t4_hw.c revision 331769
1/*-
2 * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/dev/cxgbe/common/t4_hw.c 331769 2018-03-30 18:06:29Z hselasky $");
29
30#include "opt_inet.h"
31
32#include <sys/param.h>
33#include <sys/eventhandler.h>
34
35#include "common.h"
36#include "t4_regs.h"
37#include "t4_regs_values.h"
38#include "firmware/t4fw_interface.h"
39
40#undef msleep
41#define msleep(x) do { \
42	if (cold) \
43		DELAY((x) * 1000); \
44	else \
45		pause("t4hw", (x) * hz / 1000); \
46} while (0)
47
48/**
49 *	t4_wait_op_done_val - wait until an operation is completed
50 *	@adapter: the adapter performing the operation
51 *	@reg: the register to check for completion
52 *	@mask: a single-bit field within @reg that indicates completion
53 *	@polarity: the value of the field when the operation is completed
54 *	@attempts: number of check iterations
55 *	@delay: delay in usecs between iterations
56 *	@valp: where to store the value of the register at completion time
57 *
58 *	Wait until an operation is completed by checking a bit in a register
59 *	up to @attempts times.  If @valp is not NULL the value of the register
60 *	at the time it indicated completion is stored there.  Returns 0 if the
61 *	operation completes and	-EAGAIN	otherwise.
62 */
63static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
64			       int polarity, int attempts, int delay, u32 *valp)
65{
66	while (1) {
67		u32 val = t4_read_reg(adapter, reg);
68
69		if (!!(val & mask) == polarity) {
70			if (valp)
71				*valp = val;
72			return 0;
73		}
74		if (--attempts == 0)
75			return -EAGAIN;
76		if (delay)
77			udelay(delay);
78	}
79}
80
81static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
82				  int polarity, int attempts, int delay)
83{
84	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
85				   delay, NULL);
86}
87
88/**
89 *	t4_set_reg_field - set a register field to a value
90 *	@adapter: the adapter to program
91 *	@addr: the register address
92 *	@mask: specifies the portion of the register to modify
93 *	@val: the new value for the register field
94 *
95 *	Sets a register field specified by the supplied mask to the
96 *	given value.
97 */
98void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
99		      u32 val)
100{
101	u32 v = t4_read_reg(adapter, addr) & ~mask;
102
103	t4_write_reg(adapter, addr, v | val);
104	(void) t4_read_reg(adapter, addr);      /* flush */
105}
106
107/**
108 *	t4_read_indirect - read indirectly addressed registers
109 *	@adap: the adapter
110 *	@addr_reg: register holding the indirect address
111 *	@data_reg: register holding the value of the indirect register
112 *	@vals: where the read register values are stored
113 *	@nregs: how many indirect registers to read
114 *	@start_idx: index of first indirect register to read
115 *
116 *	Reads registers that are accessed indirectly through an address/data
117 *	register pair.
118 */
119void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
120			     unsigned int data_reg, u32 *vals,
121			     unsigned int nregs, unsigned int start_idx)
122{
123	while (nregs--) {
124		t4_write_reg(adap, addr_reg, start_idx);
125		*vals++ = t4_read_reg(adap, data_reg);
126		start_idx++;
127	}
128}
129
130/**
131 *	t4_write_indirect - write indirectly addressed registers
132 *	@adap: the adapter
133 *	@addr_reg: register holding the indirect addresses
134 *	@data_reg: register holding the value for the indirect registers
135 *	@vals: values to write
136 *	@nregs: how many indirect registers to write
137 *	@start_idx: address of first indirect register to write
138 *
139 *	Writes a sequential block of registers that are accessed indirectly
140 *	through an address/data register pair.
141 */
142void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
143		       unsigned int data_reg, const u32 *vals,
144		       unsigned int nregs, unsigned int start_idx)
145{
146	while (nregs--) {
147		t4_write_reg(adap, addr_reg, start_idx++);
148		t4_write_reg(adap, data_reg, *vals++);
149	}
150}
151
152/*
153 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
154 * mechanism.  This guarantees that we get the real value even if we're
155 * operating within a Virtual Machine and the Hypervisor is trapping our
156 * Configuration Space accesses.
157 *
158 * N.B. This routine should only be used as a last resort: the firmware uses
159 *      the backdoor registers on a regular basis and we can end up
160 *      conflicting with it's uses!
161 */
162u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
163{
164	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
165	u32 val;
166
167	if (chip_id(adap) <= CHELSIO_T5)
168		req |= F_ENABLE;
169	else
170		req |= F_T6_ENABLE;
171
172	if (is_t4(adap))
173		req |= F_LOCALCFG;
174
175	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
176	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
177
178	/*
179	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
180	 * Configuration Space read.  (None of the other fields matter when
181	 * F_ENABLE is 0 so a simple register write is easier than a
182	 * read-modify-write via t4_set_reg_field().)
183	 */
184	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
185
186	return val;
187}
188
189/*
190 * t4_report_fw_error - report firmware error
191 * @adap: the adapter
192 *
193 * The adapter firmware can indicate error conditions to the host.
194 * If the firmware has indicated an error, print out the reason for
195 * the firmware error.
196 */
197static void t4_report_fw_error(struct adapter *adap)
198{
199	static const char *const reason[] = {
200		"Crash",			/* PCIE_FW_EVAL_CRASH */
201		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
202		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
203		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
204		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
205		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
206		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
207		"Reserved",			/* reserved */
208	};
209	u32 pcie_fw;
210
211	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
212	if (pcie_fw & F_PCIE_FW_ERR)
213		CH_ERR(adap, "Firmware reports adapter error: %s\n",
214			reason[G_PCIE_FW_EVAL(pcie_fw)]);
215}
216
217/*
218 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
219 */
220static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
221			 u32 mbox_addr)
222{
223	for ( ; nflit; nflit--, mbox_addr += 8)
224		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
225}
226
227/*
228 * Handle a FW assertion reported in a mailbox.
229 */
230static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
231{
232	CH_ALERT(adap,
233		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
234		  asrt->u.assert.filename_0_7,
235		  be32_to_cpu(asrt->u.assert.line),
236		  be32_to_cpu(asrt->u.assert.x),
237		  be32_to_cpu(asrt->u.assert.y));
238}
239
240#define X_CIM_PF_NOACCESS 0xeeeeeeee
241/**
242 *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243 *	@adap: the adapter
244 *	@mbox: index of the mailbox to use
245 *	@cmd: the command to write
246 *	@size: command length in bytes
247 *	@rpl: where to optionally store the reply
248 *	@sleep_ok: if true we may sleep while awaiting command completion
249 *	@timeout: time to wait for command to finish before timing out
250 *		(negative implies @sleep_ok=false)
251 *
252 *	Sends the given command to FW through the selected mailbox and waits
253 *	for the FW to execute the command.  If @rpl is not %NULL it is used to
254 *	store the FW's reply to the command.  The command and its optional
255 *	reply are of the same length.  Some FW commands like RESET and
256 *	INITIALIZE can take a considerable amount of time to execute.
257 *	@sleep_ok determines whether we may sleep while awaiting the response.
258 *	If sleeping is allowed we use progressive backoff otherwise we spin.
259 *	Note that passing in a negative @timeout is an alternate mechanism
260 *	for specifying @sleep_ok=false.  This is useful when a higher level
261 *	interface allows for specification of @timeout but not @sleep_ok ...
262 *
263 *	The return value is 0 on success or a negative errno on failure.  A
264 *	failure can happen either because we are not able to execute the
265 *	command or FW executes it but signals an error.  In the latter case
266 *	the return value is the error code indicated by FW (negated).
267 */
268int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
269			    int size, void *rpl, bool sleep_ok, int timeout)
270{
271	/*
272	 * We delay in small increments at first in an effort to maintain
273	 * responsiveness for simple, fast executing commands but then back
274	 * off to larger delays to a maximum retry delay.
275	 */
276	static const int delay[] = {
277		1, 1, 3, 5, 10, 10, 20, 50, 100
278	};
279	u32 v;
280	u64 res;
281	int i, ms, delay_idx, ret;
282	const __be64 *p = cmd;
283	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
284	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
285	u32 ctl;
286	__be64 cmd_rpl[MBOX_LEN/8];
287	u32 pcie_fw;
288
289	if (adap->flags & CHK_MBOX_ACCESS)
290		ASSERT_SYNCHRONIZED_OP(adap);
291
292	if ((size & 15) || size > MBOX_LEN)
293		return -EINVAL;
294
295	if (adap->flags & IS_VF) {
296		if (is_t6(adap))
297			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
298		else
299			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
300		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
301	}
302
303	/*
304	 * If we have a negative timeout, that implies that we can't sleep.
305	 */
306	if (timeout < 0) {
307		sleep_ok = false;
308		timeout = -timeout;
309	}
310
311	/*
312	 * Attempt to gain access to the mailbox.
313	 */
314	for (i = 0; i < 4; i++) {
315		ctl = t4_read_reg(adap, ctl_reg);
316		v = G_MBOWNER(ctl);
317		if (v != X_MBOWNER_NONE)
318			break;
319	}
320
321	/*
322	 * If we were unable to gain access, dequeue ourselves from the
323	 * mailbox atomic access list and report the error to our caller.
324	 */
325	if (v != X_MBOWNER_PL) {
326		t4_report_fw_error(adap);
327		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
328		return ret;
329	}
330
331	/*
332	 * If we gain ownership of the mailbox and there's a "valid" message
333	 * in it, this is likely an asynchronous error message from the
334	 * firmware.  So we'll report that and then proceed on with attempting
335	 * to issue our own command ... which may well fail if the error
336	 * presaged the firmware crashing ...
337	 */
338	if (ctl & F_MBMSGVALID) {
339		CH_ERR(adap, "found VALID command in mbox %u: %016llx %016llx "
340		       "%016llx %016llx %016llx %016llx %016llx %016llx\n",
341		       mbox, (unsigned long long)t4_read_reg64(adap, data_reg),
342		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
343		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
344		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
345		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
346		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
347		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
348		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
349	}
350
351	/*
352	 * Copy in the new mailbox command and send it on its way ...
353	 */
354	for (i = 0; i < size; i += 8, p++)
355		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
356
357	if (adap->flags & IS_VF) {
358		/*
359		 * For the VFs, the Mailbox Data "registers" are
360		 * actually backed by T4's "MA" interface rather than
361		 * PL Registers (as is the case for the PFs).  Because
362		 * these are in different coherency domains, the write
363		 * to the VF's PL-register-backed Mailbox Control can
364		 * race in front of the writes to the MA-backed VF
365		 * Mailbox Data "registers".  So we need to do a
366		 * read-back on at least one byte of the VF Mailbox
367		 * Data registers before doing the write to the VF
368		 * Mailbox Control register.
369		 */
370		t4_read_reg(adap, data_reg);
371	}
372
373	CH_DUMP_MBOX(adap, mbox, data_reg);
374
375	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
376	t4_read_reg(adap, ctl_reg);	/* flush write */
377
378	delay_idx = 0;
379	ms = delay[0];
380
381	/*
382	 * Loop waiting for the reply; bail out if we time out or the firmware
383	 * reports an error.
384	 */
385	pcie_fw = 0;
386	for (i = 0; i < timeout; i += ms) {
387		if (!(adap->flags & IS_VF)) {
388			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
389			if (pcie_fw & F_PCIE_FW_ERR)
390				break;
391		}
392		if (sleep_ok) {
393			ms = delay[delay_idx];  /* last element may repeat */
394			if (delay_idx < ARRAY_SIZE(delay) - 1)
395				delay_idx++;
396			msleep(ms);
397		} else {
398			mdelay(ms);
399		}
400
401		v = t4_read_reg(adap, ctl_reg);
402		if (v == X_CIM_PF_NOACCESS)
403			continue;
404		if (G_MBOWNER(v) == X_MBOWNER_PL) {
405			if (!(v & F_MBMSGVALID)) {
406				t4_write_reg(adap, ctl_reg,
407					     V_MBOWNER(X_MBOWNER_NONE));
408				continue;
409			}
410
411			/*
412			 * Retrieve the command reply and release the mailbox.
413			 */
414			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
415			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
416
417			CH_DUMP_MBOX(adap, mbox, data_reg);
418
419			res = be64_to_cpu(cmd_rpl[0]);
420			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
421				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
422				res = V_FW_CMD_RETVAL(EIO);
423			} else if (rpl)
424				memcpy(rpl, cmd_rpl, size);
425			return -G_FW_CMD_RETVAL((int)res);
426		}
427	}
428
429	/*
430	 * We timed out waiting for a reply to our mailbox command.  Report
431	 * the error and also check to see if the firmware reported any
432	 * errors ...
433	 */
434	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
435	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
436	       *(const u8 *)cmd, mbox);
437
438	/* If DUMP_MBOX is set the mbox has already been dumped */
439	if ((adap->debug_flags & DF_DUMP_MBOX) == 0) {
440		p = cmd;
441		CH_ERR(adap, "mbox: %016llx %016llx %016llx %016llx "
442		    "%016llx %016llx %016llx %016llx\n",
443		    (unsigned long long)be64_to_cpu(p[0]),
444		    (unsigned long long)be64_to_cpu(p[1]),
445		    (unsigned long long)be64_to_cpu(p[2]),
446		    (unsigned long long)be64_to_cpu(p[3]),
447		    (unsigned long long)be64_to_cpu(p[4]),
448		    (unsigned long long)be64_to_cpu(p[5]),
449		    (unsigned long long)be64_to_cpu(p[6]),
450		    (unsigned long long)be64_to_cpu(p[7]));
451	}
452
453	t4_report_fw_error(adap);
454	t4_fatal_err(adap);
455	return ret;
456}
457
458int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
459		    void *rpl, bool sleep_ok)
460{
461		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
462					       sleep_ok, FW_CMD_MAX_TIMEOUT);
463
464}
465
466static int t4_edc_err_read(struct adapter *adap, int idx)
467{
468	u32 edc_ecc_err_addr_reg;
469	u32 edc_bist_status_rdata_reg;
470
471	if (is_t4(adap)) {
472		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
473		return 0;
474	}
475	if (idx != MEM_EDC0 && idx != MEM_EDC1) {
476		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
477		return 0;
478	}
479
480	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
481	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
482
483	CH_WARN(adap,
484		"edc%d err addr 0x%x: 0x%x.\n",
485		idx, edc_ecc_err_addr_reg,
486		t4_read_reg(adap, edc_ecc_err_addr_reg));
487	CH_WARN(adap,
488	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
489		edc_bist_status_rdata_reg,
490		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
491		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
492		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
493		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
494		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
495		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
496		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
497		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
498		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
499
500	return 0;
501}
502
503/**
504 *	t4_mc_read - read from MC through backdoor accesses
505 *	@adap: the adapter
506 *	@idx: which MC to access
507 *	@addr: address of first byte requested
508 *	@data: 64 bytes of data containing the requested address
509 *	@ecc: where to store the corresponding 64-bit ECC word
510 *
511 *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
512 *	that covers the requested address @addr.  If @parity is not %NULL it
513 *	is assigned the 64-bit ECC word for the read data.
514 */
515int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
516{
517	int i;
518	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
519	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
520
521	if (is_t4(adap)) {
522		mc_bist_cmd_reg = A_MC_BIST_CMD;
523		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
524		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
525		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
526		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
527	} else {
528		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
529		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
530		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
531		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
532						  idx);
533		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
534						  idx);
535	}
536
537	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
538		return -EBUSY;
539	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
540	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
541	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
542	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
543		     F_START_BIST | V_BIST_CMD_GAP(1));
544	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
545	if (i)
546		return i;
547
548#define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
549
550	for (i = 15; i >= 0; i--)
551		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
552	if (ecc)
553		*ecc = t4_read_reg64(adap, MC_DATA(16));
554#undef MC_DATA
555	return 0;
556}
557
558/**
559 *	t4_edc_read - read from EDC through backdoor accesses
560 *	@adap: the adapter
561 *	@idx: which EDC to access
562 *	@addr: address of first byte requested
563 *	@data: 64 bytes of data containing the requested address
564 *	@ecc: where to store the corresponding 64-bit ECC word
565 *
566 *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
567 *	that covers the requested address @addr.  If @parity is not %NULL it
568 *	is assigned the 64-bit ECC word for the read data.
569 */
570int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
571{
572	int i;
573	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
574	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
575
576	if (is_t4(adap)) {
577		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
578		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
579		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
580		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
581						    idx);
582		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
583						    idx);
584	} else {
585/*
586 * These macro are missing in t4_regs.h file.
587 * Added temporarily for testing.
588 */
589#define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
590#define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
591		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
592		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
593		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
594		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
595						    idx);
596		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
597						    idx);
598#undef EDC_REG_T5
599#undef EDC_STRIDE_T5
600	}
601
602	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
603		return -EBUSY;
604	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
605	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
606	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
607	t4_write_reg(adap, edc_bist_cmd_reg,
608		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
609	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
610	if (i)
611		return i;
612
613#define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
614
615	for (i = 15; i >= 0; i--)
616		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
617	if (ecc)
618		*ecc = t4_read_reg64(adap, EDC_DATA(16));
619#undef EDC_DATA
620	return 0;
621}
622
623/**
624 *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
625 *	@adap: the adapter
626 *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
627 *	@addr: address within indicated memory type
628 *	@len: amount of memory to read
629 *	@buf: host memory buffer
630 *
631 *	Reads an [almost] arbitrary memory region in the firmware: the
632 *	firmware memory address, length and host buffer must be aligned on
633 *	32-bit boudaries.  The memory is returned as a raw byte sequence from
634 *	the firmware's memory.  If this memory contains data structures which
635 *	contain multi-byte integers, it's the callers responsibility to
636 *	perform appropriate byte order conversions.
637 */
638int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
639		__be32 *buf)
640{
641	u32 pos, start, end, offset;
642	int ret;
643
644	/*
645	 * Argument sanity checks ...
646	 */
647	if ((addr & 0x3) || (len & 0x3))
648		return -EINVAL;
649
650	/*
651	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
652	 * need to round down the start and round up the end.  We'll start
653	 * copying out of the first line at (addr - start) a word at a time.
654	 */
655	start = rounddown2(addr, 64);
656	end = roundup2(addr + len, 64);
657	offset = (addr - start)/sizeof(__be32);
658
659	for (pos = start; pos < end; pos += 64, offset = 0) {
660		__be32 data[16];
661
662		/*
663		 * Read the chip's memory block and bail if there's an error.
664		 */
665		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
666			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
667		else
668			ret = t4_edc_read(adap, mtype, pos, data, NULL);
669		if (ret)
670			return ret;
671
672		/*
673		 * Copy the data into the caller's memory buffer.
674		 */
675		while (offset < 16 && len > 0) {
676			*buf++ = data[offset++];
677			len -= sizeof(__be32);
678		}
679	}
680
681	return 0;
682}
683
684/*
685 * Return the specified PCI-E Configuration Space register from our Physical
686 * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
687 * since we prefer to let the firmware own all of these registers, but if that
688 * fails we go for it directly ourselves.
689 */
690u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
691{
692
693	/*
694	 * If fw_attach != 0, construct and send the Firmware LDST Command to
695	 * retrieve the specified PCI-E Configuration Space register.
696	 */
697	if (drv_fw_attach != 0) {
698		struct fw_ldst_cmd ldst_cmd;
699		int ret;
700
701		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
702		ldst_cmd.op_to_addrspace =
703			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
704				    F_FW_CMD_REQUEST |
705				    F_FW_CMD_READ |
706				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
707		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
708		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
709		ldst_cmd.u.pcie.ctrl_to_fn =
710			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
711		ldst_cmd.u.pcie.r = reg;
712
713		/*
714		 * If the LDST Command succeeds, return the result, otherwise
715		 * fall through to reading it directly ourselves ...
716		 */
717		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
718				 &ldst_cmd);
719		if (ret == 0)
720			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
721
722		CH_WARN(adap, "Firmware failed to return "
723			"Configuration Space register %d, err = %d\n",
724			reg, -ret);
725	}
726
727	/*
728	 * Read the desired Configuration Space register via the PCI-E
729	 * Backdoor mechanism.
730	 */
731	return t4_hw_pci_read_cfg4(adap, reg);
732}
733
734/**
735 *	t4_get_regs_len - return the size of the chips register set
736 *	@adapter: the adapter
737 *
738 *	Returns the size of the chip's BAR0 register space.
739 */
740unsigned int t4_get_regs_len(struct adapter *adapter)
741{
742	unsigned int chip_version = chip_id(adapter);
743
744	switch (chip_version) {
745	case CHELSIO_T4:
746		if (adapter->flags & IS_VF)
747			return FW_T4VF_REGMAP_SIZE;
748		return T4_REGMAP_SIZE;
749
750	case CHELSIO_T5:
751	case CHELSIO_T6:
752		if (adapter->flags & IS_VF)
753			return FW_T4VF_REGMAP_SIZE;
754		return T5_REGMAP_SIZE;
755	}
756
757	CH_ERR(adapter,
758		"Unsupported chip version %d\n", chip_version);
759	return 0;
760}
761
762/**
763 *	t4_get_regs - read chip registers into provided buffer
764 *	@adap: the adapter
765 *	@buf: register buffer
766 *	@buf_size: size (in bytes) of register buffer
767 *
768 *	If the provided register buffer isn't large enough for the chip's
769 *	full register range, the register dump will be truncated to the
770 *	register buffer's size.
771 */
772void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
773{
774	static const unsigned int t4_reg_ranges[] = {
775		0x1008, 0x1108,
776		0x1180, 0x1184,
777		0x1190, 0x1194,
778		0x11a0, 0x11a4,
779		0x11b0, 0x11b4,
780		0x11fc, 0x123c,
781		0x1300, 0x173c,
782		0x1800, 0x18fc,
783		0x3000, 0x30d8,
784		0x30e0, 0x30e4,
785		0x30ec, 0x5910,
786		0x5920, 0x5924,
787		0x5960, 0x5960,
788		0x5968, 0x5968,
789		0x5970, 0x5970,
790		0x5978, 0x5978,
791		0x5980, 0x5980,
792		0x5988, 0x5988,
793		0x5990, 0x5990,
794		0x5998, 0x5998,
795		0x59a0, 0x59d4,
796		0x5a00, 0x5ae0,
797		0x5ae8, 0x5ae8,
798		0x5af0, 0x5af0,
799		0x5af8, 0x5af8,
800		0x6000, 0x6098,
801		0x6100, 0x6150,
802		0x6200, 0x6208,
803		0x6240, 0x6248,
804		0x6280, 0x62b0,
805		0x62c0, 0x6338,
806		0x6370, 0x638c,
807		0x6400, 0x643c,
808		0x6500, 0x6524,
809		0x6a00, 0x6a04,
810		0x6a14, 0x6a38,
811		0x6a60, 0x6a70,
812		0x6a78, 0x6a78,
813		0x6b00, 0x6b0c,
814		0x6b1c, 0x6b84,
815		0x6bf0, 0x6bf8,
816		0x6c00, 0x6c0c,
817		0x6c1c, 0x6c84,
818		0x6cf0, 0x6cf8,
819		0x6d00, 0x6d0c,
820		0x6d1c, 0x6d84,
821		0x6df0, 0x6df8,
822		0x6e00, 0x6e0c,
823		0x6e1c, 0x6e84,
824		0x6ef0, 0x6ef8,
825		0x6f00, 0x6f0c,
826		0x6f1c, 0x6f84,
827		0x6ff0, 0x6ff8,
828		0x7000, 0x700c,
829		0x701c, 0x7084,
830		0x70f0, 0x70f8,
831		0x7100, 0x710c,
832		0x711c, 0x7184,
833		0x71f0, 0x71f8,
834		0x7200, 0x720c,
835		0x721c, 0x7284,
836		0x72f0, 0x72f8,
837		0x7300, 0x730c,
838		0x731c, 0x7384,
839		0x73f0, 0x73f8,
840		0x7400, 0x7450,
841		0x7500, 0x7530,
842		0x7600, 0x760c,
843		0x7614, 0x761c,
844		0x7680, 0x76cc,
845		0x7700, 0x7798,
846		0x77c0, 0x77fc,
847		0x7900, 0x79fc,
848		0x7b00, 0x7b58,
849		0x7b60, 0x7b84,
850		0x7b8c, 0x7c38,
851		0x7d00, 0x7d38,
852		0x7d40, 0x7d80,
853		0x7d8c, 0x7ddc,
854		0x7de4, 0x7e04,
855		0x7e10, 0x7e1c,
856		0x7e24, 0x7e38,
857		0x7e40, 0x7e44,
858		0x7e4c, 0x7e78,
859		0x7e80, 0x7ea4,
860		0x7eac, 0x7edc,
861		0x7ee8, 0x7efc,
862		0x8dc0, 0x8e04,
863		0x8e10, 0x8e1c,
864		0x8e30, 0x8e78,
865		0x8ea0, 0x8eb8,
866		0x8ec0, 0x8f6c,
867		0x8fc0, 0x9008,
868		0x9010, 0x9058,
869		0x9060, 0x9060,
870		0x9068, 0x9074,
871		0x90fc, 0x90fc,
872		0x9400, 0x9408,
873		0x9410, 0x9458,
874		0x9600, 0x9600,
875		0x9608, 0x9638,
876		0x9640, 0x96bc,
877		0x9800, 0x9808,
878		0x9820, 0x983c,
879		0x9850, 0x9864,
880		0x9c00, 0x9c6c,
881		0x9c80, 0x9cec,
882		0x9d00, 0x9d6c,
883		0x9d80, 0x9dec,
884		0x9e00, 0x9e6c,
885		0x9e80, 0x9eec,
886		0x9f00, 0x9f6c,
887		0x9f80, 0x9fec,
888		0xd004, 0xd004,
889		0xd010, 0xd03c,
890		0xdfc0, 0xdfe0,
891		0xe000, 0xea7c,
892		0xf000, 0x11110,
893		0x11118, 0x11190,
894		0x19040, 0x1906c,
895		0x19078, 0x19080,
896		0x1908c, 0x190e4,
897		0x190f0, 0x190f8,
898		0x19100, 0x19110,
899		0x19120, 0x19124,
900		0x19150, 0x19194,
901		0x1919c, 0x191b0,
902		0x191d0, 0x191e8,
903		0x19238, 0x1924c,
904		0x193f8, 0x1943c,
905		0x1944c, 0x19474,
906		0x19490, 0x194e0,
907		0x194f0, 0x194f8,
908		0x19800, 0x19c08,
909		0x19c10, 0x19c90,
910		0x19ca0, 0x19ce4,
911		0x19cf0, 0x19d40,
912		0x19d50, 0x19d94,
913		0x19da0, 0x19de8,
914		0x19df0, 0x19e40,
915		0x19e50, 0x19e90,
916		0x19ea0, 0x19f4c,
917		0x1a000, 0x1a004,
918		0x1a010, 0x1a06c,
919		0x1a0b0, 0x1a0e4,
920		0x1a0ec, 0x1a0f4,
921		0x1a100, 0x1a108,
922		0x1a114, 0x1a120,
923		0x1a128, 0x1a130,
924		0x1a138, 0x1a138,
925		0x1a190, 0x1a1c4,
926		0x1a1fc, 0x1a1fc,
927		0x1e040, 0x1e04c,
928		0x1e284, 0x1e28c,
929		0x1e2c0, 0x1e2c0,
930		0x1e2e0, 0x1e2e0,
931		0x1e300, 0x1e384,
932		0x1e3c0, 0x1e3c8,
933		0x1e440, 0x1e44c,
934		0x1e684, 0x1e68c,
935		0x1e6c0, 0x1e6c0,
936		0x1e6e0, 0x1e6e0,
937		0x1e700, 0x1e784,
938		0x1e7c0, 0x1e7c8,
939		0x1e840, 0x1e84c,
940		0x1ea84, 0x1ea8c,
941		0x1eac0, 0x1eac0,
942		0x1eae0, 0x1eae0,
943		0x1eb00, 0x1eb84,
944		0x1ebc0, 0x1ebc8,
945		0x1ec40, 0x1ec4c,
946		0x1ee84, 0x1ee8c,
947		0x1eec0, 0x1eec0,
948		0x1eee0, 0x1eee0,
949		0x1ef00, 0x1ef84,
950		0x1efc0, 0x1efc8,
951		0x1f040, 0x1f04c,
952		0x1f284, 0x1f28c,
953		0x1f2c0, 0x1f2c0,
954		0x1f2e0, 0x1f2e0,
955		0x1f300, 0x1f384,
956		0x1f3c0, 0x1f3c8,
957		0x1f440, 0x1f44c,
958		0x1f684, 0x1f68c,
959		0x1f6c0, 0x1f6c0,
960		0x1f6e0, 0x1f6e0,
961		0x1f700, 0x1f784,
962		0x1f7c0, 0x1f7c8,
963		0x1f840, 0x1f84c,
964		0x1fa84, 0x1fa8c,
965		0x1fac0, 0x1fac0,
966		0x1fae0, 0x1fae0,
967		0x1fb00, 0x1fb84,
968		0x1fbc0, 0x1fbc8,
969		0x1fc40, 0x1fc4c,
970		0x1fe84, 0x1fe8c,
971		0x1fec0, 0x1fec0,
972		0x1fee0, 0x1fee0,
973		0x1ff00, 0x1ff84,
974		0x1ffc0, 0x1ffc8,
975		0x20000, 0x2002c,
976		0x20100, 0x2013c,
977		0x20190, 0x201a0,
978		0x201a8, 0x201b8,
979		0x201c4, 0x201c8,
980		0x20200, 0x20318,
981		0x20400, 0x204b4,
982		0x204c0, 0x20528,
983		0x20540, 0x20614,
984		0x21000, 0x21040,
985		0x2104c, 0x21060,
986		0x210c0, 0x210ec,
987		0x21200, 0x21268,
988		0x21270, 0x21284,
989		0x212fc, 0x21388,
990		0x21400, 0x21404,
991		0x21500, 0x21500,
992		0x21510, 0x21518,
993		0x2152c, 0x21530,
994		0x2153c, 0x2153c,
995		0x21550, 0x21554,
996		0x21600, 0x21600,
997		0x21608, 0x2161c,
998		0x21624, 0x21628,
999		0x21630, 0x21634,
1000		0x2163c, 0x2163c,
1001		0x21700, 0x2171c,
1002		0x21780, 0x2178c,
1003		0x21800, 0x21818,
1004		0x21820, 0x21828,
1005		0x21830, 0x21848,
1006		0x21850, 0x21854,
1007		0x21860, 0x21868,
1008		0x21870, 0x21870,
1009		0x21878, 0x21898,
1010		0x218a0, 0x218a8,
1011		0x218b0, 0x218c8,
1012		0x218d0, 0x218d4,
1013		0x218e0, 0x218e8,
1014		0x218f0, 0x218f0,
1015		0x218f8, 0x21a18,
1016		0x21a20, 0x21a28,
1017		0x21a30, 0x21a48,
1018		0x21a50, 0x21a54,
1019		0x21a60, 0x21a68,
1020		0x21a70, 0x21a70,
1021		0x21a78, 0x21a98,
1022		0x21aa0, 0x21aa8,
1023		0x21ab0, 0x21ac8,
1024		0x21ad0, 0x21ad4,
1025		0x21ae0, 0x21ae8,
1026		0x21af0, 0x21af0,
1027		0x21af8, 0x21c18,
1028		0x21c20, 0x21c20,
1029		0x21c28, 0x21c30,
1030		0x21c38, 0x21c38,
1031		0x21c80, 0x21c98,
1032		0x21ca0, 0x21ca8,
1033		0x21cb0, 0x21cc8,
1034		0x21cd0, 0x21cd4,
1035		0x21ce0, 0x21ce8,
1036		0x21cf0, 0x21cf0,
1037		0x21cf8, 0x21d7c,
1038		0x21e00, 0x21e04,
1039		0x22000, 0x2202c,
1040		0x22100, 0x2213c,
1041		0x22190, 0x221a0,
1042		0x221a8, 0x221b8,
1043		0x221c4, 0x221c8,
1044		0x22200, 0x22318,
1045		0x22400, 0x224b4,
1046		0x224c0, 0x22528,
1047		0x22540, 0x22614,
1048		0x23000, 0x23040,
1049		0x2304c, 0x23060,
1050		0x230c0, 0x230ec,
1051		0x23200, 0x23268,
1052		0x23270, 0x23284,
1053		0x232fc, 0x23388,
1054		0x23400, 0x23404,
1055		0x23500, 0x23500,
1056		0x23510, 0x23518,
1057		0x2352c, 0x23530,
1058		0x2353c, 0x2353c,
1059		0x23550, 0x23554,
1060		0x23600, 0x23600,
1061		0x23608, 0x2361c,
1062		0x23624, 0x23628,
1063		0x23630, 0x23634,
1064		0x2363c, 0x2363c,
1065		0x23700, 0x2371c,
1066		0x23780, 0x2378c,
1067		0x23800, 0x23818,
1068		0x23820, 0x23828,
1069		0x23830, 0x23848,
1070		0x23850, 0x23854,
1071		0x23860, 0x23868,
1072		0x23870, 0x23870,
1073		0x23878, 0x23898,
1074		0x238a0, 0x238a8,
1075		0x238b0, 0x238c8,
1076		0x238d0, 0x238d4,
1077		0x238e0, 0x238e8,
1078		0x238f0, 0x238f0,
1079		0x238f8, 0x23a18,
1080		0x23a20, 0x23a28,
1081		0x23a30, 0x23a48,
1082		0x23a50, 0x23a54,
1083		0x23a60, 0x23a68,
1084		0x23a70, 0x23a70,
1085		0x23a78, 0x23a98,
1086		0x23aa0, 0x23aa8,
1087		0x23ab0, 0x23ac8,
1088		0x23ad0, 0x23ad4,
1089		0x23ae0, 0x23ae8,
1090		0x23af0, 0x23af0,
1091		0x23af8, 0x23c18,
1092		0x23c20, 0x23c20,
1093		0x23c28, 0x23c30,
1094		0x23c38, 0x23c38,
1095		0x23c80, 0x23c98,
1096		0x23ca0, 0x23ca8,
1097		0x23cb0, 0x23cc8,
1098		0x23cd0, 0x23cd4,
1099		0x23ce0, 0x23ce8,
1100		0x23cf0, 0x23cf0,
1101		0x23cf8, 0x23d7c,
1102		0x23e00, 0x23e04,
1103		0x24000, 0x2402c,
1104		0x24100, 0x2413c,
1105		0x24190, 0x241a0,
1106		0x241a8, 0x241b8,
1107		0x241c4, 0x241c8,
1108		0x24200, 0x24318,
1109		0x24400, 0x244b4,
1110		0x244c0, 0x24528,
1111		0x24540, 0x24614,
1112		0x25000, 0x25040,
1113		0x2504c, 0x25060,
1114		0x250c0, 0x250ec,
1115		0x25200, 0x25268,
1116		0x25270, 0x25284,
1117		0x252fc, 0x25388,
1118		0x25400, 0x25404,
1119		0x25500, 0x25500,
1120		0x25510, 0x25518,
1121		0x2552c, 0x25530,
1122		0x2553c, 0x2553c,
1123		0x25550, 0x25554,
1124		0x25600, 0x25600,
1125		0x25608, 0x2561c,
1126		0x25624, 0x25628,
1127		0x25630, 0x25634,
1128		0x2563c, 0x2563c,
1129		0x25700, 0x2571c,
1130		0x25780, 0x2578c,
1131		0x25800, 0x25818,
1132		0x25820, 0x25828,
1133		0x25830, 0x25848,
1134		0x25850, 0x25854,
1135		0x25860, 0x25868,
1136		0x25870, 0x25870,
1137		0x25878, 0x25898,
1138		0x258a0, 0x258a8,
1139		0x258b0, 0x258c8,
1140		0x258d0, 0x258d4,
1141		0x258e0, 0x258e8,
1142		0x258f0, 0x258f0,
1143		0x258f8, 0x25a18,
1144		0x25a20, 0x25a28,
1145		0x25a30, 0x25a48,
1146		0x25a50, 0x25a54,
1147		0x25a60, 0x25a68,
1148		0x25a70, 0x25a70,
1149		0x25a78, 0x25a98,
1150		0x25aa0, 0x25aa8,
1151		0x25ab0, 0x25ac8,
1152		0x25ad0, 0x25ad4,
1153		0x25ae0, 0x25ae8,
1154		0x25af0, 0x25af0,
1155		0x25af8, 0x25c18,
1156		0x25c20, 0x25c20,
1157		0x25c28, 0x25c30,
1158		0x25c38, 0x25c38,
1159		0x25c80, 0x25c98,
1160		0x25ca0, 0x25ca8,
1161		0x25cb0, 0x25cc8,
1162		0x25cd0, 0x25cd4,
1163		0x25ce0, 0x25ce8,
1164		0x25cf0, 0x25cf0,
1165		0x25cf8, 0x25d7c,
1166		0x25e00, 0x25e04,
1167		0x26000, 0x2602c,
1168		0x26100, 0x2613c,
1169		0x26190, 0x261a0,
1170		0x261a8, 0x261b8,
1171		0x261c4, 0x261c8,
1172		0x26200, 0x26318,
1173		0x26400, 0x264b4,
1174		0x264c0, 0x26528,
1175		0x26540, 0x26614,
1176		0x27000, 0x27040,
1177		0x2704c, 0x27060,
1178		0x270c0, 0x270ec,
1179		0x27200, 0x27268,
1180		0x27270, 0x27284,
1181		0x272fc, 0x27388,
1182		0x27400, 0x27404,
1183		0x27500, 0x27500,
1184		0x27510, 0x27518,
1185		0x2752c, 0x27530,
1186		0x2753c, 0x2753c,
1187		0x27550, 0x27554,
1188		0x27600, 0x27600,
1189		0x27608, 0x2761c,
1190		0x27624, 0x27628,
1191		0x27630, 0x27634,
1192		0x2763c, 0x2763c,
1193		0x27700, 0x2771c,
1194		0x27780, 0x2778c,
1195		0x27800, 0x27818,
1196		0x27820, 0x27828,
1197		0x27830, 0x27848,
1198		0x27850, 0x27854,
1199		0x27860, 0x27868,
1200		0x27870, 0x27870,
1201		0x27878, 0x27898,
1202		0x278a0, 0x278a8,
1203		0x278b0, 0x278c8,
1204		0x278d0, 0x278d4,
1205		0x278e0, 0x278e8,
1206		0x278f0, 0x278f0,
1207		0x278f8, 0x27a18,
1208		0x27a20, 0x27a28,
1209		0x27a30, 0x27a48,
1210		0x27a50, 0x27a54,
1211		0x27a60, 0x27a68,
1212		0x27a70, 0x27a70,
1213		0x27a78, 0x27a98,
1214		0x27aa0, 0x27aa8,
1215		0x27ab0, 0x27ac8,
1216		0x27ad0, 0x27ad4,
1217		0x27ae0, 0x27ae8,
1218		0x27af0, 0x27af0,
1219		0x27af8, 0x27c18,
1220		0x27c20, 0x27c20,
1221		0x27c28, 0x27c30,
1222		0x27c38, 0x27c38,
1223		0x27c80, 0x27c98,
1224		0x27ca0, 0x27ca8,
1225		0x27cb0, 0x27cc8,
1226		0x27cd0, 0x27cd4,
1227		0x27ce0, 0x27ce8,
1228		0x27cf0, 0x27cf0,
1229		0x27cf8, 0x27d7c,
1230		0x27e00, 0x27e04,
1231	};
1232
1233	static const unsigned int t4vf_reg_ranges[] = {
1234		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1235		VF_MPS_REG(A_MPS_VF_CTL),
1236		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1237		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1238		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1239		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1240		FW_T4VF_MBDATA_BASE_ADDR,
1241		FW_T4VF_MBDATA_BASE_ADDR +
1242		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1243	};
1244
1245	static const unsigned int t5_reg_ranges[] = {
1246		0x1008, 0x10c0,
1247		0x10cc, 0x10f8,
1248		0x1100, 0x1100,
1249		0x110c, 0x1148,
1250		0x1180, 0x1184,
1251		0x1190, 0x1194,
1252		0x11a0, 0x11a4,
1253		0x11b0, 0x11b4,
1254		0x11fc, 0x123c,
1255		0x1280, 0x173c,
1256		0x1800, 0x18fc,
1257		0x3000, 0x3028,
1258		0x3060, 0x30b0,
1259		0x30b8, 0x30d8,
1260		0x30e0, 0x30fc,
1261		0x3140, 0x357c,
1262		0x35a8, 0x35cc,
1263		0x35ec, 0x35ec,
1264		0x3600, 0x5624,
1265		0x56cc, 0x56ec,
1266		0x56f4, 0x5720,
1267		0x5728, 0x575c,
1268		0x580c, 0x5814,
1269		0x5890, 0x589c,
1270		0x58a4, 0x58ac,
1271		0x58b8, 0x58bc,
1272		0x5940, 0x59c8,
1273		0x59d0, 0x59dc,
1274		0x59fc, 0x5a18,
1275		0x5a60, 0x5a70,
1276		0x5a80, 0x5a9c,
1277		0x5b94, 0x5bfc,
1278		0x6000, 0x6020,
1279		0x6028, 0x6040,
1280		0x6058, 0x609c,
1281		0x60a8, 0x614c,
1282		0x7700, 0x7798,
1283		0x77c0, 0x78fc,
1284		0x7b00, 0x7b58,
1285		0x7b60, 0x7b84,
1286		0x7b8c, 0x7c54,
1287		0x7d00, 0x7d38,
1288		0x7d40, 0x7d80,
1289		0x7d8c, 0x7ddc,
1290		0x7de4, 0x7e04,
1291		0x7e10, 0x7e1c,
1292		0x7e24, 0x7e38,
1293		0x7e40, 0x7e44,
1294		0x7e4c, 0x7e78,
1295		0x7e80, 0x7edc,
1296		0x7ee8, 0x7efc,
1297		0x8dc0, 0x8de0,
1298		0x8df8, 0x8e04,
1299		0x8e10, 0x8e84,
1300		0x8ea0, 0x8f84,
1301		0x8fc0, 0x9058,
1302		0x9060, 0x9060,
1303		0x9068, 0x90f8,
1304		0x9400, 0x9408,
1305		0x9410, 0x9470,
1306		0x9600, 0x9600,
1307		0x9608, 0x9638,
1308		0x9640, 0x96f4,
1309		0x9800, 0x9808,
1310		0x9820, 0x983c,
1311		0x9850, 0x9864,
1312		0x9c00, 0x9c6c,
1313		0x9c80, 0x9cec,
1314		0x9d00, 0x9d6c,
1315		0x9d80, 0x9dec,
1316		0x9e00, 0x9e6c,
1317		0x9e80, 0x9eec,
1318		0x9f00, 0x9f6c,
1319		0x9f80, 0xa020,
1320		0xd004, 0xd004,
1321		0xd010, 0xd03c,
1322		0xdfc0, 0xdfe0,
1323		0xe000, 0x1106c,
1324		0x11074, 0x11088,
1325		0x1109c, 0x1117c,
1326		0x11190, 0x11204,
1327		0x19040, 0x1906c,
1328		0x19078, 0x19080,
1329		0x1908c, 0x190e8,
1330		0x190f0, 0x190f8,
1331		0x19100, 0x19110,
1332		0x19120, 0x19124,
1333		0x19150, 0x19194,
1334		0x1919c, 0x191b0,
1335		0x191d0, 0x191e8,
1336		0x19238, 0x19290,
1337		0x193f8, 0x19428,
1338		0x19430, 0x19444,
1339		0x1944c, 0x1946c,
1340		0x19474, 0x19474,
1341		0x19490, 0x194cc,
1342		0x194f0, 0x194f8,
1343		0x19c00, 0x19c08,
1344		0x19c10, 0x19c60,
1345		0x19c94, 0x19ce4,
1346		0x19cf0, 0x19d40,
1347		0x19d50, 0x19d94,
1348		0x19da0, 0x19de8,
1349		0x19df0, 0x19e10,
1350		0x19e50, 0x19e90,
1351		0x19ea0, 0x19f24,
1352		0x19f34, 0x19f34,
1353		0x19f40, 0x19f50,
1354		0x19f90, 0x19fb4,
1355		0x19fc4, 0x19fe4,
1356		0x1a000, 0x1a004,
1357		0x1a010, 0x1a06c,
1358		0x1a0b0, 0x1a0e4,
1359		0x1a0ec, 0x1a0f8,
1360		0x1a100, 0x1a108,
1361		0x1a114, 0x1a120,
1362		0x1a128, 0x1a130,
1363		0x1a138, 0x1a138,
1364		0x1a190, 0x1a1c4,
1365		0x1a1fc, 0x1a1fc,
1366		0x1e008, 0x1e00c,
1367		0x1e040, 0x1e044,
1368		0x1e04c, 0x1e04c,
1369		0x1e284, 0x1e290,
1370		0x1e2c0, 0x1e2c0,
1371		0x1e2e0, 0x1e2e0,
1372		0x1e300, 0x1e384,
1373		0x1e3c0, 0x1e3c8,
1374		0x1e408, 0x1e40c,
1375		0x1e440, 0x1e444,
1376		0x1e44c, 0x1e44c,
1377		0x1e684, 0x1e690,
1378		0x1e6c0, 0x1e6c0,
1379		0x1e6e0, 0x1e6e0,
1380		0x1e700, 0x1e784,
1381		0x1e7c0, 0x1e7c8,
1382		0x1e808, 0x1e80c,
1383		0x1e840, 0x1e844,
1384		0x1e84c, 0x1e84c,
1385		0x1ea84, 0x1ea90,
1386		0x1eac0, 0x1eac0,
1387		0x1eae0, 0x1eae0,
1388		0x1eb00, 0x1eb84,
1389		0x1ebc0, 0x1ebc8,
1390		0x1ec08, 0x1ec0c,
1391		0x1ec40, 0x1ec44,
1392		0x1ec4c, 0x1ec4c,
1393		0x1ee84, 0x1ee90,
1394		0x1eec0, 0x1eec0,
1395		0x1eee0, 0x1eee0,
1396		0x1ef00, 0x1ef84,
1397		0x1efc0, 0x1efc8,
1398		0x1f008, 0x1f00c,
1399		0x1f040, 0x1f044,
1400		0x1f04c, 0x1f04c,
1401		0x1f284, 0x1f290,
1402		0x1f2c0, 0x1f2c0,
1403		0x1f2e0, 0x1f2e0,
1404		0x1f300, 0x1f384,
1405		0x1f3c0, 0x1f3c8,
1406		0x1f408, 0x1f40c,
1407		0x1f440, 0x1f444,
1408		0x1f44c, 0x1f44c,
1409		0x1f684, 0x1f690,
1410		0x1f6c0, 0x1f6c0,
1411		0x1f6e0, 0x1f6e0,
1412		0x1f700, 0x1f784,
1413		0x1f7c0, 0x1f7c8,
1414		0x1f808, 0x1f80c,
1415		0x1f840, 0x1f844,
1416		0x1f84c, 0x1f84c,
1417		0x1fa84, 0x1fa90,
1418		0x1fac0, 0x1fac0,
1419		0x1fae0, 0x1fae0,
1420		0x1fb00, 0x1fb84,
1421		0x1fbc0, 0x1fbc8,
1422		0x1fc08, 0x1fc0c,
1423		0x1fc40, 0x1fc44,
1424		0x1fc4c, 0x1fc4c,
1425		0x1fe84, 0x1fe90,
1426		0x1fec0, 0x1fec0,
1427		0x1fee0, 0x1fee0,
1428		0x1ff00, 0x1ff84,
1429		0x1ffc0, 0x1ffc8,
1430		0x30000, 0x30030,
1431		0x30100, 0x30144,
1432		0x30190, 0x301a0,
1433		0x301a8, 0x301b8,
1434		0x301c4, 0x301c8,
1435		0x301d0, 0x301d0,
1436		0x30200, 0x30318,
1437		0x30400, 0x304b4,
1438		0x304c0, 0x3052c,
1439		0x30540, 0x3061c,
1440		0x30800, 0x30828,
1441		0x30834, 0x30834,
1442		0x308c0, 0x30908,
1443		0x30910, 0x309ac,
1444		0x30a00, 0x30a14,
1445		0x30a1c, 0x30a2c,
1446		0x30a44, 0x30a50,
1447		0x30a74, 0x30a74,
1448		0x30a7c, 0x30afc,
1449		0x30b08, 0x30c24,
1450		0x30d00, 0x30d00,
1451		0x30d08, 0x30d14,
1452		0x30d1c, 0x30d20,
1453		0x30d3c, 0x30d3c,
1454		0x30d48, 0x30d50,
1455		0x31200, 0x3120c,
1456		0x31220, 0x31220,
1457		0x31240, 0x31240,
1458		0x31600, 0x3160c,
1459		0x31a00, 0x31a1c,
1460		0x31e00, 0x31e20,
1461		0x31e38, 0x31e3c,
1462		0x31e80, 0x31e80,
1463		0x31e88, 0x31ea8,
1464		0x31eb0, 0x31eb4,
1465		0x31ec8, 0x31ed4,
1466		0x31fb8, 0x32004,
1467		0x32200, 0x32200,
1468		0x32208, 0x32240,
1469		0x32248, 0x32280,
1470		0x32288, 0x322c0,
1471		0x322c8, 0x322fc,
1472		0x32600, 0x32630,
1473		0x32a00, 0x32abc,
1474		0x32b00, 0x32b10,
1475		0x32b20, 0x32b30,
1476		0x32b40, 0x32b50,
1477		0x32b60, 0x32b70,
1478		0x33000, 0x33028,
1479		0x33030, 0x33048,
1480		0x33060, 0x33068,
1481		0x33070, 0x3309c,
1482		0x330f0, 0x33128,
1483		0x33130, 0x33148,
1484		0x33160, 0x33168,
1485		0x33170, 0x3319c,
1486		0x331f0, 0x33238,
1487		0x33240, 0x33240,
1488		0x33248, 0x33250,
1489		0x3325c, 0x33264,
1490		0x33270, 0x332b8,
1491		0x332c0, 0x332e4,
1492		0x332f8, 0x33338,
1493		0x33340, 0x33340,
1494		0x33348, 0x33350,
1495		0x3335c, 0x33364,
1496		0x33370, 0x333b8,
1497		0x333c0, 0x333e4,
1498		0x333f8, 0x33428,
1499		0x33430, 0x33448,
1500		0x33460, 0x33468,
1501		0x33470, 0x3349c,
1502		0x334f0, 0x33528,
1503		0x33530, 0x33548,
1504		0x33560, 0x33568,
1505		0x33570, 0x3359c,
1506		0x335f0, 0x33638,
1507		0x33640, 0x33640,
1508		0x33648, 0x33650,
1509		0x3365c, 0x33664,
1510		0x33670, 0x336b8,
1511		0x336c0, 0x336e4,
1512		0x336f8, 0x33738,
1513		0x33740, 0x33740,
1514		0x33748, 0x33750,
1515		0x3375c, 0x33764,
1516		0x33770, 0x337b8,
1517		0x337c0, 0x337e4,
1518		0x337f8, 0x337fc,
1519		0x33814, 0x33814,
1520		0x3382c, 0x3382c,
1521		0x33880, 0x3388c,
1522		0x338e8, 0x338ec,
1523		0x33900, 0x33928,
1524		0x33930, 0x33948,
1525		0x33960, 0x33968,
1526		0x33970, 0x3399c,
1527		0x339f0, 0x33a38,
1528		0x33a40, 0x33a40,
1529		0x33a48, 0x33a50,
1530		0x33a5c, 0x33a64,
1531		0x33a70, 0x33ab8,
1532		0x33ac0, 0x33ae4,
1533		0x33af8, 0x33b10,
1534		0x33b28, 0x33b28,
1535		0x33b3c, 0x33b50,
1536		0x33bf0, 0x33c10,
1537		0x33c28, 0x33c28,
1538		0x33c3c, 0x33c50,
1539		0x33cf0, 0x33cfc,
1540		0x34000, 0x34030,
1541		0x34100, 0x34144,
1542		0x34190, 0x341a0,
1543		0x341a8, 0x341b8,
1544		0x341c4, 0x341c8,
1545		0x341d0, 0x341d0,
1546		0x34200, 0x34318,
1547		0x34400, 0x344b4,
1548		0x344c0, 0x3452c,
1549		0x34540, 0x3461c,
1550		0x34800, 0x34828,
1551		0x34834, 0x34834,
1552		0x348c0, 0x34908,
1553		0x34910, 0x349ac,
1554		0x34a00, 0x34a14,
1555		0x34a1c, 0x34a2c,
1556		0x34a44, 0x34a50,
1557		0x34a74, 0x34a74,
1558		0x34a7c, 0x34afc,
1559		0x34b08, 0x34c24,
1560		0x34d00, 0x34d00,
1561		0x34d08, 0x34d14,
1562		0x34d1c, 0x34d20,
1563		0x34d3c, 0x34d3c,
1564		0x34d48, 0x34d50,
1565		0x35200, 0x3520c,
1566		0x35220, 0x35220,
1567		0x35240, 0x35240,
1568		0x35600, 0x3560c,
1569		0x35a00, 0x35a1c,
1570		0x35e00, 0x35e20,
1571		0x35e38, 0x35e3c,
1572		0x35e80, 0x35e80,
1573		0x35e88, 0x35ea8,
1574		0x35eb0, 0x35eb4,
1575		0x35ec8, 0x35ed4,
1576		0x35fb8, 0x36004,
1577		0x36200, 0x36200,
1578		0x36208, 0x36240,
1579		0x36248, 0x36280,
1580		0x36288, 0x362c0,
1581		0x362c8, 0x362fc,
1582		0x36600, 0x36630,
1583		0x36a00, 0x36abc,
1584		0x36b00, 0x36b10,
1585		0x36b20, 0x36b30,
1586		0x36b40, 0x36b50,
1587		0x36b60, 0x36b70,
1588		0x37000, 0x37028,
1589		0x37030, 0x37048,
1590		0x37060, 0x37068,
1591		0x37070, 0x3709c,
1592		0x370f0, 0x37128,
1593		0x37130, 0x37148,
1594		0x37160, 0x37168,
1595		0x37170, 0x3719c,
1596		0x371f0, 0x37238,
1597		0x37240, 0x37240,
1598		0x37248, 0x37250,
1599		0x3725c, 0x37264,
1600		0x37270, 0x372b8,
1601		0x372c0, 0x372e4,
1602		0x372f8, 0x37338,
1603		0x37340, 0x37340,
1604		0x37348, 0x37350,
1605		0x3735c, 0x37364,
1606		0x37370, 0x373b8,
1607		0x373c0, 0x373e4,
1608		0x373f8, 0x37428,
1609		0x37430, 0x37448,
1610		0x37460, 0x37468,
1611		0x37470, 0x3749c,
1612		0x374f0, 0x37528,
1613		0x37530, 0x37548,
1614		0x37560, 0x37568,
1615		0x37570, 0x3759c,
1616		0x375f0, 0x37638,
1617		0x37640, 0x37640,
1618		0x37648, 0x37650,
1619		0x3765c, 0x37664,
1620		0x37670, 0x376b8,
1621		0x376c0, 0x376e4,
1622		0x376f8, 0x37738,
1623		0x37740, 0x37740,
1624		0x37748, 0x37750,
1625		0x3775c, 0x37764,
1626		0x37770, 0x377b8,
1627		0x377c0, 0x377e4,
1628		0x377f8, 0x377fc,
1629		0x37814, 0x37814,
1630		0x3782c, 0x3782c,
1631		0x37880, 0x3788c,
1632		0x378e8, 0x378ec,
1633		0x37900, 0x37928,
1634		0x37930, 0x37948,
1635		0x37960, 0x37968,
1636		0x37970, 0x3799c,
1637		0x379f0, 0x37a38,
1638		0x37a40, 0x37a40,
1639		0x37a48, 0x37a50,
1640		0x37a5c, 0x37a64,
1641		0x37a70, 0x37ab8,
1642		0x37ac0, 0x37ae4,
1643		0x37af8, 0x37b10,
1644		0x37b28, 0x37b28,
1645		0x37b3c, 0x37b50,
1646		0x37bf0, 0x37c10,
1647		0x37c28, 0x37c28,
1648		0x37c3c, 0x37c50,
1649		0x37cf0, 0x37cfc,
1650		0x38000, 0x38030,
1651		0x38100, 0x38144,
1652		0x38190, 0x381a0,
1653		0x381a8, 0x381b8,
1654		0x381c4, 0x381c8,
1655		0x381d0, 0x381d0,
1656		0x38200, 0x38318,
1657		0x38400, 0x384b4,
1658		0x384c0, 0x3852c,
1659		0x38540, 0x3861c,
1660		0x38800, 0x38828,
1661		0x38834, 0x38834,
1662		0x388c0, 0x38908,
1663		0x38910, 0x389ac,
1664		0x38a00, 0x38a14,
1665		0x38a1c, 0x38a2c,
1666		0x38a44, 0x38a50,
1667		0x38a74, 0x38a74,
1668		0x38a7c, 0x38afc,
1669		0x38b08, 0x38c24,
1670		0x38d00, 0x38d00,
1671		0x38d08, 0x38d14,
1672		0x38d1c, 0x38d20,
1673		0x38d3c, 0x38d3c,
1674		0x38d48, 0x38d50,
1675		0x39200, 0x3920c,
1676		0x39220, 0x39220,
1677		0x39240, 0x39240,
1678		0x39600, 0x3960c,
1679		0x39a00, 0x39a1c,
1680		0x39e00, 0x39e20,
1681		0x39e38, 0x39e3c,
1682		0x39e80, 0x39e80,
1683		0x39e88, 0x39ea8,
1684		0x39eb0, 0x39eb4,
1685		0x39ec8, 0x39ed4,
1686		0x39fb8, 0x3a004,
1687		0x3a200, 0x3a200,
1688		0x3a208, 0x3a240,
1689		0x3a248, 0x3a280,
1690		0x3a288, 0x3a2c0,
1691		0x3a2c8, 0x3a2fc,
1692		0x3a600, 0x3a630,
1693		0x3aa00, 0x3aabc,
1694		0x3ab00, 0x3ab10,
1695		0x3ab20, 0x3ab30,
1696		0x3ab40, 0x3ab50,
1697		0x3ab60, 0x3ab70,
1698		0x3b000, 0x3b028,
1699		0x3b030, 0x3b048,
1700		0x3b060, 0x3b068,
1701		0x3b070, 0x3b09c,
1702		0x3b0f0, 0x3b128,
1703		0x3b130, 0x3b148,
1704		0x3b160, 0x3b168,
1705		0x3b170, 0x3b19c,
1706		0x3b1f0, 0x3b238,
1707		0x3b240, 0x3b240,
1708		0x3b248, 0x3b250,
1709		0x3b25c, 0x3b264,
1710		0x3b270, 0x3b2b8,
1711		0x3b2c0, 0x3b2e4,
1712		0x3b2f8, 0x3b338,
1713		0x3b340, 0x3b340,
1714		0x3b348, 0x3b350,
1715		0x3b35c, 0x3b364,
1716		0x3b370, 0x3b3b8,
1717		0x3b3c0, 0x3b3e4,
1718		0x3b3f8, 0x3b428,
1719		0x3b430, 0x3b448,
1720		0x3b460, 0x3b468,
1721		0x3b470, 0x3b49c,
1722		0x3b4f0, 0x3b528,
1723		0x3b530, 0x3b548,
1724		0x3b560, 0x3b568,
1725		0x3b570, 0x3b59c,
1726		0x3b5f0, 0x3b638,
1727		0x3b640, 0x3b640,
1728		0x3b648, 0x3b650,
1729		0x3b65c, 0x3b664,
1730		0x3b670, 0x3b6b8,
1731		0x3b6c0, 0x3b6e4,
1732		0x3b6f8, 0x3b738,
1733		0x3b740, 0x3b740,
1734		0x3b748, 0x3b750,
1735		0x3b75c, 0x3b764,
1736		0x3b770, 0x3b7b8,
1737		0x3b7c0, 0x3b7e4,
1738		0x3b7f8, 0x3b7fc,
1739		0x3b814, 0x3b814,
1740		0x3b82c, 0x3b82c,
1741		0x3b880, 0x3b88c,
1742		0x3b8e8, 0x3b8ec,
1743		0x3b900, 0x3b928,
1744		0x3b930, 0x3b948,
1745		0x3b960, 0x3b968,
1746		0x3b970, 0x3b99c,
1747		0x3b9f0, 0x3ba38,
1748		0x3ba40, 0x3ba40,
1749		0x3ba48, 0x3ba50,
1750		0x3ba5c, 0x3ba64,
1751		0x3ba70, 0x3bab8,
1752		0x3bac0, 0x3bae4,
1753		0x3baf8, 0x3bb10,
1754		0x3bb28, 0x3bb28,
1755		0x3bb3c, 0x3bb50,
1756		0x3bbf0, 0x3bc10,
1757		0x3bc28, 0x3bc28,
1758		0x3bc3c, 0x3bc50,
1759		0x3bcf0, 0x3bcfc,
1760		0x3c000, 0x3c030,
1761		0x3c100, 0x3c144,
1762		0x3c190, 0x3c1a0,
1763		0x3c1a8, 0x3c1b8,
1764		0x3c1c4, 0x3c1c8,
1765		0x3c1d0, 0x3c1d0,
1766		0x3c200, 0x3c318,
1767		0x3c400, 0x3c4b4,
1768		0x3c4c0, 0x3c52c,
1769		0x3c540, 0x3c61c,
1770		0x3c800, 0x3c828,
1771		0x3c834, 0x3c834,
1772		0x3c8c0, 0x3c908,
1773		0x3c910, 0x3c9ac,
1774		0x3ca00, 0x3ca14,
1775		0x3ca1c, 0x3ca2c,
1776		0x3ca44, 0x3ca50,
1777		0x3ca74, 0x3ca74,
1778		0x3ca7c, 0x3cafc,
1779		0x3cb08, 0x3cc24,
1780		0x3cd00, 0x3cd00,
1781		0x3cd08, 0x3cd14,
1782		0x3cd1c, 0x3cd20,
1783		0x3cd3c, 0x3cd3c,
1784		0x3cd48, 0x3cd50,
1785		0x3d200, 0x3d20c,
1786		0x3d220, 0x3d220,
1787		0x3d240, 0x3d240,
1788		0x3d600, 0x3d60c,
1789		0x3da00, 0x3da1c,
1790		0x3de00, 0x3de20,
1791		0x3de38, 0x3de3c,
1792		0x3de80, 0x3de80,
1793		0x3de88, 0x3dea8,
1794		0x3deb0, 0x3deb4,
1795		0x3dec8, 0x3ded4,
1796		0x3dfb8, 0x3e004,
1797		0x3e200, 0x3e200,
1798		0x3e208, 0x3e240,
1799		0x3e248, 0x3e280,
1800		0x3e288, 0x3e2c0,
1801		0x3e2c8, 0x3e2fc,
1802		0x3e600, 0x3e630,
1803		0x3ea00, 0x3eabc,
1804		0x3eb00, 0x3eb10,
1805		0x3eb20, 0x3eb30,
1806		0x3eb40, 0x3eb50,
1807		0x3eb60, 0x3eb70,
1808		0x3f000, 0x3f028,
1809		0x3f030, 0x3f048,
1810		0x3f060, 0x3f068,
1811		0x3f070, 0x3f09c,
1812		0x3f0f0, 0x3f128,
1813		0x3f130, 0x3f148,
1814		0x3f160, 0x3f168,
1815		0x3f170, 0x3f19c,
1816		0x3f1f0, 0x3f238,
1817		0x3f240, 0x3f240,
1818		0x3f248, 0x3f250,
1819		0x3f25c, 0x3f264,
1820		0x3f270, 0x3f2b8,
1821		0x3f2c0, 0x3f2e4,
1822		0x3f2f8, 0x3f338,
1823		0x3f340, 0x3f340,
1824		0x3f348, 0x3f350,
1825		0x3f35c, 0x3f364,
1826		0x3f370, 0x3f3b8,
1827		0x3f3c0, 0x3f3e4,
1828		0x3f3f8, 0x3f428,
1829		0x3f430, 0x3f448,
1830		0x3f460, 0x3f468,
1831		0x3f470, 0x3f49c,
1832		0x3f4f0, 0x3f528,
1833		0x3f530, 0x3f548,
1834		0x3f560, 0x3f568,
1835		0x3f570, 0x3f59c,
1836		0x3f5f0, 0x3f638,
1837		0x3f640, 0x3f640,
1838		0x3f648, 0x3f650,
1839		0x3f65c, 0x3f664,
1840		0x3f670, 0x3f6b8,
1841		0x3f6c0, 0x3f6e4,
1842		0x3f6f8, 0x3f738,
1843		0x3f740, 0x3f740,
1844		0x3f748, 0x3f750,
1845		0x3f75c, 0x3f764,
1846		0x3f770, 0x3f7b8,
1847		0x3f7c0, 0x3f7e4,
1848		0x3f7f8, 0x3f7fc,
1849		0x3f814, 0x3f814,
1850		0x3f82c, 0x3f82c,
1851		0x3f880, 0x3f88c,
1852		0x3f8e8, 0x3f8ec,
1853		0x3f900, 0x3f928,
1854		0x3f930, 0x3f948,
1855		0x3f960, 0x3f968,
1856		0x3f970, 0x3f99c,
1857		0x3f9f0, 0x3fa38,
1858		0x3fa40, 0x3fa40,
1859		0x3fa48, 0x3fa50,
1860		0x3fa5c, 0x3fa64,
1861		0x3fa70, 0x3fab8,
1862		0x3fac0, 0x3fae4,
1863		0x3faf8, 0x3fb10,
1864		0x3fb28, 0x3fb28,
1865		0x3fb3c, 0x3fb50,
1866		0x3fbf0, 0x3fc10,
1867		0x3fc28, 0x3fc28,
1868		0x3fc3c, 0x3fc50,
1869		0x3fcf0, 0x3fcfc,
1870		0x40000, 0x4000c,
1871		0x40040, 0x40050,
1872		0x40060, 0x40068,
1873		0x4007c, 0x4008c,
1874		0x40094, 0x400b0,
1875		0x400c0, 0x40144,
1876		0x40180, 0x4018c,
1877		0x40200, 0x40254,
1878		0x40260, 0x40264,
1879		0x40270, 0x40288,
1880		0x40290, 0x40298,
1881		0x402ac, 0x402c8,
1882		0x402d0, 0x402e0,
1883		0x402f0, 0x402f0,
1884		0x40300, 0x4033c,
1885		0x403f8, 0x403fc,
1886		0x41304, 0x413c4,
1887		0x41400, 0x4140c,
1888		0x41414, 0x4141c,
1889		0x41480, 0x414d0,
1890		0x44000, 0x44054,
1891		0x4405c, 0x44078,
1892		0x440c0, 0x44174,
1893		0x44180, 0x441ac,
1894		0x441b4, 0x441b8,
1895		0x441c0, 0x44254,
1896		0x4425c, 0x44278,
1897		0x442c0, 0x44374,
1898		0x44380, 0x443ac,
1899		0x443b4, 0x443b8,
1900		0x443c0, 0x44454,
1901		0x4445c, 0x44478,
1902		0x444c0, 0x44574,
1903		0x44580, 0x445ac,
1904		0x445b4, 0x445b8,
1905		0x445c0, 0x44654,
1906		0x4465c, 0x44678,
1907		0x446c0, 0x44774,
1908		0x44780, 0x447ac,
1909		0x447b4, 0x447b8,
1910		0x447c0, 0x44854,
1911		0x4485c, 0x44878,
1912		0x448c0, 0x44974,
1913		0x44980, 0x449ac,
1914		0x449b4, 0x449b8,
1915		0x449c0, 0x449fc,
1916		0x45000, 0x45004,
1917		0x45010, 0x45030,
1918		0x45040, 0x45060,
1919		0x45068, 0x45068,
1920		0x45080, 0x45084,
1921		0x450a0, 0x450b0,
1922		0x45200, 0x45204,
1923		0x45210, 0x45230,
1924		0x45240, 0x45260,
1925		0x45268, 0x45268,
1926		0x45280, 0x45284,
1927		0x452a0, 0x452b0,
1928		0x460c0, 0x460e4,
1929		0x47000, 0x4703c,
1930		0x47044, 0x4708c,
1931		0x47200, 0x47250,
1932		0x47400, 0x47408,
1933		0x47414, 0x47420,
1934		0x47600, 0x47618,
1935		0x47800, 0x47814,
1936		0x48000, 0x4800c,
1937		0x48040, 0x48050,
1938		0x48060, 0x48068,
1939		0x4807c, 0x4808c,
1940		0x48094, 0x480b0,
1941		0x480c0, 0x48144,
1942		0x48180, 0x4818c,
1943		0x48200, 0x48254,
1944		0x48260, 0x48264,
1945		0x48270, 0x48288,
1946		0x48290, 0x48298,
1947		0x482ac, 0x482c8,
1948		0x482d0, 0x482e0,
1949		0x482f0, 0x482f0,
1950		0x48300, 0x4833c,
1951		0x483f8, 0x483fc,
1952		0x49304, 0x493c4,
1953		0x49400, 0x4940c,
1954		0x49414, 0x4941c,
1955		0x49480, 0x494d0,
1956		0x4c000, 0x4c054,
1957		0x4c05c, 0x4c078,
1958		0x4c0c0, 0x4c174,
1959		0x4c180, 0x4c1ac,
1960		0x4c1b4, 0x4c1b8,
1961		0x4c1c0, 0x4c254,
1962		0x4c25c, 0x4c278,
1963		0x4c2c0, 0x4c374,
1964		0x4c380, 0x4c3ac,
1965		0x4c3b4, 0x4c3b8,
1966		0x4c3c0, 0x4c454,
1967		0x4c45c, 0x4c478,
1968		0x4c4c0, 0x4c574,
1969		0x4c580, 0x4c5ac,
1970		0x4c5b4, 0x4c5b8,
1971		0x4c5c0, 0x4c654,
1972		0x4c65c, 0x4c678,
1973		0x4c6c0, 0x4c774,
1974		0x4c780, 0x4c7ac,
1975		0x4c7b4, 0x4c7b8,
1976		0x4c7c0, 0x4c854,
1977		0x4c85c, 0x4c878,
1978		0x4c8c0, 0x4c974,
1979		0x4c980, 0x4c9ac,
1980		0x4c9b4, 0x4c9b8,
1981		0x4c9c0, 0x4c9fc,
1982		0x4d000, 0x4d004,
1983		0x4d010, 0x4d030,
1984		0x4d040, 0x4d060,
1985		0x4d068, 0x4d068,
1986		0x4d080, 0x4d084,
1987		0x4d0a0, 0x4d0b0,
1988		0x4d200, 0x4d204,
1989		0x4d210, 0x4d230,
1990		0x4d240, 0x4d260,
1991		0x4d268, 0x4d268,
1992		0x4d280, 0x4d284,
1993		0x4d2a0, 0x4d2b0,
1994		0x4e0c0, 0x4e0e4,
1995		0x4f000, 0x4f03c,
1996		0x4f044, 0x4f08c,
1997		0x4f200, 0x4f250,
1998		0x4f400, 0x4f408,
1999		0x4f414, 0x4f420,
2000		0x4f600, 0x4f618,
2001		0x4f800, 0x4f814,
2002		0x50000, 0x50084,
2003		0x50090, 0x500cc,
2004		0x50400, 0x50400,
2005		0x50800, 0x50884,
2006		0x50890, 0x508cc,
2007		0x50c00, 0x50c00,
2008		0x51000, 0x5101c,
2009		0x51300, 0x51308,
2010	};
2011
2012	static const unsigned int t5vf_reg_ranges[] = {
2013		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2014		VF_MPS_REG(A_MPS_VF_CTL),
2015		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2016		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2017		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2018		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2019		FW_T4VF_MBDATA_BASE_ADDR,
2020		FW_T4VF_MBDATA_BASE_ADDR +
2021		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2022	};
2023
2024	static const unsigned int t6_reg_ranges[] = {
2025		0x1008, 0x101c,
2026		0x1024, 0x10a8,
2027		0x10b4, 0x10f8,
2028		0x1100, 0x1114,
2029		0x111c, 0x112c,
2030		0x1138, 0x113c,
2031		0x1144, 0x114c,
2032		0x1180, 0x1184,
2033		0x1190, 0x1194,
2034		0x11a0, 0x11a4,
2035		0x11b0, 0x11b4,
2036		0x11fc, 0x1274,
2037		0x1280, 0x133c,
2038		0x1800, 0x18fc,
2039		0x3000, 0x302c,
2040		0x3060, 0x30b0,
2041		0x30b8, 0x30d8,
2042		0x30e0, 0x30fc,
2043		0x3140, 0x357c,
2044		0x35a8, 0x35cc,
2045		0x35ec, 0x35ec,
2046		0x3600, 0x5624,
2047		0x56cc, 0x56ec,
2048		0x56f4, 0x5720,
2049		0x5728, 0x575c,
2050		0x580c, 0x5814,
2051		0x5890, 0x589c,
2052		0x58a4, 0x58ac,
2053		0x58b8, 0x58bc,
2054		0x5940, 0x595c,
2055		0x5980, 0x598c,
2056		0x59b0, 0x59c8,
2057		0x59d0, 0x59dc,
2058		0x59fc, 0x5a18,
2059		0x5a60, 0x5a6c,
2060		0x5a80, 0x5a8c,
2061		0x5a94, 0x5a9c,
2062		0x5b94, 0x5bfc,
2063		0x5c10, 0x5e48,
2064		0x5e50, 0x5e94,
2065		0x5ea0, 0x5eb0,
2066		0x5ec0, 0x5ec0,
2067		0x5ec8, 0x5ed0,
2068		0x5ee0, 0x5ee0,
2069		0x5ef0, 0x5ef0,
2070		0x5f00, 0x5f00,
2071		0x6000, 0x6020,
2072		0x6028, 0x6040,
2073		0x6058, 0x609c,
2074		0x60a8, 0x619c,
2075		0x7700, 0x7798,
2076		0x77c0, 0x7880,
2077		0x78cc, 0x78fc,
2078		0x7b00, 0x7b58,
2079		0x7b60, 0x7b84,
2080		0x7b8c, 0x7c54,
2081		0x7d00, 0x7d38,
2082		0x7d40, 0x7d84,
2083		0x7d8c, 0x7ddc,
2084		0x7de4, 0x7e04,
2085		0x7e10, 0x7e1c,
2086		0x7e24, 0x7e38,
2087		0x7e40, 0x7e44,
2088		0x7e4c, 0x7e78,
2089		0x7e80, 0x7edc,
2090		0x7ee8, 0x7efc,
2091		0x8dc0, 0x8de4,
2092		0x8df8, 0x8e04,
2093		0x8e10, 0x8e84,
2094		0x8ea0, 0x8f88,
2095		0x8fb8, 0x9058,
2096		0x9060, 0x9060,
2097		0x9068, 0x90f8,
2098		0x9100, 0x9124,
2099		0x9400, 0x9470,
2100		0x9600, 0x9600,
2101		0x9608, 0x9638,
2102		0x9640, 0x9704,
2103		0x9710, 0x971c,
2104		0x9800, 0x9808,
2105		0x9820, 0x983c,
2106		0x9850, 0x9864,
2107		0x9c00, 0x9c6c,
2108		0x9c80, 0x9cec,
2109		0x9d00, 0x9d6c,
2110		0x9d80, 0x9dec,
2111		0x9e00, 0x9e6c,
2112		0x9e80, 0x9eec,
2113		0x9f00, 0x9f6c,
2114		0x9f80, 0xa020,
2115		0xd004, 0xd03c,
2116		0xd100, 0xd118,
2117		0xd200, 0xd214,
2118		0xd220, 0xd234,
2119		0xd240, 0xd254,
2120		0xd260, 0xd274,
2121		0xd280, 0xd294,
2122		0xd2a0, 0xd2b4,
2123		0xd2c0, 0xd2d4,
2124		0xd2e0, 0xd2f4,
2125		0xd300, 0xd31c,
2126		0xdfc0, 0xdfe0,
2127		0xe000, 0xf008,
2128		0xf010, 0xf018,
2129		0xf020, 0xf028,
2130		0x11000, 0x11014,
2131		0x11048, 0x1106c,
2132		0x11074, 0x11088,
2133		0x11098, 0x11120,
2134		0x1112c, 0x1117c,
2135		0x11190, 0x112e0,
2136		0x11300, 0x1130c,
2137		0x12000, 0x1206c,
2138		0x19040, 0x1906c,
2139		0x19078, 0x19080,
2140		0x1908c, 0x190e8,
2141		0x190f0, 0x190f8,
2142		0x19100, 0x19110,
2143		0x19120, 0x19124,
2144		0x19150, 0x19194,
2145		0x1919c, 0x191b0,
2146		0x191d0, 0x191e8,
2147		0x19238, 0x19290,
2148		0x192a4, 0x192b0,
2149		0x192bc, 0x192bc,
2150		0x19348, 0x1934c,
2151		0x193f8, 0x19418,
2152		0x19420, 0x19428,
2153		0x19430, 0x19444,
2154		0x1944c, 0x1946c,
2155		0x19474, 0x19474,
2156		0x19490, 0x194cc,
2157		0x194f0, 0x194f8,
2158		0x19c00, 0x19c48,
2159		0x19c50, 0x19c80,
2160		0x19c94, 0x19c98,
2161		0x19ca0, 0x19cbc,
2162		0x19ce4, 0x19ce4,
2163		0x19cf0, 0x19cf8,
2164		0x19d00, 0x19d28,
2165		0x19d50, 0x19d78,
2166		0x19d94, 0x19d98,
2167		0x19da0, 0x19dc8,
2168		0x19df0, 0x19e10,
2169		0x19e50, 0x19e6c,
2170		0x19ea0, 0x19ebc,
2171		0x19ec4, 0x19ef4,
2172		0x19f04, 0x19f2c,
2173		0x19f34, 0x19f34,
2174		0x19f40, 0x19f50,
2175		0x19f90, 0x19fac,
2176		0x19fc4, 0x19fc8,
2177		0x19fd0, 0x19fe4,
2178		0x1a000, 0x1a004,
2179		0x1a010, 0x1a06c,
2180		0x1a0b0, 0x1a0e4,
2181		0x1a0ec, 0x1a0f8,
2182		0x1a100, 0x1a108,
2183		0x1a114, 0x1a120,
2184		0x1a128, 0x1a130,
2185		0x1a138, 0x1a138,
2186		0x1a190, 0x1a1c4,
2187		0x1a1fc, 0x1a1fc,
2188		0x1e008, 0x1e00c,
2189		0x1e040, 0x1e044,
2190		0x1e04c, 0x1e04c,
2191		0x1e284, 0x1e290,
2192		0x1e2c0, 0x1e2c0,
2193		0x1e2e0, 0x1e2e0,
2194		0x1e300, 0x1e384,
2195		0x1e3c0, 0x1e3c8,
2196		0x1e408, 0x1e40c,
2197		0x1e440, 0x1e444,
2198		0x1e44c, 0x1e44c,
2199		0x1e684, 0x1e690,
2200		0x1e6c0, 0x1e6c0,
2201		0x1e6e0, 0x1e6e0,
2202		0x1e700, 0x1e784,
2203		0x1e7c0, 0x1e7c8,
2204		0x1e808, 0x1e80c,
2205		0x1e840, 0x1e844,
2206		0x1e84c, 0x1e84c,
2207		0x1ea84, 0x1ea90,
2208		0x1eac0, 0x1eac0,
2209		0x1eae0, 0x1eae0,
2210		0x1eb00, 0x1eb84,
2211		0x1ebc0, 0x1ebc8,
2212		0x1ec08, 0x1ec0c,
2213		0x1ec40, 0x1ec44,
2214		0x1ec4c, 0x1ec4c,
2215		0x1ee84, 0x1ee90,
2216		0x1eec0, 0x1eec0,
2217		0x1eee0, 0x1eee0,
2218		0x1ef00, 0x1ef84,
2219		0x1efc0, 0x1efc8,
2220		0x1f008, 0x1f00c,
2221		0x1f040, 0x1f044,
2222		0x1f04c, 0x1f04c,
2223		0x1f284, 0x1f290,
2224		0x1f2c0, 0x1f2c0,
2225		0x1f2e0, 0x1f2e0,
2226		0x1f300, 0x1f384,
2227		0x1f3c0, 0x1f3c8,
2228		0x1f408, 0x1f40c,
2229		0x1f440, 0x1f444,
2230		0x1f44c, 0x1f44c,
2231		0x1f684, 0x1f690,
2232		0x1f6c0, 0x1f6c0,
2233		0x1f6e0, 0x1f6e0,
2234		0x1f700, 0x1f784,
2235		0x1f7c0, 0x1f7c8,
2236		0x1f808, 0x1f80c,
2237		0x1f840, 0x1f844,
2238		0x1f84c, 0x1f84c,
2239		0x1fa84, 0x1fa90,
2240		0x1fac0, 0x1fac0,
2241		0x1fae0, 0x1fae0,
2242		0x1fb00, 0x1fb84,
2243		0x1fbc0, 0x1fbc8,
2244		0x1fc08, 0x1fc0c,
2245		0x1fc40, 0x1fc44,
2246		0x1fc4c, 0x1fc4c,
2247		0x1fe84, 0x1fe90,
2248		0x1fec0, 0x1fec0,
2249		0x1fee0, 0x1fee0,
2250		0x1ff00, 0x1ff84,
2251		0x1ffc0, 0x1ffc8,
2252		0x30000, 0x30030,
2253		0x30100, 0x30168,
2254		0x30190, 0x301a0,
2255		0x301a8, 0x301b8,
2256		0x301c4, 0x301c8,
2257		0x301d0, 0x301d0,
2258		0x30200, 0x30320,
2259		0x30400, 0x304b4,
2260		0x304c0, 0x3052c,
2261		0x30540, 0x3061c,
2262		0x30800, 0x308a0,
2263		0x308c0, 0x30908,
2264		0x30910, 0x309b8,
2265		0x30a00, 0x30a04,
2266		0x30a0c, 0x30a14,
2267		0x30a1c, 0x30a2c,
2268		0x30a44, 0x30a50,
2269		0x30a74, 0x30a74,
2270		0x30a7c, 0x30afc,
2271		0x30b08, 0x30c24,
2272		0x30d00, 0x30d14,
2273		0x30d1c, 0x30d3c,
2274		0x30d44, 0x30d4c,
2275		0x30d54, 0x30d74,
2276		0x30d7c, 0x30d7c,
2277		0x30de0, 0x30de0,
2278		0x30e00, 0x30ed4,
2279		0x30f00, 0x30fa4,
2280		0x30fc0, 0x30fc4,
2281		0x31000, 0x31004,
2282		0x31080, 0x310fc,
2283		0x31208, 0x31220,
2284		0x3123c, 0x31254,
2285		0x31300, 0x31300,
2286		0x31308, 0x3131c,
2287		0x31338, 0x3133c,
2288		0x31380, 0x31380,
2289		0x31388, 0x313a8,
2290		0x313b4, 0x313b4,
2291		0x31400, 0x31420,
2292		0x31438, 0x3143c,
2293		0x31480, 0x31480,
2294		0x314a8, 0x314a8,
2295		0x314b0, 0x314b4,
2296		0x314c8, 0x314d4,
2297		0x31a40, 0x31a4c,
2298		0x31af0, 0x31b20,
2299		0x31b38, 0x31b3c,
2300		0x31b80, 0x31b80,
2301		0x31ba8, 0x31ba8,
2302		0x31bb0, 0x31bb4,
2303		0x31bc8, 0x31bd4,
2304		0x32140, 0x3218c,
2305		0x321f0, 0x321f4,
2306		0x32200, 0x32200,
2307		0x32218, 0x32218,
2308		0x32400, 0x32400,
2309		0x32408, 0x3241c,
2310		0x32618, 0x32620,
2311		0x32664, 0x32664,
2312		0x326a8, 0x326a8,
2313		0x326ec, 0x326ec,
2314		0x32a00, 0x32abc,
2315		0x32b00, 0x32b18,
2316		0x32b20, 0x32b38,
2317		0x32b40, 0x32b58,
2318		0x32b60, 0x32b78,
2319		0x32c00, 0x32c00,
2320		0x32c08, 0x32c3c,
2321		0x33000, 0x3302c,
2322		0x33034, 0x33050,
2323		0x33058, 0x33058,
2324		0x33060, 0x3308c,
2325		0x3309c, 0x330ac,
2326		0x330c0, 0x330c0,
2327		0x330c8, 0x330d0,
2328		0x330d8, 0x330e0,
2329		0x330ec, 0x3312c,
2330		0x33134, 0x33150,
2331		0x33158, 0x33158,
2332		0x33160, 0x3318c,
2333		0x3319c, 0x331ac,
2334		0x331c0, 0x331c0,
2335		0x331c8, 0x331d0,
2336		0x331d8, 0x331e0,
2337		0x331ec, 0x33290,
2338		0x33298, 0x332c4,
2339		0x332e4, 0x33390,
2340		0x33398, 0x333c4,
2341		0x333e4, 0x3342c,
2342		0x33434, 0x33450,
2343		0x33458, 0x33458,
2344		0x33460, 0x3348c,
2345		0x3349c, 0x334ac,
2346		0x334c0, 0x334c0,
2347		0x334c8, 0x334d0,
2348		0x334d8, 0x334e0,
2349		0x334ec, 0x3352c,
2350		0x33534, 0x33550,
2351		0x33558, 0x33558,
2352		0x33560, 0x3358c,
2353		0x3359c, 0x335ac,
2354		0x335c0, 0x335c0,
2355		0x335c8, 0x335d0,
2356		0x335d8, 0x335e0,
2357		0x335ec, 0x33690,
2358		0x33698, 0x336c4,
2359		0x336e4, 0x33790,
2360		0x33798, 0x337c4,
2361		0x337e4, 0x337fc,
2362		0x33814, 0x33814,
2363		0x33854, 0x33868,
2364		0x33880, 0x3388c,
2365		0x338c0, 0x338d0,
2366		0x338e8, 0x338ec,
2367		0x33900, 0x3392c,
2368		0x33934, 0x33950,
2369		0x33958, 0x33958,
2370		0x33960, 0x3398c,
2371		0x3399c, 0x339ac,
2372		0x339c0, 0x339c0,
2373		0x339c8, 0x339d0,
2374		0x339d8, 0x339e0,
2375		0x339ec, 0x33a90,
2376		0x33a98, 0x33ac4,
2377		0x33ae4, 0x33b10,
2378		0x33b24, 0x33b28,
2379		0x33b38, 0x33b50,
2380		0x33bf0, 0x33c10,
2381		0x33c24, 0x33c28,
2382		0x33c38, 0x33c50,
2383		0x33cf0, 0x33cfc,
2384		0x34000, 0x34030,
2385		0x34100, 0x34168,
2386		0x34190, 0x341a0,
2387		0x341a8, 0x341b8,
2388		0x341c4, 0x341c8,
2389		0x341d0, 0x341d0,
2390		0x34200, 0x34320,
2391		0x34400, 0x344b4,
2392		0x344c0, 0x3452c,
2393		0x34540, 0x3461c,
2394		0x34800, 0x348a0,
2395		0x348c0, 0x34908,
2396		0x34910, 0x349b8,
2397		0x34a00, 0x34a04,
2398		0x34a0c, 0x34a14,
2399		0x34a1c, 0x34a2c,
2400		0x34a44, 0x34a50,
2401		0x34a74, 0x34a74,
2402		0x34a7c, 0x34afc,
2403		0x34b08, 0x34c24,
2404		0x34d00, 0x34d14,
2405		0x34d1c, 0x34d3c,
2406		0x34d44, 0x34d4c,
2407		0x34d54, 0x34d74,
2408		0x34d7c, 0x34d7c,
2409		0x34de0, 0x34de0,
2410		0x34e00, 0x34ed4,
2411		0x34f00, 0x34fa4,
2412		0x34fc0, 0x34fc4,
2413		0x35000, 0x35004,
2414		0x35080, 0x350fc,
2415		0x35208, 0x35220,
2416		0x3523c, 0x35254,
2417		0x35300, 0x35300,
2418		0x35308, 0x3531c,
2419		0x35338, 0x3533c,
2420		0x35380, 0x35380,
2421		0x35388, 0x353a8,
2422		0x353b4, 0x353b4,
2423		0x35400, 0x35420,
2424		0x35438, 0x3543c,
2425		0x35480, 0x35480,
2426		0x354a8, 0x354a8,
2427		0x354b0, 0x354b4,
2428		0x354c8, 0x354d4,
2429		0x35a40, 0x35a4c,
2430		0x35af0, 0x35b20,
2431		0x35b38, 0x35b3c,
2432		0x35b80, 0x35b80,
2433		0x35ba8, 0x35ba8,
2434		0x35bb0, 0x35bb4,
2435		0x35bc8, 0x35bd4,
2436		0x36140, 0x3618c,
2437		0x361f0, 0x361f4,
2438		0x36200, 0x36200,
2439		0x36218, 0x36218,
2440		0x36400, 0x36400,
2441		0x36408, 0x3641c,
2442		0x36618, 0x36620,
2443		0x36664, 0x36664,
2444		0x366a8, 0x366a8,
2445		0x366ec, 0x366ec,
2446		0x36a00, 0x36abc,
2447		0x36b00, 0x36b18,
2448		0x36b20, 0x36b38,
2449		0x36b40, 0x36b58,
2450		0x36b60, 0x36b78,
2451		0x36c00, 0x36c00,
2452		0x36c08, 0x36c3c,
2453		0x37000, 0x3702c,
2454		0x37034, 0x37050,
2455		0x37058, 0x37058,
2456		0x37060, 0x3708c,
2457		0x3709c, 0x370ac,
2458		0x370c0, 0x370c0,
2459		0x370c8, 0x370d0,
2460		0x370d8, 0x370e0,
2461		0x370ec, 0x3712c,
2462		0x37134, 0x37150,
2463		0x37158, 0x37158,
2464		0x37160, 0x3718c,
2465		0x3719c, 0x371ac,
2466		0x371c0, 0x371c0,
2467		0x371c8, 0x371d0,
2468		0x371d8, 0x371e0,
2469		0x371ec, 0x37290,
2470		0x37298, 0x372c4,
2471		0x372e4, 0x37390,
2472		0x37398, 0x373c4,
2473		0x373e4, 0x3742c,
2474		0x37434, 0x37450,
2475		0x37458, 0x37458,
2476		0x37460, 0x3748c,
2477		0x3749c, 0x374ac,
2478		0x374c0, 0x374c0,
2479		0x374c8, 0x374d0,
2480		0x374d8, 0x374e0,
2481		0x374ec, 0x3752c,
2482		0x37534, 0x37550,
2483		0x37558, 0x37558,
2484		0x37560, 0x3758c,
2485		0x3759c, 0x375ac,
2486		0x375c0, 0x375c0,
2487		0x375c8, 0x375d0,
2488		0x375d8, 0x375e0,
2489		0x375ec, 0x37690,
2490		0x37698, 0x376c4,
2491		0x376e4, 0x37790,
2492		0x37798, 0x377c4,
2493		0x377e4, 0x377fc,
2494		0x37814, 0x37814,
2495		0x37854, 0x37868,
2496		0x37880, 0x3788c,
2497		0x378c0, 0x378d0,
2498		0x378e8, 0x378ec,
2499		0x37900, 0x3792c,
2500		0x37934, 0x37950,
2501		0x37958, 0x37958,
2502		0x37960, 0x3798c,
2503		0x3799c, 0x379ac,
2504		0x379c0, 0x379c0,
2505		0x379c8, 0x379d0,
2506		0x379d8, 0x379e0,
2507		0x379ec, 0x37a90,
2508		0x37a98, 0x37ac4,
2509		0x37ae4, 0x37b10,
2510		0x37b24, 0x37b28,
2511		0x37b38, 0x37b50,
2512		0x37bf0, 0x37c10,
2513		0x37c24, 0x37c28,
2514		0x37c38, 0x37c50,
2515		0x37cf0, 0x37cfc,
2516		0x40040, 0x40040,
2517		0x40080, 0x40084,
2518		0x40100, 0x40100,
2519		0x40140, 0x401bc,
2520		0x40200, 0x40214,
2521		0x40228, 0x40228,
2522		0x40240, 0x40258,
2523		0x40280, 0x40280,
2524		0x40304, 0x40304,
2525		0x40330, 0x4033c,
2526		0x41304, 0x413c8,
2527		0x413d0, 0x413dc,
2528		0x413f0, 0x413f0,
2529		0x41400, 0x4140c,
2530		0x41414, 0x4141c,
2531		0x41480, 0x414d0,
2532		0x44000, 0x4407c,
2533		0x440c0, 0x441ac,
2534		0x441b4, 0x4427c,
2535		0x442c0, 0x443ac,
2536		0x443b4, 0x4447c,
2537		0x444c0, 0x445ac,
2538		0x445b4, 0x4467c,
2539		0x446c0, 0x447ac,
2540		0x447b4, 0x4487c,
2541		0x448c0, 0x449ac,
2542		0x449b4, 0x44a7c,
2543		0x44ac0, 0x44bac,
2544		0x44bb4, 0x44c7c,
2545		0x44cc0, 0x44dac,
2546		0x44db4, 0x44e7c,
2547		0x44ec0, 0x44fac,
2548		0x44fb4, 0x4507c,
2549		0x450c0, 0x451ac,
2550		0x451b4, 0x451fc,
2551		0x45800, 0x45804,
2552		0x45810, 0x45830,
2553		0x45840, 0x45860,
2554		0x45868, 0x45868,
2555		0x45880, 0x45884,
2556		0x458a0, 0x458b0,
2557		0x45a00, 0x45a04,
2558		0x45a10, 0x45a30,
2559		0x45a40, 0x45a60,
2560		0x45a68, 0x45a68,
2561		0x45a80, 0x45a84,
2562		0x45aa0, 0x45ab0,
2563		0x460c0, 0x460e4,
2564		0x47000, 0x4703c,
2565		0x47044, 0x4708c,
2566		0x47200, 0x47250,
2567		0x47400, 0x47408,
2568		0x47414, 0x47420,
2569		0x47600, 0x47618,
2570		0x47800, 0x47814,
2571		0x47820, 0x4782c,
2572		0x50000, 0x50084,
2573		0x50090, 0x500cc,
2574		0x50300, 0x50384,
2575		0x50400, 0x50400,
2576		0x50800, 0x50884,
2577		0x50890, 0x508cc,
2578		0x50b00, 0x50b84,
2579		0x50c00, 0x50c00,
2580		0x51000, 0x51020,
2581		0x51028, 0x510b0,
2582		0x51300, 0x51324,
2583	};
2584
2585	static const unsigned int t6vf_reg_ranges[] = {
2586		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2587		VF_MPS_REG(A_MPS_VF_CTL),
2588		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2589		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2590		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2591		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2592		FW_T6VF_MBDATA_BASE_ADDR,
2593		FW_T6VF_MBDATA_BASE_ADDR +
2594		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2595	};
2596
2597	u32 *buf_end = (u32 *)(buf + buf_size);
2598	const unsigned int *reg_ranges;
2599	int reg_ranges_size, range;
2600	unsigned int chip_version = chip_id(adap);
2601
2602	/*
2603	 * Select the right set of register ranges to dump depending on the
2604	 * adapter chip type.
2605	 */
2606	switch (chip_version) {
2607	case CHELSIO_T4:
2608		if (adap->flags & IS_VF) {
2609			reg_ranges = t4vf_reg_ranges;
2610			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2611		} else {
2612			reg_ranges = t4_reg_ranges;
2613			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2614		}
2615		break;
2616
2617	case CHELSIO_T5:
2618		if (adap->flags & IS_VF) {
2619			reg_ranges = t5vf_reg_ranges;
2620			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2621		} else {
2622			reg_ranges = t5_reg_ranges;
2623			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2624		}
2625		break;
2626
2627	case CHELSIO_T6:
2628		if (adap->flags & IS_VF) {
2629			reg_ranges = t6vf_reg_ranges;
2630			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2631		} else {
2632			reg_ranges = t6_reg_ranges;
2633			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2634		}
2635		break;
2636
2637	default:
2638		CH_ERR(adap,
2639			"Unsupported chip version %d\n", chip_version);
2640		return;
2641	}
2642
2643	/*
2644	 * Clear the register buffer and insert the appropriate register
2645	 * values selected by the above register ranges.
2646	 */
2647	memset(buf, 0, buf_size);
2648	for (range = 0; range < reg_ranges_size; range += 2) {
2649		unsigned int reg = reg_ranges[range];
2650		unsigned int last_reg = reg_ranges[range + 1];
2651		u32 *bufp = (u32 *)(buf + reg);
2652
2653		/*
2654		 * Iterate across the register range filling in the register
2655		 * buffer but don't write past the end of the register buffer.
2656		 */
2657		while (reg <= last_reg && bufp < buf_end) {
2658			*bufp++ = t4_read_reg(adap, reg);
2659			reg += sizeof(u32);
2660		}
2661	}
2662}
2663
2664/*
2665 * Partial EEPROM Vital Product Data structure.  The VPD starts with one ID
2666 * header followed by one or more VPD-R sections, each with its own header.
2667 */
2668struct t4_vpd_hdr {
2669	u8  id_tag;
2670	u8  id_len[2];
2671	u8  id_data[ID_LEN];
2672};
2673
2674struct t4_vpdr_hdr {
2675	u8  vpdr_tag;
2676	u8  vpdr_len[2];
2677};
2678
2679/*
2680 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2681 */
2682#define EEPROM_DELAY		10		/* 10us per poll spin */
2683#define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2684
2685#define EEPROM_STAT_ADDR	0x7bfc
2686#define VPD_SIZE		0x800
2687#define VPD_BASE		0x400
2688#define VPD_BASE_OLD		0
2689#define VPD_LEN			1024
2690#define VPD_INFO_FLD_HDR_SIZE	3
2691#define CHELSIO_VPD_UNIQUE_ID	0x82
2692
2693/*
2694 * Small utility function to wait till any outstanding VPD Access is complete.
2695 * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2696 * VPD Access in flight.  This allows us to handle the problem of having a
2697 * previous VPD Access time out and prevent an attempt to inject a new VPD
2698 * Request before any in-flight VPD reguest has completed.
2699 */
2700static int t4_seeprom_wait(struct adapter *adapter)
2701{
2702	unsigned int base = adapter->params.pci.vpd_cap_addr;
2703	int max_poll;
2704
2705	/*
2706	 * If no VPD Access is in flight, we can just return success right
2707	 * away.
2708	 */
2709	if (!adapter->vpd_busy)
2710		return 0;
2711
2712	/*
2713	 * Poll the VPD Capability Address/Flag register waiting for it
2714	 * to indicate that the operation is complete.
2715	 */
2716	max_poll = EEPROM_MAX_POLL;
2717	do {
2718		u16 val;
2719
2720		udelay(EEPROM_DELAY);
2721		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2722
2723		/*
2724		 * If the operation is complete, mark the VPD as no longer
2725		 * busy and return success.
2726		 */
2727		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2728			adapter->vpd_busy = 0;
2729			return 0;
2730		}
2731	} while (--max_poll);
2732
2733	/*
2734	 * Failure!  Note that we leave the VPD Busy status set in order to
2735	 * avoid pushing a new VPD Access request into the VPD Capability till
2736	 * the current operation eventually succeeds.  It's a bug to issue a
2737	 * new request when an existing request is in flight and will result
2738	 * in corrupt hardware state.
2739	 */
2740	return -ETIMEDOUT;
2741}
2742
2743/**
2744 *	t4_seeprom_read - read a serial EEPROM location
2745 *	@adapter: adapter to read
2746 *	@addr: EEPROM virtual address
2747 *	@data: where to store the read data
2748 *
2749 *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2750 *	VPD capability.  Note that this function must be called with a virtual
2751 *	address.
2752 */
2753int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2754{
2755	unsigned int base = adapter->params.pci.vpd_cap_addr;
2756	int ret;
2757
2758	/*
2759	 * VPD Accesses must alway be 4-byte aligned!
2760	 */
2761	if (addr >= EEPROMVSIZE || (addr & 3))
2762		return -EINVAL;
2763
2764	/*
2765	 * Wait for any previous operation which may still be in flight to
2766	 * complete.
2767	 */
2768	ret = t4_seeprom_wait(adapter);
2769	if (ret) {
2770		CH_ERR(adapter, "VPD still busy from previous operation\n");
2771		return ret;
2772	}
2773
2774	/*
2775	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2776	 * for our request to complete.  If it doesn't complete, note the
2777	 * error and return it to our caller.  Note that we do not reset the
2778	 * VPD Busy status!
2779	 */
2780	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2781	adapter->vpd_busy = 1;
2782	adapter->vpd_flag = PCI_VPD_ADDR_F;
2783	ret = t4_seeprom_wait(adapter);
2784	if (ret) {
2785		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2786		return ret;
2787	}
2788
2789	/*
2790	 * Grab the returned data, swizzle it into our endianness and
2791	 * return success.
2792	 */
2793	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2794	*data = le32_to_cpu(*data);
2795	return 0;
2796}
2797
2798/**
2799 *	t4_seeprom_write - write a serial EEPROM location
2800 *	@adapter: adapter to write
2801 *	@addr: virtual EEPROM address
2802 *	@data: value to write
2803 *
2804 *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2805 *	VPD capability.  Note that this function must be called with a virtual
2806 *	address.
2807 */
2808int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2809{
2810	unsigned int base = adapter->params.pci.vpd_cap_addr;
2811	int ret;
2812	u32 stats_reg;
2813	int max_poll;
2814
2815	/*
2816	 * VPD Accesses must alway be 4-byte aligned!
2817	 */
2818	if (addr >= EEPROMVSIZE || (addr & 3))
2819		return -EINVAL;
2820
2821	/*
2822	 * Wait for any previous operation which may still be in flight to
2823	 * complete.
2824	 */
2825	ret = t4_seeprom_wait(adapter);
2826	if (ret) {
2827		CH_ERR(adapter, "VPD still busy from previous operation\n");
2828		return ret;
2829	}
2830
2831	/*
2832	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2833	 * for our request to complete.  If it doesn't complete, note the
2834	 * error and return it to our caller.  Note that we do not reset the
2835	 * VPD Busy status!
2836	 */
2837	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2838				 cpu_to_le32(data));
2839	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2840				 (u16)addr | PCI_VPD_ADDR_F);
2841	adapter->vpd_busy = 1;
2842	adapter->vpd_flag = 0;
2843	ret = t4_seeprom_wait(adapter);
2844	if (ret) {
2845		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2846		return ret;
2847	}
2848
2849	/*
2850	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2851	 * request to complete. If it doesn't complete, return error.
2852	 */
2853	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2854	max_poll = EEPROM_MAX_POLL;
2855	do {
2856		udelay(EEPROM_DELAY);
2857		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2858	} while ((stats_reg & 0x1) && --max_poll);
2859	if (!max_poll)
2860		return -ETIMEDOUT;
2861
2862	/* Return success! */
2863	return 0;
2864}
2865
2866/**
2867 *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2868 *	@phys_addr: the physical EEPROM address
2869 *	@fn: the PCI function number
2870 *	@sz: size of function-specific area
2871 *
2872 *	Translate a physical EEPROM address to virtual.  The first 1K is
2873 *	accessed through virtual addresses starting at 31K, the rest is
2874 *	accessed through virtual addresses starting at 0.
2875 *
2876 *	The mapping is as follows:
2877 *	[0..1K) -> [31K..32K)
2878 *	[1K..1K+A) -> [ES-A..ES)
2879 *	[1K+A..ES) -> [0..ES-A-1K)
2880 *
2881 *	where A = @fn * @sz, and ES = EEPROM size.
2882 */
2883int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2884{
2885	fn *= sz;
2886	if (phys_addr < 1024)
2887		return phys_addr + (31 << 10);
2888	if (phys_addr < 1024 + fn)
2889		return EEPROMSIZE - fn + phys_addr - 1024;
2890	if (phys_addr < EEPROMSIZE)
2891		return phys_addr - 1024 - fn;
2892	return -EINVAL;
2893}
2894
2895/**
2896 *	t4_seeprom_wp - enable/disable EEPROM write protection
2897 *	@adapter: the adapter
2898 *	@enable: whether to enable or disable write protection
2899 *
2900 *	Enables or disables write protection on the serial EEPROM.
2901 */
2902int t4_seeprom_wp(struct adapter *adapter, int enable)
2903{
2904	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2905}
2906
2907/**
2908 *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2909 *	@vpd: Pointer to buffered vpd data structure
2910 *	@kw: The keyword to search for
2911 *	@region: VPD region to search (starting from 0)
2912 *
2913 *	Returns the value of the information field keyword or
2914 *	-ENOENT otherwise.
2915 */
2916static int get_vpd_keyword_val(const u8 *vpd, const char *kw, int region)
2917{
2918	int i, tag;
2919	unsigned int offset, len;
2920	const struct t4_vpdr_hdr *vpdr;
2921
2922	offset = sizeof(struct t4_vpd_hdr);
2923	vpdr = (const void *)(vpd + offset);
2924	tag = vpdr->vpdr_tag;
2925	len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2926	while (region--) {
2927		offset += sizeof(struct t4_vpdr_hdr) + len;
2928		vpdr = (const void *)(vpd + offset);
2929		if (++tag != vpdr->vpdr_tag)
2930			return -ENOENT;
2931		len = (u16)vpdr->vpdr_len[0] + ((u16)vpdr->vpdr_len[1] << 8);
2932	}
2933	offset += sizeof(struct t4_vpdr_hdr);
2934
2935	if (offset + len > VPD_LEN) {
2936		return -ENOENT;
2937	}
2938
2939	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2940		if (memcmp(vpd + i , kw , 2) == 0){
2941			i += VPD_INFO_FLD_HDR_SIZE;
2942			return i;
2943		}
2944
2945		i += VPD_INFO_FLD_HDR_SIZE + vpd[i+2];
2946	}
2947
2948	return -ENOENT;
2949}
2950
2951
2952/**
2953 *	get_vpd_params - read VPD parameters from VPD EEPROM
2954 *	@adapter: adapter to read
2955 *	@p: where to store the parameters
2956 *	@vpd: caller provided temporary space to read the VPD into
2957 *
2958 *	Reads card parameters stored in VPD EEPROM.
2959 */
2960static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2961    u32 *buf)
2962{
2963	int i, ret, addr;
2964	int ec, sn, pn, na, md;
2965	u8 csum;
2966	const u8 *vpd = (const u8 *)buf;
2967
2968	/*
2969	 * Card information normally starts at VPD_BASE but early cards had
2970	 * it at 0.
2971	 */
2972	ret = t4_seeprom_read(adapter, VPD_BASE, buf);
2973	if (ret)
2974		return (ret);
2975
2976	/*
2977	 * The VPD shall have a unique identifier specified by the PCI SIG.
2978	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2979	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2980	 * is expected to automatically put this entry at the
2981	 * beginning of the VPD.
2982	 */
2983	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2984
2985	for (i = 0; i < VPD_LEN; i += 4) {
2986		ret = t4_seeprom_read(adapter, addr + i, buf++);
2987		if (ret)
2988			return ret;
2989	}
2990
2991#define FIND_VPD_KW(var,name) do { \
2992	var = get_vpd_keyword_val(vpd, name, 0); \
2993	if (var < 0) { \
2994		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
2995		return -EINVAL; \
2996	} \
2997} while (0)
2998
2999	FIND_VPD_KW(i, "RV");
3000	for (csum = 0; i >= 0; i--)
3001		csum += vpd[i];
3002
3003	if (csum) {
3004		CH_ERR(adapter,
3005			"corrupted VPD EEPROM, actual csum %u\n", csum);
3006		return -EINVAL;
3007	}
3008
3009	FIND_VPD_KW(ec, "EC");
3010	FIND_VPD_KW(sn, "SN");
3011	FIND_VPD_KW(pn, "PN");
3012	FIND_VPD_KW(na, "NA");
3013#undef FIND_VPD_KW
3014
3015	memcpy(p->id, vpd + offsetof(struct t4_vpd_hdr, id_data), ID_LEN);
3016	strstrip(p->id);
3017	memcpy(p->ec, vpd + ec, EC_LEN);
3018	strstrip(p->ec);
3019	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3020	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3021	strstrip(p->sn);
3022	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3023	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3024	strstrip((char *)p->pn);
3025	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3026	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3027	strstrip((char *)p->na);
3028
3029	md = get_vpd_keyword_val(vpd, "VF", 1);
3030	if (md < 0) {
3031		snprintf(p->md, sizeof(p->md), "unknown");
3032	} else {
3033		i = vpd[md - VPD_INFO_FLD_HDR_SIZE + 2];
3034		memcpy(p->md, vpd + md, min(i, MD_LEN));
3035	}
3036
3037	return 0;
3038}
3039
3040/* serial flash and firmware constants and flash config file constants */
3041enum {
3042	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3043
3044	/* flash command opcodes */
3045	SF_PROG_PAGE    = 2,	/* program 256B page */
3046	SF_WR_DISABLE   = 4,	/* disable writes */
3047	SF_RD_STATUS    = 5,	/* read status register */
3048	SF_WR_ENABLE    = 6,	/* enable writes */
3049	SF_RD_DATA_FAST = 0xb,	/* read flash */
3050	SF_RD_ID	= 0x9f,	/* read ID */
3051	SF_ERASE_SECTOR = 0xd8,	/* erase 64KB sector */
3052};
3053
3054/**
3055 *	sf1_read - read data from the serial flash
3056 *	@adapter: the adapter
3057 *	@byte_cnt: number of bytes to read
3058 *	@cont: whether another operation will be chained
3059 *	@lock: whether to lock SF for PL access only
3060 *	@valp: where to store the read data
3061 *
3062 *	Reads up to 4 bytes of data from the serial flash.  The location of
3063 *	the read needs to be specified prior to calling this by issuing the
3064 *	appropriate commands to the serial flash.
3065 */
3066static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3067		    int lock, u32 *valp)
3068{
3069	int ret;
3070
3071	if (!byte_cnt || byte_cnt > 4)
3072		return -EINVAL;
3073	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3074		return -EBUSY;
3075	t4_write_reg(adapter, A_SF_OP,
3076		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3077	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3078	if (!ret)
3079		*valp = t4_read_reg(adapter, A_SF_DATA);
3080	return ret;
3081}
3082
3083/**
3084 *	sf1_write - write data to the serial flash
3085 *	@adapter: the adapter
3086 *	@byte_cnt: number of bytes to write
3087 *	@cont: whether another operation will be chained
3088 *	@lock: whether to lock SF for PL access only
3089 *	@val: value to write
3090 *
3091 *	Writes up to 4 bytes of data to the serial flash.  The location of
3092 *	the write needs to be specified prior to calling this by issuing the
3093 *	appropriate commands to the serial flash.
3094 */
3095static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3096		     int lock, u32 val)
3097{
3098	if (!byte_cnt || byte_cnt > 4)
3099		return -EINVAL;
3100	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3101		return -EBUSY;
3102	t4_write_reg(adapter, A_SF_DATA, val);
3103	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3104		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3105	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3106}
3107
3108/**
3109 *	flash_wait_op - wait for a flash operation to complete
3110 *	@adapter: the adapter
3111 *	@attempts: max number of polls of the status register
3112 *	@delay: delay between polls in ms
3113 *
3114 *	Wait for a flash operation to complete by polling the status register.
3115 */
3116static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3117{
3118	int ret;
3119	u32 status;
3120
3121	while (1) {
3122		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3123		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3124			return ret;
3125		if (!(status & 1))
3126			return 0;
3127		if (--attempts == 0)
3128			return -EAGAIN;
3129		if (delay)
3130			msleep(delay);
3131	}
3132}
3133
3134/**
3135 *	t4_read_flash - read words from serial flash
3136 *	@adapter: the adapter
3137 *	@addr: the start address for the read
3138 *	@nwords: how many 32-bit words to read
3139 *	@data: where to store the read data
3140 *	@byte_oriented: whether to store data as bytes or as words
3141 *
3142 *	Read the specified number of 32-bit words from the serial flash.
3143 *	If @byte_oriented is set the read data is stored as a byte array
3144 *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3145 *	natural endianness.
3146 */
3147int t4_read_flash(struct adapter *adapter, unsigned int addr,
3148		  unsigned int nwords, u32 *data, int byte_oriented)
3149{
3150	int ret;
3151
3152	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3153		return -EINVAL;
3154
3155	addr = swab32(addr) | SF_RD_DATA_FAST;
3156
3157	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3158	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3159		return ret;
3160
3161	for ( ; nwords; nwords--, data++) {
3162		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3163		if (nwords == 1)
3164			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3165		if (ret)
3166			return ret;
3167		if (byte_oriented)
3168			*data = (__force __u32)(cpu_to_be32(*data));
3169	}
3170	return 0;
3171}
3172
3173/**
3174 *	t4_write_flash - write up to a page of data to the serial flash
3175 *	@adapter: the adapter
3176 *	@addr: the start address to write
3177 *	@n: length of data to write in bytes
3178 *	@data: the data to write
3179 *	@byte_oriented: whether to store data as bytes or as words
3180 *
3181 *	Writes up to a page of data (256 bytes) to the serial flash starting
3182 *	at the given address.  All the data must be written to the same page.
3183 *	If @byte_oriented is set the write data is stored as byte stream
3184 *	(i.e. matches what on disk), otherwise in big-endian.
3185 */
3186int t4_write_flash(struct adapter *adapter, unsigned int addr,
3187			  unsigned int n, const u8 *data, int byte_oriented)
3188{
3189	int ret;
3190	u32 buf[SF_PAGE_SIZE / 4];
3191	unsigned int i, c, left, val, offset = addr & 0xff;
3192
3193	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3194		return -EINVAL;
3195
3196	val = swab32(addr) | SF_PROG_PAGE;
3197
3198	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3199	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3200		goto unlock;
3201
3202	for (left = n; left; left -= c) {
3203		c = min(left, 4U);
3204		for (val = 0, i = 0; i < c; ++i)
3205			val = (val << 8) + *data++;
3206
3207		if (!byte_oriented)
3208			val = cpu_to_be32(val);
3209
3210		ret = sf1_write(adapter, c, c != left, 1, val);
3211		if (ret)
3212			goto unlock;
3213	}
3214	ret = flash_wait_op(adapter, 8, 1);
3215	if (ret)
3216		goto unlock;
3217
3218	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3219
3220	/* Read the page to verify the write succeeded */
3221	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3222			    byte_oriented);
3223	if (ret)
3224		return ret;
3225
3226	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3227		CH_ERR(adapter,
3228			"failed to correctly write the flash page at %#x\n",
3229			addr);
3230		return -EIO;
3231	}
3232	return 0;
3233
3234unlock:
3235	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3236	return ret;
3237}
3238
3239/**
3240 *	t4_get_fw_version - read the firmware version
3241 *	@adapter: the adapter
3242 *	@vers: where to place the version
3243 *
3244 *	Reads the FW version from flash.
3245 */
3246int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3247{
3248	return t4_read_flash(adapter, FLASH_FW_START +
3249			     offsetof(struct fw_hdr, fw_ver), 1,
3250			     vers, 0);
3251}
3252
3253/**
3254 *	t4_get_bs_version - read the firmware bootstrap version
3255 *	@adapter: the adapter
3256 *	@vers: where to place the version
3257 *
3258 *	Reads the FW Bootstrap version from flash.
3259 */
3260int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3261{
3262	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3263			     offsetof(struct fw_hdr, fw_ver), 1,
3264			     vers, 0);
3265}
3266
3267/**
3268 *	t4_get_tp_version - read the TP microcode version
3269 *	@adapter: the adapter
3270 *	@vers: where to place the version
3271 *
3272 *	Reads the TP microcode version from flash.
3273 */
3274int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3275{
3276	return t4_read_flash(adapter, FLASH_FW_START +
3277			     offsetof(struct fw_hdr, tp_microcode_ver),
3278			     1, vers, 0);
3279}
3280
3281/**
3282 *	t4_get_exprom_version - return the Expansion ROM version (if any)
3283 *	@adapter: the adapter
3284 *	@vers: where to place the version
3285 *
3286 *	Reads the Expansion ROM header from FLASH and returns the version
3287 *	number (if present) through the @vers return value pointer.  We return
3288 *	this in the Firmware Version Format since it's convenient.  Return
3289 *	0 on success, -ENOENT if no Expansion ROM is present.
3290 */
3291int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3292{
3293	struct exprom_header {
3294		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3295		unsigned char hdr_ver[4];	/* Expansion ROM version */
3296	} *hdr;
3297	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3298					   sizeof(u32))];
3299	int ret;
3300
3301	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3302			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3303			    0);
3304	if (ret)
3305		return ret;
3306
3307	hdr = (struct exprom_header *)exprom_header_buf;
3308	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3309		return -ENOENT;
3310
3311	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3312		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3313		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3314		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3315	return 0;
3316}
3317
3318/**
3319 *	t4_get_scfg_version - return the Serial Configuration version
3320 *	@adapter: the adapter
3321 *	@vers: where to place the version
3322 *
3323 *	Reads the Serial Configuration Version via the Firmware interface
3324 *	(thus this can only be called once we're ready to issue Firmware
3325 *	commands).  The format of the Serial Configuration version is
3326 *	adapter specific.  Returns 0 on success, an error on failure.
3327 *
3328 *	Note that early versions of the Firmware didn't include the ability
3329 *	to retrieve the Serial Configuration version, so we zero-out the
3330 *	return-value parameter in that case to avoid leaving it with
3331 *	garbage in it.
3332 *
3333 *	Also note that the Firmware will return its cached copy of the Serial
3334 *	Initialization Revision ID, not the actual Revision ID as written in
3335 *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3336 *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3337 *	it's best to defer calling this routine till after a FW_RESET_CMD has
3338 *	been issued if the Host Driver will be performing a full adapter
3339 *	initialization.
3340 */
3341int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3342{
3343	u32 scfgrev_param;
3344	int ret;
3345
3346	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3347			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3348	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3349			      1, &scfgrev_param, vers);
3350	if (ret)
3351		*vers = 0;
3352	return ret;
3353}
3354
3355/**
3356 *	t4_get_vpd_version - return the VPD version
3357 *	@adapter: the adapter
3358 *	@vers: where to place the version
3359 *
3360 *	Reads the VPD via the Firmware interface (thus this can only be called
3361 *	once we're ready to issue Firmware commands).  The format of the
3362 *	VPD version is adapter specific.  Returns 0 on success, an error on
3363 *	failure.
3364 *
3365 *	Note that early versions of the Firmware didn't include the ability
3366 *	to retrieve the VPD version, so we zero-out the return-value parameter
3367 *	in that case to avoid leaving it with garbage in it.
3368 *
3369 *	Also note that the Firmware will return its cached copy of the VPD
3370 *	Revision ID, not the actual Revision ID as written in the Serial
3371 *	EEPROM.  This is only an issue if a new VPD has been written and the
3372 *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3373 *	to defer calling this routine till after a FW_RESET_CMD has been issued
3374 *	if the Host Driver will be performing a full adapter initialization.
3375 */
3376int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3377{
3378	u32 vpdrev_param;
3379	int ret;
3380
3381	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3382			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3383	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3384			      1, &vpdrev_param, vers);
3385	if (ret)
3386		*vers = 0;
3387	return ret;
3388}
3389
3390/**
3391 *	t4_get_version_info - extract various chip/firmware version information
3392 *	@adapter: the adapter
3393 *
3394 *	Reads various chip/firmware version numbers and stores them into the
3395 *	adapter Adapter Parameters structure.  If any of the efforts fails
3396 *	the first failure will be returned, but all of the version numbers
3397 *	will be read.
3398 */
3399int t4_get_version_info(struct adapter *adapter)
3400{
3401	int ret = 0;
3402
3403	#define FIRST_RET(__getvinfo) \
3404	do { \
3405		int __ret = __getvinfo; \
3406		if (__ret && !ret) \
3407			ret = __ret; \
3408	} while (0)
3409
3410	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3411	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3412	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3413	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3414	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3415	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3416
3417	#undef FIRST_RET
3418
3419	return ret;
3420}
3421
3422/**
3423 *	t4_flash_erase_sectors - erase a range of flash sectors
3424 *	@adapter: the adapter
3425 *	@start: the first sector to erase
3426 *	@end: the last sector to erase
3427 *
3428 *	Erases the sectors in the given inclusive range.
3429 */
3430int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3431{
3432	int ret = 0;
3433
3434	if (end >= adapter->params.sf_nsec)
3435		return -EINVAL;
3436
3437	while (start <= end) {
3438		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3439		    (ret = sf1_write(adapter, 4, 0, 1,
3440				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3441		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3442			CH_ERR(adapter,
3443				"erase of flash sector %d failed, error %d\n",
3444				start, ret);
3445			break;
3446		}
3447		start++;
3448	}
3449	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3450	return ret;
3451}
3452
3453/**
3454 *	t4_flash_cfg_addr - return the address of the flash configuration file
3455 *	@adapter: the adapter
3456 *
3457 *	Return the address within the flash where the Firmware Configuration
3458 *	File is stored, or an error if the device FLASH is too small to contain
3459 *	a Firmware Configuration File.
3460 */
3461int t4_flash_cfg_addr(struct adapter *adapter)
3462{
3463	/*
3464	 * If the device FLASH isn't large enough to hold a Firmware
3465	 * Configuration File, return an error.
3466	 */
3467	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3468		return -ENOSPC;
3469
3470	return FLASH_CFG_START;
3471}
3472
3473/*
3474 * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3475 * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3476 * and emit an error message for mismatched firmware to save our caller the
3477 * effort ...
3478 */
3479static int t4_fw_matches_chip(struct adapter *adap,
3480			      const struct fw_hdr *hdr)
3481{
3482	/*
3483	 * The expression below will return FALSE for any unsupported adapter
3484	 * which will keep us "honest" in the future ...
3485	 */
3486	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3487	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3488	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3489		return 1;
3490
3491	CH_ERR(adap,
3492		"FW image (%d) is not suitable for this adapter (%d)\n",
3493		hdr->chip, chip_id(adap));
3494	return 0;
3495}
3496
3497/**
3498 *	t4_load_fw - download firmware
3499 *	@adap: the adapter
3500 *	@fw_data: the firmware image to write
3501 *	@size: image size
3502 *
3503 *	Write the supplied firmware image to the card's serial flash.
3504 */
3505int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3506{
3507	u32 csum;
3508	int ret, addr;
3509	unsigned int i;
3510	u8 first_page[SF_PAGE_SIZE];
3511	const u32 *p = (const u32 *)fw_data;
3512	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3513	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3514	unsigned int fw_start_sec;
3515	unsigned int fw_start;
3516	unsigned int fw_size;
3517
3518	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3519		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3520		fw_start = FLASH_FWBOOTSTRAP_START;
3521		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3522	} else {
3523		fw_start_sec = FLASH_FW_START_SEC;
3524 		fw_start = FLASH_FW_START;
3525		fw_size = FLASH_FW_MAX_SIZE;
3526	}
3527
3528	if (!size) {
3529		CH_ERR(adap, "FW image has no data\n");
3530		return -EINVAL;
3531	}
3532	if (size & 511) {
3533		CH_ERR(adap,
3534			"FW image size not multiple of 512 bytes\n");
3535		return -EINVAL;
3536	}
3537	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3538		CH_ERR(adap,
3539			"FW image size differs from size in FW header\n");
3540		return -EINVAL;
3541	}
3542	if (size > fw_size) {
3543		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3544			fw_size);
3545		return -EFBIG;
3546	}
3547	if (!t4_fw_matches_chip(adap, hdr))
3548		return -EINVAL;
3549
3550	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3551		csum += be32_to_cpu(p[i]);
3552
3553	if (csum != 0xffffffff) {
3554		CH_ERR(adap,
3555			"corrupted firmware image, checksum %#x\n", csum);
3556		return -EINVAL;
3557	}
3558
3559	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3560	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3561	if (ret)
3562		goto out;
3563
3564	/*
3565	 * We write the correct version at the end so the driver can see a bad
3566	 * version if the FW write fails.  Start by writing a copy of the
3567	 * first page with a bad version.
3568	 */
3569	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3570	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3571	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3572	if (ret)
3573		goto out;
3574
3575	addr = fw_start;
3576	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3577		addr += SF_PAGE_SIZE;
3578		fw_data += SF_PAGE_SIZE;
3579		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3580		if (ret)
3581			goto out;
3582	}
3583
3584	ret = t4_write_flash(adap,
3585			     fw_start + offsetof(struct fw_hdr, fw_ver),
3586			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3587out:
3588	if (ret)
3589		CH_ERR(adap, "firmware download failed, error %d\n",
3590			ret);
3591	return ret;
3592}
3593
3594/**
3595 *	t4_fwcache - firmware cache operation
3596 *	@adap: the adapter
3597 *	@op  : the operation (flush or flush and invalidate)
3598 */
3599int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3600{
3601	struct fw_params_cmd c;
3602
3603	memset(&c, 0, sizeof(c));
3604	c.op_to_vfn =
3605	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3606			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3607				V_FW_PARAMS_CMD_PFN(adap->pf) |
3608				V_FW_PARAMS_CMD_VFN(0));
3609	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3610	c.param[0].mnem =
3611	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3612			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3613	c.param[0].val = (__force __be32)op;
3614
3615	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3616}
3617
3618void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3619			unsigned int *pif_req_wrptr,
3620			unsigned int *pif_rsp_wrptr)
3621{
3622	int i, j;
3623	u32 cfg, val, req, rsp;
3624
3625	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3626	if (cfg & F_LADBGEN)
3627		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3628
3629	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3630	req = G_POLADBGWRPTR(val);
3631	rsp = G_PILADBGWRPTR(val);
3632	if (pif_req_wrptr)
3633		*pif_req_wrptr = req;
3634	if (pif_rsp_wrptr)
3635		*pif_rsp_wrptr = rsp;
3636
3637	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3638		for (j = 0; j < 6; j++) {
3639			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3640				     V_PILADBGRDPTR(rsp));
3641			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3642			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3643			req++;
3644			rsp++;
3645		}
3646		req = (req + 2) & M_POLADBGRDPTR;
3647		rsp = (rsp + 2) & M_PILADBGRDPTR;
3648	}
3649	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3650}
3651
3652void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3653{
3654	u32 cfg;
3655	int i, j, idx;
3656
3657	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3658	if (cfg & F_LADBGEN)
3659		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3660
3661	for (i = 0; i < CIM_MALA_SIZE; i++) {
3662		for (j = 0; j < 5; j++) {
3663			idx = 8 * i + j;
3664			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3665				     V_PILADBGRDPTR(idx));
3666			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3667			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3668		}
3669	}
3670	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3671}
3672
3673void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3674{
3675	unsigned int i, j;
3676
3677	for (i = 0; i < 8; i++) {
3678		u32 *p = la_buf + i;
3679
3680		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3681		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3682		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3683		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3684			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3685	}
3686}
3687
3688/**
3689 *	t4_link_l1cfg - apply link configuration to MAC/PHY
3690 *	@phy: the PHY to setup
3691 *	@mac: the MAC to setup
3692 *	@lc: the requested link configuration
3693 *
3694 *	Set up a port's MAC and PHY according to a desired link configuration.
3695 *	- If the PHY can auto-negotiate first decide what to advertise, then
3696 *	  enable/disable auto-negotiation as desired, and reset.
3697 *	- If the PHY does not auto-negotiate just reset it.
3698 *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3699 *	  otherwise do it later based on the outcome of auto-negotiation.
3700 */
3701int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3702		  struct link_config *lc)
3703{
3704	struct fw_port_cmd c;
3705	unsigned int mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3706	unsigned int aneg, fc, fec, speed, rcap;
3707
3708	fc = 0;
3709	if (lc->requested_fc & PAUSE_RX)
3710		fc |= FW_PORT_CAP_FC_RX;
3711	if (lc->requested_fc & PAUSE_TX)
3712		fc |= FW_PORT_CAP_FC_TX;
3713
3714	fec = 0;
3715	if (lc->requested_fec & FEC_RS)
3716		fec = FW_PORT_CAP_FEC_RS;
3717	else if (lc->requested_fec & FEC_BASER_RS)
3718		fec = FW_PORT_CAP_FEC_BASER_RS;
3719	else if (lc->requested_fec & FEC_RESERVED)
3720		fec = FW_PORT_CAP_FEC_RESERVED;
3721
3722	if (!(lc->supported & FW_PORT_CAP_ANEG) ||
3723	    lc->requested_aneg == AUTONEG_DISABLE) {
3724		aneg = 0;
3725		switch (lc->requested_speed) {
3726		case 100:
3727			speed = FW_PORT_CAP_SPEED_100G;
3728			break;
3729		case 40:
3730			speed = FW_PORT_CAP_SPEED_40G;
3731			break;
3732		case 25:
3733			speed = FW_PORT_CAP_SPEED_25G;
3734			break;
3735		case 10:
3736			speed = FW_PORT_CAP_SPEED_10G;
3737			break;
3738		case 1:
3739			speed = FW_PORT_CAP_SPEED_1G;
3740			break;
3741		default:
3742			return -EINVAL;
3743			break;
3744		}
3745	} else {
3746		aneg = FW_PORT_CAP_ANEG;
3747		speed = lc->supported &
3748		    V_FW_PORT_CAP_SPEED(M_FW_PORT_CAP_SPEED);
3749	}
3750
3751	rcap = aneg | speed | fc | fec;
3752	if ((rcap | lc->supported) != lc->supported) {
3753#ifdef INVARIANTS
3754		CH_WARN(adap, "rcap 0x%08x, pcap 0x%08x\n", rcap,
3755		    lc->supported);
3756#endif
3757		rcap &= lc->supported;
3758	}
3759	rcap |= mdi;
3760
3761	memset(&c, 0, sizeof(c));
3762	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3763				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3764				     V_FW_PORT_CMD_PORTID(port));
3765	c.action_to_len16 =
3766		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3767			    FW_LEN16(c));
3768	c.u.l1cfg.rcap = cpu_to_be32(rcap);
3769
3770	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
3771}
3772
3773/**
3774 *	t4_restart_aneg - restart autonegotiation
3775 *	@adap: the adapter
3776 *	@mbox: mbox to use for the FW command
3777 *	@port: the port id
3778 *
3779 *	Restarts autonegotiation for the selected port.
3780 */
3781int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3782{
3783	struct fw_port_cmd c;
3784
3785	memset(&c, 0, sizeof(c));
3786	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3787				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3788				     V_FW_PORT_CMD_PORTID(port));
3789	c.action_to_len16 =
3790		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3791			    FW_LEN16(c));
3792	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3793	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3794}
3795
3796typedef void (*int_handler_t)(struct adapter *adap);
3797
3798struct intr_info {
3799	unsigned int mask;	/* bits to check in interrupt status */
3800	const char *msg;	/* message to print or NULL */
3801	short stat_idx;		/* stat counter to increment or -1 */
3802	unsigned short fatal;	/* whether the condition reported is fatal */
3803	int_handler_t int_handler;	/* platform-specific int handler */
3804};
3805
3806/**
3807 *	t4_handle_intr_status - table driven interrupt handler
3808 *	@adapter: the adapter that generated the interrupt
3809 *	@reg: the interrupt status register to process
3810 *	@acts: table of interrupt actions
3811 *
3812 *	A table driven interrupt handler that applies a set of masks to an
3813 *	interrupt status word and performs the corresponding actions if the
3814 *	interrupts described by the mask have occurred.  The actions include
3815 *	optionally emitting a warning or alert message.  The table is terminated
3816 *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3817 *	conditions.
3818 */
3819static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3820				 const struct intr_info *acts)
3821{
3822	int fatal = 0;
3823	unsigned int mask = 0;
3824	unsigned int status = t4_read_reg(adapter, reg);
3825
3826	for ( ; acts->mask; ++acts) {
3827		if (!(status & acts->mask))
3828			continue;
3829		if (acts->fatal) {
3830			fatal++;
3831			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3832				  status & acts->mask);
3833		} else if (acts->msg)
3834			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3835				 status & acts->mask);
3836		if (acts->int_handler)
3837			acts->int_handler(adapter);
3838		mask |= acts->mask;
3839	}
3840	status &= mask;
3841	if (status)	/* clear processed interrupts */
3842		t4_write_reg(adapter, reg, status);
3843	return fatal;
3844}
3845
3846/*
3847 * Interrupt handler for the PCIE module.
3848 */
3849static void pcie_intr_handler(struct adapter *adapter)
3850{
3851	static const struct intr_info sysbus_intr_info[] = {
3852		{ F_RNPP, "RXNP array parity error", -1, 1 },
3853		{ F_RPCP, "RXPC array parity error", -1, 1 },
3854		{ F_RCIP, "RXCIF array parity error", -1, 1 },
3855		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
3856		{ F_RFTP, "RXFT array parity error", -1, 1 },
3857		{ 0 }
3858	};
3859	static const struct intr_info pcie_port_intr_info[] = {
3860		{ F_TPCP, "TXPC array parity error", -1, 1 },
3861		{ F_TNPP, "TXNP array parity error", -1, 1 },
3862		{ F_TFTP, "TXFT array parity error", -1, 1 },
3863		{ F_TCAP, "TXCA array parity error", -1, 1 },
3864		{ F_TCIP, "TXCIF array parity error", -1, 1 },
3865		{ F_RCAP, "RXCA array parity error", -1, 1 },
3866		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
3867		{ F_RDPE, "Rx data parity error", -1, 1 },
3868		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
3869		{ 0 }
3870	};
3871	static const struct intr_info pcie_intr_info[] = {
3872		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3873		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3874		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3875		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3876		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3877		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3878		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3879		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3880		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3881		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3882		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3883		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3884		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3885		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3886		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3887		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3888		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3889		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3890		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3891		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3892		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3893		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3894		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3895		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3896		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3897		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3898		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3899		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
3900		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
3901		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3902		  0 },
3903		{ 0 }
3904	};
3905
3906	static const struct intr_info t5_pcie_intr_info[] = {
3907		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
3908		  -1, 1 },
3909		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3910		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3911		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3912		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3913		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3914		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3915		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3916		  -1, 1 },
3917		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3918		  -1, 1 },
3919		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3920		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3921		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3922		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3923		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
3924		  -1, 1 },
3925		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3926		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3927		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3928		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3929		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3930		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3931		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3932		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3933		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3934		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3935		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3936		  -1, 1 },
3937		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3938		  -1, 1 },
3939		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3940		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3941		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3942		{ F_READRSPERR, "Outbound read error", -1,
3943		  0 },
3944		{ 0 }
3945	};
3946
3947	int fat;
3948
3949	if (is_t4(adapter))
3950		fat = t4_handle_intr_status(adapter,
3951				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3952				sysbus_intr_info) +
3953			t4_handle_intr_status(adapter,
3954					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3955					pcie_port_intr_info) +
3956			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3957					      pcie_intr_info);
3958	else
3959		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3960					    t5_pcie_intr_info);
3961	if (fat)
3962		t4_fatal_err(adapter);
3963}
3964
3965/*
3966 * TP interrupt handler.
3967 */
3968static void tp_intr_handler(struct adapter *adapter)
3969{
3970	static const struct intr_info tp_intr_info[] = {
3971		{ 0x3fffffff, "TP parity error", -1, 1 },
3972		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3973		{ 0 }
3974	};
3975
3976	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3977		t4_fatal_err(adapter);
3978}
3979
3980/*
3981 * SGE interrupt handler.
3982 */
3983static void sge_intr_handler(struct adapter *adapter)
3984{
3985	u64 v;
3986	u32 err;
3987
3988	static const struct intr_info sge_intr_info[] = {
3989		{ F_ERR_CPL_EXCEED_IQE_SIZE,
3990		  "SGE received CPL exceeding IQE size", -1, 1 },
3991		{ F_ERR_INVALID_CIDX_INC,
3992		  "SGE GTS CIDX increment too large", -1, 0 },
3993		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3994		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
3995		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
3996		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3997		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
3998		  0 },
3999		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
4000		  0 },
4001		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
4002		  0 },
4003		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
4004		  0 },
4005		{ F_ERR_ING_CTXT_PRIO,
4006		  "SGE too many priority ingress contexts", -1, 0 },
4007		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
4008		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
4009		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 |
4010		  F_ERR_PCIE_ERROR2 | F_ERR_PCIE_ERROR3,
4011		  "SGE PCIe error for a DBP thread", -1, 0 },
4012		{ 0 }
4013	};
4014
4015	static const struct intr_info t4t5_sge_intr_info[] = {
4016		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
4017		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
4018		{ F_ERR_EGR_CTXT_PRIO,
4019		  "SGE too many priority egress contexts", -1, 0 },
4020		{ 0 }
4021	};
4022
4023	/*
4024 	* For now, treat below interrupts as fatal so that we disable SGE and
4025 	* get better debug */
4026	static const struct intr_info t6_sge_intr_info[] = {
4027		{ F_FATAL_WRE_LEN,
4028		  "SGE Actual WRE packet is less than advertized length",
4029		  -1, 1 },
4030		{ 0 }
4031	};
4032
4033	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
4034		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
4035	if (v) {
4036		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
4037				(unsigned long long)v);
4038		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
4039		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
4040	}
4041
4042	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
4043	if (chip_id(adapter) <= CHELSIO_T5)
4044		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4045					   t4t5_sge_intr_info);
4046	else
4047		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4048					   t6_sge_intr_info);
4049
4050	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
4051	if (err & F_ERROR_QID_VALID) {
4052		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4053		if (err & F_UNCAPTURED_ERROR)
4054			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4055		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4056			     F_UNCAPTURED_ERROR);
4057	}
4058
4059	if (v != 0)
4060		t4_fatal_err(adapter);
4061}
4062
4063#define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4064		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4065#define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4066		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4067
4068/*
4069 * CIM interrupt handler.
4070 */
4071static void cim_intr_handler(struct adapter *adapter)
4072{
4073	static const struct intr_info cim_intr_info[] = {
4074		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4075		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4076		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4077		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4078		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4079		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4080		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4081		{ F_TIMER0INT, "CIM TIMER0 interrupt", -1, 1 },
4082		{ 0 }
4083	};
4084	static const struct intr_info cim_upintr_info[] = {
4085		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4086		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4087		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
4088		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
4089		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4090		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4091		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4092		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4093		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4094		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4095		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4096		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4097		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4098		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4099		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4100		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4101		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4102		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4103		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4104		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4105		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4106		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4107		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4108		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4109		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4110		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4111		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4112		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4113		{ 0 }
4114	};
4115	u32 val, fw_err;
4116	int fat;
4117
4118	fw_err = t4_read_reg(adapter, A_PCIE_FW);
4119	if (fw_err & F_PCIE_FW_ERR)
4120		t4_report_fw_error(adapter);
4121
4122	/* When the Firmware detects an internal error which normally wouldn't
4123	 * raise a Host Interrupt, it forces a CIM Timer0 interrupt in order
4124	 * to make sure the Host sees the Firmware Crash.  So if we have a
4125	 * Timer0 interrupt and don't see a Firmware Crash, ignore the Timer0
4126	 * interrupt.
4127	 */
4128	val = t4_read_reg(adapter, A_CIM_HOST_INT_CAUSE);
4129	if (val & F_TIMER0INT)
4130		if (!(fw_err & F_PCIE_FW_ERR) ||
4131		    (G_PCIE_FW_EVAL(fw_err) != PCIE_FW_EVAL_CRASH))
4132			t4_write_reg(adapter, A_CIM_HOST_INT_CAUSE,
4133				     F_TIMER0INT);
4134
4135	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4136				    cim_intr_info) +
4137	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4138				    cim_upintr_info);
4139	if (fat)
4140		t4_fatal_err(adapter);
4141}
4142
4143/*
4144 * ULP RX interrupt handler.
4145 */
4146static void ulprx_intr_handler(struct adapter *adapter)
4147{
4148	static const struct intr_info ulprx_intr_info[] = {
4149		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4150		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4151		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4152		{ 0 }
4153	};
4154
4155	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4156		t4_fatal_err(adapter);
4157}
4158
4159/*
4160 * ULP TX interrupt handler.
4161 */
4162static void ulptx_intr_handler(struct adapter *adapter)
4163{
4164	static const struct intr_info ulptx_intr_info[] = {
4165		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4166		  0 },
4167		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4168		  0 },
4169		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4170		  0 },
4171		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4172		  0 },
4173		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4174		{ 0 }
4175	};
4176
4177	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4178		t4_fatal_err(adapter);
4179}
4180
4181/*
4182 * PM TX interrupt handler.
4183 */
4184static void pmtx_intr_handler(struct adapter *adapter)
4185{
4186	static const struct intr_info pmtx_intr_info[] = {
4187		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4188		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4189		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4190		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4191		{ 0xffffff0, "PMTX framing error", -1, 1 },
4192		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4193		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4194		  1 },
4195		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4196		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4197		{ 0 }
4198	};
4199
4200	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4201		t4_fatal_err(adapter);
4202}
4203
4204/*
4205 * PM RX interrupt handler.
4206 */
4207static void pmrx_intr_handler(struct adapter *adapter)
4208{
4209	static const struct intr_info pmrx_intr_info[] = {
4210		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4211		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4212		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4213		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4214		  1 },
4215		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4216		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4217		{ 0 }
4218	};
4219
4220	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4221		t4_fatal_err(adapter);
4222}
4223
4224/*
4225 * CPL switch interrupt handler.
4226 */
4227static void cplsw_intr_handler(struct adapter *adapter)
4228{
4229	static const struct intr_info cplsw_intr_info[] = {
4230		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4231		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4232		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4233		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4234		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4235		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4236		{ 0 }
4237	};
4238
4239	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4240		t4_fatal_err(adapter);
4241}
4242
4243/*
4244 * LE interrupt handler.
4245 */
4246static void le_intr_handler(struct adapter *adap)
4247{
4248	unsigned int chip_ver = chip_id(adap);
4249	static const struct intr_info le_intr_info[] = {
4250		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4251		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4252		{ F_PARITYERR, "LE parity error", -1, 1 },
4253		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4254		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4255		{ 0 }
4256	};
4257
4258	static const struct intr_info t6_le_intr_info[] = {
4259		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4260		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4261		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4262		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4263		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4264		{ 0 }
4265	};
4266
4267	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4268				  (chip_ver <= CHELSIO_T5) ?
4269				  le_intr_info : t6_le_intr_info))
4270		t4_fatal_err(adap);
4271}
4272
4273/*
4274 * MPS interrupt handler.
4275 */
4276static void mps_intr_handler(struct adapter *adapter)
4277{
4278	static const struct intr_info mps_rx_intr_info[] = {
4279		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4280		{ 0 }
4281	};
4282	static const struct intr_info mps_tx_intr_info[] = {
4283		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4284		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4285		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4286		  -1, 1 },
4287		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4288		  -1, 1 },
4289		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4290		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4291		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4292		{ 0 }
4293	};
4294	static const struct intr_info mps_trc_intr_info[] = {
4295		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4296		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4297		  1 },
4298		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4299		{ 0 }
4300	};
4301	static const struct intr_info mps_stat_sram_intr_info[] = {
4302		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4303		{ 0 }
4304	};
4305	static const struct intr_info mps_stat_tx_intr_info[] = {
4306		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4307		{ 0 }
4308	};
4309	static const struct intr_info mps_stat_rx_intr_info[] = {
4310		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4311		{ 0 }
4312	};
4313	static const struct intr_info mps_cls_intr_info[] = {
4314		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4315		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4316		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4317		{ 0 }
4318	};
4319
4320	int fat;
4321
4322	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4323				    mps_rx_intr_info) +
4324	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4325				    mps_tx_intr_info) +
4326	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4327				    mps_trc_intr_info) +
4328	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4329				    mps_stat_sram_intr_info) +
4330	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4331				    mps_stat_tx_intr_info) +
4332	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4333				    mps_stat_rx_intr_info) +
4334	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4335				    mps_cls_intr_info);
4336
4337	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4338	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4339	if (fat)
4340		t4_fatal_err(adapter);
4341}
4342
4343#define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4344		      F_ECC_UE_INT_CAUSE)
4345
4346/*
4347 * EDC/MC interrupt handler.
4348 */
4349static void mem_intr_handler(struct adapter *adapter, int idx)
4350{
4351	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4352
4353	unsigned int addr, cnt_addr, v;
4354
4355	if (idx <= MEM_EDC1) {
4356		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4357		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4358	} else if (idx == MEM_MC) {
4359		if (is_t4(adapter)) {
4360			addr = A_MC_INT_CAUSE;
4361			cnt_addr = A_MC_ECC_STATUS;
4362		} else {
4363			addr = A_MC_P_INT_CAUSE;
4364			cnt_addr = A_MC_P_ECC_STATUS;
4365		}
4366	} else {
4367		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4368		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4369	}
4370
4371	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4372	if (v & F_PERR_INT_CAUSE)
4373		CH_ALERT(adapter, "%s FIFO parity error\n",
4374			  name[idx]);
4375	if (v & F_ECC_CE_INT_CAUSE) {
4376		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4377
4378		if (idx <= MEM_EDC1)
4379			t4_edc_err_read(adapter, idx);
4380
4381		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4382		CH_WARN_RATELIMIT(adapter,
4383				  "%u %s correctable ECC data error%s\n",
4384				  cnt, name[idx], cnt > 1 ? "s" : "");
4385	}
4386	if (v & F_ECC_UE_INT_CAUSE)
4387		CH_ALERT(adapter,
4388			 "%s uncorrectable ECC data error\n", name[idx]);
4389
4390	t4_write_reg(adapter, addr, v);
4391	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4392		t4_fatal_err(adapter);
4393}
4394
4395/*
4396 * MA interrupt handler.
4397 */
4398static void ma_intr_handler(struct adapter *adapter)
4399{
4400	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4401
4402	if (status & F_MEM_PERR_INT_CAUSE) {
4403		CH_ALERT(adapter,
4404			  "MA parity error, parity status %#x\n",
4405			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4406		if (is_t5(adapter))
4407			CH_ALERT(adapter,
4408				  "MA parity error, parity status %#x\n",
4409				  t4_read_reg(adapter,
4410					      A_MA_PARITY_ERROR_STATUS2));
4411	}
4412	if (status & F_MEM_WRAP_INT_CAUSE) {
4413		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4414		CH_ALERT(adapter, "MA address wrap-around error by "
4415			  "client %u to address %#x\n",
4416			  G_MEM_WRAP_CLIENT_NUM(v),
4417			  G_MEM_WRAP_ADDRESS(v) << 4);
4418	}
4419	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4420	t4_fatal_err(adapter);
4421}
4422
4423/*
4424 * SMB interrupt handler.
4425 */
4426static void smb_intr_handler(struct adapter *adap)
4427{
4428	static const struct intr_info smb_intr_info[] = {
4429		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4430		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4431		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4432		{ 0 }
4433	};
4434
4435	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4436		t4_fatal_err(adap);
4437}
4438
4439/*
4440 * NC-SI interrupt handler.
4441 */
4442static void ncsi_intr_handler(struct adapter *adap)
4443{
4444	static const struct intr_info ncsi_intr_info[] = {
4445		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4446		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4447		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4448		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4449		{ 0 }
4450	};
4451
4452	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4453		t4_fatal_err(adap);
4454}
4455
4456/*
4457 * XGMAC interrupt handler.
4458 */
4459static void xgmac_intr_handler(struct adapter *adap, int port)
4460{
4461	u32 v, int_cause_reg;
4462
4463	if (is_t4(adap))
4464		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4465	else
4466		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4467
4468	v = t4_read_reg(adap, int_cause_reg);
4469
4470	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4471	if (!v)
4472		return;
4473
4474	if (v & F_TXFIFO_PRTY_ERR)
4475		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4476			  port);
4477	if (v & F_RXFIFO_PRTY_ERR)
4478		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4479			  port);
4480	t4_write_reg(adap, int_cause_reg, v);
4481	t4_fatal_err(adap);
4482}
4483
4484/*
4485 * PL interrupt handler.
4486 */
4487static void pl_intr_handler(struct adapter *adap)
4488{
4489	static const struct intr_info pl_intr_info[] = {
4490		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4491		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4492		{ 0 }
4493	};
4494
4495	static const struct intr_info t5_pl_intr_info[] = {
4496		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4497		{ 0 }
4498	};
4499
4500	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4501				  is_t4(adap) ?
4502				  pl_intr_info : t5_pl_intr_info))
4503		t4_fatal_err(adap);
4504}
4505
4506#define PF_INTR_MASK (F_PFSW | F_PFCIM)
4507
4508/**
4509 *	t4_slow_intr_handler - control path interrupt handler
4510 *	@adapter: the adapter
4511 *
4512 *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4513 *	The designation 'slow' is because it involves register reads, while
4514 *	data interrupts typically don't involve any MMIOs.
4515 */
4516int t4_slow_intr_handler(struct adapter *adapter)
4517{
4518	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4519
4520	if (!(cause & GLBL_INTR_MASK))
4521		return 0;
4522	if (cause & F_CIM)
4523		cim_intr_handler(adapter);
4524	if (cause & F_MPS)
4525		mps_intr_handler(adapter);
4526	if (cause & F_NCSI)
4527		ncsi_intr_handler(adapter);
4528	if (cause & F_PL)
4529		pl_intr_handler(adapter);
4530	if (cause & F_SMB)
4531		smb_intr_handler(adapter);
4532	if (cause & F_MAC0)
4533		xgmac_intr_handler(adapter, 0);
4534	if (cause & F_MAC1)
4535		xgmac_intr_handler(adapter, 1);
4536	if (cause & F_MAC2)
4537		xgmac_intr_handler(adapter, 2);
4538	if (cause & F_MAC3)
4539		xgmac_intr_handler(adapter, 3);
4540	if (cause & F_PCIE)
4541		pcie_intr_handler(adapter);
4542	if (cause & F_MC0)
4543		mem_intr_handler(adapter, MEM_MC);
4544	if (is_t5(adapter) && (cause & F_MC1))
4545		mem_intr_handler(adapter, MEM_MC1);
4546	if (cause & F_EDC0)
4547		mem_intr_handler(adapter, MEM_EDC0);
4548	if (cause & F_EDC1)
4549		mem_intr_handler(adapter, MEM_EDC1);
4550	if (cause & F_LE)
4551		le_intr_handler(adapter);
4552	if (cause & F_TP)
4553		tp_intr_handler(adapter);
4554	if (cause & F_MA)
4555		ma_intr_handler(adapter);
4556	if (cause & F_PM_TX)
4557		pmtx_intr_handler(adapter);
4558	if (cause & F_PM_RX)
4559		pmrx_intr_handler(adapter);
4560	if (cause & F_ULP_RX)
4561		ulprx_intr_handler(adapter);
4562	if (cause & F_CPL_SWITCH)
4563		cplsw_intr_handler(adapter);
4564	if (cause & F_SGE)
4565		sge_intr_handler(adapter);
4566	if (cause & F_ULP_TX)
4567		ulptx_intr_handler(adapter);
4568
4569	/* Clear the interrupts just processed for which we are the master. */
4570	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4571	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4572	return 1;
4573}
4574
4575/**
4576 *	t4_intr_enable - enable interrupts
4577 *	@adapter: the adapter whose interrupts should be enabled
4578 *
4579 *	Enable PF-specific interrupts for the calling function and the top-level
4580 *	interrupt concentrator for global interrupts.  Interrupts are already
4581 *	enabled at each module,	here we just enable the roots of the interrupt
4582 *	hierarchies.
4583 *
4584 *	Note: this function should be called only when the driver manages
4585 *	non PF-specific interrupts from the various HW modules.  Only one PCI
4586 *	function at a time should be doing this.
4587 */
4588void t4_intr_enable(struct adapter *adapter)
4589{
4590	u32 val = 0;
4591	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4592	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4593		  ? G_SOURCEPF(whoami)
4594		  : G_T6_SOURCEPF(whoami));
4595
4596	if (chip_id(adapter) <= CHELSIO_T5)
4597		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4598	else
4599		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4600	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4601		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4602		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4603		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4604		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4605		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4606		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4607	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4608	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4609}
4610
4611/**
4612 *	t4_intr_disable - disable interrupts
4613 *	@adapter: the adapter whose interrupts should be disabled
4614 *
4615 *	Disable interrupts.  We only disable the top-level interrupt
4616 *	concentrators.  The caller must be a PCI function managing global
4617 *	interrupts.
4618 */
4619void t4_intr_disable(struct adapter *adapter)
4620{
4621	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4622	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4623		  ? G_SOURCEPF(whoami)
4624		  : G_T6_SOURCEPF(whoami));
4625
4626	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4627	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4628}
4629
4630/**
4631 *	t4_intr_clear - clear all interrupts
4632 *	@adapter: the adapter whose interrupts should be cleared
4633 *
4634 *	Clears all interrupts.  The caller must be a PCI function managing
4635 *	global interrupts.
4636 */
4637void t4_intr_clear(struct adapter *adapter)
4638{
4639	static const unsigned int cause_reg[] = {
4640		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4641		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4642		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4643		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4644		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4645		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4646		A_TP_INT_CAUSE,
4647		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4648		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4649		A_MPS_RX_PERR_INT_CAUSE,
4650		A_CPL_INTR_CAUSE,
4651		MYPF_REG(A_PL_PF_INT_CAUSE),
4652		A_PL_PL_INT_CAUSE,
4653		A_LE_DB_INT_CAUSE,
4654	};
4655
4656	unsigned int i;
4657
4658	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4659		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4660
4661	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4662				A_MC_P_INT_CAUSE, 0xffffffff);
4663
4664	if (is_t4(adapter)) {
4665		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4666				0xffffffff);
4667		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4668				0xffffffff);
4669	} else
4670		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4671
4672	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4673	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4674}
4675
4676/**
4677 *	hash_mac_addr - return the hash value of a MAC address
4678 *	@addr: the 48-bit Ethernet MAC address
4679 *
4680 *	Hashes a MAC address according to the hash function used by HW inexact
4681 *	(hash) address matching.
4682 */
4683static int hash_mac_addr(const u8 *addr)
4684{
4685	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4686	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4687	a ^= b;
4688	a ^= (a >> 12);
4689	a ^= (a >> 6);
4690	return a & 0x3f;
4691}
4692
4693/**
4694 *	t4_config_rss_range - configure a portion of the RSS mapping table
4695 *	@adapter: the adapter
4696 *	@mbox: mbox to use for the FW command
4697 *	@viid: virtual interface whose RSS subtable is to be written
4698 *	@start: start entry in the table to write
4699 *	@n: how many table entries to write
4700 *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4701 *	@nrspq: number of values in @rspq
4702 *
4703 *	Programs the selected part of the VI's RSS mapping table with the
4704 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4705 *	until the full table range is populated.
4706 *
4707 *	The caller must ensure the values in @rspq are in the range allowed for
4708 *	@viid.
4709 */
4710int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4711			int start, int n, const u16 *rspq, unsigned int nrspq)
4712{
4713	int ret;
4714	const u16 *rsp = rspq;
4715	const u16 *rsp_end = rspq + nrspq;
4716	struct fw_rss_ind_tbl_cmd cmd;
4717
4718	memset(&cmd, 0, sizeof(cmd));
4719	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4720				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4721				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4722	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4723
4724	/*
4725	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4726	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4727	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4728	 * reserved.
4729	 */
4730	while (n > 0) {
4731		int nq = min(n, 32);
4732		int nq_packed = 0;
4733		__be32 *qp = &cmd.iq0_to_iq2;
4734
4735		/*
4736		 * Set up the firmware RSS command header to send the next
4737		 * "nq" Ingress Queue IDs to the firmware.
4738		 */
4739		cmd.niqid = cpu_to_be16(nq);
4740		cmd.startidx = cpu_to_be16(start);
4741
4742		/*
4743		 * "nq" more done for the start of the next loop.
4744		 */
4745		start += nq;
4746		n -= nq;
4747
4748		/*
4749		 * While there are still Ingress Queue IDs to stuff into the
4750		 * current firmware RSS command, retrieve them from the
4751		 * Ingress Queue ID array and insert them into the command.
4752		 */
4753		while (nq > 0) {
4754			/*
4755			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4756			 * around the Ingress Queue ID array if necessary) and
4757			 * insert them into the firmware RSS command at the
4758			 * current 3-tuple position within the commad.
4759			 */
4760			u16 qbuf[3];
4761			u16 *qbp = qbuf;
4762			int nqbuf = min(3, nq);
4763
4764			nq -= nqbuf;
4765			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4766			while (nqbuf && nq_packed < 32) {
4767				nqbuf--;
4768				nq_packed++;
4769				*qbp++ = *rsp++;
4770				if (rsp >= rsp_end)
4771					rsp = rspq;
4772			}
4773			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4774					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4775					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4776		}
4777
4778		/*
4779		 * Send this portion of the RRS table update to the firmware;
4780		 * bail out on any errors.
4781		 */
4782		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4783		if (ret)
4784			return ret;
4785	}
4786	return 0;
4787}
4788
4789/**
4790 *	t4_config_glbl_rss - configure the global RSS mode
4791 *	@adapter: the adapter
4792 *	@mbox: mbox to use for the FW command
4793 *	@mode: global RSS mode
4794 *	@flags: mode-specific flags
4795 *
4796 *	Sets the global RSS mode.
4797 */
4798int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4799		       unsigned int flags)
4800{
4801	struct fw_rss_glb_config_cmd c;
4802
4803	memset(&c, 0, sizeof(c));
4804	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4805				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4806	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4807	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4808		c.u.manual.mode_pkd =
4809			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4810	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4811		c.u.basicvirtual.mode_keymode =
4812			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4813		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4814	} else
4815		return -EINVAL;
4816	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4817}
4818
4819/**
4820 *	t4_config_vi_rss - configure per VI RSS settings
4821 *	@adapter: the adapter
4822 *	@mbox: mbox to use for the FW command
4823 *	@viid: the VI id
4824 *	@flags: RSS flags
4825 *	@defq: id of the default RSS queue for the VI.
4826 *	@skeyidx: RSS secret key table index for non-global mode
4827 *	@skey: RSS vf_scramble key for VI.
4828 *
4829 *	Configures VI-specific RSS properties.
4830 */
4831int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4832		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
4833		     unsigned int skey)
4834{
4835	struct fw_rss_vi_config_cmd c;
4836
4837	memset(&c, 0, sizeof(c));
4838	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4839				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4840				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4841	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4842	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4843					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4844	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
4845					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
4846	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
4847
4848	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4849}
4850
4851/* Read an RSS table row */
4852static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4853{
4854	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4855	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4856				   5, 0, val);
4857}
4858
4859/**
4860 *	t4_read_rss - read the contents of the RSS mapping table
4861 *	@adapter: the adapter
4862 *	@map: holds the contents of the RSS mapping table
4863 *
4864 *	Reads the contents of the RSS hash->queue mapping table.
4865 */
4866int t4_read_rss(struct adapter *adapter, u16 *map)
4867{
4868	u32 val;
4869	int i, ret;
4870
4871	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4872		ret = rd_rss_row(adapter, i, &val);
4873		if (ret)
4874			return ret;
4875		*map++ = G_LKPTBLQUEUE0(val);
4876		*map++ = G_LKPTBLQUEUE1(val);
4877	}
4878	return 0;
4879}
4880
4881/**
4882 * t4_tp_fw_ldst_rw - Access TP indirect register through LDST
4883 * @adap: the adapter
4884 * @cmd: TP fw ldst address space type
4885 * @vals: where the indirect register values are stored/written
4886 * @nregs: how many indirect registers to read/write
4887 * @start_idx: index of first indirect register to read/write
4888 * @rw: Read (1) or Write (0)
4889 * @sleep_ok: if true we may sleep while awaiting command completion
4890 *
4891 * Access TP indirect registers through LDST
4892 **/
4893static int t4_tp_fw_ldst_rw(struct adapter *adap, int cmd, u32 *vals,
4894			    unsigned int nregs, unsigned int start_index,
4895			    unsigned int rw, bool sleep_ok)
4896{
4897	int ret = 0;
4898	unsigned int i;
4899	struct fw_ldst_cmd c;
4900
4901	for (i = 0; i < nregs; i++) {
4902		memset(&c, 0, sizeof(c));
4903		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4904						F_FW_CMD_REQUEST |
4905						(rw ? F_FW_CMD_READ :
4906						      F_FW_CMD_WRITE) |
4907						V_FW_LDST_CMD_ADDRSPACE(cmd));
4908		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4909
4910		c.u.addrval.addr = cpu_to_be32(start_index + i);
4911		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4912		ret = t4_wr_mbox_meat(adap, adap->mbox, &c, sizeof(c), &c,
4913				      sleep_ok);
4914		if (ret)
4915			return ret;
4916
4917		if (rw)
4918			vals[i] = be32_to_cpu(c.u.addrval.val);
4919	}
4920	return 0;
4921}
4922
4923/**
4924 * t4_tp_indirect_rw - Read/Write TP indirect register through LDST or backdoor
4925 * @adap: the adapter
4926 * @reg_addr: Address Register
4927 * @reg_data: Data register
4928 * @buff: where the indirect register values are stored/written
4929 * @nregs: how many indirect registers to read/write
4930 * @start_index: index of first indirect register to read/write
4931 * @rw: READ(1) or WRITE(0)
4932 * @sleep_ok: if true we may sleep while awaiting command completion
4933 *
4934 * Read/Write TP indirect registers through LDST if possible.
4935 * Else, use backdoor access
4936 **/
4937static void t4_tp_indirect_rw(struct adapter *adap, u32 reg_addr, u32 reg_data,
4938			      u32 *buff, u32 nregs, u32 start_index, int rw,
4939			      bool sleep_ok)
4940{
4941	int rc = -EINVAL;
4942	int cmd;
4943
4944	switch (reg_addr) {
4945	case A_TP_PIO_ADDR:
4946		cmd = FW_LDST_ADDRSPC_TP_PIO;
4947		break;
4948	case A_TP_TM_PIO_ADDR:
4949		cmd = FW_LDST_ADDRSPC_TP_TM_PIO;
4950		break;
4951	case A_TP_MIB_INDEX:
4952		cmd = FW_LDST_ADDRSPC_TP_MIB;
4953		break;
4954	default:
4955		goto indirect_access;
4956	}
4957
4958	if (t4_use_ldst(adap))
4959		rc = t4_tp_fw_ldst_rw(adap, cmd, buff, nregs, start_index, rw,
4960				      sleep_ok);
4961
4962indirect_access:
4963
4964	if (rc) {
4965		if (rw)
4966			t4_read_indirect(adap, reg_addr, reg_data, buff, nregs,
4967					 start_index);
4968		else
4969			t4_write_indirect(adap, reg_addr, reg_data, buff, nregs,
4970					  start_index);
4971	}
4972}
4973
4974/**
4975 * t4_tp_pio_read - Read TP PIO registers
4976 * @adap: the adapter
4977 * @buff: where the indirect register values are written
4978 * @nregs: how many indirect registers to read
4979 * @start_index: index of first indirect register to read
4980 * @sleep_ok: if true we may sleep while awaiting command completion
4981 *
4982 * Read TP PIO Registers
4983 **/
4984void t4_tp_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
4985		    u32 start_index, bool sleep_ok)
4986{
4987	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, buff, nregs,
4988			  start_index, 1, sleep_ok);
4989}
4990
4991/**
4992 * t4_tp_pio_write - Write TP PIO registers
4993 * @adap: the adapter
4994 * @buff: where the indirect register values are stored
4995 * @nregs: how many indirect registers to write
4996 * @start_index: index of first indirect register to write
4997 * @sleep_ok: if true we may sleep while awaiting command completion
4998 *
4999 * Write TP PIO Registers
5000 **/
5001void t4_tp_pio_write(struct adapter *adap, const u32 *buff, u32 nregs,
5002		     u32 start_index, bool sleep_ok)
5003{
5004	t4_tp_indirect_rw(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5005	    __DECONST(u32 *, buff), nregs, start_index, 0, sleep_ok);
5006}
5007
5008/**
5009 * t4_tp_tm_pio_read - Read TP TM PIO registers
5010 * @adap: the adapter
5011 * @buff: where the indirect register values are written
5012 * @nregs: how many indirect registers to read
5013 * @start_index: index of first indirect register to read
5014 * @sleep_ok: if true we may sleep while awaiting command completion
5015 *
5016 * Read TP TM PIO Registers
5017 **/
5018void t4_tp_tm_pio_read(struct adapter *adap, u32 *buff, u32 nregs,
5019		       u32 start_index, bool sleep_ok)
5020{
5021	t4_tp_indirect_rw(adap, A_TP_TM_PIO_ADDR, A_TP_TM_PIO_DATA, buff,
5022			  nregs, start_index, 1, sleep_ok);
5023}
5024
5025/**
5026 * t4_tp_mib_read - Read TP MIB registers
5027 * @adap: the adapter
5028 * @buff: where the indirect register values are written
5029 * @nregs: how many indirect registers to read
5030 * @start_index: index of first indirect register to read
5031 * @sleep_ok: if true we may sleep while awaiting command completion
5032 *
5033 * Read TP MIB Registers
5034 **/
5035void t4_tp_mib_read(struct adapter *adap, u32 *buff, u32 nregs, u32 start_index,
5036		    bool sleep_ok)
5037{
5038	t4_tp_indirect_rw(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, buff, nregs,
5039			  start_index, 1, sleep_ok);
5040}
5041
5042/**
5043 *	t4_read_rss_key - read the global RSS key
5044 *	@adap: the adapter
5045 *	@key: 10-entry array holding the 320-bit RSS key
5046 * 	@sleep_ok: if true we may sleep while awaiting command completion
5047 *
5048 *	Reads the global 320-bit RSS key.
5049 */
5050void t4_read_rss_key(struct adapter *adap, u32 *key, bool sleep_ok)
5051{
5052	t4_tp_pio_read(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5053}
5054
5055/**
5056 *	t4_write_rss_key - program one of the RSS keys
5057 *	@adap: the adapter
5058 *	@key: 10-entry array holding the 320-bit RSS key
5059 *	@idx: which RSS key to write
5060 * 	@sleep_ok: if true we may sleep while awaiting command completion
5061 *
5062 *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
5063 *	0..15 the corresponding entry in the RSS key table is written,
5064 *	otherwise the global RSS key is written.
5065 */
5066void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx,
5067		      bool sleep_ok)
5068{
5069	u8 rss_key_addr_cnt = 16;
5070	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
5071
5072	/*
5073	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
5074	 * allows access to key addresses 16-63 by using KeyWrAddrX
5075	 * as index[5:4](upper 2) into key table
5076	 */
5077	if ((chip_id(adap) > CHELSIO_T5) &&
5078	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
5079		rss_key_addr_cnt = 32;
5080
5081	t4_tp_pio_write(adap, key, 10, A_TP_RSS_SECRET_KEY0, sleep_ok);
5082
5083	if (idx >= 0 && idx < rss_key_addr_cnt) {
5084		if (rss_key_addr_cnt > 16)
5085			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5086				     vrt | V_KEYWRADDRX(idx >> 4) |
5087				     V_T6_VFWRADDR(idx) | F_KEYWREN);
5088		else
5089			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
5090				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
5091	}
5092}
5093
5094/**
5095 *	t4_read_rss_pf_config - read PF RSS Configuration Table
5096 *	@adapter: the adapter
5097 *	@index: the entry in the PF RSS table to read
5098 *	@valp: where to store the returned value
5099 * 	@sleep_ok: if true we may sleep while awaiting command completion
5100 *
5101 *	Reads the PF RSS Configuration Table at the specified index and returns
5102 *	the value found there.
5103 */
5104void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
5105			   u32 *valp, bool sleep_ok)
5106{
5107	t4_tp_pio_read(adapter, valp, 1, A_TP_RSS_PF0_CONFIG + index, sleep_ok);
5108}
5109
5110/**
5111 *	t4_write_rss_pf_config - write PF RSS Configuration Table
5112 *	@adapter: the adapter
5113 *	@index: the entry in the VF RSS table to read
5114 *	@val: the value to store
5115 * 	@sleep_ok: if true we may sleep while awaiting command completion
5116 *
5117 *	Writes the PF RSS Configuration Table at the specified index with the
5118 *	specified value.
5119 */
5120void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
5121			    u32 val, bool sleep_ok)
5122{
5123	t4_tp_pio_write(adapter, &val, 1, A_TP_RSS_PF0_CONFIG + index,
5124			sleep_ok);
5125}
5126
5127/**
5128 *	t4_read_rss_vf_config - read VF RSS Configuration Table
5129 *	@adapter: the adapter
5130 *	@index: the entry in the VF RSS table to read
5131 *	@vfl: where to store the returned VFL
5132 *	@vfh: where to store the returned VFH
5133 * 	@sleep_ok: if true we may sleep while awaiting command completion
5134 *
5135 *	Reads the VF RSS Configuration Table at the specified index and returns
5136 *	the (VFL, VFH) values found there.
5137 */
5138void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
5139			   u32 *vfl, u32 *vfh, bool sleep_ok)
5140{
5141	u32 vrt, mask, data;
5142
5143	if (chip_id(adapter) <= CHELSIO_T5) {
5144		mask = V_VFWRADDR(M_VFWRADDR);
5145		data = V_VFWRADDR(index);
5146	} else {
5147		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5148		 data = V_T6_VFWRADDR(index);
5149	}
5150	/*
5151	 * Request that the index'th VF Table values be read into VFL/VFH.
5152	 */
5153	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5154	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5155	vrt |= data | F_VFRDEN;
5156	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5157
5158	/*
5159	 * Grab the VFL/VFH values ...
5160	 */
5161	t4_tp_pio_read(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5162	t4_tp_pio_read(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5163}
5164
5165/**
5166 *	t4_write_rss_vf_config - write VF RSS Configuration Table
5167 *
5168 *	@adapter: the adapter
5169 *	@index: the entry in the VF RSS table to write
5170 *	@vfl: the VFL to store
5171 *	@vfh: the VFH to store
5172 *
5173 *	Writes the VF RSS Configuration Table at the specified index with the
5174 *	specified (VFL, VFH) values.
5175 */
5176void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5177			    u32 vfl, u32 vfh, bool sleep_ok)
5178{
5179	u32 vrt, mask, data;
5180
5181	if (chip_id(adapter) <= CHELSIO_T5) {
5182		mask = V_VFWRADDR(M_VFWRADDR);
5183		data = V_VFWRADDR(index);
5184	} else {
5185		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5186		data = V_T6_VFWRADDR(index);
5187	}
5188
5189	/*
5190	 * Load up VFL/VFH with the values to be written ...
5191	 */
5192	t4_tp_pio_write(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, sleep_ok);
5193	t4_tp_pio_write(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, sleep_ok);
5194
5195	/*
5196	 * Write the VFL/VFH into the VF Table at index'th location.
5197	 */
5198	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5199	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5200	vrt |= data | F_VFRDEN;
5201	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5202}
5203
5204/**
5205 *	t4_read_rss_pf_map - read PF RSS Map
5206 *	@adapter: the adapter
5207 * 	@sleep_ok: if true we may sleep while awaiting command completion
5208 *
5209 *	Reads the PF RSS Map register and returns its value.
5210 */
5211u32 t4_read_rss_pf_map(struct adapter *adapter, bool sleep_ok)
5212{
5213	u32 pfmap;
5214
5215	t4_tp_pio_read(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5216
5217	return pfmap;
5218}
5219
5220/**
5221 *	t4_write_rss_pf_map - write PF RSS Map
5222 *	@adapter: the adapter
5223 *	@pfmap: PF RSS Map value
5224 *
5225 *	Writes the specified value to the PF RSS Map register.
5226 */
5227void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap, bool sleep_ok)
5228{
5229	t4_tp_pio_write(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, sleep_ok);
5230}
5231
5232/**
5233 *	t4_read_rss_pf_mask - read PF RSS Mask
5234 *	@adapter: the adapter
5235 * 	@sleep_ok: if true we may sleep while awaiting command completion
5236 *
5237 *	Reads the PF RSS Mask register and returns its value.
5238 */
5239u32 t4_read_rss_pf_mask(struct adapter *adapter, bool sleep_ok)
5240{
5241	u32 pfmask;
5242
5243	t4_tp_pio_read(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5244
5245	return pfmask;
5246}
5247
5248/**
5249 *	t4_write_rss_pf_mask - write PF RSS Mask
5250 *	@adapter: the adapter
5251 *	@pfmask: PF RSS Mask value
5252 *
5253 *	Writes the specified value to the PF RSS Mask register.
5254 */
5255void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask, bool sleep_ok)
5256{
5257	t4_tp_pio_write(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, sleep_ok);
5258}
5259
5260/**
5261 *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5262 *	@adap: the adapter
5263 *	@v4: holds the TCP/IP counter values
5264 *	@v6: holds the TCP/IPv6 counter values
5265 * 	@sleep_ok: if true we may sleep while awaiting command completion
5266 *
5267 *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5268 *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5269 */
5270void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5271			 struct tp_tcp_stats *v6, bool sleep_ok)
5272{
5273	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5274
5275#define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5276#define STAT(x)     val[STAT_IDX(x)]
5277#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5278
5279	if (v4) {
5280		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5281			       A_TP_MIB_TCP_OUT_RST, sleep_ok);
5282		v4->tcp_out_rsts = STAT(OUT_RST);
5283		v4->tcp_in_segs  = STAT64(IN_SEG);
5284		v4->tcp_out_segs = STAT64(OUT_SEG);
5285		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5286	}
5287	if (v6) {
5288		t4_tp_mib_read(adap, val, ARRAY_SIZE(val),
5289			       A_TP_MIB_TCP_V6OUT_RST, sleep_ok);
5290		v6->tcp_out_rsts = STAT(OUT_RST);
5291		v6->tcp_in_segs  = STAT64(IN_SEG);
5292		v6->tcp_out_segs = STAT64(OUT_SEG);
5293		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5294	}
5295#undef STAT64
5296#undef STAT
5297#undef STAT_IDX
5298}
5299
5300/**
5301 *	t4_tp_get_err_stats - read TP's error MIB counters
5302 *	@adap: the adapter
5303 *	@st: holds the counter values
5304 * 	@sleep_ok: if true we may sleep while awaiting command completion
5305 *
5306 *	Returns the values of TP's error counters.
5307 */
5308void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st,
5309			 bool sleep_ok)
5310{
5311	int nchan = adap->chip_params->nchan;
5312
5313	t4_tp_mib_read(adap, st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0,
5314		       sleep_ok);
5315
5316	t4_tp_mib_read(adap, st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0,
5317		       sleep_ok);
5318
5319	t4_tp_mib_read(adap, st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0,
5320		       sleep_ok);
5321
5322	t4_tp_mib_read(adap, st->tnl_cong_drops, nchan,
5323		       A_TP_MIB_TNL_CNG_DROP_0, sleep_ok);
5324
5325	t4_tp_mib_read(adap, st->ofld_chan_drops, nchan,
5326		       A_TP_MIB_OFD_CHN_DROP_0, sleep_ok);
5327
5328	t4_tp_mib_read(adap, st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0,
5329		       sleep_ok);
5330
5331	t4_tp_mib_read(adap, st->ofld_vlan_drops, nchan,
5332		       A_TP_MIB_OFD_VLN_DROP_0, sleep_ok);
5333
5334	t4_tp_mib_read(adap, st->tcp6_in_errs, nchan,
5335		       A_TP_MIB_TCP_V6IN_ERR_0, sleep_ok);
5336
5337	t4_tp_mib_read(adap, &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP,
5338		       sleep_ok);
5339}
5340
5341/**
5342 *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5343 *	@adap: the adapter
5344 *	@st: holds the counter values
5345 *
5346 *	Returns the values of TP's proxy counters.
5347 */
5348void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st,
5349    bool sleep_ok)
5350{
5351	int nchan = adap->chip_params->nchan;
5352
5353	t4_tp_mib_read(adap, st->proxy, nchan, A_TP_MIB_TNL_LPBK_0, sleep_ok);
5354}
5355
5356/**
5357 *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5358 *	@adap: the adapter
5359 *	@st: holds the counter values
5360 * 	@sleep_ok: if true we may sleep while awaiting command completion
5361 *
5362 *	Returns the values of TP's CPL counters.
5363 */
5364void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st,
5365			 bool sleep_ok)
5366{
5367	int nchan = adap->chip_params->nchan;
5368
5369	t4_tp_mib_read(adap, st->req, nchan, A_TP_MIB_CPL_IN_REQ_0, sleep_ok);
5370
5371	t4_tp_mib_read(adap, st->rsp, nchan, A_TP_MIB_CPL_OUT_RSP_0, sleep_ok);
5372}
5373
5374/**
5375 *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5376 *	@adap: the adapter
5377 *	@st: holds the counter values
5378 *
5379 *	Returns the values of TP's RDMA counters.
5380 */
5381void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st,
5382			  bool sleep_ok)
5383{
5384	t4_tp_mib_read(adap, &st->rqe_dfr_pkt, 2, A_TP_MIB_RQE_DFR_PKT,
5385		       sleep_ok);
5386}
5387
5388/**
5389 *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5390 *	@adap: the adapter
5391 *	@idx: the port index
5392 *	@st: holds the counter values
5393 * 	@sleep_ok: if true we may sleep while awaiting command completion
5394 *
5395 *	Returns the values of TP's FCoE counters for the selected port.
5396 */
5397void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5398		       struct tp_fcoe_stats *st, bool sleep_ok)
5399{
5400	u32 val[2];
5401
5402	t4_tp_mib_read(adap, &st->frames_ddp, 1, A_TP_MIB_FCOE_DDP_0 + idx,
5403		       sleep_ok);
5404
5405	t4_tp_mib_read(adap, &st->frames_drop, 1,
5406		       A_TP_MIB_FCOE_DROP_0 + idx, sleep_ok);
5407
5408	t4_tp_mib_read(adap, val, 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx,
5409		       sleep_ok);
5410
5411	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5412}
5413
5414/**
5415 *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5416 *	@adap: the adapter
5417 *	@st: holds the counter values
5418 * 	@sleep_ok: if true we may sleep while awaiting command completion
5419 *
5420 *	Returns the values of TP's counters for non-TCP directly-placed packets.
5421 */
5422void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st,
5423		      bool sleep_ok)
5424{
5425	u32 val[4];
5426
5427	t4_tp_mib_read(adap, val, 4, A_TP_MIB_USM_PKTS, sleep_ok);
5428
5429	st->frames = val[0];
5430	st->drops = val[1];
5431	st->octets = ((u64)val[2] << 32) | val[3];
5432}
5433
5434/**
5435 *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5436 *	@adap: the adapter
5437 *	@mtus: where to store the MTU values
5438 *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5439 *
5440 *	Reads the HW path MTU table.
5441 */
5442void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5443{
5444	u32 v;
5445	int i;
5446
5447	for (i = 0; i < NMTUS; ++i) {
5448		t4_write_reg(adap, A_TP_MTU_TABLE,
5449			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5450		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5451		mtus[i] = G_MTUVALUE(v);
5452		if (mtu_log)
5453			mtu_log[i] = G_MTUWIDTH(v);
5454	}
5455}
5456
5457/**
5458 *	t4_read_cong_tbl - reads the congestion control table
5459 *	@adap: the adapter
5460 *	@incr: where to store the alpha values
5461 *
5462 *	Reads the additive increments programmed into the HW congestion
5463 *	control table.
5464 */
5465void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5466{
5467	unsigned int mtu, w;
5468
5469	for (mtu = 0; mtu < NMTUS; ++mtu)
5470		for (w = 0; w < NCCTRL_WIN; ++w) {
5471			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5472				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5473			incr[mtu][w] = (u16)t4_read_reg(adap,
5474						A_TP_CCTRL_TABLE) & 0x1fff;
5475		}
5476}
5477
5478/**
5479 *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5480 *	@adap: the adapter
5481 *	@addr: the indirect TP register address
5482 *	@mask: specifies the field within the register to modify
5483 *	@val: new value for the field
5484 *
5485 *	Sets a field of an indirect TP register to the given value.
5486 */
5487void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5488			    unsigned int mask, unsigned int val)
5489{
5490	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5491	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5492	t4_write_reg(adap, A_TP_PIO_DATA, val);
5493}
5494
5495/**
5496 *	init_cong_ctrl - initialize congestion control parameters
5497 *	@a: the alpha values for congestion control
5498 *	@b: the beta values for congestion control
5499 *
5500 *	Initialize the congestion control parameters.
5501 */
5502static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5503{
5504	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5505	a[9] = 2;
5506	a[10] = 3;
5507	a[11] = 4;
5508	a[12] = 5;
5509	a[13] = 6;
5510	a[14] = 7;
5511	a[15] = 8;
5512	a[16] = 9;
5513	a[17] = 10;
5514	a[18] = 14;
5515	a[19] = 17;
5516	a[20] = 21;
5517	a[21] = 25;
5518	a[22] = 30;
5519	a[23] = 35;
5520	a[24] = 45;
5521	a[25] = 60;
5522	a[26] = 80;
5523	a[27] = 100;
5524	a[28] = 200;
5525	a[29] = 300;
5526	a[30] = 400;
5527	a[31] = 500;
5528
5529	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5530	b[9] = b[10] = 1;
5531	b[11] = b[12] = 2;
5532	b[13] = b[14] = b[15] = b[16] = 3;
5533	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5534	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5535	b[28] = b[29] = 6;
5536	b[30] = b[31] = 7;
5537}
5538
5539/* The minimum additive increment value for the congestion control table */
5540#define CC_MIN_INCR 2U
5541
5542/**
5543 *	t4_load_mtus - write the MTU and congestion control HW tables
5544 *	@adap: the adapter
5545 *	@mtus: the values for the MTU table
5546 *	@alpha: the values for the congestion control alpha parameter
5547 *	@beta: the values for the congestion control beta parameter
5548 *
5549 *	Write the HW MTU table with the supplied MTUs and the high-speed
5550 *	congestion control table with the supplied alpha, beta, and MTUs.
5551 *	We write the two tables together because the additive increments
5552 *	depend on the MTUs.
5553 */
5554void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5555		  const unsigned short *alpha, const unsigned short *beta)
5556{
5557	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5558		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5559		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5560		28672, 40960, 57344, 81920, 114688, 163840, 229376
5561	};
5562
5563	unsigned int i, w;
5564
5565	for (i = 0; i < NMTUS; ++i) {
5566		unsigned int mtu = mtus[i];
5567		unsigned int log2 = fls(mtu);
5568
5569		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5570			log2--;
5571		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5572			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5573
5574		for (w = 0; w < NCCTRL_WIN; ++w) {
5575			unsigned int inc;
5576
5577			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5578				  CC_MIN_INCR);
5579
5580			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5581				     (w << 16) | (beta[w] << 13) | inc);
5582		}
5583	}
5584}
5585
5586/**
5587 *	t4_set_pace_tbl - set the pace table
5588 *	@adap: the adapter
5589 *	@pace_vals: the pace values in microseconds
5590 *	@start: index of the first entry in the HW pace table to set
5591 *	@n: how many entries to set
5592 *
5593 *	Sets (a subset of the) HW pace table.
5594 */
5595int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5596		     unsigned int start, unsigned int n)
5597{
5598	unsigned int vals[NTX_SCHED], i;
5599	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5600
5601	if (n > NTX_SCHED)
5602	    return -ERANGE;
5603
5604	/* convert values from us to dack ticks, rounding to closest value */
5605	for (i = 0; i < n; i++, pace_vals++) {
5606		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5607		if (vals[i] > 0x7ff)
5608			return -ERANGE;
5609		if (*pace_vals && vals[i] == 0)
5610			return -ERANGE;
5611	}
5612	for (i = 0; i < n; i++, start++)
5613		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5614	return 0;
5615}
5616
5617/**
5618 *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5619 *	@adap: the adapter
5620 *	@kbps: target rate in Kbps
5621 *	@sched: the scheduler index
5622 *
5623 *	Configure a Tx HW scheduler for the target rate.
5624 */
5625int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5626{
5627	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5628	unsigned int clk = adap->params.vpd.cclk * 1000;
5629	unsigned int selected_cpt = 0, selected_bpt = 0;
5630
5631	if (kbps > 0) {
5632		kbps *= 125;     /* -> bytes */
5633		for (cpt = 1; cpt <= 255; cpt++) {
5634			tps = clk / cpt;
5635			bpt = (kbps + tps / 2) / tps;
5636			if (bpt > 0 && bpt <= 255) {
5637				v = bpt * tps;
5638				delta = v >= kbps ? v - kbps : kbps - v;
5639				if (delta < mindelta) {
5640					mindelta = delta;
5641					selected_cpt = cpt;
5642					selected_bpt = bpt;
5643				}
5644			} else if (selected_cpt)
5645				break;
5646		}
5647		if (!selected_cpt)
5648			return -EINVAL;
5649	}
5650	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5651		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5652	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5653	if (sched & 1)
5654		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5655	else
5656		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5657	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5658	return 0;
5659}
5660
5661/**
5662 *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5663 *	@adap: the adapter
5664 *	@sched: the scheduler index
5665 *	@ipg: the interpacket delay in tenths of nanoseconds
5666 *
5667 *	Set the interpacket delay for a HW packet rate scheduler.
5668 */
5669int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5670{
5671	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5672
5673	/* convert ipg to nearest number of core clocks */
5674	ipg *= core_ticks_per_usec(adap);
5675	ipg = (ipg + 5000) / 10000;
5676	if (ipg > M_TXTIMERSEPQ0)
5677		return -EINVAL;
5678
5679	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5680	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5681	if (sched & 1)
5682		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5683	else
5684		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5685	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5686	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5687	return 0;
5688}
5689
5690/*
5691 * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5692 * clocks.  The formula is
5693 *
5694 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5695 *
5696 * which is equivalent to
5697 *
5698 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5699 */
5700static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5701{
5702	u64 v = bytes256 * adap->params.vpd.cclk;
5703
5704	return v * 62 + v / 2;
5705}
5706
5707/**
5708 *	t4_get_chan_txrate - get the current per channel Tx rates
5709 *	@adap: the adapter
5710 *	@nic_rate: rates for NIC traffic
5711 *	@ofld_rate: rates for offloaded traffic
5712 *
5713 *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5714 *	for each channel.
5715 */
5716void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5717{
5718	u32 v;
5719
5720	v = t4_read_reg(adap, A_TP_TX_TRATE);
5721	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5722	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5723	if (adap->chip_params->nchan > 2) {
5724		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5725		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5726	}
5727
5728	v = t4_read_reg(adap, A_TP_TX_ORATE);
5729	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5730	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5731	if (adap->chip_params->nchan > 2) {
5732		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5733		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5734	}
5735}
5736
5737/**
5738 *	t4_set_trace_filter - configure one of the tracing filters
5739 *	@adap: the adapter
5740 *	@tp: the desired trace filter parameters
5741 *	@idx: which filter to configure
5742 *	@enable: whether to enable or disable the filter
5743 *
5744 *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5745 *	it indicates that the filter is already written in the register and it
5746 *	just needs to be enabled or disabled.
5747 */
5748int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5749    int idx, int enable)
5750{
5751	int i, ofst = idx * 4;
5752	u32 data_reg, mask_reg, cfg;
5753	u32 multitrc = F_TRCMULTIFILTER;
5754	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5755
5756	if (idx < 0 || idx >= NTRACE)
5757		return -EINVAL;
5758
5759	if (tp == NULL || !enable) {
5760		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5761		    enable ? en : 0);
5762		return 0;
5763	}
5764
5765	/*
5766	 * TODO - After T4 data book is updated, specify the exact
5767	 * section below.
5768	 *
5769	 * See T4 data book - MPS section for a complete description
5770	 * of the below if..else handling of A_MPS_TRC_CFG register
5771	 * value.
5772	 */
5773	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5774	if (cfg & F_TRCMULTIFILTER) {
5775		/*
5776		 * If multiple tracers are enabled, then maximum
5777		 * capture size is 2.5KB (FIFO size of a single channel)
5778		 * minus 2 flits for CPL_TRACE_PKT header.
5779		 */
5780		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5781			return -EINVAL;
5782	} else {
5783		/*
5784		 * If multiple tracers are disabled, to avoid deadlocks
5785		 * maximum packet capture size of 9600 bytes is recommended.
5786		 * Also in this mode, only trace0 can be enabled and running.
5787		 */
5788		multitrc = 0;
5789		if (tp->snap_len > 9600 || idx)
5790			return -EINVAL;
5791	}
5792
5793	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5794	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5795	    tp->min_len > M_TFMINPKTSIZE)
5796		return -EINVAL;
5797
5798	/* stop the tracer we'll be changing */
5799	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5800
5801	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5802	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5803	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5804
5805	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5806		t4_write_reg(adap, data_reg, tp->data[i]);
5807		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5808	}
5809	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5810		     V_TFCAPTUREMAX(tp->snap_len) |
5811		     V_TFMINPKTSIZE(tp->min_len));
5812	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5813		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5814		     (is_t4(adap) ?
5815		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5816		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5817
5818	return 0;
5819}
5820
5821/**
5822 *	t4_get_trace_filter - query one of the tracing filters
5823 *	@adap: the adapter
5824 *	@tp: the current trace filter parameters
5825 *	@idx: which trace filter to query
5826 *	@enabled: non-zero if the filter is enabled
5827 *
5828 *	Returns the current settings of one of the HW tracing filters.
5829 */
5830void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5831			 int *enabled)
5832{
5833	u32 ctla, ctlb;
5834	int i, ofst = idx * 4;
5835	u32 data_reg, mask_reg;
5836
5837	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5838	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5839
5840	if (is_t4(adap)) {
5841		*enabled = !!(ctla & F_TFEN);
5842		tp->port =  G_TFPORT(ctla);
5843		tp->invert = !!(ctla & F_TFINVERTMATCH);
5844	} else {
5845		*enabled = !!(ctla & F_T5_TFEN);
5846		tp->port = G_T5_TFPORT(ctla);
5847		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5848	}
5849	tp->snap_len = G_TFCAPTUREMAX(ctlb);
5850	tp->min_len = G_TFMINPKTSIZE(ctlb);
5851	tp->skip_ofst = G_TFOFFSET(ctla);
5852	tp->skip_len = G_TFLENGTH(ctla);
5853
5854	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5855	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5856	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5857
5858	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5859		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5860		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5861	}
5862}
5863
5864/**
5865 *	t4_pmtx_get_stats - returns the HW stats from PMTX
5866 *	@adap: the adapter
5867 *	@cnt: where to store the count statistics
5868 *	@cycles: where to store the cycle statistics
5869 *
5870 *	Returns performance statistics from PMTX.
5871 */
5872void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5873{
5874	int i;
5875	u32 data[2];
5876
5877	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5878		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5879		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5880		if (is_t4(adap))
5881			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5882		else {
5883			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5884					 A_PM_TX_DBG_DATA, data, 2,
5885					 A_PM_TX_DBG_STAT_MSB);
5886			cycles[i] = (((u64)data[0] << 32) | data[1]);
5887		}
5888	}
5889}
5890
5891/**
5892 *	t4_pmrx_get_stats - returns the HW stats from PMRX
5893 *	@adap: the adapter
5894 *	@cnt: where to store the count statistics
5895 *	@cycles: where to store the cycle statistics
5896 *
5897 *	Returns performance statistics from PMRX.
5898 */
5899void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5900{
5901	int i;
5902	u32 data[2];
5903
5904	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5905		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5906		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5907		if (is_t4(adap)) {
5908			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5909		} else {
5910			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5911					 A_PM_RX_DBG_DATA, data, 2,
5912					 A_PM_RX_DBG_STAT_MSB);
5913			cycles[i] = (((u64)data[0] << 32) | data[1]);
5914		}
5915	}
5916}
5917
5918/**
5919 *	t4_get_mps_bg_map - return the buffer groups associated with a port
5920 *	@adap: the adapter
5921 *	@idx: the port index
5922 *
5923 *	Returns a bitmap indicating which MPS buffer groups are associated
5924 *	with the given port.  Bit i is set if buffer group i is used by the
5925 *	port.
5926 */
5927static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5928{
5929	u32 n;
5930
5931	if (adap->params.mps_bg_map)
5932		return ((adap->params.mps_bg_map >> (idx << 3)) & 0xff);
5933
5934	n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5935	if (n == 0)
5936		return idx == 0 ? 0xf : 0;
5937	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5938		return idx < 2 ? (3 << (2 * idx)) : 0;
5939	return 1 << idx;
5940}
5941
5942/*
5943 * TP RX e-channels associated with the port.
5944 */
5945static unsigned int t4_get_rx_e_chan_map(struct adapter *adap, int idx)
5946{
5947	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5948
5949	if (n == 0)
5950		return idx == 0 ? 0xf : 0;
5951	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5952		return idx < 2 ? (3 << (2 * idx)) : 0;
5953	return 1 << idx;
5954}
5955
5956/**
5957 *      t4_get_port_type_description - return Port Type string description
5958 *      @port_type: firmware Port Type enumeration
5959 */
5960const char *t4_get_port_type_description(enum fw_port_type port_type)
5961{
5962	static const char *const port_type_description[] = {
5963		"Fiber_XFI",
5964		"Fiber_XAUI",
5965		"BT_SGMII",
5966		"BT_XFI",
5967		"BT_XAUI",
5968		"KX4",
5969		"CX4",
5970		"KX",
5971		"KR",
5972		"SFP",
5973		"BP_AP",
5974		"BP4_AP",
5975		"QSFP_10G",
5976		"QSA",
5977		"QSFP",
5978		"BP40_BA",
5979		"KR4_100G",
5980		"CR4_QSFP",
5981		"CR_QSFP",
5982		"CR2_QSFP",
5983		"SFP28",
5984		"KR_SFP28",
5985	};
5986
5987	if (port_type < ARRAY_SIZE(port_type_description))
5988		return port_type_description[port_type];
5989	return "UNKNOWN";
5990}
5991
5992/**
5993 *      t4_get_port_stats_offset - collect port stats relative to a previous
5994 *				   snapshot
5995 *      @adap: The adapter
5996 *      @idx: The port
5997 *      @stats: Current stats to fill
5998 *      @offset: Previous stats snapshot
5999 */
6000void t4_get_port_stats_offset(struct adapter *adap, int idx,
6001		struct port_stats *stats,
6002		struct port_stats *offset)
6003{
6004	u64 *s, *o;
6005	int i;
6006
6007	t4_get_port_stats(adap, idx, stats);
6008	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
6009			i < (sizeof(struct port_stats)/sizeof(u64)) ;
6010			i++, s++, o++)
6011		*s -= *o;
6012}
6013
6014/**
6015 *	t4_get_port_stats - collect port statistics
6016 *	@adap: the adapter
6017 *	@idx: the port index
6018 *	@p: the stats structure to fill
6019 *
6020 *	Collect statistics related to the given port from HW.
6021 */
6022void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
6023{
6024	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6025	u32 stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
6026
6027#define GET_STAT(name) \
6028	t4_read_reg64(adap, \
6029	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
6030	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
6031#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6032
6033	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
6034	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
6035	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
6036	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
6037	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
6038	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
6039	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
6040	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
6041	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
6042	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
6043	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
6044	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
6045	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
6046	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
6047	p->tx_drop		= GET_STAT(TX_PORT_DROP);
6048	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
6049	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
6050	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
6051	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
6052	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
6053	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
6054	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
6055	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
6056
6057	if (chip_id(adap) >= CHELSIO_T5) {
6058		if (stat_ctl & F_COUNTPAUSESTATTX) {
6059			p->tx_frames -= p->tx_pause;
6060			p->tx_octets -= p->tx_pause * 64;
6061		}
6062		if (stat_ctl & F_COUNTPAUSEMCTX)
6063			p->tx_mcast_frames -= p->tx_pause;
6064	}
6065
6066	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
6067	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
6068	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
6069	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
6070	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
6071	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
6072	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
6073	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
6074	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
6075	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
6076	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
6077	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
6078	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
6079	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
6080	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
6081	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
6082	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
6083	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
6084	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
6085	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
6086	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
6087	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
6088	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
6089	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
6090	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
6091	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
6092	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
6093
6094	if (chip_id(adap) >= CHELSIO_T5) {
6095		if (stat_ctl & F_COUNTPAUSESTATRX) {
6096			p->rx_frames -= p->rx_pause;
6097			p->rx_octets -= p->rx_pause * 64;
6098		}
6099		if (stat_ctl & F_COUNTPAUSEMCRX)
6100			p->rx_mcast_frames -= p->rx_pause;
6101	}
6102
6103	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
6104	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
6105	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
6106	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
6107	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
6108	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
6109	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
6110	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
6111
6112#undef GET_STAT
6113#undef GET_STAT_COM
6114}
6115
6116/**
6117 *	t4_get_lb_stats - collect loopback port statistics
6118 *	@adap: the adapter
6119 *	@idx: the loopback port index
6120 *	@p: the stats structure to fill
6121 *
6122 *	Return HW statistics for the given loopback port.
6123 */
6124void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
6125{
6126	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
6127
6128#define GET_STAT(name) \
6129	t4_read_reg64(adap, \
6130	(is_t4(adap) ? \
6131	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
6132	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
6133#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
6134
6135	p->octets	= GET_STAT(BYTES);
6136	p->frames	= GET_STAT(FRAMES);
6137	p->bcast_frames	= GET_STAT(BCAST);
6138	p->mcast_frames	= GET_STAT(MCAST);
6139	p->ucast_frames	= GET_STAT(UCAST);
6140	p->error_frames	= GET_STAT(ERROR);
6141
6142	p->frames_64		= GET_STAT(64B);
6143	p->frames_65_127	= GET_STAT(65B_127B);
6144	p->frames_128_255	= GET_STAT(128B_255B);
6145	p->frames_256_511	= GET_STAT(256B_511B);
6146	p->frames_512_1023	= GET_STAT(512B_1023B);
6147	p->frames_1024_1518	= GET_STAT(1024B_1518B);
6148	p->frames_1519_max	= GET_STAT(1519B_MAX);
6149	p->drop			= GET_STAT(DROP_FRAMES);
6150
6151	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
6152	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
6153	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
6154	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
6155	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
6156	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
6157	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
6158	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
6159
6160#undef GET_STAT
6161#undef GET_STAT_COM
6162}
6163
6164/**
6165 *	t4_wol_magic_enable - enable/disable magic packet WoL
6166 *	@adap: the adapter
6167 *	@port: the physical port index
6168 *	@addr: MAC address expected in magic packets, %NULL to disable
6169 *
6170 *	Enables/disables magic packet wake-on-LAN for the selected port.
6171 */
6172void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
6173			 const u8 *addr)
6174{
6175	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
6176
6177	if (is_t4(adap)) {
6178		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
6179		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
6180		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6181	} else {
6182		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6183		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6184		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6185	}
6186
6187	if (addr) {
6188		t4_write_reg(adap, mag_id_reg_l,
6189			     (addr[2] << 24) | (addr[3] << 16) |
6190			     (addr[4] << 8) | addr[5]);
6191		t4_write_reg(adap, mag_id_reg_h,
6192			     (addr[0] << 8) | addr[1]);
6193	}
6194	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6195			 V_MAGICEN(addr != NULL));
6196}
6197
6198/**
6199 *	t4_wol_pat_enable - enable/disable pattern-based WoL
6200 *	@adap: the adapter
6201 *	@port: the physical port index
6202 *	@map: bitmap of which HW pattern filters to set
6203 *	@mask0: byte mask for bytes 0-63 of a packet
6204 *	@mask1: byte mask for bytes 64-127 of a packet
6205 *	@crc: Ethernet CRC for selected bytes
6206 *	@enable: enable/disable switch
6207 *
6208 *	Sets the pattern filters indicated in @map to mask out the bytes
6209 *	specified in @mask0/@mask1 in received packets and compare the CRC of
6210 *	the resulting packet against @crc.  If @enable is %true pattern-based
6211 *	WoL is enabled, otherwise disabled.
6212 */
6213int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6214		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6215{
6216	int i;
6217	u32 port_cfg_reg;
6218
6219	if (is_t4(adap))
6220		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6221	else
6222		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6223
6224	if (!enable) {
6225		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6226		return 0;
6227	}
6228	if (map > 0xff)
6229		return -EINVAL;
6230
6231#define EPIO_REG(name) \
6232	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6233	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6234
6235	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6236	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6237	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6238
6239	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6240		if (!(map & 1))
6241			continue;
6242
6243		/* write byte masks */
6244		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6245		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6246		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6247		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6248			return -ETIMEDOUT;
6249
6250		/* write CRC */
6251		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6252		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6253		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6254		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6255			return -ETIMEDOUT;
6256	}
6257#undef EPIO_REG
6258
6259	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6260	return 0;
6261}
6262
6263/*     t4_mk_filtdelwr - create a delete filter WR
6264 *     @ftid: the filter ID
6265 *     @wr: the filter work request to populate
6266 *     @qid: ingress queue to receive the delete notification
6267 *
6268 *     Creates a filter work request to delete the supplied filter.  If @qid is
6269 *     negative the delete notification is suppressed.
6270 */
6271void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6272{
6273	memset(wr, 0, sizeof(*wr));
6274	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6275	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6276	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6277				    V_FW_FILTER_WR_NOREPLY(qid < 0));
6278	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6279	if (qid >= 0)
6280		wr->rx_chan_rx_rpl_iq =
6281				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6282}
6283
6284#define INIT_CMD(var, cmd, rd_wr) do { \
6285	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6286					F_FW_CMD_REQUEST | \
6287					F_FW_CMD_##rd_wr); \
6288	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6289} while (0)
6290
6291int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6292			  u32 addr, u32 val)
6293{
6294	u32 ldst_addrspace;
6295	struct fw_ldst_cmd c;
6296
6297	memset(&c, 0, sizeof(c));
6298	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6299	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6300					F_FW_CMD_REQUEST |
6301					F_FW_CMD_WRITE |
6302					ldst_addrspace);
6303	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6304	c.u.addrval.addr = cpu_to_be32(addr);
6305	c.u.addrval.val = cpu_to_be32(val);
6306
6307	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6308}
6309
6310/**
6311 *	t4_mdio_rd - read a PHY register through MDIO
6312 *	@adap: the adapter
6313 *	@mbox: mailbox to use for the FW command
6314 *	@phy_addr: the PHY address
6315 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6316 *	@reg: the register to read
6317 *	@valp: where to store the value
6318 *
6319 *	Issues a FW command through the given mailbox to read a PHY register.
6320 */
6321int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6322	       unsigned int mmd, unsigned int reg, unsigned int *valp)
6323{
6324	int ret;
6325	u32 ldst_addrspace;
6326	struct fw_ldst_cmd c;
6327
6328	memset(&c, 0, sizeof(c));
6329	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6330	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6331					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6332					ldst_addrspace);
6333	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6334	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6335					 V_FW_LDST_CMD_MMD(mmd));
6336	c.u.mdio.raddr = cpu_to_be16(reg);
6337
6338	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6339	if (ret == 0)
6340		*valp = be16_to_cpu(c.u.mdio.rval);
6341	return ret;
6342}
6343
6344/**
6345 *	t4_mdio_wr - write a PHY register through MDIO
6346 *	@adap: the adapter
6347 *	@mbox: mailbox to use for the FW command
6348 *	@phy_addr: the PHY address
6349 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6350 *	@reg: the register to write
6351 *	@valp: value to write
6352 *
6353 *	Issues a FW command through the given mailbox to write a PHY register.
6354 */
6355int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6356	       unsigned int mmd, unsigned int reg, unsigned int val)
6357{
6358	u32 ldst_addrspace;
6359	struct fw_ldst_cmd c;
6360
6361	memset(&c, 0, sizeof(c));
6362	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6363	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6364					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6365					ldst_addrspace);
6366	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6367	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6368					 V_FW_LDST_CMD_MMD(mmd));
6369	c.u.mdio.raddr = cpu_to_be16(reg);
6370	c.u.mdio.rval = cpu_to_be16(val);
6371
6372	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6373}
6374
6375/**
6376 *
6377 *	t4_sge_decode_idma_state - decode the idma state
6378 *	@adap: the adapter
6379 *	@state: the state idma is stuck in
6380 */
6381void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6382{
6383	static const char * const t4_decode[] = {
6384		"IDMA_IDLE",
6385		"IDMA_PUSH_MORE_CPL_FIFO",
6386		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6387		"Not used",
6388		"IDMA_PHYSADDR_SEND_PCIEHDR",
6389		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6390		"IDMA_PHYSADDR_SEND_PAYLOAD",
6391		"IDMA_SEND_FIFO_TO_IMSG",
6392		"IDMA_FL_REQ_DATA_FL_PREP",
6393		"IDMA_FL_REQ_DATA_FL",
6394		"IDMA_FL_DROP",
6395		"IDMA_FL_H_REQ_HEADER_FL",
6396		"IDMA_FL_H_SEND_PCIEHDR",
6397		"IDMA_FL_H_PUSH_CPL_FIFO",
6398		"IDMA_FL_H_SEND_CPL",
6399		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6400		"IDMA_FL_H_SEND_IP_HDR",
6401		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6402		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6403		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6404		"IDMA_FL_D_SEND_PCIEHDR",
6405		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6406		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6407		"IDMA_FL_SEND_PCIEHDR",
6408		"IDMA_FL_PUSH_CPL_FIFO",
6409		"IDMA_FL_SEND_CPL",
6410		"IDMA_FL_SEND_PAYLOAD_FIRST",
6411		"IDMA_FL_SEND_PAYLOAD",
6412		"IDMA_FL_REQ_NEXT_DATA_FL",
6413		"IDMA_FL_SEND_NEXT_PCIEHDR",
6414		"IDMA_FL_SEND_PADDING",
6415		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6416		"IDMA_FL_SEND_FIFO_TO_IMSG",
6417		"IDMA_FL_REQ_DATAFL_DONE",
6418		"IDMA_FL_REQ_HEADERFL_DONE",
6419	};
6420	static const char * const t5_decode[] = {
6421		"IDMA_IDLE",
6422		"IDMA_ALMOST_IDLE",
6423		"IDMA_PUSH_MORE_CPL_FIFO",
6424		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6425		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6426		"IDMA_PHYSADDR_SEND_PCIEHDR",
6427		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6428		"IDMA_PHYSADDR_SEND_PAYLOAD",
6429		"IDMA_SEND_FIFO_TO_IMSG",
6430		"IDMA_FL_REQ_DATA_FL",
6431		"IDMA_FL_DROP",
6432		"IDMA_FL_DROP_SEND_INC",
6433		"IDMA_FL_H_REQ_HEADER_FL",
6434		"IDMA_FL_H_SEND_PCIEHDR",
6435		"IDMA_FL_H_PUSH_CPL_FIFO",
6436		"IDMA_FL_H_SEND_CPL",
6437		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6438		"IDMA_FL_H_SEND_IP_HDR",
6439		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6440		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6441		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6442		"IDMA_FL_D_SEND_PCIEHDR",
6443		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6444		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6445		"IDMA_FL_SEND_PCIEHDR",
6446		"IDMA_FL_PUSH_CPL_FIFO",
6447		"IDMA_FL_SEND_CPL",
6448		"IDMA_FL_SEND_PAYLOAD_FIRST",
6449		"IDMA_FL_SEND_PAYLOAD",
6450		"IDMA_FL_REQ_NEXT_DATA_FL",
6451		"IDMA_FL_SEND_NEXT_PCIEHDR",
6452		"IDMA_FL_SEND_PADDING",
6453		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6454	};
6455	static const char * const t6_decode[] = {
6456		"IDMA_IDLE",
6457		"IDMA_PUSH_MORE_CPL_FIFO",
6458		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6459		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6460		"IDMA_PHYSADDR_SEND_PCIEHDR",
6461		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6462		"IDMA_PHYSADDR_SEND_PAYLOAD",
6463		"IDMA_FL_REQ_DATA_FL",
6464		"IDMA_FL_DROP",
6465		"IDMA_FL_DROP_SEND_INC",
6466		"IDMA_FL_H_REQ_HEADER_FL",
6467		"IDMA_FL_H_SEND_PCIEHDR",
6468		"IDMA_FL_H_PUSH_CPL_FIFO",
6469		"IDMA_FL_H_SEND_CPL",
6470		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6471		"IDMA_FL_H_SEND_IP_HDR",
6472		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6473		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6474		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6475		"IDMA_FL_D_SEND_PCIEHDR",
6476		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6477		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6478		"IDMA_FL_SEND_PCIEHDR",
6479		"IDMA_FL_PUSH_CPL_FIFO",
6480		"IDMA_FL_SEND_CPL",
6481		"IDMA_FL_SEND_PAYLOAD_FIRST",
6482		"IDMA_FL_SEND_PAYLOAD",
6483		"IDMA_FL_REQ_NEXT_DATA_FL",
6484		"IDMA_FL_SEND_NEXT_PCIEHDR",
6485		"IDMA_FL_SEND_PADDING",
6486		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6487	};
6488	static const u32 sge_regs[] = {
6489		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6490		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6491		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6492	};
6493	const char * const *sge_idma_decode;
6494	int sge_idma_decode_nstates;
6495	int i;
6496	unsigned int chip_version = chip_id(adapter);
6497
6498	/* Select the right set of decode strings to dump depending on the
6499	 * adapter chip type.
6500	 */
6501	switch (chip_version) {
6502	case CHELSIO_T4:
6503		sge_idma_decode = (const char * const *)t4_decode;
6504		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6505		break;
6506
6507	case CHELSIO_T5:
6508		sge_idma_decode = (const char * const *)t5_decode;
6509		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6510		break;
6511
6512	case CHELSIO_T6:
6513		sge_idma_decode = (const char * const *)t6_decode;
6514		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6515		break;
6516
6517	default:
6518		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6519		return;
6520	}
6521
6522	if (state < sge_idma_decode_nstates)
6523		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6524	else
6525		CH_WARN(adapter, "idma state %d unknown\n", state);
6526
6527	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6528		CH_WARN(adapter, "SGE register %#x value %#x\n",
6529			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6530}
6531
6532/**
6533 *      t4_sge_ctxt_flush - flush the SGE context cache
6534 *      @adap: the adapter
6535 *      @mbox: mailbox to use for the FW command
6536 *
6537 *      Issues a FW command through the given mailbox to flush the
6538 *      SGE context cache.
6539 */
6540int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6541{
6542	int ret;
6543	u32 ldst_addrspace;
6544	struct fw_ldst_cmd c;
6545
6546	memset(&c, 0, sizeof(c));
6547	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6548	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6549					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6550					ldst_addrspace);
6551	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6552	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6553
6554	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6555	return ret;
6556}
6557
6558/**
6559 *      t4_fw_hello - establish communication with FW
6560 *      @adap: the adapter
6561 *      @mbox: mailbox to use for the FW command
6562 *      @evt_mbox: mailbox to receive async FW events
6563 *      @master: specifies the caller's willingness to be the device master
6564 *	@state: returns the current device state (if non-NULL)
6565 *
6566 *	Issues a command to establish communication with FW.  Returns either
6567 *	an error (negative integer) or the mailbox of the Master PF.
6568 */
6569int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6570		enum dev_master master, enum dev_state *state)
6571{
6572	int ret;
6573	struct fw_hello_cmd c;
6574	u32 v;
6575	unsigned int master_mbox;
6576	int retries = FW_CMD_HELLO_RETRIES;
6577
6578retry:
6579	memset(&c, 0, sizeof(c));
6580	INIT_CMD(c, HELLO, WRITE);
6581	c.err_to_clearinit = cpu_to_be32(
6582		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6583		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6584		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6585					mbox : M_FW_HELLO_CMD_MBMASTER) |
6586		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6587		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6588		F_FW_HELLO_CMD_CLEARINIT);
6589
6590	/*
6591	 * Issue the HELLO command to the firmware.  If it's not successful
6592	 * but indicates that we got a "busy" or "timeout" condition, retry
6593	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6594	 * retry limit, check to see if the firmware left us any error
6595	 * information and report that if so ...
6596	 */
6597	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6598	if (ret != FW_SUCCESS) {
6599		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6600			goto retry;
6601		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6602			t4_report_fw_error(adap);
6603		return ret;
6604	}
6605
6606	v = be32_to_cpu(c.err_to_clearinit);
6607	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6608	if (state) {
6609		if (v & F_FW_HELLO_CMD_ERR)
6610			*state = DEV_STATE_ERR;
6611		else if (v & F_FW_HELLO_CMD_INIT)
6612			*state = DEV_STATE_INIT;
6613		else
6614			*state = DEV_STATE_UNINIT;
6615	}
6616
6617	/*
6618	 * If we're not the Master PF then we need to wait around for the
6619	 * Master PF Driver to finish setting up the adapter.
6620	 *
6621	 * Note that we also do this wait if we're a non-Master-capable PF and
6622	 * there is no current Master PF; a Master PF may show up momentarily
6623	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6624	 * OS loads lots of different drivers rapidly at the same time).  In
6625	 * this case, the Master PF returned by the firmware will be
6626	 * M_PCIE_FW_MASTER so the test below will work ...
6627	 */
6628	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6629	    master_mbox != mbox) {
6630		int waiting = FW_CMD_HELLO_TIMEOUT;
6631
6632		/*
6633		 * Wait for the firmware to either indicate an error or
6634		 * initialized state.  If we see either of these we bail out
6635		 * and report the issue to the caller.  If we exhaust the
6636		 * "hello timeout" and we haven't exhausted our retries, try
6637		 * again.  Otherwise bail with a timeout error.
6638		 */
6639		for (;;) {
6640			u32 pcie_fw;
6641
6642			msleep(50);
6643			waiting -= 50;
6644
6645			/*
6646			 * If neither Error nor Initialialized are indicated
6647			 * by the firmware keep waiting till we exhaust our
6648			 * timeout ... and then retry if we haven't exhausted
6649			 * our retries ...
6650			 */
6651			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6652			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6653				if (waiting <= 0) {
6654					if (retries-- > 0)
6655						goto retry;
6656
6657					return -ETIMEDOUT;
6658				}
6659				continue;
6660			}
6661
6662			/*
6663			 * We either have an Error or Initialized condition
6664			 * report errors preferentially.
6665			 */
6666			if (state) {
6667				if (pcie_fw & F_PCIE_FW_ERR)
6668					*state = DEV_STATE_ERR;
6669				else if (pcie_fw & F_PCIE_FW_INIT)
6670					*state = DEV_STATE_INIT;
6671			}
6672
6673			/*
6674			 * If we arrived before a Master PF was selected and
6675			 * there's not a valid Master PF, grab its identity
6676			 * for our caller.
6677			 */
6678			if (master_mbox == M_PCIE_FW_MASTER &&
6679			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6680				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6681			break;
6682		}
6683	}
6684
6685	return master_mbox;
6686}
6687
6688/**
6689 *	t4_fw_bye - end communication with FW
6690 *	@adap: the adapter
6691 *	@mbox: mailbox to use for the FW command
6692 *
6693 *	Issues a command to terminate communication with FW.
6694 */
6695int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6696{
6697	struct fw_bye_cmd c;
6698
6699	memset(&c, 0, sizeof(c));
6700	INIT_CMD(c, BYE, WRITE);
6701	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6702}
6703
6704/**
6705 *	t4_fw_reset - issue a reset to FW
6706 *	@adap: the adapter
6707 *	@mbox: mailbox to use for the FW command
6708 *	@reset: specifies the type of reset to perform
6709 *
6710 *	Issues a reset command of the specified type to FW.
6711 */
6712int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6713{
6714	struct fw_reset_cmd c;
6715
6716	memset(&c, 0, sizeof(c));
6717	INIT_CMD(c, RESET, WRITE);
6718	c.val = cpu_to_be32(reset);
6719	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6720}
6721
6722/**
6723 *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6724 *	@adap: the adapter
6725 *	@mbox: mailbox to use for the FW RESET command (if desired)
6726 *	@force: force uP into RESET even if FW RESET command fails
6727 *
6728 *	Issues a RESET command to firmware (if desired) with a HALT indication
6729 *	and then puts the microprocessor into RESET state.  The RESET command
6730 *	will only be issued if a legitimate mailbox is provided (mbox <=
6731 *	M_PCIE_FW_MASTER).
6732 *
6733 *	This is generally used in order for the host to safely manipulate the
6734 *	adapter without fear of conflicting with whatever the firmware might
6735 *	be doing.  The only way out of this state is to RESTART the firmware
6736 *	...
6737 */
6738int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6739{
6740	int ret = 0;
6741
6742	/*
6743	 * If a legitimate mailbox is provided, issue a RESET command
6744	 * with a HALT indication.
6745	 */
6746	if (mbox <= M_PCIE_FW_MASTER) {
6747		struct fw_reset_cmd c;
6748
6749		memset(&c, 0, sizeof(c));
6750		INIT_CMD(c, RESET, WRITE);
6751		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6752		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6753		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6754	}
6755
6756	/*
6757	 * Normally we won't complete the operation if the firmware RESET
6758	 * command fails but if our caller insists we'll go ahead and put the
6759	 * uP into RESET.  This can be useful if the firmware is hung or even
6760	 * missing ...  We'll have to take the risk of putting the uP into
6761	 * RESET without the cooperation of firmware in that case.
6762	 *
6763	 * We also force the firmware's HALT flag to be on in case we bypassed
6764	 * the firmware RESET command above or we're dealing with old firmware
6765	 * which doesn't have the HALT capability.  This will serve as a flag
6766	 * for the incoming firmware to know that it's coming out of a HALT
6767	 * rather than a RESET ... if it's new enough to understand that ...
6768	 */
6769	if (ret == 0 || force) {
6770		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6771		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6772				 F_PCIE_FW_HALT);
6773	}
6774
6775	/*
6776	 * And we always return the result of the firmware RESET command
6777	 * even when we force the uP into RESET ...
6778	 */
6779	return ret;
6780}
6781
6782/**
6783 *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6784 *	@adap: the adapter
6785 *	@reset: if we want to do a RESET to restart things
6786 *
6787 *	Restart firmware previously halted by t4_fw_halt().  On successful
6788 *	return the previous PF Master remains as the new PF Master and there
6789 *	is no need to issue a new HELLO command, etc.
6790 *
6791 *	We do this in two ways:
6792 *
6793 *	 1. If we're dealing with newer firmware we'll simply want to take
6794 *	    the chip's microprocessor out of RESET.  This will cause the
6795 *	    firmware to start up from its start vector.  And then we'll loop
6796 *	    until the firmware indicates it's started again (PCIE_FW.HALT
6797 *	    reset to 0) or we timeout.
6798 *
6799 *	 2. If we're dealing with older firmware then we'll need to RESET
6800 *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6801 *	    flag and automatically RESET itself on startup.
6802 */
6803int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6804{
6805	if (reset) {
6806		/*
6807		 * Since we're directing the RESET instead of the firmware
6808		 * doing it automatically, we need to clear the PCIE_FW.HALT
6809		 * bit.
6810		 */
6811		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6812
6813		/*
6814		 * If we've been given a valid mailbox, first try to get the
6815		 * firmware to do the RESET.  If that works, great and we can
6816		 * return success.  Otherwise, if we haven't been given a
6817		 * valid mailbox or the RESET command failed, fall back to
6818		 * hitting the chip with a hammer.
6819		 */
6820		if (mbox <= M_PCIE_FW_MASTER) {
6821			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6822			msleep(100);
6823			if (t4_fw_reset(adap, mbox,
6824					F_PIORST | F_PIORSTMODE) == 0)
6825				return 0;
6826		}
6827
6828		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6829		msleep(2000);
6830	} else {
6831		int ms;
6832
6833		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6834		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6835			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6836				return FW_SUCCESS;
6837			msleep(100);
6838			ms += 100;
6839		}
6840		return -ETIMEDOUT;
6841	}
6842	return 0;
6843}
6844
6845/**
6846 *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6847 *	@adap: the adapter
6848 *	@mbox: mailbox to use for the FW RESET command (if desired)
6849 *	@fw_data: the firmware image to write
6850 *	@size: image size
6851 *	@force: force upgrade even if firmware doesn't cooperate
6852 *
6853 *	Perform all of the steps necessary for upgrading an adapter's
6854 *	firmware image.  Normally this requires the cooperation of the
6855 *	existing firmware in order to halt all existing activities
6856 *	but if an invalid mailbox token is passed in we skip that step
6857 *	(though we'll still put the adapter microprocessor into RESET in
6858 *	that case).
6859 *
6860 *	On successful return the new firmware will have been loaded and
6861 *	the adapter will have been fully RESET losing all previous setup
6862 *	state.  On unsuccessful return the adapter may be completely hosed ...
6863 *	positive errno indicates that the adapter is ~probably~ intact, a
6864 *	negative errno indicates that things are looking bad ...
6865 */
6866int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6867		  const u8 *fw_data, unsigned int size, int force)
6868{
6869	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6870	unsigned int bootstrap =
6871	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6872	int reset, ret;
6873
6874	if (!t4_fw_matches_chip(adap, fw_hdr))
6875		return -EINVAL;
6876
6877	if (!bootstrap) {
6878		ret = t4_fw_halt(adap, mbox, force);
6879		if (ret < 0 && !force)
6880			return ret;
6881	}
6882
6883	ret = t4_load_fw(adap, fw_data, size);
6884	if (ret < 0 || bootstrap)
6885		return ret;
6886
6887	/*
6888	 * Older versions of the firmware don't understand the new
6889	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6890	 * restart.  So for newly loaded older firmware we'll have to do the
6891	 * RESET for it so it starts up on a clean slate.  We can tell if
6892	 * the newly loaded firmware will handle this right by checking
6893	 * its header flags to see if it advertises the capability.
6894	 */
6895	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6896	return t4_fw_restart(adap, mbox, reset);
6897}
6898
6899/*
6900 * Card doesn't have a firmware, install one.
6901 */
6902int t4_fw_forceinstall(struct adapter *adap, const u8 *fw_data,
6903    unsigned int size)
6904{
6905	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6906	unsigned int bootstrap =
6907	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6908	int ret;
6909
6910	if (!t4_fw_matches_chip(adap, fw_hdr) || bootstrap)
6911		return -EINVAL;
6912
6913	t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6914	t4_write_reg(adap, A_PCIE_FW, 0);	/* Clobber internal state */
6915	ret = t4_load_fw(adap, fw_data, size);
6916	if (ret < 0)
6917		return ret;
6918	t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6919	msleep(1000);
6920
6921	return (0);
6922}
6923
6924/**
6925 *	t4_fw_initialize - ask FW to initialize the device
6926 *	@adap: the adapter
6927 *	@mbox: mailbox to use for the FW command
6928 *
6929 *	Issues a command to FW to partially initialize the device.  This
6930 *	performs initialization that generally doesn't depend on user input.
6931 */
6932int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6933{
6934	struct fw_initialize_cmd c;
6935
6936	memset(&c, 0, sizeof(c));
6937	INIT_CMD(c, INITIALIZE, WRITE);
6938	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6939}
6940
6941/**
6942 *	t4_query_params_rw - query FW or device parameters
6943 *	@adap: the adapter
6944 *	@mbox: mailbox to use for the FW command
6945 *	@pf: the PF
6946 *	@vf: the VF
6947 *	@nparams: the number of parameters
6948 *	@params: the parameter names
6949 *	@val: the parameter values
6950 *	@rw: Write and read flag
6951 *
6952 *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6953 *	queried at once.
6954 */
6955int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6956		       unsigned int vf, unsigned int nparams, const u32 *params,
6957		       u32 *val, int rw)
6958{
6959	int i, ret;
6960	struct fw_params_cmd c;
6961	__be32 *p = &c.param[0].mnem;
6962
6963	if (nparams > 7)
6964		return -EINVAL;
6965
6966	memset(&c, 0, sizeof(c));
6967	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6968				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
6969				  V_FW_PARAMS_CMD_PFN(pf) |
6970				  V_FW_PARAMS_CMD_VFN(vf));
6971	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6972
6973	for (i = 0; i < nparams; i++) {
6974		*p++ = cpu_to_be32(*params++);
6975		if (rw)
6976			*p = cpu_to_be32(*(val + i));
6977		p++;
6978	}
6979
6980	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6981	if (ret == 0)
6982		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6983			*val++ = be32_to_cpu(*p);
6984	return ret;
6985}
6986
6987int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6988		    unsigned int vf, unsigned int nparams, const u32 *params,
6989		    u32 *val)
6990{
6991	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6992}
6993
6994/**
6995 *      t4_set_params_timeout - sets FW or device parameters
6996 *      @adap: the adapter
6997 *      @mbox: mailbox to use for the FW command
6998 *      @pf: the PF
6999 *      @vf: the VF
7000 *      @nparams: the number of parameters
7001 *      @params: the parameter names
7002 *      @val: the parameter values
7003 *      @timeout: the timeout time
7004 *
7005 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
7006 *      specified at once.
7007 */
7008int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
7009			  unsigned int pf, unsigned int vf,
7010			  unsigned int nparams, const u32 *params,
7011			  const u32 *val, int timeout)
7012{
7013	struct fw_params_cmd c;
7014	__be32 *p = &c.param[0].mnem;
7015
7016	if (nparams > 7)
7017		return -EINVAL;
7018
7019	memset(&c, 0, sizeof(c));
7020	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
7021				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7022				  V_FW_PARAMS_CMD_PFN(pf) |
7023				  V_FW_PARAMS_CMD_VFN(vf));
7024	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7025
7026	while (nparams--) {
7027		*p++ = cpu_to_be32(*params++);
7028		*p++ = cpu_to_be32(*val++);
7029	}
7030
7031	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
7032}
7033
7034/**
7035 *	t4_set_params - sets FW or device parameters
7036 *	@adap: the adapter
7037 *	@mbox: mailbox to use for the FW command
7038 *	@pf: the PF
7039 *	@vf: the VF
7040 *	@nparams: the number of parameters
7041 *	@params: the parameter names
7042 *	@val: the parameter values
7043 *
7044 *	Sets the value of FW or device parameters.  Up to 7 parameters can be
7045 *	specified at once.
7046 */
7047int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
7048		  unsigned int vf, unsigned int nparams, const u32 *params,
7049		  const u32 *val)
7050{
7051	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
7052				     FW_CMD_MAX_TIMEOUT);
7053}
7054
7055/**
7056 *	t4_cfg_pfvf - configure PF/VF resource limits
7057 *	@adap: the adapter
7058 *	@mbox: mailbox to use for the FW command
7059 *	@pf: the PF being configured
7060 *	@vf: the VF being configured
7061 *	@txq: the max number of egress queues
7062 *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
7063 *	@rxqi: the max number of interrupt-capable ingress queues
7064 *	@rxq: the max number of interruptless ingress queues
7065 *	@tc: the PCI traffic class
7066 *	@vi: the max number of virtual interfaces
7067 *	@cmask: the channel access rights mask for the PF/VF
7068 *	@pmask: the port access rights mask for the PF/VF
7069 *	@nexact: the maximum number of exact MPS filters
7070 *	@rcaps: read capabilities
7071 *	@wxcaps: write/execute capabilities
7072 *
7073 *	Configures resource limits and capabilities for a physical or virtual
7074 *	function.
7075 */
7076int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
7077		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
7078		unsigned int rxqi, unsigned int rxq, unsigned int tc,
7079		unsigned int vi, unsigned int cmask, unsigned int pmask,
7080		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
7081{
7082	struct fw_pfvf_cmd c;
7083
7084	memset(&c, 0, sizeof(c));
7085	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
7086				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
7087				  V_FW_PFVF_CMD_VFN(vf));
7088	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7089	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
7090				     V_FW_PFVF_CMD_NIQ(rxq));
7091	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
7092				    V_FW_PFVF_CMD_PMASK(pmask) |
7093				    V_FW_PFVF_CMD_NEQ(txq));
7094	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
7095				      V_FW_PFVF_CMD_NVI(vi) |
7096				      V_FW_PFVF_CMD_NEXACTF(nexact));
7097	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
7098				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
7099				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
7100	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7101}
7102
7103/**
7104 *	t4_alloc_vi_func - allocate a virtual interface
7105 *	@adap: the adapter
7106 *	@mbox: mailbox to use for the FW command
7107 *	@port: physical port associated with the VI
7108 *	@pf: the PF owning the VI
7109 *	@vf: the VF owning the VI
7110 *	@nmac: number of MAC addresses needed (1 to 5)
7111 *	@mac: the MAC addresses of the VI
7112 *	@rss_size: size of RSS table slice associated with this VI
7113 *	@portfunc: which Port Application Function MAC Address is desired
7114 *	@idstype: Intrusion Detection Type
7115 *
7116 *	Allocates a virtual interface for the given physical port.  If @mac is
7117 *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
7118 *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
7119 *	@mac should be large enough to hold @nmac Ethernet addresses, they are
7120 *	stored consecutively so the space needed is @nmac * 6 bytes.
7121 *	Returns a negative error number or the non-negative VI id.
7122 */
7123int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
7124		     unsigned int port, unsigned int pf, unsigned int vf,
7125		     unsigned int nmac, u8 *mac, u16 *rss_size,
7126		     unsigned int portfunc, unsigned int idstype)
7127{
7128	int ret;
7129	struct fw_vi_cmd c;
7130
7131	memset(&c, 0, sizeof(c));
7132	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
7133				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
7134				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
7135	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
7136	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
7137				     V_FW_VI_CMD_FUNC(portfunc));
7138	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
7139	c.nmac = nmac - 1;
7140	if(!rss_size)
7141		c.norss_rsssize = F_FW_VI_CMD_NORSS;
7142
7143	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7144	if (ret)
7145		return ret;
7146
7147	if (mac) {
7148		memcpy(mac, c.mac, sizeof(c.mac));
7149		switch (nmac) {
7150		case 5:
7151			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
7152		case 4:
7153			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
7154		case 3:
7155			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
7156		case 2:
7157			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
7158		}
7159	}
7160	if (rss_size)
7161		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
7162	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
7163}
7164
7165/**
7166 *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
7167 *      @adap: the adapter
7168 *      @mbox: mailbox to use for the FW command
7169 *      @port: physical port associated with the VI
7170 *      @pf: the PF owning the VI
7171 *      @vf: the VF owning the VI
7172 *      @nmac: number of MAC addresses needed (1 to 5)
7173 *      @mac: the MAC addresses of the VI
7174 *      @rss_size: size of RSS table slice associated with this VI
7175 *
7176 *	backwards compatible and convieniance routine to allocate a Virtual
7177 *	Interface with a Ethernet Port Application Function and Intrustion
7178 *	Detection System disabled.
7179 */
7180int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
7181		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
7182		u16 *rss_size)
7183{
7184	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
7185				FW_VI_FUNC_ETH, 0);
7186}
7187
7188/**
7189 * 	t4_free_vi - free a virtual interface
7190 * 	@adap: the adapter
7191 * 	@mbox: mailbox to use for the FW command
7192 * 	@pf: the PF owning the VI
7193 * 	@vf: the VF owning the VI
7194 * 	@viid: virtual interface identifiler
7195 *
7196 * 	Free a previously allocated virtual interface.
7197 */
7198int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
7199	       unsigned int vf, unsigned int viid)
7200{
7201	struct fw_vi_cmd c;
7202
7203	memset(&c, 0, sizeof(c));
7204	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
7205				  F_FW_CMD_REQUEST |
7206				  F_FW_CMD_EXEC |
7207				  V_FW_VI_CMD_PFN(pf) |
7208				  V_FW_VI_CMD_VFN(vf));
7209	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7210	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7211
7212	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7213}
7214
7215/**
7216 *	t4_set_rxmode - set Rx properties of a virtual interface
7217 *	@adap: the adapter
7218 *	@mbox: mailbox to use for the FW command
7219 *	@viid: the VI id
7220 *	@mtu: the new MTU or -1
7221 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7222 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7223 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7224 *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7225 *	@sleep_ok: if true we may sleep while awaiting command completion
7226 *
7227 *	Sets Rx properties of a virtual interface.
7228 */
7229int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7230		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7231		  bool sleep_ok)
7232{
7233	struct fw_vi_rxmode_cmd c;
7234
7235	/* convert to FW values */
7236	if (mtu < 0)
7237		mtu = M_FW_VI_RXMODE_CMD_MTU;
7238	if (promisc < 0)
7239		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7240	if (all_multi < 0)
7241		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7242	if (bcast < 0)
7243		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7244	if (vlanex < 0)
7245		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7246
7247	memset(&c, 0, sizeof(c));
7248	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7249				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7250				   V_FW_VI_RXMODE_CMD_VIID(viid));
7251	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7252	c.mtu_to_vlanexen =
7253		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7254			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7255			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7256			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7257			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7258	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7259}
7260
7261/**
7262 *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7263 *	@adap: the adapter
7264 *	@mbox: mailbox to use for the FW command
7265 *	@viid: the VI id
7266 *	@free: if true any existing filters for this VI id are first removed
7267 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7268 *	@addr: the MAC address(es)
7269 *	@idx: where to store the index of each allocated filter
7270 *	@hash: pointer to hash address filter bitmap
7271 *	@sleep_ok: call is allowed to sleep
7272 *
7273 *	Allocates an exact-match filter for each of the supplied addresses and
7274 *	sets it to the corresponding address.  If @idx is not %NULL it should
7275 *	have at least @naddr entries, each of which will be set to the index of
7276 *	the filter allocated for the corresponding MAC address.  If a filter
7277 *	could not be allocated for an address its index is set to 0xffff.
7278 *	If @hash is not %NULL addresses that fail to allocate an exact filter
7279 *	are hashed and update the hash filter bitmap pointed at by @hash.
7280 *
7281 *	Returns a negative error number or the number of filters allocated.
7282 */
7283int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7284		      unsigned int viid, bool free, unsigned int naddr,
7285		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7286{
7287	int offset, ret = 0;
7288	struct fw_vi_mac_cmd c;
7289	unsigned int nfilters = 0;
7290	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7291	unsigned int rem = naddr;
7292
7293	if (naddr > max_naddr)
7294		return -EINVAL;
7295
7296	for (offset = 0; offset < naddr ; /**/) {
7297		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7298					 ? rem
7299					 : ARRAY_SIZE(c.u.exact));
7300		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7301						     u.exact[fw_naddr]), 16);
7302		struct fw_vi_mac_exact *p;
7303		int i;
7304
7305		memset(&c, 0, sizeof(c));
7306		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7307					   F_FW_CMD_REQUEST |
7308					   F_FW_CMD_WRITE |
7309					   V_FW_CMD_EXEC(free) |
7310					   V_FW_VI_MAC_CMD_VIID(viid));
7311		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7312						  V_FW_CMD_LEN16(len16));
7313
7314		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7315			p->valid_to_idx =
7316				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7317					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7318			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7319		}
7320
7321		/*
7322		 * It's okay if we run out of space in our MAC address arena.
7323		 * Some of the addresses we submit may get stored so we need
7324		 * to run through the reply to see what the results were ...
7325		 */
7326		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7327		if (ret && ret != -FW_ENOMEM)
7328			break;
7329
7330		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7331			u16 index = G_FW_VI_MAC_CMD_IDX(
7332						be16_to_cpu(p->valid_to_idx));
7333
7334			if (idx)
7335				idx[offset+i] = (index >=  max_naddr
7336						 ? 0xffff
7337						 : index);
7338			if (index < max_naddr)
7339				nfilters++;
7340			else if (hash)
7341				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7342		}
7343
7344		free = false;
7345		offset += fw_naddr;
7346		rem -= fw_naddr;
7347	}
7348
7349	if (ret == 0 || ret == -FW_ENOMEM)
7350		ret = nfilters;
7351	return ret;
7352}
7353
7354/**
7355 *	t4_change_mac - modifies the exact-match filter for a MAC address
7356 *	@adap: the adapter
7357 *	@mbox: mailbox to use for the FW command
7358 *	@viid: the VI id
7359 *	@idx: index of existing filter for old value of MAC address, or -1
7360 *	@addr: the new MAC address value
7361 *	@persist: whether a new MAC allocation should be persistent
7362 *	@add_smt: if true also add the address to the HW SMT
7363 *
7364 *	Modifies an exact-match filter and sets it to the new MAC address if
7365 *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7366 *	latter case the address is added persistently if @persist is %true.
7367 *
7368 *	Note that in general it is not possible to modify the value of a given
7369 *	filter so the generic way to modify an address filter is to free the one
7370 *	being used by the old address value and allocate a new filter for the
7371 *	new address value.
7372 *
7373 *	Returns a negative error number or the index of the filter with the new
7374 *	MAC value.  Note that this index may differ from @idx.
7375 */
7376int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7377		  int idx, const u8 *addr, bool persist, bool add_smt)
7378{
7379	int ret, mode;
7380	struct fw_vi_mac_cmd c;
7381	struct fw_vi_mac_exact *p = c.u.exact;
7382	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7383
7384	if (idx < 0)		/* new allocation */
7385		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7386	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7387
7388	memset(&c, 0, sizeof(c));
7389	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7390				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7391				   V_FW_VI_MAC_CMD_VIID(viid));
7392	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7393	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7394				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7395				      V_FW_VI_MAC_CMD_IDX(idx));
7396	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7397
7398	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7399	if (ret == 0) {
7400		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7401		if (ret >= max_mac_addr)
7402			ret = -ENOMEM;
7403	}
7404	return ret;
7405}
7406
7407/**
7408 *	t4_set_addr_hash - program the MAC inexact-match hash filter
7409 *	@adap: the adapter
7410 *	@mbox: mailbox to use for the FW command
7411 *	@viid: the VI id
7412 *	@ucast: whether the hash filter should also match unicast addresses
7413 *	@vec: the value to be written to the hash filter
7414 *	@sleep_ok: call is allowed to sleep
7415 *
7416 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7417 */
7418int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7419		     bool ucast, u64 vec, bool sleep_ok)
7420{
7421	struct fw_vi_mac_cmd c;
7422	u32 val;
7423
7424	memset(&c, 0, sizeof(c));
7425	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7426				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7427				   V_FW_VI_ENABLE_CMD_VIID(viid));
7428	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7429	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7430	c.freemacs_to_len16 = cpu_to_be32(val);
7431	c.u.hash.hashvec = cpu_to_be64(vec);
7432	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7433}
7434
7435/**
7436 *      t4_enable_vi_params - enable/disable a virtual interface
7437 *      @adap: the adapter
7438 *      @mbox: mailbox to use for the FW command
7439 *      @viid: the VI id
7440 *      @rx_en: 1=enable Rx, 0=disable Rx
7441 *      @tx_en: 1=enable Tx, 0=disable Tx
7442 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7443 *
7444 *      Enables/disables a virtual interface.  Note that setting DCB Enable
7445 *      only makes sense when enabling a Virtual Interface ...
7446 */
7447int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7448			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7449{
7450	struct fw_vi_enable_cmd c;
7451
7452	memset(&c, 0, sizeof(c));
7453	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7454				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7455				   V_FW_VI_ENABLE_CMD_VIID(viid));
7456	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7457				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7458				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7459				     FW_LEN16(c));
7460	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7461}
7462
7463/**
7464 *	t4_enable_vi - enable/disable a virtual interface
7465 *	@adap: the adapter
7466 *	@mbox: mailbox to use for the FW command
7467 *	@viid: the VI id
7468 *	@rx_en: 1=enable Rx, 0=disable Rx
7469 *	@tx_en: 1=enable Tx, 0=disable Tx
7470 *
7471 *	Enables/disables a virtual interface.  Note that setting DCB Enable
7472 *	only makes sense when enabling a Virtual Interface ...
7473 */
7474int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7475		 bool rx_en, bool tx_en)
7476{
7477	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7478}
7479
7480/**
7481 *	t4_identify_port - identify a VI's port by blinking its LED
7482 *	@adap: the adapter
7483 *	@mbox: mailbox to use for the FW command
7484 *	@viid: the VI id
7485 *	@nblinks: how many times to blink LED at 2.5 Hz
7486 *
7487 *	Identifies a VI's port by blinking its LED.
7488 */
7489int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7490		     unsigned int nblinks)
7491{
7492	struct fw_vi_enable_cmd c;
7493
7494	memset(&c, 0, sizeof(c));
7495	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7496				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7497				   V_FW_VI_ENABLE_CMD_VIID(viid));
7498	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7499	c.blinkdur = cpu_to_be16(nblinks);
7500	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7501}
7502
7503/**
7504 *	t4_iq_stop - stop an ingress queue and its FLs
7505 *	@adap: the adapter
7506 *	@mbox: mailbox to use for the FW command
7507 *	@pf: the PF owning the queues
7508 *	@vf: the VF owning the queues
7509 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7510 *	@iqid: ingress queue id
7511 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7512 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7513 *
7514 *	Stops an ingress queue and its associated FLs, if any.  This causes
7515 *	any current or future data/messages destined for these queues to be
7516 *	tossed.
7517 */
7518int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7519	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7520	       unsigned int fl0id, unsigned int fl1id)
7521{
7522	struct fw_iq_cmd c;
7523
7524	memset(&c, 0, sizeof(c));
7525	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7526				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7527				  V_FW_IQ_CMD_VFN(vf));
7528	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7529	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7530	c.iqid = cpu_to_be16(iqid);
7531	c.fl0id = cpu_to_be16(fl0id);
7532	c.fl1id = cpu_to_be16(fl1id);
7533	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7534}
7535
7536/**
7537 *	t4_iq_free - free an ingress queue and its FLs
7538 *	@adap: the adapter
7539 *	@mbox: mailbox to use for the FW command
7540 *	@pf: the PF owning the queues
7541 *	@vf: the VF owning the queues
7542 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7543 *	@iqid: ingress queue id
7544 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7545 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7546 *
7547 *	Frees an ingress queue and its associated FLs, if any.
7548 */
7549int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7550	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7551	       unsigned int fl0id, unsigned int fl1id)
7552{
7553	struct fw_iq_cmd c;
7554
7555	memset(&c, 0, sizeof(c));
7556	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7557				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7558				  V_FW_IQ_CMD_VFN(vf));
7559	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7560	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7561	c.iqid = cpu_to_be16(iqid);
7562	c.fl0id = cpu_to_be16(fl0id);
7563	c.fl1id = cpu_to_be16(fl1id);
7564	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7565}
7566
7567/**
7568 *	t4_eth_eq_free - free an Ethernet egress queue
7569 *	@adap: the adapter
7570 *	@mbox: mailbox to use for the FW command
7571 *	@pf: the PF owning the queue
7572 *	@vf: the VF owning the queue
7573 *	@eqid: egress queue id
7574 *
7575 *	Frees an Ethernet egress queue.
7576 */
7577int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7578		   unsigned int vf, unsigned int eqid)
7579{
7580	struct fw_eq_eth_cmd c;
7581
7582	memset(&c, 0, sizeof(c));
7583	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7584				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7585				  V_FW_EQ_ETH_CMD_PFN(pf) |
7586				  V_FW_EQ_ETH_CMD_VFN(vf));
7587	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7588	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7589	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7590}
7591
7592/**
7593 *	t4_ctrl_eq_free - free a control egress queue
7594 *	@adap: the adapter
7595 *	@mbox: mailbox to use for the FW command
7596 *	@pf: the PF owning the queue
7597 *	@vf: the VF owning the queue
7598 *	@eqid: egress queue id
7599 *
7600 *	Frees a control egress queue.
7601 */
7602int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7603		    unsigned int vf, unsigned int eqid)
7604{
7605	struct fw_eq_ctrl_cmd c;
7606
7607	memset(&c, 0, sizeof(c));
7608	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7609				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7610				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7611				  V_FW_EQ_CTRL_CMD_VFN(vf));
7612	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7613	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7614	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7615}
7616
7617/**
7618 *	t4_ofld_eq_free - free an offload egress queue
7619 *	@adap: the adapter
7620 *	@mbox: mailbox to use for the FW command
7621 *	@pf: the PF owning the queue
7622 *	@vf: the VF owning the queue
7623 *	@eqid: egress queue id
7624 *
7625 *	Frees a control egress queue.
7626 */
7627int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7628		    unsigned int vf, unsigned int eqid)
7629{
7630	struct fw_eq_ofld_cmd c;
7631
7632	memset(&c, 0, sizeof(c));
7633	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7634				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7635				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7636				  V_FW_EQ_OFLD_CMD_VFN(vf));
7637	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7638	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7639	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7640}
7641
7642/**
7643 *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7644 *	@link_down_rc: Link Down Reason Code
7645 *
7646 *	Returns a string representation of the Link Down Reason Code.
7647 */
7648const char *t4_link_down_rc_str(unsigned char link_down_rc)
7649{
7650	static const char *reason[] = {
7651		"Link Down",
7652		"Remote Fault",
7653		"Auto-negotiation Failure",
7654		"Reserved3",
7655		"Insufficient Airflow",
7656		"Unable To Determine Reason",
7657		"No RX Signal Detected",
7658		"Reserved7",
7659	};
7660
7661	if (link_down_rc >= ARRAY_SIZE(reason))
7662		return "Bad Reason Code";
7663
7664	return reason[link_down_rc];
7665}
7666
7667/*
7668 * Updates all fields owned by the common code in port_info and link_config
7669 * based on information provided by the firmware.  Does not touch any
7670 * requested_* field.
7671 */
7672static void handle_port_info(struct port_info *pi, const struct fw_port_info *p)
7673{
7674	struct link_config *lc = &pi->link_cfg;
7675	int speed;
7676	unsigned char fc, fec;
7677	u32 stat = be32_to_cpu(p->lstatus_to_modtype);
7678
7679	pi->port_type = G_FW_PORT_CMD_PTYPE(stat);
7680	pi->mod_type = G_FW_PORT_CMD_MODTYPE(stat);
7681	pi->mdio_addr = stat & F_FW_PORT_CMD_MDIOCAP ?
7682	    G_FW_PORT_CMD_MDIOADDR(stat) : -1;
7683
7684	lc->supported = be16_to_cpu(p->pcap);
7685	lc->advertising = be16_to_cpu(p->acap);
7686	lc->lp_advertising = be16_to_cpu(p->lpacap);
7687	lc->link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7688	lc->link_down_rc = G_FW_PORT_CMD_LINKDNRC(stat);
7689
7690	speed = 0;
7691	if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7692		speed = 100;
7693	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7694		speed = 1000;
7695	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7696		speed = 10000;
7697	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
7698		speed = 25000;
7699	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7700		speed = 40000;
7701	else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
7702		speed = 100000;
7703	lc->speed = speed;
7704
7705	fc = 0;
7706	if (stat & F_FW_PORT_CMD_RXPAUSE)
7707		fc |= PAUSE_RX;
7708	if (stat & F_FW_PORT_CMD_TXPAUSE)
7709		fc |= PAUSE_TX;
7710	lc->fc = fc;
7711
7712	fec = 0;
7713	if (lc->advertising & FW_PORT_CAP_FEC_RS)
7714		fec |= FEC_RS;
7715	if (lc->advertising & FW_PORT_CAP_FEC_BASER_RS)
7716		fec |= FEC_BASER_RS;
7717	if (lc->advertising & FW_PORT_CAP_FEC_RESERVED)
7718		fec |= FEC_RESERVED;
7719	lc->fec = fec;
7720}
7721
7722/**
7723 *	t4_update_port_info - retrieve and update port information if changed
7724 *	@pi: the port_info
7725 *
7726 *	We issue a Get Port Information Command to the Firmware and, if
7727 *	successful, we check to see if anything is different from what we
7728 *	last recorded and update things accordingly.
7729 */
7730 int t4_update_port_info(struct port_info *pi)
7731 {
7732	struct fw_port_cmd port_cmd;
7733	int ret;
7734
7735	memset(&port_cmd, 0, sizeof port_cmd);
7736	port_cmd.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
7737					    F_FW_CMD_REQUEST | F_FW_CMD_READ |
7738					    V_FW_PORT_CMD_PORTID(pi->tx_chan));
7739	port_cmd.action_to_len16 = cpu_to_be32(
7740		V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
7741		FW_LEN16(port_cmd));
7742	ret = t4_wr_mbox_ns(pi->adapter, pi->adapter->mbox,
7743			 &port_cmd, sizeof(port_cmd), &port_cmd);
7744	if (ret)
7745		return ret;
7746
7747	handle_port_info(pi, &port_cmd.u.info);
7748	return 0;
7749}
7750
7751/**
7752 *	t4_handle_fw_rpl - process a FW reply message
7753 *	@adap: the adapter
7754 *	@rpl: start of the FW message
7755 *
7756 *	Processes a FW message, such as link state change messages.
7757 */
7758int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7759{
7760	u8 opcode = *(const u8 *)rpl;
7761	const struct fw_port_cmd *p = (const void *)rpl;
7762	unsigned int action =
7763			G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7764
7765	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7766		/* link/module state change message */
7767		int i, old_ptype, old_mtype;
7768		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7769		struct port_info *pi = NULL;
7770		struct link_config *lc, *old_lc;
7771
7772		for_each_port(adap, i) {
7773			pi = adap2pinfo(adap, i);
7774			if (pi->tx_chan == chan)
7775				break;
7776		}
7777
7778		lc = &pi->link_cfg;
7779		old_lc = &pi->old_link_cfg;
7780		old_ptype = pi->port_type;
7781		old_mtype = pi->mod_type;
7782
7783		handle_port_info(pi, &p->u.info);
7784		if (old_ptype != pi->port_type || old_mtype != pi->mod_type) {
7785			t4_os_portmod_changed(pi);
7786		}
7787		if (old_lc->link_ok != lc->link_ok ||
7788		    old_lc->speed != lc->speed ||
7789		    old_lc->fec != lc->fec ||
7790		    old_lc->fc != lc->fc) {
7791			t4_os_link_changed(pi);
7792			*old_lc = *lc;
7793		}
7794	} else {
7795		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7796		return -EINVAL;
7797	}
7798	return 0;
7799}
7800
7801/**
7802 *	get_pci_mode - determine a card's PCI mode
7803 *	@adapter: the adapter
7804 *	@p: where to store the PCI settings
7805 *
7806 *	Determines a card's PCI mode and associated parameters, such as speed
7807 *	and width.
7808 */
7809static void get_pci_mode(struct adapter *adapter,
7810				   struct pci_params *p)
7811{
7812	u16 val;
7813	u32 pcie_cap;
7814
7815	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7816	if (pcie_cap) {
7817		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7818		p->speed = val & PCI_EXP_LNKSTA_CLS;
7819		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7820	}
7821}
7822
7823struct flash_desc {
7824	u32 vendor_and_model_id;
7825	u32 size_mb;
7826};
7827
7828int t4_get_flash_params(struct adapter *adapter)
7829{
7830	/*
7831	 * Table for non-standard supported Flash parts.  Note, all Flash
7832	 * parts must have 64KB sectors.
7833	 */
7834	static struct flash_desc supported_flash[] = {
7835		{ 0x00150201, 4 << 20 },	/* Spansion 4MB S25FL032P */
7836	};
7837
7838	int ret;
7839	u32 flashid = 0;
7840	unsigned int part, manufacturer;
7841	unsigned int density, size;
7842
7843
7844	/*
7845	 * Issue a Read ID Command to the Flash part.  We decode supported
7846	 * Flash parts and their sizes from this.  There's a newer Query
7847	 * Command which can retrieve detailed geometry information but many
7848	 * Flash parts don't support it.
7849	 */
7850	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7851	if (!ret)
7852		ret = sf1_read(adapter, 3, 0, 1, &flashid);
7853	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
7854	if (ret < 0)
7855		return ret;
7856
7857	/*
7858	 * Check to see if it's one of our non-standard supported Flash parts.
7859	 */
7860	for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
7861		if (supported_flash[part].vendor_and_model_id == flashid) {
7862			adapter->params.sf_size =
7863				supported_flash[part].size_mb;
7864			adapter->params.sf_nsec =
7865				adapter->params.sf_size / SF_SEC_SIZE;
7866			goto found;
7867		}
7868
7869	/*
7870	 * Decode Flash part size.  The code below looks repetative with
7871	 * common encodings, but that's not guaranteed in the JEDEC
7872	 * specification for the Read JADEC ID command.  The only thing that
7873	 * we're guaranteed by the JADEC specification is where the
7874	 * Manufacturer ID is in the returned result.  After that each
7875	 * Manufacturer ~could~ encode things completely differently.
7876	 * Note, all Flash parts must have 64KB sectors.
7877	 */
7878	manufacturer = flashid & 0xff;
7879	switch (manufacturer) {
7880	case 0x20: { /* Micron/Numonix */
7881		/*
7882		 * This Density -> Size decoding table is taken from Micron
7883		 * Data Sheets.
7884		 */
7885		density = (flashid >> 16) & 0xff;
7886		switch (density) {
7887		case 0x14: size = 1 << 20; break; /*   1MB */
7888		case 0x15: size = 1 << 21; break; /*   2MB */
7889		case 0x16: size = 1 << 22; break; /*   4MB */
7890		case 0x17: size = 1 << 23; break; /*   8MB */
7891		case 0x18: size = 1 << 24; break; /*  16MB */
7892		case 0x19: size = 1 << 25; break; /*  32MB */
7893		case 0x20: size = 1 << 26; break; /*  64MB */
7894		case 0x21: size = 1 << 27; break; /* 128MB */
7895		case 0x22: size = 1 << 28; break; /* 256MB */
7896
7897		default:
7898			CH_ERR(adapter, "Micron Flash Part has bad size, "
7899			       "ID = %#x, Density code = %#x\n",
7900			       flashid, density);
7901			return -EINVAL;
7902		}
7903		break;
7904	}
7905
7906	case 0xef: { /* Winbond */
7907		/*
7908		 * This Density -> Size decoding table is taken from Winbond
7909		 * Data Sheets.
7910		 */
7911		density = (flashid >> 16) & 0xff;
7912		switch (density) {
7913		case 0x17: size = 1 << 23; break; /*   8MB */
7914		case 0x18: size = 1 << 24; break; /*  16MB */
7915
7916		default:
7917			CH_ERR(adapter, "Winbond Flash Part has bad size, "
7918			       "ID = %#x, Density code = %#x\n",
7919			       flashid, density);
7920			return -EINVAL;
7921		}
7922		break;
7923	}
7924
7925	default:
7926		CH_ERR(adapter, "Unsupported Flash Part, ID = %#x\n", flashid);
7927		return -EINVAL;
7928	}
7929
7930	/*
7931	 * Store decoded Flash size and fall through into vetting code.
7932	 */
7933	adapter->params.sf_size = size;
7934	adapter->params.sf_nsec = size / SF_SEC_SIZE;
7935
7936 found:
7937	/*
7938	 * We should ~probably~ reject adapters with FLASHes which are too
7939	 * small but we have some legacy FPGAs with small FLASHes that we'd
7940	 * still like to use.  So instead we emit a scary message ...
7941	 */
7942	if (adapter->params.sf_size < FLASH_MIN_SIZE)
7943		CH_WARN(adapter, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
7944			flashid, adapter->params.sf_size, FLASH_MIN_SIZE);
7945
7946	return 0;
7947}
7948
7949static void set_pcie_completion_timeout(struct adapter *adapter,
7950						  u8 range)
7951{
7952	u16 val;
7953	u32 pcie_cap;
7954
7955	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7956	if (pcie_cap) {
7957		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7958		val &= 0xfff0;
7959		val |= range ;
7960		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
7961	}
7962}
7963
7964const struct chip_params *t4_get_chip_params(int chipid)
7965{
7966	static const struct chip_params chip_params[] = {
7967		{
7968			/* T4 */
7969			.nchan = NCHAN,
7970			.pm_stats_cnt = PM_NSTATS,
7971			.cng_ch_bits_log = 2,
7972			.nsched_cls = 15,
7973			.cim_num_obq = CIM_NUM_OBQ,
7974			.mps_rplc_size = 128,
7975			.vfcount = 128,
7976			.sge_fl_db = F_DBPRIO,
7977			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
7978		},
7979		{
7980			/* T5 */
7981			.nchan = NCHAN,
7982			.pm_stats_cnt = PM_NSTATS,
7983			.cng_ch_bits_log = 2,
7984			.nsched_cls = 16,
7985			.cim_num_obq = CIM_NUM_OBQ_T5,
7986			.mps_rplc_size = 128,
7987			.vfcount = 128,
7988			.sge_fl_db = F_DBPRIO | F_DBTYPE,
7989			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7990		},
7991		{
7992			/* T6 */
7993			.nchan = T6_NCHAN,
7994			.pm_stats_cnt = T6_PM_NSTATS,
7995			.cng_ch_bits_log = 3,
7996			.nsched_cls = 16,
7997			.cim_num_obq = CIM_NUM_OBQ_T5,
7998			.mps_rplc_size = 256,
7999			.vfcount = 256,
8000			.sge_fl_db = 0,
8001			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
8002		},
8003	};
8004
8005	chipid -= CHELSIO_T4;
8006	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
8007		return NULL;
8008
8009	return &chip_params[chipid];
8010}
8011
8012/**
8013 *	t4_prep_adapter - prepare SW and HW for operation
8014 *	@adapter: the adapter
8015 *	@buf: temporary space of at least VPD_LEN size provided by the caller.
8016 *
8017 *	Initialize adapter SW state for the various HW modules, set initial
8018 *	values for some adapter tunables, take PHYs out of reset, and
8019 *	initialize the MDIO interface.
8020 */
8021int t4_prep_adapter(struct adapter *adapter, u32 *buf)
8022{
8023	int ret;
8024	uint16_t device_id;
8025	uint32_t pl_rev;
8026
8027	get_pci_mode(adapter, &adapter->params.pci);
8028
8029	pl_rev = t4_read_reg(adapter, A_PL_REV);
8030	adapter->params.chipid = G_CHIPID(pl_rev);
8031	adapter->params.rev = G_REV(pl_rev);
8032	if (adapter->params.chipid == 0) {
8033		/* T4 did not have chipid in PL_REV (T5 onwards do) */
8034		adapter->params.chipid = CHELSIO_T4;
8035
8036		/* T4A1 chip is not supported */
8037		if (adapter->params.rev == 1) {
8038			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
8039			return -EINVAL;
8040		}
8041	}
8042
8043	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
8044	if (adapter->chip_params == NULL)
8045		return -EINVAL;
8046
8047	adapter->params.pci.vpd_cap_addr =
8048	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
8049
8050	ret = t4_get_flash_params(adapter);
8051	if (ret < 0)
8052		return ret;
8053
8054	ret = get_vpd_params(adapter, &adapter->params.vpd, buf);
8055	if (ret < 0)
8056		return ret;
8057
8058	/* Cards with real ASICs have the chipid in the PCIe device id */
8059	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
8060	if (device_id >> 12 == chip_id(adapter))
8061		adapter->params.cim_la_size = CIMLA_SIZE;
8062	else {
8063		/* FPGA */
8064		adapter->params.fpga = 1;
8065		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
8066	}
8067
8068	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
8069
8070	/*
8071	 * Default port and clock for debugging in case we can't reach FW.
8072	 */
8073	adapter->params.nports = 1;
8074	adapter->params.portvec = 1;
8075	adapter->params.vpd.cclk = 50000;
8076
8077	/* Set pci completion timeout value to 4 seconds. */
8078	set_pcie_completion_timeout(adapter, 0xd);
8079	return 0;
8080}
8081
8082/**
8083 *	t4_shutdown_adapter - shut down adapter, host & wire
8084 *	@adapter: the adapter
8085 *
8086 *	Perform an emergency shutdown of the adapter and stop it from
8087 *	continuing any further communication on the ports or DMA to the
8088 *	host.  This is typically used when the adapter and/or firmware
8089 *	have crashed and we want to prevent any further accidental
8090 *	communication with the rest of the world.  This will also force
8091 *	the port Link Status to go down -- if register writes work --
8092 *	which should help our peers figure out that we're down.
8093 */
8094int t4_shutdown_adapter(struct adapter *adapter)
8095{
8096	int port;
8097
8098	t4_intr_disable(adapter);
8099	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
8100	for_each_port(adapter, port) {
8101		u32 a_port_cfg = is_t4(adapter) ?
8102				 PORT_REG(port, A_XGMAC_PORT_CFG) :
8103				 T5_PORT_REG(port, A_MAC_PORT_CFG);
8104
8105		t4_write_reg(adapter, a_port_cfg,
8106			     t4_read_reg(adapter, a_port_cfg)
8107			     & ~V_SIGNAL_DET(1));
8108	}
8109	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
8110
8111	return 0;
8112}
8113
8114/**
8115 *	t4_bar2_sge_qregs - return BAR2 SGE Queue register information
8116 *	@adapter: the adapter
8117 *	@qid: the Queue ID
8118 *	@qtype: the Ingress or Egress type for @qid
8119 *	@user: true if this request is for a user mode queue
8120 *	@pbar2_qoffset: BAR2 Queue Offset
8121 *	@pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
8122 *
8123 *	Returns the BAR2 SGE Queue Registers information associated with the
8124 *	indicated Absolute Queue ID.  These are passed back in return value
8125 *	pointers.  @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
8126 *	and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
8127 *
8128 *	This may return an error which indicates that BAR2 SGE Queue
8129 *	registers aren't available.  If an error is not returned, then the
8130 *	following values are returned:
8131 *
8132 *	  *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
8133 *	  *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
8134 *
8135 *	If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
8136 *	require the "Inferred Queue ID" ability may be used.  E.g. the
8137 *	Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
8138 *	then these "Inferred Queue ID" register may not be used.
8139 */
8140int t4_bar2_sge_qregs(struct adapter *adapter,
8141		      unsigned int qid,
8142		      enum t4_bar2_qtype qtype,
8143		      int user,
8144		      u64 *pbar2_qoffset,
8145		      unsigned int *pbar2_qid)
8146{
8147	unsigned int page_shift, page_size, qpp_shift, qpp_mask;
8148	u64 bar2_page_offset, bar2_qoffset;
8149	unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
8150
8151	/* T4 doesn't support BAR2 SGE Queue registers for kernel
8152	 * mode queues.
8153	 */
8154	if (!user && is_t4(adapter))
8155		return -EINVAL;
8156
8157	/* Get our SGE Page Size parameters.
8158	 */
8159	page_shift = adapter->params.sge.page_shift;
8160	page_size = 1 << page_shift;
8161
8162	/* Get the right Queues per Page parameters for our Queue.
8163	 */
8164	qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
8165		     ? adapter->params.sge.eq_s_qpp
8166		     : adapter->params.sge.iq_s_qpp);
8167	qpp_mask = (1 << qpp_shift) - 1;
8168
8169	/* Calculate the basics of the BAR2 SGE Queue register area:
8170	 *  o The BAR2 page the Queue registers will be in.
8171	 *  o The BAR2 Queue ID.
8172	 *  o The BAR2 Queue ID Offset into the BAR2 page.
8173	 */
8174	bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
8175	bar2_qid = qid & qpp_mask;
8176	bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
8177
8178	/* If the BAR2 Queue ID Offset is less than the Page Size, then the
8179	 * hardware will infer the Absolute Queue ID simply from the writes to
8180	 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
8181	 * BAR2 Queue ID of 0 for those writes).  Otherwise, we'll simply
8182	 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
8183	 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
8184	 * from the BAR2 Page and BAR2 Queue ID.
8185	 *
8186	 * One important censequence of this is that some BAR2 SGE registers
8187	 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
8188	 * there.  But other registers synthesize the SGE Queue ID purely
8189	 * from the writes to the registers -- the Write Combined Doorbell
8190	 * Buffer is a good example.  These BAR2 SGE Registers are only
8191	 * available for those BAR2 SGE Register areas where the SGE Absolute
8192	 * Queue ID can be inferred from simple writes.
8193	 */
8194	bar2_qoffset = bar2_page_offset;
8195	bar2_qinferred = (bar2_qid_offset < page_size);
8196	if (bar2_qinferred) {
8197		bar2_qoffset += bar2_qid_offset;
8198		bar2_qid = 0;
8199	}
8200
8201	*pbar2_qoffset = bar2_qoffset;
8202	*pbar2_qid = bar2_qid;
8203	return 0;
8204}
8205
8206/**
8207 *	t4_init_devlog_params - initialize adapter->params.devlog
8208 *	@adap: the adapter
8209 *	@fw_attach: whether we can talk to the firmware
8210 *
8211 *	Initialize various fields of the adapter's Firmware Device Log
8212 *	Parameters structure.
8213 */
8214int t4_init_devlog_params(struct adapter *adap, int fw_attach)
8215{
8216	struct devlog_params *dparams = &adap->params.devlog;
8217	u32 pf_dparams;
8218	unsigned int devlog_meminfo;
8219	struct fw_devlog_cmd devlog_cmd;
8220	int ret;
8221
8222	/* If we're dealing with newer firmware, the Device Log Paramerters
8223	 * are stored in a designated register which allows us to access the
8224	 * Device Log even if we can't talk to the firmware.
8225	 */
8226	pf_dparams =
8227		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
8228	if (pf_dparams) {
8229		unsigned int nentries, nentries128;
8230
8231		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
8232		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
8233
8234		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
8235		nentries = (nentries128 + 1) * 128;
8236		dparams->size = nentries * sizeof(struct fw_devlog_e);
8237
8238		return 0;
8239	}
8240
8241	/*
8242	 * For any failing returns ...
8243	 */
8244	memset(dparams, 0, sizeof *dparams);
8245
8246	/*
8247	 * If we can't talk to the firmware, there's really nothing we can do
8248	 * at this point.
8249	 */
8250	if (!fw_attach)
8251		return -ENXIO;
8252
8253	/* Otherwise, ask the firmware for it's Device Log Parameters.
8254	 */
8255	memset(&devlog_cmd, 0, sizeof devlog_cmd);
8256	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
8257					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
8258	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
8259	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
8260			 &devlog_cmd);
8261	if (ret)
8262		return ret;
8263
8264	devlog_meminfo =
8265		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
8266	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
8267	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
8268	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
8269
8270	return 0;
8271}
8272
8273/**
8274 *	t4_init_sge_params - initialize adap->params.sge
8275 *	@adapter: the adapter
8276 *
8277 *	Initialize various fields of the adapter's SGE Parameters structure.
8278 */
8279int t4_init_sge_params(struct adapter *adapter)
8280{
8281	u32 r;
8282	struct sge_params *sp = &adapter->params.sge;
8283	unsigned i, tscale = 1;
8284
8285	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
8286	sp->counter_val[0] = G_THRESHOLD_0(r);
8287	sp->counter_val[1] = G_THRESHOLD_1(r);
8288	sp->counter_val[2] = G_THRESHOLD_2(r);
8289	sp->counter_val[3] = G_THRESHOLD_3(r);
8290
8291	if (chip_id(adapter) >= CHELSIO_T6) {
8292		r = t4_read_reg(adapter, A_SGE_ITP_CONTROL);
8293		tscale = G_TSCALE(r);
8294		if (tscale == 0)
8295			tscale = 1;
8296		else
8297			tscale += 2;
8298	}
8299
8300	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
8301	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r)) * tscale;
8302	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r)) * tscale;
8303	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
8304	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r)) * tscale;
8305	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r)) * tscale;
8306	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
8307	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r)) * tscale;
8308	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r)) * tscale;
8309
8310	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
8311	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
8312	if (is_t4(adapter))
8313		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
8314	else if (is_t5(adapter))
8315		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
8316	else
8317		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
8318
8319	/* egress queues: log2 of # of doorbells per BAR2 page */
8320	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
8321	r >>= S_QUEUESPERPAGEPF0 +
8322	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8323	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
8324
8325	/* ingress queues: log2 of # of doorbells per BAR2 page */
8326	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
8327	r >>= S_QUEUESPERPAGEPF0 +
8328	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
8329	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
8330
8331	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
8332	r >>= S_HOSTPAGESIZEPF0 +
8333	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
8334	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
8335
8336	r = t4_read_reg(adapter, A_SGE_CONTROL);
8337	sp->sge_control = r;
8338	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
8339	sp->fl_pktshift = G_PKTSHIFT(r);
8340	if (chip_id(adapter) <= CHELSIO_T5) {
8341		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8342		    X_INGPADBOUNDARY_SHIFT);
8343	} else {
8344		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
8345		    X_T6_INGPADBOUNDARY_SHIFT);
8346	}
8347	if (is_t4(adapter))
8348		sp->pack_boundary = sp->pad_boundary;
8349	else {
8350		r = t4_read_reg(adapter, A_SGE_CONTROL2);
8351		if (G_INGPACKBOUNDARY(r) == 0)
8352			sp->pack_boundary = 16;
8353		else
8354			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
8355	}
8356	for (i = 0; i < SGE_FLBUF_SIZES; i++)
8357		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
8358		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
8359
8360	return 0;
8361}
8362
8363/*
8364 * Read and cache the adapter's compressed filter mode and ingress config.
8365 */
8366static void read_filter_mode_and_ingress_config(struct adapter *adap,
8367    bool sleep_ok)
8368{
8369	struct tp_params *tpp = &adap->params.tp;
8370
8371	t4_tp_pio_read(adap, &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP,
8372	    sleep_ok);
8373	t4_tp_pio_read(adap, &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG,
8374	    sleep_ok);
8375
8376	/*
8377	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
8378	 * shift positions of several elements of the Compressed Filter Tuple
8379	 * for this adapter which we need frequently ...
8380	 */
8381	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
8382	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
8383	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
8384	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
8385	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
8386	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
8387	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
8388	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
8389	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
8390	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
8391
8392	/*
8393	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
8394	 * represents the presence of an Outer VLAN instead of a VNIC ID.
8395	 */
8396	if ((tpp->ingress_config & F_VNIC) == 0)
8397		tpp->vnic_shift = -1;
8398}
8399
8400/**
8401 *      t4_init_tp_params - initialize adap->params.tp
8402 *      @adap: the adapter
8403 *
8404 *      Initialize various fields of the adapter's TP Parameters structure.
8405 */
8406int t4_init_tp_params(struct adapter *adap, bool sleep_ok)
8407{
8408	int chan;
8409	u32 v;
8410	struct tp_params *tpp = &adap->params.tp;
8411
8412	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
8413	tpp->tre = G_TIMERRESOLUTION(v);
8414	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
8415
8416	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8417	for (chan = 0; chan < MAX_NCHAN; chan++)
8418		tpp->tx_modq[chan] = chan;
8419
8420	read_filter_mode_and_ingress_config(adap, sleep_ok);
8421
8422	/*
8423	 * Cache a mask of the bits that represent the error vector portion of
8424	 * rx_pkt.err_vec.  T6+ can use a compressed error vector to make room
8425	 * for information about outer encapsulation (GENEVE/VXLAN/NVGRE).
8426	 */
8427	tpp->err_vec_mask = htobe16(0xffff);
8428	if (chip_id(adap) > CHELSIO_T5) {
8429		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
8430		if (v & F_CRXPKTENC) {
8431			tpp->err_vec_mask =
8432			    htobe16(V_T6_COMPR_RXERR_VEC(M_T6_COMPR_RXERR_VEC));
8433		}
8434	}
8435
8436	return 0;
8437}
8438
8439/**
8440 *      t4_filter_field_shift - calculate filter field shift
8441 *      @adap: the adapter
8442 *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8443 *
8444 *      Return the shift position of a filter field within the Compressed
8445 *      Filter Tuple.  The filter field is specified via its selection bit
8446 *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8447 */
8448int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8449{
8450	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8451	unsigned int sel;
8452	int field_shift;
8453
8454	if ((filter_mode & filter_sel) == 0)
8455		return -1;
8456
8457	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8458		switch (filter_mode & sel) {
8459		case F_FCOE:
8460			field_shift += W_FT_FCOE;
8461			break;
8462		case F_PORT:
8463			field_shift += W_FT_PORT;
8464			break;
8465		case F_VNIC_ID:
8466			field_shift += W_FT_VNIC_ID;
8467			break;
8468		case F_VLAN:
8469			field_shift += W_FT_VLAN;
8470			break;
8471		case F_TOS:
8472			field_shift += W_FT_TOS;
8473			break;
8474		case F_PROTOCOL:
8475			field_shift += W_FT_PROTOCOL;
8476			break;
8477		case F_ETHERTYPE:
8478			field_shift += W_FT_ETHERTYPE;
8479			break;
8480		case F_MACMATCH:
8481			field_shift += W_FT_MACMATCH;
8482			break;
8483		case F_MPSHITTYPE:
8484			field_shift += W_FT_MPSHITTYPE;
8485			break;
8486		case F_FRAGMENTATION:
8487			field_shift += W_FT_FRAGMENTATION;
8488			break;
8489		}
8490	}
8491	return field_shift;
8492}
8493
8494int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8495{
8496	u8 addr[6];
8497	int ret, i, j;
8498	u16 rss_size;
8499	struct port_info *p = adap2pinfo(adap, port_id);
8500	u32 param, val;
8501
8502	for (i = 0, j = -1; i <= p->port_id; i++) {
8503		do {
8504			j++;
8505		} while ((adap->params.portvec & (1 << j)) == 0);
8506	}
8507
8508	if (!(adap->flags & IS_VF) ||
8509	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8510 		t4_update_port_info(p);
8511	}
8512
8513	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8514	if (ret < 0)
8515		return ret;
8516
8517	p->vi[0].viid = ret;
8518	if (chip_id(adap) <= CHELSIO_T5)
8519		p->vi[0].smt_idx = (ret & 0x7f) << 1;
8520	else
8521		p->vi[0].smt_idx = (ret & 0x7f);
8522	p->tx_chan = j;
8523	p->mps_bg_map = t4_get_mps_bg_map(adap, j);
8524	p->rx_e_chan_map = t4_get_rx_e_chan_map(adap, j);
8525	p->lport = j;
8526	p->vi[0].rss_size = rss_size;
8527	t4_os_set_hw_addr(p, addr);
8528
8529	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8530	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8531	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8532	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8533	if (ret)
8534		p->vi[0].rss_base = 0xffff;
8535	else {
8536		/* MPASS((val >> 16) == rss_size); */
8537		p->vi[0].rss_base = val & 0xffff;
8538	}
8539
8540	return 0;
8541}
8542
8543/**
8544 *	t4_read_cimq_cfg - read CIM queue configuration
8545 *	@adap: the adapter
8546 *	@base: holds the queue base addresses in bytes
8547 *	@size: holds the queue sizes in bytes
8548 *	@thres: holds the queue full thresholds in bytes
8549 *
8550 *	Returns the current configuration of the CIM queues, starting with
8551 *	the IBQs, then the OBQs.
8552 */
8553void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8554{
8555	unsigned int i, v;
8556	int cim_num_obq = adap->chip_params->cim_num_obq;
8557
8558	for (i = 0; i < CIM_NUM_IBQ; i++) {
8559		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8560			     V_QUENUMSELECT(i));
8561		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8562		/* value is in 256-byte units */
8563		*base++ = G_CIMQBASE(v) * 256;
8564		*size++ = G_CIMQSIZE(v) * 256;
8565		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8566	}
8567	for (i = 0; i < cim_num_obq; i++) {
8568		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8569			     V_QUENUMSELECT(i));
8570		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8571		/* value is in 256-byte units */
8572		*base++ = G_CIMQBASE(v) * 256;
8573		*size++ = G_CIMQSIZE(v) * 256;
8574	}
8575}
8576
8577/**
8578 *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8579 *	@adap: the adapter
8580 *	@qid: the queue index
8581 *	@data: where to store the queue contents
8582 *	@n: capacity of @data in 32-bit words
8583 *
8584 *	Reads the contents of the selected CIM queue starting at address 0 up
8585 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8586 *	error and the number of 32-bit words actually read on success.
8587 */
8588int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8589{
8590	int i, err, attempts;
8591	unsigned int addr;
8592	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8593
8594	if (qid > 5 || (n & 3))
8595		return -EINVAL;
8596
8597	addr = qid * nwords;
8598	if (n > nwords)
8599		n = nwords;
8600
8601	/* It might take 3-10ms before the IBQ debug read access is allowed.
8602	 * Wait for 1 Sec with a delay of 1 usec.
8603	 */
8604	attempts = 1000000;
8605
8606	for (i = 0; i < n; i++, addr++) {
8607		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8608			     F_IBQDBGEN);
8609		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8610				      attempts, 1);
8611		if (err)
8612			return err;
8613		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8614	}
8615	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8616	return i;
8617}
8618
8619/**
8620 *	t4_read_cim_obq - read the contents of a CIM outbound queue
8621 *	@adap: the adapter
8622 *	@qid: the queue index
8623 *	@data: where to store the queue contents
8624 *	@n: capacity of @data in 32-bit words
8625 *
8626 *	Reads the contents of the selected CIM queue starting at address 0 up
8627 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8628 *	error and the number of 32-bit words actually read on success.
8629 */
8630int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8631{
8632	int i, err;
8633	unsigned int addr, v, nwords;
8634	int cim_num_obq = adap->chip_params->cim_num_obq;
8635
8636	if ((qid > (cim_num_obq - 1)) || (n & 3))
8637		return -EINVAL;
8638
8639	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8640		     V_QUENUMSELECT(qid));
8641	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8642
8643	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8644	nwords = G_CIMQSIZE(v) * 64;  /* same */
8645	if (n > nwords)
8646		n = nwords;
8647
8648	for (i = 0; i < n; i++, addr++) {
8649		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8650			     F_OBQDBGEN);
8651		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8652				      2, 1);
8653		if (err)
8654			return err;
8655		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8656	}
8657	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8658	return i;
8659}
8660
8661enum {
8662	CIM_QCTL_BASE     = 0,
8663	CIM_CTL_BASE      = 0x2000,
8664	CIM_PBT_ADDR_BASE = 0x2800,
8665	CIM_PBT_LRF_BASE  = 0x3000,
8666	CIM_PBT_DATA_BASE = 0x3800
8667};
8668
8669/**
8670 *	t4_cim_read - read a block from CIM internal address space
8671 *	@adap: the adapter
8672 *	@addr: the start address within the CIM address space
8673 *	@n: number of words to read
8674 *	@valp: where to store the result
8675 *
8676 *	Reads a block of 4-byte words from the CIM intenal address space.
8677 */
8678int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8679		unsigned int *valp)
8680{
8681	int ret = 0;
8682
8683	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8684		return -EBUSY;
8685
8686	for ( ; !ret && n--; addr += 4) {
8687		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8688		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8689				      0, 5, 2);
8690		if (!ret)
8691			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8692	}
8693	return ret;
8694}
8695
8696/**
8697 *	t4_cim_write - write a block into CIM internal address space
8698 *	@adap: the adapter
8699 *	@addr: the start address within the CIM address space
8700 *	@n: number of words to write
8701 *	@valp: set of values to write
8702 *
8703 *	Writes a block of 4-byte words into the CIM intenal address space.
8704 */
8705int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8706		 const unsigned int *valp)
8707{
8708	int ret = 0;
8709
8710	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8711		return -EBUSY;
8712
8713	for ( ; !ret && n--; addr += 4) {
8714		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8715		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8716		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8717				      0, 5, 2);
8718	}
8719	return ret;
8720}
8721
8722static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8723			 unsigned int val)
8724{
8725	return t4_cim_write(adap, addr, 1, &val);
8726}
8727
8728/**
8729 *	t4_cim_ctl_read - read a block from CIM control region
8730 *	@adap: the adapter
8731 *	@addr: the start address within the CIM control region
8732 *	@n: number of words to read
8733 *	@valp: where to store the result
8734 *
8735 *	Reads a block of 4-byte words from the CIM control region.
8736 */
8737int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8738		    unsigned int *valp)
8739{
8740	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8741}
8742
8743/**
8744 *	t4_cim_read_la - read CIM LA capture buffer
8745 *	@adap: the adapter
8746 *	@la_buf: where to store the LA data
8747 *	@wrptr: the HW write pointer within the capture buffer
8748 *
8749 *	Reads the contents of the CIM LA buffer with the most recent entry at
8750 *	the end	of the returned data and with the entry at @wrptr first.
8751 *	We try to leave the LA in the running state we find it in.
8752 */
8753int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8754{
8755	int i, ret;
8756	unsigned int cfg, val, idx;
8757
8758	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8759	if (ret)
8760		return ret;
8761
8762	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
8763		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8764		if (ret)
8765			return ret;
8766	}
8767
8768	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8769	if (ret)
8770		goto restart;
8771
8772	idx = G_UPDBGLAWRPTR(val);
8773	if (wrptr)
8774		*wrptr = idx;
8775
8776	for (i = 0; i < adap->params.cim_la_size; i++) {
8777		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8778				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8779		if (ret)
8780			break;
8781		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8782		if (ret)
8783			break;
8784		if (val & F_UPDBGLARDEN) {
8785			ret = -ETIMEDOUT;
8786			break;
8787		}
8788		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8789		if (ret)
8790			break;
8791
8792		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8793		idx = (idx + 1) & M_UPDBGLARDPTR;
8794		/*
8795		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8796		 * identify the 32-bit portion of the full 312-bit data
8797		 */
8798		if (is_t6(adap))
8799			while ((idx & 0xf) > 9)
8800				idx = (idx + 1) % M_UPDBGLARDPTR;
8801	}
8802restart:
8803	if (cfg & F_UPDBGLAEN) {
8804		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8805				      cfg & ~F_UPDBGLARDEN);
8806		if (!ret)
8807			ret = r;
8808	}
8809	return ret;
8810}
8811
8812/**
8813 *	t4_tp_read_la - read TP LA capture buffer
8814 *	@adap: the adapter
8815 *	@la_buf: where to store the LA data
8816 *	@wrptr: the HW write pointer within the capture buffer
8817 *
8818 *	Reads the contents of the TP LA buffer with the most recent entry at
8819 *	the end	of the returned data and with the entry at @wrptr first.
8820 *	We leave the LA in the running state we find it in.
8821 */
8822void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8823{
8824	bool last_incomplete;
8825	unsigned int i, cfg, val, idx;
8826
8827	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8828	if (cfg & F_DBGLAENABLE)			/* freeze LA */
8829		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8830			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8831
8832	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8833	idx = G_DBGLAWPTR(val);
8834	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8835	if (last_incomplete)
8836		idx = (idx + 1) & M_DBGLARPTR;
8837	if (wrptr)
8838		*wrptr = idx;
8839
8840	val &= 0xffff;
8841	val &= ~V_DBGLARPTR(M_DBGLARPTR);
8842	val |= adap->params.tp.la_mask;
8843
8844	for (i = 0; i < TPLA_SIZE; i++) {
8845		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8846		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8847		idx = (idx + 1) & M_DBGLARPTR;
8848	}
8849
8850	/* Wipe out last entry if it isn't valid */
8851	if (last_incomplete)
8852		la_buf[TPLA_SIZE - 1] = ~0ULL;
8853
8854	if (cfg & F_DBGLAENABLE)		/* restore running state */
8855		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8856			     cfg | adap->params.tp.la_mask);
8857}
8858
8859/*
8860 * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8861 * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8862 * state for more than the Warning Threshold then we'll issue a warning about
8863 * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8864 * appears to be hung every Warning Repeat second till the situation clears.
8865 * If the situation clears, we'll note that as well.
8866 */
8867#define SGE_IDMA_WARN_THRESH 1
8868#define SGE_IDMA_WARN_REPEAT 300
8869
8870/**
8871 *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8872 *	@adapter: the adapter
8873 *	@idma: the adapter IDMA Monitor state
8874 *
8875 *	Initialize the state of an SGE Ingress DMA Monitor.
8876 */
8877void t4_idma_monitor_init(struct adapter *adapter,
8878			  struct sge_idma_monitor_state *idma)
8879{
8880	/* Initialize the state variables for detecting an SGE Ingress DMA
8881	 * hang.  The SGE has internal counters which count up on each clock
8882	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8883	 * same state they were on the previous clock tick.  The clock used is
8884	 * the Core Clock so we have a limit on the maximum "time" they can
8885	 * record; typically a very small number of seconds.  For instance,
8886	 * with a 600MHz Core Clock, we can only count up to a bit more than
8887	 * 7s.  So we'll synthesize a larger counter in order to not run the
8888	 * risk of having the "timers" overflow and give us the flexibility to
8889	 * maintain a Hung SGE State Machine of our own which operates across
8890	 * a longer time frame.
8891	 */
8892	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8893	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8894}
8895
8896/**
8897 *	t4_idma_monitor - monitor SGE Ingress DMA state
8898 *	@adapter: the adapter
8899 *	@idma: the adapter IDMA Monitor state
8900 *	@hz: number of ticks/second
8901 *	@ticks: number of ticks since the last IDMA Monitor call
8902 */
8903void t4_idma_monitor(struct adapter *adapter,
8904		     struct sge_idma_monitor_state *idma,
8905		     int hz, int ticks)
8906{
8907	int i, idma_same_state_cnt[2];
8908
8909	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8910	  * are counters inside the SGE which count up on each clock when the
8911	  * SGE finds its Ingress DMA State Engines in the same states they
8912	  * were in the previous clock.  The counters will peg out at
8913	  * 0xffffffff without wrapping around so once they pass the 1s
8914	  * threshold they'll stay above that till the IDMA state changes.
8915	  */
8916	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8917	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8918	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8919
8920	for (i = 0; i < 2; i++) {
8921		u32 debug0, debug11;
8922
8923		/* If the Ingress DMA Same State Counter ("timer") is less
8924		 * than 1s, then we can reset our synthesized Stall Timer and
8925		 * continue.  If we have previously emitted warnings about a
8926		 * potential stalled Ingress Queue, issue a note indicating
8927		 * that the Ingress Queue has resumed forward progress.
8928		 */
8929		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8930			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8931				CH_WARN(adapter, "SGE idma%d, queue %u, "
8932					"resumed after %d seconds\n",
8933					i, idma->idma_qid[i],
8934					idma->idma_stalled[i]/hz);
8935			idma->idma_stalled[i] = 0;
8936			continue;
8937		}
8938
8939		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8940		 * domain.  The first time we get here it'll be because we
8941		 * passed the 1s Threshold; each additional time it'll be
8942		 * because the RX Timer Callback is being fired on its regular
8943		 * schedule.
8944		 *
8945		 * If the stall is below our Potential Hung Ingress Queue
8946		 * Warning Threshold, continue.
8947		 */
8948		if (idma->idma_stalled[i] == 0) {
8949			idma->idma_stalled[i] = hz;
8950			idma->idma_warn[i] = 0;
8951		} else {
8952			idma->idma_stalled[i] += ticks;
8953			idma->idma_warn[i] -= ticks;
8954		}
8955
8956		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8957			continue;
8958
8959		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8960		 */
8961		if (idma->idma_warn[i] > 0)
8962			continue;
8963		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
8964
8965		/* Read and save the SGE IDMA State and Queue ID information.
8966		 * We do this every time in case it changes across time ...
8967		 * can't be too careful ...
8968		 */
8969		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
8970		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8971		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8972
8973		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
8974		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8975		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8976
8977		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
8978			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8979			i, idma->idma_qid[i], idma->idma_state[i],
8980			idma->idma_stalled[i]/hz,
8981			debug0, debug11);
8982		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8983	}
8984}
8985
8986/**
8987 *	t4_read_pace_tbl - read the pace table
8988 *	@adap: the adapter
8989 *	@pace_vals: holds the returned values
8990 *
8991 *	Returns the values of TP's pace table in microseconds.
8992 */
8993void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
8994{
8995	unsigned int i, v;
8996
8997	for (i = 0; i < NTX_SCHED; i++) {
8998		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
8999		v = t4_read_reg(adap, A_TP_PACE_TABLE);
9000		pace_vals[i] = dack_ticks_to_usec(adap, v);
9001	}
9002}
9003
9004/**
9005 *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
9006 *	@adap: the adapter
9007 *	@sched: the scheduler index
9008 *	@kbps: the byte rate in Kbps
9009 *	@ipg: the interpacket delay in tenths of nanoseconds
9010 *
9011 *	Return the current configuration of a HW Tx scheduler.
9012 */
9013void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
9014		     unsigned int *ipg, bool sleep_ok)
9015{
9016	unsigned int v, addr, bpt, cpt;
9017
9018	if (kbps) {
9019		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
9020		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9021		if (sched & 1)
9022			v >>= 16;
9023		bpt = (v >> 8) & 0xff;
9024		cpt = v & 0xff;
9025		if (!cpt)
9026			*kbps = 0;	/* scheduler disabled */
9027		else {
9028			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
9029			*kbps = (v * bpt) / 125;
9030		}
9031	}
9032	if (ipg) {
9033		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
9034		t4_tp_tm_pio_read(adap, &v, 1, addr, sleep_ok);
9035		if (sched & 1)
9036			v >>= 16;
9037		v &= 0xffff;
9038		*ipg = (10000 * v) / core_ticks_per_usec(adap);
9039	}
9040}
9041
9042/**
9043 *	t4_load_cfg - download config file
9044 *	@adap: the adapter
9045 *	@cfg_data: the cfg text file to write
9046 *	@size: text file size
9047 *
9048 *	Write the supplied config text file to the card's serial flash.
9049 */
9050int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
9051{
9052	int ret, i, n, cfg_addr;
9053	unsigned int addr;
9054	unsigned int flash_cfg_start_sec;
9055	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9056
9057	cfg_addr = t4_flash_cfg_addr(adap);
9058	if (cfg_addr < 0)
9059		return cfg_addr;
9060
9061	addr = cfg_addr;
9062	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9063
9064	if (size > FLASH_CFG_MAX_SIZE) {
9065		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
9066		       FLASH_CFG_MAX_SIZE);
9067		return -EFBIG;
9068	}
9069
9070	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
9071			 sf_sec_size);
9072	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9073				     flash_cfg_start_sec + i - 1);
9074	/*
9075	 * If size == 0 then we're simply erasing the FLASH sectors associated
9076	 * with the on-adapter Firmware Configuration File.
9077	 */
9078	if (ret || size == 0)
9079		goto out;
9080
9081	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9082	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9083		if ( (size - i) <  SF_PAGE_SIZE)
9084			n = size - i;
9085		else
9086			n = SF_PAGE_SIZE;
9087		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
9088		if (ret)
9089			goto out;
9090
9091		addr += SF_PAGE_SIZE;
9092		cfg_data += SF_PAGE_SIZE;
9093	}
9094
9095out:
9096	if (ret)
9097		CH_ERR(adap, "config file %s failed %d\n",
9098		       (size == 0 ? "clear" : "download"), ret);
9099	return ret;
9100}
9101
9102/**
9103 *	t5_fw_init_extern_mem - initialize the external memory
9104 *	@adap: the adapter
9105 *
9106 *	Initializes the external memory on T5.
9107 */
9108int t5_fw_init_extern_mem(struct adapter *adap)
9109{
9110	u32 params[1], val[1];
9111	int ret;
9112
9113	if (!is_t5(adap))
9114		return 0;
9115
9116	val[0] = 0xff; /* Initialize all MCs */
9117	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
9118			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
9119	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
9120			FW_CMD_MAX_TIMEOUT);
9121
9122	return ret;
9123}
9124
9125/* BIOS boot headers */
9126typedef struct pci_expansion_rom_header {
9127	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9128	u8	reserved[22]; /* Reserved per processor Architecture data */
9129	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9130} pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
9131
9132/* Legacy PCI Expansion ROM Header */
9133typedef struct legacy_pci_expansion_rom_header {
9134	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
9135	u8	size512; /* Current Image Size in units of 512 bytes */
9136	u8	initentry_point[4];
9137	u8	cksum; /* Checksum computed on the entire Image */
9138	u8	reserved[16]; /* Reserved */
9139	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
9140} legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
9141
9142/* EFI PCI Expansion ROM Header */
9143typedef struct efi_pci_expansion_rom_header {
9144	u8	signature[2]; // ROM signature. The value 0xaa55
9145	u8	initialization_size[2]; /* Units 512. Includes this header */
9146	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
9147	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
9148	u8	efi_machine_type[2]; /* Machine type from EFI image header */
9149	u8	compression_type[2]; /* Compression type. */
9150		/*
9151		 * Compression type definition
9152		 * 0x0: uncompressed
9153		 * 0x1: Compressed
9154		 * 0x2-0xFFFF: Reserved
9155		 */
9156	u8	reserved[8]; /* Reserved */
9157	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
9158	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
9159} efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
9160
9161/* PCI Data Structure Format */
9162typedef struct pcir_data_structure { /* PCI Data Structure */
9163	u8	signature[4]; /* Signature. The string "PCIR" */
9164	u8	vendor_id[2]; /* Vendor Identification */
9165	u8	device_id[2]; /* Device Identification */
9166	u8	vital_product[2]; /* Pointer to Vital Product Data */
9167	u8	length[2]; /* PCIR Data Structure Length */
9168	u8	revision; /* PCIR Data Structure Revision */
9169	u8	class_code[3]; /* Class Code */
9170	u8	image_length[2]; /* Image Length. Multiple of 512B */
9171	u8	code_revision[2]; /* Revision Level of Code/Data */
9172	u8	code_type; /* Code Type. */
9173		/*
9174		 * PCI Expansion ROM Code Types
9175		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
9176		 * 0x01: Open Firmware standard for PCI. FCODE
9177		 * 0x02: Hewlett-Packard PA RISC. HP reserved
9178		 * 0x03: EFI Image. EFI
9179		 * 0x04-0xFF: Reserved.
9180		 */
9181	u8	indicator; /* Indicator. Identifies the last image in the ROM */
9182	u8	reserved[2]; /* Reserved */
9183} pcir_data_t; /* PCI__DATA_STRUCTURE */
9184
9185/* BOOT constants */
9186enum {
9187	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
9188	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
9189	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
9190	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
9191	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
9192	VENDOR_ID = 0x1425, /* Vendor ID */
9193	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
9194};
9195
9196/*
9197 *	modify_device_id - Modifies the device ID of the Boot BIOS image
9198 *	@adatper: the device ID to write.
9199 *	@boot_data: the boot image to modify.
9200 *
9201 *	Write the supplied device ID to the boot BIOS image.
9202 */
9203static void modify_device_id(int device_id, u8 *boot_data)
9204{
9205	legacy_pci_exp_rom_header_t *header;
9206	pcir_data_t *pcir_header;
9207	u32 cur_header = 0;
9208
9209	/*
9210	 * Loop through all chained images and change the device ID's
9211	 */
9212	while (1) {
9213		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
9214		pcir_header = (pcir_data_t *) &boot_data[cur_header +
9215			      le16_to_cpu(*(u16*)header->pcir_offset)];
9216
9217		/*
9218		 * Only modify the Device ID if code type is Legacy or HP.
9219		 * 0x00: Okay to modify
9220		 * 0x01: FCODE. Do not be modify
9221		 * 0x03: Okay to modify
9222		 * 0x04-0xFF: Do not modify
9223		 */
9224		if (pcir_header->code_type == 0x00) {
9225			u8 csum = 0;
9226			int i;
9227
9228			/*
9229			 * Modify Device ID to match current adatper
9230			 */
9231			*(u16*) pcir_header->device_id = device_id;
9232
9233			/*
9234			 * Set checksum temporarily to 0.
9235			 * We will recalculate it later.
9236			 */
9237			header->cksum = 0x0;
9238
9239			/*
9240			 * Calculate and update checksum
9241			 */
9242			for (i = 0; i < (header->size512 * 512); i++)
9243				csum += (u8)boot_data[cur_header + i];
9244
9245			/*
9246			 * Invert summed value to create the checksum
9247			 * Writing new checksum value directly to the boot data
9248			 */
9249			boot_data[cur_header + 7] = -csum;
9250
9251		} else if (pcir_header->code_type == 0x03) {
9252
9253			/*
9254			 * Modify Device ID to match current adatper
9255			 */
9256			*(u16*) pcir_header->device_id = device_id;
9257
9258		}
9259
9260
9261		/*
9262		 * Check indicator element to identify if this is the last
9263		 * image in the ROM.
9264		 */
9265		if (pcir_header->indicator & 0x80)
9266			break;
9267
9268		/*
9269		 * Move header pointer up to the next image in the ROM.
9270		 */
9271		cur_header += header->size512 * 512;
9272	}
9273}
9274
9275/*
9276 *	t4_load_boot - download boot flash
9277 *	@adapter: the adapter
9278 *	@boot_data: the boot image to write
9279 *	@boot_addr: offset in flash to write boot_data
9280 *	@size: image size
9281 *
9282 *	Write the supplied boot image to the card's serial flash.
9283 *	The boot image has the following sections: a 28-byte header and the
9284 *	boot image.
9285 */
9286int t4_load_boot(struct adapter *adap, u8 *boot_data,
9287		 unsigned int boot_addr, unsigned int size)
9288{
9289	pci_exp_rom_header_t *header;
9290	int pcir_offset ;
9291	pcir_data_t *pcir_header;
9292	int ret, addr;
9293	uint16_t device_id;
9294	unsigned int i;
9295	unsigned int boot_sector = (boot_addr * 1024 );
9296	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9297
9298	/*
9299	 * Make sure the boot image does not encroach on the firmware region
9300	 */
9301	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
9302		CH_ERR(adap, "boot image encroaching on firmware region\n");
9303		return -EFBIG;
9304	}
9305
9306	/*
9307	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
9308	 * and Boot configuration data sections. These 3 boot sections span
9309	 * sectors 0 to 7 in flash and live right before the FW image location.
9310	 */
9311	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
9312			sf_sec_size);
9313	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
9314				     (boot_sector >> 16) + i - 1);
9315
9316	/*
9317	 * If size == 0 then we're simply erasing the FLASH sectors associated
9318	 * with the on-adapter option ROM file
9319	 */
9320	if (ret || (size == 0))
9321		goto out;
9322
9323	/* Get boot header */
9324	header = (pci_exp_rom_header_t *)boot_data;
9325	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
9326	/* PCIR Data Structure */
9327	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
9328
9329	/*
9330	 * Perform some primitive sanity testing to avoid accidentally
9331	 * writing garbage over the boot sectors.  We ought to check for
9332	 * more but it's not worth it for now ...
9333	 */
9334	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
9335		CH_ERR(adap, "boot image too small/large\n");
9336		return -EFBIG;
9337	}
9338
9339#ifndef CHELSIO_T4_DIAGS
9340	/*
9341	 * Check BOOT ROM header signature
9342	 */
9343	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
9344		CH_ERR(adap, "Boot image missing signature\n");
9345		return -EINVAL;
9346	}
9347
9348	/*
9349	 * Check PCI header signature
9350	 */
9351	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
9352		CH_ERR(adap, "PCI header missing signature\n");
9353		return -EINVAL;
9354	}
9355
9356	/*
9357	 * Check Vendor ID matches Chelsio ID
9358	 */
9359	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
9360		CH_ERR(adap, "Vendor ID missing signature\n");
9361		return -EINVAL;
9362	}
9363#endif
9364
9365	/*
9366	 * Retrieve adapter's device ID
9367	 */
9368	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
9369	/* Want to deal with PF 0 so I strip off PF 4 indicator */
9370	device_id = device_id & 0xf0ff;
9371
9372	/*
9373	 * Check PCIE Device ID
9374	 */
9375	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
9376		/*
9377		 * Change the device ID in the Boot BIOS image to match
9378		 * the Device ID of the current adapter.
9379		 */
9380		modify_device_id(device_id, boot_data);
9381	}
9382
9383	/*
9384	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
9385	 * we finish copying the rest of the boot image. This will ensure
9386	 * that the BIOS boot header will only be written if the boot image
9387	 * was written in full.
9388	 */
9389	addr = boot_sector;
9390	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
9391		addr += SF_PAGE_SIZE;
9392		boot_data += SF_PAGE_SIZE;
9393		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
9394		if (ret)
9395			goto out;
9396	}
9397
9398	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
9399			     (const u8 *)header, 0);
9400
9401out:
9402	if (ret)
9403		CH_ERR(adap, "boot image download failed, error %d\n", ret);
9404	return ret;
9405}
9406
9407/*
9408 *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
9409 *	@adapter: the adapter
9410 *
9411 *	Return the address within the flash where the OptionROM Configuration
9412 *	is stored, or an error if the device FLASH is too small to contain
9413 *	a OptionROM Configuration.
9414 */
9415static int t4_flash_bootcfg_addr(struct adapter *adapter)
9416{
9417	/*
9418	 * If the device FLASH isn't large enough to hold a Firmware
9419	 * Configuration File, return an error.
9420	 */
9421	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
9422		return -ENOSPC;
9423
9424	return FLASH_BOOTCFG_START;
9425}
9426
9427int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
9428{
9429	int ret, i, n, cfg_addr;
9430	unsigned int addr;
9431	unsigned int flash_cfg_start_sec;
9432	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9433
9434	cfg_addr = t4_flash_bootcfg_addr(adap);
9435	if (cfg_addr < 0)
9436		return cfg_addr;
9437
9438	addr = cfg_addr;
9439	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9440
9441	if (size > FLASH_BOOTCFG_MAX_SIZE) {
9442		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9443			FLASH_BOOTCFG_MAX_SIZE);
9444		return -EFBIG;
9445	}
9446
9447	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9448			 sf_sec_size);
9449	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9450					flash_cfg_start_sec + i - 1);
9451
9452	/*
9453	 * If size == 0 then we're simply erasing the FLASH sectors associated
9454	 * with the on-adapter OptionROM Configuration File.
9455	 */
9456	if (ret || size == 0)
9457		goto out;
9458
9459	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9460	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9461		if ( (size - i) <  SF_PAGE_SIZE)
9462			n = size - i;
9463		else
9464			n = SF_PAGE_SIZE;
9465		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9466		if (ret)
9467			goto out;
9468
9469		addr += SF_PAGE_SIZE;
9470		cfg_data += SF_PAGE_SIZE;
9471	}
9472
9473out:
9474	if (ret)
9475		CH_ERR(adap, "boot config data %s failed %d\n",
9476				(size == 0 ? "clear" : "download"), ret);
9477	return ret;
9478}
9479
9480/**
9481 *	t4_set_filter_mode - configure the optional components of filter tuples
9482 *	@adap: the adapter
9483 *	@mode_map: a bitmap selcting which optional filter components to enable
9484 * 	@sleep_ok: if true we may sleep while awaiting command completion
9485 *
9486 *	Sets the filter mode by selecting the optional components to enable
9487 *	in filter tuples.  Returns 0 on success and a negative error if the
9488 *	requested mode needs more bits than are available for optional
9489 *	components.
9490 */
9491int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map,
9492		       bool sleep_ok)
9493{
9494	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9495
9496	int i, nbits = 0;
9497
9498	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9499		if (mode_map & (1 << i))
9500			nbits += width[i];
9501	if (nbits > FILTER_OPT_LEN)
9502		return -EINVAL;
9503	t4_tp_pio_write(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, sleep_ok);
9504	read_filter_mode_and_ingress_config(adap, sleep_ok);
9505
9506	return 0;
9507}
9508
9509/**
9510 *	t4_clr_port_stats - clear port statistics
9511 *	@adap: the adapter
9512 *	@idx: the port index
9513 *
9514 *	Clear HW statistics for the given port.
9515 */
9516void t4_clr_port_stats(struct adapter *adap, int idx)
9517{
9518	unsigned int i;
9519	u32 bgmap = adap2pinfo(adap, idx)->mps_bg_map;
9520	u32 port_base_addr;
9521
9522	if (is_t4(adap))
9523		port_base_addr = PORT_BASE(idx);
9524	else
9525		port_base_addr = T5_PORT_BASE(idx);
9526
9527	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9528			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9529		t4_write_reg(adap, port_base_addr + i, 0);
9530	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9531			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9532		t4_write_reg(adap, port_base_addr + i, 0);
9533	for (i = 0; i < 4; i++)
9534		if (bgmap & (1 << i)) {
9535			t4_write_reg(adap,
9536			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9537			t4_write_reg(adap,
9538			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9539		}
9540}
9541
9542/**
9543 *	t4_i2c_rd - read I2C data from adapter
9544 *	@adap: the adapter
9545 *	@port: Port number if per-port device; <0 if not
9546 *	@devid: per-port device ID or absolute device ID
9547 *	@offset: byte offset into device I2C space
9548 *	@len: byte length of I2C space data
9549 *	@buf: buffer in which to return I2C data
9550 *
9551 *	Reads the I2C data from the indicated device and location.
9552 */
9553int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9554	      int port, unsigned int devid,
9555	      unsigned int offset, unsigned int len,
9556	      u8 *buf)
9557{
9558	u32 ldst_addrspace;
9559	struct fw_ldst_cmd ldst;
9560	int ret;
9561
9562	if (port >= 4 ||
9563	    devid >= 256 ||
9564	    offset >= 256 ||
9565	    len > sizeof ldst.u.i2c.data)
9566		return -EINVAL;
9567
9568	memset(&ldst, 0, sizeof ldst);
9569	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9570	ldst.op_to_addrspace =
9571		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9572			    F_FW_CMD_REQUEST |
9573			    F_FW_CMD_READ |
9574			    ldst_addrspace);
9575	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9576	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9577	ldst.u.i2c.did = devid;
9578	ldst.u.i2c.boffset = offset;
9579	ldst.u.i2c.blen = len;
9580	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9581	if (!ret)
9582		memcpy(buf, ldst.u.i2c.data, len);
9583	return ret;
9584}
9585
9586/**
9587 *	t4_i2c_wr - write I2C data to adapter
9588 *	@adap: the adapter
9589 *	@port: Port number if per-port device; <0 if not
9590 *	@devid: per-port device ID or absolute device ID
9591 *	@offset: byte offset into device I2C space
9592 *	@len: byte length of I2C space data
9593 *	@buf: buffer containing new I2C data
9594 *
9595 *	Write the I2C data to the indicated device and location.
9596 */
9597int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9598	      int port, unsigned int devid,
9599	      unsigned int offset, unsigned int len,
9600	      u8 *buf)
9601{
9602	u32 ldst_addrspace;
9603	struct fw_ldst_cmd ldst;
9604
9605	if (port >= 4 ||
9606	    devid >= 256 ||
9607	    offset >= 256 ||
9608	    len > sizeof ldst.u.i2c.data)
9609		return -EINVAL;
9610
9611	memset(&ldst, 0, sizeof ldst);
9612	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9613	ldst.op_to_addrspace =
9614		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9615			    F_FW_CMD_REQUEST |
9616			    F_FW_CMD_WRITE |
9617			    ldst_addrspace);
9618	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9619	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9620	ldst.u.i2c.did = devid;
9621	ldst.u.i2c.boffset = offset;
9622	ldst.u.i2c.blen = len;
9623	memcpy(ldst.u.i2c.data, buf, len);
9624	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9625}
9626
9627/**
9628 * 	t4_sge_ctxt_rd - read an SGE context through FW
9629 * 	@adap: the adapter
9630 * 	@mbox: mailbox to use for the FW command
9631 * 	@cid: the context id
9632 * 	@ctype: the context type
9633 * 	@data: where to store the context data
9634 *
9635 * 	Issues a FW command through the given mailbox to read an SGE context.
9636 */
9637int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9638		   enum ctxt_type ctype, u32 *data)
9639{
9640	int ret;
9641	struct fw_ldst_cmd c;
9642
9643	if (ctype == CTXT_EGRESS)
9644		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9645	else if (ctype == CTXT_INGRESS)
9646		ret = FW_LDST_ADDRSPC_SGE_INGC;
9647	else if (ctype == CTXT_FLM)
9648		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9649	else
9650		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9651
9652	memset(&c, 0, sizeof(c));
9653	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9654					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9655					V_FW_LDST_CMD_ADDRSPACE(ret));
9656	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9657	c.u.idctxt.physid = cpu_to_be32(cid);
9658
9659	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9660	if (ret == 0) {
9661		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9662		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9663		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9664		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9665		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9666		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9667	}
9668	return ret;
9669}
9670
9671/**
9672 * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9673 * 	@adap: the adapter
9674 * 	@cid: the context id
9675 * 	@ctype: the context type
9676 * 	@data: where to store the context data
9677 *
9678 * 	Reads an SGE context directly, bypassing FW.  This is only for
9679 * 	debugging when FW is unavailable.
9680 */
9681int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9682		      u32 *data)
9683{
9684	int i, ret;
9685
9686	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9687	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9688	if (!ret)
9689		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9690			*data++ = t4_read_reg(adap, i);
9691	return ret;
9692}
9693
9694int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9695    int sleep_ok)
9696{
9697	struct fw_sched_cmd cmd;
9698
9699	memset(&cmd, 0, sizeof(cmd));
9700	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9701				      F_FW_CMD_REQUEST |
9702				      F_FW_CMD_WRITE);
9703	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9704
9705	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9706	cmd.u.config.type = type;
9707	cmd.u.config.minmaxen = minmaxen;
9708
9709	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9710			       NULL, sleep_ok);
9711}
9712
9713int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9714		    int rateunit, int ratemode, int channel, int cl,
9715		    int minrate, int maxrate, int weight, int pktsize,
9716		    int sleep_ok)
9717{
9718	struct fw_sched_cmd cmd;
9719
9720	memset(&cmd, 0, sizeof(cmd));
9721	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9722				      F_FW_CMD_REQUEST |
9723				      F_FW_CMD_WRITE);
9724	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9725
9726	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9727	cmd.u.params.type = type;
9728	cmd.u.params.level = level;
9729	cmd.u.params.mode = mode;
9730	cmd.u.params.ch = channel;
9731	cmd.u.params.cl = cl;
9732	cmd.u.params.unit = rateunit;
9733	cmd.u.params.rate = ratemode;
9734	cmd.u.params.min = cpu_to_be32(minrate);
9735	cmd.u.params.max = cpu_to_be32(maxrate);
9736	cmd.u.params.weight = cpu_to_be16(weight);
9737	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9738
9739	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9740			       NULL, sleep_ok);
9741}
9742
9743int t4_sched_params_ch_rl(struct adapter *adapter, int channel, int ratemode,
9744    unsigned int maxrate, int sleep_ok)
9745{
9746	struct fw_sched_cmd cmd;
9747
9748	memset(&cmd, 0, sizeof(cmd));
9749	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9750				      F_FW_CMD_REQUEST |
9751				      F_FW_CMD_WRITE);
9752	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9753
9754	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9755	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9756	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CH_RL;
9757	cmd.u.params.ch = channel;
9758	cmd.u.params.rate = ratemode;		/* REL or ABS */
9759	cmd.u.params.max = cpu_to_be32(maxrate);/*  %  or kbps */
9760
9761	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9762			       NULL, sleep_ok);
9763}
9764
9765int t4_sched_params_cl_wrr(struct adapter *adapter, int channel, int cl,
9766    int weight, int sleep_ok)
9767{
9768	struct fw_sched_cmd cmd;
9769
9770	if (weight < 0 || weight > 100)
9771		return -EINVAL;
9772
9773	memset(&cmd, 0, sizeof(cmd));
9774	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9775				      F_FW_CMD_REQUEST |
9776				      F_FW_CMD_WRITE);
9777	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9778
9779	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9780	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9781	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_WRR;
9782	cmd.u.params.ch = channel;
9783	cmd.u.params.cl = cl;
9784	cmd.u.params.weight = cpu_to_be16(weight);
9785
9786	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9787			       NULL, sleep_ok);
9788}
9789
9790int t4_sched_params_cl_rl_kbps(struct adapter *adapter, int channel, int cl,
9791    int mode, unsigned int maxrate, int pktsize, int sleep_ok)
9792{
9793	struct fw_sched_cmd cmd;
9794
9795	memset(&cmd, 0, sizeof(cmd));
9796	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9797				      F_FW_CMD_REQUEST |
9798				      F_FW_CMD_WRITE);
9799	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9800
9801	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9802	cmd.u.params.type = FW_SCHED_TYPE_PKTSCHED;
9803	cmd.u.params.level = FW_SCHED_PARAMS_LEVEL_CL_RL;
9804	cmd.u.params.mode = mode;
9805	cmd.u.params.ch = channel;
9806	cmd.u.params.cl = cl;
9807	cmd.u.params.unit = FW_SCHED_PARAMS_UNIT_BITRATE;
9808	cmd.u.params.rate = FW_SCHED_PARAMS_RATE_ABS;
9809	cmd.u.params.max = cpu_to_be32(maxrate);
9810	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9811
9812	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9813			       NULL, sleep_ok);
9814}
9815
9816/*
9817 *	t4_config_watchdog - configure (enable/disable) a watchdog timer
9818 *	@adapter: the adapter
9819 * 	@mbox: mailbox to use for the FW command
9820 * 	@pf: the PF owning the queue
9821 * 	@vf: the VF owning the queue
9822 *	@timeout: watchdog timeout in ms
9823 *	@action: watchdog timer / action
9824 *
9825 *	There are separate watchdog timers for each possible watchdog
9826 *	action.  Configure one of the watchdog timers by setting a non-zero
9827 *	timeout.  Disable a watchdog timer by using a timeout of zero.
9828 */
9829int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9830		       unsigned int pf, unsigned int vf,
9831		       unsigned int timeout, unsigned int action)
9832{
9833	struct fw_watchdog_cmd wdog;
9834	unsigned int ticks;
9835
9836	/*
9837	 * The watchdog command expects a timeout in units of 10ms so we need
9838	 * to convert it here (via rounding) and force a minimum of one 10ms
9839	 * "tick" if the timeout is non-zero but the conversion results in 0
9840	 * ticks.
9841	 */
9842	ticks = (timeout + 5)/10;
9843	if (timeout && !ticks)
9844		ticks = 1;
9845
9846	memset(&wdog, 0, sizeof wdog);
9847	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9848				     F_FW_CMD_REQUEST |
9849				     F_FW_CMD_WRITE |
9850				     V_FW_PARAMS_CMD_PFN(pf) |
9851				     V_FW_PARAMS_CMD_VFN(vf));
9852	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9853	wdog.timeout = cpu_to_be32(ticks);
9854	wdog.action = cpu_to_be32(action);
9855
9856	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9857}
9858
9859int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9860{
9861	struct fw_devlog_cmd devlog_cmd;
9862	int ret;
9863
9864	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9865	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9866					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9867	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9868	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9869			 sizeof(devlog_cmd), &devlog_cmd);
9870	if (ret)
9871		return ret;
9872
9873	*level = devlog_cmd.level;
9874	return 0;
9875}
9876
9877int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9878{
9879	struct fw_devlog_cmd devlog_cmd;
9880
9881	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9882	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9883					     F_FW_CMD_REQUEST |
9884					     F_FW_CMD_WRITE);
9885	devlog_cmd.level = level;
9886	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9887	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9888			  sizeof(devlog_cmd), &devlog_cmd);
9889}
9890