1/*-
2 * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/dev/cxgbe/common/t4_hw.c 355244 2019-11-30 19:52:47Z np $");
29
30#include "opt_inet.h"
31
32#include <sys/param.h>
33#include <sys/eventhandler.h>
34
35#include "common.h"
36#include "t4_regs.h"
37#include "t4_regs_values.h"
38#include "firmware/t4fw_interface.h"
39
40#undef msleep
41#define msleep(x) do { \
42	if (cold) \
43		DELAY((x) * 1000); \
44	else \
45		pause("t4hw", (x) * hz / 1000); \
46} while (0)
47
48/**
49 *	t4_wait_op_done_val - wait until an operation is completed
50 *	@adapter: the adapter performing the operation
51 *	@reg: the register to check for completion
52 *	@mask: a single-bit field within @reg that indicates completion
53 *	@polarity: the value of the field when the operation is completed
54 *	@attempts: number of check iterations
55 *	@delay: delay in usecs between iterations
56 *	@valp: where to store the value of the register at completion time
57 *
58 *	Wait until an operation is completed by checking a bit in a register
59 *	up to @attempts times.  If @valp is not NULL the value of the register
60 *	at the time it indicated completion is stored there.  Returns 0 if the
61 *	operation completes and	-EAGAIN	otherwise.
62 */
63static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
64			       int polarity, int attempts, int delay, u32 *valp)
65{
66	while (1) {
67		u32 val = t4_read_reg(adapter, reg);
68
69		if (!!(val & mask) == polarity) {
70			if (valp)
71				*valp = val;
72			return 0;
73		}
74		if (--attempts == 0)
75			return -EAGAIN;
76		if (delay)
77			udelay(delay);
78	}
79}
80
81static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
82				  int polarity, int attempts, int delay)
83{
84	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
85				   delay, NULL);
86}
87
88/**
89 *	t4_set_reg_field - set a register field to a value
90 *	@adapter: the adapter to program
91 *	@addr: the register address
92 *	@mask: specifies the portion of the register to modify
93 *	@val: the new value for the register field
94 *
95 *	Sets a register field specified by the supplied mask to the
96 *	given value.
97 */
98void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
99		      u32 val)
100{
101	u32 v = t4_read_reg(adapter, addr) & ~mask;
102
103	t4_write_reg(adapter, addr, v | val);
104	(void) t4_read_reg(adapter, addr);      /* flush */
105}
106
107/**
108 *	t4_read_indirect - read indirectly addressed registers
109 *	@adap: the adapter
110 *	@addr_reg: register holding the indirect address
111 *	@data_reg: register holding the value of the indirect register
112 *	@vals: where the read register values are stored
113 *	@nregs: how many indirect registers to read
114 *	@start_idx: index of first indirect register to read
115 *
116 *	Reads registers that are accessed indirectly through an address/data
117 *	register pair.
118 */
119void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
120			     unsigned int data_reg, u32 *vals,
121			     unsigned int nregs, unsigned int start_idx)
122{
123	while (nregs--) {
124		t4_write_reg(adap, addr_reg, start_idx);
125		*vals++ = t4_read_reg(adap, data_reg);
126		start_idx++;
127	}
128}
129
130/**
131 *	t4_write_indirect - write indirectly addressed registers
132 *	@adap: the adapter
133 *	@addr_reg: register holding the indirect addresses
134 *	@data_reg: register holding the value for the indirect registers
135 *	@vals: values to write
136 *	@nregs: how many indirect registers to write
137 *	@start_idx: address of first indirect register to write
138 *
139 *	Writes a sequential block of registers that are accessed indirectly
140 *	through an address/data register pair.
141 */
142void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
143		       unsigned int data_reg, const u32 *vals,
144		       unsigned int nregs, unsigned int start_idx)
145{
146	while (nregs--) {
147		t4_write_reg(adap, addr_reg, start_idx++);
148		t4_write_reg(adap, data_reg, *vals++);
149	}
150}
151
152/*
153 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
154 * mechanism.  This guarantees that we get the real value even if we're
155 * operating within a Virtual Machine and the Hypervisor is trapping our
156 * Configuration Space accesses.
157 *
158 * N.B. This routine should only be used as a last resort: the firmware uses
159 *      the backdoor registers on a regular basis and we can end up
160 *      conflicting with it's uses!
161 */
162u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
163{
164	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
165	u32 val;
166
167	if (chip_id(adap) <= CHELSIO_T5)
168		req |= F_ENABLE;
169	else
170		req |= F_T6_ENABLE;
171
172	if (is_t4(adap))
173		req |= F_LOCALCFG;
174
175	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
176	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
177
178	/*
179	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
180	 * Configuration Space read.  (None of the other fields matter when
181	 * F_ENABLE is 0 so a simple register write is easier than a
182	 * read-modify-write via t4_set_reg_field().)
183	 */
184	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
185
186	return val;
187}
188
189/*
190 * t4_report_fw_error - report firmware error
191 * @adap: the adapter
192 *
193 * The adapter firmware can indicate error conditions to the host.
194 * If the firmware has indicated an error, print out the reason for
195 * the firmware error.
196 */
197static void t4_report_fw_error(struct adapter *adap)
198{
199	static const char *const reason[] = {
200		"Crash",			/* PCIE_FW_EVAL_CRASH */
201		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
202		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
203		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
204		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
205		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
206		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
207		"Reserved",			/* reserved */
208	};
209	u32 pcie_fw;
210
211	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
212	if (pcie_fw & F_PCIE_FW_ERR) {
213		adap->flags &= ~FW_OK;
214		CH_ERR(adap, "firmware reports adapter error: %s (0x%08x)\n",
215		    reason[G_PCIE_FW_EVAL(pcie_fw)], pcie_fw);
216		if (pcie_fw != 0xffffffff)
217			t4_os_dump_devlog(adap);
218	}
219}
220
221/*
222 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
223 */
224static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
225			 u32 mbox_addr)
226{
227	for ( ; nflit; nflit--, mbox_addr += 8)
228		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
229}
230
231/*
232 * Handle a FW assertion reported in a mailbox.
233 */
234static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
235{
236	CH_ALERT(adap,
237		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
238		  asrt->u.assert.filename_0_7,
239		  be32_to_cpu(asrt->u.assert.line),
240		  be32_to_cpu(asrt->u.assert.x),
241		  be32_to_cpu(asrt->u.assert.y));
242}
243
244struct port_tx_state {
245	uint64_t rx_pause;
246	uint64_t tx_frames;
247};
248
249static void
250read_tx_state_one(struct adapter *sc, int i, struct port_tx_state *tx_state)
251{
252	uint32_t rx_pause_reg, tx_frames_reg;
253
254	if (is_t4(sc)) {
255		tx_frames_reg = PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
256		rx_pause_reg = PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
257	} else {
258		tx_frames_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_TX_PORT_FRAMES_L);
259		rx_pause_reg = T5_PORT_REG(i, A_MPS_PORT_STAT_RX_PORT_PAUSE_L);
260	}
261
262	tx_state->rx_pause = t4_read_reg64(sc, rx_pause_reg);
263	tx_state->tx_frames = t4_read_reg64(sc, tx_frames_reg);
264}
265
266static void
267read_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
268{
269	int i;
270
271	for_each_port(sc, i)
272		read_tx_state_one(sc, i, &tx_state[i]);
273}
274
275static void
276check_tx_state(struct adapter *sc, struct port_tx_state *tx_state)
277{
278	uint32_t port_ctl_reg;
279	uint64_t tx_frames, rx_pause;
280	int i;
281
282	for_each_port(sc, i) {
283		rx_pause = tx_state[i].rx_pause;
284		tx_frames = tx_state[i].tx_frames;
285		read_tx_state_one(sc, i, &tx_state[i]);	/* update */
286
287		if (is_t4(sc))
288			port_ctl_reg = PORT_REG(i, A_MPS_PORT_CTL);
289		else
290			port_ctl_reg = T5_PORT_REG(i, A_MPS_PORT_CTL);
291		if (t4_read_reg(sc, port_ctl_reg) & F_PORTTXEN &&
292		    rx_pause != tx_state[i].rx_pause &&
293		    tx_frames == tx_state[i].tx_frames) {
294			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, 0);
295			mdelay(1);
296			t4_set_reg_field(sc, port_ctl_reg, F_PORTTXEN, F_PORTTXEN);
297		}
298	}
299}
300
301#define X_CIM_PF_NOACCESS 0xeeeeeeee
302/**
303 *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
304 *	@adap: the adapter
305 *	@mbox: index of the mailbox to use
306 *	@cmd: the command to write
307 *	@size: command length in bytes
308 *	@rpl: where to optionally store the reply
309 *	@sleep_ok: if true we may sleep while awaiting command completion
310 *	@timeout: time to wait for command to finish before timing out
311 *		(negative implies @sleep_ok=false)
312 *
313 *	Sends the given command to FW through the selected mailbox and waits
314 *	for the FW to execute the command.  If @rpl is not %NULL it is used to
315 *	store the FW's reply to the command.  The command and its optional
316 *	reply are of the same length.  Some FW commands like RESET and
317 *	INITIALIZE can take a considerable amount of time to execute.
318 *	@sleep_ok determines whether we may sleep while awaiting the response.
319 *	If sleeping is allowed we use progressive backoff otherwise we spin.
320 *	Note that passing in a negative @timeout is an alternate mechanism
321 *	for specifying @sleep_ok=false.  This is useful when a higher level
322 *	interface allows for specification of @timeout but not @sleep_ok ...
323 *
324 *	The return value is 0 on success or a negative errno on failure.  A
325 *	failure can happen either because we are not able to execute the
326 *	command or FW executes it but signals an error.  In the latter case
327 *	the return value is the error code indicated by FW (negated).
328 */
329int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
330			    int size, void *rpl, bool sleep_ok, int timeout)
331{
332	/*
333	 * We delay in small increments at first in an effort to maintain
334	 * responsiveness for simple, fast executing commands but then back
335	 * off to larger delays to a maximum retry delay.
336	 */
337	static const int delay[] = {
338		1, 1, 3, 5, 10, 10, 20, 50, 100
339	};
340	u32 v;
341	u64 res;
342	int i, ms, delay_idx, ret, next_tx_check;
343	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
344	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
345	u32 ctl;
346	__be64 cmd_rpl[MBOX_LEN/8];
347	u32 pcie_fw;
348	struct port_tx_state tx_state[MAX_NPORTS];
349
350	if (adap->flags & CHK_MBOX_ACCESS)
351		ASSERT_SYNCHRONIZED_OP(adap);
352
353	if (size <= 0 || (size & 15) || size > MBOX_LEN)
354		return -EINVAL;
355
356	if (adap->flags & IS_VF) {
357		if (is_t6(adap))
358			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
359		else
360			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
361		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
362	}
363
364	/*
365	 * If we have a negative timeout, that implies that we can't sleep.
366	 */
367	if (timeout < 0) {
368		sleep_ok = false;
369		timeout = -timeout;
370	}
371
372	/*
373	 * Attempt to gain access to the mailbox.
374	 */
375	for (i = 0; i < 4; i++) {
376		ctl = t4_read_reg(adap, ctl_reg);
377		v = G_MBOWNER(ctl);
378		if (v != X_MBOWNER_NONE)
379			break;
380	}
381
382	/*
383	 * If we were unable to gain access, report the error to our caller.
384	 */
385	if (v != X_MBOWNER_PL) {
386		t4_report_fw_error(adap);
387		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
388		return ret;
389	}
390
391	/*
392	 * If we gain ownership of the mailbox and there's a "valid" message
393	 * in it, this is likely an asynchronous error message from the
394	 * firmware.  So we'll report that and then proceed on with attempting
395	 * to issue our own command ... which may well fail if the error
396	 * presaged the firmware crashing ...
397	 */
398	if (ctl & F_MBMSGVALID) {
399		CH_DUMP_MBOX(adap, mbox, data_reg, "VLD", NULL, true);
400	}
401
402	/*
403	 * Copy in the new mailbox command and send it on its way ...
404	 */
405	memset(cmd_rpl, 0, sizeof(cmd_rpl));
406	memcpy(cmd_rpl, cmd, size);
407	CH_DUMP_MBOX(adap, mbox, 0, "cmd", cmd_rpl, false);
408	for (i = 0; i < ARRAY_SIZE(cmd_rpl); i++)
409		t4_write_reg64(adap, data_reg + i * 8, be64_to_cpu(cmd_rpl[i]));
410
411	if (adap->flags & IS_VF) {
412		/*
413		 * For the VFs, the Mailbox Data "registers" are
414		 * actually backed by T4's "MA" interface rather than
415		 * PL Registers (as is the case for the PFs).  Because
416		 * these are in different coherency domains, the write
417		 * to the VF's PL-register-backed Mailbox Control can
418		 * race in front of the writes to the MA-backed VF
419		 * Mailbox Data "registers".  So we need to do a
420		 * read-back on at least one byte of the VF Mailbox
421		 * Data registers before doing the write to the VF
422		 * Mailbox Control register.
423		 */
424		t4_read_reg(adap, data_reg);
425	}
426
427	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
428	read_tx_state(adap, &tx_state[0]);	/* also flushes the write_reg */
429	next_tx_check = 1000;
430	delay_idx = 0;
431	ms = delay[0];
432
433	/*
434	 * Loop waiting for the reply; bail out if we time out or the firmware
435	 * reports an error.
436	 */
437	pcie_fw = 0;
438	for (i = 0; i < timeout; i += ms) {
439		if (!(adap->flags & IS_VF)) {
440			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
441			if (pcie_fw & F_PCIE_FW_ERR)
442				break;
443		}
444
445		if (i >= next_tx_check) {
446			check_tx_state(adap, &tx_state[0]);
447			next_tx_check = i + 1000;
448		}
449
450		if (sleep_ok) {
451			ms = delay[delay_idx];  /* last element may repeat */
452			if (delay_idx < ARRAY_SIZE(delay) - 1)
453				delay_idx++;
454			msleep(ms);
455		} else {
456			mdelay(ms);
457		}
458
459		v = t4_read_reg(adap, ctl_reg);
460		if (v == X_CIM_PF_NOACCESS)
461			continue;
462		if (G_MBOWNER(v) == X_MBOWNER_PL) {
463			if (!(v & F_MBMSGVALID)) {
464				t4_write_reg(adap, ctl_reg,
465					     V_MBOWNER(X_MBOWNER_NONE));
466				continue;
467			}
468
469			/*
470			 * Retrieve the command reply and release the mailbox.
471			 */
472			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
473			CH_DUMP_MBOX(adap, mbox, 0, "rpl", cmd_rpl, false);
474			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
475
476			res = be64_to_cpu(cmd_rpl[0]);
477			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
478				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
479				res = V_FW_CMD_RETVAL(EIO);
480			} else if (rpl)
481				memcpy(rpl, cmd_rpl, size);
482			return -G_FW_CMD_RETVAL((int)res);
483		}
484	}
485
486	/*
487	 * We timed out waiting for a reply to our mailbox command.  Report
488	 * the error and also check to see if the firmware reported any
489	 * errors ...
490	 */
491	CH_ERR(adap, "command %#x in mbox %d timed out (0x%08x).\n",
492	    *(const u8 *)cmd, mbox, pcie_fw);
493	CH_DUMP_MBOX(adap, mbox, 0, "cmdsent", cmd_rpl, true);
494	CH_DUMP_MBOX(adap, mbox, data_reg, "current", NULL, true);
495
496	if (pcie_fw & F_PCIE_FW_ERR) {
497		ret = -ENXIO;
498		t4_report_fw_error(adap);
499	} else {
500		ret = -ETIMEDOUT;
501		t4_os_dump_devlog(adap);
502	}
503
504	t4_fatal_err(adap, true);
505	return ret;
506}
507
508int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
509		    void *rpl, bool sleep_ok)
510{
511		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
512					       sleep_ok, FW_CMD_MAX_TIMEOUT);
513
514}
515
516static int t4_edc_err_read(struct adapter *adap, int idx)
517{
518	u32 edc_ecc_err_addr_reg;
519	u32 edc_bist_status_rdata_reg;
520
521	if (is_t4(adap)) {
522		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
523		return 0;
524	}
525	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
526		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
527		return 0;
528	}
529
530	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
531	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
532
533	CH_WARN(adap,
534		"edc%d err addr 0x%x: 0x%x.\n",
535		idx, edc_ecc_err_addr_reg,
536		t4_read_reg(adap, edc_ecc_err_addr_reg));
537	CH_WARN(adap,
538	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
539		edc_bist_status_rdata_reg,
540		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
541		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
542		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
543		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
544		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
545		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
546		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
547		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
548		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
549
550	return 0;
551}
552
553/**
554 *	t4_mc_read - read from MC through backdoor accesses
555 *	@adap: the adapter
556 *	@idx: which MC to access
557 *	@addr: address of first byte requested
558 *	@data: 64 bytes of data containing the requested address
559 *	@ecc: where to store the corresponding 64-bit ECC word
560 *
561 *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
562 *	that covers the requested address @addr.  If @parity is not %NULL it
563 *	is assigned the 64-bit ECC word for the read data.
564 */
565int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
566{
567	int i;
568	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
569	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
570
571	if (is_t4(adap)) {
572		mc_bist_cmd_reg = A_MC_BIST_CMD;
573		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
574		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
575		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
576		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
577	} else {
578		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
579		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
580		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
581		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
582						  idx);
583		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
584						  idx);
585	}
586
587	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
588		return -EBUSY;
589	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
590	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
591	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
592	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
593		     F_START_BIST | V_BIST_CMD_GAP(1));
594	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
595	if (i)
596		return i;
597
598#define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
599
600	for (i = 15; i >= 0; i--)
601		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
602	if (ecc)
603		*ecc = t4_read_reg64(adap, MC_DATA(16));
604#undef MC_DATA
605	return 0;
606}
607
608/**
609 *	t4_edc_read - read from EDC through backdoor accesses
610 *	@adap: the adapter
611 *	@idx: which EDC to access
612 *	@addr: address of first byte requested
613 *	@data: 64 bytes of data containing the requested address
614 *	@ecc: where to store the corresponding 64-bit ECC word
615 *
616 *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
617 *	that covers the requested address @addr.  If @parity is not %NULL it
618 *	is assigned the 64-bit ECC word for the read data.
619 */
620int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
621{
622	int i;
623	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
624	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
625
626	if (is_t4(adap)) {
627		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
628		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
629		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
630		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
631						    idx);
632		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
633						    idx);
634	} else {
635/*
636 * These macro are missing in t4_regs.h file.
637 * Added temporarily for testing.
638 */
639#define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
640#define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
641		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
642		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
643		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
644		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
645						    idx);
646		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
647						    idx);
648#undef EDC_REG_T5
649#undef EDC_STRIDE_T5
650	}
651
652	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
653		return -EBUSY;
654	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
655	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
656	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
657	t4_write_reg(adap, edc_bist_cmd_reg,
658		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
659	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
660	if (i)
661		return i;
662
663#define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
664
665	for (i = 15; i >= 0; i--)
666		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
667	if (ecc)
668		*ecc = t4_read_reg64(adap, EDC_DATA(16));
669#undef EDC_DATA
670	return 0;
671}
672
673/**
674 *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
675 *	@adap: the adapter
676 *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
677 *	@addr: address within indicated memory type
678 *	@len: amount of memory to read
679 *	@buf: host memory buffer
680 *
681 *	Reads an [almost] arbitrary memory region in the firmware: the
682 *	firmware memory address, length and host buffer must be aligned on
683 *	32-bit boudaries.  The memory is returned as a raw byte sequence from
684 *	the firmware's memory.  If this memory contains data structures which
685 *	contain multi-byte integers, it's the callers responsibility to
686 *	perform appropriate byte order conversions.
687 */
688int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
689		__be32 *buf)
690{
691	u32 pos, start, end, offset;
692	int ret;
693
694	/*
695	 * Argument sanity checks ...
696	 */
697	if ((addr & 0x3) || (len & 0x3))
698		return -EINVAL;
699
700	/*
701	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
702	 * need to round down the start and round up the end.  We'll start
703	 * copying out of the first line at (addr - start) a word at a time.
704	 */
705	start = rounddown2(addr, 64);
706	end = roundup2(addr + len, 64);
707	offset = (addr - start)/sizeof(__be32);
708
709	for (pos = start; pos < end; pos += 64, offset = 0) {
710		__be32 data[16];
711
712		/*
713		 * Read the chip's memory block and bail if there's an error.
714		 */
715		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
716			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
717		else
718			ret = t4_edc_read(adap, mtype, pos, data, NULL);
719		if (ret)
720			return ret;
721
722		/*
723		 * Copy the data into the caller's memory buffer.
724		 */
725		while (offset < 16 && len > 0) {
726			*buf++ = data[offset++];
727			len -= sizeof(__be32);
728		}
729	}
730
731	return 0;
732}
733
734/*
735 * Return the specified PCI-E Configuration Space register from our Physical
736 * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
737 * since we prefer to let the firmware own all of these registers, but if that
738 * fails we go for it directly ourselves.
739 */
740u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
741{
742
743	/*
744	 * If fw_attach != 0, construct and send the Firmware LDST Command to
745	 * retrieve the specified PCI-E Configuration Space register.
746	 */
747	if (drv_fw_attach != 0) {
748		struct fw_ldst_cmd ldst_cmd;
749		int ret;
750
751		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
752		ldst_cmd.op_to_addrspace =
753			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
754				    F_FW_CMD_REQUEST |
755				    F_FW_CMD_READ |
756				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
757		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
758		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
759		ldst_cmd.u.pcie.ctrl_to_fn =
760			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
761		ldst_cmd.u.pcie.r = reg;
762
763		/*
764		 * If the LDST Command succeeds, return the result, otherwise
765		 * fall through to reading it directly ourselves ...
766		 */
767		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
768				 &ldst_cmd);
769		if (ret == 0)
770			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
771
772		CH_WARN(adap, "Firmware failed to return "
773			"Configuration Space register %d, err = %d\n",
774			reg, -ret);
775	}
776
777	/*
778	 * Read the desired Configuration Space register via the PCI-E
779	 * Backdoor mechanism.
780	 */
781	return t4_hw_pci_read_cfg4(adap, reg);
782}
783
784/**
785 *	t4_get_regs_len - return the size of the chips register set
786 *	@adapter: the adapter
787 *
788 *	Returns the size of the chip's BAR0 register space.
789 */
790unsigned int t4_get_regs_len(struct adapter *adapter)
791{
792	unsigned int chip_version = chip_id(adapter);
793
794	switch (chip_version) {
795	case CHELSIO_T4:
796		if (adapter->flags & IS_VF)
797			return FW_T4VF_REGMAP_SIZE;
798		return T4_REGMAP_SIZE;
799
800	case CHELSIO_T5:
801	case CHELSIO_T6:
802		if (adapter->flags & IS_VF)
803			return FW_T4VF_REGMAP_SIZE;
804		return T5_REGMAP_SIZE;
805	}
806
807	CH_ERR(adapter,
808		"Unsupported chip version %d\n", chip_version);
809	return 0;
810}
811
812/**
813 *	t4_get_regs - read chip registers into provided buffer
814 *	@adap: the adapter
815 *	@buf: register buffer
816 *	@buf_size: size (in bytes) of register buffer
817 *
818 *	If the provided register buffer isn't large enough for the chip's
819 *	full register range, the register dump will be truncated to the
820 *	register buffer's size.
821 */
822void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
823{
824	static const unsigned int t4_reg_ranges[] = {
825		0x1008, 0x1108,
826		0x1180, 0x1184,
827		0x1190, 0x1194,
828		0x11a0, 0x11a4,
829		0x11b0, 0x11b4,
830		0x11fc, 0x123c,
831		0x1300, 0x173c,
832		0x1800, 0x18fc,
833		0x3000, 0x30d8,
834		0x30e0, 0x30e4,
835		0x30ec, 0x5910,
836		0x5920, 0x5924,
837		0x5960, 0x5960,
838		0x5968, 0x5968,
839		0x5970, 0x5970,
840		0x5978, 0x5978,
841		0x5980, 0x5980,
842		0x5988, 0x5988,
843		0x5990, 0x5990,
844		0x5998, 0x5998,
845		0x59a0, 0x59d4,
846		0x5a00, 0x5ae0,
847		0x5ae8, 0x5ae8,
848		0x5af0, 0x5af0,
849		0x5af8, 0x5af8,
850		0x6000, 0x6098,
851		0x6100, 0x6150,
852		0x6200, 0x6208,
853		0x6240, 0x6248,
854		0x6280, 0x62b0,
855		0x62c0, 0x6338,
856		0x6370, 0x638c,
857		0x6400, 0x643c,
858		0x6500, 0x6524,
859		0x6a00, 0x6a04,
860		0x6a14, 0x6a38,
861		0x6a60, 0x6a70,
862		0x6a78, 0x6a78,
863		0x6b00, 0x6b0c,
864		0x6b1c, 0x6b84,
865		0x6bf0, 0x6bf8,
866		0x6c00, 0x6c0c,
867		0x6c1c, 0x6c84,
868		0x6cf0, 0x6cf8,
869		0x6d00, 0x6d0c,
870		0x6d1c, 0x6d84,
871		0x6df0, 0x6df8,
872		0x6e00, 0x6e0c,
873		0x6e1c, 0x6e84,
874		0x6ef0, 0x6ef8,
875		0x6f00, 0x6f0c,
876		0x6f1c, 0x6f84,
877		0x6ff0, 0x6ff8,
878		0x7000, 0x700c,
879		0x701c, 0x7084,
880		0x70f0, 0x70f8,
881		0x7100, 0x710c,
882		0x711c, 0x7184,
883		0x71f0, 0x71f8,
884		0x7200, 0x720c,
885		0x721c, 0x7284,
886		0x72f0, 0x72f8,
887		0x7300, 0x730c,
888		0x731c, 0x7384,
889		0x73f0, 0x73f8,
890		0x7400, 0x7450,
891		0x7500, 0x7530,
892		0x7600, 0x760c,
893		0x7614, 0x761c,
894		0x7680, 0x76cc,
895		0x7700, 0x7798,
896		0x77c0, 0x77fc,
897		0x7900, 0x79fc,
898		0x7b00, 0x7b58,
899		0x7b60, 0x7b84,
900		0x7b8c, 0x7c38,
901		0x7d00, 0x7d38,
902		0x7d40, 0x7d80,
903		0x7d8c, 0x7ddc,
904		0x7de4, 0x7e04,
905		0x7e10, 0x7e1c,
906		0x7e24, 0x7e38,
907		0x7e40, 0x7e44,
908		0x7e4c, 0x7e78,
909		0x7e80, 0x7ea4,
910		0x7eac, 0x7edc,
911		0x7ee8, 0x7efc,
912		0x8dc0, 0x8e04,
913		0x8e10, 0x8e1c,
914		0x8e30, 0x8e78,
915		0x8ea0, 0x8eb8,
916		0x8ec0, 0x8f6c,
917		0x8fc0, 0x9008,
918		0x9010, 0x9058,
919		0x9060, 0x9060,
920		0x9068, 0x9074,
921		0x90fc, 0x90fc,
922		0x9400, 0x9408,
923		0x9410, 0x9458,
924		0x9600, 0x9600,
925		0x9608, 0x9638,
926		0x9640, 0x96bc,
927		0x9800, 0x9808,
928		0x9820, 0x983c,
929		0x9850, 0x9864,
930		0x9c00, 0x9c6c,
931		0x9c80, 0x9cec,
932		0x9d00, 0x9d6c,
933		0x9d80, 0x9dec,
934		0x9e00, 0x9e6c,
935		0x9e80, 0x9eec,
936		0x9f00, 0x9f6c,
937		0x9f80, 0x9fec,
938		0xd004, 0xd004,
939		0xd010, 0xd03c,
940		0xdfc0, 0xdfe0,
941		0xe000, 0xea7c,
942		0xf000, 0x11110,
943		0x11118, 0x11190,
944		0x19040, 0x1906c,
945		0x19078, 0x19080,
946		0x1908c, 0x190e4,
947		0x190f0, 0x190f8,
948		0x19100, 0x19110,
949		0x19120, 0x19124,
950		0x19150, 0x19194,
951		0x1919c, 0x191b0,
952		0x191d0, 0x191e8,
953		0x19238, 0x1924c,
954		0x193f8, 0x1943c,
955		0x1944c, 0x19474,
956		0x19490, 0x194e0,
957		0x194f0, 0x194f8,
958		0x19800, 0x19c08,
959		0x19c10, 0x19c90,
960		0x19ca0, 0x19ce4,
961		0x19cf0, 0x19d40,
962		0x19d50, 0x19d94,
963		0x19da0, 0x19de8,
964		0x19df0, 0x19e40,
965		0x19e50, 0x19e90,
966		0x19ea0, 0x19f4c,
967		0x1a000, 0x1a004,
968		0x1a010, 0x1a06c,
969		0x1a0b0, 0x1a0e4,
970		0x1a0ec, 0x1a0f4,
971		0x1a100, 0x1a108,
972		0x1a114, 0x1a120,
973		0x1a128, 0x1a130,
974		0x1a138, 0x1a138,
975		0x1a190, 0x1a1c4,
976		0x1a1fc, 0x1a1fc,
977		0x1e040, 0x1e04c,
978		0x1e284, 0x1e28c,
979		0x1e2c0, 0x1e2c0,
980		0x1e2e0, 0x1e2e0,
981		0x1e300, 0x1e384,
982		0x1e3c0, 0x1e3c8,
983		0x1e440, 0x1e44c,
984		0x1e684, 0x1e68c,
985		0x1e6c0, 0x1e6c0,
986		0x1e6e0, 0x1e6e0,
987		0x1e700, 0x1e784,
988		0x1e7c0, 0x1e7c8,
989		0x1e840, 0x1e84c,
990		0x1ea84, 0x1ea8c,
991		0x1eac0, 0x1eac0,
992		0x1eae0, 0x1eae0,
993		0x1eb00, 0x1eb84,
994		0x1ebc0, 0x1ebc8,
995		0x1ec40, 0x1ec4c,
996		0x1ee84, 0x1ee8c,
997		0x1eec0, 0x1eec0,
998		0x1eee0, 0x1eee0,
999		0x1ef00, 0x1ef84,
1000		0x1efc0, 0x1efc8,
1001		0x1f040, 0x1f04c,
1002		0x1f284, 0x1f28c,
1003		0x1f2c0, 0x1f2c0,
1004		0x1f2e0, 0x1f2e0,
1005		0x1f300, 0x1f384,
1006		0x1f3c0, 0x1f3c8,
1007		0x1f440, 0x1f44c,
1008		0x1f684, 0x1f68c,
1009		0x1f6c0, 0x1f6c0,
1010		0x1f6e0, 0x1f6e0,
1011		0x1f700, 0x1f784,
1012		0x1f7c0, 0x1f7c8,
1013		0x1f840, 0x1f84c,
1014		0x1fa84, 0x1fa8c,
1015		0x1fac0, 0x1fac0,
1016		0x1fae0, 0x1fae0,
1017		0x1fb00, 0x1fb84,
1018		0x1fbc0, 0x1fbc8,
1019		0x1fc40, 0x1fc4c,
1020		0x1fe84, 0x1fe8c,
1021		0x1fec0, 0x1fec0,
1022		0x1fee0, 0x1fee0,
1023		0x1ff00, 0x1ff84,
1024		0x1ffc0, 0x1ffc8,
1025		0x20000, 0x2002c,
1026		0x20100, 0x2013c,
1027		0x20190, 0x201a0,
1028		0x201a8, 0x201b8,
1029		0x201c4, 0x201c8,
1030		0x20200, 0x20318,
1031		0x20400, 0x204b4,
1032		0x204c0, 0x20528,
1033		0x20540, 0x20614,
1034		0x21000, 0x21040,
1035		0x2104c, 0x21060,
1036		0x210c0, 0x210ec,
1037		0x21200, 0x21268,
1038		0x21270, 0x21284,
1039		0x212fc, 0x21388,
1040		0x21400, 0x21404,
1041		0x21500, 0x21500,
1042		0x21510, 0x21518,
1043		0x2152c, 0x21530,
1044		0x2153c, 0x2153c,
1045		0x21550, 0x21554,
1046		0x21600, 0x21600,
1047		0x21608, 0x2161c,
1048		0x21624, 0x21628,
1049		0x21630, 0x21634,
1050		0x2163c, 0x2163c,
1051		0x21700, 0x2171c,
1052		0x21780, 0x2178c,
1053		0x21800, 0x21818,
1054		0x21820, 0x21828,
1055		0x21830, 0x21848,
1056		0x21850, 0x21854,
1057		0x21860, 0x21868,
1058		0x21870, 0x21870,
1059		0x21878, 0x21898,
1060		0x218a0, 0x218a8,
1061		0x218b0, 0x218c8,
1062		0x218d0, 0x218d4,
1063		0x218e0, 0x218e8,
1064		0x218f0, 0x218f0,
1065		0x218f8, 0x21a18,
1066		0x21a20, 0x21a28,
1067		0x21a30, 0x21a48,
1068		0x21a50, 0x21a54,
1069		0x21a60, 0x21a68,
1070		0x21a70, 0x21a70,
1071		0x21a78, 0x21a98,
1072		0x21aa0, 0x21aa8,
1073		0x21ab0, 0x21ac8,
1074		0x21ad0, 0x21ad4,
1075		0x21ae0, 0x21ae8,
1076		0x21af0, 0x21af0,
1077		0x21af8, 0x21c18,
1078		0x21c20, 0x21c20,
1079		0x21c28, 0x21c30,
1080		0x21c38, 0x21c38,
1081		0x21c80, 0x21c98,
1082		0x21ca0, 0x21ca8,
1083		0x21cb0, 0x21cc8,
1084		0x21cd0, 0x21cd4,
1085		0x21ce0, 0x21ce8,
1086		0x21cf0, 0x21cf0,
1087		0x21cf8, 0x21d7c,
1088		0x21e00, 0x21e04,
1089		0x22000, 0x2202c,
1090		0x22100, 0x2213c,
1091		0x22190, 0x221a0,
1092		0x221a8, 0x221b8,
1093		0x221c4, 0x221c8,
1094		0x22200, 0x22318,
1095		0x22400, 0x224b4,
1096		0x224c0, 0x22528,
1097		0x22540, 0x22614,
1098		0x23000, 0x23040,
1099		0x2304c, 0x23060,
1100		0x230c0, 0x230ec,
1101		0x23200, 0x23268,
1102		0x23270, 0x23284,
1103		0x232fc, 0x23388,
1104		0x23400, 0x23404,
1105		0x23500, 0x23500,
1106		0x23510, 0x23518,
1107		0x2352c, 0x23530,
1108		0x2353c, 0x2353c,
1109		0x23550, 0x23554,
1110		0x23600, 0x23600,
1111		0x23608, 0x2361c,
1112		0x23624, 0x23628,
1113		0x23630, 0x23634,
1114		0x2363c, 0x2363c,
1115		0x23700, 0x2371c,
1116		0x23780, 0x2378c,
1117		0x23800, 0x23818,
1118		0x23820, 0x23828,
1119		0x23830, 0x23848,
1120		0x23850, 0x23854,
1121		0x23860, 0x23868,
1122		0x23870, 0x23870,
1123		0x23878, 0x23898,
1124		0x238a0, 0x238a8,
1125		0x238b0, 0x238c8,
1126		0x238d0, 0x238d4,
1127		0x238e0, 0x238e8,
1128		0x238f0, 0x238f0,
1129		0x238f8, 0x23a18,
1130		0x23a20, 0x23a28,
1131		0x23a30, 0x23a48,
1132		0x23a50, 0x23a54,
1133		0x23a60, 0x23a68,
1134		0x23a70, 0x23a70,
1135		0x23a78, 0x23a98,
1136		0x23aa0, 0x23aa8,
1137		0x23ab0, 0x23ac8,
1138		0x23ad0, 0x23ad4,
1139		0x23ae0, 0x23ae8,
1140		0x23af0, 0x23af0,
1141		0x23af8, 0x23c18,
1142		0x23c20, 0x23c20,
1143		0x23c28, 0x23c30,
1144		0x23c38, 0x23c38,
1145		0x23c80, 0x23c98,
1146		0x23ca0, 0x23ca8,
1147		0x23cb0, 0x23cc8,
1148		0x23cd0, 0x23cd4,
1149		0x23ce0, 0x23ce8,
1150		0x23cf0, 0x23cf0,
1151		0x23cf8, 0x23d7c,
1152		0x23e00, 0x23e04,
1153		0x24000, 0x2402c,
1154		0x24100, 0x2413c,
1155		0x24190, 0x241a0,
1156		0x241a8, 0x241b8,
1157		0x241c4, 0x241c8,
1158		0x24200, 0x24318,
1159		0x24400, 0x244b4,
1160		0x244c0, 0x24528,
1161		0x24540, 0x24614,
1162		0x25000, 0x25040,
1163		0x2504c, 0x25060,
1164		0x250c0, 0x250ec,
1165		0x25200, 0x25268,
1166		0x25270, 0x25284,
1167		0x252fc, 0x25388,
1168		0x25400, 0x25404,
1169		0x25500, 0x25500,
1170		0x25510, 0x25518,
1171		0x2552c, 0x25530,
1172		0x2553c, 0x2553c,
1173		0x25550, 0x25554,
1174		0x25600, 0x25600,
1175		0x25608, 0x2561c,
1176		0x25624, 0x25628,
1177		0x25630, 0x25634,
1178		0x2563c, 0x2563c,
1179		0x25700, 0x2571c,
1180		0x25780, 0x2578c,
1181		0x25800, 0x25818,
1182		0x25820, 0x25828,
1183		0x25830, 0x25848,
1184		0x25850, 0x25854,
1185		0x25860, 0x25868,
1186		0x25870, 0x25870,
1187		0x25878, 0x25898,
1188		0x258a0, 0x258a8,
1189		0x258b0, 0x258c8,
1190		0x258d0, 0x258d4,
1191		0x258e0, 0x258e8,
1192		0x258f0, 0x258f0,
1193		0x258f8, 0x25a18,
1194		0x25a20, 0x25a28,
1195		0x25a30, 0x25a48,
1196		0x25a50, 0x25a54,
1197		0x25a60, 0x25a68,
1198		0x25a70, 0x25a70,
1199		0x25a78, 0x25a98,
1200		0x25aa0, 0x25aa8,
1201		0x25ab0, 0x25ac8,
1202		0x25ad0, 0x25ad4,
1203		0x25ae0, 0x25ae8,
1204		0x25af0, 0x25af0,
1205		0x25af8, 0x25c18,
1206		0x25c20, 0x25c20,
1207		0x25c28, 0x25c30,
1208		0x25c38, 0x25c38,
1209		0x25c80, 0x25c98,
1210		0x25ca0, 0x25ca8,
1211		0x25cb0, 0x25cc8,
1212		0x25cd0, 0x25cd4,
1213		0x25ce0, 0x25ce8,
1214		0x25cf0, 0x25cf0,
1215		0x25cf8, 0x25d7c,
1216		0x25e00, 0x25e04,
1217		0x26000, 0x2602c,
1218		0x26100, 0x2613c,
1219		0x26190, 0x261a0,
1220		0x261a8, 0x261b8,
1221		0x261c4, 0x261c8,
1222		0x26200, 0x26318,
1223		0x26400, 0x264b4,
1224		0x264c0, 0x26528,
1225		0x26540, 0x26614,
1226		0x27000, 0x27040,
1227		0x2704c, 0x27060,
1228		0x270c0, 0x270ec,
1229		0x27200, 0x27268,
1230		0x27270, 0x27284,
1231		0x272fc, 0x27388,
1232		0x27400, 0x27404,
1233		0x27500, 0x27500,
1234		0x27510, 0x27518,
1235		0x2752c, 0x27530,
1236		0x2753c, 0x2753c,
1237		0x27550, 0x27554,
1238		0x27600, 0x27600,
1239		0x27608, 0x2761c,
1240		0x27624, 0x27628,
1241		0x27630, 0x27634,
1242		0x2763c, 0x2763c,
1243		0x27700, 0x2771c,
1244		0x27780, 0x2778c,
1245		0x27800, 0x27818,
1246		0x27820, 0x27828,
1247		0x27830, 0x27848,
1248		0x27850, 0x27854,
1249		0x27860, 0x27868,
1250		0x27870, 0x27870,
1251		0x27878, 0x27898,
1252		0x278a0, 0x278a8,
1253		0x278b0, 0x278c8,
1254		0x278d0, 0x278d4,
1255		0x278e0, 0x278e8,
1256		0x278f0, 0x278f0,
1257		0x278f8, 0x27a18,
1258		0x27a20, 0x27a28,
1259		0x27a30, 0x27a48,
1260		0x27a50, 0x27a54,
1261		0x27a60, 0x27a68,
1262		0x27a70, 0x27a70,
1263		0x27a78, 0x27a98,
1264		0x27aa0, 0x27aa8,
1265		0x27ab0, 0x27ac8,
1266		0x27ad0, 0x27ad4,
1267		0x27ae0, 0x27ae8,
1268		0x27af0, 0x27af0,
1269		0x27af8, 0x27c18,
1270		0x27c20, 0x27c20,
1271		0x27c28, 0x27c30,
1272		0x27c38, 0x27c38,
1273		0x27c80, 0x27c98,
1274		0x27ca0, 0x27ca8,
1275		0x27cb0, 0x27cc8,
1276		0x27cd0, 0x27cd4,
1277		0x27ce0, 0x27ce8,
1278		0x27cf0, 0x27cf0,
1279		0x27cf8, 0x27d7c,
1280		0x27e00, 0x27e04,
1281	};
1282
1283	static const unsigned int t4vf_reg_ranges[] = {
1284		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1285		VF_MPS_REG(A_MPS_VF_CTL),
1286		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1287		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1288		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1289		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1290		FW_T4VF_MBDATA_BASE_ADDR,
1291		FW_T4VF_MBDATA_BASE_ADDR +
1292		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1293	};
1294
1295	static const unsigned int t5_reg_ranges[] = {
1296		0x1008, 0x10c0,
1297		0x10cc, 0x10f8,
1298		0x1100, 0x1100,
1299		0x110c, 0x1148,
1300		0x1180, 0x1184,
1301		0x1190, 0x1194,
1302		0x11a0, 0x11a4,
1303		0x11b0, 0x11b4,
1304		0x11fc, 0x123c,
1305		0x1280, 0x173c,
1306		0x1800, 0x18fc,
1307		0x3000, 0x3028,
1308		0x3060, 0x30b0,
1309		0x30b8, 0x30d8,
1310		0x30e0, 0x30fc,
1311		0x3140, 0x357c,
1312		0x35a8, 0x35cc,
1313		0x35ec, 0x35ec,
1314		0x3600, 0x5624,
1315		0x56cc, 0x56ec,
1316		0x56f4, 0x5720,
1317		0x5728, 0x575c,
1318		0x580c, 0x5814,
1319		0x5890, 0x589c,
1320		0x58a4, 0x58ac,
1321		0x58b8, 0x58bc,
1322		0x5940, 0x59c8,
1323		0x59d0, 0x59dc,
1324		0x59fc, 0x5a18,
1325		0x5a60, 0x5a70,
1326		0x5a80, 0x5a9c,
1327		0x5b94, 0x5bfc,
1328		0x6000, 0x6020,
1329		0x6028, 0x6040,
1330		0x6058, 0x609c,
1331		0x60a8, 0x614c,
1332		0x7700, 0x7798,
1333		0x77c0, 0x78fc,
1334		0x7b00, 0x7b58,
1335		0x7b60, 0x7b84,
1336		0x7b8c, 0x7c54,
1337		0x7d00, 0x7d38,
1338		0x7d40, 0x7d80,
1339		0x7d8c, 0x7ddc,
1340		0x7de4, 0x7e04,
1341		0x7e10, 0x7e1c,
1342		0x7e24, 0x7e38,
1343		0x7e40, 0x7e44,
1344		0x7e4c, 0x7e78,
1345		0x7e80, 0x7edc,
1346		0x7ee8, 0x7efc,
1347		0x8dc0, 0x8de0,
1348		0x8df8, 0x8e04,
1349		0x8e10, 0x8e84,
1350		0x8ea0, 0x8f84,
1351		0x8fc0, 0x9058,
1352		0x9060, 0x9060,
1353		0x9068, 0x90f8,
1354		0x9400, 0x9408,
1355		0x9410, 0x9470,
1356		0x9600, 0x9600,
1357		0x9608, 0x9638,
1358		0x9640, 0x96f4,
1359		0x9800, 0x9808,
1360		0x9820, 0x983c,
1361		0x9850, 0x9864,
1362		0x9c00, 0x9c6c,
1363		0x9c80, 0x9cec,
1364		0x9d00, 0x9d6c,
1365		0x9d80, 0x9dec,
1366		0x9e00, 0x9e6c,
1367		0x9e80, 0x9eec,
1368		0x9f00, 0x9f6c,
1369		0x9f80, 0xa020,
1370		0xd004, 0xd004,
1371		0xd010, 0xd03c,
1372		0xdfc0, 0xdfe0,
1373		0xe000, 0x1106c,
1374		0x11074, 0x11088,
1375		0x1109c, 0x1117c,
1376		0x11190, 0x11204,
1377		0x19040, 0x1906c,
1378		0x19078, 0x19080,
1379		0x1908c, 0x190e8,
1380		0x190f0, 0x190f8,
1381		0x19100, 0x19110,
1382		0x19120, 0x19124,
1383		0x19150, 0x19194,
1384		0x1919c, 0x191b0,
1385		0x191d0, 0x191e8,
1386		0x19238, 0x19290,
1387		0x193f8, 0x19428,
1388		0x19430, 0x19444,
1389		0x1944c, 0x1946c,
1390		0x19474, 0x19474,
1391		0x19490, 0x194cc,
1392		0x194f0, 0x194f8,
1393		0x19c00, 0x19c08,
1394		0x19c10, 0x19c60,
1395		0x19c94, 0x19ce4,
1396		0x19cf0, 0x19d40,
1397		0x19d50, 0x19d94,
1398		0x19da0, 0x19de8,
1399		0x19df0, 0x19e10,
1400		0x19e50, 0x19e90,
1401		0x19ea0, 0x19f24,
1402		0x19f34, 0x19f34,
1403		0x19f40, 0x19f50,
1404		0x19f90, 0x19fb4,
1405		0x19fc4, 0x19fe4,
1406		0x1a000, 0x1a004,
1407		0x1a010, 0x1a06c,
1408		0x1a0b0, 0x1a0e4,
1409		0x1a0ec, 0x1a0f8,
1410		0x1a100, 0x1a108,
1411		0x1a114, 0x1a120,
1412		0x1a128, 0x1a130,
1413		0x1a138, 0x1a138,
1414		0x1a190, 0x1a1c4,
1415		0x1a1fc, 0x1a1fc,
1416		0x1e008, 0x1e00c,
1417		0x1e040, 0x1e044,
1418		0x1e04c, 0x1e04c,
1419		0x1e284, 0x1e290,
1420		0x1e2c0, 0x1e2c0,
1421		0x1e2e0, 0x1e2e0,
1422		0x1e300, 0x1e384,
1423		0x1e3c0, 0x1e3c8,
1424		0x1e408, 0x1e40c,
1425		0x1e440, 0x1e444,
1426		0x1e44c, 0x1e44c,
1427		0x1e684, 0x1e690,
1428		0x1e6c0, 0x1e6c0,
1429		0x1e6e0, 0x1e6e0,
1430		0x1e700, 0x1e784,
1431		0x1e7c0, 0x1e7c8,
1432		0x1e808, 0x1e80c,
1433		0x1e840, 0x1e844,
1434		0x1e84c, 0x1e84c,
1435		0x1ea84, 0x1ea90,
1436		0x1eac0, 0x1eac0,
1437		0x1eae0, 0x1eae0,
1438		0x1eb00, 0x1eb84,
1439		0x1ebc0, 0x1ebc8,
1440		0x1ec08, 0x1ec0c,
1441		0x1ec40, 0x1ec44,
1442		0x1ec4c, 0x1ec4c,
1443		0x1ee84, 0x1ee90,
1444		0x1eec0, 0x1eec0,
1445		0x1eee0, 0x1eee0,
1446		0x1ef00, 0x1ef84,
1447		0x1efc0, 0x1efc8,
1448		0x1f008, 0x1f00c,
1449		0x1f040, 0x1f044,
1450		0x1f04c, 0x1f04c,
1451		0x1f284, 0x1f290,
1452		0x1f2c0, 0x1f2c0,
1453		0x1f2e0, 0x1f2e0,
1454		0x1f300, 0x1f384,
1455		0x1f3c0, 0x1f3c8,
1456		0x1f408, 0x1f40c,
1457		0x1f440, 0x1f444,
1458		0x1f44c, 0x1f44c,
1459		0x1f684, 0x1f690,
1460		0x1f6c0, 0x1f6c0,
1461		0x1f6e0, 0x1f6e0,
1462		0x1f700, 0x1f784,
1463		0x1f7c0, 0x1f7c8,
1464		0x1f808, 0x1f80c,
1465		0x1f840, 0x1f844,
1466		0x1f84c, 0x1f84c,
1467		0x1fa84, 0x1fa90,
1468		0x1fac0, 0x1fac0,
1469		0x1fae0, 0x1fae0,
1470		0x1fb00, 0x1fb84,
1471		0x1fbc0, 0x1fbc8,
1472		0x1fc08, 0x1fc0c,
1473		0x1fc40, 0x1fc44,
1474		0x1fc4c, 0x1fc4c,
1475		0x1fe84, 0x1fe90,
1476		0x1fec0, 0x1fec0,
1477		0x1fee0, 0x1fee0,
1478		0x1ff00, 0x1ff84,
1479		0x1ffc0, 0x1ffc8,
1480		0x30000, 0x30030,
1481		0x30100, 0x30144,
1482		0x30190, 0x301a0,
1483		0x301a8, 0x301b8,
1484		0x301c4, 0x301c8,
1485		0x301d0, 0x301d0,
1486		0x30200, 0x30318,
1487		0x30400, 0x304b4,
1488		0x304c0, 0x3052c,
1489		0x30540, 0x3061c,
1490		0x30800, 0x30828,
1491		0x30834, 0x30834,
1492		0x308c0, 0x30908,
1493		0x30910, 0x309ac,
1494		0x30a00, 0x30a14,
1495		0x30a1c, 0x30a2c,
1496		0x30a44, 0x30a50,
1497		0x30a74, 0x30a74,
1498		0x30a7c, 0x30afc,
1499		0x30b08, 0x30c24,
1500		0x30d00, 0x30d00,
1501		0x30d08, 0x30d14,
1502		0x30d1c, 0x30d20,
1503		0x30d3c, 0x30d3c,
1504		0x30d48, 0x30d50,
1505		0x31200, 0x3120c,
1506		0x31220, 0x31220,
1507		0x31240, 0x31240,
1508		0x31600, 0x3160c,
1509		0x31a00, 0x31a1c,
1510		0x31e00, 0x31e20,
1511		0x31e38, 0x31e3c,
1512		0x31e80, 0x31e80,
1513		0x31e88, 0x31ea8,
1514		0x31eb0, 0x31eb4,
1515		0x31ec8, 0x31ed4,
1516		0x31fb8, 0x32004,
1517		0x32200, 0x32200,
1518		0x32208, 0x32240,
1519		0x32248, 0x32280,
1520		0x32288, 0x322c0,
1521		0x322c8, 0x322fc,
1522		0x32600, 0x32630,
1523		0x32a00, 0x32abc,
1524		0x32b00, 0x32b10,
1525		0x32b20, 0x32b30,
1526		0x32b40, 0x32b50,
1527		0x32b60, 0x32b70,
1528		0x33000, 0x33028,
1529		0x33030, 0x33048,
1530		0x33060, 0x33068,
1531		0x33070, 0x3309c,
1532		0x330f0, 0x33128,
1533		0x33130, 0x33148,
1534		0x33160, 0x33168,
1535		0x33170, 0x3319c,
1536		0x331f0, 0x33238,
1537		0x33240, 0x33240,
1538		0x33248, 0x33250,
1539		0x3325c, 0x33264,
1540		0x33270, 0x332b8,
1541		0x332c0, 0x332e4,
1542		0x332f8, 0x33338,
1543		0x33340, 0x33340,
1544		0x33348, 0x33350,
1545		0x3335c, 0x33364,
1546		0x33370, 0x333b8,
1547		0x333c0, 0x333e4,
1548		0x333f8, 0x33428,
1549		0x33430, 0x33448,
1550		0x33460, 0x33468,
1551		0x33470, 0x3349c,
1552		0x334f0, 0x33528,
1553		0x33530, 0x33548,
1554		0x33560, 0x33568,
1555		0x33570, 0x3359c,
1556		0x335f0, 0x33638,
1557		0x33640, 0x33640,
1558		0x33648, 0x33650,
1559		0x3365c, 0x33664,
1560		0x33670, 0x336b8,
1561		0x336c0, 0x336e4,
1562		0x336f8, 0x33738,
1563		0x33740, 0x33740,
1564		0x33748, 0x33750,
1565		0x3375c, 0x33764,
1566		0x33770, 0x337b8,
1567		0x337c0, 0x337e4,
1568		0x337f8, 0x337fc,
1569		0x33814, 0x33814,
1570		0x3382c, 0x3382c,
1571		0x33880, 0x3388c,
1572		0x338e8, 0x338ec,
1573		0x33900, 0x33928,
1574		0x33930, 0x33948,
1575		0x33960, 0x33968,
1576		0x33970, 0x3399c,
1577		0x339f0, 0x33a38,
1578		0x33a40, 0x33a40,
1579		0x33a48, 0x33a50,
1580		0x33a5c, 0x33a64,
1581		0x33a70, 0x33ab8,
1582		0x33ac0, 0x33ae4,
1583		0x33af8, 0x33b10,
1584		0x33b28, 0x33b28,
1585		0x33b3c, 0x33b50,
1586		0x33bf0, 0x33c10,
1587		0x33c28, 0x33c28,
1588		0x33c3c, 0x33c50,
1589		0x33cf0, 0x33cfc,
1590		0x34000, 0x34030,
1591		0x34100, 0x34144,
1592		0x34190, 0x341a0,
1593		0x341a8, 0x341b8,
1594		0x341c4, 0x341c8,
1595		0x341d0, 0x341d0,
1596		0x34200, 0x34318,
1597		0x34400, 0x344b4,
1598		0x344c0, 0x3452c,
1599		0x34540, 0x3461c,
1600		0x34800, 0x34828,
1601		0x34834, 0x34834,
1602		0x348c0, 0x34908,
1603		0x34910, 0x349ac,
1604		0x34a00, 0x34a14,
1605		0x34a1c, 0x34a2c,
1606		0x34a44, 0x34a50,
1607		0x34a74, 0x34a74,
1608		0x34a7c, 0x34afc,
1609		0x34b08, 0x34c24,
1610		0x34d00, 0x34d00,
1611		0x34d08, 0x34d14,
1612		0x34d1c, 0x34d20,
1613		0x34d3c, 0x34d3c,
1614		0x34d48, 0x34d50,
1615		0x35200, 0x3520c,
1616		0x35220, 0x35220,
1617		0x35240, 0x35240,
1618		0x35600, 0x3560c,
1619		0x35a00, 0x35a1c,
1620		0x35e00, 0x35e20,
1621		0x35e38, 0x35e3c,
1622		0x35e80, 0x35e80,
1623		0x35e88, 0x35ea8,
1624		0x35eb0, 0x35eb4,
1625		0x35ec8, 0x35ed4,
1626		0x35fb8, 0x36004,
1627		0x36200, 0x36200,
1628		0x36208, 0x36240,
1629		0x36248, 0x36280,
1630		0x36288, 0x362c0,
1631		0x362c8, 0x362fc,
1632		0x36600, 0x36630,
1633		0x36a00, 0x36abc,
1634		0x36b00, 0x36b10,
1635		0x36b20, 0x36b30,
1636		0x36b40, 0x36b50,
1637		0x36b60, 0x36b70,
1638		0x37000, 0x37028,
1639		0x37030, 0x37048,
1640		0x37060, 0x37068,
1641		0x37070, 0x3709c,
1642		0x370f0, 0x37128,
1643		0x37130, 0x37148,
1644		0x37160, 0x37168,
1645		0x37170, 0x3719c,
1646		0x371f0, 0x37238,
1647		0x37240, 0x37240,
1648		0x37248, 0x37250,
1649		0x3725c, 0x37264,
1650		0x37270, 0x372b8,
1651		0x372c0, 0x372e4,
1652		0x372f8, 0x37338,
1653		0x37340, 0x37340,
1654		0x37348, 0x37350,
1655		0x3735c, 0x37364,
1656		0x37370, 0x373b8,
1657		0x373c0, 0x373e4,
1658		0x373f8, 0x37428,
1659		0x37430, 0x37448,
1660		0x37460, 0x37468,
1661		0x37470, 0x3749c,
1662		0x374f0, 0x37528,
1663		0x37530, 0x37548,
1664		0x37560, 0x37568,
1665		0x37570, 0x3759c,
1666		0x375f0, 0x37638,
1667		0x37640, 0x37640,
1668		0x37648, 0x37650,
1669		0x3765c, 0x37664,
1670		0x37670, 0x376b8,
1671		0x376c0, 0x376e4,
1672		0x376f8, 0x37738,
1673		0x37740, 0x37740,
1674		0x37748, 0x37750,
1675		0x3775c, 0x37764,
1676		0x37770, 0x377b8,
1677		0x377c0, 0x377e4,
1678		0x377f8, 0x377fc,
1679		0x37814, 0x37814,
1680		0x3782c, 0x3782c,
1681		0x37880, 0x3788c,
1682		0x378e8, 0x378ec,
1683		0x37900, 0x37928,
1684		0x37930, 0x37948,
1685		0x37960, 0x37968,
1686		0x37970, 0x3799c,
1687		0x379f0, 0x37a38,
1688		0x37a40, 0x37a40,
1689		0x37a48, 0x37a50,
1690		0x37a5c, 0x37a64,
1691		0x37a70, 0x37ab8,
1692		0x37ac0, 0x37ae4,
1693		0x37af8, 0x37b10,
1694		0x37b28, 0x37b28,
1695		0x37b3c, 0x37b50,
1696		0x37bf0, 0x37c10,
1697		0x37c28, 0x37c28,
1698		0x37c3c, 0x37c50,
1699		0x37cf0, 0x37cfc,
1700		0x38000, 0x38030,
1701		0x38100, 0x38144,
1702		0x38190, 0x381a0,
1703		0x381a8, 0x381b8,
1704		0x381c4, 0x381c8,
1705		0x381d0, 0x381d0,
1706		0x38200, 0x38318,
1707		0x38400, 0x384b4,
1708		0x384c0, 0x3852c,
1709		0x38540, 0x3861c,
1710		0x38800, 0x38828,
1711		0x38834, 0x38834,
1712		0x388c0, 0x38908,
1713		0x38910, 0x389ac,
1714		0x38a00, 0x38a14,
1715		0x38a1c, 0x38a2c,
1716		0x38a44, 0x38a50,
1717		0x38a74, 0x38a74,
1718		0x38a7c, 0x38afc,
1719		0x38b08, 0x38c24,
1720		0x38d00, 0x38d00,
1721		0x38d08, 0x38d14,
1722		0x38d1c, 0x38d20,
1723		0x38d3c, 0x38d3c,
1724		0x38d48, 0x38d50,
1725		0x39200, 0x3920c,
1726		0x39220, 0x39220,
1727		0x39240, 0x39240,
1728		0x39600, 0x3960c,
1729		0x39a00, 0x39a1c,
1730		0x39e00, 0x39e20,
1731		0x39e38, 0x39e3c,
1732		0x39e80, 0x39e80,
1733		0x39e88, 0x39ea8,
1734		0x39eb0, 0x39eb4,
1735		0x39ec8, 0x39ed4,
1736		0x39fb8, 0x3a004,
1737		0x3a200, 0x3a200,
1738		0x3a208, 0x3a240,
1739		0x3a248, 0x3a280,
1740		0x3a288, 0x3a2c0,
1741		0x3a2c8, 0x3a2fc,
1742		0x3a600, 0x3a630,
1743		0x3aa00, 0x3aabc,
1744		0x3ab00, 0x3ab10,
1745		0x3ab20, 0x3ab30,
1746		0x3ab40, 0x3ab50,
1747		0x3ab60, 0x3ab70,
1748		0x3b000, 0x3b028,
1749		0x3b030, 0x3b048,
1750		0x3b060, 0x3b068,
1751		0x3b070, 0x3b09c,
1752		0x3b0f0, 0x3b128,
1753		0x3b130, 0x3b148,
1754		0x3b160, 0x3b168,
1755		0x3b170, 0x3b19c,
1756		0x3b1f0, 0x3b238,
1757		0x3b240, 0x3b240,
1758		0x3b248, 0x3b250,
1759		0x3b25c, 0x3b264,
1760		0x3b270, 0x3b2b8,
1761		0x3b2c0, 0x3b2e4,
1762		0x3b2f8, 0x3b338,
1763		0x3b340, 0x3b340,
1764		0x3b348, 0x3b350,
1765		0x3b35c, 0x3b364,
1766		0x3b370, 0x3b3b8,
1767		0x3b3c0, 0x3b3e4,
1768		0x3b3f8, 0x3b428,
1769		0x3b430, 0x3b448,
1770		0x3b460, 0x3b468,
1771		0x3b470, 0x3b49c,
1772		0x3b4f0, 0x3b528,
1773		0x3b530, 0x3b548,
1774		0x3b560, 0x3b568,
1775		0x3b570, 0x3b59c,
1776		0x3b5f0, 0x3b638,
1777		0x3b640, 0x3b640,
1778		0x3b648, 0x3b650,
1779		0x3b65c, 0x3b664,
1780		0x3b670, 0x3b6b8,
1781		0x3b6c0, 0x3b6e4,
1782		0x3b6f8, 0x3b738,
1783		0x3b740, 0x3b740,
1784		0x3b748, 0x3b750,
1785		0x3b75c, 0x3b764,
1786		0x3b770, 0x3b7b8,
1787		0x3b7c0, 0x3b7e4,
1788		0x3b7f8, 0x3b7fc,
1789		0x3b814, 0x3b814,
1790		0x3b82c, 0x3b82c,
1791		0x3b880, 0x3b88c,
1792		0x3b8e8, 0x3b8ec,
1793		0x3b900, 0x3b928,
1794		0x3b930, 0x3b948,
1795		0x3b960, 0x3b968,
1796		0x3b970, 0x3b99c,
1797		0x3b9f0, 0x3ba38,
1798		0x3ba40, 0x3ba40,
1799		0x3ba48, 0x3ba50,
1800		0x3ba5c, 0x3ba64,
1801		0x3ba70, 0x3bab8,
1802		0x3bac0, 0x3bae4,
1803		0x3baf8, 0x3bb10,
1804		0x3bb28, 0x3bb28,
1805		0x3bb3c, 0x3bb50,
1806		0x3bbf0, 0x3bc10,
1807		0x3bc28, 0x3bc28,
1808		0x3bc3c, 0x3bc50,
1809		0x3bcf0, 0x3bcfc,
1810		0x3c000, 0x3c030,
1811		0x3c100, 0x3c144,
1812		0x3c190, 0x3c1a0,
1813		0x3c1a8, 0x3c1b8,
1814		0x3c1c4, 0x3c1c8,
1815		0x3c1d0, 0x3c1d0,
1816		0x3c200, 0x3c318,
1817		0x3c400, 0x3c4b4,
1818		0x3c4c0, 0x3c52c,
1819		0x3c540, 0x3c61c,
1820		0x3c800, 0x3c828,
1821		0x3c834, 0x3c834,
1822		0x3c8c0, 0x3c908,
1823		0x3c910, 0x3c9ac,
1824		0x3ca00, 0x3ca14,
1825		0x3ca1c, 0x3ca2c,
1826		0x3ca44, 0x3ca50,
1827		0x3ca74, 0x3ca74,
1828		0x3ca7c, 0x3cafc,
1829		0x3cb08, 0x3cc24,
1830		0x3cd00, 0x3cd00,
1831		0x3cd08, 0x3cd14,
1832		0x3cd1c, 0x3cd20,
1833		0x3cd3c, 0x3cd3c,
1834		0x3cd48, 0x3cd50,
1835		0x3d200, 0x3d20c,
1836		0x3d220, 0x3d220,
1837		0x3d240, 0x3d240,
1838		0x3d600, 0x3d60c,
1839		0x3da00, 0x3da1c,
1840		0x3de00, 0x3de20,
1841		0x3de38, 0x3de3c,
1842		0x3de80, 0x3de80,
1843		0x3de88, 0x3dea8,
1844		0x3deb0, 0x3deb4,
1845		0x3dec8, 0x3ded4,
1846		0x3dfb8, 0x3e004,
1847		0x3e200, 0x3e200,
1848		0x3e208, 0x3e240,
1849		0x3e248, 0x3e280,
1850		0x3e288, 0x3e2c0,
1851		0x3e2c8, 0x3e2fc,
1852		0x3e600, 0x3e630,
1853		0x3ea00, 0x3eabc,
1854		0x3eb00, 0x3eb10,
1855		0x3eb20, 0x3eb30,
1856		0x3eb40, 0x3eb50,
1857		0x3eb60, 0x3eb70,
1858		0x3f000, 0x3f028,
1859		0x3f030, 0x3f048,
1860		0x3f060, 0x3f068,
1861		0x3f070, 0x3f09c,
1862		0x3f0f0, 0x3f128,
1863		0x3f130, 0x3f148,
1864		0x3f160, 0x3f168,
1865		0x3f170, 0x3f19c,
1866		0x3f1f0, 0x3f238,
1867		0x3f240, 0x3f240,
1868		0x3f248, 0x3f250,
1869		0x3f25c, 0x3f264,
1870		0x3f270, 0x3f2b8,
1871		0x3f2c0, 0x3f2e4,
1872		0x3f2f8, 0x3f338,
1873		0x3f340, 0x3f340,
1874		0x3f348, 0x3f350,
1875		0x3f35c, 0x3f364,
1876		0x3f370, 0x3f3b8,
1877		0x3f3c0, 0x3f3e4,
1878		0x3f3f8, 0x3f428,
1879		0x3f430, 0x3f448,
1880		0x3f460, 0x3f468,
1881		0x3f470, 0x3f49c,
1882		0x3f4f0, 0x3f528,
1883		0x3f530, 0x3f548,
1884		0x3f560, 0x3f568,
1885		0x3f570, 0x3f59c,
1886		0x3f5f0, 0x3f638,
1887		0x3f640, 0x3f640,
1888		0x3f648, 0x3f650,
1889		0x3f65c, 0x3f664,
1890		0x3f670, 0x3f6b8,
1891		0x3f6c0, 0x3f6e4,
1892		0x3f6f8, 0x3f738,
1893		0x3f740, 0x3f740,
1894		0x3f748, 0x3f750,
1895		0x3f75c, 0x3f764,
1896		0x3f770, 0x3f7b8,
1897		0x3f7c0, 0x3f7e4,
1898		0x3f7f8, 0x3f7fc,
1899		0x3f814, 0x3f814,
1900		0x3f82c, 0x3f82c,
1901		0x3f880, 0x3f88c,
1902		0x3f8e8, 0x3f8ec,
1903		0x3f900, 0x3f928,
1904		0x3f930, 0x3f948,
1905		0x3f960, 0x3f968,
1906		0x3f970, 0x3f99c,
1907		0x3f9f0, 0x3fa38,
1908		0x3fa40, 0x3fa40,
1909		0x3fa48, 0x3fa50,
1910		0x3fa5c, 0x3fa64,
1911		0x3fa70, 0x3fab8,
1912		0x3fac0, 0x3fae4,
1913		0x3faf8, 0x3fb10,
1914		0x3fb28, 0x3fb28,
1915		0x3fb3c, 0x3fb50,
1916		0x3fbf0, 0x3fc10,
1917		0x3fc28, 0x3fc28,
1918		0x3fc3c, 0x3fc50,
1919		0x3fcf0, 0x3fcfc,
1920		0x40000, 0x4000c,
1921		0x40040, 0x40050,
1922		0x40060, 0x40068,
1923		0x4007c, 0x4008c,
1924		0x40094, 0x400b0,
1925		0x400c0, 0x40144,
1926		0x40180, 0x4018c,
1927		0x40200, 0x40254,
1928		0x40260, 0x40264,
1929		0x40270, 0x40288,
1930		0x40290, 0x40298,
1931		0x402ac, 0x402c8,
1932		0x402d0, 0x402e0,
1933		0x402f0, 0x402f0,
1934		0x40300, 0x4033c,
1935		0x403f8, 0x403fc,
1936		0x41304, 0x413c4,
1937		0x41400, 0x4140c,
1938		0x41414, 0x4141c,
1939		0x41480, 0x414d0,
1940		0x44000, 0x44054,
1941		0x4405c, 0x44078,
1942		0x440c0, 0x44174,
1943		0x44180, 0x441ac,
1944		0x441b4, 0x441b8,
1945		0x441c0, 0x44254,
1946		0x4425c, 0x44278,
1947		0x442c0, 0x44374,
1948		0x44380, 0x443ac,
1949		0x443b4, 0x443b8,
1950		0x443c0, 0x44454,
1951		0x4445c, 0x44478,
1952		0x444c0, 0x44574,
1953		0x44580, 0x445ac,
1954		0x445b4, 0x445b8,
1955		0x445c0, 0x44654,
1956		0x4465c, 0x44678,
1957		0x446c0, 0x44774,
1958		0x44780, 0x447ac,
1959		0x447b4, 0x447b8,
1960		0x447c0, 0x44854,
1961		0x4485c, 0x44878,
1962		0x448c0, 0x44974,
1963		0x44980, 0x449ac,
1964		0x449b4, 0x449b8,
1965		0x449c0, 0x449fc,
1966		0x45000, 0x45004,
1967		0x45010, 0x45030,
1968		0x45040, 0x45060,
1969		0x45068, 0x45068,
1970		0x45080, 0x45084,
1971		0x450a0, 0x450b0,
1972		0x45200, 0x45204,
1973		0x45210, 0x45230,
1974		0x45240, 0x45260,
1975		0x45268, 0x45268,
1976		0x45280, 0x45284,
1977		0x452a0, 0x452b0,
1978		0x460c0, 0x460e4,
1979		0x47000, 0x4703c,
1980		0x47044, 0x4708c,
1981		0x47200, 0x47250,
1982		0x47400, 0x47408,
1983		0x47414, 0x47420,
1984		0x47600, 0x47618,
1985		0x47800, 0x47814,
1986		0x48000, 0x4800c,
1987		0x48040, 0x48050,
1988		0x48060, 0x48068,
1989		0x4807c, 0x4808c,
1990		0x48094, 0x480b0,
1991		0x480c0, 0x48144,
1992		0x48180, 0x4818c,
1993		0x48200, 0x48254,
1994		0x48260, 0x48264,
1995		0x48270, 0x48288,
1996		0x48290, 0x48298,
1997		0x482ac, 0x482c8,
1998		0x482d0, 0x482e0,
1999		0x482f0, 0x482f0,
2000		0x48300, 0x4833c,
2001		0x483f8, 0x483fc,
2002		0x49304, 0x493c4,
2003		0x49400, 0x4940c,
2004		0x49414, 0x4941c,
2005		0x49480, 0x494d0,
2006		0x4c000, 0x4c054,
2007		0x4c05c, 0x4c078,
2008		0x4c0c0, 0x4c174,
2009		0x4c180, 0x4c1ac,
2010		0x4c1b4, 0x4c1b8,
2011		0x4c1c0, 0x4c254,
2012		0x4c25c, 0x4c278,
2013		0x4c2c0, 0x4c374,
2014		0x4c380, 0x4c3ac,
2015		0x4c3b4, 0x4c3b8,
2016		0x4c3c0, 0x4c454,
2017		0x4c45c, 0x4c478,
2018		0x4c4c0, 0x4c574,
2019		0x4c580, 0x4c5ac,
2020		0x4c5b4, 0x4c5b8,
2021		0x4c5c0, 0x4c654,
2022		0x4c65c, 0x4c678,
2023		0x4c6c0, 0x4c774,
2024		0x4c780, 0x4c7ac,
2025		0x4c7b4, 0x4c7b8,
2026		0x4c7c0, 0x4c854,
2027		0x4c85c, 0x4c878,
2028		0x4c8c0, 0x4c974,
2029		0x4c980, 0x4c9ac,
2030		0x4c9b4, 0x4c9b8,
2031		0x4c9c0, 0x4c9fc,
2032		0x4d000, 0x4d004,
2033		0x4d010, 0x4d030,
2034		0x4d040, 0x4d060,
2035		0x4d068, 0x4d068,
2036		0x4d080, 0x4d084,
2037		0x4d0a0, 0x4d0b0,
2038		0x4d200, 0x4d204,
2039		0x4d210, 0x4d230,
2040		0x4d240, 0x4d260,
2041		0x4d268, 0x4d268,
2042		0x4d280, 0x4d284,
2043		0x4d2a0, 0x4d2b0,
2044		0x4e0c0, 0x4e0e4,
2045		0x4f000, 0x4f03c,
2046		0x4f044, 0x4f08c,
2047		0x4f200, 0x4f250,
2048		0x4f400, 0x4f408,
2049		0x4f414, 0x4f420,
2050		0x4f600, 0x4f618,
2051		0x4f800, 0x4f814,
2052		0x50000, 0x50084,
2053		0x50090, 0x500cc,
2054		0x50400, 0x50400,
2055		0x50800, 0x50884,
2056		0x50890, 0x508cc,
2057		0x50c00, 0x50c00,
2058		0x51000, 0x5101c,
2059		0x51300, 0x51308,
2060	};
2061
2062	static const unsigned int t5vf_reg_ranges[] = {
2063		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2064		VF_MPS_REG(A_MPS_VF_CTL),
2065		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2066		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2067		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2068		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2069		FW_T4VF_MBDATA_BASE_ADDR,
2070		FW_T4VF_MBDATA_BASE_ADDR +
2071		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2072	};
2073
2074	static const unsigned int t6_reg_ranges[] = {
2075		0x1008, 0x101c,
2076		0x1024, 0x10a8,
2077		0x10b4, 0x10f8,
2078		0x1100, 0x1114,
2079		0x111c, 0x112c,
2080		0x1138, 0x113c,
2081		0x1144, 0x114c,
2082		0x1180, 0x1184,
2083		0x1190, 0x1194,
2084		0x11a0, 0x11a4,
2085		0x11b0, 0x11b4,
2086		0x11fc, 0x1274,
2087		0x1280, 0x133c,
2088		0x1800, 0x18fc,
2089		0x3000, 0x302c,
2090		0x3060, 0x30b0,
2091		0x30b8, 0x30d8,
2092		0x30e0, 0x30fc,
2093		0x3140, 0x357c,
2094		0x35a8, 0x35cc,
2095		0x35ec, 0x35ec,
2096		0x3600, 0x5624,
2097		0x56cc, 0x56ec,
2098		0x56f4, 0x5720,
2099		0x5728, 0x575c,
2100		0x580c, 0x5814,
2101		0x5890, 0x589c,
2102		0x58a4, 0x58ac,
2103		0x58b8, 0x58bc,
2104		0x5940, 0x595c,
2105		0x5980, 0x598c,
2106		0x59b0, 0x59c8,
2107		0x59d0, 0x59dc,
2108		0x59fc, 0x5a18,
2109		0x5a60, 0x5a6c,
2110		0x5a80, 0x5a8c,
2111		0x5a94, 0x5a9c,
2112		0x5b94, 0x5bfc,
2113		0x5c10, 0x5e48,
2114		0x5e50, 0x5e94,
2115		0x5ea0, 0x5eb0,
2116		0x5ec0, 0x5ec0,
2117		0x5ec8, 0x5ed0,
2118		0x5ee0, 0x5ee0,
2119		0x5ef0, 0x5ef0,
2120		0x5f00, 0x5f00,
2121		0x6000, 0x6020,
2122		0x6028, 0x6040,
2123		0x6058, 0x609c,
2124		0x60a8, 0x619c,
2125		0x7700, 0x7798,
2126		0x77c0, 0x7880,
2127		0x78cc, 0x78fc,
2128		0x7b00, 0x7b58,
2129		0x7b60, 0x7b84,
2130		0x7b8c, 0x7c54,
2131		0x7d00, 0x7d38,
2132		0x7d40, 0x7d84,
2133		0x7d8c, 0x7ddc,
2134		0x7de4, 0x7e04,
2135		0x7e10, 0x7e1c,
2136		0x7e24, 0x7e38,
2137		0x7e40, 0x7e44,
2138		0x7e4c, 0x7e78,
2139		0x7e80, 0x7edc,
2140		0x7ee8, 0x7efc,
2141		0x8dc0, 0x8de4,
2142		0x8df8, 0x8e04,
2143		0x8e10, 0x8e84,
2144		0x8ea0, 0x8f88,
2145		0x8fb8, 0x9058,
2146		0x9060, 0x9060,
2147		0x9068, 0x90f8,
2148		0x9100, 0x9124,
2149		0x9400, 0x9470,
2150		0x9600, 0x9600,
2151		0x9608, 0x9638,
2152		0x9640, 0x9704,
2153		0x9710, 0x971c,
2154		0x9800, 0x9808,
2155		0x9820, 0x983c,
2156		0x9850, 0x9864,
2157		0x9c00, 0x9c6c,
2158		0x9c80, 0x9cec,
2159		0x9d00, 0x9d6c,
2160		0x9d80, 0x9dec,
2161		0x9e00, 0x9e6c,
2162		0x9e80, 0x9eec,
2163		0x9f00, 0x9f6c,
2164		0x9f80, 0xa020,
2165		0xd004, 0xd03c,
2166		0xd100, 0xd118,
2167		0xd200, 0xd214,
2168		0xd220, 0xd234,
2169		0xd240, 0xd254,
2170		0xd260, 0xd274,
2171		0xd280, 0xd294,
2172		0xd2a0, 0xd2b4,
2173		0xd2c0, 0xd2d4,
2174		0xd2e0, 0xd2f4,
2175		0xd300, 0xd31c,
2176		0xdfc0, 0xdfe0,
2177		0xe000, 0xf008,
2178		0xf010, 0xf018,
2179		0xf020, 0xf028,
2180		0x11000, 0x11014,
2181		0x11048, 0x1106c,
2182		0x11074, 0x11088,
2183		0x11098, 0x11120,
2184		0x1112c, 0x1117c,
2185		0x11190, 0x112e0,
2186		0x11300, 0x1130c,
2187		0x12000, 0x1206c,
2188		0x19040, 0x1906c,
2189		0x19078, 0x19080,
2190		0x1908c, 0x190e8,
2191		0x190f0, 0x190f8,
2192		0x19100, 0x19110,
2193		0x19120, 0x19124,
2194		0x19150, 0x19194,
2195		0x1919c, 0x191b0,
2196		0x191d0, 0x191e8,
2197		0x19238, 0x19290,
2198		0x192a4, 0x192b0,
2199		0x192bc, 0x192bc,
2200		0x19348, 0x1934c,
2201		0x193f8, 0x19418,
2202		0x19420, 0x19428,
2203		0x19430, 0x19444,
2204		0x1944c, 0x1946c,
2205		0x19474, 0x19474,
2206		0x19490, 0x194cc,
2207		0x194f0, 0x194f8,
2208		0x19c00, 0x19c48,
2209		0x19c50, 0x19c80,
2210		0x19c94, 0x19c98,
2211		0x19ca0, 0x19cbc,
2212		0x19ce4, 0x19ce4,
2213		0x19cf0, 0x19cf8,
2214		0x19d00, 0x19d28,
2215		0x19d50, 0x19d78,
2216		0x19d94, 0x19d98,
2217		0x19da0, 0x19dc8,
2218		0x19df0, 0x19e10,
2219		0x19e50, 0x19e6c,
2220		0x19ea0, 0x19ebc,
2221		0x19ec4, 0x19ef4,
2222		0x19f04, 0x19f2c,
2223		0x19f34, 0x19f34,
2224		0x19f40, 0x19f50,
2225		0x19f90, 0x19fac,
2226		0x19fc4, 0x19fc8,
2227		0x19fd0, 0x19fe4,
2228		0x1a000, 0x1a004,
2229		0x1a010, 0x1a06c,
2230		0x1a0b0, 0x1a0e4,
2231		0x1a0ec, 0x1a0f8,
2232		0x1a100, 0x1a108,
2233		0x1a114, 0x1a120,
2234		0x1a128, 0x1a130,
2235		0x1a138, 0x1a138,
2236		0x1a190, 0x1a1c4,
2237		0x1a1fc, 0x1a1fc,
2238		0x1e008, 0x1e00c,
2239		0x1e040, 0x1e044,
2240		0x1e04c, 0x1e04c,
2241		0x1e284, 0x1e290,
2242		0x1e2c0, 0x1e2c0,
2243		0x1e2e0, 0x1e2e0,
2244		0x1e300, 0x1e384,
2245		0x1e3c0, 0x1e3c8,
2246		0x1e408, 0x1e40c,
2247		0x1e440, 0x1e444,
2248		0x1e44c, 0x1e44c,
2249		0x1e684, 0x1e690,
2250		0x1e6c0, 0x1e6c0,
2251		0x1e6e0, 0x1e6e0,
2252		0x1e700, 0x1e784,
2253		0x1e7c0, 0x1e7c8,
2254		0x1e808, 0x1e80c,
2255		0x1e840, 0x1e844,
2256		0x1e84c, 0x1e84c,
2257		0x1ea84, 0x1ea90,
2258		0x1eac0, 0x1eac0,
2259		0x1eae0, 0x1eae0,
2260		0x1eb00, 0x1eb84,
2261		0x1ebc0, 0x1ebc8,
2262		0x1ec08, 0x1ec0c,
2263		0x1ec40, 0x1ec44,
2264		0x1ec4c, 0x1ec4c,
2265		0x1ee84, 0x1ee90,
2266		0x1eec0, 0x1eec0,
2267		0x1eee0, 0x1eee0,
2268		0x1ef00, 0x1ef84,
2269		0x1efc0, 0x1efc8,
2270		0x1f008, 0x1f00c,
2271		0x1f040, 0x1f044,
2272		0x1f04c, 0x1f04c,
2273		0x1f284, 0x1f290,
2274		0x1f2c0, 0x1f2c0,
2275		0x1f2e0, 0x1f2e0,
2276		0x1f300, 0x1f384,
2277		0x1f3c0, 0x1f3c8,
2278		0x1f408, 0x1f40c,
2279		0x1f440, 0x1f444,
2280		0x1f44c, 0x1f44c,
2281		0x1f684, 0x1f690,
2282		0x1f6c0, 0x1f6c0,
2283		0x1f6e0, 0x1f6e0,
2284		0x1f700, 0x1f784,
2285		0x1f7c0, 0x1f7c8,
2286		0x1f808, 0x1f80c,
2287		0x1f840, 0x1f844,
2288		0x1f84c, 0x1f84c,
2289		0x1fa84, 0x1fa90,
2290		0x1fac0, 0x1fac0,
2291		0x1fae0, 0x1fae0,
2292		0x1fb00, 0x1fb84,
2293		0x1fbc0, 0x1fbc8,
2294		0x1fc08, 0x1fc0c,
2295		0x1fc40, 0x1fc44,
2296		0x1fc4c, 0x1fc4c,
2297		0x1fe84, 0x1fe90,
2298		0x1fec0, 0x1fec0,
2299		0x1fee0, 0x1fee0,
2300		0x1ff00, 0x1ff84,
2301		0x1ffc0, 0x1ffc8,
2302		0x30000, 0x30030,
2303		0x30100, 0x30168,
2304		0x30190, 0x301a0,
2305		0x301a8, 0x301b8,
2306		0x301c4, 0x301c8,
2307		0x301d0, 0x301d0,
2308		0x30200, 0x30320,
2309		0x30400, 0x304b4,
2310		0x304c0, 0x3052c,
2311		0x30540, 0x3061c,
2312		0x30800, 0x308a0,
2313		0x308c0, 0x30908,
2314		0x30910, 0x309b8,
2315		0x30a00, 0x30a04,
2316		0x30a0c, 0x30a14,
2317		0x30a1c, 0x30a2c,
2318		0x30a44, 0x30a50,
2319		0x30a74, 0x30a74,
2320		0x30a7c, 0x30afc,
2321		0x30b08, 0x30c24,
2322		0x30d00, 0x30d14,
2323		0x30d1c, 0x30d3c,
2324		0x30d44, 0x30d4c,
2325		0x30d54, 0x30d74,
2326		0x30d7c, 0x30d7c,
2327		0x30de0, 0x30de0,
2328		0x30e00, 0x30ed4,
2329		0x30f00, 0x30fa4,
2330		0x30fc0, 0x30fc4,
2331		0x31000, 0x31004,
2332		0x31080, 0x310fc,
2333		0x31208, 0x31220,
2334		0x3123c, 0x31254,
2335		0x31300, 0x31300,
2336		0x31308, 0x3131c,
2337		0x31338, 0x3133c,
2338		0x31380, 0x31380,
2339		0x31388, 0x313a8,
2340		0x313b4, 0x313b4,
2341		0x31400, 0x31420,
2342		0x31438, 0x3143c,
2343		0x31480, 0x31480,
2344		0x314a8, 0x314a8,
2345		0x314b0, 0x314b4,
2346		0x314c8, 0x314d4,
2347		0x31a40, 0x31a4c,
2348		0x31af0, 0x31b20,
2349		0x31b38, 0x31b3c,
2350		0x31b80, 0x31b80,
2351		0x31ba8, 0x31ba8,
2352		0x31bb0, 0x31bb4,
2353		0x31bc8, 0x31bd4,
2354		0x32140, 0x3218c,
2355		0x321f0, 0x321f4,
2356		0x32200, 0x32200,
2357		0x32218, 0x32218,
2358		0x32400, 0x32400,
2359		0x32408, 0x3241c,
2360		0x32618, 0x32620,
2361		0x32664, 0x32664,
2362		0x326a8, 0x326a8,
2363		0x326ec, 0x326ec,
2364		0x32a00, 0x32abc,
2365		0x32b00, 0x32b18,
2366		0x32b20, 0x32b38,
2367		0x32b40, 0x32b58,
2368		0x32b60, 0x32b78,
2369		0x32c00, 0x32c00,
2370		0x32c08, 0x32c3c,
2371		0x33000, 0x3302c,
2372		0x33034, 0x33050,
2373		0x33058, 0x33058,
2374		0x33060, 0x3308c,
2375		0x3309c, 0x330ac,
2376		0x330c0, 0x330c0,
2377		0x330c8, 0x330d0,
2378		0x330d8, 0x330e0,
2379		0x330ec, 0x3312c,
2380		0x33134, 0x33150,
2381		0x33158, 0x33158,
2382		0x33160, 0x3318c,
2383		0x3319c, 0x331ac,
2384		0x331c0, 0x331c0,
2385		0x331c8, 0x331d0,
2386		0x331d8, 0x331e0,
2387		0x331ec, 0x33290,
2388		0x33298, 0x332c4,
2389		0x332e4, 0x33390,
2390		0x33398, 0x333c4,
2391		0x333e4, 0x3342c,
2392		0x33434, 0x33450,
2393		0x33458, 0x33458,
2394		0x33460, 0x3348c,
2395		0x3349c, 0x334ac,
2396		0x334c0, 0x334c0,
2397		0x334c8, 0x334d0,
2398		0x334d8, 0x334e0,
2399		0x334ec, 0x3352c,
2400		0x33534, 0x33550,
2401		0x33558, 0x33558,
2402		0x33560, 0x3358c,
2403		0x3359c, 0x335ac,
2404		0x335c0, 0x335c0,
2405		0x335c8, 0x335d0,
2406		0x335d8, 0x335e0,
2407		0x335ec, 0x33690,
2408		0x33698, 0x336c4,
2409		0x336e4, 0x33790,
2410		0x33798, 0x337c4,
2411		0x337e4, 0x337fc,
2412		0x33814, 0x33814,
2413		0x33854, 0x33868,
2414		0x33880, 0x3388c,
2415		0x338c0, 0x338d0,
2416		0x338e8, 0x338ec,
2417		0x33900, 0x3392c,
2418		0x33934, 0x33950,
2419		0x33958, 0x33958,
2420		0x33960, 0x3398c,
2421		0x3399c, 0x339ac,
2422		0x339c0, 0x339c0,
2423		0x339c8, 0x339d0,
2424		0x339d8, 0x339e0,
2425		0x339ec, 0x33a90,
2426		0x33a98, 0x33ac4,
2427		0x33ae4, 0x33b10,
2428		0x33b24, 0x33b28,
2429		0x33b38, 0x33b50,
2430		0x33bf0, 0x33c10,
2431		0x33c24, 0x33c28,
2432		0x33c38, 0x33c50,
2433		0x33cf0, 0x33cfc,
2434		0x34000, 0x34030,
2435		0x34100, 0x34168,
2436		0x34190, 0x341a0,
2437		0x341a8, 0x341b8,
2438		0x341c4, 0x341c8,
2439		0x341d0, 0x341d0,
2440		0x34200, 0x34320,
2441		0x34400, 0x344b4,
2442		0x344c0, 0x3452c,
2443		0x34540, 0x3461c,
2444		0x34800, 0x348a0,
2445		0x348c0, 0x34908,
2446		0x34910, 0x349b8,
2447		0x34a00, 0x34a04,
2448		0x34a0c, 0x34a14,
2449		0x34a1c, 0x34a2c,
2450		0x34a44, 0x34a50,
2451		0x34a74, 0x34a74,
2452		0x34a7c, 0x34afc,
2453		0x34b08, 0x34c24,
2454		0x34d00, 0x34d14,
2455		0x34d1c, 0x34d3c,
2456		0x34d44, 0x34d4c,
2457		0x34d54, 0x34d74,
2458		0x34d7c, 0x34d7c,
2459		0x34de0, 0x34de0,
2460		0x34e00, 0x34ed4,
2461		0x34f00, 0x34fa4,
2462		0x34fc0, 0x34fc4,
2463		0x35000, 0x35004,
2464		0x35080, 0x350fc,
2465		0x35208, 0x35220,
2466		0x3523c, 0x35254,
2467		0x35300, 0x35300,
2468		0x35308, 0x3531c,
2469		0x35338, 0x3533c,
2470		0x35380, 0x35380,
2471		0x35388, 0x353a8,
2472		0x353b4, 0x353b4,
2473		0x35400, 0x35420,
2474		0x35438, 0x3543c,
2475		0x35480, 0x35480,
2476		0x354a8, 0x354a8,
2477		0x354b0, 0x354b4,
2478		0x354c8, 0x354d4,
2479		0x35a40, 0x35a4c,
2480		0x35af0, 0x35b20,
2481		0x35b38, 0x35b3c,
2482		0x35b80, 0x35b80,
2483		0x35ba8, 0x35ba8,
2484		0x35bb0, 0x35bb4,
2485		0x35bc8, 0x35bd4,
2486		0x36140, 0x3618c,
2487		0x361f0, 0x361f4,
2488		0x36200, 0x36200,
2489		0x36218, 0x36218,
2490		0x36400, 0x36400,
2491		0x36408, 0x3641c,
2492		0x36618, 0x36620,
2493		0x36664, 0x36664,
2494		0x366a8, 0x366a8,
2495		0x366ec, 0x366ec,
2496		0x36a00, 0x36abc,
2497		0x36b00, 0x36b18,
2498		0x36b20, 0x36b38,
2499		0x36b40, 0x36b58,
2500		0x36b60, 0x36b78,
2501		0x36c00, 0x36c00,
2502		0x36c08, 0x36c3c,
2503		0x37000, 0x3702c,
2504		0x37034, 0x37050,
2505		0x37058, 0x37058,
2506		0x37060, 0x3708c,
2507		0x3709c, 0x370ac,
2508		0x370c0, 0x370c0,
2509		0x370c8, 0x370d0,
2510		0x370d8, 0x370e0,
2511		0x370ec, 0x3712c,
2512		0x37134, 0x37150,
2513		0x37158, 0x37158,
2514		0x37160, 0x3718c,
2515		0x3719c, 0x371ac,
2516		0x371c0, 0x371c0,
2517		0x371c8, 0x371d0,
2518		0x371d8, 0x371e0,
2519		0x371ec, 0x37290,
2520		0x37298, 0x372c4,
2521		0x372e4, 0x37390,
2522		0x37398, 0x373c4,
2523		0x373e4, 0x3742c,
2524		0x37434, 0x37450,
2525		0x37458, 0x37458,
2526		0x37460, 0x3748c,
2527		0x3749c, 0x374ac,
2528		0x374c0, 0x374c0,
2529		0x374c8, 0x374d0,
2530		0x374d8, 0x374e0,
2531		0x374ec, 0x3752c,
2532		0x37534, 0x37550,
2533		0x37558, 0x37558,
2534		0x37560, 0x3758c,
2535		0x3759c, 0x375ac,
2536		0x375c0, 0x375c0,
2537		0x375c8, 0x375d0,
2538		0x375d8, 0x375e0,
2539		0x375ec, 0x37690,
2540		0x37698, 0x376c4,
2541		0x376e4, 0x37790,
2542		0x37798, 0x377c4,
2543		0x377e4, 0x377fc,
2544		0x37814, 0x37814,
2545		0x37854, 0x37868,
2546		0x37880, 0x3788c,
2547		0x378c0, 0x378d0,
2548		0x378e8, 0x378ec,
2549		0x37900, 0x3792c,
2550		0x37934, 0x37950,
2551		0x37958, 0x37958,
2552		0x37960, 0x3798c,
2553		0x3799c, 0x379ac,
2554		0x379c0, 0x379c0,
2555		0x379c8, 0x379d0,
2556		0x379d8, 0x379e0,
2557		0x379ec, 0x37a90,
2558		0x37a98, 0x37ac4,
2559		0x37ae4, 0x37b10,
2560		0x37b24, 0x37b28,
2561		0x37b38, 0x37b50,
2562		0x37bf0, 0x37c10,
2563		0x37c24, 0x37c28,
2564		0x37c38, 0x37c50,
2565		0x37cf0, 0x37cfc,
2566		0x40040, 0x40040,
2567		0x40080, 0x40084,
2568		0x40100, 0x40100,
2569		0x40140, 0x401bc,
2570		0x40200, 0x40214,
2571		0x40228, 0x40228,
2572		0x40240, 0x40258,
2573		0x40280, 0x40280,
2574		0x40304, 0x40304,
2575		0x40330, 0x4033c,
2576		0x41304, 0x413c8,
2577		0x413d0, 0x413dc,
2578		0x413f0, 0x413f0,
2579		0x41400, 0x4140c,
2580		0x41414, 0x4141c,
2581		0x41480, 0x414d0,
2582		0x44000, 0x4407c,
2583		0x440c0, 0x441ac,
2584		0x441b4, 0x4427c,
2585		0x442c0, 0x443ac,
2586		0x443b4, 0x4447c,
2587		0x444c0, 0x445ac,
2588		0x445b4, 0x4467c,
2589		0x446c0, 0x447ac,
2590		0x447b4, 0x4487c,
2591		0x448c0, 0x449ac,
2592		0x449b4, 0x44a7c,
2593		0x44ac0, 0x44bac,
2594		0x44bb4, 0x44c7c,
2595		0x44cc0, 0x44dac,
2596		0x44db4, 0x44e7c,
2597		0x44ec0, 0x44fac,
2598		0x44fb4, 0x4507c,
2599		0x450c0, 0x451ac,
2600		0x451b4, 0x451fc,
2601		0x45800, 0x45804,
2602		0x45810, 0x45830,
2603		0x45840, 0x45860,
2604		0x45868, 0x45868,
2605		0x45880, 0x45884,
2606		0x458a0, 0x458b0,
2607		0x45a00, 0x45a04,
2608		0x45a10, 0x45a30,
2609		0x45a40, 0x45a60,
2610		0x45a68, 0x45a68,
2611		0x45a80, 0x45a84,
2612		0x45aa0, 0x45ab0,
2613		0x460c0, 0x460e4,
2614		0x47000, 0x4703c,
2615		0x47044, 0x4708c,
2616		0x47200, 0x47250,
2617		0x47400, 0x47408,
2618		0x47414, 0x47420,
2619		0x47600, 0x47618,
2620		0x47800, 0x47814,
2621		0x47820, 0x4782c,
2622		0x50000, 0x50084,
2623		0x50090, 0x500cc,
2624		0x50300, 0x50384,
2625		0x50400, 0x50400,
2626		0x50800, 0x50884,
2627		0x50890, 0x508cc,
2628		0x50b00, 0x50b84,
2629		0x50c00, 0x50c00,
2630		0x51000, 0x51020,
2631		0x51028, 0x510b0,
2632		0x51300, 0x51324,
2633	};
2634
2635	static const unsigned int t6vf_reg_ranges[] = {
2636		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2637		VF_MPS_REG(A_MPS_VF_CTL),
2638		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2639		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2640		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2641		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2642		FW_T6VF_MBDATA_BASE_ADDR,
2643		FW_T6VF_MBDATA_BASE_ADDR +
2644		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2645	};
2646
2647	u32 *buf_end = (u32 *)(buf + buf_size);
2648	const unsigned int *reg_ranges;
2649	int reg_ranges_size, range;
2650	unsigned int chip_version = chip_id(adap);
2651
2652	/*
2653	 * Select the right set of register ranges to dump depending on the
2654	 * adapter chip type.
2655	 */
2656	switch (chip_version) {
2657	case CHELSIO_T4:
2658		if (adap->flags & IS_VF) {
2659			reg_ranges = t4vf_reg_ranges;
2660			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2661		} else {
2662			reg_ranges = t4_reg_ranges;
2663			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2664		}
2665		break;
2666
2667	case CHELSIO_T5:
2668		if (adap->flags & IS_VF) {
2669			reg_ranges = t5vf_reg_ranges;
2670			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2671		} else {
2672			reg_ranges = t5_reg_ranges;
2673			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2674		}
2675		break;
2676
2677	case CHELSIO_T6:
2678		if (adap->flags & IS_VF) {
2679			reg_ranges = t6vf_reg_ranges;
2680			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2681		} else {
2682			reg_ranges = t6_reg_ranges;
2683			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2684		}
2685		break;
2686
2687	default:
2688		CH_ERR(adap,
2689			"Unsupported chip version %d\n", chip_version);
2690		return;
2691	}
2692
2693	/*
2694	 * Clear the register buffer and insert the appropriate register
2695	 * values selected by the above register ranges.
2696	 */
2697	memset(buf, 0, buf_size);
2698	for (range = 0; range < reg_ranges_size; range += 2) {
2699		unsigned int reg = reg_ranges[range];
2700		unsigned int last_reg = reg_ranges[range + 1];
2701		u32 *bufp = (u32 *)(buf + reg);
2702
2703		/*
2704		 * Iterate across the register range filling in the register
2705		 * buffer but don't write past the end of the register buffer.
2706		 */
2707		while (reg <= last_reg && bufp < buf_end) {
2708			*bufp++ = t4_read_reg(adap, reg);
2709			reg += sizeof(u32);
2710		}
2711	}
2712}
2713
2714/*
2715 * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2716 * header followed by one or more VPD-R sections, each with its own header.
2717 */
2718struct t4_vpd_hdr {
2719	u8  id_tag;
2720	u8  id_len[2];
2721	u8  id_data[ID_LEN];
2722};
2723
2724struct t4_vpdr_hdr {
2725	u8  vpdr_tag;
2726	u8  vpdr_len[2];
2727};
2728
2729/*
2730 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2731 */
2732#define EEPROM_DELAY		10		/* 10us per poll spin */
2733#define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2734
2735#define EEPROM_STAT_ADDR	0x7bfc
2736#define VPD_SIZE		0x800
2737#define VPD_BASE		0x400
2738#define VPD_BASE_OLD		0
2739#define VPD_LEN			1024
2740#define VPD_INFO_FLD_HDR_SIZE	3
2741#define CHELSIO_VPD_UNIQUE_ID	0x82
2742
2743/*
2744 * Small utility function to wait till any outstanding VPD Access is complete.
2745 * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2746 * VPD Access in flight.  This allows us to handle the problem of having a
2747 * previous VPD Access time out and prevent an attempt to inject a new VPD
2748 * Request before any in-flight VPD reguest has completed.
2749 */
2750static int t4_seeprom_wait(struct adapter *adapter)
2751{
2752	unsigned int base = adapter->params.pci.vpd_cap_addr;
2753	int max_poll;
2754
2755	/*
2756	 * If no VPD Access is in flight, we can just return success right
2757	 * away.
2758	 */
2759	if (!adapter->vpd_busy)
2760		return 0;
2761
2762	/*
2763	 * Poll the VPD Capability Address/Flag register waiting for it
2764	 * to indicate that the operation is complete.
2765	 */
2766	max_poll = EEPROM_MAX_POLL;
2767	do {
2768		u16 val;
2769
2770		udelay(EEPROM_DELAY);
2771		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2772
2773		/*
2774		 * If the operation is complete, mark the VPD as no longer
2775		 * busy and return success.
2776		 */
2777		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2778			adapter->vpd_busy = 0;
2779			return 0;
2780		}
2781	} while (--max_poll);
2782
2783	/*
2784	 * Failure!  Note that we leave the VPD Busy status set in order to
2785	 * avoid pushing a new VPD Access request into the VPD Capability till
2786	 * the current operation eventually succeeds.  It's a bug to issue a
2787	 * new request when an existing request is in flight and will result
2788	 * in corrupt hardware state.
2789	 */
2790	return -ETIMEDOUT;
2791}
2792
2793/**
2794 *	t4_seeprom_read - read a serial EEPROM location
2795 *	@adapter: adapter to read
2796 *	@addr: EEPROM virtual address
2797 *	@data: where to store the read data
2798 *
2799 *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2800 *	VPD capability.  Note that this function must be called with a virtual
2801 *	address.
2802 */
2803int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2804{
2805	unsigned int base = adapter->params.pci.vpd_cap_addr;
2806	int ret;
2807
2808	/*
2809	 * VPD Accesses must alway be 4-byte aligned!
2810	 */
2811	if (addr >= EEPROMVSIZE || (addr & 3))
2812		return -EINVAL;
2813
2814	/*
2815	 * Wait for any previous operation which may still be in flight to
2816	 * complete.
2817	 */
2818	ret = t4_seeprom_wait(adapter);
2819	if (ret) {
2820		CH_ERR(adapter, "VPD still busy from previous operation\n");
2821		return ret;
2822	}
2823
2824	/*
2825	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2826	 * for our request to complete.  If it doesn't complete, note the
2827	 * error and return it to our caller.  Note that we do not reset the
2828	 * VPD Busy status!
2829	 */
2830	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2831	adapter->vpd_busy = 1;
2832	adapter->vpd_flag = PCI_VPD_ADDR_F;
2833	ret = t4_seeprom_wait(adapter);
2834	if (ret) {
2835		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2836		return ret;
2837	}
2838
2839	/*
2840	 * Grab the returned data, swizzle it into our endianness and
2841	 * return success.
2842	 */
2843	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2844	*data = le32_to_cpu(*data);
2845	return 0;
2846}
2847
2848/**
2849 *	t4_seeprom_write - write a serial EEPROM location
2850 *	@adapter: adapter to write
2851 *	@addr: virtual EEPROM address
2852 *	@data: value to write
2853 *
2854 *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2855 *	VPD capability.  Note that this function must be called with a virtual
2856 *	address.
2857 */
2858int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2859{
2860	unsigned int base = adapter->params.pci.vpd_cap_addr;
2861	int ret;
2862	u32 stats_reg;
2863	int max_poll;
2864
2865	/*
2866	 * VPD Accesses must alway be 4-byte aligned!
2867	 */
2868	if (addr >= EEPROMVSIZE || (addr & 3))
2869		return -EINVAL;
2870
2871	/*
2872	 * Wait for any previous operation which may still be in flight to
2873	 * complete.
2874	 */
2875	ret = t4_seeprom_wait(adapter);
2876	if (ret) {
2877		CH_ERR(adapter, "VPD still busy from previous operation\n");
2878		return ret;
2879	}
2880
2881	/*
2882	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2883	 * for our request to complete.  If it doesn't complete, note the
2884	 * error and return it to our caller.  Note that we do not reset the
2885	 * VPD Busy status!
2886	 */
2887	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2888				 cpu_to_le32(data));
2889	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2890				 (u16)addr | PCI_VPD_ADDR_F);
2891	adapter->vpd_busy = 1;
2892	adapter->vpd_flag = 0;
2893	ret = t4_seeprom_wait(adapter);
2894	if (ret) {
2895		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2896		return ret;
2897	}
2898
2899	/*
2900	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2901	 * request to complete. If it doesn't complete, return error.
2902	 */
2903	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2904	max_poll = EEPROM_MAX_POLL;
2905	do {
2906		udelay(EEPROM_DELAY);
2907		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2908	} while ((stats_reg & 0x1) && --max_poll);
2909	if (!max_poll)
2910		return -ETIMEDOUT;
2911
2912	/* Return success! */
2913	return 0;
2914}
2915
2916/**
2917 *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2918 *	@phys_addr: the physical EEPROM address
2919 *	@fn: the PCI function number
2920 *	@sz: size of function-specific area
2921 *
2922 *	Translate a physical EEPROM address to virtual.  The first 1K is
2923 *	accessed through virtual addresses starting at 31K, the rest is
2924 *	accessed through virtual addresses starting at 0.
2925 *
2926 *	The mapping is as follows:
2927 *	[0..1K) -> [31K..32K)
2928 *	[1K..1K+A) -> [ES-A..ES)
2929 *	[1K+A..ES) -> [0..ES-A-1K)
2930 *
2931 *	where A = @fn * @sz, and ES = EEPROM size.
2932 */
2933int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2934{
2935	fn *= sz;
2936	if (phys_addr < 1024)
2937		return phys_addr + (31 << 10);
2938	if (phys_addr < 1024 + fn)
2939		return EEPROMSIZE - fn + phys_addr - 1024;
2940	if (phys_addr < EEPROMSIZE)
2941		return phys_addr - 1024 - fn;
2942	return -EINVAL;
2943}
2944
2945/**
2946 *	t4_seeprom_wp - enable/disable EEPROM write protection
2947 *	@adapter: the adapter
2948 *	@enable: whether to enable or disable write protection
2949 *
2950 *	Enables or disables write protection on the serial EEPROM.
2951 */
2952int t4_seeprom_wp(struct adapter *adapter, int enable)
2953{
2954	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2955}
2956
2957/**
2958 *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2959 *	@vpd: Pointer to buffered vpd data structure
2960 *	@kw: The keyword to search for
2961 *	@region: VPD region to search (starting from 0)
2962 *
2963 *	Returns the value of the information field keyword or
2964 *	-ENOENT otherwise.
2965 */
2966static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2967{
2968	int i, tag;
2969	unsigned int offset, len;
2970	const struct t4_vpdr_hdr *vpdr;
2971
2972	offset = sizeof(struct t4_vpd_hdr);
2973	vpdr = (const void *)(vpd + offset);
2974	tag = vpdr->vpdr_tag;
2975	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2976	while (region--) {
2977		offset += sizeof(struct t4_vpdr_hdr) + len;
2978		vpdr = (const void *)(vpd + offset);
2979		if (++tag != vpdr->vpdr_tag)
2980			return -ENOENT;
2981		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2982	}
2983	offset += sizeof(struct t4_vpdr_hdr);
2984
2985	if (offset + len > VPD_LEN) {
2986		return -ENOENT;
2987	}
2988
2989	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2990		if (memcmp(vpd + i , kw , 2) == 0){
2991			i += VPD_INFO_FLD_HDR_SIZE;
2992			return i;
2993		}
2994
2995		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2996	}
2997
2998	return -ENOENT;
2999}
3000
3001
3002/**
3003 *	get_vpd_params - read VPD parameters from VPD EEPROM
3004 *	@adapter: adapter to read
3005 *	@p: where to store the parameters
3006 *	@vpd: caller provided temporary space to read the VPD into
3007 *
3008 *	Reads card parameters stored in VPD EEPROM.
3009 */
3010static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
3011    uint16_t device_id, u32 *buf)
3012{
3013	int i, ret, addr;
3014	int ec, sn, pn, na, md;
3015	u8 csum;
3016	const u8 *vpd = (const u8 *)buf;
3017
3018	/*
3019	 * Card information normally starts at VPD_BASE but early cards had
3020	 * it at 0.
3021	 */
3022	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
3023	if (ret)
3024		return (ret);
3025
3026	/*
3027	 * The VPD shall have a unique identifier specified by the PCI SIG.
3028	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
3029	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
3030	 * is expected to automatically put this entry at the
3031	 * beginning of the VPD.
3032	 */
3033	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
3034
3035	for (i = 0; i < VPD_LEN; i += 4) {
3036		ret = t4_seeprom_read(adapter, addr + i, buf++);
3037		if (ret)
3038			return ret;
3039	}
3040
3041#define FIND_VPD_KW(var,name) do { \
3042	var = get_vpd_keyword_val(vpd, name, 0); \
3043	if (var < 0) { \
3044		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3045		return -EINVAL; \
3046	} \
3047} while (0)
3048
3049	FIND_VPD_KW(i, "RV");
3050	for (csum = 0; i >= 0; i--)
3051		csum += vpd[i];
3052
3053	if (csum) {
3054		CH_ERR(adapter,
3055			"corrupted VPD EEPROM, actual csum %u\n", csum);
3056		return -EINVAL;
3057	}
3058
3059	FIND_VPD_KW(ec, "EC");
3060	FIND_VPD_KW(sn, "SN");
3061	FIND_VPD_KW(pn, "PN");
3062	FIND_VPD_KW(na, "NA");
3063#undef FIND_VPD_KW
3064
3065	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3066	strstrip(p->id);
3067	memcpy(p->ec, vpd + ec, EC_LEN);
3068	strstrip(p->ec);
3069	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3070	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3071	strstrip(p->sn);
3072	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3073	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3074	strstrip((char *)p->pn);
3075	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3076	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3077	strstrip((char *)p->na);
3078
3079	if (device_id & 0x80)
3080		return 0;	/* Custom card */
3081
3082	md = get_vpd_keyword_val(vpd, "VF", 1);
3083	if (md < 0) {
3084		snprintf(p->md, sizeof(p->md), "unknown");
3085	} else {
3086		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3087		memcpy(p->md, vpd + md, min(i, MD_LEN));
3088		strstrip((char *)p->md);
3089	}
3090
3091	return 0;
3092}
3093
3094/* serial flash and firmware constants and flash config file constants */
3095enum {
3096	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3097
3098	/* flash command opcodes */
3099	SF_PROG_PAGE    = 2,	/* program 256B page */
3100	SF_WR_DISABLE   = 4,	/* disable writes */
3101	SF_RD_STATUS    = 5,	/* read status register */
3102	SF_WR_ENABLE    = 6,	/* enable writes */
3103	SF_RD_DATA_FAST = 0xb,	/* read flash */
3104	SF_RD_ID	= 0x9f,	/* read ID */
3105	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3106};
3107
3108/**
3109 *	sf1_read - read data from the serial flash
3110 *	@adapter: the adapter
3111 *	@byte_cnt: number of bytes to read
3112 *	@cont: whether another operation will be chained
3113 *	@lock: whether to lock SF for PL access only
3114 *	@valp: where to store the read data
3115 *
3116 *	Reads up to 4 bytes of data from the serial flash.  The location of
3117 *	the read needs to be specified prior to calling this by issuing the
3118 *	appropriate commands to the serial flash.
3119 */
3120static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3121		    int lock, u32 *valp)
3122{
3123	int ret;
3124
3125	if (!byte_cnt || byte_cnt > 4)
3126		return -EINVAL;
3127	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3128		return -EBUSY;
3129	t4_write_reg(adapter, A_SF_OP,
3130		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3131	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3132	if (!ret)
3133		*valp = t4_read_reg(adapter, A_SF_DATA);
3134	return ret;
3135}
3136
3137/**
3138 *	sf1_write - write data to the serial flash
3139 *	@adapter: the adapter
3140 *	@byte_cnt: number of bytes to write
3141 *	@cont: whether another operation will be chained
3142 *	@lock: whether to lock SF for PL access only
3143 *	@val: value to write
3144 *
3145 *	Writes up to 4 bytes of data to the serial flash.  The location of
3146 *	the write needs to be specified prior to calling this by issuing the
3147 *	appropriate commands to the serial flash.
3148 */
3149static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3150		     int lock, u32 val)
3151{
3152	if (!byte_cnt || byte_cnt > 4)
3153		return -EINVAL;
3154	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3155		return -EBUSY;
3156	t4_write_reg(adapter, A_SF_DATA, val);
3157	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3158		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3159	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3160}
3161
3162/**
3163 *	flash_wait_op - wait for a flash operation to complete
3164 *	@adapter: the adapter
3165 *	@attempts: max number of polls of the status register
3166 *	@delay: delay between polls in ms
3167 *
3168 *	Wait for a flash operation to complete by polling the status register.
3169 */
3170static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3171{
3172	int ret;
3173	u32 status;
3174
3175	while (1) {
3176		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3177		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3178			return ret;
3179		if (!(status & 1))
3180			return 0;
3181		if (--attempts == 0)
3182			return -EAGAIN;
3183		if (delay)
3184			msleep(delay);
3185	}
3186}
3187
3188/**
3189 *	t4_read_flash - read words from serial flash
3190 *	@adapter: the adapter
3191 *	@addr: the start address for the read
3192 *	@nwords: how many 32-bit words to read
3193 *	@data: where to store the read data
3194 *	@byte_oriented: whether to store data as bytes or as words
3195 *
3196 *	Read the specified number of 32-bit words from the serial flash.
3197 *	If @byte_oriented is set the read data is stored as a byte array
3198 *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3199 *	natural endianness.
3200 */
3201int t4_read_flash(struct adapter *adapter, unsigned int addr,
3202		  unsigned int nwords, u32 *data, int byte_oriented)
3203{
3204	int ret;
3205
3206	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3207		return -EINVAL;
3208
3209	addr = swab32(addr) | SF_RD_DATA_FAST;
3210
3211	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3212	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3213		return ret;
3214
3215	for ( ; nwords; nwords--, data++) {
3216		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3217		if (nwords == 1)
3218			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3219		if (ret)
3220			return ret;
3221		if (byte_oriented)
3222			*data = (__force __u32)(cpu_to_be32(*data));
3223	}
3224	return 0;
3225}
3226
3227/**
3228 *	t4_write_flash - write up to a page of data to the serial flash
3229 *	@adapter: the adapter
3230 *	@addr: the start address to write
3231 *	@n: length of data to write in bytes
3232 *	@data: the data to write
3233 *	@byte_oriented: whether to store data as bytes or as words
3234 *
3235 *	Writes up to a page of data (256 bytes) to the serial flash starting
3236 *	at the given address.  All the data must be written to the same page.
3237 *	If @byte_oriented is set the write data is stored as byte stream
3238 *	(i.e. matches what on disk), otherwise in big-endian.
3239 */
3240int t4_write_flash(struct adapter *adapter, unsigned int addr,
3241			  unsigned int n, const u8 *data, int byte_oriented)
3242{
3243	int ret;
3244	u32 buf[SF_PAGE_SIZE / 4];
3245	unsigned int i, c, left, val, offset = addr & 0xff;
3246
3247	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3248		return -EINVAL;
3249
3250	val = swab32(addr) | SF_PROG_PAGE;
3251
3252	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3253	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3254		goto unlock;
3255
3256	for (left = n; left; left -= c) {
3257		c = min(left, 4U);
3258		for (val = 0, i = 0; i < c; ++i)
3259			val = (val << 8) + *data++;
3260
3261		if (!byte_oriented)
3262			val = cpu_to_be32(val);
3263
3264		ret = sf1_write(adapter, c, c != left, 1, val);
3265		if (ret)
3266			goto unlock;
3267	}
3268	ret = flash_wait_op(adapter, 8, 1);
3269	if (ret)
3270		goto unlock;
3271
3272	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3273
3274	/* Read the page to verify the write succeeded */
3275	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3276			    byte_oriented);
3277	if (ret)
3278		return ret;
3279
3280	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3281		CH_ERR(adapter,
3282			"failed to correctly write the flash page at %#x\n",
3283			addr);
3284		return -EIO;
3285	}
3286	return 0;
3287
3288unlock:
3289	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3290	return ret;
3291}
3292
3293/**
3294 *	t4_get_fw_version - read the firmware version
3295 *	@adapter: the adapter
3296 *	@vers: where to place the version
3297 *
3298 *	Reads the FW version from flash.
3299 */
3300int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3301{
3302	return t4_read_flash(adapter, FLASH_FW_START +
3303			     offsetof(struct fw_hdr, fw_ver), 1,
3304			     vers, 0);
3305}
3306
3307/**
3308 *	t4_get_fw_hdr - read the firmware header
3309 *	@adapter: the adapter
3310 *	@hdr: where to place the version
3311 *
3312 *	Reads the FW header from flash into caller provided buffer.
3313 */
3314int t4_get_fw_hdr(struct adapter *adapter, struct fw_hdr *hdr)
3315{
3316	return t4_read_flash(adapter, FLASH_FW_START,
3317	    sizeof (*hdr) / sizeof (uint32_t), (uint32_t *)hdr, 1);
3318}
3319
3320/**
3321 *	t4_get_bs_version - read the firmware bootstrap version
3322 *	@adapter: the adapter
3323 *	@vers: where to place the version
3324 *
3325 *	Reads the FW Bootstrap version from flash.
3326 */
3327int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3328{
3329	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3330			     offsetof(struct fw_hdr, fw_ver), 1,
3331			     vers, 0);
3332}
3333
3334/**
3335 *	t4_get_tp_version - read the TP microcode version
3336 *	@adapter: the adapter
3337 *	@vers: where to place the version
3338 *
3339 *	Reads the TP microcode version from flash.
3340 */
3341int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3342{
3343	return t4_read_flash(adapter, FLASH_FW_START +
3344			     offsetof(struct fw_hdr, tp_microcode_ver),
3345			     1, vers, 0);
3346}
3347
3348/**
3349 *	t4_get_exprom_version - return the Expansion ROM version (if any)
3350 *	@adapter: the adapter
3351 *	@vers: where to place the version
3352 *
3353 *	Reads the Expansion ROM header from FLASH and returns the version
3354 *	number (if present) through the @vers return value pointer.  We return
3355 *	this in the Firmware Version Format since it's convenient.  Return
3356 *	0 on success, -ENOENT if no Expansion ROM is present.
3357 */
3358int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3359{
3360	struct exprom_header {
3361		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3362		unsigned char hdr_ver[4];	/* Expansion ROM version */
3363	} *hdr;
3364	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3365					   sizeof(u32))];
3366	int ret;
3367
3368	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3369			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3370			    0);
3371	if (ret)
3372		return ret;
3373
3374	hdr = (struct exprom_header *)exprom_header_buf;
3375	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3376		return -ENOENT;
3377
3378	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3379		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3380		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3381		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3382	return 0;
3383}
3384
3385/**
3386 *	t4_get_scfg_version - return the Serial Configuration version
3387 *	@adapter: the adapter
3388 *	@vers: where to place the version
3389 *
3390 *	Reads the Serial Configuration Version via the Firmware interface
3391 *	(thus this can only be called once we're ready to issue Firmware
3392 *	commands).  The format of the Serial Configuration version is
3393 *	adapter specific.  Returns 0 on success, an error on failure.
3394 *
3395 *	Note that early versions of the Firmware didn't include the ability
3396 *	to retrieve the Serial Configuration version, so we zero-out the
3397 *	return-value parameter in that case to avoid leaving it with
3398 *	garbage in it.
3399 *
3400 *	Also note that the Firmware will return its cached copy of the Serial
3401 *	Initialization Revision ID, not the actual Revision ID as written in
3402 *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3403 *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3404 *	it's best to defer calling this routine till after a FW_RESET_CMD has
3405 *	been issued if the Host Driver will be performing a full adapter
3406 *	initialization.
3407 */
3408int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3409{
3410	u32 scfgrev_param;
3411	int ret;
3412
3413	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3414			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3415	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3416			      1, &scfgrev_param, vers);
3417	if (ret)
3418		*vers = 0;
3419	return ret;
3420}
3421
3422/**
3423 *	t4_get_vpd_version - return the VPD version
3424 *	@adapter: the adapter
3425 *	@vers: where to place the version
3426 *
3427 *	Reads the VPD via the Firmware interface (thus this can only be called
3428 *	once we're ready to issue Firmware commands).  The format of the
3429 *	VPD version is adapter specific.  Returns 0 on success, an error on
3430 *	failure.
3431 *
3432 *	Note that early versions of the Firmware didn't include the ability
3433 *	to retrieve the VPD version, so we zero-out the return-value parameter
3434 *	in that case to avoid leaving it with garbage in it.
3435 *
3436 *	Also note that the Firmware will return its cached copy of the VPD
3437 *	Revision ID, not the actual Revision ID as written in the Serial
3438 *	EEPROM.  This is only an issue if a new VPD has been written and the
3439 *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3440 *	to defer calling this routine till after a FW_RESET_CMD has been issued
3441 *	if the Host Driver will be performing a full adapter initialization.
3442 */
3443int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3444{
3445	u32 vpdrev_param;
3446	int ret;
3447
3448	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3449			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3450	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3451			      1, &vpdrev_param, vers);
3452	if (ret)
3453		*vers = 0;
3454	return ret;
3455}
3456
3457/**
3458 *	t4_get_version_info - extract various chip/firmware version information
3459 *	@adapter: the adapter
3460 *
3461 *	Reads various chip/firmware version numbers and stores them into the
3462 *	adapter Adapter Parameters structure.  If any of the efforts fails
3463 *	the first failure will be returned, but all of the version numbers
3464 *	will be read.
3465 */
3466int t4_get_version_info(struct adapter *adapter)
3467{
3468	int ret = 0;
3469
3470	#define FIRST_RET(__getvinfo) \
3471	do { \
3472		int __ret = __getvinfo; \
3473		if (__ret && !ret) \
3474			ret = __ret; \
3475	} while (0)
3476
3477	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3478	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3479	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3480	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3481	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3482	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3483
3484	#undef FIRST_RET
3485
3486	return ret;
3487}
3488
3489/**
3490 *	t4_flash_erase_sectors - erase a range of flash sectors
3491 *	@adapter: the adapter
3492 *	@start: the first sector to erase
3493 *	@end: the last sector to erase
3494 *
3495 *	Erases the sectors in the given inclusive range.
3496 */
3497int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3498{
3499	int ret = 0;
3500
3501	if (end >= adapter->params.sf_nsec)
3502		return -EINVAL;
3503
3504	while (start <= end) {
3505		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3506		    (ret = sf1_write(adapter, 4, 0, 1,
3507				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3508		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3509			CH_ERR(adapter,
3510				"erase of flash sector %d failed, error %d\n",
3511				start, ret);
3512			break;
3513		}
3514		start++;
3515	}
3516	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3517	return ret;
3518}
3519
3520/**
3521 *	t4_flash_cfg_addr - return the address of the flash configuration file
3522 *	@adapter: the adapter
3523 *
3524 *	Return the address within the flash where the Firmware Configuration
3525 *	File is stored, or an error if the device FLASH is too small to contain
3526 *	a Firmware Configuration File.
3527 */
3528int t4_flash_cfg_addr(struct adapter *adapter)
3529{
3530	/*
3531	 * If the device FLASH isn't large enough to hold a Firmware
3532	 * Configuration File, return an error.
3533	 */
3534	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3535		return -ENOSPC;
3536
3537	return FLASH_CFG_START;
3538}
3539
3540/*
3541 * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3542 * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3543 * and emit an error message for mismatched firmware to save our caller the
3544 * effort ...
3545 */
3546static int t4_fw_matches_chip(struct adapter *adap,
3547			      const struct fw_hdr *hdr)
3548{
3549	/*
3550	 * The expression below will return FALSE for any unsupported adapter
3551	 * which will keep us "honest" in the future ...
3552	 */
3553	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3554	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3555	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3556		return 1;
3557
3558	CH_ERR(adap,
3559		"FW image (%d) is not suitable for this adapter (%d)\n",
3560		hdr->chip, chip_id(adap));
3561	return 0;
3562}
3563
3564/**
3565 *	t4_load_fw - download firmware
3566 *	@adap: the adapter
3567 *	@fw_data: the firmware image to write
3568 *	@size: image size
3569 *
3570 *	Write the supplied firmware image to the card's serial flash.
3571 */
3572int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3573{
3574	u32 csum;
3575	int ret, addr;
3576	unsigned int i;
3577	u8 first_page[SF_PAGE_SIZE];
3578	const u32 *p = (const u32 *)fw_data;
3579	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3580	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3581	unsigned int fw_start_sec;
3582	unsigned int fw_start;
3583	unsigned int fw_size;
3584
3585	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3586		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3587		fw_start = FLASH_FWBOOTSTRAP_START;
3588		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3589	} else {
3590		fw_start_sec = FLASH_FW_START_SEC;
3591 		fw_start = FLASH_FW_START;
3592		fw_size = FLASH_FW_MAX_SIZE;
3593	}
3594
3595	if (!size) {
3596		CH_ERR(adap, "FW image has no data\n");
3597		return -EINVAL;
3598	}
3599	if (size & 511) {
3600		CH_ERR(adap,
3601			"FW image size not multiple of 512 bytes\n");
3602		return -EINVAL;
3603	}
3604	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3605		CH_ERR(adap,
3606			"FW image size differs from size in FW header\n");
3607		return -EINVAL;
3608	}
3609	if (size > fw_size) {
3610		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3611			fw_size);
3612		return -EFBIG;
3613	}
3614	if (!t4_fw_matches_chip(adap, hdr))
3615		return -EINVAL;
3616
3617	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3618		csum += be32_to_cpu(p[i]);
3619
3620	if (csum != 0xffffffff) {
3621		CH_ERR(adap,
3622			"corrupted firmware image, checksum %#x\n", csum);
3623		return -EINVAL;
3624	}
3625
3626	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3627	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3628	if (ret)
3629		goto out;
3630
3631	/*
3632	 * We write the correct version at the end so the driver can see a bad
3633	 * version if the FW write fails.  Start by writing a copy of the
3634	 * first page with a bad version.
3635	 */
3636	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3637	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3638	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3639	if (ret)
3640		goto out;
3641
3642	addr = fw_start;
3643	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3644		addr += SF_PAGE_SIZE;
3645		fw_data += SF_PAGE_SIZE;
3646		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3647		if (ret)
3648			goto out;
3649	}
3650
3651	ret = t4_write_flash(adap,
3652			     fw_start + offsetof(struct fw_hdr, fw_ver),
3653			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3654out:
3655	if (ret)
3656		CH_ERR(adap, "firmware download failed, error %d\n",
3657			ret);
3658	return ret;
3659}
3660
3661/**
3662 *	t4_fwcache - firmware cache operation
3663 *	@adap: the adapter
3664 *	@op  : the operation (flush or flush and invalidate)
3665 */
3666int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3667{
3668	struct fw_params_cmd c;
3669
3670	memset(&c, 0, sizeof(c));
3671	c.op_to_vfn =
3672	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3673			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3674				V_FW_PARAMS_CMD_PFN(adap->pf) |
3675				V_FW_PARAMS_CMD_VFN(0));
3676	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3677	c.param[0].mnem =
3678	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3679			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3680	c.param[0].val = (__force __be32)op;
3681
3682	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3683}
3684
3685void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3686			unsigned int *pif_req_wrptr,
3687			unsigned int *pif_rsp_wrptr)
3688{
3689	int i, j;
3690	u32 cfg, val, req, rsp;
3691
3692	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3693	if (cfg & F_LADBGEN)
3694		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3695
3696	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3697	req = G_POLADBGWRPTR(val);
3698	rsp = G_PILADBGWRPTR(val);
3699	if (pif_req_wrptr)
3700		*pif_req_wrptr = req;
3701	if (pif_rsp_wrptr)
3702		*pif_rsp_wrptr = rsp;
3703
3704	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3705		for (j = 0; j < 6; j++) {
3706			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3707				     V_PILADBGRDPTR(rsp));
3708			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3709			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3710			req++;
3711			rsp++;
3712		}
3713		req = (req + 2) & M_POLADBGRDPTR;
3714		rsp = (rsp + 2) & M_PILADBGRDPTR;
3715	}
3716	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3717}
3718
3719void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3720{
3721	u32 cfg;
3722	int i, j, idx;
3723
3724	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3725	if (cfg & F_LADBGEN)
3726		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3727
3728	for (i = 0; i < CIM_MALA_SIZE; i++) {
3729		for (j = 0; j < 5; j++) {
3730			idx = 8 * i + j;
3731			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3732				     V_PILADBGRDPTR(idx));
3733			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3734			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3735		}
3736	}
3737	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3738}
3739
3740void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3741{
3742	unsigned int i, j;
3743
3744	for (i = 0; i < 8; i++) {
3745		u32 *p = la_buf + i;
3746
3747		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3748		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3749		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3750		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3751			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3752	}
3753}
3754
3755/**
3756 *	fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
3757 *	@caps16: a 16-bit Port Capabilities value
3758 *
3759 *	Returns the equivalent 32-bit Port Capabilities value.
3760 */
3761static uint32_t fwcaps16_to_caps32(uint16_t caps16)
3762{
3763	uint32_t caps32 = 0;
3764
3765	#define CAP16_TO_CAP32(__cap) \
3766		do { \
3767			if (caps16 & FW_PORT_CAP_##__cap) \
3768				caps32 |= FW_PORT_CAP32_##__cap; \
3769		} while (0)
3770
3771	CAP16_TO_CAP32(SPEED_100M);
3772	CAP16_TO_CAP32(SPEED_1G);
3773	CAP16_TO_CAP32(SPEED_25G);
3774	CAP16_TO_CAP32(SPEED_10G);
3775	CAP16_TO_CAP32(SPEED_40G);
3776	CAP16_TO_CAP32(SPEED_100G);
3777	CAP16_TO_CAP32(FC_RX);
3778	CAP16_TO_CAP32(FC_TX);
3779	CAP16_TO_CAP32(ANEG);
3780	CAP16_TO_CAP32(FORCE_PAUSE);
3781	CAP16_TO_CAP32(MDIAUTO);
3782	CAP16_TO_CAP32(MDISTRAIGHT);
3783	CAP16_TO_CAP32(FEC_RS);
3784	CAP16_TO_CAP32(FEC_BASER_RS);
3785	CAP16_TO_CAP32(802_3_PAUSE);
3786	CAP16_TO_CAP32(802_3_ASM_DIR);
3787
3788	#undef CAP16_TO_CAP32
3789
3790	return caps32;
3791}
3792
3793/**
3794 *	fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
3795 *	@caps32: a 32-bit Port Capabilities value
3796 *
3797 *	Returns the equivalent 16-bit Port Capabilities value.  Note that
3798 *	not all 32-bit Port Capabilities can be represented in the 16-bit
3799 *	Port Capabilities and some fields/values may not make it.
3800 */
3801static uint16_t fwcaps32_to_caps16(uint32_t caps32)
3802{
3803	uint16_t caps16 = 0;
3804
3805	#define CAP32_TO_CAP16(__cap) \
3806		do { \
3807			if (caps32 & FW_PORT_CAP32_##__cap) \
3808				caps16 |= FW_PORT_CAP_##__cap; \
3809		} while (0)
3810
3811	CAP32_TO_CAP16(SPEED_100M);
3812	CAP32_TO_CAP16(SPEED_1G);
3813	CAP32_TO_CAP16(SPEED_10G);
3814	CAP32_TO_CAP16(SPEED_25G);
3815	CAP32_TO_CAP16(SPEED_40G);
3816	CAP32_TO_CAP16(SPEED_100G);
3817	CAP32_TO_CAP16(FC_RX);
3818	CAP32_TO_CAP16(FC_TX);
3819	CAP32_TO_CAP16(802_3_PAUSE);
3820	CAP32_TO_CAP16(802_3_ASM_DIR);
3821	CAP32_TO_CAP16(ANEG);
3822	CAP32_TO_CAP16(FORCE_PAUSE);
3823	CAP32_TO_CAP16(MDIAUTO);
3824	CAP32_TO_CAP16(MDISTRAIGHT);
3825	CAP32_TO_CAP16(FEC_RS);
3826	CAP32_TO_CAP16(FEC_BASER_RS);
3827
3828	#undef CAP32_TO_CAP16
3829
3830	return caps16;
3831}
3832
3833static bool
3834is_bt(struct port_info *pi)
3835{
3836
3837	return (pi->port_type == FW_PORT_TYPE_BT_SGMII ||
3838	    pi->port_type == FW_PORT_TYPE_BT_XFI ||
3839	    pi->port_type == FW_PORT_TYPE_BT_XAUI);
3840}
3841
3842/**
3843 *	t4_link_l1cfg - apply link configuration to MAC/PHY
3844 *	@phy: the PHY to setup
3845 *	@mac: the MAC to setup
3846 *	@lc: the requested link configuration
3847 *
3848 *	Set up a port's MAC and PHY according to a desired link configuration.
3849 *	- If the PHY can auto-negotiate first decide what to advertise, then
3850 *	  enable/disable auto-negotiation as desired, and reset.
3851 *	- If the PHY does not auto-negotiate just reset it.
3852 *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3853 *	  otherwise do it later based on the outcome of auto-negotiation.
3854 */
3855int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3856		  struct link_config *lc)
3857{
3858	struct fw_port_cmd c;
3859	unsigned int mdi = V_FW_PORT_CAP32_MDI(FW_PORT_CAP32_MDI_AUTO);
3860	unsigned int aneg, fc, fec, speed, rcap;
3861
3862	fc = 0;
3863	if (lc->requested_fc & PAUSE_RX)
3864		fc |= FW_PORT_CAP32_FC_RX;
3865	if (lc->requested_fc & PAUSE_TX)
3866		fc |= FW_PORT_CAP32_FC_TX;
3867	if (!(lc->requested_fc & PAUSE_AUTONEG))
3868		fc |= FW_PORT_CAP32_FORCE_PAUSE;
3869
3870	fec = 0;
3871	if (lc->requested_fec == FEC_AUTO)
3872		fec = lc->fec_hint;
3873	else {
3874		if (lc->requested_fec & FEC_RS)
3875			fec |= FW_PORT_CAP32_FEC_RS;
3876		if (lc->requested_fec & FEC_BASER_RS)
3877			fec |= FW_PORT_CAP32_FEC_BASER_RS;
3878	}
3879
3880	if (lc->requested_aneg == AUTONEG_DISABLE)
3881		aneg = 0;
3882	else if (lc->requested_aneg == AUTONEG_ENABLE)
3883		aneg = FW_PORT_CAP32_ANEG;
3884	else
3885		aneg = lc->supported & FW_PORT_CAP32_ANEG;
3886
3887	if (aneg) {
3888		speed = lc->supported & V_FW_PORT_CAP32_SPEED(M_FW_PORT_CAP32_SPEED);
3889	} else if (lc->requested_speed != 0)
3890		speed = speed_to_fwcap(lc->requested_speed);
3891	else
3892		speed = fwcap_top_speed(lc->supported);
3893
3894	/* Force AN on for BT cards. */
3895	if (is_bt(adap->port[adap->chan_map[port]]))
3896		aneg = lc->supported & FW_PORT_CAP32_ANEG;
3897
3898	rcap = aneg | speed | fc | fec;
3899	if ((rcap | lc->supported) != lc->supported) {
3900#ifdef INVARIANTS
3901		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3902		    lc->supported);
3903#endif
3904		rcap &= lc->supported;
3905	}
3906	rcap |= mdi;
3907
3908	memset(&c, 0, sizeof(c));
3909	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3910				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3911				     V_FW_PORT_CMD_PORTID(port));
3912	if (adap->params.port_caps32) {
3913		c.action_to_len16 =
3914		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG32) |
3915			FW_LEN16(c));
3916		c.u.l1cfg32.rcap32 = cpu_to_be32(rcap);
3917	} else {
3918		c.action_to_len16 =
3919		    cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3920			    FW_LEN16(c));
3921		c.u.l1cfg.rcap = cpu_to_be32(fwcaps32_to_caps16(rcap));
3922	}
3923
3924	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3925}
3926
3927/**
3928 *	t4_restart_aneg - restart autonegotiation
3929 *	@adap: the adapter
3930 *	@mbox: mbox to use for the FW command
3931 *	@port: the port id
3932 *
3933 *	Restarts autonegotiation for the selected port.
3934 */
3935int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3936{
3937	struct fw_port_cmd c;
3938
3939	memset(&c, 0, sizeof(c));
3940	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3941				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3942				     V_FW_PORT_CMD_PORTID(port));
3943	c.action_to_len16 =
3944		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3945			    FW_LEN16(c));
3946	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3947	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3948}
3949
3950struct intr_details {
3951	u32 mask;
3952	const char *msg;
3953};
3954
3955struct intr_action {
3956	u32 mask;
3957	int arg;
3958	bool (*action)(struct adapter *, int, bool);
3959};
3960
3961#define NONFATAL_IF_DISABLED 1
3962struct intr_info {
3963	const char *name;	/* name of the INT_CAUSE register */
3964	int cause_reg;		/* INT_CAUSE register */
3965	int enable_reg;		/* INT_ENABLE register */
3966	u32 fatal;		/* bits that are fatal */
3967	int flags;		/* hints */
3968	const struct intr_details *details;
3969	const struct intr_action *actions;
3970};
3971
3972static inline char
3973intr_alert_char(u32 cause, u32 enable, u32 fatal)
3974{
3975
3976	if (cause & fatal)
3977		return ('!');
3978	if (cause & enable)
3979		return ('*');
3980	return ('-');
3981}
3982
3983static void
3984t4_show_intr_info(struct adapter *adap, const struct intr_info *ii, u32 cause)
3985{
3986	u32 enable, fatal, leftover;
3987	const struct intr_details *details;
3988	char alert;
3989
3990	enable = t4_read_reg(adap, ii->enable_reg);
3991	if (ii->flags & NONFATAL_IF_DISABLED)
3992		fatal = ii->fatal & t4_read_reg(adap, ii->enable_reg);
3993	else
3994		fatal = ii->fatal;
3995	alert = intr_alert_char(cause, enable, fatal);
3996	CH_ALERT(adap, "%c %s 0x%x = 0x%08x, E 0x%08x, F 0x%08x\n",
3997	    alert, ii->name, ii->cause_reg, cause, enable, fatal);
3998
3999	leftover = cause;
4000	for (details = ii->details; details && details->mask != 0; details++) {
4001		u32 msgbits = details->mask & cause;
4002		if (msgbits == 0)
4003			continue;
4004		alert = intr_alert_char(msgbits, enable, ii->fatal);
4005		CH_ALERT(adap, "  %c [0x%08x] %s\n", alert, msgbits,
4006		    details->msg);
4007		leftover &= ~msgbits;
4008	}
4009	if (leftover != 0 && leftover != cause)
4010		CH_ALERT(adap, "  ? [0x%08x]\n", leftover);
4011}
4012
4013/*
4014 * Returns true for fatal error.
4015 */
4016static bool
4017t4_handle_intr(struct adapter *adap, const struct intr_info *ii,
4018    u32 additional_cause, bool verbose)
4019{
4020	u32 cause, fatal;
4021	bool rc;
4022	const struct intr_action *action;
4023
4024	/*
4025	 * Read and display cause.  Note that the top level PL_INT_CAUSE is a
4026	 * bit special and we need to completely ignore the bits that are not in
4027	 * PL_INT_ENABLE.
4028	 */
4029	cause = t4_read_reg(adap, ii->cause_reg);
4030	if (ii->cause_reg == A_PL_INT_CAUSE)
4031		cause &= t4_read_reg(adap, ii->enable_reg);
4032	if (verbose || cause != 0)
4033		t4_show_intr_info(adap, ii, cause);
4034	fatal = cause & ii->fatal;
4035	if (fatal != 0 && ii->flags & NONFATAL_IF_DISABLED)
4036		fatal &= t4_read_reg(adap, ii->enable_reg);
4037	cause |= additional_cause;
4038	if (cause == 0)
4039		return (false);
4040
4041	rc = fatal != 0;
4042	for (action = ii->actions; action && action->mask != 0; action++) {
4043		if (!(action->mask & cause))
4044			continue;
4045		rc |= (action->action)(adap, action->arg, verbose);
4046	}
4047
4048	/* clear */
4049	t4_write_reg(adap, ii->cause_reg, cause);
4050	(void)t4_read_reg(adap, ii->cause_reg);
4051
4052	return (rc);
4053}
4054
4055/*
4056 * Interrupt handler for the PCIE module.
4057 */
4058static bool pcie_intr_handler(struct adapter *adap, int arg, bool verbose)
4059{
4060	static const struct intr_details sysbus_intr_details[] = {
4061		{ F_RNPP, "RXNP array parity error" },
4062		{ F_RPCP, "RXPC array parity error" },
4063		{ F_RCIP, "RXCIF array parity error" },
4064		{ F_RCCP, "Rx completions control array parity error" },
4065		{ F_RFTP, "RXFT array parity error" },
4066		{ 0 }
4067	};
4068	static const struct intr_info sysbus_intr_info = {
4069		.name = "PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS",
4070		.cause_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4071		.enable_reg = A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_INTERRUPT_ENABLE,
4072		.fatal = F_RFTP | F_RCCP | F_RCIP | F_RPCP | F_RNPP,
4073		.flags = 0,
4074		.details = sysbus_intr_details,
4075		.actions = NULL,
4076	};
4077	static const struct intr_details pcie_port_intr_details[] = {
4078		{ F_TPCP, "TXPC array parity error" },
4079		{ F_TNPP, "TXNP array parity error" },
4080		{ F_TFTP, "TXFT array parity error" },
4081		{ F_TCAP, "TXCA array parity error" },
4082		{ F_TCIP, "TXCIF array parity error" },
4083		{ F_RCAP, "RXCA array parity error" },
4084		{ F_OTDD, "outbound request TLP discarded" },
4085		{ F_RDPE, "Rx data parity error" },
4086		{ F_TDUE, "Tx uncorrectable data error" },
4087		{ 0 }
4088	};
4089	static const struct intr_info pcie_port_intr_info = {
4090		.name = "PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS",
4091		.cause_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4092		.enable_reg = A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_INTERRUPT_ENABLE,
4093		.fatal = F_TPCP | F_TNPP | F_TFTP | F_TCAP | F_TCIP | F_RCAP |
4094		    F_OTDD | F_RDPE | F_TDUE,
4095		.flags = 0,
4096		.details = pcie_port_intr_details,
4097		.actions = NULL,
4098	};
4099	static const struct intr_details pcie_intr_details[] = {
4100		{ F_MSIADDRLPERR, "MSI AddrL parity error" },
4101		{ F_MSIADDRHPERR, "MSI AddrH parity error" },
4102		{ F_MSIDATAPERR, "MSI data parity error" },
4103		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error" },
4104		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error" },
4105		{ F_MSIXDATAPERR, "MSI-X data parity error" },
4106		{ F_MSIXDIPERR, "MSI-X DI parity error" },
4107		{ F_PIOCPLPERR, "PCIe PIO completion FIFO parity error" },
4108		{ F_PIOREQPERR, "PCIe PIO request FIFO parity error" },
4109		{ F_TARTAGPERR, "PCIe target tag FIFO parity error" },
4110		{ F_CCNTPERR, "PCIe CMD channel count parity error" },
4111		{ F_CREQPERR, "PCIe CMD channel request parity error" },
4112		{ F_CRSPPERR, "PCIe CMD channel response parity error" },
4113		{ F_DCNTPERR, "PCIe DMA channel count parity error" },
4114		{ F_DREQPERR, "PCIe DMA channel request parity error" },
4115		{ F_DRSPPERR, "PCIe DMA channel response parity error" },
4116		{ F_HCNTPERR, "PCIe HMA channel count parity error" },
4117		{ F_HREQPERR, "PCIe HMA channel request parity error" },
4118		{ F_HRSPPERR, "PCIe HMA channel response parity error" },
4119		{ F_CFGSNPPERR, "PCIe config snoop FIFO parity error" },
4120		{ F_FIDPERR, "PCIe FID parity error" },
4121		{ F_INTXCLRPERR, "PCIe INTx clear parity error" },
4122		{ F_MATAGPERR, "PCIe MA tag parity error" },
4123		{ F_PIOTAGPERR, "PCIe PIO tag parity error" },
4124		{ F_RXCPLPERR, "PCIe Rx completion parity error" },
4125		{ F_RXWRPERR, "PCIe Rx write parity error" },
4126		{ F_RPLPERR, "PCIe replay buffer parity error" },
4127		{ F_PCIESINT, "PCIe core secondary fault" },
4128		{ F_PCIEPINT, "PCIe core primary fault" },
4129		{ F_UNXSPLCPLERR, "PCIe unexpected split completion error" },
4130		{ 0 }
4131	};
4132	static const struct intr_details t5_pcie_intr_details[] = {
4133		{ F_IPGRPPERR, "Parity errors observed by IP" },
4134		{ F_NONFATALERR, "PCIe non-fatal error" },
4135		{ F_READRSPERR, "Outbound read error" },
4136		{ F_TRGT1GRPPERR, "PCIe TRGT1 group FIFOs parity error" },
4137		{ F_IPSOTPERR, "PCIe IP SOT buffer SRAM parity error" },
4138		{ F_IPRETRYPERR, "PCIe IP replay buffer parity error" },
4139		{ F_IPRXDATAGRPPERR, "PCIe IP Rx data group SRAMs parity error" },
4140		{ F_IPRXHDRGRPPERR, "PCIe IP Rx header group SRAMs parity error" },
4141		{ F_PIOTAGQPERR, "PIO tag queue FIFO parity error" },
4142		{ F_MAGRPPERR, "MA group FIFO parity error" },
4143		{ F_VFIDPERR, "VFID SRAM parity error" },
4144		{ F_FIDPERR, "FID SRAM parity error" },
4145		{ F_CFGSNPPERR, "config snoop FIFO parity error" },
4146		{ F_HRSPPERR, "HMA channel response data SRAM parity error" },
4147		{ F_HREQRDPERR, "HMA channel read request SRAM parity error" },
4148		{ F_HREQWRPERR, "HMA channel write request SRAM parity error" },
4149		{ F_DRSPPERR, "DMA channel response data SRAM parity error" },
4150		{ F_DREQRDPERR, "DMA channel write request SRAM parity error" },
4151		{ F_CRSPPERR, "CMD channel response data SRAM parity error" },
4152		{ F_CREQRDPERR, "CMD channel read request SRAM parity error" },
4153		{ F_MSTTAGQPERR, "PCIe master tag queue SRAM parity error" },
4154		{ F_TGTTAGQPERR, "PCIe target tag queue FIFO parity error" },
4155		{ F_PIOREQGRPPERR, "PIO request group FIFOs parity error" },
4156		{ F_PIOCPLGRPPERR, "PIO completion group FIFOs parity error" },
4157		{ F_MSIXDIPERR, "MSI-X DI SRAM parity error" },
4158		{ F_MSIXDATAPERR, "MSI-X data SRAM parity error" },
4159		{ F_MSIXADDRHPERR, "MSI-X AddrH SRAM parity error" },
4160		{ F_MSIXADDRLPERR, "MSI-X AddrL SRAM parity error" },
4161		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error" },
4162		{ F_MSTTIMEOUTPERR, "Master timeout FIFO parity error" },
4163		{ F_MSTGRPPERR, "Master response read queue SRAM parity error" },
4164		{ 0 }
4165	};
4166	struct intr_info pcie_intr_info = {
4167		.name = "PCIE_INT_CAUSE",
4168		.cause_reg = A_PCIE_INT_CAUSE,
4169		.enable_reg = A_PCIE_INT_ENABLE,
4170		.fatal = 0xffffffff,
4171		.flags = NONFATAL_IF_DISABLED,
4172		.details = NULL,
4173		.actions = NULL,
4174	};
4175	bool fatal = false;
4176
4177	if (is_t4(adap)) {
4178		fatal |= t4_handle_intr(adap, &sysbus_intr_info, 0, verbose);
4179		fatal |= t4_handle_intr(adap, &pcie_port_intr_info, 0, verbose);
4180
4181		pcie_intr_info.details = pcie_intr_details;
4182	} else {
4183		pcie_intr_info.details = t5_pcie_intr_details;
4184	}
4185	fatal |= t4_handle_intr(adap, &pcie_intr_info, 0, verbose);
4186
4187	return (fatal);
4188}
4189
4190/*
4191 * TP interrupt handler.
4192 */
4193static bool tp_intr_handler(struct adapter *adap, int arg, bool verbose)
4194{
4195	static const struct intr_details tp_intr_details[] = {
4196		{ 0x3fffffff, "TP parity error" },
4197		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages" },
4198		{ 0 }
4199	};
4200	static const struct intr_info tp_intr_info = {
4201		.name = "TP_INT_CAUSE",
4202		.cause_reg = A_TP_INT_CAUSE,
4203		.enable_reg = A_TP_INT_ENABLE,
4204		.fatal = 0x7fffffff,
4205		.flags = NONFATAL_IF_DISABLED,
4206		.details = tp_intr_details,
4207		.actions = NULL,
4208	};
4209
4210	return (t4_handle_intr(adap, &tp_intr_info, 0, verbose));
4211}
4212
4213/*
4214 * SGE interrupt handler.
4215 */
4216static bool sge_intr_handler(struct adapter *adap, int arg, bool verbose)
4217{
4218	static const struct intr_info sge_int1_info = {
4219		.name = "SGE_INT_CAUSE1",
4220		.cause_reg = A_SGE_INT_CAUSE1,
4221		.enable_reg = A_SGE_INT_ENABLE1,
4222		.fatal = 0xffffffff,
4223		.flags = NONFATAL_IF_DISABLED,
4224		.details = NULL,
4225		.actions = NULL,
4226	};
4227	static const struct intr_info sge_int2_info = {
4228		.name = "SGE_INT_CAUSE2",
4229		.cause_reg = A_SGE_INT_CAUSE2,
4230		.enable_reg = A_SGE_INT_ENABLE2,
4231		.fatal = 0xffffffff,
4232		.flags = NONFATAL_IF_DISABLED,
4233		.details = NULL,
4234		.actions = NULL,
4235	};
4236	static const struct intr_details sge_int3_details[] = {
4237		{ F_ERR_FLM_DBP,
4238			"DBP pointer delivery for invalid context or QID" },
4239		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4240			"Invalid QID or header request by IDMA" },
4241		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4242		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4243		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4244		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4245		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4246		{ F_ERR_TIMER_ABOVE_MAX_QID,
4247			"SGE GTS with timer 0-5 for IQID > 1023" },
4248		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4249			"SGE received CPL exceeding IQE size" },
4250		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4251		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4252		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4253		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4254		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4255		  "SGE IQID > 1023 received CPL for FL" },
4256		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4257			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4258		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4259		{ F_ERR_ING_CTXT_PRIO,
4260			"Ingress context manager priority user error" },
4261		{ F_ERR_EGR_CTXT_PRIO,
4262			"Egress context manager priority user error" },
4263		{ F_DBFIFO_HP_INT, "High priority DB FIFO threshold reached" },
4264		{ F_DBFIFO_LP_INT, "Low priority DB FIFO threshold reached" },
4265		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4266		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4267		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4268		{ 0x0000000f, "SGE context access for invalid queue" },
4269		{ 0 }
4270	};
4271	static const struct intr_details t6_sge_int3_details[] = {
4272		{ F_ERR_FLM_DBP,
4273			"DBP pointer delivery for invalid context or QID" },
4274		{ F_ERR_FLM_IDMA1 | F_ERR_FLM_IDMA0,
4275			"Invalid QID or header request by IDMA" },
4276		{ F_ERR_FLM_HINT, "FLM hint is for invalid context or QID" },
4277		{ F_ERR_PCIE_ERROR3, "SGE PCIe error for DBP thread 3" },
4278		{ F_ERR_PCIE_ERROR2, "SGE PCIe error for DBP thread 2" },
4279		{ F_ERR_PCIE_ERROR1, "SGE PCIe error for DBP thread 1" },
4280		{ F_ERR_PCIE_ERROR0, "SGE PCIe error for DBP thread 0" },
4281		{ F_ERR_TIMER_ABOVE_MAX_QID,
4282			"SGE GTS with timer 0-5 for IQID > 1023" },
4283		{ F_ERR_CPL_EXCEED_IQE_SIZE,
4284			"SGE received CPL exceeding IQE size" },
4285		{ F_ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large" },
4286		{ F_ERR_ITP_TIME_PAUSED, "SGE ITP error" },
4287		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL" },
4288		{ F_ERR_DROPPED_DB, "SGE DB dropped" },
4289		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
4290			"SGE IQID > 1023 received CPL for FL" },
4291		{ F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4292			F_ERR_BAD_DB_PIDX0, "SGE DBP pidx increment too large" },
4293		{ F_ERR_ING_PCIE_CHAN, "SGE Ingress PCIe channel mismatch" },
4294		{ F_ERR_ING_CTXT_PRIO,
4295			"Ingress context manager priority user error" },
4296		{ F_ERR_EGR_CTXT_PRIO,
4297			"Egress context manager priority user error" },
4298		{ F_DBP_TBUF_FULL, "SGE DBP tbuf full" },
4299		{ F_FATAL_WRE_LEN,
4300			"SGE WRE packet less than advertized length" },
4301		{ F_REG_ADDRESS_ERR, "Undefined SGE register accessed" },
4302		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID" },
4303		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID" },
4304		{ 0x0000000f, "SGE context access for invalid queue" },
4305		{ 0 }
4306	};
4307	struct intr_info sge_int3_info = {
4308		.name = "SGE_INT_CAUSE3",
4309		.cause_reg = A_SGE_INT_CAUSE3,
4310		.enable_reg = A_SGE_INT_ENABLE3,
4311		.fatal = F_ERR_CPL_EXCEED_IQE_SIZE,
4312		.flags = 0,
4313		.details = NULL,
4314		.actions = NULL,
4315	};
4316	static const struct intr_info sge_int4_info = {
4317		.name = "SGE_INT_CAUSE4",
4318		.cause_reg = A_SGE_INT_CAUSE4,
4319		.enable_reg = A_SGE_INT_ENABLE4,
4320		.fatal = 0,
4321		.flags = 0,
4322		.details = NULL,
4323		.actions = NULL,
4324	};
4325	static const struct intr_info sge_int5_info = {
4326		.name = "SGE_INT_CAUSE5",
4327		.cause_reg = A_SGE_INT_CAUSE5,
4328		.enable_reg = A_SGE_INT_ENABLE5,
4329		.fatal = 0xffffffff,
4330		.flags = NONFATAL_IF_DISABLED,
4331		.details = NULL,
4332		.actions = NULL,
4333	};
4334	static const struct intr_info sge_int6_info = {
4335		.name = "SGE_INT_CAUSE6",
4336		.cause_reg = A_SGE_INT_CAUSE6,
4337		.enable_reg = A_SGE_INT_ENABLE6,
4338		.fatal = 0,
4339		.flags = 0,
4340		.details = NULL,
4341		.actions = NULL,
4342	};
4343
4344	bool fatal;
4345	u32 v;
4346
4347	if (chip_id(adap) <= CHELSIO_T5) {
4348		sge_int3_info.details = sge_int3_details;
4349	} else {
4350		sge_int3_info.details = t6_sge_int3_details;
4351	}
4352
4353	fatal = false;
4354	fatal |= t4_handle_intr(adap, &sge_int1_info, 0, verbose);
4355	fatal |= t4_handle_intr(adap, &sge_int2_info, 0, verbose);
4356	fatal |= t4_handle_intr(adap, &sge_int3_info, 0, verbose);
4357	fatal |= t4_handle_intr(adap, &sge_int4_info, 0, verbose);
4358	if (chip_id(adap) >= CHELSIO_T5)
4359		fatal |= t4_handle_intr(adap, &sge_int5_info, 0, verbose);
4360	if (chip_id(adap) >= CHELSIO_T6)
4361		fatal |= t4_handle_intr(adap, &sge_int6_info, 0, verbose);
4362
4363	v = t4_read_reg(adap, A_SGE_ERROR_STATS);
4364	if (v & F_ERROR_QID_VALID) {
4365		CH_ERR(adap, "SGE error for QID %u\n", G_ERROR_QID(v));
4366		if (v & F_UNCAPTURED_ERROR)
4367			CH_ERR(adap, "SGE UNCAPTURED_ERROR set (clearing)\n");
4368		t4_write_reg(adap, A_SGE_ERROR_STATS,
4369		    F_ERROR_QID_VALID | F_UNCAPTURED_ERROR);
4370	}
4371
4372	return (fatal);
4373}
4374
4375/*
4376 * CIM interrupt handler.
4377 */
4378static bool cim_intr_handler(struct adapter *adap, int arg, bool verbose)
4379{
4380	static const struct intr_action cim_host_intr_actions[] = {
4381		{ F_TIMER0INT, 0, t4_os_dump_cimla },
4382		{ 0 },
4383	};
4384	static const struct intr_details cim_host_intr_details[] = {
4385		/* T6+ */
4386		{ F_PCIE2CIMINTFPARERR, "CIM IBQ PCIe interface parity error" },
4387
4388		/* T5+ */
4389		{ F_MA_CIM_INTFPERR, "MA2CIM interface parity error" },
4390		{ F_PLCIM_MSTRSPDATAPARERR,
4391			"PL2CIM master response data parity error" },
4392		{ F_NCSI2CIMINTFPARERR, "CIM IBQ NC-SI interface parity error" },
4393		{ F_SGE2CIMINTFPARERR, "CIM IBQ SGE interface parity error" },
4394		{ F_ULP2CIMINTFPARERR, "CIM IBQ ULP_TX interface parity error" },
4395		{ F_TP2CIMINTFPARERR, "CIM IBQ TP interface parity error" },
4396		{ F_OBQSGERX1PARERR, "CIM OBQ SGE1_RX parity error" },
4397		{ F_OBQSGERX0PARERR, "CIM OBQ SGE0_RX parity error" },
4398
4399		/* T4+ */
4400		{ F_TIEQOUTPARERRINT, "CIM TIEQ outgoing FIFO parity error" },
4401		{ F_TIEQINPARERRINT, "CIM TIEQ incoming FIFO parity error" },
4402		{ F_MBHOSTPARERR, "CIM mailbox host read parity error" },
4403		{ F_MBUPPARERR, "CIM mailbox uP parity error" },
4404		{ F_IBQTP0PARERR, "CIM IBQ TP0 parity error" },
4405		{ F_IBQTP1PARERR, "CIM IBQ TP1 parity error" },
4406		{ F_IBQULPPARERR, "CIM IBQ ULP parity error" },
4407		{ F_IBQSGELOPARERR, "CIM IBQ SGE_LO parity error" },
4408		{ F_IBQSGEHIPARERR | F_IBQPCIEPARERR,	/* same bit */
4409			"CIM IBQ PCIe/SGE_HI parity error" },
4410		{ F_IBQNCSIPARERR, "CIM IBQ NC-SI parity error" },
4411		{ F_OBQULP0PARERR, "CIM OBQ ULP0 parity error" },
4412		{ F_OBQULP1PARERR, "CIM OBQ ULP1 parity error" },
4413		{ F_OBQULP2PARERR, "CIM OBQ ULP2 parity error" },
4414		{ F_OBQULP3PARERR, "CIM OBQ ULP3 parity error" },
4415		{ F_OBQSGEPARERR, "CIM OBQ SGE parity error" },
4416		{ F_OBQNCSIPARERR, "CIM OBQ NC-SI parity error" },
4417		{ F_TIMER1INT, "CIM TIMER0 interrupt" },
4418		{ F_TIMER0INT, "CIM TIMER0 interrupt" },
4419		{ F_PREFDROPINT, "CIM control register prefetch drop" },
4420		{ 0}
4421	};
4422	static const struct intr_info cim_host_intr_info = {
4423		.name = "CIM_HOST_INT_CAUSE",
4424		.cause_reg = A_CIM_HOST_INT_CAUSE,
4425		.enable_reg = A_CIM_HOST_INT_ENABLE,
4426		.fatal = 0x007fffe6,
4427		.flags = NONFATAL_IF_DISABLED,
4428		.details = cim_host_intr_details,
4429		.actions = cim_host_intr_actions,
4430	};
4431	static const struct intr_details cim_host_upacc_intr_details[] = {
4432		{ F_EEPROMWRINT, "CIM EEPROM came out of busy state" },
4433		{ F_TIMEOUTMAINT, "CIM PIF MA timeout" },
4434		{ F_TIMEOUTINT, "CIM PIF timeout" },
4435		{ F_RSPOVRLOOKUPINT, "CIM response FIFO overwrite" },
4436		{ F_REQOVRLOOKUPINT, "CIM request FIFO overwrite" },
4437		{ F_BLKWRPLINT, "CIM block write to PL space" },
4438		{ F_BLKRDPLINT, "CIM block read from PL space" },
4439		{ F_SGLWRPLINT,
4440			"CIM single write to PL space with illegal BEs" },
4441		{ F_SGLRDPLINT,
4442			"CIM single read from PL space with illegal BEs" },
4443		{ F_BLKWRCTLINT, "CIM block write to CTL space" },
4444		{ F_BLKRDCTLINT, "CIM block read from CTL space" },
4445		{ F_SGLWRCTLINT,
4446			"CIM single write to CTL space with illegal BEs" },
4447		{ F_SGLRDCTLINT,
4448			"CIM single read from CTL space with illegal BEs" },
4449		{ F_BLKWREEPROMINT, "CIM block write to EEPROM space" },
4450		{ F_BLKRDEEPROMINT, "CIM block read from EEPROM space" },
4451		{ F_SGLWREEPROMINT,
4452			"CIM single write to EEPROM space with illegal BEs" },
4453		{ F_SGLRDEEPROMINT,
4454			"CIM single read from EEPROM space with illegal BEs" },
4455		{ F_BLKWRFLASHINT, "CIM block write to flash space" },
4456		{ F_BLKRDFLASHINT, "CIM block read from flash space" },
4457		{ F_SGLWRFLASHINT, "CIM single write to flash space" },
4458		{ F_SGLRDFLASHINT,
4459			"CIM single read from flash space with illegal BEs" },
4460		{ F_BLKWRBOOTINT, "CIM block write to boot space" },
4461		{ F_BLKRDBOOTINT, "CIM block read from boot space" },
4462		{ F_SGLWRBOOTINT, "CIM single write to boot space" },
4463		{ F_SGLRDBOOTINT,
4464			"CIM single read from boot space with illegal BEs" },
4465		{ F_ILLWRBEINT, "CIM illegal write BEs" },
4466		{ F_ILLRDBEINT, "CIM illegal read BEs" },
4467		{ F_ILLRDINT, "CIM illegal read" },
4468		{ F_ILLWRINT, "CIM illegal write" },
4469		{ F_ILLTRANSINT, "CIM illegal transaction" },
4470		{ F_RSVDSPACEINT, "CIM reserved space access" },
4471		{0}
4472	};
4473	static const struct intr_info cim_host_upacc_intr_info = {
4474		.name = "CIM_HOST_UPACC_INT_CAUSE",
4475		.cause_reg = A_CIM_HOST_UPACC_INT_CAUSE,
4476		.enable_reg = A_CIM_HOST_UPACC_INT_ENABLE,
4477		.fatal = 0x3fffeeff,
4478		.flags = NONFATAL_IF_DISABLED,
4479		.details = cim_host_upacc_intr_details,
4480		.actions = NULL,
4481	};
4482	static const struct intr_info cim_pf_host_intr_info = {
4483		.name = "CIM_PF_HOST_INT_CAUSE",
4484		.cause_reg = MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4485		.enable_reg = MYPF_REG(A_CIM_PF_HOST_INT_ENABLE),
4486		.fatal = 0,
4487		.flags = 0,
4488		.details = NULL,
4489		.actions = NULL,
4490	};
4491	u32 val, fw_err;
4492	bool fatal;
4493
4494	fw_err = t4_read_reg(adap, A_PCIE_FW);
4495	if (fw_err & F_PCIE_FW_ERR)
4496		t4_report_fw_error(adap);
4497
4498	/*
4499	 * When the Firmware detects an internal error which normally wouldn't
4500	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4501	 * to make sure the Host sees the Firmware Crash.  So if we have a
4502	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4503	 * interrupt.
4504	 */
4505	val = t4_read_reg(adap, A_CIM_HOST_INT_CAUSE);
4506	if (val & F_TIMER0INT && (!(fw_err & F_PCIE_FW_ERR) ||
4507	    G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH)) {
4508		t4_write_reg(adap, A_CIM_HOST_INT_CAUSE, F_TIMER0INT);
4509	}
4510
4511	fatal = false;
4512	fatal |= t4_handle_intr(adap, &cim_host_intr_info, 0, verbose);
4513	fatal |= t4_handle_intr(adap, &cim_host_upacc_intr_info, 0, verbose);
4514	fatal |= t4_handle_intr(adap, &cim_pf_host_intr_info, 0, verbose);
4515
4516	return (fatal);
4517}
4518
4519/*
4520 * ULP RX interrupt handler.
4521 */
4522static bool ulprx_intr_handler(struct adapter *adap, int arg, bool verbose)
4523{
4524	static const struct intr_details ulprx_intr_details[] = {
4525		/* T5+ */
4526		{ F_SE_CNT_MISMATCH_1, "ULPRX SE count mismatch in channel 1" },
4527		{ F_SE_CNT_MISMATCH_0, "ULPRX SE count mismatch in channel 0" },
4528
4529		/* T4+ */
4530		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error" },
4531		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error" },
4532		{ 0x007fffff, "ULPRX parity error" },
4533		{ 0 }
4534	};
4535	static const struct intr_info ulprx_intr_info = {
4536		.name = "ULP_RX_INT_CAUSE",
4537		.cause_reg = A_ULP_RX_INT_CAUSE,
4538		.enable_reg = A_ULP_RX_INT_ENABLE,
4539		.fatal = 0x07ffffff,
4540		.flags = NONFATAL_IF_DISABLED,
4541		.details = ulprx_intr_details,
4542		.actions = NULL,
4543	};
4544	static const struct intr_info ulprx_intr2_info = {
4545		.name = "ULP_RX_INT_CAUSE_2",
4546		.cause_reg = A_ULP_RX_INT_CAUSE_2,
4547		.enable_reg = A_ULP_RX_INT_ENABLE_2,
4548		.fatal = 0,
4549		.flags = 0,
4550		.details = NULL,
4551		.actions = NULL,
4552	};
4553	bool fatal = false;
4554
4555	fatal |= t4_handle_intr(adap, &ulprx_intr_info, 0, verbose);
4556	fatal |= t4_handle_intr(adap, &ulprx_intr2_info, 0, verbose);
4557
4558	return (fatal);
4559}
4560
4561/*
4562 * ULP TX interrupt handler.
4563 */
4564static bool ulptx_intr_handler(struct adapter *adap, int arg, bool verbose)
4565{
4566	static const struct intr_details ulptx_intr_details[] = {
4567		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds" },
4568		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds" },
4569		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds" },
4570		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds" },
4571		{ 0x0fffffff, "ULPTX parity error" },
4572		{ 0 }
4573	};
4574	static const struct intr_info ulptx_intr_info = {
4575		.name = "ULP_TX_INT_CAUSE",
4576		.cause_reg = A_ULP_TX_INT_CAUSE,
4577		.enable_reg = A_ULP_TX_INT_ENABLE,
4578		.fatal = 0x0fffffff,
4579		.flags = NONFATAL_IF_DISABLED,
4580		.details = ulptx_intr_details,
4581		.actions = NULL,
4582	};
4583	static const struct intr_info ulptx_intr2_info = {
4584		.name = "ULP_TX_INT_CAUSE_2",
4585		.cause_reg = A_ULP_TX_INT_CAUSE_2,
4586		.enable_reg = A_ULP_TX_INT_ENABLE_2,
4587		.fatal = 0xf0,
4588		.flags = NONFATAL_IF_DISABLED,
4589		.details = NULL,
4590		.actions = NULL,
4591	};
4592	bool fatal = false;
4593
4594	fatal |= t4_handle_intr(adap, &ulptx_intr_info, 0, verbose);
4595	fatal |= t4_handle_intr(adap, &ulptx_intr2_info, 0, verbose);
4596
4597	return (fatal);
4598}
4599
4600static bool pmtx_dump_dbg_stats(struct adapter *adap, int arg, bool verbose)
4601{
4602	int i;
4603	u32 data[17];
4604
4605	t4_read_indirect(adap, A_PM_TX_DBG_CTRL, A_PM_TX_DBG_DATA, &data[0],
4606	    ARRAY_SIZE(data), A_PM_TX_DBG_STAT0);
4607	for (i = 0; i < ARRAY_SIZE(data); i++) {
4608		CH_ALERT(adap, "  - PM_TX_DBG_STAT%u (0x%x) = 0x%08x\n", i,
4609		    A_PM_TX_DBG_STAT0 + i, data[i]);
4610	}
4611
4612	return (false);
4613}
4614
4615/*
4616 * PM TX interrupt handler.
4617 */
4618static bool pmtx_intr_handler(struct adapter *adap, int arg, bool verbose)
4619{
4620	static const struct intr_action pmtx_intr_actions[] = {
4621		{ 0xffffffff, 0, pmtx_dump_dbg_stats },
4622		{ 0 },
4623	};
4624	static const struct intr_details pmtx_intr_details[] = {
4625		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large" },
4626		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large" },
4627		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large" },
4628		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd" },
4629		{ 0x0f000000, "PMTX icspi FIFO2X Rx framing error" },
4630		{ 0x00f00000, "PMTX icspi FIFO Rx framing error" },
4631		{ 0x000f0000, "PMTX icspi FIFO Tx framing error" },
4632		{ 0x0000f000, "PMTX oespi FIFO Rx framing error" },
4633		{ 0x00000f00, "PMTX oespi FIFO Tx framing error" },
4634		{ 0x000000f0, "PMTX oespi FIFO2X Tx framing error" },
4635		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error" },
4636		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error" },
4637		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error" },
4638		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error" },
4639		{ 0 }
4640	};
4641	static const struct intr_info pmtx_intr_info = {
4642		.name = "PM_TX_INT_CAUSE",
4643		.cause_reg = A_PM_TX_INT_CAUSE,
4644		.enable_reg = A_PM_TX_INT_ENABLE,
4645		.fatal = 0xffffffff,
4646		.flags = 0,
4647		.details = pmtx_intr_details,
4648		.actions = pmtx_intr_actions,
4649	};
4650
4651	return (t4_handle_intr(adap, &pmtx_intr_info, 0, verbose));
4652}
4653
4654/*
4655 * PM RX interrupt handler.
4656 */
4657static bool pmrx_intr_handler(struct adapter *adap, int arg, bool verbose)
4658{
4659	static const struct intr_details pmrx_intr_details[] = {
4660		/* T6+ */
4661		{ 0x18000000, "PMRX ospi overflow" },
4662		{ F_MA_INTF_SDC_ERR, "PMRX MA interface SDC parity error" },
4663		{ F_BUNDLE_LEN_PARERR, "PMRX bundle len FIFO parity error" },
4664		{ F_BUNDLE_LEN_OVFL, "PMRX bundle len FIFO overflow" },
4665		{ F_SDC_ERR, "PMRX SDC error" },
4666
4667		/* T4+ */
4668		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd" },
4669		{ 0x003c0000, "PMRX iespi FIFO2X Rx framing error" },
4670		{ 0x0003c000, "PMRX iespi Rx framing error" },
4671		{ 0x00003c00, "PMRX iespi Tx framing error" },
4672		{ 0x00000300, "PMRX ocspi Rx framing error" },
4673		{ 0x000000c0, "PMRX ocspi Tx framing error" },
4674		{ 0x00000030, "PMRX ocspi FIFO2X Tx framing error" },
4675		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error" },
4676		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error" },
4677		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error" },
4678		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error"},
4679		{ 0 }
4680	};
4681	static const struct intr_info pmrx_intr_info = {
4682		.name = "PM_RX_INT_CAUSE",
4683		.cause_reg = A_PM_RX_INT_CAUSE,
4684		.enable_reg = A_PM_RX_INT_ENABLE,
4685		.fatal = 0x1fffffff,
4686		.flags = NONFATAL_IF_DISABLED,
4687		.details = pmrx_intr_details,
4688		.actions = NULL,
4689	};
4690
4691	return (t4_handle_intr(adap, &pmrx_intr_info, 0, verbose));
4692}
4693
4694/*
4695 * CPL switch interrupt handler.
4696 */
4697static bool cplsw_intr_handler(struct adapter *adap, int arg, bool verbose)
4698{
4699	static const struct intr_details cplsw_intr_details[] = {
4700		/* T5+ */
4701		{ F_PERR_CPL_128TO128_1, "CPLSW 128TO128 FIFO1 parity error" },
4702		{ F_PERR_CPL_128TO128_0, "CPLSW 128TO128 FIFO0 parity error" },
4703
4704		/* T4+ */
4705		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error" },
4706		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow" },
4707		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error" },
4708		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error" },
4709		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error" },
4710		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error" },
4711		{ 0 }
4712	};
4713	static const struct intr_info cplsw_intr_info = {
4714		.name = "CPL_INTR_CAUSE",
4715		.cause_reg = A_CPL_INTR_CAUSE,
4716		.enable_reg = A_CPL_INTR_ENABLE,
4717		.fatal = 0xff,
4718		.flags = NONFATAL_IF_DISABLED,
4719		.details = cplsw_intr_details,
4720		.actions = NULL,
4721	};
4722
4723	return (t4_handle_intr(adap, &cplsw_intr_info, 0, verbose));
4724}
4725
4726#define T4_LE_FATAL_MASK (F_PARITYERR | F_UNKNOWNCMD | F_REQQPARERR)
4727#define T5_LE_FATAL_MASK (T4_LE_FATAL_MASK | F_VFPARERR)
4728#define T6_LE_PERRCRC_MASK (F_PIPELINEERR | F_CLIPTCAMACCFAIL | \
4729    F_SRVSRAMACCFAIL | F_CLCAMCRCPARERR | F_CLCAMINTPERR | F_SSRAMINTPERR | \
4730    F_SRVSRAMPERR | F_VFSRAMPERR | F_TCAMINTPERR | F_TCAMCRCERR | \
4731    F_HASHTBLMEMACCERR | F_MAIFWRINTPERR | F_HASHTBLMEMCRCERR)
4732#define T6_LE_FATAL_MASK (T6_LE_PERRCRC_MASK | F_T6_UNKNOWNCMD | \
4733    F_TCAMACCFAIL | F_HASHTBLACCFAIL | F_CMDTIDERR | F_CMDPRSRINTERR | \
4734    F_TOTCNTERR | F_CLCAMFIFOERR | F_CLIPSUBERR)
4735
4736/*
4737 * LE interrupt handler.
4738 */
4739static bool le_intr_handler(struct adapter *adap, int arg, bool verbose)
4740{
4741	static const struct intr_details le_intr_details[] = {
4742		{ F_REQQPARERR, "LE request queue parity error" },
4743		{ F_UNKNOWNCMD, "LE unknown command" },
4744		{ F_ACTRGNFULL, "LE active region full" },
4745		{ F_PARITYERR, "LE parity error" },
4746		{ F_LIPMISS, "LE LIP miss" },
4747		{ F_LIP0, "LE 0 LIP error" },
4748		{ 0 }
4749	};
4750	static const struct intr_details t6_le_intr_details[] = {
4751		{ F_CLIPSUBERR, "LE CLIP CAM reverse substitution error" },
4752		{ F_CLCAMFIFOERR, "LE CLIP CAM internal FIFO error" },
4753		{ F_CTCAMINVLDENT, "Invalid IPv6 CLIP TCAM entry" },
4754		{ F_TCAMINVLDENT, "Invalid IPv6 TCAM entry" },
4755		{ F_TOTCNTERR, "LE total active < TCAM count" },
4756		{ F_CMDPRSRINTERR, "LE internal error in parser" },
4757		{ F_CMDTIDERR, "Incorrect tid in LE command" },
4758		{ F_T6_ACTRGNFULL, "LE active region full" },
4759		{ F_T6_ACTCNTIPV6TZERO, "LE IPv6 active open TCAM counter -ve" },
4760		{ F_T6_ACTCNTIPV4TZERO, "LE IPv4 active open TCAM counter -ve" },
4761		{ F_T6_ACTCNTIPV6ZERO, "LE IPv6 active open counter -ve" },
4762		{ F_T6_ACTCNTIPV4ZERO, "LE IPv4 active open counter -ve" },
4763		{ F_HASHTBLACCFAIL, "Hash table read error (proto conflict)" },
4764		{ F_TCAMACCFAIL, "LE TCAM access failure" },
4765		{ F_T6_UNKNOWNCMD, "LE unknown command" },
4766		{ F_T6_LIP0, "LE found 0 LIP during CLIP substitution" },
4767		{ F_T6_LIPMISS, "LE CLIP lookup miss" },
4768		{ T6_LE_PERRCRC_MASK, "LE parity/CRC error" },
4769		{ 0 }
4770	};
4771	struct intr_info le_intr_info = {
4772		.name = "LE_DB_INT_CAUSE",
4773		.cause_reg = A_LE_DB_INT_CAUSE,
4774		.enable_reg = A_LE_DB_INT_ENABLE,
4775		.fatal = 0,
4776		.flags = NONFATAL_IF_DISABLED,
4777		.details = NULL,
4778		.actions = NULL,
4779	};
4780
4781	if (chip_id(adap) <= CHELSIO_T5) {
4782		le_intr_info.details = le_intr_details;
4783		le_intr_info.fatal = T5_LE_FATAL_MASK;
4784	} else {
4785		le_intr_info.details = t6_le_intr_details;
4786		le_intr_info.fatal = T6_LE_FATAL_MASK;
4787	}
4788
4789	return (t4_handle_intr(adap, &le_intr_info, 0, verbose));
4790}
4791
4792/*
4793 * MPS interrupt handler.
4794 */
4795static bool mps_intr_handler(struct adapter *adap, int arg, bool verbose)
4796{
4797	static const struct intr_details mps_rx_perr_intr_details[] = {
4798		{ 0xffffffff, "MPS Rx parity error" },
4799		{ 0 }
4800	};
4801	static const struct intr_info mps_rx_perr_intr_info = {
4802		.name = "MPS_RX_PERR_INT_CAUSE",
4803		.cause_reg = A_MPS_RX_PERR_INT_CAUSE,
4804		.enable_reg = A_MPS_RX_PERR_INT_ENABLE,
4805		.fatal = 0xffffffff,
4806		.flags = NONFATAL_IF_DISABLED,
4807		.details = mps_rx_perr_intr_details,
4808		.actions = NULL,
4809	};
4810	static const struct intr_details mps_tx_intr_details[] = {
4811		{ F_PORTERR, "MPS Tx destination port is disabled" },
4812		{ F_FRMERR, "MPS Tx framing error" },
4813		{ F_SECNTERR, "MPS Tx SOP/EOP error" },
4814		{ F_BUBBLE, "MPS Tx underflow" },
4815		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error" },
4816		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error" },
4817		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error" },
4818		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error" },
4819		{ 0 }
4820	};
4821	static const struct intr_info mps_tx_intr_info = {
4822		.name = "MPS_TX_INT_CAUSE",
4823		.cause_reg = A_MPS_TX_INT_CAUSE,
4824		.enable_reg = A_MPS_TX_INT_ENABLE,
4825		.fatal = 0x1ffff,
4826		.flags = NONFATAL_IF_DISABLED,
4827		.details = mps_tx_intr_details,
4828		.actions = NULL,
4829	};
4830	static const struct intr_details mps_trc_intr_details[] = {
4831		{ F_MISCPERR, "MPS TRC misc parity error" },
4832		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error" },
4833		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error" },
4834		{ 0 }
4835	};
4836	static const struct intr_info mps_trc_intr_info = {
4837		.name = "MPS_TRC_INT_CAUSE",
4838		.cause_reg = A_MPS_TRC_INT_CAUSE,
4839		.enable_reg = A_MPS_TRC_INT_ENABLE,
4840		.fatal = F_MISCPERR | V_PKTFIFO(M_PKTFIFO) | V_FILTMEM(M_FILTMEM),
4841		.flags = 0,
4842		.details = mps_trc_intr_details,
4843		.actions = NULL,
4844	};
4845	static const struct intr_details mps_stat_sram_intr_details[] = {
4846		{ 0xffffffff, "MPS statistics SRAM parity error" },
4847		{ 0 }
4848	};
4849	static const struct intr_info mps_stat_sram_intr_info = {
4850		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM",
4851		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4852		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM,
4853		.fatal = 0x1fffffff,
4854		.flags = NONFATAL_IF_DISABLED,
4855		.details = mps_stat_sram_intr_details,
4856		.actions = NULL,
4857	};
4858	static const struct intr_details mps_stat_tx_intr_details[] = {
4859		{ 0xffffff, "MPS statistics Tx FIFO parity error" },
4860		{ 0 }
4861	};
4862	static const struct intr_info mps_stat_tx_intr_info = {
4863		.name = "MPS_STAT_PERR_INT_CAUSE_TX_FIFO",
4864		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4865		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_TX_FIFO,
4866		.fatal =  0xffffff,
4867		.flags = NONFATAL_IF_DISABLED,
4868		.details = mps_stat_tx_intr_details,
4869		.actions = NULL,
4870	};
4871	static const struct intr_details mps_stat_rx_intr_details[] = {
4872		{ 0xffffff, "MPS statistics Rx FIFO parity error" },
4873		{ 0 }
4874	};
4875	static const struct intr_info mps_stat_rx_intr_info = {
4876		.name = "MPS_STAT_PERR_INT_CAUSE_RX_FIFO",
4877		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4878		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_RX_FIFO,
4879		.fatal =  0xffffff,
4880		.flags = 0,
4881		.details = mps_stat_rx_intr_details,
4882		.actions = NULL,
4883	};
4884	static const struct intr_details mps_cls_intr_details[] = {
4885		{ F_HASHSRAM, "MPS hash SRAM parity error" },
4886		{ F_MATCHTCAM, "MPS match TCAM parity error" },
4887		{ F_MATCHSRAM, "MPS match SRAM parity error" },
4888		{ 0 }
4889	};
4890	static const struct intr_info mps_cls_intr_info = {
4891		.name = "MPS_CLS_INT_CAUSE",
4892		.cause_reg = A_MPS_CLS_INT_CAUSE,
4893		.enable_reg = A_MPS_CLS_INT_ENABLE,
4894		.fatal =  F_MATCHSRAM | F_MATCHTCAM | F_HASHSRAM,
4895		.flags = 0,
4896		.details = mps_cls_intr_details,
4897		.actions = NULL,
4898	};
4899	static const struct intr_details mps_stat_sram1_intr_details[] = {
4900		{ 0xff, "MPS statistics SRAM1 parity error" },
4901		{ 0 }
4902	};
4903	static const struct intr_info mps_stat_sram1_intr_info = {
4904		.name = "MPS_STAT_PERR_INT_CAUSE_SRAM1",
4905		.cause_reg = A_MPS_STAT_PERR_INT_CAUSE_SRAM1,
4906		.enable_reg = A_MPS_STAT_PERR_INT_ENABLE_SRAM1,
4907		.fatal = 0xff,
4908		.flags = 0,
4909		.details = mps_stat_sram1_intr_details,
4910		.actions = NULL,
4911	};
4912
4913	bool fatal;
4914
4915	fatal = false;
4916	fatal |= t4_handle_intr(adap, &mps_rx_perr_intr_info, 0, verbose);
4917	fatal |= t4_handle_intr(adap, &mps_tx_intr_info, 0, verbose);
4918	fatal |= t4_handle_intr(adap, &mps_trc_intr_info, 0, verbose);
4919	fatal |= t4_handle_intr(adap, &mps_stat_sram_intr_info, 0, verbose);
4920	fatal |= t4_handle_intr(adap, &mps_stat_tx_intr_info, 0, verbose);
4921	fatal |= t4_handle_intr(adap, &mps_stat_rx_intr_info, 0, verbose);
4922	fatal |= t4_handle_intr(adap, &mps_cls_intr_info, 0, verbose);
4923	if (chip_id(adap) > CHELSIO_T4) {
4924		fatal |= t4_handle_intr(adap, &mps_stat_sram1_intr_info, 0,
4925		    verbose);
4926	}
4927
4928	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
4929	t4_read_reg(adap, A_MPS_INT_CAUSE);	/* flush */
4930
4931	return (fatal);
4932
4933}
4934
4935/*
4936 * EDC/MC interrupt handler.
4937 */
4938static bool mem_intr_handler(struct adapter *adap, int idx, bool verbose)
4939{
4940	static const char name[4][5] = { "EDC0", "EDC1", "MC0", "MC1" };
4941	unsigned int count_reg, v;
4942	static const struct intr_details mem_intr_details[] = {
4943		{ F_ECC_UE_INT_CAUSE, "Uncorrectable ECC data error(s)" },
4944		{ F_ECC_CE_INT_CAUSE, "Correctable ECC data error(s)" },
4945		{ F_PERR_INT_CAUSE, "FIFO parity error" },
4946		{ 0 }
4947	};
4948	struct intr_info ii = {
4949		.fatal = F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE,
4950		.details = mem_intr_details,
4951		.flags = 0,
4952		.actions = NULL,
4953	};
4954	bool fatal;
4955
4956	switch (idx) {
4957	case MEM_EDC0:
4958		ii.name = "EDC0_INT_CAUSE";
4959		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 0);
4960		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 0);
4961		count_reg = EDC_REG(A_EDC_ECC_STATUS, 0);
4962		break;
4963	case MEM_EDC1:
4964		ii.name = "EDC1_INT_CAUSE";
4965		ii.cause_reg = EDC_REG(A_EDC_INT_CAUSE, 1);
4966		ii.enable_reg = EDC_REG(A_EDC_INT_ENABLE, 1);
4967		count_reg = EDC_REG(A_EDC_ECC_STATUS, 1);
4968		break;
4969	case MEM_MC0:
4970		ii.name = "MC0_INT_CAUSE";
4971		if (is_t4(adap)) {
4972			ii.cause_reg = A_MC_INT_CAUSE;
4973			ii.enable_reg = A_MC_INT_ENABLE;
4974			count_reg = A_MC_ECC_STATUS;
4975		} else {
4976			ii.cause_reg = A_MC_P_INT_CAUSE;
4977			ii.enable_reg = A_MC_P_INT_ENABLE;
4978			count_reg = A_MC_P_ECC_STATUS;
4979		}
4980		break;
4981	case MEM_MC1:
4982		ii.name = "MC1_INT_CAUSE";
4983		ii.cause_reg = MC_REG(A_MC_P_INT_CAUSE, 1);
4984		ii.enable_reg = MC_REG(A_MC_P_INT_ENABLE, 1);
4985		count_reg = MC_REG(A_MC_P_ECC_STATUS, 1);
4986		break;
4987	}
4988
4989	fatal = t4_handle_intr(adap, &ii, 0, verbose);
4990
4991	v = t4_read_reg(adap, count_reg);
4992	if (v != 0) {
4993		if (G_ECC_UECNT(v) != 0) {
4994			CH_ALERT(adap,
4995			    "%s: %u uncorrectable ECC data error(s)\n",
4996			    name[idx], G_ECC_UECNT(v));
4997		}
4998		if (G_ECC_CECNT(v) != 0) {
4999			if (idx <= MEM_EDC1)
5000				t4_edc_err_read(adap, idx);
5001			CH_WARN_RATELIMIT(adap,
5002			    "%s: %u correctable ECC data error(s)\n",
5003			    name[idx], G_ECC_CECNT(v));
5004		}
5005		t4_write_reg(adap, count_reg, 0xffffffff);
5006	}
5007
5008	return (fatal);
5009}
5010
5011static bool ma_wrap_status(struct adapter *adap, int arg, bool verbose)
5012{
5013	u32 v;
5014
5015	v = t4_read_reg(adap, A_MA_INT_WRAP_STATUS);
5016	CH_ALERT(adap,
5017	    "MA address wrap-around error by client %u to address %#x\n",
5018	    G_MEM_WRAP_CLIENT_NUM(v), G_MEM_WRAP_ADDRESS(v) << 4);
5019	t4_write_reg(adap, A_MA_INT_WRAP_STATUS, v);
5020
5021	return (false);
5022}
5023
5024
5025/*
5026 * MA interrupt handler.
5027 */
5028static bool ma_intr_handler(struct adapter *adap, int arg, bool verbose)
5029{
5030	static const struct intr_action ma_intr_actions[] = {
5031		{ F_MEM_WRAP_INT_CAUSE, 0, ma_wrap_status },
5032		{ 0 },
5033	};
5034	static const struct intr_info ma_intr_info = {
5035		.name = "MA_INT_CAUSE",
5036		.cause_reg = A_MA_INT_CAUSE,
5037		.enable_reg = A_MA_INT_ENABLE,
5038		.fatal = F_MEM_PERR_INT_CAUSE | F_MEM_TO_INT_CAUSE,
5039		.flags = NONFATAL_IF_DISABLED,
5040		.details = NULL,
5041		.actions = ma_intr_actions,
5042	};
5043	static const struct intr_info ma_perr_status1 = {
5044		.name = "MA_PARITY_ERROR_STATUS1",
5045		.cause_reg = A_MA_PARITY_ERROR_STATUS1,
5046		.enable_reg = A_MA_PARITY_ERROR_ENABLE1,
5047		.fatal = 0xffffffff,
5048		.flags = 0,
5049		.details = NULL,
5050		.actions = NULL,
5051	};
5052	static const struct intr_info ma_perr_status2 = {
5053		.name = "MA_PARITY_ERROR_STATUS2",
5054		.cause_reg = A_MA_PARITY_ERROR_STATUS2,
5055		.enable_reg = A_MA_PARITY_ERROR_ENABLE2,
5056		.fatal = 0xffffffff,
5057		.flags = 0,
5058		.details = NULL,
5059		.actions = NULL,
5060	};
5061	bool fatal;
5062
5063	fatal = false;
5064	fatal |= t4_handle_intr(adap, &ma_intr_info, 0, verbose);
5065	fatal |= t4_handle_intr(adap, &ma_perr_status1, 0, verbose);
5066	if (chip_id(adap) > CHELSIO_T4)
5067		fatal |= t4_handle_intr(adap, &ma_perr_status2, 0, verbose);
5068
5069	return (fatal);
5070}
5071
5072/*
5073 * SMB interrupt handler.
5074 */
5075static bool smb_intr_handler(struct adapter *adap, int arg, bool verbose)
5076{
5077	static const struct intr_details smb_intr_details[] = {
5078		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error" },
5079		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error" },
5080		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error" },
5081		{ 0 }
5082	};
5083	static const struct intr_info smb_intr_info = {
5084		.name = "SMB_INT_CAUSE",
5085		.cause_reg = A_SMB_INT_CAUSE,
5086		.enable_reg = A_SMB_INT_ENABLE,
5087		.fatal = F_SLVFIFOPARINT | F_MSTRXFIFOPARINT | F_MSTTXFIFOPARINT,
5088		.flags = 0,
5089		.details = smb_intr_details,
5090		.actions = NULL,
5091	};
5092
5093	return (t4_handle_intr(adap, &smb_intr_info, 0, verbose));
5094}
5095
5096/*
5097 * NC-SI interrupt handler.
5098 */
5099static bool ncsi_intr_handler(struct adapter *adap, int arg, bool verbose)
5100{
5101	static const struct intr_details ncsi_intr_details[] = {
5102		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error" },
5103		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error" },
5104		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error" },
5105		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error" },
5106		{ 0 }
5107	};
5108	static const struct intr_info ncsi_intr_info = {
5109		.name = "NCSI_INT_CAUSE",
5110		.cause_reg = A_NCSI_INT_CAUSE,
5111		.enable_reg = A_NCSI_INT_ENABLE,
5112		.fatal = F_RXFIFO_PRTY_ERR | F_TXFIFO_PRTY_ERR |
5113		    F_MPS_DM_PRTY_ERR | F_CIM_DM_PRTY_ERR,
5114		.flags = 0,
5115		.details = ncsi_intr_details,
5116		.actions = NULL,
5117	};
5118
5119	return (t4_handle_intr(adap, &ncsi_intr_info, 0, verbose));
5120}
5121
5122/*
5123 * MAC interrupt handler.
5124 */
5125static bool mac_intr_handler(struct adapter *adap, int port, bool verbose)
5126{
5127	static const struct intr_details mac_intr_details[] = {
5128		{ F_TXFIFO_PRTY_ERR, "MAC Tx FIFO parity error" },
5129		{ F_RXFIFO_PRTY_ERR, "MAC Rx FIFO parity error" },
5130		{ 0 }
5131	};
5132	char name[32];
5133	struct intr_info ii;
5134	bool fatal = false;
5135
5136	if (is_t4(adap)) {
5137		snprintf(name, sizeof(name), "XGMAC_PORT%u_INT_CAUSE", port);
5138		ii.name = &name[0];
5139		ii.cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
5140		ii.enable_reg = PORT_REG(port, A_XGMAC_PORT_INT_EN);
5141		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5142		ii.flags = 0;
5143		ii.details = mac_intr_details;
5144		ii.actions = NULL;
5145	} else {
5146		snprintf(name, sizeof(name), "MAC_PORT%u_INT_CAUSE", port);
5147		ii.name = &name[0];
5148		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
5149		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_INT_EN);
5150		ii.fatal = F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR;
5151		ii.flags = 0;
5152		ii.details = mac_intr_details;
5153		ii.actions = NULL;
5154	}
5155	fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5156
5157	if (chip_id(adap) >= CHELSIO_T5) {
5158		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE", port);
5159		ii.name = &name[0];
5160		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE);
5161		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN);
5162		ii.fatal = 0;
5163		ii.flags = 0;
5164		ii.details = NULL;
5165		ii.actions = NULL;
5166		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5167	}
5168
5169	if (chip_id(adap) >= CHELSIO_T6) {
5170		snprintf(name, sizeof(name), "MAC_PORT%u_PERR_INT_CAUSE_100G", port);
5171		ii.name = &name[0];
5172		ii.cause_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_CAUSE_100G);
5173		ii.enable_reg = T5_PORT_REG(port, A_MAC_PORT_PERR_INT_EN_100G);
5174		ii.fatal = 0;
5175		ii.flags = 0;
5176		ii.details = NULL;
5177		ii.actions = NULL;
5178		fatal |= t4_handle_intr(adap, &ii, 0, verbose);
5179	}
5180
5181	return (fatal);
5182}
5183
5184static bool plpl_intr_handler(struct adapter *adap, int arg, bool verbose)
5185{
5186	static const struct intr_details plpl_intr_details[] = {
5187		{ F_FATALPERR, "Fatal parity error" },
5188		{ F_PERRVFID, "VFID_MAP parity error" },
5189		{ 0 }
5190	};
5191	static const struct intr_info plpl_intr_info = {
5192		.name = "PL_PL_INT_CAUSE",
5193		.cause_reg = A_PL_PL_INT_CAUSE,
5194		.enable_reg = A_PL_PL_INT_ENABLE,
5195		.fatal = F_FATALPERR | F_PERRVFID,
5196		.flags = NONFATAL_IF_DISABLED,
5197		.details = plpl_intr_details,
5198		.actions = NULL,
5199	};
5200
5201	return (t4_handle_intr(adap, &plpl_intr_info, 0, verbose));
5202}
5203
5204/**
5205 *	t4_slow_intr_handler - control path interrupt handler
5206 *	@adap: the adapter
5207 *	@verbose: increased verbosity, for debug
5208 *
5209 *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
5210 *	The designation 'slow' is because it involves register reads, while
5211 *	data interrupts typically don't involve any MMIOs.
5212 */
5213int t4_slow_intr_handler(struct adapter *adap, bool verbose)
5214{
5215	static const struct intr_details pl_intr_details[] = {
5216		{ F_MC1, "MC1" },
5217		{ F_UART, "UART" },
5218		{ F_ULP_TX, "ULP TX" },
5219		{ F_SGE, "SGE" },
5220		{ F_HMA, "HMA" },
5221		{ F_CPL_SWITCH, "CPL Switch" },
5222		{ F_ULP_RX, "ULP RX" },
5223		{ F_PM_RX, "PM RX" },
5224		{ F_PM_TX, "PM TX" },
5225		{ F_MA, "MA" },
5226		{ F_TP, "TP" },
5227		{ F_LE, "LE" },
5228		{ F_EDC1, "EDC1" },
5229		{ F_EDC0, "EDC0" },
5230		{ F_MC, "MC0" },
5231		{ F_PCIE, "PCIE" },
5232		{ F_PMU, "PMU" },
5233		{ F_MAC3, "MAC3" },
5234		{ F_MAC2, "MAC2" },
5235		{ F_MAC1, "MAC1" },
5236		{ F_MAC0, "MAC0" },
5237		{ F_SMB, "SMB" },
5238		{ F_SF, "SF" },
5239		{ F_PL, "PL" },
5240		{ F_NCSI, "NC-SI" },
5241		{ F_MPS, "MPS" },
5242		{ F_MI, "MI" },
5243		{ F_DBG, "DBG" },
5244		{ F_I2CM, "I2CM" },
5245		{ F_CIM, "CIM" },
5246		{ 0 }
5247	};
5248	static const struct intr_info pl_perr_cause = {
5249		.name = "PL_PERR_CAUSE",
5250		.cause_reg = A_PL_PERR_CAUSE,
5251		.enable_reg = A_PL_PERR_ENABLE,
5252		.fatal = 0xffffffff,
5253		.flags = 0,
5254		.details = pl_intr_details,
5255		.actions = NULL,
5256	};
5257	static const struct intr_action pl_intr_action[] = {
5258		{ F_MC1, MEM_MC1, mem_intr_handler },
5259		{ F_ULP_TX, -1, ulptx_intr_handler },
5260		{ F_SGE, -1, sge_intr_handler },
5261		{ F_CPL_SWITCH, -1, cplsw_intr_handler },
5262		{ F_ULP_RX, -1, ulprx_intr_handler },
5263		{ F_PM_RX, -1, pmrx_intr_handler},
5264		{ F_PM_TX, -1, pmtx_intr_handler},
5265		{ F_MA, -1, ma_intr_handler },
5266		{ F_TP, -1, tp_intr_handler },
5267		{ F_LE, -1, le_intr_handler },
5268		{ F_EDC1, MEM_EDC1, mem_intr_handler },
5269		{ F_EDC0, MEM_EDC0, mem_intr_handler },
5270		{ F_MC0, MEM_MC0, mem_intr_handler },
5271		{ F_PCIE, -1, pcie_intr_handler },
5272		{ F_MAC3, 3, mac_intr_handler},
5273		{ F_MAC2, 2, mac_intr_handler},
5274		{ F_MAC1, 1, mac_intr_handler},
5275		{ F_MAC0, 0, mac_intr_handler},
5276		{ F_SMB, -1, smb_intr_handler},
5277		{ F_PL, -1, plpl_intr_handler },
5278		{ F_NCSI, -1, ncsi_intr_handler},
5279		{ F_MPS, -1, mps_intr_handler },
5280		{ F_CIM, -1, cim_intr_handler },
5281		{ 0 }
5282	};
5283	static const struct intr_info pl_intr_info = {
5284		.name = "PL_INT_CAUSE",
5285		.cause_reg = A_PL_INT_CAUSE,
5286		.enable_reg = A_PL_INT_ENABLE,
5287		.fatal = 0,
5288		.flags = 0,
5289		.details = pl_intr_details,
5290		.actions = pl_intr_action,
5291	};
5292	bool fatal;
5293	u32 perr;
5294
5295	perr = t4_read_reg(adap, pl_perr_cause.cause_reg);
5296	if (verbose || perr != 0) {
5297		t4_show_intr_info(adap, &pl_perr_cause, perr);
5298		if (perr != 0)
5299			t4_write_reg(adap, pl_perr_cause.cause_reg, perr);
5300		if (verbose)
5301			perr |= t4_read_reg(adap, pl_intr_info.enable_reg);
5302	}
5303	fatal = t4_handle_intr(adap, &pl_intr_info, perr, verbose);
5304	if (fatal)
5305		t4_fatal_err(adap, false);
5306
5307	return (0);
5308}
5309
5310#define PF_INTR_MASK (F_PFSW | F_PFCIM)
5311
5312/**
5313 *	t4_intr_enable - enable interrupts
5314 *	@adapter: the adapter whose interrupts should be enabled
5315 *
5316 *	Enable PF-specific interrupts for the calling function and the top-level
5317 *	interrupt concentrator for global interrupts.  Interrupts are already
5318 *	enabled at each module,	here we just enable the roots of the interrupt
5319 *	hierarchies.
5320 *
5321 *	Note: this function should be called only when the driver manages
5322 *	non PF-specific interrupts from the various HW modules.  Only one PCI
5323 *	function at a time should be doing this.
5324 */
5325void t4_intr_enable(struct adapter *adap)
5326{
5327	u32 val = 0;
5328
5329	if (chip_id(adap) <= CHELSIO_T5)
5330		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
5331	else
5332		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
5333	val |= F_ERR_CPL_EXCEED_IQE_SIZE | F_ERR_INVALID_CIDX_INC |
5334	    F_ERR_CPL_OPCODE_0 | F_ERR_DATA_CPL_ON_HIGH_QID1 |
5335	    F_INGRESS_SIZE_ERR | F_ERR_DATA_CPL_ON_HIGH_QID0 |
5336	    F_ERR_BAD_DB_PIDX3 | F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
5337	    F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO | F_DBFIFO_LP_INT |
5338	    F_EGRESS_SIZE_ERR;
5339	t4_set_reg_field(adap, A_SGE_INT_ENABLE3, val, val);
5340	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
5341	t4_set_reg_field(adap, A_PL_INT_ENABLE, F_SF | F_I2CM, 0);
5342	t4_set_reg_field(adap, A_PL_INT_MAP0, 0, 1 << adap->pf);
5343}
5344
5345/**
5346 *	t4_intr_disable - disable interrupts
5347 *	@adap: the adapter whose interrupts should be disabled
5348 *
5349 *	Disable interrupts.  We only disable the top-level interrupt
5350 *	concentrators.  The caller must be a PCI function managing global
5351 *	interrupts.
5352 */
5353void t4_intr_disable(struct adapter *adap)
5354{
5355
5356	t4_write_reg(adap, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
5357	t4_set_reg_field(adap, A_PL_INT_MAP0, 1 << adap->pf, 0);
5358}
5359
5360/**
5361 *	t4_intr_clear - clear all interrupts
5362 *	@adap: the adapter whose interrupts should be cleared
5363 *
5364 *	Clears all interrupts.  The caller must be a PCI function managing
5365 *	global interrupts.
5366 */
5367void t4_intr_clear(struct adapter *adap)
5368{
5369	static const u32 cause_reg[] = {
5370		A_CIM_HOST_INT_CAUSE,
5371		A_CIM_HOST_UPACC_INT_CAUSE,
5372		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
5373		A_CPL_INTR_CAUSE,
5374		EDC_REG(A_EDC_INT_CAUSE, 0), EDC_REG(A_EDC_INT_CAUSE, 1),
5375		A_LE_DB_INT_CAUSE,
5376		A_MA_INT_WRAP_STATUS,
5377		A_MA_PARITY_ERROR_STATUS1,
5378		A_MA_INT_CAUSE,
5379		A_MPS_CLS_INT_CAUSE,
5380		A_MPS_RX_PERR_INT_CAUSE,
5381		A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
5382		A_MPS_STAT_PERR_INT_CAUSE_SRAM,
5383		A_MPS_TRC_INT_CAUSE,
5384		A_MPS_TX_INT_CAUSE,
5385		A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
5386		A_NCSI_INT_CAUSE,
5387		A_PCIE_INT_CAUSE,
5388		A_PCIE_NONFAT_ERR,
5389		A_PL_PL_INT_CAUSE,
5390		A_PM_RX_INT_CAUSE,
5391		A_PM_TX_INT_CAUSE,
5392		A_SGE_INT_CAUSE1,
5393		A_SGE_INT_CAUSE2,
5394		A_SGE_INT_CAUSE3,
5395		A_SGE_INT_CAUSE4,
5396		A_SMB_INT_CAUSE,
5397		A_TP_INT_CAUSE,
5398		A_ULP_RX_INT_CAUSE,
5399		A_ULP_RX_INT_CAUSE_2,
5400		A_ULP_TX_INT_CAUSE,
5401		A_ULP_TX_INT_CAUSE_2,
5402
5403		MYPF_REG(A_PL_PF_INT_CAUSE),
5404	};
5405	int i;
5406	const int nchan = adap->chip_params->nchan;
5407
5408	for (i = 0; i < ARRAY_SIZE(cause_reg); i++)
5409		t4_write_reg(adap, cause_reg[i], 0xffffffff);
5410
5411	if (is_t4(adap)) {
5412		t4_write_reg(adap, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
5413		    0xffffffff);
5414		t4_write_reg(adap, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
5415		    0xffffffff);
5416		t4_write_reg(adap, A_MC_INT_CAUSE, 0xffffffff);
5417		for (i = 0; i < nchan; i++) {
5418			t4_write_reg(adap, PORT_REG(i, A_XGMAC_PORT_INT_CAUSE),
5419			    0xffffffff);
5420		}
5421	}
5422	if (chip_id(adap) >= CHELSIO_T5) {
5423		t4_write_reg(adap, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
5424		t4_write_reg(adap, A_MPS_STAT_PERR_INT_CAUSE_SRAM1, 0xffffffff);
5425		t4_write_reg(adap, A_SGE_INT_CAUSE5, 0xffffffff);
5426		t4_write_reg(adap, A_MC_P_INT_CAUSE, 0xffffffff);
5427		if (is_t5(adap)) {
5428			t4_write_reg(adap, MC_REG(A_MC_P_INT_CAUSE, 1),
5429			    0xffffffff);
5430		}
5431		for (i = 0; i < nchan; i++) {
5432			t4_write_reg(adap, T5_PORT_REG(i,
5433			    A_MAC_PORT_PERR_INT_CAUSE), 0xffffffff);
5434			if (chip_id(adap) > CHELSIO_T5) {
5435				t4_write_reg(adap, T5_PORT_REG(i,
5436				    A_MAC_PORT_PERR_INT_CAUSE_100G),
5437				    0xffffffff);
5438			}
5439			t4_write_reg(adap, T5_PORT_REG(i, A_MAC_PORT_INT_CAUSE),
5440			    0xffffffff);
5441		}
5442	}
5443	if (chip_id(adap) >= CHELSIO_T6) {
5444		t4_write_reg(adap, A_SGE_INT_CAUSE6, 0xffffffff);
5445	}
5446
5447	t4_write_reg(adap, A_MPS_INT_CAUSE, is_t4(adap) ? 0 : 0xffffffff);
5448	t4_write_reg(adap, A_PL_PERR_CAUSE, 0xffffffff);
5449	t4_write_reg(adap, A_PL_INT_CAUSE, 0xffffffff);
5450	(void) t4_read_reg(adap, A_PL_INT_CAUSE);          /* flush */
5451}
5452
5453/**
5454 *	hash_mac_addr - return the hash value of a MAC address
5455 *	@addr: the 48-bit Ethernet MAC address
5456 *
5457 *	Hashes a MAC address according to the hash function used by HW inexact
5458 *	(hash) address matching.
5459 */
5460static int hash_mac_addr(const u8 *addr)
5461{
5462	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
5463	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
5464	a ^= b;
5465	a ^= (a >> 12);
5466	a ^= (a >> 6);
5467	return a & 0x3f;
5468}
5469
5470/**
5471 *	t4_config_rss_range - configure a portion of the RSS mapping table
5472 *	@adapter: the adapter
5473 *	@mbox: mbox to use for the FW command
5474 *	@viid: virtual interface whose RSS subtable is to be written
5475 *	@start: start entry in the table to write
5476 *	@n: how many table entries to write
5477 *	@rspq: values for the "response queue" (Ingress Queue) lookup table
5478 *	@nrspq: number of values in @rspq
5479 *
5480 *	Programs the selected part of the VI's RSS mapping table with the
5481 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
5482 *	until the full table range is populated.
5483 *
5484 *	The caller must ensure the values in @rspq are in the range allowed for
5485 *	@viid.
5486 */
5487int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
5488			int start, int n, const u16 *rspq, unsigned int nrspq)
5489{
5490	int ret;
5491	const u16 *rsp = rspq;
5492	const u16 *rsp_end = rspq + nrspq;
5493	struct fw_rss_ind_tbl_cmd cmd;
5494
5495	memset(&cmd, 0, sizeof(cmd));
5496	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
5497				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5498				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
5499	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
5500
5501	/*
5502	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
5503	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
5504	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
5505	 * reserved.
5506	 */
5507	while (n > 0) {
5508		int nq = min(n, 32);
5509		int nq_packed = 0;
5510		__be32 *qp = &cmd.iq0_to_iq2;
5511
5512		/*
5513		 * Set up the firmware RSS command header to send the next
5514		 * "nq" Ingress Queue IDs to the firmware.
5515		 */
5516		cmd.niqid = cpu_to_be16(nq);
5517		cmd.startidx = cpu_to_be16(start);
5518
5519		/*
5520		 * "nq" more done for the start of the next loop.
5521		 */
5522		start += nq;
5523		n -= nq;
5524
5525		/*
5526		 * While there are still Ingress Queue IDs to stuff into the
5527		 * current firmware RSS command, retrieve them from the
5528		 * Ingress Queue ID array and insert them into the command.
5529		 */
5530		while (nq > 0) {
5531			/*
5532			 * Grab up to the next 3 Ingress Queue IDs (wrapping
5533			 * around the Ingress Queue ID array if necessary) and
5534			 * insert them into the firmware RSS command at the
5535			 * current 3-tuple position within the commad.
5536			 */
5537			u16 qbuf[3];
5538			u16 *qbp = qbuf;
5539			int nqbuf = min(3, nq);
5540
5541			nq -= nqbuf;
5542			qbuf[0] = qbuf[1] = qbuf[2] = 0;
5543			while (nqbuf && nq_packed < 32) {
5544				nqbuf--;
5545				nq_packed++;
5546				*qbp++ = *rsp++;
5547				if (rsp >= rsp_end)
5548					rsp = rspq;
5549			}
5550			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
5551					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
5552					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
5553		}
5554
5555		/*
5556		 * Send this portion of the RRS table update to the firmware;
5557		 * bail out on any errors.
5558		 */
5559		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
5560		if (ret)
5561			return ret;
5562	}
5563	return 0;
5564}
5565
5566/**
5567 *	t4_config_glbl_rss - configure the global RSS mode
5568 *	@adapter: the adapter
5569 *	@mbox: mbox to use for the FW command
5570 *	@mode: global RSS mode
5571 *	@flags: mode-specific flags
5572 *
5573 *	Sets the global RSS mode.
5574 */
5575int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
5576		       unsigned int flags)
5577{
5578	struct fw_rss_glb_config_cmd c;
5579
5580	memset(&c, 0, sizeof(c));
5581	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
5582				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
5583	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5584	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
5585		c.u.manual.mode_pkd =
5586			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5587	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
5588		c.u.basicvirtual.mode_keymode =
5589			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
5590		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
5591	} else
5592		return -EINVAL;
5593	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5594}
5595
5596/**
5597 *	t4_config_vi_rss - configure per VI RSS settings
5598 *	@adapter: the adapter
5599 *	@mbox: mbox to use for the FW command
5600 *	@viid: the VI id
5601 *	@flags: RSS flags
5602 *	@defq: id of the default RSS queue for the VI.
5603 *	@skeyidx: RSS secret key table index for non-global mode
5604 *	@skey: RSS vf_scramble key for VI.
5605 *
5606 *	Configures VI-specific RSS properties.
5607 */
5608int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
5609		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
5610		     unsigned int skey)
5611{
5612	struct fw_rss_vi_config_cmd c;
5613
5614	memset(&c, 0, sizeof(c));
5615	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
5616				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
5617				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
5618	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
5619	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
5620					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
5621	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
5622					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
5623	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
5624
5625	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
5626}
5627
5628/* Read an RSS table row */
5629static int rd_rss_row(struct adapter *adap, int row, u32 *val)
5630{
5631	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
5632	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
5633				   5, 0, val);
5634}
5635
5636/**
5637 *	t4_read_rss - read the contents of the RSS mapping table
5638 *	@adapter: the adapter
5639 *	@map: holds the contents of the RSS mapping table
5640 *
5641 *	Reads the contents of the RSS hash->queue mapping table.
5642 */
5643int t4_read_rss(struct adapter *adapter, u16 *map)
5644{
5645	u32 val;
5646	int i, ret;
5647
5648	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
5649		ret = rd_rss_row(adapter, i, &val);
5650		if (ret)
5651			return ret;
5652		*map++ = G_LKPTBLQUEUE0(val);
5653		*map++ = G_LKPTBLQUEUE1(val);
5654	}
5655	return 0;
5656}
5657
5658/**
5659 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
5660 * @adap: the adapter
5661 * @cmd: TP fw ldst address space type
5662 * @vals: where the indirect register values are stored/written
5663 * @nregs: how many indirect registers to read/write
5664 * @start_idx: index of first indirect register to read/write
5665 * @rw: Read (1) or Write (0)
5666 * @sleep_ok: if true we may sleep while awaiting command completion
5667 *
5668 * Access TP indirect registers through LDST
5669 **/
5670static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
5671			    unsigned int nregs, unsigned int start_index,
5672			    unsigned int rw, bool sleep_ok)
5673{
5674	int ret = 0;
5675	unsigned int i;
5676	struct fw_ldst_cmd c;
5677
5678	for (i = 0; i < nregs; i++) {
5679		memset(&c, 0, sizeof(c));
5680		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
5681						F_FW_CMD_REQUEST |
5682						(rw ? F_FW_CMD_READ :
5683						      F_FW_CMD_WRITE) |
5684						V_FW_LDST_CMD_ADDRSPACE(cmd));
5685		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5686
5687		c.u.addrval.addr = cpu_to_be32(start_index + i);
5688		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
5689		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
5690				      sleep_ok);
5691		if (ret)
5692			return ret;
5693
5694		if (rw)
5695			vals[i] = be32_to_cpu(c.u.addrval.val);
5696	}
5697	return 0;
5698}
5699
5700/**
5701 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
5702 * @adap: the adapter
5703 * @reg_addr: Address Register
5704 * @reg_data: Data register
5705 * @buff: where the indirect register values are stored/written
5706 * @nregs: how many indirect registers to read/write
5707 * @start_index: index of first indirect register to read/write
5708 * @rw: READ(1) or WRITE(0)
5709 * @sleep_ok: if true we may sleep while awaiting command completion
5710 *
5711 * Read/Write TP indirect registers through LDST if possible.
5712 * Else, use backdoor access
5713 **/
5714static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
5715			      u32 *buff, u32 nregs, u32 start_index, int rw,
5716			      bool sleep_ok)
5717{
5718	int rc = -EINVAL;
5719	int cmd;
5720
5721	switch (reg_addr) {
5722	case A_TP_PIO_ADDR:
5723		cmd = FW_LDST_ADDRSPC_TP_PIO;
5724		break;
5725	case A_TP_TM_PIO_ADDR:
5726		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
5727		break;
5728	case A_TP_MIB_INDEX:
5729		cmd = FW_LDST_ADDRSPC_TP_MIB;
5730		break;
5731	default:
5732		goto indirect_access;
5733	}
5734
5735	if (t4_use_ldst(adap))
5736		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
5737				      sleep_ok);
5738
5739indirect_access:
5740
5741	if (rc) {
5742		if (rw)
5743			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
5744					 start_index);
5745		else
5746			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
5747					  start_index);
5748	}
5749}
5750
5751/**
5752 * t4_tp_pio_read - Read TP PIO registers
5753 * @adap: the adapter
5754 * @buff: where the indirect register values are written
5755 * @nregs: how many indirect registers to read
5756 * @start_index: index of first indirect register to read
5757 * @sleep_ok: if true we may sleep while awaiting command completion
5758 *
5759 * Read TP PIO Registers
5760 **/
5761void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5762		    u32 start_index, bool sleep_ok)
5763{
5764	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
5765			  start_index, 1, sleep_ok);
5766}
5767
5768/**
5769 * t4_tp_pio_write - Write TP PIO registers
5770 * @adap: the adapter
5771 * @buff: where the indirect register values are stored
5772 * @nregs: how many indirect registers to write
5773 * @start_index: index of first indirect register to write
5774 * @sleep_ok: if true we may sleep while awaiting command completion
5775 *
5776 * Write TP PIO Registers
5777 **/
5778void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5779		     u32 start_index, bool sleep_ok)
5780{
5781	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5782	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5783}
5784
5785/**
5786 * t4_tp_tm_pio_read - Read TP TM PIO registers
5787 * @adap: the adapter
5788 * @buff: where the indirect register values are written
5789 * @nregs: how many indirect registers to read
5790 * @start_index: index of first indirect register to read
5791 * @sleep_ok: if true we may sleep while awaiting command completion
5792 *
5793 * Read TP TM PIO Registers
5794 **/
5795void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5796		       u32 start_index, bool sleep_ok)
5797{
5798	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5799			  nregs, start_index, 1, sleep_ok);
5800}
5801
5802/**
5803 * t4_tp_mib_read - Read TP MIB registers
5804 * @adap: the adapter
5805 * @buff: where the indirect register values are written
5806 * @nregs: how many indirect registers to read
5807 * @start_index: index of first indirect register to read
5808 * @sleep_ok: if true we may sleep while awaiting command completion
5809 *
5810 * Read TP MIB Registers
5811 **/
5812void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5813		    bool sleep_ok)
5814{
5815	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5816			  start_index, 1, sleep_ok);
5817}
5818
5819/**
5820 *	t4_read_rss_key - read the global RSS key
5821 *	@adap: the adapter
5822 *	@key: 10-entry array holding the 320-bit RSS key
5823 * 	@sleep_ok: if true we may sleep while awaiting command completion
5824 *
5825 *	Reads the global 320-bit RSS key.
5826 */
5827void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5828{
5829	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5830}
5831
5832/**
5833 *	t4_write_rss_key - program one of the RSS keys
5834 *	@adap: the adapter
5835 *	@key: 10-entry array holding the 320-bit RSS key
5836 *	@idx: which RSS key to write
5837 * 	@sleep_ok: if true we may sleep while awaiting command completion
5838 *
5839 *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5840 *	0..15 the corresponding entry in the RSS key table is written,
5841 *	otherwise the global RSS key is written.
5842 */
5843void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5844		      bool sleep_ok)
5845{
5846	u8 rss_key_addr_cnt = 16;
5847	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5848
5849	/*
5850	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5851	 * allows access to key addresses 16-63 by using KeyWrAddrX
5852	 * as index[5:4](upper 2) into key table
5853	 */
5854	if ((chip_id(adap) > CHELSIO_T5) &&
5855	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5856		rss_key_addr_cnt = 32;
5857
5858	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5859
5860	if (idx >= 0 && idx < rss_key_addr_cnt) {
5861		if (rss_key_addr_cnt > 16)
5862			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5863				     vrt | V_KEYWRADDRX(idx >> 4) |
5864				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5865		else
5866			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5867				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5868	}
5869}
5870
5871/**
5872 *	t4_read_rss_pf_config - read PF RSS Configuration Table
5873 *	@adapter: the adapter
5874 *	@index: the entry in the PF RSS table to read
5875 *	@valp: where to store the returned value
5876 * 	@sleep_ok: if true we may sleep while awaiting command completion
5877 *
5878 *	Reads the PF RSS Configuration Table at the specified index and returns
5879 *	the value found there.
5880 */
5881void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5882			   u32 *valp, bool sleep_ok)
5883{
5884	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5885}
5886
5887/**
5888 *	t4_write_rss_pf_config - write PF RSS Configuration Table
5889 *	@adapter: the adapter
5890 *	@index: the entry in the VF RSS table to read
5891 *	@val: the value to store
5892 * 	@sleep_ok: if true we may sleep while awaiting command completion
5893 *
5894 *	Writes the PF RSS Configuration Table at the specified index with the
5895 *	specified value.
5896 */
5897void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5898			    u32 val, bool sleep_ok)
5899{
5900	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5901			sleep_ok);
5902}
5903
5904/**
5905 *	t4_read_rss_vf_config - read VF RSS Configuration Table
5906 *	@adapter: the adapter
5907 *	@index: the entry in the VF RSS table to read
5908 *	@vfl: where to store the returned VFL
5909 *	@vfh: where to store the returned VFH
5910 * 	@sleep_ok: if true we may sleep while awaiting command completion
5911 *
5912 *	Reads the VF RSS Configuration Table at the specified index and returns
5913 *	the (VFL, VFH) values found there.
5914 */
5915void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5916			   u32 *vfl, u32 *vfh, bool sleep_ok)
5917{
5918	u32 vrt, mask, data;
5919
5920	if (chip_id(adapter) <= CHELSIO_T5) {
5921		mask = V_VFWRADDR(M_VFWRADDR);
5922		data = V_VFWRADDR(index);
5923	} else {
5924		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5925		 data = V_T6_VFWRADDR(index);
5926	}
5927	/*
5928	 * Request that the index'th VF Table values be read into VFL/VFH.
5929	 */
5930	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5931	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5932	vrt |= data | F_VFRDEN;
5933	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5934
5935	/*
5936	 * Grab the VFL/VFH values ...
5937	 */
5938	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5939	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5940}
5941
5942/**
5943 *	t4_write_rss_vf_config - write VF RSS Configuration Table
5944 *
5945 *	@adapter: the adapter
5946 *	@index: the entry in the VF RSS table to write
5947 *	@vfl: the VFL to store
5948 *	@vfh: the VFH to store
5949 *
5950 *	Writes the VF RSS Configuration Table at the specified index with the
5951 *	specified (VFL, VFH) values.
5952 */
5953void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5954			    u32 vfl, u32 vfh, bool sleep_ok)
5955{
5956	u32 vrt, mask, data;
5957
5958	if (chip_id(adapter) <= CHELSIO_T5) {
5959		mask = V_VFWRADDR(M_VFWRADDR);
5960		data = V_VFWRADDR(index);
5961	} else {
5962		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5963		data = V_T6_VFWRADDR(index);
5964	}
5965
5966	/*
5967	 * Load up VFL/VFH with the values to be written ...
5968	 */
5969	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5970	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5971
5972	/*
5973	 * Write the VFL/VFH into the VF Table at index'th location.
5974	 */
5975	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5976	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5977	vrt |= data | F_VFRDEN;
5978	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5979}
5980
5981/**
5982 *	t4_read_rss_pf_map - read PF RSS Map
5983 *	@adapter: the adapter
5984 * 	@sleep_ok: if true we may sleep while awaiting command completion
5985 *
5986 *	Reads the PF RSS Map register and returns its value.
5987 */
5988u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5989{
5990	u32 pfmap;
5991
5992	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5993
5994	return pfmap;
5995}
5996
5997/**
5998 *	t4_write_rss_pf_map - write PF RSS Map
5999 *	@adapter: the adapter
6000 *	@pfmap: PF RSS Map value
6001 *
6002 *	Writes the specified value to the PF RSS Map register.
6003 */
6004void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
6005{
6006	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
6007}
6008
6009/**
6010 *	t4_read_rss_pf_mask - read PF RSS Mask
6011 *	@adapter: the adapter
6012 * 	@sleep_ok: if true we may sleep while awaiting command completion
6013 *
6014 *	Reads the PF RSS Mask register and returns its value.
6015 */
6016u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
6017{
6018	u32 pfmask;
6019
6020	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6021
6022	return pfmask;
6023}
6024
6025/**
6026 *	t4_write_rss_pf_mask - write PF RSS Mask
6027 *	@adapter: the adapter
6028 *	@pfmask: PF RSS Mask value
6029 *
6030 *	Writes the specified value to the PF RSS Mask register.
6031 */
6032void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
6033{
6034	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
6035}
6036
6037/**
6038 *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
6039 *	@adap: the adapter
6040 *	@v4: holds the TCP/IP counter values
6041 *	@v6: holds the TCP/IPv6 counter values
6042 * 	@sleep_ok: if true we may sleep while awaiting command completion
6043 *
6044 *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
6045 *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
6046 */
6047void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
6048			 struct tp_tcp_stats *v6, bool sleep_ok)
6049{
6050	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
6051
6052#define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
6053#define STAT(x)     val[STAT_IDX(x)]
6054#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
6055
6056	if (v4) {
6057		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6058			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
6059		v4->tcp_out_rsts = STAT(OUT_RST);
6060		v4->tcp_in_segs  = STAT64(IN_SEG);
6061		v4->tcp_out_segs = STAT64(OUT_SEG);
6062		v4->tcp_retrans_segs = STAT64(RXT_SEG);
6063	}
6064	if (v6) {
6065		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
6066			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
6067		v6->tcp_out_rsts = STAT(OUT_RST);
6068		v6->tcp_in_segs  = STAT64(IN_SEG);
6069		v6->tcp_out_segs = STAT64(OUT_SEG);
6070		v6->tcp_retrans_segs = STAT64(RXT_SEG);
6071	}
6072#undef STAT64
6073#undef STAT
6074#undef STAT_IDX
6075}
6076
6077/**
6078 *	t4_tp_get_err_stats - read TP's error MIB counters
6079 *	@adap: the adapter
6080 *	@st: holds the counter values
6081 * 	@sleep_ok: if true we may sleep while awaiting command completion
6082 *
6083 *	Returns the values of TP's error counters.
6084 */
6085void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
6086			 bool sleep_ok)
6087{
6088	int nchan = adap->chip_params->nchan;
6089
6090	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
6091		       sleep_ok);
6092
6093	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
6094		       sleep_ok);
6095
6096	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
6097		       sleep_ok);
6098
6099	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
6100		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
6101
6102	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
6103		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
6104
6105	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
6106		       sleep_ok);
6107
6108	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
6109		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
6110
6111	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
6112		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
6113
6114	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
6115		       sleep_ok);
6116}
6117
6118/**
6119 *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
6120 *	@adap: the adapter
6121 *	@st: holds the counter values
6122 *
6123 *	Returns the values of TP's proxy counters.
6124 */
6125void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
6126    bool sleep_ok)
6127{
6128	int nchan = adap->chip_params->nchan;
6129
6130	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
6131}
6132
6133/**
6134 *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
6135 *	@adap: the adapter
6136 *	@st: holds the counter values
6137 * 	@sleep_ok: if true we may sleep while awaiting command completion
6138 *
6139 *	Returns the values of TP's CPL counters.
6140 */
6141void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
6142			 bool sleep_ok)
6143{
6144	int nchan = adap->chip_params->nchan;
6145
6146	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
6147
6148	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
6149}
6150
6151/**
6152 *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
6153 *	@adap: the adapter
6154 *	@st: holds the counter values
6155 *
6156 *	Returns the values of TP's RDMA counters.
6157 */
6158void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
6159			  bool sleep_ok)
6160{
6161	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
6162		       sleep_ok);
6163}
6164
6165/**
6166 *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
6167 *	@adap: the adapter
6168 *	@idx: the port index
6169 *	@st: holds the counter values
6170 * 	@sleep_ok: if true we may sleep while awaiting command completion
6171 *
6172 *	Returns the values of TP's FCoE counters for the selected port.
6173 */
6174void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
6175		       struct tp_fcoe_stats *st, bool sleep_ok)
6176{
6177	u32 val[2];
6178
6179	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
6180		       sleep_ok);
6181
6182	t4_tp_mib_read(adap, &st->frames_drop, 1,
6183		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
6184
6185	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
6186		       sleep_ok);
6187
6188	st->octets_ddp = ((u64)val[0] << 32) | val[1];
6189}
6190
6191/**
6192 *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
6193 *	@adap: the adapter
6194 *	@st: holds the counter values
6195 * 	@sleep_ok: if true we may sleep while awaiting command completion
6196 *
6197 *	Returns the values of TP's counters for non-TCP directly-placed packets.
6198 */
6199void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
6200		      bool sleep_ok)
6201{
6202	u32 val[4];
6203
6204	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
6205
6206	st->frames = val[0];
6207	st->drops = val[1];
6208	st->octets = ((u64)val[2] << 32) | val[3];
6209}
6210
6211/**
6212 *	t4_read_mtu_tbl - returns the values in the HW path MTU table
6213 *	@adap: the adapter
6214 *	@mtus: where to store the MTU values
6215 *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
6216 *
6217 *	Reads the HW path MTU table.
6218 */
6219void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
6220{
6221	u32 v;
6222	int i;
6223
6224	for (i = 0; i < NMTUS; ++i) {
6225		t4_write_reg(adap, A_TP_MTU_TABLE,
6226			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
6227		v = t4_read_reg(adap, A_TP_MTU_TABLE);
6228		mtus[i] = G_MTUVALUE(v);
6229		if (mtu_log)
6230			mtu_log[i] = G_MTUWIDTH(v);
6231	}
6232}
6233
6234/**
6235 *	t4_read_cong_tbl - reads the congestion control table
6236 *	@adap: the adapter
6237 *	@incr: where to store the alpha values
6238 *
6239 *	Reads the additive increments programmed into the HW congestion
6240 *	control table.
6241 */
6242void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
6243{
6244	unsigned int mtu, w;
6245
6246	for (mtu = 0; mtu < NMTUS; ++mtu)
6247		for (w = 0; w < NCCTRL_WIN; ++w) {
6248			t4_write_reg(adap, A_TP_CCTRL_TABLE,
6249				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
6250			incr[mtu][w] = (u16)t4_read_reg(adap,
6251						A_TP_CCTRL_TABLE) & 0x1fff;
6252		}
6253}
6254
6255/**
6256 *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
6257 *	@adap: the adapter
6258 *	@addr: the indirect TP register address
6259 *	@mask: specifies the field within the register to modify
6260 *	@val: new value for the field
6261 *
6262 *	Sets a field of an indirect TP register to the given value.
6263 */
6264void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
6265			    unsigned int mask, unsigned int val)
6266{
6267	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
6268	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
6269	t4_write_reg(adap, A_TP_PIO_DATA, val);
6270}
6271
6272/**
6273 *	init_cong_ctrl - initialize congestion control parameters
6274 *	@a: the alpha values for congestion control
6275 *	@b: the beta values for congestion control
6276 *
6277 *	Initialize the congestion control parameters.
6278 */
6279static void init_cong_ctrl(unsigned short *a, unsigned short *b)
6280{
6281	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
6282	a[9] = 2;
6283	a[10] = 3;
6284	a[11] = 4;
6285	a[12] = 5;
6286	a[13] = 6;
6287	a[14] = 7;
6288	a[15] = 8;
6289	a[16] = 9;
6290	a[17] = 10;
6291	a[18] = 14;
6292	a[19] = 17;
6293	a[20] = 21;
6294	a[21] = 25;
6295	a[22] = 30;
6296	a[23] = 35;
6297	a[24] = 45;
6298	a[25] = 60;
6299	a[26] = 80;
6300	a[27] = 100;
6301	a[28] = 200;
6302	a[29] = 300;
6303	a[30] = 400;
6304	a[31] = 500;
6305
6306	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
6307	b[9] = b[10] = 1;
6308	b[11] = b[12] = 2;
6309	b[13] = b[14] = b[15] = b[16] = 3;
6310	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
6311	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
6312	b[28] = b[29] = 6;
6313	b[30] = b[31] = 7;
6314}
6315
6316/* The minimum additive increment value for the congestion control table */
6317#define CC_MIN_INCR 2U
6318
6319/**
6320 *	t4_load_mtus - write the MTU and congestion control HW tables
6321 *	@adap: the adapter
6322 *	@mtus: the values for the MTU table
6323 *	@alpha: the values for the congestion control alpha parameter
6324 *	@beta: the values for the congestion control beta parameter
6325 *
6326 *	Write the HW MTU table with the supplied MTUs and the high-speed
6327 *	congestion control table with the supplied alpha, beta, and MTUs.
6328 *	We write the two tables together because the additive increments
6329 *	depend on the MTUs.
6330 */
6331void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
6332		  const unsigned short *alpha, const unsigned short *beta)
6333{
6334	static const unsigned int avg_pkts[NCCTRL_WIN] = {
6335		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
6336		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
6337		28672, 40960, 57344, 81920, 114688, 163840, 229376
6338	};
6339
6340	unsigned int i, w;
6341
6342	for (i = 0; i < NMTUS; ++i) {
6343		unsigned int mtu = mtus[i];
6344		unsigned int log2 = fls(mtu);
6345
6346		if (!(mtu & ((1 << log2) >> 2)))     /* round */
6347			log2--;
6348		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
6349			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
6350
6351		for (w = 0; w < NCCTRL_WIN; ++w) {
6352			unsigned int inc;
6353
6354			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
6355				  CC_MIN_INCR);
6356
6357			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
6358				     (w << 16) | (beta[w] << 13) | inc);
6359		}
6360	}
6361}
6362
6363/**
6364 *	t4_set_pace_tbl - set the pace table
6365 *	@adap: the adapter
6366 *	@pace_vals: the pace values in microseconds
6367 *	@start: index of the first entry in the HW pace table to set
6368 *	@n: how many entries to set
6369 *
6370 *	Sets (a subset of the) HW pace table.
6371 */
6372int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
6373		     unsigned int start, unsigned int n)
6374{
6375	unsigned int vals[NTX_SCHED], i;
6376	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
6377
6378	if (n > NTX_SCHED)
6379	    return -ERANGE;
6380
6381	/* convert values from us to dack ticks, rounding to closest value */
6382	for (i = 0; i < n; i++, pace_vals++) {
6383		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
6384		if (vals[i] > 0x7ff)
6385			return -ERANGE;
6386		if (*pace_vals && vals[i] == 0)
6387			return -ERANGE;
6388	}
6389	for (i = 0; i < n; i++, start++)
6390		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
6391	return 0;
6392}
6393
6394/**
6395 *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
6396 *	@adap: the adapter
6397 *	@kbps: target rate in Kbps
6398 *	@sched: the scheduler index
6399 *
6400 *	Configure a Tx HW scheduler for the target rate.
6401 */
6402int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
6403{
6404	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
6405	unsigned int clk = adap->params.vpd.cclk * 1000;
6406	unsigned int selected_cpt = 0, selected_bpt = 0;
6407
6408	if (kbps > 0) {
6409		kbps *= 125;     /* -> bytes */
6410		for (cpt = 1; cpt <= 255; cpt++) {
6411			tps = clk / cpt;
6412			bpt = (kbps + tps / 2) / tps;
6413			if (bpt > 0 && bpt <= 255) {
6414				v = bpt * tps;
6415				delta = v >= kbps ? v - kbps : kbps - v;
6416				if (delta < mindelta) {
6417					mindelta = delta;
6418					selected_cpt = cpt;
6419					selected_bpt = bpt;
6420				}
6421			} else if (selected_cpt)
6422				break;
6423		}
6424		if (!selected_cpt)
6425			return -EINVAL;
6426	}
6427	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
6428		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
6429	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6430	if (sched & 1)
6431		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
6432	else
6433		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
6434	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6435	return 0;
6436}
6437
6438/**
6439 *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
6440 *	@adap: the adapter
6441 *	@sched: the scheduler index
6442 *	@ipg: the interpacket delay in tenths of nanoseconds
6443 *
6444 *	Set the interpacket delay for a HW packet rate scheduler.
6445 */
6446int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
6447{
6448	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
6449
6450	/* convert ipg to nearest number of core clocks */
6451	ipg *= core_ticks_per_usec(adap);
6452	ipg = (ipg + 5000) / 10000;
6453	if (ipg > M_TXTIMERSEPQ0)
6454		return -EINVAL;
6455
6456	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
6457	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
6458	if (sched & 1)
6459		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
6460	else
6461		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
6462	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
6463	t4_read_reg(adap, A_TP_TM_PIO_DATA);
6464	return 0;
6465}
6466
6467/*
6468 * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
6469 * clocks.  The formula is
6470 *
6471 * bytes/s = bytes256 * 256 * ClkFreq / 4096
6472 *
6473 * which is equivalent to
6474 *
6475 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
6476 */
6477static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
6478{
6479	u64 v = (u64)bytes256 * adap->params.vpd.cclk;
6480
6481	return v * 62 + v / 2;
6482}
6483
6484/**
6485 *	t4_get_chan_txrate - get the current per channel Tx rates
6486 *	@adap: the adapter
6487 *	@nic_rate: rates for NIC traffic
6488 *	@ofld_rate: rates for offloaded traffic
6489 *
6490 *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
6491 *	for each channel.
6492 */
6493void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
6494{
6495	u32 v;
6496
6497	v = t4_read_reg(adap, A_TP_TX_TRATE);
6498	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
6499	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
6500	if (adap->chip_params->nchan > 2) {
6501		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
6502		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
6503	}
6504
6505	v = t4_read_reg(adap, A_TP_TX_ORATE);
6506	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
6507	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
6508	if (adap->chip_params->nchan > 2) {
6509		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
6510		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
6511	}
6512}
6513
6514/**
6515 *	t4_set_trace_filter - configure one of the tracing filters
6516 *	@adap: the adapter
6517 *	@tp: the desired trace filter parameters
6518 *	@idx: which filter to configure
6519 *	@enable: whether to enable or disable the filter
6520 *
6521 *	Configures one of the tracing filters available in HW.  If @tp is %NULL
6522 *	it indicates that the filter is already written in the register and it
6523 *	just needs to be enabled or disabled.
6524 */
6525int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
6526    int idx, int enable)
6527{
6528	int i, ofst = idx * 4;
6529	u32 data_reg, mask_reg, cfg;
6530	u32 multitrc = F_TRCMULTIFILTER;
6531	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
6532
6533	if (idx < 0 || idx >= NTRACE)
6534		return -EINVAL;
6535
6536	if (tp == NULL || !enable) {
6537		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
6538		    enable ? en : 0);
6539		return 0;
6540	}
6541
6542	/*
6543	 * TODO - After T4 data book is updated, specify the exact
6544	 * section below.
6545	 *
6546	 * See T4 data book - MPS section for a complete description
6547	 * of the below if..else handling of A_MPS_TRC_CFG register
6548	 * value.
6549	 */
6550	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
6551	if (cfg & F_TRCMULTIFILTER) {
6552		/*
6553		 * If multiple tracers are enabled, then maximum
6554		 * capture size is 2.5KB (FIFO size of a single channel)
6555		 * minus 2 flits for CPL_TRACE_PKT header.
6556		 */
6557		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
6558			return -EINVAL;
6559	} else {
6560		/*
6561		 * If multiple tracers are disabled, to avoid deadlocks
6562		 * maximum packet capture size of 9600 bytes is recommended.
6563		 * Also in this mode, only trace0 can be enabled and running.
6564		 */
6565		multitrc = 0;
6566		if (tp->snap_len > 9600 || idx)
6567			return -EINVAL;
6568	}
6569
6570	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
6571	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
6572	    tp->min_len > M_TFMINPKTSIZE)
6573		return -EINVAL;
6574
6575	/* stop the tracer we'll be changing */
6576	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
6577
6578	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
6579	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
6580	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
6581
6582	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6583		t4_write_reg(adap, data_reg, tp->data[i]);
6584		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
6585	}
6586	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
6587		     V_TFCAPTUREMAX(tp->snap_len) |
6588		     V_TFMINPKTSIZE(tp->min_len));
6589	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
6590		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
6591		     (is_t4(adap) ?
6592		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
6593		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
6594
6595	return 0;
6596}
6597
6598/**
6599 *	t4_get_trace_filter - query one of the tracing filters
6600 *	@adap: the adapter
6601 *	@tp: the current trace filter parameters
6602 *	@idx: which trace filter to query
6603 *	@enabled: non-zero if the filter is enabled
6604 *
6605 *	Returns the current settings of one of the HW tracing filters.
6606 */
6607void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
6608			 int *enabled)
6609{
6610	u32 ctla, ctlb;
6611	int i, ofst = idx * 4;
6612	u32 data_reg, mask_reg;
6613
6614	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
6615	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
6616
6617	if (is_t4(adap)) {
6618		*enabled = !!(ctla & F_TFEN);
6619		tp->port =  G_TFPORT(ctla);
6620		tp->invert = !!(ctla & F_TFINVERTMATCH);
6621	} else {
6622		*enabled = !!(ctla & F_T5_TFEN);
6623		tp->port = G_T5_TFPORT(ctla);
6624		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
6625	}
6626	tp->snap_len = G_TFCAPTUREMAX(ctlb);
6627	tp->min_len = G_TFMINPKTSIZE(ctlb);
6628	tp->skip_ofst = G_TFOFFSET(ctla);
6629	tp->skip_len = G_TFLENGTH(ctla);
6630
6631	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
6632	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
6633	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
6634
6635	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
6636		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
6637		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
6638	}
6639}
6640
6641/**
6642 *	t4_pmtx_get_stats - returns the HW stats from PMTX
6643 *	@adap: the adapter
6644 *	@cnt: where to store the count statistics
6645 *	@cycles: where to store the cycle statistics
6646 *
6647 *	Returns performance statistics from PMTX.
6648 */
6649void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6650{
6651	int i;
6652	u32 data[2];
6653
6654	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6655		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
6656		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
6657		if (is_t4(adap))
6658			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
6659		else {
6660			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
6661					 A_PM_TX_DBG_DATA, data, 2,
6662					 A_PM_TX_DBG_STAT_MSB);
6663			cycles[i] = (((u64)data[0] << 32) | data[1]);
6664		}
6665	}
6666}
6667
6668/**
6669 *	t4_pmrx_get_stats - returns the HW stats from PMRX
6670 *	@adap: the adapter
6671 *	@cnt: where to store the count statistics
6672 *	@cycles: where to store the cycle statistics
6673 *
6674 *	Returns performance statistics from PMRX.
6675 */
6676void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
6677{
6678	int i;
6679	u32 data[2];
6680
6681	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
6682		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
6683		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
6684		if (is_t4(adap)) {
6685			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
6686		} else {
6687			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
6688					 A_PM_RX_DBG_DATA, data, 2,
6689					 A_PM_RX_DBG_STAT_MSB);
6690			cycles[i] = (((u64)data[0] << 32) | data[1]);
6691		}
6692	}
6693}
6694
6695/**
6696 *	t4_get_mps_bg_map - return the buffer groups associated with a port
6697 *	@adap: the adapter
6698 *	@idx: the port index
6699 *
6700 *	Returns a bitmap indicating which MPS buffer groups are associated
6701 *	with the given port.  Bit i is set if buffer group i is used by the
6702 *	port.
6703 */
6704static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
6705{
6706	u32 n;
6707
6708	if (adap->params.mps_bg_map)
6709		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
6710
6711	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6712	if (n == 0)
6713		return idx == 0 ? 0xf : 0;
6714	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6715		return idx < 2 ? (3 << (2 * idx)) : 0;
6716	return 1 << idx;
6717}
6718
6719/*
6720 * TP RX e-channels associated with the port.
6721 */
6722static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
6723{
6724	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
6725
6726	if (n == 0)
6727		return idx == 0 ? 0xf : 0;
6728	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
6729		return idx < 2 ? (3 << (2 * idx)) : 0;
6730	return 1 << idx;
6731}
6732
6733/**
6734 *      t4_get_port_type_description - return Port Type string description
6735 *      @port_type: firmware Port Type enumeration
6736 */
6737const char *t4_get_port_type_description(enum fw_port_type port_type)
6738{
6739	static const char *const port_type_description[] = {
6740		"Fiber_XFI",
6741		"Fiber_XAUI",
6742		"BT_SGMII",
6743		"BT_XFI",
6744		"BT_XAUI",
6745		"KX4",
6746		"CX4",
6747		"KX",
6748		"KR",
6749		"SFP",
6750		"BP_AP",
6751		"BP4_AP",
6752		"QSFP_10G",
6753		"QSA",
6754		"QSFP",
6755		"BP40_BA",
6756		"KR4_100G",
6757		"CR4_QSFP",
6758		"CR_QSFP",
6759		"CR2_QSFP",
6760		"SFP28",
6761		"KR_SFP28",
6762	};
6763
6764	if (port_type < ARRAY_SIZE(port_type_description))
6765		return port_type_description[port_type];
6766	return "UNKNOWN";
6767}
6768
6769/**
6770 *      t4_get_port_stats_offset - collect port stats relative to a previous
6771 *				   snapshot
6772 *      @adap: The adapter
6773 *      @idx: The port
6774 *      @stats: Current stats to fill
6775 *      @offset: Previous stats snapshot
6776 */
6777void t4_get_port_stats_offset(struct adapter *adap, int idx,
6778		struct port_stats *stats,
6779		struct port_stats *offset)
6780{
6781	u64 *s, *o;
6782	int i;
6783
6784	t4_get_port_stats(adap, idx, stats);
6785	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6786			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6787			i++, s++, o++)
6788		*s -= *o;
6789}
6790
6791/**
6792 *	t4_get_port_stats - collect port statistics
6793 *	@adap: the adapter
6794 *	@idx: the port index
6795 *	@p: the stats structure to fill
6796 *
6797 *	Collect statistics related to the given port from HW.
6798 */
6799void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6800{
6801	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6802	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6803
6804#define GET_STAT(name) \
6805	t4_read_reg64(adap, \
6806	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6807	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6808#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6809
6810	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6811	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6812	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6813	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6814	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6815	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6816	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6817	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6818	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6819	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6820	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6821	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6822	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6823	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6824	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6825	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6826	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6827	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6828	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6829	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6830	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6831	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6832	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6833
6834	if (chip_id(adap) >= CHELSIO_T5) {
6835		if (stat_ctl & F_COUNTPAUSESTATTX) {
6836			p->tx_frames -= p->tx_pause;
6837			p->tx_octets -= p->tx_pause * 64;
6838		}
6839		if (stat_ctl & F_COUNTPAUSEMCTX)
6840			p->tx_mcast_frames -= p->tx_pause;
6841	}
6842
6843	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6844	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6845	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6846	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6847	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6848	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6849	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6850	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6851	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
6852	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6853	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6854	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6855	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6856	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6857	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6858	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6859	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6860	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6861	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6862	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6863	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6864	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6865	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6866	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6867	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6868	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6869	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6870
6871	if (chip_id(adap) >= CHELSIO_T5) {
6872		if (stat_ctl & F_COUNTPAUSESTATRX) {
6873			p->rx_frames -= p->rx_pause;
6874			p->rx_octets -= p->rx_pause * 64;
6875		}
6876		if (stat_ctl & F_COUNTPAUSEMCRX)
6877			p->rx_mcast_frames -= p->rx_pause;
6878	}
6879
6880	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6881	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6882	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6883	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6884	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6885	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6886	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6887	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6888
6889#undef GET_STAT
6890#undef GET_STAT_COM
6891}
6892
6893/**
6894 *	t4_get_lb_stats - collect loopback port statistics
6895 *	@adap: the adapter
6896 *	@idx: the loopback port index
6897 *	@p: the stats structure to fill
6898 *
6899 *	Return HW statistics for the given loopback port.
6900 */
6901void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6902{
6903	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6904
6905#define GET_STAT(name) \
6906	t4_read_reg64(adap, \
6907	(is_t4(adap) ? \
6908	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6909	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6910#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6911
6912	p->octets	= GET_STAT(BYTES);
6913	p->frames	= GET_STAT(FRAMES);
6914	p->bcast_frames	= GET_STAT(BCAST);
6915	p->mcast_frames	= GET_STAT(MCAST);
6916	p->ucast_frames	= GET_STAT(UCAST);
6917	p->error_frames	= GET_STAT(ERROR);
6918
6919	p->frames_64		= GET_STAT(64B);
6920	p->frames_65_127	= GET_STAT(65B_127B);
6921	p->frames_128_255	= GET_STAT(128B_255B);
6922	p->frames_256_511	= GET_STAT(256B_511B);
6923	p->frames_512_1023	= GET_STAT(512B_1023B);
6924	p->frames_1024_1518	= GET_STAT(1024B_1518B);
6925	p->frames_1519_max	= GET_STAT(1519B_MAX);
6926	p->drop			= GET_STAT(DROP_FRAMES);
6927
6928	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6929	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6930	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6931	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6932	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6933	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6934	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6935	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6936
6937#undef GET_STAT
6938#undef GET_STAT_COM
6939}
6940
6941/**
6942 *	t4_wol_magic_enable - enable/disable magic packet WoL
6943 *	@adap: the adapter
6944 *	@port: the physical port index
6945 *	@addr: MAC address expected in magic packets, %NULL to disable
6946 *
6947 *	Enables/disables magic packet wake-on-LAN for the selected port.
6948 */
6949void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6950			 const u8 *addr)
6951{
6952	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6953
6954	if (is_t4(adap)) {
6955		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6956		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6957		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6958	} else {
6959		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6960		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6961		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6962	}
6963
6964	if (addr) {
6965		t4_write_reg(adap, mag_id_reg_l,
6966			     (addr[2] << 24) | (addr[3] << 16) |
6967			     (addr[4] << 8) | addr[5]);
6968		t4_write_reg(adap, mag_id_reg_h,
6969			     (addr[0] << 8) | addr[1]);
6970	}
6971	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6972			 V_MAGICEN(addr != NULL));
6973}
6974
6975/**
6976 *	t4_wol_pat_enable - enable/disable pattern-based WoL
6977 *	@adap: the adapter
6978 *	@port: the physical port index
6979 *	@map: bitmap of which HW pattern filters to set
6980 *	@mask0: byte mask for bytes 0-63 of a packet
6981 *	@mask1: byte mask for bytes 64-127 of a packet
6982 *	@crc: Ethernet CRC for selected bytes
6983 *	@enable: enable/disable switch
6984 *
6985 *	Sets the pattern filters indicated in @map to mask out the bytes
6986 *	specified in @mask0/@mask1 in received packets and compare the CRC of
6987 *	the resulting packet against @crc.  If @enable is %true pattern-based
6988 *	WoL is enabled, otherwise disabled.
6989 */
6990int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6991		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6992{
6993	int i;
6994	u32 port_cfg_reg;
6995
6996	if (is_t4(adap))
6997		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6998	else
6999		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
7000
7001	if (!enable) {
7002		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
7003		return 0;
7004	}
7005	if (map > 0xff)
7006		return -EINVAL;
7007
7008#define EPIO_REG(name) \
7009	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
7010	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
7011
7012	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
7013	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
7014	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
7015
7016	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
7017		if (!(map & 1))
7018			continue;
7019
7020		/* write byte masks */
7021		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
7022		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
7023		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7024		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7025			return -ETIMEDOUT;
7026
7027		/* write CRC */
7028		t4_write_reg(adap, EPIO_REG(DATA0), crc);
7029		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
7030		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
7031		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
7032			return -ETIMEDOUT;
7033	}
7034#undef EPIO_REG
7035
7036	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
7037	return 0;
7038}
7039
7040/*     t4_mk_filtdelwr - create a delete filter WR
7041 *     @ftid: the filter ID
7042 *     @wr: the filter work request to populate
7043 *     @qid: ingress queue to receive the delete notification
7044 *
7045 *     Creates a filter work request to delete the supplied filter.  If @qid is
7046 *     negative the delete notification is suppressed.
7047 */
7048void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
7049{
7050	memset(wr, 0, sizeof(*wr));
7051	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
7052	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
7053	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
7054				    V_FW_FILTER_WR_NOREPLY(qid < 0));
7055	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
7056	if (qid >= 0)
7057		wr->rx_chan_rx_rpl_iq =
7058				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
7059}
7060
7061#define INIT_CMD(var, cmd, rd_wr) do { \
7062	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
7063					F_FW_CMD_REQUEST | \
7064					F_FW_CMD_##rd_wr); \
7065	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
7066} while (0)
7067
7068int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
7069			  u32 addr, u32 val)
7070{
7071	u32 ldst_addrspace;
7072	struct fw_ldst_cmd c;
7073
7074	memset(&c, 0, sizeof(c));
7075	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
7076	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7077					F_FW_CMD_REQUEST |
7078					F_FW_CMD_WRITE |
7079					ldst_addrspace);
7080	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7081	c.u.addrval.addr = cpu_to_be32(addr);
7082	c.u.addrval.val = cpu_to_be32(val);
7083
7084	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7085}
7086
7087/**
7088 *	t4_mdio_rd - read a PHY register through MDIO
7089 *	@adap: the adapter
7090 *	@mbox: mailbox to use for the FW command
7091 *	@phy_addr: the PHY address
7092 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7093 *	@reg: the register to read
7094 *	@valp: where to store the value
7095 *
7096 *	Issues a FW command through the given mailbox to read a PHY register.
7097 */
7098int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7099	       unsigned int mmd, unsigned int reg, unsigned int *valp)
7100{
7101	int ret;
7102	u32 ldst_addrspace;
7103	struct fw_ldst_cmd c;
7104
7105	memset(&c, 0, sizeof(c));
7106	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7107	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7108					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7109					ldst_addrspace);
7110	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7111	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7112					 V_FW_LDST_CMD_MMD(mmd));
7113	c.u.mdio.raddr = cpu_to_be16(reg);
7114
7115	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7116	if (ret == 0)
7117		*valp = be16_to_cpu(c.u.mdio.rval);
7118	return ret;
7119}
7120
7121/**
7122 *	t4_mdio_wr - write a PHY register through MDIO
7123 *	@adap: the adapter
7124 *	@mbox: mailbox to use for the FW command
7125 *	@phy_addr: the PHY address
7126 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
7127 *	@reg: the register to write
7128 *	@valp: value to write
7129 *
7130 *	Issues a FW command through the given mailbox to write a PHY register.
7131 */
7132int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
7133	       unsigned int mmd, unsigned int reg, unsigned int val)
7134{
7135	u32 ldst_addrspace;
7136	struct fw_ldst_cmd c;
7137
7138	memset(&c, 0, sizeof(c));
7139	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
7140	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7141					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7142					ldst_addrspace);
7143	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7144	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
7145					 V_FW_LDST_CMD_MMD(mmd));
7146	c.u.mdio.raddr = cpu_to_be16(reg);
7147	c.u.mdio.rval = cpu_to_be16(val);
7148
7149	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7150}
7151
7152/**
7153 *
7154 *	t4_sge_decode_idma_state - decode the idma state
7155 *	@adap: the adapter
7156 *	@state: the state idma is stuck in
7157 */
7158void t4_sge_decode_idma_state(struct adapter *adapter, int state)
7159{
7160	static const char * const t4_decode[] = {
7161		"IDMA_IDLE",
7162		"IDMA_PUSH_MORE_CPL_FIFO",
7163		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7164		"Not used",
7165		"IDMA_PHYSADDR_SEND_PCIEHDR",
7166		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7167		"IDMA_PHYSADDR_SEND_PAYLOAD",
7168		"IDMA_SEND_FIFO_TO_IMSG",
7169		"IDMA_FL_REQ_DATA_FL_PREP",
7170		"IDMA_FL_REQ_DATA_FL",
7171		"IDMA_FL_DROP",
7172		"IDMA_FL_H_REQ_HEADER_FL",
7173		"IDMA_FL_H_SEND_PCIEHDR",
7174		"IDMA_FL_H_PUSH_CPL_FIFO",
7175		"IDMA_FL_H_SEND_CPL",
7176		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7177		"IDMA_FL_H_SEND_IP_HDR",
7178		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7179		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7180		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7181		"IDMA_FL_D_SEND_PCIEHDR",
7182		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7183		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7184		"IDMA_FL_SEND_PCIEHDR",
7185		"IDMA_FL_PUSH_CPL_FIFO",
7186		"IDMA_FL_SEND_CPL",
7187		"IDMA_FL_SEND_PAYLOAD_FIRST",
7188		"IDMA_FL_SEND_PAYLOAD",
7189		"IDMA_FL_REQ_NEXT_DATA_FL",
7190		"IDMA_FL_SEND_NEXT_PCIEHDR",
7191		"IDMA_FL_SEND_PADDING",
7192		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7193		"IDMA_FL_SEND_FIFO_TO_IMSG",
7194		"IDMA_FL_REQ_DATAFL_DONE",
7195		"IDMA_FL_REQ_HEADERFL_DONE",
7196	};
7197	static const char * const t5_decode[] = {
7198		"IDMA_IDLE",
7199		"IDMA_ALMOST_IDLE",
7200		"IDMA_PUSH_MORE_CPL_FIFO",
7201		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7202		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7203		"IDMA_PHYSADDR_SEND_PCIEHDR",
7204		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7205		"IDMA_PHYSADDR_SEND_PAYLOAD",
7206		"IDMA_SEND_FIFO_TO_IMSG",
7207		"IDMA_FL_REQ_DATA_FL",
7208		"IDMA_FL_DROP",
7209		"IDMA_FL_DROP_SEND_INC",
7210		"IDMA_FL_H_REQ_HEADER_FL",
7211		"IDMA_FL_H_SEND_PCIEHDR",
7212		"IDMA_FL_H_PUSH_CPL_FIFO",
7213		"IDMA_FL_H_SEND_CPL",
7214		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7215		"IDMA_FL_H_SEND_IP_HDR",
7216		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7217		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7218		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7219		"IDMA_FL_D_SEND_PCIEHDR",
7220		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7221		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7222		"IDMA_FL_SEND_PCIEHDR",
7223		"IDMA_FL_PUSH_CPL_FIFO",
7224		"IDMA_FL_SEND_CPL",
7225		"IDMA_FL_SEND_PAYLOAD_FIRST",
7226		"IDMA_FL_SEND_PAYLOAD",
7227		"IDMA_FL_REQ_NEXT_DATA_FL",
7228		"IDMA_FL_SEND_NEXT_PCIEHDR",
7229		"IDMA_FL_SEND_PADDING",
7230		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7231	};
7232	static const char * const t6_decode[] = {
7233		"IDMA_IDLE",
7234		"IDMA_PUSH_MORE_CPL_FIFO",
7235		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
7236		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
7237		"IDMA_PHYSADDR_SEND_PCIEHDR",
7238		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
7239		"IDMA_PHYSADDR_SEND_PAYLOAD",
7240		"IDMA_FL_REQ_DATA_FL",
7241		"IDMA_FL_DROP",
7242		"IDMA_FL_DROP_SEND_INC",
7243		"IDMA_FL_H_REQ_HEADER_FL",
7244		"IDMA_FL_H_SEND_PCIEHDR",
7245		"IDMA_FL_H_PUSH_CPL_FIFO",
7246		"IDMA_FL_H_SEND_CPL",
7247		"IDMA_FL_H_SEND_IP_HDR_FIRST",
7248		"IDMA_FL_H_SEND_IP_HDR",
7249		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
7250		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
7251		"IDMA_FL_H_SEND_IP_HDR_PADDING",
7252		"IDMA_FL_D_SEND_PCIEHDR",
7253		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
7254		"IDMA_FL_D_REQ_NEXT_DATA_FL",
7255		"IDMA_FL_SEND_PCIEHDR",
7256		"IDMA_FL_PUSH_CPL_FIFO",
7257		"IDMA_FL_SEND_CPL",
7258		"IDMA_FL_SEND_PAYLOAD_FIRST",
7259		"IDMA_FL_SEND_PAYLOAD",
7260		"IDMA_FL_REQ_NEXT_DATA_FL",
7261		"IDMA_FL_SEND_NEXT_PCIEHDR",
7262		"IDMA_FL_SEND_PADDING",
7263		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
7264	};
7265	static const u32 sge_regs[] = {
7266		A_SGE_DEBUG_DATA_LOW_INDEX_2,
7267		A_SGE_DEBUG_DATA_LOW_INDEX_3,
7268		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
7269	};
7270	const char * const *sge_idma_decode;
7271	int sge_idma_decode_nstates;
7272	int i;
7273	unsigned int chip_version = chip_id(adapter);
7274
7275	/* Select the right set of decode strings to dump depending on the
7276	 * adapter chip type.
7277	 */
7278	switch (chip_version) {
7279	case CHELSIO_T4:
7280		sge_idma_decode = (const char * const *)t4_decode;
7281		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
7282		break;
7283
7284	case CHELSIO_T5:
7285		sge_idma_decode = (const char * const *)t5_decode;
7286		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
7287		break;
7288
7289	case CHELSIO_T6:
7290		sge_idma_decode = (const char * const *)t6_decode;
7291		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
7292		break;
7293
7294	default:
7295		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
7296		return;
7297	}
7298
7299	if (state < sge_idma_decode_nstates)
7300		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
7301	else
7302		CH_WARN(adapter, "idma state %d unknown\n", state);
7303
7304	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
7305		CH_WARN(adapter, "SGE register %#x value %#x\n",
7306			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
7307}
7308
7309/**
7310 *      t4_sge_ctxt_flush - flush the SGE context cache
7311 *      @adap: the adapter
7312 *      @mbox: mailbox to use for the FW command
7313 *
7314 *      Issues a FW command through the given mailbox to flush the
7315 *      SGE context cache.
7316 */
7317int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
7318{
7319	int ret;
7320	u32 ldst_addrspace;
7321	struct fw_ldst_cmd c;
7322
7323	memset(&c, 0, sizeof(c));
7324	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
7325	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
7326					F_FW_CMD_REQUEST | F_FW_CMD_READ |
7327					ldst_addrspace);
7328	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
7329	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
7330
7331	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7332	return ret;
7333}
7334
7335/**
7336 *      t4_fw_hello - establish communication with FW
7337 *      @adap: the adapter
7338 *      @mbox: mailbox to use for the FW command
7339 *      @evt_mbox: mailbox to receive async FW events
7340 *      @master: specifies the caller's willingness to be the device master
7341 *	@state: returns the current device state (if non-NULL)
7342 *
7343 *	Issues a command to establish communication with FW.  Returns either
7344 *	an error (negative integer) or the mailbox of the Master PF.
7345 */
7346int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
7347		enum dev_master master, enum dev_state *state)
7348{
7349	int ret;
7350	struct fw_hello_cmd c;
7351	u32 v;
7352	unsigned int master_mbox;
7353	int retries = FW_CMD_HELLO_RETRIES;
7354
7355retry:
7356	memset(&c, 0, sizeof(c));
7357	INIT_CMD(c, HELLO, WRITE);
7358	c.err_to_clearinit = cpu_to_be32(
7359		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
7360		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
7361		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
7362					mbox : M_FW_HELLO_CMD_MBMASTER) |
7363		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
7364		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
7365		F_FW_HELLO_CMD_CLEARINIT);
7366
7367	/*
7368	 * Issue the HELLO command to the firmware.  If it's not successful
7369	 * but indicates that we got a "busy" or "timeout" condition, retry
7370	 * the HELLO until we exhaust our retry limit.  If we do exceed our
7371	 * retry limit, check to see if the firmware left us any error
7372	 * information and report that if so ...
7373	 */
7374	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7375	if (ret != FW_SUCCESS) {
7376		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
7377			goto retry;
7378		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
7379			t4_report_fw_error(adap);
7380		return ret;
7381	}
7382
7383	v = be32_to_cpu(c.err_to_clearinit);
7384	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
7385	if (state) {
7386		if (v & F_FW_HELLO_CMD_ERR)
7387			*state = DEV_STATE_ERR;
7388		else if (v & F_FW_HELLO_CMD_INIT)
7389			*state = DEV_STATE_INIT;
7390		else
7391			*state = DEV_STATE_UNINIT;
7392	}
7393
7394	/*
7395	 * If we're not the Master PF then we need to wait around for the
7396	 * Master PF Driver to finish setting up the adapter.
7397	 *
7398	 * Note that we also do this wait if we're a non-Master-capable PF and
7399	 * there is no current Master PF; a Master PF may show up momentarily
7400	 * and we wouldn't want to fail pointlessly.  (This can happen when an
7401	 * OS loads lots of different drivers rapidly at the same time).  In
7402	 * this case, the Master PF returned by the firmware will be
7403	 * M_PCIE_FW_MASTER so the test below will work ...
7404	 */
7405	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
7406	    master_mbox != mbox) {
7407		int waiting = FW_CMD_HELLO_TIMEOUT;
7408
7409		/*
7410		 * Wait for the firmware to either indicate an error or
7411		 * initialized state.  If we see either of these we bail out
7412		 * and report the issue to the caller.  If we exhaust the
7413		 * "hello timeout" and we haven't exhausted our retries, try
7414		 * again.  Otherwise bail with a timeout error.
7415		 */
7416		for (;;) {
7417			u32 pcie_fw;
7418
7419			msleep(50);
7420			waiting -= 50;
7421
7422			/*
7423			 * If neither Error nor Initialialized are indicated
7424			 * by the firmware keep waiting till we exhaust our
7425			 * timeout ... and then retry if we haven't exhausted
7426			 * our retries ...
7427			 */
7428			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
7429			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
7430				if (waiting <= 0) {
7431					if (retries-- > 0)
7432						goto retry;
7433
7434					return -ETIMEDOUT;
7435				}
7436				continue;
7437			}
7438
7439			/*
7440			 * We either have an Error or Initialized condition
7441			 * report errors preferentially.
7442			 */
7443			if (state) {
7444				if (pcie_fw & F_PCIE_FW_ERR)
7445					*state = DEV_STATE_ERR;
7446				else if (pcie_fw & F_PCIE_FW_INIT)
7447					*state = DEV_STATE_INIT;
7448			}
7449
7450			/*
7451			 * If we arrived before a Master PF was selected and
7452			 * there's not a valid Master PF, grab its identity
7453			 * for our caller.
7454			 */
7455			if (master_mbox == M_PCIE_FW_MASTER &&
7456			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
7457				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
7458			break;
7459		}
7460	}
7461
7462	return master_mbox;
7463}
7464
7465/**
7466 *	t4_fw_bye - end communication with FW
7467 *	@adap: the adapter
7468 *	@mbox: mailbox to use for the FW command
7469 *
7470 *	Issues a command to terminate communication with FW.
7471 */
7472int t4_fw_bye(struct adapter *adap, unsigned int mbox)
7473{
7474	struct fw_bye_cmd c;
7475
7476	memset(&c, 0, sizeof(c));
7477	INIT_CMD(c, BYE, WRITE);
7478	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7479}
7480
7481/**
7482 *	t4_fw_reset - issue a reset to FW
7483 *	@adap: the adapter
7484 *	@mbox: mailbox to use for the FW command
7485 *	@reset: specifies the type of reset to perform
7486 *
7487 *	Issues a reset command of the specified type to FW.
7488 */
7489int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
7490{
7491	struct fw_reset_cmd c;
7492
7493	memset(&c, 0, sizeof(c));
7494	INIT_CMD(c, RESET, WRITE);
7495	c.val = cpu_to_be32(reset);
7496	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7497}
7498
7499/**
7500 *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
7501 *	@adap: the adapter
7502 *	@mbox: mailbox to use for the FW RESET command (if desired)
7503 *	@force: force uP into RESET even if FW RESET command fails
7504 *
7505 *	Issues a RESET command to firmware (if desired) with a HALT indication
7506 *	and then puts the microprocessor into RESET state.  The RESET command
7507 *	will only be issued if a legitimate mailbox is provided (mbox <=
7508 *	M_PCIE_FW_MASTER).
7509 *
7510 *	This is generally used in order for the host to safely manipulate the
7511 *	adapter without fear of conflicting with whatever the firmware might
7512 *	be doing.  The only way out of this state is to RESTART the firmware
7513 *	...
7514 */
7515int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
7516{
7517	int ret = 0;
7518
7519	/*
7520	 * If a legitimate mailbox is provided, issue a RESET command
7521	 * with a HALT indication.
7522	 */
7523	if (adap->flags & FW_OK && mbox <= M_PCIE_FW_MASTER) {
7524		struct fw_reset_cmd c;
7525
7526		memset(&c, 0, sizeof(c));
7527		INIT_CMD(c, RESET, WRITE);
7528		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
7529		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
7530		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7531	}
7532
7533	/*
7534	 * Normally we won't complete the operation if the firmware RESET
7535	 * command fails but if our caller insists we'll go ahead and put the
7536	 * uP into RESET.  This can be useful if the firmware is hung or even
7537	 * missing ...  We'll have to take the risk of putting the uP into
7538	 * RESET without the cooperation of firmware in that case.
7539	 *
7540	 * We also force the firmware's HALT flag to be on in case we bypassed
7541	 * the firmware RESET command above or we're dealing with old firmware
7542	 * which doesn't have the HALT capability.  This will serve as a flag
7543	 * for the incoming firmware to know that it's coming out of a HALT
7544	 * rather than a RESET ... if it's new enough to understand that ...
7545	 */
7546	if (ret == 0 || force) {
7547		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
7548		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
7549				 F_PCIE_FW_HALT);
7550	}
7551
7552	/*
7553	 * And we always return the result of the firmware RESET command
7554	 * even when we force the uP into RESET ...
7555	 */
7556	return ret;
7557}
7558
7559/**
7560 *	t4_fw_restart - restart the firmware by taking the uP out of RESET
7561 *	@adap: the adapter
7562 *
7563 *	Restart firmware previously halted by t4_fw_halt().  On successful
7564 *	return the previous PF Master remains as the new PF Master and there
7565 *	is no need to issue a new HELLO command, etc.
7566 */
7567int t4_fw_restart(struct adapter *adap, unsigned int mbox)
7568{
7569	int ms;
7570
7571	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
7572	for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
7573		if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
7574			return FW_SUCCESS;
7575		msleep(100);
7576		ms += 100;
7577	}
7578
7579	return -ETIMEDOUT;
7580}
7581
7582/**
7583 *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
7584 *	@adap: the adapter
7585 *	@mbox: mailbox to use for the FW RESET command (if desired)
7586 *	@fw_data: the firmware image to write
7587 *	@size: image size
7588 *	@force: force upgrade even if firmware doesn't cooperate
7589 *
7590 *	Perform all of the steps necessary for upgrading an adapter's
7591 *	firmware image.  Normally this requires the cooperation of the
7592 *	existing firmware in order to halt all existing activities
7593 *	but if an invalid mailbox token is passed in we skip that step
7594 *	(though we'll still put the adapter microprocessor into RESET in
7595 *	that case).
7596 *
7597 *	On successful return the new firmware will have been loaded and
7598 *	the adapter will have been fully RESET losing all previous setup
7599 *	state.  On unsuccessful return the adapter may be completely hosed ...
7600 *	positive errno indicates that the adapter is ~probably~ intact, a
7601 *	negative errno indicates that things are looking bad ...
7602 */
7603int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
7604		  const u8 *fw_data, unsigned int size, int force)
7605{
7606	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
7607	unsigned int bootstrap =
7608	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
7609	int ret;
7610
7611	if (!t4_fw_matches_chip(adap, fw_hdr))
7612		return -EINVAL;
7613
7614	if (!bootstrap) {
7615		ret = t4_fw_halt(adap, mbox, force);
7616		if (ret < 0 && !force)
7617			return ret;
7618	}
7619
7620	ret = t4_load_fw(adap, fw_data, size);
7621	if (ret < 0 || bootstrap)
7622		return ret;
7623
7624	return t4_fw_restart(adap, mbox);
7625}
7626
7627/**
7628 *	t4_fw_initialize - ask FW to initialize the device
7629 *	@adap: the adapter
7630 *	@mbox: mailbox to use for the FW command
7631 *
7632 *	Issues a command to FW to partially initialize the device.  This
7633 *	performs initialization that generally doesn't depend on user input.
7634 */
7635int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
7636{
7637	struct fw_initialize_cmd c;
7638
7639	memset(&c, 0, sizeof(c));
7640	INIT_CMD(c, INITIALIZE, WRITE);
7641	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7642}
7643
7644/**
7645 *	t4_query_params_rw - query FW or device parameters
7646 *	@adap: the adapter
7647 *	@mbox: mailbox to use for the FW command
7648 *	@pf: the PF
7649 *	@vf: the VF
7650 *	@nparams: the number of parameters
7651 *	@params: the parameter names
7652 *	@val: the parameter values
7653 *	@rw: Write and read flag
7654 *
7655 *	Reads the value of FW or device parameters.  Up to 7 parameters can be
7656 *	queried at once.
7657 */
7658int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
7659		       unsigned int vf, unsigned int nparams, const u32 *params,
7660		       u32 *val, int rw)
7661{
7662	int i, ret;
7663	struct fw_params_cmd c;
7664	__be32 *p = &c.param[0].mnem;
7665
7666	if (nparams > 7)
7667		return -EINVAL;
7668
7669	memset(&c, 0, sizeof(c));
7670	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7671				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
7672				  V_FW_PARAMS_CMD_PFN(pf) |
7673				  V_FW_PARAMS_CMD_VFN(vf));
7674	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7675
7676	for (i = 0; i < nparams; i++) {
7677		*p++ = cpu_to_be32(*params++);
7678		if (rw)
7679			*p = cpu_to_be32(*(val + i));
7680		p++;
7681	}
7682
7683	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7684	if (ret == 0)
7685		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
7686			*val++ = be32_to_cpu(*p);
7687	return ret;
7688}
7689
7690int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7691		    unsigned int vf, unsigned int nparams, const u32 *params,
7692		    u32 *val)
7693{
7694	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
7695}
7696
7697/**
7698 *      t4_set_params_timeout - sets FW or device parameters
7699 *      @adap: the adapter
7700 *      @mbox: mailbox to use for the FW command
7701 *      @pf: the PF
7702 *      @vf: the VF
7703 *      @nparams: the number of parameters
7704 *      @params: the parameter names
7705 *      @val: the parameter values
7706 *      @timeout: the timeout time
7707 *
7708 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7709 *      specified at once.
7710 */
7711int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7712			  unsigned int pf, unsigned int vf,
7713			  unsigned int nparams, const u32 *params,
7714			  const u32 *val, int timeout)
7715{
7716	struct fw_params_cmd c;
7717	__be32 *p = &c.param[0].mnem;
7718
7719	if (nparams > 7)
7720		return -EINVAL;
7721
7722	memset(&c, 0, sizeof(c));
7723	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7724				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7725				  V_FW_PARAMS_CMD_PFN(pf) |
7726				  V_FW_PARAMS_CMD_VFN(vf));
7727	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7728
7729	while (nparams--) {
7730		*p++ = cpu_to_be32(*params++);
7731		*p++ = cpu_to_be32(*val++);
7732	}
7733
7734	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7735}
7736
7737/**
7738 *	t4_set_params - sets FW or device parameters
7739 *	@adap: the adapter
7740 *	@mbox: mailbox to use for the FW command
7741 *	@pf: the PF
7742 *	@vf: the VF
7743 *	@nparams: the number of parameters
7744 *	@params: the parameter names
7745 *	@val: the parameter values
7746 *
7747 *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7748 *	specified at once.
7749 */
7750int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7751		  unsigned int vf, unsigned int nparams, const u32 *params,
7752		  const u32 *val)
7753{
7754	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7755				     FW_CMD_MAX_TIMEOUT);
7756}
7757
7758/**
7759 *	t4_cfg_pfvf - configure PF/VF resource limits
7760 *	@adap: the adapter
7761 *	@mbox: mailbox to use for the FW command
7762 *	@pf: the PF being configured
7763 *	@vf: the VF being configured
7764 *	@txq: the max number of egress queues
7765 *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7766 *	@rxqi: the max number of interrupt-capable ingress queues
7767 *	@rxq: the max number of interruptless ingress queues
7768 *	@tc: the PCI traffic class
7769 *	@vi: the max number of virtual interfaces
7770 *	@cmask: the channel access rights mask for the PF/VF
7771 *	@pmask: the port access rights mask for the PF/VF
7772 *	@nexact: the maximum number of exact MPS filters
7773 *	@rcaps: read capabilities
7774 *	@wxcaps: write/execute capabilities
7775 *
7776 *	Configures resource limits and capabilities for a physical or virtual
7777 *	function.
7778 */
7779int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7780		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7781		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7782		unsigned int vi, unsigned int cmask, unsigned int pmask,
7783		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7784{
7785	struct fw_pfvf_cmd c;
7786
7787	memset(&c, 0, sizeof(c));
7788	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7789				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7790				  V_FW_PFVF_CMD_VFN(vf));
7791	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7792	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7793				     V_FW_PFVF_CMD_NIQ(rxq));
7794	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7795				    V_FW_PFVF_CMD_PMASK(pmask) |
7796				    V_FW_PFVF_CMD_NEQ(txq));
7797	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7798				      V_FW_PFVF_CMD_NVI(vi) |
7799				      V_FW_PFVF_CMD_NEXACTF(nexact));
7800	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7801				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7802				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7803	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7804}
7805
7806/**
7807 *	t4_alloc_vi_func - allocate a virtual interface
7808 *	@adap: the adapter
7809 *	@mbox: mailbox to use for the FW command
7810 *	@port: physical port associated with the VI
7811 *	@pf: the PF owning the VI
7812 *	@vf: the VF owning the VI
7813 *	@nmac: number of MAC addresses needed (1 to 5)
7814 *	@mac: the MAC addresses of the VI
7815 *	@rss_size: size of RSS table slice associated with this VI
7816 *	@portfunc: which Port Application Function MAC Address is desired
7817 *	@idstype: Intrusion Detection Type
7818 *
7819 *	Allocates a virtual interface for the given physical port.  If @mac is
7820 *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7821 *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7822 *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7823 *	stored consecutively so the space needed is @nmac * 6 bytes.
7824 *	Returns a negative error number or the non-negative VI id.
7825 */
7826int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7827		     unsigned int port, unsigned int pf, unsigned int vf,
7828		     unsigned int nmac, u8 *mac, u16 *rss_size,
7829		     uint8_t *vfvld, uint16_t *vin,
7830		     unsigned int portfunc, unsigned int idstype)
7831{
7832	int ret;
7833	struct fw_vi_cmd c;
7834
7835	memset(&c, 0, sizeof(c));
7836	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7837				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7838				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7839	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7840	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7841				     V_FW_VI_CMD_FUNC(portfunc));
7842	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7843	c.nmac = nmac - 1;
7844	if(!rss_size)
7845		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7846
7847	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7848	if (ret)
7849		return ret;
7850	ret = G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7851
7852	if (mac) {
7853		memcpy(mac, c.mac, sizeof(c.mac));
7854		switch (nmac) {
7855		case 5:
7856			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7857		case 4:
7858			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7859		case 3:
7860			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7861		case 2:
7862			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7863		}
7864	}
7865	if (rss_size)
7866		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7867	if (vfvld) {
7868		*vfvld = adap->params.viid_smt_extn_support ?
7869		    G_FW_VI_CMD_VFVLD(be32_to_cpu(c.alloc_to_len16)) :
7870		    G_FW_VIID_VIVLD(ret);
7871	}
7872	if (vin) {
7873		*vin = adap->params.viid_smt_extn_support ?
7874		    G_FW_VI_CMD_VIN(be32_to_cpu(c.alloc_to_len16)) :
7875		    G_FW_VIID_VIN(ret);
7876	}
7877
7878	return ret;
7879}
7880
7881/**
7882 *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7883 *      @adap: the adapter
7884 *      @mbox: mailbox to use for the FW command
7885 *      @port: physical port associated with the VI
7886 *      @pf: the PF owning the VI
7887 *      @vf: the VF owning the VI
7888 *      @nmac: number of MAC addresses needed (1 to 5)
7889 *      @mac: the MAC addresses of the VI
7890 *      @rss_size: size of RSS table slice associated with this VI
7891 *
7892 *	backwards compatible and convieniance routine to allocate a Virtual
7893 *	Interface with a Ethernet Port Application Function and Intrustion
7894 *	Detection System disabled.
7895 */
7896int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7897		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7898		u16 *rss_size, uint8_t *vfvld, uint16_t *vin)
7899{
7900	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7901				vfvld, vin, FW_VI_FUNC_ETH, 0);
7902}
7903
7904/**
7905 * 	t4_free_vi - free a virtual interface
7906 * 	@adap: the adapter
7907 * 	@mbox: mailbox to use for the FW command
7908 * 	@pf: the PF owning the VI
7909 * 	@vf: the VF owning the VI
7910 * 	@viid: virtual interface identifiler
7911 *
7912 * 	Free a previously allocated virtual interface.
7913 */
7914int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7915	       unsigned int vf, unsigned int viid)
7916{
7917	struct fw_vi_cmd c;
7918
7919	memset(&c, 0, sizeof(c));
7920	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7921				  F_FW_CMD_REQUEST |
7922				  F_FW_CMD_EXEC |
7923				  V_FW_VI_CMD_PFN(pf) |
7924				  V_FW_VI_CMD_VFN(vf));
7925	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7926	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7927
7928	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7929}
7930
7931/**
7932 *	t4_set_rxmode - set Rx properties of a virtual interface
7933 *	@adap: the adapter
7934 *	@mbox: mailbox to use for the FW command
7935 *	@viid: the VI id
7936 *	@mtu: the new MTU or -1
7937 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7938 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7939 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7940 *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7941 *	@sleep_ok: if true we may sleep while awaiting command completion
7942 *
7943 *	Sets Rx properties of a virtual interface.
7944 */
7945int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7946		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7947		  bool sleep_ok)
7948{
7949	struct fw_vi_rxmode_cmd c;
7950
7951	/* convert to FW values */
7952	if (mtu < 0)
7953		mtu = M_FW_VI_RXMODE_CMD_MTU;
7954	if (promisc < 0)
7955		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7956	if (all_multi < 0)
7957		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7958	if (bcast < 0)
7959		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7960	if (vlanex < 0)
7961		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7962
7963	memset(&c, 0, sizeof(c));
7964	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7965				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7966				   V_FW_VI_RXMODE_CMD_VIID(viid));
7967	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7968	c.mtu_to_vlanexen =
7969		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7970			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7971			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7972			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7973			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7974	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7975}
7976
7977/**
7978 *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7979 *	@adap: the adapter
7980 *	@mbox: mailbox to use for the FW command
7981 *	@viid: the VI id
7982 *	@free: if true any existing filters for this VI id are first removed
7983 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7984 *	@addr: the MAC address(es)
7985 *	@idx: where to store the index of each allocated filter
7986 *	@hash: pointer to hash address filter bitmap
7987 *	@sleep_ok: call is allowed to sleep
7988 *
7989 *	Allocates an exact-match filter for each of the supplied addresses and
7990 *	sets it to the corresponding address.  If @idx is not %NULL it should
7991 *	have at least @naddr entries, each of which will be set to the index of
7992 *	the filter allocated for the corresponding MAC address.  If a filter
7993 *	could not be allocated for an address its index is set to 0xffff.
7994 *	If @hash is not %NULL addresses that fail to allocate an exact filter
7995 *	are hashed and update the hash filter bitmap pointed at by @hash.
7996 *
7997 *	Returns a negative error number or the number of filters allocated.
7998 */
7999int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
8000		      unsigned int viid, bool free, unsigned int naddr,
8001		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
8002{
8003	int offset, ret = 0;
8004	struct fw_vi_mac_cmd c;
8005	unsigned int nfilters = 0;
8006	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
8007	unsigned int rem = naddr;
8008
8009	if (naddr > max_naddr)
8010		return -EINVAL;
8011
8012	for (offset = 0; offset < naddr ; /**/) {
8013		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
8014					 ? rem
8015					 : ARRAY_SIZE(c.u.exact));
8016		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
8017						     u.exact[fw_naddr]), 16);
8018		struct fw_vi_mac_exact *p;
8019		int i;
8020
8021		memset(&c, 0, sizeof(c));
8022		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8023					   F_FW_CMD_REQUEST |
8024					   F_FW_CMD_WRITE |
8025					   V_FW_CMD_EXEC(free) |
8026					   V_FW_VI_MAC_CMD_VIID(viid));
8027		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
8028						  V_FW_CMD_LEN16(len16));
8029
8030		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8031			p->valid_to_idx =
8032				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8033					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
8034			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
8035		}
8036
8037		/*
8038		 * It's okay if we run out of space in our MAC address arena.
8039		 * Some of the addresses we submit may get stored so we need
8040		 * to run through the reply to see what the results were ...
8041		 */
8042		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
8043		if (ret && ret != -FW_ENOMEM)
8044			break;
8045
8046		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
8047			u16 index = G_FW_VI_MAC_CMD_IDX(
8048						be16_to_cpu(p->valid_to_idx));
8049
8050			if (idx)
8051				idx[offset+i] = (index >=  max_naddr
8052						 ? 0xffff
8053						 : index);
8054			if (index < max_naddr)
8055				nfilters++;
8056			else if (hash)
8057				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
8058		}
8059
8060		free = false;
8061		offset += fw_naddr;
8062		rem -= fw_naddr;
8063	}
8064
8065	if (ret == 0 || ret == -FW_ENOMEM)
8066		ret = nfilters;
8067	return ret;
8068}
8069
8070/**
8071 *	t4_change_mac - modifies the exact-match filter for a MAC address
8072 *	@adap: the adapter
8073 *	@mbox: mailbox to use for the FW command
8074 *	@viid: the VI id
8075 *	@idx: index of existing filter for old value of MAC address, or -1
8076 *	@addr: the new MAC address value
8077 *	@persist: whether a new MAC allocation should be persistent
8078 *	@smt_idx: add MAC to SMT and return its index, or NULL
8079 *
8080 *	Modifies an exact-match filter and sets it to the new MAC address if
8081 *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
8082 *	latter case the address is added persistently if @persist is %true.
8083 *
8084 *	Note that in general it is not possible to modify the value of a given
8085 *	filter so the generic way to modify an address filter is to free the one
8086 *	being used by the old address value and allocate a new filter for the
8087 *	new address value.
8088 *
8089 *	Returns a negative error number or the index of the filter with the new
8090 *	MAC value.  Note that this index may differ from @idx.
8091 */
8092int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
8093		  int idx, const u8 *addr, bool persist, uint16_t *smt_idx)
8094{
8095	int ret, mode;
8096	struct fw_vi_mac_cmd c;
8097	struct fw_vi_mac_exact *p = c.u.exact;
8098	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
8099
8100	if (idx < 0)		/* new allocation */
8101		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
8102	mode = smt_idx ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
8103
8104	memset(&c, 0, sizeof(c));
8105	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8106				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8107				   V_FW_VI_MAC_CMD_VIID(viid));
8108	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
8109	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
8110				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
8111				      V_FW_VI_MAC_CMD_IDX(idx));
8112	memcpy(p->macaddr, addr, sizeof(p->macaddr));
8113
8114	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8115	if (ret == 0) {
8116		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
8117		if (ret >= max_mac_addr)
8118			ret = -ENOMEM;
8119		if (smt_idx) {
8120			if (adap->params.viid_smt_extn_support)
8121				*smt_idx = G_FW_VI_MAC_CMD_SMTID(be32_to_cpu(c.op_to_viid));
8122			else {
8123				if (chip_id(adap) <= CHELSIO_T5)
8124					*smt_idx = (viid & M_FW_VIID_VIN) << 1;
8125				else
8126					*smt_idx = viid & M_FW_VIID_VIN;
8127			}
8128		}
8129	}
8130	return ret;
8131}
8132
8133/**
8134 *	t4_set_addr_hash - program the MAC inexact-match hash filter
8135 *	@adap: the adapter
8136 *	@mbox: mailbox to use for the FW command
8137 *	@viid: the VI id
8138 *	@ucast: whether the hash filter should also match unicast addresses
8139 *	@vec: the value to be written to the hash filter
8140 *	@sleep_ok: call is allowed to sleep
8141 *
8142 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
8143 */
8144int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
8145		     bool ucast, u64 vec, bool sleep_ok)
8146{
8147	struct fw_vi_mac_cmd c;
8148	u32 val;
8149
8150	memset(&c, 0, sizeof(c));
8151	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
8152				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
8153				   V_FW_VI_ENABLE_CMD_VIID(viid));
8154	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
8155	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
8156	c.freemacs_to_len16 = cpu_to_be32(val);
8157	c.u.hash.hashvec = cpu_to_be64(vec);
8158	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
8159}
8160
8161/**
8162 *      t4_enable_vi_params - enable/disable a virtual interface
8163 *      @adap: the adapter
8164 *      @mbox: mailbox to use for the FW command
8165 *      @viid: the VI id
8166 *      @rx_en: 1=enable Rx, 0=disable Rx
8167 *      @tx_en: 1=enable Tx, 0=disable Tx
8168 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
8169 *
8170 *      Enables/disables a virtual interface.  Note that setting DCB Enable
8171 *      only makes sense when enabling a Virtual Interface ...
8172 */
8173int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
8174			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
8175{
8176	struct fw_vi_enable_cmd c;
8177
8178	memset(&c, 0, sizeof(c));
8179	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8180				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8181				   V_FW_VI_ENABLE_CMD_VIID(viid));
8182	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
8183				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
8184				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
8185				     FW_LEN16(c));
8186	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
8187}
8188
8189/**
8190 *	t4_enable_vi - enable/disable a virtual interface
8191 *	@adap: the adapter
8192 *	@mbox: mailbox to use for the FW command
8193 *	@viid: the VI id
8194 *	@rx_en: 1=enable Rx, 0=disable Rx
8195 *	@tx_en: 1=enable Tx, 0=disable Tx
8196 *
8197 *	Enables/disables a virtual interface.  Note that setting DCB Enable
8198 *	only makes sense when enabling a Virtual Interface ...
8199 */
8200int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
8201		 bool rx_en, bool tx_en)
8202{
8203	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
8204}
8205
8206/**
8207 *	t4_identify_port - identify a VI's port by blinking its LED
8208 *	@adap: the adapter
8209 *	@mbox: mailbox to use for the FW command
8210 *	@viid: the VI id
8211 *	@nblinks: how many times to blink LED at 2.5 Hz
8212 *
8213 *	Identifies a VI's port by blinking its LED.
8214 */
8215int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
8216		     unsigned int nblinks)
8217{
8218	struct fw_vi_enable_cmd c;
8219
8220	memset(&c, 0, sizeof(c));
8221	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
8222				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8223				   V_FW_VI_ENABLE_CMD_VIID(viid));
8224	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
8225	c.blinkdur = cpu_to_be16(nblinks);
8226	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8227}
8228
8229/**
8230 *	t4_iq_stop - stop an ingress queue and its FLs
8231 *	@adap: the adapter
8232 *	@mbox: mailbox to use for the FW command
8233 *	@pf: the PF owning the queues
8234 *	@vf: the VF owning the queues
8235 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8236 *	@iqid: ingress queue id
8237 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8238 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8239 *
8240 *	Stops an ingress queue and its associated FLs, if any.  This causes
8241 *	any current or future data/messages destined for these queues to be
8242 *	tossed.
8243 */
8244int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
8245	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8246	       unsigned int fl0id, unsigned int fl1id)
8247{
8248	struct fw_iq_cmd c;
8249
8250	memset(&c, 0, sizeof(c));
8251	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8252				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8253				  V_FW_IQ_CMD_VFN(vf));
8254	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
8255	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8256	c.iqid = cpu_to_be16(iqid);
8257	c.fl0id = cpu_to_be16(fl0id);
8258	c.fl1id = cpu_to_be16(fl1id);
8259	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8260}
8261
8262/**
8263 *	t4_iq_free - free an ingress queue and its FLs
8264 *	@adap: the adapter
8265 *	@mbox: mailbox to use for the FW command
8266 *	@pf: the PF owning the queues
8267 *	@vf: the VF owning the queues
8268 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
8269 *	@iqid: ingress queue id
8270 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
8271 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
8272 *
8273 *	Frees an ingress queue and its associated FLs, if any.
8274 */
8275int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8276	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
8277	       unsigned int fl0id, unsigned int fl1id)
8278{
8279	struct fw_iq_cmd c;
8280
8281	memset(&c, 0, sizeof(c));
8282	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
8283				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
8284				  V_FW_IQ_CMD_VFN(vf));
8285	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
8286	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
8287	c.iqid = cpu_to_be16(iqid);
8288	c.fl0id = cpu_to_be16(fl0id);
8289	c.fl1id = cpu_to_be16(fl1id);
8290	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8291}
8292
8293/**
8294 *	t4_eth_eq_free - free an Ethernet egress queue
8295 *	@adap: the adapter
8296 *	@mbox: mailbox to use for the FW command
8297 *	@pf: the PF owning the queue
8298 *	@vf: the VF owning the queue
8299 *	@eqid: egress queue id
8300 *
8301 *	Frees an Ethernet egress queue.
8302 */
8303int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8304		   unsigned int vf, unsigned int eqid)
8305{
8306	struct fw_eq_eth_cmd c;
8307
8308	memset(&c, 0, sizeof(c));
8309	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
8310				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8311				  V_FW_EQ_ETH_CMD_PFN(pf) |
8312				  V_FW_EQ_ETH_CMD_VFN(vf));
8313	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
8314	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
8315	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8316}
8317
8318/**
8319 *	t4_ctrl_eq_free - free a control egress queue
8320 *	@adap: the adapter
8321 *	@mbox: mailbox to use for the FW command
8322 *	@pf: the PF owning the queue
8323 *	@vf: the VF owning the queue
8324 *	@eqid: egress queue id
8325 *
8326 *	Frees a control egress queue.
8327 */
8328int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8329		    unsigned int vf, unsigned int eqid)
8330{
8331	struct fw_eq_ctrl_cmd c;
8332
8333	memset(&c, 0, sizeof(c));
8334	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
8335				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8336				  V_FW_EQ_CTRL_CMD_PFN(pf) |
8337				  V_FW_EQ_CTRL_CMD_VFN(vf));
8338	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
8339	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
8340	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8341}
8342
8343/**
8344 *	t4_ofld_eq_free - free an offload egress queue
8345 *	@adap: the adapter
8346 *	@mbox: mailbox to use for the FW command
8347 *	@pf: the PF owning the queue
8348 *	@vf: the VF owning the queue
8349 *	@eqid: egress queue id
8350 *
8351 *	Frees a control egress queue.
8352 */
8353int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
8354		    unsigned int vf, unsigned int eqid)
8355{
8356	struct fw_eq_ofld_cmd c;
8357
8358	memset(&c, 0, sizeof(c));
8359	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
8360				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
8361				  V_FW_EQ_OFLD_CMD_PFN(pf) |
8362				  V_FW_EQ_OFLD_CMD_VFN(vf));
8363	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
8364	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
8365	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
8366}
8367
8368/**
8369 *	t4_link_down_rc_str - return a string for a Link Down Reason Code
8370 *	@link_down_rc: Link Down Reason Code
8371 *
8372 *	Returns a string representation of the Link Down Reason Code.
8373 */
8374const char *t4_link_down_rc_str(unsigned char link_down_rc)
8375{
8376	static const char *reason[] = {
8377		"Link Down",
8378		"Remote Fault",
8379		"Auto-negotiation Failure",
8380		"Reserved3",
8381		"Insufficient Airflow",
8382		"Unable To Determine Reason",
8383		"No RX Signal Detected",
8384		"Reserved7",
8385	};
8386
8387	if (link_down_rc >= ARRAY_SIZE(reason))
8388		return "Bad Reason Code";
8389
8390	return reason[link_down_rc];
8391}
8392
8393/*
8394 * Return the highest speed set in the port capabilities, in Mb/s.
8395 */
8396unsigned int fwcap_to_speed(uint32_t caps)
8397{
8398	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8399		do { \
8400			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8401				return __speed; \
8402		} while (0)
8403
8404	TEST_SPEED_RETURN(400G, 400000);
8405	TEST_SPEED_RETURN(200G, 200000);
8406	TEST_SPEED_RETURN(100G, 100000);
8407	TEST_SPEED_RETURN(50G,   50000);
8408	TEST_SPEED_RETURN(40G,   40000);
8409	TEST_SPEED_RETURN(25G,   25000);
8410	TEST_SPEED_RETURN(10G,   10000);
8411	TEST_SPEED_RETURN(1G,     1000);
8412	TEST_SPEED_RETURN(100M,    100);
8413
8414	#undef TEST_SPEED_RETURN
8415
8416	return 0;
8417}
8418
8419/*
8420 * Return the port capabilities bit for the given speed, which is in Mb/s.
8421 */
8422uint32_t speed_to_fwcap(unsigned int speed)
8423{
8424	#define TEST_SPEED_RETURN(__caps_speed, __speed) \
8425		do { \
8426			if (speed == __speed) \
8427				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8428		} while (0)
8429
8430	TEST_SPEED_RETURN(400G, 400000);
8431	TEST_SPEED_RETURN(200G, 200000);
8432	TEST_SPEED_RETURN(100G, 100000);
8433	TEST_SPEED_RETURN(50G,   50000);
8434	TEST_SPEED_RETURN(40G,   40000);
8435	TEST_SPEED_RETURN(25G,   25000);
8436	TEST_SPEED_RETURN(10G,   10000);
8437	TEST_SPEED_RETURN(1G,     1000);
8438	TEST_SPEED_RETURN(100M,    100);
8439
8440	#undef TEST_SPEED_RETURN
8441
8442	return 0;
8443}
8444
8445/*
8446 * Return the port capabilities bit for the highest speed in the capabilities.
8447 */
8448uint32_t fwcap_top_speed(uint32_t caps)
8449{
8450	#define TEST_SPEED_RETURN(__caps_speed) \
8451		do { \
8452			if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
8453				return FW_PORT_CAP32_SPEED_##__caps_speed; \
8454		} while (0)
8455
8456	TEST_SPEED_RETURN(400G);
8457	TEST_SPEED_RETURN(200G);
8458	TEST_SPEED_RETURN(100G);
8459	TEST_SPEED_RETURN(50G);
8460	TEST_SPEED_RETURN(40G);
8461	TEST_SPEED_RETURN(25G);
8462	TEST_SPEED_RETURN(10G);
8463	TEST_SPEED_RETURN(1G);
8464	TEST_SPEED_RETURN(100M);
8465
8466	#undef TEST_SPEED_RETURN
8467
8468	return 0;
8469}
8470
8471
8472/**
8473 *	lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
8474 *	@lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
8475 *
8476 *	Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
8477 *	32-bit Port Capabilities value.
8478 */
8479static uint32_t lstatus_to_fwcap(u32 lstatus)
8480{
8481	uint32_t linkattr = 0;
8482
8483	/*
8484	 * Unfortunately the format of the Link Status in the old
8485	 * 16-bit Port Information message isn't the same as the
8486	 * 16-bit Port Capabilities bitfield used everywhere else ...
8487	 */
8488	if (lstatus & F_FW_PORT_CMD_RXPAUSE)
8489		linkattr |= FW_PORT_CAP32_FC_RX;
8490	if (lstatus & F_FW_PORT_CMD_TXPAUSE)
8491		linkattr |= FW_PORT_CAP32_FC_TX;
8492	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
8493		linkattr |= FW_PORT_CAP32_SPEED_100M;
8494	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
8495		linkattr |= FW_PORT_CAP32_SPEED_1G;
8496	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
8497		linkattr |= FW_PORT_CAP32_SPEED_10G;
8498	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
8499		linkattr |= FW_PORT_CAP32_SPEED_25G;
8500	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
8501		linkattr |= FW_PORT_CAP32_SPEED_40G;
8502	if (lstatus & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
8503		linkattr |= FW_PORT_CAP32_SPEED_100G;
8504
8505	return linkattr;
8506}
8507
8508/*
8509 * Updates all fields owned by the common code in port_info and link_config
8510 * based on information provided by the firmware.  Does not touch any
8511 * requested_* field.
8512 */
8513static void handle_port_info(struct port_info *pi, const struct fw_port_cmd *p,
8514    enum fw_port_action action, bool *mod_changed, bool *link_changed)
8515{
8516	struct link_config old_lc, *lc = &pi->link_cfg;
8517	unsigned char fc, fec;
8518	u32 stat, linkattr;
8519	int old_ptype, old_mtype;
8520
8521	old_ptype = pi->port_type;
8522	old_mtype = pi->mod_type;
8523	old_lc = *lc;
8524	if (action == FW_PORT_ACTION_GET_PORT_INFO) {
8525		stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
8526
8527		pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
8528		pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
8529		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
8530		    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
8531
8532		lc->supported = fwcaps16_to_caps32(be16_to_cpu(p->u.info.pcap));
8533		lc->advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.acap));
8534		lc->lp_advertising = fwcaps16_to_caps32(be16_to_cpu(p->u.info.lpacap));
8535		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
8536		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
8537
8538		linkattr = lstatus_to_fwcap(stat);
8539	} else if (action == FW_PORT_ACTION_GET_PORT_INFO32) {
8540		stat = be32_to_cpu(p->u.info32.lstatus32_to_cbllen32);
8541
8542		pi->port_type = G_FW_PORT_CMD_PORTTYPE32(stat);
8543		pi->mod_type = G_FW_PORT_CMD_MODTYPE32(stat);
8544		pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP32 ?
8545		    G_FW_PORT_CMD_MDIOADDR32(stat) : -1;
8546
8547		lc->supported = be32_to_cpu(p->u.info32.pcaps32);
8548		lc->advertising = be32_to_cpu(p->u.info32.acaps32);
8549		lc->lp_advertising = be16_to_cpu(p->u.info32.lpacaps32);
8550		lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS32) != 0;
8551		lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC32(stat);
8552
8553		linkattr = be32_to_cpu(p->u.info32.linkattr32);
8554	} else {
8555		CH_ERR(pi->adapter, "bad port_info action 0x%x\n", action);
8556		return;
8557	}
8558
8559	lc->speed = fwcap_to_speed(linkattr);
8560
8561	fc = 0;
8562	if (linkattr & FW_PORT_CAP32_FC_RX)
8563		fc |= PAUSE_RX;
8564	if (linkattr & FW_PORT_CAP32_FC_TX)
8565		fc |= PAUSE_TX;
8566	lc->fc = fc;
8567
8568	fec = FEC_NONE;
8569	if (linkattr & FW_PORT_CAP32_FEC_RS)
8570		fec |= FEC_RS;
8571	if (linkattr & FW_PORT_CAP32_FEC_BASER_RS)
8572		fec |= FEC_BASER_RS;
8573	lc->fec = fec;
8574
8575	if (mod_changed != NULL)
8576		*mod_changed = false;
8577	if (link_changed != NULL)
8578		*link_changed = false;
8579	if (old_ptype != pi->port_type || old_mtype != pi->mod_type ||
8580	    old_lc.supported != lc->supported) {
8581		if (pi->mod_type != FW_PORT_MOD_TYPE_NONE) {
8582			lc->fec_hint = lc->advertising &
8583			    V_FW_PORT_CAP32_FEC(M_FW_PORT_CAP32_FEC);
8584		}
8585		if (mod_changed != NULL)
8586			*mod_changed = true;
8587	}
8588	if (old_lc.link_ok != lc->link_ok || old_lc.speed != lc->speed ||
8589	    old_lc.fec != lc->fec || old_lc.fc != lc->fc) {
8590		if (link_changed != NULL)
8591			*link_changed = true;
8592	}
8593}
8594
8595/**
8596 *	t4_update_port_info - retrieve and update port information if changed
8597 *	@pi: the port_info
8598 *
8599 *	We issue a Get Port Information Command to the Firmware and, if
8600 *	successful, we check to see if anything is different from what we
8601 *	last recorded and update things accordingly.
8602 */
8603 int t4_update_port_info(struct port_info *pi)
8604 {
8605	struct adapter *sc = pi->adapter;
8606	struct fw_port_cmd cmd;
8607	enum fw_port_action action;
8608	int ret;
8609
8610	memset(&cmd, 0, sizeof(cmd));
8611	cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
8612	    F_FW_CMD_REQUEST | F_FW_CMD_READ |
8613	    V_FW_PORT_CMD_PORTID(pi->tx_chan));
8614	action = sc->params.port_caps32 ? FW_PORT_ACTION_GET_PORT_INFO32 :
8615	    FW_PORT_ACTION_GET_PORT_INFO;
8616	cmd.action_to_len16 = cpu_to_be32(V_FW_PORT_CMD_ACTION(action) |
8617	    FW_LEN16(cmd));
8618	ret = t4_wr_mbox_ns(sc, sc->mbox, &cmd, sizeof(cmd), &cmd);
8619	if (ret)
8620		return ret;
8621
8622	handle_port_info(pi, &cmd, action, NULL, NULL);
8623	return 0;
8624}
8625
8626/**
8627 *	t4_handle_fw_rpl - process a FW reply message
8628 *	@adap: the adapter
8629 *	@rpl: start of the FW message
8630 *
8631 *	Processes a FW message, such as link state change messages.
8632 */
8633int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
8634{
8635	u8 opcode = *(const u8 *)rpl;
8636	const struct fw_port_cmd *p = (const void *)rpl;
8637	enum fw_port_action action =
8638	    G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
8639	bool mod_changed, link_changed;
8640
8641	if (opcode == FW_PORT_CMD &&
8642	    (action == FW_PORT_ACTION_GET_PORT_INFO ||
8643	    action == FW_PORT_ACTION_GET_PORT_INFO32)) {
8644		/* link/module state change message */
8645		int i;
8646		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
8647		struct port_info *pi = NULL;
8648		struct link_config *lc;
8649
8650		for_each_port(adap, i) {
8651			pi = adap2pinfo(adap, i);
8652			if (pi->tx_chan == chan)
8653				break;
8654		}
8655
8656		lc = &pi->link_cfg;
8657		PORT_LOCK(pi);
8658		handle_port_info(pi, p, action, &mod_changed, &link_changed);
8659		PORT_UNLOCK(pi);
8660		if (mod_changed)
8661			t4_os_portmod_changed(pi);
8662		if (link_changed) {
8663			PORT_LOCK(pi);
8664			t4_os_link_changed(pi);
8665			PORT_UNLOCK(pi);
8666		}
8667	} else {
8668		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
8669		return -EINVAL;
8670	}
8671	return 0;
8672}
8673
8674/**
8675 *	get_pci_mode - determine a card's PCI mode
8676 *	@adapter: the adapter
8677 *	@p: where to store the PCI settings
8678 *
8679 *	Determines a card's PCI mode and associated parameters, such as speed
8680 *	and width.
8681 */
8682static void get_pci_mode(struct adapter *adapter,
8683				   struct pci_params *p)
8684{
8685	u16 val;
8686	u32 pcie_cap;
8687
8688	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8689	if (pcie_cap) {
8690		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
8691		p->speed = val & PCI_EXP_LNKSTA_CLS;
8692		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
8693	}
8694}
8695
8696struct flash_desc {
8697	u32 vendor_and_model_id;
8698	u32 size_mb;
8699};
8700
8701int t4_get_flash_params(struct adapter *adapter)
8702{
8703	/*
8704	 * Table for non-standard supported Flash parts.  Note, all Flash
8705	 * parts must have 64KB sectors.
8706	 */
8707	static struct flash_desc supported_flash[] = {
8708		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
8709	};
8710
8711	int ret;
8712	u32 flashid = 0;
8713	unsigned int part, manufacturer;
8714	unsigned int density, size = 0;
8715
8716
8717	/*
8718	 * Issue a Read ID Command to the Flash part.  We decode supported
8719	 * Flash parts and their sizes from this.  There's a newer Query
8720	 * Command which can retrieve detailed geometry information but many
8721	 * Flash parts don't support it.
8722	 */
8723	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
8724	if (!ret)
8725		ret = sf1_read(adapter, 3, 0, 1, &flashid);
8726	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
8727	if (ret < 0)
8728		return ret;
8729
8730	/*
8731	 * Check to see if it's one of our non-standard supported Flash parts.
8732	 */
8733	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
8734		if (supported_flash[part].vendor_and_model_id == flashid) {
8735			adapter->params.sf_size =
8736				supported_flash[part].size_mb;
8737			adapter->params.sf_nsec =
8738				adapter->params.sf_size / SF_SEC_SIZE;
8739			goto found;
8740		}
8741
8742	/*
8743	 * Decode Flash part size.  The code below looks repetative with
8744	 * common encodings, but that's not guaranteed in the JEDEC
8745	 * specification for the Read JADEC ID command.  The only thing that
8746	 * we're guaranteed by the JADEC specification is where the
8747	 * Manufacturer ID is in the returned result.  After that each
8748	 * Manufacturer ~could~ encode things completely differently.
8749	 * Note, all Flash parts must have 64KB sectors.
8750	 */
8751	manufacturer = flashid & 0xff;
8752	switch (manufacturer) {
8753	case 0x20: /* Micron/Numonix */
8754		/*
8755		 * This Density -> Size decoding table is taken from Micron
8756		 * Data Sheets.
8757		 */
8758		density = (flashid >> 16) & 0xff;
8759		switch (density) {
8760		case 0x14: size = 1 << 20; break; /*   1MB */
8761		case 0x15: size = 1 << 21; break; /*   2MB */
8762		case 0x16: size = 1 << 22; break; /*   4MB */
8763		case 0x17: size = 1 << 23; break; /*   8MB */
8764		case 0x18: size = 1 << 24; break; /*  16MB */
8765		case 0x19: size = 1 << 25; break; /*  32MB */
8766		case 0x20: size = 1 << 26; break; /*  64MB */
8767		case 0x21: size = 1 << 27; break; /* 128MB */
8768		case 0x22: size = 1 << 28; break; /* 256MB */
8769		}
8770		break;
8771
8772	case 0x9d: /* ISSI -- Integrated Silicon Solution, Inc. */
8773		/*
8774		 * This Density -> Size decoding table is taken from ISSI
8775		 * Data Sheets.
8776		 */
8777		density = (flashid >> 16) & 0xff;
8778		switch (density) {
8779		case 0x16: size = 1 << 25; break; /*  32MB */
8780		case 0x17: size = 1 << 26; break; /*  64MB */
8781		}
8782		break;
8783
8784	case 0xc2: /* Macronix */
8785		/*
8786		 * This Density -> Size decoding table is taken from Macronix
8787		 * Data Sheets.
8788		 */
8789		density = (flashid >> 16) & 0xff;
8790		switch (density) {
8791		case 0x17: size = 1 << 23; break; /*   8MB */
8792		case 0x18: size = 1 << 24; break; /*  16MB */
8793		}
8794		break;
8795
8796	case 0xef: /* Winbond */
8797		/*
8798		 * This Density -> Size decoding table is taken from Winbond
8799		 * Data Sheets.
8800		 */
8801		density = (flashid >> 16) & 0xff;
8802		switch (density) {
8803		case 0x17: size = 1 << 23; break; /*   8MB */
8804		case 0x18: size = 1 << 24; break; /*  16MB */
8805		}
8806		break;
8807	}
8808
8809	/* If we didn't recognize the FLASH part, that's no real issue: the
8810	 * Hardware/Software contract says that Hardware will _*ALWAYS*_
8811	 * use a FLASH part which is at least 4MB in size and has 64KB
8812	 * sectors.  The unrecognized FLASH part is likely to be much larger
8813	 * than 4MB, but that's all we really need.
8814	 */
8815	if (size == 0) {
8816		CH_WARN(adapter, "Unknown Flash Part, ID = %#x, assuming 4MB\n", flashid);
8817		size = 1 << 22;
8818	}
8819
8820	/*
8821	 * Store decoded Flash size and fall through into vetting code.
8822	 */
8823	adapter->params.sf_size = size;
8824	adapter->params.sf_nsec = size / SF_SEC_SIZE;
8825
8826 found:
8827	/*
8828	 * We should ~probably~ reject adapters with FLASHes which are too
8829	 * small but we have some legacy FPGAs with small FLASHes that we'd
8830	 * still like to use.  So instead we emit a scary message ...
8831	 */
8832	if (adapter->params.sf_size < FLASH_MIN_SIZE)
8833		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
8834			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
8835
8836	return 0;
8837}
8838
8839static void set_pcie_completion_timeout(struct adapter *adapter,
8840						  u8 range)
8841{
8842	u16 val;
8843	u32 pcie_cap;
8844
8845	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
8846	if (pcie_cap) {
8847		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
8848		val &= 0xfff0;
8849		val |= range ;
8850		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
8851	}
8852}
8853
8854const struct chip_params *t4_get_chip_params(int chipid)
8855{
8856	static const struct chip_params chip_params[] = {
8857		{
8858			/* T4 */
8859			.nchan = NCHAN,
8860			.pm_stats_cnt = PM_NSTATS,
8861			.cng_ch_bits_log = 2,
8862			.nsched_cls = 15,
8863			.cim_num_obq = CIM_NUM_OBQ,
8864			.mps_rplc_size = 128,
8865			.vfcount = 128,
8866			.sge_fl_db = F_DBPRIO,
8867			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
8868		},
8869		{
8870			/* T5 */
8871			.nchan = NCHAN,
8872			.pm_stats_cnt = PM_NSTATS,
8873			.cng_ch_bits_log = 2,
8874			.nsched_cls = 16,
8875			.cim_num_obq = CIM_NUM_OBQ_T5,
8876			.mps_rplc_size = 128,
8877			.vfcount = 128,
8878			.sge_fl_db = F_DBPRIO | F_DBTYPE,
8879			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8880		},
8881		{
8882			/* T6 */
8883			.nchan = T6_NCHAN,
8884			.pm_stats_cnt = T6_PM_NSTATS,
8885			.cng_ch_bits_log = 3,
8886			.nsched_cls = 16,
8887			.cim_num_obq = CIM_NUM_OBQ_T5,
8888			.mps_rplc_size = 256,
8889			.vfcount = 256,
8890			.sge_fl_db = 0,
8891			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8892		},
8893	};
8894
8895	chipid -= CHELSIO_T4;
8896	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
8897		return NULL;
8898
8899	return &chip_params[chipid];
8900}
8901
8902/**
8903 *	t4_prep_adapter - prepare SW and HW for operation
8904 *	@adapter: the adapter
8905 *	@buf: temporary space of at least VPD_LEN size provided by the caller.
8906 *
8907 *	Initialize adapter SW state for the various HW modules, set initial
8908 *	values for some adapter tunables, take PHYs out of reset, and
8909 *	initialize the MDIO interface.
8910 */
8911int t4_prep_adapter(struct adapter *adapter, u32 *buf)
8912{
8913	int ret;
8914	uint16_t device_id;
8915	uint32_t pl_rev;
8916
8917	get_pci_mode(adapter, &adapter->params.pci);
8918
8919	pl_rev = t4_read_reg(adapter, A_PL_REV);
8920	adapter->params.chipid = G_CHIPID(pl_rev);
8921	adapter->params.rev = G_REV(pl_rev);
8922	if (adapter->params.chipid == 0) {
8923		/* T4 did not have chipid in PL_REV (T5 onwards do) */
8924		adapter->params.chipid = CHELSIO_T4;
8925
8926		/* T4A1 chip is not supported */
8927		if (adapter->params.rev == 1) {
8928			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8929			return -EINVAL;
8930		}
8931	}
8932
8933	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8934	if (adapter->chip_params == NULL)
8935		return -EINVAL;
8936
8937	adapter->params.pci.vpd_cap_addr =
8938	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8939
8940	ret = t4_get_flash_params(adapter);
8941	if (ret < 0)
8942		return ret;
8943
8944	/* Cards with real ASICs have the chipid in the PCIe device id */
8945	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8946	if (device_id >> 12 == chip_id(adapter))
8947		adapter->params.cim_la_size = CIMLA_SIZE;
8948	else {
8949		/* FPGA */
8950		adapter->params.fpga = 1;
8951		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8952	}
8953
8954	ret = get_vpd_params(adapter, &adapter->params.vpd, device_id, buf);
8955	if (ret < 0)
8956		return ret;
8957
8958	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8959
8960	/*
8961	 * Default port and clock for debugging in case we can't reach FW.
8962	 */
8963	adapter->params.nports = 1;
8964	adapter->params.portvec = 1;
8965	adapter->params.vpd.cclk = 50000;
8966
8967	/* Set pci completion timeout value to 4 seconds. */
8968	set_pcie_completion_timeout(adapter, 0xd);
8969	return 0;
8970}
8971
8972/**
8973 *	t4_shutdown_adapter - shut down adapter, host & wire
8974 *	@adapter: the adapter
8975 *
8976 *	Perform an emergency shutdown of the adapter and stop it from
8977 *	continuing any further communication on the ports or DMA to the
8978 *	host.  This is typically used when the adapter and/or firmware
8979 *	have crashed and we want to prevent any further accidental
8980 *	communication with the rest of the world.  This will also force
8981 *	the port Link Status to go down -- if register writes work --
8982 *	which should help our peers figure out that we're down.
8983 */
8984int t4_shutdown_adapter(struct adapter *adapter)
8985{
8986	int port;
8987
8988	t4_intr_disable(adapter);
8989	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8990	for_each_port(adapter, port) {
8991		u32 a_port_cfg = is_t4(adapter) ?
8992				 PORT_REG(port, A_XGMAC_PORT_CFG) :
8993				 T5_PORT_REG(port, A_MAC_PORT_CFG);
8994
8995		t4_write_reg(adapter, a_port_cfg,
8996			     t4_read_reg(adapter, a_port_cfg)
8997			     & ~V_SIGNAL_DET(1));
8998	}
8999	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
9000
9001	return 0;
9002}
9003
9004/**
9005 *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
9006 *	@adapter: the adapter
9007 *	@qid: the Queue ID
9008 *	@qtype: the Ingress or Egress type for @qid
9009 *	@user: true if this request is for a user mode queue
9010 *	@pbar2_qoffset: BAR2 Queue Offset
9011 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
9012 *
9013 *	Returns the BAR2 SGE Queue Registers information associated with the
9014 *	indicated Absolute Queue ID.  These are passed back in return value
9015 *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
9016 *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
9017 *
9018 *	This may return an error which indicates that BAR2 SGE Queue
9019 *	registers aren't available.  If an error is not returned, then the
9020 *	following values are returned:
9021 *
9022 *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
9023 *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
9024 *
9025 *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
9026 *	require the "Inferred Queue ID" ability may be used.  E.g. the
9027 *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
9028 *	then these "Inferred Queue ID" register may not be used.
9029 */
9030int t4_bar2_sge_qregs(struct adapter *adapter,
9031		      unsigned int qid,
9032		      enum t4_bar2_qtype qtype,
9033		      int user,
9034		      u64 *pbar2_qoffset,
9035		      unsigned int *pbar2_qid)
9036{
9037	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
9038	u64 bar2_page_offset, bar2_qoffset;
9039	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
9040
9041	/* T4 doesn't support BAR2 SGE Queue registers for kernel
9042	 * mode queues.
9043	 */
9044	if (!user && is_t4(adapter))
9045		return -EINVAL;
9046
9047	/* Get our SGE Page Size parameters.
9048	 */
9049	page_shift = adapter->params.sge.page_shift;
9050	page_size = 1 << page_shift;
9051
9052	/* Get the right Queues per Page parameters for our Queue.
9053	 */
9054	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
9055		     ? adapter->params.sge.eq_s_qpp
9056		     : adapter->params.sge.iq_s_qpp);
9057	qpp_mask = (1 << qpp_shift) - 1;
9058
9059	/* Calculate the basics of the BAR2 SGE Queue register area:
9060	 *  o The BAR2 page the Queue registers will be in.
9061	 *  o The BAR2 Queue ID.
9062	 *  o The BAR2 Queue ID Offset into the BAR2 page.
9063	 */
9064	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
9065	bar2_qid = qid & qpp_mask;
9066	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
9067
9068	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
9069	 * hardware will infer the Absolute Queue ID simply from the writes to
9070	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
9071	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
9072	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
9073	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
9074	 * from the BAR2 Page and BAR2 Queue ID.
9075	 *
9076	 * One important censequence of this is that some BAR2 SGE registers
9077	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
9078	 * there.  But other registers synthesize the SGE Queue ID purely
9079	 * from the writes to the registers -- the Write Combined Doorbell
9080	 * Buffer is a good example.  These BAR2 SGE Registers are only
9081	 * available for those BAR2 SGE Register areas where the SGE Absolute
9082	 * Queue ID can be inferred from simple writes.
9083	 */
9084	bar2_qoffset = bar2_page_offset;
9085	bar2_qinferred = (bar2_qid_offset < page_size);
9086	if (bar2_qinferred) {
9087		bar2_qoffset += bar2_qid_offset;
9088		bar2_qid = 0;
9089	}
9090
9091	*pbar2_qoffset = bar2_qoffset;
9092	*pbar2_qid = bar2_qid;
9093	return 0;
9094}
9095
9096/**
9097 *	t4_init_devlog_params - initialize adapter->params.devlog
9098 *	@adap: the adapter
9099 *	@fw_attach: whether we can talk to the firmware
9100 *
9101 *	Initialize various fields of the adapter's Firmware Device Log
9102 *	Parameters structure.
9103 */
9104int t4_init_devlog_params(struct adapter *adap, int fw_attach)
9105{
9106	struct devlog_params *dparams = &adap->params.devlog;
9107	u32 pf_dparams;
9108	unsigned int devlog_meminfo;
9109	struct fw_devlog_cmd devlog_cmd;
9110	int ret;
9111
9112	/* If we're dealing with newer firmware, the Device Log Paramerters
9113	 * are stored in a designated register which allows us to access the
9114	 * Device Log even if we can't talk to the firmware.
9115	 */
9116	pf_dparams =
9117		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
9118	if (pf_dparams) {
9119		unsigned int nentries, nentries128;
9120
9121		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
9122		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
9123
9124		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
9125		nentries = (nentries128 + 1) * 128;
9126		dparams->size = nentries * sizeof(struct fw_devlog_e);
9127
9128		return 0;
9129	}
9130
9131	/*
9132	 * For any failing returns ...
9133	 */
9134	memset(dparams, 0, sizeof *dparams);
9135
9136	/*
9137	 * If we can't talk to the firmware, there's really nothing we can do
9138	 * at this point.
9139	 */
9140	if (!fw_attach)
9141		return -ENXIO;
9142
9143	/* Otherwise, ask the firmware for it's Device Log Parameters.
9144	 */
9145	memset(&devlog_cmd, 0, sizeof devlog_cmd);
9146	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9147					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9148	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9149	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
9150			 &devlog_cmd);
9151	if (ret)
9152		return ret;
9153
9154	devlog_meminfo =
9155		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
9156	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
9157	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
9158	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
9159
9160	return 0;
9161}
9162
9163/**
9164 *	t4_init_sge_params - initialize adap->params.sge
9165 *	@adapter: the adapter
9166 *
9167 *	Initialize various fields of the adapter's SGE Parameters structure.
9168 */
9169int t4_init_sge_params(struct adapter *adapter)
9170{
9171	u32 r;
9172	struct sge_params *sp = &adapter->params.sge;
9173	unsigned i, tscale = 1;
9174
9175	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
9176	sp->counter_val[0] = G_THRESHOLD_0(r);
9177	sp->counter_val[1] = G_THRESHOLD_1(r);
9178	sp->counter_val[2] = G_THRESHOLD_2(r);
9179	sp->counter_val[3] = G_THRESHOLD_3(r);
9180
9181	if (chip_id(adapter) >= CHELSIO_T6) {
9182		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
9183		tscale = G_TSCALE(r);
9184		if (tscale == 0)
9185			tscale = 1;
9186		else
9187			tscale += 2;
9188	}
9189
9190	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
9191	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
9192	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
9193	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
9194	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
9195	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
9196	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
9197	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
9198	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
9199
9200	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
9201	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
9202	if (is_t4(adapter))
9203		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
9204	else if (is_t5(adapter))
9205		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
9206	else
9207		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
9208
9209	/* egress queues: log2 of # of doorbells per BAR2 page */
9210	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
9211	r >>= S_QUEUESPERPAGEPF0 +
9212	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9213	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
9214
9215	/* ingress queues: log2 of # of doorbells per BAR2 page */
9216	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
9217	r >>= S_QUEUESPERPAGEPF0 +
9218	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
9219	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
9220
9221	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
9222	r >>= S_HOSTPAGESIZEPF0 +
9223	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
9224	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
9225
9226	r = t4_read_reg(adapter, A_SGE_CONTROL);
9227	sp->sge_control = r;
9228	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
9229	sp->fl_pktshift = G_PKTSHIFT(r);
9230	if (chip_id(adapter) <= CHELSIO_T5) {
9231		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9232		    X_INGPADBOUNDARY_SHIFT);
9233	} else {
9234		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
9235		    X_T6_INGPADBOUNDARY_SHIFT);
9236	}
9237	if (is_t4(adapter))
9238		sp->pack_boundary = sp->pad_boundary;
9239	else {
9240		r = t4_read_reg(adapter, A_SGE_CONTROL2);
9241		if (G_INGPACKBOUNDARY(r) == 0)
9242			sp->pack_boundary = 16;
9243		else
9244			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
9245	}
9246	for (i = 0; i < SGE_FLBUF_SIZES; i++)
9247		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
9248		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
9249
9250	return 0;
9251}
9252
9253/*
9254 * Read and cache the adapter's compressed filter mode and ingress config.
9255 */
9256static void read_filter_mode_and_ingress_config(struct adapter *adap,
9257    bool sleep_ok)
9258{
9259	uint32_t v;
9260	struct tp_params *tpp = &adap->params.tp;
9261
9262	t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
9263	    sleep_ok);
9264	t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
9265	    sleep_ok);
9266
9267	/*
9268	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
9269	 * shift positions of several elements of the Compressed Filter Tuple
9270	 * for this adapter which we need frequently ...
9271	 */
9272	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
9273	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
9274	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
9275	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
9276	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
9277	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
9278	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
9279	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
9280	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
9281	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
9282
9283	if (chip_id(adap) > CHELSIO_T4) {
9284		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(3));
9285		adap->params.tp.hash_filter_mask = v;
9286		v = t4_read_reg(adap, LE_HASH_MASK_GEN_IPV4T5(4));
9287		adap->params.tp.hash_filter_mask |= (u64)v << 32;
9288	}
9289}
9290
9291/**
9292 *      t4_init_tp_params - initialize adap->params.tp
9293 *      @adap: the adapter
9294 *
9295 *      Initialize various fields of the adapter's TP Parameters structure.
9296 */
9297int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
9298{
9299	int chan;
9300	u32 v;
9301	struct tp_params *tpp = &adap->params.tp;
9302
9303	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
9304	tpp->tre = G_TIMERRESOLUTION(v);
9305	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
9306
9307	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
9308	for (chan = 0; chan < MAX_NCHAN; chan++)
9309		tpp->tx_modq[chan] = chan;
9310
9311	read_filter_mode_and_ingress_config(adap, sleep_ok);
9312
9313	/*
9314	 * Cache a mask of the bits that represent the error vector portion of
9315	 * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
9316	 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
9317	 */
9318	tpp->err_vec_mask = htobe16(0xffff);
9319	if (chip_id(adap) > CHELSIO_T5) {
9320		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
9321		if (v & F_CRXPKTENC) {
9322			tpp->err_vec_mask =
9323			    htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
9324		}
9325	}
9326
9327	return 0;
9328}
9329
9330/**
9331 *      t4_filter_field_shift - calculate filter field shift
9332 *      @adap: the adapter
9333 *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
9334 *
9335 *      Return the shift position of a filter field within the Compressed
9336 *      Filter Tuple.  The filter field is specified via its selection bit
9337 *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
9338 */
9339int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
9340{
9341	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
9342	unsigned int sel;
9343	int field_shift;
9344
9345	if ((filter_mode & filter_sel) == 0)
9346		return -1;
9347
9348	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
9349		switch (filter_mode & sel) {
9350		case F_FCOE:
9351			field_shift += W_FT_FCOE;
9352			break;
9353		case F_PORT:
9354			field_shift += W_FT_PORT;
9355			break;
9356		case F_VNIC_ID:
9357			field_shift += W_FT_VNIC_ID;
9358			break;
9359		case F_VLAN:
9360			field_shift += W_FT_VLAN;
9361			break;
9362		case F_TOS:
9363			field_shift += W_FT_TOS;
9364			break;
9365		case F_PROTOCOL:
9366			field_shift += W_FT_PROTOCOL;
9367			break;
9368		case F_ETHERTYPE:
9369			field_shift += W_FT_ETHERTYPE;
9370			break;
9371		case F_MACMATCH:
9372			field_shift += W_FT_MACMATCH;
9373			break;
9374		case F_MPSHITTYPE:
9375			field_shift += W_FT_MPSHITTYPE;
9376			break;
9377		case F_FRAGMENTATION:
9378			field_shift += W_FT_FRAGMENTATION;
9379			break;
9380		}
9381	}
9382	return field_shift;
9383}
9384
9385int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
9386{
9387	u8 addr[6];
9388	int ret, i, j;
9389	struct port_info *p = adap2pinfo(adap, port_id);
9390	u32 param, val;
9391	struct vi_info *vi = &p->vi[0];
9392
9393	for (i = 0, j = -1; i <= p->port_id; i++) {
9394		do {
9395			j++;
9396		} while ((adap->params.portvec & (1 << j)) == 0);
9397	}
9398
9399	p->tx_chan = j;
9400	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
9401	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
9402	p->lport = j;
9403
9404	if (!(adap->flags & IS_VF) ||
9405	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
9406 		t4_update_port_info(p);
9407	}
9408
9409	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &vi->rss_size,
9410	    &vi->vfvld, &vi->vin);
9411	if (ret < 0)
9412		return ret;
9413
9414	vi->viid = ret;
9415	t4_os_set_hw_addr(p, addr);
9416
9417	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9418	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
9419	    V_FW_PARAMS_PARAM_YZ(vi->viid);
9420	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
9421	if (ret)
9422		vi->rss_base = 0xffff;
9423	else {
9424		/* MPASS((val >> 16) == rss_size); */
9425		vi->rss_base = val & 0xffff;
9426	}
9427
9428	return 0;
9429}
9430
9431/**
9432 *	t4_read_cimq_cfg - read CIM queue configuration
9433 *	@adap: the adapter
9434 *	@base: holds the queue base addresses in bytes
9435 *	@size: holds the queue sizes in bytes
9436 *	@thres: holds the queue full thresholds in bytes
9437 *
9438 *	Returns the current configuration of the CIM queues, starting with
9439 *	the IBQs, then the OBQs.
9440 */
9441void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
9442{
9443	unsigned int i, v;
9444	int cim_num_obq = adap->chip_params->cim_num_obq;
9445
9446	for (i = 0; i < CIM_NUM_IBQ; i++) {
9447		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
9448			     V_QUENUMSELECT(i));
9449		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9450		/* value is in 256-byte units */
9451		*base++ = G_CIMQBASE(v) * 256;
9452		*size++ = G_CIMQSIZE(v) * 256;
9453		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
9454	}
9455	for (i = 0; i < cim_num_obq; i++) {
9456		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9457			     V_QUENUMSELECT(i));
9458		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9459		/* value is in 256-byte units */
9460		*base++ = G_CIMQBASE(v) * 256;
9461		*size++ = G_CIMQSIZE(v) * 256;
9462	}
9463}
9464
9465/**
9466 *	t4_read_cim_ibq - read the contents of a CIM inbound queue
9467 *	@adap: the adapter
9468 *	@qid: the queue index
9469 *	@data: where to store the queue contents
9470 *	@n: capacity of @data in 32-bit words
9471 *
9472 *	Reads the contents of the selected CIM queue starting at address 0 up
9473 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9474 *	error and the number of 32-bit words actually read on success.
9475 */
9476int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9477{
9478	int i, err, attempts;
9479	unsigned int addr;
9480	const unsigned int nwords = CIM_IBQ_SIZE * 4;
9481
9482	if (qid > 5 || (n & 3))
9483		return -EINVAL;
9484
9485	addr = qid * nwords;
9486	if (n > nwords)
9487		n = nwords;
9488
9489	/* It might take 3-10ms before the IBQ debug read access is allowed.
9490	 * Wait for 1 Sec with a delay of 1 usec.
9491	 */
9492	attempts = 1000000;
9493
9494	for (i = 0; i < n; i++, addr++) {
9495		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
9496			     F_IBQDBGEN);
9497		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
9498				      attempts, 1);
9499		if (err)
9500			return err;
9501		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
9502	}
9503	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
9504	return i;
9505}
9506
9507/**
9508 *	t4_read_cim_obq - read the contents of a CIM outbound queue
9509 *	@adap: the adapter
9510 *	@qid: the queue index
9511 *	@data: where to store the queue contents
9512 *	@n: capacity of @data in 32-bit words
9513 *
9514 *	Reads the contents of the selected CIM queue starting at address 0 up
9515 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
9516 *	error and the number of 32-bit words actually read on success.
9517 */
9518int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
9519{
9520	int i, err;
9521	unsigned int addr, v, nwords;
9522	int cim_num_obq = adap->chip_params->cim_num_obq;
9523
9524	if ((qid > (cim_num_obq - 1)) || (n & 3))
9525		return -EINVAL;
9526
9527	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
9528		     V_QUENUMSELECT(qid));
9529	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
9530
9531	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
9532	nwords = G_CIMQSIZE(v) * 64;  /* same */
9533	if (n > nwords)
9534		n = nwords;
9535
9536	for (i = 0; i < n; i++, addr++) {
9537		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
9538			     F_OBQDBGEN);
9539		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
9540				      2, 1);
9541		if (err)
9542			return err;
9543		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
9544	}
9545	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
9546	return i;
9547}
9548
9549enum {
9550	CIM_QCTL_BASE     = 0,
9551	CIM_CTL_BASE      = 0x2000,
9552	CIM_PBT_ADDR_BASE = 0x2800,
9553	CIM_PBT_LRF_BASE  = 0x3000,
9554	CIM_PBT_DATA_BASE = 0x3800
9555};
9556
9557/**
9558 *	t4_cim_read - read a block from CIM internal address space
9559 *	@adap: the adapter
9560 *	@addr: the start address within the CIM address space
9561 *	@n: number of words to read
9562 *	@valp: where to store the result
9563 *
9564 *	Reads a block of 4-byte words from the CIM intenal address space.
9565 */
9566int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
9567		unsigned int *valp)
9568{
9569	int ret = 0;
9570
9571	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9572		return -EBUSY;
9573
9574	for ( ; !ret && n--; addr += 4) {
9575		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
9576		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9577				      0, 5, 2);
9578		if (!ret)
9579			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
9580	}
9581	return ret;
9582}
9583
9584/**
9585 *	t4_cim_write - write a block into CIM internal address space
9586 *	@adap: the adapter
9587 *	@addr: the start address within the CIM address space
9588 *	@n: number of words to write
9589 *	@valp: set of values to write
9590 *
9591 *	Writes a block of 4-byte words into the CIM intenal address space.
9592 */
9593int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
9594		 const unsigned int *valp)
9595{
9596	int ret = 0;
9597
9598	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
9599		return -EBUSY;
9600
9601	for ( ; !ret && n--; addr += 4) {
9602		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
9603		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
9604		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
9605				      0, 5, 2);
9606	}
9607	return ret;
9608}
9609
9610static int t4_cim_write1(struct adapter *adap, unsigned int addr,
9611			 unsigned int val)
9612{
9613	return t4_cim_write(adap, addr, 1, &val);
9614}
9615
9616/**
9617 *	t4_cim_ctl_read - read a block from CIM control region
9618 *	@adap: the adapter
9619 *	@addr: the start address within the CIM control region
9620 *	@n: number of words to read
9621 *	@valp: where to store the result
9622 *
9623 *	Reads a block of 4-byte words from the CIM control region.
9624 */
9625int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
9626		    unsigned int *valp)
9627{
9628	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
9629}
9630
9631/**
9632 *	t4_cim_read_la - read CIM LA capture buffer
9633 *	@adap: the adapter
9634 *	@la_buf: where to store the LA data
9635 *	@wrptr: the HW write pointer within the capture buffer
9636 *
9637 *	Reads the contents of the CIM LA buffer with the most recent entry at
9638 *	the end	of the returned data and with the entry at @wrptr first.
9639 *	We try to leave the LA in the running state we find it in.
9640 */
9641int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
9642{
9643	int i, ret;
9644	unsigned int cfg, val, idx;
9645
9646	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
9647	if (ret)
9648		return ret;
9649
9650	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
9651		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
9652		if (ret)
9653			return ret;
9654	}
9655
9656	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9657	if (ret)
9658		goto restart;
9659
9660	idx = G_UPDBGLAWRPTR(val);
9661	if (wrptr)
9662		*wrptr = idx;
9663
9664	for (i = 0; i < adap->params.cim_la_size; i++) {
9665		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9666				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
9667		if (ret)
9668			break;
9669		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
9670		if (ret)
9671			break;
9672		if (val & F_UPDBGLARDEN) {
9673			ret = -ETIMEDOUT;
9674			break;
9675		}
9676		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
9677		if (ret)
9678			break;
9679
9680		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
9681		idx = (idx + 1) & M_UPDBGLARDPTR;
9682		/*
9683		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
9684		 * identify the 32-bit portion of the full 312-bit data
9685		 */
9686		if (is_t6(adap))
9687			while ((idx & 0xf) > 9)
9688				idx = (idx + 1) % M_UPDBGLARDPTR;
9689	}
9690restart:
9691	if (cfg & F_UPDBGLAEN) {
9692		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
9693				      cfg & ~F_UPDBGLARDEN);
9694		if (!ret)
9695			ret = r;
9696	}
9697	return ret;
9698}
9699
9700/**
9701 *	t4_tp_read_la - read TP LA capture buffer
9702 *	@adap: the adapter
9703 *	@la_buf: where to store the LA data
9704 *	@wrptr: the HW write pointer within the capture buffer
9705 *
9706 *	Reads the contents of the TP LA buffer with the most recent entry at
9707 *	the end	of the returned data and with the entry at @wrptr first.
9708 *	We leave the LA in the running state we find it in.
9709 */
9710void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
9711{
9712	bool last_incomplete;
9713	unsigned int i, cfg, val, idx;
9714
9715	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
9716	if (cfg & F_DBGLAENABLE)			/* freeze LA */
9717		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9718			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
9719
9720	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
9721	idx = G_DBGLAWPTR(val);
9722	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
9723	if (last_incomplete)
9724		idx = (idx + 1) & M_DBGLARPTR;
9725	if (wrptr)
9726		*wrptr = idx;
9727
9728	val &= 0xffff;
9729	val &= ~V_DBGLARPTR(M_DBGLARPTR);
9730	val |= adap->params.tp.la_mask;
9731
9732	for (i = 0; i < TPLA_SIZE; i++) {
9733		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
9734		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
9735		idx = (idx + 1) & M_DBGLARPTR;
9736	}
9737
9738	/* Wipe out last entry if it isn't valid */
9739	if (last_incomplete)
9740		la_buf[TPLA_SIZE - 1] = ~0ULL;
9741
9742	if (cfg & F_DBGLAENABLE)		/* restore running state */
9743		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
9744			     cfg | adap->params.tp.la_mask);
9745}
9746
9747/*
9748 * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
9749 * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
9750 * state for more than the Warning Threshold then we'll issue a warning about
9751 * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
9752 * appears to be hung every Warning Repeat second till the situation clears.
9753 * If the situation clears, we'll note that as well.
9754 */
9755#define SGE_IDMA_WARN_THRESH 1
9756#define SGE_IDMA_WARN_REPEAT 300
9757
9758/**
9759 *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
9760 *	@adapter: the adapter
9761 *	@idma: the adapter IDMA Monitor state
9762 *
9763 *	Initialize the state of an SGE Ingress DMA Monitor.
9764 */
9765void t4_idma_monitor_init(struct adapter *adapter,
9766			  struct sge_idma_monitor_state *idma)
9767{
9768	/* Initialize the state variables for detecting an SGE Ingress DMA
9769	 * hang.  The SGE has internal counters which count up on each clock
9770	 * tick whenever the SGE finds its Ingress DMA State Engines in the
9771	 * same state they were on the previous clock tick.  The clock used is
9772	 * the Core Clock so we have a limit on the maximum "time" they can
9773	 * record; typically a very small number of seconds.  For instance,
9774	 * with a 600MHz Core Clock, we can only count up to a bit more than
9775	 * 7s.  So we'll synthesize a larger counter in order to not run the
9776	 * risk of having the "timers" overflow and give us the flexibility to
9777	 * maintain a Hung SGE State Machine of our own which operates across
9778	 * a longer time frame.
9779	 */
9780	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
9781	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
9782}
9783
9784/**
9785 *	t4_idma_monitor - monitor SGE Ingress DMA state
9786 *	@adapter: the adapter
9787 *	@idma: the adapter IDMA Monitor state
9788 *	@hz: number of ticks/second
9789 *	@ticks: number of ticks since the last IDMA Monitor call
9790 */
9791void t4_idma_monitor(struct adapter *adapter,
9792		     struct sge_idma_monitor_state *idma,
9793		     int hz, int ticks)
9794{
9795	int i, idma_same_state_cnt[2];
9796
9797	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
9798	  * are counters inside the SGE which count up on each clock when the
9799	  * SGE finds its Ingress DMA State Engines in the same states they
9800	  * were in the previous clock.  The counters will peg out at
9801	  * 0xffffffff without wrapping around so once they pass the 1s
9802	  * threshold they'll stay above that till the IDMA state changes.
9803	  */
9804	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
9805	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
9806	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9807
9808	for (i = 0; i < 2; i++) {
9809		u32 debug0, debug11;
9810
9811		/* If the Ingress DMA Same State Counter ("timer") is less
9812		 * than 1s, then we can reset our synthesized Stall Timer and
9813		 * continue.  If we have previously emitted warnings about a
9814		 * potential stalled Ingress Queue, issue a note indicating
9815		 * that the Ingress Queue has resumed forward progress.
9816		 */
9817		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
9818			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
9819				CH_WARN(adapter, "SGE idma%d, queue %u, "
9820					"resumed after %d seconds\n",
9821					i, idma->idma_qid[i],
9822					idma->idma_stalled[i]/hz);
9823			idma->idma_stalled[i] = 0;
9824			continue;
9825		}
9826
9827		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
9828		 * domain.  The first time we get here it'll be because we
9829		 * passed the 1s Threshold; each additional time it'll be
9830		 * because the RX Timer Callback is being fired on its regular
9831		 * schedule.
9832		 *
9833		 * If the stall is below our Potential Hung Ingress Queue
9834		 * Warning Threshold, continue.
9835		 */
9836		if (idma->idma_stalled[i] == 0) {
9837			idma->idma_stalled[i] = hz;
9838			idma->idma_warn[i] = 0;
9839		} else {
9840			idma->idma_stalled[i] += ticks;
9841			idma->idma_warn[i] -= ticks;
9842		}
9843
9844		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
9845			continue;
9846
9847		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
9848		 */
9849		if (idma->idma_warn[i] > 0)
9850			continue;
9851		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
9852
9853		/* Read and save the SGE IDMA State and Queue ID information.
9854		 * We do this every time in case it changes across time ...
9855		 * can't be too careful ...
9856		 */
9857		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
9858		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9859		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
9860
9861		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
9862		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
9863		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
9864
9865		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
9866			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
9867			i, idma->idma_qid[i], idma->idma_state[i],
9868			idma->idma_stalled[i]/hz,
9869			debug0, debug11);
9870		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
9871	}
9872}
9873
9874/**
9875 *	t4_read_pace_tbl - read the pace table
9876 *	@adap: the adapter
9877 *	@pace_vals: holds the returned values
9878 *
9879 *	Returns the values of TP's pace table in microseconds.
9880 */
9881void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
9882{
9883	unsigned int i, v;
9884
9885	for (i = 0; i < NTX_SCHED; i++) {
9886		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
9887		v = t4_read_reg(adap, A_TP_PACE_TABLE);
9888		pace_vals[i] = dack_ticks_to_usec(adap, v);
9889	}
9890}
9891
9892/**
9893 *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9894 *	@adap: the adapter
9895 *	@sched: the scheduler index
9896 *	@kbps: the byte rate in Kbps
9897 *	@ipg: the interpacket delay in tenths of nanoseconds
9898 *
9899 *	Return the current configuration of a HW Tx scheduler.
9900 */
9901void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
9902		     unsigned int *ipg, bool sleep_ok)
9903{
9904	unsigned int v, addr, bpt, cpt;
9905
9906	if (kbps) {
9907		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
9908		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9909		if (sched & 1)
9910			v >>= 16;
9911		bpt = (v >> 8) & 0xff;
9912		cpt = v & 0xff;
9913		if (!cpt)
9914			*kbps = 0;	/* scheduler disabled */
9915		else {
9916			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9917			*kbps = (v * bpt) / 125;
9918		}
9919	}
9920	if (ipg) {
9921		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9922		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9923		if (sched & 1)
9924			v >>= 16;
9925		v &= 0xffff;
9926		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9927	}
9928}
9929
9930/**
9931 *	t4_load_cfg - download config file
9932 *	@adap: the adapter
9933 *	@cfg_data: the cfg text file to write
9934 *	@size: text file size
9935 *
9936 *	Write the supplied config text file to the card's serial flash.
9937 */
9938int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9939{
9940	int ret, i, n, cfg_addr;
9941	unsigned int addr;
9942	unsigned int flash_cfg_start_sec;
9943	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9944
9945	cfg_addr = t4_flash_cfg_addr(adap);
9946	if (cfg_addr < 0)
9947		return cfg_addr;
9948
9949	addr = cfg_addr;
9950	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9951
9952	if (size > FLASH_CFG_MAX_SIZE) {
9953		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
9954		       FLASH_CFG_MAX_SIZE);
9955		return -EFBIG;
9956	}
9957
9958	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9959			 sf_sec_size);
9960	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9961				     flash_cfg_start_sec + i - 1);
9962	/*
9963	 * If size == 0 then we're simply erasing the FLASH sectors associated
9964	 * with the on-adapter Firmware Configuration File.
9965	 */
9966	if (ret || size == 0)
9967		goto out;
9968
9969	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9970	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9971		if ( (size - i) <  SF_PAGE_SIZE)
9972			n = size - i;
9973		else
9974			n = SF_PAGE_SIZE;
9975		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
9976		if (ret)
9977			goto out;
9978
9979		addr += SF_PAGE_SIZE;
9980		cfg_data += SF_PAGE_SIZE;
9981	}
9982
9983out:
9984	if (ret)
9985		CH_ERR(adap, "config file %s failed %d\n",
9986		       (size == 0 ? "clear" : "download"), ret);
9987	return ret;
9988}
9989
9990/**
9991 *	t5_fw_init_extern_mem - initialize the external memory
9992 *	@adap: the adapter
9993 *
9994 *	Initializes the external memory on T5.
9995 */
9996int t5_fw_init_extern_mem(struct adapter *adap)
9997{
9998	u32 params[1], val[1];
9999	int ret;
10000
10001	if (!is_t5(adap))
10002		return 0;
10003
10004	val[0] = 0xff; /* Initialize all MCs */
10005	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
10006			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
10007	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
10008			FW_CMD_MAX_TIMEOUT);
10009
10010	return ret;
10011}
10012
10013/* BIOS boot headers */
10014typedef struct pci_expansion_rom_header {
10015	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10016	u8	reserved[22]; /* Reserved per processor Architecture data */
10017	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10018} pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
10019
10020/* Legacy PCI Expansion ROM Header */
10021typedef struct legacy_pci_expansion_rom_header {
10022	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
10023	u8	size512; /* Current Image Size in units of 512 bytes */
10024	u8	initentry_point[4];
10025	u8	cksum; /* Checksum computed on the entire Image */
10026	u8	reserved[16]; /* Reserved */
10027	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
10028} legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
10029
10030/* EFI PCI Expansion ROM Header */
10031typedef struct efi_pci_expansion_rom_header {
10032	u8	signature[2]; // ROM signature. The value 0xaa55
10033	u8	initialization_size[2]; /* Units 512. Includes this header */
10034	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
10035	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
10036	u8	efi_machine_type[2]; /* Machine type from EFI image header */
10037	u8	compression_type[2]; /* Compression type. */
10038		/*
10039		 * Compression type definition
10040		 * 0x0: uncompressed
10041		 * 0x1: Compressed
10042		 * 0x2-0xFFFF: Reserved
10043		 */
10044	u8	reserved[8]; /* Reserved */
10045	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
10046	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
10047} efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
10048
10049/* PCI Data Structure Format */
10050typedef struct pcir_data_structure { /* PCI Data Structure */
10051	u8	signature[4]; /* Signature. The string "PCIR" */
10052	u8	vendor_id[2]; /* Vendor Identification */
10053	u8	device_id[2]; /* Device Identification */
10054	u8	vital_product[2]; /* Pointer to Vital Product Data */
10055	u8	length[2]; /* PCIR Data Structure Length */
10056	u8	revision; /* PCIR Data Structure Revision */
10057	u8	class_code[3]; /* Class Code */
10058	u8	image_length[2]; /* Image Length. Multiple of 512B */
10059	u8	code_revision[2]; /* Revision Level of Code/Data */
10060	u8	code_type; /* Code Type. */
10061		/*
10062		 * PCI Expansion ROM Code Types
10063		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
10064		 * 0x01: Open Firmware standard for PCI. FCODE
10065		 * 0x02: Hewlett-Packard PA RISC. HP reserved
10066		 * 0x03: EFI Image. EFI
10067		 * 0x04-0xFF: Reserved.
10068		 */
10069	u8	indicator; /* Indicator. Identifies the last image in the ROM */
10070	u8	reserved[2]; /* Reserved */
10071} pcir_data_t; /* PCI__DATA_STRUCTURE */
10072
10073/* BOOT constants */
10074enum {
10075	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
10076	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
10077	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
10078	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
10079	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
10080	VENDOR_ID = 0x1425, /* Vendor ID */
10081	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
10082};
10083
10084/*
10085 *	modify_device_id - Modifies the device ID of the Boot BIOS image
10086 *	@adatper: the device ID to write.
10087 *	@boot_data: the boot image to modify.
10088 *
10089 *	Write the supplied device ID to the boot BIOS image.
10090 */
10091static void modify_device_id(int device_id, u8 *boot_data)
10092{
10093	legacy_pci_exp_rom_header_t *header;
10094	pcir_data_t *pcir_header;
10095	u32 cur_header = 0;
10096
10097	/*
10098	 * Loop through all chained images and change the device ID's
10099	 */
10100	while (1) {
10101		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
10102		pcir_header = (pcir_data_t *) &boot_data[cur_header +
10103			      le16_to_cpu(*(u16*)header->pcir_offset)];
10104
10105		/*
10106		 * Only modify the Device ID if code type is Legacy or HP.
10107		 * 0x00: Okay to modify
10108		 * 0x01: FCODE. Do not be modify
10109		 * 0x03: Okay to modify
10110		 * 0x04-0xFF: Do not modify
10111		 */
10112		if (pcir_header->code_type == 0x00) {
10113			u8 csum = 0;
10114			int i;
10115
10116			/*
10117			 * Modify Device ID to match current adatper
10118			 */
10119			*(u16*) pcir_header->device_id = device_id;
10120
10121			/*
10122			 * Set checksum temporarily to 0.
10123			 * We will recalculate it later.
10124			 */
10125			header->cksum = 0x0;
10126
10127			/*
10128			 * Calculate and update checksum
10129			 */
10130			for (i = 0; i < (header->size512 * 512); i++)
10131				csum += (u8)boot_data[cur_header + i];
10132
10133			/*
10134			 * Invert summed value to create the checksum
10135			 * Writing new checksum value directly to the boot data
10136			 */
10137			boot_data[cur_header + 7] = -csum;
10138
10139		} else if (pcir_header->code_type == 0x03) {
10140
10141			/*
10142			 * Modify Device ID to match current adatper
10143			 */
10144			*(u16*) pcir_header->device_id = device_id;
10145
10146		}
10147
10148
10149		/*
10150		 * Check indicator element to identify if this is the last
10151		 * image in the ROM.
10152		 */
10153		if (pcir_header->indicator & 0x80)
10154			break;
10155
10156		/*
10157		 * Move header pointer up to the next image in the ROM.
10158		 */
10159		cur_header += header->size512 * 512;
10160	}
10161}
10162
10163/*
10164 *	t4_load_boot - download boot flash
10165 *	@adapter: the adapter
10166 *	@boot_data: the boot image to write
10167 *	@boot_addr: offset in flash to write boot_data
10168 *	@size: image size
10169 *
10170 *	Write the supplied boot image to the card's serial flash.
10171 *	The boot image has the following sections: a 28-byte header and the
10172 *	boot image.
10173 */
10174int t4_load_boot(struct adapter *adap, u8 *boot_data,
10175		 unsigned int boot_addr, unsigned int size)
10176{
10177	pci_exp_rom_header_t *header;
10178	int pcir_offset ;
10179	pcir_data_t *pcir_header;
10180	int ret, addr;
10181	uint16_t device_id;
10182	unsigned int i;
10183	unsigned int boot_sector = (boot_addr * 1024 );
10184	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10185
10186	/*
10187	 * Make sure the boot image does not encroach on the firmware region
10188	 */
10189	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
10190		CH_ERR(adap, "boot image encroaching on firmware region\n");
10191		return -EFBIG;
10192	}
10193
10194	/*
10195	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
10196	 * and Boot configuration data sections. These 3 boot sections span
10197	 * sectors 0 to 7 in flash and live right before the FW image location.
10198	 */
10199	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
10200			sf_sec_size);
10201	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
10202				     (boot_sector >> 16) + i - 1);
10203
10204	/*
10205	 * If size == 0 then we're simply erasing the FLASH sectors associated
10206	 * with the on-adapter option ROM file
10207	 */
10208	if (ret || (size == 0))
10209		goto out;
10210
10211	/* Get boot header */
10212	header = (pci_exp_rom_header_t *)boot_data;
10213	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
10214	/* PCIR Data Structure */
10215	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
10216
10217	/*
10218	 * Perform some primitive sanity testing to avoid accidentally
10219	 * writing garbage over the boot sectors.  We ought to check for
10220	 * more but it's not worth it for now ...
10221	 */
10222	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
10223		CH_ERR(adap, "boot image too small/large\n");
10224		return -EFBIG;
10225	}
10226
10227#ifndef CHELSIO_T4_DIAGS
10228	/*
10229	 * Check BOOT ROM header signature
10230	 */
10231	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
10232		CH_ERR(adap, "Boot image missing signature\n");
10233		return -EINVAL;
10234	}
10235
10236	/*
10237	 * Check PCI header signature
10238	 */
10239	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
10240		CH_ERR(adap, "PCI header missing signature\n");
10241		return -EINVAL;
10242	}
10243
10244	/*
10245	 * Check Vendor ID matches Chelsio ID
10246	 */
10247	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
10248		CH_ERR(adap, "Vendor ID missing signature\n");
10249		return -EINVAL;
10250	}
10251#endif
10252
10253	/*
10254	 * Retrieve adapter's device ID
10255	 */
10256	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
10257	/* Want to deal with PF 0 so I strip off PF 4 indicator */
10258	device_id = device_id & 0xf0ff;
10259
10260	/*
10261	 * Check PCIE Device ID
10262	 */
10263	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
10264		/*
10265		 * Change the device ID in the Boot BIOS image to match
10266		 * the Device ID of the current adapter.
10267		 */
10268		modify_device_id(device_id, boot_data);
10269	}
10270
10271	/*
10272	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
10273	 * we finish copying the rest of the boot image. This will ensure
10274	 * that the BIOS boot header will only be written if the boot image
10275	 * was written in full.
10276	 */
10277	addr = boot_sector;
10278	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
10279		addr += SF_PAGE_SIZE;
10280		boot_data += SF_PAGE_SIZE;
10281		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
10282		if (ret)
10283			goto out;
10284	}
10285
10286	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
10287			     (const u8 *)header, 0);
10288
10289out:
10290	if (ret)
10291		CH_ERR(adap, "boot image download failed, error %d\n", ret);
10292	return ret;
10293}
10294
10295/*
10296 *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
10297 *	@adapter: the adapter
10298 *
10299 *	Return the address within the flash where the OptionROM Configuration
10300 *	is stored, or an error if the device FLASH is too small to contain
10301 *	a OptionROM Configuration.
10302 */
10303static int t4_flash_bootcfg_addr(struct adapter *adapter)
10304{
10305	/*
10306	 * If the device FLASH isn't large enough to hold a Firmware
10307	 * Configuration File, return an error.
10308	 */
10309	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
10310		return -ENOSPC;
10311
10312	return FLASH_BOOTCFG_START;
10313}
10314
10315int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
10316{
10317	int ret, i, n, cfg_addr;
10318	unsigned int addr;
10319	unsigned int flash_cfg_start_sec;
10320	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
10321
10322	cfg_addr = t4_flash_bootcfg_addr(adap);
10323	if (cfg_addr < 0)
10324		return cfg_addr;
10325
10326	addr = cfg_addr;
10327	flash_cfg_start_sec = addr / SF_SEC_SIZE;
10328
10329	if (size > FLASH_BOOTCFG_MAX_SIZE) {
10330		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
10331			FLASH_BOOTCFG_MAX_SIZE);
10332		return -EFBIG;
10333	}
10334
10335	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
10336			 sf_sec_size);
10337	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
10338					flash_cfg_start_sec + i - 1);
10339
10340	/*
10341	 * If size == 0 then we're simply erasing the FLASH sectors associated
10342	 * with the on-adapter OptionROM Configuration File.
10343	 */
10344	if (ret || size == 0)
10345		goto out;
10346
10347	/* this will write to the flash up to SF_PAGE_SIZE at a time */
10348	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
10349		if ( (size - i) <  SF_PAGE_SIZE)
10350			n = size - i;
10351		else
10352			n = SF_PAGE_SIZE;
10353		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
10354		if (ret)
10355			goto out;
10356
10357		addr += SF_PAGE_SIZE;
10358		cfg_data += SF_PAGE_SIZE;
10359	}
10360
10361out:
10362	if (ret)
10363		CH_ERR(adap, "boot config data %s failed %d\n",
10364				(size == 0 ? "clear" : "download"), ret);
10365	return ret;
10366}
10367
10368/**
10369 *	t4_set_filter_mode - configure the optional components of filter tuples
10370 *	@adap: the adapter
10371 *	@mode_map: a bitmap selcting which optional filter components to enable
10372 * 	@sleep_ok: if true we may sleep while awaiting command completion
10373 *
10374 *	Sets the filter mode by selecting the optional components to enable
10375 *	in filter tuples.  Returns 0 on success and a negative error if the
10376 *	requested mode needs more bits than are available for optional
10377 *	components.
10378 */
10379int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
10380		       bool sleep_ok)
10381{
10382	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
10383
10384	int i, nbits = 0;
10385
10386	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
10387		if (mode_map & (1 << i))
10388			nbits += width[i];
10389	if (nbits > FILTER_OPT_LEN)
10390		return -EINVAL;
10391	t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
10392	read_filter_mode_and_ingress_config(adap, sleep_ok);
10393
10394	return 0;
10395}
10396
10397/**
10398 *	t4_clr_port_stats - clear port statistics
10399 *	@adap: the adapter
10400 *	@idx: the port index
10401 *
10402 *	Clear HW statistics for the given port.
10403 */
10404void t4_clr_port_stats(struct adapter *adap, int idx)
10405{
10406	unsigned int i;
10407	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
10408	u32 port_base_addr;
10409
10410	if (is_t4(adap))
10411		port_base_addr = PORT_BASE(idx);
10412	else
10413		port_base_addr = T5_PORT_BASE(idx);
10414
10415	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
10416			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
10417		t4_write_reg(adap, port_base_addr + i, 0);
10418	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
10419			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
10420		t4_write_reg(adap, port_base_addr + i, 0);
10421	for (i = 0; i < 4; i++)
10422		if (bgmap & (1 << i)) {
10423			t4_write_reg(adap,
10424			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
10425			t4_write_reg(adap,
10426			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
10427		}
10428}
10429
10430/**
10431 *	t4_i2c_rd - read I2C data from adapter
10432 *	@adap: the adapter
10433 *	@port: Port number if per-port device; <0 if not
10434 *	@devid: per-port device ID or absolute device ID
10435 *	@offset: byte offset into device I2C space
10436 *	@len: byte length of I2C space data
10437 *	@buf: buffer in which to return I2C data
10438 *
10439 *	Reads the I2C data from the indicated device and location.
10440 */
10441int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
10442	      int port, unsigned int devid,
10443	      unsigned int offset, unsigned int len,
10444	      u8 *buf)
10445{
10446	u32 ldst_addrspace;
10447	struct fw_ldst_cmd ldst;
10448	int ret;
10449
10450	if (port >= 4 ||
10451	    devid >= 256 ||
10452	    offset >= 256 ||
10453	    len > sizeof ldst.u.i2c.data)
10454		return -EINVAL;
10455
10456	memset(&ldst, 0, sizeof ldst);
10457	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
10458	ldst.op_to_addrspace =
10459		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10460			    F_FW_CMD_REQUEST |
10461			    F_FW_CMD_READ |
10462			    ldst_addrspace);
10463	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
10464	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
10465	ldst.u.i2c.did = devid;
10466	ldst.u.i2c.boffset = offset;
10467	ldst.u.i2c.blen = len;
10468	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
10469	if (!ret)
10470		memcpy(buf, ldst.u.i2c.data, len);
10471	return ret;
10472}
10473
10474/**
10475 *	t4_i2c_wr - write I2C data to adapter
10476 *	@adap: the adapter
10477 *	@port: Port number if per-port device; <0 if not
10478 *	@devid: per-port device ID or absolute device ID
10479 *	@offset: byte offset into device I2C space
10480 *	@len: byte length of I2C space data
10481 *	@buf: buffer containing new I2C data
10482 *
10483 *	Write the I2C data to the indicated device and location.
10484 */
10485int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
10486	      int port, unsigned int devid,
10487	      unsigned int offset, unsigned int len,
10488	      u8 *buf)
10489{
10490	u32 ldst_addrspace;
10491	struct fw_ldst_cmd ldst;
10492
10493	if (port >= 4 ||
10494	    devid >= 256 ||
10495	    offset >= 256 ||
10496	    len > sizeof ldst.u.i2c.data)
10497		return -EINVAL;
10498
10499	memset(&ldst, 0, sizeof ldst);
10500	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
10501	ldst.op_to_addrspace =
10502		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10503			    F_FW_CMD_REQUEST |
10504			    F_FW_CMD_WRITE |
10505			    ldst_addrspace);
10506	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
10507	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
10508	ldst.u.i2c.did = devid;
10509	ldst.u.i2c.boffset = offset;
10510	ldst.u.i2c.blen = len;
10511	memcpy(ldst.u.i2c.data, buf, len);
10512	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
10513}
10514
10515/**
10516 * 	t4_sge_ctxt_rd - read an SGE context through FW
10517 * 	@adap: the adapter
10518 * 	@mbox: mailbox to use for the FW command
10519 * 	@cid: the context id
10520 * 	@ctype: the context type
10521 * 	@data: where to store the context data
10522 *
10523 * 	Issues a FW command through the given mailbox to read an SGE context.
10524 */
10525int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
10526		   enum ctxt_type ctype, u32 *data)
10527{
10528	int ret;
10529	struct fw_ldst_cmd c;
10530
10531	if (ctype == CTXT_EGRESS)
10532		ret = FW_LDST_ADDRSPC_SGE_EGRC;
10533	else if (ctype == CTXT_INGRESS)
10534		ret = FW_LDST_ADDRSPC_SGE_INGC;
10535	else if (ctype == CTXT_FLM)
10536		ret = FW_LDST_ADDRSPC_SGE_FLMC;
10537	else
10538		ret = FW_LDST_ADDRSPC_SGE_CONMC;
10539
10540	memset(&c, 0, sizeof(c));
10541	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
10542					F_FW_CMD_REQUEST | F_FW_CMD_READ |
10543					V_FW_LDST_CMD_ADDRSPACE(ret));
10544	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
10545	c.u.idctxt.physid = cpu_to_be32(cid);
10546
10547	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
10548	if (ret == 0) {
10549		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
10550		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
10551		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
10552		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
10553		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
10554		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
10555	}
10556	return ret;
10557}
10558
10559/**
10560 * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
10561 * 	@adap: the adapter
10562 * 	@cid: the context id
10563 * 	@ctype: the context type
10564 * 	@data: where to store the context data
10565 *
10566 * 	Reads an SGE context directly, bypassing FW.  This is only for
10567 * 	debugging when FW is unavailable.
10568 */
10569int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
10570		      u32 *data)
10571{
10572	int i, ret;
10573
10574	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
10575	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
10576	if (!ret)
10577		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
10578			*data++ = t4_read_reg(adap, i);
10579	return ret;
10580}
10581
10582int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
10583    int sleep_ok)
10584{
10585	struct fw_sched_cmd cmd;
10586
10587	memset(&cmd, 0, sizeof(cmd));
10588	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10589				      F_FW_CMD_REQUEST |
10590				      F_FW_CMD_WRITE);
10591	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10592
10593	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
10594	cmd.u.config.type = type;
10595	cmd.u.config.minmaxen = minmaxen;
10596
10597	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10598			       NULL, sleep_ok);
10599}
10600
10601int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
10602		    int rateunit, int ratemode, int channel, int cl,
10603		    int minrate, int maxrate, int weight, int pktsize,
10604		    int burstsize, int sleep_ok)
10605{
10606	struct fw_sched_cmd cmd;
10607
10608	memset(&cmd, 0, sizeof(cmd));
10609	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10610				      F_FW_CMD_REQUEST |
10611				      F_FW_CMD_WRITE);
10612	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10613
10614	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10615	cmd.u.params.type = type;
10616	cmd.u.params.level = level;
10617	cmd.u.params.mode = mode;
10618	cmd.u.params.ch = channel;
10619	cmd.u.params.cl = cl;
10620	cmd.u.params.unit = rateunit;
10621	cmd.u.params.rate = ratemode;
10622	cmd.u.params.min = cpu_to_be32(minrate);
10623	cmd.u.params.max = cpu_to_be32(maxrate);
10624	cmd.u.params.weight = cpu_to_be16(weight);
10625	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10626	cmd.u.params.burstsize = cpu_to_be16(burstsize);
10627
10628	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10629			       NULL, sleep_ok);
10630}
10631
10632int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
10633    unsigned int maxrate, int sleep_ok)
10634{
10635	struct fw_sched_cmd cmd;
10636
10637	memset(&cmd, 0, sizeof(cmd));
10638	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10639				      F_FW_CMD_REQUEST |
10640				      F_FW_CMD_WRITE);
10641	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10642
10643	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10644	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10645	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
10646	cmd.u.params.ch = channel;
10647	cmd.u.params.rate = ratemode;		/* REL or ABS */
10648	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
10649
10650	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10651			       NULL, sleep_ok);
10652}
10653
10654int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
10655    int weight, int sleep_ok)
10656{
10657	struct fw_sched_cmd cmd;
10658
10659	if (weight < 0 || weight > 100)
10660		return -EINVAL;
10661
10662	memset(&cmd, 0, sizeof(cmd));
10663	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10664				      F_FW_CMD_REQUEST |
10665				      F_FW_CMD_WRITE);
10666	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10667
10668	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10669	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10670	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
10671	cmd.u.params.ch = channel;
10672	cmd.u.params.cl = cl;
10673	cmd.u.params.weight = cpu_to_be16(weight);
10674
10675	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10676			       NULL, sleep_ok);
10677}
10678
10679int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
10680    int mode, unsigned int maxrate, int pktsize, int sleep_ok)
10681{
10682	struct fw_sched_cmd cmd;
10683
10684	memset(&cmd, 0, sizeof(cmd));
10685	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
10686				      F_FW_CMD_REQUEST |
10687				      F_FW_CMD_WRITE);
10688	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
10689
10690	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
10691	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
10692	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
10693	cmd.u.params.mode = mode;
10694	cmd.u.params.ch = channel;
10695	cmd.u.params.cl = cl;
10696	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
10697	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
10698	cmd.u.params.max = cpu_to_be32(maxrate);
10699	cmd.u.params.pktsize = cpu_to_be16(pktsize);
10700
10701	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
10702			       NULL, sleep_ok);
10703}
10704
10705/*
10706 *	t4_config_watchdog - configure (enable/disable) a watchdog timer
10707 *	@adapter: the adapter
10708 * 	@mbox: mailbox to use for the FW command
10709 * 	@pf: the PF owning the queue
10710 * 	@vf: the VF owning the queue
10711 *	@timeout: watchdog timeout in ms
10712 *	@action: watchdog timer / action
10713 *
10714 *	There are separate watchdog timers for each possible watchdog
10715 *	action.  Configure one of the watchdog timers by setting a non-zero
10716 *	timeout.  Disable a watchdog timer by using a timeout of zero.
10717 */
10718int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
10719		       unsigned int pf, unsigned int vf,
10720		       unsigned int timeout, unsigned int action)
10721{
10722	struct fw_watchdog_cmd wdog;
10723	unsigned int ticks;
10724
10725	/*
10726	 * The watchdog command expects a timeout in units of 10ms so we need
10727	 * to convert it here (via rounding) and force a minimum of one 10ms
10728	 * "tick" if the timeout is non-zero but the conversion results in 0
10729	 * ticks.
10730	 */
10731	ticks = (timeout + 5)/10;
10732	if (timeout && !ticks)
10733		ticks = 1;
10734
10735	memset(&wdog, 0, sizeof wdog);
10736	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
10737				     F_FW_CMD_REQUEST |
10738				     F_FW_CMD_WRITE |
10739				     V_FW_PARAMS_CMD_PFN(pf) |
10740				     V_FW_PARAMS_CMD_VFN(vf));
10741	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
10742	wdog.timeout = cpu_to_be32(ticks);
10743	wdog.action = cpu_to_be32(action);
10744
10745	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
10746}
10747
10748int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
10749{
10750	struct fw_devlog_cmd devlog_cmd;
10751	int ret;
10752
10753	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10754	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10755					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
10756	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10757	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10758			 sizeof(devlog_cmd), &devlog_cmd);
10759	if (ret)
10760		return ret;
10761
10762	*level = devlog_cmd.level;
10763	return 0;
10764}
10765
10766int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
10767{
10768	struct fw_devlog_cmd devlog_cmd;
10769
10770	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
10771	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
10772					     F_FW_CMD_REQUEST |
10773					     F_FW_CMD_WRITE);
10774	devlog_cmd.level = level;
10775	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
10776	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
10777			  sizeof(devlog_cmd), &devlog_cmd);
10778}
10779