t4_hw.c revision 339398
1/*-
2 * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/dev/cxgbe/common/t4_hw.c 339398 2018-10-17 01:05:52Z np $");
29
30#include "opt_inet.h"
31
32#include <sys/param.h>
33#include <sys/eventhandler.h>
34
35#include "common.h"
36#include "t4_regs.h"
37#include "t4_regs_values.h"
38#include "firmware/t4fw_interface.h"
39
40#undef msleep
41#define msleep(x) do { \
42	if (cold) \
43		DELAY((x) * 1000); \
44	else \
45		pause("t4hw", (x) * hz / 1000); \
46} while (0)
47
48/**
49 *	t4_wait_op_done_val - wait until an operation is completed
50 *	@adapter: the adapter performing the operation
51 *	@reg: the register to check for completion
52 *	@mask: a single-bit field within @reg that indicates completion
53 *	@polarity: the value of the field when the operation is completed
54 *	@attempts: number of check iterations
55 *	@delay: delay in usecs between iterations
56 *	@valp: where to store the value of the register at completion time
57 *
58 *	Wait until an operation is completed by checking a bit in a register
59 *	up to @attempts times.  If @valp is not NULL the value of the register
60 *	at the time it indicated completion is stored there.  Returns 0 if the
61 *	operation completes and	-EAGAIN	otherwise.
62 */
63static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
64			       int polarity, int attempts, int delay, u32 *valp)
65{
66	while (1) {
67		u32 val = t4_read_reg(adapter, reg);
68
69		if (!!(val & mask) == polarity) {
70			if (valp)
71				*valp = val;
72			return 0;
73		}
74		if (--attempts == 0)
75			return -EAGAIN;
76		if (delay)
77			udelay(delay);
78	}
79}
80
81static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
82				  int polarity, int attempts, int delay)
83{
84	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
85				   delay, NULL);
86}
87
88/**
89 *	t4_set_reg_field - set a register field to a value
90 *	@adapter: the adapter to program
91 *	@addr: the register address
92 *	@mask: specifies the portion of the register to modify
93 *	@val: the new value for the register field
94 *
95 *	Sets a register field specified by the supplied mask to the
96 *	given value.
97 */
98void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
99		      u32 val)
100{
101	u32 v = t4_read_reg(adapter, addr) & ~mask;
102
103	t4_write_reg(adapter, addr, v | val);
104	(void) t4_read_reg(adapter, addr);      /* flush */
105}
106
107/**
108 *	t4_read_indirect - read indirectly addressed registers
109 *	@adap: the adapter
110 *	@addr_reg: register holding the indirect address
111 *	@data_reg: register holding the value of the indirect register
112 *	@vals: where the read register values are stored
113 *	@nregs: how many indirect registers to read
114 *	@start_idx: index of first indirect register to read
115 *
116 *	Reads registers that are accessed indirectly through an address/data
117 *	register pair.
118 */
119void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
120			     unsigned int data_reg, u32 *vals,
121			     unsigned int nregs, unsigned int start_idx)
122{
123	while (nregs--) {
124		t4_write_reg(adap, addr_reg, start_idx);
125		*vals++ = t4_read_reg(adap, data_reg);
126		start_idx++;
127	}
128}
129
130/**
131 *	t4_write_indirect - write indirectly addressed registers
132 *	@adap: the adapter
133 *	@addr_reg: register holding the indirect addresses
134 *	@data_reg: register holding the value for the indirect registers
135 *	@vals: values to write
136 *	@nregs: how many indirect registers to write
137 *	@start_idx: address of first indirect register to write
138 *
139 *	Writes a sequential block of registers that are accessed indirectly
140 *	through an address/data register pair.
141 */
142void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
143		       unsigned int data_reg, const u32 *vals,
144		       unsigned int nregs, unsigned int start_idx)
145{
146	while (nregs--) {
147		t4_write_reg(adap, addr_reg, start_idx++);
148		t4_write_reg(adap, data_reg, *vals++);
149	}
150}
151
152/*
153 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
154 * mechanism.  This guarantees that we get the real value even if we're
155 * operating within a Virtual Machine and the Hypervisor is trapping our
156 * Configuration Space accesses.
157 *
158 * N.B. This routine should only be used as a last resort: the firmware uses
159 *      the backdoor registers on a regular basis and we can end up
160 *      conflicting with it's uses!
161 */
162u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
163{
164	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
165	u32 val;
166
167	if (chip_id(adap) <= CHELSIO_T5)
168		req |= F_ENABLE;
169	else
170		req |= F_T6_ENABLE;
171
172	if (is_t4(adap))
173		req |= F_LOCALCFG;
174
175	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
176	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
177
178	/*
179	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
180	 * Configuration Space read.  (None of the other fields matter when
181	 * F_ENABLE is 0 so a simple register write is easier than a
182	 * read-modify-write via t4_set_reg_field().)
183	 */
184	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
185
186	return val;
187}
188
189/*
190 * t4_report_fw_error - report firmware error
191 * @adap: the adapter
192 *
193 * The adapter firmware can indicate error conditions to the host.
194 * If the firmware has indicated an error, print out the reason for
195 * the firmware error.
196 */
197static void t4_report_fw_error(struct adapter *adap)
198{
199	static const char *const reason[] = {
200		"Crash",			/* PCIE_FW_EVAL_CRASH */
201		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
202		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
203		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
204		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
205		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
206		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
207		"Reserved",			/* reserved */
208	};
209	u32 pcie_fw;
210
211	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
212	if (pcie_fw & F_PCIE_FW_ERR)
213		CH_ERR(adap, "Firmware reports adapter error: %s\n",
214			reason[G_PCIE_FW_EVAL(pcie_fw)]);
215}
216
217/*
218 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
219 */
220static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
221			 u32 mbox_addr)
222{
223	for ( ; nflit; nflit--, mbox_addr += 8)
224		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
225}
226
227/*
228 * Handle a FW assertion reported in a mailbox.
229 */
230static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
231{
232	CH_ALERT(adap,
233		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
234		  asrt->u.assert.filename_0_7,
235		  be32_to_cpu(asrt->u.assert.line),
236		  be32_to_cpu(asrt->u.assert.x),
237		  be32_to_cpu(asrt->u.assert.y));
238}
239
240#define X_CIM_PF_NOACCESS 0xeeeeeeee
241/**
242 *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243 *	@adap: the adapter
244 *	@mbox: index of the mailbox to use
245 *	@cmd: the command to write
246 *	@size: command length in bytes
247 *	@rpl: where to optionally store the reply
248 *	@sleep_ok: if true we may sleep while awaiting command completion
249 *	@timeout: time to wait for command to finish before timing out
250 *		(negative implies @sleep_ok=false)
251 *
252 *	Sends the given command to FW through the selected mailbox and waits
253 *	for the FW to execute the command.  If @rpl is not %NULL it is used to
254 *	store the FW's reply to the command.  The command and its optional
255 *	reply are of the same length.  Some FW commands like RESET and
256 *	INITIALIZE can take a considerable amount of time to execute.
257 *	@sleep_ok determines whether we may sleep while awaiting the response.
258 *	If sleeping is allowed we use progressive backoff otherwise we spin.
259 *	Note that passing in a negative @timeout is an alternate mechanism
260 *	for specifying @sleep_ok=false.  This is useful when a higher level
261 *	interface allows for specification of @timeout but not @sleep_ok ...
262 *
263 *	The return value is 0 on success or a negative errno on failure.  A
264 *	failure can happen either because we are not able to execute the
265 *	command or FW executes it but signals an error.  In the latter case
266 *	the return value is the error code indicated by FW (negated).
267 */
268int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
269			    int size, void *rpl, bool sleep_ok, int timeout)
270{
271	/*
272	 * We delay in small increments at first in an effort to maintain
273	 * responsiveness for simple, fast executing commands but then back
274	 * off to larger delays to a maximum retry delay.
275	 */
276	static const int delay[] = {
277		1, 1, 3, 5, 10, 10, 20, 50, 100
278	};
279	u32 v;
280	u64 res;
281	int i, ms, delay_idx, ret;
282	const __be64 *p = cmd;
283	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
284	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
285	u32 ctl;
286	__be64 cmd_rpl[MBOX_LEN/8];
287	u32 pcie_fw;
288
289	if (adap->flags & CHK_MBOX_ACCESS)
290		ASSERT_SYNCHRONIZED_OP(adap);
291
292	if ((size & 15) || size > MBOX_LEN)
293		return -EINVAL;
294
295	if (adap->flags & IS_VF) {
296		if (is_t6(adap))
297			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
298		else
299			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
300		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
301	}
302
303	/*
304	 * If we have a negative timeout, that implies that we can't sleep.
305	 */
306	if (timeout < 0) {
307		sleep_ok = false;
308		timeout = -timeout;
309	}
310
311	/*
312	 * Attempt to gain access to the mailbox.
313	 */
314	for (i = 0; i < 4; i++) {
315		ctl = t4_read_reg(adap, ctl_reg);
316		v = G_MBOWNER(ctl);
317		if (v != X_MBOWNER_NONE)
318			break;
319	}
320
321	/*
322	 * If we were unable to gain access, dequeue ourselves from the
323	 * mailbox atomic access list and report the error to our caller.
324	 */
325	if (v != X_MBOWNER_PL) {
326		t4_report_fw_error(adap);
327		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
328		return ret;
329	}
330
331	/*
332	 * If we gain ownership of the mailbox and there's a "valid" message
333	 * in it, this is likely an asynchronous error message from the
334	 * firmware.  So we'll report that and then proceed on with attempting
335	 * to issue our own command ... which may well fail if the error
336	 * presaged the firmware crashing ...
337	 */
338	if (ctl & F_MBMSGVALID) {
339		CH_ERR(adap, "found VALID command in mbox %u: %016llx %016llx "
340		       "%016llx %016llx %016llx %016llx %016llx %016llx\n",
341		       mbox, (unsigned long long)t4_read_reg64(adap, data_reg),
342		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
343		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
344		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
345		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
346		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
347		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
348		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
349	}
350
351	/*
352	 * Copy in the new mailbox command and send it on its way ...
353	 */
354	for (i = 0; i < size; i += 8, p++)
355		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
356
357	if (adap->flags & IS_VF) {
358		/*
359		 * For the VFs, the Mailbox Data "registers" are
360		 * actually backed by T4's "MA" interface rather than
361		 * PL Registers (as is the case for the PFs).  Because
362		 * these are in different coherency domains, the write
363		 * to the VF's PL-register-backed Mailbox Control can
364		 * race in front of the writes to the MA-backed VF
365		 * Mailbox Data "registers".  So we need to do a
366		 * read-back on at least one byte of the VF Mailbox
367		 * Data registers before doing the write to the VF
368		 * Mailbox Control register.
369		 */
370		t4_read_reg(adap, data_reg);
371	}
372
373	CH_DUMP_MBOX(adap, mbox, data_reg);
374
375	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
376	t4_read_reg(adap, ctl_reg);	/* flush write */
377
378	delay_idx = 0;
379	ms = delay[0];
380
381	/*
382	 * Loop waiting for the reply; bail out if we time out or the firmware
383	 * reports an error.
384	 */
385	pcie_fw = 0;
386	for (i = 0; i < timeout; i += ms) {
387		if (!(adap->flags & IS_VF)) {
388			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
389			if (pcie_fw & F_PCIE_FW_ERR)
390				break;
391		}
392		if (sleep_ok) {
393			ms = delay[delay_idx];  /* last element may repeat */
394			if (delay_idx < ARRAY_SIZE(delay) - 1)
395				delay_idx++;
396			msleep(ms);
397		} else {
398			mdelay(ms);
399		}
400
401		v = t4_read_reg(adap, ctl_reg);
402		if (v == X_CIM_PF_NOACCESS)
403			continue;
404		if (G_MBOWNER(v) == X_MBOWNER_PL) {
405			if (!(v & F_MBMSGVALID)) {
406				t4_write_reg(adap, ctl_reg,
407					     V_MBOWNER(X_MBOWNER_NONE));
408				continue;
409			}
410
411			/*
412			 * Retrieve the command reply and release the mailbox.
413			 */
414			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
415			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
416
417			CH_DUMP_MBOX(adap, mbox, data_reg);
418
419			res = be64_to_cpu(cmd_rpl[0]);
420			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
421				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
422				res = V_FW_CMD_RETVAL(EIO);
423			} else if (rpl)
424				memcpy(rpl, cmd_rpl, size);
425			return -G_FW_CMD_RETVAL((int)res);
426		}
427	}
428
429	/*
430	 * We timed out waiting for a reply to our mailbox command.  Report
431	 * the error and also check to see if the firmware reported any
432	 * errors ...
433	 */
434	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
435	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
436	       *(const u8 *)cmd, mbox);
437
438	/* If DUMP_MBOX is set the mbox has already been dumped */
439	if ((adap->debug_flags & DF_DUMP_MBOX) == 0) {
440		p = cmd;
441		CH_ERR(adap, "mbox: %016llx %016llx %016llx %016llx "
442		    "%016llx %016llx %016llx %016llx\n",
443		    (unsigned long long)be64_to_cpu(p[0]),
444		    (unsigned long long)be64_to_cpu(p[1]),
445		    (unsigned long long)be64_to_cpu(p[2]),
446		    (unsigned long long)be64_to_cpu(p[3]),
447		    (unsigned long long)be64_to_cpu(p[4]),
448		    (unsigned long long)be64_to_cpu(p[5]),
449		    (unsigned long long)be64_to_cpu(p[6]),
450		    (unsigned long long)be64_to_cpu(p[7]));
451	}
452
453	t4_report_fw_error(adap);
454	t4_fatal_err(adap);
455	return ret;
456}
457
458int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
459		    void *rpl, bool sleep_ok)
460{
461		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
462					       sleep_ok, FW_CMD_MAX_TIMEOUT);
463
464}
465
466static int t4_edc_err_read(struct adapter *adap, int idx)
467{
468	u32 edc_ecc_err_addr_reg;
469	u32 edc_bist_status_rdata_reg;
470
471	if (is_t4(adap)) {
472		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
473		return 0;
474	}
475	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
476		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
477		return 0;
478	}
479
480	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
481	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
482
483	CH_WARN(adap,
484		"edc%d err addr 0x%x: 0x%x.\n",
485		idx, edc_ecc_err_addr_reg,
486		t4_read_reg(adap, edc_ecc_err_addr_reg));
487	CH_WARN(adap,
488	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
489		edc_bist_status_rdata_reg,
490		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
491		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
492		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
493		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
494		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
495		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
496		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
497		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
498		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
499
500	return 0;
501}
502
503/**
504 *	t4_mc_read - read from MC through backdoor accesses
505 *	@adap: the adapter
506 *	@idx: which MC to access
507 *	@addr: address of first byte requested
508 *	@data: 64 bytes of data containing the requested address
509 *	@ecc: where to store the corresponding 64-bit ECC word
510 *
511 *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
512 *	that covers the requested address @addr.  If @parity is not %NULL it
513 *	is assigned the 64-bit ECC word for the read data.
514 */
515int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
516{
517	int i;
518	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
519	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
520
521	if (is_t4(adap)) {
522		mc_bist_cmd_reg = A_MC_BIST_CMD;
523		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
524		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
525		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
526		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
527	} else {
528		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
529		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
530		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
531		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
532						  idx);
533		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
534						  idx);
535	}
536
537	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
538		return -EBUSY;
539	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
540	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
541	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
542	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
543		     F_START_BIST | V_BIST_CMD_GAP(1));
544	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
545	if (i)
546		return i;
547
548#define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
549
550	for (i = 15; i >= 0; i--)
551		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
552	if (ecc)
553		*ecc = t4_read_reg64(adap, MC_DATA(16));
554#undef MC_DATA
555	return 0;
556}
557
558/**
559 *	t4_edc_read - read from EDC through backdoor accesses
560 *	@adap: the adapter
561 *	@idx: which EDC to access
562 *	@addr: address of first byte requested
563 *	@data: 64 bytes of data containing the requested address
564 *	@ecc: where to store the corresponding 64-bit ECC word
565 *
566 *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
567 *	that covers the requested address @addr.  If @parity is not %NULL it
568 *	is assigned the 64-bit ECC word for the read data.
569 */
570int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
571{
572	int i;
573	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
574	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
575
576	if (is_t4(adap)) {
577		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
578		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
579		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
580		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
581						    idx);
582		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
583						    idx);
584	} else {
585/*
586 * These macro are missing in t4_regs.h file.
587 * Added temporarily for testing.
588 */
589#define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
590#define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
591		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
592		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
593		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
594		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
595						    idx);
596		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
597						    idx);
598#undef EDC_REG_T5
599#undef EDC_STRIDE_T5
600	}
601
602	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
603		return -EBUSY;
604	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
605	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
606	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
607	t4_write_reg(adap, edc_bist_cmd_reg,
608		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
609	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
610	if (i)
611		return i;
612
613#define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
614
615	for (i = 15; i >= 0; i--)
616		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
617	if (ecc)
618		*ecc = t4_read_reg64(adap, EDC_DATA(16));
619#undef EDC_DATA
620	return 0;
621}
622
623/**
624 *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
625 *	@adap: the adapter
626 *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
627 *	@addr: address within indicated memory type
628 *	@len: amount of memory to read
629 *	@buf: host memory buffer
630 *
631 *	Reads an [almost] arbitrary memory region in the firmware: the
632 *	firmware memory address, length and host buffer must be aligned on
633 *	32-bit boudaries.  The memory is returned as a raw byte sequence from
634 *	the firmware's memory.  If this memory contains data structures which
635 *	contain multi-byte integers, it's the callers responsibility to
636 *	perform appropriate byte order conversions.
637 */
638int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
639		__be32 *buf)
640{
641	u32 pos, start, end, offset;
642	int ret;
643
644	/*
645	 * Argument sanity checks ...
646	 */
647	if ((addr & 0x3) || (len & 0x3))
648		return -EINVAL;
649
650	/*
651	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
652	 * need to round down the start and round up the end.  We'll start
653	 * copying out of the first line at (addr - start) a word at a time.
654	 */
655	start = rounddown2(addr, 64);
656	end = roundup2(addr + len, 64);
657	offset = (addr - start)/sizeof(__be32);
658
659	for (pos = start; pos < end; pos += 64, offset = 0) {
660		__be32 data[16];
661
662		/*
663		 * Read the chip's memory block and bail if there's an error.
664		 */
665		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
666			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
667		else
668			ret = t4_edc_read(adap, mtype, pos, data, NULL);
669		if (ret)
670			return ret;
671
672		/*
673		 * Copy the data into the caller's memory buffer.
674		 */
675		while (offset < 16 && len > 0) {
676			*buf++ = data[offset++];
677			len -= sizeof(__be32);
678		}
679	}
680
681	return 0;
682}
683
684/*
685 * Return the specified PCI-E Configuration Space register from our Physical
686 * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
687 * since we prefer to let the firmware own all of these registers, but if that
688 * fails we go for it directly ourselves.
689 */
690u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
691{
692
693	/*
694	 * If fw_attach != 0, construct and send the Firmware LDST Command to
695	 * retrieve the specified PCI-E Configuration Space register.
696	 */
697	if (drv_fw_attach != 0) {
698		struct fw_ldst_cmd ldst_cmd;
699		int ret;
700
701		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
702		ldst_cmd.op_to_addrspace =
703			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
704				    F_FW_CMD_REQUEST |
705				    F_FW_CMD_READ |
706				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
707		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
708		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
709		ldst_cmd.u.pcie.ctrl_to_fn =
710			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
711		ldst_cmd.u.pcie.r = reg;
712
713		/*
714		 * If the LDST Command succeeds, return the result, otherwise
715		 * fall through to reading it directly ourselves ...
716		 */
717		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
718				 &ldst_cmd);
719		if (ret == 0)
720			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
721
722		CH_WARN(adap, "Firmware failed to return "
723			"Configuration Space register %d, err = %d\n",
724			reg, -ret);
725	}
726
727	/*
728	 * Read the desired Configuration Space register via the PCI-E
729	 * Backdoor mechanism.
730	 */
731	return t4_hw_pci_read_cfg4(adap, reg);
732}
733
734/**
735 *	t4_get_regs_len - return the size of the chips register set
736 *	@adapter: the adapter
737 *
738 *	Returns the size of the chip's BAR0 register space.
739 */
740unsigned int t4_get_regs_len(struct adapter *adapter)
741{
742	unsigned int chip_version = chip_id(adapter);
743
744	switch (chip_version) {
745	case CHELSIO_T4:
746		if (adapter->flags & IS_VF)
747			return FW_T4VF_REGMAP_SIZE;
748		return T4_REGMAP_SIZE;
749
750	case CHELSIO_T5:
751	case CHELSIO_T6:
752		if (adapter->flags & IS_VF)
753			return FW_T4VF_REGMAP_SIZE;
754		return T5_REGMAP_SIZE;
755	}
756
757	CH_ERR(adapter,
758		"Unsupported chip version %d\n", chip_version);
759	return 0;
760}
761
762/**
763 *	t4_get_regs - read chip registers into provided buffer
764 *	@adap: the adapter
765 *	@buf: register buffer
766 *	@buf_size: size (in bytes) of register buffer
767 *
768 *	If the provided register buffer isn't large enough for the chip's
769 *	full register range, the register dump will be truncated to the
770 *	register buffer's size.
771 */
772void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
773{
774	static const unsigned int t4_reg_ranges[] = {
775		0x1008, 0x1108,
776		0x1180, 0x1184,
777		0x1190, 0x1194,
778		0x11a0, 0x11a4,
779		0x11b0, 0x11b4,
780		0x11fc, 0x123c,
781		0x1300, 0x173c,
782		0x1800, 0x18fc,
783		0x3000, 0x30d8,
784		0x30e0, 0x30e4,
785		0x30ec, 0x5910,
786		0x5920, 0x5924,
787		0x5960, 0x5960,
788		0x5968, 0x5968,
789		0x5970, 0x5970,
790		0x5978, 0x5978,
791		0x5980, 0x5980,
792		0x5988, 0x5988,
793		0x5990, 0x5990,
794		0x5998, 0x5998,
795		0x59a0, 0x59d4,
796		0x5a00, 0x5ae0,
797		0x5ae8, 0x5ae8,
798		0x5af0, 0x5af0,
799		0x5af8, 0x5af8,
800		0x6000, 0x6098,
801		0x6100, 0x6150,
802		0x6200, 0x6208,
803		0x6240, 0x6248,
804		0x6280, 0x62b0,
805		0x62c0, 0x6338,
806		0x6370, 0x638c,
807		0x6400, 0x643c,
808		0x6500, 0x6524,
809		0x6a00, 0x6a04,
810		0x6a14, 0x6a38,
811		0x6a60, 0x6a70,
812		0x6a78, 0x6a78,
813		0x6b00, 0x6b0c,
814		0x6b1c, 0x6b84,
815		0x6bf0, 0x6bf8,
816		0x6c00, 0x6c0c,
817		0x6c1c, 0x6c84,
818		0x6cf0, 0x6cf8,
819		0x6d00, 0x6d0c,
820		0x6d1c, 0x6d84,
821		0x6df0, 0x6df8,
822		0x6e00, 0x6e0c,
823		0x6e1c, 0x6e84,
824		0x6ef0, 0x6ef8,
825		0x6f00, 0x6f0c,
826		0x6f1c, 0x6f84,
827		0x6ff0, 0x6ff8,
828		0x7000, 0x700c,
829		0x701c, 0x7084,
830		0x70f0, 0x70f8,
831		0x7100, 0x710c,
832		0x711c, 0x7184,
833		0x71f0, 0x71f8,
834		0x7200, 0x720c,
835		0x721c, 0x7284,
836		0x72f0, 0x72f8,
837		0x7300, 0x730c,
838		0x731c, 0x7384,
839		0x73f0, 0x73f8,
840		0x7400, 0x7450,
841		0x7500, 0x7530,
842		0x7600, 0x760c,
843		0x7614, 0x761c,
844		0x7680, 0x76cc,
845		0x7700, 0x7798,
846		0x77c0, 0x77fc,
847		0x7900, 0x79fc,
848		0x7b00, 0x7b58,
849		0x7b60, 0x7b84,
850		0x7b8c, 0x7c38,
851		0x7d00, 0x7d38,
852		0x7d40, 0x7d80,
853		0x7d8c, 0x7ddc,
854		0x7de4, 0x7e04,
855		0x7e10, 0x7e1c,
856		0x7e24, 0x7e38,
857		0x7e40, 0x7e44,
858		0x7e4c, 0x7e78,
859		0x7e80, 0x7ea4,
860		0x7eac, 0x7edc,
861		0x7ee8, 0x7efc,
862		0x8dc0, 0x8e04,
863		0x8e10, 0x8e1c,
864		0x8e30, 0x8e78,
865		0x8ea0, 0x8eb8,
866		0x8ec0, 0x8f6c,
867		0x8fc0, 0x9008,
868		0x9010, 0x9058,
869		0x9060, 0x9060,
870		0x9068, 0x9074,
871		0x90fc, 0x90fc,
872		0x9400, 0x9408,
873		0x9410, 0x9458,
874		0x9600, 0x9600,
875		0x9608, 0x9638,
876		0x9640, 0x96bc,
877		0x9800, 0x9808,
878		0x9820, 0x983c,
879		0x9850, 0x9864,
880		0x9c00, 0x9c6c,
881		0x9c80, 0x9cec,
882		0x9d00, 0x9d6c,
883		0x9d80, 0x9dec,
884		0x9e00, 0x9e6c,
885		0x9e80, 0x9eec,
886		0x9f00, 0x9f6c,
887		0x9f80, 0x9fec,
888		0xd004, 0xd004,
889		0xd010, 0xd03c,
890		0xdfc0, 0xdfe0,
891		0xe000, 0xea7c,
892		0xf000, 0x11110,
893		0x11118, 0x11190,
894		0x19040, 0x1906c,
895		0x19078, 0x19080,
896		0x1908c, 0x190e4,
897		0x190f0, 0x190f8,
898		0x19100, 0x19110,
899		0x19120, 0x19124,
900		0x19150, 0x19194,
901		0x1919c, 0x191b0,
902		0x191d0, 0x191e8,
903		0x19238, 0x1924c,
904		0x193f8, 0x1943c,
905		0x1944c, 0x19474,
906		0x19490, 0x194e0,
907		0x194f0, 0x194f8,
908		0x19800, 0x19c08,
909		0x19c10, 0x19c90,
910		0x19ca0, 0x19ce4,
911		0x19cf0, 0x19d40,
912		0x19d50, 0x19d94,
913		0x19da0, 0x19de8,
914		0x19df0, 0x19e40,
915		0x19e50, 0x19e90,
916		0x19ea0, 0x19f4c,
917		0x1a000, 0x1a004,
918		0x1a010, 0x1a06c,
919		0x1a0b0, 0x1a0e4,
920		0x1a0ec, 0x1a0f4,
921		0x1a100, 0x1a108,
922		0x1a114, 0x1a120,
923		0x1a128, 0x1a130,
924		0x1a138, 0x1a138,
925		0x1a190, 0x1a1c4,
926		0x1a1fc, 0x1a1fc,
927		0x1e040, 0x1e04c,
928		0x1e284, 0x1e28c,
929		0x1e2c0, 0x1e2c0,
930		0x1e2e0, 0x1e2e0,
931		0x1e300, 0x1e384,
932		0x1e3c0, 0x1e3c8,
933		0x1e440, 0x1e44c,
934		0x1e684, 0x1e68c,
935		0x1e6c0, 0x1e6c0,
936		0x1e6e0, 0x1e6e0,
937		0x1e700, 0x1e784,
938		0x1e7c0, 0x1e7c8,
939		0x1e840, 0x1e84c,
940		0x1ea84, 0x1ea8c,
941		0x1eac0, 0x1eac0,
942		0x1eae0, 0x1eae0,
943		0x1eb00, 0x1eb84,
944		0x1ebc0, 0x1ebc8,
945		0x1ec40, 0x1ec4c,
946		0x1ee84, 0x1ee8c,
947		0x1eec0, 0x1eec0,
948		0x1eee0, 0x1eee0,
949		0x1ef00, 0x1ef84,
950		0x1efc0, 0x1efc8,
951		0x1f040, 0x1f04c,
952		0x1f284, 0x1f28c,
953		0x1f2c0, 0x1f2c0,
954		0x1f2e0, 0x1f2e0,
955		0x1f300, 0x1f384,
956		0x1f3c0, 0x1f3c8,
957		0x1f440, 0x1f44c,
958		0x1f684, 0x1f68c,
959		0x1f6c0, 0x1f6c0,
960		0x1f6e0, 0x1f6e0,
961		0x1f700, 0x1f784,
962		0x1f7c0, 0x1f7c8,
963		0x1f840, 0x1f84c,
964		0x1fa84, 0x1fa8c,
965		0x1fac0, 0x1fac0,
966		0x1fae0, 0x1fae0,
967		0x1fb00, 0x1fb84,
968		0x1fbc0, 0x1fbc8,
969		0x1fc40, 0x1fc4c,
970		0x1fe84, 0x1fe8c,
971		0x1fec0, 0x1fec0,
972		0x1fee0, 0x1fee0,
973		0x1ff00, 0x1ff84,
974		0x1ffc0, 0x1ffc8,
975		0x20000, 0x2002c,
976		0x20100, 0x2013c,
977		0x20190, 0x201a0,
978		0x201a8, 0x201b8,
979		0x201c4, 0x201c8,
980		0x20200, 0x20318,
981		0x20400, 0x204b4,
982		0x204c0, 0x20528,
983		0x20540, 0x20614,
984		0x21000, 0x21040,
985		0x2104c, 0x21060,
986		0x210c0, 0x210ec,
987		0x21200, 0x21268,
988		0x21270, 0x21284,
989		0x212fc, 0x21388,
990		0x21400, 0x21404,
991		0x21500, 0x21500,
992		0x21510, 0x21518,
993		0x2152c, 0x21530,
994		0x2153c, 0x2153c,
995		0x21550, 0x21554,
996		0x21600, 0x21600,
997		0x21608, 0x2161c,
998		0x21624, 0x21628,
999		0x21630, 0x21634,
1000		0x2163c, 0x2163c,
1001		0x21700, 0x2171c,
1002		0x21780, 0x2178c,
1003		0x21800, 0x21818,
1004		0x21820, 0x21828,
1005		0x21830, 0x21848,
1006		0x21850, 0x21854,
1007		0x21860, 0x21868,
1008		0x21870, 0x21870,
1009		0x21878, 0x21898,
1010		0x218a0, 0x218a8,
1011		0x218b0, 0x218c8,
1012		0x218d0, 0x218d4,
1013		0x218e0, 0x218e8,
1014		0x218f0, 0x218f0,
1015		0x218f8, 0x21a18,
1016		0x21a20, 0x21a28,
1017		0x21a30, 0x21a48,
1018		0x21a50, 0x21a54,
1019		0x21a60, 0x21a68,
1020		0x21a70, 0x21a70,
1021		0x21a78, 0x21a98,
1022		0x21aa0, 0x21aa8,
1023		0x21ab0, 0x21ac8,
1024		0x21ad0, 0x21ad4,
1025		0x21ae0, 0x21ae8,
1026		0x21af0, 0x21af0,
1027		0x21af8, 0x21c18,
1028		0x21c20, 0x21c20,
1029		0x21c28, 0x21c30,
1030		0x21c38, 0x21c38,
1031		0x21c80, 0x21c98,
1032		0x21ca0, 0x21ca8,
1033		0x21cb0, 0x21cc8,
1034		0x21cd0, 0x21cd4,
1035		0x21ce0, 0x21ce8,
1036		0x21cf0, 0x21cf0,
1037		0x21cf8, 0x21d7c,
1038		0x21e00, 0x21e04,
1039		0x22000, 0x2202c,
1040		0x22100, 0x2213c,
1041		0x22190, 0x221a0,
1042		0x221a8, 0x221b8,
1043		0x221c4, 0x221c8,
1044		0x22200, 0x22318,
1045		0x22400, 0x224b4,
1046		0x224c0, 0x22528,
1047		0x22540, 0x22614,
1048		0x23000, 0x23040,
1049		0x2304c, 0x23060,
1050		0x230c0, 0x230ec,
1051		0x23200, 0x23268,
1052		0x23270, 0x23284,
1053		0x232fc, 0x23388,
1054		0x23400, 0x23404,
1055		0x23500, 0x23500,
1056		0x23510, 0x23518,
1057		0x2352c, 0x23530,
1058		0x2353c, 0x2353c,
1059		0x23550, 0x23554,
1060		0x23600, 0x23600,
1061		0x23608, 0x2361c,
1062		0x23624, 0x23628,
1063		0x23630, 0x23634,
1064		0x2363c, 0x2363c,
1065		0x23700, 0x2371c,
1066		0x23780, 0x2378c,
1067		0x23800, 0x23818,
1068		0x23820, 0x23828,
1069		0x23830, 0x23848,
1070		0x23850, 0x23854,
1071		0x23860, 0x23868,
1072		0x23870, 0x23870,
1073		0x23878, 0x23898,
1074		0x238a0, 0x238a8,
1075		0x238b0, 0x238c8,
1076		0x238d0, 0x238d4,
1077		0x238e0, 0x238e8,
1078		0x238f0, 0x238f0,
1079		0x238f8, 0x23a18,
1080		0x23a20, 0x23a28,
1081		0x23a30, 0x23a48,
1082		0x23a50, 0x23a54,
1083		0x23a60, 0x23a68,
1084		0x23a70, 0x23a70,
1085		0x23a78, 0x23a98,
1086		0x23aa0, 0x23aa8,
1087		0x23ab0, 0x23ac8,
1088		0x23ad0, 0x23ad4,
1089		0x23ae0, 0x23ae8,
1090		0x23af0, 0x23af0,
1091		0x23af8, 0x23c18,
1092		0x23c20, 0x23c20,
1093		0x23c28, 0x23c30,
1094		0x23c38, 0x23c38,
1095		0x23c80, 0x23c98,
1096		0x23ca0, 0x23ca8,
1097		0x23cb0, 0x23cc8,
1098		0x23cd0, 0x23cd4,
1099		0x23ce0, 0x23ce8,
1100		0x23cf0, 0x23cf0,
1101		0x23cf8, 0x23d7c,
1102		0x23e00, 0x23e04,
1103		0x24000, 0x2402c,
1104		0x24100, 0x2413c,
1105		0x24190, 0x241a0,
1106		0x241a8, 0x241b8,
1107		0x241c4, 0x241c8,
1108		0x24200, 0x24318,
1109		0x24400, 0x244b4,
1110		0x244c0, 0x24528,
1111		0x24540, 0x24614,
1112		0x25000, 0x25040,
1113		0x2504c, 0x25060,
1114		0x250c0, 0x250ec,
1115		0x25200, 0x25268,
1116		0x25270, 0x25284,
1117		0x252fc, 0x25388,
1118		0x25400, 0x25404,
1119		0x25500, 0x25500,
1120		0x25510, 0x25518,
1121		0x2552c, 0x25530,
1122		0x2553c, 0x2553c,
1123		0x25550, 0x25554,
1124		0x25600, 0x25600,
1125		0x25608, 0x2561c,
1126		0x25624, 0x25628,
1127		0x25630, 0x25634,
1128		0x2563c, 0x2563c,
1129		0x25700, 0x2571c,
1130		0x25780, 0x2578c,
1131		0x25800, 0x25818,
1132		0x25820, 0x25828,
1133		0x25830, 0x25848,
1134		0x25850, 0x25854,
1135		0x25860, 0x25868,
1136		0x25870, 0x25870,
1137		0x25878, 0x25898,
1138		0x258a0, 0x258a8,
1139		0x258b0, 0x258c8,
1140		0x258d0, 0x258d4,
1141		0x258e0, 0x258e8,
1142		0x258f0, 0x258f0,
1143		0x258f8, 0x25a18,
1144		0x25a20, 0x25a28,
1145		0x25a30, 0x25a48,
1146		0x25a50, 0x25a54,
1147		0x25a60, 0x25a68,
1148		0x25a70, 0x25a70,
1149		0x25a78, 0x25a98,
1150		0x25aa0, 0x25aa8,
1151		0x25ab0, 0x25ac8,
1152		0x25ad0, 0x25ad4,
1153		0x25ae0, 0x25ae8,
1154		0x25af0, 0x25af0,
1155		0x25af8, 0x25c18,
1156		0x25c20, 0x25c20,
1157		0x25c28, 0x25c30,
1158		0x25c38, 0x25c38,
1159		0x25c80, 0x25c98,
1160		0x25ca0, 0x25ca8,
1161		0x25cb0, 0x25cc8,
1162		0x25cd0, 0x25cd4,
1163		0x25ce0, 0x25ce8,
1164		0x25cf0, 0x25cf0,
1165		0x25cf8, 0x25d7c,
1166		0x25e00, 0x25e04,
1167		0x26000, 0x2602c,
1168		0x26100, 0x2613c,
1169		0x26190, 0x261a0,
1170		0x261a8, 0x261b8,
1171		0x261c4, 0x261c8,
1172		0x26200, 0x26318,
1173		0x26400, 0x264b4,
1174		0x264c0, 0x26528,
1175		0x26540, 0x26614,
1176		0x27000, 0x27040,
1177		0x2704c, 0x27060,
1178		0x270c0, 0x270ec,
1179		0x27200, 0x27268,
1180		0x27270, 0x27284,
1181		0x272fc, 0x27388,
1182		0x27400, 0x27404,
1183		0x27500, 0x27500,
1184		0x27510, 0x27518,
1185		0x2752c, 0x27530,
1186		0x2753c, 0x2753c,
1187		0x27550, 0x27554,
1188		0x27600, 0x27600,
1189		0x27608, 0x2761c,
1190		0x27624, 0x27628,
1191		0x27630, 0x27634,
1192		0x2763c, 0x2763c,
1193		0x27700, 0x2771c,
1194		0x27780, 0x2778c,
1195		0x27800, 0x27818,
1196		0x27820, 0x27828,
1197		0x27830, 0x27848,
1198		0x27850, 0x27854,
1199		0x27860, 0x27868,
1200		0x27870, 0x27870,
1201		0x27878, 0x27898,
1202		0x278a0, 0x278a8,
1203		0x278b0, 0x278c8,
1204		0x278d0, 0x278d4,
1205		0x278e0, 0x278e8,
1206		0x278f0, 0x278f0,
1207		0x278f8, 0x27a18,
1208		0x27a20, 0x27a28,
1209		0x27a30, 0x27a48,
1210		0x27a50, 0x27a54,
1211		0x27a60, 0x27a68,
1212		0x27a70, 0x27a70,
1213		0x27a78, 0x27a98,
1214		0x27aa0, 0x27aa8,
1215		0x27ab0, 0x27ac8,
1216		0x27ad0, 0x27ad4,
1217		0x27ae0, 0x27ae8,
1218		0x27af0, 0x27af0,
1219		0x27af8, 0x27c18,
1220		0x27c20, 0x27c20,
1221		0x27c28, 0x27c30,
1222		0x27c38, 0x27c38,
1223		0x27c80, 0x27c98,
1224		0x27ca0, 0x27ca8,
1225		0x27cb0, 0x27cc8,
1226		0x27cd0, 0x27cd4,
1227		0x27ce0, 0x27ce8,
1228		0x27cf0, 0x27cf0,
1229		0x27cf8, 0x27d7c,
1230		0x27e00, 0x27e04,
1231	};
1232
1233	static const unsigned int t4vf_reg_ranges[] = {
1234		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1235		VF_MPS_REG(A_MPS_VF_CTL),
1236		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1237		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1238		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1239		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1240		FW_T4VF_MBDATA_BASE_ADDR,
1241		FW_T4VF_MBDATA_BASE_ADDR +
1242		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1243	};
1244
1245	static const unsigned int t5_reg_ranges[] = {
1246		0x1008, 0x10c0,
1247		0x10cc, 0x10f8,
1248		0x1100, 0x1100,
1249		0x110c, 0x1148,
1250		0x1180, 0x1184,
1251		0x1190, 0x1194,
1252		0x11a0, 0x11a4,
1253		0x11b0, 0x11b4,
1254		0x11fc, 0x123c,
1255		0x1280, 0x173c,
1256		0x1800, 0x18fc,
1257		0x3000, 0x3028,
1258		0x3060, 0x30b0,
1259		0x30b8, 0x30d8,
1260		0x30e0, 0x30fc,
1261		0x3140, 0x357c,
1262		0x35a8, 0x35cc,
1263		0x35ec, 0x35ec,
1264		0x3600, 0x5624,
1265		0x56cc, 0x56ec,
1266		0x56f4, 0x5720,
1267		0x5728, 0x575c,
1268		0x580c, 0x5814,
1269		0x5890, 0x589c,
1270		0x58a4, 0x58ac,
1271		0x58b8, 0x58bc,
1272		0x5940, 0x59c8,
1273		0x59d0, 0x59dc,
1274		0x59fc, 0x5a18,
1275		0x5a60, 0x5a70,
1276		0x5a80, 0x5a9c,
1277		0x5b94, 0x5bfc,
1278		0x6000, 0x6020,
1279		0x6028, 0x6040,
1280		0x6058, 0x609c,
1281		0x60a8, 0x614c,
1282		0x7700, 0x7798,
1283		0x77c0, 0x78fc,
1284		0x7b00, 0x7b58,
1285		0x7b60, 0x7b84,
1286		0x7b8c, 0x7c54,
1287		0x7d00, 0x7d38,
1288		0x7d40, 0x7d80,
1289		0x7d8c, 0x7ddc,
1290		0x7de4, 0x7e04,
1291		0x7e10, 0x7e1c,
1292		0x7e24, 0x7e38,
1293		0x7e40, 0x7e44,
1294		0x7e4c, 0x7e78,
1295		0x7e80, 0x7edc,
1296		0x7ee8, 0x7efc,
1297		0x8dc0, 0x8de0,
1298		0x8df8, 0x8e04,
1299		0x8e10, 0x8e84,
1300		0x8ea0, 0x8f84,
1301		0x8fc0, 0x9058,
1302		0x9060, 0x9060,
1303		0x9068, 0x90f8,
1304		0x9400, 0x9408,
1305		0x9410, 0x9470,
1306		0x9600, 0x9600,
1307		0x9608, 0x9638,
1308		0x9640, 0x96f4,
1309		0x9800, 0x9808,
1310		0x9820, 0x983c,
1311		0x9850, 0x9864,
1312		0x9c00, 0x9c6c,
1313		0x9c80, 0x9cec,
1314		0x9d00, 0x9d6c,
1315		0x9d80, 0x9dec,
1316		0x9e00, 0x9e6c,
1317		0x9e80, 0x9eec,
1318		0x9f00, 0x9f6c,
1319		0x9f80, 0xa020,
1320		0xd004, 0xd004,
1321		0xd010, 0xd03c,
1322		0xdfc0, 0xdfe0,
1323		0xe000, 0x1106c,
1324		0x11074, 0x11088,
1325		0x1109c, 0x1117c,
1326		0x11190, 0x11204,
1327		0x19040, 0x1906c,
1328		0x19078, 0x19080,
1329		0x1908c, 0x190e8,
1330		0x190f0, 0x190f8,
1331		0x19100, 0x19110,
1332		0x19120, 0x19124,
1333		0x19150, 0x19194,
1334		0x1919c, 0x191b0,
1335		0x191d0, 0x191e8,
1336		0x19238, 0x19290,
1337		0x193f8, 0x19428,
1338		0x19430, 0x19444,
1339		0x1944c, 0x1946c,
1340		0x19474, 0x19474,
1341		0x19490, 0x194cc,
1342		0x194f0, 0x194f8,
1343		0x19c00, 0x19c08,
1344		0x19c10, 0x19c60,
1345		0x19c94, 0x19ce4,
1346		0x19cf0, 0x19d40,
1347		0x19d50, 0x19d94,
1348		0x19da0, 0x19de8,
1349		0x19df0, 0x19e10,
1350		0x19e50, 0x19e90,
1351		0x19ea0, 0x19f24,
1352		0x19f34, 0x19f34,
1353		0x19f40, 0x19f50,
1354		0x19f90, 0x19fb4,
1355		0x19fc4, 0x19fe4,
1356		0x1a000, 0x1a004,
1357		0x1a010, 0x1a06c,
1358		0x1a0b0, 0x1a0e4,
1359		0x1a0ec, 0x1a0f8,
1360		0x1a100, 0x1a108,
1361		0x1a114, 0x1a120,
1362		0x1a128, 0x1a130,
1363		0x1a138, 0x1a138,
1364		0x1a190, 0x1a1c4,
1365		0x1a1fc, 0x1a1fc,
1366		0x1e008, 0x1e00c,
1367		0x1e040, 0x1e044,
1368		0x1e04c, 0x1e04c,
1369		0x1e284, 0x1e290,
1370		0x1e2c0, 0x1e2c0,
1371		0x1e2e0, 0x1e2e0,
1372		0x1e300, 0x1e384,
1373		0x1e3c0, 0x1e3c8,
1374		0x1e408, 0x1e40c,
1375		0x1e440, 0x1e444,
1376		0x1e44c, 0x1e44c,
1377		0x1e684, 0x1e690,
1378		0x1e6c0, 0x1e6c0,
1379		0x1e6e0, 0x1e6e0,
1380		0x1e700, 0x1e784,
1381		0x1e7c0, 0x1e7c8,
1382		0x1e808, 0x1e80c,
1383		0x1e840, 0x1e844,
1384		0x1e84c, 0x1e84c,
1385		0x1ea84, 0x1ea90,
1386		0x1eac0, 0x1eac0,
1387		0x1eae0, 0x1eae0,
1388		0x1eb00, 0x1eb84,
1389		0x1ebc0, 0x1ebc8,
1390		0x1ec08, 0x1ec0c,
1391		0x1ec40, 0x1ec44,
1392		0x1ec4c, 0x1ec4c,
1393		0x1ee84, 0x1ee90,
1394		0x1eec0, 0x1eec0,
1395		0x1eee0, 0x1eee0,
1396		0x1ef00, 0x1ef84,
1397		0x1efc0, 0x1efc8,
1398		0x1f008, 0x1f00c,
1399		0x1f040, 0x1f044,
1400		0x1f04c, 0x1f04c,
1401		0x1f284, 0x1f290,
1402		0x1f2c0, 0x1f2c0,
1403		0x1f2e0, 0x1f2e0,
1404		0x1f300, 0x1f384,
1405		0x1f3c0, 0x1f3c8,
1406		0x1f408, 0x1f40c,
1407		0x1f440, 0x1f444,
1408		0x1f44c, 0x1f44c,
1409		0x1f684, 0x1f690,
1410		0x1f6c0, 0x1f6c0,
1411		0x1f6e0, 0x1f6e0,
1412		0x1f700, 0x1f784,
1413		0x1f7c0, 0x1f7c8,
1414		0x1f808, 0x1f80c,
1415		0x1f840, 0x1f844,
1416		0x1f84c, 0x1f84c,
1417		0x1fa84, 0x1fa90,
1418		0x1fac0, 0x1fac0,
1419		0x1fae0, 0x1fae0,
1420		0x1fb00, 0x1fb84,
1421		0x1fbc0, 0x1fbc8,
1422		0x1fc08, 0x1fc0c,
1423		0x1fc40, 0x1fc44,
1424		0x1fc4c, 0x1fc4c,
1425		0x1fe84, 0x1fe90,
1426		0x1fec0, 0x1fec0,
1427		0x1fee0, 0x1fee0,
1428		0x1ff00, 0x1ff84,
1429		0x1ffc0, 0x1ffc8,
1430		0x30000, 0x30030,
1431		0x30100, 0x30144,
1432		0x30190, 0x301a0,
1433		0x301a8, 0x301b8,
1434		0x301c4, 0x301c8,
1435		0x301d0, 0x301d0,
1436		0x30200, 0x30318,
1437		0x30400, 0x304b4,
1438		0x304c0, 0x3052c,
1439		0x30540, 0x3061c,
1440		0x30800, 0x30828,
1441		0x30834, 0x30834,
1442		0x308c0, 0x30908,
1443		0x30910, 0x309ac,
1444		0x30a00, 0x30a14,
1445		0x30a1c, 0x30a2c,
1446		0x30a44, 0x30a50,
1447		0x30a74, 0x30a74,
1448		0x30a7c, 0x30afc,
1449		0x30b08, 0x30c24,
1450		0x30d00, 0x30d00,
1451		0x30d08, 0x30d14,
1452		0x30d1c, 0x30d20,
1453		0x30d3c, 0x30d3c,
1454		0x30d48, 0x30d50,
1455		0x31200, 0x3120c,
1456		0x31220, 0x31220,
1457		0x31240, 0x31240,
1458		0x31600, 0x3160c,
1459		0x31a00, 0x31a1c,
1460		0x31e00, 0x31e20,
1461		0x31e38, 0x31e3c,
1462		0x31e80, 0x31e80,
1463		0x31e88, 0x31ea8,
1464		0x31eb0, 0x31eb4,
1465		0x31ec8, 0x31ed4,
1466		0x31fb8, 0x32004,
1467		0x32200, 0x32200,
1468		0x32208, 0x32240,
1469		0x32248, 0x32280,
1470		0x32288, 0x322c0,
1471		0x322c8, 0x322fc,
1472		0x32600, 0x32630,
1473		0x32a00, 0x32abc,
1474		0x32b00, 0x32b10,
1475		0x32b20, 0x32b30,
1476		0x32b40, 0x32b50,
1477		0x32b60, 0x32b70,
1478		0x33000, 0x33028,
1479		0x33030, 0x33048,
1480		0x33060, 0x33068,
1481		0x33070, 0x3309c,
1482		0x330f0, 0x33128,
1483		0x33130, 0x33148,
1484		0x33160, 0x33168,
1485		0x33170, 0x3319c,
1486		0x331f0, 0x33238,
1487		0x33240, 0x33240,
1488		0x33248, 0x33250,
1489		0x3325c, 0x33264,
1490		0x33270, 0x332b8,
1491		0x332c0, 0x332e4,
1492		0x332f8, 0x33338,
1493		0x33340, 0x33340,
1494		0x33348, 0x33350,
1495		0x3335c, 0x33364,
1496		0x33370, 0x333b8,
1497		0x333c0, 0x333e4,
1498		0x333f8, 0x33428,
1499		0x33430, 0x33448,
1500		0x33460, 0x33468,
1501		0x33470, 0x3349c,
1502		0x334f0, 0x33528,
1503		0x33530, 0x33548,
1504		0x33560, 0x33568,
1505		0x33570, 0x3359c,
1506		0x335f0, 0x33638,
1507		0x33640, 0x33640,
1508		0x33648, 0x33650,
1509		0x3365c, 0x33664,
1510		0x33670, 0x336b8,
1511		0x336c0, 0x336e4,
1512		0x336f8, 0x33738,
1513		0x33740, 0x33740,
1514		0x33748, 0x33750,
1515		0x3375c, 0x33764,
1516		0x33770, 0x337b8,
1517		0x337c0, 0x337e4,
1518		0x337f8, 0x337fc,
1519		0x33814, 0x33814,
1520		0x3382c, 0x3382c,
1521		0x33880, 0x3388c,
1522		0x338e8, 0x338ec,
1523		0x33900, 0x33928,
1524		0x33930, 0x33948,
1525		0x33960, 0x33968,
1526		0x33970, 0x3399c,
1527		0x339f0, 0x33a38,
1528		0x33a40, 0x33a40,
1529		0x33a48, 0x33a50,
1530		0x33a5c, 0x33a64,
1531		0x33a70, 0x33ab8,
1532		0x33ac0, 0x33ae4,
1533		0x33af8, 0x33b10,
1534		0x33b28, 0x33b28,
1535		0x33b3c, 0x33b50,
1536		0x33bf0, 0x33c10,
1537		0x33c28, 0x33c28,
1538		0x33c3c, 0x33c50,
1539		0x33cf0, 0x33cfc,
1540		0x34000, 0x34030,
1541		0x34100, 0x34144,
1542		0x34190, 0x341a0,
1543		0x341a8, 0x341b8,
1544		0x341c4, 0x341c8,
1545		0x341d0, 0x341d0,
1546		0x34200, 0x34318,
1547		0x34400, 0x344b4,
1548		0x344c0, 0x3452c,
1549		0x34540, 0x3461c,
1550		0x34800, 0x34828,
1551		0x34834, 0x34834,
1552		0x348c0, 0x34908,
1553		0x34910, 0x349ac,
1554		0x34a00, 0x34a14,
1555		0x34a1c, 0x34a2c,
1556		0x34a44, 0x34a50,
1557		0x34a74, 0x34a74,
1558		0x34a7c, 0x34afc,
1559		0x34b08, 0x34c24,
1560		0x34d00, 0x34d00,
1561		0x34d08, 0x34d14,
1562		0x34d1c, 0x34d20,
1563		0x34d3c, 0x34d3c,
1564		0x34d48, 0x34d50,
1565		0x35200, 0x3520c,
1566		0x35220, 0x35220,
1567		0x35240, 0x35240,
1568		0x35600, 0x3560c,
1569		0x35a00, 0x35a1c,
1570		0x35e00, 0x35e20,
1571		0x35e38, 0x35e3c,
1572		0x35e80, 0x35e80,
1573		0x35e88, 0x35ea8,
1574		0x35eb0, 0x35eb4,
1575		0x35ec8, 0x35ed4,
1576		0x35fb8, 0x36004,
1577		0x36200, 0x36200,
1578		0x36208, 0x36240,
1579		0x36248, 0x36280,
1580		0x36288, 0x362c0,
1581		0x362c8, 0x362fc,
1582		0x36600, 0x36630,
1583		0x36a00, 0x36abc,
1584		0x36b00, 0x36b10,
1585		0x36b20, 0x36b30,
1586		0x36b40, 0x36b50,
1587		0x36b60, 0x36b70,
1588		0x37000, 0x37028,
1589		0x37030, 0x37048,
1590		0x37060, 0x37068,
1591		0x37070, 0x3709c,
1592		0x370f0, 0x37128,
1593		0x37130, 0x37148,
1594		0x37160, 0x37168,
1595		0x37170, 0x3719c,
1596		0x371f0, 0x37238,
1597		0x37240, 0x37240,
1598		0x37248, 0x37250,
1599		0x3725c, 0x37264,
1600		0x37270, 0x372b8,
1601		0x372c0, 0x372e4,
1602		0x372f8, 0x37338,
1603		0x37340, 0x37340,
1604		0x37348, 0x37350,
1605		0x3735c, 0x37364,
1606		0x37370, 0x373b8,
1607		0x373c0, 0x373e4,
1608		0x373f8, 0x37428,
1609		0x37430, 0x37448,
1610		0x37460, 0x37468,
1611		0x37470, 0x3749c,
1612		0x374f0, 0x37528,
1613		0x37530, 0x37548,
1614		0x37560, 0x37568,
1615		0x37570, 0x3759c,
1616		0x375f0, 0x37638,
1617		0x37640, 0x37640,
1618		0x37648, 0x37650,
1619		0x3765c, 0x37664,
1620		0x37670, 0x376b8,
1621		0x376c0, 0x376e4,
1622		0x376f8, 0x37738,
1623		0x37740, 0x37740,
1624		0x37748, 0x37750,
1625		0x3775c, 0x37764,
1626		0x37770, 0x377b8,
1627		0x377c0, 0x377e4,
1628		0x377f8, 0x377fc,
1629		0x37814, 0x37814,
1630		0x3782c, 0x3782c,
1631		0x37880, 0x3788c,
1632		0x378e8, 0x378ec,
1633		0x37900, 0x37928,
1634		0x37930, 0x37948,
1635		0x37960, 0x37968,
1636		0x37970, 0x3799c,
1637		0x379f0, 0x37a38,
1638		0x37a40, 0x37a40,
1639		0x37a48, 0x37a50,
1640		0x37a5c, 0x37a64,
1641		0x37a70, 0x37ab8,
1642		0x37ac0, 0x37ae4,
1643		0x37af8, 0x37b10,
1644		0x37b28, 0x37b28,
1645		0x37b3c, 0x37b50,
1646		0x37bf0, 0x37c10,
1647		0x37c28, 0x37c28,
1648		0x37c3c, 0x37c50,
1649		0x37cf0, 0x37cfc,
1650		0x38000, 0x38030,
1651		0x38100, 0x38144,
1652		0x38190, 0x381a0,
1653		0x381a8, 0x381b8,
1654		0x381c4, 0x381c8,
1655		0x381d0, 0x381d0,
1656		0x38200, 0x38318,
1657		0x38400, 0x384b4,
1658		0x384c0, 0x3852c,
1659		0x38540, 0x3861c,
1660		0x38800, 0x38828,
1661		0x38834, 0x38834,
1662		0x388c0, 0x38908,
1663		0x38910, 0x389ac,
1664		0x38a00, 0x38a14,
1665		0x38a1c, 0x38a2c,
1666		0x38a44, 0x38a50,
1667		0x38a74, 0x38a74,
1668		0x38a7c, 0x38afc,
1669		0x38b08, 0x38c24,
1670		0x38d00, 0x38d00,
1671		0x38d08, 0x38d14,
1672		0x38d1c, 0x38d20,
1673		0x38d3c, 0x38d3c,
1674		0x38d48, 0x38d50,
1675		0x39200, 0x3920c,
1676		0x39220, 0x39220,
1677		0x39240, 0x39240,
1678		0x39600, 0x3960c,
1679		0x39a00, 0x39a1c,
1680		0x39e00, 0x39e20,
1681		0x39e38, 0x39e3c,
1682		0x39e80, 0x39e80,
1683		0x39e88, 0x39ea8,
1684		0x39eb0, 0x39eb4,
1685		0x39ec8, 0x39ed4,
1686		0x39fb8, 0x3a004,
1687		0x3a200, 0x3a200,
1688		0x3a208, 0x3a240,
1689		0x3a248, 0x3a280,
1690		0x3a288, 0x3a2c0,
1691		0x3a2c8, 0x3a2fc,
1692		0x3a600, 0x3a630,
1693		0x3aa00, 0x3aabc,
1694		0x3ab00, 0x3ab10,
1695		0x3ab20, 0x3ab30,
1696		0x3ab40, 0x3ab50,
1697		0x3ab60, 0x3ab70,
1698		0x3b000, 0x3b028,
1699		0x3b030, 0x3b048,
1700		0x3b060, 0x3b068,
1701		0x3b070, 0x3b09c,
1702		0x3b0f0, 0x3b128,
1703		0x3b130, 0x3b148,
1704		0x3b160, 0x3b168,
1705		0x3b170, 0x3b19c,
1706		0x3b1f0, 0x3b238,
1707		0x3b240, 0x3b240,
1708		0x3b248, 0x3b250,
1709		0x3b25c, 0x3b264,
1710		0x3b270, 0x3b2b8,
1711		0x3b2c0, 0x3b2e4,
1712		0x3b2f8, 0x3b338,
1713		0x3b340, 0x3b340,
1714		0x3b348, 0x3b350,
1715		0x3b35c, 0x3b364,
1716		0x3b370, 0x3b3b8,
1717		0x3b3c0, 0x3b3e4,
1718		0x3b3f8, 0x3b428,
1719		0x3b430, 0x3b448,
1720		0x3b460, 0x3b468,
1721		0x3b470, 0x3b49c,
1722		0x3b4f0, 0x3b528,
1723		0x3b530, 0x3b548,
1724		0x3b560, 0x3b568,
1725		0x3b570, 0x3b59c,
1726		0x3b5f0, 0x3b638,
1727		0x3b640, 0x3b640,
1728		0x3b648, 0x3b650,
1729		0x3b65c, 0x3b664,
1730		0x3b670, 0x3b6b8,
1731		0x3b6c0, 0x3b6e4,
1732		0x3b6f8, 0x3b738,
1733		0x3b740, 0x3b740,
1734		0x3b748, 0x3b750,
1735		0x3b75c, 0x3b764,
1736		0x3b770, 0x3b7b8,
1737		0x3b7c0, 0x3b7e4,
1738		0x3b7f8, 0x3b7fc,
1739		0x3b814, 0x3b814,
1740		0x3b82c, 0x3b82c,
1741		0x3b880, 0x3b88c,
1742		0x3b8e8, 0x3b8ec,
1743		0x3b900, 0x3b928,
1744		0x3b930, 0x3b948,
1745		0x3b960, 0x3b968,
1746		0x3b970, 0x3b99c,
1747		0x3b9f0, 0x3ba38,
1748		0x3ba40, 0x3ba40,
1749		0x3ba48, 0x3ba50,
1750		0x3ba5c, 0x3ba64,
1751		0x3ba70, 0x3bab8,
1752		0x3bac0, 0x3bae4,
1753		0x3baf8, 0x3bb10,
1754		0x3bb28, 0x3bb28,
1755		0x3bb3c, 0x3bb50,
1756		0x3bbf0, 0x3bc10,
1757		0x3bc28, 0x3bc28,
1758		0x3bc3c, 0x3bc50,
1759		0x3bcf0, 0x3bcfc,
1760		0x3c000, 0x3c030,
1761		0x3c100, 0x3c144,
1762		0x3c190, 0x3c1a0,
1763		0x3c1a8, 0x3c1b8,
1764		0x3c1c4, 0x3c1c8,
1765		0x3c1d0, 0x3c1d0,
1766		0x3c200, 0x3c318,
1767		0x3c400, 0x3c4b4,
1768		0x3c4c0, 0x3c52c,
1769		0x3c540, 0x3c61c,
1770		0x3c800, 0x3c828,
1771		0x3c834, 0x3c834,
1772		0x3c8c0, 0x3c908,
1773		0x3c910, 0x3c9ac,
1774		0x3ca00, 0x3ca14,
1775		0x3ca1c, 0x3ca2c,
1776		0x3ca44, 0x3ca50,
1777		0x3ca74, 0x3ca74,
1778		0x3ca7c, 0x3cafc,
1779		0x3cb08, 0x3cc24,
1780		0x3cd00, 0x3cd00,
1781		0x3cd08, 0x3cd14,
1782		0x3cd1c, 0x3cd20,
1783		0x3cd3c, 0x3cd3c,
1784		0x3cd48, 0x3cd50,
1785		0x3d200, 0x3d20c,
1786		0x3d220, 0x3d220,
1787		0x3d240, 0x3d240,
1788		0x3d600, 0x3d60c,
1789		0x3da00, 0x3da1c,
1790		0x3de00, 0x3de20,
1791		0x3de38, 0x3de3c,
1792		0x3de80, 0x3de80,
1793		0x3de88, 0x3dea8,
1794		0x3deb0, 0x3deb4,
1795		0x3dec8, 0x3ded4,
1796		0x3dfb8, 0x3e004,
1797		0x3e200, 0x3e200,
1798		0x3e208, 0x3e240,
1799		0x3e248, 0x3e280,
1800		0x3e288, 0x3e2c0,
1801		0x3e2c8, 0x3e2fc,
1802		0x3e600, 0x3e630,
1803		0x3ea00, 0x3eabc,
1804		0x3eb00, 0x3eb10,
1805		0x3eb20, 0x3eb30,
1806		0x3eb40, 0x3eb50,
1807		0x3eb60, 0x3eb70,
1808		0x3f000, 0x3f028,
1809		0x3f030, 0x3f048,
1810		0x3f060, 0x3f068,
1811		0x3f070, 0x3f09c,
1812		0x3f0f0, 0x3f128,
1813		0x3f130, 0x3f148,
1814		0x3f160, 0x3f168,
1815		0x3f170, 0x3f19c,
1816		0x3f1f0, 0x3f238,
1817		0x3f240, 0x3f240,
1818		0x3f248, 0x3f250,
1819		0x3f25c, 0x3f264,
1820		0x3f270, 0x3f2b8,
1821		0x3f2c0, 0x3f2e4,
1822		0x3f2f8, 0x3f338,
1823		0x3f340, 0x3f340,
1824		0x3f348, 0x3f350,
1825		0x3f35c, 0x3f364,
1826		0x3f370, 0x3f3b8,
1827		0x3f3c0, 0x3f3e4,
1828		0x3f3f8, 0x3f428,
1829		0x3f430, 0x3f448,
1830		0x3f460, 0x3f468,
1831		0x3f470, 0x3f49c,
1832		0x3f4f0, 0x3f528,
1833		0x3f530, 0x3f548,
1834		0x3f560, 0x3f568,
1835		0x3f570, 0x3f59c,
1836		0x3f5f0, 0x3f638,
1837		0x3f640, 0x3f640,
1838		0x3f648, 0x3f650,
1839		0x3f65c, 0x3f664,
1840		0x3f670, 0x3f6b8,
1841		0x3f6c0, 0x3f6e4,
1842		0x3f6f8, 0x3f738,
1843		0x3f740, 0x3f740,
1844		0x3f748, 0x3f750,
1845		0x3f75c, 0x3f764,
1846		0x3f770, 0x3f7b8,
1847		0x3f7c0, 0x3f7e4,
1848		0x3f7f8, 0x3f7fc,
1849		0x3f814, 0x3f814,
1850		0x3f82c, 0x3f82c,
1851		0x3f880, 0x3f88c,
1852		0x3f8e8, 0x3f8ec,
1853		0x3f900, 0x3f928,
1854		0x3f930, 0x3f948,
1855		0x3f960, 0x3f968,
1856		0x3f970, 0x3f99c,
1857		0x3f9f0, 0x3fa38,
1858		0x3fa40, 0x3fa40,
1859		0x3fa48, 0x3fa50,
1860		0x3fa5c, 0x3fa64,
1861		0x3fa70, 0x3fab8,
1862		0x3fac0, 0x3fae4,
1863		0x3faf8, 0x3fb10,
1864		0x3fb28, 0x3fb28,
1865		0x3fb3c, 0x3fb50,
1866		0x3fbf0, 0x3fc10,
1867		0x3fc28, 0x3fc28,
1868		0x3fc3c, 0x3fc50,
1869		0x3fcf0, 0x3fcfc,
1870		0x40000, 0x4000c,
1871		0x40040, 0x40050,
1872		0x40060, 0x40068,
1873		0x4007c, 0x4008c,
1874		0x40094, 0x400b0,
1875		0x400c0, 0x40144,
1876		0x40180, 0x4018c,
1877		0x40200, 0x40254,
1878		0x40260, 0x40264,
1879		0x40270, 0x40288,
1880		0x40290, 0x40298,
1881		0x402ac, 0x402c8,
1882		0x402d0, 0x402e0,
1883		0x402f0, 0x402f0,
1884		0x40300, 0x4033c,
1885		0x403f8, 0x403fc,
1886		0x41304, 0x413c4,
1887		0x41400, 0x4140c,
1888		0x41414, 0x4141c,
1889		0x41480, 0x414d0,
1890		0x44000, 0x44054,
1891		0x4405c, 0x44078,
1892		0x440c0, 0x44174,
1893		0x44180, 0x441ac,
1894		0x441b4, 0x441b8,
1895		0x441c0, 0x44254,
1896		0x4425c, 0x44278,
1897		0x442c0, 0x44374,
1898		0x44380, 0x443ac,
1899		0x443b4, 0x443b8,
1900		0x443c0, 0x44454,
1901		0x4445c, 0x44478,
1902		0x444c0, 0x44574,
1903		0x44580, 0x445ac,
1904		0x445b4, 0x445b8,
1905		0x445c0, 0x44654,
1906		0x4465c, 0x44678,
1907		0x446c0, 0x44774,
1908		0x44780, 0x447ac,
1909		0x447b4, 0x447b8,
1910		0x447c0, 0x44854,
1911		0x4485c, 0x44878,
1912		0x448c0, 0x44974,
1913		0x44980, 0x449ac,
1914		0x449b4, 0x449b8,
1915		0x449c0, 0x449fc,
1916		0x45000, 0x45004,
1917		0x45010, 0x45030,
1918		0x45040, 0x45060,
1919		0x45068, 0x45068,
1920		0x45080, 0x45084,
1921		0x450a0, 0x450b0,
1922		0x45200, 0x45204,
1923		0x45210, 0x45230,
1924		0x45240, 0x45260,
1925		0x45268, 0x45268,
1926		0x45280, 0x45284,
1927		0x452a0, 0x452b0,
1928		0x460c0, 0x460e4,
1929		0x47000, 0x4703c,
1930		0x47044, 0x4708c,
1931		0x47200, 0x47250,
1932		0x47400, 0x47408,
1933		0x47414, 0x47420,
1934		0x47600, 0x47618,
1935		0x47800, 0x47814,
1936		0x48000, 0x4800c,
1937		0x48040, 0x48050,
1938		0x48060, 0x48068,
1939		0x4807c, 0x4808c,
1940		0x48094, 0x480b0,
1941		0x480c0, 0x48144,
1942		0x48180, 0x4818c,
1943		0x48200, 0x48254,
1944		0x48260, 0x48264,
1945		0x48270, 0x48288,
1946		0x48290, 0x48298,
1947		0x482ac, 0x482c8,
1948		0x482d0, 0x482e0,
1949		0x482f0, 0x482f0,
1950		0x48300, 0x4833c,
1951		0x483f8, 0x483fc,
1952		0x49304, 0x493c4,
1953		0x49400, 0x4940c,
1954		0x49414, 0x4941c,
1955		0x49480, 0x494d0,
1956		0x4c000, 0x4c054,
1957		0x4c05c, 0x4c078,
1958		0x4c0c0, 0x4c174,
1959		0x4c180, 0x4c1ac,
1960		0x4c1b4, 0x4c1b8,
1961		0x4c1c0, 0x4c254,
1962		0x4c25c, 0x4c278,
1963		0x4c2c0, 0x4c374,
1964		0x4c380, 0x4c3ac,
1965		0x4c3b4, 0x4c3b8,
1966		0x4c3c0, 0x4c454,
1967		0x4c45c, 0x4c478,
1968		0x4c4c0, 0x4c574,
1969		0x4c580, 0x4c5ac,
1970		0x4c5b4, 0x4c5b8,
1971		0x4c5c0, 0x4c654,
1972		0x4c65c, 0x4c678,
1973		0x4c6c0, 0x4c774,
1974		0x4c780, 0x4c7ac,
1975		0x4c7b4, 0x4c7b8,
1976		0x4c7c0, 0x4c854,
1977		0x4c85c, 0x4c878,
1978		0x4c8c0, 0x4c974,
1979		0x4c980, 0x4c9ac,
1980		0x4c9b4, 0x4c9b8,
1981		0x4c9c0, 0x4c9fc,
1982		0x4d000, 0x4d004,
1983		0x4d010, 0x4d030,
1984		0x4d040, 0x4d060,
1985		0x4d068, 0x4d068,
1986		0x4d080, 0x4d084,
1987		0x4d0a0, 0x4d0b0,
1988		0x4d200, 0x4d204,
1989		0x4d210, 0x4d230,
1990		0x4d240, 0x4d260,
1991		0x4d268, 0x4d268,
1992		0x4d280, 0x4d284,
1993		0x4d2a0, 0x4d2b0,
1994		0x4e0c0, 0x4e0e4,
1995		0x4f000, 0x4f03c,
1996		0x4f044, 0x4f08c,
1997		0x4f200, 0x4f250,
1998		0x4f400, 0x4f408,
1999		0x4f414, 0x4f420,
2000		0x4f600, 0x4f618,
2001		0x4f800, 0x4f814,
2002		0x50000, 0x50084,
2003		0x50090, 0x500cc,
2004		0x50400, 0x50400,
2005		0x50800, 0x50884,
2006		0x50890, 0x508cc,
2007		0x50c00, 0x50c00,
2008		0x51000, 0x5101c,
2009		0x51300, 0x51308,
2010	};
2011
2012	static const unsigned int t5vf_reg_ranges[] = {
2013		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2014		VF_MPS_REG(A_MPS_VF_CTL),
2015		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2016		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2017		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2018		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2019		FW_T4VF_MBDATA_BASE_ADDR,
2020		FW_T4VF_MBDATA_BASE_ADDR +
2021		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2022	};
2023
2024	static const unsigned int t6_reg_ranges[] = {
2025		0x1008, 0x101c,
2026		0x1024, 0x10a8,
2027		0x10b4, 0x10f8,
2028		0x1100, 0x1114,
2029		0x111c, 0x112c,
2030		0x1138, 0x113c,
2031		0x1144, 0x114c,
2032		0x1180, 0x1184,
2033		0x1190, 0x1194,
2034		0x11a0, 0x11a4,
2035		0x11b0, 0x11b4,
2036		0x11fc, 0x1274,
2037		0x1280, 0x133c,
2038		0x1800, 0x18fc,
2039		0x3000, 0x302c,
2040		0x3060, 0x30b0,
2041		0x30b8, 0x30d8,
2042		0x30e0, 0x30fc,
2043		0x3140, 0x357c,
2044		0x35a8, 0x35cc,
2045		0x35ec, 0x35ec,
2046		0x3600, 0x5624,
2047		0x56cc, 0x56ec,
2048		0x56f4, 0x5720,
2049		0x5728, 0x575c,
2050		0x580c, 0x5814,
2051		0x5890, 0x589c,
2052		0x58a4, 0x58ac,
2053		0x58b8, 0x58bc,
2054		0x5940, 0x595c,
2055		0x5980, 0x598c,
2056		0x59b0, 0x59c8,
2057		0x59d0, 0x59dc,
2058		0x59fc, 0x5a18,
2059		0x5a60, 0x5a6c,
2060		0x5a80, 0x5a8c,
2061		0x5a94, 0x5a9c,
2062		0x5b94, 0x5bfc,
2063		0x5c10, 0x5e48,
2064		0x5e50, 0x5e94,
2065		0x5ea0, 0x5eb0,
2066		0x5ec0, 0x5ec0,
2067		0x5ec8, 0x5ed0,
2068		0x5ee0, 0x5ee0,
2069		0x5ef0, 0x5ef0,
2070		0x5f00, 0x5f00,
2071		0x6000, 0x6020,
2072		0x6028, 0x6040,
2073		0x6058, 0x609c,
2074		0x60a8, 0x619c,
2075		0x7700, 0x7798,
2076		0x77c0, 0x7880,
2077		0x78cc, 0x78fc,
2078		0x7b00, 0x7b58,
2079		0x7b60, 0x7b84,
2080		0x7b8c, 0x7c54,
2081		0x7d00, 0x7d38,
2082		0x7d40, 0x7d84,
2083		0x7d8c, 0x7ddc,
2084		0x7de4, 0x7e04,
2085		0x7e10, 0x7e1c,
2086		0x7e24, 0x7e38,
2087		0x7e40, 0x7e44,
2088		0x7e4c, 0x7e78,
2089		0x7e80, 0x7edc,
2090		0x7ee8, 0x7efc,
2091		0x8dc0, 0x8de4,
2092		0x8df8, 0x8e04,
2093		0x8e10, 0x8e84,
2094		0x8ea0, 0x8f88,
2095		0x8fb8, 0x9058,
2096		0x9060, 0x9060,
2097		0x9068, 0x90f8,
2098		0x9100, 0x9124,
2099		0x9400, 0x9470,
2100		0x9600, 0x9600,
2101		0x9608, 0x9638,
2102		0x9640, 0x9704,
2103		0x9710, 0x971c,
2104		0x9800, 0x9808,
2105		0x9820, 0x983c,
2106		0x9850, 0x9864,
2107		0x9c00, 0x9c6c,
2108		0x9c80, 0x9cec,
2109		0x9d00, 0x9d6c,
2110		0x9d80, 0x9dec,
2111		0x9e00, 0x9e6c,
2112		0x9e80, 0x9eec,
2113		0x9f00, 0x9f6c,
2114		0x9f80, 0xa020,
2115		0xd004, 0xd03c,
2116		0xd100, 0xd118,
2117		0xd200, 0xd214,
2118		0xd220, 0xd234,
2119		0xd240, 0xd254,
2120		0xd260, 0xd274,
2121		0xd280, 0xd294,
2122		0xd2a0, 0xd2b4,
2123		0xd2c0, 0xd2d4,
2124		0xd2e0, 0xd2f4,
2125		0xd300, 0xd31c,
2126		0xdfc0, 0xdfe0,
2127		0xe000, 0xf008,
2128		0xf010, 0xf018,
2129		0xf020, 0xf028,
2130		0x11000, 0x11014,
2131		0x11048, 0x1106c,
2132		0x11074, 0x11088,
2133		0x11098, 0x11120,
2134		0x1112c, 0x1117c,
2135		0x11190, 0x112e0,
2136		0x11300, 0x1130c,
2137		0x12000, 0x1206c,
2138		0x19040, 0x1906c,
2139		0x19078, 0x19080,
2140		0x1908c, 0x190e8,
2141		0x190f0, 0x190f8,
2142		0x19100, 0x19110,
2143		0x19120, 0x19124,
2144		0x19150, 0x19194,
2145		0x1919c, 0x191b0,
2146		0x191d0, 0x191e8,
2147		0x19238, 0x19290,
2148		0x192a4, 0x192b0,
2149		0x192bc, 0x192bc,
2150		0x19348, 0x1934c,
2151		0x193f8, 0x19418,
2152		0x19420, 0x19428,
2153		0x19430, 0x19444,
2154		0x1944c, 0x1946c,
2155		0x19474, 0x19474,
2156		0x19490, 0x194cc,
2157		0x194f0, 0x194f8,
2158		0x19c00, 0x19c48,
2159		0x19c50, 0x19c80,
2160		0x19c94, 0x19c98,
2161		0x19ca0, 0x19cbc,
2162		0x19ce4, 0x19ce4,
2163		0x19cf0, 0x19cf8,
2164		0x19d00, 0x19d28,
2165		0x19d50, 0x19d78,
2166		0x19d94, 0x19d98,
2167		0x19da0, 0x19dc8,
2168		0x19df0, 0x19e10,
2169		0x19e50, 0x19e6c,
2170		0x19ea0, 0x19ebc,
2171		0x19ec4, 0x19ef4,
2172		0x19f04, 0x19f2c,
2173		0x19f34, 0x19f34,
2174		0x19f40, 0x19f50,
2175		0x19f90, 0x19fac,
2176		0x19fc4, 0x19fc8,
2177		0x19fd0, 0x19fe4,
2178		0x1a000, 0x1a004,
2179		0x1a010, 0x1a06c,
2180		0x1a0b0, 0x1a0e4,
2181		0x1a0ec, 0x1a0f8,
2182		0x1a100, 0x1a108,
2183		0x1a114, 0x1a120,
2184		0x1a128, 0x1a130,
2185		0x1a138, 0x1a138,
2186		0x1a190, 0x1a1c4,
2187		0x1a1fc, 0x1a1fc,
2188		0x1e008, 0x1e00c,
2189		0x1e040, 0x1e044,
2190		0x1e04c, 0x1e04c,
2191		0x1e284, 0x1e290,
2192		0x1e2c0, 0x1e2c0,
2193		0x1e2e0, 0x1e2e0,
2194		0x1e300, 0x1e384,
2195		0x1e3c0, 0x1e3c8,
2196		0x1e408, 0x1e40c,
2197		0x1e440, 0x1e444,
2198		0x1e44c, 0x1e44c,
2199		0x1e684, 0x1e690,
2200		0x1e6c0, 0x1e6c0,
2201		0x1e6e0, 0x1e6e0,
2202		0x1e700, 0x1e784,
2203		0x1e7c0, 0x1e7c8,
2204		0x1e808, 0x1e80c,
2205		0x1e840, 0x1e844,
2206		0x1e84c, 0x1e84c,
2207		0x1ea84, 0x1ea90,
2208		0x1eac0, 0x1eac0,
2209		0x1eae0, 0x1eae0,
2210		0x1eb00, 0x1eb84,
2211		0x1ebc0, 0x1ebc8,
2212		0x1ec08, 0x1ec0c,
2213		0x1ec40, 0x1ec44,
2214		0x1ec4c, 0x1ec4c,
2215		0x1ee84, 0x1ee90,
2216		0x1eec0, 0x1eec0,
2217		0x1eee0, 0x1eee0,
2218		0x1ef00, 0x1ef84,
2219		0x1efc0, 0x1efc8,
2220		0x1f008, 0x1f00c,
2221		0x1f040, 0x1f044,
2222		0x1f04c, 0x1f04c,
2223		0x1f284, 0x1f290,
2224		0x1f2c0, 0x1f2c0,
2225		0x1f2e0, 0x1f2e0,
2226		0x1f300, 0x1f384,
2227		0x1f3c0, 0x1f3c8,
2228		0x1f408, 0x1f40c,
2229		0x1f440, 0x1f444,
2230		0x1f44c, 0x1f44c,
2231		0x1f684, 0x1f690,
2232		0x1f6c0, 0x1f6c0,
2233		0x1f6e0, 0x1f6e0,
2234		0x1f700, 0x1f784,
2235		0x1f7c0, 0x1f7c8,
2236		0x1f808, 0x1f80c,
2237		0x1f840, 0x1f844,
2238		0x1f84c, 0x1f84c,
2239		0x1fa84, 0x1fa90,
2240		0x1fac0, 0x1fac0,
2241		0x1fae0, 0x1fae0,
2242		0x1fb00, 0x1fb84,
2243		0x1fbc0, 0x1fbc8,
2244		0x1fc08, 0x1fc0c,
2245		0x1fc40, 0x1fc44,
2246		0x1fc4c, 0x1fc4c,
2247		0x1fe84, 0x1fe90,
2248		0x1fec0, 0x1fec0,
2249		0x1fee0, 0x1fee0,
2250		0x1ff00, 0x1ff84,
2251		0x1ffc0, 0x1ffc8,
2252		0x30000, 0x30030,
2253		0x30100, 0x30168,
2254		0x30190, 0x301a0,
2255		0x301a8, 0x301b8,
2256		0x301c4, 0x301c8,
2257		0x301d0, 0x301d0,
2258		0x30200, 0x30320,
2259		0x30400, 0x304b4,
2260		0x304c0, 0x3052c,
2261		0x30540, 0x3061c,
2262		0x30800, 0x308a0,
2263		0x308c0, 0x30908,
2264		0x30910, 0x309b8,
2265		0x30a00, 0x30a04,
2266		0x30a0c, 0x30a14,
2267		0x30a1c, 0x30a2c,
2268		0x30a44, 0x30a50,
2269		0x30a74, 0x30a74,
2270		0x30a7c, 0x30afc,
2271		0x30b08, 0x30c24,
2272		0x30d00, 0x30d14,
2273		0x30d1c, 0x30d3c,
2274		0x30d44, 0x30d4c,
2275		0x30d54, 0x30d74,
2276		0x30d7c, 0x30d7c,
2277		0x30de0, 0x30de0,
2278		0x30e00, 0x30ed4,
2279		0x30f00, 0x30fa4,
2280		0x30fc0, 0x30fc4,
2281		0x31000, 0x31004,
2282		0x31080, 0x310fc,
2283		0x31208, 0x31220,
2284		0x3123c, 0x31254,
2285		0x31300, 0x31300,
2286		0x31308, 0x3131c,
2287		0x31338, 0x3133c,
2288		0x31380, 0x31380,
2289		0x31388, 0x313a8,
2290		0x313b4, 0x313b4,
2291		0x31400, 0x31420,
2292		0x31438, 0x3143c,
2293		0x31480, 0x31480,
2294		0x314a8, 0x314a8,
2295		0x314b0, 0x314b4,
2296		0x314c8, 0x314d4,
2297		0x31a40, 0x31a4c,
2298		0x31af0, 0x31b20,
2299		0x31b38, 0x31b3c,
2300		0x31b80, 0x31b80,
2301		0x31ba8, 0x31ba8,
2302		0x31bb0, 0x31bb4,
2303		0x31bc8, 0x31bd4,
2304		0x32140, 0x3218c,
2305		0x321f0, 0x321f4,
2306		0x32200, 0x32200,
2307		0x32218, 0x32218,
2308		0x32400, 0x32400,
2309		0x32408, 0x3241c,
2310		0x32618, 0x32620,
2311		0x32664, 0x32664,
2312		0x326a8, 0x326a8,
2313		0x326ec, 0x326ec,
2314		0x32a00, 0x32abc,
2315		0x32b00, 0x32b18,
2316		0x32b20, 0x32b38,
2317		0x32b40, 0x32b58,
2318		0x32b60, 0x32b78,
2319		0x32c00, 0x32c00,
2320		0x32c08, 0x32c3c,
2321		0x33000, 0x3302c,
2322		0x33034, 0x33050,
2323		0x33058, 0x33058,
2324		0x33060, 0x3308c,
2325		0x3309c, 0x330ac,
2326		0x330c0, 0x330c0,
2327		0x330c8, 0x330d0,
2328		0x330d8, 0x330e0,
2329		0x330ec, 0x3312c,
2330		0x33134, 0x33150,
2331		0x33158, 0x33158,
2332		0x33160, 0x3318c,
2333		0x3319c, 0x331ac,
2334		0x331c0, 0x331c0,
2335		0x331c8, 0x331d0,
2336		0x331d8, 0x331e0,
2337		0x331ec, 0x33290,
2338		0x33298, 0x332c4,
2339		0x332e4, 0x33390,
2340		0x33398, 0x333c4,
2341		0x333e4, 0x3342c,
2342		0x33434, 0x33450,
2343		0x33458, 0x33458,
2344		0x33460, 0x3348c,
2345		0x3349c, 0x334ac,
2346		0x334c0, 0x334c0,
2347		0x334c8, 0x334d0,
2348		0x334d8, 0x334e0,
2349		0x334ec, 0x3352c,
2350		0x33534, 0x33550,
2351		0x33558, 0x33558,
2352		0x33560, 0x3358c,
2353		0x3359c, 0x335ac,
2354		0x335c0, 0x335c0,
2355		0x335c8, 0x335d0,
2356		0x335d8, 0x335e0,
2357		0x335ec, 0x33690,
2358		0x33698, 0x336c4,
2359		0x336e4, 0x33790,
2360		0x33798, 0x337c4,
2361		0x337e4, 0x337fc,
2362		0x33814, 0x33814,
2363		0x33854, 0x33868,
2364		0x33880, 0x3388c,
2365		0x338c0, 0x338d0,
2366		0x338e8, 0x338ec,
2367		0x33900, 0x3392c,
2368		0x33934, 0x33950,
2369		0x33958, 0x33958,
2370		0x33960, 0x3398c,
2371		0x3399c, 0x339ac,
2372		0x339c0, 0x339c0,
2373		0x339c8, 0x339d0,
2374		0x339d8, 0x339e0,
2375		0x339ec, 0x33a90,
2376		0x33a98, 0x33ac4,
2377		0x33ae4, 0x33b10,
2378		0x33b24, 0x33b28,
2379		0x33b38, 0x33b50,
2380		0x33bf0, 0x33c10,
2381		0x33c24, 0x33c28,
2382		0x33c38, 0x33c50,
2383		0x33cf0, 0x33cfc,
2384		0x34000, 0x34030,
2385		0x34100, 0x34168,
2386		0x34190, 0x341a0,
2387		0x341a8, 0x341b8,
2388		0x341c4, 0x341c8,
2389		0x341d0, 0x341d0,
2390		0x34200, 0x34320,
2391		0x34400, 0x344b4,
2392		0x344c0, 0x3452c,
2393		0x34540, 0x3461c,
2394		0x34800, 0x348a0,
2395		0x348c0, 0x34908,
2396		0x34910, 0x349b8,
2397		0x34a00, 0x34a04,
2398		0x34a0c, 0x34a14,
2399		0x34a1c, 0x34a2c,
2400		0x34a44, 0x34a50,
2401		0x34a74, 0x34a74,
2402		0x34a7c, 0x34afc,
2403		0x34b08, 0x34c24,
2404		0x34d00, 0x34d14,
2405		0x34d1c, 0x34d3c,
2406		0x34d44, 0x34d4c,
2407		0x34d54, 0x34d74,
2408		0x34d7c, 0x34d7c,
2409		0x34de0, 0x34de0,
2410		0x34e00, 0x34ed4,
2411		0x34f00, 0x34fa4,
2412		0x34fc0, 0x34fc4,
2413		0x35000, 0x35004,
2414		0x35080, 0x350fc,
2415		0x35208, 0x35220,
2416		0x3523c, 0x35254,
2417		0x35300, 0x35300,
2418		0x35308, 0x3531c,
2419		0x35338, 0x3533c,
2420		0x35380, 0x35380,
2421		0x35388, 0x353a8,
2422		0x353b4, 0x353b4,
2423		0x35400, 0x35420,
2424		0x35438, 0x3543c,
2425		0x35480, 0x35480,
2426		0x354a8, 0x354a8,
2427		0x354b0, 0x354b4,
2428		0x354c8, 0x354d4,
2429		0x35a40, 0x35a4c,
2430		0x35af0, 0x35b20,
2431		0x35b38, 0x35b3c,
2432		0x35b80, 0x35b80,
2433		0x35ba8, 0x35ba8,
2434		0x35bb0, 0x35bb4,
2435		0x35bc8, 0x35bd4,
2436		0x36140, 0x3618c,
2437		0x361f0, 0x361f4,
2438		0x36200, 0x36200,
2439		0x36218, 0x36218,
2440		0x36400, 0x36400,
2441		0x36408, 0x3641c,
2442		0x36618, 0x36620,
2443		0x36664, 0x36664,
2444		0x366a8, 0x366a8,
2445		0x366ec, 0x366ec,
2446		0x36a00, 0x36abc,
2447		0x36b00, 0x36b18,
2448		0x36b20, 0x36b38,
2449		0x36b40, 0x36b58,
2450		0x36b60, 0x36b78,
2451		0x36c00, 0x36c00,
2452		0x36c08, 0x36c3c,
2453		0x37000, 0x3702c,
2454		0x37034, 0x37050,
2455		0x37058, 0x37058,
2456		0x37060, 0x3708c,
2457		0x3709c, 0x370ac,
2458		0x370c0, 0x370c0,
2459		0x370c8, 0x370d0,
2460		0x370d8, 0x370e0,
2461		0x370ec, 0x3712c,
2462		0x37134, 0x37150,
2463		0x37158, 0x37158,
2464		0x37160, 0x3718c,
2465		0x3719c, 0x371ac,
2466		0x371c0, 0x371c0,
2467		0x371c8, 0x371d0,
2468		0x371d8, 0x371e0,
2469		0x371ec, 0x37290,
2470		0x37298, 0x372c4,
2471		0x372e4, 0x37390,
2472		0x37398, 0x373c4,
2473		0x373e4, 0x3742c,
2474		0x37434, 0x37450,
2475		0x37458, 0x37458,
2476		0x37460, 0x3748c,
2477		0x3749c, 0x374ac,
2478		0x374c0, 0x374c0,
2479		0x374c8, 0x374d0,
2480		0x374d8, 0x374e0,
2481		0x374ec, 0x3752c,
2482		0x37534, 0x37550,
2483		0x37558, 0x37558,
2484		0x37560, 0x3758c,
2485		0x3759c, 0x375ac,
2486		0x375c0, 0x375c0,
2487		0x375c8, 0x375d0,
2488		0x375d8, 0x375e0,
2489		0x375ec, 0x37690,
2490		0x37698, 0x376c4,
2491		0x376e4, 0x37790,
2492		0x37798, 0x377c4,
2493		0x377e4, 0x377fc,
2494		0x37814, 0x37814,
2495		0x37854, 0x37868,
2496		0x37880, 0x3788c,
2497		0x378c0, 0x378d0,
2498		0x378e8, 0x378ec,
2499		0x37900, 0x3792c,
2500		0x37934, 0x37950,
2501		0x37958, 0x37958,
2502		0x37960, 0x3798c,
2503		0x3799c, 0x379ac,
2504		0x379c0, 0x379c0,
2505		0x379c8, 0x379d0,
2506		0x379d8, 0x379e0,
2507		0x379ec, 0x37a90,
2508		0x37a98, 0x37ac4,
2509		0x37ae4, 0x37b10,
2510		0x37b24, 0x37b28,
2511		0x37b38, 0x37b50,
2512		0x37bf0, 0x37c10,
2513		0x37c24, 0x37c28,
2514		0x37c38, 0x37c50,
2515		0x37cf0, 0x37cfc,
2516		0x40040, 0x40040,
2517		0x40080, 0x40084,
2518		0x40100, 0x40100,
2519		0x40140, 0x401bc,
2520		0x40200, 0x40214,
2521		0x40228, 0x40228,
2522		0x40240, 0x40258,
2523		0x40280, 0x40280,
2524		0x40304, 0x40304,
2525		0x40330, 0x4033c,
2526		0x41304, 0x413c8,
2527		0x413d0, 0x413dc,
2528		0x413f0, 0x413f0,
2529		0x41400, 0x4140c,
2530		0x41414, 0x4141c,
2531		0x41480, 0x414d0,
2532		0x44000, 0x4407c,
2533		0x440c0, 0x441ac,
2534		0x441b4, 0x4427c,
2535		0x442c0, 0x443ac,
2536		0x443b4, 0x4447c,
2537		0x444c0, 0x445ac,
2538		0x445b4, 0x4467c,
2539		0x446c0, 0x447ac,
2540		0x447b4, 0x4487c,
2541		0x448c0, 0x449ac,
2542		0x449b4, 0x44a7c,
2543		0x44ac0, 0x44bac,
2544		0x44bb4, 0x44c7c,
2545		0x44cc0, 0x44dac,
2546		0x44db4, 0x44e7c,
2547		0x44ec0, 0x44fac,
2548		0x44fb4, 0x4507c,
2549		0x450c0, 0x451ac,
2550		0x451b4, 0x451fc,
2551		0x45800, 0x45804,
2552		0x45810, 0x45830,
2553		0x45840, 0x45860,
2554		0x45868, 0x45868,
2555		0x45880, 0x45884,
2556		0x458a0, 0x458b0,
2557		0x45a00, 0x45a04,
2558		0x45a10, 0x45a30,
2559		0x45a40, 0x45a60,
2560		0x45a68, 0x45a68,
2561		0x45a80, 0x45a84,
2562		0x45aa0, 0x45ab0,
2563		0x460c0, 0x460e4,
2564		0x47000, 0x4703c,
2565		0x47044, 0x4708c,
2566		0x47200, 0x47250,
2567		0x47400, 0x47408,
2568		0x47414, 0x47420,
2569		0x47600, 0x47618,
2570		0x47800, 0x47814,
2571		0x47820, 0x4782c,
2572		0x50000, 0x50084,
2573		0x50090, 0x500cc,
2574		0x50300, 0x50384,
2575		0x50400, 0x50400,
2576		0x50800, 0x50884,
2577		0x50890, 0x508cc,
2578		0x50b00, 0x50b84,
2579		0x50c00, 0x50c00,
2580		0x51000, 0x51020,
2581		0x51028, 0x510b0,
2582		0x51300, 0x51324,
2583	};
2584
2585	static const unsigned int t6vf_reg_ranges[] = {
2586		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2587		VF_MPS_REG(A_MPS_VF_CTL),
2588		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2589		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2590		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2591		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2592		FW_T6VF_MBDATA_BASE_ADDR,
2593		FW_T6VF_MBDATA_BASE_ADDR +
2594		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2595	};
2596
2597	u32 *buf_end = (u32 *)(buf + buf_size);
2598	const unsigned int *reg_ranges;
2599	int reg_ranges_size, range;
2600	unsigned int chip_version = chip_id(adap);
2601
2602	/*
2603	 * Select the right set of register ranges to dump depending on the
2604	 * adapter chip type.
2605	 */
2606	switch (chip_version) {
2607	case CHELSIO_T4:
2608		if (adap->flags & IS_VF) {
2609			reg_ranges = t4vf_reg_ranges;
2610			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2611		} else {
2612			reg_ranges = t4_reg_ranges;
2613			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2614		}
2615		break;
2616
2617	case CHELSIO_T5:
2618		if (adap->flags & IS_VF) {
2619			reg_ranges = t5vf_reg_ranges;
2620			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2621		} else {
2622			reg_ranges = t5_reg_ranges;
2623			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2624		}
2625		break;
2626
2627	case CHELSIO_T6:
2628		if (adap->flags & IS_VF) {
2629			reg_ranges = t6vf_reg_ranges;
2630			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2631		} else {
2632			reg_ranges = t6_reg_ranges;
2633			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2634		}
2635		break;
2636
2637	default:
2638		CH_ERR(adap,
2639			"Unsupported chip version %d\n", chip_version);
2640		return;
2641	}
2642
2643	/*
2644	 * Clear the register buffer and insert the appropriate register
2645	 * values selected by the above register ranges.
2646	 */
2647	memset(buf, 0, buf_size);
2648	for (range = 0; range < reg_ranges_size; range += 2) {
2649		unsigned int reg = reg_ranges[range];
2650		unsigned int last_reg = reg_ranges[range + 1];
2651		u32 *bufp = (u32 *)(buf + reg);
2652
2653		/*
2654		 * Iterate across the register range filling in the register
2655		 * buffer but don't write past the end of the register buffer.
2656		 */
2657		while (reg <= last_reg && bufp < buf_end) {
2658			*bufp++ = t4_read_reg(adap, reg);
2659			reg += sizeof(u32);
2660		}
2661	}
2662}
2663
2664/*
2665 * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2666 * header followed by one or more VPD-R sections, each with its own header.
2667 */
2668struct t4_vpd_hdr {
2669	u8  id_tag;
2670	u8  id_len[2];
2671	u8  id_data[ID_LEN];
2672};
2673
2674struct t4_vpdr_hdr {
2675	u8  vpdr_tag;
2676	u8  vpdr_len[2];
2677};
2678
2679/*
2680 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2681 */
2682#define EEPROM_DELAY		10		/* 10us per poll spin */
2683#define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2684
2685#define EEPROM_STAT_ADDR	0x7bfc
2686#define VPD_SIZE		0x800
2687#define VPD_BASE		0x400
2688#define VPD_BASE_OLD		0
2689#define VPD_LEN			1024
2690#define VPD_INFO_FLD_HDR_SIZE	3
2691#define CHELSIO_VPD_UNIQUE_ID	0x82
2692
2693/*
2694 * Small utility function to wait till any outstanding VPD Access is complete.
2695 * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2696 * VPD Access in flight.  This allows us to handle the problem of having a
2697 * previous VPD Access time out and prevent an attempt to inject a new VPD
2698 * Request before any in-flight VPD reguest has completed.
2699 */
2700static int t4_seeprom_wait(struct adapter *adapter)
2701{
2702	unsigned int base = adapter->params.pci.vpd_cap_addr;
2703	int max_poll;
2704
2705	/*
2706	 * If no VPD Access is in flight, we can just return success right
2707	 * away.
2708	 */
2709	if (!adapter->vpd_busy)
2710		return 0;
2711
2712	/*
2713	 * Poll the VPD Capability Address/Flag register waiting for it
2714	 * to indicate that the operation is complete.
2715	 */
2716	max_poll = EEPROM_MAX_POLL;
2717	do {
2718		u16 val;
2719
2720		udelay(EEPROM_DELAY);
2721		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2722
2723		/*
2724		 * If the operation is complete, mark the VPD as no longer
2725		 * busy and return success.
2726		 */
2727		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2728			adapter->vpd_busy = 0;
2729			return 0;
2730		}
2731	} while (--max_poll);
2732
2733	/*
2734	 * Failure!  Note that we leave the VPD Busy status set in order to
2735	 * avoid pushing a new VPD Access request into the VPD Capability till
2736	 * the current operation eventually succeeds.  It's a bug to issue a
2737	 * new request when an existing request is in flight and will result
2738	 * in corrupt hardware state.
2739	 */
2740	return -ETIMEDOUT;
2741}
2742
2743/**
2744 *	t4_seeprom_read - read a serial EEPROM location
2745 *	@adapter: adapter to read
2746 *	@addr: EEPROM virtual address
2747 *	@data: where to store the read data
2748 *
2749 *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2750 *	VPD capability.  Note that this function must be called with a virtual
2751 *	address.
2752 */
2753int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2754{
2755	unsigned int base = adapter->params.pci.vpd_cap_addr;
2756	int ret;
2757
2758	/*
2759	 * VPD Accesses must alway be 4-byte aligned!
2760	 */
2761	if (addr >= EEPROMVSIZE || (addr & 3))
2762		return -EINVAL;
2763
2764	/*
2765	 * Wait for any previous operation which may still be in flight to
2766	 * complete.
2767	 */
2768	ret = t4_seeprom_wait(adapter);
2769	if (ret) {
2770		CH_ERR(adapter, "VPD still busy from previous operation\n");
2771		return ret;
2772	}
2773
2774	/*
2775	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2776	 * for our request to complete.  If it doesn't complete, note the
2777	 * error and return it to our caller.  Note that we do not reset the
2778	 * VPD Busy status!
2779	 */
2780	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2781	adapter->vpd_busy = 1;
2782	adapter->vpd_flag = PCI_VPD_ADDR_F;
2783	ret = t4_seeprom_wait(adapter);
2784	if (ret) {
2785		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2786		return ret;
2787	}
2788
2789	/*
2790	 * Grab the returned data, swizzle it into our endianness and
2791	 * return success.
2792	 */
2793	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2794	*data = le32_to_cpu(*data);
2795	return 0;
2796}
2797
2798/**
2799 *	t4_seeprom_write - write a serial EEPROM location
2800 *	@adapter: adapter to write
2801 *	@addr: virtual EEPROM address
2802 *	@data: value to write
2803 *
2804 *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2805 *	VPD capability.  Note that this function must be called with a virtual
2806 *	address.
2807 */
2808int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2809{
2810	unsigned int base = adapter->params.pci.vpd_cap_addr;
2811	int ret;
2812	u32 stats_reg;
2813	int max_poll;
2814
2815	/*
2816	 * VPD Accesses must alway be 4-byte aligned!
2817	 */
2818	if (addr >= EEPROMVSIZE || (addr & 3))
2819		return -EINVAL;
2820
2821	/*
2822	 * Wait for any previous operation which may still be in flight to
2823	 * complete.
2824	 */
2825	ret = t4_seeprom_wait(adapter);
2826	if (ret) {
2827		CH_ERR(adapter, "VPD still busy from previous operation\n");
2828		return ret;
2829	}
2830
2831	/*
2832	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2833	 * for our request to complete.  If it doesn't complete, note the
2834	 * error and return it to our caller.  Note that we do not reset the
2835	 * VPD Busy status!
2836	 */
2837	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2838				 cpu_to_le32(data));
2839	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2840				 (u16)addr | PCI_VPD_ADDR_F);
2841	adapter->vpd_busy = 1;
2842	adapter->vpd_flag = 0;
2843	ret = t4_seeprom_wait(adapter);
2844	if (ret) {
2845		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2846		return ret;
2847	}
2848
2849	/*
2850	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2851	 * request to complete. If it doesn't complete, return error.
2852	 */
2853	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2854	max_poll = EEPROM_MAX_POLL;
2855	do {
2856		udelay(EEPROM_DELAY);
2857		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2858	} while ((stats_reg & 0x1) && --max_poll);
2859	if (!max_poll)
2860		return -ETIMEDOUT;
2861
2862	/* Return success! */
2863	return 0;
2864}
2865
2866/**
2867 *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2868 *	@phys_addr: the physical EEPROM address
2869 *	@fn: the PCI function number
2870 *	@sz: size of function-specific area
2871 *
2872 *	Translate a physical EEPROM address to virtual.  The first 1K is
2873 *	accessed through virtual addresses starting at 31K, the rest is
2874 *	accessed through virtual addresses starting at 0.
2875 *
2876 *	The mapping is as follows:
2877 *	[0..1K) -> [31K..32K)
2878 *	[1K..1K+A) -> [ES-A..ES)
2879 *	[1K+A..ES) -> [0..ES-A-1K)
2880 *
2881 *	where A = @fn * @sz, and ES = EEPROM size.
2882 */
2883int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2884{
2885	fn *= sz;
2886	if (phys_addr < 1024)
2887		return phys_addr + (31 << 10);
2888	if (phys_addr < 1024 + fn)
2889		return EEPROMSIZE - fn + phys_addr - 1024;
2890	if (phys_addr < EEPROMSIZE)
2891		return phys_addr - 1024 - fn;
2892	return -EINVAL;
2893}
2894
2895/**
2896 *	t4_seeprom_wp - enable/disable EEPROM write protection
2897 *	@adapter: the adapter
2898 *	@enable: whether to enable or disable write protection
2899 *
2900 *	Enables or disables write protection on the serial EEPROM.
2901 */
2902int t4_seeprom_wp(struct adapter *adapter, int enable)
2903{
2904	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2905}
2906
2907/**
2908 *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2909 *	@vpd: Pointer to buffered vpd data structure
2910 *	@kw: The keyword to search for
2911 *	@region: VPD region to search (starting from 0)
2912 *
2913 *	Returns the value of the information field keyword or
2914 *	-ENOENT otherwise.
2915 */
2916static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2917{
2918	int i, tag;
2919	unsigned int offset, len;
2920	const struct t4_vpdr_hdr *vpdr;
2921
2922	offset = sizeof(struct t4_vpd_hdr);
2923	vpdr = (const void *)(vpd + offset);
2924	tag = vpdr->vpdr_tag;
2925	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2926	while (region--) {
2927		offset += sizeof(struct t4_vpdr_hdr) + len;
2928		vpdr = (const void *)(vpd + offset);
2929		if (++tag != vpdr->vpdr_tag)
2930			return -ENOENT;
2931		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2932	}
2933	offset += sizeof(struct t4_vpdr_hdr);
2934
2935	if (offset + len > VPD_LEN) {
2936		return -ENOENT;
2937	}
2938
2939	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2940		if (memcmp(vpd + i , kw , 2) == 0){
2941			i += VPD_INFO_FLD_HDR_SIZE;
2942			return i;
2943		}
2944
2945		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2946	}
2947
2948	return -ENOENT;
2949}
2950
2951
2952/**
2953 *	get_vpd_params - read VPD parameters from VPD EEPROM
2954 *	@adapter: adapter to read
2955 *	@p: where to store the parameters
2956 *	@vpd: caller provided temporary space to read the VPD into
2957 *
2958 *	Reads card parameters stored in VPD EEPROM.
2959 */
2960static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2961    uint16_t device_id, u32 *buf)
2962{
2963	int i, ret, addr;
2964	int ec, sn, pn, na, md;
2965	u8 csum;
2966	const u8 *vpd = (const u8 *)buf;
2967
2968	/*
2969	 * Card information normally starts at VPD_BASE but early cards had
2970	 * it at 0.
2971	 */
2972	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
2973	if (ret)
2974		return (ret);
2975
2976	/*
2977	 * The VPD shall have a unique identifier specified by the PCI SIG.
2978	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2979	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2980	 * is expected to automatically put this entry at the
2981	 * beginning of the VPD.
2982	 */
2983	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2984
2985	for (i = 0; i < VPD_LEN; i += 4) {
2986		ret = t4_seeprom_read(adapter, addr + i, buf++);
2987		if (ret)
2988			return ret;
2989	}
2990
2991#define FIND_VPD_KW(var,name) do { \
2992	var = get_vpd_keyword_val(vpd, name, 0); \
2993	if (var < 0) { \
2994		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
2995		return -EINVAL; \
2996	} \
2997} while (0)
2998
2999	FIND_VPD_KW(i, "RV");
3000	for (csum = 0; i >= 0; i--)
3001		csum += vpd[i];
3002
3003	if (csum) {
3004		CH_ERR(adapter,
3005			"corrupted VPD EEPROM, actual csum %u\n", csum);
3006		return -EINVAL;
3007	}
3008
3009	FIND_VPD_KW(ec, "EC");
3010	FIND_VPD_KW(sn, "SN");
3011	FIND_VPD_KW(pn, "PN");
3012	FIND_VPD_KW(na, "NA");
3013#undef FIND_VPD_KW
3014
3015	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3016	strstrip(p->id);
3017	memcpy(p->ec, vpd + ec, EC_LEN);
3018	strstrip(p->ec);
3019	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3020	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3021	strstrip(p->sn);
3022	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3023	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3024	strstrip((char *)p->pn);
3025	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3026	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3027	strstrip((char *)p->na);
3028
3029	if (device_id & 0x80)
3030		return 0;	/* Custom card */
3031
3032	md = get_vpd_keyword_val(vpd, "VF", 1);
3033	if (md < 0) {
3034		snprintf(p->md, sizeof(p->md), "unknown");
3035	} else {
3036		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3037		memcpy(p->md, vpd + md, min(i, MD_LEN));
3038		strstrip((char *)p->md);
3039	}
3040
3041	return 0;
3042}
3043
3044/* serial flash and firmware constants and flash config file constants */
3045enum {
3046	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3047
3048	/* flash command opcodes */
3049	SF_PROG_PAGE    = 2,	/* program 256B page */
3050	SF_WR_DISABLE   = 4,	/* disable writes */
3051	SF_RD_STATUS    = 5,	/* read status register */
3052	SF_WR_ENABLE    = 6,	/* enable writes */
3053	SF_RD_DATA_FAST = 0xb,	/* read flash */
3054	SF_RD_ID	= 0x9f,	/* read ID */
3055	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3056};
3057
3058/**
3059 *	sf1_read - read data from the serial flash
3060 *	@adapter: the adapter
3061 *	@byte_cnt: number of bytes to read
3062 *	@cont: whether another operation will be chained
3063 *	@lock: whether to lock SF for PL access only
3064 *	@valp: where to store the read data
3065 *
3066 *	Reads up to 4 bytes of data from the serial flash.  The location of
3067 *	the read needs to be specified prior to calling this by issuing the
3068 *	appropriate commands to the serial flash.
3069 */
3070static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3071		    int lock, u32 *valp)
3072{
3073	int ret;
3074
3075	if (!byte_cnt || byte_cnt > 4)
3076		return -EINVAL;
3077	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3078		return -EBUSY;
3079	t4_write_reg(adapter, A_SF_OP,
3080		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3081	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3082	if (!ret)
3083		*valp = t4_read_reg(adapter, A_SF_DATA);
3084	return ret;
3085}
3086
3087/**
3088 *	sf1_write - write data to the serial flash
3089 *	@adapter: the adapter
3090 *	@byte_cnt: number of bytes to write
3091 *	@cont: whether another operation will be chained
3092 *	@lock: whether to lock SF for PL access only
3093 *	@val: value to write
3094 *
3095 *	Writes up to 4 bytes of data to the serial flash.  The location of
3096 *	the write needs to be specified prior to calling this by issuing the
3097 *	appropriate commands to the serial flash.
3098 */
3099static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3100		     int lock, u32 val)
3101{
3102	if (!byte_cnt || byte_cnt > 4)
3103		return -EINVAL;
3104	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3105		return -EBUSY;
3106	t4_write_reg(adapter, A_SF_DATA, val);
3107	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3108		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3109	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3110}
3111
3112/**
3113 *	flash_wait_op - wait for a flash operation to complete
3114 *	@adapter: the adapter
3115 *	@attempts: max number of polls of the status register
3116 *	@delay: delay between polls in ms
3117 *
3118 *	Wait for a flash operation to complete by polling the status register.
3119 */
3120static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3121{
3122	int ret;
3123	u32 status;
3124
3125	while (1) {
3126		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3127		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3128			return ret;
3129		if (!(status & 1))
3130			return 0;
3131		if (--attempts == 0)
3132			return -EAGAIN;
3133		if (delay)
3134			msleep(delay);
3135	}
3136}
3137
3138/**
3139 *	t4_read_flash - read words from serial flash
3140 *	@adapter: the adapter
3141 *	@addr: the start address for the read
3142 *	@nwords: how many 32-bit words to read
3143 *	@data: where to store the read data
3144 *	@byte_oriented: whether to store data as bytes or as words
3145 *
3146 *	Read the specified number of 32-bit words from the serial flash.
3147 *	If @byte_oriented is set the read data is stored as a byte array
3148 *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3149 *	natural endianness.
3150 */
3151int t4_read_flash(struct adapter *adapter, unsigned int addr,
3152		  unsigned int nwords, u32 *data, int byte_oriented)
3153{
3154	int ret;
3155
3156	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3157		return -EINVAL;
3158
3159	addr = swab32(addr) | SF_RD_DATA_FAST;
3160
3161	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3162	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3163		return ret;
3164
3165	for ( ; nwords; nwords--, data++) {
3166		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3167		if (nwords == 1)
3168			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3169		if (ret)
3170			return ret;
3171		if (byte_oriented)
3172			*data = (__force __u32)(cpu_to_be32(*data));
3173	}
3174	return 0;
3175}
3176
3177/**
3178 *	t4_write_flash - write up to a page of data to the serial flash
3179 *	@adapter: the adapter
3180 *	@addr: the start address to write
3181 *	@n: length of data to write in bytes
3182 *	@data: the data to write
3183 *	@byte_oriented: whether to store data as bytes or as words
3184 *
3185 *	Writes up to a page of data (256 bytes) to the serial flash starting
3186 *	at the given address.  All the data must be written to the same page.
3187 *	If @byte_oriented is set the write data is stored as byte stream
3188 *	(i.e. matches what on disk), otherwise in big-endian.
3189 */
3190int t4_write_flash(struct adapter *adapter, unsigned int addr,
3191			  unsigned int n, const u8 *data, int byte_oriented)
3192{
3193	int ret;
3194	u32 buf[SF_PAGE_SIZE / 4];
3195	unsigned int i, c, left, val, offset = addr & 0xff;
3196
3197	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3198		return -EINVAL;
3199
3200	val = swab32(addr) | SF_PROG_PAGE;
3201
3202	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3203	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3204		goto unlock;
3205
3206	for (left = n; left; left -= c) {
3207		c = min(left, 4U);
3208		for (val = 0, i = 0; i < c; ++i)
3209			val = (val << 8) + *data++;
3210
3211		if (!byte_oriented)
3212			val = cpu_to_be32(val);
3213
3214		ret = sf1_write(adapter, c, c != left, 1, val);
3215		if (ret)
3216			goto unlock;
3217	}
3218	ret = flash_wait_op(adapter, 8, 1);
3219	if (ret)
3220		goto unlock;
3221
3222	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3223
3224	/* Read the page to verify the write succeeded */
3225	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3226			    byte_oriented);
3227	if (ret)
3228		return ret;
3229
3230	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3231		CH_ERR(adapter,
3232			"failed to correctly write the flash page at %#x\n",
3233			addr);
3234		return -EIO;
3235	}
3236	return 0;
3237
3238unlock:
3239	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3240	return ret;
3241}
3242
3243/**
3244 *	t4_get_fw_version - read the firmware version
3245 *	@adapter: the adapter
3246 *	@vers: where to place the version
3247 *
3248 *	Reads the FW version from flash.
3249 */
3250int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3251{
3252	return t4_read_flash(adapter, FLASH_FW_START +
3253			     offsetof(struct fw_hdr, fw_ver), 1,
3254			     vers, 0);
3255}
3256
3257/**
3258 *	t4_get_bs_version - read the firmware bootstrap version
3259 *	@adapter: the adapter
3260 *	@vers: where to place the version
3261 *
3262 *	Reads the FW Bootstrap version from flash.
3263 */
3264int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3265{
3266	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3267			     offsetof(struct fw_hdr, fw_ver), 1,
3268			     vers, 0);
3269}
3270
3271/**
3272 *	t4_get_tp_version - read the TP microcode version
3273 *	@adapter: the adapter
3274 *	@vers: where to place the version
3275 *
3276 *	Reads the TP microcode version from flash.
3277 */
3278int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3279{
3280	return t4_read_flash(adapter, FLASH_FW_START +
3281			     offsetof(struct fw_hdr, tp_microcode_ver),
3282			     1, vers, 0);
3283}
3284
3285/**
3286 *	t4_get_exprom_version - return the Expansion ROM version (if any)
3287 *	@adapter: the adapter
3288 *	@vers: where to place the version
3289 *
3290 *	Reads the Expansion ROM header from FLASH and returns the version
3291 *	number (if present) through the @vers return value pointer.  We return
3292 *	this in the Firmware Version Format since it's convenient.  Return
3293 *	0 on success, -ENOENT if no Expansion ROM is present.
3294 */
3295int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3296{
3297	struct exprom_header {
3298		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3299		unsigned char hdr_ver[4];	/* Expansion ROM version */
3300	} *hdr;
3301	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3302					   sizeof(u32))];
3303	int ret;
3304
3305	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3306			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3307			    0);
3308	if (ret)
3309		return ret;
3310
3311	hdr = (struct exprom_header *)exprom_header_buf;
3312	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3313		return -ENOENT;
3314
3315	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3316		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3317		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3318		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3319	return 0;
3320}
3321
3322/**
3323 *	t4_get_scfg_version - return the Serial Configuration version
3324 *	@adapter: the adapter
3325 *	@vers: where to place the version
3326 *
3327 *	Reads the Serial Configuration Version via the Firmware interface
3328 *	(thus this can only be called once we're ready to issue Firmware
3329 *	commands).  The format of the Serial Configuration version is
3330 *	adapter specific.  Returns 0 on success, an error on failure.
3331 *
3332 *	Note that early versions of the Firmware didn't include the ability
3333 *	to retrieve the Serial Configuration version, so we zero-out the
3334 *	return-value parameter in that case to avoid leaving it with
3335 *	garbage in it.
3336 *
3337 *	Also note that the Firmware will return its cached copy of the Serial
3338 *	Initialization Revision ID, not the actual Revision ID as written in
3339 *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3340 *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3341 *	it's best to defer calling this routine till after a FW_RESET_CMD has
3342 *	been issued if the Host Driver will be performing a full adapter
3343 *	initialization.
3344 */
3345int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3346{
3347	u32 scfgrev_param;
3348	int ret;
3349
3350	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3351			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3352	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3353			      1, &scfgrev_param, vers);
3354	if (ret)
3355		*vers = 0;
3356	return ret;
3357}
3358
3359/**
3360 *	t4_get_vpd_version - return the VPD version
3361 *	@adapter: the adapter
3362 *	@vers: where to place the version
3363 *
3364 *	Reads the VPD via the Firmware interface (thus this can only be called
3365 *	once we're ready to issue Firmware commands).  The format of the
3366 *	VPD version is adapter specific.  Returns 0 on success, an error on
3367 *	failure.
3368 *
3369 *	Note that early versions of the Firmware didn't include the ability
3370 *	to retrieve the VPD version, so we zero-out the return-value parameter
3371 *	in that case to avoid leaving it with garbage in it.
3372 *
3373 *	Also note that the Firmware will return its cached copy of the VPD
3374 *	Revision ID, not the actual Revision ID as written in the Serial
3375 *	EEPROM.  This is only an issue if a new VPD has been written and the
3376 *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3377 *	to defer calling this routine till after a FW_RESET_CMD has been issued
3378 *	if the Host Driver will be performing a full adapter initialization.
3379 */
3380int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3381{
3382	u32 vpdrev_param;
3383	int ret;
3384
3385	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3386			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3387	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3388			      1, &vpdrev_param, vers);
3389	if (ret)
3390		*vers = 0;
3391	return ret;
3392}
3393
3394/**
3395 *	t4_get_version_info - extract various chip/firmware version information
3396 *	@adapter: the adapter
3397 *
3398 *	Reads various chip/firmware version numbers and stores them into the
3399 *	adapter Adapter Parameters structure.  If any of the efforts fails
3400 *	the first failure will be returned, but all of the version numbers
3401 *	will be read.
3402 */
3403int t4_get_version_info(struct adapter *adapter)
3404{
3405	int ret = 0;
3406
3407	#define FIRST_RET(__getvinfo) \
3408	do { \
3409		int __ret = __getvinfo; \
3410		if (__ret && !ret) \
3411			ret = __ret; \
3412	} while (0)
3413
3414	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3415	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3416	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3417	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3418	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3419	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3420
3421	#undef FIRST_RET
3422
3423	return ret;
3424}
3425
3426/**
3427 *	t4_flash_erase_sectors - erase a range of flash sectors
3428 *	@adapter: the adapter
3429 *	@start: the first sector to erase
3430 *	@end: the last sector to erase
3431 *
3432 *	Erases the sectors in the given inclusive range.
3433 */
3434int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3435{
3436	int ret = 0;
3437
3438	if (end >= adapter->params.sf_nsec)
3439		return -EINVAL;
3440
3441	while (start <= end) {
3442		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3443		    (ret = sf1_write(adapter, 4, 0, 1,
3444				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3445		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3446			CH_ERR(adapter,
3447				"erase of flash sector %d failed, error %d\n",
3448				start, ret);
3449			break;
3450		}
3451		start++;
3452	}
3453	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3454	return ret;
3455}
3456
3457/**
3458 *	t4_flash_cfg_addr - return the address of the flash configuration file
3459 *	@adapter: the adapter
3460 *
3461 *	Return the address within the flash where the Firmware Configuration
3462 *	File is stored, or an error if the device FLASH is too small to contain
3463 *	a Firmware Configuration File.
3464 */
3465int t4_flash_cfg_addr(struct adapter *adapter)
3466{
3467	/*
3468	 * If the device FLASH isn't large enough to hold a Firmware
3469	 * Configuration File, return an error.
3470	 */
3471	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3472		return -ENOSPC;
3473
3474	return FLASH_CFG_START;
3475}
3476
3477/*
3478 * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3479 * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3480 * and emit an error message for mismatched firmware to save our caller the
3481 * effort ...
3482 */
3483static int t4_fw_matches_chip(struct adapter *adap,
3484			      const struct fw_hdr *hdr)
3485{
3486	/*
3487	 * The expression below will return FALSE for any unsupported adapter
3488	 * which will keep us "honest" in the future ...
3489	 */
3490	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3491	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3492	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3493		return 1;
3494
3495	CH_ERR(adap,
3496		"FW image (%d) is not suitable for this adapter (%d)\n",
3497		hdr->chip, chip_id(adap));
3498	return 0;
3499}
3500
3501/**
3502 *	t4_load_fw - download firmware
3503 *	@adap: the adapter
3504 *	@fw_data: the firmware image to write
3505 *	@size: image size
3506 *
3507 *	Write the supplied firmware image to the card's serial flash.
3508 */
3509int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3510{
3511	u32 csum;
3512	int ret, addr;
3513	unsigned int i;
3514	u8 first_page[SF_PAGE_SIZE];
3515	const u32 *p = (const u32 *)fw_data;
3516	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3517	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3518	unsigned int fw_start_sec;
3519	unsigned int fw_start;
3520	unsigned int fw_size;
3521
3522	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3523		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3524		fw_start = FLASH_FWBOOTSTRAP_START;
3525		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3526	} else {
3527		fw_start_sec = FLASH_FW_START_SEC;
3528 		fw_start = FLASH_FW_START;
3529		fw_size = FLASH_FW_MAX_SIZE;
3530	}
3531
3532	if (!size) {
3533		CH_ERR(adap, "FW image has no data\n");
3534		return -EINVAL;
3535	}
3536	if (size & 511) {
3537		CH_ERR(adap,
3538			"FW image size not multiple of 512 bytes\n");
3539		return -EINVAL;
3540	}
3541	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3542		CH_ERR(adap,
3543			"FW image size differs from size in FW header\n");
3544		return -EINVAL;
3545	}
3546	if (size > fw_size) {
3547		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3548			fw_size);
3549		return -EFBIG;
3550	}
3551	if (!t4_fw_matches_chip(adap, hdr))
3552		return -EINVAL;
3553
3554	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3555		csum += be32_to_cpu(p[i]);
3556
3557	if (csum != 0xffffffff) {
3558		CH_ERR(adap,
3559			"corrupted firmware image, checksum %#x\n", csum);
3560		return -EINVAL;
3561	}
3562
3563	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3564	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3565	if (ret)
3566		goto out;
3567
3568	/*
3569	 * We write the correct version at the end so the driver can see a bad
3570	 * version if the FW write fails.  Start by writing a copy of the
3571	 * first page with a bad version.
3572	 */
3573	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3574	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3575	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3576	if (ret)
3577		goto out;
3578
3579	addr = fw_start;
3580	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3581		addr += SF_PAGE_SIZE;
3582		fw_data += SF_PAGE_SIZE;
3583		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3584		if (ret)
3585			goto out;
3586	}
3587
3588	ret = t4_write_flash(adap,
3589			     fw_start + offsetof(struct fw_hdr, fw_ver),
3590			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3591out:
3592	if (ret)
3593		CH_ERR(adap, "firmware download failed, error %d\n",
3594			ret);
3595	return ret;
3596}
3597
3598/**
3599 *	t4_fwcache - firmware cache operation
3600 *	@adap: the adapter
3601 *	@op  : the operation (flush or flush and invalidate)
3602 */
3603int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3604{
3605	struct fw_params_cmd c;
3606
3607	memset(&c, 0, sizeof(c));
3608	c.op_to_vfn =
3609	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3610			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3611				V_FW_PARAMS_CMD_PFN(adap->pf) |
3612				V_FW_PARAMS_CMD_VFN(0));
3613	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3614	c.param[0].mnem =
3615	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3616			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3617	c.param[0].val = (__force __be32)op;
3618
3619	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3620}
3621
3622void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3623			unsigned int *pif_req_wrptr,
3624			unsigned int *pif_rsp_wrptr)
3625{
3626	int i, j;
3627	u32 cfg, val, req, rsp;
3628
3629	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3630	if (cfg & F_LADBGEN)
3631		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3632
3633	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3634	req = G_POLADBGWRPTR(val);
3635	rsp = G_PILADBGWRPTR(val);
3636	if (pif_req_wrptr)
3637		*pif_req_wrptr = req;
3638	if (pif_rsp_wrptr)
3639		*pif_rsp_wrptr = rsp;
3640
3641	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3642		for (j = 0; j < 6; j++) {
3643			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3644				     V_PILADBGRDPTR(rsp));
3645			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3646			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3647			req++;
3648			rsp++;
3649		}
3650		req = (req + 2) & M_POLADBGRDPTR;
3651		rsp = (rsp + 2) & M_PILADBGRDPTR;
3652	}
3653	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3654}
3655
3656void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3657{
3658	u32 cfg;
3659	int i, j, idx;
3660
3661	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3662	if (cfg & F_LADBGEN)
3663		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3664
3665	for (i = 0; i < CIM_MALA_SIZE; i++) {
3666		for (j = 0; j < 5; j++) {
3667			idx = 8 * i + j;
3668			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3669				     V_PILADBGRDPTR(idx));
3670			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3671			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3672		}
3673	}
3674	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3675}
3676
3677void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3678{
3679	unsigned int i, j;
3680
3681	for (i = 0; i < 8; i++) {
3682		u32 *p = la_buf + i;
3683
3684		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3685		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3686		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3687		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3688			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3689	}
3690}
3691
3692/**
3693 *	t4_link_l1cfg - apply link configuration to MAC/PHY
3694 *	@phy: the PHY to setup
3695 *	@mac: the MAC to setup
3696 *	@lc: the requested link configuration
3697 *
3698 *	Set up a port's MAC and PHY according to a desired link configuration.
3699 *	- If the PHY can auto-negotiate first decide what to advertise, then
3700 *	  enable/disable auto-negotiation as desired, and reset.
3701 *	- If the PHY does not auto-negotiate just reset it.
3702 *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3703 *	  otherwise do it later based on the outcome of auto-negotiation.
3704 */
3705int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3706		  struct link_config *lc)
3707{
3708	struct fw_port_cmd c;
3709	unsigned int mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3710	unsigned int aneg, fc, fec, speed, rcap;
3711
3712	fc = 0;
3713	if (lc->requested_fc & PAUSE_RX)
3714		fc |= FW_PORT_CAP_FC_RX;
3715	if (lc->requested_fc & PAUSE_TX)
3716		fc |= FW_PORT_CAP_FC_TX;
3717
3718	fec = 0;
3719	if (lc->requested_fec & FEC_RS)
3720		fec = FW_PORT_CAP_FEC_RS;
3721	else if (lc->requested_fec & FEC_BASER_RS)
3722		fec = FW_PORT_CAP_FEC_BASER_RS;
3723
3724	if (!(lc->supported & FW_PORT_CAP_ANEG) ||
3725	    lc->requested_aneg == AUTONEG_DISABLE) {
3726		aneg = 0;
3727		switch (lc->requested_speed) {
3728		case 100000:
3729			speed = FW_PORT_CAP_SPEED_100G;
3730			break;
3731		case 40000:
3732			speed = FW_PORT_CAP_SPEED_40G;
3733			break;
3734		case 25000:
3735			speed = FW_PORT_CAP_SPEED_25G;
3736			break;
3737		case 10000:
3738			speed = FW_PORT_CAP_SPEED_10G;
3739			break;
3740		case 1000:
3741			speed = FW_PORT_CAP_SPEED_1G;
3742			break;
3743		case 100:
3744			speed = FW_PORT_CAP_SPEED_100M;
3745			break;
3746		default:
3747			return -EINVAL;
3748			break;
3749		}
3750	} else {
3751		aneg = FW_PORT_CAP_ANEG;
3752		speed = lc->supported &
3753		    V_FW_PORT_CAP_SPEED(M_FW_PORT_CAP_SPEED);
3754	}
3755
3756	rcap = aneg | speed | fc | fec;
3757	if ((rcap | lc->supported) != lc->supported) {
3758#ifdef INVARIANTS
3759		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3760		    lc->supported);
3761#endif
3762		rcap &= lc->supported;
3763	}
3764	rcap |= mdi;
3765
3766	memset(&c, 0, sizeof(c));
3767	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3768				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3769				     V_FW_PORT_CMD_PORTID(port));
3770	c.action_to_len16 =
3771		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3772			    FW_LEN16(c));
3773	c.u.l1cfg.rcap = cpu_to_be32(rcap);
3774
3775	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3776}
3777
3778/**
3779 *	t4_restart_aneg - restart autonegotiation
3780 *	@adap: the adapter
3781 *	@mbox: mbox to use for the FW command
3782 *	@port: the port id
3783 *
3784 *	Restarts autonegotiation for the selected port.
3785 */
3786int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3787{
3788	struct fw_port_cmd c;
3789
3790	memset(&c, 0, sizeof(c));
3791	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3792				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3793				     V_FW_PORT_CMD_PORTID(port));
3794	c.action_to_len16 =
3795		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3796			    FW_LEN16(c));
3797	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3798	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3799}
3800
3801typedef void (*int_handler_t)(struct adapter *adap);
3802
3803struct intr_info {
3804	unsigned int mask;	/* bits to check in interrupt status */
3805	const char *msg;	/* message to print or NULL */
3806	short stat_idx;		/* stat counter to increment or -1 */
3807	unsigned short fatal;	/* whether the condition reported is fatal */
3808	int_handler_t int_handler;	/* platform-specific int handler */
3809};
3810
3811/**
3812 *	t4_handle_intr_status - table driven interrupt handler
3813 *	@adapter: the adapter that generated the interrupt
3814 *	@reg: the interrupt status register to process
3815 *	@acts: table of interrupt actions
3816 *
3817 *	A table driven interrupt handler that applies a set of masks to an
3818 *	interrupt status word and performs the corresponding actions if the
3819 *	interrupts described by the mask have occurred.  The actions include
3820 *	optionally emitting a warning or alert message.  The table is terminated
3821 *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3822 *	conditions.
3823 */
3824static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3825				 const struct intr_info *acts)
3826{
3827	int fatal = 0;
3828	unsigned int mask = 0;
3829	unsigned int status = t4_read_reg(adapter, reg);
3830
3831	for ( ; acts->mask; ++acts) {
3832		if (!(status & acts->mask))
3833			continue;
3834		if (acts->fatal) {
3835			fatal++;
3836			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3837				  status & acts->mask);
3838		} else if (acts->msg)
3839			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3840				 status & acts->mask);
3841		if (acts->int_handler)
3842			acts->int_handler(adapter);
3843		mask |= acts->mask;
3844	}
3845	status &= mask;
3846	if (status)	/* clear processed interrupts */
3847		t4_write_reg(adapter, reg, status);
3848	return fatal;
3849}
3850
3851/*
3852 * Interrupt handler for the PCIE module.
3853 */
3854static void pcie_intr_handler(struct adapter *adapter)
3855{
3856	static const struct intr_info sysbus_intr_info[] = {
3857		{ F_RNPP, "RXNP array parity error", -1, 1 },
3858		{ F_RPCP, "RXPC array parity error", -1, 1 },
3859		{ F_RCIP, "RXCIF array parity error", -1, 1 },
3860		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
3861		{ F_RFTP, "RXFT array parity error", -1, 1 },
3862		{ 0 }
3863	};
3864	static const struct intr_info pcie_port_intr_info[] = {
3865		{ F_TPCP, "TXPC array parity error", -1, 1 },
3866		{ F_TNPP, "TXNP array parity error", -1, 1 },
3867		{ F_TFTP, "TXFT array parity error", -1, 1 },
3868		{ F_TCAP, "TXCA array parity error", -1, 1 },
3869		{ F_TCIP, "TXCIF array parity error", -1, 1 },
3870		{ F_RCAP, "RXCA array parity error", -1, 1 },
3871		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
3872		{ F_RDPE, "Rx data parity error", -1, 1 },
3873		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
3874		{ 0 }
3875	};
3876	static const struct intr_info pcie_intr_info[] = {
3877		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3878		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3879		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3880		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3881		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3882		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3883		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3884		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3885		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3886		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3887		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3888		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3889		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3890		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3891		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3892		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3893		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3894		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3895		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3896		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3897		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3898		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3899		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3900		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3901		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3902		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3903		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3904		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
3905		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
3906		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3907		  0 },
3908		{ 0 }
3909	};
3910
3911	static const struct intr_info t5_pcie_intr_info[] = {
3912		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
3913		  -1, 1 },
3914		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3915		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3916		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3917		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3918		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3919		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3920		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3921		  -1, 1 },
3922		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3923		  -1, 1 },
3924		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3925		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3926		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3927		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3928		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
3929		  -1, 1 },
3930		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3931		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3932		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3933		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3934		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3935		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3936		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3937		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3938		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3939		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3940		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3941		  -1, 1 },
3942		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3943		  -1, 1 },
3944		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3945		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3946		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3947		{ F_READRSPERR, "Outbound read error", -1,
3948		  0 },
3949		{ 0 }
3950	};
3951
3952	int fat;
3953
3954	if (is_t4(adapter))
3955		fat = t4_handle_intr_status(adapter,
3956				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3957				sysbus_intr_info) +
3958			t4_handle_intr_status(adapter,
3959					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3960					pcie_port_intr_info) +
3961			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3962					      pcie_intr_info);
3963	else
3964		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3965					    t5_pcie_intr_info);
3966	if (fat)
3967		t4_fatal_err(adapter);
3968}
3969
3970/*
3971 * TP interrupt handler.
3972 */
3973static void tp_intr_handler(struct adapter *adapter)
3974{
3975	static const struct intr_info tp_intr_info[] = {
3976		{ 0x3fffffff, "TP parity error", -1, 1 },
3977		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3978		{ 0 }
3979	};
3980
3981	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3982		t4_fatal_err(adapter);
3983}
3984
3985/*
3986 * SGE interrupt handler.
3987 */
3988static void sge_intr_handler(struct adapter *adapter)
3989{
3990	u64 v;
3991	u32 err;
3992
3993	static const struct intr_info sge_intr_info[] = {
3994		{ F_ERR_CPL_EXCEED_IQE_SIZE,
3995		  "SGE received CPL exceeding IQE size", -1, 1 },
3996		{ F_ERR_INVALID_CIDX_INC,
3997		  "SGE GTS CIDX increment too large", -1, 0 },
3998		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3999		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
4000		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4001		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
4002		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
4003		  0 },
4004		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
4005		  0 },
4006		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
4007		  0 },
4008		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
4009		  0 },
4010		{ F_ERR_ING_CTXT_PRIO,
4011		  "SGE too many priority ingress contexts", -1, 0 },
4012		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
4013		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
4014		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 |
4015		  F_ERR_PCIE_ERROR2 | F_ERR_PCIE_ERROR3,
4016		  "SGE PCIe error for a DBP thread", -1, 0 },
4017		{ 0 }
4018	};
4019
4020	static const struct intr_info t4t5_sge_intr_info[] = {
4021		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
4022		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
4023		{ F_ERR_EGR_CTXT_PRIO,
4024		  "SGE too many priority egress contexts", -1, 0 },
4025		{ 0 }
4026	};
4027
4028	/*
4029 	* For now, treat below interrupts as fatal so that we disable SGE and
4030 	* get better debug */
4031	static const struct intr_info t6_sge_intr_info[] = {
4032		{ F_FATAL_WRE_LEN,
4033		  "SGE Actual WRE packet is less than advertized length",
4034		  -1, 1 },
4035		{ 0 }
4036	};
4037
4038	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
4039		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
4040	if (v) {
4041		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
4042				(unsigned long long)v);
4043		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
4044		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
4045	}
4046
4047	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
4048	if (chip_id(adapter) <= CHELSIO_T5)
4049		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4050					   t4t5_sge_intr_info);
4051	else
4052		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4053					   t6_sge_intr_info);
4054
4055	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
4056	if (err & F_ERROR_QID_VALID) {
4057		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4058		if (err & F_UNCAPTURED_ERROR)
4059			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4060		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4061			     F_UNCAPTURED_ERROR);
4062	}
4063
4064	if (v != 0)
4065		t4_fatal_err(adapter);
4066}
4067
4068#define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4069		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4070#define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4071		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4072
4073/*
4074 * CIM interrupt handler.
4075 */
4076static void cim_intr_handler(struct adapter *adapter)
4077{
4078	static const struct intr_info cim_intr_info[] = {
4079		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4080		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4081		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4082		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4083		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4084		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4085		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4086		{ F_TIMER0INT, "CIM TIMER0 interrupt", -1, 1 },
4087		{ 0 }
4088	};
4089	static const struct intr_info cim_upintr_info[] = {
4090		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4091		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4092		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
4093		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
4094		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4095		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4096		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4097		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4098		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4099		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4100		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4101		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4102		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4103		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4104		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4105		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4106		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4107		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4108		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4109		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4110		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4111		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4112		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4113		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4114		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4115		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4116		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4117		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4118		{ 0 }
4119	};
4120	u32 val, fw_err;
4121	int fat;
4122
4123	fw_err = t4_read_reg(adapter, A_PCIE_FW);
4124	if (fw_err & F_PCIE_FW_ERR)
4125		t4_report_fw_error(adapter);
4126
4127	/* When the Firmware detects an internal error which normally wouldn't
4128	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4129	 * to make sure the Host sees the Firmware Crash.  So if we have a
4130	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4131	 * interrupt.
4132	 */
4133	val = t4_read_reg(adapter, A_CIM_HOST_INT_CAUSE);
4134	if (val & F_TIMER0INT)
4135		if (!(fw_err & F_PCIE_FW_ERR) ||
4136		    (G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH))
4137			t4_write_reg(adapter, A_CIM_HOST_INT_CAUSE,
4138				     F_TIMER0INT);
4139
4140	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4141				    cim_intr_info) +
4142	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4143				    cim_upintr_info);
4144	if (fat)
4145		t4_fatal_err(adapter);
4146}
4147
4148/*
4149 * ULP RX interrupt handler.
4150 */
4151static void ulprx_intr_handler(struct adapter *adapter)
4152{
4153	static const struct intr_info ulprx_intr_info[] = {
4154		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4155		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4156		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4157		{ 0 }
4158	};
4159
4160	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4161		t4_fatal_err(adapter);
4162}
4163
4164/*
4165 * ULP TX interrupt handler.
4166 */
4167static void ulptx_intr_handler(struct adapter *adapter)
4168{
4169	static const struct intr_info ulptx_intr_info[] = {
4170		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4171		  0 },
4172		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4173		  0 },
4174		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4175		  0 },
4176		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4177		  0 },
4178		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4179		{ 0 }
4180	};
4181
4182	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4183		t4_fatal_err(adapter);
4184}
4185
4186/*
4187 * PM TX interrupt handler.
4188 */
4189static void pmtx_intr_handler(struct adapter *adapter)
4190{
4191	static const struct intr_info pmtx_intr_info[] = {
4192		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4193		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4194		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4195		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4196		{ 0xffffff0, "PMTX framing error", -1, 1 },
4197		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4198		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4199		  1 },
4200		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4201		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4202		{ 0 }
4203	};
4204
4205	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4206		t4_fatal_err(adapter);
4207}
4208
4209/*
4210 * PM RX interrupt handler.
4211 */
4212static void pmrx_intr_handler(struct adapter *adapter)
4213{
4214	static const struct intr_info pmrx_intr_info[] = {
4215		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4216		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4217		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4218		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4219		  1 },
4220		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4221		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4222		{ 0 }
4223	};
4224
4225	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4226		t4_fatal_err(adapter);
4227}
4228
4229/*
4230 * CPL switch interrupt handler.
4231 */
4232static void cplsw_intr_handler(struct adapter *adapter)
4233{
4234	static const struct intr_info cplsw_intr_info[] = {
4235		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4236		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4237		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4238		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4239		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4240		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4241		{ 0 }
4242	};
4243
4244	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4245		t4_fatal_err(adapter);
4246}
4247
4248/*
4249 * LE interrupt handler.
4250 */
4251static void le_intr_handler(struct adapter *adap)
4252{
4253	unsigned int chip_ver = chip_id(adap);
4254	static const struct intr_info le_intr_info[] = {
4255		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4256		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4257		{ F_PARITYERR, "LE parity error", -1, 1 },
4258		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4259		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4260		{ 0 }
4261	};
4262
4263	static const struct intr_info t6_le_intr_info[] = {
4264		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4265		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4266		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4267		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4268		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4269		{ 0 }
4270	};
4271
4272	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4273				  (chip_ver <= CHELSIO_T5) ?
4274				  le_intr_info : t6_le_intr_info))
4275		t4_fatal_err(adap);
4276}
4277
4278/*
4279 * MPS interrupt handler.
4280 */
4281static void mps_intr_handler(struct adapter *adapter)
4282{
4283	static const struct intr_info mps_rx_intr_info[] = {
4284		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4285		{ 0 }
4286	};
4287	static const struct intr_info mps_tx_intr_info[] = {
4288		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4289		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4290		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4291		  -1, 1 },
4292		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4293		  -1, 1 },
4294		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4295		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4296		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4297		{ 0 }
4298	};
4299	static const struct intr_info mps_trc_intr_info[] = {
4300		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4301		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4302		  1 },
4303		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4304		{ 0 }
4305	};
4306	static const struct intr_info mps_stat_sram_intr_info[] = {
4307		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4308		{ 0 }
4309	};
4310	static const struct intr_info mps_stat_tx_intr_info[] = {
4311		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4312		{ 0 }
4313	};
4314	static const struct intr_info mps_stat_rx_intr_info[] = {
4315		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4316		{ 0 }
4317	};
4318	static const struct intr_info mps_cls_intr_info[] = {
4319		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4320		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4321		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4322		{ 0 }
4323	};
4324
4325	int fat;
4326
4327	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4328				    mps_rx_intr_info) +
4329	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4330				    mps_tx_intr_info) +
4331	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4332				    mps_trc_intr_info) +
4333	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4334				    mps_stat_sram_intr_info) +
4335	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4336				    mps_stat_tx_intr_info) +
4337	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4338				    mps_stat_rx_intr_info) +
4339	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4340				    mps_cls_intr_info);
4341
4342	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4343	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4344	if (fat)
4345		t4_fatal_err(adapter);
4346}
4347
4348#define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4349		      F_ECC_UE_INT_CAUSE)
4350
4351/*
4352 * EDC/MC interrupt handler.
4353 */
4354static void mem_intr_handler(struct adapter *adapter, int idx)
4355{
4356	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4357
4358	unsigned int addr, cnt_addr, v;
4359
4360	if (idx <= MEM_EDC1) {
4361		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4362		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4363	} else if (idx == MEM_MC) {
4364		if (is_t4(adapter)) {
4365			addr = A_MC_INT_CAUSE;
4366			cnt_addr = A_MC_ECC_STATUS;
4367		} else {
4368			addr = A_MC_P_INT_CAUSE;
4369			cnt_addr = A_MC_P_ECC_STATUS;
4370		}
4371	} else {
4372		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4373		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4374	}
4375
4376	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4377	if (v & F_PERR_INT_CAUSE)
4378		CH_ALERT(adapter, "%s FIFO parity error\n",
4379			  name[idx]);
4380	if (v & F_ECC_CE_INT_CAUSE) {
4381		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4382
4383		if (idx <= MEM_EDC1)
4384			t4_edc_err_read(adapter, idx);
4385
4386		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4387		CH_WARN_RATELIMIT(adapter,
4388				  "%u %s correctable ECC data error%s\n",
4389				  cnt, name[idx], cnt > 1 ? "s" : "");
4390	}
4391	if (v & F_ECC_UE_INT_CAUSE)
4392		CH_ALERT(adapter,
4393			 "%s uncorrectable ECC data error\n", name[idx]);
4394
4395	t4_write_reg(adapter, addr, v);
4396	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4397		t4_fatal_err(adapter);
4398}
4399
4400/*
4401 * MA interrupt handler.
4402 */
4403static void ma_intr_handler(struct adapter *adapter)
4404{
4405	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4406
4407	if (status & F_MEM_PERR_INT_CAUSE) {
4408		CH_ALERT(adapter,
4409			  "MA parity error, parity status %#x\n",
4410			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4411		if (is_t5(adapter))
4412			CH_ALERT(adapter,
4413				  "MA parity error, parity status %#x\n",
4414				  t4_read_reg(adapter,
4415					      A_MA_PARITY_ERROR_STATUS2));
4416	}
4417	if (status & F_MEM_WRAP_INT_CAUSE) {
4418		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4419		CH_ALERT(adapter, "MA address wrap-around error by "
4420			  "client %u to address %#x\n",
4421			  G_MEM_WRAP_CLIENT_NUM(v),
4422			  G_MEM_WRAP_ADDRESS(v) << 4);
4423	}
4424	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4425	t4_fatal_err(adapter);
4426}
4427
4428/*
4429 * SMB interrupt handler.
4430 */
4431static void smb_intr_handler(struct adapter *adap)
4432{
4433	static const struct intr_info smb_intr_info[] = {
4434		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4435		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4436		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4437		{ 0 }
4438	};
4439
4440	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4441		t4_fatal_err(adap);
4442}
4443
4444/*
4445 * NC-SI interrupt handler.
4446 */
4447static void ncsi_intr_handler(struct adapter *adap)
4448{
4449	static const struct intr_info ncsi_intr_info[] = {
4450		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4451		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4452		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4453		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4454		{ 0 }
4455	};
4456
4457	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4458		t4_fatal_err(adap);
4459}
4460
4461/*
4462 * XGMAC interrupt handler.
4463 */
4464static void xgmac_intr_handler(struct adapter *adap, int port)
4465{
4466	u32 v, int_cause_reg;
4467
4468	if (is_t4(adap))
4469		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4470	else
4471		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4472
4473	v = t4_read_reg(adap, int_cause_reg);
4474
4475	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4476	if (!v)
4477		return;
4478
4479	if (v & F_TXFIFO_PRTY_ERR)
4480		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4481			  port);
4482	if (v & F_RXFIFO_PRTY_ERR)
4483		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4484			  port);
4485	t4_write_reg(adap, int_cause_reg, v);
4486	t4_fatal_err(adap);
4487}
4488
4489/*
4490 * PL interrupt handler.
4491 */
4492static void pl_intr_handler(struct adapter *adap)
4493{
4494	static const struct intr_info pl_intr_info[] = {
4495		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4496		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4497		{ 0 }
4498	};
4499
4500	static const struct intr_info t5_pl_intr_info[] = {
4501		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4502		{ 0 }
4503	};
4504
4505	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4506				  is_t4(adap) ?
4507				  pl_intr_info : t5_pl_intr_info))
4508		t4_fatal_err(adap);
4509}
4510
4511#define PF_INTR_MASK (F_PFSW | F_PFCIM)
4512
4513/**
4514 *	t4_slow_intr_handler - control path interrupt handler
4515 *	@adapter: the adapter
4516 *
4517 *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4518 *	The designation 'slow' is because it involves register reads, while
4519 *	data interrupts typically don't involve any MMIOs.
4520 */
4521int t4_slow_intr_handler(struct adapter *adapter)
4522{
4523	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4524
4525	if (!(cause & GLBL_INTR_MASK))
4526		return 0;
4527	if (cause & F_CIM)
4528		cim_intr_handler(adapter);
4529	if (cause & F_MPS)
4530		mps_intr_handler(adapter);
4531	if (cause & F_NCSI)
4532		ncsi_intr_handler(adapter);
4533	if (cause & F_PL)
4534		pl_intr_handler(adapter);
4535	if (cause & F_SMB)
4536		smb_intr_handler(adapter);
4537	if (cause & F_MAC0)
4538		xgmac_intr_handler(adapter, 0);
4539	if (cause & F_MAC1)
4540		xgmac_intr_handler(adapter, 1);
4541	if (cause & F_MAC2)
4542		xgmac_intr_handler(adapter, 2);
4543	if (cause & F_MAC3)
4544		xgmac_intr_handler(adapter, 3);
4545	if (cause & F_PCIE)
4546		pcie_intr_handler(adapter);
4547	if (cause & F_MC0)
4548		mem_intr_handler(adapter, MEM_MC);
4549	if (is_t5(adapter) && (cause & F_MC1))
4550		mem_intr_handler(adapter, MEM_MC1);
4551	if (cause & F_EDC0)
4552		mem_intr_handler(adapter, MEM_EDC0);
4553	if (cause & F_EDC1)
4554		mem_intr_handler(adapter, MEM_EDC1);
4555	if (cause & F_LE)
4556		le_intr_handler(adapter);
4557	if (cause & F_TP)
4558		tp_intr_handler(adapter);
4559	if (cause & F_MA)
4560		ma_intr_handler(adapter);
4561	if (cause & F_PM_TX)
4562		pmtx_intr_handler(adapter);
4563	if (cause & F_PM_RX)
4564		pmrx_intr_handler(adapter);
4565	if (cause & F_ULP_RX)
4566		ulprx_intr_handler(adapter);
4567	if (cause & F_CPL_SWITCH)
4568		cplsw_intr_handler(adapter);
4569	if (cause & F_SGE)
4570		sge_intr_handler(adapter);
4571	if (cause & F_ULP_TX)
4572		ulptx_intr_handler(adapter);
4573
4574	/* Clear the interrupts just processed for which we are the master. */
4575	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4576	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4577	return 1;
4578}
4579
4580/**
4581 *	t4_intr_enable - enable interrupts
4582 *	@adapter: the adapter whose interrupts should be enabled
4583 *
4584 *	Enable PF-specific interrupts for the calling function and the top-level
4585 *	interrupt concentrator for global interrupts.  Interrupts are already
4586 *	enabled at each module,	here we just enable the roots of the interrupt
4587 *	hierarchies.
4588 *
4589 *	Note: this function should be called only when the driver manages
4590 *	non PF-specific interrupts from the various HW modules.  Only one PCI
4591 *	function at a time should be doing this.
4592 */
4593void t4_intr_enable(struct adapter *adapter)
4594{
4595	u32 val = 0;
4596	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4597	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4598		  ? G_SOURCEPF(whoami)
4599		  : G_T6_SOURCEPF(whoami));
4600
4601	if (chip_id(adapter) <= CHELSIO_T5)
4602		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4603	else
4604		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4605	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4606		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4607		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4608		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4609		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4610		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4611		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4612	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4613	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4614}
4615
4616/**
4617 *	t4_intr_disable - disable interrupts
4618 *	@adapter: the adapter whose interrupts should be disabled
4619 *
4620 *	Disable interrupts.  We only disable the top-level interrupt
4621 *	concentrators.  The caller must be a PCI function managing global
4622 *	interrupts.
4623 */
4624void t4_intr_disable(struct adapter *adapter)
4625{
4626	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4627	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4628		  ? G_SOURCEPF(whoami)
4629		  : G_T6_SOURCEPF(whoami));
4630
4631	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4632	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4633}
4634
4635/**
4636 *	t4_intr_clear - clear all interrupts
4637 *	@adapter: the adapter whose interrupts should be cleared
4638 *
4639 *	Clears all interrupts.  The caller must be a PCI function managing
4640 *	global interrupts.
4641 */
4642void t4_intr_clear(struct adapter *adapter)
4643{
4644	static const unsigned int cause_reg[] = {
4645		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4646		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4647		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4648		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4649		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4650		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4651		A_TP_INT_CAUSE,
4652		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4653		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4654		A_MPS_RX_PERR_INT_CAUSE,
4655		A_CPL_INTR_CAUSE,
4656		MYPF_REG(A_PL_PF_INT_CAUSE),
4657		A_PL_PL_INT_CAUSE,
4658		A_LE_DB_INT_CAUSE,
4659	};
4660
4661	unsigned int i;
4662
4663	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4664		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4665
4666	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4667				A_MC_P_INT_CAUSE, 0xffffffff);
4668
4669	if (is_t4(adapter)) {
4670		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4671				0xffffffff);
4672		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4673				0xffffffff);
4674	} else
4675		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4676
4677	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4678	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4679}
4680
4681/**
4682 *	hash_mac_addr - return the hash value of a MAC address
4683 *	@addr: the 48-bit Ethernet MAC address
4684 *
4685 *	Hashes a MAC address according to the hash function used by HW inexact
4686 *	(hash) address matching.
4687 */
4688static int hash_mac_addr(const u8 *addr)
4689{
4690	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4691	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4692	a ^= b;
4693	a ^= (a >> 12);
4694	a ^= (a >> 6);
4695	return a & 0x3f;
4696}
4697
4698/**
4699 *	t4_config_rss_range - configure a portion of the RSS mapping table
4700 *	@adapter: the adapter
4701 *	@mbox: mbox to use for the FW command
4702 *	@viid: virtual interface whose RSS subtable is to be written
4703 *	@start: start entry in the table to write
4704 *	@n: how many table entries to write
4705 *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4706 *	@nrspq: number of values in @rspq
4707 *
4708 *	Programs the selected part of the VI's RSS mapping table with the
4709 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4710 *	until the full table range is populated.
4711 *
4712 *	The caller must ensure the values in @rspq are in the range allowed for
4713 *	@viid.
4714 */
4715int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4716			int start, int n, const u16 *rspq, unsigned int nrspq)
4717{
4718	int ret;
4719	const u16 *rsp = rspq;
4720	const u16 *rsp_end = rspq + nrspq;
4721	struct fw_rss_ind_tbl_cmd cmd;
4722
4723	memset(&cmd, 0, sizeof(cmd));
4724	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4725				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4726				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4727	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4728
4729	/*
4730	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4731	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4732	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4733	 * reserved.
4734	 */
4735	while (n > 0) {
4736		int nq = min(n, 32);
4737		int nq_packed = 0;
4738		__be32 *qp = &cmd.iq0_to_iq2;
4739
4740		/*
4741		 * Set up the firmware RSS command header to send the next
4742		 * "nq" Ingress Queue IDs to the firmware.
4743		 */
4744		cmd.niqid = cpu_to_be16(nq);
4745		cmd.startidx = cpu_to_be16(start);
4746
4747		/*
4748		 * "nq" more done for the start of the next loop.
4749		 */
4750		start += nq;
4751		n -= nq;
4752
4753		/*
4754		 * While there are still Ingress Queue IDs to stuff into the
4755		 * current firmware RSS command, retrieve them from the
4756		 * Ingress Queue ID array and insert them into the command.
4757		 */
4758		while (nq > 0) {
4759			/*
4760			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4761			 * around the Ingress Queue ID array if necessary) and
4762			 * insert them into the firmware RSS command at the
4763			 * current 3-tuple position within the commad.
4764			 */
4765			u16 qbuf[3];
4766			u16 *qbp = qbuf;
4767			int nqbuf = min(3, nq);
4768
4769			nq -= nqbuf;
4770			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4771			while (nqbuf && nq_packed < 32) {
4772				nqbuf--;
4773				nq_packed++;
4774				*qbp++ = *rsp++;
4775				if (rsp >= rsp_end)
4776					rsp = rspq;
4777			}
4778			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4779					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4780					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4781		}
4782
4783		/*
4784		 * Send this portion of the RRS table update to the firmware;
4785		 * bail out on any errors.
4786		 */
4787		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4788		if (ret)
4789			return ret;
4790	}
4791	return 0;
4792}
4793
4794/**
4795 *	t4_config_glbl_rss - configure the global RSS mode
4796 *	@adapter: the adapter
4797 *	@mbox: mbox to use for the FW command
4798 *	@mode: global RSS mode
4799 *	@flags: mode-specific flags
4800 *
4801 *	Sets the global RSS mode.
4802 */
4803int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4804		       unsigned int flags)
4805{
4806	struct fw_rss_glb_config_cmd c;
4807
4808	memset(&c, 0, sizeof(c));
4809	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4810				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4811	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4812	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4813		c.u.manual.mode_pkd =
4814			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4815	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4816		c.u.basicvirtual.mode_keymode =
4817			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4818		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4819	} else
4820		return -EINVAL;
4821	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4822}
4823
4824/**
4825 *	t4_config_vi_rss - configure per VI RSS settings
4826 *	@adapter: the adapter
4827 *	@mbox: mbox to use for the FW command
4828 *	@viid: the VI id
4829 *	@flags: RSS flags
4830 *	@defq: id of the default RSS queue for the VI.
4831 *	@skeyidx: RSS secret key table index for non-global mode
4832 *	@skey: RSS vf_scramble key for VI.
4833 *
4834 *	Configures VI-specific RSS properties.
4835 */
4836int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4837		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
4838		     unsigned int skey)
4839{
4840	struct fw_rss_vi_config_cmd c;
4841
4842	memset(&c, 0, sizeof(c));
4843	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4844				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4845				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4846	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4847	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4848					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4849	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
4850					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
4851	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
4852
4853	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4854}
4855
4856/* Read an RSS table row */
4857static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4858{
4859	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4860	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4861				   5, 0, val);
4862}
4863
4864/**
4865 *	t4_read_rss - read the contents of the RSS mapping table
4866 *	@adapter: the adapter
4867 *	@map: holds the contents of the RSS mapping table
4868 *
4869 *	Reads the contents of the RSS hash->queue mapping table.
4870 */
4871int t4_read_rss(struct adapter *adapter, u16 *map)
4872{
4873	u32 val;
4874	int i, ret;
4875
4876	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4877		ret = rd_rss_row(adapter, i, &val);
4878		if (ret)
4879			return ret;
4880		*map++ = G_LKPTBLQUEUE0(val);
4881		*map++ = G_LKPTBLQUEUE1(val);
4882	}
4883	return 0;
4884}
4885
4886/**
4887 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
4888 * @adap: the adapter
4889 * @cmd: TP fw ldst address space type
4890 * @vals: where the indirect register values are stored/written
4891 * @nregs: how many indirect registers to read/write
4892 * @start_idx: index of first indirect register to read/write
4893 * @rw: Read (1) or Write (0)
4894 * @sleep_ok: if true we may sleep while awaiting command completion
4895 *
4896 * Access TP indirect registers through LDST
4897 **/
4898static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
4899			    unsigned int nregs, unsigned int start_index,
4900			    unsigned int rw, bool sleep_ok)
4901{
4902	int ret = 0;
4903	unsigned int i;
4904	struct fw_ldst_cmd c;
4905
4906	for (i = 0; i < nregs; i++) {
4907		memset(&c, 0, sizeof(c));
4908		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4909						F_FW_CMD_REQUEST |
4910						(rw ? F_FW_CMD_READ :
4911						      F_FW_CMD_WRITE) |
4912						V_FW_LDST_CMD_ADDRSPACE(cmd));
4913		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4914
4915		c.u.addrval.addr = cpu_to_be32(start_index + i);
4916		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4917		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
4918				      sleep_ok);
4919		if (ret)
4920			return ret;
4921
4922		if (rw)
4923			vals[i] = be32_to_cpu(c.u.addrval.val);
4924	}
4925	return 0;
4926}
4927
4928/**
4929 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
4930 * @adap: the adapter
4931 * @reg_addr: Address Register
4932 * @reg_data: Data register
4933 * @buff: where the indirect register values are stored/written
4934 * @nregs: how many indirect registers to read/write
4935 * @start_index: index of first indirect register to read/write
4936 * @rw: READ(1) or WRITE(0)
4937 * @sleep_ok: if true we may sleep while awaiting command completion
4938 *
4939 * Read/Write TP indirect registers through LDST if possible.
4940 * Else, use backdoor access
4941 **/
4942static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
4943			      u32 *buff, u32 nregs, u32 start_index, int rw,
4944			      bool sleep_ok)
4945{
4946	int rc = -EINVAL;
4947	int cmd;
4948
4949	switch (reg_addr) {
4950	case A_TP_PIO_ADDR:
4951		cmd = FW_LDST_ADDRSPC_TP_PIO;
4952		break;
4953	case A_TP_TM_PIO_ADDR:
4954		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
4955		break;
4956	case A_TP_MIB_INDEX:
4957		cmd = FW_LDST_ADDRSPC_TP_MIB;
4958		break;
4959	default:
4960		goto indirect_access;
4961	}
4962
4963	if (t4_use_ldst(adap))
4964		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
4965				      sleep_ok);
4966
4967indirect_access:
4968
4969	if (rc) {
4970		if (rw)
4971			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
4972					 start_index);
4973		else
4974			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
4975					  start_index);
4976	}
4977}
4978
4979/**
4980 * t4_tp_pio_read - Read TP PIO registers
4981 * @adap: the adapter
4982 * @buff: where the indirect register values are written
4983 * @nregs: how many indirect registers to read
4984 * @start_index: index of first indirect register to read
4985 * @sleep_ok: if true we may sleep while awaiting command completion
4986 *
4987 * Read TP PIO Registers
4988 **/
4989void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
4990		    u32 start_index, bool sleep_ok)
4991{
4992	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
4993			  start_index, 1, sleep_ok);
4994}
4995
4996/**
4997 * t4_tp_pio_write - Write TP PIO registers
4998 * @adap: the adapter
4999 * @buff: where the indirect register values are stored
5000 * @nregs: how many indirect registers to write
5001 * @start_index: index of first indirect register to write
5002 * @sleep_ok: if true we may sleep while awaiting command completion
5003 *
5004 * Write TP PIO Registers
5005 **/
5006void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5007		     u32 start_index, bool sleep_ok)
5008{
5009	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5010	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5011}
5012
5013/**
5014 * t4_tp_tm_pio_read - Read TP TM PIO registers
5015 * @adap: the adapter
5016 * @buff: where the indirect register values are written
5017 * @nregs: how many indirect registers to read
5018 * @start_index: index of first indirect register to read
5019 * @sleep_ok: if true we may sleep while awaiting command completion
5020 *
5021 * Read TP TM PIO Registers
5022 **/
5023void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5024		       u32 start_index, bool sleep_ok)
5025{
5026	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5027			  nregs, start_index, 1, sleep_ok);
5028}
5029
5030/**
5031 * t4_tp_mib_read - Read TP MIB registers
5032 * @adap: the adapter
5033 * @buff: where the indirect register values are written
5034 * @nregs: how many indirect registers to read
5035 * @start_index: index of first indirect register to read
5036 * @sleep_ok: if true we may sleep while awaiting command completion
5037 *
5038 * Read TP MIB Registers
5039 **/
5040void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5041		    bool sleep_ok)
5042{
5043	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5044			  start_index, 1, sleep_ok);
5045}
5046
5047/**
5048 *	t4_read_rss_key - read the global RSS key
5049 *	@adap: the adapter
5050 *	@key: 10-entry array holding the 320-bit RSS key
5051 * 	@sleep_ok: if true we may sleep while awaiting command completion
5052 *
5053 *	Reads the global 320-bit RSS key.
5054 */
5055void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5056{
5057	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5058}
5059
5060/**
5061 *	t4_write_rss_key - program one of the RSS keys
5062 *	@adap: the adapter
5063 *	@key: 10-entry array holding the 320-bit RSS key
5064 *	@idx: which RSS key to write
5065 * 	@sleep_ok: if true we may sleep while awaiting command completion
5066 *
5067 *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5068 *	0..15 the corresponding entry in the RSS key table is written,
5069 *	otherwise the global RSS key is written.
5070 */
5071void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5072		      bool sleep_ok)
5073{
5074	u8 rss_key_addr_cnt = 16;
5075	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5076
5077	/*
5078	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5079	 * allows access to key addresses 16-63 by using KeyWrAddrX
5080	 * as index[5:4](upper 2) into key table
5081	 */
5082	if ((chip_id(adap) > CHELSIO_T5) &&
5083	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5084		rss_key_addr_cnt = 32;
5085
5086	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5087
5088	if (idx >= 0 && idx < rss_key_addr_cnt) {
5089		if (rss_key_addr_cnt > 16)
5090			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5091				     vrt | V_KEYWRADDRX(idx >> 4) |
5092				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5093		else
5094			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5095				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5096	}
5097}
5098
5099/**
5100 *	t4_read_rss_pf_config - read PF RSS Configuration Table
5101 *	@adapter: the adapter
5102 *	@index: the entry in the PF RSS table to read
5103 *	@valp: where to store the returned value
5104 * 	@sleep_ok: if true we may sleep while awaiting command completion
5105 *
5106 *	Reads the PF RSS Configuration Table at the specified index and returns
5107 *	the value found there.
5108 */
5109void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5110			   u32 *valp, bool sleep_ok)
5111{
5112	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5113}
5114
5115/**
5116 *	t4_write_rss_pf_config - write PF RSS Configuration Table
5117 *	@adapter: the adapter
5118 *	@index: the entry in the VF RSS table to read
5119 *	@val: the value to store
5120 * 	@sleep_ok: if true we may sleep while awaiting command completion
5121 *
5122 *	Writes the PF RSS Configuration Table at the specified index with the
5123 *	specified value.
5124 */
5125void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5126			    u32 val, bool sleep_ok)
5127{
5128	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5129			sleep_ok);
5130}
5131
5132/**
5133 *	t4_read_rss_vf_config - read VF RSS Configuration Table
5134 *	@adapter: the adapter
5135 *	@index: the entry in the VF RSS table to read
5136 *	@vfl: where to store the returned VFL
5137 *	@vfh: where to store the returned VFH
5138 * 	@sleep_ok: if true we may sleep while awaiting command completion
5139 *
5140 *	Reads the VF RSS Configuration Table at the specified index and returns
5141 *	the (VFL, VFH) values found there.
5142 */
5143void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5144			   u32 *vfl, u32 *vfh, bool sleep_ok)
5145{
5146	u32 vrt, mask, data;
5147
5148	if (chip_id(adapter) <= CHELSIO_T5) {
5149		mask = V_VFWRADDR(M_VFWRADDR);
5150		data = V_VFWRADDR(index);
5151	} else {
5152		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5153		 data = V_T6_VFWRADDR(index);
5154	}
5155	/*
5156	 * Request that the index'th VF Table values be read into VFL/VFH.
5157	 */
5158	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5159	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5160	vrt |= data | F_VFRDEN;
5161	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5162
5163	/*
5164	 * Grab the VFL/VFH values ...
5165	 */
5166	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5167	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5168}
5169
5170/**
5171 *	t4_write_rss_vf_config - write VF RSS Configuration Table
5172 *
5173 *	@adapter: the adapter
5174 *	@index: the entry in the VF RSS table to write
5175 *	@vfl: the VFL to store
5176 *	@vfh: the VFH to store
5177 *
5178 *	Writes the VF RSS Configuration Table at the specified index with the
5179 *	specified (VFL, VFH) values.
5180 */
5181void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5182			    u32 vfl, u32 vfh, bool sleep_ok)
5183{
5184	u32 vrt, mask, data;
5185
5186	if (chip_id(adapter) <= CHELSIO_T5) {
5187		mask = V_VFWRADDR(M_VFWRADDR);
5188		data = V_VFWRADDR(index);
5189	} else {
5190		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5191		data = V_T6_VFWRADDR(index);
5192	}
5193
5194	/*
5195	 * Load up VFL/VFH with the values to be written ...
5196	 */
5197	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5198	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5199
5200	/*
5201	 * Write the VFL/VFH into the VF Table at index'th location.
5202	 */
5203	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5204	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5205	vrt |= data | F_VFRDEN;
5206	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5207}
5208
5209/**
5210 *	t4_read_rss_pf_map - read PF RSS Map
5211 *	@adapter: the adapter
5212 * 	@sleep_ok: if true we may sleep while awaiting command completion
5213 *
5214 *	Reads the PF RSS Map register and returns its value.
5215 */
5216u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5217{
5218	u32 pfmap;
5219
5220	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5221
5222	return pfmap;
5223}
5224
5225/**
5226 *	t4_write_rss_pf_map - write PF RSS Map
5227 *	@adapter: the adapter
5228 *	@pfmap: PF RSS Map value
5229 *
5230 *	Writes the specified value to the PF RSS Map register.
5231 */
5232void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
5233{
5234	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5235}
5236
5237/**
5238 *	t4_read_rss_pf_mask - read PF RSS Mask
5239 *	@adapter: the adapter
5240 * 	@sleep_ok: if true we may sleep while awaiting command completion
5241 *
5242 *	Reads the PF RSS Mask register and returns its value.
5243 */
5244u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5245{
5246	u32 pfmask;
5247
5248	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5249
5250	return pfmask;
5251}
5252
5253/**
5254 *	t4_write_rss_pf_mask - write PF RSS Mask
5255 *	@adapter: the adapter
5256 *	@pfmask: PF RSS Mask value
5257 *
5258 *	Writes the specified value to the PF RSS Mask register.
5259 */
5260void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
5261{
5262	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5263}
5264
5265/**
5266 *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5267 *	@adap: the adapter
5268 *	@v4: holds the TCP/IP counter values
5269 *	@v6: holds the TCP/IPv6 counter values
5270 * 	@sleep_ok: if true we may sleep while awaiting command completion
5271 *
5272 *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5273 *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5274 */
5275void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5276			 struct tp_tcp_stats *v6, bool sleep_ok)
5277{
5278	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5279
5280#define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5281#define STAT(x)     val[STAT_IDX(x)]
5282#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5283
5284	if (v4) {
5285		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5286			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
5287		v4->tcp_out_rsts = STAT(OUT_RST);
5288		v4->tcp_in_segs  = STAT64(IN_SEG);
5289		v4->tcp_out_segs = STAT64(OUT_SEG);
5290		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5291	}
5292	if (v6) {
5293		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5294			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
5295		v6->tcp_out_rsts = STAT(OUT_RST);
5296		v6->tcp_in_segs  = STAT64(IN_SEG);
5297		v6->tcp_out_segs = STAT64(OUT_SEG);
5298		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5299	}
5300#undef STAT64
5301#undef STAT
5302#undef STAT_IDX
5303}
5304
5305/**
5306 *	t4_tp_get_err_stats - read TP's error MIB counters
5307 *	@adap: the adapter
5308 *	@st: holds the counter values
5309 * 	@sleep_ok: if true we may sleep while awaiting command completion
5310 *
5311 *	Returns the values of TP's error counters.
5312 */
5313void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5314			 bool sleep_ok)
5315{
5316	int nchan = adap->chip_params->nchan;
5317
5318	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
5319		       sleep_ok);
5320
5321	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
5322		       sleep_ok);
5323
5324	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
5325		       sleep_ok);
5326
5327	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5328		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
5329
5330	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5331		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
5332
5333	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
5334		       sleep_ok);
5335
5336	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5337		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
5338
5339	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5340		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
5341
5342	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
5343		       sleep_ok);
5344}
5345
5346/**
5347 *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5348 *	@adap: the adapter
5349 *	@st: holds the counter values
5350 *
5351 *	Returns the values of TP's proxy counters.
5352 */
5353void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
5354    bool sleep_ok)
5355{
5356	int nchan = adap->chip_params->nchan;
5357
5358	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
5359}
5360
5361/**
5362 *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5363 *	@adap: the adapter
5364 *	@st: holds the counter values
5365 * 	@sleep_ok: if true we may sleep while awaiting command completion
5366 *
5367 *	Returns the values of TP's CPL counters.
5368 */
5369void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5370			 bool sleep_ok)
5371{
5372	int nchan = adap->chip_params->nchan;
5373
5374	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
5375
5376	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
5377}
5378
5379/**
5380 *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5381 *	@adap: the adapter
5382 *	@st: holds the counter values
5383 *
5384 *	Returns the values of TP's RDMA counters.
5385 */
5386void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5387			  bool sleep_ok)
5388{
5389	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
5390		       sleep_ok);
5391}
5392
5393/**
5394 *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5395 *	@adap: the adapter
5396 *	@idx: the port index
5397 *	@st: holds the counter values
5398 * 	@sleep_ok: if true we may sleep while awaiting command completion
5399 *
5400 *	Returns the values of TP's FCoE counters for the selected port.
5401 */
5402void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5403		       struct tp_fcoe_stats *st, bool sleep_ok)
5404{
5405	u32 val[2];
5406
5407	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
5408		       sleep_ok);
5409
5410	t4_tp_mib_read(adap, &st->frames_drop, 1,
5411		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
5412
5413	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
5414		       sleep_ok);
5415
5416	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5417}
5418
5419/**
5420 *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5421 *	@adap: the adapter
5422 *	@st: holds the counter values
5423 * 	@sleep_ok: if true we may sleep while awaiting command completion
5424 *
5425 *	Returns the values of TP's counters for non-TCP directly-placed packets.
5426 */
5427void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5428		      bool sleep_ok)
5429{
5430	u32 val[4];
5431
5432	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
5433
5434	st->frames = val[0];
5435	st->drops = val[1];
5436	st->octets = ((u64)val[2] << 32) | val[3];
5437}
5438
5439/**
5440 *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5441 *	@adap: the adapter
5442 *	@mtus: where to store the MTU values
5443 *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5444 *
5445 *	Reads the HW path MTU table.
5446 */
5447void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5448{
5449	u32 v;
5450	int i;
5451
5452	for (i = 0; i < NMTUS; ++i) {
5453		t4_write_reg(adap, A_TP_MTU_TABLE,
5454			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5455		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5456		mtus[i] = G_MTUVALUE(v);
5457		if (mtu_log)
5458			mtu_log[i] = G_MTUWIDTH(v);
5459	}
5460}
5461
5462/**
5463 *	t4_read_cong_tbl - reads the congestion control table
5464 *	@adap: the adapter
5465 *	@incr: where to store the alpha values
5466 *
5467 *	Reads the additive increments programmed into the HW congestion
5468 *	control table.
5469 */
5470void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5471{
5472	unsigned int mtu, w;
5473
5474	for (mtu = 0; mtu < NMTUS; ++mtu)
5475		for (w = 0; w < NCCTRL_WIN; ++w) {
5476			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5477				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5478			incr[mtu][w] = (u16)t4_read_reg(adap,
5479						A_TP_CCTRL_TABLE) & 0x1fff;
5480		}
5481}
5482
5483/**
5484 *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5485 *	@adap: the adapter
5486 *	@addr: the indirect TP register address
5487 *	@mask: specifies the field within the register to modify
5488 *	@val: new value for the field
5489 *
5490 *	Sets a field of an indirect TP register to the given value.
5491 */
5492void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5493			    unsigned int mask, unsigned int val)
5494{
5495	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5496	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5497	t4_write_reg(adap, A_TP_PIO_DATA, val);
5498}
5499
5500/**
5501 *	init_cong_ctrl - initialize congestion control parameters
5502 *	@a: the alpha values for congestion control
5503 *	@b: the beta values for congestion control
5504 *
5505 *	Initialize the congestion control parameters.
5506 */
5507static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5508{
5509	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5510	a[9] = 2;
5511	a[10] = 3;
5512	a[11] = 4;
5513	a[12] = 5;
5514	a[13] = 6;
5515	a[14] = 7;
5516	a[15] = 8;
5517	a[16] = 9;
5518	a[17] = 10;
5519	a[18] = 14;
5520	a[19] = 17;
5521	a[20] = 21;
5522	a[21] = 25;
5523	a[22] = 30;
5524	a[23] = 35;
5525	a[24] = 45;
5526	a[25] = 60;
5527	a[26] = 80;
5528	a[27] = 100;
5529	a[28] = 200;
5530	a[29] = 300;
5531	a[30] = 400;
5532	a[31] = 500;
5533
5534	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5535	b[9] = b[10] = 1;
5536	b[11] = b[12] = 2;
5537	b[13] = b[14] = b[15] = b[16] = 3;
5538	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5539	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5540	b[28] = b[29] = 6;
5541	b[30] = b[31] = 7;
5542}
5543
5544/* The minimum additive increment value for the congestion control table */
5545#define CC_MIN_INCR 2U
5546
5547/**
5548 *	t4_load_mtus - write the MTU and congestion control HW tables
5549 *	@adap: the adapter
5550 *	@mtus: the values for the MTU table
5551 *	@alpha: the values for the congestion control alpha parameter
5552 *	@beta: the values for the congestion control beta parameter
5553 *
5554 *	Write the HW MTU table with the supplied MTUs and the high-speed
5555 *	congestion control table with the supplied alpha, beta, and MTUs.
5556 *	We write the two tables together because the additive increments
5557 *	depend on the MTUs.
5558 */
5559void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5560		  const unsigned short *alpha, const unsigned short *beta)
5561{
5562	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5563		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5564		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5565		28672, 40960, 57344, 81920, 114688, 163840, 229376
5566	};
5567
5568	unsigned int i, w;
5569
5570	for (i = 0; i < NMTUS; ++i) {
5571		unsigned int mtu = mtus[i];
5572		unsigned int log2 = fls(mtu);
5573
5574		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5575			log2--;
5576		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5577			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5578
5579		for (w = 0; w < NCCTRL_WIN; ++w) {
5580			unsigned int inc;
5581
5582			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5583				  CC_MIN_INCR);
5584
5585			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5586				     (w << 16) | (beta[w] << 13) | inc);
5587		}
5588	}
5589}
5590
5591/**
5592 *	t4_set_pace_tbl - set the pace table
5593 *	@adap: the adapter
5594 *	@pace_vals: the pace values in microseconds
5595 *	@start: index of the first entry in the HW pace table to set
5596 *	@n: how many entries to set
5597 *
5598 *	Sets (a subset of the) HW pace table.
5599 */
5600int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5601		     unsigned int start, unsigned int n)
5602{
5603	unsigned int vals[NTX_SCHED], i;
5604	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5605
5606	if (n > NTX_SCHED)
5607	    return -ERANGE;
5608
5609	/* convert values from us to dack ticks, rounding to closest value */
5610	for (i = 0; i < n; i++, pace_vals++) {
5611		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5612		if (vals[i] > 0x7ff)
5613			return -ERANGE;
5614		if (*pace_vals && vals[i] == 0)
5615			return -ERANGE;
5616	}
5617	for (i = 0; i < n; i++, start++)
5618		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5619	return 0;
5620}
5621
5622/**
5623 *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5624 *	@adap: the adapter
5625 *	@kbps: target rate in Kbps
5626 *	@sched: the scheduler index
5627 *
5628 *	Configure a Tx HW scheduler for the target rate.
5629 */
5630int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5631{
5632	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5633	unsigned int clk = adap->params.vpd.cclk * 1000;
5634	unsigned int selected_cpt = 0, selected_bpt = 0;
5635
5636	if (kbps > 0) {
5637		kbps *= 125;     /* -> bytes */
5638		for (cpt = 1; cpt <= 255; cpt++) {
5639			tps = clk / cpt;
5640			bpt = (kbps + tps / 2) / tps;
5641			if (bpt > 0 && bpt <= 255) {
5642				v = bpt * tps;
5643				delta = v >= kbps ? v - kbps : kbps - v;
5644				if (delta < mindelta) {
5645					mindelta = delta;
5646					selected_cpt = cpt;
5647					selected_bpt = bpt;
5648				}
5649			} else if (selected_cpt)
5650				break;
5651		}
5652		if (!selected_cpt)
5653			return -EINVAL;
5654	}
5655	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5656		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5657	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5658	if (sched & 1)
5659		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5660	else
5661		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5662	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5663	return 0;
5664}
5665
5666/**
5667 *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5668 *	@adap: the adapter
5669 *	@sched: the scheduler index
5670 *	@ipg: the interpacket delay in tenths of nanoseconds
5671 *
5672 *	Set the interpacket delay for a HW packet rate scheduler.
5673 */
5674int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5675{
5676	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5677
5678	/* convert ipg to nearest number of core clocks */
5679	ipg *= core_ticks_per_usec(adap);
5680	ipg = (ipg + 5000) / 10000;
5681	if (ipg > M_TXTIMERSEPQ0)
5682		return -EINVAL;
5683
5684	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5685	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5686	if (sched & 1)
5687		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5688	else
5689		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5690	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5691	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5692	return 0;
5693}
5694
5695/*
5696 * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5697 * clocks.  The formula is
5698 *
5699 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5700 *
5701 * which is equivalent to
5702 *
5703 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5704 */
5705static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5706{
5707	u64 v = bytes256 * adap->params.vpd.cclk;
5708
5709	return v * 62 + v / 2;
5710}
5711
5712/**
5713 *	t4_get_chan_txrate - get the current per channel Tx rates
5714 *	@adap: the adapter
5715 *	@nic_rate: rates for NIC traffic
5716 *	@ofld_rate: rates for offloaded traffic
5717 *
5718 *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5719 *	for each channel.
5720 */
5721void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5722{
5723	u32 v;
5724
5725	v = t4_read_reg(adap, A_TP_TX_TRATE);
5726	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5727	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5728	if (adap->chip_params->nchan > 2) {
5729		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5730		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5731	}
5732
5733	v = t4_read_reg(adap, A_TP_TX_ORATE);
5734	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5735	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5736	if (adap->chip_params->nchan > 2) {
5737		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5738		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5739	}
5740}
5741
5742/**
5743 *	t4_set_trace_filter - configure one of the tracing filters
5744 *	@adap: the adapter
5745 *	@tp: the desired trace filter parameters
5746 *	@idx: which filter to configure
5747 *	@enable: whether to enable or disable the filter
5748 *
5749 *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5750 *	it indicates that the filter is already written in the register and it
5751 *	just needs to be enabled or disabled.
5752 */
5753int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5754    int idx, int enable)
5755{
5756	int i, ofst = idx * 4;
5757	u32 data_reg, mask_reg, cfg;
5758	u32 multitrc = F_TRCMULTIFILTER;
5759	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5760
5761	if (idx < 0 || idx >= NTRACE)
5762		return -EINVAL;
5763
5764	if (tp == NULL || !enable) {
5765		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5766		    enable ? en : 0);
5767		return 0;
5768	}
5769
5770	/*
5771	 * TODO - After T4 data book is updated, specify the exact
5772	 * section below.
5773	 *
5774	 * See T4 data book - MPS section for a complete description
5775	 * of the below if..else handling of A_MPS_TRC_CFG register
5776	 * value.
5777	 */
5778	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5779	if (cfg & F_TRCMULTIFILTER) {
5780		/*
5781		 * If multiple tracers are enabled, then maximum
5782		 * capture size is 2.5KB (FIFO size of a single channel)
5783		 * minus 2 flits for CPL_TRACE_PKT header.
5784		 */
5785		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5786			return -EINVAL;
5787	} else {
5788		/*
5789		 * If multiple tracers are disabled, to avoid deadlocks
5790		 * maximum packet capture size of 9600 bytes is recommended.
5791		 * Also in this mode, only trace0 can be enabled and running.
5792		 */
5793		multitrc = 0;
5794		if (tp->snap_len > 9600 || idx)
5795			return -EINVAL;
5796	}
5797
5798	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5799	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5800	    tp->min_len > M_TFMINPKTSIZE)
5801		return -EINVAL;
5802
5803	/* stop the tracer we'll be changing */
5804	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5805
5806	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5807	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5808	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5809
5810	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5811		t4_write_reg(adap, data_reg, tp->data[i]);
5812		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5813	}
5814	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5815		     V_TFCAPTUREMAX(tp->snap_len) |
5816		     V_TFMINPKTSIZE(tp->min_len));
5817	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5818		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5819		     (is_t4(adap) ?
5820		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5821		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5822
5823	return 0;
5824}
5825
5826/**
5827 *	t4_get_trace_filter - query one of the tracing filters
5828 *	@adap: the adapter
5829 *	@tp: the current trace filter parameters
5830 *	@idx: which trace filter to query
5831 *	@enabled: non-zero if the filter is enabled
5832 *
5833 *	Returns the current settings of one of the HW tracing filters.
5834 */
5835void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5836			 int *enabled)
5837{
5838	u32 ctla, ctlb;
5839	int i, ofst = idx * 4;
5840	u32 data_reg, mask_reg;
5841
5842	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5843	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5844
5845	if (is_t4(adap)) {
5846		*enabled = !!(ctla & F_TFEN);
5847		tp->port =  G_TFPORT(ctla);
5848		tp->invert = !!(ctla & F_TFINVERTMATCH);
5849	} else {
5850		*enabled = !!(ctla & F_T5_TFEN);
5851		tp->port = G_T5_TFPORT(ctla);
5852		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5853	}
5854	tp->snap_len = G_TFCAPTUREMAX(ctlb);
5855	tp->min_len = G_TFMINPKTSIZE(ctlb);
5856	tp->skip_ofst = G_TFOFFSET(ctla);
5857	tp->skip_len = G_TFLENGTH(ctla);
5858
5859	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5860	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5861	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5862
5863	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5864		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5865		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5866	}
5867}
5868
5869/**
5870 *	t4_pmtx_get_stats - returns the HW stats from PMTX
5871 *	@adap: the adapter
5872 *	@cnt: where to store the count statistics
5873 *	@cycles: where to store the cycle statistics
5874 *
5875 *	Returns performance statistics from PMTX.
5876 */
5877void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5878{
5879	int i;
5880	u32 data[2];
5881
5882	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5883		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5884		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5885		if (is_t4(adap))
5886			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5887		else {
5888			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5889					 A_PM_TX_DBG_DATA, data, 2,
5890					 A_PM_TX_DBG_STAT_MSB);
5891			cycles[i] = (((u64)data[0] << 32) | data[1]);
5892		}
5893	}
5894}
5895
5896/**
5897 *	t4_pmrx_get_stats - returns the HW stats from PMRX
5898 *	@adap: the adapter
5899 *	@cnt: where to store the count statistics
5900 *	@cycles: where to store the cycle statistics
5901 *
5902 *	Returns performance statistics from PMRX.
5903 */
5904void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5905{
5906	int i;
5907	u32 data[2];
5908
5909	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5910		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5911		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5912		if (is_t4(adap)) {
5913			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5914		} else {
5915			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5916					 A_PM_RX_DBG_DATA, data, 2,
5917					 A_PM_RX_DBG_STAT_MSB);
5918			cycles[i] = (((u64)data[0] << 32) | data[1]);
5919		}
5920	}
5921}
5922
5923/**
5924 *	t4_get_mps_bg_map - return the buffer groups associated with a port
5925 *	@adap: the adapter
5926 *	@idx: the port index
5927 *
5928 *	Returns a bitmap indicating which MPS buffer groups are associated
5929 *	with the given port.  Bit i is set if buffer group i is used by the
5930 *	port.
5931 */
5932static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5933{
5934	u32 n;
5935
5936	if (adap->params.mps_bg_map)
5937		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
5938
5939	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5940	if (n == 0)
5941		return idx == 0 ? 0xf : 0;
5942	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5943		return idx < 2 ? (3 << (2 * idx)) : 0;
5944	return 1 << idx;
5945}
5946
5947/*
5948 * TP RX e-channels associated with the port.
5949 */
5950static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
5951{
5952	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5953
5954	if (n == 0)
5955		return idx == 0 ? 0xf : 0;
5956	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5957		return idx < 2 ? (3 << (2 * idx)) : 0;
5958	return 1 << idx;
5959}
5960
5961/**
5962 *      t4_get_port_type_description - return Port Type string description
5963 *      @port_type: firmware Port Type enumeration
5964 */
5965const char *t4_get_port_type_description(enum fw_port_type port_type)
5966{
5967	static const char *const port_type_description[] = {
5968		"Fiber_XFI",
5969		"Fiber_XAUI",
5970		"BT_SGMII",
5971		"BT_XFI",
5972		"BT_XAUI",
5973		"KX4",
5974		"CX4",
5975		"KX",
5976		"KR",
5977		"SFP",
5978		"BP_AP",
5979		"BP4_AP",
5980		"QSFP_10G",
5981		"QSA",
5982		"QSFP",
5983		"BP40_BA",
5984		"KR4_100G",
5985		"CR4_QSFP",
5986		"CR_QSFP",
5987		"CR2_QSFP",
5988		"SFP28",
5989		"KR_SFP28",
5990	};
5991
5992	if (port_type < ARRAY_SIZE(port_type_description))
5993		return port_type_description[port_type];
5994	return "UNKNOWN";
5995}
5996
5997/**
5998 *      t4_get_port_stats_offset - collect port stats relative to a previous
5999 *				   snapshot
6000 *      @adap: The adapter
6001 *      @idx: The port
6002 *      @stats: Current stats to fill
6003 *      @offset: Previous stats snapshot
6004 */
6005void t4_get_port_stats_offset(struct adapter *adap, int idx,
6006		struct port_stats *stats,
6007		struct port_stats *offset)
6008{
6009	u64 *s, *o;
6010	int i;
6011
6012	t4_get_port_stats(adap, idx, stats);
6013	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6014			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6015			i++, s++, o++)
6016		*s -= *o;
6017}
6018
6019/**
6020 *	t4_get_port_stats - collect port statistics
6021 *	@adap: the adapter
6022 *	@idx: the port index
6023 *	@p: the stats structure to fill
6024 *
6025 *	Collect statistics related to the given port from HW.
6026 */
6027void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6028{
6029	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6030	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6031
6032#define GET_STAT(name) \
6033	t4_read_reg64(adap, \
6034	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6035	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6036#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6037
6038	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6039	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6040	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6041	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6042	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6043	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6044	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6045	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6046	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6047	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6048	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6049	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6050	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6051	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6052	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6053	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6054	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6055	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6056	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6057	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6058	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6059	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6060	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6061
6062	if (chip_id(adap) >= CHELSIO_T5) {
6063		if (stat_ctl & F_COUNTPAUSESTATTX) {
6064			p->tx_frames -= p->tx_pause;
6065			p->tx_octets -= p->tx_pause * 64;
6066		}
6067		if (stat_ctl & F_COUNTPAUSEMCTX)
6068			p->tx_mcast_frames -= p->tx_pause;
6069	}
6070
6071	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6072	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6073	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6074	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6075	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6076	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6077	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6078	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6079	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
6080	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6081	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6082	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6083	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6084	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6085	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6086	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6087	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6088	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6089	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6090	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6091	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6092	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6093	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6094	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6095	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6096	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6097	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6098
6099	if (chip_id(adap) >= CHELSIO_T5) {
6100		if (stat_ctl & F_COUNTPAUSESTATRX) {
6101			p->rx_frames -= p->rx_pause;
6102			p->rx_octets -= p->rx_pause * 64;
6103		}
6104		if (stat_ctl & F_COUNTPAUSEMCRX)
6105			p->rx_mcast_frames -= p->rx_pause;
6106	}
6107
6108	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6109	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6110	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6111	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6112	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6113	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6114	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6115	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6116
6117#undef GET_STAT
6118#undef GET_STAT_COM
6119}
6120
6121/**
6122 *	t4_get_lb_stats - collect loopback port statistics
6123 *	@adap: the adapter
6124 *	@idx: the loopback port index
6125 *	@p: the stats structure to fill
6126 *
6127 *	Return HW statistics for the given loopback port.
6128 */
6129void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6130{
6131	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6132
6133#define GET_STAT(name) \
6134	t4_read_reg64(adap, \
6135	(is_t4(adap) ? \
6136	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6137	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6138#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6139
6140	p->octets	= GET_STAT(BYTES);
6141	p->frames	= GET_STAT(FRAMES);
6142	p->bcast_frames	= GET_STAT(BCAST);
6143	p->mcast_frames	= GET_STAT(MCAST);
6144	p->ucast_frames	= GET_STAT(UCAST);
6145	p->error_frames	= GET_STAT(ERROR);
6146
6147	p->frames_64		= GET_STAT(64B);
6148	p->frames_65_127	= GET_STAT(65B_127B);
6149	p->frames_128_255	= GET_STAT(128B_255B);
6150	p->frames_256_511	= GET_STAT(256B_511B);
6151	p->frames_512_1023	= GET_STAT(512B_1023B);
6152	p->frames_1024_1518	= GET_STAT(1024B_1518B);
6153	p->frames_1519_max	= GET_STAT(1519B_MAX);
6154	p->drop			= GET_STAT(DROP_FRAMES);
6155
6156	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6157	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6158	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6159	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6160	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6161	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6162	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6163	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6164
6165#undef GET_STAT
6166#undef GET_STAT_COM
6167}
6168
6169/**
6170 *	t4_wol_magic_enable - enable/disable magic packet WoL
6171 *	@adap: the adapter
6172 *	@port: the physical port index
6173 *	@addr: MAC address expected in magic packets, %NULL to disable
6174 *
6175 *	Enables/disables magic packet wake-on-LAN for the selected port.
6176 */
6177void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6178			 const u8 *addr)
6179{
6180	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6181
6182	if (is_t4(adap)) {
6183		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6184		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6185		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6186	} else {
6187		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6188		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6189		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6190	}
6191
6192	if (addr) {
6193		t4_write_reg(adap, mag_id_reg_l,
6194			     (addr[2] << 24) | (addr[3] << 16) |
6195			     (addr[4] << 8) | addr[5]);
6196		t4_write_reg(adap, mag_id_reg_h,
6197			     (addr[0] << 8) | addr[1]);
6198	}
6199	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6200			 V_MAGICEN(addr != NULL));
6201}
6202
6203/**
6204 *	t4_wol_pat_enable - enable/disable pattern-based WoL
6205 *	@adap: the adapter
6206 *	@port: the physical port index
6207 *	@map: bitmap of which HW pattern filters to set
6208 *	@mask0: byte mask for bytes 0-63 of a packet
6209 *	@mask1: byte mask for bytes 64-127 of a packet
6210 *	@crc: Ethernet CRC for selected bytes
6211 *	@enable: enable/disable switch
6212 *
6213 *	Sets the pattern filters indicated in @map to mask out the bytes
6214 *	specified in @mask0/@mask1 in received packets and compare the CRC of
6215 *	the resulting packet against @crc.  If @enable is %true pattern-based
6216 *	WoL is enabled, otherwise disabled.
6217 */
6218int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6219		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6220{
6221	int i;
6222	u32 port_cfg_reg;
6223
6224	if (is_t4(adap))
6225		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6226	else
6227		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6228
6229	if (!enable) {
6230		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6231		return 0;
6232	}
6233	if (map > 0xff)
6234		return -EINVAL;
6235
6236#define EPIO_REG(name) \
6237	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6238	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6239
6240	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6241	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6242	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6243
6244	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6245		if (!(map & 1))
6246			continue;
6247
6248		/* write byte masks */
6249		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6250		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6251		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6252		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6253			return -ETIMEDOUT;
6254
6255		/* write CRC */
6256		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6257		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6258		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6259		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6260			return -ETIMEDOUT;
6261	}
6262#undef EPIO_REG
6263
6264	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6265	return 0;
6266}
6267
6268/*     t4_mk_filtdelwr - create a delete filter WR
6269 *     @ftid: the filter ID
6270 *     @wr: the filter work request to populate
6271 *     @qid: ingress queue to receive the delete notification
6272 *
6273 *     Creates a filter work request to delete the supplied filter.  If @qid is
6274 *     negative the delete notification is suppressed.
6275 */
6276void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6277{
6278	memset(wr, 0, sizeof(*wr));
6279	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6280	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6281	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6282				    V_FW_FILTER_WR_NOREPLY(qid < 0));
6283	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6284	if (qid >= 0)
6285		wr->rx_chan_rx_rpl_iq =
6286				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6287}
6288
6289#define INIT_CMD(var, cmd, rd_wr) do { \
6290	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6291					F_FW_CMD_REQUEST | \
6292					F_FW_CMD_##rd_wr); \
6293	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6294} while (0)
6295
6296int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6297			  u32 addr, u32 val)
6298{
6299	u32 ldst_addrspace;
6300	struct fw_ldst_cmd c;
6301
6302	memset(&c, 0, sizeof(c));
6303	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6304	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6305					F_FW_CMD_REQUEST |
6306					F_FW_CMD_WRITE |
6307					ldst_addrspace);
6308	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6309	c.u.addrval.addr = cpu_to_be32(addr);
6310	c.u.addrval.val = cpu_to_be32(val);
6311
6312	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6313}
6314
6315/**
6316 *	t4_mdio_rd - read a PHY register through MDIO
6317 *	@adap: the adapter
6318 *	@mbox: mailbox to use for the FW command
6319 *	@phy_addr: the PHY address
6320 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6321 *	@reg: the register to read
6322 *	@valp: where to store the value
6323 *
6324 *	Issues a FW command through the given mailbox to read a PHY register.
6325 */
6326int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6327	       unsigned int mmd, unsigned int reg, unsigned int *valp)
6328{
6329	int ret;
6330	u32 ldst_addrspace;
6331	struct fw_ldst_cmd c;
6332
6333	memset(&c, 0, sizeof(c));
6334	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6335	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6336					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6337					ldst_addrspace);
6338	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6339	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6340					 V_FW_LDST_CMD_MMD(mmd));
6341	c.u.mdio.raddr = cpu_to_be16(reg);
6342
6343	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6344	if (ret == 0)
6345		*valp = be16_to_cpu(c.u.mdio.rval);
6346	return ret;
6347}
6348
6349/**
6350 *	t4_mdio_wr - write a PHY register through MDIO
6351 *	@adap: the adapter
6352 *	@mbox: mailbox to use for the FW command
6353 *	@phy_addr: the PHY address
6354 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6355 *	@reg: the register to write
6356 *	@valp: value to write
6357 *
6358 *	Issues a FW command through the given mailbox to write a PHY register.
6359 */
6360int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6361	       unsigned int mmd, unsigned int reg, unsigned int val)
6362{
6363	u32 ldst_addrspace;
6364	struct fw_ldst_cmd c;
6365
6366	memset(&c, 0, sizeof(c));
6367	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6368	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6369					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6370					ldst_addrspace);
6371	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6372	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6373					 V_FW_LDST_CMD_MMD(mmd));
6374	c.u.mdio.raddr = cpu_to_be16(reg);
6375	c.u.mdio.rval = cpu_to_be16(val);
6376
6377	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6378}
6379
6380/**
6381 *
6382 *	t4_sge_decode_idma_state - decode the idma state
6383 *	@adap: the adapter
6384 *	@state: the state idma is stuck in
6385 */
6386void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6387{
6388	static const char * const t4_decode[] = {
6389		"IDMA_IDLE",
6390		"IDMA_PUSH_MORE_CPL_FIFO",
6391		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6392		"Not used",
6393		"IDMA_PHYSADDR_SEND_PCIEHDR",
6394		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6395		"IDMA_PHYSADDR_SEND_PAYLOAD",
6396		"IDMA_SEND_FIFO_TO_IMSG",
6397		"IDMA_FL_REQ_DATA_FL_PREP",
6398		"IDMA_FL_REQ_DATA_FL",
6399		"IDMA_FL_DROP",
6400		"IDMA_FL_H_REQ_HEADER_FL",
6401		"IDMA_FL_H_SEND_PCIEHDR",
6402		"IDMA_FL_H_PUSH_CPL_FIFO",
6403		"IDMA_FL_H_SEND_CPL",
6404		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6405		"IDMA_FL_H_SEND_IP_HDR",
6406		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6407		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6408		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6409		"IDMA_FL_D_SEND_PCIEHDR",
6410		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6411		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6412		"IDMA_FL_SEND_PCIEHDR",
6413		"IDMA_FL_PUSH_CPL_FIFO",
6414		"IDMA_FL_SEND_CPL",
6415		"IDMA_FL_SEND_PAYLOAD_FIRST",
6416		"IDMA_FL_SEND_PAYLOAD",
6417		"IDMA_FL_REQ_NEXT_DATA_FL",
6418		"IDMA_FL_SEND_NEXT_PCIEHDR",
6419		"IDMA_FL_SEND_PADDING",
6420		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6421		"IDMA_FL_SEND_FIFO_TO_IMSG",
6422		"IDMA_FL_REQ_DATAFL_DONE",
6423		"IDMA_FL_REQ_HEADERFL_DONE",
6424	};
6425	static const char * const t5_decode[] = {
6426		"IDMA_IDLE",
6427		"IDMA_ALMOST_IDLE",
6428		"IDMA_PUSH_MORE_CPL_FIFO",
6429		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6430		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6431		"IDMA_PHYSADDR_SEND_PCIEHDR",
6432		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6433		"IDMA_PHYSADDR_SEND_PAYLOAD",
6434		"IDMA_SEND_FIFO_TO_IMSG",
6435		"IDMA_FL_REQ_DATA_FL",
6436		"IDMA_FL_DROP",
6437		"IDMA_FL_DROP_SEND_INC",
6438		"IDMA_FL_H_REQ_HEADER_FL",
6439		"IDMA_FL_H_SEND_PCIEHDR",
6440		"IDMA_FL_H_PUSH_CPL_FIFO",
6441		"IDMA_FL_H_SEND_CPL",
6442		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6443		"IDMA_FL_H_SEND_IP_HDR",
6444		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6445		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6446		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6447		"IDMA_FL_D_SEND_PCIEHDR",
6448		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6449		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6450		"IDMA_FL_SEND_PCIEHDR",
6451		"IDMA_FL_PUSH_CPL_FIFO",
6452		"IDMA_FL_SEND_CPL",
6453		"IDMA_FL_SEND_PAYLOAD_FIRST",
6454		"IDMA_FL_SEND_PAYLOAD",
6455		"IDMA_FL_REQ_NEXT_DATA_FL",
6456		"IDMA_FL_SEND_NEXT_PCIEHDR",
6457		"IDMA_FL_SEND_PADDING",
6458		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6459	};
6460	static const char * const t6_decode[] = {
6461		"IDMA_IDLE",
6462		"IDMA_PUSH_MORE_CPL_FIFO",
6463		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6464		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6465		"IDMA_PHYSADDR_SEND_PCIEHDR",
6466		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6467		"IDMA_PHYSADDR_SEND_PAYLOAD",
6468		"IDMA_FL_REQ_DATA_FL",
6469		"IDMA_FL_DROP",
6470		"IDMA_FL_DROP_SEND_INC",
6471		"IDMA_FL_H_REQ_HEADER_FL",
6472		"IDMA_FL_H_SEND_PCIEHDR",
6473		"IDMA_FL_H_PUSH_CPL_FIFO",
6474		"IDMA_FL_H_SEND_CPL",
6475		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6476		"IDMA_FL_H_SEND_IP_HDR",
6477		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6478		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6479		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6480		"IDMA_FL_D_SEND_PCIEHDR",
6481		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6482		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6483		"IDMA_FL_SEND_PCIEHDR",
6484		"IDMA_FL_PUSH_CPL_FIFO",
6485		"IDMA_FL_SEND_CPL",
6486		"IDMA_FL_SEND_PAYLOAD_FIRST",
6487		"IDMA_FL_SEND_PAYLOAD",
6488		"IDMA_FL_REQ_NEXT_DATA_FL",
6489		"IDMA_FL_SEND_NEXT_PCIEHDR",
6490		"IDMA_FL_SEND_PADDING",
6491		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6492	};
6493	static const u32 sge_regs[] = {
6494		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6495		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6496		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6497	};
6498	const char * const *sge_idma_decode;
6499	int sge_idma_decode_nstates;
6500	int i;
6501	unsigned int chip_version = chip_id(adapter);
6502
6503	/* Select the right set of decode strings to dump depending on the
6504	 * adapter chip type.
6505	 */
6506	switch (chip_version) {
6507	case CHELSIO_T4:
6508		sge_idma_decode = (const char * const *)t4_decode;
6509		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6510		break;
6511
6512	case CHELSIO_T5:
6513		sge_idma_decode = (const char * const *)t5_decode;
6514		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6515		break;
6516
6517	case CHELSIO_T6:
6518		sge_idma_decode = (const char * const *)t6_decode;
6519		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6520		break;
6521
6522	default:
6523		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6524		return;
6525	}
6526
6527	if (state < sge_idma_decode_nstates)
6528		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6529	else
6530		CH_WARN(adapter, "idma state %d unknown\n", state);
6531
6532	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6533		CH_WARN(adapter, "SGE register %#x value %#x\n",
6534			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6535}
6536
6537/**
6538 *      t4_sge_ctxt_flush - flush the SGE context cache
6539 *      @adap: the adapter
6540 *      @mbox: mailbox to use for the FW command
6541 *
6542 *      Issues a FW command through the given mailbox to flush the
6543 *      SGE context cache.
6544 */
6545int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6546{
6547	int ret;
6548	u32 ldst_addrspace;
6549	struct fw_ldst_cmd c;
6550
6551	memset(&c, 0, sizeof(c));
6552	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6553	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6554					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6555					ldst_addrspace);
6556	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6557	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6558
6559	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6560	return ret;
6561}
6562
6563/**
6564 *      t4_fw_hello - establish communication with FW
6565 *      @adap: the adapter
6566 *      @mbox: mailbox to use for the FW command
6567 *      @evt_mbox: mailbox to receive async FW events
6568 *      @master: specifies the caller's willingness to be the device master
6569 *	@state: returns the current device state (if non-NULL)
6570 *
6571 *	Issues a command to establish communication with FW.  Returns either
6572 *	an error (negative integer) or the mailbox of the Master PF.
6573 */
6574int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6575		enum dev_master master, enum dev_state *state)
6576{
6577	int ret;
6578	struct fw_hello_cmd c;
6579	u32 v;
6580	unsigned int master_mbox;
6581	int retries = FW_CMD_HELLO_RETRIES;
6582
6583retry:
6584	memset(&c, 0, sizeof(c));
6585	INIT_CMD(c, HELLO, WRITE);
6586	c.err_to_clearinit = cpu_to_be32(
6587		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6588		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6589		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6590					mbox : M_FW_HELLO_CMD_MBMASTER) |
6591		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6592		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6593		F_FW_HELLO_CMD_CLEARINIT);
6594
6595	/*
6596	 * Issue the HELLO command to the firmware.  If it's not successful
6597	 * but indicates that we got a "busy" or "timeout" condition, retry
6598	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6599	 * retry limit, check to see if the firmware left us any error
6600	 * information and report that if so ...
6601	 */
6602	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6603	if (ret != FW_SUCCESS) {
6604		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6605			goto retry;
6606		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6607			t4_report_fw_error(adap);
6608		return ret;
6609	}
6610
6611	v = be32_to_cpu(c.err_to_clearinit);
6612	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6613	if (state) {
6614		if (v & F_FW_HELLO_CMD_ERR)
6615			*state = DEV_STATE_ERR;
6616		else if (v & F_FW_HELLO_CMD_INIT)
6617			*state = DEV_STATE_INIT;
6618		else
6619			*state = DEV_STATE_UNINIT;
6620	}
6621
6622	/*
6623	 * If we're not the Master PF then we need to wait around for the
6624	 * Master PF Driver to finish setting up the adapter.
6625	 *
6626	 * Note that we also do this wait if we're a non-Master-capable PF and
6627	 * there is no current Master PF; a Master PF may show up momentarily
6628	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6629	 * OS loads lots of different drivers rapidly at the same time).  In
6630	 * this case, the Master PF returned by the firmware will be
6631	 * M_PCIE_FW_MASTER so the test below will work ...
6632	 */
6633	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6634	    master_mbox != mbox) {
6635		int waiting = FW_CMD_HELLO_TIMEOUT;
6636
6637		/*
6638		 * Wait for the firmware to either indicate an error or
6639		 * initialized state.  If we see either of these we bail out
6640		 * and report the issue to the caller.  If we exhaust the
6641		 * "hello timeout" and we haven't exhausted our retries, try
6642		 * again.  Otherwise bail with a timeout error.
6643		 */
6644		for (;;) {
6645			u32 pcie_fw;
6646
6647			msleep(50);
6648			waiting -= 50;
6649
6650			/*
6651			 * If neither Error nor Initialialized are indicated
6652			 * by the firmware keep waiting till we exhaust our
6653			 * timeout ... and then retry if we haven't exhausted
6654			 * our retries ...
6655			 */
6656			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6657			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6658				if (waiting <= 0) {
6659					if (retries-- > 0)
6660						goto retry;
6661
6662					return -ETIMEDOUT;
6663				}
6664				continue;
6665			}
6666
6667			/*
6668			 * We either have an Error or Initialized condition
6669			 * report errors preferentially.
6670			 */
6671			if (state) {
6672				if (pcie_fw & F_PCIE_FW_ERR)
6673					*state = DEV_STATE_ERR;
6674				else if (pcie_fw & F_PCIE_FW_INIT)
6675					*state = DEV_STATE_INIT;
6676			}
6677
6678			/*
6679			 * If we arrived before a Master PF was selected and
6680			 * there's not a valid Master PF, grab its identity
6681			 * for our caller.
6682			 */
6683			if (master_mbox == M_PCIE_FW_MASTER &&
6684			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6685				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6686			break;
6687		}
6688	}
6689
6690	return master_mbox;
6691}
6692
6693/**
6694 *	t4_fw_bye - end communication with FW
6695 *	@adap: the adapter
6696 *	@mbox: mailbox to use for the FW command
6697 *
6698 *	Issues a command to terminate communication with FW.
6699 */
6700int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6701{
6702	struct fw_bye_cmd c;
6703
6704	memset(&c, 0, sizeof(c));
6705	INIT_CMD(c, BYE, WRITE);
6706	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6707}
6708
6709/**
6710 *	t4_fw_reset - issue a reset to FW
6711 *	@adap: the adapter
6712 *	@mbox: mailbox to use for the FW command
6713 *	@reset: specifies the type of reset to perform
6714 *
6715 *	Issues a reset command of the specified type to FW.
6716 */
6717int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6718{
6719	struct fw_reset_cmd c;
6720
6721	memset(&c, 0, sizeof(c));
6722	INIT_CMD(c, RESET, WRITE);
6723	c.val = cpu_to_be32(reset);
6724	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6725}
6726
6727/**
6728 *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6729 *	@adap: the adapter
6730 *	@mbox: mailbox to use for the FW RESET command (if desired)
6731 *	@force: force uP into RESET even if FW RESET command fails
6732 *
6733 *	Issues a RESET command to firmware (if desired) with a HALT indication
6734 *	and then puts the microprocessor into RESET state.  The RESET command
6735 *	will only be issued if a legitimate mailbox is provided (mbox <=
6736 *	M_PCIE_FW_MASTER).
6737 *
6738 *	This is generally used in order for the host to safely manipulate the
6739 *	adapter without fear of conflicting with whatever the firmware might
6740 *	be doing.  The only way out of this state is to RESTART the firmware
6741 *	...
6742 */
6743int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6744{
6745	int ret = 0;
6746
6747	/*
6748	 * If a legitimate mailbox is provided, issue a RESET command
6749	 * with a HALT indication.
6750	 */
6751	if (mbox <= M_PCIE_FW_MASTER) {
6752		struct fw_reset_cmd c;
6753
6754		memset(&c, 0, sizeof(c));
6755		INIT_CMD(c, RESET, WRITE);
6756		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6757		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6758		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6759	}
6760
6761	/*
6762	 * Normally we won't complete the operation if the firmware RESET
6763	 * command fails but if our caller insists we'll go ahead and put the
6764	 * uP into RESET.  This can be useful if the firmware is hung or even
6765	 * missing ...  We'll have to take the risk of putting the uP into
6766	 * RESET without the cooperation of firmware in that case.
6767	 *
6768	 * We also force the firmware's HALT flag to be on in case we bypassed
6769	 * the firmware RESET command above or we're dealing with old firmware
6770	 * which doesn't have the HALT capability.  This will serve as a flag
6771	 * for the incoming firmware to know that it's coming out of a HALT
6772	 * rather than a RESET ... if it's new enough to understand that ...
6773	 */
6774	if (ret == 0 || force) {
6775		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6776		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6777				 F_PCIE_FW_HALT);
6778	}
6779
6780	/*
6781	 * And we always return the result of the firmware RESET command
6782	 * even when we force the uP into RESET ...
6783	 */
6784	return ret;
6785}
6786
6787/**
6788 *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6789 *	@adap: the adapter
6790 *	@reset: if we want to do a RESET to restart things
6791 *
6792 *	Restart firmware previously halted by t4_fw_halt().  On successful
6793 *	return the previous PF Master remains as the new PF Master and there
6794 *	is no need to issue a new HELLO command, etc.
6795 *
6796 *	We do this in two ways:
6797 *
6798 *	 1. If we're dealing with newer firmware we'll simply want to take
6799 *	    the chip's microprocessor out of RESET.  This will cause the
6800 *	    firmware to start up from its start vector.  And then we'll loop
6801 *	    until the firmware indicates it's started again (PCIE_FW.HALT
6802 *	    reset to 0) or we timeout.
6803 *
6804 *	 2. If we're dealing with older firmware then we'll need to RESET
6805 *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6806 *	    flag and automatically RESET itself on startup.
6807 */
6808int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6809{
6810	if (reset) {
6811		/*
6812		 * Since we're directing the RESET instead of the firmware
6813		 * doing it automatically, we need to clear the PCIE_FW.HALT
6814		 * bit.
6815		 */
6816		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6817
6818		/*
6819		 * If we've been given a valid mailbox, first try to get the
6820		 * firmware to do the RESET.  If that works, great and we can
6821		 * return success.  Otherwise, if we haven't been given a
6822		 * valid mailbox or the RESET command failed, fall back to
6823		 * hitting the chip with a hammer.
6824		 */
6825		if (mbox <= M_PCIE_FW_MASTER) {
6826			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6827			msleep(100);
6828			if (t4_fw_reset(adap, mbox,
6829					F_PIORST | F_PIORSTMODE) == 0)
6830				return 0;
6831		}
6832
6833		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6834		msleep(2000);
6835	} else {
6836		int ms;
6837
6838		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6839		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6840			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6841				return FW_SUCCESS;
6842			msleep(100);
6843			ms += 100;
6844		}
6845		return -ETIMEDOUT;
6846	}
6847	return 0;
6848}
6849
6850/**
6851 *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6852 *	@adap: the adapter
6853 *	@mbox: mailbox to use for the FW RESET command (if desired)
6854 *	@fw_data: the firmware image to write
6855 *	@size: image size
6856 *	@force: force upgrade even if firmware doesn't cooperate
6857 *
6858 *	Perform all of the steps necessary for upgrading an adapter's
6859 *	firmware image.  Normally this requires the cooperation of the
6860 *	existing firmware in order to halt all existing activities
6861 *	but if an invalid mailbox token is passed in we skip that step
6862 *	(though we'll still put the adapter microprocessor into RESET in
6863 *	that case).
6864 *
6865 *	On successful return the new firmware will have been loaded and
6866 *	the adapter will have been fully RESET losing all previous setup
6867 *	state.  On unsuccessful return the adapter may be completely hosed ...
6868 *	positive errno indicates that the adapter is ~probably~ intact, a
6869 *	negative errno indicates that things are looking bad ...
6870 */
6871int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6872		  const u8 *fw_data, unsigned int size, int force)
6873{
6874	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6875	unsigned int bootstrap =
6876	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6877	int reset, ret;
6878
6879	if (!t4_fw_matches_chip(adap, fw_hdr))
6880		return -EINVAL;
6881
6882	if (!bootstrap) {
6883		ret = t4_fw_halt(adap, mbox, force);
6884		if (ret < 0 && !force)
6885			return ret;
6886	}
6887
6888	ret = t4_load_fw(adap, fw_data, size);
6889	if (ret < 0 || bootstrap)
6890		return ret;
6891
6892	/*
6893	 * Older versions of the firmware don't understand the new
6894	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6895	 * restart.  So for newly loaded older firmware we'll have to do the
6896	 * RESET for it so it starts up on a clean slate.  We can tell if
6897	 * the newly loaded firmware will handle this right by checking
6898	 * its header flags to see if it advertises the capability.
6899	 */
6900	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6901	return t4_fw_restart(adap, mbox, reset);
6902}
6903
6904/*
6905 * Card doesn't have a firmware, install one.
6906 */
6907int t4_fw_forceinstall(struct adapter *adap, const u8 *fw_data,
6908    unsigned int size)
6909{
6910	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6911	unsigned int bootstrap =
6912	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6913	int ret;
6914
6915	if (!t4_fw_matches_chip(adap, fw_hdr) || bootstrap)
6916		return -EINVAL;
6917
6918	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6919	t4_write_reg(adap, A_PCIE_FW, 0);	/* Clobber internal state */
6920	ret = t4_load_fw(adap, fw_data, size);
6921	if (ret < 0)
6922		return ret;
6923	t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6924	msleep(1000);
6925
6926	return (0);
6927}
6928
6929/**
6930 *	t4_fw_initialize - ask FW to initialize the device
6931 *	@adap: the adapter
6932 *	@mbox: mailbox to use for the FW command
6933 *
6934 *	Issues a command to FW to partially initialize the device.  This
6935 *	performs initialization that generally doesn't depend on user input.
6936 */
6937int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6938{
6939	struct fw_initialize_cmd c;
6940
6941	memset(&c, 0, sizeof(c));
6942	INIT_CMD(c, INITIALIZE, WRITE);
6943	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6944}
6945
6946/**
6947 *	t4_query_params_rw - query FW or device parameters
6948 *	@adap: the adapter
6949 *	@mbox: mailbox to use for the FW command
6950 *	@pf: the PF
6951 *	@vf: the VF
6952 *	@nparams: the number of parameters
6953 *	@params: the parameter names
6954 *	@val: the parameter values
6955 *	@rw: Write and read flag
6956 *
6957 *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6958 *	queried at once.
6959 */
6960int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6961		       unsigned int vf, unsigned int nparams, const u32 *params,
6962		       u32 *val, int rw)
6963{
6964	int i, ret;
6965	struct fw_params_cmd c;
6966	__be32 *p = &c.param[0].mnem;
6967
6968	if (nparams > 7)
6969		return -EINVAL;
6970
6971	memset(&c, 0, sizeof(c));
6972	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6973				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
6974				  V_FW_PARAMS_CMD_PFN(pf) |
6975				  V_FW_PARAMS_CMD_VFN(vf));
6976	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6977
6978	for (i = 0; i < nparams; i++) {
6979		*p++ = cpu_to_be32(*params++);
6980		if (rw)
6981			*p = cpu_to_be32(*(val + i));
6982		p++;
6983	}
6984
6985	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6986	if (ret == 0)
6987		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6988			*val++ = be32_to_cpu(*p);
6989	return ret;
6990}
6991
6992int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6993		    unsigned int vf, unsigned int nparams, const u32 *params,
6994		    u32 *val)
6995{
6996	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6997}
6998
6999/**
7000 *      t4_set_params_timeout - sets FW or device parameters
7001 *      @adap: the adapter
7002 *      @mbox: mailbox to use for the FW command
7003 *      @pf: the PF
7004 *      @vf: the VF
7005 *      @nparams: the number of parameters
7006 *      @params: the parameter names
7007 *      @val: the parameter values
7008 *      @timeout: the timeout time
7009 *
7010 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7011 *      specified at once.
7012 */
7013int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7014			  unsigned int pf, unsigned int vf,
7015			  unsigned int nparams, const u32 *params,
7016			  const u32 *val, int timeout)
7017{
7018	struct fw_params_cmd c;
7019	__be32 *p = &c.param[0].mnem;
7020
7021	if (nparams > 7)
7022		return -EINVAL;
7023
7024	memset(&c, 0, sizeof(c));
7025	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7026				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7027				  V_FW_PARAMS_CMD_PFN(pf) |
7028				  V_FW_PARAMS_CMD_VFN(vf));
7029	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7030
7031	while (nparams--) {
7032		*p++ = cpu_to_be32(*params++);
7033		*p++ = cpu_to_be32(*val++);
7034	}
7035
7036	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7037}
7038
7039/**
7040 *	t4_set_params - sets FW or device parameters
7041 *	@adap: the adapter
7042 *	@mbox: mailbox to use for the FW command
7043 *	@pf: the PF
7044 *	@vf: the VF
7045 *	@nparams: the number of parameters
7046 *	@params: the parameter names
7047 *	@val: the parameter values
7048 *
7049 *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7050 *	specified at once.
7051 */
7052int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7053		  unsigned int vf, unsigned int nparams, const u32 *params,
7054		  const u32 *val)
7055{
7056	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7057				     FW_CMD_MAX_TIMEOUT);
7058}
7059
7060/**
7061 *	t4_cfg_pfvf - configure PF/VF resource limits
7062 *	@adap: the adapter
7063 *	@mbox: mailbox to use for the FW command
7064 *	@pf: the PF being configured
7065 *	@vf: the VF being configured
7066 *	@txq: the max number of egress queues
7067 *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7068 *	@rxqi: the max number of interrupt-capable ingress queues
7069 *	@rxq: the max number of interruptless ingress queues
7070 *	@tc: the PCI traffic class
7071 *	@vi: the max number of virtual interfaces
7072 *	@cmask: the channel access rights mask for the PF/VF
7073 *	@pmask: the port access rights mask for the PF/VF
7074 *	@nexact: the maximum number of exact MPS filters
7075 *	@rcaps: read capabilities
7076 *	@wxcaps: write/execute capabilities
7077 *
7078 *	Configures resource limits and capabilities for a physical or virtual
7079 *	function.
7080 */
7081int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7082		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7083		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7084		unsigned int vi, unsigned int cmask, unsigned int pmask,
7085		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7086{
7087	struct fw_pfvf_cmd c;
7088
7089	memset(&c, 0, sizeof(c));
7090	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7091				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7092				  V_FW_PFVF_CMD_VFN(vf));
7093	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7094	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7095				     V_FW_PFVF_CMD_NIQ(rxq));
7096	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7097				    V_FW_PFVF_CMD_PMASK(pmask) |
7098				    V_FW_PFVF_CMD_NEQ(txq));
7099	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7100				      V_FW_PFVF_CMD_NVI(vi) |
7101				      V_FW_PFVF_CMD_NEXACTF(nexact));
7102	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7103				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7104				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7105	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7106}
7107
7108/**
7109 *	t4_alloc_vi_func - allocate a virtual interface
7110 *	@adap: the adapter
7111 *	@mbox: mailbox to use for the FW command
7112 *	@port: physical port associated with the VI
7113 *	@pf: the PF owning the VI
7114 *	@vf: the VF owning the VI
7115 *	@nmac: number of MAC addresses needed (1 to 5)
7116 *	@mac: the MAC addresses of the VI
7117 *	@rss_size: size of RSS table slice associated with this VI
7118 *	@portfunc: which Port Application Function MAC Address is desired
7119 *	@idstype: Intrusion Detection Type
7120 *
7121 *	Allocates a virtual interface for the given physical port.  If @mac is
7122 *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7123 *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7124 *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7125 *	stored consecutively so the space needed is @nmac * 6 bytes.
7126 *	Returns a negative error number or the non-negative VI id.
7127 */
7128int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7129		     unsigned int port, unsigned int pf, unsigned int vf,
7130		     unsigned int nmac, u8 *mac, u16 *rss_size,
7131		     unsigned int portfunc, unsigned int idstype)
7132{
7133	int ret;
7134	struct fw_vi_cmd c;
7135
7136	memset(&c, 0, sizeof(c));
7137	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7138				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7139				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7140	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7141	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7142				     V_FW_VI_CMD_FUNC(portfunc));
7143	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7144	c.nmac = nmac - 1;
7145	if(!rss_size)
7146		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7147
7148	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7149	if (ret)
7150		return ret;
7151
7152	if (mac) {
7153		memcpy(mac, c.mac, sizeof(c.mac));
7154		switch (nmac) {
7155		case 5:
7156			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7157		case 4:
7158			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7159		case 3:
7160			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7161		case 2:
7162			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7163		}
7164	}
7165	if (rss_size)
7166		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7167	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7168}
7169
7170/**
7171 *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7172 *      @adap: the adapter
7173 *      @mbox: mailbox to use for the FW command
7174 *      @port: physical port associated with the VI
7175 *      @pf: the PF owning the VI
7176 *      @vf: the VF owning the VI
7177 *      @nmac: number of MAC addresses needed (1 to 5)
7178 *      @mac: the MAC addresses of the VI
7179 *      @rss_size: size of RSS table slice associated with this VI
7180 *
7181 *	backwards compatible and convieniance routine to allocate a Virtual
7182 *	Interface with a Ethernet Port Application Function and Intrustion
7183 *	Detection System disabled.
7184 */
7185int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7186		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7187		u16 *rss_size)
7188{
7189	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7190				FW_VI_FUNC_ETH, 0);
7191}
7192
7193/**
7194 * 	t4_free_vi - free a virtual interface
7195 * 	@adap: the adapter
7196 * 	@mbox: mailbox to use for the FW command
7197 * 	@pf: the PF owning the VI
7198 * 	@vf: the VF owning the VI
7199 * 	@viid: virtual interface identifiler
7200 *
7201 * 	Free a previously allocated virtual interface.
7202 */
7203int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7204	       unsigned int vf, unsigned int viid)
7205{
7206	struct fw_vi_cmd c;
7207
7208	memset(&c, 0, sizeof(c));
7209	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7210				  F_FW_CMD_REQUEST |
7211				  F_FW_CMD_EXEC |
7212				  V_FW_VI_CMD_PFN(pf) |
7213				  V_FW_VI_CMD_VFN(vf));
7214	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7215	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7216
7217	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7218}
7219
7220/**
7221 *	t4_set_rxmode - set Rx properties of a virtual interface
7222 *	@adap: the adapter
7223 *	@mbox: mailbox to use for the FW command
7224 *	@viid: the VI id
7225 *	@mtu: the new MTU or -1
7226 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7227 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7228 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7229 *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7230 *	@sleep_ok: if true we may sleep while awaiting command completion
7231 *
7232 *	Sets Rx properties of a virtual interface.
7233 */
7234int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7235		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7236		  bool sleep_ok)
7237{
7238	struct fw_vi_rxmode_cmd c;
7239
7240	/* convert to FW values */
7241	if (mtu < 0)
7242		mtu = M_FW_VI_RXMODE_CMD_MTU;
7243	if (promisc < 0)
7244		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7245	if (all_multi < 0)
7246		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7247	if (bcast < 0)
7248		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7249	if (vlanex < 0)
7250		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7251
7252	memset(&c, 0, sizeof(c));
7253	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7254				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7255				   V_FW_VI_RXMODE_CMD_VIID(viid));
7256	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7257	c.mtu_to_vlanexen =
7258		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7259			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7260			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7261			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7262			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7263	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7264}
7265
7266/**
7267 *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7268 *	@adap: the adapter
7269 *	@mbox: mailbox to use for the FW command
7270 *	@viid: the VI id
7271 *	@free: if true any existing filters for this VI id are first removed
7272 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7273 *	@addr: the MAC address(es)
7274 *	@idx: where to store the index of each allocated filter
7275 *	@hash: pointer to hash address filter bitmap
7276 *	@sleep_ok: call is allowed to sleep
7277 *
7278 *	Allocates an exact-match filter for each of the supplied addresses and
7279 *	sets it to the corresponding address.  If @idx is not %NULL it should
7280 *	have at least @naddr entries, each of which will be set to the index of
7281 *	the filter allocated for the corresponding MAC address.  If a filter
7282 *	could not be allocated for an address its index is set to 0xffff.
7283 *	If @hash is not %NULL addresses that fail to allocate an exact filter
7284 *	are hashed and update the hash filter bitmap pointed at by @hash.
7285 *
7286 *	Returns a negative error number or the number of filters allocated.
7287 */
7288int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7289		      unsigned int viid, bool free, unsigned int naddr,
7290		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7291{
7292	int offset, ret = 0;
7293	struct fw_vi_mac_cmd c;
7294	unsigned int nfilters = 0;
7295	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7296	unsigned int rem = naddr;
7297
7298	if (naddr > max_naddr)
7299		return -EINVAL;
7300
7301	for (offset = 0; offset < naddr ; /**/) {
7302		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7303					 ? rem
7304					 : ARRAY_SIZE(c.u.exact));
7305		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7306						     u.exact[fw_naddr]), 16);
7307		struct fw_vi_mac_exact *p;
7308		int i;
7309
7310		memset(&c, 0, sizeof(c));
7311		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7312					   F_FW_CMD_REQUEST |
7313					   F_FW_CMD_WRITE |
7314					   V_FW_CMD_EXEC(free) |
7315					   V_FW_VI_MAC_CMD_VIID(viid));
7316		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7317						  V_FW_CMD_LEN16(len16));
7318
7319		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7320			p->valid_to_idx =
7321				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7322					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7323			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7324		}
7325
7326		/*
7327		 * It's okay if we run out of space in our MAC address arena.
7328		 * Some of the addresses we submit may get stored so we need
7329		 * to run through the reply to see what the results were ...
7330		 */
7331		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7332		if (ret && ret != -FW_ENOMEM)
7333			break;
7334
7335		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7336			u16 index = G_FW_VI_MAC_CMD_IDX(
7337						be16_to_cpu(p->valid_to_idx));
7338
7339			if (idx)
7340				idx[offset+i] = (index >=  max_naddr
7341						 ? 0xffff
7342						 : index);
7343			if (index < max_naddr)
7344				nfilters++;
7345			else if (hash)
7346				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7347		}
7348
7349		free = false;
7350		offset += fw_naddr;
7351		rem -= fw_naddr;
7352	}
7353
7354	if (ret == 0 || ret == -FW_ENOMEM)
7355		ret = nfilters;
7356	return ret;
7357}
7358
7359/**
7360 *	t4_change_mac - modifies the exact-match filter for a MAC address
7361 *	@adap: the adapter
7362 *	@mbox: mailbox to use for the FW command
7363 *	@viid: the VI id
7364 *	@idx: index of existing filter for old value of MAC address, or -1
7365 *	@addr: the new MAC address value
7366 *	@persist: whether a new MAC allocation should be persistent
7367 *	@add_smt: if true also add the address to the HW SMT
7368 *
7369 *	Modifies an exact-match filter and sets it to the new MAC address if
7370 *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7371 *	latter case the address is added persistently if @persist is %true.
7372 *
7373 *	Note that in general it is not possible to modify the value of a given
7374 *	filter so the generic way to modify an address filter is to free the one
7375 *	being used by the old address value and allocate a new filter for the
7376 *	new address value.
7377 *
7378 *	Returns a negative error number or the index of the filter with the new
7379 *	MAC value.  Note that this index may differ from @idx.
7380 */
7381int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7382		  int idx, const u8 *addr, bool persist, bool add_smt)
7383{
7384	int ret, mode;
7385	struct fw_vi_mac_cmd c;
7386	struct fw_vi_mac_exact *p = c.u.exact;
7387	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7388
7389	if (idx < 0)		/* new allocation */
7390		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7391	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7392
7393	memset(&c, 0, sizeof(c));
7394	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7395				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7396				   V_FW_VI_MAC_CMD_VIID(viid));
7397	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7398	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7399				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7400				      V_FW_VI_MAC_CMD_IDX(idx));
7401	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7402
7403	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7404	if (ret == 0) {
7405		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7406		if (ret >= max_mac_addr)
7407			ret = -ENOMEM;
7408	}
7409	return ret;
7410}
7411
7412/**
7413 *	t4_set_addr_hash - program the MAC inexact-match hash filter
7414 *	@adap: the adapter
7415 *	@mbox: mailbox to use for the FW command
7416 *	@viid: the VI id
7417 *	@ucast: whether the hash filter should also match unicast addresses
7418 *	@vec: the value to be written to the hash filter
7419 *	@sleep_ok: call is allowed to sleep
7420 *
7421 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7422 */
7423int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7424		     bool ucast, u64 vec, bool sleep_ok)
7425{
7426	struct fw_vi_mac_cmd c;
7427	u32 val;
7428
7429	memset(&c, 0, sizeof(c));
7430	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7431				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7432				   V_FW_VI_ENABLE_CMD_VIID(viid));
7433	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7434	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7435	c.freemacs_to_len16 = cpu_to_be32(val);
7436	c.u.hash.hashvec = cpu_to_be64(vec);
7437	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7438}
7439
7440/**
7441 *      t4_enable_vi_params - enable/disable a virtual interface
7442 *      @adap: the adapter
7443 *      @mbox: mailbox to use for the FW command
7444 *      @viid: the VI id
7445 *      @rx_en: 1=enable Rx, 0=disable Rx
7446 *      @tx_en: 1=enable Tx, 0=disable Tx
7447 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7448 *
7449 *      Enables/disables a virtual interface.  Note that setting DCB Enable
7450 *      only makes sense when enabling a Virtual Interface ...
7451 */
7452int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7453			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7454{
7455	struct fw_vi_enable_cmd c;
7456
7457	memset(&c, 0, sizeof(c));
7458	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7459				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7460				   V_FW_VI_ENABLE_CMD_VIID(viid));
7461	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7462				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7463				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7464				     FW_LEN16(c));
7465	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7466}
7467
7468/**
7469 *	t4_enable_vi - enable/disable a virtual interface
7470 *	@adap: the adapter
7471 *	@mbox: mailbox to use for the FW command
7472 *	@viid: the VI id
7473 *	@rx_en: 1=enable Rx, 0=disable Rx
7474 *	@tx_en: 1=enable Tx, 0=disable Tx
7475 *
7476 *	Enables/disables a virtual interface.  Note that setting DCB Enable
7477 *	only makes sense when enabling a Virtual Interface ...
7478 */
7479int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7480		 bool rx_en, bool tx_en)
7481{
7482	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7483}
7484
7485/**
7486 *	t4_identify_port - identify a VI's port by blinking its LED
7487 *	@adap: the adapter
7488 *	@mbox: mailbox to use for the FW command
7489 *	@viid: the VI id
7490 *	@nblinks: how many times to blink LED at 2.5 Hz
7491 *
7492 *	Identifies a VI's port by blinking its LED.
7493 */
7494int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7495		     unsigned int nblinks)
7496{
7497	struct fw_vi_enable_cmd c;
7498
7499	memset(&c, 0, sizeof(c));
7500	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7501				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7502				   V_FW_VI_ENABLE_CMD_VIID(viid));
7503	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7504	c.blinkdur = cpu_to_be16(nblinks);
7505	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7506}
7507
7508/**
7509 *	t4_iq_stop - stop an ingress queue and its FLs
7510 *	@adap: the adapter
7511 *	@mbox: mailbox to use for the FW command
7512 *	@pf: the PF owning the queues
7513 *	@vf: the VF owning the queues
7514 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7515 *	@iqid: ingress queue id
7516 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7517 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7518 *
7519 *	Stops an ingress queue and its associated FLs, if any.  This causes
7520 *	any current or future data/messages destined for these queues to be
7521 *	tossed.
7522 */
7523int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7524	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7525	       unsigned int fl0id, unsigned int fl1id)
7526{
7527	struct fw_iq_cmd c;
7528
7529	memset(&c, 0, sizeof(c));
7530	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7531				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7532				  V_FW_IQ_CMD_VFN(vf));
7533	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7534	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7535	c.iqid = cpu_to_be16(iqid);
7536	c.fl0id = cpu_to_be16(fl0id);
7537	c.fl1id = cpu_to_be16(fl1id);
7538	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7539}
7540
7541/**
7542 *	t4_iq_free - free an ingress queue and its FLs
7543 *	@adap: the adapter
7544 *	@mbox: mailbox to use for the FW command
7545 *	@pf: the PF owning the queues
7546 *	@vf: the VF owning the queues
7547 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7548 *	@iqid: ingress queue id
7549 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7550 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7551 *
7552 *	Frees an ingress queue and its associated FLs, if any.
7553 */
7554int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7555	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7556	       unsigned int fl0id, unsigned int fl1id)
7557{
7558	struct fw_iq_cmd c;
7559
7560	memset(&c, 0, sizeof(c));
7561	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7562				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7563				  V_FW_IQ_CMD_VFN(vf));
7564	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7565	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7566	c.iqid = cpu_to_be16(iqid);
7567	c.fl0id = cpu_to_be16(fl0id);
7568	c.fl1id = cpu_to_be16(fl1id);
7569	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7570}
7571
7572/**
7573 *	t4_eth_eq_free - free an Ethernet egress queue
7574 *	@adap: the adapter
7575 *	@mbox: mailbox to use for the FW command
7576 *	@pf: the PF owning the queue
7577 *	@vf: the VF owning the queue
7578 *	@eqid: egress queue id
7579 *
7580 *	Frees an Ethernet egress queue.
7581 */
7582int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7583		   unsigned int vf, unsigned int eqid)
7584{
7585	struct fw_eq_eth_cmd c;
7586
7587	memset(&c, 0, sizeof(c));
7588	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7589				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7590				  V_FW_EQ_ETH_CMD_PFN(pf) |
7591				  V_FW_EQ_ETH_CMD_VFN(vf));
7592	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7593	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7594	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7595}
7596
7597/**
7598 *	t4_ctrl_eq_free - free a control egress queue
7599 *	@adap: the adapter
7600 *	@mbox: mailbox to use for the FW command
7601 *	@pf: the PF owning the queue
7602 *	@vf: the VF owning the queue
7603 *	@eqid: egress queue id
7604 *
7605 *	Frees a control egress queue.
7606 */
7607int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7608		    unsigned int vf, unsigned int eqid)
7609{
7610	struct fw_eq_ctrl_cmd c;
7611
7612	memset(&c, 0, sizeof(c));
7613	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7614				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7615				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7616				  V_FW_EQ_CTRL_CMD_VFN(vf));
7617	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7618	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7619	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7620}
7621
7622/**
7623 *	t4_ofld_eq_free - free an offload egress queue
7624 *	@adap: the adapter
7625 *	@mbox: mailbox to use for the FW command
7626 *	@pf: the PF owning the queue
7627 *	@vf: the VF owning the queue
7628 *	@eqid: egress queue id
7629 *
7630 *	Frees a control egress queue.
7631 */
7632int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7633		    unsigned int vf, unsigned int eqid)
7634{
7635	struct fw_eq_ofld_cmd c;
7636
7637	memset(&c, 0, sizeof(c));
7638	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7639				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7640				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7641				  V_FW_EQ_OFLD_CMD_VFN(vf));
7642	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7643	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7644	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7645}
7646
7647/**
7648 *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7649 *	@link_down_rc: Link Down Reason Code
7650 *
7651 *	Returns a string representation of the Link Down Reason Code.
7652 */
7653const char *t4_link_down_rc_str(unsigned char link_down_rc)
7654{
7655	static const char *reason[] = {
7656		"Link Down",
7657		"Remote Fault",
7658		"Auto-negotiation Failure",
7659		"Reserved3",
7660		"Insufficient Airflow",
7661		"Unable To Determine Reason",
7662		"No RX Signal Detected",
7663		"Reserved7",
7664	};
7665
7666	if (link_down_rc >= ARRAY_SIZE(reason))
7667		return "Bad Reason Code";
7668
7669	return reason[link_down_rc];
7670}
7671
7672/*
7673 * Updates all fields owned by the common code in port_info and link_config
7674 * based on information provided by the firmware.  Does not touch any
7675 * requested_* field.
7676 */
7677static void handle_port_info(struct port_info *pi, const struct fw_port_info *p)
7678{
7679	struct link_config *lc = &pi->link_cfg;
7680	int speed;
7681	unsigned char fc, fec;
7682	u32 stat = be32_to_cpu(p->lstatus_to_modtype);
7683
7684	pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
7685	pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
7686	pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
7687	    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
7688
7689	lc->supported = be16_to_cpu(p->pcap);
7690	lc->advertising = be16_to_cpu(p->acap);
7691	lc->lp_advertising = be16_to_cpu(p->lpacap);
7692	lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7693	lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
7694
7695	speed = 0;
7696	if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7697		speed = 100;
7698	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7699		speed = 1000;
7700	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7701		speed = 10000;
7702	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
7703		speed = 25000;
7704	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7705		speed = 40000;
7706	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
7707		speed = 100000;
7708	lc->speed = speed;
7709
7710	fc = 0;
7711	if (stat & F_FW_PORT_CMD_RXPAUSE)
7712		fc |= PAUSE_RX;
7713	if (stat & F_FW_PORT_CMD_TXPAUSE)
7714		fc |= PAUSE_TX;
7715	lc->fc = fc;
7716
7717	fec = 0;
7718	if (lc->advertising & FW_PORT_CAP_FEC_RS)
7719		fec = FEC_RS;
7720	else if (lc->advertising & FW_PORT_CAP_FEC_BASER_RS)
7721		fec = FEC_BASER_RS;
7722	lc->fec = fec;
7723}
7724
7725/**
7726 *	t4_update_port_info - retrieve and update port information if changed
7727 *	@pi: the port_info
7728 *
7729 *	We issue a Get Port Information Command to the Firmware and, if
7730 *	successful, we check to see if anything is different from what we
7731 *	last recorded and update things accordingly.
7732 */
7733 int t4_update_port_info(struct port_info *pi)
7734 {
7735	struct fw_port_cmd port_cmd;
7736	int ret;
7737
7738	memset(&port_cmd, 0, sizeof port_cmd);
7739	port_cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
7740					    F_FW_CMD_REQUEST | F_FW_CMD_READ |
7741					    V_FW_PORT_CMD_PORTID(pi->tx_chan));
7742	port_cmd.action_to_len16 = cpu_to_be32(
7743		V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
7744		FW_LEN16(port_cmd));
7745	ret = t4_wr_mbox_ns(pi->adapter, pi->adapter->mbox,
7746			 &port_cmd, sizeof(port_cmd), &port_cmd);
7747	if (ret)
7748		return ret;
7749
7750	handle_port_info(pi, &port_cmd.u.info);
7751	return 0;
7752}
7753
7754/**
7755 *	t4_handle_fw_rpl - process a FW reply message
7756 *	@adap: the adapter
7757 *	@rpl: start of the FW message
7758 *
7759 *	Processes a FW message, such as link state change messages.
7760 */
7761int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7762{
7763	u8 opcode = *(const u8 *)rpl;
7764	const struct fw_port_cmd *p = (const void *)rpl;
7765	unsigned int action =
7766			G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7767
7768	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7769		/* link/module state change message */
7770		int i, old_ptype, old_mtype;
7771		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7772		struct port_info *pi = NULL;
7773		struct link_config *lc, *old_lc;
7774
7775		for_each_port(adap, i) {
7776			pi = adap2pinfo(adap, i);
7777			if (pi->tx_chan == chan)
7778				break;
7779		}
7780
7781		lc = &pi->link_cfg;
7782		PORT_LOCK(pi);
7783		old_lc = &pi->old_link_cfg;
7784		old_ptype = pi->port_type;
7785		old_mtype = pi->mod_type;
7786		handle_port_info(pi, &p->u.info);
7787		PORT_UNLOCK(pi);
7788		if (old_ptype != pi->port_type || old_mtype != pi->mod_type) {
7789			t4_os_portmod_changed(pi);
7790		}
7791		PORT_LOCK(pi);
7792		if (old_lc->link_ok != lc->link_ok ||
7793		    old_lc->speed != lc->speed ||
7794		    old_lc->fec != lc->fec ||
7795		    old_lc->fc != lc->fc) {
7796			t4_os_link_changed(pi);
7797			*old_lc = *lc;
7798		}
7799		PORT_UNLOCK(pi);
7800	} else {
7801		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7802		return -EINVAL;
7803	}
7804	return 0;
7805}
7806
7807/**
7808 *	get_pci_mode - determine a card's PCI mode
7809 *	@adapter: the adapter
7810 *	@p: where to store the PCI settings
7811 *
7812 *	Determines a card's PCI mode and associated parameters, such as speed
7813 *	and width.
7814 */
7815static void get_pci_mode(struct adapter *adapter,
7816				   struct pci_params *p)
7817{
7818	u16 val;
7819	u32 pcie_cap;
7820
7821	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7822	if (pcie_cap) {
7823		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7824		p->speed = val & PCI_EXP_LNKSTA_CLS;
7825		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7826	}
7827}
7828
7829struct flash_desc {
7830	u32 vendor_and_model_id;
7831	u32 size_mb;
7832};
7833
7834int t4_get_flash_params(struct adapter *adapter)
7835{
7836	/*
7837	 * Table for non-standard supported Flash parts.  Note, all Flash
7838	 * parts must have 64KB sectors.
7839	 */
7840	static struct flash_desc supported_flash[] = {
7841		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
7842	};
7843
7844	int ret;
7845	u32 flashid = 0;
7846	unsigned int part, manufacturer;
7847	unsigned int density, size = 0;
7848
7849
7850	/*
7851	 * Issue a Read ID Command to the Flash part.  We decode supported
7852	 * Flash parts and their sizes from this.  There's a newer Query
7853	 * Command which can retrieve detailed geometry information but many
7854	 * Flash parts don't support it.
7855	 */
7856	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7857	if (!ret)
7858		ret = sf1_read(adapter, 3, 0, 1, &flashid);
7859	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
7860	if (ret < 0)
7861		return ret;
7862
7863	/*
7864	 * Check to see if it's one of our non-standard supported Flash parts.
7865	 */
7866	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
7867		if (supported_flash[part].vendor_and_model_id == flashid) {
7868			adapter->params.sf_size =
7869				supported_flash[part].size_mb;
7870			adapter->params.sf_nsec =
7871				adapter->params.sf_size / SF_SEC_SIZE;
7872			goto found;
7873		}
7874
7875	/*
7876	 * Decode Flash part size.  The code below looks repetative with
7877	 * common encodings, but that's not guaranteed in the JEDEC
7878	 * specification for the Read JADEC ID command.  The only thing that
7879	 * we're guaranteed by the JADEC specification is where the
7880	 * Manufacturer ID is in the returned result.  After that each
7881	 * Manufacturer ~could~ encode things completely differently.
7882	 * Note, all Flash parts must have 64KB sectors.
7883	 */
7884	manufacturer = flashid & 0xff;
7885	switch (manufacturer) {
7886	case 0x20: /* Micron/Numonix */
7887		/*
7888		 * This Density -> Size decoding table is taken from Micron
7889		 * Data Sheets.
7890		 */
7891		density = (flashid >> 16) & 0xff;
7892		switch (density) {
7893		case 0x14: size = 1 << 20; break; /*   1MB */
7894		case 0x15: size = 1 << 21; break; /*   2MB */
7895		case 0x16: size = 1 << 22; break; /*   4MB */
7896		case 0x17: size = 1 << 23; break; /*   8MB */
7897		case 0x18: size = 1 << 24; break; /*  16MB */
7898		case 0x19: size = 1 << 25; break; /*  32MB */
7899		case 0x20: size = 1 << 26; break; /*  64MB */
7900		case 0x21: size = 1 << 27; break; /* 128MB */
7901		case 0x22: size = 1 << 28; break; /* 256MB */
7902		}
7903		break;
7904
7905	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
7906		/*
7907		 * This Density -> Size decoding table is taken from ISSI
7908		 * Data Sheets.
7909		 */
7910		density = (flashid >> 16) & 0xff;
7911		switch (density) {
7912		case 0x16: size = 1 << 25; break; /*  32MB */
7913		case 0x17: size = 1 << 26; break; /*  64MB */
7914		}
7915		break;
7916
7917	case 0xc2: /* Macronix */
7918		/*
7919		 * This Density -> Size decoding table is taken from Macronix
7920		 * Data Sheets.
7921		 */
7922		density = (flashid >> 16) & 0xff;
7923		switch (density) {
7924		case 0x17: size = 1 << 23; break; /*   8MB */
7925		case 0x18: size = 1 << 24; break; /*  16MB */
7926		}
7927		break;
7928
7929	case 0xef: /* Winbond */
7930		/*
7931		 * This Density -> Size decoding table is taken from Winbond
7932		 * Data Sheets.
7933		 */
7934		density = (flashid >> 16) & 0xff;
7935		switch (density) {
7936		case 0x17: size = 1 << 23; break; /*   8MB */
7937		case 0x18: size = 1 << 24; break; /*  16MB */
7938		}
7939		break;
7940	}
7941
7942	/* If we didn't recognize the FLASH part, that's no real issue: the
7943	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
7944	 * use a FLASH part which is at least 4MB in size and has 64KB
7945	 * sectors.  The unrecognized FLASH part is likely to be much larger
7946	 * than 4MB, but that's all we really need.
7947	 */
7948	if (size == 0) {
7949		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
7950		size = 1 << 22;
7951	}
7952
7953	/*
7954	 * Store decoded Flash size and fall through into vetting code.
7955	 */
7956	adapter->params.sf_size = size;
7957	adapter->params.sf_nsec = size / SF_SEC_SIZE;
7958
7959 found:
7960	/*
7961	 * We should ~probably~ reject adapters with FLASHes which are too
7962	 * small but we have some legacy FPGAs with small FLASHes that we'd
7963	 * still like to use.  So instead we emit a scary message ...
7964	 */
7965	if (adapter->params.sf_size < FLASH_MIN_SIZE)
7966		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
7967			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
7968
7969	return 0;
7970}
7971
7972static void set_pcie_completion_timeout(struct adapter *adapter,
7973						  u8 range)
7974{
7975	u16 val;
7976	u32 pcie_cap;
7977
7978	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7979	if (pcie_cap) {
7980		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7981		val &= 0xfff0;
7982		val |= range ;
7983		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
7984	}
7985}
7986
7987const struct chip_params *t4_get_chip_params(int chipid)
7988{
7989	static const struct chip_params chip_params[] = {
7990		{
7991			/* T4 */
7992			.nchan = NCHAN,
7993			.pm_stats_cnt = PM_NSTATS,
7994			.cng_ch_bits_log = 2,
7995			.nsched_cls = 15,
7996			.cim_num_obq = CIM_NUM_OBQ,
7997			.mps_rplc_size = 128,
7998			.vfcount = 128,
7999			.sge_fl_db = F_DBPRIO,
8000			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
8001		},
8002		{
8003			/* T5 */
8004			.nchan = NCHAN,
8005			.pm_stats_cnt = PM_NSTATS,
8006			.cng_ch_bits_log = 2,
8007			.nsched_cls = 16,
8008			.cim_num_obq = CIM_NUM_OBQ_T5,
8009			.mps_rplc_size = 128,
8010			.vfcount = 128,
8011			.sge_fl_db = F_DBPRIO | F_DBTYPE,
8012			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8013		},
8014		{
8015			/* T6 */
8016			.nchan = T6_NCHAN,
8017			.pm_stats_cnt = T6_PM_NSTATS,
8018			.cng_ch_bits_log = 3,
8019			.nsched_cls = 16,
8020			.cim_num_obq = CIM_NUM_OBQ_T5,
8021			.mps_rplc_size = 256,
8022			.vfcount = 256,
8023			.sge_fl_db = 0,
8024			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8025		},
8026	};
8027
8028	chipid -= CHELSIO_T4;
8029	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
8030		return NULL;
8031
8032	return &chip_params[chipid];
8033}
8034
8035/**
8036 *	t4_prep_adapter - prepare SW and HW for operation
8037 *	@adapter: the adapter
8038 *	@buf: temporary space of at least VPD_LEN size provided by the caller.
8039 *
8040 *	Initialize adapter SW state for the various HW modules, set initial
8041 *	values for some adapter tunables, take PHYs out of reset, and
8042 *	initialize the MDIO interface.
8043 */
8044int t4_prep_adapter(struct adapter *adapter, u32 *buf)
8045{
8046	int ret;
8047	uint16_t device_id;
8048	uint32_t pl_rev;
8049
8050	get_pci_mode(adapter, &adapter->params.pci);
8051
8052	pl_rev = t4_read_reg(adapter, A_PL_REV);
8053	adapter->params.chipid = G_CHIPID(pl_rev);
8054	adapter->params.rev = G_REV(pl_rev);
8055	if (adapter->params.chipid == 0) {
8056		/* T4 did not have chipid in PL_REV (T5 onwards do) */
8057		adapter->params.chipid = CHELSIO_T4;
8058
8059		/* T4A1 chip is not supported */
8060		if (adapter->params.rev == 1) {
8061			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8062			return -EINVAL;
8063		}
8064	}
8065
8066	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8067	if (adapter->chip_params == NULL)
8068		return -EINVAL;
8069
8070	adapter->params.pci.vpd_cap_addr =
8071	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8072
8073	ret = t4_get_flash_params(adapter);
8074	if (ret < 0)
8075		return ret;
8076
8077	/* Cards with real ASICs have the chipid in the PCIe device id */
8078	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8079	if (device_id >> 12 == chip_id(adapter))
8080		adapter->params.cim_la_size = CIMLA_SIZE;
8081	else {
8082		/* FPGA */
8083		adapter->params.fpga = 1;
8084		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8085	}
8086
8087	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
8088	if (ret < 0)
8089		return ret;
8090
8091	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8092
8093	/*
8094	 * Default port and clock for debugging in case we can't reach FW.
8095	 */
8096	adapter->params.nports = 1;
8097	adapter->params.portvec = 1;
8098	adapter->params.vpd.cclk = 50000;
8099
8100	/* Set pci completion timeout value to 4 seconds. */
8101	set_pcie_completion_timeout(adapter, 0xd);
8102	return 0;
8103}
8104
8105/**
8106 *	t4_shutdown_adapter - shut down adapter, host & wire
8107 *	@adapter: the adapter
8108 *
8109 *	Perform an emergency shutdown of the adapter and stop it from
8110 *	continuing any further communication on the ports or DMA to the
8111 *	host.  This is typically used when the adapter and/or firmware
8112 *	have crashed and we want to prevent any further accidental
8113 *	communication with the rest of the world.  This will also force
8114 *	the port Link Status to go down -- if register writes work --
8115 *	which should help our peers figure out that we're down.
8116 */
8117int t4_shutdown_adapter(struct adapter *adapter)
8118{
8119	int port;
8120
8121	t4_intr_disable(adapter);
8122	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8123	for_each_port(adapter, port) {
8124		u32 a_port_cfg = is_t4(adapter) ?
8125				 PORT_REG(port, A_XGMAC_PORT_CFG) :
8126				 T5_PORT_REG(port, A_MAC_PORT_CFG);
8127
8128		t4_write_reg(adapter, a_port_cfg,
8129			     t4_read_reg(adapter, a_port_cfg)
8130			     & ~V_SIGNAL_DET(1));
8131	}
8132	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
8133
8134	return 0;
8135}
8136
8137/**
8138 *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8139 *	@adapter: the adapter
8140 *	@qid: the Queue ID
8141 *	@qtype: the Ingress or Egress type for @qid
8142 *	@user: true if this request is for a user mode queue
8143 *	@pbar2_qoffset: BAR2 Queue Offset
8144 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8145 *
8146 *	Returns the BAR2 SGE Queue Registers information associated with the
8147 *	indicated Absolute Queue ID.  These are passed back in return value
8148 *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8149 *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8150 *
8151 *	This may return an error which indicates that BAR2 SGE Queue
8152 *	registers aren't available.  If an error is not returned, then the
8153 *	following values are returned:
8154 *
8155 *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8156 *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8157 *
8158 *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8159 *	require the "Inferred Queue ID" ability may be used.  E.g. the
8160 *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8161 *	then these "Inferred Queue ID" register may not be used.
8162 */
8163int t4_bar2_sge_qregs(struct adapter *adapter,
8164		      unsigned int qid,
8165		      enum t4_bar2_qtype qtype,
8166		      int user,
8167		      u64 *pbar2_qoffset,
8168		      unsigned int *pbar2_qid)
8169{
8170	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8171	u64 bar2_page_offset, bar2_qoffset;
8172	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8173
8174	/* T4 doesn't support BAR2 SGE Queue registers for kernel
8175	 * mode queues.
8176	 */
8177	if (!user && is_t4(adapter))
8178		return -EINVAL;
8179
8180	/* Get our SGE Page Size parameters.
8181	 */
8182	page_shift = adapter->params.sge.page_shift;
8183	page_size = 1 << page_shift;
8184
8185	/* Get the right Queues per Page parameters for our Queue.
8186	 */
8187	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8188		     ? adapter->params.sge.eq_s_qpp
8189		     : adapter->params.sge.iq_s_qpp);
8190	qpp_mask = (1 << qpp_shift) - 1;
8191
8192	/* Calculate the basics of the BAR2 SGE Queue register area:
8193	 *  o The BAR2 page the Queue registers will be in.
8194	 *  o The BAR2 Queue ID.
8195	 *  o The BAR2 Queue ID Offset into the BAR2 page.
8196	 */
8197	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8198	bar2_qid = qid & qpp_mask;
8199	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8200
8201	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
8202	 * hardware will infer the Absolute Queue ID simply from the writes to
8203	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8204	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8205	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8206	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8207	 * from the BAR2 Page and BAR2 Queue ID.
8208	 *
8209	 * One important censequence of this is that some BAR2 SGE registers
8210	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8211	 * there.  But other registers synthesize the SGE Queue ID purely
8212	 * from the writes to the registers -- the Write Combined Doorbell
8213	 * Buffer is a good example.  These BAR2 SGE Registers are only
8214	 * available for those BAR2 SGE Register areas where the SGE Absolute
8215	 * Queue ID can be inferred from simple writes.
8216	 */
8217	bar2_qoffset = bar2_page_offset;
8218	bar2_qinferred = (bar2_qid_offset < page_size);
8219	if (bar2_qinferred) {
8220		bar2_qoffset += bar2_qid_offset;
8221		bar2_qid = 0;
8222	}
8223
8224	*pbar2_qoffset = bar2_qoffset;
8225	*pbar2_qid = bar2_qid;
8226	return 0;
8227}
8228
8229/**
8230 *	t4_init_devlog_params - initialize adapter->params.devlog
8231 *	@adap: the adapter
8232 *	@fw_attach: whether we can talk to the firmware
8233 *
8234 *	Initialize various fields of the adapter's Firmware Device Log
8235 *	Parameters structure.
8236 */
8237int t4_init_devlog_params(struct adapter *adap, int fw_attach)
8238{
8239	struct devlog_params *dparams = &adap->params.devlog;
8240	u32 pf_dparams;
8241	unsigned int devlog_meminfo;
8242	struct fw_devlog_cmd devlog_cmd;
8243	int ret;
8244
8245	/* If we're dealing with newer firmware, the Device Log Paramerters
8246	 * are stored in a designated register which allows us to access the
8247	 * Device Log even if we can't talk to the firmware.
8248	 */
8249	pf_dparams =
8250		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
8251	if (pf_dparams) {
8252		unsigned int nentries, nentries128;
8253
8254		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
8255		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
8256
8257		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
8258		nentries = (nentries128 + 1) * 128;
8259		dparams->size = nentries * sizeof(struct fw_devlog_e);
8260
8261		return 0;
8262	}
8263
8264	/*
8265	 * For any failing returns ...
8266	 */
8267	memset(dparams, 0, sizeof *dparams);
8268
8269	/*
8270	 * If we can't talk to the firmware, there's really nothing we can do
8271	 * at this point.
8272	 */
8273	if (!fw_attach)
8274		return -ENXIO;
8275
8276	/* Otherwise, ask the firmware for it's Device Log Parameters.
8277	 */
8278	memset(&devlog_cmd, 0, sizeof devlog_cmd);
8279	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
8280					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
8281	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8282	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8283			 &devlog_cmd);
8284	if (ret)
8285		return ret;
8286
8287	devlog_meminfo =
8288		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8289	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
8290	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
8291	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8292
8293	return 0;
8294}
8295
8296/**
8297 *	t4_init_sge_params - initialize adap->params.sge
8298 *	@adapter: the adapter
8299 *
8300 *	Initialize various fields of the adapter's SGE Parameters structure.
8301 */
8302int t4_init_sge_params(struct adapter *adapter)
8303{
8304	u32 r;
8305	struct sge_params *sp = &adapter->params.sge;
8306	unsigned i, tscale = 1;
8307
8308	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
8309	sp->counter_val[0] = G_THRESHOLD_0(r);
8310	sp->counter_val[1] = G_THRESHOLD_1(r);
8311	sp->counter_val[2] = G_THRESHOLD_2(r);
8312	sp->counter_val[3] = G_THRESHOLD_3(r);
8313
8314	if (chip_id(adapter) >= CHELSIO_T6) {
8315		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
8316		tscale = G_TSCALE(r);
8317		if (tscale == 0)
8318			tscale = 1;
8319		else
8320			tscale += 2;
8321	}
8322
8323	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
8324	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
8325	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
8326	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
8327	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
8328	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
8329	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
8330	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
8331	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
8332
8333	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
8334	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
8335	if (is_t4(adapter))
8336		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
8337	else if (is_t5(adapter))
8338		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
8339	else
8340		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
8341
8342	/* egress queues: log2 of # of doorbells per BAR2 page */
8343	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
8344	r >>= S_QUEUESPERPAGEPF0 +
8345	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8346	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
8347
8348	/* ingress queues: log2 of # of doorbells per BAR2 page */
8349	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
8350	r >>= S_QUEUESPERPAGEPF0 +
8351	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8352	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
8353
8354	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
8355	r >>= S_HOSTPAGESIZEPF0 +
8356	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
8357	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
8358
8359	r = t4_read_reg(adapter, A_SGE_CONTROL);
8360	sp->sge_control = r;
8361	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
8362	sp->fl_pktshift = G_PKTSHIFT(r);
8363	if (chip_id(adapter) <= CHELSIO_T5) {
8364		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8365		    X_INGPADBOUNDARY_SHIFT);
8366	} else {
8367		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8368		    X_T6_INGPADBOUNDARY_SHIFT);
8369	}
8370	if (is_t4(adapter))
8371		sp->pack_boundary = sp->pad_boundary;
8372	else {
8373		r = t4_read_reg(adapter, A_SGE_CONTROL2);
8374		if (G_INGPACKBOUNDARY(r) == 0)
8375			sp->pack_boundary = 16;
8376		else
8377			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
8378	}
8379	for (i = 0; i < SGE_FLBUF_SIZES; i++)
8380		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
8381		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
8382
8383	return 0;
8384}
8385
8386/*
8387 * Read and cache the adapter's compressed filter mode and ingress config.
8388 */
8389static void read_filter_mode_and_ingress_config(struct adapter *adap,
8390    bool sleep_ok)
8391{
8392	struct tp_params *tpp = &adap->params.tp;
8393
8394	t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
8395	    sleep_ok);
8396	t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
8397	    sleep_ok);
8398
8399	/*
8400	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8401	 * shift positions of several elements of the Compressed Filter Tuple
8402	 * for this adapter which we need frequently ...
8403	 */
8404	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
8405	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
8406	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
8407	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
8408	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
8409	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
8410	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
8411	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
8412	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
8413	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
8414
8415	/*
8416	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
8417	 * represents the presence of an Outer VLAN instead of a VNIC ID.
8418	 */
8419	if ((tpp->ingress_config & F_VNIC) == 0)
8420		tpp->vnic_shift = -1;
8421}
8422
8423/**
8424 *      t4_init_tp_params - initialize adap->params.tp
8425 *      @adap: the adapter
8426 *
8427 *      Initialize various fields of the adapter's TP Parameters structure.
8428 */
8429int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8430{
8431	int chan;
8432	u32 v;
8433	struct tp_params *tpp = &adap->params.tp;
8434
8435	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
8436	tpp->tre = G_TIMERRESOLUTION(v);
8437	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
8438
8439	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8440	for (chan = 0; chan < MAX_NCHAN; chan++)
8441		tpp->tx_modq[chan] = chan;
8442
8443	read_filter_mode_and_ingress_config(adap, sleep_ok);
8444
8445	/*
8446	 * Cache a mask of the bits that represent the error vector portion of
8447	 * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
8448	 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
8449	 */
8450	tpp->err_vec_mask = htobe16(0xffff);
8451	if (chip_id(adap) > CHELSIO_T5) {
8452		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
8453		if (v & F_CRXPKTENC) {
8454			tpp->err_vec_mask =
8455			    htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
8456		}
8457	}
8458
8459	return 0;
8460}
8461
8462/**
8463 *      t4_filter_field_shift - calculate filter field shift
8464 *      @adap: the adapter
8465 *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8466 *
8467 *      Return the shift position of a filter field within the Compressed
8468 *      Filter Tuple.  The filter field is specified via its selection bit
8469 *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8470 */
8471int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8472{
8473	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8474	unsigned int sel;
8475	int field_shift;
8476
8477	if ((filter_mode & filter_sel) == 0)
8478		return -1;
8479
8480	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8481		switch (filter_mode & sel) {
8482		case F_FCOE:
8483			field_shift += W_FT_FCOE;
8484			break;
8485		case F_PORT:
8486			field_shift += W_FT_PORT;
8487			break;
8488		case F_VNIC_ID:
8489			field_shift += W_FT_VNIC_ID;
8490			break;
8491		case F_VLAN:
8492			field_shift += W_FT_VLAN;
8493			break;
8494		case F_TOS:
8495			field_shift += W_FT_TOS;
8496			break;
8497		case F_PROTOCOL:
8498			field_shift += W_FT_PROTOCOL;
8499			break;
8500		case F_ETHERTYPE:
8501			field_shift += W_FT_ETHERTYPE;
8502			break;
8503		case F_MACMATCH:
8504			field_shift += W_FT_MACMATCH;
8505			break;
8506		case F_MPSHITTYPE:
8507			field_shift += W_FT_MPSHITTYPE;
8508			break;
8509		case F_FRAGMENTATION:
8510			field_shift += W_FT_FRAGMENTATION;
8511			break;
8512		}
8513	}
8514	return field_shift;
8515}
8516
8517int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8518{
8519	u8 addr[6];
8520	int ret, i, j;
8521	u16 rss_size;
8522	struct port_info *p = adap2pinfo(adap, port_id);
8523	u32 param, val;
8524
8525	for (i = 0, j = -1; i <= p->port_id; i++) {
8526		do {
8527			j++;
8528		} while ((adap->params.portvec & (1 << j)) == 0);
8529	}
8530
8531	if (!(adap->flags & IS_VF) ||
8532	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8533 		t4_update_port_info(p);
8534	}
8535
8536	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8537	if (ret < 0)
8538		return ret;
8539
8540	p->vi[0].viid = ret;
8541	if (chip_id(adap) <= CHELSIO_T5)
8542		p->vi[0].smt_idx = (ret & 0x7f) << 1;
8543	else
8544		p->vi[0].smt_idx = (ret & 0x7f);
8545	p->tx_chan = j;
8546	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
8547	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
8548	p->lport = j;
8549	p->vi[0].rss_size = rss_size;
8550	t4_os_set_hw_addr(p, addr);
8551
8552	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8553	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8554	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8555	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8556	if (ret)
8557		p->vi[0].rss_base = 0xffff;
8558	else {
8559		/* MPASS((val >> 16) == rss_size); */
8560		p->vi[0].rss_base = val & 0xffff;
8561	}
8562
8563	return 0;
8564}
8565
8566/**
8567 *	t4_read_cimq_cfg - read CIM queue configuration
8568 *	@adap: the adapter
8569 *	@base: holds the queue base addresses in bytes
8570 *	@size: holds the queue sizes in bytes
8571 *	@thres: holds the queue full thresholds in bytes
8572 *
8573 *	Returns the current configuration of the CIM queues, starting with
8574 *	the IBQs, then the OBQs.
8575 */
8576void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8577{
8578	unsigned int i, v;
8579	int cim_num_obq = adap->chip_params->cim_num_obq;
8580
8581	for (i = 0; i < CIM_NUM_IBQ; i++) {
8582		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8583			     V_QUENUMSELECT(i));
8584		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8585		/* value is in 256-byte units */
8586		*base++ = G_CIMQBASE(v) * 256;
8587		*size++ = G_CIMQSIZE(v) * 256;
8588		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8589	}
8590	for (i = 0; i < cim_num_obq; i++) {
8591		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8592			     V_QUENUMSELECT(i));
8593		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8594		/* value is in 256-byte units */
8595		*base++ = G_CIMQBASE(v) * 256;
8596		*size++ = G_CIMQSIZE(v) * 256;
8597	}
8598}
8599
8600/**
8601 *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8602 *	@adap: the adapter
8603 *	@qid: the queue index
8604 *	@data: where to store the queue contents
8605 *	@n: capacity of @data in 32-bit words
8606 *
8607 *	Reads the contents of the selected CIM queue starting at address 0 up
8608 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8609 *	error and the number of 32-bit words actually read on success.
8610 */
8611int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8612{
8613	int i, err, attempts;
8614	unsigned int addr;
8615	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8616
8617	if (qid > 5 || (n & 3))
8618		return -EINVAL;
8619
8620	addr = qid * nwords;
8621	if (n > nwords)
8622		n = nwords;
8623
8624	/* It might take 3-10ms before the IBQ debug read access is allowed.
8625	 * Wait for 1 Sec with a delay of 1 usec.
8626	 */
8627	attempts = 1000000;
8628
8629	for (i = 0; i < n; i++, addr++) {
8630		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8631			     F_IBQDBGEN);
8632		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8633				      attempts, 1);
8634		if (err)
8635			return err;
8636		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8637	}
8638	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8639	return i;
8640}
8641
8642/**
8643 *	t4_read_cim_obq - read the contents of a CIM outbound queue
8644 *	@adap: the adapter
8645 *	@qid: the queue index
8646 *	@data: where to store the queue contents
8647 *	@n: capacity of @data in 32-bit words
8648 *
8649 *	Reads the contents of the selected CIM queue starting at address 0 up
8650 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8651 *	error and the number of 32-bit words actually read on success.
8652 */
8653int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8654{
8655	int i, err;
8656	unsigned int addr, v, nwords;
8657	int cim_num_obq = adap->chip_params->cim_num_obq;
8658
8659	if ((qid > (cim_num_obq - 1)) || (n & 3))
8660		return -EINVAL;
8661
8662	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8663		     V_QUENUMSELECT(qid));
8664	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8665
8666	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8667	nwords = G_CIMQSIZE(v) * 64;  /* same */
8668	if (n > nwords)
8669		n = nwords;
8670
8671	for (i = 0; i < n; i++, addr++) {
8672		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8673			     F_OBQDBGEN);
8674		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8675				      2, 1);
8676		if (err)
8677			return err;
8678		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8679	}
8680	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8681	return i;
8682}
8683
8684enum {
8685	CIM_QCTL_BASE     = 0,
8686	CIM_CTL_BASE      = 0x2000,
8687	CIM_PBT_ADDR_BASE = 0x2800,
8688	CIM_PBT_LRF_BASE  = 0x3000,
8689	CIM_PBT_DATA_BASE = 0x3800
8690};
8691
8692/**
8693 *	t4_cim_read - read a block from CIM internal address space
8694 *	@adap: the adapter
8695 *	@addr: the start address within the CIM address space
8696 *	@n: number of words to read
8697 *	@valp: where to store the result
8698 *
8699 *	Reads a block of 4-byte words from the CIM intenal address space.
8700 */
8701int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8702		unsigned int *valp)
8703{
8704	int ret = 0;
8705
8706	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8707		return -EBUSY;
8708
8709	for ( ; !ret && n--; addr += 4) {
8710		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8711		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8712				      0, 5, 2);
8713		if (!ret)
8714			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8715	}
8716	return ret;
8717}
8718
8719/**
8720 *	t4_cim_write - write a block into CIM internal address space
8721 *	@adap: the adapter
8722 *	@addr: the start address within the CIM address space
8723 *	@n: number of words to write
8724 *	@valp: set of values to write
8725 *
8726 *	Writes a block of 4-byte words into the CIM intenal address space.
8727 */
8728int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8729		 const unsigned int *valp)
8730{
8731	int ret = 0;
8732
8733	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8734		return -EBUSY;
8735
8736	for ( ; !ret && n--; addr += 4) {
8737		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8738		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8739		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8740				      0, 5, 2);
8741	}
8742	return ret;
8743}
8744
8745static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8746			 unsigned int val)
8747{
8748	return t4_cim_write(adap, addr, 1, &val);
8749}
8750
8751/**
8752 *	t4_cim_ctl_read - read a block from CIM control region
8753 *	@adap: the adapter
8754 *	@addr: the start address within the CIM control region
8755 *	@n: number of words to read
8756 *	@valp: where to store the result
8757 *
8758 *	Reads a block of 4-byte words from the CIM control region.
8759 */
8760int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8761		    unsigned int *valp)
8762{
8763	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8764}
8765
8766/**
8767 *	t4_cim_read_la - read CIM LA capture buffer
8768 *	@adap: the adapter
8769 *	@la_buf: where to store the LA data
8770 *	@wrptr: the HW write pointer within the capture buffer
8771 *
8772 *	Reads the contents of the CIM LA buffer with the most recent entry at
8773 *	the end	of the returned data and with the entry at @wrptr first.
8774 *	We try to leave the LA in the running state we find it in.
8775 */
8776int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8777{
8778	int i, ret;
8779	unsigned int cfg, val, idx;
8780
8781	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8782	if (ret)
8783		return ret;
8784
8785	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
8786		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8787		if (ret)
8788			return ret;
8789	}
8790
8791	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8792	if (ret)
8793		goto restart;
8794
8795	idx = G_UPDBGLAWRPTR(val);
8796	if (wrptr)
8797		*wrptr = idx;
8798
8799	for (i = 0; i < adap->params.cim_la_size; i++) {
8800		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8801				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8802		if (ret)
8803			break;
8804		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8805		if (ret)
8806			break;
8807		if (val & F_UPDBGLARDEN) {
8808			ret = -ETIMEDOUT;
8809			break;
8810		}
8811		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8812		if (ret)
8813			break;
8814
8815		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8816		idx = (idx + 1) & M_UPDBGLARDPTR;
8817		/*
8818		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8819		 * identify the 32-bit portion of the full 312-bit data
8820		 */
8821		if (is_t6(adap))
8822			while ((idx & 0xf) > 9)
8823				idx = (idx + 1) % M_UPDBGLARDPTR;
8824	}
8825restart:
8826	if (cfg & F_UPDBGLAEN) {
8827		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8828				      cfg & ~F_UPDBGLARDEN);
8829		if (!ret)
8830			ret = r;
8831	}
8832	return ret;
8833}
8834
8835/**
8836 *	t4_tp_read_la - read TP LA capture buffer
8837 *	@adap: the adapter
8838 *	@la_buf: where to store the LA data
8839 *	@wrptr: the HW write pointer within the capture buffer
8840 *
8841 *	Reads the contents of the TP LA buffer with the most recent entry at
8842 *	the end	of the returned data and with the entry at @wrptr first.
8843 *	We leave the LA in the running state we find it in.
8844 */
8845void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8846{
8847	bool last_incomplete;
8848	unsigned int i, cfg, val, idx;
8849
8850	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8851	if (cfg & F_DBGLAENABLE)			/* freeze LA */
8852		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8853			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8854
8855	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8856	idx = G_DBGLAWPTR(val);
8857	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8858	if (last_incomplete)
8859		idx = (idx + 1) & M_DBGLARPTR;
8860	if (wrptr)
8861		*wrptr = idx;
8862
8863	val &= 0xffff;
8864	val &= ~V_DBGLARPTR(M_DBGLARPTR);
8865	val |= adap->params.tp.la_mask;
8866
8867	for (i = 0; i < TPLA_SIZE; i++) {
8868		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8869		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8870		idx = (idx + 1) & M_DBGLARPTR;
8871	}
8872
8873	/* Wipe out last entry if it isn't valid */
8874	if (last_incomplete)
8875		la_buf[TPLA_SIZE - 1] = ~0ULL;
8876
8877	if (cfg & F_DBGLAENABLE)		/* restore running state */
8878		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8879			     cfg | adap->params.tp.la_mask);
8880}
8881
8882/*
8883 * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8884 * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8885 * state for more than the Warning Threshold then we'll issue a warning about
8886 * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8887 * appears to be hung every Warning Repeat second till the situation clears.
8888 * If the situation clears, we'll note that as well.
8889 */
8890#define SGE_IDMA_WARN_THRESH 1
8891#define SGE_IDMA_WARN_REPEAT 300
8892
8893/**
8894 *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8895 *	@adapter: the adapter
8896 *	@idma: the adapter IDMA Monitor state
8897 *
8898 *	Initialize the state of an SGE Ingress DMA Monitor.
8899 */
8900void t4_idma_monitor_init(struct adapter *adapter,
8901			  struct sge_idma_monitor_state *idma)
8902{
8903	/* Initialize the state variables for detecting an SGE Ingress DMA
8904	 * hang.  The SGE has internal counters which count up on each clock
8905	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8906	 * same state they were on the previous clock tick.  The clock used is
8907	 * the Core Clock so we have a limit on the maximum "time" they can
8908	 * record; typically a very small number of seconds.  For instance,
8909	 * with a 600MHz Core Clock, we can only count up to a bit more than
8910	 * 7s.  So we'll synthesize a larger counter in order to not run the
8911	 * risk of having the "timers" overflow and give us the flexibility to
8912	 * maintain a Hung SGE State Machine of our own which operates across
8913	 * a longer time frame.
8914	 */
8915	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8916	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8917}
8918
8919/**
8920 *	t4_idma_monitor - monitor SGE Ingress DMA state
8921 *	@adapter: the adapter
8922 *	@idma: the adapter IDMA Monitor state
8923 *	@hz: number of ticks/second
8924 *	@ticks: number of ticks since the last IDMA Monitor call
8925 */
8926void t4_idma_monitor(struct adapter *adapter,
8927		     struct sge_idma_monitor_state *idma,
8928		     int hz, int ticks)
8929{
8930	int i, idma_same_state_cnt[2];
8931
8932	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8933	  * are counters inside the SGE which count up on each clock when the
8934	  * SGE finds its Ingress DMA State Engines in the same states they
8935	  * were in the previous clock.  The counters will peg out at
8936	  * 0xffffffff without wrapping around so once they pass the 1s
8937	  * threshold they'll stay above that till the IDMA state changes.
8938	  */
8939	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8940	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8941	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8942
8943	for (i = 0; i < 2; i++) {
8944		u32 debug0, debug11;
8945
8946		/* If the Ingress DMA Same State Counter ("timer") is less
8947		 * than 1s, then we can reset our synthesized Stall Timer and
8948		 * continue.  If we have previously emitted warnings about a
8949		 * potential stalled Ingress Queue, issue a note indicating
8950		 * that the Ingress Queue has resumed forward progress.
8951		 */
8952		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8953			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8954				CH_WARN(adapter, "SGE idma%d, queue %u, "
8955					"resumed after %d seconds\n",
8956					i, idma->idma_qid[i],
8957					idma->idma_stalled[i]/hz);
8958			idma->idma_stalled[i] = 0;
8959			continue;
8960		}
8961
8962		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8963		 * domain.  The first time we get here it'll be because we
8964		 * passed the 1s Threshold; each additional time it'll be
8965		 * because the RX Timer Callback is being fired on its regular
8966		 * schedule.
8967		 *
8968		 * If the stall is below our Potential Hung Ingress Queue
8969		 * Warning Threshold, continue.
8970		 */
8971		if (idma->idma_stalled[i] == 0) {
8972			idma->idma_stalled[i] = hz;
8973			idma->idma_warn[i] = 0;
8974		} else {
8975			idma->idma_stalled[i] += ticks;
8976			idma->idma_warn[i] -= ticks;
8977		}
8978
8979		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8980			continue;
8981
8982		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8983		 */
8984		if (idma->idma_warn[i] > 0)
8985			continue;
8986		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
8987
8988		/* Read and save the SGE IDMA State and Queue ID information.
8989		 * We do this every time in case it changes across time ...
8990		 * can't be too careful ...
8991		 */
8992		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
8993		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8994		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8995
8996		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
8997		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8998		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8999
9000		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
9001			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9002			i, idma->idma_qid[i], idma->idma_state[i],
9003			idma->idma_stalled[i]/hz,
9004			debug0, debug11);
9005		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9006	}
9007}
9008
9009/**
9010 *	t4_read_pace_tbl - read the pace table
9011 *	@adap: the adapter
9012 *	@pace_vals: holds the returned values
9013 *
9014 *	Returns the values of TP's pace table in microseconds.
9015 */
9016void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9017{
9018	unsigned int i, v;
9019
9020	for (i = 0; i < NTX_SCHED; i++) {
9021		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
9022		v = t4_read_reg(adap, A_TP_PACE_TABLE);
9023		pace_vals[i] = dack_ticks_to_usec(adap, v);
9024	}
9025}
9026
9027/**
9028 *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9029 *	@adap: the adapter
9030 *	@sched: the scheduler index
9031 *	@kbps: the byte rate in Kbps
9032 *	@ipg: the interpacket delay in tenths of nanoseconds
9033 *
9034 *	Return the current configuration of a HW Tx scheduler.
9035 */
9036void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
9037		     unsigned int *ipg, bool sleep_ok)
9038{
9039	unsigned int v, addr, bpt, cpt;
9040
9041	if (kbps) {
9042		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
9043		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9044		if (sched & 1)
9045			v >>= 16;
9046		bpt = (v >> 8) & 0xff;
9047		cpt = v & 0xff;
9048		if (!cpt)
9049			*kbps = 0;	/* scheduler disabled */
9050		else {
9051			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9052			*kbps = (v * bpt) / 125;
9053		}
9054	}
9055	if (ipg) {
9056		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9057		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9058		if (sched & 1)
9059			v >>= 16;
9060		v &= 0xffff;
9061		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9062	}
9063}
9064
9065/**
9066 *	t4_load_cfg - download config file
9067 *	@adap: the adapter
9068 *	@cfg_data: the cfg text file to write
9069 *	@size: text file size
9070 *
9071 *	Write the supplied config text file to the card's serial flash.
9072 */
9073int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9074{
9075	int ret, i, n, cfg_addr;
9076	unsigned int addr;
9077	unsigned int flash_cfg_start_sec;
9078	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9079
9080	cfg_addr = t4_flash_cfg_addr(adap);
9081	if (cfg_addr < 0)
9082		return cfg_addr;
9083
9084	addr = cfg_addr;
9085	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9086
9087	if (size > FLASH_CFG_MAX_SIZE) {
9088		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
9089		       FLASH_CFG_MAX_SIZE);
9090		return -EFBIG;
9091	}
9092
9093	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9094			 sf_sec_size);
9095	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9096				     flash_cfg_start_sec + i - 1);
9097	/*
9098	 * If size == 0 then we're simply erasing the FLASH sectors associated
9099	 * with the on-adapter Firmware Configuration File.
9100	 */
9101	if (ret || size == 0)
9102		goto out;
9103
9104	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9105	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9106		if ( (size - i) <  SF_PAGE_SIZE)
9107			n = size - i;
9108		else
9109			n = SF_PAGE_SIZE;
9110		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
9111		if (ret)
9112			goto out;
9113
9114		addr += SF_PAGE_SIZE;
9115		cfg_data += SF_PAGE_SIZE;
9116	}
9117
9118out:
9119	if (ret)
9120		CH_ERR(adap, "config file %s failed %d\n",
9121		       (size == 0 ? "clear" : "download"), ret);
9122	return ret;
9123}
9124
9125/**
9126 *	t5_fw_init_extern_mem - initialize the external memory
9127 *	@adap: the adapter
9128 *
9129 *	Initializes the external memory on T5.
9130 */
9131int t5_fw_init_extern_mem(struct adapter *adap)
9132{
9133	u32 params[1], val[1];
9134	int ret;
9135
9136	if (!is_t5(adap))
9137		return 0;
9138
9139	val[0] = 0xff; /* Initialize all MCs */
9140	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9141			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
9142	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
9143			FW_CMD_MAX_TIMEOUT);
9144
9145	return ret;
9146}
9147
9148/* BIOS boot headers */
9149typedef struct pci_expansion_rom_header {
9150	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9151	u8	reserved[22]; /* Reserved per processor Architecture data */
9152	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9153} pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
9154
9155/* Legacy PCI Expansion ROM Header */
9156typedef struct legacy_pci_expansion_rom_header {
9157	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9158	u8	size512; /* Current Image Size in units of 512 bytes */
9159	u8	initentry_point[4];
9160	u8	cksum; /* Checksum computed on the entire Image */
9161	u8	reserved[16]; /* Reserved */
9162	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
9163} legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
9164
9165/* EFI PCI Expansion ROM Header */
9166typedef struct efi_pci_expansion_rom_header {
9167	u8	signature[2]; // ROM signature. The value 0xaa55
9168	u8	initialization_size[2]; /* Units 512. Includes this header */
9169	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
9170	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
9171	u8	efi_machine_type[2]; /* Machine type from EFI image header */
9172	u8	compression_type[2]; /* Compression type. */
9173		/*
9174		 * Compression type definition
9175		 * 0x0: uncompressed
9176		 * 0x1: Compressed
9177		 * 0x2-0xFFFF: Reserved
9178		 */
9179	u8	reserved[8]; /* Reserved */
9180	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
9181	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9182} efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
9183
9184/* PCI Data Structure Format */
9185typedef struct pcir_data_structure { /* PCI Data Structure */
9186	u8	signature[4]; /* Signature. The string "PCIR" */
9187	u8	vendor_id[2]; /* Vendor Identification */
9188	u8	device_id[2]; /* Device Identification */
9189	u8	vital_product[2]; /* Pointer to Vital Product Data */
9190	u8	length[2]; /* PCIR Data Structure Length */
9191	u8	revision; /* PCIR Data Structure Revision */
9192	u8	class_code[3]; /* Class Code */
9193	u8	image_length[2]; /* Image Length. Multiple of 512B */
9194	u8	code_revision[2]; /* Revision Level of Code/Data */
9195	u8	code_type; /* Code Type. */
9196		/*
9197		 * PCI Expansion ROM Code Types
9198		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
9199		 * 0x01: Open Firmware standard for PCI. FCODE
9200		 * 0x02: Hewlett-Packard PA RISC. HP reserved
9201		 * 0x03: EFI Image. EFI
9202		 * 0x04-0xFF: Reserved.
9203		 */
9204	u8	indicator; /* Indicator. Identifies the last image in the ROM */
9205	u8	reserved[2]; /* Reserved */
9206} pcir_data_t; /* PCI__DATA_STRUCTURE */
9207
9208/* BOOT constants */
9209enum {
9210	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
9211	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
9212	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
9213	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
9214	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
9215	VENDOR_ID = 0x1425, /* Vendor ID */
9216	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
9217};
9218
9219/*
9220 *	modify_device_id - Modifies the device ID of the Boot BIOS image
9221 *	@adatper: the device ID to write.
9222 *	@boot_data: the boot image to modify.
9223 *
9224 *	Write the supplied device ID to the boot BIOS image.
9225 */
9226static void modify_device_id(int device_id, u8 *boot_data)
9227{
9228	legacy_pci_exp_rom_header_t *header;
9229	pcir_data_t *pcir_header;
9230	u32 cur_header = 0;
9231
9232	/*
9233	 * Loop through all chained images and change the device ID's
9234	 */
9235	while (1) {
9236		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
9237		pcir_header = (pcir_data_t *) &boot_data[cur_header +
9238			      le16_to_cpu(*(u16*)header->pcir_offset)];
9239
9240		/*
9241		 * Only modify the Device ID if code type is Legacy or HP.
9242		 * 0x00: Okay to modify
9243		 * 0x01: FCODE. Do not be modify
9244		 * 0x03: Okay to modify
9245		 * 0x04-0xFF: Do not modify
9246		 */
9247		if (pcir_header->code_type == 0x00) {
9248			u8 csum = 0;
9249			int i;
9250
9251			/*
9252			 * Modify Device ID to match current adatper
9253			 */
9254			*(u16*) pcir_header->device_id = device_id;
9255
9256			/*
9257			 * Set checksum temporarily to 0.
9258			 * We will recalculate it later.
9259			 */
9260			header->cksum = 0x0;
9261
9262			/*
9263			 * Calculate and update checksum
9264			 */
9265			for (i = 0; i < (header->size512 * 512); i++)
9266				csum += (u8)boot_data[cur_header + i];
9267
9268			/*
9269			 * Invert summed value to create the checksum
9270			 * Writing new checksum value directly to the boot data
9271			 */
9272			boot_data[cur_header + 7] = -csum;
9273
9274		} else if (pcir_header->code_type == 0x03) {
9275
9276			/*
9277			 * Modify Device ID to match current adatper
9278			 */
9279			*(u16*) pcir_header->device_id = device_id;
9280
9281		}
9282
9283
9284		/*
9285		 * Check indicator element to identify if this is the last
9286		 * image in the ROM.
9287		 */
9288		if (pcir_header->indicator & 0x80)
9289			break;
9290
9291		/*
9292		 * Move header pointer up to the next image in the ROM.
9293		 */
9294		cur_header += header->size512 * 512;
9295	}
9296}
9297
9298/*
9299 *	t4_load_boot - download boot flash
9300 *	@adapter: the adapter
9301 *	@boot_data: the boot image to write
9302 *	@boot_addr: offset in flash to write boot_data
9303 *	@size: image size
9304 *
9305 *	Write the supplied boot image to the card's serial flash.
9306 *	The boot image has the following sections: a 28-byte header and the
9307 *	boot image.
9308 */
9309int t4_load_boot(struct adapter *adap, u8 *boot_data,
9310		 unsigned int boot_addr, unsigned int size)
9311{
9312	pci_exp_rom_header_t *header;
9313	int pcir_offset ;
9314	pcir_data_t *pcir_header;
9315	int ret, addr;
9316	uint16_t device_id;
9317	unsigned int i;
9318	unsigned int boot_sector = (boot_addr * 1024 );
9319	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9320
9321	/*
9322	 * Make sure the boot image does not encroach on the firmware region
9323	 */
9324	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
9325		CH_ERR(adap, "boot image encroaching on firmware region\n");
9326		return -EFBIG;
9327	}
9328
9329	/*
9330	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
9331	 * and Boot configuration data sections. These 3 boot sections span
9332	 * sectors 0 to 7 in flash and live right before the FW image location.
9333	 */
9334	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
9335			sf_sec_size);
9336	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
9337				     (boot_sector >> 16) + i - 1);
9338
9339	/*
9340	 * If size == 0 then we're simply erasing the FLASH sectors associated
9341	 * with the on-adapter option ROM file
9342	 */
9343	if (ret || (size == 0))
9344		goto out;
9345
9346	/* Get boot header */
9347	header = (pci_exp_rom_header_t *)boot_data;
9348	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
9349	/* PCIR Data Structure */
9350	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
9351
9352	/*
9353	 * Perform some primitive sanity testing to avoid accidentally
9354	 * writing garbage over the boot sectors.  We ought to check for
9355	 * more but it's not worth it for now ...
9356	 */
9357	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
9358		CH_ERR(adap, "boot image too small/large\n");
9359		return -EFBIG;
9360	}
9361
9362#ifndef CHELSIO_T4_DIAGS
9363	/*
9364	 * Check BOOT ROM header signature
9365	 */
9366	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
9367		CH_ERR(adap, "Boot image missing signature\n");
9368		return -EINVAL;
9369	}
9370
9371	/*
9372	 * Check PCI header signature
9373	 */
9374	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
9375		CH_ERR(adap, "PCI header missing signature\n");
9376		return -EINVAL;
9377	}
9378
9379	/*
9380	 * Check Vendor ID matches Chelsio ID
9381	 */
9382	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
9383		CH_ERR(adap, "Vendor ID missing signature\n");
9384		return -EINVAL;
9385	}
9386#endif
9387
9388	/*
9389	 * Retrieve adapter's device ID
9390	 */
9391	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
9392	/* Want to deal with PF 0 so I strip off PF 4 indicator */
9393	device_id = device_id & 0xf0ff;
9394
9395	/*
9396	 * Check PCIE Device ID
9397	 */
9398	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
9399		/*
9400		 * Change the device ID in the Boot BIOS image to match
9401		 * the Device ID of the current adapter.
9402		 */
9403		modify_device_id(device_id, boot_data);
9404	}
9405
9406	/*
9407	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
9408	 * we finish copying the rest of the boot image. This will ensure
9409	 * that the BIOS boot header will only be written if the boot image
9410	 * was written in full.
9411	 */
9412	addr = boot_sector;
9413	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
9414		addr += SF_PAGE_SIZE;
9415		boot_data += SF_PAGE_SIZE;
9416		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
9417		if (ret)
9418			goto out;
9419	}
9420
9421	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
9422			     (const u8 *)header, 0);
9423
9424out:
9425	if (ret)
9426		CH_ERR(adap, "boot image download failed, error %d\n", ret);
9427	return ret;
9428}
9429
9430/*
9431 *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
9432 *	@adapter: the adapter
9433 *
9434 *	Return the address within the flash where the OptionROM Configuration
9435 *	is stored, or an error if the device FLASH is too small to contain
9436 *	a OptionROM Configuration.
9437 */
9438static int t4_flash_bootcfg_addr(struct adapter *adapter)
9439{
9440	/*
9441	 * If the device FLASH isn't large enough to hold a Firmware
9442	 * Configuration File, return an error.
9443	 */
9444	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
9445		return -ENOSPC;
9446
9447	return FLASH_BOOTCFG_START;
9448}
9449
9450int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
9451{
9452	int ret, i, n, cfg_addr;
9453	unsigned int addr;
9454	unsigned int flash_cfg_start_sec;
9455	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9456
9457	cfg_addr = t4_flash_bootcfg_addr(adap);
9458	if (cfg_addr < 0)
9459		return cfg_addr;
9460
9461	addr = cfg_addr;
9462	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9463
9464	if (size > FLASH_BOOTCFG_MAX_SIZE) {
9465		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9466			FLASH_BOOTCFG_MAX_SIZE);
9467		return -EFBIG;
9468	}
9469
9470	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9471			 sf_sec_size);
9472	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9473					flash_cfg_start_sec + i - 1);
9474
9475	/*
9476	 * If size == 0 then we're simply erasing the FLASH sectors associated
9477	 * with the on-adapter OptionROM Configuration File.
9478	 */
9479	if (ret || size == 0)
9480		goto out;
9481
9482	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9483	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9484		if ( (size - i) <  SF_PAGE_SIZE)
9485			n = size - i;
9486		else
9487			n = SF_PAGE_SIZE;
9488		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9489		if (ret)
9490			goto out;
9491
9492		addr += SF_PAGE_SIZE;
9493		cfg_data += SF_PAGE_SIZE;
9494	}
9495
9496out:
9497	if (ret)
9498		CH_ERR(adap, "boot config data %s failed %d\n",
9499				(size == 0 ? "clear" : "download"), ret);
9500	return ret;
9501}
9502
9503/**
9504 *	t4_set_filter_mode - configure the optional components of filter tuples
9505 *	@adap: the adapter
9506 *	@mode_map: a bitmap selcting which optional filter components to enable
9507 * 	@sleep_ok: if true we may sleep while awaiting command completion
9508 *
9509 *	Sets the filter mode by selecting the optional components to enable
9510 *	in filter tuples.  Returns 0 on success and a negative error if the
9511 *	requested mode needs more bits than are available for optional
9512 *	components.
9513 */
9514int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
9515		       bool sleep_ok)
9516{
9517	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9518
9519	int i, nbits = 0;
9520
9521	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9522		if (mode_map & (1 << i))
9523			nbits += width[i];
9524	if (nbits > FILTER_OPT_LEN)
9525		return -EINVAL;
9526	t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
9527	read_filter_mode_and_ingress_config(adap, sleep_ok);
9528
9529	return 0;
9530}
9531
9532/**
9533 *	t4_clr_port_stats - clear port statistics
9534 *	@adap: the adapter
9535 *	@idx: the port index
9536 *
9537 *	Clear HW statistics for the given port.
9538 */
9539void t4_clr_port_stats(struct adapter *adap, int idx)
9540{
9541	unsigned int i;
9542	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
9543	u32 port_base_addr;
9544
9545	if (is_t4(adap))
9546		port_base_addr = PORT_BASE(idx);
9547	else
9548		port_base_addr = T5_PORT_BASE(idx);
9549
9550	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9551			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9552		t4_write_reg(adap, port_base_addr + i, 0);
9553	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9554			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9555		t4_write_reg(adap, port_base_addr + i, 0);
9556	for (i = 0; i < 4; i++)
9557		if (bgmap & (1 << i)) {
9558			t4_write_reg(adap,
9559			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9560			t4_write_reg(adap,
9561			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9562		}
9563}
9564
9565/**
9566 *	t4_i2c_rd - read I2C data from adapter
9567 *	@adap: the adapter
9568 *	@port: Port number if per-port device; <0 if not
9569 *	@devid: per-port device ID or absolute device ID
9570 *	@offset: byte offset into device I2C space
9571 *	@len: byte length of I2C space data
9572 *	@buf: buffer in which to return I2C data
9573 *
9574 *	Reads the I2C data from the indicated device and location.
9575 */
9576int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9577	      int port, unsigned int devid,
9578	      unsigned int offset, unsigned int len,
9579	      u8 *buf)
9580{
9581	u32 ldst_addrspace;
9582	struct fw_ldst_cmd ldst;
9583	int ret;
9584
9585	if (port >= 4 ||
9586	    devid >= 256 ||
9587	    offset >= 256 ||
9588	    len > sizeof ldst.u.i2c.data)
9589		return -EINVAL;
9590
9591	memset(&ldst, 0, sizeof ldst);
9592	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9593	ldst.op_to_addrspace =
9594		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9595			    F_FW_CMD_REQUEST |
9596			    F_FW_CMD_READ |
9597			    ldst_addrspace);
9598	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9599	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9600	ldst.u.i2c.did = devid;
9601	ldst.u.i2c.boffset = offset;
9602	ldst.u.i2c.blen = len;
9603	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9604	if (!ret)
9605		memcpy(buf, ldst.u.i2c.data, len);
9606	return ret;
9607}
9608
9609/**
9610 *	t4_i2c_wr - write I2C data to adapter
9611 *	@adap: the adapter
9612 *	@port: Port number if per-port device; <0 if not
9613 *	@devid: per-port device ID or absolute device ID
9614 *	@offset: byte offset into device I2C space
9615 *	@len: byte length of I2C space data
9616 *	@buf: buffer containing new I2C data
9617 *
9618 *	Write the I2C data to the indicated device and location.
9619 */
9620int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9621	      int port, unsigned int devid,
9622	      unsigned int offset, unsigned int len,
9623	      u8 *buf)
9624{
9625	u32 ldst_addrspace;
9626	struct fw_ldst_cmd ldst;
9627
9628	if (port >= 4 ||
9629	    devid >= 256 ||
9630	    offset >= 256 ||
9631	    len > sizeof ldst.u.i2c.data)
9632		return -EINVAL;
9633
9634	memset(&ldst, 0, sizeof ldst);
9635	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9636	ldst.op_to_addrspace =
9637		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9638			    F_FW_CMD_REQUEST |
9639			    F_FW_CMD_WRITE |
9640			    ldst_addrspace);
9641	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9642	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9643	ldst.u.i2c.did = devid;
9644	ldst.u.i2c.boffset = offset;
9645	ldst.u.i2c.blen = len;
9646	memcpy(ldst.u.i2c.data, buf, len);
9647	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9648}
9649
9650/**
9651 * 	t4_sge_ctxt_rd - read an SGE context through FW
9652 * 	@adap: the adapter
9653 * 	@mbox: mailbox to use for the FW command
9654 * 	@cid: the context id
9655 * 	@ctype: the context type
9656 * 	@data: where to store the context data
9657 *
9658 * 	Issues a FW command through the given mailbox to read an SGE context.
9659 */
9660int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9661		   enum ctxt_type ctype, u32 *data)
9662{
9663	int ret;
9664	struct fw_ldst_cmd c;
9665
9666	if (ctype == CTXT_EGRESS)
9667		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9668	else if (ctype == CTXT_INGRESS)
9669		ret = FW_LDST_ADDRSPC_SGE_INGC;
9670	else if (ctype == CTXT_FLM)
9671		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9672	else
9673		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9674
9675	memset(&c, 0, sizeof(c));
9676	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9677					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9678					V_FW_LDST_CMD_ADDRSPACE(ret));
9679	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9680	c.u.idctxt.physid = cpu_to_be32(cid);
9681
9682	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9683	if (ret == 0) {
9684		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9685		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9686		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9687		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9688		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9689		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9690	}
9691	return ret;
9692}
9693
9694/**
9695 * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9696 * 	@adap: the adapter
9697 * 	@cid: the context id
9698 * 	@ctype: the context type
9699 * 	@data: where to store the context data
9700 *
9701 * 	Reads an SGE context directly, bypassing FW.  This is only for
9702 * 	debugging when FW is unavailable.
9703 */
9704int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9705		      u32 *data)
9706{
9707	int i, ret;
9708
9709	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9710	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9711	if (!ret)
9712		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9713			*data++ = t4_read_reg(adap, i);
9714	return ret;
9715}
9716
9717int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9718    int sleep_ok)
9719{
9720	struct fw_sched_cmd cmd;
9721
9722	memset(&cmd, 0, sizeof(cmd));
9723	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9724				      F_FW_CMD_REQUEST |
9725				      F_FW_CMD_WRITE);
9726	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9727
9728	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9729	cmd.u.config.type = type;
9730	cmd.u.config.minmaxen = minmaxen;
9731
9732	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9733			       NULL, sleep_ok);
9734}
9735
9736int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9737		    int rateunit, int ratemode, int channel, int cl,
9738		    int minrate, int maxrate, int weight, int pktsize,
9739		    int sleep_ok)
9740{
9741	struct fw_sched_cmd cmd;
9742
9743	memset(&cmd, 0, sizeof(cmd));
9744	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9745				      F_FW_CMD_REQUEST |
9746				      F_FW_CMD_WRITE);
9747	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9748
9749	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9750	cmd.u.params.type = type;
9751	cmd.u.params.level = level;
9752	cmd.u.params.mode = mode;
9753	cmd.u.params.ch = channel;
9754	cmd.u.params.cl = cl;
9755	cmd.u.params.unit = rateunit;
9756	cmd.u.params.rate = ratemode;
9757	cmd.u.params.min = cpu_to_be32(minrate);
9758	cmd.u.params.max = cpu_to_be32(maxrate);
9759	cmd.u.params.weight = cpu_to_be16(weight);
9760	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9761
9762	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9763			       NULL, sleep_ok);
9764}
9765
9766int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
9767    unsigned int maxrate, int sleep_ok)
9768{
9769	struct fw_sched_cmd cmd;
9770
9771	memset(&cmd, 0, sizeof(cmd));
9772	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9773				      F_FW_CMD_REQUEST |
9774				      F_FW_CMD_WRITE);
9775	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9776
9777	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9778	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9779	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
9780	cmd.u.params.ch = channel;
9781	cmd.u.params.rate = ratemode;		/* REL or ABS */
9782	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
9783
9784	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9785			       NULL, sleep_ok);
9786}
9787
9788int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
9789    int weight, int sleep_ok)
9790{
9791	struct fw_sched_cmd cmd;
9792
9793	if (weight < 0 || weight > 100)
9794		return -EINVAL;
9795
9796	memset(&cmd, 0, sizeof(cmd));
9797	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9798				      F_FW_CMD_REQUEST |
9799				      F_FW_CMD_WRITE);
9800	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9801
9802	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9803	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9804	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
9805	cmd.u.params.ch = channel;
9806	cmd.u.params.cl = cl;
9807	cmd.u.params.weight = cpu_to_be16(weight);
9808
9809	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9810			       NULL, sleep_ok);
9811}
9812
9813int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
9814    int mode, unsigned int maxrate, int pktsize, int sleep_ok)
9815{
9816	struct fw_sched_cmd cmd;
9817
9818	memset(&cmd, 0, sizeof(cmd));
9819	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9820				      F_FW_CMD_REQUEST |
9821				      F_FW_CMD_WRITE);
9822	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9823
9824	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9825	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9826	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
9827	cmd.u.params.mode = mode;
9828	cmd.u.params.ch = channel;
9829	cmd.u.params.cl = cl;
9830	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
9831	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
9832	cmd.u.params.max = cpu_to_be32(maxrate);
9833	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9834
9835	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9836			       NULL, sleep_ok);
9837}
9838
9839/*
9840 *	t4_config_watchdog - configure (enable/disable) a watchdog timer
9841 *	@adapter: the adapter
9842 * 	@mbox: mailbox to use for the FW command
9843 * 	@pf: the PF owning the queue
9844 * 	@vf: the VF owning the queue
9845 *	@timeout: watchdog timeout in ms
9846 *	@action: watchdog timer / action
9847 *
9848 *	There are separate watchdog timers for each possible watchdog
9849 *	action.  Configure one of the watchdog timers by setting a non-zero
9850 *	timeout.  Disable a watchdog timer by using a timeout of zero.
9851 */
9852int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9853		       unsigned int pf, unsigned int vf,
9854		       unsigned int timeout, unsigned int action)
9855{
9856	struct fw_watchdog_cmd wdog;
9857	unsigned int ticks;
9858
9859	/*
9860	 * The watchdog command expects a timeout in units of 10ms so we need
9861	 * to convert it here (via rounding) and force a minimum of one 10ms
9862	 * "tick" if the timeout is non-zero but the conversion results in 0
9863	 * ticks.
9864	 */
9865	ticks = (timeout + 5)/10;
9866	if (timeout && !ticks)
9867		ticks = 1;
9868
9869	memset(&wdog, 0, sizeof wdog);
9870	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9871				     F_FW_CMD_REQUEST |
9872				     F_FW_CMD_WRITE |
9873				     V_FW_PARAMS_CMD_PFN(pf) |
9874				     V_FW_PARAMS_CMD_VFN(vf));
9875	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9876	wdog.timeout = cpu_to_be32(ticks);
9877	wdog.action = cpu_to_be32(action);
9878
9879	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9880}
9881
9882int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9883{
9884	struct fw_devlog_cmd devlog_cmd;
9885	int ret;
9886
9887	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9888	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9889					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9890	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9891	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9892			 sizeof(devlog_cmd), &devlog_cmd);
9893	if (ret)
9894		return ret;
9895
9896	*level = devlog_cmd.level;
9897	return 0;
9898}
9899
9900int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9901{
9902	struct fw_devlog_cmd devlog_cmd;
9903
9904	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9905	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9906					     F_FW_CMD_REQUEST |
9907					     F_FW_CMD_WRITE);
9908	devlog_cmd.level = level;
9909	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9910	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9911			  sizeof(devlog_cmd), &devlog_cmd);
9912}
9913