx]);
733
734	if (eq->avail < 8)
735		reclaim_tx_descs(eq, 1, 8);
736
737	for (; m; m = next ? next : drbr_dequeue(ifp, br)) {
738
739		if (eq->avail < 8)
740			break;
741
742		next = m->m_nextpkt;
743		m->m_nextpkt = NULL;
744
745		if (next || buf_ring_peek(br))
746			coalescing = 1;
747
748		rc = get_pkt_sgl(txq, &m, &sgl, coalescing);
749		if (rc != 0) {
750			if (rc == ENOMEM) {
751
752				/* Short of resources, suspend tx */
753
754				m->m_nextpkt = next;
755				break;
756			}
757
758			/*
759			 * Unrecoverable error for this packet, throw it away
760			 * and move on to the next.  get_pkt_sgl may already
761			 * have freed m (it will be NULL in that case and the
762			 * m_freem here is still safe).
763			 */
764
765			m_freem(m);
766			continue;
767		}
768
769		if (coalescing &&
770		    add_to_txpkts(pi, txq, &txpkts, m, &sgl) == 0) {
771
772			/* Successfully absorbed into txpkts */
773
774			write_ulp_cpl_sgl(pi, txq, &txpkts, m, &sgl);
775			goto doorbell;
776		}
777
778		/*
779		 * We weren't coalescing to begin with, or current frame could
780		 * not be coalesced (add_to_txpkts flushes txpkts if a frame
781		 * given to it can't be coalesced).  Either way there should be
782		 * nothing in txpkts.
783		 */
784		KASSERT(txpkts.npkt == 0,
785		    ("%s: txpkts not empty: %d", __func__, txpkts.npkt));
786
787		/* We're sending out individual packets now */
788		coalescing = 0;
789
790		if (eq->avail < 8)
791			reclaim_tx_descs(eq, 1, 8);
792		rc = write_txpkt_wr(pi, txq, m, &sgl);
793		if (rc != 0) {
794
795			/* Short of hardware descriptors, suspend tx */
796
797			/*
798			 * This is an unlikely but expensive failure.  We've
799			 * done all the hard work (DMA mappings etc.) and now we
800			 * can't send out the packet.  What's worse, we have to
801			 * spend even more time freeing up everything in sgl.
802			 */
803			txq->no_desc++;
804			free_pkt_sgl(txq, &sgl);
805
806			m->m_nextpkt = next;
807			break;
808		}
809
810		ETHER_BPF_MTAP(ifp, m);
811		if (sgl.nsegs == 0)
812			m_freem(m);
813
814doorbell:
815		/* Fewer and fewer doorbells as the queue fills up */
816		if (eq->pending >= (1 << (fls(eq->qsize - eq->avail) / 2)))
817		    ring_tx_db(sc, eq);
818		reclaim_tx_descs(eq, 16, 32);
819	}
820
821	if (txpkts.npkt > 0)
822		write_txpkts_wr(txq, &txpkts);
823
824	/*
825	 * m not NULL means there was an error but we haven't thrown it away.
826	 * This can happen when we're short of tx descriptors (no_desc) or maybe
827	 * even DMA maps (no_dmamap).  Either way, a credit flush and reclaim
828	 * will get things going again.
829	 *
830	 * If eq->avail is already 0 we know a credit flush was requested in the
831	 * WR that reduced it to 0 so we don't need another flush (we don't have
832	 * any descriptor for a flush WR anyway, duh).
833	 */
834	if (m && eq->avail > 0)
835		write_eqflush_wr(eq);
836	txq->m = m;
837
838	if (eq->pending)
839		ring_tx_db(sc, eq);
840
841	reclaim_tx_descs(eq, 16, eq->qsize);
842
843	return (0);
844}
845
846void
847t4_update_fl_bufsize(struct ifnet *ifp)
848{
849	struct port_info *pi = ifp->if_softc;
850	struct sge_rxq *rxq;
851	struct sge_fl *fl;
852	int i;
853
854	for_each_rxq(pi, i, rxq) {
855		fl = &rxq->fl;
856
857		FL_LOCK(fl);
858		set_fl_tag_idx(fl, ifp->if_mtu);
859		FL_UNLOCK(fl);
860	}
861}
862
863/*
864 * A non-NULL handler indicates this iq will not receive direct interrupts, the
865 * handler will be invoked by a forwarded interrupt queue.
866 */
867static inline void
868init_iq(struct sge_iq *iq, struct adapter *sc, int tmr_idx, int pktc_idx,
869    int qsize, int esize, iq_intr_handler_t *handler, char *name)
870{
871	KASSERT(tmr_idx >= 0 && tmr_idx < SGE_NTIMERS,
872	    ("%s: bad tmr_idx %d", __func__, tmr_idx));
873	KASSERT(pktc_idx < SGE_NCOUNTERS,	/* -ve is ok, means don't use */
874	    ("%s: bad pktc_idx %d", __func__, pktc_idx));
875
876	iq->flags = 0;
877	iq->adapter = sc;
878	iq->intr_params = V_QINTR_TIMER_IDX(tmr_idx) |
879	    V_QINTR_CNT_EN(pktc_idx >= 0);
880	iq->intr_pktc_idx = pktc_idx;
881	iq->qsize = roundup(qsize, 16);		/* See FW_IQ_CMD/iqsize */
882	iq->esize = max(esize, 16);		/* See FW_IQ_CMD/iqesize */
883	iq->handler = handler;
884	strlcpy(iq->lockname, name, sizeof(iq->lockname));
885}
886
887static inline void
888init_fl(struct sge_fl *fl, int qsize, char *name)
889{
890	fl->qsize = qsize;
891	strlcpy(fl->lockname, name, sizeof(fl->lockname));
892}
893
894static inline void
895init_txq(struct sge_txq *txq, int qsize, char *name)
896{
897	txq->eq.qsize = qsize;
898	strlcpy(txq->eq.lockname, name, sizeof(txq->eq.lockname));
899}
900
901static int
902alloc_ring(struct adapter *sc, size_t len, bus_dma_tag_t *tag,
903    bus_dmamap_t *map, bus_addr_t *pa, void **va)
904{
905	int rc;
906
907	rc = bus_dma_tag_create(sc->dmat, 512, 0, BUS_SPACE_MAXADDR,
908	    BUS_SPACE_MAXADDR, NULL, NULL, len, 1, len, 0, NULL, NULL, tag);
909	if (rc != 0) {
910		device_printf(sc->dev, "cannot allocate DMA tag: %d\n", rc);
911		goto done;
912	}
913
914	rc = bus_dmamem_alloc(*tag, va,
915	    BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, map);
916	if (rc != 0) {
917		device_printf(sc->dev, "cannot allocate DMA memory: %d\n", rc);
918		goto done;
919	}
920
921	rc = bus_dmamap_load(*tag, *map, *va, len, oneseg_dma_callback, pa, 0);
922	if (rc != 0) {
923		device_printf(sc->dev, "cannot load DMA map: %d\n", rc);
924		goto done;
925	}
926done:
927	if (rc)
928		free_ring(sc, *tag, *map, *pa, *va);
929
930	return (rc);
931}
932
933static int
934free_ring(struct adapter *sc, bus_dma_tag_t tag, bus_dmamap_t map,
935    bus_addr_t pa, void *va)
936{
937	if (pa)
938		bus_dmamap_unload(tag, map);
939	if (va)
940		bus_dmamem_free(tag, va, map);
941	if (tag)
942		bus_dma_tag_destroy(tag);
943
944	return (0);
945}
946
947/*
948 * Allocates the ring for an ingress queue and an optional freelist.  If the
949 * freelist is specified it will be allocated and then associated with the
950 * ingress queue.
951 *
952 * Returns errno on failure.  Resources allocated up to that point may still be
953 * allocated.  Caller is responsible for cleanup in case this function fails.
954 *
955 * If the ingress queue will take interrupts directly (iq->handler == NULL) then
956 * the intr_idx specifies the vector, starting from 0.  Otherwise it specifies
957 * the index of the queue to which its interrupts will be forwarded.
958 */
959static int
960alloc_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl,
961    int intr_idx)
962{
963	int rc, i, cntxt_id;
964	size_t len;
965	struct fw_iq_cmd c;
966	struct adapter *sc = iq->adapter;
967	__be32 v = 0;
968
969	/* The adapter queues are nominally allocated in port[0]'s name */
970	if (pi == NULL)
971		pi = sc->port[0];
972
973	mtx_init(&iq->iq_lock, iq->lockname, NULL, MTX_DEF);
974
975	len = iq->qsize * iq->esize;
976	rc = alloc_ring(sc, len, &iq->desc_tag, &iq->desc_map, &iq->ba,
977	    (void **)&iq->desc);
978	if (rc != 0)
979		return (rc);
980
981	bzero(&c, sizeof(c));
982	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
983	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(sc->pf) |
984	    V_FW_IQ_CMD_VFN(0));
985
986	c.alloc_to_len16 = htobe32(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART |
987	    FW_LEN16(c));
988
989	/* Special handling for firmware event queue */
990	if (iq == &sc->sge.fwq)
991		v |= F_FW_IQ_CMD_IQASYNCH;
992
993	if (iq->handler) {
994		KASSERT(intr_idx < NFIQ(sc),
995		    ("%s: invalid indirect intr_idx %d", __func__, intr_idx));
996		v |= F_FW_IQ_CMD_IQANDST;
997		v |= V_FW_IQ_CMD_IQANDSTINDEX(sc->sge.fiq[intr_idx].abs_id);
998	} else {
999		KASSERT(intr_idx < sc->intr_count,
1000		    ("%s: invalid direct intr_idx %d", __func__, intr_idx));
1001		v |= V_FW_IQ_CMD_IQANDSTINDEX(intr_idx);
1002	}
1003
1004	c.type_to_iqandstindex = htobe32(v |
1005	    V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) |
1006	    V_FW_IQ_CMD_VIID(pi->viid) |
1007	    V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_INTERRUPT));
1008	c.iqdroprss_to_iqesize = htobe16(V_FW_IQ_CMD_IQPCIECH(pi->tx_chan) |
1009	    F_FW_IQ_CMD_IQGTSMODE |
1010	    V_FW_IQ_CMD_IQINTCNTTHRESH(iq->intr_pktc_idx) |
1011	    V_FW_IQ_CMD_IQESIZE(ilog2(iq->esize) - 4));
1012	c.iqsize = htobe16(iq->qsize);
1013	c.iqaddr = htobe64(iq->ba);
1014
1015	if (fl) {
1016		mtx_init(&fl->fl_lock, fl->lockname, NULL, MTX_DEF);
1017
1018		for (i = 0; i < FL_BUF_SIZES; i++) {
1019
1020			/*
1021			 * A freelist buffer must be 16 byte aligned as the SGE
1022			 * uses the low 4 bits of the bus addr to figure out the
1023			 * buffer size.
1024			 */
1025			rc = bus_dma_tag_create(sc->dmat, 16, 0,
1026			    BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
1027			    FL_BUF_SIZE(i), 1, FL_BUF_SIZE(i), BUS_DMA_ALLOCNOW,
1028			    NULL, NULL, &fl->tag[i]);
1029			if (rc != 0) {
1030				device_printf(sc->dev,
1031				    "failed to create fl DMA tag[%d]: %d\n",
1032				    i, rc);
1033				return (rc);
1034			}
1035		}
1036		len = fl->qsize * RX_FL_ESIZE;
1037		rc = alloc_ring(sc, len, &fl->desc_tag, &fl->desc_map,
1038		    &fl->ba, (void **)&fl->desc);
1039		if (rc)
1040			return (rc);
1041
1042		/* Allocate space for one software descriptor per buffer. */
1043		fl->cap = (fl->qsize - SPG_LEN / RX_FL_ESIZE) * 8;
1044		FL_LOCK(fl);
1045		set_fl_tag_idx(fl, pi->ifp->if_mtu);
1046		rc = alloc_fl_sdesc(fl);
1047		FL_UNLOCK(fl);
1048		if (rc != 0) {
1049			device_printf(sc->dev,
1050			    "failed to setup fl software descriptors: %d\n",
1051			    rc);
1052			return (rc);
1053		}
1054		fl->needed = fl->cap - 1; /* one less to avoid cidx = pidx */
1055
1056		c.iqns_to_fl0congen =
1057		    htobe32(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE));
1058		c.fl0dcaen_to_fl0cidxfthresh =
1059		    htobe16(V_FW_IQ_CMD_FL0FBMIN(X_FETCHBURSTMIN_64B) |
1060			V_FW_IQ_CMD_FL0FBMAX(X_FETCHBURSTMAX_512B));
1061		c.fl0size = htobe16(fl->qsize);
1062		c.fl0addr = htobe64(fl->ba);
1063	}
1064
1065	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
1066	if (rc != 0) {
1067		device_printf(sc->dev,
1068		    "failed to create ingress queue: %d\n", rc);
1069		return (rc);
1070	}
1071
1072	iq->cdesc = iq->desc;
1073	iq->cidx = 0;
1074	iq->gen = 1;
1075	iq->intr_next = iq->intr_params;
1076	iq->cntxt_id = be16toh(c.iqid);
1077	iq->abs_id = be16toh(c.physiqid);
1078	iq->flags |= (IQ_ALLOCATED | IQ_STARTED);
1079
1080	cntxt_id = iq->cntxt_id - sc->sge.iq_start;
1081	KASSERT(cntxt_id < sc->sge.niq,
1082	    ("%s: iq->cntxt_id (%d) more than the max (%d)", __func__,
1083	    cntxt_id, sc->sge.niq - 1));
1084	sc->sge.iqmap[cntxt_id] = iq;
1085
1086	if (fl) {
1087		fl->cntxt_id = be16toh(c.fl0id);
1088		fl->pidx = fl->cidx = 0;
1089
1090		cntxt_id = iq->cntxt_id - sc->sge.eq_start;
1091		KASSERT(cntxt_id < sc->sge.neq,
1092		    ("%s: fl->cntxt_id (%d) more than the max (%d)", __func__,
1093		    cntxt_id, sc->sge.neq - 1));
1094		sc->sge.eqmap[cntxt_id] = (void *)fl;
1095
1096		FL_LOCK(fl);
1097		refill_fl(fl, -1);
1098		if (fl->pending >= 8)
1099			ring_fl_db(sc, fl);
1100		FL_UNLOCK(fl);
1101	}
1102
1103	/* Enable IQ interrupts */
1104	t4_write_reg(sc, MYPF_REG(A_SGE_PF_GTS), V_SEINTARM(iq->intr_params) |
1105	    V_INGRESSQID(iq->cntxt_id));
1106
1107	return (0);
1108}
1109
1110/*
1111 * This can be called with the iq/fl in any state - fully allocated and
1112 * functional, partially allocated, even all-zeroed out.
1113 */
1114static int
1115free_iq_fl(struct port_info *pi, struct sge_iq *iq, struct sge_fl *fl)
1116{
1117	int i, rc;
1118	struct adapter *sc = iq->adapter;
1119	device_t dev;
1120
1121	if (sc == NULL)
1122		return (0);	/* nothing to do */
1123
1124	dev = pi ? pi->dev : sc->dev;
1125
1126	if (iq->flags & IQ_STARTED) {
1127		rc = -t4_iq_start_stop(sc, sc->mbox, 0, sc->pf, 0,
1128		    iq->cntxt_id, fl ? fl->cntxt_id : 0xffff, 0xffff);
1129		if (rc != 0) {
1130			device_printf(dev,
1131			    "failed to stop queue %p: %d\n", iq, rc);
1132			return (rc);
1133		}
1134		iq->flags &= ~IQ_STARTED;
1135	}
1136
1137	if (iq->flags & IQ_ALLOCATED) {
1138
1139		rc = -t4_iq_free(sc, sc->mbox, sc->pf, 0,
1140		    FW_IQ_TYPE_FL_INT_CAP, iq->cntxt_id,
1141		    fl ? fl->cntxt_id : 0xffff, 0xffff);
1142		if (rc != 0) {
1143			device_printf(dev,
1144			    "failed to free queue %p: %d\n", iq, rc);
1145			return (rc);
1146		}
1147		iq->flags &= ~IQ_ALLOCATED;
1148	}
1149
1150	free_ring(sc, iq->desc_tag, iq->desc_map, iq->ba, iq->desc);
1151
1152	if (mtx_initialized(&iq->iq_lock))
1153		mtx_destroy(&iq->iq_lock);
1154
1155	bzero(iq, sizeof(*iq));
1156
1157	if (fl) {
1158		free_ring(sc, fl->desc_tag, fl->desc_map, fl->ba,
1159		    fl->desc);
1160
1161		if (fl->sdesc) {
1162			FL_LOCK(fl);
1163			free_fl_sdesc(fl);
1164			FL_UNLOCK(fl);
1165		}
1166
1167		if (mtx_initialized(&fl->fl_lock))
1168			mtx_destroy(&fl->fl_lock);
1169
1170		for (i = 0; i < FL_BUF_SIZES; i++) {
1171			if (fl->tag[i])
1172				bus_dma_tag_destroy(fl->tag[i]);
1173		}
1174
1175		bzero(fl, sizeof(*fl));
1176	}
1177
1178	return (0);
1179}
1180
1181static int
1182alloc_iq(struct sge_iq *iq, int intr_idx)
1183{
1184	return alloc_iq_fl(NULL, iq, NULL, intr_idx);
1185}
1186
1187static int
1188free_iq(struct sge_iq *iq)
1189{
1190	return free_iq_fl(NULL, iq, NULL);
1191}
1192
1193static int
1194alloc_rxq(struct port_info *pi, struct sge_rxq *rxq, int intr_idx, int idx)
1195{
1196	int rc;
1197	struct sysctl_oid *oid;
1198	struct sysctl_oid_list *children;
1199	char name[16];
1200
1201	rc = alloc_iq_fl(pi, &rxq->iq, &rxq->fl, intr_idx);
1202	if (rc != 0)
1203		return (rc);
1204
1205#ifdef INET
1206	rc = tcp_lro_init(&rxq->lro);
1207	if (rc != 0)
1208		return (rc);
1209	rxq->lro.ifp = pi->ifp; /* also indicates LRO init'ed */
1210
1211	if (pi->ifp->if_capenable & IFCAP_LRO)
1212		rxq->flags |= RXQ_LRO_ENABLED;
1213#endif
1214	rxq->port = pi;
1215
1216	children = SYSCTL_CHILDREN(pi->oid_rxq);
1217
1218	snprintf(name, sizeof(name), "%d", idx);
1219	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
1220	    NULL, "rx queue");
1221	children = SYSCTL_CHILDREN(oid);
1222
1223	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_queued", CTLFLAG_RD,
1224	    &rxq->lro.lro_queued, 0, NULL);
1225	SYSCTL_ADD_INT(&pi->ctx, children, OID_AUTO, "lro_flushed", CTLFLAG_RD,
1226	    &rxq->lro.lro_flushed, 0, NULL);
1227	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "rxcsum", CTLFLAG_RD,
1228	    &rxq->rxcsum, "# of times hardware assisted with checksum");
1229	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_extraction",
1230	    CTLFLAG_RD, &rxq->vlan_extraction,
1231	    "# of times hardware extracted 802.1Q tag");
1232
1233	return (rc);
1234}
1235
1236static int
1237free_rxq(struct port_info *pi, struct sge_rxq *rxq)
1238{
1239	int rc;
1240
1241#ifdef INET
1242	if (rxq->lro.ifp) {
1243		tcp_lro_free(&rxq->lro);
1244		rxq->lro.ifp = NULL;
1245	}
1246#endif
1247
1248	rc = free_iq_fl(pi, &rxq->iq, &rxq->fl);
1249	if (rc == 0)
1250		bzero(rxq, sizeof(*rxq));
1251
1252	return (rc);
1253}
1254
1255static int
1256alloc_txq(struct port_info *pi, struct sge_txq *txq, int idx)
1257{
1258	int rc, cntxt_id;
1259	size_t len;
1260	struct adapter *sc = pi->adapter;
1261	struct fw_eq_eth_cmd c;
1262	struct sge_eq *eq = &txq->eq;
1263	char name[16];
1264	struct sysctl_oid *oid;
1265	struct sysctl_oid_list *children;
1266
1267	mtx_init(&eq->eq_lock, eq->lockname, NULL, MTX_DEF);
1268
1269	len = eq->qsize * TX_EQ_ESIZE;
1270	rc = alloc_ring(sc, len, &eq->desc_tag, &eq->desc_map,
1271	    &eq->ba, (void **)&eq->desc);
1272	if (rc)
1273		return (rc);
1274
1275	eq->cap = eq->qsize - SPG_LEN / TX_EQ_ESIZE;
1276	eq->spg = (void *)&eq->desc[eq->cap];
1277	eq->avail = eq->cap - 1;	/* one less to avoid cidx = pidx */
1278	eq->sdesc = malloc(eq->cap * sizeof(struct tx_sdesc), M_CXGBE,
1279	    M_ZERO | M_WAITOK);
1280	eq->br = buf_ring_alloc(eq->qsize, M_CXGBE, M_WAITOK, &eq->eq_lock);
1281
1282	rc = bus_dma_tag_create(sc->dmat, 1, 0, BUS_SPACE_MAXADDR,
1283	    BUS_SPACE_MAXADDR, NULL, NULL, 64 * 1024, TX_SGL_SEGS,
1284	    BUS_SPACE_MAXSIZE, BUS_DMA_ALLOCNOW, NULL, NULL, &eq->tx_tag);
1285	if (rc != 0) {
1286		device_printf(sc->dev,
1287		    "failed to create tx DMA tag: %d\n", rc);
1288		return (rc);
1289	}
1290
1291	rc = alloc_eq_maps(eq);
1292	if (rc != 0) {
1293		device_printf(sc->dev, "failed to setup tx DMA maps: %d\n", rc);
1294		return (rc);
1295	}
1296
1297	bzero(&c, sizeof(c));
1298
1299	c.op_to_vfn = htobe32(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST |
1300	    F_FW_CMD_WRITE | F_FW_CMD_EXEC | V_FW_EQ_ETH_CMD_PFN(sc->pf) |
1301	    V_FW_EQ_ETH_CMD_VFN(0));
1302	c.alloc_to_len16 = htobe32(F_FW_EQ_ETH_CMD_ALLOC |
1303	    F_FW_EQ_ETH_CMD_EQSTART | FW_LEN16(c));
1304	c.viid_pkd = htobe32(V_FW_EQ_ETH_CMD_VIID(pi->viid));
1305	c.fetchszm_to_iqid =
1306	    htobe32(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_STATUS_PAGE) |
1307		V_FW_EQ_ETH_CMD_PCIECHN(pi->tx_chan) |
1308		V_FW_EQ_ETH_CMD_IQID(sc->sge.rxq[pi->first_rxq].iq.cntxt_id));
1309	c.dcaen_to_eqsize = htobe32(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) |
1310		      V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) |
1311		      V_FW_EQ_ETH_CMD_CIDXFTHRESH(X_CIDXFLUSHTHRESH_32) |
1312		      V_FW_EQ_ETH_CMD_EQSIZE(eq->qsize));
1313	c.eqaddr = htobe64(eq->ba);
1314
1315	rc = -t4_wr_mbox(sc, sc->mbox, &c, sizeof(c), &c);
1316	if (rc != 0) {
1317		device_printf(pi->dev,
1318		    "failed to create egress queue: %d\n", rc);
1319		return (rc);
1320	}
1321
1322	eq->pidx = eq->cidx = 0;
1323	eq->cntxt_id = G_FW_EQ_ETH_CMD_EQID(be32toh(c.eqid_pkd));
1324	eq->flags |= (EQ_ALLOCATED | EQ_STARTED);
1325
1326	cntxt_id = eq->cntxt_id - sc->sge.eq_start;
1327	KASSERT(cntxt_id < sc->sge.neq,
1328	    ("%s: eq->cntxt_id (%d) more than the max (%d)", __func__,
1329	    cntxt_id, sc->sge.neq - 1));
1330	sc->sge.eqmap[cntxt_id] = eq;
1331
1332	children = SYSCTL_CHILDREN(pi->oid_txq);
1333
1334	snprintf(name, sizeof(name), "%d", idx);
1335	oid = SYSCTL_ADD_NODE(&pi->ctx, children, OID_AUTO, name, CTLFLAG_RD,
1336	    NULL, "tx queue");
1337	children = SYSCTL_CHILDREN(oid);
1338
1339	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txcsum", CTLFLAG_RD,
1340	    &txq->txcsum, "# of times hardware assisted with checksum");
1341	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "vlan_insertion",
1342	    CTLFLAG_RD, &txq->vlan_insertion,
1343	    "# of times hardware inserted 802.1Q tag");
1344	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "tso_wrs", CTLFLAG_RD,
1345	    &txq->tso_wrs, "# of IPv4 TSO work requests");
1346	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "imm_wrs", CTLFLAG_RD,
1347	    &txq->imm_wrs, "# of work requests with immediate data");
1348	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "sgl_wrs", CTLFLAG_RD,
1349	    &txq->sgl_wrs, "# of work requests with direct SGL");
1350	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkt_wrs", CTLFLAG_RD,
1351	    &txq->txpkt_wrs, "# of txpkt work requests (one pkt/WR)");
1352	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_wrs", CTLFLAG_RD,
1353	    &txq->txpkts_wrs, "# of txpkts work requests (multiple pkts/WR)");
1354	SYSCTL_ADD_UQUAD(&pi->ctx, children, OID_AUTO, "txpkts_pkts", CTLFLAG_RD,
1355	    &txq->txpkts_pkts, "# of frames tx'd using txpkts work requests");
1356
1357	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_dmamap", CTLFLAG_RD,
1358	    &txq->no_dmamap, 0, "# of times txq ran out of DMA maps");
1359	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "no_desc", CTLFLAG_RD,
1360	    &txq->no_desc, 0, "# of times txq ran out of hardware descriptors");
1361	SYSCTL_ADD_UINT(&pi->ctx, children, OID_AUTO, "egr_update", CTLFLAG_RD,
1362	    &txq->egr_update, 0, "egress update notifications from the SGE");
1363
1364	return (rc);
1365}
1366
1367static int
1368free_txq(struct port_info *pi, struct sge_txq *txq)
1369{
1370	int rc;
1371	struct adapter *sc = pi->adapter;
1372	struct sge_eq *eq = &txq->eq;
1373
1374	if (eq->flags & (EQ_ALLOCATED | EQ_STARTED)) {
1375		rc = -t4_eth_eq_free(sc, sc->mbox, sc->pf, 0, eq->cntxt_id);
1376		if (rc != 0) {
1377			device_printf(pi->dev,
1378			    "failed to free egress queue %p: %d\n", eq, rc);
1379			return (rc);
1380		}
1381		eq->flags &= ~(EQ_ALLOCATED | EQ_STARTED);
1382	}
1383
1384	free_ring(sc, eq->desc_tag, eq->desc_map, eq->ba, eq->desc);
1385
1386	free(eq->sdesc, M_CXGBE);
1387
1388	if (eq->maps)
1389		free_eq_maps(eq);
1390
1391	buf_ring_free(eq->br, M_CXGBE);
1392
1393	if (eq->tx_tag)
1394		bus_dma_tag_destroy(eq->tx_tag);
1395
1396	if (mtx_initialized(&eq->eq_lock))
1397		mtx_destroy(&eq->eq_lock);
1398
1399	bzero(txq, sizeof(*txq));
1400	return (0);
1401}
1402
1403static void
1404oneseg_dma_callback(void *arg, bus_dma_segment_t *segs, int nseg, int error)
1405{
1406	bus_addr_t *ba = arg;
1407
1408	KASSERT(nseg == 1,
1409	    ("%s meant for single segment mappings only.", __func__));
1410
1411	*ba = error ? 0 : segs->ds_addr;
1412}
1413
1414static inline bool
1415is_new_response(const struct sge_iq *iq, struct rsp_ctrl **ctrl)
1416{
1417	*ctrl = (void *)((uintptr_t)iq->cdesc +
1418	    (iq->esize - sizeof(struct rsp_ctrl)));
1419
1420	return (((*ctrl)->u.type_gen >> S_RSPD_GEN) == iq->gen);
1421}
1422
1423static inline void
1424iq_next(struct sge_iq *iq)
1425{
1426	iq->cdesc = (void *) ((uintptr_t)iq->cdesc + iq->esize);
1427	if (__predict_false(++iq->cidx == iq->qsize - 1)) {
1428		iq->cidx = 0;
1429		iq->gen ^= 1;
1430		iq->cdesc = iq->desc;
1431	}
1432}
1433
1434static inline void
1435ring_fl_db(struct adapter *sc, struct sge_fl *fl)
1436{
1437	int ndesc = fl->pending / 8;
1438
1439	/* Caller responsible for ensuring there's something useful to do */
1440	KASSERT(ndesc > 0, ("%s called with no useful work to do.", __func__));
1441
1442	wmb();
1443
1444	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL), F_DBPRIO |
1445	    V_QID(fl->cntxt_id) | V_PIDX(ndesc));
1446
1447	fl->pending &= 7;
1448}
1449
1450static void
1451refill_fl(struct sge_fl *fl, int nbufs)
1452{
1453	__be64 *d = &fl->desc[fl->pidx];
1454	struct fl_sdesc *sd = &fl->sdesc[fl->pidx];
1455	bus_dma_tag_t tag;
1456	bus_addr_t pa;
1457	caddr_t cl;
1458	int rc;
1459
1460	FL_LOCK_ASSERT_OWNED(fl);
1461
1462	if (nbufs < 0 || nbufs > fl->needed)
1463		nbufs = fl->needed;
1464
1465	while (nbufs--) {
1466
1467		if (sd->cl != NULL) {
1468
1469			/*
1470			 * This happens when a frame small enough to fit
1471			 * entirely in an mbuf was received in cl last time.
1472			 * We'd held on to cl and can reuse it now.  Note that
1473			 * we reuse a cluster of the old size if fl->tag_idx is
1474			 * no longer the same as sd->tag_idx.
1475			 */
1476
1477			KASSERT(*d == sd->ba_tag,
1478			    ("%s: recyling problem at pidx %d",
1479			    __func__, fl->pidx));
1480
1481			d++;
1482			goto recycled;
1483		}
1484
1485
1486		if (fl->tag_idx != sd->tag_idx) {
1487			bus_dmamap_t map;
1488			bus_dma_tag_t newtag = fl->tag[fl->tag_idx];
1489			bus_dma_tag_t oldtag = fl->tag[sd->tag_idx];
1490
1491			/*
1492			 * An MTU change can get us here.  Discard the old map
1493			 * which was created with the old tag, but only if
1494			 * we're able to get a new one.
1495			 */
1496			rc = bus_dmamap_create(newtag, 0, &map);
1497			if (rc == 0) {
1498				bus_dmamap_destroy(oldtag, sd->map);
1499				sd->map = map;
1500				sd->tag_idx = fl->tag_idx;
1501			}
1502		}
1503
1504		tag = fl->tag[sd->tag_idx];
1505
1506		cl = m_cljget(NULL, M_NOWAIT, FL_BUF_SIZE(sd->tag_idx));
1507		if (cl == NULL)
1508			break;
1509
1510		rc = bus_dmamap_load(tag, sd->map, cl,
1511		    FL_BUF_SIZE(sd->tag_idx), oneseg_dma_callback,
1512		    &pa, 0);
1513		if (rc != 0 || pa == 0) {
1514			fl->dmamap_failed++;
1515			uma_zfree(FL_BUF_ZONE(sd->tag_idx), cl);
1516			break;
1517		}
1518
1519		sd->cl = cl;
1520		*d++ = htobe64(pa | sd->tag_idx);
1521
1522#ifdef INVARIANTS
1523		sd->ba_tag = htobe64(pa | sd->tag_idx);
1524#endif
1525
1526recycled:	fl->pending++;
1527		fl->needed--;
1528		sd++;
1529		if (++fl->pidx == fl->cap) {
1530			fl->pidx = 0;
1531			sd = fl->sdesc;
1532			d = fl->desc;
1533		}
1534
1535		/* No harm if gethdr fails, we'll retry after rx */
1536		if (sd->m == NULL)
1537			sd->m = m_gethdr(M_NOWAIT, MT_NOINIT);
1538	}
1539}
1540
1541static int
1542alloc_fl_sdesc(struct sge_fl *fl)
1543{
1544	struct fl_sdesc *sd;
1545	bus_dma_tag_t tag;
1546	int i, rc;
1547
1548	FL_LOCK_ASSERT_OWNED(fl);
1549
1550	fl->sdesc = malloc(fl->cap * sizeof(struct fl_sdesc), M_CXGBE,
1551	    M_ZERO | M_WAITOK);
1552
1553	tag = fl->tag[fl->tag_idx];
1554	sd = fl->sdesc;
1555	for (i = 0; i < fl->cap; i++, sd++) {
1556
1557		sd->tag_idx = fl->tag_idx;
1558		rc = bus_dmamap_create(tag, 0, &sd->map);
1559		if (rc != 0)
1560			goto failed;
1561
1562		/* Doesn't matter if this succeeds or not */
1563		sd->m = m_gethdr(M_NOWAIT, MT_NOINIT);
1564	}
1565
1566	return (0);
1567failed:
1568	while (--i >= 0) {
1569		sd--;
1570		bus_dmamap_destroy(tag, sd->map);
1571		if (sd->m) {
1572			m_init(sd->m, zone_mbuf, MLEN, M_NOWAIT, MT_DATA, 0);
1573			m_free(sd->m);
1574			sd->m = NULL;
1575		}
1576	}
1577	KASSERT(sd == fl->sdesc, ("%s: EDOOFUS", __func__));
1578
1579	free(fl->sdesc, M_CXGBE);
1580	fl->sdesc = NULL;
1581
1582	return (rc);
1583}
1584
1585static void
1586free_fl_sdesc(struct sge_fl *fl)
1587{
1588	struct fl_sdesc *sd;
1589	int i;
1590
1591	FL_LOCK_ASSERT_OWNED(fl);
1592
1593	sd = fl->sdesc;
1594	for (i = 0; i < fl->cap; i++, sd++) {
1595
1596		if (sd->m) {
1597			m_init(sd->m, zone_mbuf, MLEN, M_NOWAIT, MT_DATA, 0);
1598			m_free(sd->m);
1599			sd->m = NULL;
1600		}
1601
1602		if (sd->cl) {
1603			bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
1604			uma_zfree(FL_BUF_ZONE(sd->tag_idx), sd->cl);
1605			sd->cl = NULL;
1606		}
1607
1608		bus_dmamap_destroy(fl->tag[sd->tag_idx], sd->map);
1609	}
1610
1611	free(fl->sdesc, M_CXGBE);
1612	fl->sdesc = NULL;
1613}
1614
1615static int
1616alloc_eq_maps(struct sge_eq *eq)
1617{
1618	struct tx_map *txm;
1619	int i, rc, count;
1620
1621	/*
1622	 * We can stuff ~10 frames in an 8-descriptor txpkts WR (8 is the SGE
1623	 * limit for any WR).  txq->no_dmamap events shouldn't occur if maps is
1624	 * sized for the worst case.
1625	 */
1626	count = eq->qsize * 10 / 8;
1627	eq->map_total = eq->map_avail = count;
1628	eq->map_cidx = eq->map_pidx = 0;
1629
1630	eq->maps = malloc(count * sizeof(struct tx_map), M_CXGBE,
1631	    M_ZERO | M_WAITOK);
1632
1633	txm = eq->maps;
1634	for (i = 0; i < count; i++, txm++) {
1635		rc = bus_dmamap_create(eq->tx_tag, 0, &txm->map);
1636		if (rc != 0)
1637			goto failed;
1638	}
1639
1640	return (0);
1641failed:
1642	while (--i >= 0) {
1643		txm--;
1644		bus_dmamap_destroy(eq->tx_tag, txm->map);
1645	}
1646	KASSERT(txm == eq->maps, ("%s: EDOOFUS", __func__));
1647
1648	free(eq->maps, M_CXGBE);
1649	eq->maps = NULL;
1650
1651	return (rc);
1652}
1653
1654static void
1655free_eq_maps(struct sge_eq *eq)
1656{
1657	struct tx_map *txm;
1658	int i;
1659
1660	txm = eq->maps;
1661	for (i = 0; i < eq->map_total; i++, txm++) {
1662
1663		if (txm->m) {
1664			bus_dmamap_unload(eq->tx_tag, txm->map);
1665			m_freem(txm->m);
1666			txm->m = NULL;
1667		}
1668
1669		bus_dmamap_destroy(eq->tx_tag, txm->map);
1670	}
1671
1672	free(eq->maps, M_CXGBE);
1673	eq->maps = NULL;
1674}
1675
1676/*
1677 * We'll do immediate data tx for non-TSO, but only when not coalescing.  We're
1678 * willing to use upto 2 hardware descriptors which means a maximum of 96 bytes
1679 * of immediate data.
1680 */
1681#define IMM_LEN ( \
1682      2 * TX_EQ_ESIZE \
1683    - sizeof(struct fw_eth_tx_pkt_wr) \
1684    - sizeof(struct cpl_tx_pkt_core))
1685
1686/*
1687 * Returns non-zero on failure, no need to cleanup anything in that case.
1688 *
1689 * Note 1: We always try to defrag the mbuf if required and return EFBIG only
1690 * if the resulting chain still won't fit in a tx descriptor.
1691 *
1692 * Note 2: We'll pullup the mbuf chain if TSO is requested and the first mbuf
1693 * does not have the TCP header in it.
1694 */
1695static int
1696get_pkt_sgl(struct sge_txq *txq, struct mbuf **fp, struct sgl *sgl,
1697    int sgl_only)
1698{
1699	struct mbuf *m = *fp;
1700	struct sge_eq *eq = &txq->eq;
1701	struct tx_map *txm;
1702	int rc, defragged = 0, n;
1703
1704	TXQ_LOCK_ASSERT_OWNED(txq);
1705
1706	if (m->m_pkthdr.tso_segsz)
1707		sgl_only = 1;	/* Do not allow immediate data with LSO */
1708
1709start:	sgl->nsegs = 0;
1710
1711	if (m->m_pkthdr.len <= IMM_LEN && !sgl_only)
1712		return (0);	/* nsegs = 0 tells caller to use imm. tx */
1713
1714	if (eq->map_avail == 0) {
1715		txq->no_dmamap++;
1716		return (ENOMEM);
1717	}
1718	txm = &eq->maps[eq->map_pidx];
1719
1720	if (m->m_pkthdr.tso_segsz && m->m_len < 50) {
1721		*fp = m_pullup(m, 50);
1722		m = *fp;
1723		if (m == NULL)
1724			return (ENOBUFS);
1725	}
1726
1727	rc = bus_dmamap_load_mbuf_sg(eq->tx_tag, txm->map, m, sgl->seg,
1728	    &sgl->nsegs, BUS_DMA_NOWAIT);
1729	if (rc == EFBIG && defragged == 0) {
1730		m = m_defrag(m, M_DONTWAIT);
1731		if (m == NULL)
1732			return (EFBIG);
1733
1734		defragged = 1;
1735		*fp = m;
1736		goto start;
1737	}
1738	if (rc != 0)
1739		return (rc);
1740
1741	txm->m = m;
1742	eq->map_avail--;
1743	if (++eq->map_pidx == eq->map_total)
1744		eq->map_pidx = 0;
1745
1746	KASSERT(sgl->nsegs > 0 && sgl->nsegs <= TX_SGL_SEGS,
1747	    ("%s: bad DMA mapping (%d segments)", __func__, sgl->nsegs));
1748
1749	/*
1750	 * Store the # of flits required to hold this frame's SGL in nflits.  An
1751	 * SGL has a (ULPTX header + len0, addr0) tuple optionally followed by
1752	 * multiple (len0 + len1, addr0, addr1) tuples.  If addr1 is not used
1753	 * then len1 must be set to 0.
1754	 */
1755	n = sgl->nsegs - 1;
1756	sgl->nflits = (3 * n) / 2 + (n & 1) + 2;
1757
1758	return (0);
1759}
1760
1761
1762/*
1763 * Releases all the txq resources used up in the specified sgl.
1764 */
1765static int
1766free_pkt_sgl(struct sge_txq *txq, struct sgl *sgl)
1767{
1768	struct sge_eq *eq = &txq->eq;
1769	struct tx_map *txm;
1770
1771	TXQ_LOCK_ASSERT_OWNED(txq);
1772
1773	if (sgl->nsegs == 0)
1774		return (0);	/* didn't use any map */
1775
1776	/* 1 pkt uses exactly 1 map, back it out */
1777
1778	eq->map_avail++;
1779	if (eq->map_pidx > 0)
1780		eq->map_pidx--;
1781	else
1782		eq->map_pidx = eq->map_total - 1;
1783
1784	txm = &eq->maps[eq->map_pidx];
1785	bus_dmamap_unload(eq->tx_tag, txm->map);
1786	txm->m = NULL;
1787
1788	return (0);
1789}
1790
1791static int
1792write_txpkt_wr(struct port_info *pi, struct sge_txq *txq, struct mbuf *m,
1793    struct sgl *sgl)
1794{
1795	struct sge_eq *eq = &txq->eq;
1796	struct fw_eth_tx_pkt_wr *wr;
1797	struct cpl_tx_pkt_core *cpl;
1798	uint32_t ctrl;	/* used in many unrelated places */
1799	uint64_t ctrl1;
1800	int nflits, ndesc;
1801	struct tx_sdesc *txsd;
1802	caddr_t dst;
1803
1804	TXQ_LOCK_ASSERT_OWNED(txq);
1805
1806	/*
1807	 * Do we have enough flits to send this frame out?
1808	 */
1809	ctrl = sizeof(struct cpl_tx_pkt_core);
1810	if (m->m_pkthdr.tso_segsz) {
1811		nflits = TXPKT_LSO_WR_HDR;
1812		ctrl += sizeof(struct cpl_tx_pkt_lso);
1813	} else
1814		nflits = TXPKT_WR_HDR;
1815	if (sgl->nsegs > 0)
1816		nflits += sgl->nflits;
1817	else {
1818		nflits += howmany(m->m_pkthdr.len, 8);
1819		ctrl += m->m_pkthdr.len;
1820	}
1821	ndesc = howmany(nflits, 8);
1822	if (ndesc > eq->avail)
1823		return (ENOMEM);
1824
1825	/* Firmware work request header */
1826	wr = (void *)&eq->desc[eq->pidx];
1827	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKT_WR) |
1828	    V_FW_WR_IMMDLEN(ctrl));
1829	ctrl = V_FW_WR_LEN16(howmany(nflits, 2));
1830	if (eq->avail == ndesc)
1831		ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
1832	wr->equiq_to_len16 = htobe32(ctrl);
1833	wr->r3 = 0;
1834
1835	if (m->m_pkthdr.tso_segsz) {
1836		struct cpl_tx_pkt_lso *lso = (void *)(wr + 1);
1837		struct ether_header *eh;
1838		struct ip *ip;
1839		struct tcphdr *tcp;
1840
1841		ctrl = V_LSO_OPCODE(CPL_TX_PKT_LSO) | F_LSO_FIRST_SLICE |
1842		    F_LSO_LAST_SLICE;
1843
1844		eh = mtod(m, struct ether_header *);
1845		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1846			ctrl |= V_LSO_ETHHDR_LEN(1);
1847			ip = (void *)((struct ether_vlan_header *)eh + 1);
1848		} else
1849			ip = (void *)(eh + 1);
1850
1851		tcp = (void *)((uintptr_t)ip + ip->ip_hl * 4);
1852		ctrl |= V_LSO_IPHDR_LEN(ip->ip_hl) |
1853		    V_LSO_TCPHDR_LEN(tcp->th_off);
1854
1855		lso->lso_ctrl = htobe32(ctrl);
1856		lso->ipid_ofst = htobe16(0);
1857		lso->mss = htobe16(m->m_pkthdr.tso_segsz);
1858		lso->seqno_offset = htobe32(0);
1859		lso->len = htobe32(m->m_pkthdr.len);
1860
1861		cpl = (void *)(lso + 1);
1862
1863		txq->tso_wrs++;
1864	} else
1865		cpl = (void *)(wr + 1);
1866
1867	/* Checksum offload */
1868	ctrl1 = 0;
1869	if (!(m->m_pkthdr.csum_flags & CSUM_IP))
1870		ctrl1 |= F_TXPKT_IPCSUM_DIS;
1871	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)))
1872		ctrl1 |= F_TXPKT_L4CSUM_DIS;
1873	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP))
1874		txq->txcsum++;	/* some hardware assistance provided */
1875
1876	/* VLAN tag insertion */
1877	if (m->m_flags & M_VLANTAG) {
1878		ctrl1 |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
1879		txq->vlan_insertion++;
1880	}
1881
1882	/* CPL header */
1883	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
1884	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
1885	cpl->pack = 0;
1886	cpl->len = htobe16(m->m_pkthdr.len);
1887	cpl->ctrl1 = htobe64(ctrl1);
1888
1889	/* Software descriptor */
1890	txsd = &eq->sdesc[eq->pidx];
1891	txsd->desc_used = ndesc;
1892
1893	eq->pending += ndesc;
1894	eq->avail -= ndesc;
1895	eq->pidx += ndesc;
1896	if (eq->pidx >= eq->cap)
1897		eq->pidx -= eq->cap;
1898
1899	/* SGL */
1900	dst = (void *)(cpl + 1);
1901	if (sgl->nsegs > 0) {
1902		txsd->map_used = 1;
1903		txq->sgl_wrs++;
1904		write_sgl_to_txd(eq, sgl, &dst);
1905	} else {
1906		txsd->map_used = 0;
1907		txq->imm_wrs++;
1908		for (; m; m = m->m_next) {
1909			copy_to_txd(eq, mtod(m, caddr_t), &dst, m->m_len);
1910		}
1911	}
1912
1913	txq->txpkt_wrs++;
1914	return (0);
1915}
1916
1917/*
1918 * Returns 0 to indicate that m has been accepted into a coalesced tx work
1919 * request.  It has either been folded into txpkts or txpkts was flushed and m
1920 * has started a new coalesced work request (as the first frame in a fresh
1921 * txpkts).
1922 *
1923 * Returns non-zero to indicate a failure - caller is responsible for
1924 * transmitting m, if there was anything in txpkts it has been flushed.
1925 */
1926static int
1927add_to_txpkts(struct port_info *pi, struct sge_txq *txq, struct txpkts *txpkts,
1928    struct mbuf *m, struct sgl *sgl)
1929{
1930	struct sge_eq *eq = &txq->eq;
1931	int can_coalesce;
1932	struct tx_sdesc *txsd;
1933	int flits;
1934
1935	TXQ_LOCK_ASSERT_OWNED(txq);
1936
1937	if (txpkts->npkt > 0) {
1938		flits = TXPKTS_PKT_HDR + sgl->nflits;
1939		can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
1940		    txpkts->nflits + flits <= TX_WR_FLITS &&
1941		    txpkts->nflits + flits <= eq->avail * 8 &&
1942		    txpkts->plen + m->m_pkthdr.len < 65536;
1943
1944		if (can_coalesce) {
1945			txpkts->npkt++;
1946			txpkts->nflits += flits;
1947			txpkts->plen += m->m_pkthdr.len;
1948
1949			txsd = &eq->sdesc[eq->pidx];
1950			txsd->map_used++;
1951
1952			return (0);
1953		}
1954
1955		/*
1956		 * Couldn't coalesce m into txpkts.  The first order of business
1957		 * is to send txpkts on its way.  Then we'll revisit m.
1958		 */
1959		write_txpkts_wr(txq, txpkts);
1960	}
1961
1962	/*
1963	 * Check if we can start a new coalesced tx work request with m as
1964	 * the first packet in it.
1965	 */
1966
1967	KASSERT(txpkts->npkt == 0, ("%s: txpkts not empty", __func__));
1968
1969	flits = TXPKTS_WR_HDR + sgl->nflits;
1970	can_coalesce = m->m_pkthdr.tso_segsz == 0 &&
1971	    flits <= eq->avail * 8 && flits <= TX_WR_FLITS;
1972
1973	if (can_coalesce == 0)
1974		return (EINVAL);
1975
1976	/*
1977	 * Start a fresh coalesced tx WR with m as the first frame in it.
1978	 */
1979	txpkts->npkt = 1;
1980	txpkts->nflits = flits;
1981	txpkts->flitp = &eq->desc[eq->pidx].flit[2];
1982	txpkts->plen = m->m_pkthdr.len;
1983
1984	txsd = &eq->sdesc[eq->pidx];
1985	txsd->map_used = 1;
1986
1987	return (0);
1988}
1989
1990/*
1991 * Note that write_txpkts_wr can never run out of hardware descriptors (but
1992 * write_txpkt_wr can).  add_to_txpkts ensures that a frame is accepted for
1993 * coalescing only if sufficient hardware descriptors are available.
1994 */
1995static void
1996write_txpkts_wr(struct sge_txq *txq, struct txpkts *txpkts)
1997{
1998	struct sge_eq *eq = &txq->eq;
1999	struct fw_eth_tx_pkts_wr *wr;
2000	struct tx_sdesc *txsd;
2001	uint32_t ctrl;
2002	int ndesc;
2003
2004	TXQ_LOCK_ASSERT_OWNED(txq);
2005
2006	ndesc = howmany(txpkts->nflits, 8);
2007
2008	wr = (void *)&eq->desc[eq->pidx];
2009	wr->op_immdlen = htobe32(V_FW_WR_OP(FW_ETH_TX_PKTS_WR) |
2010	    V_FW_WR_IMMDLEN(0)); /* immdlen does not matter in this WR */
2011	ctrl = V_FW_WR_LEN16(howmany(txpkts->nflits, 2));
2012	if (eq->avail == ndesc)
2013		ctrl |= F_FW_WR_EQUEQ | F_FW_WR_EQUIQ;
2014	wr->equiq_to_len16 = htobe32(ctrl);
2015	wr->plen = htobe16(txpkts->plen);
2016	wr->npkt = txpkts->npkt;
2017	wr->r3 = wr->r4 = 0;
2018
2019	/* Everything else already written */
2020
2021	txsd = &eq->sdesc[eq->pidx];
2022	txsd->desc_used = ndesc;
2023
2024	KASSERT(eq->avail >= ndesc, ("%s: out ouf descriptors", __func__));
2025
2026	eq->pending += ndesc;
2027	eq->avail -= ndesc;
2028	eq->pidx += ndesc;
2029	if (eq->pidx >= eq->cap)
2030		eq->pidx -= eq->cap;
2031
2032	txq->txpkts_pkts += txpkts->npkt;
2033	txq->txpkts_wrs++;
2034	txpkts->npkt = 0;	/* emptied */
2035}
2036
2037static inline void
2038write_ulp_cpl_sgl(struct port_info *pi, struct sge_txq *txq,
2039    struct txpkts *txpkts, struct mbuf *m, struct sgl *sgl)
2040{
2041	struct ulp_txpkt *ulpmc;
2042	struct ulptx_idata *ulpsc;
2043	struct cpl_tx_pkt_core *cpl;
2044	struct sge_eq *eq = &txq->eq;
2045	uintptr_t flitp, start, end;
2046	uint64_t ctrl;
2047	caddr_t dst;
2048
2049	KASSERT(txpkts->npkt > 0, ("%s: txpkts is empty", __func__));
2050
2051	start = (uintptr_t)eq->desc;
2052	end = (uintptr_t)eq->spg;
2053
2054	/* Checksum offload */
2055	ctrl = 0;
2056	if (!(m->m_pkthdr.csum_flags & CSUM_IP))
2057		ctrl |= F_TXPKT_IPCSUM_DIS;
2058	if (!(m->m_pkthdr.csum_flags & (CSUM_TCP | CSUM_UDP)))
2059		ctrl |= F_TXPKT_L4CSUM_DIS;
2060	if (m->m_pkthdr.csum_flags & (CSUM_IP | CSUM_TCP | CSUM_UDP))
2061		txq->txcsum++;	/* some hardware assistance provided */
2062
2063	/* VLAN tag insertion */
2064	if (m->m_flags & M_VLANTAG) {
2065		ctrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->m_pkthdr.ether_vtag);
2066		txq->vlan_insertion++;
2067	}
2068
2069	/*
2070	 * The previous packet's SGL must have ended at a 16 byte boundary (this
2071	 * is required by the firmware/hardware).  It follows that flitp cannot
2072	 * wrap around between the ULPTX master command and ULPTX subcommand (8
2073	 * bytes each), and that it can not wrap around in the middle of the
2074	 * cpl_tx_pkt_core either.
2075	 */
2076	flitp = (uintptr_t)txpkts->flitp;
2077	KASSERT((flitp & 0xf) == 0,
2078	    ("%s: last SGL did not end at 16 byte boundary: %p",
2079	    __func__, txpkts->flitp));
2080
2081	/* ULP master command */
2082	ulpmc = (void *)flitp;
2083	ulpmc->cmd_dest = htonl(V_ULPTX_CMD(ULP_TX_PKT) | V_ULP_TXPKT_DEST(0));
2084	ulpmc->len = htonl(howmany(sizeof(*ulpmc) + sizeof(*ulpsc) +
2085	    sizeof(*cpl) + 8 * sgl->nflits, 16));
2086
2087	/* ULP subcommand */
2088	ulpsc = (void *)(ulpmc + 1);
2089	ulpsc->cmd_more = htobe32(V_ULPTX_CMD((u32)ULP_TX_SC_IMM) |
2090	    F_ULP_TX_SC_MORE);
2091	ulpsc->len = htobe32(sizeof(struct cpl_tx_pkt_core));
2092
2093	flitp += sizeof(*ulpmc) + sizeof(*ulpsc);
2094	if (flitp == end)
2095		flitp = start;
2096
2097	/* CPL_TX_PKT */
2098	cpl = (void *)flitp;
2099	cpl->ctrl0 = htobe32(V_TXPKT_OPCODE(CPL_TX_PKT) |
2100	    V_TXPKT_INTF(pi->tx_chan) | V_TXPKT_PF(pi->adapter->pf));
2101	cpl->pack = 0;
2102	cpl->len = htobe16(m->m_pkthdr.len);
2103	cpl->ctrl1 = htobe64(ctrl);
2104
2105	flitp += sizeof(*cpl);
2106	if (flitp == end)
2107		flitp = start;
2108
2109	/* SGL for this frame */
2110	dst = (caddr_t)flitp;
2111	txpkts->nflits += write_sgl_to_txd(eq, sgl, &dst);
2112	txpkts->flitp = (void *)dst;
2113
2114	KASSERT(((uintptr_t)dst & 0xf) == 0,
2115	    ("%s: SGL ends at %p (not a 16 byte boundary)", __func__, dst));
2116}
2117
2118/*
2119 * If the SGL ends on an address that is not 16 byte aligned, this function will
2120 * add a 0 filled flit at the end.  It returns 1 in that case.
2121 */
2122static int
2123write_sgl_to_txd(struct sge_eq *eq, struct sgl *sgl, caddr_t *to)
2124{
2125	__be64 *flitp, *end;
2126	struct ulptx_sgl *usgl;
2127	bus_dma_segment_t *seg;
2128	int i, padded;
2129
2130	KASSERT(sgl->nsegs > 0 && sgl->nflits > 0,
2131	    ("%s: bad SGL - nsegs=%d, nflits=%d",
2132	    __func__, sgl->nsegs, sgl->nflits));
2133
2134	KASSERT(((uintptr_t)(*to) & 0xf) == 0,
2135	    ("%s: SGL must start at a 16 byte boundary: %p", __func__, *to));
2136
2137	flitp = (__be64 *)(*to);
2138	end = flitp + sgl->nflits;
2139	seg = &sgl->seg[0];
2140	usgl = (void *)flitp;
2141
2142	/*
2143	 * We start at a 16 byte boundary somewhere inside the tx descriptor
2144	 * ring, so we're at least 16 bytes away from the status page.  There is
2145	 * no chance of a wrap around in the middle of usgl (which is 16 bytes).
2146	 */
2147
2148	usgl->cmd_nsge = htobe32(V_ULPTX_CMD(ULP_TX_SC_DSGL) |
2149	    V_ULPTX_NSGE(sgl->nsegs));
2150	usgl->len0 = htobe32(seg->ds_len);
2151	usgl->addr0 = htobe64(seg->ds_addr);
2152	seg++;
2153
2154	if ((uintptr_t)end <= (uintptr_t)eq->spg) {
2155
2156		/* Won't wrap around at all */
2157
2158		for (i = 0; i < sgl->nsegs - 1; i++, seg++) {
2159			usgl->sge[i / 2].len[i & 1] = htobe32(seg->ds_len);
2160			usgl->sge[i / 2].addr[i & 1] = htobe64(seg->ds_addr);
2161		}
2162		if (i & 1)
2163			usgl->sge[i / 2].len[1] = htobe32(0);
2164	} else {
2165
2166		/* Will wrap somewhere in the rest of the SGL */
2167
2168		/* 2 flits already written, write the rest flit by flit */
2169		flitp = (void *)(usgl + 1);
2170		for (i = 0; i < sgl->nflits - 2; i++) {
2171			if ((uintptr_t)flitp == (uintptr_t)eq->spg)
2172				flitp = (void *)eq->desc;
2173			*flitp++ = get_flit(seg, sgl->nsegs - 1, i);
2174		}
2175		end = flitp;
2176	}
2177
2178	if ((uintptr_t)end & 0xf) {
2179		*(uint64_t *)end = 0;
2180		end++;
2181		padded = 1;
2182	} else
2183		padded = 0;
2184
2185	if ((uintptr_t)end == (uintptr_t)eq->spg)
2186		*to = (void *)eq->desc;
2187	else
2188		*to = (void *)end;
2189
2190	return (padded);
2191}
2192
2193static inline void
2194copy_to_txd(struct sge_eq *eq, caddr_t from, caddr_t *to, int len)
2195{
2196	if ((uintptr_t)(*to) + len <= (uintptr_t)eq->spg) {
2197		bcopy(from, *to, len);
2198		(*to) += len;
2199	} else {
2200		int portion = (uintptr_t)eq->spg - (uintptr_t)(*to);
2201
2202		bcopy(from, *to, portion);
2203		from += portion;
2204		portion = len - portion;	/* remaining */
2205		bcopy(from, (void *)eq->desc, portion);
2206		(*to) = (caddr_t)eq->desc + portion;
2207	}
2208}
2209
2210static inline void
2211ring_tx_db(struct adapter *sc, struct sge_eq *eq)
2212{
2213	wmb();
2214	t4_write_reg(sc, MYPF_REG(A_SGE_PF_KDOORBELL),
2215	    V_QID(eq->cntxt_id) | V_PIDX(eq->pending));
2216	eq->pending = 0;
2217}
2218
2219static int
2220reclaim_tx_descs(struct sge_eq *eq, int atleast, int howmany)
2221{
2222	struct tx_sdesc *txsd;
2223	struct tx_map *txm, *next_txm;
2224	unsigned int cidx, can_reclaim, reclaimed, maps, next_map_cidx;
2225
2226	EQ_LOCK_ASSERT_OWNED(eq);
2227
2228	cidx = eq->spg->cidx;	/* stable snapshot */
2229	cidx = be16_to_cpu(cidx);
2230
2231	if (cidx >= eq->cidx)
2232		can_reclaim = cidx - eq->cidx;
2233	else
2234		can_reclaim = cidx + eq->cap - eq->cidx;
2235
2236	if (can_reclaim < atleast)
2237		return (0);
2238
2239	next_map_cidx = eq->map_cidx;
2240	next_txm = txm = &eq->maps[next_map_cidx];
2241	prefetch(txm);
2242
2243	maps = reclaimed = 0;
2244	do {
2245		int ndesc;
2246
2247		txsd = &eq->sdesc[eq->cidx];
2248		ndesc = txsd->desc_used;
2249
2250		/* Firmware doesn't return "partial" credits. */
2251		KASSERT(can_reclaim >= ndesc,
2252		    ("%s: unexpected number of credits: %d, %d",
2253		    __func__, can_reclaim, ndesc));
2254
2255		maps += txsd->map_used;
2256		reclaimed += ndesc;
2257
2258		eq->cidx += ndesc;
2259		if (eq->cidx >= eq->cap)
2260			eq->cidx -= eq->cap;
2261
2262		can_reclaim -= ndesc;
2263
2264	} while (can_reclaim && reclaimed < howmany);
2265
2266	eq->avail += reclaimed;
2267	KASSERT(eq->avail < eq->cap,	/* avail tops out at (cap - 1) */
2268	    ("%s: too many descriptors available", __func__));
2269
2270	eq->map_avail += maps;
2271	KASSERT(eq->map_avail <= eq->map_total,
2272	    ("%s: too many maps available", __func__));
2273
2274	prefetch(txm->m);
2275	while (maps--) {
2276		next_txm++;
2277		if (++next_map_cidx == eq->map_total) {
2278			next_map_cidx = 0;
2279			next_txm = eq->maps;
2280		}
2281		prefetch(next_txm->m);
2282
2283		bus_dmamap_unload(eq->tx_tag, txm->map);
2284		m_freem(txm->m);
2285		txm->m = NULL;
2286
2287		txm = next_txm;
2288	}
2289	eq->map_cidx = next_map_cidx;
2290
2291	return (reclaimed);
2292}
2293
2294static void
2295write_eqflush_wr(struct sge_eq *eq)
2296{
2297	struct fw_eq_flush_wr *wr;
2298	struct tx_sdesc *txsd;
2299
2300	EQ_LOCK_ASSERT_OWNED(eq);
2301	KASSERT(eq->avail > 0, ("%s: no descriptors left.", __func__));
2302
2303	wr = (void *)&eq->desc[eq->pidx];
2304	bzero(wr, sizeof(*wr));
2305	wr->opcode = FW_EQ_FLUSH_WR;
2306	wr->equiq_to_len16 = htobe32(V_FW_WR_LEN16(sizeof(*wr) / 16) |
2307	    F_FW_WR_EQUEQ | F_FW_WR_EQUIQ);
2308
2309	txsd = &eq->sdesc[eq->pidx];
2310	txsd->desc_used = 1;
2311	txsd->map_used = 0;
2312
2313	eq->pending++;
2314	eq->avail--;
2315	if (++eq->pidx == eq->cap)
2316		eq->pidx = 0;
2317}
2318
2319static __be64
2320get_flit(bus_dma_segment_t *sgl, int nsegs, int idx)
2321{
2322	int i = (idx / 3) * 2;
2323
2324	switch (idx % 3) {
2325	case 0: {
2326		__be64 rc;
2327
2328		rc = htobe32(sgl[i].ds_len);
2329		if (i + 1 < nsegs)
2330			rc |= (uint64_t)htobe32(sgl[i + 1].ds_len) << 32;
2331
2332		return (rc);
2333	}
2334	case 1:
2335		return htobe64(sgl[i].ds_addr);
2336	case 2:
2337		return htobe64(sgl[i + 1].ds_addr);
2338	}
2339
2340	return (0);
2341}
2342
2343static struct mbuf *
2344get_fl_sdesc_data(struct sge_fl *fl, int len, int flags)
2345{
2346	struct fl_sdesc *sd;
2347	struct mbuf *m;
2348
2349	sd = &fl->sdesc[fl->cidx];
2350	FL_LOCK(fl);
2351	if (++fl->cidx == fl->cap)
2352		fl->cidx = 0;
2353	fl->needed++;
2354	FL_UNLOCK(fl);
2355
2356	m = sd->m;
2357	if (m == NULL) {
2358		m = m_gethdr(M_NOWAIT, MT_NOINIT);
2359		if (m == NULL)
2360			return (NULL);
2361	}
2362	sd->m = NULL;	/* consumed */
2363
2364	bus_dmamap_sync(fl->tag[sd->tag_idx], sd->map, BUS_DMASYNC_POSTREAD);
2365	m_init(m, zone_mbuf, MLEN, M_NOWAIT, MT_DATA, flags);
2366	if ((flags && len < MINCLSIZE) || (!flags && len <= MLEN))
2367		bcopy(sd->cl, mtod(m, caddr_t), len);
2368	else {
2369		bus_dmamap_unload(fl->tag[sd->tag_idx], sd->map);
2370		m_cljset(m, sd->cl, FL_BUF_TYPE(sd->tag_idx));
2371		sd->cl = NULL;	/* consumed */
2372	}
2373
2374	m->m_len = min(len, FL_BUF_SIZE(sd->tag_idx));
2375
2376	return (m);
2377}
2378
2379static void
2380set_fl_tag_idx(struct sge_fl *fl, int mtu)
2381{
2382	int i;
2383
2384	FL_LOCK_ASSERT_OWNED(fl);
2385
2386	for (i = 0; i < FL_BUF_SIZES - 1; i++) {
2387		if (FL_BUF_SIZE(i) >= (mtu + FL_PKTSHIFT))
2388			break;
2389	}
2390
2391	fl->tag_idx = i;
2392}
2393