t4_hw.c revision 309578
1/*-
2 * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24 * SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD: stable/11/sys/dev/cxgbe/common/t4_hw.c 309578 2016-12-05 23:35:37Z jhb $");
29
30#include "opt_inet.h"
31
32#include <sys/param.h>
33#include <sys/eventhandler.h>
34
35#include "common.h"
36#include "t4_regs.h"
37#include "t4_regs_values.h"
38#include "firmware/t4fw_interface.h"
39
40#undef msleep
41#define msleep(x) do { \
42	if (cold) \
43		DELAY((x) * 1000); \
44	else \
45		pause("t4hw", (x) * hz / 1000); \
46} while (0)
47
48/**
49 *	t4_wait_op_done_val - wait until an operation is completed
50 *	@adapter: the adapter performing the operation
51 *	@reg: the register to check for completion
52 *	@mask: a single-bit field within @reg that indicates completion
53 *	@polarity: the value of the field when the operation is completed
54 *	@attempts: number of check iterations
55 *	@delay: delay in usecs between iterations
56 *	@valp: where to store the value of the register at completion time
57 *
58 *	Wait until an operation is completed by checking a bit in a register
59 *	up to @attempts times.  If @valp is not NULL the value of the register
60 *	at the time it indicated completion is stored there.  Returns 0 if the
61 *	operation completes and	-EAGAIN	otherwise.
62 */
63static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
64			       int polarity, int attempts, int delay, u32 *valp)
65{
66	while (1) {
67		u32 val = t4_read_reg(adapter, reg);
68
69		if (!!(val & mask) == polarity) {
70			if (valp)
71				*valp = val;
72			return 0;
73		}
74		if (--attempts == 0)
75			return -EAGAIN;
76		if (delay)
77			udelay(delay);
78	}
79}
80
81static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
82				  int polarity, int attempts, int delay)
83{
84	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
85				   delay, NULL);
86}
87
88/**
89 *	t4_set_reg_field - set a register field to a value
90 *	@adapter: the adapter to program
91 *	@addr: the register address
92 *	@mask: specifies the portion of the register to modify
93 *	@val: the new value for the register field
94 *
95 *	Sets a register field specified by the supplied mask to the
96 *	given value.
97 */
98void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
99		      u32 val)
100{
101	u32 v = t4_read_reg(adapter, addr) & ~mask;
102
103	t4_write_reg(adapter, addr, v | val);
104	(void) t4_read_reg(adapter, addr);      /* flush */
105}
106
107/**
108 *	t4_read_indirect - read indirectly addressed registers
109 *	@adap: the adapter
110 *	@addr_reg: register holding the indirect address
111 *	@data_reg: register holding the value of the indirect register
112 *	@vals: where the read register values are stored
113 *	@nregs: how many indirect registers to read
114 *	@start_idx: index of first indirect register to read
115 *
116 *	Reads registers that are accessed indirectly through an address/data
117 *	register pair.
118 */
119void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
120			     unsigned int data_reg, u32 *vals,
121			     unsigned int nregs, unsigned int start_idx)
122{
123	while (nregs--) {
124		t4_write_reg(adap, addr_reg, start_idx);
125		*vals++ = t4_read_reg(adap, data_reg);
126		start_idx++;
127	}
128}
129
130/**
131 *	t4_write_indirect - write indirectly addressed registers
132 *	@adap: the adapter
133 *	@addr_reg: register holding the indirect addresses
134 *	@data_reg: register holding the value for the indirect registers
135 *	@vals: values to write
136 *	@nregs: how many indirect registers to write
137 *	@start_idx: address of first indirect register to write
138 *
139 *	Writes a sequential block of registers that are accessed indirectly
140 *	through an address/data register pair.
141 */
142void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
143		       unsigned int data_reg, const u32 *vals,
144		       unsigned int nregs, unsigned int start_idx)
145{
146	while (nregs--) {
147		t4_write_reg(adap, addr_reg, start_idx++);
148		t4_write_reg(adap, data_reg, *vals++);
149	}
150}
151
152/*
153 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
154 * mechanism.  This guarantees that we get the real value even if we're
155 * operating within a Virtual Machine and the Hypervisor is trapping our
156 * Configuration Space accesses.
157 *
158 * N.B. This routine should only be used as a last resort: the firmware uses
159 *      the backdoor registers on a regular basis and we can end up
160 *      conflicting with it's uses!
161 */
162u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
163{
164	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
165	u32 val;
166
167	if (chip_id(adap) <= CHELSIO_T5)
168		req |= F_ENABLE;
169	else
170		req |= F_T6_ENABLE;
171
172	if (is_t4(adap))
173		req |= F_LOCALCFG;
174
175	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
176	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
177
178	/*
179	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
180	 * Configuration Space read.  (None of the other fields matter when
181	 * F_ENABLE is 0 so a simple register write is easier than a
182	 * read-modify-write via t4_set_reg_field().)
183	 */
184	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
185
186	return val;
187}
188
189/*
190 * t4_report_fw_error - report firmware error
191 * @adap: the adapter
192 *
193 * The adapter firmware can indicate error conditions to the host.
194 * If the firmware has indicated an error, print out the reason for
195 * the firmware error.
196 */
197static void t4_report_fw_error(struct adapter *adap)
198{
199	static const char *const reason[] = {
200		"Crash",			/* PCIE_FW_EVAL_CRASH */
201		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
202		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
203		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
204		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
205		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
206		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
207		"Reserved",			/* reserved */
208	};
209	u32 pcie_fw;
210
211	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
212	if (pcie_fw & F_PCIE_FW_ERR)
213		CH_ERR(adap, "Firmware reports adapter error: %s\n",
214			reason[G_PCIE_FW_EVAL(pcie_fw)]);
215}
216
217/*
218 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
219 */
220static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
221			 u32 mbox_addr)
222{
223	for ( ; nflit; nflit--, mbox_addr += 8)
224		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
225}
226
227/*
228 * Handle a FW assertion reported in a mailbox.
229 */
230static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
231{
232	CH_ALERT(adap,
233		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
234		  asrt->u.assert.filename_0_7,
235		  be32_to_cpu(asrt->u.assert.line),
236		  be32_to_cpu(asrt->u.assert.x),
237		  be32_to_cpu(asrt->u.assert.y));
238}
239
240#define X_CIM_PF_NOACCESS 0xeeeeeeee
241/**
242 *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243 *	@adap: the adapter
244 *	@mbox: index of the mailbox to use
245 *	@cmd: the command to write
246 *	@size: command length in bytes
247 *	@rpl: where to optionally store the reply
248 *	@sleep_ok: if true we may sleep while awaiting command completion
249 *	@timeout: time to wait for command to finish before timing out
250 *		(negative implies @sleep_ok=false)
251 *
252 *	Sends the given command to FW through the selected mailbox and waits
253 *	for the FW to execute the command.  If @rpl is not %NULL it is used to
254 *	store the FW's reply to the command.  The command and its optional
255 *	reply are of the same length.  Some FW commands like RESET and
256 *	INITIALIZE can take a considerable amount of time to execute.
257 *	@sleep_ok determines whether we may sleep while awaiting the response.
258 *	If sleeping is allowed we use progressive backoff otherwise we spin.
259 *	Note that passing in a negative @timeout is an alternate mechanism
260 *	for specifying @sleep_ok=false.  This is useful when a higher level
261 *	interface allows for specification of @timeout but not @sleep_ok ...
262 *
263 *	The return value is 0 on success or a negative errno on failure.  A
264 *	failure can happen either because we are not able to execute the
265 *	command or FW executes it but signals an error.  In the latter case
266 *	the return value is the error code indicated by FW (negated).
267 */
268int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
269			    int size, void *rpl, bool sleep_ok, int timeout)
270{
271	/*
272	 * We delay in small increments at first in an effort to maintain
273	 * responsiveness for simple, fast executing commands but then back
274	 * off to larger delays to a maximum retry delay.
275	 */
276	static const int delay[] = {
277		1, 1, 3, 5, 10, 10, 20, 50, 100
278	};
279	u32 v;
280	u64 res;
281	int i, ms, delay_idx, ret;
282	const __be64 *p = cmd;
283	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
284	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
285	u32 ctl;
286	__be64 cmd_rpl[MBOX_LEN/8];
287	u32 pcie_fw;
288
289	if ((size & 15) || size > MBOX_LEN)
290		return -EINVAL;
291
292	if (adap->flags & IS_VF) {
293		if (is_t6(adap))
294			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
295		else
296			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
297		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
298	}
299
300	/*
301	 * If we have a negative timeout, that implies that we can't sleep.
302	 */
303	if (timeout < 0) {
304		sleep_ok = false;
305		timeout = -timeout;
306	}
307
308	/*
309	 * Attempt to gain access to the mailbox.
310	 */
311	for (i = 0; i < 4; i++) {
312		ctl = t4_read_reg(adap, ctl_reg);
313		v = G_MBOWNER(ctl);
314		if (v != X_MBOWNER_NONE)
315			break;
316	}
317
318	/*
319	 * If we were unable to gain access, dequeue ourselves from the
320	 * mailbox atomic access list and report the error to our caller.
321	 */
322	if (v != X_MBOWNER_PL) {
323		t4_report_fw_error(adap);
324		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
325		return ret;
326	}
327
328	/*
329	 * If we gain ownership of the mailbox and there's a "valid" message
330	 * in it, this is likely an asynchronous error message from the
331	 * firmware.  So we'll report that and then proceed on with attempting
332	 * to issue our own command ... which may well fail if the error
333	 * presaged the firmware crashing ...
334	 */
335	if (ctl & F_MBMSGVALID) {
336		CH_ERR(adap, "found VALID command in mbox %u: "
337		       "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
338		       (unsigned long long)t4_read_reg64(adap, data_reg),
339		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
340		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
341		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
342		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
343		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
344		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
345		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
346	}
347
348	/*
349	 * Copy in the new mailbox command and send it on its way ...
350	 */
351	for (i = 0; i < size; i += 8, p++)
352		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
353
354	if (adap->flags & IS_VF) {
355		/*
356		 * For the VFs, the Mailbox Data "registers" are
357		 * actually backed by T4's "MA" interface rather than
358		 * PL Registers (as is the case for the PFs).  Because
359		 * these are in different coherency domains, the write
360		 * to the VF's PL-register-backed Mailbox Control can
361		 * race in front of the writes to the MA-backed VF
362		 * Mailbox Data "registers".  So we need to do a
363		 * read-back on at least one byte of the VF Mailbox
364		 * Data registers before doing the write to the VF
365		 * Mailbox Control register.
366		 */
367		t4_read_reg(adap, data_reg);
368	}
369
370	CH_DUMP_MBOX(adap, mbox, data_reg);
371
372	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
373	t4_read_reg(adap, ctl_reg);	/* flush write */
374
375	delay_idx = 0;
376	ms = delay[0];
377
378	/*
379	 * Loop waiting for the reply; bail out if we time out or the firmware
380	 * reports an error.
381	 */
382	pcie_fw = 0;
383	for (i = 0; i < timeout; i += ms) {
384		if (!(adap->flags & IS_VF)) {
385			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
386			if (pcie_fw & F_PCIE_FW_ERR)
387				break;
388		}
389		if (sleep_ok) {
390			ms = delay[delay_idx];  /* last element may repeat */
391			if (delay_idx < ARRAY_SIZE(delay) - 1)
392				delay_idx++;
393			msleep(ms);
394		} else {
395			mdelay(ms);
396		}
397
398		v = t4_read_reg(adap, ctl_reg);
399		if (v == X_CIM_PF_NOACCESS)
400			continue;
401		if (G_MBOWNER(v) == X_MBOWNER_PL) {
402			if (!(v & F_MBMSGVALID)) {
403				t4_write_reg(adap, ctl_reg,
404					     V_MBOWNER(X_MBOWNER_NONE));
405				continue;
406			}
407
408			/*
409			 * Retrieve the command reply and release the mailbox.
410			 */
411			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
412			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
413
414			CH_DUMP_MBOX(adap, mbox, data_reg);
415
416			res = be64_to_cpu(cmd_rpl[0]);
417			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
418				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
419				res = V_FW_CMD_RETVAL(EIO);
420			} else if (rpl)
421				memcpy(rpl, cmd_rpl, size);
422			return -G_FW_CMD_RETVAL((int)res);
423		}
424	}
425
426	/*
427	 * We timed out waiting for a reply to our mailbox command.  Report
428	 * the error and also check to see if the firmware reported any
429	 * errors ...
430	 */
431	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
432	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
433	       *(const u8 *)cmd, mbox);
434
435	/* If DUMP_MBOX is set the mbox has already been dumped */
436	if ((adap->debug_flags & DF_DUMP_MBOX) == 0) {
437		p = cmd;
438		CH_ERR(adap, "mbox: %016llx %016llx %016llx %016llx "
439		    "%016llx %016llx %016llx %016llx\n",
440		    (unsigned long long)be64_to_cpu(p[0]),
441		    (unsigned long long)be64_to_cpu(p[1]),
442		    (unsigned long long)be64_to_cpu(p[2]),
443		    (unsigned long long)be64_to_cpu(p[3]),
444		    (unsigned long long)be64_to_cpu(p[4]),
445		    (unsigned long long)be64_to_cpu(p[5]),
446		    (unsigned long long)be64_to_cpu(p[6]),
447		    (unsigned long long)be64_to_cpu(p[7]));
448	}
449
450	t4_report_fw_error(adap);
451	t4_fatal_err(adap);
452	return ret;
453}
454
455int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
456		    void *rpl, bool sleep_ok)
457{
458		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
459					       sleep_ok, FW_CMD_MAX_TIMEOUT);
460
461}
462
463static int t4_edc_err_read(struct adapter *adap, int idx)
464{
465	u32 edc_ecc_err_addr_reg;
466	u32 edc_bist_status_rdata_reg;
467
468	if (is_t4(adap)) {
469		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
470		return 0;
471	}
472	if (idx != 0 && idx != 1) {
473		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
474		return 0;
475	}
476
477	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
478	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
479
480	CH_WARN(adap,
481		"edc%d err addr 0x%x: 0x%x.\n",
482		idx, edc_ecc_err_addr_reg,
483		t4_read_reg(adap, edc_ecc_err_addr_reg));
484	CH_WARN(adap,
485	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
486		edc_bist_status_rdata_reg,
487		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
488		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
489		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
490		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
491		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
492		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
493		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
494		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
495		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
496
497	return 0;
498}
499
500/**
501 *	t4_mc_read - read from MC through backdoor accesses
502 *	@adap: the adapter
503 *	@idx: which MC to access
504 *	@addr: address of first byte requested
505 *	@data: 64 bytes of data containing the requested address
506 *	@ecc: where to store the corresponding 64-bit ECC word
507 *
508 *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
509 *	that covers the requested address @addr.  If @parity is not %NULL it
510 *	is assigned the 64-bit ECC word for the read data.
511 */
512int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
513{
514	int i;
515	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
516	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
517
518	if (is_t4(adap)) {
519		mc_bist_cmd_reg = A_MC_BIST_CMD;
520		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
521		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
522		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
523		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
524	} else {
525		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
526		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
527		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
528		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
529						  idx);
530		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
531						  idx);
532	}
533
534	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
535		return -EBUSY;
536	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
537	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
538	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
539	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
540		     F_START_BIST | V_BIST_CMD_GAP(1));
541	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
542	if (i)
543		return i;
544
545#define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
546
547	for (i = 15; i >= 0; i--)
548		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
549	if (ecc)
550		*ecc = t4_read_reg64(adap, MC_DATA(16));
551#undef MC_DATA
552	return 0;
553}
554
555/**
556 *	t4_edc_read - read from EDC through backdoor accesses
557 *	@adap: the adapter
558 *	@idx: which EDC to access
559 *	@addr: address of first byte requested
560 *	@data: 64 bytes of data containing the requested address
561 *	@ecc: where to store the corresponding 64-bit ECC word
562 *
563 *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
564 *	that covers the requested address @addr.  If @parity is not %NULL it
565 *	is assigned the 64-bit ECC word for the read data.
566 */
567int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
568{
569	int i;
570	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
571	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
572
573	if (is_t4(adap)) {
574		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
575		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
576		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
577		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
578						    idx);
579		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
580						    idx);
581	} else {
582/*
583 * These macro are missing in t4_regs.h file.
584 * Added temporarily for testing.
585 */
586#define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
587#define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
588		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
589		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
590		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
591		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
592						    idx);
593		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
594						    idx);
595#undef EDC_REG_T5
596#undef EDC_STRIDE_T5
597	}
598
599	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
600		return -EBUSY;
601	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
602	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
603	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
604	t4_write_reg(adap, edc_bist_cmd_reg,
605		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
606	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
607	if (i)
608		return i;
609
610#define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
611
612	for (i = 15; i >= 0; i--)
613		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
614	if (ecc)
615		*ecc = t4_read_reg64(adap, EDC_DATA(16));
616#undef EDC_DATA
617	return 0;
618}
619
620/**
621 *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
622 *	@adap: the adapter
623 *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
624 *	@addr: address within indicated memory type
625 *	@len: amount of memory to read
626 *	@buf: host memory buffer
627 *
628 *	Reads an [almost] arbitrary memory region in the firmware: the
629 *	firmware memory address, length and host buffer must be aligned on
630 *	32-bit boudaries.  The memory is returned as a raw byte sequence from
631 *	the firmware's memory.  If this memory contains data structures which
632 *	contain multi-byte integers, it's the callers responsibility to
633 *	perform appropriate byte order conversions.
634 */
635int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
636		__be32 *buf)
637{
638	u32 pos, start, end, offset;
639	int ret;
640
641	/*
642	 * Argument sanity checks ...
643	 */
644	if ((addr & 0x3) || (len & 0x3))
645		return -EINVAL;
646
647	/*
648	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
649	 * need to round down the start and round up the end.  We'll start
650	 * copying out of the first line at (addr - start) a word at a time.
651	 */
652	start = rounddown2(addr, 64);
653	end = roundup2(addr + len, 64);
654	offset = (addr - start)/sizeof(__be32);
655
656	for (pos = start; pos < end; pos += 64, offset = 0) {
657		__be32 data[16];
658
659		/*
660		 * Read the chip's memory block and bail if there's an error.
661		 */
662		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
663			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
664		else
665			ret = t4_edc_read(adap, mtype, pos, data, NULL);
666		if (ret)
667			return ret;
668
669		/*
670		 * Copy the data into the caller's memory buffer.
671		 */
672		while (offset < 16 && len > 0) {
673			*buf++ = data[offset++];
674			len -= sizeof(__be32);
675		}
676	}
677
678	return 0;
679}
680
681/*
682 * Return the specified PCI-E Configuration Space register from our Physical
683 * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
684 * since we prefer to let the firmware own all of these registers, but if that
685 * fails we go for it directly ourselves.
686 */
687u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
688{
689
690	/*
691	 * If fw_attach != 0, construct and send the Firmware LDST Command to
692	 * retrieve the specified PCI-E Configuration Space register.
693	 */
694	if (drv_fw_attach != 0) {
695		struct fw_ldst_cmd ldst_cmd;
696		int ret;
697
698		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
699		ldst_cmd.op_to_addrspace =
700			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
701				    F_FW_CMD_REQUEST |
702				    F_FW_CMD_READ |
703				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
704		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
705		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
706		ldst_cmd.u.pcie.ctrl_to_fn =
707			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
708		ldst_cmd.u.pcie.r = reg;
709
710		/*
711		 * If the LDST Command succeeds, return the result, otherwise
712		 * fall through to reading it directly ourselves ...
713		 */
714		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
715				 &ldst_cmd);
716		if (ret == 0)
717			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
718
719		CH_WARN(adap, "Firmware failed to return "
720			"Configuration Space register %d, err = %d\n",
721			reg, -ret);
722	}
723
724	/*
725	 * Read the desired Configuration Space register via the PCI-E
726	 * Backdoor mechanism.
727	 */
728	return t4_hw_pci_read_cfg4(adap, reg);
729}
730
731/**
732 *	t4_get_regs_len - return the size of the chips register set
733 *	@adapter: the adapter
734 *
735 *	Returns the size of the chip's BAR0 register space.
736 */
737unsigned int t4_get_regs_len(struct adapter *adapter)
738{
739	unsigned int chip_version = chip_id(adapter);
740
741	switch (chip_version) {
742	case CHELSIO_T4:
743		if (adapter->flags & IS_VF)
744			return FW_T4VF_REGMAP_SIZE;
745		return T4_REGMAP_SIZE;
746
747	case CHELSIO_T5:
748	case CHELSIO_T6:
749		if (adapter->flags & IS_VF)
750			return FW_T4VF_REGMAP_SIZE;
751		return T5_REGMAP_SIZE;
752	}
753
754	CH_ERR(adapter,
755		"Unsupported chip version %d\n", chip_version);
756	return 0;
757}
758
759/**
760 *	t4_get_regs - read chip registers into provided buffer
761 *	@adap: the adapter
762 *	@buf: register buffer
763 *	@buf_size: size (in bytes) of register buffer
764 *
765 *	If the provided register buffer isn't large enough for the chip's
766 *	full register range, the register dump will be truncated to the
767 *	register buffer's size.
768 */
769void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
770{
771	static const unsigned int t4_reg_ranges[] = {
772		0x1008, 0x1108,
773		0x1180, 0x1184,
774		0x1190, 0x1194,
775		0x11a0, 0x11a4,
776		0x11b0, 0x11b4,
777		0x11fc, 0x123c,
778		0x1300, 0x173c,
779		0x1800, 0x18fc,
780		0x3000, 0x30d8,
781		0x30e0, 0x30e4,
782		0x30ec, 0x5910,
783		0x5920, 0x5924,
784		0x5960, 0x5960,
785		0x5968, 0x5968,
786		0x5970, 0x5970,
787		0x5978, 0x5978,
788		0x5980, 0x5980,
789		0x5988, 0x5988,
790		0x5990, 0x5990,
791		0x5998, 0x5998,
792		0x59a0, 0x59d4,
793		0x5a00, 0x5ae0,
794		0x5ae8, 0x5ae8,
795		0x5af0, 0x5af0,
796		0x5af8, 0x5af8,
797		0x6000, 0x6098,
798		0x6100, 0x6150,
799		0x6200, 0x6208,
800		0x6240, 0x6248,
801		0x6280, 0x62b0,
802		0x62c0, 0x6338,
803		0x6370, 0x638c,
804		0x6400, 0x643c,
805		0x6500, 0x6524,
806		0x6a00, 0x6a04,
807		0x6a14, 0x6a38,
808		0x6a60, 0x6a70,
809		0x6a78, 0x6a78,
810		0x6b00, 0x6b0c,
811		0x6b1c, 0x6b84,
812		0x6bf0, 0x6bf8,
813		0x6c00, 0x6c0c,
814		0x6c1c, 0x6c84,
815		0x6cf0, 0x6cf8,
816		0x6d00, 0x6d0c,
817		0x6d1c, 0x6d84,
818		0x6df0, 0x6df8,
819		0x6e00, 0x6e0c,
820		0x6e1c, 0x6e84,
821		0x6ef0, 0x6ef8,
822		0x6f00, 0x6f0c,
823		0x6f1c, 0x6f84,
824		0x6ff0, 0x6ff8,
825		0x7000, 0x700c,
826		0x701c, 0x7084,
827		0x70f0, 0x70f8,
828		0x7100, 0x710c,
829		0x711c, 0x7184,
830		0x71f0, 0x71f8,
831		0x7200, 0x720c,
832		0x721c, 0x7284,
833		0x72f0, 0x72f8,
834		0x7300, 0x730c,
835		0x731c, 0x7384,
836		0x73f0, 0x73f8,
837		0x7400, 0x7450,
838		0x7500, 0x7530,
839		0x7600, 0x760c,
840		0x7614, 0x761c,
841		0x7680, 0x76cc,
842		0x7700, 0x7798,
843		0x77c0, 0x77fc,
844		0x7900, 0x79fc,
845		0x7b00, 0x7b58,
846		0x7b60, 0x7b84,
847		0x7b8c, 0x7c38,
848		0x7d00, 0x7d38,
849		0x7d40, 0x7d80,
850		0x7d8c, 0x7ddc,
851		0x7de4, 0x7e04,
852		0x7e10, 0x7e1c,
853		0x7e24, 0x7e38,
854		0x7e40, 0x7e44,
855		0x7e4c, 0x7e78,
856		0x7e80, 0x7ea4,
857		0x7eac, 0x7edc,
858		0x7ee8, 0x7efc,
859		0x8dc0, 0x8e04,
860		0x8e10, 0x8e1c,
861		0x8e30, 0x8e78,
862		0x8ea0, 0x8eb8,
863		0x8ec0, 0x8f6c,
864		0x8fc0, 0x9008,
865		0x9010, 0x9058,
866		0x9060, 0x9060,
867		0x9068, 0x9074,
868		0x90fc, 0x90fc,
869		0x9400, 0x9408,
870		0x9410, 0x9458,
871		0x9600, 0x9600,
872		0x9608, 0x9638,
873		0x9640, 0x96bc,
874		0x9800, 0x9808,
875		0x9820, 0x983c,
876		0x9850, 0x9864,
877		0x9c00, 0x9c6c,
878		0x9c80, 0x9cec,
879		0x9d00, 0x9d6c,
880		0x9d80, 0x9dec,
881		0x9e00, 0x9e6c,
882		0x9e80, 0x9eec,
883		0x9f00, 0x9f6c,
884		0x9f80, 0x9fec,
885		0xd004, 0xd004,
886		0xd010, 0xd03c,
887		0xdfc0, 0xdfe0,
888		0xe000, 0xea7c,
889		0xf000, 0x11190,
890		0x19040, 0x1906c,
891		0x19078, 0x19080,
892		0x1908c, 0x190e4,
893		0x190f0, 0x190f8,
894		0x19100, 0x19110,
895		0x19120, 0x19124,
896		0x19150, 0x19194,
897		0x1919c, 0x191b0,
898		0x191d0, 0x191e8,
899		0x19238, 0x1924c,
900		0x193f8, 0x1943c,
901		0x1944c, 0x19474,
902		0x19490, 0x194e0,
903		0x194f0, 0x194f8,
904		0x19800, 0x19c08,
905		0x19c10, 0x19c90,
906		0x19ca0, 0x19ce4,
907		0x19cf0, 0x19d40,
908		0x19d50, 0x19d94,
909		0x19da0, 0x19de8,
910		0x19df0, 0x19e40,
911		0x19e50, 0x19e90,
912		0x19ea0, 0x19f4c,
913		0x1a000, 0x1a004,
914		0x1a010, 0x1a06c,
915		0x1a0b0, 0x1a0e4,
916		0x1a0ec, 0x1a0f4,
917		0x1a100, 0x1a108,
918		0x1a114, 0x1a120,
919		0x1a128, 0x1a130,
920		0x1a138, 0x1a138,
921		0x1a190, 0x1a1c4,
922		0x1a1fc, 0x1a1fc,
923		0x1e040, 0x1e04c,
924		0x1e284, 0x1e28c,
925		0x1e2c0, 0x1e2c0,
926		0x1e2e0, 0x1e2e0,
927		0x1e300, 0x1e384,
928		0x1e3c0, 0x1e3c8,
929		0x1e440, 0x1e44c,
930		0x1e684, 0x1e68c,
931		0x1e6c0, 0x1e6c0,
932		0x1e6e0, 0x1e6e0,
933		0x1e700, 0x1e784,
934		0x1e7c0, 0x1e7c8,
935		0x1e840, 0x1e84c,
936		0x1ea84, 0x1ea8c,
937		0x1eac0, 0x1eac0,
938		0x1eae0, 0x1eae0,
939		0x1eb00, 0x1eb84,
940		0x1ebc0, 0x1ebc8,
941		0x1ec40, 0x1ec4c,
942		0x1ee84, 0x1ee8c,
943		0x1eec0, 0x1eec0,
944		0x1eee0, 0x1eee0,
945		0x1ef00, 0x1ef84,
946		0x1efc0, 0x1efc8,
947		0x1f040, 0x1f04c,
948		0x1f284, 0x1f28c,
949		0x1f2c0, 0x1f2c0,
950		0x1f2e0, 0x1f2e0,
951		0x1f300, 0x1f384,
952		0x1f3c0, 0x1f3c8,
953		0x1f440, 0x1f44c,
954		0x1f684, 0x1f68c,
955		0x1f6c0, 0x1f6c0,
956		0x1f6e0, 0x1f6e0,
957		0x1f700, 0x1f784,
958		0x1f7c0, 0x1f7c8,
959		0x1f840, 0x1f84c,
960		0x1fa84, 0x1fa8c,
961		0x1fac0, 0x1fac0,
962		0x1fae0, 0x1fae0,
963		0x1fb00, 0x1fb84,
964		0x1fbc0, 0x1fbc8,
965		0x1fc40, 0x1fc4c,
966		0x1fe84, 0x1fe8c,
967		0x1fec0, 0x1fec0,
968		0x1fee0, 0x1fee0,
969		0x1ff00, 0x1ff84,
970		0x1ffc0, 0x1ffc8,
971		0x20000, 0x2002c,
972		0x20100, 0x2013c,
973		0x20190, 0x201a0,
974		0x201a8, 0x201b8,
975		0x201c4, 0x201c8,
976		0x20200, 0x20318,
977		0x20400, 0x204b4,
978		0x204c0, 0x20528,
979		0x20540, 0x20614,
980		0x21000, 0x21040,
981		0x2104c, 0x21060,
982		0x210c0, 0x210ec,
983		0x21200, 0x21268,
984		0x21270, 0x21284,
985		0x212fc, 0x21388,
986		0x21400, 0x21404,
987		0x21500, 0x21500,
988		0x21510, 0x21518,
989		0x2152c, 0x21530,
990		0x2153c, 0x2153c,
991		0x21550, 0x21554,
992		0x21600, 0x21600,
993		0x21608, 0x2161c,
994		0x21624, 0x21628,
995		0x21630, 0x21634,
996		0x2163c, 0x2163c,
997		0x21700, 0x2171c,
998		0x21780, 0x2178c,
999		0x21800, 0x21818,
1000		0x21820, 0x21828,
1001		0x21830, 0x21848,
1002		0x21850, 0x21854,
1003		0x21860, 0x21868,
1004		0x21870, 0x21870,
1005		0x21878, 0x21898,
1006		0x218a0, 0x218a8,
1007		0x218b0, 0x218c8,
1008		0x218d0, 0x218d4,
1009		0x218e0, 0x218e8,
1010		0x218f0, 0x218f0,
1011		0x218f8, 0x21a18,
1012		0x21a20, 0x21a28,
1013		0x21a30, 0x21a48,
1014		0x21a50, 0x21a54,
1015		0x21a60, 0x21a68,
1016		0x21a70, 0x21a70,
1017		0x21a78, 0x21a98,
1018		0x21aa0, 0x21aa8,
1019		0x21ab0, 0x21ac8,
1020		0x21ad0, 0x21ad4,
1021		0x21ae0, 0x21ae8,
1022		0x21af0, 0x21af0,
1023		0x21af8, 0x21c18,
1024		0x21c20, 0x21c20,
1025		0x21c28, 0x21c30,
1026		0x21c38, 0x21c38,
1027		0x21c80, 0x21c98,
1028		0x21ca0, 0x21ca8,
1029		0x21cb0, 0x21cc8,
1030		0x21cd0, 0x21cd4,
1031		0x21ce0, 0x21ce8,
1032		0x21cf0, 0x21cf0,
1033		0x21cf8, 0x21d7c,
1034		0x21e00, 0x21e04,
1035		0x22000, 0x2202c,
1036		0x22100, 0x2213c,
1037		0x22190, 0x221a0,
1038		0x221a8, 0x221b8,
1039		0x221c4, 0x221c8,
1040		0x22200, 0x22318,
1041		0x22400, 0x224b4,
1042		0x224c0, 0x22528,
1043		0x22540, 0x22614,
1044		0x23000, 0x23040,
1045		0x2304c, 0x23060,
1046		0x230c0, 0x230ec,
1047		0x23200, 0x23268,
1048		0x23270, 0x23284,
1049		0x232fc, 0x23388,
1050		0x23400, 0x23404,
1051		0x23500, 0x23500,
1052		0x23510, 0x23518,
1053		0x2352c, 0x23530,
1054		0x2353c, 0x2353c,
1055		0x23550, 0x23554,
1056		0x23600, 0x23600,
1057		0x23608, 0x2361c,
1058		0x23624, 0x23628,
1059		0x23630, 0x23634,
1060		0x2363c, 0x2363c,
1061		0x23700, 0x2371c,
1062		0x23780, 0x2378c,
1063		0x23800, 0x23818,
1064		0x23820, 0x23828,
1065		0x23830, 0x23848,
1066		0x23850, 0x23854,
1067		0x23860, 0x23868,
1068		0x23870, 0x23870,
1069		0x23878, 0x23898,
1070		0x238a0, 0x238a8,
1071		0x238b0, 0x238c8,
1072		0x238d0, 0x238d4,
1073		0x238e0, 0x238e8,
1074		0x238f0, 0x238f0,
1075		0x238f8, 0x23a18,
1076		0x23a20, 0x23a28,
1077		0x23a30, 0x23a48,
1078		0x23a50, 0x23a54,
1079		0x23a60, 0x23a68,
1080		0x23a70, 0x23a70,
1081		0x23a78, 0x23a98,
1082		0x23aa0, 0x23aa8,
1083		0x23ab0, 0x23ac8,
1084		0x23ad0, 0x23ad4,
1085		0x23ae0, 0x23ae8,
1086		0x23af0, 0x23af0,
1087		0x23af8, 0x23c18,
1088		0x23c20, 0x23c20,
1089		0x23c28, 0x23c30,
1090		0x23c38, 0x23c38,
1091		0x23c80, 0x23c98,
1092		0x23ca0, 0x23ca8,
1093		0x23cb0, 0x23cc8,
1094		0x23cd0, 0x23cd4,
1095		0x23ce0, 0x23ce8,
1096		0x23cf0, 0x23cf0,
1097		0x23cf8, 0x23d7c,
1098		0x23e00, 0x23e04,
1099		0x24000, 0x2402c,
1100		0x24100, 0x2413c,
1101		0x24190, 0x241a0,
1102		0x241a8, 0x241b8,
1103		0x241c4, 0x241c8,
1104		0x24200, 0x24318,
1105		0x24400, 0x244b4,
1106		0x244c0, 0x24528,
1107		0x24540, 0x24614,
1108		0x25000, 0x25040,
1109		0x2504c, 0x25060,
1110		0x250c0, 0x250ec,
1111		0x25200, 0x25268,
1112		0x25270, 0x25284,
1113		0x252fc, 0x25388,
1114		0x25400, 0x25404,
1115		0x25500, 0x25500,
1116		0x25510, 0x25518,
1117		0x2552c, 0x25530,
1118		0x2553c, 0x2553c,
1119		0x25550, 0x25554,
1120		0x25600, 0x25600,
1121		0x25608, 0x2561c,
1122		0x25624, 0x25628,
1123		0x25630, 0x25634,
1124		0x2563c, 0x2563c,
1125		0x25700, 0x2571c,
1126		0x25780, 0x2578c,
1127		0x25800, 0x25818,
1128		0x25820, 0x25828,
1129		0x25830, 0x25848,
1130		0x25850, 0x25854,
1131		0x25860, 0x25868,
1132		0x25870, 0x25870,
1133		0x25878, 0x25898,
1134		0x258a0, 0x258a8,
1135		0x258b0, 0x258c8,
1136		0x258d0, 0x258d4,
1137		0x258e0, 0x258e8,
1138		0x258f0, 0x258f0,
1139		0x258f8, 0x25a18,
1140		0x25a20, 0x25a28,
1141		0x25a30, 0x25a48,
1142		0x25a50, 0x25a54,
1143		0x25a60, 0x25a68,
1144		0x25a70, 0x25a70,
1145		0x25a78, 0x25a98,
1146		0x25aa0, 0x25aa8,
1147		0x25ab0, 0x25ac8,
1148		0x25ad0, 0x25ad4,
1149		0x25ae0, 0x25ae8,
1150		0x25af0, 0x25af0,
1151		0x25af8, 0x25c18,
1152		0x25c20, 0x25c20,
1153		0x25c28, 0x25c30,
1154		0x25c38, 0x25c38,
1155		0x25c80, 0x25c98,
1156		0x25ca0, 0x25ca8,
1157		0x25cb0, 0x25cc8,
1158		0x25cd0, 0x25cd4,
1159		0x25ce0, 0x25ce8,
1160		0x25cf0, 0x25cf0,
1161		0x25cf8, 0x25d7c,
1162		0x25e00, 0x25e04,
1163		0x26000, 0x2602c,
1164		0x26100, 0x2613c,
1165		0x26190, 0x261a0,
1166		0x261a8, 0x261b8,
1167		0x261c4, 0x261c8,
1168		0x26200, 0x26318,
1169		0x26400, 0x264b4,
1170		0x264c0, 0x26528,
1171		0x26540, 0x26614,
1172		0x27000, 0x27040,
1173		0x2704c, 0x27060,
1174		0x270c0, 0x270ec,
1175		0x27200, 0x27268,
1176		0x27270, 0x27284,
1177		0x272fc, 0x27388,
1178		0x27400, 0x27404,
1179		0x27500, 0x27500,
1180		0x27510, 0x27518,
1181		0x2752c, 0x27530,
1182		0x2753c, 0x2753c,
1183		0x27550, 0x27554,
1184		0x27600, 0x27600,
1185		0x27608, 0x2761c,
1186		0x27624, 0x27628,
1187		0x27630, 0x27634,
1188		0x2763c, 0x2763c,
1189		0x27700, 0x2771c,
1190		0x27780, 0x2778c,
1191		0x27800, 0x27818,
1192		0x27820, 0x27828,
1193		0x27830, 0x27848,
1194		0x27850, 0x27854,
1195		0x27860, 0x27868,
1196		0x27870, 0x27870,
1197		0x27878, 0x27898,
1198		0x278a0, 0x278a8,
1199		0x278b0, 0x278c8,
1200		0x278d0, 0x278d4,
1201		0x278e0, 0x278e8,
1202		0x278f0, 0x278f0,
1203		0x278f8, 0x27a18,
1204		0x27a20, 0x27a28,
1205		0x27a30, 0x27a48,
1206		0x27a50, 0x27a54,
1207		0x27a60, 0x27a68,
1208		0x27a70, 0x27a70,
1209		0x27a78, 0x27a98,
1210		0x27aa0, 0x27aa8,
1211		0x27ab0, 0x27ac8,
1212		0x27ad0, 0x27ad4,
1213		0x27ae0, 0x27ae8,
1214		0x27af0, 0x27af0,
1215		0x27af8, 0x27c18,
1216		0x27c20, 0x27c20,
1217		0x27c28, 0x27c30,
1218		0x27c38, 0x27c38,
1219		0x27c80, 0x27c98,
1220		0x27ca0, 0x27ca8,
1221		0x27cb0, 0x27cc8,
1222		0x27cd0, 0x27cd4,
1223		0x27ce0, 0x27ce8,
1224		0x27cf0, 0x27cf0,
1225		0x27cf8, 0x27d7c,
1226		0x27e00, 0x27e04,
1227	};
1228
1229	static const unsigned int t4vf_reg_ranges[] = {
1230		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1231		VF_MPS_REG(A_MPS_VF_CTL),
1232		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1233		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1234		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1235		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1236		FW_T4VF_MBDATA_BASE_ADDR,
1237		FW_T4VF_MBDATA_BASE_ADDR +
1238		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1239	};
1240
1241	static const unsigned int t5_reg_ranges[] = {
1242		0x1008, 0x10c0,
1243		0x10cc, 0x10f8,
1244		0x1100, 0x1100,
1245		0x110c, 0x1148,
1246		0x1180, 0x1184,
1247		0x1190, 0x1194,
1248		0x11a0, 0x11a4,
1249		0x11b0, 0x11b4,
1250		0x11fc, 0x123c,
1251		0x1280, 0x173c,
1252		0x1800, 0x18fc,
1253		0x3000, 0x3028,
1254		0x3060, 0x30b0,
1255		0x30b8, 0x30d8,
1256		0x30e0, 0x30fc,
1257		0x3140, 0x357c,
1258		0x35a8, 0x35cc,
1259		0x35ec, 0x35ec,
1260		0x3600, 0x5624,
1261		0x56cc, 0x56ec,
1262		0x56f4, 0x5720,
1263		0x5728, 0x575c,
1264		0x580c, 0x5814,
1265		0x5890, 0x589c,
1266		0x58a4, 0x58ac,
1267		0x58b8, 0x58bc,
1268		0x5940, 0x59c8,
1269		0x59d0, 0x59dc,
1270		0x59fc, 0x5a18,
1271		0x5a60, 0x5a70,
1272		0x5a80, 0x5a9c,
1273		0x5b94, 0x5bfc,
1274		0x6000, 0x6020,
1275		0x6028, 0x6040,
1276		0x6058, 0x609c,
1277		0x60a8, 0x614c,
1278		0x7700, 0x7798,
1279		0x77c0, 0x78fc,
1280		0x7b00, 0x7b58,
1281		0x7b60, 0x7b84,
1282		0x7b8c, 0x7c54,
1283		0x7d00, 0x7d38,
1284		0x7d40, 0x7d80,
1285		0x7d8c, 0x7ddc,
1286		0x7de4, 0x7e04,
1287		0x7e10, 0x7e1c,
1288		0x7e24, 0x7e38,
1289		0x7e40, 0x7e44,
1290		0x7e4c, 0x7e78,
1291		0x7e80, 0x7edc,
1292		0x7ee8, 0x7efc,
1293		0x8dc0, 0x8de0,
1294		0x8df8, 0x8e04,
1295		0x8e10, 0x8e84,
1296		0x8ea0, 0x8f84,
1297		0x8fc0, 0x9058,
1298		0x9060, 0x9060,
1299		0x9068, 0x90f8,
1300		0x9400, 0x9408,
1301		0x9410, 0x9470,
1302		0x9600, 0x9600,
1303		0x9608, 0x9638,
1304		0x9640, 0x96f4,
1305		0x9800, 0x9808,
1306		0x9820, 0x983c,
1307		0x9850, 0x9864,
1308		0x9c00, 0x9c6c,
1309		0x9c80, 0x9cec,
1310		0x9d00, 0x9d6c,
1311		0x9d80, 0x9dec,
1312		0x9e00, 0x9e6c,
1313		0x9e80, 0x9eec,
1314		0x9f00, 0x9f6c,
1315		0x9f80, 0xa020,
1316		0xd004, 0xd004,
1317		0xd010, 0xd03c,
1318		0xdfc0, 0xdfe0,
1319		0xe000, 0x1106c,
1320		0x11074, 0x11088,
1321		0x1109c, 0x1117c,
1322		0x11190, 0x11204,
1323		0x19040, 0x1906c,
1324		0x19078, 0x19080,
1325		0x1908c, 0x190e8,
1326		0x190f0, 0x190f8,
1327		0x19100, 0x19110,
1328		0x19120, 0x19124,
1329		0x19150, 0x19194,
1330		0x1919c, 0x191b0,
1331		0x191d0, 0x191e8,
1332		0x19238, 0x19290,
1333		0x193f8, 0x19428,
1334		0x19430, 0x19444,
1335		0x1944c, 0x1946c,
1336		0x19474, 0x19474,
1337		0x19490, 0x194cc,
1338		0x194f0, 0x194f8,
1339		0x19c00, 0x19c08,
1340		0x19c10, 0x19c60,
1341		0x19c94, 0x19ce4,
1342		0x19cf0, 0x19d40,
1343		0x19d50, 0x19d94,
1344		0x19da0, 0x19de8,
1345		0x19df0, 0x19e10,
1346		0x19e50, 0x19e90,
1347		0x19ea0, 0x19f24,
1348		0x19f34, 0x19f34,
1349		0x19f40, 0x19f50,
1350		0x19f90, 0x19fb4,
1351		0x19fc4, 0x19fe4,
1352		0x1a000, 0x1a004,
1353		0x1a010, 0x1a06c,
1354		0x1a0b0, 0x1a0e4,
1355		0x1a0ec, 0x1a0f8,
1356		0x1a100, 0x1a108,
1357		0x1a114, 0x1a120,
1358		0x1a128, 0x1a130,
1359		0x1a138, 0x1a138,
1360		0x1a190, 0x1a1c4,
1361		0x1a1fc, 0x1a1fc,
1362		0x1e008, 0x1e00c,
1363		0x1e040, 0x1e044,
1364		0x1e04c, 0x1e04c,
1365		0x1e284, 0x1e290,
1366		0x1e2c0, 0x1e2c0,
1367		0x1e2e0, 0x1e2e0,
1368		0x1e300, 0x1e384,
1369		0x1e3c0, 0x1e3c8,
1370		0x1e408, 0x1e40c,
1371		0x1e440, 0x1e444,
1372		0x1e44c, 0x1e44c,
1373		0x1e684, 0x1e690,
1374		0x1e6c0, 0x1e6c0,
1375		0x1e6e0, 0x1e6e0,
1376		0x1e700, 0x1e784,
1377		0x1e7c0, 0x1e7c8,
1378		0x1e808, 0x1e80c,
1379		0x1e840, 0x1e844,
1380		0x1e84c, 0x1e84c,
1381		0x1ea84, 0x1ea90,
1382		0x1eac0, 0x1eac0,
1383		0x1eae0, 0x1eae0,
1384		0x1eb00, 0x1eb84,
1385		0x1ebc0, 0x1ebc8,
1386		0x1ec08, 0x1ec0c,
1387		0x1ec40, 0x1ec44,
1388		0x1ec4c, 0x1ec4c,
1389		0x1ee84, 0x1ee90,
1390		0x1eec0, 0x1eec0,
1391		0x1eee0, 0x1eee0,
1392		0x1ef00, 0x1ef84,
1393		0x1efc0, 0x1efc8,
1394		0x1f008, 0x1f00c,
1395		0x1f040, 0x1f044,
1396		0x1f04c, 0x1f04c,
1397		0x1f284, 0x1f290,
1398		0x1f2c0, 0x1f2c0,
1399		0x1f2e0, 0x1f2e0,
1400		0x1f300, 0x1f384,
1401		0x1f3c0, 0x1f3c8,
1402		0x1f408, 0x1f40c,
1403		0x1f440, 0x1f444,
1404		0x1f44c, 0x1f44c,
1405		0x1f684, 0x1f690,
1406		0x1f6c0, 0x1f6c0,
1407		0x1f6e0, 0x1f6e0,
1408		0x1f700, 0x1f784,
1409		0x1f7c0, 0x1f7c8,
1410		0x1f808, 0x1f80c,
1411		0x1f840, 0x1f844,
1412		0x1f84c, 0x1f84c,
1413		0x1fa84, 0x1fa90,
1414		0x1fac0, 0x1fac0,
1415		0x1fae0, 0x1fae0,
1416		0x1fb00, 0x1fb84,
1417		0x1fbc0, 0x1fbc8,
1418		0x1fc08, 0x1fc0c,
1419		0x1fc40, 0x1fc44,
1420		0x1fc4c, 0x1fc4c,
1421		0x1fe84, 0x1fe90,
1422		0x1fec0, 0x1fec0,
1423		0x1fee0, 0x1fee0,
1424		0x1ff00, 0x1ff84,
1425		0x1ffc0, 0x1ffc8,
1426		0x30000, 0x30030,
1427		0x30038, 0x30038,
1428		0x30040, 0x30040,
1429		0x30100, 0x30144,
1430		0x30190, 0x301a0,
1431		0x301a8, 0x301b8,
1432		0x301c4, 0x301c8,
1433		0x301d0, 0x301d0,
1434		0x30200, 0x30318,
1435		0x30400, 0x304b4,
1436		0x304c0, 0x3052c,
1437		0x30540, 0x3061c,
1438		0x30800, 0x30828,
1439		0x30834, 0x30834,
1440		0x308c0, 0x30908,
1441		0x30910, 0x309ac,
1442		0x30a00, 0x30a14,
1443		0x30a1c, 0x30a2c,
1444		0x30a44, 0x30a50,
1445		0x30a74, 0x30a74,
1446		0x30a7c, 0x30afc,
1447		0x30b08, 0x30c24,
1448		0x30d00, 0x30d00,
1449		0x30d08, 0x30d14,
1450		0x30d1c, 0x30d20,
1451		0x30d3c, 0x30d3c,
1452		0x30d48, 0x30d50,
1453		0x31200, 0x3120c,
1454		0x31220, 0x31220,
1455		0x31240, 0x31240,
1456		0x31600, 0x3160c,
1457		0x31a00, 0x31a1c,
1458		0x31e00, 0x31e20,
1459		0x31e38, 0x31e3c,
1460		0x31e80, 0x31e80,
1461		0x31e88, 0x31ea8,
1462		0x31eb0, 0x31eb4,
1463		0x31ec8, 0x31ed4,
1464		0x31fb8, 0x32004,
1465		0x32200, 0x32200,
1466		0x32208, 0x32240,
1467		0x32248, 0x32280,
1468		0x32288, 0x322c0,
1469		0x322c8, 0x322fc,
1470		0x32600, 0x32630,
1471		0x32a00, 0x32abc,
1472		0x32b00, 0x32b10,
1473		0x32b20, 0x32b30,
1474		0x32b40, 0x32b50,
1475		0x32b60, 0x32b70,
1476		0x33000, 0x33028,
1477		0x33030, 0x33048,
1478		0x33060, 0x33068,
1479		0x33070, 0x3309c,
1480		0x330f0, 0x33128,
1481		0x33130, 0x33148,
1482		0x33160, 0x33168,
1483		0x33170, 0x3319c,
1484		0x331f0, 0x33238,
1485		0x33240, 0x33240,
1486		0x33248, 0x33250,
1487		0x3325c, 0x33264,
1488		0x33270, 0x332b8,
1489		0x332c0, 0x332e4,
1490		0x332f8, 0x33338,
1491		0x33340, 0x33340,
1492		0x33348, 0x33350,
1493		0x3335c, 0x33364,
1494		0x33370, 0x333b8,
1495		0x333c0, 0x333e4,
1496		0x333f8, 0x33428,
1497		0x33430, 0x33448,
1498		0x33460, 0x33468,
1499		0x33470, 0x3349c,
1500		0x334f0, 0x33528,
1501		0x33530, 0x33548,
1502		0x33560, 0x33568,
1503		0x33570, 0x3359c,
1504		0x335f0, 0x33638,
1505		0x33640, 0x33640,
1506		0x33648, 0x33650,
1507		0x3365c, 0x33664,
1508		0x33670, 0x336b8,
1509		0x336c0, 0x336e4,
1510		0x336f8, 0x33738,
1511		0x33740, 0x33740,
1512		0x33748, 0x33750,
1513		0x3375c, 0x33764,
1514		0x33770, 0x337b8,
1515		0x337c0, 0x337e4,
1516		0x337f8, 0x337fc,
1517		0x33814, 0x33814,
1518		0x3382c, 0x3382c,
1519		0x33880, 0x3388c,
1520		0x338e8, 0x338ec,
1521		0x33900, 0x33928,
1522		0x33930, 0x33948,
1523		0x33960, 0x33968,
1524		0x33970, 0x3399c,
1525		0x339f0, 0x33a38,
1526		0x33a40, 0x33a40,
1527		0x33a48, 0x33a50,
1528		0x33a5c, 0x33a64,
1529		0x33a70, 0x33ab8,
1530		0x33ac0, 0x33ae4,
1531		0x33af8, 0x33b10,
1532		0x33b28, 0x33b28,
1533		0x33b3c, 0x33b50,
1534		0x33bf0, 0x33c10,
1535		0x33c28, 0x33c28,
1536		0x33c3c, 0x33c50,
1537		0x33cf0, 0x33cfc,
1538		0x34000, 0x34030,
1539		0x34038, 0x34038,
1540		0x34040, 0x34040,
1541		0x34100, 0x34144,
1542		0x34190, 0x341a0,
1543		0x341a8, 0x341b8,
1544		0x341c4, 0x341c8,
1545		0x341d0, 0x341d0,
1546		0x34200, 0x34318,
1547		0x34400, 0x344b4,
1548		0x344c0, 0x3452c,
1549		0x34540, 0x3461c,
1550		0x34800, 0x34828,
1551		0x34834, 0x34834,
1552		0x348c0, 0x34908,
1553		0x34910, 0x349ac,
1554		0x34a00, 0x34a14,
1555		0x34a1c, 0x34a2c,
1556		0x34a44, 0x34a50,
1557		0x34a74, 0x34a74,
1558		0x34a7c, 0x34afc,
1559		0x34b08, 0x34c24,
1560		0x34d00, 0x34d00,
1561		0x34d08, 0x34d14,
1562		0x34d1c, 0x34d20,
1563		0x34d3c, 0x34d3c,
1564		0x34d48, 0x34d50,
1565		0x35200, 0x3520c,
1566		0x35220, 0x35220,
1567		0x35240, 0x35240,
1568		0x35600, 0x3560c,
1569		0x35a00, 0x35a1c,
1570		0x35e00, 0x35e20,
1571		0x35e38, 0x35e3c,
1572		0x35e80, 0x35e80,
1573		0x35e88, 0x35ea8,
1574		0x35eb0, 0x35eb4,
1575		0x35ec8, 0x35ed4,
1576		0x35fb8, 0x36004,
1577		0x36200, 0x36200,
1578		0x36208, 0x36240,
1579		0x36248, 0x36280,
1580		0x36288, 0x362c0,
1581		0x362c8, 0x362fc,
1582		0x36600, 0x36630,
1583		0x36a00, 0x36abc,
1584		0x36b00, 0x36b10,
1585		0x36b20, 0x36b30,
1586		0x36b40, 0x36b50,
1587		0x36b60, 0x36b70,
1588		0x37000, 0x37028,
1589		0x37030, 0x37048,
1590		0x37060, 0x37068,
1591		0x37070, 0x3709c,
1592		0x370f0, 0x37128,
1593		0x37130, 0x37148,
1594		0x37160, 0x37168,
1595		0x37170, 0x3719c,
1596		0x371f0, 0x37238,
1597		0x37240, 0x37240,
1598		0x37248, 0x37250,
1599		0x3725c, 0x37264,
1600		0x37270, 0x372b8,
1601		0x372c0, 0x372e4,
1602		0x372f8, 0x37338,
1603		0x37340, 0x37340,
1604		0x37348, 0x37350,
1605		0x3735c, 0x37364,
1606		0x37370, 0x373b8,
1607		0x373c0, 0x373e4,
1608		0x373f8, 0x37428,
1609		0x37430, 0x37448,
1610		0x37460, 0x37468,
1611		0x37470, 0x3749c,
1612		0x374f0, 0x37528,
1613		0x37530, 0x37548,
1614		0x37560, 0x37568,
1615		0x37570, 0x3759c,
1616		0x375f0, 0x37638,
1617		0x37640, 0x37640,
1618		0x37648, 0x37650,
1619		0x3765c, 0x37664,
1620		0x37670, 0x376b8,
1621		0x376c0, 0x376e4,
1622		0x376f8, 0x37738,
1623		0x37740, 0x37740,
1624		0x37748, 0x37750,
1625		0x3775c, 0x37764,
1626		0x37770, 0x377b8,
1627		0x377c0, 0x377e4,
1628		0x377f8, 0x377fc,
1629		0x37814, 0x37814,
1630		0x3782c, 0x3782c,
1631		0x37880, 0x3788c,
1632		0x378e8, 0x378ec,
1633		0x37900, 0x37928,
1634		0x37930, 0x37948,
1635		0x37960, 0x37968,
1636		0x37970, 0x3799c,
1637		0x379f0, 0x37a38,
1638		0x37a40, 0x37a40,
1639		0x37a48, 0x37a50,
1640		0x37a5c, 0x37a64,
1641		0x37a70, 0x37ab8,
1642		0x37ac0, 0x37ae4,
1643		0x37af8, 0x37b10,
1644		0x37b28, 0x37b28,
1645		0x37b3c, 0x37b50,
1646		0x37bf0, 0x37c10,
1647		0x37c28, 0x37c28,
1648		0x37c3c, 0x37c50,
1649		0x37cf0, 0x37cfc,
1650		0x38000, 0x38030,
1651		0x38038, 0x38038,
1652		0x38040, 0x38040,
1653		0x38100, 0x38144,
1654		0x38190, 0x381a0,
1655		0x381a8, 0x381b8,
1656		0x381c4, 0x381c8,
1657		0x381d0, 0x381d0,
1658		0x38200, 0x38318,
1659		0x38400, 0x384b4,
1660		0x384c0, 0x3852c,
1661		0x38540, 0x3861c,
1662		0x38800, 0x38828,
1663		0x38834, 0x38834,
1664		0x388c0, 0x38908,
1665		0x38910, 0x389ac,
1666		0x38a00, 0x38a14,
1667		0x38a1c, 0x38a2c,
1668		0x38a44, 0x38a50,
1669		0x38a74, 0x38a74,
1670		0x38a7c, 0x38afc,
1671		0x38b08, 0x38c24,
1672		0x38d00, 0x38d00,
1673		0x38d08, 0x38d14,
1674		0x38d1c, 0x38d20,
1675		0x38d3c, 0x38d3c,
1676		0x38d48, 0x38d50,
1677		0x39200, 0x3920c,
1678		0x39220, 0x39220,
1679		0x39240, 0x39240,
1680		0x39600, 0x3960c,
1681		0x39a00, 0x39a1c,
1682		0x39e00, 0x39e20,
1683		0x39e38, 0x39e3c,
1684		0x39e80, 0x39e80,
1685		0x39e88, 0x39ea8,
1686		0x39eb0, 0x39eb4,
1687		0x39ec8, 0x39ed4,
1688		0x39fb8, 0x3a004,
1689		0x3a200, 0x3a200,
1690		0x3a208, 0x3a240,
1691		0x3a248, 0x3a280,
1692		0x3a288, 0x3a2c0,
1693		0x3a2c8, 0x3a2fc,
1694		0x3a600, 0x3a630,
1695		0x3aa00, 0x3aabc,
1696		0x3ab00, 0x3ab10,
1697		0x3ab20, 0x3ab30,
1698		0x3ab40, 0x3ab50,
1699		0x3ab60, 0x3ab70,
1700		0x3b000, 0x3b028,
1701		0x3b030, 0x3b048,
1702		0x3b060, 0x3b068,
1703		0x3b070, 0x3b09c,
1704		0x3b0f0, 0x3b128,
1705		0x3b130, 0x3b148,
1706		0x3b160, 0x3b168,
1707		0x3b170, 0x3b19c,
1708		0x3b1f0, 0x3b238,
1709		0x3b240, 0x3b240,
1710		0x3b248, 0x3b250,
1711		0x3b25c, 0x3b264,
1712		0x3b270, 0x3b2b8,
1713		0x3b2c0, 0x3b2e4,
1714		0x3b2f8, 0x3b338,
1715		0x3b340, 0x3b340,
1716		0x3b348, 0x3b350,
1717		0x3b35c, 0x3b364,
1718		0x3b370, 0x3b3b8,
1719		0x3b3c0, 0x3b3e4,
1720		0x3b3f8, 0x3b428,
1721		0x3b430, 0x3b448,
1722		0x3b460, 0x3b468,
1723		0x3b470, 0x3b49c,
1724		0x3b4f0, 0x3b528,
1725		0x3b530, 0x3b548,
1726		0x3b560, 0x3b568,
1727		0x3b570, 0x3b59c,
1728		0x3b5f0, 0x3b638,
1729		0x3b640, 0x3b640,
1730		0x3b648, 0x3b650,
1731		0x3b65c, 0x3b664,
1732		0x3b670, 0x3b6b8,
1733		0x3b6c0, 0x3b6e4,
1734		0x3b6f8, 0x3b738,
1735		0x3b740, 0x3b740,
1736		0x3b748, 0x3b750,
1737		0x3b75c, 0x3b764,
1738		0x3b770, 0x3b7b8,
1739		0x3b7c0, 0x3b7e4,
1740		0x3b7f8, 0x3b7fc,
1741		0x3b814, 0x3b814,
1742		0x3b82c, 0x3b82c,
1743		0x3b880, 0x3b88c,
1744		0x3b8e8, 0x3b8ec,
1745		0x3b900, 0x3b928,
1746		0x3b930, 0x3b948,
1747		0x3b960, 0x3b968,
1748		0x3b970, 0x3b99c,
1749		0x3b9f0, 0x3ba38,
1750		0x3ba40, 0x3ba40,
1751		0x3ba48, 0x3ba50,
1752		0x3ba5c, 0x3ba64,
1753		0x3ba70, 0x3bab8,
1754		0x3bac0, 0x3bae4,
1755		0x3baf8, 0x3bb10,
1756		0x3bb28, 0x3bb28,
1757		0x3bb3c, 0x3bb50,
1758		0x3bbf0, 0x3bc10,
1759		0x3bc28, 0x3bc28,
1760		0x3bc3c, 0x3bc50,
1761		0x3bcf0, 0x3bcfc,
1762		0x3c000, 0x3c030,
1763		0x3c038, 0x3c038,
1764		0x3c040, 0x3c040,
1765		0x3c100, 0x3c144,
1766		0x3c190, 0x3c1a0,
1767		0x3c1a8, 0x3c1b8,
1768		0x3c1c4, 0x3c1c8,
1769		0x3c1d0, 0x3c1d0,
1770		0x3c200, 0x3c318,
1771		0x3c400, 0x3c4b4,
1772		0x3c4c0, 0x3c52c,
1773		0x3c540, 0x3c61c,
1774		0x3c800, 0x3c828,
1775		0x3c834, 0x3c834,
1776		0x3c8c0, 0x3c908,
1777		0x3c910, 0x3c9ac,
1778		0x3ca00, 0x3ca14,
1779		0x3ca1c, 0x3ca2c,
1780		0x3ca44, 0x3ca50,
1781		0x3ca74, 0x3ca74,
1782		0x3ca7c, 0x3cafc,
1783		0x3cb08, 0x3cc24,
1784		0x3cd00, 0x3cd00,
1785		0x3cd08, 0x3cd14,
1786		0x3cd1c, 0x3cd20,
1787		0x3cd3c, 0x3cd3c,
1788		0x3cd48, 0x3cd50,
1789		0x3d200, 0x3d20c,
1790		0x3d220, 0x3d220,
1791		0x3d240, 0x3d240,
1792		0x3d600, 0x3d60c,
1793		0x3da00, 0x3da1c,
1794		0x3de00, 0x3de20,
1795		0x3de38, 0x3de3c,
1796		0x3de80, 0x3de80,
1797		0x3de88, 0x3dea8,
1798		0x3deb0, 0x3deb4,
1799		0x3dec8, 0x3ded4,
1800		0x3dfb8, 0x3e004,
1801		0x3e200, 0x3e200,
1802		0x3e208, 0x3e240,
1803		0x3e248, 0x3e280,
1804		0x3e288, 0x3e2c0,
1805		0x3e2c8, 0x3e2fc,
1806		0x3e600, 0x3e630,
1807		0x3ea00, 0x3eabc,
1808		0x3eb00, 0x3eb10,
1809		0x3eb20, 0x3eb30,
1810		0x3eb40, 0x3eb50,
1811		0x3eb60, 0x3eb70,
1812		0x3f000, 0x3f028,
1813		0x3f030, 0x3f048,
1814		0x3f060, 0x3f068,
1815		0x3f070, 0x3f09c,
1816		0x3f0f0, 0x3f128,
1817		0x3f130, 0x3f148,
1818		0x3f160, 0x3f168,
1819		0x3f170, 0x3f19c,
1820		0x3f1f0, 0x3f238,
1821		0x3f240, 0x3f240,
1822		0x3f248, 0x3f250,
1823		0x3f25c, 0x3f264,
1824		0x3f270, 0x3f2b8,
1825		0x3f2c0, 0x3f2e4,
1826		0x3f2f8, 0x3f338,
1827		0x3f340, 0x3f340,
1828		0x3f348, 0x3f350,
1829		0x3f35c, 0x3f364,
1830		0x3f370, 0x3f3b8,
1831		0x3f3c0, 0x3f3e4,
1832		0x3f3f8, 0x3f428,
1833		0x3f430, 0x3f448,
1834		0x3f460, 0x3f468,
1835		0x3f470, 0x3f49c,
1836		0x3f4f0, 0x3f528,
1837		0x3f530, 0x3f548,
1838		0x3f560, 0x3f568,
1839		0x3f570, 0x3f59c,
1840		0x3f5f0, 0x3f638,
1841		0x3f640, 0x3f640,
1842		0x3f648, 0x3f650,
1843		0x3f65c, 0x3f664,
1844		0x3f670, 0x3f6b8,
1845		0x3f6c0, 0x3f6e4,
1846		0x3f6f8, 0x3f738,
1847		0x3f740, 0x3f740,
1848		0x3f748, 0x3f750,
1849		0x3f75c, 0x3f764,
1850		0x3f770, 0x3f7b8,
1851		0x3f7c0, 0x3f7e4,
1852		0x3f7f8, 0x3f7fc,
1853		0x3f814, 0x3f814,
1854		0x3f82c, 0x3f82c,
1855		0x3f880, 0x3f88c,
1856		0x3f8e8, 0x3f8ec,
1857		0x3f900, 0x3f928,
1858		0x3f930, 0x3f948,
1859		0x3f960, 0x3f968,
1860		0x3f970, 0x3f99c,
1861		0x3f9f0, 0x3fa38,
1862		0x3fa40, 0x3fa40,
1863		0x3fa48, 0x3fa50,
1864		0x3fa5c, 0x3fa64,
1865		0x3fa70, 0x3fab8,
1866		0x3fac0, 0x3fae4,
1867		0x3faf8, 0x3fb10,
1868		0x3fb28, 0x3fb28,
1869		0x3fb3c, 0x3fb50,
1870		0x3fbf0, 0x3fc10,
1871		0x3fc28, 0x3fc28,
1872		0x3fc3c, 0x3fc50,
1873		0x3fcf0, 0x3fcfc,
1874		0x40000, 0x4000c,
1875		0x40040, 0x40050,
1876		0x40060, 0x40068,
1877		0x4007c, 0x4008c,
1878		0x40094, 0x400b0,
1879		0x400c0, 0x40144,
1880		0x40180, 0x4018c,
1881		0x40200, 0x40254,
1882		0x40260, 0x40264,
1883		0x40270, 0x40288,
1884		0x40290, 0x40298,
1885		0x402ac, 0x402c8,
1886		0x402d0, 0x402e0,
1887		0x402f0, 0x402f0,
1888		0x40300, 0x4033c,
1889		0x403f8, 0x403fc,
1890		0x41304, 0x413c4,
1891		0x41400, 0x4140c,
1892		0x41414, 0x4141c,
1893		0x41480, 0x414d0,
1894		0x44000, 0x44054,
1895		0x4405c, 0x44078,
1896		0x440c0, 0x44174,
1897		0x44180, 0x441ac,
1898		0x441b4, 0x441b8,
1899		0x441c0, 0x44254,
1900		0x4425c, 0x44278,
1901		0x442c0, 0x44374,
1902		0x44380, 0x443ac,
1903		0x443b4, 0x443b8,
1904		0x443c0, 0x44454,
1905		0x4445c, 0x44478,
1906		0x444c0, 0x44574,
1907		0x44580, 0x445ac,
1908		0x445b4, 0x445b8,
1909		0x445c0, 0x44654,
1910		0x4465c, 0x44678,
1911		0x446c0, 0x44774,
1912		0x44780, 0x447ac,
1913		0x447b4, 0x447b8,
1914		0x447c0, 0x44854,
1915		0x4485c, 0x44878,
1916		0x448c0, 0x44974,
1917		0x44980, 0x449ac,
1918		0x449b4, 0x449b8,
1919		0x449c0, 0x449fc,
1920		0x45000, 0x45004,
1921		0x45010, 0x45030,
1922		0x45040, 0x45060,
1923		0x45068, 0x45068,
1924		0x45080, 0x45084,
1925		0x450a0, 0x450b0,
1926		0x45200, 0x45204,
1927		0x45210, 0x45230,
1928		0x45240, 0x45260,
1929		0x45268, 0x45268,
1930		0x45280, 0x45284,
1931		0x452a0, 0x452b0,
1932		0x460c0, 0x460e4,
1933		0x47000, 0x4703c,
1934		0x47044, 0x4708c,
1935		0x47200, 0x47250,
1936		0x47400, 0x47408,
1937		0x47414, 0x47420,
1938		0x47600, 0x47618,
1939		0x47800, 0x47814,
1940		0x48000, 0x4800c,
1941		0x48040, 0x48050,
1942		0x48060, 0x48068,
1943		0x4807c, 0x4808c,
1944		0x48094, 0x480b0,
1945		0x480c0, 0x48144,
1946		0x48180, 0x4818c,
1947		0x48200, 0x48254,
1948		0x48260, 0x48264,
1949		0x48270, 0x48288,
1950		0x48290, 0x48298,
1951		0x482ac, 0x482c8,
1952		0x482d0, 0x482e0,
1953		0x482f0, 0x482f0,
1954		0x48300, 0x4833c,
1955		0x483f8, 0x483fc,
1956		0x49304, 0x493c4,
1957		0x49400, 0x4940c,
1958		0x49414, 0x4941c,
1959		0x49480, 0x494d0,
1960		0x4c000, 0x4c054,
1961		0x4c05c, 0x4c078,
1962		0x4c0c0, 0x4c174,
1963		0x4c180, 0x4c1ac,
1964		0x4c1b4, 0x4c1b8,
1965		0x4c1c0, 0x4c254,
1966		0x4c25c, 0x4c278,
1967		0x4c2c0, 0x4c374,
1968		0x4c380, 0x4c3ac,
1969		0x4c3b4, 0x4c3b8,
1970		0x4c3c0, 0x4c454,
1971		0x4c45c, 0x4c478,
1972		0x4c4c0, 0x4c574,
1973		0x4c580, 0x4c5ac,
1974		0x4c5b4, 0x4c5b8,
1975		0x4c5c0, 0x4c654,
1976		0x4c65c, 0x4c678,
1977		0x4c6c0, 0x4c774,
1978		0x4c780, 0x4c7ac,
1979		0x4c7b4, 0x4c7b8,
1980		0x4c7c0, 0x4c854,
1981		0x4c85c, 0x4c878,
1982		0x4c8c0, 0x4c974,
1983		0x4c980, 0x4c9ac,
1984		0x4c9b4, 0x4c9b8,
1985		0x4c9c0, 0x4c9fc,
1986		0x4d000, 0x4d004,
1987		0x4d010, 0x4d030,
1988		0x4d040, 0x4d060,
1989		0x4d068, 0x4d068,
1990		0x4d080, 0x4d084,
1991		0x4d0a0, 0x4d0b0,
1992		0x4d200, 0x4d204,
1993		0x4d210, 0x4d230,
1994		0x4d240, 0x4d260,
1995		0x4d268, 0x4d268,
1996		0x4d280, 0x4d284,
1997		0x4d2a0, 0x4d2b0,
1998		0x4e0c0, 0x4e0e4,
1999		0x4f000, 0x4f03c,
2000		0x4f044, 0x4f08c,
2001		0x4f200, 0x4f250,
2002		0x4f400, 0x4f408,
2003		0x4f414, 0x4f420,
2004		0x4f600, 0x4f618,
2005		0x4f800, 0x4f814,
2006		0x50000, 0x50084,
2007		0x50090, 0x500cc,
2008		0x50400, 0x50400,
2009		0x50800, 0x50884,
2010		0x50890, 0x508cc,
2011		0x50c00, 0x50c00,
2012		0x51000, 0x5101c,
2013		0x51300, 0x51308,
2014	};
2015
2016	static const unsigned int t5vf_reg_ranges[] = {
2017		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2018		VF_MPS_REG(A_MPS_VF_CTL),
2019		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2020		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2021		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2022		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2023		FW_T4VF_MBDATA_BASE_ADDR,
2024		FW_T4VF_MBDATA_BASE_ADDR +
2025		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2026	};
2027
2028	static const unsigned int t6_reg_ranges[] = {
2029		0x1008, 0x101c,
2030		0x1024, 0x10a8,
2031		0x10b4, 0x10f8,
2032		0x1100, 0x1114,
2033		0x111c, 0x112c,
2034		0x1138, 0x113c,
2035		0x1144, 0x114c,
2036		0x1180, 0x1184,
2037		0x1190, 0x1194,
2038		0x11a0, 0x11a4,
2039		0x11b0, 0x11b4,
2040		0x11fc, 0x1274,
2041		0x1280, 0x133c,
2042		0x1800, 0x18fc,
2043		0x3000, 0x302c,
2044		0x3060, 0x30b0,
2045		0x30b8, 0x30d8,
2046		0x30e0, 0x30fc,
2047		0x3140, 0x357c,
2048		0x35a8, 0x35cc,
2049		0x35ec, 0x35ec,
2050		0x3600, 0x5624,
2051		0x56cc, 0x56ec,
2052		0x56f4, 0x5720,
2053		0x5728, 0x575c,
2054		0x580c, 0x5814,
2055		0x5890, 0x589c,
2056		0x58a4, 0x58ac,
2057		0x58b8, 0x58bc,
2058		0x5940, 0x595c,
2059		0x5980, 0x598c,
2060		0x59b0, 0x59c8,
2061		0x59d0, 0x59dc,
2062		0x59fc, 0x5a18,
2063		0x5a60, 0x5a6c,
2064		0x5a80, 0x5a8c,
2065		0x5a94, 0x5a9c,
2066		0x5b94, 0x5bfc,
2067		0x5c10, 0x5e48,
2068		0x5e50, 0x5e94,
2069		0x5ea0, 0x5eb0,
2070		0x5ec0, 0x5ec0,
2071		0x5ec8, 0x5ed0,
2072		0x5ee0, 0x5ee0,
2073		0x5ef0, 0x5ef0,
2074		0x5f00, 0x5f00,
2075		0x6000, 0x6020,
2076		0x6028, 0x6040,
2077		0x6058, 0x609c,
2078		0x60a8, 0x619c,
2079		0x7700, 0x7798,
2080		0x77c0, 0x7880,
2081		0x78cc, 0x78fc,
2082		0x7b00, 0x7b58,
2083		0x7b60, 0x7b84,
2084		0x7b8c, 0x7c54,
2085		0x7d00, 0x7d38,
2086		0x7d40, 0x7d84,
2087		0x7d8c, 0x7ddc,
2088		0x7de4, 0x7e04,
2089		0x7e10, 0x7e1c,
2090		0x7e24, 0x7e38,
2091		0x7e40, 0x7e44,
2092		0x7e4c, 0x7e78,
2093		0x7e80, 0x7edc,
2094		0x7ee8, 0x7efc,
2095		0x8dc0, 0x8de4,
2096		0x8df8, 0x8e04,
2097		0x8e10, 0x8e84,
2098		0x8ea0, 0x8f88,
2099		0x8fb8, 0x9058,
2100		0x9060, 0x9060,
2101		0x9068, 0x90f8,
2102		0x9100, 0x9124,
2103		0x9400, 0x9470,
2104		0x9600, 0x9600,
2105		0x9608, 0x9638,
2106		0x9640, 0x9704,
2107		0x9710, 0x971c,
2108		0x9800, 0x9808,
2109		0x9820, 0x983c,
2110		0x9850, 0x9864,
2111		0x9c00, 0x9c6c,
2112		0x9c80, 0x9cec,
2113		0x9d00, 0x9d6c,
2114		0x9d80, 0x9dec,
2115		0x9e00, 0x9e6c,
2116		0x9e80, 0x9eec,
2117		0x9f00, 0x9f6c,
2118		0x9f80, 0xa020,
2119		0xd004, 0xd03c,
2120		0xd100, 0xd118,
2121		0xd200, 0xd214,
2122		0xd220, 0xd234,
2123		0xd240, 0xd254,
2124		0xd260, 0xd274,
2125		0xd280, 0xd294,
2126		0xd2a0, 0xd2b4,
2127		0xd2c0, 0xd2d4,
2128		0xd2e0, 0xd2f4,
2129		0xd300, 0xd31c,
2130		0xdfc0, 0xdfe0,
2131		0xe000, 0xf008,
2132		0xf010, 0xf018,
2133		0xf020, 0xf028,
2134		0x11000, 0x11014,
2135		0x11048, 0x1106c,
2136		0x11074, 0x11088,
2137		0x11098, 0x11120,
2138		0x1112c, 0x1117c,
2139		0x11190, 0x112e0,
2140		0x11300, 0x1130c,
2141		0x12000, 0x1206c,
2142		0x19040, 0x1906c,
2143		0x19078, 0x19080,
2144		0x1908c, 0x190e8,
2145		0x190f0, 0x190f8,
2146		0x19100, 0x19110,
2147		0x19120, 0x19124,
2148		0x19150, 0x19194,
2149		0x1919c, 0x191b0,
2150		0x191d0, 0x191e8,
2151		0x19238, 0x19290,
2152		0x192a4, 0x192b0,
2153		0x192bc, 0x192bc,
2154		0x19348, 0x1934c,
2155		0x193f8, 0x19418,
2156		0x19420, 0x19428,
2157		0x19430, 0x19444,
2158		0x1944c, 0x1946c,
2159		0x19474, 0x19474,
2160		0x19490, 0x194cc,
2161		0x194f0, 0x194f8,
2162		0x19c00, 0x19c48,
2163		0x19c50, 0x19c80,
2164		0x19c94, 0x19c98,
2165		0x19ca0, 0x19cbc,
2166		0x19ce4, 0x19ce4,
2167		0x19cf0, 0x19cf8,
2168		0x19d00, 0x19d28,
2169		0x19d50, 0x19d78,
2170		0x19d94, 0x19d98,
2171		0x19da0, 0x19dc8,
2172		0x19df0, 0x19e10,
2173		0x19e50, 0x19e6c,
2174		0x19ea0, 0x19ebc,
2175		0x19ec4, 0x19ef4,
2176		0x19f04, 0x19f2c,
2177		0x19f34, 0x19f34,
2178		0x19f40, 0x19f50,
2179		0x19f90, 0x19fac,
2180		0x19fc4, 0x19fc8,
2181		0x19fd0, 0x19fe4,
2182		0x1a000, 0x1a004,
2183		0x1a010, 0x1a06c,
2184		0x1a0b0, 0x1a0e4,
2185		0x1a0ec, 0x1a0f8,
2186		0x1a100, 0x1a108,
2187		0x1a114, 0x1a120,
2188		0x1a128, 0x1a130,
2189		0x1a138, 0x1a138,
2190		0x1a190, 0x1a1c4,
2191		0x1a1fc, 0x1a1fc,
2192		0x1e008, 0x1e00c,
2193		0x1e040, 0x1e044,
2194		0x1e04c, 0x1e04c,
2195		0x1e284, 0x1e290,
2196		0x1e2c0, 0x1e2c0,
2197		0x1e2e0, 0x1e2e0,
2198		0x1e300, 0x1e384,
2199		0x1e3c0, 0x1e3c8,
2200		0x1e408, 0x1e40c,
2201		0x1e440, 0x1e444,
2202		0x1e44c, 0x1e44c,
2203		0x1e684, 0x1e690,
2204		0x1e6c0, 0x1e6c0,
2205		0x1e6e0, 0x1e6e0,
2206		0x1e700, 0x1e784,
2207		0x1e7c0, 0x1e7c8,
2208		0x1e808, 0x1e80c,
2209		0x1e840, 0x1e844,
2210		0x1e84c, 0x1e84c,
2211		0x1ea84, 0x1ea90,
2212		0x1eac0, 0x1eac0,
2213		0x1eae0, 0x1eae0,
2214		0x1eb00, 0x1eb84,
2215		0x1ebc0, 0x1ebc8,
2216		0x1ec08, 0x1ec0c,
2217		0x1ec40, 0x1ec44,
2218		0x1ec4c, 0x1ec4c,
2219		0x1ee84, 0x1ee90,
2220		0x1eec0, 0x1eec0,
2221		0x1eee0, 0x1eee0,
2222		0x1ef00, 0x1ef84,
2223		0x1efc0, 0x1efc8,
2224		0x1f008, 0x1f00c,
2225		0x1f040, 0x1f044,
2226		0x1f04c, 0x1f04c,
2227		0x1f284, 0x1f290,
2228		0x1f2c0, 0x1f2c0,
2229		0x1f2e0, 0x1f2e0,
2230		0x1f300, 0x1f384,
2231		0x1f3c0, 0x1f3c8,
2232		0x1f408, 0x1f40c,
2233		0x1f440, 0x1f444,
2234		0x1f44c, 0x1f44c,
2235		0x1f684, 0x1f690,
2236		0x1f6c0, 0x1f6c0,
2237		0x1f6e0, 0x1f6e0,
2238		0x1f700, 0x1f784,
2239		0x1f7c0, 0x1f7c8,
2240		0x1f808, 0x1f80c,
2241		0x1f840, 0x1f844,
2242		0x1f84c, 0x1f84c,
2243		0x1fa84, 0x1fa90,
2244		0x1fac0, 0x1fac0,
2245		0x1fae0, 0x1fae0,
2246		0x1fb00, 0x1fb84,
2247		0x1fbc0, 0x1fbc8,
2248		0x1fc08, 0x1fc0c,
2249		0x1fc40, 0x1fc44,
2250		0x1fc4c, 0x1fc4c,
2251		0x1fe84, 0x1fe90,
2252		0x1fec0, 0x1fec0,
2253		0x1fee0, 0x1fee0,
2254		0x1ff00, 0x1ff84,
2255		0x1ffc0, 0x1ffc8,
2256		0x30000, 0x30030,
2257		0x30038, 0x30038,
2258		0x30040, 0x30040,
2259		0x30048, 0x30048,
2260		0x30050, 0x30050,
2261		0x3005c, 0x30060,
2262		0x30068, 0x30068,
2263		0x30070, 0x30070,
2264		0x30100, 0x30168,
2265		0x30190, 0x301a0,
2266		0x301a8, 0x301b8,
2267		0x301c4, 0x301c8,
2268		0x301d0, 0x301d0,
2269		0x30200, 0x30320,
2270		0x30400, 0x304b4,
2271		0x304c0, 0x3052c,
2272		0x30540, 0x3061c,
2273		0x30800, 0x308a0,
2274		0x308c0, 0x30908,
2275		0x30910, 0x309b8,
2276		0x30a00, 0x30a04,
2277		0x30a0c, 0x30a14,
2278		0x30a1c, 0x30a2c,
2279		0x30a44, 0x30a50,
2280		0x30a74, 0x30a74,
2281		0x30a7c, 0x30afc,
2282		0x30b08, 0x30c24,
2283		0x30d00, 0x30d14,
2284		0x30d1c, 0x30d3c,
2285		0x30d44, 0x30d4c,
2286		0x30d54, 0x30d74,
2287		0x30d7c, 0x30d7c,
2288		0x30de0, 0x30de0,
2289		0x30e00, 0x30ed4,
2290		0x30f00, 0x30fa4,
2291		0x30fc0, 0x30fc4,
2292		0x31000, 0x31004,
2293		0x31080, 0x310fc,
2294		0x31208, 0x31220,
2295		0x3123c, 0x31254,
2296		0x31300, 0x31300,
2297		0x31308, 0x3131c,
2298		0x31338, 0x3133c,
2299		0x31380, 0x31380,
2300		0x31388, 0x313a8,
2301		0x313b4, 0x313b4,
2302		0x31400, 0x31420,
2303		0x31438, 0x3143c,
2304		0x31480, 0x31480,
2305		0x314a8, 0x314a8,
2306		0x314b0, 0x314b4,
2307		0x314c8, 0x314d4,
2308		0x31a40, 0x31a4c,
2309		0x31af0, 0x31b20,
2310		0x31b38, 0x31b3c,
2311		0x31b80, 0x31b80,
2312		0x31ba8, 0x31ba8,
2313		0x31bb0, 0x31bb4,
2314		0x31bc8, 0x31bd4,
2315		0x32140, 0x3218c,
2316		0x321f0, 0x321f4,
2317		0x32200, 0x32200,
2318		0x32218, 0x32218,
2319		0x32400, 0x32400,
2320		0x32408, 0x3241c,
2321		0x32618, 0x32620,
2322		0x32664, 0x32664,
2323		0x326a8, 0x326a8,
2324		0x326ec, 0x326ec,
2325		0x32a00, 0x32abc,
2326		0x32b00, 0x32b38,
2327		0x32b40, 0x32b58,
2328		0x32b60, 0x32b78,
2329		0x32c00, 0x32c00,
2330		0x32c08, 0x32c3c,
2331		0x32e00, 0x32e2c,
2332		0x32f00, 0x32f2c,
2333		0x33000, 0x3302c,
2334		0x33034, 0x33050,
2335		0x33058, 0x33058,
2336		0x33060, 0x3308c,
2337		0x3309c, 0x330ac,
2338		0x330c0, 0x330c0,
2339		0x330c8, 0x330d0,
2340		0x330d8, 0x330e0,
2341		0x330ec, 0x3312c,
2342		0x33134, 0x33150,
2343		0x33158, 0x33158,
2344		0x33160, 0x3318c,
2345		0x3319c, 0x331ac,
2346		0x331c0, 0x331c0,
2347		0x331c8, 0x331d0,
2348		0x331d8, 0x331e0,
2349		0x331ec, 0x33290,
2350		0x33298, 0x332c4,
2351		0x332e4, 0x33390,
2352		0x33398, 0x333c4,
2353		0x333e4, 0x3342c,
2354		0x33434, 0x33450,
2355		0x33458, 0x33458,
2356		0x33460, 0x3348c,
2357		0x3349c, 0x334ac,
2358		0x334c0, 0x334c0,
2359		0x334c8, 0x334d0,
2360		0x334d8, 0x334e0,
2361		0x334ec, 0x3352c,
2362		0x33534, 0x33550,
2363		0x33558, 0x33558,
2364		0x33560, 0x3358c,
2365		0x3359c, 0x335ac,
2366		0x335c0, 0x335c0,
2367		0x335c8, 0x335d0,
2368		0x335d8, 0x335e0,
2369		0x335ec, 0x33690,
2370		0x33698, 0x336c4,
2371		0x336e4, 0x33790,
2372		0x33798, 0x337c4,
2373		0x337e4, 0x337fc,
2374		0x33814, 0x33814,
2375		0x33854, 0x33868,
2376		0x33880, 0x3388c,
2377		0x338c0, 0x338d0,
2378		0x338e8, 0x338ec,
2379		0x33900, 0x3392c,
2380		0x33934, 0x33950,
2381		0x33958, 0x33958,
2382		0x33960, 0x3398c,
2383		0x3399c, 0x339ac,
2384		0x339c0, 0x339c0,
2385		0x339c8, 0x339d0,
2386		0x339d8, 0x339e0,
2387		0x339ec, 0x33a90,
2388		0x33a98, 0x33ac4,
2389		0x33ae4, 0x33b10,
2390		0x33b24, 0x33b28,
2391		0x33b38, 0x33b50,
2392		0x33bf0, 0x33c10,
2393		0x33c24, 0x33c28,
2394		0x33c38, 0x33c50,
2395		0x33cf0, 0x33cfc,
2396		0x34000, 0x34030,
2397		0x34038, 0x34038,
2398		0x34040, 0x34040,
2399		0x34048, 0x34048,
2400		0x34050, 0x34050,
2401		0x3405c, 0x34060,
2402		0x34068, 0x34068,
2403		0x34070, 0x34070,
2404		0x34100, 0x34168,
2405		0x34190, 0x341a0,
2406		0x341a8, 0x341b8,
2407		0x341c4, 0x341c8,
2408		0x341d0, 0x341d0,
2409		0x34200, 0x34320,
2410		0x34400, 0x344b4,
2411		0x344c0, 0x3452c,
2412		0x34540, 0x3461c,
2413		0x34800, 0x348a0,
2414		0x348c0, 0x34908,
2415		0x34910, 0x349b8,
2416		0x34a00, 0x34a04,
2417		0x34a0c, 0x34a14,
2418		0x34a1c, 0x34a2c,
2419		0x34a44, 0x34a50,
2420		0x34a74, 0x34a74,
2421		0x34a7c, 0x34afc,
2422		0x34b08, 0x34c24,
2423		0x34d00, 0x34d14,
2424		0x34d1c, 0x34d3c,
2425		0x34d44, 0x34d4c,
2426		0x34d54, 0x34d74,
2427		0x34d7c, 0x34d7c,
2428		0x34de0, 0x34de0,
2429		0x34e00, 0x34ed4,
2430		0x34f00, 0x34fa4,
2431		0x34fc0, 0x34fc4,
2432		0x35000, 0x35004,
2433		0x35080, 0x350fc,
2434		0x35208, 0x35220,
2435		0x3523c, 0x35254,
2436		0x35300, 0x35300,
2437		0x35308, 0x3531c,
2438		0x35338, 0x3533c,
2439		0x35380, 0x35380,
2440		0x35388, 0x353a8,
2441		0x353b4, 0x353b4,
2442		0x35400, 0x35420,
2443		0x35438, 0x3543c,
2444		0x35480, 0x35480,
2445		0x354a8, 0x354a8,
2446		0x354b0, 0x354b4,
2447		0x354c8, 0x354d4,
2448		0x35a40, 0x35a4c,
2449		0x35af0, 0x35b20,
2450		0x35b38, 0x35b3c,
2451		0x35b80, 0x35b80,
2452		0x35ba8, 0x35ba8,
2453		0x35bb0, 0x35bb4,
2454		0x35bc8, 0x35bd4,
2455		0x36140, 0x3618c,
2456		0x361f0, 0x361f4,
2457		0x36200, 0x36200,
2458		0x36218, 0x36218,
2459		0x36400, 0x36400,
2460		0x36408, 0x3641c,
2461		0x36618, 0x36620,
2462		0x36664, 0x36664,
2463		0x366a8, 0x366a8,
2464		0x366ec, 0x366ec,
2465		0x36a00, 0x36abc,
2466		0x36b00, 0x36b38,
2467		0x36b40, 0x36b58,
2468		0x36b60, 0x36b78,
2469		0x36c00, 0x36c00,
2470		0x36c08, 0x36c3c,
2471		0x36e00, 0x36e2c,
2472		0x36f00, 0x36f2c,
2473		0x37000, 0x3702c,
2474		0x37034, 0x37050,
2475		0x37058, 0x37058,
2476		0x37060, 0x3708c,
2477		0x3709c, 0x370ac,
2478		0x370c0, 0x370c0,
2479		0x370c8, 0x370d0,
2480		0x370d8, 0x370e0,
2481		0x370ec, 0x3712c,
2482		0x37134, 0x37150,
2483		0x37158, 0x37158,
2484		0x37160, 0x3718c,
2485		0x3719c, 0x371ac,
2486		0x371c0, 0x371c0,
2487		0x371c8, 0x371d0,
2488		0x371d8, 0x371e0,
2489		0x371ec, 0x37290,
2490		0x37298, 0x372c4,
2491		0x372e4, 0x37390,
2492		0x37398, 0x373c4,
2493		0x373e4, 0x3742c,
2494		0x37434, 0x37450,
2495		0x37458, 0x37458,
2496		0x37460, 0x3748c,
2497		0x3749c, 0x374ac,
2498		0x374c0, 0x374c0,
2499		0x374c8, 0x374d0,
2500		0x374d8, 0x374e0,
2501		0x374ec, 0x3752c,
2502		0x37534, 0x37550,
2503		0x37558, 0x37558,
2504		0x37560, 0x3758c,
2505		0x3759c, 0x375ac,
2506		0x375c0, 0x375c0,
2507		0x375c8, 0x375d0,
2508		0x375d8, 0x375e0,
2509		0x375ec, 0x37690,
2510		0x37698, 0x376c4,
2511		0x376e4, 0x37790,
2512		0x37798, 0x377c4,
2513		0x377e4, 0x377fc,
2514		0x37814, 0x37814,
2515		0x37854, 0x37868,
2516		0x37880, 0x3788c,
2517		0x378c0, 0x378d0,
2518		0x378e8, 0x378ec,
2519		0x37900, 0x3792c,
2520		0x37934, 0x37950,
2521		0x37958, 0x37958,
2522		0x37960, 0x3798c,
2523		0x3799c, 0x379ac,
2524		0x379c0, 0x379c0,
2525		0x379c8, 0x379d0,
2526		0x379d8, 0x379e0,
2527		0x379ec, 0x37a90,
2528		0x37a98, 0x37ac4,
2529		0x37ae4, 0x37b10,
2530		0x37b24, 0x37b28,
2531		0x37b38, 0x37b50,
2532		0x37bf0, 0x37c10,
2533		0x37c24, 0x37c28,
2534		0x37c38, 0x37c50,
2535		0x37cf0, 0x37cfc,
2536		0x40040, 0x40040,
2537		0x40080, 0x40084,
2538		0x40100, 0x40100,
2539		0x40140, 0x401bc,
2540		0x40200, 0x40214,
2541		0x40228, 0x40228,
2542		0x40240, 0x40258,
2543		0x40280, 0x40280,
2544		0x40304, 0x40304,
2545		0x40330, 0x4033c,
2546		0x41304, 0x413c8,
2547		0x413d0, 0x413dc,
2548		0x413f0, 0x413f0,
2549		0x41400, 0x4140c,
2550		0x41414, 0x4141c,
2551		0x41480, 0x414d0,
2552		0x44000, 0x4407c,
2553		0x440c0, 0x441ac,
2554		0x441b4, 0x4427c,
2555		0x442c0, 0x443ac,
2556		0x443b4, 0x4447c,
2557		0x444c0, 0x445ac,
2558		0x445b4, 0x4467c,
2559		0x446c0, 0x447ac,
2560		0x447b4, 0x4487c,
2561		0x448c0, 0x449ac,
2562		0x449b4, 0x44a7c,
2563		0x44ac0, 0x44bac,
2564		0x44bb4, 0x44c7c,
2565		0x44cc0, 0x44dac,
2566		0x44db4, 0x44e7c,
2567		0x44ec0, 0x44fac,
2568		0x44fb4, 0x4507c,
2569		0x450c0, 0x451ac,
2570		0x451b4, 0x451fc,
2571		0x45800, 0x45804,
2572		0x45810, 0x45830,
2573		0x45840, 0x45860,
2574		0x45868, 0x45868,
2575		0x45880, 0x45884,
2576		0x458a0, 0x458b0,
2577		0x45a00, 0x45a04,
2578		0x45a10, 0x45a30,
2579		0x45a40, 0x45a60,
2580		0x45a68, 0x45a68,
2581		0x45a80, 0x45a84,
2582		0x45aa0, 0x45ab0,
2583		0x460c0, 0x460e4,
2584		0x47000, 0x4703c,
2585		0x47044, 0x4708c,
2586		0x47200, 0x47250,
2587		0x47400, 0x47408,
2588		0x47414, 0x47420,
2589		0x47600, 0x47618,
2590		0x47800, 0x47814,
2591		0x47820, 0x4782c,
2592		0x50000, 0x50084,
2593		0x50090, 0x500cc,
2594		0x50300, 0x50384,
2595		0x50400, 0x50400,
2596		0x50800, 0x50884,
2597		0x50890, 0x508cc,
2598		0x50b00, 0x50b84,
2599		0x50c00, 0x50c00,
2600		0x51000, 0x51020,
2601		0x51028, 0x510b0,
2602		0x51300, 0x51324,
2603	};
2604
2605	static const unsigned int t6vf_reg_ranges[] = {
2606		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2607		VF_MPS_REG(A_MPS_VF_CTL),
2608		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2609		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2610		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2611		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2612		FW_T6VF_MBDATA_BASE_ADDR,
2613		FW_T6VF_MBDATA_BASE_ADDR +
2614		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2615	};
2616
2617	u32 *buf_end = (u32 *)(buf + buf_size);
2618	const unsigned int *reg_ranges;
2619	int reg_ranges_size, range;
2620	unsigned int chip_version = chip_id(adap);
2621
2622	/*
2623	 * Select the right set of register ranges to dump depending on the
2624	 * adapter chip type.
2625	 */
2626	switch (chip_version) {
2627	case CHELSIO_T4:
2628		if (adap->flags & IS_VF) {
2629			reg_ranges = t4vf_reg_ranges;
2630			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2631		} else {
2632			reg_ranges = t4_reg_ranges;
2633			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2634		}
2635		break;
2636
2637	case CHELSIO_T5:
2638		if (adap->flags & IS_VF) {
2639			reg_ranges = t5vf_reg_ranges;
2640			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2641		} else {
2642			reg_ranges = t5_reg_ranges;
2643			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2644		}
2645		break;
2646
2647	case CHELSIO_T6:
2648		if (adap->flags & IS_VF) {
2649			reg_ranges = t6vf_reg_ranges;
2650			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2651		} else {
2652			reg_ranges = t6_reg_ranges;
2653			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2654		}
2655		break;
2656
2657	default:
2658		CH_ERR(adap,
2659			"Unsupported chip version %d\n", chip_version);
2660		return;
2661	}
2662
2663	/*
2664	 * Clear the register buffer and insert the appropriate register
2665	 * values selected by the above register ranges.
2666	 */
2667	memset(buf, 0, buf_size);
2668	for (range = 0; range < reg_ranges_size; range += 2) {
2669		unsigned int reg = reg_ranges[range];
2670		unsigned int last_reg = reg_ranges[range + 1];
2671		u32 *bufp = (u32 *)(buf + reg);
2672
2673		/*
2674		 * Iterate across the register range filling in the register
2675		 * buffer but don't write past the end of the register buffer.
2676		 */
2677		while (reg <= last_reg && bufp < buf_end) {
2678			*bufp++ = t4_read_reg(adap, reg);
2679			reg += sizeof(u32);
2680		}
2681	}
2682}
2683
2684/*
2685 * Partial EEPROM Vital Product Data structure.  Includes only the ID and
2686 * VPD-R sections.
2687 */
2688struct t4_vpd_hdr {
2689	u8  id_tag;
2690	u8  id_len[2];
2691	u8  id_data[ID_LEN];
2692	u8  vpdr_tag;
2693	u8  vpdr_len[2];
2694};
2695
2696/*
2697 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2698 */
2699#define EEPROM_DELAY		10		/* 10us per poll spin */
2700#define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2701
2702#define EEPROM_STAT_ADDR	0x7bfc
2703#define VPD_BASE		0x400
2704#define VPD_BASE_OLD		0
2705#define VPD_LEN			1024
2706#define VPD_INFO_FLD_HDR_SIZE	3
2707#define CHELSIO_VPD_UNIQUE_ID	0x82
2708
2709/*
2710 * Small utility function to wait till any outstanding VPD Access is complete.
2711 * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2712 * VPD Access in flight.  This allows us to handle the problem of having a
2713 * previous VPD Access time out and prevent an attempt to inject a new VPD
2714 * Request before any in-flight VPD reguest has completed.
2715 */
2716static int t4_seeprom_wait(struct adapter *adapter)
2717{
2718	unsigned int base = adapter->params.pci.vpd_cap_addr;
2719	int max_poll;
2720
2721	/*
2722	 * If no VPD Access is in flight, we can just return success right
2723	 * away.
2724	 */
2725	if (!adapter->vpd_busy)
2726		return 0;
2727
2728	/*
2729	 * Poll the VPD Capability Address/Flag register waiting for it
2730	 * to indicate that the operation is complete.
2731	 */
2732	max_poll = EEPROM_MAX_POLL;
2733	do {
2734		u16 val;
2735
2736		udelay(EEPROM_DELAY);
2737		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2738
2739		/*
2740		 * If the operation is complete, mark the VPD as no longer
2741		 * busy and return success.
2742		 */
2743		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2744			adapter->vpd_busy = 0;
2745			return 0;
2746		}
2747	} while (--max_poll);
2748
2749	/*
2750	 * Failure!  Note that we leave the VPD Busy status set in order to
2751	 * avoid pushing a new VPD Access request into the VPD Capability till
2752	 * the current operation eventually succeeds.  It's a bug to issue a
2753	 * new request when an existing request is in flight and will result
2754	 * in corrupt hardware state.
2755	 */
2756	return -ETIMEDOUT;
2757}
2758
2759/**
2760 *	t4_seeprom_read - read a serial EEPROM location
2761 *	@adapter: adapter to read
2762 *	@addr: EEPROM virtual address
2763 *	@data: where to store the read data
2764 *
2765 *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2766 *	VPD capability.  Note that this function must be called with a virtual
2767 *	address.
2768 */
2769int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2770{
2771	unsigned int base = adapter->params.pci.vpd_cap_addr;
2772	int ret;
2773
2774	/*
2775	 * VPD Accesses must alway be 4-byte aligned!
2776	 */
2777	if (addr >= EEPROMVSIZE || (addr & 3))
2778		return -EINVAL;
2779
2780	/*
2781	 * Wait for any previous operation which may still be in flight to
2782	 * complete.
2783	 */
2784	ret = t4_seeprom_wait(adapter);
2785	if (ret) {
2786		CH_ERR(adapter, "VPD still busy from previous operation\n");
2787		return ret;
2788	}
2789
2790	/*
2791	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2792	 * for our request to complete.  If it doesn't complete, note the
2793	 * error and return it to our caller.  Note that we do not reset the
2794	 * VPD Busy status!
2795	 */
2796	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2797	adapter->vpd_busy = 1;
2798	adapter->vpd_flag = PCI_VPD_ADDR_F;
2799	ret = t4_seeprom_wait(adapter);
2800	if (ret) {
2801		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2802		return ret;
2803	}
2804
2805	/*
2806	 * Grab the returned data, swizzle it into our endianness and
2807	 * return success.
2808	 */
2809	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2810	*data = le32_to_cpu(*data);
2811	return 0;
2812}
2813
2814/**
2815 *	t4_seeprom_write - write a serial EEPROM location
2816 *	@adapter: adapter to write
2817 *	@addr: virtual EEPROM address
2818 *	@data: value to write
2819 *
2820 *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2821 *	VPD capability.  Note that this function must be called with a virtual
2822 *	address.
2823 */
2824int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2825{
2826	unsigned int base = adapter->params.pci.vpd_cap_addr;
2827	int ret;
2828	u32 stats_reg;
2829	int max_poll;
2830
2831	/*
2832	 * VPD Accesses must alway be 4-byte aligned!
2833	 */
2834	if (addr >= EEPROMVSIZE || (addr & 3))
2835		return -EINVAL;
2836
2837	/*
2838	 * Wait for any previous operation which may still be in flight to
2839	 * complete.
2840	 */
2841	ret = t4_seeprom_wait(adapter);
2842	if (ret) {
2843		CH_ERR(adapter, "VPD still busy from previous operation\n");
2844		return ret;
2845	}
2846
2847	/*
2848	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2849	 * for our request to complete.  If it doesn't complete, note the
2850	 * error and return it to our caller.  Note that we do not reset the
2851	 * VPD Busy status!
2852	 */
2853	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2854				 cpu_to_le32(data));
2855	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2856				 (u16)addr | PCI_VPD_ADDR_F);
2857	adapter->vpd_busy = 1;
2858	adapter->vpd_flag = 0;
2859	ret = t4_seeprom_wait(adapter);
2860	if (ret) {
2861		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2862		return ret;
2863	}
2864
2865	/*
2866	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2867	 * request to complete. If it doesn't complete, return error.
2868	 */
2869	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2870	max_poll = EEPROM_MAX_POLL;
2871	do {
2872		udelay(EEPROM_DELAY);
2873		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2874	} while ((stats_reg & 0x1) && --max_poll);
2875	if (!max_poll)
2876		return -ETIMEDOUT;
2877
2878	/* Return success! */
2879	return 0;
2880}
2881
2882/**
2883 *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2884 *	@phys_addr: the physical EEPROM address
2885 *	@fn: the PCI function number
2886 *	@sz: size of function-specific area
2887 *
2888 *	Translate a physical EEPROM address to virtual.  The first 1K is
2889 *	accessed through virtual addresses starting at 31K, the rest is
2890 *	accessed through virtual addresses starting at 0.
2891 *
2892 *	The mapping is as follows:
2893 *	[0..1K) -> [31K..32K)
2894 *	[1K..1K+A) -> [ES-A..ES)
2895 *	[1K+A..ES) -> [0..ES-A-1K)
2896 *
2897 *	where A = @fn * @sz, and ES = EEPROM size.
2898 */
2899int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2900{
2901	fn *= sz;
2902	if (phys_addr < 1024)
2903		return phys_addr + (31 << 10);
2904	if (phys_addr < 1024 + fn)
2905		return EEPROMSIZE - fn + phys_addr - 1024;
2906	if (phys_addr < EEPROMSIZE)
2907		return phys_addr - 1024 - fn;
2908	return -EINVAL;
2909}
2910
2911/**
2912 *	t4_seeprom_wp - enable/disable EEPROM write protection
2913 *	@adapter: the adapter
2914 *	@enable: whether to enable or disable write protection
2915 *
2916 *	Enables or disables write protection on the serial EEPROM.
2917 */
2918int t4_seeprom_wp(struct adapter *adapter, int enable)
2919{
2920	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2921}
2922
2923/**
2924 *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2925 *	@v: Pointer to buffered vpd data structure
2926 *	@kw: The keyword to search for
2927 *
2928 *	Returns the value of the information field keyword or
2929 *	-ENOENT otherwise.
2930 */
2931static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
2932{
2933	int i;
2934	unsigned int offset , len;
2935	const u8 *buf = (const u8 *)v;
2936	const u8 *vpdr_len = &v->vpdr_len[0];
2937	offset = sizeof(struct t4_vpd_hdr);
2938	len =  (u16)vpdr_len[0] + ((u16)vpdr_len[1] << 8);
2939
2940	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
2941		return -ENOENT;
2942	}
2943
2944	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2945		if(memcmp(buf + i , kw , 2) == 0){
2946			i += VPD_INFO_FLD_HDR_SIZE;
2947			return i;
2948		}
2949
2950		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
2951	}
2952
2953	return -ENOENT;
2954}
2955
2956
2957/**
2958 *	get_vpd_params - read VPD parameters from VPD EEPROM
2959 *	@adapter: adapter to read
2960 *	@p: where to store the parameters
2961 *	@vpd: caller provided temporary space to read the VPD into
2962 *
2963 *	Reads card parameters stored in VPD EEPROM.
2964 */
2965static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2966    u8 *vpd)
2967{
2968	int i, ret, addr;
2969	int ec, sn, pn, na;
2970	u8 csum;
2971	const struct t4_vpd_hdr *v;
2972
2973	/*
2974	 * Card information normally starts at VPD_BASE but early cards had
2975	 * it at 0.
2976	 */
2977	ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
2978	if (ret)
2979		return (ret);
2980
2981	/*
2982	 * The VPD shall have a unique identifier specified by the PCI SIG.
2983	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2984	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2985	 * is expected to automatically put this entry at the
2986	 * beginning of the VPD.
2987	 */
2988	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2989
2990	for (i = 0; i < VPD_LEN; i += 4) {
2991		ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
2992		if (ret)
2993			return ret;
2994	}
2995 	v = (const struct t4_vpd_hdr *)vpd;
2996
2997#define FIND_VPD_KW(var,name) do { \
2998	var = get_vpd_keyword_val(v , name); \
2999	if (var < 0) { \
3000		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
3001		return -EINVAL; \
3002	} \
3003} while (0)
3004
3005	FIND_VPD_KW(i, "RV");
3006	for (csum = 0; i >= 0; i--)
3007		csum += vpd[i];
3008
3009	if (csum) {
3010		CH_ERR(adapter,
3011			"corrupted VPD EEPROM, actual csum %u\n", csum);
3012		return -EINVAL;
3013	}
3014
3015	FIND_VPD_KW(ec, "EC");
3016	FIND_VPD_KW(sn, "SN");
3017	FIND_VPD_KW(pn, "PN");
3018	FIND_VPD_KW(na, "NA");
3019#undef FIND_VPD_KW
3020
3021	memcpy(p->id, v->id_data, ID_LEN);
3022	strstrip(p->id);
3023	memcpy(p->ec, vpd + ec, EC_LEN);
3024	strstrip(p->ec);
3025	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3026	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3027	strstrip(p->sn);
3028	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3029	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3030	strstrip((char *)p->pn);
3031	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3032	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3033	strstrip((char *)p->na);
3034
3035	return 0;
3036}
3037
3038/* serial flash and firmware constants and flash config file constants */
3039enum {
3040	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3041
3042	/* flash command opcodes */
3043	SF_PROG_PAGE    = 2,	/* program page */
3044	SF_WR_DISABLE   = 4,	/* disable writes */
3045	SF_RD_STATUS    = 5,	/* read status register */
3046	SF_WR_ENABLE    = 6,	/* enable writes */
3047	SF_RD_DATA_FAST = 0xb,	/* read flash */
3048	SF_RD_ID	= 0x9f,	/* read ID */
3049	SF_ERASE_SECTOR = 0xd8,	/* erase sector */
3050};
3051
3052/**
3053 *	sf1_read - read data from the serial flash
3054 *	@adapter: the adapter
3055 *	@byte_cnt: number of bytes to read
3056 *	@cont: whether another operation will be chained
3057 *	@lock: whether to lock SF for PL access only
3058 *	@valp: where to store the read data
3059 *
3060 *	Reads up to 4 bytes of data from the serial flash.  The location of
3061 *	the read needs to be specified prior to calling this by issuing the
3062 *	appropriate commands to the serial flash.
3063 */
3064static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3065		    int lock, u32 *valp)
3066{
3067	int ret;
3068
3069	if (!byte_cnt || byte_cnt > 4)
3070		return -EINVAL;
3071	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3072		return -EBUSY;
3073	t4_write_reg(adapter, A_SF_OP,
3074		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3075	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3076	if (!ret)
3077		*valp = t4_read_reg(adapter, A_SF_DATA);
3078	return ret;
3079}
3080
3081/**
3082 *	sf1_write - write data to the serial flash
3083 *	@adapter: the adapter
3084 *	@byte_cnt: number of bytes to write
3085 *	@cont: whether another operation will be chained
3086 *	@lock: whether to lock SF for PL access only
3087 *	@val: value to write
3088 *
3089 *	Writes up to 4 bytes of data to the serial flash.  The location of
3090 *	the write needs to be specified prior to calling this by issuing the
3091 *	appropriate commands to the serial flash.
3092 */
3093static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3094		     int lock, u32 val)
3095{
3096	if (!byte_cnt || byte_cnt > 4)
3097		return -EINVAL;
3098	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3099		return -EBUSY;
3100	t4_write_reg(adapter, A_SF_DATA, val);
3101	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3102		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3103	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3104}
3105
3106/**
3107 *	flash_wait_op - wait for a flash operation to complete
3108 *	@adapter: the adapter
3109 *	@attempts: max number of polls of the status register
3110 *	@delay: delay between polls in ms
3111 *
3112 *	Wait for a flash operation to complete by polling the status register.
3113 */
3114static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3115{
3116	int ret;
3117	u32 status;
3118
3119	while (1) {
3120		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3121		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3122			return ret;
3123		if (!(status & 1))
3124			return 0;
3125		if (--attempts == 0)
3126			return -EAGAIN;
3127		if (delay)
3128			msleep(delay);
3129	}
3130}
3131
3132/**
3133 *	t4_read_flash - read words from serial flash
3134 *	@adapter: the adapter
3135 *	@addr: the start address for the read
3136 *	@nwords: how many 32-bit words to read
3137 *	@data: where to store the read data
3138 *	@byte_oriented: whether to store data as bytes or as words
3139 *
3140 *	Read the specified number of 32-bit words from the serial flash.
3141 *	If @byte_oriented is set the read data is stored as a byte array
3142 *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3143 *	natural endianness.
3144 */
3145int t4_read_flash(struct adapter *adapter, unsigned int addr,
3146		  unsigned int nwords, u32 *data, int byte_oriented)
3147{
3148	int ret;
3149
3150	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3151		return -EINVAL;
3152
3153	addr = swab32(addr) | SF_RD_DATA_FAST;
3154
3155	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3156	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3157		return ret;
3158
3159	for ( ; nwords; nwords--, data++) {
3160		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3161		if (nwords == 1)
3162			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3163		if (ret)
3164			return ret;
3165		if (byte_oriented)
3166			*data = (__force __u32)(cpu_to_be32(*data));
3167	}
3168	return 0;
3169}
3170
3171/**
3172 *	t4_write_flash - write up to a page of data to the serial flash
3173 *	@adapter: the adapter
3174 *	@addr: the start address to write
3175 *	@n: length of data to write in bytes
3176 *	@data: the data to write
3177 *	@byte_oriented: whether to store data as bytes or as words
3178 *
3179 *	Writes up to a page of data (256 bytes) to the serial flash starting
3180 *	at the given address.  All the data must be written to the same page.
3181 *	If @byte_oriented is set the write data is stored as byte stream
3182 *	(i.e. matches what on disk), otherwise in big-endian.
3183 */
3184int t4_write_flash(struct adapter *adapter, unsigned int addr,
3185			  unsigned int n, const u8 *data, int byte_oriented)
3186{
3187	int ret;
3188	u32 buf[SF_PAGE_SIZE / 4];
3189	unsigned int i, c, left, val, offset = addr & 0xff;
3190
3191	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3192		return -EINVAL;
3193
3194	val = swab32(addr) | SF_PROG_PAGE;
3195
3196	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3197	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3198		goto unlock;
3199
3200	for (left = n; left; left -= c) {
3201		c = min(left, 4U);
3202		for (val = 0, i = 0; i < c; ++i)
3203			val = (val << 8) + *data++;
3204
3205		if (!byte_oriented)
3206			val = cpu_to_be32(val);
3207
3208		ret = sf1_write(adapter, c, c != left, 1, val);
3209		if (ret)
3210			goto unlock;
3211	}
3212	ret = flash_wait_op(adapter, 8, 1);
3213	if (ret)
3214		goto unlock;
3215
3216	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3217
3218	/* Read the page to verify the write succeeded */
3219	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3220			    byte_oriented);
3221	if (ret)
3222		return ret;
3223
3224	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3225		CH_ERR(adapter,
3226			"failed to correctly write the flash page at %#x\n",
3227			addr);
3228		return -EIO;
3229	}
3230	return 0;
3231
3232unlock:
3233	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3234	return ret;
3235}
3236
3237/**
3238 *	t4_get_fw_version - read the firmware version
3239 *	@adapter: the adapter
3240 *	@vers: where to place the version
3241 *
3242 *	Reads the FW version from flash.
3243 */
3244int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3245{
3246	return t4_read_flash(adapter, FLASH_FW_START +
3247			     offsetof(struct fw_hdr, fw_ver), 1,
3248			     vers, 0);
3249}
3250
3251/**
3252 *	t4_get_bs_version - read the firmware bootstrap version
3253 *	@adapter: the adapter
3254 *	@vers: where to place the version
3255 *
3256 *	Reads the FW Bootstrap version from flash.
3257 */
3258int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3259{
3260	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3261			     offsetof(struct fw_hdr, fw_ver), 1,
3262			     vers, 0);
3263}
3264
3265/**
3266 *	t4_get_tp_version - read the TP microcode version
3267 *	@adapter: the adapter
3268 *	@vers: where to place the version
3269 *
3270 *	Reads the TP microcode version from flash.
3271 */
3272int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3273{
3274	return t4_read_flash(adapter, FLASH_FW_START +
3275			     offsetof(struct fw_hdr, tp_microcode_ver),
3276			     1, vers, 0);
3277}
3278
3279/**
3280 *	t4_get_exprom_version - return the Expansion ROM version (if any)
3281 *	@adapter: the adapter
3282 *	@vers: where to place the version
3283 *
3284 *	Reads the Expansion ROM header from FLASH and returns the version
3285 *	number (if present) through the @vers return value pointer.  We return
3286 *	this in the Firmware Version Format since it's convenient.  Return
3287 *	0 on success, -ENOENT if no Expansion ROM is present.
3288 */
3289int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3290{
3291	struct exprom_header {
3292		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3293		unsigned char hdr_ver[4];	/* Expansion ROM version */
3294	} *hdr;
3295	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3296					   sizeof(u32))];
3297	int ret;
3298
3299	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3300			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3301			    0);
3302	if (ret)
3303		return ret;
3304
3305	hdr = (struct exprom_header *)exprom_header_buf;
3306	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3307		return -ENOENT;
3308
3309	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3310		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3311		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3312		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3313	return 0;
3314}
3315
3316/**
3317 *	t4_get_scfg_version - return the Serial Configuration version
3318 *	@adapter: the adapter
3319 *	@vers: where to place the version
3320 *
3321 *	Reads the Serial Configuration Version via the Firmware interface
3322 *	(thus this can only be called once we're ready to issue Firmware
3323 *	commands).  The format of the Serial Configuration version is
3324 *	adapter specific.  Returns 0 on success, an error on failure.
3325 *
3326 *	Note that early versions of the Firmware didn't include the ability
3327 *	to retrieve the Serial Configuration version, so we zero-out the
3328 *	return-value parameter in that case to avoid leaving it with
3329 *	garbage in it.
3330 *
3331 *	Also note that the Firmware will return its cached copy of the Serial
3332 *	Initialization Revision ID, not the actual Revision ID as written in
3333 *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3334 *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3335 *	it's best to defer calling this routine till after a FW_RESET_CMD has
3336 *	been issued if the Host Driver will be performing a full adapter
3337 *	initialization.
3338 */
3339int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3340{
3341	u32 scfgrev_param;
3342	int ret;
3343
3344	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3345			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3346	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3347			      1, &scfgrev_param, vers);
3348	if (ret)
3349		*vers = 0;
3350	return ret;
3351}
3352
3353/**
3354 *	t4_get_vpd_version - return the VPD version
3355 *	@adapter: the adapter
3356 *	@vers: where to place the version
3357 *
3358 *	Reads the VPD via the Firmware interface (thus this can only be called
3359 *	once we're ready to issue Firmware commands).  The format of the
3360 *	VPD version is adapter specific.  Returns 0 on success, an error on
3361 *	failure.
3362 *
3363 *	Note that early versions of the Firmware didn't include the ability
3364 *	to retrieve the VPD version, so we zero-out the return-value parameter
3365 *	in that case to avoid leaving it with garbage in it.
3366 *
3367 *	Also note that the Firmware will return its cached copy of the VPD
3368 *	Revision ID, not the actual Revision ID as written in the Serial
3369 *	EEPROM.  This is only an issue if a new VPD has been written and the
3370 *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3371 *	to defer calling this routine till after a FW_RESET_CMD has been issued
3372 *	if the Host Driver will be performing a full adapter initialization.
3373 */
3374int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3375{
3376	u32 vpdrev_param;
3377	int ret;
3378
3379	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3380			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3381	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3382			      1, &vpdrev_param, vers);
3383	if (ret)
3384		*vers = 0;
3385	return ret;
3386}
3387
3388/**
3389 *	t4_get_version_info - extract various chip/firmware version information
3390 *	@adapter: the adapter
3391 *
3392 *	Reads various chip/firmware version numbers and stores them into the
3393 *	adapter Adapter Parameters structure.  If any of the efforts fails
3394 *	the first failure will be returned, but all of the version numbers
3395 *	will be read.
3396 */
3397int t4_get_version_info(struct adapter *adapter)
3398{
3399	int ret = 0;
3400
3401	#define FIRST_RET(__getvinfo) \
3402	do { \
3403		int __ret = __getvinfo; \
3404		if (__ret && !ret) \
3405			ret = __ret; \
3406	} while (0)
3407
3408	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3409	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3410	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3411	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3412	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3413	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3414
3415	#undef FIRST_RET
3416
3417	return ret;
3418}
3419
3420/**
3421 *	t4_flash_erase_sectors - erase a range of flash sectors
3422 *	@adapter: the adapter
3423 *	@start: the first sector to erase
3424 *	@end: the last sector to erase
3425 *
3426 *	Erases the sectors in the given inclusive range.
3427 */
3428int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3429{
3430	int ret = 0;
3431
3432	if (end >= adapter->params.sf_nsec)
3433		return -EINVAL;
3434
3435	while (start <= end) {
3436		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3437		    (ret = sf1_write(adapter, 4, 0, 1,
3438				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3439		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3440			CH_ERR(adapter,
3441				"erase of flash sector %d failed, error %d\n",
3442				start, ret);
3443			break;
3444		}
3445		start++;
3446	}
3447	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3448	return ret;
3449}
3450
3451/**
3452 *	t4_flash_cfg_addr - return the address of the flash configuration file
3453 *	@adapter: the adapter
3454 *
3455 *	Return the address within the flash where the Firmware Configuration
3456 *	File is stored, or an error if the device FLASH is too small to contain
3457 *	a Firmware Configuration File.
3458 */
3459int t4_flash_cfg_addr(struct adapter *adapter)
3460{
3461	/*
3462	 * If the device FLASH isn't large enough to hold a Firmware
3463	 * Configuration File, return an error.
3464	 */
3465	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3466		return -ENOSPC;
3467
3468	return FLASH_CFG_START;
3469}
3470
3471/*
3472 * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3473 * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3474 * and emit an error message for mismatched firmware to save our caller the
3475 * effort ...
3476 */
3477static int t4_fw_matches_chip(struct adapter *adap,
3478			      const struct fw_hdr *hdr)
3479{
3480	/*
3481	 * The expression below will return FALSE for any unsupported adapter
3482	 * which will keep us "honest" in the future ...
3483	 */
3484	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3485	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3486	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3487		return 1;
3488
3489	CH_ERR(adap,
3490		"FW image (%d) is not suitable for this adapter (%d)\n",
3491		hdr->chip, chip_id(adap));
3492	return 0;
3493}
3494
3495/**
3496 *	t4_load_fw - download firmware
3497 *	@adap: the adapter
3498 *	@fw_data: the firmware image to write
3499 *	@size: image size
3500 *
3501 *	Write the supplied firmware image to the card's serial flash.
3502 */
3503int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3504{
3505	u32 csum;
3506	int ret, addr;
3507	unsigned int i;
3508	u8 first_page[SF_PAGE_SIZE];
3509	const u32 *p = (const u32 *)fw_data;
3510	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3511	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3512	unsigned int fw_start_sec;
3513	unsigned int fw_start;
3514	unsigned int fw_size;
3515
3516	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3517		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3518		fw_start = FLASH_FWBOOTSTRAP_START;
3519		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3520	} else {
3521		fw_start_sec = FLASH_FW_START_SEC;
3522 		fw_start = FLASH_FW_START;
3523		fw_size = FLASH_FW_MAX_SIZE;
3524	}
3525
3526	if (!size) {
3527		CH_ERR(adap, "FW image has no data\n");
3528		return -EINVAL;
3529	}
3530	if (size & 511) {
3531		CH_ERR(adap,
3532			"FW image size not multiple of 512 bytes\n");
3533		return -EINVAL;
3534	}
3535	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3536		CH_ERR(adap,
3537			"FW image size differs from size in FW header\n");
3538		return -EINVAL;
3539	}
3540	if (size > fw_size) {
3541		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3542			fw_size);
3543		return -EFBIG;
3544	}
3545	if (!t4_fw_matches_chip(adap, hdr))
3546		return -EINVAL;
3547
3548	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3549		csum += be32_to_cpu(p[i]);
3550
3551	if (csum != 0xffffffff) {
3552		CH_ERR(adap,
3553			"corrupted firmware image, checksum %#x\n", csum);
3554		return -EINVAL;
3555	}
3556
3557	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3558	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3559	if (ret)
3560		goto out;
3561
3562	/*
3563	 * We write the correct version at the end so the driver can see a bad
3564	 * version if the FW write fails.  Start by writing a copy of the
3565	 * first page with a bad version.
3566	 */
3567	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3568	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3569	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3570	if (ret)
3571		goto out;
3572
3573	addr = fw_start;
3574	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3575		addr += SF_PAGE_SIZE;
3576		fw_data += SF_PAGE_SIZE;
3577		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3578		if (ret)
3579			goto out;
3580	}
3581
3582	ret = t4_write_flash(adap,
3583			     fw_start + offsetof(struct fw_hdr, fw_ver),
3584			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3585out:
3586	if (ret)
3587		CH_ERR(adap, "firmware download failed, error %d\n",
3588			ret);
3589	return ret;
3590}
3591
3592/**
3593 *	t4_fwcache - firmware cache operation
3594 *	@adap: the adapter
3595 *	@op  : the operation (flush or flush and invalidate)
3596 */
3597int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3598{
3599	struct fw_params_cmd c;
3600
3601	memset(&c, 0, sizeof(c));
3602	c.op_to_vfn =
3603	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3604			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3605				V_FW_PARAMS_CMD_PFN(adap->pf) |
3606				V_FW_PARAMS_CMD_VFN(0));
3607	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3608	c.param[0].mnem =
3609	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3610			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3611	c.param[0].val = (__force __be32)op;
3612
3613	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3614}
3615
3616void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3617			unsigned int *pif_req_wrptr,
3618			unsigned int *pif_rsp_wrptr)
3619{
3620	int i, j;
3621	u32 cfg, val, req, rsp;
3622
3623	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3624	if (cfg & F_LADBGEN)
3625		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3626
3627	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3628	req = G_POLADBGWRPTR(val);
3629	rsp = G_PILADBGWRPTR(val);
3630	if (pif_req_wrptr)
3631		*pif_req_wrptr = req;
3632	if (pif_rsp_wrptr)
3633		*pif_rsp_wrptr = rsp;
3634
3635	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3636		for (j = 0; j < 6; j++) {
3637			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3638				     V_PILADBGRDPTR(rsp));
3639			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3640			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3641			req++;
3642			rsp++;
3643		}
3644		req = (req + 2) & M_POLADBGRDPTR;
3645		rsp = (rsp + 2) & M_PILADBGRDPTR;
3646	}
3647	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3648}
3649
3650void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3651{
3652	u32 cfg;
3653	int i, j, idx;
3654
3655	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3656	if (cfg & F_LADBGEN)
3657		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3658
3659	for (i = 0; i < CIM_MALA_SIZE; i++) {
3660		for (j = 0; j < 5; j++) {
3661			idx = 8 * i + j;
3662			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3663				     V_PILADBGRDPTR(idx));
3664			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3665			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3666		}
3667	}
3668	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3669}
3670
3671void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3672{
3673	unsigned int i, j;
3674
3675	for (i = 0; i < 8; i++) {
3676		u32 *p = la_buf + i;
3677
3678		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3679		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3680		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3681		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3682			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3683	}
3684}
3685
3686#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3687		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_25G | \
3688		     FW_PORT_CAP_SPEED_40G | FW_PORT_CAP_SPEED_100G | \
3689		     FW_PORT_CAP_ANEG)
3690
3691/**
3692 *	t4_link_l1cfg - apply link configuration to MAC/PHY
3693 *	@phy: the PHY to setup
3694 *	@mac: the MAC to setup
3695 *	@lc: the requested link configuration
3696 *
3697 *	Set up a port's MAC and PHY according to a desired link configuration.
3698 *	- If the PHY can auto-negotiate first decide what to advertise, then
3699 *	  enable/disable auto-negotiation as desired, and reset.
3700 *	- If the PHY does not auto-negotiate just reset it.
3701 *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3702 *	  otherwise do it later based on the outcome of auto-negotiation.
3703 */
3704int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3705		  struct link_config *lc)
3706{
3707	struct fw_port_cmd c;
3708	unsigned int fc = 0, mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3709
3710	lc->link_ok = 0;
3711	if (lc->requested_fc & PAUSE_RX)
3712		fc |= FW_PORT_CAP_FC_RX;
3713	if (lc->requested_fc & PAUSE_TX)
3714		fc |= FW_PORT_CAP_FC_TX;
3715
3716	memset(&c, 0, sizeof(c));
3717	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3718				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3719				     V_FW_PORT_CMD_PORTID(port));
3720	c.action_to_len16 =
3721		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3722			    FW_LEN16(c));
3723
3724	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3725		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3726					     fc);
3727		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3728	} else if (lc->autoneg == AUTONEG_DISABLE) {
3729		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3730		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3731	} else
3732		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3733
3734	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3735}
3736
3737/**
3738 *	t4_restart_aneg - restart autonegotiation
3739 *	@adap: the adapter
3740 *	@mbox: mbox to use for the FW command
3741 *	@port: the port id
3742 *
3743 *	Restarts autonegotiation for the selected port.
3744 */
3745int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3746{
3747	struct fw_port_cmd c;
3748
3749	memset(&c, 0, sizeof(c));
3750	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3751				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3752				     V_FW_PORT_CMD_PORTID(port));
3753	c.action_to_len16 =
3754		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3755			    FW_LEN16(c));
3756	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3757	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3758}
3759
3760typedef void (*int_handler_t)(struct adapter *adap);
3761
3762struct intr_info {
3763	unsigned int mask;	/* bits to check in interrupt status */
3764	const char *msg;	/* message to print or NULL */
3765	short stat_idx;		/* stat counter to increment or -1 */
3766	unsigned short fatal;	/* whether the condition reported is fatal */
3767	int_handler_t int_handler;	/* platform-specific int handler */
3768};
3769
3770/**
3771 *	t4_handle_intr_status - table driven interrupt handler
3772 *	@adapter: the adapter that generated the interrupt
3773 *	@reg: the interrupt status register to process
3774 *	@acts: table of interrupt actions
3775 *
3776 *	A table driven interrupt handler that applies a set of masks to an
3777 *	interrupt status word and performs the corresponding actions if the
3778 *	interrupts described by the mask have occurred.  The actions include
3779 *	optionally emitting a warning or alert message.  The table is terminated
3780 *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3781 *	conditions.
3782 */
3783static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3784				 const struct intr_info *acts)
3785{
3786	int fatal = 0;
3787	unsigned int mask = 0;
3788	unsigned int status = t4_read_reg(adapter, reg);
3789
3790	for ( ; acts->mask; ++acts) {
3791		if (!(status & acts->mask))
3792			continue;
3793		if (acts->fatal) {
3794			fatal++;
3795			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3796				  status & acts->mask);
3797		} else if (acts->msg)
3798			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3799				 status & acts->mask);
3800		if (acts->int_handler)
3801			acts->int_handler(adapter);
3802		mask |= acts->mask;
3803	}
3804	status &= mask;
3805	if (status)	/* clear processed interrupts */
3806		t4_write_reg(adapter, reg, status);
3807	return fatal;
3808}
3809
3810/*
3811 * Interrupt handler for the PCIE module.
3812 */
3813static void pcie_intr_handler(struct adapter *adapter)
3814{
3815	static const struct intr_info sysbus_intr_info[] = {
3816		{ F_RNPP, "RXNP array parity error", -1, 1 },
3817		{ F_RPCP, "RXPC array parity error", -1, 1 },
3818		{ F_RCIP, "RXCIF array parity error", -1, 1 },
3819		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
3820		{ F_RFTP, "RXFT array parity error", -1, 1 },
3821		{ 0 }
3822	};
3823	static const struct intr_info pcie_port_intr_info[] = {
3824		{ F_TPCP, "TXPC array parity error", -1, 1 },
3825		{ F_TNPP, "TXNP array parity error", -1, 1 },
3826		{ F_TFTP, "TXFT array parity error", -1, 1 },
3827		{ F_TCAP, "TXCA array parity error", -1, 1 },
3828		{ F_TCIP, "TXCIF array parity error", -1, 1 },
3829		{ F_RCAP, "RXCA array parity error", -1, 1 },
3830		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
3831		{ F_RDPE, "Rx data parity error", -1, 1 },
3832		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
3833		{ 0 }
3834	};
3835	static const struct intr_info pcie_intr_info[] = {
3836		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3837		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3838		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3839		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3840		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3841		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3842		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3843		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3844		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3845		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3846		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3847		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3848		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3849		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3850		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3851		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3852		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3853		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3854		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3855		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3856		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3857		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3858		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3859		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3860		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3861		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3862		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3863		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
3864		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
3865		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3866		  0 },
3867		{ 0 }
3868	};
3869
3870	static const struct intr_info t5_pcie_intr_info[] = {
3871		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
3872		  -1, 1 },
3873		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3874		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3875		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3876		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3877		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3878		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3879		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3880		  -1, 1 },
3881		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3882		  -1, 1 },
3883		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3884		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3885		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3886		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3887		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
3888		  -1, 1 },
3889		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3890		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3891		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3892		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3893		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3894		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3895		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3896		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3897		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3898		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3899		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3900		  -1, 1 },
3901		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3902		  -1, 1 },
3903		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3904		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3905		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3906		{ F_READRSPERR, "Outbound read error", -1,
3907		  0 },
3908		{ 0 }
3909	};
3910
3911	int fat;
3912
3913	if (is_t4(adapter))
3914		fat = t4_handle_intr_status(adapter,
3915				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3916				sysbus_intr_info) +
3917			t4_handle_intr_status(adapter,
3918					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3919					pcie_port_intr_info) +
3920			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3921					      pcie_intr_info);
3922	else
3923		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3924					    t5_pcie_intr_info);
3925	if (fat)
3926		t4_fatal_err(adapter);
3927}
3928
3929/*
3930 * TP interrupt handler.
3931 */
3932static void tp_intr_handler(struct adapter *adapter)
3933{
3934	static const struct intr_info tp_intr_info[] = {
3935		{ 0x3fffffff, "TP parity error", -1, 1 },
3936		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3937		{ 0 }
3938	};
3939
3940	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3941		t4_fatal_err(adapter);
3942}
3943
3944/*
3945 * SGE interrupt handler.
3946 */
3947static void sge_intr_handler(struct adapter *adapter)
3948{
3949	u64 v;
3950	u32 err;
3951
3952	static const struct intr_info sge_intr_info[] = {
3953		{ F_ERR_CPL_EXCEED_IQE_SIZE,
3954		  "SGE received CPL exceeding IQE size", -1, 1 },
3955		{ F_ERR_INVALID_CIDX_INC,
3956		  "SGE GTS CIDX increment too large", -1, 0 },
3957		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3958		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
3959		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
3960		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3961		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
3962		  0 },
3963		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
3964		  0 },
3965		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
3966		  0 },
3967		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
3968		  0 },
3969		{ F_ERR_ING_CTXT_PRIO,
3970		  "SGE too many priority ingress contexts", -1, 0 },
3971		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
3972		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
3973		{ 0 }
3974	};
3975
3976	static const struct intr_info t4t5_sge_intr_info[] = {
3977		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
3978		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
3979		{ F_ERR_EGR_CTXT_PRIO,
3980		  "SGE too many priority egress contexts", -1, 0 },
3981		{ 0 }
3982	};
3983
3984	/*
3985 	* For now, treat below interrupts as fatal so that we disable SGE and
3986 	* get better debug */
3987	static const struct intr_info t6_sge_intr_info[] = {
3988		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1,
3989		  "SGE PCIe error for a DBP thread", -1, 1 },
3990		{ F_FATAL_WRE_LEN,
3991		  "SGE Actual WRE packet is less than advertized length",
3992		  -1, 1 },
3993		{ 0 }
3994	};
3995
3996	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
3997		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
3998	if (v) {
3999		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
4000				(unsigned long long)v);
4001		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
4002		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
4003	}
4004
4005	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
4006	if (chip_id(adapter) <= CHELSIO_T5)
4007		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4008					   t4t5_sge_intr_info);
4009	else
4010		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
4011					   t6_sge_intr_info);
4012
4013	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
4014	if (err & F_ERROR_QID_VALID) {
4015		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4016		if (err & F_UNCAPTURED_ERROR)
4017			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4018		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4019			     F_UNCAPTURED_ERROR);
4020	}
4021
4022	if (v != 0)
4023		t4_fatal_err(adapter);
4024}
4025
4026#define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4027		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4028#define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4029		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4030
4031/*
4032 * CIM interrupt handler.
4033 */
4034static void cim_intr_handler(struct adapter *adapter)
4035{
4036	static const struct intr_info cim_intr_info[] = {
4037		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4038		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4039		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4040		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4041		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4042		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4043		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4044		{ 0 }
4045	};
4046	static const struct intr_info cim_upintr_info[] = {
4047		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4048		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4049		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
4050		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
4051		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4052		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4053		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4054		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4055		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4056		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4057		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4058		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4059		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4060		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4061		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4062		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4063		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4064		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4065		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4066		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4067		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4068		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4069		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4070		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4071		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4072		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4073		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4074		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4075		{ 0 }
4076	};
4077	int fat;
4078
4079	if (t4_read_reg(adapter, A_PCIE_FW) & F_PCIE_FW_ERR)
4080		t4_report_fw_error(adapter);
4081
4082	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4083				    cim_intr_info) +
4084	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4085				    cim_upintr_info);
4086	if (fat)
4087		t4_fatal_err(adapter);
4088}
4089
4090/*
4091 * ULP RX interrupt handler.
4092 */
4093static void ulprx_intr_handler(struct adapter *adapter)
4094{
4095	static const struct intr_info ulprx_intr_info[] = {
4096		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4097		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4098		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4099		{ 0 }
4100	};
4101
4102	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4103		t4_fatal_err(adapter);
4104}
4105
4106/*
4107 * ULP TX interrupt handler.
4108 */
4109static void ulptx_intr_handler(struct adapter *adapter)
4110{
4111	static const struct intr_info ulptx_intr_info[] = {
4112		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4113		  0 },
4114		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4115		  0 },
4116		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4117		  0 },
4118		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4119		  0 },
4120		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4121		{ 0 }
4122	};
4123
4124	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4125		t4_fatal_err(adapter);
4126}
4127
4128/*
4129 * PM TX interrupt handler.
4130 */
4131static void pmtx_intr_handler(struct adapter *adapter)
4132{
4133	static const struct intr_info pmtx_intr_info[] = {
4134		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4135		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4136		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4137		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4138		{ 0xffffff0, "PMTX framing error", -1, 1 },
4139		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4140		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4141		  1 },
4142		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4143		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4144		{ 0 }
4145	};
4146
4147	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4148		t4_fatal_err(adapter);
4149}
4150
4151/*
4152 * PM RX interrupt handler.
4153 */
4154static void pmrx_intr_handler(struct adapter *adapter)
4155{
4156	static const struct intr_info pmrx_intr_info[] = {
4157		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4158		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4159		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4160		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4161		  1 },
4162		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4163		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4164		{ 0 }
4165	};
4166
4167	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4168		t4_fatal_err(adapter);
4169}
4170
4171/*
4172 * CPL switch interrupt handler.
4173 */
4174static void cplsw_intr_handler(struct adapter *adapter)
4175{
4176	static const struct intr_info cplsw_intr_info[] = {
4177		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4178		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4179		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4180		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4181		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4182		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4183		{ 0 }
4184	};
4185
4186	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4187		t4_fatal_err(adapter);
4188}
4189
4190/*
4191 * LE interrupt handler.
4192 */
4193static void le_intr_handler(struct adapter *adap)
4194{
4195	unsigned int chip_ver = chip_id(adap);
4196	static const struct intr_info le_intr_info[] = {
4197		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4198		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4199		{ F_PARITYERR, "LE parity error", -1, 1 },
4200		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4201		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4202		{ 0 }
4203	};
4204
4205	static const struct intr_info t6_le_intr_info[] = {
4206		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4207		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4208		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4209		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4210		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4211		{ 0 }
4212	};
4213
4214	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4215				  (chip_ver <= CHELSIO_T5) ?
4216				  le_intr_info : t6_le_intr_info))
4217		t4_fatal_err(adap);
4218}
4219
4220/*
4221 * MPS interrupt handler.
4222 */
4223static void mps_intr_handler(struct adapter *adapter)
4224{
4225	static const struct intr_info mps_rx_intr_info[] = {
4226		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4227		{ 0 }
4228	};
4229	static const struct intr_info mps_tx_intr_info[] = {
4230		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4231		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4232		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4233		  -1, 1 },
4234		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4235		  -1, 1 },
4236		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4237		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4238		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4239		{ 0 }
4240	};
4241	static const struct intr_info mps_trc_intr_info[] = {
4242		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4243		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4244		  1 },
4245		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4246		{ 0 }
4247	};
4248	static const struct intr_info mps_stat_sram_intr_info[] = {
4249		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4250		{ 0 }
4251	};
4252	static const struct intr_info mps_stat_tx_intr_info[] = {
4253		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4254		{ 0 }
4255	};
4256	static const struct intr_info mps_stat_rx_intr_info[] = {
4257		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4258		{ 0 }
4259	};
4260	static const struct intr_info mps_cls_intr_info[] = {
4261		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4262		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4263		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4264		{ 0 }
4265	};
4266
4267	int fat;
4268
4269	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4270				    mps_rx_intr_info) +
4271	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4272				    mps_tx_intr_info) +
4273	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4274				    mps_trc_intr_info) +
4275	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4276				    mps_stat_sram_intr_info) +
4277	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4278				    mps_stat_tx_intr_info) +
4279	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4280				    mps_stat_rx_intr_info) +
4281	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4282				    mps_cls_intr_info);
4283
4284	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4285	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4286	if (fat)
4287		t4_fatal_err(adapter);
4288}
4289
4290#define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4291		      F_ECC_UE_INT_CAUSE)
4292
4293/*
4294 * EDC/MC interrupt handler.
4295 */
4296static void mem_intr_handler(struct adapter *adapter, int idx)
4297{
4298	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4299
4300	unsigned int addr, cnt_addr, v;
4301
4302	if (idx <= MEM_EDC1) {
4303		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4304		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4305	} else if (idx == MEM_MC) {
4306		if (is_t4(adapter)) {
4307			addr = A_MC_INT_CAUSE;
4308			cnt_addr = A_MC_ECC_STATUS;
4309		} else {
4310			addr = A_MC_P_INT_CAUSE;
4311			cnt_addr = A_MC_P_ECC_STATUS;
4312		}
4313	} else {
4314		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4315		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4316	}
4317
4318	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4319	if (v & F_PERR_INT_CAUSE)
4320		CH_ALERT(adapter, "%s FIFO parity error\n",
4321			  name[idx]);
4322	if (v & F_ECC_CE_INT_CAUSE) {
4323		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4324
4325		t4_edc_err_read(adapter, idx);
4326
4327		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4328		CH_WARN_RATELIMIT(adapter,
4329				  "%u %s correctable ECC data error%s\n",
4330				  cnt, name[idx], cnt > 1 ? "s" : "");
4331	}
4332	if (v & F_ECC_UE_INT_CAUSE)
4333		CH_ALERT(adapter,
4334			 "%s uncorrectable ECC data error\n", name[idx]);
4335
4336	t4_write_reg(adapter, addr, v);
4337	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4338		t4_fatal_err(adapter);
4339}
4340
4341/*
4342 * MA interrupt handler.
4343 */
4344static void ma_intr_handler(struct adapter *adapter)
4345{
4346	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4347
4348	if (status & F_MEM_PERR_INT_CAUSE) {
4349		CH_ALERT(adapter,
4350			  "MA parity error, parity status %#x\n",
4351			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4352		if (is_t5(adapter))
4353			CH_ALERT(adapter,
4354				  "MA parity error, parity status %#x\n",
4355				  t4_read_reg(adapter,
4356					      A_MA_PARITY_ERROR_STATUS2));
4357	}
4358	if (status & F_MEM_WRAP_INT_CAUSE) {
4359		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4360		CH_ALERT(adapter, "MA address wrap-around error by "
4361			  "client %u to address %#x\n",
4362			  G_MEM_WRAP_CLIENT_NUM(v),
4363			  G_MEM_WRAP_ADDRESS(v) << 4);
4364	}
4365	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4366	t4_fatal_err(adapter);
4367}
4368
4369/*
4370 * SMB interrupt handler.
4371 */
4372static void smb_intr_handler(struct adapter *adap)
4373{
4374	static const struct intr_info smb_intr_info[] = {
4375		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4376		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4377		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4378		{ 0 }
4379	};
4380
4381	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4382		t4_fatal_err(adap);
4383}
4384
4385/*
4386 * NC-SI interrupt handler.
4387 */
4388static void ncsi_intr_handler(struct adapter *adap)
4389{
4390	static const struct intr_info ncsi_intr_info[] = {
4391		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4392		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4393		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4394		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4395		{ 0 }
4396	};
4397
4398	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4399		t4_fatal_err(adap);
4400}
4401
4402/*
4403 * XGMAC interrupt handler.
4404 */
4405static void xgmac_intr_handler(struct adapter *adap, int port)
4406{
4407	u32 v, int_cause_reg;
4408
4409	if (is_t4(adap))
4410		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4411	else
4412		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4413
4414	v = t4_read_reg(adap, int_cause_reg);
4415
4416	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4417	if (!v)
4418		return;
4419
4420	if (v & F_TXFIFO_PRTY_ERR)
4421		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4422			  port);
4423	if (v & F_RXFIFO_PRTY_ERR)
4424		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4425			  port);
4426	t4_write_reg(adap, int_cause_reg, v);
4427	t4_fatal_err(adap);
4428}
4429
4430/*
4431 * PL interrupt handler.
4432 */
4433static void pl_intr_handler(struct adapter *adap)
4434{
4435	static const struct intr_info pl_intr_info[] = {
4436		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4437		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4438		{ 0 }
4439	};
4440
4441	static const struct intr_info t5_pl_intr_info[] = {
4442		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4443		{ 0 }
4444	};
4445
4446	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4447				  is_t4(adap) ?
4448				  pl_intr_info : t5_pl_intr_info))
4449		t4_fatal_err(adap);
4450}
4451
4452#define PF_INTR_MASK (F_PFSW | F_PFCIM)
4453
4454/**
4455 *	t4_slow_intr_handler - control path interrupt handler
4456 *	@adapter: the adapter
4457 *
4458 *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4459 *	The designation 'slow' is because it involves register reads, while
4460 *	data interrupts typically don't involve any MMIOs.
4461 */
4462int t4_slow_intr_handler(struct adapter *adapter)
4463{
4464	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4465
4466	if (!(cause & GLBL_INTR_MASK))
4467		return 0;
4468	if (cause & F_CIM)
4469		cim_intr_handler(adapter);
4470	if (cause & F_MPS)
4471		mps_intr_handler(adapter);
4472	if (cause & F_NCSI)
4473		ncsi_intr_handler(adapter);
4474	if (cause & F_PL)
4475		pl_intr_handler(adapter);
4476	if (cause & F_SMB)
4477		smb_intr_handler(adapter);
4478	if (cause & F_MAC0)
4479		xgmac_intr_handler(adapter, 0);
4480	if (cause & F_MAC1)
4481		xgmac_intr_handler(adapter, 1);
4482	if (cause & F_MAC2)
4483		xgmac_intr_handler(adapter, 2);
4484	if (cause & F_MAC3)
4485		xgmac_intr_handler(adapter, 3);
4486	if (cause & F_PCIE)
4487		pcie_intr_handler(adapter);
4488	if (cause & F_MC0)
4489		mem_intr_handler(adapter, MEM_MC);
4490	if (is_t5(adapter) && (cause & F_MC1))
4491		mem_intr_handler(adapter, MEM_MC1);
4492	if (cause & F_EDC0)
4493		mem_intr_handler(adapter, MEM_EDC0);
4494	if (cause & F_EDC1)
4495		mem_intr_handler(adapter, MEM_EDC1);
4496	if (cause & F_LE)
4497		le_intr_handler(adapter);
4498	if (cause & F_TP)
4499		tp_intr_handler(adapter);
4500	if (cause & F_MA)
4501		ma_intr_handler(adapter);
4502	if (cause & F_PM_TX)
4503		pmtx_intr_handler(adapter);
4504	if (cause & F_PM_RX)
4505		pmrx_intr_handler(adapter);
4506	if (cause & F_ULP_RX)
4507		ulprx_intr_handler(adapter);
4508	if (cause & F_CPL_SWITCH)
4509		cplsw_intr_handler(adapter);
4510	if (cause & F_SGE)
4511		sge_intr_handler(adapter);
4512	if (cause & F_ULP_TX)
4513		ulptx_intr_handler(adapter);
4514
4515	/* Clear the interrupts just processed for which we are the master. */
4516	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4517	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4518	return 1;
4519}
4520
4521/**
4522 *	t4_intr_enable - enable interrupts
4523 *	@adapter: the adapter whose interrupts should be enabled
4524 *
4525 *	Enable PF-specific interrupts for the calling function and the top-level
4526 *	interrupt concentrator for global interrupts.  Interrupts are already
4527 *	enabled at each module,	here we just enable the roots of the interrupt
4528 *	hierarchies.
4529 *
4530 *	Note: this function should be called only when the driver manages
4531 *	non PF-specific interrupts from the various HW modules.  Only one PCI
4532 *	function at a time should be doing this.
4533 */
4534void t4_intr_enable(struct adapter *adapter)
4535{
4536	u32 val = 0;
4537	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4538	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4539		  ? G_SOURCEPF(whoami)
4540		  : G_T6_SOURCEPF(whoami));
4541
4542	if (chip_id(adapter) <= CHELSIO_T5)
4543		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4544	else
4545		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4546	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4547		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4548		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4549		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4550		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4551		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4552		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4553	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4554	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4555}
4556
4557/**
4558 *	t4_intr_disable - disable interrupts
4559 *	@adapter: the adapter whose interrupts should be disabled
4560 *
4561 *	Disable interrupts.  We only disable the top-level interrupt
4562 *	concentrators.  The caller must be a PCI function managing global
4563 *	interrupts.
4564 */
4565void t4_intr_disable(struct adapter *adapter)
4566{
4567	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4568	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4569		  ? G_SOURCEPF(whoami)
4570		  : G_T6_SOURCEPF(whoami));
4571
4572	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4573	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4574}
4575
4576/**
4577 *	t4_intr_clear - clear all interrupts
4578 *	@adapter: the adapter whose interrupts should be cleared
4579 *
4580 *	Clears all interrupts.  The caller must be a PCI function managing
4581 *	global interrupts.
4582 */
4583void t4_intr_clear(struct adapter *adapter)
4584{
4585	static const unsigned int cause_reg[] = {
4586		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4587		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4588		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4589		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4590		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4591		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4592		A_TP_INT_CAUSE,
4593		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4594		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4595		A_MPS_RX_PERR_INT_CAUSE,
4596		A_CPL_INTR_CAUSE,
4597		MYPF_REG(A_PL_PF_INT_CAUSE),
4598		A_PL_PL_INT_CAUSE,
4599		A_LE_DB_INT_CAUSE,
4600	};
4601
4602	unsigned int i;
4603
4604	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4605		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4606
4607	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4608				A_MC_P_INT_CAUSE, 0xffffffff);
4609
4610	if (is_t4(adapter)) {
4611		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4612				0xffffffff);
4613		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4614				0xffffffff);
4615	} else
4616		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4617
4618	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4619	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4620}
4621
4622/**
4623 *	hash_mac_addr - return the hash value of a MAC address
4624 *	@addr: the 48-bit Ethernet MAC address
4625 *
4626 *	Hashes a MAC address according to the hash function used by HW inexact
4627 *	(hash) address matching.
4628 */
4629static int hash_mac_addr(const u8 *addr)
4630{
4631	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4632	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4633	a ^= b;
4634	a ^= (a >> 12);
4635	a ^= (a >> 6);
4636	return a & 0x3f;
4637}
4638
4639/**
4640 *	t4_config_rss_range - configure a portion of the RSS mapping table
4641 *	@adapter: the adapter
4642 *	@mbox: mbox to use for the FW command
4643 *	@viid: virtual interface whose RSS subtable is to be written
4644 *	@start: start entry in the table to write
4645 *	@n: how many table entries to write
4646 *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4647 *	@nrspq: number of values in @rspq
4648 *
4649 *	Programs the selected part of the VI's RSS mapping table with the
4650 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4651 *	until the full table range is populated.
4652 *
4653 *	The caller must ensure the values in @rspq are in the range allowed for
4654 *	@viid.
4655 */
4656int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4657			int start, int n, const u16 *rspq, unsigned int nrspq)
4658{
4659	int ret;
4660	const u16 *rsp = rspq;
4661	const u16 *rsp_end = rspq + nrspq;
4662	struct fw_rss_ind_tbl_cmd cmd;
4663
4664	memset(&cmd, 0, sizeof(cmd));
4665	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4666				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4667				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4668	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4669
4670	/*
4671	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4672	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4673	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4674	 * reserved.
4675	 */
4676	while (n > 0) {
4677		int nq = min(n, 32);
4678		int nq_packed = 0;
4679		__be32 *qp = &cmd.iq0_to_iq2;
4680
4681		/*
4682		 * Set up the firmware RSS command header to send the next
4683		 * "nq" Ingress Queue IDs to the firmware.
4684		 */
4685		cmd.niqid = cpu_to_be16(nq);
4686		cmd.startidx = cpu_to_be16(start);
4687
4688		/*
4689		 * "nq" more done for the start of the next loop.
4690		 */
4691		start += nq;
4692		n -= nq;
4693
4694		/*
4695		 * While there are still Ingress Queue IDs to stuff into the
4696		 * current firmware RSS command, retrieve them from the
4697		 * Ingress Queue ID array and insert them into the command.
4698		 */
4699		while (nq > 0) {
4700			/*
4701			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4702			 * around the Ingress Queue ID array if necessary) and
4703			 * insert them into the firmware RSS command at the
4704			 * current 3-tuple position within the commad.
4705			 */
4706			u16 qbuf[3];
4707			u16 *qbp = qbuf;
4708			int nqbuf = min(3, nq);
4709
4710			nq -= nqbuf;
4711			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4712			while (nqbuf && nq_packed < 32) {
4713				nqbuf--;
4714				nq_packed++;
4715				*qbp++ = *rsp++;
4716				if (rsp >= rsp_end)
4717					rsp = rspq;
4718			}
4719			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4720					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4721					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4722		}
4723
4724		/*
4725		 * Send this portion of the RRS table update to the firmware;
4726		 * bail out on any errors.
4727		 */
4728		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4729		if (ret)
4730			return ret;
4731	}
4732	return 0;
4733}
4734
4735/**
4736 *	t4_config_glbl_rss - configure the global RSS mode
4737 *	@adapter: the adapter
4738 *	@mbox: mbox to use for the FW command
4739 *	@mode: global RSS mode
4740 *	@flags: mode-specific flags
4741 *
4742 *	Sets the global RSS mode.
4743 */
4744int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4745		       unsigned int flags)
4746{
4747	struct fw_rss_glb_config_cmd c;
4748
4749	memset(&c, 0, sizeof(c));
4750	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4751				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4752	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4753	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4754		c.u.manual.mode_pkd =
4755			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4756	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4757		c.u.basicvirtual.mode_keymode =
4758			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4759		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4760	} else
4761		return -EINVAL;
4762	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4763}
4764
4765/**
4766 *	t4_config_vi_rss - configure per VI RSS settings
4767 *	@adapter: the adapter
4768 *	@mbox: mbox to use for the FW command
4769 *	@viid: the VI id
4770 *	@flags: RSS flags
4771 *	@defq: id of the default RSS queue for the VI.
4772 *	@skeyidx: RSS secret key table index for non-global mode
4773 *	@skey: RSS vf_scramble key for VI.
4774 *
4775 *	Configures VI-specific RSS properties.
4776 */
4777int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4778		     unsigned int flags, unsigned int defq, unsigned int skeyidx,
4779		     unsigned int skey)
4780{
4781	struct fw_rss_vi_config_cmd c;
4782
4783	memset(&c, 0, sizeof(c));
4784	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4785				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4786				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4787	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4788	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4789					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4790	c.u.basicvirtual.secretkeyidx_pkd = cpu_to_be32(
4791					V_FW_RSS_VI_CONFIG_CMD_SECRETKEYIDX(skeyidx));
4792	c.u.basicvirtual.secretkeyxor = cpu_to_be32(skey);
4793
4794	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4795}
4796
4797/* Read an RSS table row */
4798static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4799{
4800	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4801	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4802				   5, 0, val);
4803}
4804
4805/**
4806 *	t4_read_rss - read the contents of the RSS mapping table
4807 *	@adapter: the adapter
4808 *	@map: holds the contents of the RSS mapping table
4809 *
4810 *	Reads the contents of the RSS hash->queue mapping table.
4811 */
4812int t4_read_rss(struct adapter *adapter, u16 *map)
4813{
4814	u32 val;
4815	int i, ret;
4816
4817	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4818		ret = rd_rss_row(adapter, i, &val);
4819		if (ret)
4820			return ret;
4821		*map++ = G_LKPTBLQUEUE0(val);
4822		*map++ = G_LKPTBLQUEUE1(val);
4823	}
4824	return 0;
4825}
4826
4827/**
4828 *	t4_fw_tp_pio_rw - Access TP PIO through LDST
4829 *	@adap: the adapter
4830 *	@vals: where the indirect register values are stored/written
4831 *	@nregs: how many indirect registers to read/write
4832 *	@start_idx: index of first indirect register to read/write
4833 *	@rw: Read (1) or Write (0)
4834 *
4835 *	Access TP PIO registers through LDST
4836 */
4837void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4838		     unsigned int start_index, unsigned int rw)
4839{
4840	int ret, i;
4841	int cmd = FW_LDST_ADDRSPC_TP_PIO;
4842	struct fw_ldst_cmd c;
4843
4844	for (i = 0 ; i < nregs; i++) {
4845		memset(&c, 0, sizeof(c));
4846		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4847						F_FW_CMD_REQUEST |
4848						(rw ? F_FW_CMD_READ :
4849						     F_FW_CMD_WRITE) |
4850						V_FW_LDST_CMD_ADDRSPACE(cmd));
4851		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4852
4853		c.u.addrval.addr = cpu_to_be32(start_index + i);
4854		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4855		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4856		if (ret == 0) {
4857			if (rw)
4858				vals[i] = be32_to_cpu(c.u.addrval.val);
4859		}
4860	}
4861}
4862
4863/**
4864 *	t4_read_rss_key - read the global RSS key
4865 *	@adap: the adapter
4866 *	@key: 10-entry array holding the 320-bit RSS key
4867 *
4868 *	Reads the global 320-bit RSS key.
4869 */
4870void t4_read_rss_key(struct adapter *adap, u32 *key)
4871{
4872	if (t4_use_ldst(adap))
4873		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 1);
4874	else
4875		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4876				 A_TP_RSS_SECRET_KEY0);
4877}
4878
4879/**
4880 *	t4_write_rss_key - program one of the RSS keys
4881 *	@adap: the adapter
4882 *	@key: 10-entry array holding the 320-bit RSS key
4883 *	@idx: which RSS key to write
4884 *
4885 *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
4886 *	0..15 the corresponding entry in the RSS key table is written,
4887 *	otherwise the global RSS key is written.
4888 */
4889void t4_write_rss_key(struct adapter *adap, u32 *key, int idx)
4890{
4891	u8 rss_key_addr_cnt = 16;
4892	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
4893
4894	/*
4895	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4896	 * allows access to key addresses 16-63 by using KeyWrAddrX
4897	 * as index[5:4](upper 2) into key table
4898	 */
4899	if ((chip_id(adap) > CHELSIO_T5) &&
4900	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
4901		rss_key_addr_cnt = 32;
4902
4903	if (t4_use_ldst(adap))
4904		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 0);
4905	else
4906		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4907				  A_TP_RSS_SECRET_KEY0);
4908
4909	if (idx >= 0 && idx < rss_key_addr_cnt) {
4910		if (rss_key_addr_cnt > 16)
4911			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4912				     vrt | V_KEYWRADDRX(idx >> 4) |
4913				     V_T6_VFWRADDR(idx) | F_KEYWREN);
4914		else
4915			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4916				     vrt| V_KEYWRADDR(idx) | F_KEYWREN);
4917	}
4918}
4919
4920/**
4921 *	t4_read_rss_pf_config - read PF RSS Configuration Table
4922 *	@adapter: the adapter
4923 *	@index: the entry in the PF RSS table to read
4924 *	@valp: where to store the returned value
4925 *
4926 *	Reads the PF RSS Configuration Table at the specified index and returns
4927 *	the value found there.
4928 */
4929void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4930			   u32 *valp)
4931{
4932	if (t4_use_ldst(adapter))
4933		t4_fw_tp_pio_rw(adapter, valp, 1,
4934				A_TP_RSS_PF0_CONFIG + index, 1);
4935	else
4936		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4937				 valp, 1, A_TP_RSS_PF0_CONFIG + index);
4938}
4939
4940/**
4941 *	t4_write_rss_pf_config - write PF RSS Configuration Table
4942 *	@adapter: the adapter
4943 *	@index: the entry in the VF RSS table to read
4944 *	@val: the value to store
4945 *
4946 *	Writes the PF RSS Configuration Table at the specified index with the
4947 *	specified value.
4948 */
4949void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
4950			    u32 val)
4951{
4952	if (t4_use_ldst(adapter))
4953		t4_fw_tp_pio_rw(adapter, &val, 1,
4954				A_TP_RSS_PF0_CONFIG + index, 0);
4955	else
4956		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4957				  &val, 1, A_TP_RSS_PF0_CONFIG + index);
4958}
4959
4960/**
4961 *	t4_read_rss_vf_config - read VF RSS Configuration Table
4962 *	@adapter: the adapter
4963 *	@index: the entry in the VF RSS table to read
4964 *	@vfl: where to store the returned VFL
4965 *	@vfh: where to store the returned VFH
4966 *
4967 *	Reads the VF RSS Configuration Table at the specified index and returns
4968 *	the (VFL, VFH) values found there.
4969 */
4970void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4971			   u32 *vfl, u32 *vfh)
4972{
4973	u32 vrt, mask, data;
4974
4975	if (chip_id(adapter) <= CHELSIO_T5) {
4976		mask = V_VFWRADDR(M_VFWRADDR);
4977		data = V_VFWRADDR(index);
4978	} else {
4979		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
4980		 data = V_T6_VFWRADDR(index);
4981	}
4982	/*
4983	 * Request that the index'th VF Table values be read into VFL/VFH.
4984	 */
4985	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
4986	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
4987	vrt |= data | F_VFRDEN;
4988	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
4989
4990	/*
4991	 * Grab the VFL/VFH values ...
4992	 */
4993	if (t4_use_ldst(adapter)) {
4994		t4_fw_tp_pio_rw(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, 1);
4995		t4_fw_tp_pio_rw(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, 1);
4996	} else {
4997		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4998				 vfl, 1, A_TP_RSS_VFL_CONFIG);
4999		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5000				 vfh, 1, A_TP_RSS_VFH_CONFIG);
5001	}
5002}
5003
5004/**
5005 *	t4_write_rss_vf_config - write VF RSS Configuration Table
5006 *
5007 *	@adapter: the adapter
5008 *	@index: the entry in the VF RSS table to write
5009 *	@vfl: the VFL to store
5010 *	@vfh: the VFH to store
5011 *
5012 *	Writes the VF RSS Configuration Table at the specified index with the
5013 *	specified (VFL, VFH) values.
5014 */
5015void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
5016			    u32 vfl, u32 vfh)
5017{
5018	u32 vrt, mask, data;
5019
5020	if (chip_id(adapter) <= CHELSIO_T5) {
5021		mask = V_VFWRADDR(M_VFWRADDR);
5022		data = V_VFWRADDR(index);
5023	} else {
5024		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5025		data = V_T6_VFWRADDR(index);
5026	}
5027
5028	/*
5029	 * Load up VFL/VFH with the values to be written ...
5030	 */
5031	if (t4_use_ldst(adapter)) {
5032		t4_fw_tp_pio_rw(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, 0);
5033		t4_fw_tp_pio_rw(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, 0);
5034	} else {
5035		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5036				  &vfl, 1, A_TP_RSS_VFL_CONFIG);
5037		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5038				  &vfh, 1, A_TP_RSS_VFH_CONFIG);
5039	}
5040
5041	/*
5042	 * Write the VFL/VFH into the VF Table at index'th location.
5043	 */
5044	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5045	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5046	vrt |= data | F_VFRDEN;
5047	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5048}
5049
5050/**
5051 *	t4_read_rss_pf_map - read PF RSS Map
5052 *	@adapter: the adapter
5053 *
5054 *	Reads the PF RSS Map register and returns its value.
5055 */
5056u32 t4_read_rss_pf_map(struct adapter *adapter)
5057{
5058	u32 pfmap;
5059
5060	if (t4_use_ldst(adapter))
5061		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 1);
5062	else
5063		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5064				 &pfmap, 1, A_TP_RSS_PF_MAP);
5065	return pfmap;
5066}
5067
5068/**
5069 *	t4_write_rss_pf_map - write PF RSS Map
5070 *	@adapter: the adapter
5071 *	@pfmap: PF RSS Map value
5072 *
5073 *	Writes the specified value to the PF RSS Map register.
5074 */
5075void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap)
5076{
5077	if (t4_use_ldst(adapter))
5078		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 0);
5079	else
5080		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5081				  &pfmap, 1, A_TP_RSS_PF_MAP);
5082}
5083
5084/**
5085 *	t4_read_rss_pf_mask - read PF RSS Mask
5086 *	@adapter: the adapter
5087 *
5088 *	Reads the PF RSS Mask register and returns its value.
5089 */
5090u32 t4_read_rss_pf_mask(struct adapter *adapter)
5091{
5092	u32 pfmask;
5093
5094	if (t4_use_ldst(adapter))
5095		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 1);
5096	else
5097		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5098				 &pfmask, 1, A_TP_RSS_PF_MSK);
5099	return pfmask;
5100}
5101
5102/**
5103 *	t4_write_rss_pf_mask - write PF RSS Mask
5104 *	@adapter: the adapter
5105 *	@pfmask: PF RSS Mask value
5106 *
5107 *	Writes the specified value to the PF RSS Mask register.
5108 */
5109void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask)
5110{
5111	if (t4_use_ldst(adapter))
5112		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 0);
5113	else
5114		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5115				  &pfmask, 1, A_TP_RSS_PF_MSK);
5116}
5117
5118/**
5119 *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5120 *	@adap: the adapter
5121 *	@v4: holds the TCP/IP counter values
5122 *	@v6: holds the TCP/IPv6 counter values
5123 *
5124 *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5125 *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5126 */
5127void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5128			 struct tp_tcp_stats *v6)
5129{
5130	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5131
5132#define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5133#define STAT(x)     val[STAT_IDX(x)]
5134#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5135
5136	if (v4) {
5137		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5138				 ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST);
5139		v4->tcp_out_rsts = STAT(OUT_RST);
5140		v4->tcp_in_segs  = STAT64(IN_SEG);
5141		v4->tcp_out_segs = STAT64(OUT_SEG);
5142		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5143	}
5144	if (v6) {
5145		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5146				 ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST);
5147		v6->tcp_out_rsts = STAT(OUT_RST);
5148		v6->tcp_in_segs  = STAT64(IN_SEG);
5149		v6->tcp_out_segs = STAT64(OUT_SEG);
5150		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5151	}
5152#undef STAT64
5153#undef STAT
5154#undef STAT_IDX
5155}
5156
5157/**
5158 *	t4_tp_get_err_stats - read TP's error MIB counters
5159 *	@adap: the adapter
5160 *	@st: holds the counter values
5161 *
5162 *	Returns the values of TP's error counters.
5163 */
5164void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
5165{
5166	int nchan = adap->chip_params->nchan;
5167
5168	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5169			st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0);
5170	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5171			st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0);
5172	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5173			st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0);
5174	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5175			st->tnl_cong_drops, nchan, A_TP_MIB_TNL_CNG_DROP_0);
5176	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5177			st->ofld_chan_drops, nchan, A_TP_MIB_OFD_CHN_DROP_0);
5178	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5179			st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0);
5180	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5181			st->ofld_vlan_drops, nchan, A_TP_MIB_OFD_VLN_DROP_0);
5182	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5183			st->tcp6_in_errs, nchan, A_TP_MIB_TCP_V6IN_ERR_0);
5184
5185	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5186			 &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP);
5187}
5188
5189/**
5190 *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5191 *	@adap: the adapter
5192 *	@st: holds the counter values
5193 *
5194 *	Returns the values of TP's proxy counters.
5195 */
5196void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st)
5197{
5198	int nchan = adap->chip_params->nchan;
5199
5200	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->proxy,
5201			 nchan, A_TP_MIB_TNL_LPBK_0);
5202}
5203
5204/**
5205 *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5206 *	@adap: the adapter
5207 *	@st: holds the counter values
5208 *
5209 *	Returns the values of TP's CPL counters.
5210 */
5211void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
5212{
5213	int nchan = adap->chip_params->nchan;
5214
5215	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->req,
5216			 nchan, A_TP_MIB_CPL_IN_REQ_0);
5217	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->rsp,
5218			 nchan, A_TP_MIB_CPL_OUT_RSP_0);
5219}
5220
5221/**
5222 *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5223 *	@adap: the adapter
5224 *	@st: holds the counter values
5225 *
5226 *	Returns the values of TP's RDMA counters.
5227 */
5228void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
5229{
5230	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->rqe_dfr_pkt,
5231			 2, A_TP_MIB_RQE_DFR_PKT);
5232}
5233
5234/**
5235 *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5236 *	@adap: the adapter
5237 *	@idx: the port index
5238 *	@st: holds the counter values
5239 *
5240 *	Returns the values of TP's FCoE counters for the selected port.
5241 */
5242void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5243		       struct tp_fcoe_stats *st)
5244{
5245	u32 val[2];
5246
5247	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_ddp,
5248			 1, A_TP_MIB_FCOE_DDP_0 + idx);
5249	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_drop,
5250			 1, A_TP_MIB_FCOE_DROP_0 + idx);
5251	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5252			 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx);
5253	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5254}
5255
5256/**
5257 *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5258 *	@adap: the adapter
5259 *	@st: holds the counter values
5260 *
5261 *	Returns the values of TP's counters for non-TCP directly-placed packets.
5262 */
5263void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
5264{
5265	u32 val[4];
5266
5267	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 4,
5268			 A_TP_MIB_USM_PKTS);
5269	st->frames = val[0];
5270	st->drops = val[1];
5271	st->octets = ((u64)val[2] << 32) | val[3];
5272}
5273
5274/**
5275 *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5276 *	@adap: the adapter
5277 *	@mtus: where to store the MTU values
5278 *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5279 *
5280 *	Reads the HW path MTU table.
5281 */
5282void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5283{
5284	u32 v;
5285	int i;
5286
5287	for (i = 0; i < NMTUS; ++i) {
5288		t4_write_reg(adap, A_TP_MTU_TABLE,
5289			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5290		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5291		mtus[i] = G_MTUVALUE(v);
5292		if (mtu_log)
5293			mtu_log[i] = G_MTUWIDTH(v);
5294	}
5295}
5296
5297/**
5298 *	t4_read_cong_tbl - reads the congestion control table
5299 *	@adap: the adapter
5300 *	@incr: where to store the alpha values
5301 *
5302 *	Reads the additive increments programmed into the HW congestion
5303 *	control table.
5304 */
5305void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5306{
5307	unsigned int mtu, w;
5308
5309	for (mtu = 0; mtu < NMTUS; ++mtu)
5310		for (w = 0; w < NCCTRL_WIN; ++w) {
5311			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5312				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5313			incr[mtu][w] = (u16)t4_read_reg(adap,
5314						A_TP_CCTRL_TABLE) & 0x1fff;
5315		}
5316}
5317
5318/**
5319 *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5320 *	@adap: the adapter
5321 *	@addr: the indirect TP register address
5322 *	@mask: specifies the field within the register to modify
5323 *	@val: new value for the field
5324 *
5325 *	Sets a field of an indirect TP register to the given value.
5326 */
5327void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5328			    unsigned int mask, unsigned int val)
5329{
5330	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5331	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5332	t4_write_reg(adap, A_TP_PIO_DATA, val);
5333}
5334
5335/**
5336 *	init_cong_ctrl - initialize congestion control parameters
5337 *	@a: the alpha values for congestion control
5338 *	@b: the beta values for congestion control
5339 *
5340 *	Initialize the congestion control parameters.
5341 */
5342static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5343{
5344	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5345	a[9] = 2;
5346	a[10] = 3;
5347	a[11] = 4;
5348	a[12] = 5;
5349	a[13] = 6;
5350	a[14] = 7;
5351	a[15] = 8;
5352	a[16] = 9;
5353	a[17] = 10;
5354	a[18] = 14;
5355	a[19] = 17;
5356	a[20] = 21;
5357	a[21] = 25;
5358	a[22] = 30;
5359	a[23] = 35;
5360	a[24] = 45;
5361	a[25] = 60;
5362	a[26] = 80;
5363	a[27] = 100;
5364	a[28] = 200;
5365	a[29] = 300;
5366	a[30] = 400;
5367	a[31] = 500;
5368
5369	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5370	b[9] = b[10] = 1;
5371	b[11] = b[12] = 2;
5372	b[13] = b[14] = b[15] = b[16] = 3;
5373	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5374	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5375	b[28] = b[29] = 6;
5376	b[30] = b[31] = 7;
5377}
5378
5379/* The minimum additive increment value for the congestion control table */
5380#define CC_MIN_INCR 2U
5381
5382/**
5383 *	t4_load_mtus - write the MTU and congestion control HW tables
5384 *	@adap: the adapter
5385 *	@mtus: the values for the MTU table
5386 *	@alpha: the values for the congestion control alpha parameter
5387 *	@beta: the values for the congestion control beta parameter
5388 *
5389 *	Write the HW MTU table with the supplied MTUs and the high-speed
5390 *	congestion control table with the supplied alpha, beta, and MTUs.
5391 *	We write the two tables together because the additive increments
5392 *	depend on the MTUs.
5393 */
5394void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5395		  const unsigned short *alpha, const unsigned short *beta)
5396{
5397	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5398		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5399		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5400		28672, 40960, 57344, 81920, 114688, 163840, 229376
5401	};
5402
5403	unsigned int i, w;
5404
5405	for (i = 0; i < NMTUS; ++i) {
5406		unsigned int mtu = mtus[i];
5407		unsigned int log2 = fls(mtu);
5408
5409		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5410			log2--;
5411		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5412			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5413
5414		for (w = 0; w < NCCTRL_WIN; ++w) {
5415			unsigned int inc;
5416
5417			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5418				  CC_MIN_INCR);
5419
5420			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5421				     (w << 16) | (beta[w] << 13) | inc);
5422		}
5423	}
5424}
5425
5426/**
5427 *	t4_set_pace_tbl - set the pace table
5428 *	@adap: the adapter
5429 *	@pace_vals: the pace values in microseconds
5430 *	@start: index of the first entry in the HW pace table to set
5431 *	@n: how many entries to set
5432 *
5433 *	Sets (a subset of the) HW pace table.
5434 */
5435int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5436		     unsigned int start, unsigned int n)
5437{
5438	unsigned int vals[NTX_SCHED], i;
5439	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5440
5441	if (n > NTX_SCHED)
5442	    return -ERANGE;
5443
5444	/* convert values from us to dack ticks, rounding to closest value */
5445	for (i = 0; i < n; i++, pace_vals++) {
5446		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5447		if (vals[i] > 0x7ff)
5448			return -ERANGE;
5449		if (*pace_vals && vals[i] == 0)
5450			return -ERANGE;
5451	}
5452	for (i = 0; i < n; i++, start++)
5453		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5454	return 0;
5455}
5456
5457/**
5458 *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5459 *	@adap: the adapter
5460 *	@kbps: target rate in Kbps
5461 *	@sched: the scheduler index
5462 *
5463 *	Configure a Tx HW scheduler for the target rate.
5464 */
5465int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5466{
5467	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5468	unsigned int clk = adap->params.vpd.cclk * 1000;
5469	unsigned int selected_cpt = 0, selected_bpt = 0;
5470
5471	if (kbps > 0) {
5472		kbps *= 125;     /* -> bytes */
5473		for (cpt = 1; cpt <= 255; cpt++) {
5474			tps = clk / cpt;
5475			bpt = (kbps + tps / 2) / tps;
5476			if (bpt > 0 && bpt <= 255) {
5477				v = bpt * tps;
5478				delta = v >= kbps ? v - kbps : kbps - v;
5479				if (delta < mindelta) {
5480					mindelta = delta;
5481					selected_cpt = cpt;
5482					selected_bpt = bpt;
5483				}
5484			} else if (selected_cpt)
5485				break;
5486		}
5487		if (!selected_cpt)
5488			return -EINVAL;
5489	}
5490	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5491		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5492	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5493	if (sched & 1)
5494		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5495	else
5496		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5497	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5498	return 0;
5499}
5500
5501/**
5502 *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5503 *	@adap: the adapter
5504 *	@sched: the scheduler index
5505 *	@ipg: the interpacket delay in tenths of nanoseconds
5506 *
5507 *	Set the interpacket delay for a HW packet rate scheduler.
5508 */
5509int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5510{
5511	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5512
5513	/* convert ipg to nearest number of core clocks */
5514	ipg *= core_ticks_per_usec(adap);
5515	ipg = (ipg + 5000) / 10000;
5516	if (ipg > M_TXTIMERSEPQ0)
5517		return -EINVAL;
5518
5519	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5520	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5521	if (sched & 1)
5522		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5523	else
5524		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5525	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5526	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5527	return 0;
5528}
5529
5530/*
5531 * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5532 * clocks.  The formula is
5533 *
5534 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5535 *
5536 * which is equivalent to
5537 *
5538 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5539 */
5540static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5541{
5542	u64 v = bytes256 * adap->params.vpd.cclk;
5543
5544	return v * 62 + v / 2;
5545}
5546
5547/**
5548 *	t4_get_chan_txrate - get the current per channel Tx rates
5549 *	@adap: the adapter
5550 *	@nic_rate: rates for NIC traffic
5551 *	@ofld_rate: rates for offloaded traffic
5552 *
5553 *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5554 *	for each channel.
5555 */
5556void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5557{
5558	u32 v;
5559
5560	v = t4_read_reg(adap, A_TP_TX_TRATE);
5561	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5562	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5563	if (adap->chip_params->nchan > 2) {
5564		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5565		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5566	}
5567
5568	v = t4_read_reg(adap, A_TP_TX_ORATE);
5569	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5570	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5571	if (adap->chip_params->nchan > 2) {
5572		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5573		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5574	}
5575}
5576
5577/**
5578 *	t4_set_trace_filter - configure one of the tracing filters
5579 *	@adap: the adapter
5580 *	@tp: the desired trace filter parameters
5581 *	@idx: which filter to configure
5582 *	@enable: whether to enable or disable the filter
5583 *
5584 *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5585 *	it indicates that the filter is already written in the register and it
5586 *	just needs to be enabled or disabled.
5587 */
5588int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5589    int idx, int enable)
5590{
5591	int i, ofst = idx * 4;
5592	u32 data_reg, mask_reg, cfg;
5593	u32 multitrc = F_TRCMULTIFILTER;
5594	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5595
5596	if (idx < 0 || idx >= NTRACE)
5597		return -EINVAL;
5598
5599	if (tp == NULL || !enable) {
5600		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5601		    enable ? en : 0);
5602		return 0;
5603	}
5604
5605	/*
5606	 * TODO - After T4 data book is updated, specify the exact
5607	 * section below.
5608	 *
5609	 * See T4 data book - MPS section for a complete description
5610	 * of the below if..else handling of A_MPS_TRC_CFG register
5611	 * value.
5612	 */
5613	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5614	if (cfg & F_TRCMULTIFILTER) {
5615		/*
5616		 * If multiple tracers are enabled, then maximum
5617		 * capture size is 2.5KB (FIFO size of a single channel)
5618		 * minus 2 flits for CPL_TRACE_PKT header.
5619		 */
5620		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5621			return -EINVAL;
5622	} else {
5623		/*
5624		 * If multiple tracers are disabled, to avoid deadlocks
5625		 * maximum packet capture size of 9600 bytes is recommended.
5626		 * Also in this mode, only trace0 can be enabled and running.
5627		 */
5628		multitrc = 0;
5629		if (tp->snap_len > 9600 || idx)
5630			return -EINVAL;
5631	}
5632
5633	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5634	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5635	    tp->min_len > M_TFMINPKTSIZE)
5636		return -EINVAL;
5637
5638	/* stop the tracer we'll be changing */
5639	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5640
5641	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5642	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5643	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5644
5645	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5646		t4_write_reg(adap, data_reg, tp->data[i]);
5647		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5648	}
5649	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5650		     V_TFCAPTUREMAX(tp->snap_len) |
5651		     V_TFMINPKTSIZE(tp->min_len));
5652	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5653		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5654		     (is_t4(adap) ?
5655		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5656		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5657
5658	return 0;
5659}
5660
5661/**
5662 *	t4_get_trace_filter - query one of the tracing filters
5663 *	@adap: the adapter
5664 *	@tp: the current trace filter parameters
5665 *	@idx: which trace filter to query
5666 *	@enabled: non-zero if the filter is enabled
5667 *
5668 *	Returns the current settings of one of the HW tracing filters.
5669 */
5670void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5671			 int *enabled)
5672{
5673	u32 ctla, ctlb;
5674	int i, ofst = idx * 4;
5675	u32 data_reg, mask_reg;
5676
5677	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5678	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5679
5680	if (is_t4(adap)) {
5681		*enabled = !!(ctla & F_TFEN);
5682		tp->port =  G_TFPORT(ctla);
5683		tp->invert = !!(ctla & F_TFINVERTMATCH);
5684	} else {
5685		*enabled = !!(ctla & F_T5_TFEN);
5686		tp->port = G_T5_TFPORT(ctla);
5687		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5688	}
5689	tp->snap_len = G_TFCAPTUREMAX(ctlb);
5690	tp->min_len = G_TFMINPKTSIZE(ctlb);
5691	tp->skip_ofst = G_TFOFFSET(ctla);
5692	tp->skip_len = G_TFLENGTH(ctla);
5693
5694	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5695	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5696	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5697
5698	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5699		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5700		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5701	}
5702}
5703
5704/**
5705 *	t4_pmtx_get_stats - returns the HW stats from PMTX
5706 *	@adap: the adapter
5707 *	@cnt: where to store the count statistics
5708 *	@cycles: where to store the cycle statistics
5709 *
5710 *	Returns performance statistics from PMTX.
5711 */
5712void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5713{
5714	int i;
5715	u32 data[2];
5716
5717	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5718		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5719		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5720		if (is_t4(adap))
5721			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5722		else {
5723			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5724					 A_PM_TX_DBG_DATA, data, 2,
5725					 A_PM_TX_DBG_STAT_MSB);
5726			cycles[i] = (((u64)data[0] << 32) | data[1]);
5727		}
5728	}
5729}
5730
5731/**
5732 *	t4_pmrx_get_stats - returns the HW stats from PMRX
5733 *	@adap: the adapter
5734 *	@cnt: where to store the count statistics
5735 *	@cycles: where to store the cycle statistics
5736 *
5737 *	Returns performance statistics from PMRX.
5738 */
5739void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5740{
5741	int i;
5742	u32 data[2];
5743
5744	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5745		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5746		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5747		if (is_t4(adap)) {
5748			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5749		} else {
5750			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5751					 A_PM_RX_DBG_DATA, data, 2,
5752					 A_PM_RX_DBG_STAT_MSB);
5753			cycles[i] = (((u64)data[0] << 32) | data[1]);
5754		}
5755	}
5756}
5757
5758/**
5759 *	t4_get_mps_bg_map - return the buffer groups associated with a port
5760 *	@adap: the adapter
5761 *	@idx: the port index
5762 *
5763 *	Returns a bitmap indicating which MPS buffer groups are associated
5764 *	with the given port.  Bit i is set if buffer group i is used by the
5765 *	port.
5766 */
5767static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5768{
5769	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5770
5771	if (n == 0)
5772		return idx == 0 ? 0xf : 0;
5773	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5774		return idx < 2 ? (3 << (2 * idx)) : 0;
5775	return 1 << idx;
5776}
5777
5778/**
5779 *      t4_get_port_type_description - return Port Type string description
5780 *      @port_type: firmware Port Type enumeration
5781 */
5782const char *t4_get_port_type_description(enum fw_port_type port_type)
5783{
5784	static const char *const port_type_description[] = {
5785		"Fiber_XFI",
5786		"Fiber_XAUI",
5787		"BT_SGMII",
5788		"BT_XFI",
5789		"BT_XAUI",
5790		"KX4",
5791		"CX4",
5792		"KX",
5793		"KR",
5794		"SFP",
5795		"BP_AP",
5796		"BP4_AP",
5797		"QSFP_10G",
5798		"QSA",
5799		"QSFP",
5800		"BP40_BA",
5801		"KR4_100G",
5802		"CR4_QSFP",
5803		"CR_QSFP",
5804		"CR_SFP28",
5805		"SFP28",
5806		"KR_SFP28",
5807		"CR2_QSFP",
5808	};
5809
5810	if (port_type < ARRAY_SIZE(port_type_description))
5811		return port_type_description[port_type];
5812	return "UNKNOWN";
5813}
5814
5815/**
5816 *      t4_get_port_stats_offset - collect port stats relative to a previous
5817 *				   snapshot
5818 *      @adap: The adapter
5819 *      @idx: The port
5820 *      @stats: Current stats to fill
5821 *      @offset: Previous stats snapshot
5822 */
5823void t4_get_port_stats_offset(struct adapter *adap, int idx,
5824		struct port_stats *stats,
5825		struct port_stats *offset)
5826{
5827	u64 *s, *o;
5828	int i;
5829
5830	t4_get_port_stats(adap, idx, stats);
5831	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
5832			i < (sizeof(struct port_stats)/sizeof(u64)) ;
5833			i++, s++, o++)
5834		*s -= *o;
5835}
5836
5837/**
5838 *	t4_get_port_stats - collect port statistics
5839 *	@adap: the adapter
5840 *	@idx: the port index
5841 *	@p: the stats structure to fill
5842 *
5843 *	Collect statistics related to the given port from HW.
5844 */
5845void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5846{
5847	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5848	u32 stat_ctl;
5849
5850#define GET_STAT(name) \
5851	t4_read_reg64(adap, \
5852	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
5853	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
5854#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5855
5856	stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
5857
5858	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
5859	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
5860	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
5861	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
5862	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
5863	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
5864	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
5865	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
5866	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
5867	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
5868	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
5869	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
5870	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
5871	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
5872	p->tx_drop		= GET_STAT(TX_PORT_DROP);
5873	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
5874	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
5875	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
5876	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
5877	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
5878	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
5879	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
5880	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
5881
5882	if (stat_ctl & F_COUNTPAUSESTATTX) {
5883		p->tx_frames -= p->tx_pause;
5884		p->tx_octets -= p->tx_pause * 64;
5885		p->tx_mcast_frames -= p->tx_pause;
5886	}
5887
5888	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
5889	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
5890	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
5891	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
5892	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
5893	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
5894	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
5895	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
5896	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
5897	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
5898	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
5899	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
5900	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
5901	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
5902	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
5903	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
5904	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
5905	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
5906	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
5907	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
5908	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
5909	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
5910	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
5911	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
5912	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
5913	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
5914	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
5915
5916	if (stat_ctl & F_COUNTPAUSESTATRX) {
5917		p->rx_frames -= p->rx_pause;
5918		p->rx_octets -= p->rx_pause * 64;
5919		p->rx_mcast_frames -= p->rx_pause;
5920	}
5921
5922	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5923	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5924	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5925	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5926	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5927	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5928	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5929	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5930
5931#undef GET_STAT
5932#undef GET_STAT_COM
5933}
5934
5935/**
5936 *	t4_get_lb_stats - collect loopback port statistics
5937 *	@adap: the adapter
5938 *	@idx: the loopback port index
5939 *	@p: the stats structure to fill
5940 *
5941 *	Return HW statistics for the given loopback port.
5942 */
5943void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5944{
5945	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5946
5947#define GET_STAT(name) \
5948	t4_read_reg64(adap, \
5949	(is_t4(adap) ? \
5950	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
5951	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
5952#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5953
5954	p->octets	= GET_STAT(BYTES);
5955	p->frames	= GET_STAT(FRAMES);
5956	p->bcast_frames	= GET_STAT(BCAST);
5957	p->mcast_frames	= GET_STAT(MCAST);
5958	p->ucast_frames	= GET_STAT(UCAST);
5959	p->error_frames	= GET_STAT(ERROR);
5960
5961	p->frames_64		= GET_STAT(64B);
5962	p->frames_65_127	= GET_STAT(65B_127B);
5963	p->frames_128_255	= GET_STAT(128B_255B);
5964	p->frames_256_511	= GET_STAT(256B_511B);
5965	p->frames_512_1023	= GET_STAT(512B_1023B);
5966	p->frames_1024_1518	= GET_STAT(1024B_1518B);
5967	p->frames_1519_max	= GET_STAT(1519B_MAX);
5968	p->drop			= GET_STAT(DROP_FRAMES);
5969
5970	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5971	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5972	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5973	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5974	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5975	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5976	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5977	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5978
5979#undef GET_STAT
5980#undef GET_STAT_COM
5981}
5982
5983/**
5984 *	t4_wol_magic_enable - enable/disable magic packet WoL
5985 *	@adap: the adapter
5986 *	@port: the physical port index
5987 *	@addr: MAC address expected in magic packets, %NULL to disable
5988 *
5989 *	Enables/disables magic packet wake-on-LAN for the selected port.
5990 */
5991void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
5992			 const u8 *addr)
5993{
5994	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
5995
5996	if (is_t4(adap)) {
5997		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
5998		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
5999		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6000	} else {
6001		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
6002		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
6003		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6004	}
6005
6006	if (addr) {
6007		t4_write_reg(adap, mag_id_reg_l,
6008			     (addr[2] << 24) | (addr[3] << 16) |
6009			     (addr[4] << 8) | addr[5]);
6010		t4_write_reg(adap, mag_id_reg_h,
6011			     (addr[0] << 8) | addr[1]);
6012	}
6013	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
6014			 V_MAGICEN(addr != NULL));
6015}
6016
6017/**
6018 *	t4_wol_pat_enable - enable/disable pattern-based WoL
6019 *	@adap: the adapter
6020 *	@port: the physical port index
6021 *	@map: bitmap of which HW pattern filters to set
6022 *	@mask0: byte mask for bytes 0-63 of a packet
6023 *	@mask1: byte mask for bytes 64-127 of a packet
6024 *	@crc: Ethernet CRC for selected bytes
6025 *	@enable: enable/disable switch
6026 *
6027 *	Sets the pattern filters indicated in @map to mask out the bytes
6028 *	specified in @mask0/@mask1 in received packets and compare the CRC of
6029 *	the resulting packet against @crc.  If @enable is %true pattern-based
6030 *	WoL is enabled, otherwise disabled.
6031 */
6032int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6033		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6034{
6035	int i;
6036	u32 port_cfg_reg;
6037
6038	if (is_t4(adap))
6039		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6040	else
6041		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6042
6043	if (!enable) {
6044		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6045		return 0;
6046	}
6047	if (map > 0xff)
6048		return -EINVAL;
6049
6050#define EPIO_REG(name) \
6051	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6052	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6053
6054	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6055	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6056	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6057
6058	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6059		if (!(map & 1))
6060			continue;
6061
6062		/* write byte masks */
6063		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6064		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6065		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6066		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6067			return -ETIMEDOUT;
6068
6069		/* write CRC */
6070		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6071		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6072		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6073		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6074			return -ETIMEDOUT;
6075	}
6076#undef EPIO_REG
6077
6078	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6079	return 0;
6080}
6081
6082/*     t4_mk_filtdelwr - create a delete filter WR
6083 *     @ftid: the filter ID
6084 *     @wr: the filter work request to populate
6085 *     @qid: ingress queue to receive the delete notification
6086 *
6087 *     Creates a filter work request to delete the supplied filter.  If @qid is
6088 *     negative the delete notification is suppressed.
6089 */
6090void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6091{
6092	memset(wr, 0, sizeof(*wr));
6093	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6094	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6095	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6096				    V_FW_FILTER_WR_NOREPLY(qid < 0));
6097	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6098	if (qid >= 0)
6099		wr->rx_chan_rx_rpl_iq =
6100				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6101}
6102
6103#define INIT_CMD(var, cmd, rd_wr) do { \
6104	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6105					F_FW_CMD_REQUEST | \
6106					F_FW_CMD_##rd_wr); \
6107	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6108} while (0)
6109
6110int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6111			  u32 addr, u32 val)
6112{
6113	u32 ldst_addrspace;
6114	struct fw_ldst_cmd c;
6115
6116	memset(&c, 0, sizeof(c));
6117	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6118	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6119					F_FW_CMD_REQUEST |
6120					F_FW_CMD_WRITE |
6121					ldst_addrspace);
6122	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6123	c.u.addrval.addr = cpu_to_be32(addr);
6124	c.u.addrval.val = cpu_to_be32(val);
6125
6126	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6127}
6128
6129/**
6130 *	t4_mdio_rd - read a PHY register through MDIO
6131 *	@adap: the adapter
6132 *	@mbox: mailbox to use for the FW command
6133 *	@phy_addr: the PHY address
6134 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6135 *	@reg: the register to read
6136 *	@valp: where to store the value
6137 *
6138 *	Issues a FW command through the given mailbox to read a PHY register.
6139 */
6140int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6141	       unsigned int mmd, unsigned int reg, unsigned int *valp)
6142{
6143	int ret;
6144	u32 ldst_addrspace;
6145	struct fw_ldst_cmd c;
6146
6147	memset(&c, 0, sizeof(c));
6148	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6149	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6150					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6151					ldst_addrspace);
6152	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6153	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6154					 V_FW_LDST_CMD_MMD(mmd));
6155	c.u.mdio.raddr = cpu_to_be16(reg);
6156
6157	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6158	if (ret == 0)
6159		*valp = be16_to_cpu(c.u.mdio.rval);
6160	return ret;
6161}
6162
6163/**
6164 *	t4_mdio_wr - write a PHY register through MDIO
6165 *	@adap: the adapter
6166 *	@mbox: mailbox to use for the FW command
6167 *	@phy_addr: the PHY address
6168 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6169 *	@reg: the register to write
6170 *	@valp: value to write
6171 *
6172 *	Issues a FW command through the given mailbox to write a PHY register.
6173 */
6174int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6175	       unsigned int mmd, unsigned int reg, unsigned int val)
6176{
6177	u32 ldst_addrspace;
6178	struct fw_ldst_cmd c;
6179
6180	memset(&c, 0, sizeof(c));
6181	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6182	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6183					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6184					ldst_addrspace);
6185	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6186	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6187					 V_FW_LDST_CMD_MMD(mmd));
6188	c.u.mdio.raddr = cpu_to_be16(reg);
6189	c.u.mdio.rval = cpu_to_be16(val);
6190
6191	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6192}
6193
6194/**
6195 *
6196 *	t4_sge_decode_idma_state - decode the idma state
6197 *	@adap: the adapter
6198 *	@state: the state idma is stuck in
6199 */
6200void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6201{
6202	static const char * const t4_decode[] = {
6203		"IDMA_IDLE",
6204		"IDMA_PUSH_MORE_CPL_FIFO",
6205		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6206		"Not used",
6207		"IDMA_PHYSADDR_SEND_PCIEHDR",
6208		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6209		"IDMA_PHYSADDR_SEND_PAYLOAD",
6210		"IDMA_SEND_FIFO_TO_IMSG",
6211		"IDMA_FL_REQ_DATA_FL_PREP",
6212		"IDMA_FL_REQ_DATA_FL",
6213		"IDMA_FL_DROP",
6214		"IDMA_FL_H_REQ_HEADER_FL",
6215		"IDMA_FL_H_SEND_PCIEHDR",
6216		"IDMA_FL_H_PUSH_CPL_FIFO",
6217		"IDMA_FL_H_SEND_CPL",
6218		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6219		"IDMA_FL_H_SEND_IP_HDR",
6220		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6221		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6222		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6223		"IDMA_FL_D_SEND_PCIEHDR",
6224		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6225		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6226		"IDMA_FL_SEND_PCIEHDR",
6227		"IDMA_FL_PUSH_CPL_FIFO",
6228		"IDMA_FL_SEND_CPL",
6229		"IDMA_FL_SEND_PAYLOAD_FIRST",
6230		"IDMA_FL_SEND_PAYLOAD",
6231		"IDMA_FL_REQ_NEXT_DATA_FL",
6232		"IDMA_FL_SEND_NEXT_PCIEHDR",
6233		"IDMA_FL_SEND_PADDING",
6234		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6235		"IDMA_FL_SEND_FIFO_TO_IMSG",
6236		"IDMA_FL_REQ_DATAFL_DONE",
6237		"IDMA_FL_REQ_HEADERFL_DONE",
6238	};
6239	static const char * const t5_decode[] = {
6240		"IDMA_IDLE",
6241		"IDMA_ALMOST_IDLE",
6242		"IDMA_PUSH_MORE_CPL_FIFO",
6243		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6244		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6245		"IDMA_PHYSADDR_SEND_PCIEHDR",
6246		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6247		"IDMA_PHYSADDR_SEND_PAYLOAD",
6248		"IDMA_SEND_FIFO_TO_IMSG",
6249		"IDMA_FL_REQ_DATA_FL",
6250		"IDMA_FL_DROP",
6251		"IDMA_FL_DROP_SEND_INC",
6252		"IDMA_FL_H_REQ_HEADER_FL",
6253		"IDMA_FL_H_SEND_PCIEHDR",
6254		"IDMA_FL_H_PUSH_CPL_FIFO",
6255		"IDMA_FL_H_SEND_CPL",
6256		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6257		"IDMA_FL_H_SEND_IP_HDR",
6258		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6259		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6260		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6261		"IDMA_FL_D_SEND_PCIEHDR",
6262		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6263		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6264		"IDMA_FL_SEND_PCIEHDR",
6265		"IDMA_FL_PUSH_CPL_FIFO",
6266		"IDMA_FL_SEND_CPL",
6267		"IDMA_FL_SEND_PAYLOAD_FIRST",
6268		"IDMA_FL_SEND_PAYLOAD",
6269		"IDMA_FL_REQ_NEXT_DATA_FL",
6270		"IDMA_FL_SEND_NEXT_PCIEHDR",
6271		"IDMA_FL_SEND_PADDING",
6272		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6273	};
6274	static const char * const t6_decode[] = {
6275		"IDMA_IDLE",
6276		"IDMA_PUSH_MORE_CPL_FIFO",
6277		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6278		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6279		"IDMA_PHYSADDR_SEND_PCIEHDR",
6280		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6281		"IDMA_PHYSADDR_SEND_PAYLOAD",
6282		"IDMA_FL_REQ_DATA_FL",
6283		"IDMA_FL_DROP",
6284		"IDMA_FL_DROP_SEND_INC",
6285		"IDMA_FL_H_REQ_HEADER_FL",
6286		"IDMA_FL_H_SEND_PCIEHDR",
6287		"IDMA_FL_H_PUSH_CPL_FIFO",
6288		"IDMA_FL_H_SEND_CPL",
6289		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6290		"IDMA_FL_H_SEND_IP_HDR",
6291		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6292		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6293		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6294		"IDMA_FL_D_SEND_PCIEHDR",
6295		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6296		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6297		"IDMA_FL_SEND_PCIEHDR",
6298		"IDMA_FL_PUSH_CPL_FIFO",
6299		"IDMA_FL_SEND_CPL",
6300		"IDMA_FL_SEND_PAYLOAD_FIRST",
6301		"IDMA_FL_SEND_PAYLOAD",
6302		"IDMA_FL_REQ_NEXT_DATA_FL",
6303		"IDMA_FL_SEND_NEXT_PCIEHDR",
6304		"IDMA_FL_SEND_PADDING",
6305		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6306	};
6307	static const u32 sge_regs[] = {
6308		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6309		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6310		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6311	};
6312	const char * const *sge_idma_decode;
6313	int sge_idma_decode_nstates;
6314	int i;
6315	unsigned int chip_version = chip_id(adapter);
6316
6317	/* Select the right set of decode strings to dump depending on the
6318	 * adapter chip type.
6319	 */
6320	switch (chip_version) {
6321	case CHELSIO_T4:
6322		sge_idma_decode = (const char * const *)t4_decode;
6323		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6324		break;
6325
6326	case CHELSIO_T5:
6327		sge_idma_decode = (const char * const *)t5_decode;
6328		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6329		break;
6330
6331	case CHELSIO_T6:
6332		sge_idma_decode = (const char * const *)t6_decode;
6333		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6334		break;
6335
6336	default:
6337		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6338		return;
6339	}
6340
6341	if (state < sge_idma_decode_nstates)
6342		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6343	else
6344		CH_WARN(adapter, "idma state %d unknown\n", state);
6345
6346	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6347		CH_WARN(adapter, "SGE register %#x value %#x\n",
6348			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6349}
6350
6351/**
6352 *      t4_sge_ctxt_flush - flush the SGE context cache
6353 *      @adap: the adapter
6354 *      @mbox: mailbox to use for the FW command
6355 *
6356 *      Issues a FW command through the given mailbox to flush the
6357 *      SGE context cache.
6358 */
6359int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6360{
6361	int ret;
6362	u32 ldst_addrspace;
6363	struct fw_ldst_cmd c;
6364
6365	memset(&c, 0, sizeof(c));
6366	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6367	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6368					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6369					ldst_addrspace);
6370	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6371	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6372
6373	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6374	return ret;
6375}
6376
6377/**
6378 *      t4_fw_hello - establish communication with FW
6379 *      @adap: the adapter
6380 *      @mbox: mailbox to use for the FW command
6381 *      @evt_mbox: mailbox to receive async FW events
6382 *      @master: specifies the caller's willingness to be the device master
6383 *	@state: returns the current device state (if non-NULL)
6384 *
6385 *	Issues a command to establish communication with FW.  Returns either
6386 *	an error (negative integer) or the mailbox of the Master PF.
6387 */
6388int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6389		enum dev_master master, enum dev_state *state)
6390{
6391	int ret;
6392	struct fw_hello_cmd c;
6393	u32 v;
6394	unsigned int master_mbox;
6395	int retries = FW_CMD_HELLO_RETRIES;
6396
6397retry:
6398	memset(&c, 0, sizeof(c));
6399	INIT_CMD(c, HELLO, WRITE);
6400	c.err_to_clearinit = cpu_to_be32(
6401		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6402		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6403		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6404					mbox : M_FW_HELLO_CMD_MBMASTER) |
6405		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6406		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6407		F_FW_HELLO_CMD_CLEARINIT);
6408
6409	/*
6410	 * Issue the HELLO command to the firmware.  If it's not successful
6411	 * but indicates that we got a "busy" or "timeout" condition, retry
6412	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6413	 * retry limit, check to see if the firmware left us any error
6414	 * information and report that if so ...
6415	 */
6416	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6417	if (ret != FW_SUCCESS) {
6418		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6419			goto retry;
6420		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6421			t4_report_fw_error(adap);
6422		return ret;
6423	}
6424
6425	v = be32_to_cpu(c.err_to_clearinit);
6426	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6427	if (state) {
6428		if (v & F_FW_HELLO_CMD_ERR)
6429			*state = DEV_STATE_ERR;
6430		else if (v & F_FW_HELLO_CMD_INIT)
6431			*state = DEV_STATE_INIT;
6432		else
6433			*state = DEV_STATE_UNINIT;
6434	}
6435
6436	/*
6437	 * If we're not the Master PF then we need to wait around for the
6438	 * Master PF Driver to finish setting up the adapter.
6439	 *
6440	 * Note that we also do this wait if we're a non-Master-capable PF and
6441	 * there is no current Master PF; a Master PF may show up momentarily
6442	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6443	 * OS loads lots of different drivers rapidly at the same time).  In
6444	 * this case, the Master PF returned by the firmware will be
6445	 * M_PCIE_FW_MASTER so the test below will work ...
6446	 */
6447	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6448	    master_mbox != mbox) {
6449		int waiting = FW_CMD_HELLO_TIMEOUT;
6450
6451		/*
6452		 * Wait for the firmware to either indicate an error or
6453		 * initialized state.  If we see either of these we bail out
6454		 * and report the issue to the caller.  If we exhaust the
6455		 * "hello timeout" and we haven't exhausted our retries, try
6456		 * again.  Otherwise bail with a timeout error.
6457		 */
6458		for (;;) {
6459			u32 pcie_fw;
6460
6461			msleep(50);
6462			waiting -= 50;
6463
6464			/*
6465			 * If neither Error nor Initialialized are indicated
6466			 * by the firmware keep waiting till we exhaust our
6467			 * timeout ... and then retry if we haven't exhausted
6468			 * our retries ...
6469			 */
6470			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6471			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6472				if (waiting <= 0) {
6473					if (retries-- > 0)
6474						goto retry;
6475
6476					return -ETIMEDOUT;
6477				}
6478				continue;
6479			}
6480
6481			/*
6482			 * We either have an Error or Initialized condition
6483			 * report errors preferentially.
6484			 */
6485			if (state) {
6486				if (pcie_fw & F_PCIE_FW_ERR)
6487					*state = DEV_STATE_ERR;
6488				else if (pcie_fw & F_PCIE_FW_INIT)
6489					*state = DEV_STATE_INIT;
6490			}
6491
6492			/*
6493			 * If we arrived before a Master PF was selected and
6494			 * there's not a valid Master PF, grab its identity
6495			 * for our caller.
6496			 */
6497			if (master_mbox == M_PCIE_FW_MASTER &&
6498			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6499				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6500			break;
6501		}
6502	}
6503
6504	return master_mbox;
6505}
6506
6507/**
6508 *	t4_fw_bye - end communication with FW
6509 *	@adap: the adapter
6510 *	@mbox: mailbox to use for the FW command
6511 *
6512 *	Issues a command to terminate communication with FW.
6513 */
6514int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6515{
6516	struct fw_bye_cmd c;
6517
6518	memset(&c, 0, sizeof(c));
6519	INIT_CMD(c, BYE, WRITE);
6520	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6521}
6522
6523/**
6524 *	t4_fw_reset - issue a reset to FW
6525 *	@adap: the adapter
6526 *	@mbox: mailbox to use for the FW command
6527 *	@reset: specifies the type of reset to perform
6528 *
6529 *	Issues a reset command of the specified type to FW.
6530 */
6531int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6532{
6533	struct fw_reset_cmd c;
6534
6535	memset(&c, 0, sizeof(c));
6536	INIT_CMD(c, RESET, WRITE);
6537	c.val = cpu_to_be32(reset);
6538	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6539}
6540
6541/**
6542 *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6543 *	@adap: the adapter
6544 *	@mbox: mailbox to use for the FW RESET command (if desired)
6545 *	@force: force uP into RESET even if FW RESET command fails
6546 *
6547 *	Issues a RESET command to firmware (if desired) with a HALT indication
6548 *	and then puts the microprocessor into RESET state.  The RESET command
6549 *	will only be issued if a legitimate mailbox is provided (mbox <=
6550 *	M_PCIE_FW_MASTER).
6551 *
6552 *	This is generally used in order for the host to safely manipulate the
6553 *	adapter without fear of conflicting with whatever the firmware might
6554 *	be doing.  The only way out of this state is to RESTART the firmware
6555 *	...
6556 */
6557int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6558{
6559	int ret = 0;
6560
6561	/*
6562	 * If a legitimate mailbox is provided, issue a RESET command
6563	 * with a HALT indication.
6564	 */
6565	if (mbox <= M_PCIE_FW_MASTER) {
6566		struct fw_reset_cmd c;
6567
6568		memset(&c, 0, sizeof(c));
6569		INIT_CMD(c, RESET, WRITE);
6570		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6571		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6572		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6573	}
6574
6575	/*
6576	 * Normally we won't complete the operation if the firmware RESET
6577	 * command fails but if our caller insists we'll go ahead and put the
6578	 * uP into RESET.  This can be useful if the firmware is hung or even
6579	 * missing ...  We'll have to take the risk of putting the uP into
6580	 * RESET without the cooperation of firmware in that case.
6581	 *
6582	 * We also force the firmware's HALT flag to be on in case we bypassed
6583	 * the firmware RESET command above or we're dealing with old firmware
6584	 * which doesn't have the HALT capability.  This will serve as a flag
6585	 * for the incoming firmware to know that it's coming out of a HALT
6586	 * rather than a RESET ... if it's new enough to understand that ...
6587	 */
6588	if (ret == 0 || force) {
6589		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6590		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6591				 F_PCIE_FW_HALT);
6592	}
6593
6594	/*
6595	 * And we always return the result of the firmware RESET command
6596	 * even when we force the uP into RESET ...
6597	 */
6598	return ret;
6599}
6600
6601/**
6602 *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6603 *	@adap: the adapter
6604 *	@reset: if we want to do a RESET to restart things
6605 *
6606 *	Restart firmware previously halted by t4_fw_halt().  On successful
6607 *	return the previous PF Master remains as the new PF Master and there
6608 *	is no need to issue a new HELLO command, etc.
6609 *
6610 *	We do this in two ways:
6611 *
6612 *	 1. If we're dealing with newer firmware we'll simply want to take
6613 *	    the chip's microprocessor out of RESET.  This will cause the
6614 *	    firmware to start up from its start vector.  And then we'll loop
6615 *	    until the firmware indicates it's started again (PCIE_FW.HALT
6616 *	    reset to 0) or we timeout.
6617 *
6618 *	 2. If we're dealing with older firmware then we'll need to RESET
6619 *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6620 *	    flag and automatically RESET itself on startup.
6621 */
6622int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6623{
6624	if (reset) {
6625		/*
6626		 * Since we're directing the RESET instead of the firmware
6627		 * doing it automatically, we need to clear the PCIE_FW.HALT
6628		 * bit.
6629		 */
6630		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6631
6632		/*
6633		 * If we've been given a valid mailbox, first try to get the
6634		 * firmware to do the RESET.  If that works, great and we can
6635		 * return success.  Otherwise, if we haven't been given a
6636		 * valid mailbox or the RESET command failed, fall back to
6637		 * hitting the chip with a hammer.
6638		 */
6639		if (mbox <= M_PCIE_FW_MASTER) {
6640			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6641			msleep(100);
6642			if (t4_fw_reset(adap, mbox,
6643					F_PIORST | F_PIORSTMODE) == 0)
6644				return 0;
6645		}
6646
6647		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6648		msleep(2000);
6649	} else {
6650		int ms;
6651
6652		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6653		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6654			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6655				return FW_SUCCESS;
6656			msleep(100);
6657			ms += 100;
6658		}
6659		return -ETIMEDOUT;
6660	}
6661	return 0;
6662}
6663
6664/**
6665 *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6666 *	@adap: the adapter
6667 *	@mbox: mailbox to use for the FW RESET command (if desired)
6668 *	@fw_data: the firmware image to write
6669 *	@size: image size
6670 *	@force: force upgrade even if firmware doesn't cooperate
6671 *
6672 *	Perform all of the steps necessary for upgrading an adapter's
6673 *	firmware image.  Normally this requires the cooperation of the
6674 *	existing firmware in order to halt all existing activities
6675 *	but if an invalid mailbox token is passed in we skip that step
6676 *	(though we'll still put the adapter microprocessor into RESET in
6677 *	that case).
6678 *
6679 *	On successful return the new firmware will have been loaded and
6680 *	the adapter will have been fully RESET losing all previous setup
6681 *	state.  On unsuccessful return the adapter may be completely hosed ...
6682 *	positive errno indicates that the adapter is ~probably~ intact, a
6683 *	negative errno indicates that things are looking bad ...
6684 */
6685int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6686		  const u8 *fw_data, unsigned int size, int force)
6687{
6688	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6689	unsigned int bootstrap =
6690	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6691	int reset, ret;
6692
6693	if (!t4_fw_matches_chip(adap, fw_hdr))
6694		return -EINVAL;
6695
6696	if (!bootstrap) {
6697		ret = t4_fw_halt(adap, mbox, force);
6698		if (ret < 0 && !force)
6699			return ret;
6700	}
6701
6702	ret = t4_load_fw(adap, fw_data, size);
6703	if (ret < 0 || bootstrap)
6704		return ret;
6705
6706	/*
6707	 * Older versions of the firmware don't understand the new
6708	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6709	 * restart.  So for newly loaded older firmware we'll have to do the
6710	 * RESET for it so it starts up on a clean slate.  We can tell if
6711	 * the newly loaded firmware will handle this right by checking
6712	 * its header flags to see if it advertises the capability.
6713	 */
6714	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6715	return t4_fw_restart(adap, mbox, reset);
6716}
6717
6718/**
6719 *	t4_fw_initialize - ask FW to initialize the device
6720 *	@adap: the adapter
6721 *	@mbox: mailbox to use for the FW command
6722 *
6723 *	Issues a command to FW to partially initialize the device.  This
6724 *	performs initialization that generally doesn't depend on user input.
6725 */
6726int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6727{
6728	struct fw_initialize_cmd c;
6729
6730	memset(&c, 0, sizeof(c));
6731	INIT_CMD(c, INITIALIZE, WRITE);
6732	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6733}
6734
6735/**
6736 *	t4_query_params_rw - query FW or device parameters
6737 *	@adap: the adapter
6738 *	@mbox: mailbox to use for the FW command
6739 *	@pf: the PF
6740 *	@vf: the VF
6741 *	@nparams: the number of parameters
6742 *	@params: the parameter names
6743 *	@val: the parameter values
6744 *	@rw: Write and read flag
6745 *
6746 *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6747 *	queried at once.
6748 */
6749int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6750		       unsigned int vf, unsigned int nparams, const u32 *params,
6751		       u32 *val, int rw)
6752{
6753	int i, ret;
6754	struct fw_params_cmd c;
6755	__be32 *p = &c.param[0].mnem;
6756
6757	if (nparams > 7)
6758		return -EINVAL;
6759
6760	memset(&c, 0, sizeof(c));
6761	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6762				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
6763				  V_FW_PARAMS_CMD_PFN(pf) |
6764				  V_FW_PARAMS_CMD_VFN(vf));
6765	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6766
6767	for (i = 0; i < nparams; i++) {
6768		*p++ = cpu_to_be32(*params++);
6769		if (rw)
6770			*p = cpu_to_be32(*(val + i));
6771		p++;
6772	}
6773
6774	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6775	if (ret == 0)
6776		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6777			*val++ = be32_to_cpu(*p);
6778	return ret;
6779}
6780
6781int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6782		    unsigned int vf, unsigned int nparams, const u32 *params,
6783		    u32 *val)
6784{
6785	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6786}
6787
6788/**
6789 *      t4_set_params_timeout - sets FW or device parameters
6790 *      @adap: the adapter
6791 *      @mbox: mailbox to use for the FW command
6792 *      @pf: the PF
6793 *      @vf: the VF
6794 *      @nparams: the number of parameters
6795 *      @params: the parameter names
6796 *      @val: the parameter values
6797 *      @timeout: the timeout time
6798 *
6799 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6800 *      specified at once.
6801 */
6802int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6803			  unsigned int pf, unsigned int vf,
6804			  unsigned int nparams, const u32 *params,
6805			  const u32 *val, int timeout)
6806{
6807	struct fw_params_cmd c;
6808	__be32 *p = &c.param[0].mnem;
6809
6810	if (nparams > 7)
6811		return -EINVAL;
6812
6813	memset(&c, 0, sizeof(c));
6814	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6815				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6816				  V_FW_PARAMS_CMD_PFN(pf) |
6817				  V_FW_PARAMS_CMD_VFN(vf));
6818	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6819
6820	while (nparams--) {
6821		*p++ = cpu_to_be32(*params++);
6822		*p++ = cpu_to_be32(*val++);
6823	}
6824
6825	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6826}
6827
6828/**
6829 *	t4_set_params - sets FW or device parameters
6830 *	@adap: the adapter
6831 *	@mbox: mailbox to use for the FW command
6832 *	@pf: the PF
6833 *	@vf: the VF
6834 *	@nparams: the number of parameters
6835 *	@params: the parameter names
6836 *	@val: the parameter values
6837 *
6838 *	Sets the value of FW or device parameters.  Up to 7 parameters can be
6839 *	specified at once.
6840 */
6841int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6842		  unsigned int vf, unsigned int nparams, const u32 *params,
6843		  const u32 *val)
6844{
6845	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6846				     FW_CMD_MAX_TIMEOUT);
6847}
6848
6849/**
6850 *	t4_cfg_pfvf - configure PF/VF resource limits
6851 *	@adap: the adapter
6852 *	@mbox: mailbox to use for the FW command
6853 *	@pf: the PF being configured
6854 *	@vf: the VF being configured
6855 *	@txq: the max number of egress queues
6856 *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
6857 *	@rxqi: the max number of interrupt-capable ingress queues
6858 *	@rxq: the max number of interruptless ingress queues
6859 *	@tc: the PCI traffic class
6860 *	@vi: the max number of virtual interfaces
6861 *	@cmask: the channel access rights mask for the PF/VF
6862 *	@pmask: the port access rights mask for the PF/VF
6863 *	@nexact: the maximum number of exact MPS filters
6864 *	@rcaps: read capabilities
6865 *	@wxcaps: write/execute capabilities
6866 *
6867 *	Configures resource limits and capabilities for a physical or virtual
6868 *	function.
6869 */
6870int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6871		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6872		unsigned int rxqi, unsigned int rxq, unsigned int tc,
6873		unsigned int vi, unsigned int cmask, unsigned int pmask,
6874		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6875{
6876	struct fw_pfvf_cmd c;
6877
6878	memset(&c, 0, sizeof(c));
6879	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
6880				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
6881				  V_FW_PFVF_CMD_VFN(vf));
6882	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6883	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
6884				     V_FW_PFVF_CMD_NIQ(rxq));
6885	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
6886				    V_FW_PFVF_CMD_PMASK(pmask) |
6887				    V_FW_PFVF_CMD_NEQ(txq));
6888	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
6889				      V_FW_PFVF_CMD_NVI(vi) |
6890				      V_FW_PFVF_CMD_NEXACTF(nexact));
6891	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
6892				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
6893				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
6894	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6895}
6896
6897/**
6898 *	t4_alloc_vi_func - allocate a virtual interface
6899 *	@adap: the adapter
6900 *	@mbox: mailbox to use for the FW command
6901 *	@port: physical port associated with the VI
6902 *	@pf: the PF owning the VI
6903 *	@vf: the VF owning the VI
6904 *	@nmac: number of MAC addresses needed (1 to 5)
6905 *	@mac: the MAC addresses of the VI
6906 *	@rss_size: size of RSS table slice associated with this VI
6907 *	@portfunc: which Port Application Function MAC Address is desired
6908 *	@idstype: Intrusion Detection Type
6909 *
6910 *	Allocates a virtual interface for the given physical port.  If @mac is
6911 *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
6912 *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
6913 *	@mac should be large enough to hold @nmac Ethernet addresses, they are
6914 *	stored consecutively so the space needed is @nmac * 6 bytes.
6915 *	Returns a negative error number or the non-negative VI id.
6916 */
6917int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
6918		     unsigned int port, unsigned int pf, unsigned int vf,
6919		     unsigned int nmac, u8 *mac, u16 *rss_size,
6920		     unsigned int portfunc, unsigned int idstype)
6921{
6922	int ret;
6923	struct fw_vi_cmd c;
6924
6925	memset(&c, 0, sizeof(c));
6926	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
6927				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
6928				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
6929	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
6930	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
6931				     V_FW_VI_CMD_FUNC(portfunc));
6932	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
6933	c.nmac = nmac - 1;
6934	if(!rss_size)
6935		c.norss_rsssize = F_FW_VI_CMD_NORSS;
6936
6937	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6938	if (ret)
6939		return ret;
6940
6941	if (mac) {
6942		memcpy(mac, c.mac, sizeof(c.mac));
6943		switch (nmac) {
6944		case 5:
6945			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6946		case 4:
6947			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6948		case 3:
6949			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6950		case 2:
6951			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6952		}
6953	}
6954	if (rss_size)
6955		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
6956	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
6957}
6958
6959/**
6960 *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
6961 *      @adap: the adapter
6962 *      @mbox: mailbox to use for the FW command
6963 *      @port: physical port associated with the VI
6964 *      @pf: the PF owning the VI
6965 *      @vf: the VF owning the VI
6966 *      @nmac: number of MAC addresses needed (1 to 5)
6967 *      @mac: the MAC addresses of the VI
6968 *      @rss_size: size of RSS table slice associated with this VI
6969 *
6970 *	backwards compatible and convieniance routine to allocate a Virtual
6971 *	Interface with a Ethernet Port Application Function and Intrustion
6972 *	Detection System disabled.
6973 */
6974int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6975		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6976		u16 *rss_size)
6977{
6978	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
6979				FW_VI_FUNC_ETH, 0);
6980}
6981
6982/**
6983 * 	t4_free_vi - free a virtual interface
6984 * 	@adap: the adapter
6985 * 	@mbox: mailbox to use for the FW command
6986 * 	@pf: the PF owning the VI
6987 * 	@vf: the VF owning the VI
6988 * 	@viid: virtual interface identifiler
6989 *
6990 * 	Free a previously allocated virtual interface.
6991 */
6992int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6993	       unsigned int vf, unsigned int viid)
6994{
6995	struct fw_vi_cmd c;
6996
6997	memset(&c, 0, sizeof(c));
6998	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
6999				  F_FW_CMD_REQUEST |
7000				  F_FW_CMD_EXEC |
7001				  V_FW_VI_CMD_PFN(pf) |
7002				  V_FW_VI_CMD_VFN(vf));
7003	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
7004	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
7005
7006	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7007}
7008
7009/**
7010 *	t4_set_rxmode - set Rx properties of a virtual interface
7011 *	@adap: the adapter
7012 *	@mbox: mailbox to use for the FW command
7013 *	@viid: the VI id
7014 *	@mtu: the new MTU or -1
7015 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
7016 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
7017 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
7018 *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
7019 *	@sleep_ok: if true we may sleep while awaiting command completion
7020 *
7021 *	Sets Rx properties of a virtual interface.
7022 */
7023int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
7024		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
7025		  bool sleep_ok)
7026{
7027	struct fw_vi_rxmode_cmd c;
7028
7029	/* convert to FW values */
7030	if (mtu < 0)
7031		mtu = M_FW_VI_RXMODE_CMD_MTU;
7032	if (promisc < 0)
7033		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7034	if (all_multi < 0)
7035		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7036	if (bcast < 0)
7037		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7038	if (vlanex < 0)
7039		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7040
7041	memset(&c, 0, sizeof(c));
7042	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7043				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7044				   V_FW_VI_RXMODE_CMD_VIID(viid));
7045	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7046	c.mtu_to_vlanexen =
7047		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7048			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7049			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7050			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7051			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7052	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7053}
7054
7055/**
7056 *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7057 *	@adap: the adapter
7058 *	@mbox: mailbox to use for the FW command
7059 *	@viid: the VI id
7060 *	@free: if true any existing filters for this VI id are first removed
7061 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7062 *	@addr: the MAC address(es)
7063 *	@idx: where to store the index of each allocated filter
7064 *	@hash: pointer to hash address filter bitmap
7065 *	@sleep_ok: call is allowed to sleep
7066 *
7067 *	Allocates an exact-match filter for each of the supplied addresses and
7068 *	sets it to the corresponding address.  If @idx is not %NULL it should
7069 *	have at least @naddr entries, each of which will be set to the index of
7070 *	the filter allocated for the corresponding MAC address.  If a filter
7071 *	could not be allocated for an address its index is set to 0xffff.
7072 *	If @hash is not %NULL addresses that fail to allocate an exact filter
7073 *	are hashed and update the hash filter bitmap pointed at by @hash.
7074 *
7075 *	Returns a negative error number or the number of filters allocated.
7076 */
7077int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7078		      unsigned int viid, bool free, unsigned int naddr,
7079		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7080{
7081	int offset, ret = 0;
7082	struct fw_vi_mac_cmd c;
7083	unsigned int nfilters = 0;
7084	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7085	unsigned int rem = naddr;
7086
7087	if (naddr > max_naddr)
7088		return -EINVAL;
7089
7090	for (offset = 0; offset < naddr ; /**/) {
7091		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7092					 ? rem
7093					 : ARRAY_SIZE(c.u.exact));
7094		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7095						     u.exact[fw_naddr]), 16);
7096		struct fw_vi_mac_exact *p;
7097		int i;
7098
7099		memset(&c, 0, sizeof(c));
7100		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7101					   F_FW_CMD_REQUEST |
7102					   F_FW_CMD_WRITE |
7103					   V_FW_CMD_EXEC(free) |
7104					   V_FW_VI_MAC_CMD_VIID(viid));
7105		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7106						  V_FW_CMD_LEN16(len16));
7107
7108		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7109			p->valid_to_idx =
7110				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7111					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7112			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7113		}
7114
7115		/*
7116		 * It's okay if we run out of space in our MAC address arena.
7117		 * Some of the addresses we submit may get stored so we need
7118		 * to run through the reply to see what the results were ...
7119		 */
7120		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7121		if (ret && ret != -FW_ENOMEM)
7122			break;
7123
7124		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7125			u16 index = G_FW_VI_MAC_CMD_IDX(
7126						be16_to_cpu(p->valid_to_idx));
7127
7128			if (idx)
7129				idx[offset+i] = (index >=  max_naddr
7130						 ? 0xffff
7131						 : index);
7132			if (index < max_naddr)
7133				nfilters++;
7134			else if (hash)
7135				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7136		}
7137
7138		free = false;
7139		offset += fw_naddr;
7140		rem -= fw_naddr;
7141	}
7142
7143	if (ret == 0 || ret == -FW_ENOMEM)
7144		ret = nfilters;
7145	return ret;
7146}
7147
7148/**
7149 *	t4_change_mac - modifies the exact-match filter for a MAC address
7150 *	@adap: the adapter
7151 *	@mbox: mailbox to use for the FW command
7152 *	@viid: the VI id
7153 *	@idx: index of existing filter for old value of MAC address, or -1
7154 *	@addr: the new MAC address value
7155 *	@persist: whether a new MAC allocation should be persistent
7156 *	@add_smt: if true also add the address to the HW SMT
7157 *
7158 *	Modifies an exact-match filter and sets it to the new MAC address if
7159 *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7160 *	latter case the address is added persistently if @persist is %true.
7161 *
7162 *	Note that in general it is not possible to modify the value of a given
7163 *	filter so the generic way to modify an address filter is to free the one
7164 *	being used by the old address value and allocate a new filter for the
7165 *	new address value.
7166 *
7167 *	Returns a negative error number or the index of the filter with the new
7168 *	MAC value.  Note that this index may differ from @idx.
7169 */
7170int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7171		  int idx, const u8 *addr, bool persist, bool add_smt)
7172{
7173	int ret, mode;
7174	struct fw_vi_mac_cmd c;
7175	struct fw_vi_mac_exact *p = c.u.exact;
7176	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7177
7178	if (idx < 0)		/* new allocation */
7179		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7180	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7181
7182	memset(&c, 0, sizeof(c));
7183	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7184				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7185				   V_FW_VI_MAC_CMD_VIID(viid));
7186	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7187	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7188				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7189				      V_FW_VI_MAC_CMD_IDX(idx));
7190	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7191
7192	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7193	if (ret == 0) {
7194		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7195		if (ret >= max_mac_addr)
7196			ret = -ENOMEM;
7197	}
7198	return ret;
7199}
7200
7201/**
7202 *	t4_set_addr_hash - program the MAC inexact-match hash filter
7203 *	@adap: the adapter
7204 *	@mbox: mailbox to use for the FW command
7205 *	@viid: the VI id
7206 *	@ucast: whether the hash filter should also match unicast addresses
7207 *	@vec: the value to be written to the hash filter
7208 *	@sleep_ok: call is allowed to sleep
7209 *
7210 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7211 */
7212int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7213		     bool ucast, u64 vec, bool sleep_ok)
7214{
7215	struct fw_vi_mac_cmd c;
7216	u32 val;
7217
7218	memset(&c, 0, sizeof(c));
7219	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7220				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7221				   V_FW_VI_ENABLE_CMD_VIID(viid));
7222	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7223	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7224	c.freemacs_to_len16 = cpu_to_be32(val);
7225	c.u.hash.hashvec = cpu_to_be64(vec);
7226	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7227}
7228
7229/**
7230 *      t4_enable_vi_params - enable/disable a virtual interface
7231 *      @adap: the adapter
7232 *      @mbox: mailbox to use for the FW command
7233 *      @viid: the VI id
7234 *      @rx_en: 1=enable Rx, 0=disable Rx
7235 *      @tx_en: 1=enable Tx, 0=disable Tx
7236 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7237 *
7238 *      Enables/disables a virtual interface.  Note that setting DCB Enable
7239 *      only makes sense when enabling a Virtual Interface ...
7240 */
7241int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7242			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7243{
7244	struct fw_vi_enable_cmd c;
7245
7246	memset(&c, 0, sizeof(c));
7247	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7248				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7249				   V_FW_VI_ENABLE_CMD_VIID(viid));
7250	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7251				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7252				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7253				     FW_LEN16(c));
7254	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7255}
7256
7257/**
7258 *	t4_enable_vi - enable/disable a virtual interface
7259 *	@adap: the adapter
7260 *	@mbox: mailbox to use for the FW command
7261 *	@viid: the VI id
7262 *	@rx_en: 1=enable Rx, 0=disable Rx
7263 *	@tx_en: 1=enable Tx, 0=disable Tx
7264 *
7265 *	Enables/disables a virtual interface.  Note that setting DCB Enable
7266 *	only makes sense when enabling a Virtual Interface ...
7267 */
7268int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7269		 bool rx_en, bool tx_en)
7270{
7271	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7272}
7273
7274/**
7275 *	t4_identify_port - identify a VI's port by blinking its LED
7276 *	@adap: the adapter
7277 *	@mbox: mailbox to use for the FW command
7278 *	@viid: the VI id
7279 *	@nblinks: how many times to blink LED at 2.5 Hz
7280 *
7281 *	Identifies a VI's port by blinking its LED.
7282 */
7283int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7284		     unsigned int nblinks)
7285{
7286	struct fw_vi_enable_cmd c;
7287
7288	memset(&c, 0, sizeof(c));
7289	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7290				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7291				   V_FW_VI_ENABLE_CMD_VIID(viid));
7292	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7293	c.blinkdur = cpu_to_be16(nblinks);
7294	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7295}
7296
7297/**
7298 *	t4_iq_stop - stop an ingress queue and its FLs
7299 *	@adap: the adapter
7300 *	@mbox: mailbox to use for the FW command
7301 *	@pf: the PF owning the queues
7302 *	@vf: the VF owning the queues
7303 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7304 *	@iqid: ingress queue id
7305 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7306 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7307 *
7308 *	Stops an ingress queue and its associated FLs, if any.  This causes
7309 *	any current or future data/messages destined for these queues to be
7310 *	tossed.
7311 */
7312int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7313	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7314	       unsigned int fl0id, unsigned int fl1id)
7315{
7316	struct fw_iq_cmd c;
7317
7318	memset(&c, 0, sizeof(c));
7319	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7320				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7321				  V_FW_IQ_CMD_VFN(vf));
7322	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7323	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7324	c.iqid = cpu_to_be16(iqid);
7325	c.fl0id = cpu_to_be16(fl0id);
7326	c.fl1id = cpu_to_be16(fl1id);
7327	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7328}
7329
7330/**
7331 *	t4_iq_free - free an ingress queue and its FLs
7332 *	@adap: the adapter
7333 *	@mbox: mailbox to use for the FW command
7334 *	@pf: the PF owning the queues
7335 *	@vf: the VF owning the queues
7336 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7337 *	@iqid: ingress queue id
7338 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7339 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7340 *
7341 *	Frees an ingress queue and its associated FLs, if any.
7342 */
7343int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7344	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7345	       unsigned int fl0id, unsigned int fl1id)
7346{
7347	struct fw_iq_cmd c;
7348
7349	memset(&c, 0, sizeof(c));
7350	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7351				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7352				  V_FW_IQ_CMD_VFN(vf));
7353	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7354	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7355	c.iqid = cpu_to_be16(iqid);
7356	c.fl0id = cpu_to_be16(fl0id);
7357	c.fl1id = cpu_to_be16(fl1id);
7358	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7359}
7360
7361/**
7362 *	t4_eth_eq_free - free an Ethernet egress queue
7363 *	@adap: the adapter
7364 *	@mbox: mailbox to use for the FW command
7365 *	@pf: the PF owning the queue
7366 *	@vf: the VF owning the queue
7367 *	@eqid: egress queue id
7368 *
7369 *	Frees an Ethernet egress queue.
7370 */
7371int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7372		   unsigned int vf, unsigned int eqid)
7373{
7374	struct fw_eq_eth_cmd c;
7375
7376	memset(&c, 0, sizeof(c));
7377	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7378				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7379				  V_FW_EQ_ETH_CMD_PFN(pf) |
7380				  V_FW_EQ_ETH_CMD_VFN(vf));
7381	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7382	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7383	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7384}
7385
7386/**
7387 *	t4_ctrl_eq_free - free a control egress queue
7388 *	@adap: the adapter
7389 *	@mbox: mailbox to use for the FW command
7390 *	@pf: the PF owning the queue
7391 *	@vf: the VF owning the queue
7392 *	@eqid: egress queue id
7393 *
7394 *	Frees a control egress queue.
7395 */
7396int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7397		    unsigned int vf, unsigned int eqid)
7398{
7399	struct fw_eq_ctrl_cmd c;
7400
7401	memset(&c, 0, sizeof(c));
7402	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7403				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7404				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7405				  V_FW_EQ_CTRL_CMD_VFN(vf));
7406	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7407	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7408	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7409}
7410
7411/**
7412 *	t4_ofld_eq_free - free an offload egress queue
7413 *	@adap: the adapter
7414 *	@mbox: mailbox to use for the FW command
7415 *	@pf: the PF owning the queue
7416 *	@vf: the VF owning the queue
7417 *	@eqid: egress queue id
7418 *
7419 *	Frees a control egress queue.
7420 */
7421int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7422		    unsigned int vf, unsigned int eqid)
7423{
7424	struct fw_eq_ofld_cmd c;
7425
7426	memset(&c, 0, sizeof(c));
7427	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7428				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7429				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7430				  V_FW_EQ_OFLD_CMD_VFN(vf));
7431	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7432	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7433	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7434}
7435
7436/**
7437 *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7438 *	@link_down_rc: Link Down Reason Code
7439 *
7440 *	Returns a string representation of the Link Down Reason Code.
7441 */
7442const char *t4_link_down_rc_str(unsigned char link_down_rc)
7443{
7444	static const char *reason[] = {
7445		"Link Down",
7446		"Remote Fault",
7447		"Auto-negotiation Failure",
7448		"Reserved3",
7449		"Insufficient Airflow",
7450		"Unable To Determine Reason",
7451		"No RX Signal Detected",
7452		"Reserved7",
7453	};
7454
7455	if (link_down_rc >= ARRAY_SIZE(reason))
7456		return "Bad Reason Code";
7457
7458	return reason[link_down_rc];
7459}
7460
7461/**
7462 *	t4_handle_fw_rpl - process a FW reply message
7463 *	@adap: the adapter
7464 *	@rpl: start of the FW message
7465 *
7466 *	Processes a FW message, such as link state change messages.
7467 */
7468int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7469{
7470	u8 opcode = *(const u8 *)rpl;
7471	const struct fw_port_cmd *p = (const void *)rpl;
7472	unsigned int action =
7473			G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7474
7475	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7476		/* link/module state change message */
7477		int speed = 0, fc = 0, i;
7478		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7479		struct port_info *pi = NULL;
7480		struct link_config *lc;
7481		u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7482		int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7483		u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
7484
7485		if (stat & F_FW_PORT_CMD_RXPAUSE)
7486			fc |= PAUSE_RX;
7487		if (stat & F_FW_PORT_CMD_TXPAUSE)
7488			fc |= PAUSE_TX;
7489		if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7490			speed = 100;
7491		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7492			speed = 1000;
7493		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7494			speed = 10000;
7495		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_25G))
7496			speed = 25000;
7497		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7498			speed = 40000;
7499		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100G))
7500			speed = 100000;
7501
7502		for_each_port(adap, i) {
7503			pi = adap2pinfo(adap, i);
7504			if (pi->tx_chan == chan)
7505				break;
7506		}
7507		lc = &pi->link_cfg;
7508
7509		if (mod != pi->mod_type) {
7510			pi->mod_type = mod;
7511			t4_os_portmod_changed(adap, i);
7512		}
7513		if (link_ok != lc->link_ok || speed != lc->speed ||
7514		    fc != lc->fc) {                    /* something changed */
7515			int reason;
7516
7517			if (!link_ok && lc->link_ok)
7518				reason = G_FW_PORT_CMD_LINKDNRC(stat);
7519			else
7520				reason = -1;
7521
7522			lc->link_ok = link_ok;
7523			lc->speed = speed;
7524			lc->fc = fc;
7525			lc->supported = be16_to_cpu(p->u.info.pcap);
7526			t4_os_link_changed(adap, i, link_ok, reason);
7527		}
7528	} else {
7529		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7530		return -EINVAL;
7531	}
7532	return 0;
7533}
7534
7535/**
7536 *	get_pci_mode - determine a card's PCI mode
7537 *	@adapter: the adapter
7538 *	@p: where to store the PCI settings
7539 *
7540 *	Determines a card's PCI mode and associated parameters, such as speed
7541 *	and width.
7542 */
7543static void get_pci_mode(struct adapter *adapter,
7544				   struct pci_params *p)
7545{
7546	u16 val;
7547	u32 pcie_cap;
7548
7549	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7550	if (pcie_cap) {
7551		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7552		p->speed = val & PCI_EXP_LNKSTA_CLS;
7553		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7554	}
7555}
7556
7557/**
7558 *	init_link_config - initialize a link's SW state
7559 *	@lc: structure holding the link state
7560 *	@caps: link capabilities
7561 *
7562 *	Initializes the SW state maintained for each link, including the link's
7563 *	capabilities and default speed/flow-control/autonegotiation settings.
7564 */
7565static void init_link_config(struct link_config *lc, unsigned int caps)
7566{
7567	lc->supported = caps;
7568	lc->requested_speed = 0;
7569	lc->speed = 0;
7570	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7571	if (lc->supported & FW_PORT_CAP_ANEG) {
7572		lc->advertising = lc->supported & ADVERT_MASK;
7573		lc->autoneg = AUTONEG_ENABLE;
7574		lc->requested_fc |= PAUSE_AUTONEG;
7575	} else {
7576		lc->advertising = 0;
7577		lc->autoneg = AUTONEG_DISABLE;
7578	}
7579}
7580
7581struct flash_desc {
7582	u32 vendor_and_model_id;
7583	u32 size_mb;
7584};
7585
7586int t4_get_flash_params(struct adapter *adapter)
7587{
7588	/*
7589	 * Table for non-Numonix supported flash parts.  Numonix parts are left
7590	 * to the preexisting well-tested code.  All flash parts have 64KB
7591	 * sectors.
7592	 */
7593	static struct flash_desc supported_flash[] = {
7594		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7595	};
7596
7597	int ret;
7598	u32 info = 0;
7599
7600	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7601	if (!ret)
7602		ret = sf1_read(adapter, 3, 0, 1, &info);
7603	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
7604	if (ret < 0)
7605		return ret;
7606
7607	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7608		if (supported_flash[ret].vendor_and_model_id == info) {
7609			adapter->params.sf_size = supported_flash[ret].size_mb;
7610			adapter->params.sf_nsec =
7611				adapter->params.sf_size / SF_SEC_SIZE;
7612			return 0;
7613		}
7614
7615	if ((info & 0xff) != 0x20)		/* not a Numonix flash */
7616		return -EINVAL;
7617	info >>= 16;				/* log2 of size */
7618	if (info >= 0x14 && info < 0x18)
7619		adapter->params.sf_nsec = 1 << (info - 16);
7620	else if (info == 0x18)
7621		adapter->params.sf_nsec = 64;
7622	else
7623		return -EINVAL;
7624	adapter->params.sf_size = 1 << info;
7625
7626	/*
7627	 * We should ~probably~ reject adapters with FLASHes which are too
7628	 * small but we have some legacy FPGAs with small FLASHes that we'd
7629	 * still like to use.  So instead we emit a scary message ...
7630	 */
7631	if (adapter->params.sf_size < FLASH_MIN_SIZE)
7632		CH_WARN(adapter, "WARNING!!! FLASH size %#x < %#x!!!\n",
7633			adapter->params.sf_size, FLASH_MIN_SIZE);
7634
7635	return 0;
7636}
7637
7638static void set_pcie_completion_timeout(struct adapter *adapter,
7639						  u8 range)
7640{
7641	u16 val;
7642	u32 pcie_cap;
7643
7644	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7645	if (pcie_cap) {
7646		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7647		val &= 0xfff0;
7648		val |= range ;
7649		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
7650	}
7651}
7652
7653const struct chip_params *t4_get_chip_params(int chipid)
7654{
7655	static const struct chip_params chip_params[] = {
7656		{
7657			/* T4 */
7658			.nchan = NCHAN,
7659			.pm_stats_cnt = PM_NSTATS,
7660			.cng_ch_bits_log = 2,
7661			.nsched_cls = 15,
7662			.cim_num_obq = CIM_NUM_OBQ,
7663			.mps_rplc_size = 128,
7664			.vfcount = 128,
7665			.sge_fl_db = F_DBPRIO,
7666			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
7667		},
7668		{
7669			/* T5 */
7670			.nchan = NCHAN,
7671			.pm_stats_cnt = PM_NSTATS,
7672			.cng_ch_bits_log = 2,
7673			.nsched_cls = 16,
7674			.cim_num_obq = CIM_NUM_OBQ_T5,
7675			.mps_rplc_size = 128,
7676			.vfcount = 128,
7677			.sge_fl_db = F_DBPRIO | F_DBTYPE,
7678			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7679		},
7680		{
7681			/* T6 */
7682			.nchan = T6_NCHAN,
7683			.pm_stats_cnt = T6_PM_NSTATS,
7684			.cng_ch_bits_log = 3,
7685			.nsched_cls = 16,
7686			.cim_num_obq = CIM_NUM_OBQ_T5,
7687			.mps_rplc_size = 256,
7688			.vfcount = 256,
7689			.sge_fl_db = 0,
7690			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7691		},
7692	};
7693
7694	chipid -= CHELSIO_T4;
7695	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
7696		return NULL;
7697
7698	return &chip_params[chipid];
7699}
7700
7701/**
7702 *	t4_prep_adapter - prepare SW and HW for operation
7703 *	@adapter: the adapter
7704 *	@buf: temporary space of at least VPD_LEN size provided by the caller.
7705 *
7706 *	Initialize adapter SW state for the various HW modules, set initial
7707 *	values for some adapter tunables, take PHYs out of reset, and
7708 *	initialize the MDIO interface.
7709 */
7710int t4_prep_adapter(struct adapter *adapter, u8 *buf)
7711{
7712	int ret;
7713	uint16_t device_id;
7714	uint32_t pl_rev;
7715
7716	get_pci_mode(adapter, &adapter->params.pci);
7717
7718	pl_rev = t4_read_reg(adapter, A_PL_REV);
7719	adapter->params.chipid = G_CHIPID(pl_rev);
7720	adapter->params.rev = G_REV(pl_rev);
7721	if (adapter->params.chipid == 0) {
7722		/* T4 did not have chipid in PL_REV (T5 onwards do) */
7723		adapter->params.chipid = CHELSIO_T4;
7724
7725		/* T4A1 chip is not supported */
7726		if (adapter->params.rev == 1) {
7727			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
7728			return -EINVAL;
7729		}
7730	}
7731
7732	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
7733	if (adapter->chip_params == NULL)
7734		return -EINVAL;
7735
7736	adapter->params.pci.vpd_cap_addr =
7737	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
7738
7739	ret = t4_get_flash_params(adapter);
7740	if (ret < 0)
7741		return ret;
7742
7743	ret = get_vpd_params(adapter, &adapter->params.vpd, buf);
7744	if (ret < 0)
7745		return ret;
7746
7747	/* Cards with real ASICs have the chipid in the PCIe device id */
7748	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
7749	if (device_id >> 12 == chip_id(adapter))
7750		adapter->params.cim_la_size = CIMLA_SIZE;
7751	else {
7752		/* FPGA */
7753		adapter->params.fpga = 1;
7754		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
7755	}
7756
7757	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7758
7759	/*
7760	 * Default port and clock for debugging in case we can't reach FW.
7761	 */
7762	adapter->params.nports = 1;
7763	adapter->params.portvec = 1;
7764	adapter->params.vpd.cclk = 50000;
7765
7766	/* Set pci completion timeout value to 4 seconds. */
7767	set_pcie_completion_timeout(adapter, 0xd);
7768	return 0;
7769}
7770
7771/**
7772 *	t4_shutdown_adapter - shut down adapter, host & wire
7773 *	@adapter: the adapter
7774 *
7775 *	Perform an emergency shutdown of the adapter and stop it from
7776 *	continuing any further communication on the ports or DMA to the
7777 *	host.  This is typically used when the adapter and/or firmware
7778 *	have crashed and we want to prevent any further accidental
7779 *	communication with the rest of the world.  This will also force
7780 *	the port Link Status to go down -- if register writes work --
7781 *	which should help our peers figure out that we're down.
7782 */
7783int t4_shutdown_adapter(struct adapter *adapter)
7784{
7785	int port;
7786
7787	t4_intr_disable(adapter);
7788	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
7789	for_each_port(adapter, port) {
7790		u32 a_port_cfg = PORT_REG(port,
7791					  is_t4(adapter)
7792					  ? A_XGMAC_PORT_CFG
7793					  : A_MAC_PORT_CFG);
7794
7795		t4_write_reg(adapter, a_port_cfg,
7796			     t4_read_reg(adapter, a_port_cfg)
7797			     & ~V_SIGNAL_DET(1));
7798	}
7799	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
7800
7801	return 0;
7802}
7803
7804/**
7805 *	t4_init_devlog_params - initialize adapter->params.devlog
7806 *	@adap: the adapter
7807 *	@fw_attach: whether we can talk to the firmware
7808 *
7809 *	Initialize various fields of the adapter's Firmware Device Log
7810 *	Parameters structure.
7811 */
7812int t4_init_devlog_params(struct adapter *adap, int fw_attach)
7813{
7814	struct devlog_params *dparams = &adap->params.devlog;
7815	u32 pf_dparams;
7816	unsigned int devlog_meminfo;
7817	struct fw_devlog_cmd devlog_cmd;
7818	int ret;
7819
7820	/* If we're dealing with newer firmware, the Device Log Paramerters
7821	 * are stored in a designated register which allows us to access the
7822	 * Device Log even if we can't talk to the firmware.
7823	 */
7824	pf_dparams =
7825		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
7826	if (pf_dparams) {
7827		unsigned int nentries, nentries128;
7828
7829		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
7830		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
7831
7832		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
7833		nentries = (nentries128 + 1) * 128;
7834		dparams->size = nentries * sizeof(struct fw_devlog_e);
7835
7836		return 0;
7837	}
7838
7839	/*
7840	 * For any failing returns ...
7841	 */
7842	memset(dparams, 0, sizeof *dparams);
7843
7844	/*
7845	 * If we can't talk to the firmware, there's really nothing we can do
7846	 * at this point.
7847	 */
7848	if (!fw_attach)
7849		return -ENXIO;
7850
7851	/* Otherwise, ask the firmware for it's Device Log Parameters.
7852	 */
7853	memset(&devlog_cmd, 0, sizeof devlog_cmd);
7854	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
7855					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
7856	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7857	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7858			 &devlog_cmd);
7859	if (ret)
7860		return ret;
7861
7862	devlog_meminfo =
7863		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7864	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
7865	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
7866	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7867
7868	return 0;
7869}
7870
7871/**
7872 *	t4_init_sge_params - initialize adap->params.sge
7873 *	@adapter: the adapter
7874 *
7875 *	Initialize various fields of the adapter's SGE Parameters structure.
7876 */
7877int t4_init_sge_params(struct adapter *adapter)
7878{
7879	u32 r;
7880	struct sge_params *sp = &adapter->params.sge;
7881	unsigned i;
7882
7883	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
7884	sp->counter_val[0] = G_THRESHOLD_0(r);
7885	sp->counter_val[1] = G_THRESHOLD_1(r);
7886	sp->counter_val[2] = G_THRESHOLD_2(r);
7887	sp->counter_val[3] = G_THRESHOLD_3(r);
7888
7889	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
7890	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r));
7891	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r));
7892	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
7893	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r));
7894	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r));
7895	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
7896	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r));
7897	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r));
7898
7899	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
7900	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
7901	if (is_t4(adapter))
7902		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
7903	else if (is_t5(adapter))
7904		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
7905	else
7906		sp->fl_starve_threshold2 = G_T6_EGRTHRESHOLDPACKING(r) * 2 + 1;
7907
7908	/* egress queues: log2 of # of doorbells per BAR2 page */
7909	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
7910	r >>= S_QUEUESPERPAGEPF0 +
7911	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7912	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
7913
7914	/* ingress queues: log2 of # of doorbells per BAR2 page */
7915	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
7916	r >>= S_QUEUESPERPAGEPF0 +
7917	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7918	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
7919
7920	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
7921	r >>= S_HOSTPAGESIZEPF0 +
7922	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
7923	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
7924
7925	r = t4_read_reg(adapter, A_SGE_CONTROL);
7926	sp->sge_control = r;
7927	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
7928	sp->fl_pktshift = G_PKTSHIFT(r);
7929	if (chip_id(adapter) <= CHELSIO_T5) {
7930		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
7931		    X_INGPADBOUNDARY_SHIFT);
7932	} else {
7933		sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) +
7934		    X_T6_INGPADBOUNDARY_SHIFT);
7935	}
7936	if (is_t4(adapter))
7937		sp->pack_boundary = sp->pad_boundary;
7938	else {
7939		r = t4_read_reg(adapter, A_SGE_CONTROL2);
7940		if (G_INGPACKBOUNDARY(r) == 0)
7941			sp->pack_boundary = 16;
7942		else
7943			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
7944	}
7945	for (i = 0; i < SGE_FLBUF_SIZES; i++)
7946		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
7947		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
7948
7949	return 0;
7950}
7951
7952/*
7953 * Read and cache the adapter's compressed filter mode and ingress config.
7954 */
7955static void read_filter_mode_and_ingress_config(struct adapter *adap)
7956{
7957	struct tp_params *tpp = &adap->params.tp;
7958
7959	if (t4_use_ldst(adap)) {
7960		t4_fw_tp_pio_rw(adap, &tpp->vlan_pri_map, 1,
7961				A_TP_VLAN_PRI_MAP, 1);
7962		t4_fw_tp_pio_rw(adap, &tpp->ingress_config, 1,
7963				A_TP_INGRESS_CONFIG, 1);
7964	} else {
7965		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7966				 &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP);
7967		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7968				 &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG);
7969	}
7970
7971	/*
7972	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7973	 * shift positions of several elements of the Compressed Filter Tuple
7974	 * for this adapter which we need frequently ...
7975	 */
7976	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
7977	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
7978	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
7979	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
7980	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
7981	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
7982	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
7983	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
7984	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
7985	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
7986
7987	/*
7988	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7989	 * represents the presence of an Outer VLAN instead of a VNIC ID.
7990	 */
7991	if ((tpp->ingress_config & F_VNIC) == 0)
7992		tpp->vnic_shift = -1;
7993}
7994
7995/**
7996 *      t4_init_tp_params - initialize adap->params.tp
7997 *      @adap: the adapter
7998 *
7999 *      Initialize various fields of the adapter's TP Parameters structure.
8000 */
8001int t4_init_tp_params(struct adapter *adap)
8002{
8003	int chan;
8004	u32 v;
8005	struct tp_params *tpp = &adap->params.tp;
8006
8007	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
8008	tpp->tre = G_TIMERRESOLUTION(v);
8009	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
8010
8011	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
8012	for (chan = 0; chan < MAX_NCHAN; chan++)
8013		tpp->tx_modq[chan] = chan;
8014
8015	read_filter_mode_and_ingress_config(adap);
8016
8017	/*
8018	 * For T6, cache the adapter's compressed error vector
8019	 * and passing outer header info for encapsulated packets.
8020	 */
8021	if (chip_id(adap) > CHELSIO_T5) {
8022		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
8023		tpp->rx_pkt_encap = (v & F_CRXPKTENC) ? 1 : 0;
8024	}
8025
8026	return 0;
8027}
8028
8029/**
8030 *      t4_filter_field_shift - calculate filter field shift
8031 *      @adap: the adapter
8032 *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
8033 *
8034 *      Return the shift position of a filter field within the Compressed
8035 *      Filter Tuple.  The filter field is specified via its selection bit
8036 *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
8037 */
8038int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
8039{
8040	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
8041	unsigned int sel;
8042	int field_shift;
8043
8044	if ((filter_mode & filter_sel) == 0)
8045		return -1;
8046
8047	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8048		switch (filter_mode & sel) {
8049		case F_FCOE:
8050			field_shift += W_FT_FCOE;
8051			break;
8052		case F_PORT:
8053			field_shift += W_FT_PORT;
8054			break;
8055		case F_VNIC_ID:
8056			field_shift += W_FT_VNIC_ID;
8057			break;
8058		case F_VLAN:
8059			field_shift += W_FT_VLAN;
8060			break;
8061		case F_TOS:
8062			field_shift += W_FT_TOS;
8063			break;
8064		case F_PROTOCOL:
8065			field_shift += W_FT_PROTOCOL;
8066			break;
8067		case F_ETHERTYPE:
8068			field_shift += W_FT_ETHERTYPE;
8069			break;
8070		case F_MACMATCH:
8071			field_shift += W_FT_MACMATCH;
8072			break;
8073		case F_MPSHITTYPE:
8074			field_shift += W_FT_MPSHITTYPE;
8075			break;
8076		case F_FRAGMENTATION:
8077			field_shift += W_FT_FRAGMENTATION;
8078			break;
8079		}
8080	}
8081	return field_shift;
8082}
8083
8084int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8085{
8086	u8 addr[6];
8087	int ret, i, j;
8088	struct fw_port_cmd c;
8089	u16 rss_size;
8090	struct port_info *p = adap2pinfo(adap, port_id);
8091	u32 param, val;
8092
8093	memset(&c, 0, sizeof(c));
8094
8095	for (i = 0, j = -1; i <= p->port_id; i++) {
8096		do {
8097			j++;
8098		} while ((adap->params.portvec & (1 << j)) == 0);
8099	}
8100
8101	if (!(adap->flags & IS_VF) ||
8102	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8103		c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) |
8104				       F_FW_CMD_REQUEST | F_FW_CMD_READ |
8105				       V_FW_PORT_CMD_PORTID(j));
8106		c.action_to_len16 = htonl(
8107			V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
8108			FW_LEN16(c));
8109		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8110		if (ret)
8111			return ret;
8112
8113		ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
8114		p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
8115			G_FW_PORT_CMD_MDIOADDR(ret) : -1;
8116		p->port_type = G_FW_PORT_CMD_PTYPE(ret);
8117		p->mod_type = G_FW_PORT_CMD_MODTYPE(ret);
8118
8119		init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
8120	}
8121
8122	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8123	if (ret < 0)
8124		return ret;
8125
8126	p->vi[0].viid = ret;
8127	if (chip_id(adap) <= CHELSIO_T5)
8128		p->vi[0].smt_idx = (ret & 0x7f) << 1;
8129	else
8130		p->vi[0].smt_idx = (ret & 0x7f);
8131	p->tx_chan = j;
8132	p->rx_chan_map = t4_get_mps_bg_map(adap, j);
8133	p->lport = j;
8134	p->vi[0].rss_size = rss_size;
8135	t4_os_set_hw_addr(adap, p->port_id, addr);
8136
8137	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8138	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8139	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8140	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8141	if (ret)
8142		p->vi[0].rss_base = 0xffff;
8143	else {
8144		/* MPASS((val >> 16) == rss_size); */
8145		p->vi[0].rss_base = val & 0xffff;
8146	}
8147
8148	return 0;
8149}
8150
8151/**
8152 *	t4_read_cimq_cfg - read CIM queue configuration
8153 *	@adap: the adapter
8154 *	@base: holds the queue base addresses in bytes
8155 *	@size: holds the queue sizes in bytes
8156 *	@thres: holds the queue full thresholds in bytes
8157 *
8158 *	Returns the current configuration of the CIM queues, starting with
8159 *	the IBQs, then the OBQs.
8160 */
8161void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8162{
8163	unsigned int i, v;
8164	int cim_num_obq = adap->chip_params->cim_num_obq;
8165
8166	for (i = 0; i < CIM_NUM_IBQ; i++) {
8167		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8168			     V_QUENUMSELECT(i));
8169		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8170		/* value is in 256-byte units */
8171		*base++ = G_CIMQBASE(v) * 256;
8172		*size++ = G_CIMQSIZE(v) * 256;
8173		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8174	}
8175	for (i = 0; i < cim_num_obq; i++) {
8176		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8177			     V_QUENUMSELECT(i));
8178		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8179		/* value is in 256-byte units */
8180		*base++ = G_CIMQBASE(v) * 256;
8181		*size++ = G_CIMQSIZE(v) * 256;
8182	}
8183}
8184
8185/**
8186 *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8187 *	@adap: the adapter
8188 *	@qid: the queue index
8189 *	@data: where to store the queue contents
8190 *	@n: capacity of @data in 32-bit words
8191 *
8192 *	Reads the contents of the selected CIM queue starting at address 0 up
8193 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8194 *	error and the number of 32-bit words actually read on success.
8195 */
8196int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8197{
8198	int i, err, attempts;
8199	unsigned int addr;
8200	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8201
8202	if (qid > 5 || (n & 3))
8203		return -EINVAL;
8204
8205	addr = qid * nwords;
8206	if (n > nwords)
8207		n = nwords;
8208
8209	/* It might take 3-10ms before the IBQ debug read access is allowed.
8210	 * Wait for 1 Sec with a delay of 1 usec.
8211	 */
8212	attempts = 1000000;
8213
8214	for (i = 0; i < n; i++, addr++) {
8215		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8216			     F_IBQDBGEN);
8217		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8218				      attempts, 1);
8219		if (err)
8220			return err;
8221		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8222	}
8223	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8224	return i;
8225}
8226
8227/**
8228 *	t4_read_cim_obq - read the contents of a CIM outbound queue
8229 *	@adap: the adapter
8230 *	@qid: the queue index
8231 *	@data: where to store the queue contents
8232 *	@n: capacity of @data in 32-bit words
8233 *
8234 *	Reads the contents of the selected CIM queue starting at address 0 up
8235 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8236 *	error and the number of 32-bit words actually read on success.
8237 */
8238int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8239{
8240	int i, err;
8241	unsigned int addr, v, nwords;
8242	int cim_num_obq = adap->chip_params->cim_num_obq;
8243
8244	if ((qid > (cim_num_obq - 1)) || (n & 3))
8245		return -EINVAL;
8246
8247	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8248		     V_QUENUMSELECT(qid));
8249	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8250
8251	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8252	nwords = G_CIMQSIZE(v) * 64;  /* same */
8253	if (n > nwords)
8254		n = nwords;
8255
8256	for (i = 0; i < n; i++, addr++) {
8257		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8258			     F_OBQDBGEN);
8259		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8260				      2, 1);
8261		if (err)
8262			return err;
8263		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8264	}
8265	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8266	return i;
8267}
8268
8269enum {
8270	CIM_QCTL_BASE     = 0,
8271	CIM_CTL_BASE      = 0x2000,
8272	CIM_PBT_ADDR_BASE = 0x2800,
8273	CIM_PBT_LRF_BASE  = 0x3000,
8274	CIM_PBT_DATA_BASE = 0x3800
8275};
8276
8277/**
8278 *	t4_cim_read - read a block from CIM internal address space
8279 *	@adap: the adapter
8280 *	@addr: the start address within the CIM address space
8281 *	@n: number of words to read
8282 *	@valp: where to store the result
8283 *
8284 *	Reads a block of 4-byte words from the CIM intenal address space.
8285 */
8286int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8287		unsigned int *valp)
8288{
8289	int ret = 0;
8290
8291	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8292		return -EBUSY;
8293
8294	for ( ; !ret && n--; addr += 4) {
8295		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8296		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8297				      0, 5, 2);
8298		if (!ret)
8299			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8300	}
8301	return ret;
8302}
8303
8304/**
8305 *	t4_cim_write - write a block into CIM internal address space
8306 *	@adap: the adapter
8307 *	@addr: the start address within the CIM address space
8308 *	@n: number of words to write
8309 *	@valp: set of values to write
8310 *
8311 *	Writes a block of 4-byte words into the CIM intenal address space.
8312 */
8313int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8314		 const unsigned int *valp)
8315{
8316	int ret = 0;
8317
8318	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8319		return -EBUSY;
8320
8321	for ( ; !ret && n--; addr += 4) {
8322		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8323		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8324		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8325				      0, 5, 2);
8326	}
8327	return ret;
8328}
8329
8330static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8331			 unsigned int val)
8332{
8333	return t4_cim_write(adap, addr, 1, &val);
8334}
8335
8336/**
8337 *	t4_cim_ctl_read - read a block from CIM control region
8338 *	@adap: the adapter
8339 *	@addr: the start address within the CIM control region
8340 *	@n: number of words to read
8341 *	@valp: where to store the result
8342 *
8343 *	Reads a block of 4-byte words from the CIM control region.
8344 */
8345int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8346		    unsigned int *valp)
8347{
8348	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8349}
8350
8351/**
8352 *	t4_cim_read_la - read CIM LA capture buffer
8353 *	@adap: the adapter
8354 *	@la_buf: where to store the LA data
8355 *	@wrptr: the HW write pointer within the capture buffer
8356 *
8357 *	Reads the contents of the CIM LA buffer with the most recent entry at
8358 *	the end	of the returned data and with the entry at @wrptr first.
8359 *	We try to leave the LA in the running state we find it in.
8360 */
8361int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8362{
8363	int i, ret;
8364	unsigned int cfg, val, idx;
8365
8366	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8367	if (ret)
8368		return ret;
8369
8370	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
8371		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8372		if (ret)
8373			return ret;
8374	}
8375
8376	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8377	if (ret)
8378		goto restart;
8379
8380	idx = G_UPDBGLAWRPTR(val);
8381	if (wrptr)
8382		*wrptr = idx;
8383
8384	for (i = 0; i < adap->params.cim_la_size; i++) {
8385		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8386				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8387		if (ret)
8388			break;
8389		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8390		if (ret)
8391			break;
8392		if (val & F_UPDBGLARDEN) {
8393			ret = -ETIMEDOUT;
8394			break;
8395		}
8396		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8397		if (ret)
8398			break;
8399
8400		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8401		idx = (idx + 1) & M_UPDBGLARDPTR;
8402		/*
8403		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8404		 * identify the 32-bit portion of the full 312-bit data
8405		 */
8406		if (is_t6(adap))
8407			while ((idx & 0xf) > 9)
8408				idx = (idx + 1) % M_UPDBGLARDPTR;
8409	}
8410restart:
8411	if (cfg & F_UPDBGLAEN) {
8412		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8413				      cfg & ~F_UPDBGLARDEN);
8414		if (!ret)
8415			ret = r;
8416	}
8417	return ret;
8418}
8419
8420/**
8421 *	t4_tp_read_la - read TP LA capture buffer
8422 *	@adap: the adapter
8423 *	@la_buf: where to store the LA data
8424 *	@wrptr: the HW write pointer within the capture buffer
8425 *
8426 *	Reads the contents of the TP LA buffer with the most recent entry at
8427 *	the end	of the returned data and with the entry at @wrptr first.
8428 *	We leave the LA in the running state we find it in.
8429 */
8430void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8431{
8432	bool last_incomplete;
8433	unsigned int i, cfg, val, idx;
8434
8435	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8436	if (cfg & F_DBGLAENABLE)			/* freeze LA */
8437		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8438			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8439
8440	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8441	idx = G_DBGLAWPTR(val);
8442	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8443	if (last_incomplete)
8444		idx = (idx + 1) & M_DBGLARPTR;
8445	if (wrptr)
8446		*wrptr = idx;
8447
8448	val &= 0xffff;
8449	val &= ~V_DBGLARPTR(M_DBGLARPTR);
8450	val |= adap->params.tp.la_mask;
8451
8452	for (i = 0; i < TPLA_SIZE; i++) {
8453		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8454		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8455		idx = (idx + 1) & M_DBGLARPTR;
8456	}
8457
8458	/* Wipe out last entry if it isn't valid */
8459	if (last_incomplete)
8460		la_buf[TPLA_SIZE - 1] = ~0ULL;
8461
8462	if (cfg & F_DBGLAENABLE)		/* restore running state */
8463		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8464			     cfg | adap->params.tp.la_mask);
8465}
8466
8467/*
8468 * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8469 * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8470 * state for more than the Warning Threshold then we'll issue a warning about
8471 * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8472 * appears to be hung every Warning Repeat second till the situation clears.
8473 * If the situation clears, we'll note that as well.
8474 */
8475#define SGE_IDMA_WARN_THRESH 1
8476#define SGE_IDMA_WARN_REPEAT 300
8477
8478/**
8479 *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8480 *	@adapter: the adapter
8481 *	@idma: the adapter IDMA Monitor state
8482 *
8483 *	Initialize the state of an SGE Ingress DMA Monitor.
8484 */
8485void t4_idma_monitor_init(struct adapter *adapter,
8486			  struct sge_idma_monitor_state *idma)
8487{
8488	/* Initialize the state variables for detecting an SGE Ingress DMA
8489	 * hang.  The SGE has internal counters which count up on each clock
8490	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8491	 * same state they were on the previous clock tick.  The clock used is
8492	 * the Core Clock so we have a limit on the maximum "time" they can
8493	 * record; typically a very small number of seconds.  For instance,
8494	 * with a 600MHz Core Clock, we can only count up to a bit more than
8495	 * 7s.  So we'll synthesize a larger counter in order to not run the
8496	 * risk of having the "timers" overflow and give us the flexibility to
8497	 * maintain a Hung SGE State Machine of our own which operates across
8498	 * a longer time frame.
8499	 */
8500	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8501	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8502}
8503
8504/**
8505 *	t4_idma_monitor - monitor SGE Ingress DMA state
8506 *	@adapter: the adapter
8507 *	@idma: the adapter IDMA Monitor state
8508 *	@hz: number of ticks/second
8509 *	@ticks: number of ticks since the last IDMA Monitor call
8510 */
8511void t4_idma_monitor(struct adapter *adapter,
8512		     struct sge_idma_monitor_state *idma,
8513		     int hz, int ticks)
8514{
8515	int i, idma_same_state_cnt[2];
8516
8517	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8518	  * are counters inside the SGE which count up on each clock when the
8519	  * SGE finds its Ingress DMA State Engines in the same states they
8520	  * were in the previous clock.  The counters will peg out at
8521	  * 0xffffffff without wrapping around so once they pass the 1s
8522	  * threshold they'll stay above that till the IDMA state changes.
8523	  */
8524	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8525	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8526	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8527
8528	for (i = 0; i < 2; i++) {
8529		u32 debug0, debug11;
8530
8531		/* If the Ingress DMA Same State Counter ("timer") is less
8532		 * than 1s, then we can reset our synthesized Stall Timer and
8533		 * continue.  If we have previously emitted warnings about a
8534		 * potential stalled Ingress Queue, issue a note indicating
8535		 * that the Ingress Queue has resumed forward progress.
8536		 */
8537		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8538			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8539				CH_WARN(adapter, "SGE idma%d, queue %u, "
8540					"resumed after %d seconds\n",
8541					i, idma->idma_qid[i],
8542					idma->idma_stalled[i]/hz);
8543			idma->idma_stalled[i] = 0;
8544			continue;
8545		}
8546
8547		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8548		 * domain.  The first time we get here it'll be because we
8549		 * passed the 1s Threshold; each additional time it'll be
8550		 * because the RX Timer Callback is being fired on its regular
8551		 * schedule.
8552		 *
8553		 * If the stall is below our Potential Hung Ingress Queue
8554		 * Warning Threshold, continue.
8555		 */
8556		if (idma->idma_stalled[i] == 0) {
8557			idma->idma_stalled[i] = hz;
8558			idma->idma_warn[i] = 0;
8559		} else {
8560			idma->idma_stalled[i] += ticks;
8561			idma->idma_warn[i] -= ticks;
8562		}
8563
8564		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8565			continue;
8566
8567		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8568		 */
8569		if (idma->idma_warn[i] > 0)
8570			continue;
8571		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
8572
8573		/* Read and save the SGE IDMA State and Queue ID information.
8574		 * We do this every time in case it changes across time ...
8575		 * can't be too careful ...
8576		 */
8577		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
8578		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8579		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8580
8581		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
8582		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8583		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8584
8585		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
8586			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8587			i, idma->idma_qid[i], idma->idma_state[i],
8588			idma->idma_stalled[i]/hz,
8589			debug0, debug11);
8590		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8591	}
8592}
8593
8594/**
8595 *	t4_read_pace_tbl - read the pace table
8596 *	@adap: the adapter
8597 *	@pace_vals: holds the returned values
8598 *
8599 *	Returns the values of TP's pace table in microseconds.
8600 */
8601void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
8602{
8603	unsigned int i, v;
8604
8605	for (i = 0; i < NTX_SCHED; i++) {
8606		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
8607		v = t4_read_reg(adap, A_TP_PACE_TABLE);
8608		pace_vals[i] = dack_ticks_to_usec(adap, v);
8609	}
8610}
8611
8612/**
8613 *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
8614 *	@adap: the adapter
8615 *	@sched: the scheduler index
8616 *	@kbps: the byte rate in Kbps
8617 *	@ipg: the interpacket delay in tenths of nanoseconds
8618 *
8619 *	Return the current configuration of a HW Tx scheduler.
8620 */
8621void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
8622		     unsigned int *ipg)
8623{
8624	unsigned int v, addr, bpt, cpt;
8625
8626	if (kbps) {
8627		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
8628		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8629		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8630		if (sched & 1)
8631			v >>= 16;
8632		bpt = (v >> 8) & 0xff;
8633		cpt = v & 0xff;
8634		if (!cpt)
8635			*kbps = 0;	/* scheduler disabled */
8636		else {
8637			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
8638			*kbps = (v * bpt) / 125;
8639		}
8640	}
8641	if (ipg) {
8642		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
8643		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8644		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8645		if (sched & 1)
8646			v >>= 16;
8647		v &= 0xffff;
8648		*ipg = (10000 * v) / core_ticks_per_usec(adap);
8649	}
8650}
8651
8652/**
8653 *	t4_load_cfg - download config file
8654 *	@adap: the adapter
8655 *	@cfg_data: the cfg text file to write
8656 *	@size: text file size
8657 *
8658 *	Write the supplied config text file to the card's serial flash.
8659 */
8660int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
8661{
8662	int ret, i, n, cfg_addr;
8663	unsigned int addr;
8664	unsigned int flash_cfg_start_sec;
8665	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8666
8667	cfg_addr = t4_flash_cfg_addr(adap);
8668	if (cfg_addr < 0)
8669		return cfg_addr;
8670
8671	addr = cfg_addr;
8672	flash_cfg_start_sec = addr / SF_SEC_SIZE;
8673
8674	if (size > FLASH_CFG_MAX_SIZE) {
8675		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
8676		       FLASH_CFG_MAX_SIZE);
8677		return -EFBIG;
8678	}
8679
8680	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
8681			 sf_sec_size);
8682	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
8683				     flash_cfg_start_sec + i - 1);
8684	/*
8685	 * If size == 0 then we're simply erasing the FLASH sectors associated
8686	 * with the on-adapter Firmware Configuration File.
8687	 */
8688	if (ret || size == 0)
8689		goto out;
8690
8691	/* this will write to the flash up to SF_PAGE_SIZE at a time */
8692	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
8693		if ( (size - i) <  SF_PAGE_SIZE)
8694			n = size - i;
8695		else
8696			n = SF_PAGE_SIZE;
8697		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
8698		if (ret)
8699			goto out;
8700
8701		addr += SF_PAGE_SIZE;
8702		cfg_data += SF_PAGE_SIZE;
8703	}
8704
8705out:
8706	if (ret)
8707		CH_ERR(adap, "config file %s failed %d\n",
8708		       (size == 0 ? "clear" : "download"), ret);
8709	return ret;
8710}
8711
8712/**
8713 *	t5_fw_init_extern_mem - initialize the external memory
8714 *	@adap: the adapter
8715 *
8716 *	Initializes the external memory on T5.
8717 */
8718int t5_fw_init_extern_mem(struct adapter *adap)
8719{
8720	u32 params[1], val[1];
8721	int ret;
8722
8723	if (!is_t5(adap))
8724		return 0;
8725
8726	val[0] = 0xff; /* Initialize all MCs */
8727	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8728			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
8729	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
8730			FW_CMD_MAX_TIMEOUT);
8731
8732	return ret;
8733}
8734
8735/* BIOS boot headers */
8736typedef struct pci_expansion_rom_header {
8737	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8738	u8	reserved[22]; /* Reserved per processor Architecture data */
8739	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8740} pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
8741
8742/* Legacy PCI Expansion ROM Header */
8743typedef struct legacy_pci_expansion_rom_header {
8744	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8745	u8	size512; /* Current Image Size in units of 512 bytes */
8746	u8	initentry_point[4];
8747	u8	cksum; /* Checksum computed on the entire Image */
8748	u8	reserved[16]; /* Reserved */
8749	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
8750} legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
8751
8752/* EFI PCI Expansion ROM Header */
8753typedef struct efi_pci_expansion_rom_header {
8754	u8	signature[2]; // ROM signature. The value 0xaa55
8755	u8	initialization_size[2]; /* Units 512. Includes this header */
8756	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
8757	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
8758	u8	efi_machine_type[2]; /* Machine type from EFI image header */
8759	u8	compression_type[2]; /* Compression type. */
8760		/*
8761		 * Compression type definition
8762		 * 0x0: uncompressed
8763		 * 0x1: Compressed
8764		 * 0x2-0xFFFF: Reserved
8765		 */
8766	u8	reserved[8]; /* Reserved */
8767	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
8768	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8769} efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
8770
8771/* PCI Data Structure Format */
8772typedef struct pcir_data_structure { /* PCI Data Structure */
8773	u8	signature[4]; /* Signature. The string "PCIR" */
8774	u8	vendor_id[2]; /* Vendor Identification */
8775	u8	device_id[2]; /* Device Identification */
8776	u8	vital_product[2]; /* Pointer to Vital Product Data */
8777	u8	length[2]; /* PCIR Data Structure Length */
8778	u8	revision; /* PCIR Data Structure Revision */
8779	u8	class_code[3]; /* Class Code */
8780	u8	image_length[2]; /* Image Length. Multiple of 512B */
8781	u8	code_revision[2]; /* Revision Level of Code/Data */
8782	u8	code_type; /* Code Type. */
8783		/*
8784		 * PCI Expansion ROM Code Types
8785		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
8786		 * 0x01: Open Firmware standard for PCI. FCODE
8787		 * 0x02: Hewlett-Packard PA RISC. HP reserved
8788		 * 0x03: EFI Image. EFI
8789		 * 0x04-0xFF: Reserved.
8790		 */
8791	u8	indicator; /* Indicator. Identifies the last image in the ROM */
8792	u8	reserved[2]; /* Reserved */
8793} pcir_data_t; /* PCI__DATA_STRUCTURE */
8794
8795/* BOOT constants */
8796enum {
8797	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
8798	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
8799	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
8800	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
8801	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
8802	VENDOR_ID = 0x1425, /* Vendor ID */
8803	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
8804};
8805
8806/*
8807 *	modify_device_id - Modifies the device ID of the Boot BIOS image
8808 *	@adatper: the device ID to write.
8809 *	@boot_data: the boot image to modify.
8810 *
8811 *	Write the supplied device ID to the boot BIOS image.
8812 */
8813static void modify_device_id(int device_id, u8 *boot_data)
8814{
8815	legacy_pci_exp_rom_header_t *header;
8816	pcir_data_t *pcir_header;
8817	u32 cur_header = 0;
8818
8819	/*
8820	 * Loop through all chained images and change the device ID's
8821	 */
8822	while (1) {
8823		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
8824		pcir_header = (pcir_data_t *) &boot_data[cur_header +
8825			      le16_to_cpu(*(u16*)header->pcir_offset)];
8826
8827		/*
8828		 * Only modify the Device ID if code type is Legacy or HP.
8829		 * 0x00: Okay to modify
8830		 * 0x01: FCODE. Do not be modify
8831		 * 0x03: Okay to modify
8832		 * 0x04-0xFF: Do not modify
8833		 */
8834		if (pcir_header->code_type == 0x00) {
8835			u8 csum = 0;
8836			int i;
8837
8838			/*
8839			 * Modify Device ID to match current adatper
8840			 */
8841			*(u16*) pcir_header->device_id = device_id;
8842
8843			/*
8844			 * Set checksum temporarily to 0.
8845			 * We will recalculate it later.
8846			 */
8847			header->cksum = 0x0;
8848
8849			/*
8850			 * Calculate and update checksum
8851			 */
8852			for (i = 0; i < (header->size512 * 512); i++)
8853				csum += (u8)boot_data[cur_header + i];
8854
8855			/*
8856			 * Invert summed value to create the checksum
8857			 * Writing new checksum value directly to the boot data
8858			 */
8859			boot_data[cur_header + 7] = -csum;
8860
8861		} else if (pcir_header->code_type == 0x03) {
8862
8863			/*
8864			 * Modify Device ID to match current adatper
8865			 */
8866			*(u16*) pcir_header->device_id = device_id;
8867
8868		}
8869
8870
8871		/*
8872		 * Check indicator element to identify if this is the last
8873		 * image in the ROM.
8874		 */
8875		if (pcir_header->indicator & 0x80)
8876			break;
8877
8878		/*
8879		 * Move header pointer up to the next image in the ROM.
8880		 */
8881		cur_header += header->size512 * 512;
8882	}
8883}
8884
8885/*
8886 *	t4_load_boot - download boot flash
8887 *	@adapter: the adapter
8888 *	@boot_data: the boot image to write
8889 *	@boot_addr: offset in flash to write boot_data
8890 *	@size: image size
8891 *
8892 *	Write the supplied boot image to the card's serial flash.
8893 *	The boot image has the following sections: a 28-byte header and the
8894 *	boot image.
8895 */
8896int t4_load_boot(struct adapter *adap, u8 *boot_data,
8897		 unsigned int boot_addr, unsigned int size)
8898{
8899	pci_exp_rom_header_t *header;
8900	int pcir_offset ;
8901	pcir_data_t *pcir_header;
8902	int ret, addr;
8903	uint16_t device_id;
8904	unsigned int i;
8905	unsigned int boot_sector = (boot_addr * 1024 );
8906	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8907
8908	/*
8909	 * Make sure the boot image does not encroach on the firmware region
8910	 */
8911	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
8912		CH_ERR(adap, "boot image encroaching on firmware region\n");
8913		return -EFBIG;
8914	}
8915
8916	/*
8917	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
8918	 * and Boot configuration data sections. These 3 boot sections span
8919	 * sectors 0 to 7 in flash and live right before the FW image location.
8920	 */
8921	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
8922			sf_sec_size);
8923	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
8924				     (boot_sector >> 16) + i - 1);
8925
8926	/*
8927	 * If size == 0 then we're simply erasing the FLASH sectors associated
8928	 * with the on-adapter option ROM file
8929	 */
8930	if (ret || (size == 0))
8931		goto out;
8932
8933	/* Get boot header */
8934	header = (pci_exp_rom_header_t *)boot_data;
8935	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
8936	/* PCIR Data Structure */
8937	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
8938
8939	/*
8940	 * Perform some primitive sanity testing to avoid accidentally
8941	 * writing garbage over the boot sectors.  We ought to check for
8942	 * more but it's not worth it for now ...
8943	 */
8944	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
8945		CH_ERR(adap, "boot image too small/large\n");
8946		return -EFBIG;
8947	}
8948
8949#ifndef CHELSIO_T4_DIAGS
8950	/*
8951	 * Check BOOT ROM header signature
8952	 */
8953	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
8954		CH_ERR(adap, "Boot image missing signature\n");
8955		return -EINVAL;
8956	}
8957
8958	/*
8959	 * Check PCI header signature
8960	 */
8961	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
8962		CH_ERR(adap, "PCI header missing signature\n");
8963		return -EINVAL;
8964	}
8965
8966	/*
8967	 * Check Vendor ID matches Chelsio ID
8968	 */
8969	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
8970		CH_ERR(adap, "Vendor ID missing signature\n");
8971		return -EINVAL;
8972	}
8973#endif
8974
8975	/*
8976	 * Retrieve adapter's device ID
8977	 */
8978	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
8979	/* Want to deal with PF 0 so I strip off PF 4 indicator */
8980	device_id = device_id & 0xf0ff;
8981
8982	/*
8983	 * Check PCIE Device ID
8984	 */
8985	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
8986		/*
8987		 * Change the device ID in the Boot BIOS image to match
8988		 * the Device ID of the current adapter.
8989		 */
8990		modify_device_id(device_id, boot_data);
8991	}
8992
8993	/*
8994	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
8995	 * we finish copying the rest of the boot image. This will ensure
8996	 * that the BIOS boot header will only be written if the boot image
8997	 * was written in full.
8998	 */
8999	addr = boot_sector;
9000	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
9001		addr += SF_PAGE_SIZE;
9002		boot_data += SF_PAGE_SIZE;
9003		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
9004		if (ret)
9005			goto out;
9006	}
9007
9008	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
9009			     (const u8 *)header, 0);
9010
9011out:
9012	if (ret)
9013		CH_ERR(adap, "boot image download failed, error %d\n", ret);
9014	return ret;
9015}
9016
9017/*
9018 *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
9019 *	@adapter: the adapter
9020 *
9021 *	Return the address within the flash where the OptionROM Configuration
9022 *	is stored, or an error if the device FLASH is too small to contain
9023 *	a OptionROM Configuration.
9024 */
9025static int t4_flash_bootcfg_addr(struct adapter *adapter)
9026{
9027	/*
9028	 * If the device FLASH isn't large enough to hold a Firmware
9029	 * Configuration File, return an error.
9030	 */
9031	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
9032		return -ENOSPC;
9033
9034	return FLASH_BOOTCFG_START;
9035}
9036
9037int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
9038{
9039	int ret, i, n, cfg_addr;
9040	unsigned int addr;
9041	unsigned int flash_cfg_start_sec;
9042	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
9043
9044	cfg_addr = t4_flash_bootcfg_addr(adap);
9045	if (cfg_addr < 0)
9046		return cfg_addr;
9047
9048	addr = cfg_addr;
9049	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9050
9051	if (size > FLASH_BOOTCFG_MAX_SIZE) {
9052		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9053			FLASH_BOOTCFG_MAX_SIZE);
9054		return -EFBIG;
9055	}
9056
9057	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9058			 sf_sec_size);
9059	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9060					flash_cfg_start_sec + i - 1);
9061
9062	/*
9063	 * If size == 0 then we're simply erasing the FLASH sectors associated
9064	 * with the on-adapter OptionROM Configuration File.
9065	 */
9066	if (ret || size == 0)
9067		goto out;
9068
9069	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9070	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9071		if ( (size - i) <  SF_PAGE_SIZE)
9072			n = size - i;
9073		else
9074			n = SF_PAGE_SIZE;
9075		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9076		if (ret)
9077			goto out;
9078
9079		addr += SF_PAGE_SIZE;
9080		cfg_data += SF_PAGE_SIZE;
9081	}
9082
9083out:
9084	if (ret)
9085		CH_ERR(adap, "boot config data %s failed %d\n",
9086				(size == 0 ? "clear" : "download"), ret);
9087	return ret;
9088}
9089
9090/**
9091 *	t4_set_filter_mode - configure the optional components of filter tuples
9092 *	@adap: the adapter
9093 *	@mode_map: a bitmap selcting which optional filter components to enable
9094 *
9095 *	Sets the filter mode by selecting the optional components to enable
9096 *	in filter tuples.  Returns 0 on success and a negative error if the
9097 *	requested mode needs more bits than are available for optional
9098 *	components.
9099 */
9100int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map)
9101{
9102	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9103
9104	int i, nbits = 0;
9105
9106	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9107		if (mode_map & (1 << i))
9108			nbits += width[i];
9109	if (nbits > FILTER_OPT_LEN)
9110		return -EINVAL;
9111	if (t4_use_ldst(adap))
9112		t4_fw_tp_pio_rw(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, 0);
9113	else
9114		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &mode_map,
9115				  1, A_TP_VLAN_PRI_MAP);
9116	read_filter_mode_and_ingress_config(adap);
9117
9118	return 0;
9119}
9120
9121/**
9122 *	t4_clr_port_stats - clear port statistics
9123 *	@adap: the adapter
9124 *	@idx: the port index
9125 *
9126 *	Clear HW statistics for the given port.
9127 */
9128void t4_clr_port_stats(struct adapter *adap, int idx)
9129{
9130	unsigned int i;
9131	u32 bgmap = t4_get_mps_bg_map(adap, idx);
9132	u32 port_base_addr;
9133
9134	if (is_t4(adap))
9135		port_base_addr = PORT_BASE(idx);
9136	else
9137		port_base_addr = T5_PORT_BASE(idx);
9138
9139	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9140			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9141		t4_write_reg(adap, port_base_addr + i, 0);
9142	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9143			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9144		t4_write_reg(adap, port_base_addr + i, 0);
9145	for (i = 0; i < 4; i++)
9146		if (bgmap & (1 << i)) {
9147			t4_write_reg(adap,
9148			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9149			t4_write_reg(adap,
9150			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9151		}
9152}
9153
9154/**
9155 *	t4_i2c_rd - read I2C data from adapter
9156 *	@adap: the adapter
9157 *	@port: Port number if per-port device; <0 if not
9158 *	@devid: per-port device ID or absolute device ID
9159 *	@offset: byte offset into device I2C space
9160 *	@len: byte length of I2C space data
9161 *	@buf: buffer in which to return I2C data
9162 *
9163 *	Reads the I2C data from the indicated device and location.
9164 */
9165int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9166	      int port, unsigned int devid,
9167	      unsigned int offset, unsigned int len,
9168	      u8 *buf)
9169{
9170	u32 ldst_addrspace;
9171	struct fw_ldst_cmd ldst;
9172	int ret;
9173
9174	if (port >= 4 ||
9175	    devid >= 256 ||
9176	    offset >= 256 ||
9177	    len > sizeof ldst.u.i2c.data)
9178		return -EINVAL;
9179
9180	memset(&ldst, 0, sizeof ldst);
9181	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9182	ldst.op_to_addrspace =
9183		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9184			    F_FW_CMD_REQUEST |
9185			    F_FW_CMD_READ |
9186			    ldst_addrspace);
9187	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9188	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9189	ldst.u.i2c.did = devid;
9190	ldst.u.i2c.boffset = offset;
9191	ldst.u.i2c.blen = len;
9192	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9193	if (!ret)
9194		memcpy(buf, ldst.u.i2c.data, len);
9195	return ret;
9196}
9197
9198/**
9199 *	t4_i2c_wr - write I2C data to adapter
9200 *	@adap: the adapter
9201 *	@port: Port number if per-port device; <0 if not
9202 *	@devid: per-port device ID or absolute device ID
9203 *	@offset: byte offset into device I2C space
9204 *	@len: byte length of I2C space data
9205 *	@buf: buffer containing new I2C data
9206 *
9207 *	Write the I2C data to the indicated device and location.
9208 */
9209int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9210	      int port, unsigned int devid,
9211	      unsigned int offset, unsigned int len,
9212	      u8 *buf)
9213{
9214	u32 ldst_addrspace;
9215	struct fw_ldst_cmd ldst;
9216
9217	if (port >= 4 ||
9218	    devid >= 256 ||
9219	    offset >= 256 ||
9220	    len > sizeof ldst.u.i2c.data)
9221		return -EINVAL;
9222
9223	memset(&ldst, 0, sizeof ldst);
9224	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9225	ldst.op_to_addrspace =
9226		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9227			    F_FW_CMD_REQUEST |
9228			    F_FW_CMD_WRITE |
9229			    ldst_addrspace);
9230	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9231	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9232	ldst.u.i2c.did = devid;
9233	ldst.u.i2c.boffset = offset;
9234	ldst.u.i2c.blen = len;
9235	memcpy(ldst.u.i2c.data, buf, len);
9236	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9237}
9238
9239/**
9240 * 	t4_sge_ctxt_rd - read an SGE context through FW
9241 * 	@adap: the adapter
9242 * 	@mbox: mailbox to use for the FW command
9243 * 	@cid: the context id
9244 * 	@ctype: the context type
9245 * 	@data: where to store the context data
9246 *
9247 * 	Issues a FW command through the given mailbox to read an SGE context.
9248 */
9249int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9250		   enum ctxt_type ctype, u32 *data)
9251{
9252	int ret;
9253	struct fw_ldst_cmd c;
9254
9255	if (ctype == CTXT_EGRESS)
9256		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9257	else if (ctype == CTXT_INGRESS)
9258		ret = FW_LDST_ADDRSPC_SGE_INGC;
9259	else if (ctype == CTXT_FLM)
9260		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9261	else
9262		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9263
9264	memset(&c, 0, sizeof(c));
9265	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9266					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9267					V_FW_LDST_CMD_ADDRSPACE(ret));
9268	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9269	c.u.idctxt.physid = cpu_to_be32(cid);
9270
9271	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9272	if (ret == 0) {
9273		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9274		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9275		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9276		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9277		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9278		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9279	}
9280	return ret;
9281}
9282
9283/**
9284 * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9285 * 	@adap: the adapter
9286 * 	@cid: the context id
9287 * 	@ctype: the context type
9288 * 	@data: where to store the context data
9289 *
9290 * 	Reads an SGE context directly, bypassing FW.  This is only for
9291 * 	debugging when FW is unavailable.
9292 */
9293int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9294		      u32 *data)
9295{
9296	int i, ret;
9297
9298	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9299	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9300	if (!ret)
9301		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9302			*data++ = t4_read_reg(adap, i);
9303	return ret;
9304}
9305
9306int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9307    		    int sleep_ok)
9308{
9309	struct fw_sched_cmd cmd;
9310
9311	memset(&cmd, 0, sizeof(cmd));
9312	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9313				      F_FW_CMD_REQUEST |
9314				      F_FW_CMD_WRITE);
9315	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9316
9317	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9318	cmd.u.config.type = type;
9319	cmd.u.config.minmaxen = minmaxen;
9320
9321	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9322			       NULL, sleep_ok);
9323}
9324
9325int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9326		    int rateunit, int ratemode, int channel, int cl,
9327		    int minrate, int maxrate, int weight, int pktsize,
9328		    int sleep_ok)
9329{
9330	struct fw_sched_cmd cmd;
9331
9332	memset(&cmd, 0, sizeof(cmd));
9333	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9334				      F_FW_CMD_REQUEST |
9335				      F_FW_CMD_WRITE);
9336	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9337
9338	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9339	cmd.u.params.type = type;
9340	cmd.u.params.level = level;
9341	cmd.u.params.mode = mode;
9342	cmd.u.params.ch = channel;
9343	cmd.u.params.cl = cl;
9344	cmd.u.params.unit = rateunit;
9345	cmd.u.params.rate = ratemode;
9346	cmd.u.params.min = cpu_to_be32(minrate);
9347	cmd.u.params.max = cpu_to_be32(maxrate);
9348	cmd.u.params.weight = cpu_to_be16(weight);
9349	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9350
9351	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9352			       NULL, sleep_ok);
9353}
9354
9355/*
9356 *	t4_config_watchdog - configure (enable/disable) a watchdog timer
9357 *	@adapter: the adapter
9358 * 	@mbox: mailbox to use for the FW command
9359 * 	@pf: the PF owning the queue
9360 * 	@vf: the VF owning the queue
9361 *	@timeout: watchdog timeout in ms
9362 *	@action: watchdog timer / action
9363 *
9364 *	There are separate watchdog timers for each possible watchdog
9365 *	action.  Configure one of the watchdog timers by setting a non-zero
9366 *	timeout.  Disable a watchdog timer by using a timeout of zero.
9367 */
9368int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9369		       unsigned int pf, unsigned int vf,
9370		       unsigned int timeout, unsigned int action)
9371{
9372	struct fw_watchdog_cmd wdog;
9373	unsigned int ticks;
9374
9375	/*
9376	 * The watchdog command expects a timeout in units of 10ms so we need
9377	 * to convert it here (via rounding) and force a minimum of one 10ms
9378	 * "tick" if the timeout is non-zero but the conversion results in 0
9379	 * ticks.
9380	 */
9381	ticks = (timeout + 5)/10;
9382	if (timeout && !ticks)
9383		ticks = 1;
9384
9385	memset(&wdog, 0, sizeof wdog);
9386	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9387				     F_FW_CMD_REQUEST |
9388				     F_FW_CMD_WRITE |
9389				     V_FW_PARAMS_CMD_PFN(pf) |
9390				     V_FW_PARAMS_CMD_VFN(vf));
9391	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9392	wdog.timeout = cpu_to_be32(ticks);
9393	wdog.action = cpu_to_be32(action);
9394
9395	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9396}
9397
9398int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9399{
9400	struct fw_devlog_cmd devlog_cmd;
9401	int ret;
9402
9403	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9404	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9405					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9406	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9407	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9408			 sizeof(devlog_cmd), &devlog_cmd);
9409	if (ret)
9410		return ret;
9411
9412	*level = devlog_cmd.level;
9413	return 0;
9414}
9415
9416int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9417{
9418	struct fw_devlog_cmd devlog_cmd;
9419
9420	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9421	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9422					     F_FW_CMD_REQUEST |
9423					     F_FW_CMD_WRITE);
9424	devlog_cmd.level = level;
9425	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9426	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9427			  sizeof(devlog_cmd), &devlog_cmd);
9428}
9429