t4_hw.c revision 309458
1238384Sjkim/*-
2280297Sjkim * Copyright (c) 2012, 2016 Chelsio Communications, Inc.
3280297Sjkim * All rights reserved.
4238384Sjkim *
5238384Sjkim * Redistribution and use in source and binary forms, with or without
6238384Sjkim * modification, are permitted provided that the following conditions
7238384Sjkim * are met:
8238384Sjkim * 1. Redistributions of source code must retain the above copyright
9238384Sjkim *    notice, this list of conditions and the following disclaimer.
10238384Sjkim * 2. Redistributions in binary form must reproduce the above copyright
11238384Sjkim *    notice, this list of conditions and the following disclaimer in the
12238384Sjkim *    documentation and/or other materials provided with the distribution.
13238384Sjkim *
14280297Sjkim * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15238384Sjkim * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16238384Sjkim * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17238384Sjkim * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18238384Sjkim * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19238384Sjkim * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20238384Sjkim * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21238384Sjkim * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22238384Sjkim * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23238384Sjkim * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24238384Sjkim * SUCH DAMAGE.
25238384Sjkim */
26238384Sjkim
27238384Sjkim#include <sys/cdefs.h>
28238384Sjkim__FBSDID("$FreeBSD: stable/11/sys/dev/cxgbe/common/t4_hw.c 309458 2016-12-03 01:04:59Z jhb $");
29238384Sjkim
30238384Sjkim#include "opt_inet.h"
31238384Sjkim
32238384Sjkim#include <sys/param.h>
33238384Sjkim#include <sys/eventhandler.h>
34238384Sjkim
35238384Sjkim#include "common.h"
36238384Sjkim#include "t4_regs.h"
37238384Sjkim#include "t4_regs_values.h"
38238384Sjkim#include "firmware/t4fw_interface.h"
39238384Sjkim
40238384Sjkim#undef msleep
41238384Sjkim#define msleep(x) do { \
42238384Sjkim	if (cold) \
43238384Sjkim		DELAY((x) * 1000); \
44238384Sjkim	else \
45238384Sjkim		pause("t4hw", (x) * hz / 1000); \
46238384Sjkim} while (0)
47238384Sjkim
48238384Sjkim/**
49238384Sjkim *	t4_wait_op_done_val - wait until an operation is completed
50238384Sjkim *	@adapter: the adapter performing the operation
51238384Sjkim *	@reg: the register to check for completion
52238384Sjkim *	@mask: a single-bit field within @reg that indicates completion
53238384Sjkim *	@polarity: the value of the field when the operation is completed
54238384Sjkim *	@attempts: number of check iterations
55238384Sjkim *	@delay: delay in usecs between iterations
56280297Sjkim *	@valp: where to store the value of the register at completion time
57238384Sjkim *
58238384Sjkim *	Wait until an operation is completed by checking a bit in a register
59238384Sjkim *	up to @attempts times.  If @valp is not NULL the value of the register
60238384Sjkim *	at the time it indicated completion is stored there.  Returns 0 if the
61238384Sjkim *	operation completes and	-EAGAIN	otherwise.
62280297Sjkim */
63238384Sjkimstatic int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
64238384Sjkim			       int polarity, int attempts, int delay, u32 *valp)
65238384Sjkim{
66238384Sjkim	while (1) {
67238384Sjkim		u32 val = t4_read_reg(adapter, reg);
68238384Sjkim
69238384Sjkim		if (!!(val & mask) == polarity) {
70238384Sjkim			if (valp)
71238384Sjkim				*valp = val;
72238384Sjkim			return 0;
73280297Sjkim		}
74280297Sjkim		if (--attempts == 0)
75238384Sjkim			return -EAGAIN;
76238384Sjkim		if (delay)
77238384Sjkim			udelay(delay);
78238384Sjkim	}
79238384Sjkim}
80238384Sjkim
81238384Sjkimstatic inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
82238384Sjkim				  int polarity, int attempts, int delay)
83{
84	return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
85				   delay, NULL);
86}
87
88/**
89 *	t4_set_reg_field - set a register field to a value
90 *	@adapter: the adapter to program
91 *	@addr: the register address
92 *	@mask: specifies the portion of the register to modify
93 *	@val: the new value for the register field
94 *
95 *	Sets a register field specified by the supplied mask to the
96 *	given value.
97 */
98void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
99		      u32 val)
100{
101	u32 v = t4_read_reg(adapter, addr) & ~mask;
102
103	t4_write_reg(adapter, addr, v | val);
104	(void) t4_read_reg(adapter, addr);      /* flush */
105}
106
107/**
108 *	t4_read_indirect - read indirectly addressed registers
109 *	@adap: the adapter
110 *	@addr_reg: register holding the indirect address
111 *	@data_reg: register holding the value of the indirect register
112 *	@vals: where the read register values are stored
113 *	@nregs: how many indirect registers to read
114 *	@start_idx: index of first indirect register to read
115 *
116 *	Reads registers that are accessed indirectly through an address/data
117 *	register pair.
118 */
119void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
120			     unsigned int data_reg, u32 *vals,
121			     unsigned int nregs, unsigned int start_idx)
122{
123	while (nregs--) {
124		t4_write_reg(adap, addr_reg, start_idx);
125		*vals++ = t4_read_reg(adap, data_reg);
126		start_idx++;
127	}
128}
129
130/**
131 *	t4_write_indirect - write indirectly addressed registers
132 *	@adap: the adapter
133 *	@addr_reg: register holding the indirect addresses
134 *	@data_reg: register holding the value for the indirect registers
135 *	@vals: values to write
136 *	@nregs: how many indirect registers to write
137 *	@start_idx: address of first indirect register to write
138 *
139 *	Writes a sequential block of registers that are accessed indirectly
140 *	through an address/data register pair.
141 */
142void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
143		       unsigned int data_reg, const u32 *vals,
144		       unsigned int nregs, unsigned int start_idx)
145{
146	while (nregs--) {
147		t4_write_reg(adap, addr_reg, start_idx++);
148		t4_write_reg(adap, data_reg, *vals++);
149	}
150}
151
152/*
153 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
154 * mechanism.  This guarantees that we get the real value even if we're
155 * operating within a Virtual Machine and the Hypervisor is trapping our
156 * Configuration Space accesses.
157 *
158 * N.B. This routine should only be used as a last resort: the firmware uses
159 *      the backdoor registers on a regular basis and we can end up
160 *      conflicting with it's uses!
161 */
162u32 t4_hw_pci_read_cfg4(adapter_t *adap, int reg)
163{
164	u32 req = V_FUNCTION(adap->pf) | V_REGISTER(reg);
165	u32 val;
166
167	if (chip_id(adap) <= CHELSIO_T5)
168		req |= F_ENABLE;
169	else
170		req |= F_T6_ENABLE;
171
172	if (is_t4(adap))
173		req |= F_LOCALCFG;
174
175	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, req);
176	val = t4_read_reg(adap, A_PCIE_CFG_SPACE_DATA);
177
178	/*
179	 * Reset F_ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
180	 * Configuration Space read.  (None of the other fields matter when
181	 * F_ENABLE is 0 so a simple register write is easier than a
182	 * read-modify-write via t4_set_reg_field().)
183	 */
184	t4_write_reg(adap, A_PCIE_CFG_SPACE_REQ, 0);
185
186	return val;
187}
188
189/*
190 * t4_report_fw_error - report firmware error
191 * @adap: the adapter
192 *
193 * The adapter firmware can indicate error conditions to the host.
194 * If the firmware has indicated an error, print out the reason for
195 * the firmware error.
196 */
197static void t4_report_fw_error(struct adapter *adap)
198{
199	static const char *const reason[] = {
200		"Crash",			/* PCIE_FW_EVAL_CRASH */
201		"During Device Preparation",	/* PCIE_FW_EVAL_PREP */
202		"During Device Configuration",	/* PCIE_FW_EVAL_CONF */
203		"During Device Initialization",	/* PCIE_FW_EVAL_INIT */
204		"Unexpected Event",		/* PCIE_FW_EVAL_UNEXPECTEDEVENT */
205		"Insufficient Airflow",		/* PCIE_FW_EVAL_OVERHEAT */
206		"Device Shutdown",		/* PCIE_FW_EVAL_DEVICESHUTDOWN */
207		"Reserved",			/* reserved */
208	};
209	u32 pcie_fw;
210
211	pcie_fw = t4_read_reg(adap, A_PCIE_FW);
212	if (pcie_fw & F_PCIE_FW_ERR)
213		CH_ERR(adap, "Firmware reports adapter error: %s\n",
214			reason[G_PCIE_FW_EVAL(pcie_fw)]);
215}
216
217/*
218 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
219 */
220static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
221			 u32 mbox_addr)
222{
223	for ( ; nflit; nflit--, mbox_addr += 8)
224		*rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
225}
226
227/*
228 * Handle a FW assertion reported in a mailbox.
229 */
230static void fw_asrt(struct adapter *adap, struct fw_debug_cmd *asrt)
231{
232	CH_ALERT(adap,
233		  "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
234		  asrt->u.assert.filename_0_7,
235		  be32_to_cpu(asrt->u.assert.line),
236		  be32_to_cpu(asrt->u.assert.x),
237		  be32_to_cpu(asrt->u.assert.y));
238}
239
240#define X_CIM_PF_NOACCESS 0xeeeeeeee
241/**
242 *	t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
243 *	@adap: the adapter
244 *	@mbox: index of the mailbox to use
245 *	@cmd: the command to write
246 *	@size: command length in bytes
247 *	@rpl: where to optionally store the reply
248 *	@sleep_ok: if true we may sleep while awaiting command completion
249 *	@timeout: time to wait for command to finish before timing out
250 *		(negative implies @sleep_ok=false)
251 *
252 *	Sends the given command to FW through the selected mailbox and waits
253 *	for the FW to execute the command.  If @rpl is not %NULL it is used to
254 *	store the FW's reply to the command.  The command and its optional
255 *	reply are of the same length.  Some FW commands like RESET and
256 *	INITIALIZE can take a considerable amount of time to execute.
257 *	@sleep_ok determines whether we may sleep while awaiting the response.
258 *	If sleeping is allowed we use progressive backoff otherwise we spin.
259 *	Note that passing in a negative @timeout is an alternate mechanism
260 *	for specifying @sleep_ok=false.  This is useful when a higher level
261 *	interface allows for specification of @timeout but not @sleep_ok ...
262 *
263 *	The return value is 0 on success or a negative errno on failure.  A
264 *	failure can happen either because we are not able to execute the
265 *	command or FW executes it but signals an error.  In the latter case
266 *	the return value is the error code indicated by FW (negated).
267 */
268int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
269			    int size, void *rpl, bool sleep_ok, int timeout)
270{
271	/*
272	 * We delay in small increments at first in an effort to maintain
273	 * responsiveness for simple, fast executing commands but then back
274	 * off to larger delays to a maximum retry delay.
275	 */
276	static const int delay[] = {
277		1, 1, 3, 5, 10, 10, 20, 50, 100
278	};
279	u32 v;
280	u64 res;
281	int i, ms, delay_idx, ret;
282	const __be64 *p = cmd;
283	u32 data_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_DATA);
284	u32 ctl_reg = PF_REG(mbox, A_CIM_PF_MAILBOX_CTRL);
285	u32 ctl;
286	__be64 cmd_rpl[MBOX_LEN/8];
287	u32 pcie_fw;
288
289	if ((size & 15) || size > MBOX_LEN)
290		return -EINVAL;
291
292	if (adap->flags & IS_VF) {
293		if (is_t6(adap))
294			data_reg = FW_T6VF_MBDATA_BASE_ADDR;
295		else
296			data_reg = FW_T4VF_MBDATA_BASE_ADDR;
297		ctl_reg = VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL);
298	}
299
300	/*
301	 * If we have a negative timeout, that implies that we can't sleep.
302	 */
303	if (timeout < 0) {
304		sleep_ok = false;
305		timeout = -timeout;
306	}
307
308	/*
309	 * Attempt to gain access to the mailbox.
310	 */
311	for (i = 0; i < 4; i++) {
312		ctl = t4_read_reg(adap, ctl_reg);
313		v = G_MBOWNER(ctl);
314		if (v != X_MBOWNER_NONE)
315			break;
316	}
317
318	/*
319	 * If we were unable to gain access, dequeue ourselves from the
320	 * mailbox atomic access list and report the error to our caller.
321	 */
322	if (v != X_MBOWNER_PL) {
323		t4_report_fw_error(adap);
324		ret = (v == X_MBOWNER_FW) ? -EBUSY : -ETIMEDOUT;
325		return ret;
326	}
327
328	/*
329	 * If we gain ownership of the mailbox and there's a "valid" message
330	 * in it, this is likely an asynchronous error message from the
331	 * firmware.  So we'll report that and then proceed on with attempting
332	 * to issue our own command ... which may well fail if the error
333	 * presaged the firmware crashing ...
334	 */
335	if (ctl & F_MBMSGVALID) {
336		CH_ERR(adap, "found VALID command in mbox %u: "
337		       "%llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
338		       (unsigned long long)t4_read_reg64(adap, data_reg),
339		       (unsigned long long)t4_read_reg64(adap, data_reg + 8),
340		       (unsigned long long)t4_read_reg64(adap, data_reg + 16),
341		       (unsigned long long)t4_read_reg64(adap, data_reg + 24),
342		       (unsigned long long)t4_read_reg64(adap, data_reg + 32),
343		       (unsigned long long)t4_read_reg64(adap, data_reg + 40),
344		       (unsigned long long)t4_read_reg64(adap, data_reg + 48),
345		       (unsigned long long)t4_read_reg64(adap, data_reg + 56));
346	}
347
348	/*
349	 * Copy in the new mailbox command and send it on its way ...
350	 */
351	for (i = 0; i < size; i += 8, p++)
352		t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p));
353
354	if (adap->flags & IS_VF) {
355		/*
356		 * For the VFs, the Mailbox Data "registers" are
357		 * actually backed by T4's "MA" interface rather than
358		 * PL Registers (as is the case for the PFs).  Because
359		 * these are in different coherency domains, the write
360		 * to the VF's PL-register-backed Mailbox Control can
361		 * race in front of the writes to the MA-backed VF
362		 * Mailbox Data "registers".  So we need to do a
363		 * read-back on at least one byte of the VF Mailbox
364		 * Data registers before doing the write to the VF
365		 * Mailbox Control register.
366		 */
367		t4_read_reg(adap, data_reg);
368	}
369
370	CH_DUMP_MBOX(adap, mbox, data_reg);
371
372	t4_write_reg(adap, ctl_reg, F_MBMSGVALID | V_MBOWNER(X_MBOWNER_FW));
373	t4_read_reg(adap, ctl_reg);	/* flush write */
374
375	delay_idx = 0;
376	ms = delay[0];
377
378	/*
379	 * Loop waiting for the reply; bail out if we time out or the firmware
380	 * reports an error.
381	 */
382	pcie_fw = 0;
383	for (i = 0; i < timeout; i += ms) {
384		if (!(adap->flags & IS_VF)) {
385			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
386			if (pcie_fw & F_PCIE_FW_ERR)
387				break;
388		}
389		if (sleep_ok) {
390			ms = delay[delay_idx];  /* last element may repeat */
391			if (delay_idx < ARRAY_SIZE(delay) - 1)
392				delay_idx++;
393			msleep(ms);
394		} else {
395			mdelay(ms);
396		}
397
398		v = t4_read_reg(adap, ctl_reg);
399		if (v == X_CIM_PF_NOACCESS)
400			continue;
401		if (G_MBOWNER(v) == X_MBOWNER_PL) {
402			if (!(v & F_MBMSGVALID)) {
403				t4_write_reg(adap, ctl_reg,
404					     V_MBOWNER(X_MBOWNER_NONE));
405				continue;
406			}
407
408			/*
409			 * Retrieve the command reply and release the mailbox.
410			 */
411			get_mbox_rpl(adap, cmd_rpl, MBOX_LEN/8, data_reg);
412			t4_write_reg(adap, ctl_reg, V_MBOWNER(X_MBOWNER_NONE));
413
414			CH_DUMP_MBOX(adap, mbox, data_reg);
415
416			res = be64_to_cpu(cmd_rpl[0]);
417			if (G_FW_CMD_OP(res >> 32) == FW_DEBUG_CMD) {
418				fw_asrt(adap, (struct fw_debug_cmd *)cmd_rpl);
419				res = V_FW_CMD_RETVAL(EIO);
420			} else if (rpl)
421				memcpy(rpl, cmd_rpl, size);
422			return -G_FW_CMD_RETVAL((int)res);
423		}
424	}
425
426	/*
427	 * We timed out waiting for a reply to our mailbox command.  Report
428	 * the error and also check to see if the firmware reported any
429	 * errors ...
430	 */
431	ret = (pcie_fw & F_PCIE_FW_ERR) ? -ENXIO : -ETIMEDOUT;
432	CH_ERR(adap, "command %#x in mailbox %d timed out\n",
433	       *(const u8 *)cmd, mbox);
434
435	t4_report_fw_error(adap);
436	t4_fatal_err(adap);
437	return ret;
438}
439
440int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
441		    void *rpl, bool sleep_ok)
442{
443		return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl,
444					       sleep_ok, FW_CMD_MAX_TIMEOUT);
445
446}
447
448static int t4_edc_err_read(struct adapter *adap, int idx)
449{
450	u32 edc_ecc_err_addr_reg;
451	u32 edc_bist_status_rdata_reg;
452
453	if (is_t4(adap)) {
454		CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
455		return 0;
456	}
457	if (idx != 0 && idx != 1) {
458		CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
459		return 0;
460	}
461
462	edc_ecc_err_addr_reg = EDC_T5_REG(A_EDC_H_ECC_ERR_ADDR, idx);
463	edc_bist_status_rdata_reg = EDC_T5_REG(A_EDC_H_BIST_STATUS_RDATA, idx);
464
465	CH_WARN(adap,
466		"edc%d err addr 0x%x: 0x%x.\n",
467		idx, edc_ecc_err_addr_reg,
468		t4_read_reg(adap, edc_ecc_err_addr_reg));
469	CH_WARN(adap,
470	 	"bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
471		edc_bist_status_rdata_reg,
472		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg),
473		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 8),
474		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 16),
475		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 24),
476		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 32),
477		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 40),
478		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 48),
479		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 56),
480		(unsigned long long)t4_read_reg64(adap, edc_bist_status_rdata_reg + 64));
481
482	return 0;
483}
484
485/**
486 *	t4_mc_read - read from MC through backdoor accesses
487 *	@adap: the adapter
488 *	@idx: which MC to access
489 *	@addr: address of first byte requested
490 *	@data: 64 bytes of data containing the requested address
491 *	@ecc: where to store the corresponding 64-bit ECC word
492 *
493 *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
494 *	that covers the requested address @addr.  If @parity is not %NULL it
495 *	is assigned the 64-bit ECC word for the read data.
496 */
497int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
498{
499	int i;
500	u32 mc_bist_cmd_reg, mc_bist_cmd_addr_reg, mc_bist_cmd_len_reg;
501	u32 mc_bist_status_rdata_reg, mc_bist_data_pattern_reg;
502
503	if (is_t4(adap)) {
504		mc_bist_cmd_reg = A_MC_BIST_CMD;
505		mc_bist_cmd_addr_reg = A_MC_BIST_CMD_ADDR;
506		mc_bist_cmd_len_reg = A_MC_BIST_CMD_LEN;
507		mc_bist_status_rdata_reg = A_MC_BIST_STATUS_RDATA;
508		mc_bist_data_pattern_reg = A_MC_BIST_DATA_PATTERN;
509	} else {
510		mc_bist_cmd_reg = MC_REG(A_MC_P_BIST_CMD, idx);
511		mc_bist_cmd_addr_reg = MC_REG(A_MC_P_BIST_CMD_ADDR, idx);
512		mc_bist_cmd_len_reg = MC_REG(A_MC_P_BIST_CMD_LEN, idx);
513		mc_bist_status_rdata_reg = MC_REG(A_MC_P_BIST_STATUS_RDATA,
514						  idx);
515		mc_bist_data_pattern_reg = MC_REG(A_MC_P_BIST_DATA_PATTERN,
516						  idx);
517	}
518
519	if (t4_read_reg(adap, mc_bist_cmd_reg) & F_START_BIST)
520		return -EBUSY;
521	t4_write_reg(adap, mc_bist_cmd_addr_reg, addr & ~0x3fU);
522	t4_write_reg(adap, mc_bist_cmd_len_reg, 64);
523	t4_write_reg(adap, mc_bist_data_pattern_reg, 0xc);
524	t4_write_reg(adap, mc_bist_cmd_reg, V_BIST_OPCODE(1) |
525		     F_START_BIST | V_BIST_CMD_GAP(1));
526	i = t4_wait_op_done(adap, mc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
527	if (i)
528		return i;
529
530#define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata_reg, i)
531
532	for (i = 15; i >= 0; i--)
533		*data++ = ntohl(t4_read_reg(adap, MC_DATA(i)));
534	if (ecc)
535		*ecc = t4_read_reg64(adap, MC_DATA(16));
536#undef MC_DATA
537	return 0;
538}
539
540/**
541 *	t4_edc_read - read from EDC through backdoor accesses
542 *	@adap: the adapter
543 *	@idx: which EDC to access
544 *	@addr: address of first byte requested
545 *	@data: 64 bytes of data containing the requested address
546 *	@ecc: where to store the corresponding 64-bit ECC word
547 *
548 *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
549 *	that covers the requested address @addr.  If @parity is not %NULL it
550 *	is assigned the 64-bit ECC word for the read data.
551 */
552int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc)
553{
554	int i;
555	u32 edc_bist_cmd_reg, edc_bist_cmd_addr_reg, edc_bist_cmd_len_reg;
556	u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata_reg;
557
558	if (is_t4(adap)) {
559		edc_bist_cmd_reg = EDC_REG(A_EDC_BIST_CMD, idx);
560		edc_bist_cmd_addr_reg = EDC_REG(A_EDC_BIST_CMD_ADDR, idx);
561		edc_bist_cmd_len_reg = EDC_REG(A_EDC_BIST_CMD_LEN, idx);
562		edc_bist_cmd_data_pattern = EDC_REG(A_EDC_BIST_DATA_PATTERN,
563						    idx);
564		edc_bist_status_rdata_reg = EDC_REG(A_EDC_BIST_STATUS_RDATA,
565						    idx);
566	} else {
567/*
568 * These macro are missing in t4_regs.h file.
569 * Added temporarily for testing.
570 */
571#define EDC_STRIDE_T5 (EDC_T51_BASE_ADDR - EDC_T50_BASE_ADDR)
572#define EDC_REG_T5(reg, idx) (reg + EDC_STRIDE_T5 * idx)
573		edc_bist_cmd_reg = EDC_REG_T5(A_EDC_H_BIST_CMD, idx);
574		edc_bist_cmd_addr_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_ADDR, idx);
575		edc_bist_cmd_len_reg = EDC_REG_T5(A_EDC_H_BIST_CMD_LEN, idx);
576		edc_bist_cmd_data_pattern = EDC_REG_T5(A_EDC_H_BIST_DATA_PATTERN,
577						    idx);
578		edc_bist_status_rdata_reg = EDC_REG_T5(A_EDC_H_BIST_STATUS_RDATA,
579						    idx);
580#undef EDC_REG_T5
581#undef EDC_STRIDE_T5
582	}
583
584	if (t4_read_reg(adap, edc_bist_cmd_reg) & F_START_BIST)
585		return -EBUSY;
586	t4_write_reg(adap, edc_bist_cmd_addr_reg, addr & ~0x3fU);
587	t4_write_reg(adap, edc_bist_cmd_len_reg, 64);
588	t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc);
589	t4_write_reg(adap, edc_bist_cmd_reg,
590		     V_BIST_OPCODE(1) | V_BIST_CMD_GAP(1) | F_START_BIST);
591	i = t4_wait_op_done(adap, edc_bist_cmd_reg, F_START_BIST, 0, 10, 1);
592	if (i)
593		return i;
594
595#define EDC_DATA(i) EDC_BIST_STATUS_REG(edc_bist_status_rdata_reg, i)
596
597	for (i = 15; i >= 0; i--)
598		*data++ = ntohl(t4_read_reg(adap, EDC_DATA(i)));
599	if (ecc)
600		*ecc = t4_read_reg64(adap, EDC_DATA(16));
601#undef EDC_DATA
602	return 0;
603}
604
605/**
606 *	t4_mem_read - read EDC 0, EDC 1 or MC into buffer
607 *	@adap: the adapter
608 *	@mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
609 *	@addr: address within indicated memory type
610 *	@len: amount of memory to read
611 *	@buf: host memory buffer
612 *
613 *	Reads an [almost] arbitrary memory region in the firmware: the
614 *	firmware memory address, length and host buffer must be aligned on
615 *	32-bit boudaries.  The memory is returned as a raw byte sequence from
616 *	the firmware's memory.  If this memory contains data structures which
617 *	contain multi-byte integers, it's the callers responsibility to
618 *	perform appropriate byte order conversions.
619 */
620int t4_mem_read(struct adapter *adap, int mtype, u32 addr, u32 len,
621		__be32 *buf)
622{
623	u32 pos, start, end, offset;
624	int ret;
625
626	/*
627	 * Argument sanity checks ...
628	 */
629	if ((addr & 0x3) || (len & 0x3))
630		return -EINVAL;
631
632	/*
633	 * The underlaying EDC/MC read routines read 64 bytes at a time so we
634	 * need to round down the start and round up the end.  We'll start
635	 * copying out of the first line at (addr - start) a word at a time.
636	 */
637	start = rounddown2(addr, 64);
638	end = roundup2(addr + len, 64);
639	offset = (addr - start)/sizeof(__be32);
640
641	for (pos = start; pos < end; pos += 64, offset = 0) {
642		__be32 data[16];
643
644		/*
645		 * Read the chip's memory block and bail if there's an error.
646		 */
647		if ((mtype == MEM_MC) || (mtype == MEM_MC1))
648			ret = t4_mc_read(adap, mtype - MEM_MC, pos, data, NULL);
649		else
650			ret = t4_edc_read(adap, mtype, pos, data, NULL);
651		if (ret)
652			return ret;
653
654		/*
655		 * Copy the data into the caller's memory buffer.
656		 */
657		while (offset < 16 && len > 0) {
658			*buf++ = data[offset++];
659			len -= sizeof(__be32);
660		}
661	}
662
663	return 0;
664}
665
666/*
667 * Return the specified PCI-E Configuration Space register from our Physical
668 * Function.  We try first via a Firmware LDST Command (if fw_attach != 0)
669 * since we prefer to let the firmware own all of these registers, but if that
670 * fails we go for it directly ourselves.
671 */
672u32 t4_read_pcie_cfg4(struct adapter *adap, int reg, int drv_fw_attach)
673{
674
675	/*
676	 * If fw_attach != 0, construct and send the Firmware LDST Command to
677	 * retrieve the specified PCI-E Configuration Space register.
678	 */
679	if (drv_fw_attach != 0) {
680		struct fw_ldst_cmd ldst_cmd;
681		int ret;
682
683		memset(&ldst_cmd, 0, sizeof(ldst_cmd));
684		ldst_cmd.op_to_addrspace =
685			cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
686				    F_FW_CMD_REQUEST |
687				    F_FW_CMD_READ |
688				    V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FUNC_PCIE));
689		ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
690		ldst_cmd.u.pcie.select_naccess = V_FW_LDST_CMD_NACCESS(1);
691		ldst_cmd.u.pcie.ctrl_to_fn =
692			(F_FW_LDST_CMD_LC | V_FW_LDST_CMD_FN(adap->pf));
693		ldst_cmd.u.pcie.r = reg;
694
695		/*
696		 * If the LDST Command succeeds, return the result, otherwise
697		 * fall through to reading it directly ourselves ...
698		 */
699		ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
700				 &ldst_cmd);
701		if (ret == 0)
702			return be32_to_cpu(ldst_cmd.u.pcie.data[0]);
703
704		CH_WARN(adap, "Firmware failed to return "
705			"Configuration Space register %d, err = %d\n",
706			reg, -ret);
707	}
708
709	/*
710	 * Read the desired Configuration Space register via the PCI-E
711	 * Backdoor mechanism.
712	 */
713	return t4_hw_pci_read_cfg4(adap, reg);
714}
715
716/**
717 *	t4_get_regs_len - return the size of the chips register set
718 *	@adapter: the adapter
719 *
720 *	Returns the size of the chip's BAR0 register space.
721 */
722unsigned int t4_get_regs_len(struct adapter *adapter)
723{
724	unsigned int chip_version = chip_id(adapter);
725
726	switch (chip_version) {
727	case CHELSIO_T4:
728		if (adapter->flags & IS_VF)
729			return FW_T4VF_REGMAP_SIZE;
730		return T4_REGMAP_SIZE;
731
732	case CHELSIO_T5:
733	case CHELSIO_T6:
734		if (adapter->flags & IS_VF)
735			return FW_T4VF_REGMAP_SIZE;
736		return T5_REGMAP_SIZE;
737	}
738
739	CH_ERR(adapter,
740		"Unsupported chip version %d\n", chip_version);
741	return 0;
742}
743
744/**
745 *	t4_get_regs - read chip registers into provided buffer
746 *	@adap: the adapter
747 *	@buf: register buffer
748 *	@buf_size: size (in bytes) of register buffer
749 *
750 *	If the provided register buffer isn't large enough for the chip's
751 *	full register range, the register dump will be truncated to the
752 *	register buffer's size.
753 */
754void t4_get_regs(struct adapter *adap, u8 *buf, size_t buf_size)
755{
756	static const unsigned int t4_reg_ranges[] = {
757		0x1008, 0x1108,
758		0x1180, 0x1184,
759		0x1190, 0x1194,
760		0x11a0, 0x11a4,
761		0x11b0, 0x11b4,
762		0x11fc, 0x123c,
763		0x1300, 0x173c,
764		0x1800, 0x18fc,
765		0x3000, 0x30d8,
766		0x30e0, 0x30e4,
767		0x30ec, 0x5910,
768		0x5920, 0x5924,
769		0x5960, 0x5960,
770		0x5968, 0x5968,
771		0x5970, 0x5970,
772		0x5978, 0x5978,
773		0x5980, 0x5980,
774		0x5988, 0x5988,
775		0x5990, 0x5990,
776		0x5998, 0x5998,
777		0x59a0, 0x59d4,
778		0x5a00, 0x5ae0,
779		0x5ae8, 0x5ae8,
780		0x5af0, 0x5af0,
781		0x5af8, 0x5af8,
782		0x6000, 0x6098,
783		0x6100, 0x6150,
784		0x6200, 0x6208,
785		0x6240, 0x6248,
786		0x6280, 0x62b0,
787		0x62c0, 0x6338,
788		0x6370, 0x638c,
789		0x6400, 0x643c,
790		0x6500, 0x6524,
791		0x6a00, 0x6a04,
792		0x6a14, 0x6a38,
793		0x6a60, 0x6a70,
794		0x6a78, 0x6a78,
795		0x6b00, 0x6b0c,
796		0x6b1c, 0x6b84,
797		0x6bf0, 0x6bf8,
798		0x6c00, 0x6c0c,
799		0x6c1c, 0x6c84,
800		0x6cf0, 0x6cf8,
801		0x6d00, 0x6d0c,
802		0x6d1c, 0x6d84,
803		0x6df0, 0x6df8,
804		0x6e00, 0x6e0c,
805		0x6e1c, 0x6e84,
806		0x6ef0, 0x6ef8,
807		0x6f00, 0x6f0c,
808		0x6f1c, 0x6f84,
809		0x6ff0, 0x6ff8,
810		0x7000, 0x700c,
811		0x701c, 0x7084,
812		0x70f0, 0x70f8,
813		0x7100, 0x710c,
814		0x711c, 0x7184,
815		0x71f0, 0x71f8,
816		0x7200, 0x720c,
817		0x721c, 0x7284,
818		0x72f0, 0x72f8,
819		0x7300, 0x730c,
820		0x731c, 0x7384,
821		0x73f0, 0x73f8,
822		0x7400, 0x7450,
823		0x7500, 0x7530,
824		0x7600, 0x760c,
825		0x7614, 0x761c,
826		0x7680, 0x76cc,
827		0x7700, 0x7798,
828		0x77c0, 0x77fc,
829		0x7900, 0x79fc,
830		0x7b00, 0x7b58,
831		0x7b60, 0x7b84,
832		0x7b8c, 0x7c38,
833		0x7d00, 0x7d38,
834		0x7d40, 0x7d80,
835		0x7d8c, 0x7ddc,
836		0x7de4, 0x7e04,
837		0x7e10, 0x7e1c,
838		0x7e24, 0x7e38,
839		0x7e40, 0x7e44,
840		0x7e4c, 0x7e78,
841		0x7e80, 0x7ea4,
842		0x7eac, 0x7edc,
843		0x7ee8, 0x7efc,
844		0x8dc0, 0x8e04,
845		0x8e10, 0x8e1c,
846		0x8e30, 0x8e78,
847		0x8ea0, 0x8eb8,
848		0x8ec0, 0x8f6c,
849		0x8fc0, 0x9008,
850		0x9010, 0x9058,
851		0x9060, 0x9060,
852		0x9068, 0x9074,
853		0x90fc, 0x90fc,
854		0x9400, 0x9408,
855		0x9410, 0x9458,
856		0x9600, 0x9600,
857		0x9608, 0x9638,
858		0x9640, 0x96bc,
859		0x9800, 0x9808,
860		0x9820, 0x983c,
861		0x9850, 0x9864,
862		0x9c00, 0x9c6c,
863		0x9c80, 0x9cec,
864		0x9d00, 0x9d6c,
865		0x9d80, 0x9dec,
866		0x9e00, 0x9e6c,
867		0x9e80, 0x9eec,
868		0x9f00, 0x9f6c,
869		0x9f80, 0x9fec,
870		0xd004, 0xd004,
871		0xd010, 0xd03c,
872		0xdfc0, 0xdfe0,
873		0xe000, 0xea7c,
874		0xf000, 0x11190,
875		0x19040, 0x1906c,
876		0x19078, 0x19080,
877		0x1908c, 0x190e4,
878		0x190f0, 0x190f8,
879		0x19100, 0x19110,
880		0x19120, 0x19124,
881		0x19150, 0x19194,
882		0x1919c, 0x191b0,
883		0x191d0, 0x191e8,
884		0x19238, 0x1924c,
885		0x193f8, 0x1943c,
886		0x1944c, 0x19474,
887		0x19490, 0x194e0,
888		0x194f0, 0x194f8,
889		0x19800, 0x19c08,
890		0x19c10, 0x19c90,
891		0x19ca0, 0x19ce4,
892		0x19cf0, 0x19d40,
893		0x19d50, 0x19d94,
894		0x19da0, 0x19de8,
895		0x19df0, 0x19e40,
896		0x19e50, 0x19e90,
897		0x19ea0, 0x19f4c,
898		0x1a000, 0x1a004,
899		0x1a010, 0x1a06c,
900		0x1a0b0, 0x1a0e4,
901		0x1a0ec, 0x1a0f4,
902		0x1a100, 0x1a108,
903		0x1a114, 0x1a120,
904		0x1a128, 0x1a130,
905		0x1a138, 0x1a138,
906		0x1a190, 0x1a1c4,
907		0x1a1fc, 0x1a1fc,
908		0x1e040, 0x1e04c,
909		0x1e284, 0x1e28c,
910		0x1e2c0, 0x1e2c0,
911		0x1e2e0, 0x1e2e0,
912		0x1e300, 0x1e384,
913		0x1e3c0, 0x1e3c8,
914		0x1e440, 0x1e44c,
915		0x1e684, 0x1e68c,
916		0x1e6c0, 0x1e6c0,
917		0x1e6e0, 0x1e6e0,
918		0x1e700, 0x1e784,
919		0x1e7c0, 0x1e7c8,
920		0x1e840, 0x1e84c,
921		0x1ea84, 0x1ea8c,
922		0x1eac0, 0x1eac0,
923		0x1eae0, 0x1eae0,
924		0x1eb00, 0x1eb84,
925		0x1ebc0, 0x1ebc8,
926		0x1ec40, 0x1ec4c,
927		0x1ee84, 0x1ee8c,
928		0x1eec0, 0x1eec0,
929		0x1eee0, 0x1eee0,
930		0x1ef00, 0x1ef84,
931		0x1efc0, 0x1efc8,
932		0x1f040, 0x1f04c,
933		0x1f284, 0x1f28c,
934		0x1f2c0, 0x1f2c0,
935		0x1f2e0, 0x1f2e0,
936		0x1f300, 0x1f384,
937		0x1f3c0, 0x1f3c8,
938		0x1f440, 0x1f44c,
939		0x1f684, 0x1f68c,
940		0x1f6c0, 0x1f6c0,
941		0x1f6e0, 0x1f6e0,
942		0x1f700, 0x1f784,
943		0x1f7c0, 0x1f7c8,
944		0x1f840, 0x1f84c,
945		0x1fa84, 0x1fa8c,
946		0x1fac0, 0x1fac0,
947		0x1fae0, 0x1fae0,
948		0x1fb00, 0x1fb84,
949		0x1fbc0, 0x1fbc8,
950		0x1fc40, 0x1fc4c,
951		0x1fe84, 0x1fe8c,
952		0x1fec0, 0x1fec0,
953		0x1fee0, 0x1fee0,
954		0x1ff00, 0x1ff84,
955		0x1ffc0, 0x1ffc8,
956		0x20000, 0x2002c,
957		0x20100, 0x2013c,
958		0x20190, 0x201a0,
959		0x201a8, 0x201b8,
960		0x201c4, 0x201c8,
961		0x20200, 0x20318,
962		0x20400, 0x204b4,
963		0x204c0, 0x20528,
964		0x20540, 0x20614,
965		0x21000, 0x21040,
966		0x2104c, 0x21060,
967		0x210c0, 0x210ec,
968		0x21200, 0x21268,
969		0x21270, 0x21284,
970		0x212fc, 0x21388,
971		0x21400, 0x21404,
972		0x21500, 0x21500,
973		0x21510, 0x21518,
974		0x2152c, 0x21530,
975		0x2153c, 0x2153c,
976		0x21550, 0x21554,
977		0x21600, 0x21600,
978		0x21608, 0x2161c,
979		0x21624, 0x21628,
980		0x21630, 0x21634,
981		0x2163c, 0x2163c,
982		0x21700, 0x2171c,
983		0x21780, 0x2178c,
984		0x21800, 0x21818,
985		0x21820, 0x21828,
986		0x21830, 0x21848,
987		0x21850, 0x21854,
988		0x21860, 0x21868,
989		0x21870, 0x21870,
990		0x21878, 0x21898,
991		0x218a0, 0x218a8,
992		0x218b0, 0x218c8,
993		0x218d0, 0x218d4,
994		0x218e0, 0x218e8,
995		0x218f0, 0x218f0,
996		0x218f8, 0x21a18,
997		0x21a20, 0x21a28,
998		0x21a30, 0x21a48,
999		0x21a50, 0x21a54,
1000		0x21a60, 0x21a68,
1001		0x21a70, 0x21a70,
1002		0x21a78, 0x21a98,
1003		0x21aa0, 0x21aa8,
1004		0x21ab0, 0x21ac8,
1005		0x21ad0, 0x21ad4,
1006		0x21ae0, 0x21ae8,
1007		0x21af0, 0x21af0,
1008		0x21af8, 0x21c18,
1009		0x21c20, 0x21c20,
1010		0x21c28, 0x21c30,
1011		0x21c38, 0x21c38,
1012		0x21c80, 0x21c98,
1013		0x21ca0, 0x21ca8,
1014		0x21cb0, 0x21cc8,
1015		0x21cd0, 0x21cd4,
1016		0x21ce0, 0x21ce8,
1017		0x21cf0, 0x21cf0,
1018		0x21cf8, 0x21d7c,
1019		0x21e00, 0x21e04,
1020		0x22000, 0x2202c,
1021		0x22100, 0x2213c,
1022		0x22190, 0x221a0,
1023		0x221a8, 0x221b8,
1024		0x221c4, 0x221c8,
1025		0x22200, 0x22318,
1026		0x22400, 0x224b4,
1027		0x224c0, 0x22528,
1028		0x22540, 0x22614,
1029		0x23000, 0x23040,
1030		0x2304c, 0x23060,
1031		0x230c0, 0x230ec,
1032		0x23200, 0x23268,
1033		0x23270, 0x23284,
1034		0x232fc, 0x23388,
1035		0x23400, 0x23404,
1036		0x23500, 0x23500,
1037		0x23510, 0x23518,
1038		0x2352c, 0x23530,
1039		0x2353c, 0x2353c,
1040		0x23550, 0x23554,
1041		0x23600, 0x23600,
1042		0x23608, 0x2361c,
1043		0x23624, 0x23628,
1044		0x23630, 0x23634,
1045		0x2363c, 0x2363c,
1046		0x23700, 0x2371c,
1047		0x23780, 0x2378c,
1048		0x23800, 0x23818,
1049		0x23820, 0x23828,
1050		0x23830, 0x23848,
1051		0x23850, 0x23854,
1052		0x23860, 0x23868,
1053		0x23870, 0x23870,
1054		0x23878, 0x23898,
1055		0x238a0, 0x238a8,
1056		0x238b0, 0x238c8,
1057		0x238d0, 0x238d4,
1058		0x238e0, 0x238e8,
1059		0x238f0, 0x238f0,
1060		0x238f8, 0x23a18,
1061		0x23a20, 0x23a28,
1062		0x23a30, 0x23a48,
1063		0x23a50, 0x23a54,
1064		0x23a60, 0x23a68,
1065		0x23a70, 0x23a70,
1066		0x23a78, 0x23a98,
1067		0x23aa0, 0x23aa8,
1068		0x23ab0, 0x23ac8,
1069		0x23ad0, 0x23ad4,
1070		0x23ae0, 0x23ae8,
1071		0x23af0, 0x23af0,
1072		0x23af8, 0x23c18,
1073		0x23c20, 0x23c20,
1074		0x23c28, 0x23c30,
1075		0x23c38, 0x23c38,
1076		0x23c80, 0x23c98,
1077		0x23ca0, 0x23ca8,
1078		0x23cb0, 0x23cc8,
1079		0x23cd0, 0x23cd4,
1080		0x23ce0, 0x23ce8,
1081		0x23cf0, 0x23cf0,
1082		0x23cf8, 0x23d7c,
1083		0x23e00, 0x23e04,
1084		0x24000, 0x2402c,
1085		0x24100, 0x2413c,
1086		0x24190, 0x241a0,
1087		0x241a8, 0x241b8,
1088		0x241c4, 0x241c8,
1089		0x24200, 0x24318,
1090		0x24400, 0x244b4,
1091		0x244c0, 0x24528,
1092		0x24540, 0x24614,
1093		0x25000, 0x25040,
1094		0x2504c, 0x25060,
1095		0x250c0, 0x250ec,
1096		0x25200, 0x25268,
1097		0x25270, 0x25284,
1098		0x252fc, 0x25388,
1099		0x25400, 0x25404,
1100		0x25500, 0x25500,
1101		0x25510, 0x25518,
1102		0x2552c, 0x25530,
1103		0x2553c, 0x2553c,
1104		0x25550, 0x25554,
1105		0x25600, 0x25600,
1106		0x25608, 0x2561c,
1107		0x25624, 0x25628,
1108		0x25630, 0x25634,
1109		0x2563c, 0x2563c,
1110		0x25700, 0x2571c,
1111		0x25780, 0x2578c,
1112		0x25800, 0x25818,
1113		0x25820, 0x25828,
1114		0x25830, 0x25848,
1115		0x25850, 0x25854,
1116		0x25860, 0x25868,
1117		0x25870, 0x25870,
1118		0x25878, 0x25898,
1119		0x258a0, 0x258a8,
1120		0x258b0, 0x258c8,
1121		0x258d0, 0x258d4,
1122		0x258e0, 0x258e8,
1123		0x258f0, 0x258f0,
1124		0x258f8, 0x25a18,
1125		0x25a20, 0x25a28,
1126		0x25a30, 0x25a48,
1127		0x25a50, 0x25a54,
1128		0x25a60, 0x25a68,
1129		0x25a70, 0x25a70,
1130		0x25a78, 0x25a98,
1131		0x25aa0, 0x25aa8,
1132		0x25ab0, 0x25ac8,
1133		0x25ad0, 0x25ad4,
1134		0x25ae0, 0x25ae8,
1135		0x25af0, 0x25af0,
1136		0x25af8, 0x25c18,
1137		0x25c20, 0x25c20,
1138		0x25c28, 0x25c30,
1139		0x25c38, 0x25c38,
1140		0x25c80, 0x25c98,
1141		0x25ca0, 0x25ca8,
1142		0x25cb0, 0x25cc8,
1143		0x25cd0, 0x25cd4,
1144		0x25ce0, 0x25ce8,
1145		0x25cf0, 0x25cf0,
1146		0x25cf8, 0x25d7c,
1147		0x25e00, 0x25e04,
1148		0x26000, 0x2602c,
1149		0x26100, 0x2613c,
1150		0x26190, 0x261a0,
1151		0x261a8, 0x261b8,
1152		0x261c4, 0x261c8,
1153		0x26200, 0x26318,
1154		0x26400, 0x264b4,
1155		0x264c0, 0x26528,
1156		0x26540, 0x26614,
1157		0x27000, 0x27040,
1158		0x2704c, 0x27060,
1159		0x270c0, 0x270ec,
1160		0x27200, 0x27268,
1161		0x27270, 0x27284,
1162		0x272fc, 0x27388,
1163		0x27400, 0x27404,
1164		0x27500, 0x27500,
1165		0x27510, 0x27518,
1166		0x2752c, 0x27530,
1167		0x2753c, 0x2753c,
1168		0x27550, 0x27554,
1169		0x27600, 0x27600,
1170		0x27608, 0x2761c,
1171		0x27624, 0x27628,
1172		0x27630, 0x27634,
1173		0x2763c, 0x2763c,
1174		0x27700, 0x2771c,
1175		0x27780, 0x2778c,
1176		0x27800, 0x27818,
1177		0x27820, 0x27828,
1178		0x27830, 0x27848,
1179		0x27850, 0x27854,
1180		0x27860, 0x27868,
1181		0x27870, 0x27870,
1182		0x27878, 0x27898,
1183		0x278a0, 0x278a8,
1184		0x278b0, 0x278c8,
1185		0x278d0, 0x278d4,
1186		0x278e0, 0x278e8,
1187		0x278f0, 0x278f0,
1188		0x278f8, 0x27a18,
1189		0x27a20, 0x27a28,
1190		0x27a30, 0x27a48,
1191		0x27a50, 0x27a54,
1192		0x27a60, 0x27a68,
1193		0x27a70, 0x27a70,
1194		0x27a78, 0x27a98,
1195		0x27aa0, 0x27aa8,
1196		0x27ab0, 0x27ac8,
1197		0x27ad0, 0x27ad4,
1198		0x27ae0, 0x27ae8,
1199		0x27af0, 0x27af0,
1200		0x27af8, 0x27c18,
1201		0x27c20, 0x27c20,
1202		0x27c28, 0x27c30,
1203		0x27c38, 0x27c38,
1204		0x27c80, 0x27c98,
1205		0x27ca0, 0x27ca8,
1206		0x27cb0, 0x27cc8,
1207		0x27cd0, 0x27cd4,
1208		0x27ce0, 0x27ce8,
1209		0x27cf0, 0x27cf0,
1210		0x27cf8, 0x27d7c,
1211		0x27e00, 0x27e04,
1212	};
1213
1214	static const unsigned int t4vf_reg_ranges[] = {
1215		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
1216		VF_MPS_REG(A_MPS_VF_CTL),
1217		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
1218		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_WHOAMI),
1219		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
1220		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
1221		FW_T4VF_MBDATA_BASE_ADDR,
1222		FW_T4VF_MBDATA_BASE_ADDR +
1223		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
1224	};
1225
1226	static const unsigned int t5_reg_ranges[] = {
1227		0x1008, 0x10c0,
1228		0x10cc, 0x10f8,
1229		0x1100, 0x1100,
1230		0x110c, 0x1148,
1231		0x1180, 0x1184,
1232		0x1190, 0x1194,
1233		0x11a0, 0x11a4,
1234		0x11b0, 0x11b4,
1235		0x11fc, 0x123c,
1236		0x1280, 0x173c,
1237		0x1800, 0x18fc,
1238		0x3000, 0x3028,
1239		0x3060, 0x30b0,
1240		0x30b8, 0x30d8,
1241		0x30e0, 0x30fc,
1242		0x3140, 0x357c,
1243		0x35a8, 0x35cc,
1244		0x35ec, 0x35ec,
1245		0x3600, 0x5624,
1246		0x56cc, 0x56ec,
1247		0x56f4, 0x5720,
1248		0x5728, 0x575c,
1249		0x580c, 0x5814,
1250		0x5890, 0x589c,
1251		0x58a4, 0x58ac,
1252		0x58b8, 0x58bc,
1253		0x5940, 0x59c8,
1254		0x59d0, 0x59dc,
1255		0x59fc, 0x5a18,
1256		0x5a60, 0x5a70,
1257		0x5a80, 0x5a9c,
1258		0x5b94, 0x5bfc,
1259		0x6000, 0x6020,
1260		0x6028, 0x6040,
1261		0x6058, 0x609c,
1262		0x60a8, 0x614c,
1263		0x7700, 0x7798,
1264		0x77c0, 0x78fc,
1265		0x7b00, 0x7b58,
1266		0x7b60, 0x7b84,
1267		0x7b8c, 0x7c54,
1268		0x7d00, 0x7d38,
1269		0x7d40, 0x7d80,
1270		0x7d8c, 0x7ddc,
1271		0x7de4, 0x7e04,
1272		0x7e10, 0x7e1c,
1273		0x7e24, 0x7e38,
1274		0x7e40, 0x7e44,
1275		0x7e4c, 0x7e78,
1276		0x7e80, 0x7edc,
1277		0x7ee8, 0x7efc,
1278		0x8dc0, 0x8de0,
1279		0x8df8, 0x8e04,
1280		0x8e10, 0x8e84,
1281		0x8ea0, 0x8f84,
1282		0x8fc0, 0x9058,
1283		0x9060, 0x9060,
1284		0x9068, 0x90f8,
1285		0x9400, 0x9408,
1286		0x9410, 0x9470,
1287		0x9600, 0x9600,
1288		0x9608, 0x9638,
1289		0x9640, 0x96f4,
1290		0x9800, 0x9808,
1291		0x9820, 0x983c,
1292		0x9850, 0x9864,
1293		0x9c00, 0x9c6c,
1294		0x9c80, 0x9cec,
1295		0x9d00, 0x9d6c,
1296		0x9d80, 0x9dec,
1297		0x9e00, 0x9e6c,
1298		0x9e80, 0x9eec,
1299		0x9f00, 0x9f6c,
1300		0x9f80, 0xa020,
1301		0xd004, 0xd004,
1302		0xd010, 0xd03c,
1303		0xdfc0, 0xdfe0,
1304		0xe000, 0x1106c,
1305		0x11074, 0x11088,
1306		0x1109c, 0x1117c,
1307		0x11190, 0x11204,
1308		0x19040, 0x1906c,
1309		0x19078, 0x19080,
1310		0x1908c, 0x190e8,
1311		0x190f0, 0x190f8,
1312		0x19100, 0x19110,
1313		0x19120, 0x19124,
1314		0x19150, 0x19194,
1315		0x1919c, 0x191b0,
1316		0x191d0, 0x191e8,
1317		0x19238, 0x19290,
1318		0x193f8, 0x19428,
1319		0x19430, 0x19444,
1320		0x1944c, 0x1946c,
1321		0x19474, 0x19474,
1322		0x19490, 0x194cc,
1323		0x194f0, 0x194f8,
1324		0x19c00, 0x19c08,
1325		0x19c10, 0x19c60,
1326		0x19c94, 0x19ce4,
1327		0x19cf0, 0x19d40,
1328		0x19d50, 0x19d94,
1329		0x19da0, 0x19de8,
1330		0x19df0, 0x19e10,
1331		0x19e50, 0x19e90,
1332		0x19ea0, 0x19f24,
1333		0x19f34, 0x19f34,
1334		0x19f40, 0x19f50,
1335		0x19f90, 0x19fb4,
1336		0x19fc4, 0x19fe4,
1337		0x1a000, 0x1a004,
1338		0x1a010, 0x1a06c,
1339		0x1a0b0, 0x1a0e4,
1340		0x1a0ec, 0x1a0f8,
1341		0x1a100, 0x1a108,
1342		0x1a114, 0x1a120,
1343		0x1a128, 0x1a130,
1344		0x1a138, 0x1a138,
1345		0x1a190, 0x1a1c4,
1346		0x1a1fc, 0x1a1fc,
1347		0x1e008, 0x1e00c,
1348		0x1e040, 0x1e044,
1349		0x1e04c, 0x1e04c,
1350		0x1e284, 0x1e290,
1351		0x1e2c0, 0x1e2c0,
1352		0x1e2e0, 0x1e2e0,
1353		0x1e300, 0x1e384,
1354		0x1e3c0, 0x1e3c8,
1355		0x1e408, 0x1e40c,
1356		0x1e440, 0x1e444,
1357		0x1e44c, 0x1e44c,
1358		0x1e684, 0x1e690,
1359		0x1e6c0, 0x1e6c0,
1360		0x1e6e0, 0x1e6e0,
1361		0x1e700, 0x1e784,
1362		0x1e7c0, 0x1e7c8,
1363		0x1e808, 0x1e80c,
1364		0x1e840, 0x1e844,
1365		0x1e84c, 0x1e84c,
1366		0x1ea84, 0x1ea90,
1367		0x1eac0, 0x1eac0,
1368		0x1eae0, 0x1eae0,
1369		0x1eb00, 0x1eb84,
1370		0x1ebc0, 0x1ebc8,
1371		0x1ec08, 0x1ec0c,
1372		0x1ec40, 0x1ec44,
1373		0x1ec4c, 0x1ec4c,
1374		0x1ee84, 0x1ee90,
1375		0x1eec0, 0x1eec0,
1376		0x1eee0, 0x1eee0,
1377		0x1ef00, 0x1ef84,
1378		0x1efc0, 0x1efc8,
1379		0x1f008, 0x1f00c,
1380		0x1f040, 0x1f044,
1381		0x1f04c, 0x1f04c,
1382		0x1f284, 0x1f290,
1383		0x1f2c0, 0x1f2c0,
1384		0x1f2e0, 0x1f2e0,
1385		0x1f300, 0x1f384,
1386		0x1f3c0, 0x1f3c8,
1387		0x1f408, 0x1f40c,
1388		0x1f440, 0x1f444,
1389		0x1f44c, 0x1f44c,
1390		0x1f684, 0x1f690,
1391		0x1f6c0, 0x1f6c0,
1392		0x1f6e0, 0x1f6e0,
1393		0x1f700, 0x1f784,
1394		0x1f7c0, 0x1f7c8,
1395		0x1f808, 0x1f80c,
1396		0x1f840, 0x1f844,
1397		0x1f84c, 0x1f84c,
1398		0x1fa84, 0x1fa90,
1399		0x1fac0, 0x1fac0,
1400		0x1fae0, 0x1fae0,
1401		0x1fb00, 0x1fb84,
1402		0x1fbc0, 0x1fbc8,
1403		0x1fc08, 0x1fc0c,
1404		0x1fc40, 0x1fc44,
1405		0x1fc4c, 0x1fc4c,
1406		0x1fe84, 0x1fe90,
1407		0x1fec0, 0x1fec0,
1408		0x1fee0, 0x1fee0,
1409		0x1ff00, 0x1ff84,
1410		0x1ffc0, 0x1ffc8,
1411		0x30000, 0x30030,
1412		0x30038, 0x30038,
1413		0x30040, 0x30040,
1414		0x30100, 0x30144,
1415		0x30190, 0x301a0,
1416		0x301a8, 0x301b8,
1417		0x301c4, 0x301c8,
1418		0x301d0, 0x301d0,
1419		0x30200, 0x30318,
1420		0x30400, 0x304b4,
1421		0x304c0, 0x3052c,
1422		0x30540, 0x3061c,
1423		0x30800, 0x30828,
1424		0x30834, 0x30834,
1425		0x308c0, 0x30908,
1426		0x30910, 0x309ac,
1427		0x30a00, 0x30a14,
1428		0x30a1c, 0x30a2c,
1429		0x30a44, 0x30a50,
1430		0x30a74, 0x30a74,
1431		0x30a7c, 0x30afc,
1432		0x30b08, 0x30c24,
1433		0x30d00, 0x30d00,
1434		0x30d08, 0x30d14,
1435		0x30d1c, 0x30d20,
1436		0x30d3c, 0x30d3c,
1437		0x30d48, 0x30d50,
1438		0x31200, 0x3120c,
1439		0x31220, 0x31220,
1440		0x31240, 0x31240,
1441		0x31600, 0x3160c,
1442		0x31a00, 0x31a1c,
1443		0x31e00, 0x31e20,
1444		0x31e38, 0x31e3c,
1445		0x31e80, 0x31e80,
1446		0x31e88, 0x31ea8,
1447		0x31eb0, 0x31eb4,
1448		0x31ec8, 0x31ed4,
1449		0x31fb8, 0x32004,
1450		0x32200, 0x32200,
1451		0x32208, 0x32240,
1452		0x32248, 0x32280,
1453		0x32288, 0x322c0,
1454		0x322c8, 0x322fc,
1455		0x32600, 0x32630,
1456		0x32a00, 0x32abc,
1457		0x32b00, 0x32b10,
1458		0x32b20, 0x32b30,
1459		0x32b40, 0x32b50,
1460		0x32b60, 0x32b70,
1461		0x33000, 0x33028,
1462		0x33030, 0x33048,
1463		0x33060, 0x33068,
1464		0x33070, 0x3309c,
1465		0x330f0, 0x33128,
1466		0x33130, 0x33148,
1467		0x33160, 0x33168,
1468		0x33170, 0x3319c,
1469		0x331f0, 0x33238,
1470		0x33240, 0x33240,
1471		0x33248, 0x33250,
1472		0x3325c, 0x33264,
1473		0x33270, 0x332b8,
1474		0x332c0, 0x332e4,
1475		0x332f8, 0x33338,
1476		0x33340, 0x33340,
1477		0x33348, 0x33350,
1478		0x3335c, 0x33364,
1479		0x33370, 0x333b8,
1480		0x333c0, 0x333e4,
1481		0x333f8, 0x33428,
1482		0x33430, 0x33448,
1483		0x33460, 0x33468,
1484		0x33470, 0x3349c,
1485		0x334f0, 0x33528,
1486		0x33530, 0x33548,
1487		0x33560, 0x33568,
1488		0x33570, 0x3359c,
1489		0x335f0, 0x33638,
1490		0x33640, 0x33640,
1491		0x33648, 0x33650,
1492		0x3365c, 0x33664,
1493		0x33670, 0x336b8,
1494		0x336c0, 0x336e4,
1495		0x336f8, 0x33738,
1496		0x33740, 0x33740,
1497		0x33748, 0x33750,
1498		0x3375c, 0x33764,
1499		0x33770, 0x337b8,
1500		0x337c0, 0x337e4,
1501		0x337f8, 0x337fc,
1502		0x33814, 0x33814,
1503		0x3382c, 0x3382c,
1504		0x33880, 0x3388c,
1505		0x338e8, 0x338ec,
1506		0x33900, 0x33928,
1507		0x33930, 0x33948,
1508		0x33960, 0x33968,
1509		0x33970, 0x3399c,
1510		0x339f0, 0x33a38,
1511		0x33a40, 0x33a40,
1512		0x33a48, 0x33a50,
1513		0x33a5c, 0x33a64,
1514		0x33a70, 0x33ab8,
1515		0x33ac0, 0x33ae4,
1516		0x33af8, 0x33b10,
1517		0x33b28, 0x33b28,
1518		0x33b3c, 0x33b50,
1519		0x33bf0, 0x33c10,
1520		0x33c28, 0x33c28,
1521		0x33c3c, 0x33c50,
1522		0x33cf0, 0x33cfc,
1523		0x34000, 0x34030,
1524		0x34038, 0x34038,
1525		0x34040, 0x34040,
1526		0x34100, 0x34144,
1527		0x34190, 0x341a0,
1528		0x341a8, 0x341b8,
1529		0x341c4, 0x341c8,
1530		0x341d0, 0x341d0,
1531		0x34200, 0x34318,
1532		0x34400, 0x344b4,
1533		0x344c0, 0x3452c,
1534		0x34540, 0x3461c,
1535		0x34800, 0x34828,
1536		0x34834, 0x34834,
1537		0x348c0, 0x34908,
1538		0x34910, 0x349ac,
1539		0x34a00, 0x34a14,
1540		0x34a1c, 0x34a2c,
1541		0x34a44, 0x34a50,
1542		0x34a74, 0x34a74,
1543		0x34a7c, 0x34afc,
1544		0x34b08, 0x34c24,
1545		0x34d00, 0x34d00,
1546		0x34d08, 0x34d14,
1547		0x34d1c, 0x34d20,
1548		0x34d3c, 0x34d3c,
1549		0x34d48, 0x34d50,
1550		0x35200, 0x3520c,
1551		0x35220, 0x35220,
1552		0x35240, 0x35240,
1553		0x35600, 0x3560c,
1554		0x35a00, 0x35a1c,
1555		0x35e00, 0x35e20,
1556		0x35e38, 0x35e3c,
1557		0x35e80, 0x35e80,
1558		0x35e88, 0x35ea8,
1559		0x35eb0, 0x35eb4,
1560		0x35ec8, 0x35ed4,
1561		0x35fb8, 0x36004,
1562		0x36200, 0x36200,
1563		0x36208, 0x36240,
1564		0x36248, 0x36280,
1565		0x36288, 0x362c0,
1566		0x362c8, 0x362fc,
1567		0x36600, 0x36630,
1568		0x36a00, 0x36abc,
1569		0x36b00, 0x36b10,
1570		0x36b20, 0x36b30,
1571		0x36b40, 0x36b50,
1572		0x36b60, 0x36b70,
1573		0x37000, 0x37028,
1574		0x37030, 0x37048,
1575		0x37060, 0x37068,
1576		0x37070, 0x3709c,
1577		0x370f0, 0x37128,
1578		0x37130, 0x37148,
1579		0x37160, 0x37168,
1580		0x37170, 0x3719c,
1581		0x371f0, 0x37238,
1582		0x37240, 0x37240,
1583		0x37248, 0x37250,
1584		0x3725c, 0x37264,
1585		0x37270, 0x372b8,
1586		0x372c0, 0x372e4,
1587		0x372f8, 0x37338,
1588		0x37340, 0x37340,
1589		0x37348, 0x37350,
1590		0x3735c, 0x37364,
1591		0x37370, 0x373b8,
1592		0x373c0, 0x373e4,
1593		0x373f8, 0x37428,
1594		0x37430, 0x37448,
1595		0x37460, 0x37468,
1596		0x37470, 0x3749c,
1597		0x374f0, 0x37528,
1598		0x37530, 0x37548,
1599		0x37560, 0x37568,
1600		0x37570, 0x3759c,
1601		0x375f0, 0x37638,
1602		0x37640, 0x37640,
1603		0x37648, 0x37650,
1604		0x3765c, 0x37664,
1605		0x37670, 0x376b8,
1606		0x376c0, 0x376e4,
1607		0x376f8, 0x37738,
1608		0x37740, 0x37740,
1609		0x37748, 0x37750,
1610		0x3775c, 0x37764,
1611		0x37770, 0x377b8,
1612		0x377c0, 0x377e4,
1613		0x377f8, 0x377fc,
1614		0x37814, 0x37814,
1615		0x3782c, 0x3782c,
1616		0x37880, 0x3788c,
1617		0x378e8, 0x378ec,
1618		0x37900, 0x37928,
1619		0x37930, 0x37948,
1620		0x37960, 0x37968,
1621		0x37970, 0x3799c,
1622		0x379f0, 0x37a38,
1623		0x37a40, 0x37a40,
1624		0x37a48, 0x37a50,
1625		0x37a5c, 0x37a64,
1626		0x37a70, 0x37ab8,
1627		0x37ac0, 0x37ae4,
1628		0x37af8, 0x37b10,
1629		0x37b28, 0x37b28,
1630		0x37b3c, 0x37b50,
1631		0x37bf0, 0x37c10,
1632		0x37c28, 0x37c28,
1633		0x37c3c, 0x37c50,
1634		0x37cf0, 0x37cfc,
1635		0x38000, 0x38030,
1636		0x38038, 0x38038,
1637		0x38040, 0x38040,
1638		0x38100, 0x38144,
1639		0x38190, 0x381a0,
1640		0x381a8, 0x381b8,
1641		0x381c4, 0x381c8,
1642		0x381d0, 0x381d0,
1643		0x38200, 0x38318,
1644		0x38400, 0x384b4,
1645		0x384c0, 0x3852c,
1646		0x38540, 0x3861c,
1647		0x38800, 0x38828,
1648		0x38834, 0x38834,
1649		0x388c0, 0x38908,
1650		0x38910, 0x389ac,
1651		0x38a00, 0x38a14,
1652		0x38a1c, 0x38a2c,
1653		0x38a44, 0x38a50,
1654		0x38a74, 0x38a74,
1655		0x38a7c, 0x38afc,
1656		0x38b08, 0x38c24,
1657		0x38d00, 0x38d00,
1658		0x38d08, 0x38d14,
1659		0x38d1c, 0x38d20,
1660		0x38d3c, 0x38d3c,
1661		0x38d48, 0x38d50,
1662		0x39200, 0x3920c,
1663		0x39220, 0x39220,
1664		0x39240, 0x39240,
1665		0x39600, 0x3960c,
1666		0x39a00, 0x39a1c,
1667		0x39e00, 0x39e20,
1668		0x39e38, 0x39e3c,
1669		0x39e80, 0x39e80,
1670		0x39e88, 0x39ea8,
1671		0x39eb0, 0x39eb4,
1672		0x39ec8, 0x39ed4,
1673		0x39fb8, 0x3a004,
1674		0x3a200, 0x3a200,
1675		0x3a208, 0x3a240,
1676		0x3a248, 0x3a280,
1677		0x3a288, 0x3a2c0,
1678		0x3a2c8, 0x3a2fc,
1679		0x3a600, 0x3a630,
1680		0x3aa00, 0x3aabc,
1681		0x3ab00, 0x3ab10,
1682		0x3ab20, 0x3ab30,
1683		0x3ab40, 0x3ab50,
1684		0x3ab60, 0x3ab70,
1685		0x3b000, 0x3b028,
1686		0x3b030, 0x3b048,
1687		0x3b060, 0x3b068,
1688		0x3b070, 0x3b09c,
1689		0x3b0f0, 0x3b128,
1690		0x3b130, 0x3b148,
1691		0x3b160, 0x3b168,
1692		0x3b170, 0x3b19c,
1693		0x3b1f0, 0x3b238,
1694		0x3b240, 0x3b240,
1695		0x3b248, 0x3b250,
1696		0x3b25c, 0x3b264,
1697		0x3b270, 0x3b2b8,
1698		0x3b2c0, 0x3b2e4,
1699		0x3b2f8, 0x3b338,
1700		0x3b340, 0x3b340,
1701		0x3b348, 0x3b350,
1702		0x3b35c, 0x3b364,
1703		0x3b370, 0x3b3b8,
1704		0x3b3c0, 0x3b3e4,
1705		0x3b3f8, 0x3b428,
1706		0x3b430, 0x3b448,
1707		0x3b460, 0x3b468,
1708		0x3b470, 0x3b49c,
1709		0x3b4f0, 0x3b528,
1710		0x3b530, 0x3b548,
1711		0x3b560, 0x3b568,
1712		0x3b570, 0x3b59c,
1713		0x3b5f0, 0x3b638,
1714		0x3b640, 0x3b640,
1715		0x3b648, 0x3b650,
1716		0x3b65c, 0x3b664,
1717		0x3b670, 0x3b6b8,
1718		0x3b6c0, 0x3b6e4,
1719		0x3b6f8, 0x3b738,
1720		0x3b740, 0x3b740,
1721		0x3b748, 0x3b750,
1722		0x3b75c, 0x3b764,
1723		0x3b770, 0x3b7b8,
1724		0x3b7c0, 0x3b7e4,
1725		0x3b7f8, 0x3b7fc,
1726		0x3b814, 0x3b814,
1727		0x3b82c, 0x3b82c,
1728		0x3b880, 0x3b88c,
1729		0x3b8e8, 0x3b8ec,
1730		0x3b900, 0x3b928,
1731		0x3b930, 0x3b948,
1732		0x3b960, 0x3b968,
1733		0x3b970, 0x3b99c,
1734		0x3b9f0, 0x3ba38,
1735		0x3ba40, 0x3ba40,
1736		0x3ba48, 0x3ba50,
1737		0x3ba5c, 0x3ba64,
1738		0x3ba70, 0x3bab8,
1739		0x3bac0, 0x3bae4,
1740		0x3baf8, 0x3bb10,
1741		0x3bb28, 0x3bb28,
1742		0x3bb3c, 0x3bb50,
1743		0x3bbf0, 0x3bc10,
1744		0x3bc28, 0x3bc28,
1745		0x3bc3c, 0x3bc50,
1746		0x3bcf0, 0x3bcfc,
1747		0x3c000, 0x3c030,
1748		0x3c038, 0x3c038,
1749		0x3c040, 0x3c040,
1750		0x3c100, 0x3c144,
1751		0x3c190, 0x3c1a0,
1752		0x3c1a8, 0x3c1b8,
1753		0x3c1c4, 0x3c1c8,
1754		0x3c1d0, 0x3c1d0,
1755		0x3c200, 0x3c318,
1756		0x3c400, 0x3c4b4,
1757		0x3c4c0, 0x3c52c,
1758		0x3c540, 0x3c61c,
1759		0x3c800, 0x3c828,
1760		0x3c834, 0x3c834,
1761		0x3c8c0, 0x3c908,
1762		0x3c910, 0x3c9ac,
1763		0x3ca00, 0x3ca14,
1764		0x3ca1c, 0x3ca2c,
1765		0x3ca44, 0x3ca50,
1766		0x3ca74, 0x3ca74,
1767		0x3ca7c, 0x3cafc,
1768		0x3cb08, 0x3cc24,
1769		0x3cd00, 0x3cd00,
1770		0x3cd08, 0x3cd14,
1771		0x3cd1c, 0x3cd20,
1772		0x3cd3c, 0x3cd3c,
1773		0x3cd48, 0x3cd50,
1774		0x3d200, 0x3d20c,
1775		0x3d220, 0x3d220,
1776		0x3d240, 0x3d240,
1777		0x3d600, 0x3d60c,
1778		0x3da00, 0x3da1c,
1779		0x3de00, 0x3de20,
1780		0x3de38, 0x3de3c,
1781		0x3de80, 0x3de80,
1782		0x3de88, 0x3dea8,
1783		0x3deb0, 0x3deb4,
1784		0x3dec8, 0x3ded4,
1785		0x3dfb8, 0x3e004,
1786		0x3e200, 0x3e200,
1787		0x3e208, 0x3e240,
1788		0x3e248, 0x3e280,
1789		0x3e288, 0x3e2c0,
1790		0x3e2c8, 0x3e2fc,
1791		0x3e600, 0x3e630,
1792		0x3ea00, 0x3eabc,
1793		0x3eb00, 0x3eb10,
1794		0x3eb20, 0x3eb30,
1795		0x3eb40, 0x3eb50,
1796		0x3eb60, 0x3eb70,
1797		0x3f000, 0x3f028,
1798		0x3f030, 0x3f048,
1799		0x3f060, 0x3f068,
1800		0x3f070, 0x3f09c,
1801		0x3f0f0, 0x3f128,
1802		0x3f130, 0x3f148,
1803		0x3f160, 0x3f168,
1804		0x3f170, 0x3f19c,
1805		0x3f1f0, 0x3f238,
1806		0x3f240, 0x3f240,
1807		0x3f248, 0x3f250,
1808		0x3f25c, 0x3f264,
1809		0x3f270, 0x3f2b8,
1810		0x3f2c0, 0x3f2e4,
1811		0x3f2f8, 0x3f338,
1812		0x3f340, 0x3f340,
1813		0x3f348, 0x3f350,
1814		0x3f35c, 0x3f364,
1815		0x3f370, 0x3f3b8,
1816		0x3f3c0, 0x3f3e4,
1817		0x3f3f8, 0x3f428,
1818		0x3f430, 0x3f448,
1819		0x3f460, 0x3f468,
1820		0x3f470, 0x3f49c,
1821		0x3f4f0, 0x3f528,
1822		0x3f530, 0x3f548,
1823		0x3f560, 0x3f568,
1824		0x3f570, 0x3f59c,
1825		0x3f5f0, 0x3f638,
1826		0x3f640, 0x3f640,
1827		0x3f648, 0x3f650,
1828		0x3f65c, 0x3f664,
1829		0x3f670, 0x3f6b8,
1830		0x3f6c0, 0x3f6e4,
1831		0x3f6f8, 0x3f738,
1832		0x3f740, 0x3f740,
1833		0x3f748, 0x3f750,
1834		0x3f75c, 0x3f764,
1835		0x3f770, 0x3f7b8,
1836		0x3f7c0, 0x3f7e4,
1837		0x3f7f8, 0x3f7fc,
1838		0x3f814, 0x3f814,
1839		0x3f82c, 0x3f82c,
1840		0x3f880, 0x3f88c,
1841		0x3f8e8, 0x3f8ec,
1842		0x3f900, 0x3f928,
1843		0x3f930, 0x3f948,
1844		0x3f960, 0x3f968,
1845		0x3f970, 0x3f99c,
1846		0x3f9f0, 0x3fa38,
1847		0x3fa40, 0x3fa40,
1848		0x3fa48, 0x3fa50,
1849		0x3fa5c, 0x3fa64,
1850		0x3fa70, 0x3fab8,
1851		0x3fac0, 0x3fae4,
1852		0x3faf8, 0x3fb10,
1853		0x3fb28, 0x3fb28,
1854		0x3fb3c, 0x3fb50,
1855		0x3fbf0, 0x3fc10,
1856		0x3fc28, 0x3fc28,
1857		0x3fc3c, 0x3fc50,
1858		0x3fcf0, 0x3fcfc,
1859		0x40000, 0x4000c,
1860		0x40040, 0x40050,
1861		0x40060, 0x40068,
1862		0x4007c, 0x4008c,
1863		0x40094, 0x400b0,
1864		0x400c0, 0x40144,
1865		0x40180, 0x4018c,
1866		0x40200, 0x40254,
1867		0x40260, 0x40264,
1868		0x40270, 0x40288,
1869		0x40290, 0x40298,
1870		0x402ac, 0x402c8,
1871		0x402d0, 0x402e0,
1872		0x402f0, 0x402f0,
1873		0x40300, 0x4033c,
1874		0x403f8, 0x403fc,
1875		0x41304, 0x413c4,
1876		0x41400, 0x4140c,
1877		0x41414, 0x4141c,
1878		0x41480, 0x414d0,
1879		0x44000, 0x44054,
1880		0x4405c, 0x44078,
1881		0x440c0, 0x44174,
1882		0x44180, 0x441ac,
1883		0x441b4, 0x441b8,
1884		0x441c0, 0x44254,
1885		0x4425c, 0x44278,
1886		0x442c0, 0x44374,
1887		0x44380, 0x443ac,
1888		0x443b4, 0x443b8,
1889		0x443c0, 0x44454,
1890		0x4445c, 0x44478,
1891		0x444c0, 0x44574,
1892		0x44580, 0x445ac,
1893		0x445b4, 0x445b8,
1894		0x445c0, 0x44654,
1895		0x4465c, 0x44678,
1896		0x446c0, 0x44774,
1897		0x44780, 0x447ac,
1898		0x447b4, 0x447b8,
1899		0x447c0, 0x44854,
1900		0x4485c, 0x44878,
1901		0x448c0, 0x44974,
1902		0x44980, 0x449ac,
1903		0x449b4, 0x449b8,
1904		0x449c0, 0x449fc,
1905		0x45000, 0x45004,
1906		0x45010, 0x45030,
1907		0x45040, 0x45060,
1908		0x45068, 0x45068,
1909		0x45080, 0x45084,
1910		0x450a0, 0x450b0,
1911		0x45200, 0x45204,
1912		0x45210, 0x45230,
1913		0x45240, 0x45260,
1914		0x45268, 0x45268,
1915		0x45280, 0x45284,
1916		0x452a0, 0x452b0,
1917		0x460c0, 0x460e4,
1918		0x47000, 0x4703c,
1919		0x47044, 0x4708c,
1920		0x47200, 0x47250,
1921		0x47400, 0x47408,
1922		0x47414, 0x47420,
1923		0x47600, 0x47618,
1924		0x47800, 0x47814,
1925		0x48000, 0x4800c,
1926		0x48040, 0x48050,
1927		0x48060, 0x48068,
1928		0x4807c, 0x4808c,
1929		0x48094, 0x480b0,
1930		0x480c0, 0x48144,
1931		0x48180, 0x4818c,
1932		0x48200, 0x48254,
1933		0x48260, 0x48264,
1934		0x48270, 0x48288,
1935		0x48290, 0x48298,
1936		0x482ac, 0x482c8,
1937		0x482d0, 0x482e0,
1938		0x482f0, 0x482f0,
1939		0x48300, 0x4833c,
1940		0x483f8, 0x483fc,
1941		0x49304, 0x493c4,
1942		0x49400, 0x4940c,
1943		0x49414, 0x4941c,
1944		0x49480, 0x494d0,
1945		0x4c000, 0x4c054,
1946		0x4c05c, 0x4c078,
1947		0x4c0c0, 0x4c174,
1948		0x4c180, 0x4c1ac,
1949		0x4c1b4, 0x4c1b8,
1950		0x4c1c0, 0x4c254,
1951		0x4c25c, 0x4c278,
1952		0x4c2c0, 0x4c374,
1953		0x4c380, 0x4c3ac,
1954		0x4c3b4, 0x4c3b8,
1955		0x4c3c0, 0x4c454,
1956		0x4c45c, 0x4c478,
1957		0x4c4c0, 0x4c574,
1958		0x4c580, 0x4c5ac,
1959		0x4c5b4, 0x4c5b8,
1960		0x4c5c0, 0x4c654,
1961		0x4c65c, 0x4c678,
1962		0x4c6c0, 0x4c774,
1963		0x4c780, 0x4c7ac,
1964		0x4c7b4, 0x4c7b8,
1965		0x4c7c0, 0x4c854,
1966		0x4c85c, 0x4c878,
1967		0x4c8c0, 0x4c974,
1968		0x4c980, 0x4c9ac,
1969		0x4c9b4, 0x4c9b8,
1970		0x4c9c0, 0x4c9fc,
1971		0x4d000, 0x4d004,
1972		0x4d010, 0x4d030,
1973		0x4d040, 0x4d060,
1974		0x4d068, 0x4d068,
1975		0x4d080, 0x4d084,
1976		0x4d0a0, 0x4d0b0,
1977		0x4d200, 0x4d204,
1978		0x4d210, 0x4d230,
1979		0x4d240, 0x4d260,
1980		0x4d268, 0x4d268,
1981		0x4d280, 0x4d284,
1982		0x4d2a0, 0x4d2b0,
1983		0x4e0c0, 0x4e0e4,
1984		0x4f000, 0x4f03c,
1985		0x4f044, 0x4f08c,
1986		0x4f200, 0x4f250,
1987		0x4f400, 0x4f408,
1988		0x4f414, 0x4f420,
1989		0x4f600, 0x4f618,
1990		0x4f800, 0x4f814,
1991		0x50000, 0x50084,
1992		0x50090, 0x500cc,
1993		0x50400, 0x50400,
1994		0x50800, 0x50884,
1995		0x50890, 0x508cc,
1996		0x50c00, 0x50c00,
1997		0x51000, 0x5101c,
1998		0x51300, 0x51308,
1999	};
2000
2001	static const unsigned int t5vf_reg_ranges[] = {
2002		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2003		VF_MPS_REG(A_MPS_VF_CTL),
2004		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2005		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2006		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2007		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2008		FW_T4VF_MBDATA_BASE_ADDR,
2009		FW_T4VF_MBDATA_BASE_ADDR +
2010		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2011	};
2012
2013	static const unsigned int t6_reg_ranges[] = {
2014		0x1008, 0x101c,
2015		0x1024, 0x10a8,
2016		0x10b4, 0x10f8,
2017		0x1100, 0x1114,
2018		0x111c, 0x112c,
2019		0x1138, 0x113c,
2020		0x1144, 0x114c,
2021		0x1180, 0x1184,
2022		0x1190, 0x1194,
2023		0x11a0, 0x11a4,
2024		0x11b0, 0x11b4,
2025		0x11fc, 0x1274,
2026		0x1280, 0x133c,
2027		0x1800, 0x18fc,
2028		0x3000, 0x302c,
2029		0x3060, 0x30b0,
2030		0x30b8, 0x30d8,
2031		0x30e0, 0x30fc,
2032		0x3140, 0x357c,
2033		0x35a8, 0x35cc,
2034		0x35ec, 0x35ec,
2035		0x3600, 0x5624,
2036		0x56cc, 0x56ec,
2037		0x56f4, 0x5720,
2038		0x5728, 0x575c,
2039		0x580c, 0x5814,
2040		0x5890, 0x589c,
2041		0x58a4, 0x58ac,
2042		0x58b8, 0x58bc,
2043		0x5940, 0x595c,
2044		0x5980, 0x598c,
2045		0x59b0, 0x59c8,
2046		0x59d0, 0x59dc,
2047		0x59fc, 0x5a18,
2048		0x5a60, 0x5a6c,
2049		0x5a80, 0x5a8c,
2050		0x5a94, 0x5a9c,
2051		0x5b94, 0x5bfc,
2052		0x5c10, 0x5e48,
2053		0x5e50, 0x5e94,
2054		0x5ea0, 0x5eb0,
2055		0x5ec0, 0x5ec0,
2056		0x5ec8, 0x5ed0,
2057		0x5ee0, 0x5ee0,
2058		0x5ef0, 0x5ef0,
2059		0x5f00, 0x5f00,
2060		0x6000, 0x6020,
2061		0x6028, 0x6040,
2062		0x6058, 0x609c,
2063		0x60a8, 0x619c,
2064		0x7700, 0x7798,
2065		0x77c0, 0x7880,
2066		0x78cc, 0x78fc,
2067		0x7b00, 0x7b58,
2068		0x7b60, 0x7b84,
2069		0x7b8c, 0x7c54,
2070		0x7d00, 0x7d38,
2071		0x7d40, 0x7d84,
2072		0x7d8c, 0x7ddc,
2073		0x7de4, 0x7e04,
2074		0x7e10, 0x7e1c,
2075		0x7e24, 0x7e38,
2076		0x7e40, 0x7e44,
2077		0x7e4c, 0x7e78,
2078		0x7e80, 0x7edc,
2079		0x7ee8, 0x7efc,
2080		0x8dc0, 0x8de4,
2081		0x8df8, 0x8e04,
2082		0x8e10, 0x8e84,
2083		0x8ea0, 0x8f88,
2084		0x8fb8, 0x9058,
2085		0x9060, 0x9060,
2086		0x9068, 0x90f8,
2087		0x9100, 0x9124,
2088		0x9400, 0x9470,
2089		0x9600, 0x9600,
2090		0x9608, 0x9638,
2091		0x9640, 0x9704,
2092		0x9710, 0x971c,
2093		0x9800, 0x9808,
2094		0x9820, 0x983c,
2095		0x9850, 0x9864,
2096		0x9c00, 0x9c6c,
2097		0x9c80, 0x9cec,
2098		0x9d00, 0x9d6c,
2099		0x9d80, 0x9dec,
2100		0x9e00, 0x9e6c,
2101		0x9e80, 0x9eec,
2102		0x9f00, 0x9f6c,
2103		0x9f80, 0xa020,
2104		0xd004, 0xd03c,
2105		0xd100, 0xd118,
2106		0xd200, 0xd214,
2107		0xd220, 0xd234,
2108		0xd240, 0xd254,
2109		0xd260, 0xd274,
2110		0xd280, 0xd294,
2111		0xd2a0, 0xd2b4,
2112		0xd2c0, 0xd2d4,
2113		0xd2e0, 0xd2f4,
2114		0xd300, 0xd31c,
2115		0xdfc0, 0xdfe0,
2116		0xe000, 0xf008,
2117		0xf010, 0xf018,
2118		0xf020, 0xf028,
2119		0x11000, 0x11014,
2120		0x11048, 0x1106c,
2121		0x11074, 0x11088,
2122		0x11098, 0x11120,
2123		0x1112c, 0x1117c,
2124		0x11190, 0x112e0,
2125		0x11300, 0x1130c,
2126		0x12000, 0x1206c,
2127		0x19040, 0x1906c,
2128		0x19078, 0x19080,
2129		0x1908c, 0x190e8,
2130		0x190f0, 0x190f8,
2131		0x19100, 0x19110,
2132		0x19120, 0x19124,
2133		0x19150, 0x19194,
2134		0x1919c, 0x191b0,
2135		0x191d0, 0x191e8,
2136		0x19238, 0x19290,
2137		0x192a4, 0x192b0,
2138		0x192bc, 0x192bc,
2139		0x19348, 0x1934c,
2140		0x193f8, 0x19418,
2141		0x19420, 0x19428,
2142		0x19430, 0x19444,
2143		0x1944c, 0x1946c,
2144		0x19474, 0x19474,
2145		0x19490, 0x194cc,
2146		0x194f0, 0x194f8,
2147		0x19c00, 0x19c48,
2148		0x19c50, 0x19c80,
2149		0x19c94, 0x19c98,
2150		0x19ca0, 0x19cbc,
2151		0x19ce4, 0x19ce4,
2152		0x19cf0, 0x19cf8,
2153		0x19d00, 0x19d28,
2154		0x19d50, 0x19d78,
2155		0x19d94, 0x19d98,
2156		0x19da0, 0x19dc8,
2157		0x19df0, 0x19e10,
2158		0x19e50, 0x19e6c,
2159		0x19ea0, 0x19ebc,
2160		0x19ec4, 0x19ef4,
2161		0x19f04, 0x19f2c,
2162		0x19f34, 0x19f34,
2163		0x19f40, 0x19f50,
2164		0x19f90, 0x19fac,
2165		0x19fc4, 0x19fc8,
2166		0x19fd0, 0x19fe4,
2167		0x1a000, 0x1a004,
2168		0x1a010, 0x1a06c,
2169		0x1a0b0, 0x1a0e4,
2170		0x1a0ec, 0x1a0f8,
2171		0x1a100, 0x1a108,
2172		0x1a114, 0x1a120,
2173		0x1a128, 0x1a130,
2174		0x1a138, 0x1a138,
2175		0x1a190, 0x1a1c4,
2176		0x1a1fc, 0x1a1fc,
2177		0x1e008, 0x1e00c,
2178		0x1e040, 0x1e044,
2179		0x1e04c, 0x1e04c,
2180		0x1e284, 0x1e290,
2181		0x1e2c0, 0x1e2c0,
2182		0x1e2e0, 0x1e2e0,
2183		0x1e300, 0x1e384,
2184		0x1e3c0, 0x1e3c8,
2185		0x1e408, 0x1e40c,
2186		0x1e440, 0x1e444,
2187		0x1e44c, 0x1e44c,
2188		0x1e684, 0x1e690,
2189		0x1e6c0, 0x1e6c0,
2190		0x1e6e0, 0x1e6e0,
2191		0x1e700, 0x1e784,
2192		0x1e7c0, 0x1e7c8,
2193		0x1e808, 0x1e80c,
2194		0x1e840, 0x1e844,
2195		0x1e84c, 0x1e84c,
2196		0x1ea84, 0x1ea90,
2197		0x1eac0, 0x1eac0,
2198		0x1eae0, 0x1eae0,
2199		0x1eb00, 0x1eb84,
2200		0x1ebc0, 0x1ebc8,
2201		0x1ec08, 0x1ec0c,
2202		0x1ec40, 0x1ec44,
2203		0x1ec4c, 0x1ec4c,
2204		0x1ee84, 0x1ee90,
2205		0x1eec0, 0x1eec0,
2206		0x1eee0, 0x1eee0,
2207		0x1ef00, 0x1ef84,
2208		0x1efc0, 0x1efc8,
2209		0x1f008, 0x1f00c,
2210		0x1f040, 0x1f044,
2211		0x1f04c, 0x1f04c,
2212		0x1f284, 0x1f290,
2213		0x1f2c0, 0x1f2c0,
2214		0x1f2e0, 0x1f2e0,
2215		0x1f300, 0x1f384,
2216		0x1f3c0, 0x1f3c8,
2217		0x1f408, 0x1f40c,
2218		0x1f440, 0x1f444,
2219		0x1f44c, 0x1f44c,
2220		0x1f684, 0x1f690,
2221		0x1f6c0, 0x1f6c0,
2222		0x1f6e0, 0x1f6e0,
2223		0x1f700, 0x1f784,
2224		0x1f7c0, 0x1f7c8,
2225		0x1f808, 0x1f80c,
2226		0x1f840, 0x1f844,
2227		0x1f84c, 0x1f84c,
2228		0x1fa84, 0x1fa90,
2229		0x1fac0, 0x1fac0,
2230		0x1fae0, 0x1fae0,
2231		0x1fb00, 0x1fb84,
2232		0x1fbc0, 0x1fbc8,
2233		0x1fc08, 0x1fc0c,
2234		0x1fc40, 0x1fc44,
2235		0x1fc4c, 0x1fc4c,
2236		0x1fe84, 0x1fe90,
2237		0x1fec0, 0x1fec0,
2238		0x1fee0, 0x1fee0,
2239		0x1ff00, 0x1ff84,
2240		0x1ffc0, 0x1ffc8,
2241		0x30000, 0x30030,
2242		0x30038, 0x30038,
2243		0x30040, 0x30040,
2244		0x30048, 0x30048,
2245		0x30050, 0x30050,
2246		0x3005c, 0x30060,
2247		0x30068, 0x30068,
2248		0x30070, 0x30070,
2249		0x30100, 0x30168,
2250		0x30190, 0x301a0,
2251		0x301a8, 0x301b8,
2252		0x301c4, 0x301c8,
2253		0x301d0, 0x301d0,
2254		0x30200, 0x30320,
2255		0x30400, 0x304b4,
2256		0x304c0, 0x3052c,
2257		0x30540, 0x3061c,
2258		0x30800, 0x308a0,
2259		0x308c0, 0x30908,
2260		0x30910, 0x309b8,
2261		0x30a00, 0x30a04,
2262		0x30a0c, 0x30a14,
2263		0x30a1c, 0x30a2c,
2264		0x30a44, 0x30a50,
2265		0x30a74, 0x30a74,
2266		0x30a7c, 0x30afc,
2267		0x30b08, 0x30c24,
2268		0x30d00, 0x30d14,
2269		0x30d1c, 0x30d3c,
2270		0x30d44, 0x30d4c,
2271		0x30d54, 0x30d74,
2272		0x30d7c, 0x30d7c,
2273		0x30de0, 0x30de0,
2274		0x30e00, 0x30ed4,
2275		0x30f00, 0x30fa4,
2276		0x30fc0, 0x30fc4,
2277		0x31000, 0x31004,
2278		0x31080, 0x310fc,
2279		0x31208, 0x31220,
2280		0x3123c, 0x31254,
2281		0x31300, 0x31300,
2282		0x31308, 0x3131c,
2283		0x31338, 0x3133c,
2284		0x31380, 0x31380,
2285		0x31388, 0x313a8,
2286		0x313b4, 0x313b4,
2287		0x31400, 0x31420,
2288		0x31438, 0x3143c,
2289		0x31480, 0x31480,
2290		0x314a8, 0x314a8,
2291		0x314b0, 0x314b4,
2292		0x314c8, 0x314d4,
2293		0x31a40, 0x31a4c,
2294		0x31af0, 0x31b20,
2295		0x31b38, 0x31b3c,
2296		0x31b80, 0x31b80,
2297		0x31ba8, 0x31ba8,
2298		0x31bb0, 0x31bb4,
2299		0x31bc8, 0x31bd4,
2300		0x32140, 0x3218c,
2301		0x321f0, 0x321f4,
2302		0x32200, 0x32200,
2303		0x32218, 0x32218,
2304		0x32400, 0x32400,
2305		0x32408, 0x3241c,
2306		0x32618, 0x32620,
2307		0x32664, 0x32664,
2308		0x326a8, 0x326a8,
2309		0x326ec, 0x326ec,
2310		0x32a00, 0x32abc,
2311		0x32b00, 0x32b38,
2312		0x32b40, 0x32b58,
2313		0x32b60, 0x32b78,
2314		0x32c00, 0x32c00,
2315		0x32c08, 0x32c3c,
2316		0x32e00, 0x32e2c,
2317		0x32f00, 0x32f2c,
2318		0x33000, 0x3302c,
2319		0x33034, 0x33050,
2320		0x33058, 0x33058,
2321		0x33060, 0x3308c,
2322		0x3309c, 0x330ac,
2323		0x330c0, 0x330c0,
2324		0x330c8, 0x330d0,
2325		0x330d8, 0x330e0,
2326		0x330ec, 0x3312c,
2327		0x33134, 0x33150,
2328		0x33158, 0x33158,
2329		0x33160, 0x3318c,
2330		0x3319c, 0x331ac,
2331		0x331c0, 0x331c0,
2332		0x331c8, 0x331d0,
2333		0x331d8, 0x331e0,
2334		0x331ec, 0x33290,
2335		0x33298, 0x332c4,
2336		0x332e4, 0x33390,
2337		0x33398, 0x333c4,
2338		0x333e4, 0x3342c,
2339		0x33434, 0x33450,
2340		0x33458, 0x33458,
2341		0x33460, 0x3348c,
2342		0x3349c, 0x334ac,
2343		0x334c0, 0x334c0,
2344		0x334c8, 0x334d0,
2345		0x334d8, 0x334e0,
2346		0x334ec, 0x3352c,
2347		0x33534, 0x33550,
2348		0x33558, 0x33558,
2349		0x33560, 0x3358c,
2350		0x3359c, 0x335ac,
2351		0x335c0, 0x335c0,
2352		0x335c8, 0x335d0,
2353		0x335d8, 0x335e0,
2354		0x335ec, 0x33690,
2355		0x33698, 0x336c4,
2356		0x336e4, 0x33790,
2357		0x33798, 0x337c4,
2358		0x337e4, 0x337fc,
2359		0x33814, 0x33814,
2360		0x33854, 0x33868,
2361		0x33880, 0x3388c,
2362		0x338c0, 0x338d0,
2363		0x338e8, 0x338ec,
2364		0x33900, 0x3392c,
2365		0x33934, 0x33950,
2366		0x33958, 0x33958,
2367		0x33960, 0x3398c,
2368		0x3399c, 0x339ac,
2369		0x339c0, 0x339c0,
2370		0x339c8, 0x339d0,
2371		0x339d8, 0x339e0,
2372		0x339ec, 0x33a90,
2373		0x33a98, 0x33ac4,
2374		0x33ae4, 0x33b10,
2375		0x33b24, 0x33b28,
2376		0x33b38, 0x33b50,
2377		0x33bf0, 0x33c10,
2378		0x33c24, 0x33c28,
2379		0x33c38, 0x33c50,
2380		0x33cf0, 0x33cfc,
2381		0x34000, 0x34030,
2382		0x34038, 0x34038,
2383		0x34040, 0x34040,
2384		0x34048, 0x34048,
2385		0x34050, 0x34050,
2386		0x3405c, 0x34060,
2387		0x34068, 0x34068,
2388		0x34070, 0x34070,
2389		0x34100, 0x34168,
2390		0x34190, 0x341a0,
2391		0x341a8, 0x341b8,
2392		0x341c4, 0x341c8,
2393		0x341d0, 0x341d0,
2394		0x34200, 0x34320,
2395		0x34400, 0x344b4,
2396		0x344c0, 0x3452c,
2397		0x34540, 0x3461c,
2398		0x34800, 0x348a0,
2399		0x348c0, 0x34908,
2400		0x34910, 0x349b8,
2401		0x34a00, 0x34a04,
2402		0x34a0c, 0x34a14,
2403		0x34a1c, 0x34a2c,
2404		0x34a44, 0x34a50,
2405		0x34a74, 0x34a74,
2406		0x34a7c, 0x34afc,
2407		0x34b08, 0x34c24,
2408		0x34d00, 0x34d14,
2409		0x34d1c, 0x34d3c,
2410		0x34d44, 0x34d4c,
2411		0x34d54, 0x34d74,
2412		0x34d7c, 0x34d7c,
2413		0x34de0, 0x34de0,
2414		0x34e00, 0x34ed4,
2415		0x34f00, 0x34fa4,
2416		0x34fc0, 0x34fc4,
2417		0x35000, 0x35004,
2418		0x35080, 0x350fc,
2419		0x35208, 0x35220,
2420		0x3523c, 0x35254,
2421		0x35300, 0x35300,
2422		0x35308, 0x3531c,
2423		0x35338, 0x3533c,
2424		0x35380, 0x35380,
2425		0x35388, 0x353a8,
2426		0x353b4, 0x353b4,
2427		0x35400, 0x35420,
2428		0x35438, 0x3543c,
2429		0x35480, 0x35480,
2430		0x354a8, 0x354a8,
2431		0x354b0, 0x354b4,
2432		0x354c8, 0x354d4,
2433		0x35a40, 0x35a4c,
2434		0x35af0, 0x35b20,
2435		0x35b38, 0x35b3c,
2436		0x35b80, 0x35b80,
2437		0x35ba8, 0x35ba8,
2438		0x35bb0, 0x35bb4,
2439		0x35bc8, 0x35bd4,
2440		0x36140, 0x3618c,
2441		0x361f0, 0x361f4,
2442		0x36200, 0x36200,
2443		0x36218, 0x36218,
2444		0x36400, 0x36400,
2445		0x36408, 0x3641c,
2446		0x36618, 0x36620,
2447		0x36664, 0x36664,
2448		0x366a8, 0x366a8,
2449		0x366ec, 0x366ec,
2450		0x36a00, 0x36abc,
2451		0x36b00, 0x36b38,
2452		0x36b40, 0x36b58,
2453		0x36b60, 0x36b78,
2454		0x36c00, 0x36c00,
2455		0x36c08, 0x36c3c,
2456		0x36e00, 0x36e2c,
2457		0x36f00, 0x36f2c,
2458		0x37000, 0x3702c,
2459		0x37034, 0x37050,
2460		0x37058, 0x37058,
2461		0x37060, 0x3708c,
2462		0x3709c, 0x370ac,
2463		0x370c0, 0x370c0,
2464		0x370c8, 0x370d0,
2465		0x370d8, 0x370e0,
2466		0x370ec, 0x3712c,
2467		0x37134, 0x37150,
2468		0x37158, 0x37158,
2469		0x37160, 0x3718c,
2470		0x3719c, 0x371ac,
2471		0x371c0, 0x371c0,
2472		0x371c8, 0x371d0,
2473		0x371d8, 0x371e0,
2474		0x371ec, 0x37290,
2475		0x37298, 0x372c4,
2476		0x372e4, 0x37390,
2477		0x37398, 0x373c4,
2478		0x373e4, 0x3742c,
2479		0x37434, 0x37450,
2480		0x37458, 0x37458,
2481		0x37460, 0x3748c,
2482		0x3749c, 0x374ac,
2483		0x374c0, 0x374c0,
2484		0x374c8, 0x374d0,
2485		0x374d8, 0x374e0,
2486		0x374ec, 0x3752c,
2487		0x37534, 0x37550,
2488		0x37558, 0x37558,
2489		0x37560, 0x3758c,
2490		0x3759c, 0x375ac,
2491		0x375c0, 0x375c0,
2492		0x375c8, 0x375d0,
2493		0x375d8, 0x375e0,
2494		0x375ec, 0x37690,
2495		0x37698, 0x376c4,
2496		0x376e4, 0x37790,
2497		0x37798, 0x377c4,
2498		0x377e4, 0x377fc,
2499		0x37814, 0x37814,
2500		0x37854, 0x37868,
2501		0x37880, 0x3788c,
2502		0x378c0, 0x378d0,
2503		0x378e8, 0x378ec,
2504		0x37900, 0x3792c,
2505		0x37934, 0x37950,
2506		0x37958, 0x37958,
2507		0x37960, 0x3798c,
2508		0x3799c, 0x379ac,
2509		0x379c0, 0x379c0,
2510		0x379c8, 0x379d0,
2511		0x379d8, 0x379e0,
2512		0x379ec, 0x37a90,
2513		0x37a98, 0x37ac4,
2514		0x37ae4, 0x37b10,
2515		0x37b24, 0x37b28,
2516		0x37b38, 0x37b50,
2517		0x37bf0, 0x37c10,
2518		0x37c24, 0x37c28,
2519		0x37c38, 0x37c50,
2520		0x37cf0, 0x37cfc,
2521		0x40040, 0x40040,
2522		0x40080, 0x40084,
2523		0x40100, 0x40100,
2524		0x40140, 0x401bc,
2525		0x40200, 0x40214,
2526		0x40228, 0x40228,
2527		0x40240, 0x40258,
2528		0x40280, 0x40280,
2529		0x40304, 0x40304,
2530		0x40330, 0x4033c,
2531		0x41304, 0x413c8,
2532		0x413d0, 0x413dc,
2533		0x413f0, 0x413f0,
2534		0x41400, 0x4140c,
2535		0x41414, 0x4141c,
2536		0x41480, 0x414d0,
2537		0x44000, 0x4407c,
2538		0x440c0, 0x441ac,
2539		0x441b4, 0x4427c,
2540		0x442c0, 0x443ac,
2541		0x443b4, 0x4447c,
2542		0x444c0, 0x445ac,
2543		0x445b4, 0x4467c,
2544		0x446c0, 0x447ac,
2545		0x447b4, 0x4487c,
2546		0x448c0, 0x449ac,
2547		0x449b4, 0x44a7c,
2548		0x44ac0, 0x44bac,
2549		0x44bb4, 0x44c7c,
2550		0x44cc0, 0x44dac,
2551		0x44db4, 0x44e7c,
2552		0x44ec0, 0x44fac,
2553		0x44fb4, 0x4507c,
2554		0x450c0, 0x451ac,
2555		0x451b4, 0x451fc,
2556		0x45800, 0x45804,
2557		0x45810, 0x45830,
2558		0x45840, 0x45860,
2559		0x45868, 0x45868,
2560		0x45880, 0x45884,
2561		0x458a0, 0x458b0,
2562		0x45a00, 0x45a04,
2563		0x45a10, 0x45a30,
2564		0x45a40, 0x45a60,
2565		0x45a68, 0x45a68,
2566		0x45a80, 0x45a84,
2567		0x45aa0, 0x45ab0,
2568		0x460c0, 0x460e4,
2569		0x47000, 0x4703c,
2570		0x47044, 0x4708c,
2571		0x47200, 0x47250,
2572		0x47400, 0x47408,
2573		0x47414, 0x47420,
2574		0x47600, 0x47618,
2575		0x47800, 0x47814,
2576		0x47820, 0x4782c,
2577		0x50000, 0x50084,
2578		0x50090, 0x500cc,
2579		0x50300, 0x50384,
2580		0x50400, 0x50400,
2581		0x50800, 0x50884,
2582		0x50890, 0x508cc,
2583		0x50b00, 0x50b84,
2584		0x50c00, 0x50c00,
2585		0x51000, 0x51020,
2586		0x51028, 0x510b0,
2587		0x51300, 0x51324,
2588	};
2589
2590	static const unsigned int t6vf_reg_ranges[] = {
2591		VF_SGE_REG(A_SGE_VF_KDOORBELL), VF_SGE_REG(A_SGE_VF_GTS),
2592		VF_MPS_REG(A_MPS_VF_CTL),
2593		VF_MPS_REG(A_MPS_VF_STAT_RX_VF_ERR_FRAMES_H),
2594		VF_PL_REG(A_PL_VF_WHOAMI), VF_PL_REG(A_PL_VF_REVISION),
2595		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_CTRL),
2596		VF_CIM_REG(A_CIM_VF_EXT_MAILBOX_STATUS),
2597		FW_T6VF_MBDATA_BASE_ADDR,
2598		FW_T6VF_MBDATA_BASE_ADDR +
2599		((NUM_CIM_PF_MAILBOX_DATA_INSTANCES - 1) * 4),
2600	};
2601
2602	u32 *buf_end = (u32 *)(buf + buf_size);
2603	const unsigned int *reg_ranges;
2604	int reg_ranges_size, range;
2605	unsigned int chip_version = chip_id(adap);
2606
2607	/*
2608	 * Select the right set of register ranges to dump depending on the
2609	 * adapter chip type.
2610	 */
2611	switch (chip_version) {
2612	case CHELSIO_T4:
2613		if (adap->flags & IS_VF) {
2614			reg_ranges = t4vf_reg_ranges;
2615			reg_ranges_size = ARRAY_SIZE(t4vf_reg_ranges);
2616		} else {
2617			reg_ranges = t4_reg_ranges;
2618			reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2619		}
2620		break;
2621
2622	case CHELSIO_T5:
2623		if (adap->flags & IS_VF) {
2624			reg_ranges = t5vf_reg_ranges;
2625			reg_ranges_size = ARRAY_SIZE(t5vf_reg_ranges);
2626		} else {
2627			reg_ranges = t5_reg_ranges;
2628			reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2629		}
2630		break;
2631
2632	case CHELSIO_T6:
2633		if (adap->flags & IS_VF) {
2634			reg_ranges = t6vf_reg_ranges;
2635			reg_ranges_size = ARRAY_SIZE(t6vf_reg_ranges);
2636		} else {
2637			reg_ranges = t6_reg_ranges;
2638			reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2639		}
2640		break;
2641
2642	default:
2643		CH_ERR(adap,
2644			"Unsupported chip version %d\n", chip_version);
2645		return;
2646	}
2647
2648	/*
2649	 * Clear the register buffer and insert the appropriate register
2650	 * values selected by the above register ranges.
2651	 */
2652	memset(buf, 0, buf_size);
2653	for (range = 0; range < reg_ranges_size; range += 2) {
2654		unsigned int reg = reg_ranges[range];
2655		unsigned int last_reg = reg_ranges[range + 1];
2656		u32 *bufp = (u32 *)(buf + reg);
2657
2658		/*
2659		 * Iterate across the register range filling in the register
2660		 * buffer but don't write past the end of the register buffer.
2661		 */
2662		while (reg <= last_reg && bufp < buf_end) {
2663			*bufp++ = t4_read_reg(adap, reg);
2664			reg += sizeof(u32);
2665		}
2666	}
2667}
2668
2669/*
2670 * Partial EEPROM Vital Product Data structure.  Includes only the ID and
2671 * VPD-R sections.
2672 */
2673struct t4_vpd_hdr {
2674	u8  id_tag;
2675	u8  id_len[2];
2676	u8  id_data[ID_LEN];
2677	u8  vpdr_tag;
2678	u8  vpdr_len[2];
2679};
2680
2681/*
2682 * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
2683 */
2684#define EEPROM_DELAY		10		/* 10us per poll spin */
2685#define EEPROM_MAX_POLL		5000		/* x 5000 == 50ms */
2686
2687#define EEPROM_STAT_ADDR	0x7bfc
2688#define VPD_BASE		0x400
2689#define VPD_BASE_OLD		0
2690#define VPD_LEN			1024
2691#define VPD_INFO_FLD_HDR_SIZE	3
2692#define CHELSIO_VPD_UNIQUE_ID	0x82
2693
2694/*
2695 * Small utility function to wait till any outstanding VPD Access is complete.
2696 * We have a per-adapter state variable "VPD Busy" to indicate when we have a
2697 * VPD Access in flight.  This allows us to handle the problem of having a
2698 * previous VPD Access time out and prevent an attempt to inject a new VPD
2699 * Request before any in-flight VPD reguest has completed.
2700 */
2701static int t4_seeprom_wait(struct adapter *adapter)
2702{
2703	unsigned int base = adapter->params.pci.vpd_cap_addr;
2704	int max_poll;
2705
2706	/*
2707	 * If no VPD Access is in flight, we can just return success right
2708	 * away.
2709	 */
2710	if (!adapter->vpd_busy)
2711		return 0;
2712
2713	/*
2714	 * Poll the VPD Capability Address/Flag register waiting for it
2715	 * to indicate that the operation is complete.
2716	 */
2717	max_poll = EEPROM_MAX_POLL;
2718	do {
2719		u16 val;
2720
2721		udelay(EEPROM_DELAY);
2722		t4_os_pci_read_cfg2(adapter, base + PCI_VPD_ADDR, &val);
2723
2724		/*
2725		 * If the operation is complete, mark the VPD as no longer
2726		 * busy and return success.
2727		 */
2728		if ((val & PCI_VPD_ADDR_F) == adapter->vpd_flag) {
2729			adapter->vpd_busy = 0;
2730			return 0;
2731		}
2732	} while (--max_poll);
2733
2734	/*
2735	 * Failure!  Note that we leave the VPD Busy status set in order to
2736	 * avoid pushing a new VPD Access request into the VPD Capability till
2737	 * the current operation eventually succeeds.  It's a bug to issue a
2738	 * new request when an existing request is in flight and will result
2739	 * in corrupt hardware state.
2740	 */
2741	return -ETIMEDOUT;
2742}
2743
2744/**
2745 *	t4_seeprom_read - read a serial EEPROM location
2746 *	@adapter: adapter to read
2747 *	@addr: EEPROM virtual address
2748 *	@data: where to store the read data
2749 *
2750 *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
2751 *	VPD capability.  Note that this function must be called with a virtual
2752 *	address.
2753 */
2754int t4_seeprom_read(struct adapter *adapter, u32 addr, u32 *data)
2755{
2756	unsigned int base = adapter->params.pci.vpd_cap_addr;
2757	int ret;
2758
2759	/*
2760	 * VPD Accesses must alway be 4-byte aligned!
2761	 */
2762	if (addr >= EEPROMVSIZE || (addr & 3))
2763		return -EINVAL;
2764
2765	/*
2766	 * Wait for any previous operation which may still be in flight to
2767	 * complete.
2768	 */
2769	ret = t4_seeprom_wait(adapter);
2770	if (ret) {
2771		CH_ERR(adapter, "VPD still busy from previous operation\n");
2772		return ret;
2773	}
2774
2775	/*
2776	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2777	 * for our request to complete.  If it doesn't complete, note the
2778	 * error and return it to our caller.  Note that we do not reset the
2779	 * VPD Busy status!
2780	 */
2781	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR, (u16)addr);
2782	adapter->vpd_busy = 1;
2783	adapter->vpd_flag = PCI_VPD_ADDR_F;
2784	ret = t4_seeprom_wait(adapter);
2785	if (ret) {
2786		CH_ERR(adapter, "VPD read of address %#x failed\n", addr);
2787		return ret;
2788	}
2789
2790	/*
2791	 * Grab the returned data, swizzle it into our endianness and
2792	 * return success.
2793	 */
2794	t4_os_pci_read_cfg4(adapter, base + PCI_VPD_DATA, data);
2795	*data = le32_to_cpu(*data);
2796	return 0;
2797}
2798
2799/**
2800 *	t4_seeprom_write - write a serial EEPROM location
2801 *	@adapter: adapter to write
2802 *	@addr: virtual EEPROM address
2803 *	@data: value to write
2804 *
2805 *	Write a 32-bit word to a location in serial EEPROM using the card's PCI
2806 *	VPD capability.  Note that this function must be called with a virtual
2807 *	address.
2808 */
2809int t4_seeprom_write(struct adapter *adapter, u32 addr, u32 data)
2810{
2811	unsigned int base = adapter->params.pci.vpd_cap_addr;
2812	int ret;
2813	u32 stats_reg;
2814	int max_poll;
2815
2816	/*
2817	 * VPD Accesses must alway be 4-byte aligned!
2818	 */
2819	if (addr >= EEPROMVSIZE || (addr & 3))
2820		return -EINVAL;
2821
2822	/*
2823	 * Wait for any previous operation which may still be in flight to
2824	 * complete.
2825	 */
2826	ret = t4_seeprom_wait(adapter);
2827	if (ret) {
2828		CH_ERR(adapter, "VPD still busy from previous operation\n");
2829		return ret;
2830	}
2831
2832	/*
2833	 * Issue our new VPD Read request, mark the VPD as being busy and wait
2834	 * for our request to complete.  If it doesn't complete, note the
2835	 * error and return it to our caller.  Note that we do not reset the
2836	 * VPD Busy status!
2837	 */
2838	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA,
2839				 cpu_to_le32(data));
2840	t4_os_pci_write_cfg2(adapter, base + PCI_VPD_ADDR,
2841				 (u16)addr | PCI_VPD_ADDR_F);
2842	adapter->vpd_busy = 1;
2843	adapter->vpd_flag = 0;
2844	ret = t4_seeprom_wait(adapter);
2845	if (ret) {
2846		CH_ERR(adapter, "VPD write of address %#x failed\n", addr);
2847		return ret;
2848	}
2849
2850	/*
2851	 * Reset PCI_VPD_DATA register after a transaction and wait for our
2852	 * request to complete. If it doesn't complete, return error.
2853	 */
2854	t4_os_pci_write_cfg4(adapter, base + PCI_VPD_DATA, 0);
2855	max_poll = EEPROM_MAX_POLL;
2856	do {
2857		udelay(EEPROM_DELAY);
2858		t4_seeprom_read(adapter, EEPROM_STAT_ADDR, &stats_reg);
2859	} while ((stats_reg & 0x1) && --max_poll);
2860	if (!max_poll)
2861		return -ETIMEDOUT;
2862
2863	/* Return success! */
2864	return 0;
2865}
2866
2867/**
2868 *	t4_eeprom_ptov - translate a physical EEPROM address to virtual
2869 *	@phys_addr: the physical EEPROM address
2870 *	@fn: the PCI function number
2871 *	@sz: size of function-specific area
2872 *
2873 *	Translate a physical EEPROM address to virtual.  The first 1K is
2874 *	accessed through virtual addresses starting at 31K, the rest is
2875 *	accessed through virtual addresses starting at 0.
2876 *
2877 *	The mapping is as follows:
2878 *	[0..1K) -> [31K..32K)
2879 *	[1K..1K+A) -> [ES-A..ES)
2880 *	[1K+A..ES) -> [0..ES-A-1K)
2881 *
2882 *	where A = @fn * @sz, and ES = EEPROM size.
2883 */
2884int t4_eeprom_ptov(unsigned int phys_addr, unsigned int fn, unsigned int sz)
2885{
2886	fn *= sz;
2887	if (phys_addr < 1024)
2888		return phys_addr + (31 << 10);
2889	if (phys_addr < 1024 + fn)
2890		return EEPROMSIZE - fn + phys_addr - 1024;
2891	if (phys_addr < EEPROMSIZE)
2892		return phys_addr - 1024 - fn;
2893	return -EINVAL;
2894}
2895
2896/**
2897 *	t4_seeprom_wp - enable/disable EEPROM write protection
2898 *	@adapter: the adapter
2899 *	@enable: whether to enable or disable write protection
2900 *
2901 *	Enables or disables write protection on the serial EEPROM.
2902 */
2903int t4_seeprom_wp(struct adapter *adapter, int enable)
2904{
2905	return t4_seeprom_write(adapter, EEPROM_STAT_ADDR, enable ? 0xc : 0);
2906}
2907
2908/**
2909 *	get_vpd_keyword_val - Locates an information field keyword in the VPD
2910 *	@v: Pointer to buffered vpd data structure
2911 *	@kw: The keyword to search for
2912 *
2913 *	Returns the value of the information field keyword or
2914 *	-ENOENT otherwise.
2915 */
2916static int get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
2917{
2918	int i;
2919	unsigned int offset , len;
2920	const u8 *buf = (const u8 *)v;
2921	const u8 *vpdr_len = &v->vpdr_len[0];
2922	offset = sizeof(struct t4_vpd_hdr);
2923	len =  (u16)vpdr_len[0] + ((u16)vpdr_len[1] << 8);
2924
2925	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN) {
2926		return -ENOENT;
2927	}
2928
2929	for (i = offset; i + VPD_INFO_FLD_HDR_SIZE <= offset + len;) {
2930		if(memcmp(buf + i , kw , 2) == 0){
2931			i += VPD_INFO_FLD_HDR_SIZE;
2932			return i;
2933		}
2934
2935		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
2936	}
2937
2938	return -ENOENT;
2939}
2940
2941
2942/**
2943 *	get_vpd_params - read VPD parameters from VPD EEPROM
2944 *	@adapter: adapter to read
2945 *	@p: where to store the parameters
2946 *	@vpd: caller provided temporary space to read the VPD into
2947 *
2948 *	Reads card parameters stored in VPD EEPROM.
2949 */
2950static int get_vpd_params(struct adapter *adapter, struct vpd_params *p,
2951    u8 *vpd)
2952{
2953	int i, ret, addr;
2954	int ec, sn, pn, na;
2955	u8 csum;
2956	const struct t4_vpd_hdr *v;
2957
2958	/*
2959	 * Card information normally starts at VPD_BASE but early cards had
2960	 * it at 0.
2961	 */
2962	ret = t4_seeprom_read(adapter, VPD_BASE, (u32 *)(vpd));
2963	if (ret)
2964		return (ret);
2965
2966	/*
2967	 * The VPD shall have a unique identifier specified by the PCI SIG.
2968	 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2969	 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2970	 * is expected to automatically put this entry at the
2971	 * beginning of the VPD.
2972	 */
2973	addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
2974
2975	for (i = 0; i < VPD_LEN; i += 4) {
2976		ret = t4_seeprom_read(adapter, addr + i, (u32 *)(vpd + i));
2977		if (ret)
2978			return ret;
2979	}
2980 	v = (const struct t4_vpd_hdr *)vpd;
2981
2982#define FIND_VPD_KW(var,name) do { \
2983	var = get_vpd_keyword_val(v , name); \
2984	if (var < 0) { \
2985		CH_ERR(adapter, "missing VPD keyword " name "\n"); \
2986		return -EINVAL; \
2987	} \
2988} while (0)
2989
2990	FIND_VPD_KW(i, "RV");
2991	for (csum = 0; i >= 0; i--)
2992		csum += vpd[i];
2993
2994	if (csum) {
2995		CH_ERR(adapter,
2996			"corrupted VPD EEPROM, actual csum %u\n", csum);
2997		return -EINVAL;
2998	}
2999
3000	FIND_VPD_KW(ec, "EC");
3001	FIND_VPD_KW(sn, "SN");
3002	FIND_VPD_KW(pn, "PN");
3003	FIND_VPD_KW(na, "NA");
3004#undef FIND_VPD_KW
3005
3006	memcpy(p->id, v->id_data, ID_LEN);
3007	strstrip(p->id);
3008	memcpy(p->ec, vpd + ec, EC_LEN);
3009	strstrip(p->ec);
3010	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
3011	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
3012	strstrip(p->sn);
3013	i = vpd[pn - VPD_INFO_FLD_HDR_SIZE + 2];
3014	memcpy(p->pn, vpd + pn, min(i, PN_LEN));
3015	strstrip((char *)p->pn);
3016	i = vpd[na - VPD_INFO_FLD_HDR_SIZE + 2];
3017	memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
3018	strstrip((char *)p->na);
3019
3020	return 0;
3021}
3022
3023/* serial flash and firmware constants and flash config file constants */
3024enum {
3025	SF_ATTEMPTS = 10,	/* max retries for SF operations */
3026
3027	/* flash command opcodes */
3028	SF_PROG_PAGE    = 2,	/* program page */
3029	SF_WR_DISABLE   = 4,	/* disable writes */
3030	SF_RD_STATUS    = 5,	/* read status register */
3031	SF_WR_ENABLE    = 6,	/* enable writes */
3032	SF_RD_DATA_FAST = 0xb,	/* read flash */
3033	SF_RD_ID	= 0x9f,	/* read ID */
3034	SF_ERASE_SECTOR = 0xd8,	/* erase sector */
3035};
3036
3037/**
3038 *	sf1_read - read data from the serial flash
3039 *	@adapter: the adapter
3040 *	@byte_cnt: number of bytes to read
3041 *	@cont: whether another operation will be chained
3042 *	@lock: whether to lock SF for PL access only
3043 *	@valp: where to store the read data
3044 *
3045 *	Reads up to 4 bytes of data from the serial flash.  The location of
3046 *	the read needs to be specified prior to calling this by issuing the
3047 *	appropriate commands to the serial flash.
3048 */
3049static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
3050		    int lock, u32 *valp)
3051{
3052	int ret;
3053
3054	if (!byte_cnt || byte_cnt > 4)
3055		return -EINVAL;
3056	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3057		return -EBUSY;
3058	t4_write_reg(adapter, A_SF_OP,
3059		     V_SF_LOCK(lock) | V_CONT(cont) | V_BYTECNT(byte_cnt - 1));
3060	ret = t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3061	if (!ret)
3062		*valp = t4_read_reg(adapter, A_SF_DATA);
3063	return ret;
3064}
3065
3066/**
3067 *	sf1_write - write data to the serial flash
3068 *	@adapter: the adapter
3069 *	@byte_cnt: number of bytes to write
3070 *	@cont: whether another operation will be chained
3071 *	@lock: whether to lock SF for PL access only
3072 *	@val: value to write
3073 *
3074 *	Writes up to 4 bytes of data to the serial flash.  The location of
3075 *	the write needs to be specified prior to calling this by issuing the
3076 *	appropriate commands to the serial flash.
3077 */
3078static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
3079		     int lock, u32 val)
3080{
3081	if (!byte_cnt || byte_cnt > 4)
3082		return -EINVAL;
3083	if (t4_read_reg(adapter, A_SF_OP) & F_BUSY)
3084		return -EBUSY;
3085	t4_write_reg(adapter, A_SF_DATA, val);
3086	t4_write_reg(adapter, A_SF_OP, V_SF_LOCK(lock) |
3087		     V_CONT(cont) | V_BYTECNT(byte_cnt - 1) | V_OP(1));
3088	return t4_wait_op_done(adapter, A_SF_OP, F_BUSY, 0, SF_ATTEMPTS, 5);
3089}
3090
3091/**
3092 *	flash_wait_op - wait for a flash operation to complete
3093 *	@adapter: the adapter
3094 *	@attempts: max number of polls of the status register
3095 *	@delay: delay between polls in ms
3096 *
3097 *	Wait for a flash operation to complete by polling the status register.
3098 */
3099static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
3100{
3101	int ret;
3102	u32 status;
3103
3104	while (1) {
3105		if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
3106		    (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
3107			return ret;
3108		if (!(status & 1))
3109			return 0;
3110		if (--attempts == 0)
3111			return -EAGAIN;
3112		if (delay)
3113			msleep(delay);
3114	}
3115}
3116
3117/**
3118 *	t4_read_flash - read words from serial flash
3119 *	@adapter: the adapter
3120 *	@addr: the start address for the read
3121 *	@nwords: how many 32-bit words to read
3122 *	@data: where to store the read data
3123 *	@byte_oriented: whether to store data as bytes or as words
3124 *
3125 *	Read the specified number of 32-bit words from the serial flash.
3126 *	If @byte_oriented is set the read data is stored as a byte array
3127 *	(i.e., big-endian), otherwise as 32-bit words in the platform's
3128 *	natural endianness.
3129 */
3130int t4_read_flash(struct adapter *adapter, unsigned int addr,
3131		  unsigned int nwords, u32 *data, int byte_oriented)
3132{
3133	int ret;
3134
3135	if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
3136		return -EINVAL;
3137
3138	addr = swab32(addr) | SF_RD_DATA_FAST;
3139
3140	if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
3141	    (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
3142		return ret;
3143
3144	for ( ; nwords; nwords--, data++) {
3145		ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
3146		if (nwords == 1)
3147			t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3148		if (ret)
3149			return ret;
3150		if (byte_oriented)
3151			*data = (__force __u32)(cpu_to_be32(*data));
3152	}
3153	return 0;
3154}
3155
3156/**
3157 *	t4_write_flash - write up to a page of data to the serial flash
3158 *	@adapter: the adapter
3159 *	@addr: the start address to write
3160 *	@n: length of data to write in bytes
3161 *	@data: the data to write
3162 *	@byte_oriented: whether to store data as bytes or as words
3163 *
3164 *	Writes up to a page of data (256 bytes) to the serial flash starting
3165 *	at the given address.  All the data must be written to the same page.
3166 *	If @byte_oriented is set the write data is stored as byte stream
3167 *	(i.e. matches what on disk), otherwise in big-endian.
3168 */
3169int t4_write_flash(struct adapter *adapter, unsigned int addr,
3170			  unsigned int n, const u8 *data, int byte_oriented)
3171{
3172	int ret;
3173	u32 buf[SF_PAGE_SIZE / 4];
3174	unsigned int i, c, left, val, offset = addr & 0xff;
3175
3176	if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
3177		return -EINVAL;
3178
3179	val = swab32(addr) | SF_PROG_PAGE;
3180
3181	if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3182	    (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
3183		goto unlock;
3184
3185	for (left = n; left; left -= c) {
3186		c = min(left, 4U);
3187		for (val = 0, i = 0; i < c; ++i)
3188			val = (val << 8) + *data++;
3189
3190		if (!byte_oriented)
3191			val = cpu_to_be32(val);
3192
3193		ret = sf1_write(adapter, c, c != left, 1, val);
3194		if (ret)
3195			goto unlock;
3196	}
3197	ret = flash_wait_op(adapter, 8, 1);
3198	if (ret)
3199		goto unlock;
3200
3201	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3202
3203	/* Read the page to verify the write succeeded */
3204	ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf,
3205			    byte_oriented);
3206	if (ret)
3207		return ret;
3208
3209	if (memcmp(data - n, (u8 *)buf + offset, n)) {
3210		CH_ERR(adapter,
3211			"failed to correctly write the flash page at %#x\n",
3212			addr);
3213		return -EIO;
3214	}
3215	return 0;
3216
3217unlock:
3218	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3219	return ret;
3220}
3221
3222/**
3223 *	t4_get_fw_version - read the firmware version
3224 *	@adapter: the adapter
3225 *	@vers: where to place the version
3226 *
3227 *	Reads the FW version from flash.
3228 */
3229int t4_get_fw_version(struct adapter *adapter, u32 *vers)
3230{
3231	return t4_read_flash(adapter, FLASH_FW_START +
3232			     offsetof(struct fw_hdr, fw_ver), 1,
3233			     vers, 0);
3234}
3235
3236/**
3237 *	t4_get_bs_version - read the firmware bootstrap version
3238 *	@adapter: the adapter
3239 *	@vers: where to place the version
3240 *
3241 *	Reads the FW Bootstrap version from flash.
3242 */
3243int t4_get_bs_version(struct adapter *adapter, u32 *vers)
3244{
3245	return t4_read_flash(adapter, FLASH_FWBOOTSTRAP_START +
3246			     offsetof(struct fw_hdr, fw_ver), 1,
3247			     vers, 0);
3248}
3249
3250/**
3251 *	t4_get_tp_version - read the TP microcode version
3252 *	@adapter: the adapter
3253 *	@vers: where to place the version
3254 *
3255 *	Reads the TP microcode version from flash.
3256 */
3257int t4_get_tp_version(struct adapter *adapter, u32 *vers)
3258{
3259	return t4_read_flash(adapter, FLASH_FW_START +
3260			     offsetof(struct fw_hdr, tp_microcode_ver),
3261			     1, vers, 0);
3262}
3263
3264/**
3265 *	t4_get_exprom_version - return the Expansion ROM version (if any)
3266 *	@adapter: the adapter
3267 *	@vers: where to place the version
3268 *
3269 *	Reads the Expansion ROM header from FLASH and returns the version
3270 *	number (if present) through the @vers return value pointer.  We return
3271 *	this in the Firmware Version Format since it's convenient.  Return
3272 *	0 on success, -ENOENT if no Expansion ROM is present.
3273 */
3274int t4_get_exprom_version(struct adapter *adap, u32 *vers)
3275{
3276	struct exprom_header {
3277		unsigned char hdr_arr[16];	/* must start with 0x55aa */
3278		unsigned char hdr_ver[4];	/* Expansion ROM version */
3279	} *hdr;
3280	u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
3281					   sizeof(u32))];
3282	int ret;
3283
3284	ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
3285			    ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
3286			    0);
3287	if (ret)
3288		return ret;
3289
3290	hdr = (struct exprom_header *)exprom_header_buf;
3291	if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
3292		return -ENOENT;
3293
3294	*vers = (V_FW_HDR_FW_VER_MAJOR(hdr->hdr_ver[0]) |
3295		 V_FW_HDR_FW_VER_MINOR(hdr->hdr_ver[1]) |
3296		 V_FW_HDR_FW_VER_MICRO(hdr->hdr_ver[2]) |
3297		 V_FW_HDR_FW_VER_BUILD(hdr->hdr_ver[3]));
3298	return 0;
3299}
3300
3301/**
3302 *	t4_get_scfg_version - return the Serial Configuration version
3303 *	@adapter: the adapter
3304 *	@vers: where to place the version
3305 *
3306 *	Reads the Serial Configuration Version via the Firmware interface
3307 *	(thus this can only be called once we're ready to issue Firmware
3308 *	commands).  The format of the Serial Configuration version is
3309 *	adapter specific.  Returns 0 on success, an error on failure.
3310 *
3311 *	Note that early versions of the Firmware didn't include the ability
3312 *	to retrieve the Serial Configuration version, so we zero-out the
3313 *	return-value parameter in that case to avoid leaving it with
3314 *	garbage in it.
3315 *
3316 *	Also note that the Firmware will return its cached copy of the Serial
3317 *	Initialization Revision ID, not the actual Revision ID as written in
3318 *	the Serial EEPROM.  This is only an issue if a new VPD has been written
3319 *	and the Firmware/Chip haven't yet gone through a RESET sequence.  So
3320 *	it's best to defer calling this routine till after a FW_RESET_CMD has
3321 *	been issued if the Host Driver will be performing a full adapter
3322 *	initialization.
3323 */
3324int t4_get_scfg_version(struct adapter *adapter, u32 *vers)
3325{
3326	u32 scfgrev_param;
3327	int ret;
3328
3329	scfgrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3330			 V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_SCFGREV));
3331	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3332			      1, &scfgrev_param, vers);
3333	if (ret)
3334		*vers = 0;
3335	return ret;
3336}
3337
3338/**
3339 *	t4_get_vpd_version - return the VPD version
3340 *	@adapter: the adapter
3341 *	@vers: where to place the version
3342 *
3343 *	Reads the VPD via the Firmware interface (thus this can only be called
3344 *	once we're ready to issue Firmware commands).  The format of the
3345 *	VPD version is adapter specific.  Returns 0 on success, an error on
3346 *	failure.
3347 *
3348 *	Note that early versions of the Firmware didn't include the ability
3349 *	to retrieve the VPD version, so we zero-out the return-value parameter
3350 *	in that case to avoid leaving it with garbage in it.
3351 *
3352 *	Also note that the Firmware will return its cached copy of the VPD
3353 *	Revision ID, not the actual Revision ID as written in the Serial
3354 *	EEPROM.  This is only an issue if a new VPD has been written and the
3355 *	Firmware/Chip haven't yet gone through a RESET sequence.  So it's best
3356 *	to defer calling this routine till after a FW_RESET_CMD has been issued
3357 *	if the Host Driver will be performing a full adapter initialization.
3358 */
3359int t4_get_vpd_version(struct adapter *adapter, u32 *vers)
3360{
3361	u32 vpdrev_param;
3362	int ret;
3363
3364	vpdrev_param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3365			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_VPDREV));
3366	ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
3367			      1, &vpdrev_param, vers);
3368	if (ret)
3369		*vers = 0;
3370	return ret;
3371}
3372
3373/**
3374 *	t4_get_version_info - extract various chip/firmware version information
3375 *	@adapter: the adapter
3376 *
3377 *	Reads various chip/firmware version numbers and stores them into the
3378 *	adapter Adapter Parameters structure.  If any of the efforts fails
3379 *	the first failure will be returned, but all of the version numbers
3380 *	will be read.
3381 */
3382int t4_get_version_info(struct adapter *adapter)
3383{
3384	int ret = 0;
3385
3386	#define FIRST_RET(__getvinfo) \
3387	do { \
3388		int __ret = __getvinfo; \
3389		if (__ret && !ret) \
3390			ret = __ret; \
3391	} while (0)
3392
3393	FIRST_RET(t4_get_fw_version(adapter, &adapter->params.fw_vers));
3394	FIRST_RET(t4_get_bs_version(adapter, &adapter->params.bs_vers));
3395	FIRST_RET(t4_get_tp_version(adapter, &adapter->params.tp_vers));
3396	FIRST_RET(t4_get_exprom_version(adapter, &adapter->params.er_vers));
3397	FIRST_RET(t4_get_scfg_version(adapter, &adapter->params.scfg_vers));
3398	FIRST_RET(t4_get_vpd_version(adapter, &adapter->params.vpd_vers));
3399
3400	#undef FIRST_RET
3401
3402	return ret;
3403}
3404
3405/**
3406 *	t4_flash_erase_sectors - erase a range of flash sectors
3407 *	@adapter: the adapter
3408 *	@start: the first sector to erase
3409 *	@end: the last sector to erase
3410 *
3411 *	Erases the sectors in the given inclusive range.
3412 */
3413int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3414{
3415	int ret = 0;
3416
3417	if (end >= adapter->params.sf_nsec)
3418		return -EINVAL;
3419
3420	while (start <= end) {
3421		if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3422		    (ret = sf1_write(adapter, 4, 0, 1,
3423				     SF_ERASE_SECTOR | (start << 8))) != 0 ||
3424		    (ret = flash_wait_op(adapter, 14, 500)) != 0) {
3425			CH_ERR(adapter,
3426				"erase of flash sector %d failed, error %d\n",
3427				start, ret);
3428			break;
3429		}
3430		start++;
3431	}
3432	t4_write_reg(adapter, A_SF_OP, 0);    /* unlock SF */
3433	return ret;
3434}
3435
3436/**
3437 *	t4_flash_cfg_addr - return the address of the flash configuration file
3438 *	@adapter: the adapter
3439 *
3440 *	Return the address within the flash where the Firmware Configuration
3441 *	File is stored, or an error if the device FLASH is too small to contain
3442 *	a Firmware Configuration File.
3443 */
3444int t4_flash_cfg_addr(struct adapter *adapter)
3445{
3446	/*
3447	 * If the device FLASH isn't large enough to hold a Firmware
3448	 * Configuration File, return an error.
3449	 */
3450	if (adapter->params.sf_size < FLASH_CFG_START + FLASH_CFG_MAX_SIZE)
3451		return -ENOSPC;
3452
3453	return FLASH_CFG_START;
3454}
3455
3456/*
3457 * Return TRUE if the specified firmware matches the adapter.  I.e. T4
3458 * firmware for T4 adapters, T5 firmware for T5 adapters, etc.  We go ahead
3459 * and emit an error message for mismatched firmware to save our caller the
3460 * effort ...
3461 */
3462static int t4_fw_matches_chip(struct adapter *adap,
3463			      const struct fw_hdr *hdr)
3464{
3465	/*
3466	 * The expression below will return FALSE for any unsupported adapter
3467	 * which will keep us "honest" in the future ...
3468	 */
3469	if ((is_t4(adap) && hdr->chip == FW_HDR_CHIP_T4) ||
3470	    (is_t5(adap) && hdr->chip == FW_HDR_CHIP_T5) ||
3471	    (is_t6(adap) && hdr->chip == FW_HDR_CHIP_T6))
3472		return 1;
3473
3474	CH_ERR(adap,
3475		"FW image (%d) is not suitable for this adapter (%d)\n",
3476		hdr->chip, chip_id(adap));
3477	return 0;
3478}
3479
3480/**
3481 *	t4_load_fw - download firmware
3482 *	@adap: the adapter
3483 *	@fw_data: the firmware image to write
3484 *	@size: image size
3485 *
3486 *	Write the supplied firmware image to the card's serial flash.
3487 */
3488int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3489{
3490	u32 csum;
3491	int ret, addr;
3492	unsigned int i;
3493	u8 first_page[SF_PAGE_SIZE];
3494	const u32 *p = (const u32 *)fw_data;
3495	const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
3496	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3497	unsigned int fw_start_sec;
3498	unsigned int fw_start;
3499	unsigned int fw_size;
3500
3501	if (ntohl(hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP) {
3502		fw_start_sec = FLASH_FWBOOTSTRAP_START_SEC;
3503		fw_start = FLASH_FWBOOTSTRAP_START;
3504		fw_size = FLASH_FWBOOTSTRAP_MAX_SIZE;
3505	} else {
3506		fw_start_sec = FLASH_FW_START_SEC;
3507 		fw_start = FLASH_FW_START;
3508		fw_size = FLASH_FW_MAX_SIZE;
3509	}
3510
3511	if (!size) {
3512		CH_ERR(adap, "FW image has no data\n");
3513		return -EINVAL;
3514	}
3515	if (size & 511) {
3516		CH_ERR(adap,
3517			"FW image size not multiple of 512 bytes\n");
3518		return -EINVAL;
3519	}
3520	if ((unsigned int) be16_to_cpu(hdr->len512) * 512 != size) {
3521		CH_ERR(adap,
3522			"FW image size differs from size in FW header\n");
3523		return -EINVAL;
3524	}
3525	if (size > fw_size) {
3526		CH_ERR(adap, "FW image too large, max is %u bytes\n",
3527			fw_size);
3528		return -EFBIG;
3529	}
3530	if (!t4_fw_matches_chip(adap, hdr))
3531		return -EINVAL;
3532
3533	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
3534		csum += be32_to_cpu(p[i]);
3535
3536	if (csum != 0xffffffff) {
3537		CH_ERR(adap,
3538			"corrupted firmware image, checksum %#x\n", csum);
3539		return -EINVAL;
3540	}
3541
3542	i = DIV_ROUND_UP(size, sf_sec_size);	/* # of sectors spanned */
3543	ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
3544	if (ret)
3545		goto out;
3546
3547	/*
3548	 * We write the correct version at the end so the driver can see a bad
3549	 * version if the FW write fails.  Start by writing a copy of the
3550	 * first page with a bad version.
3551	 */
3552	memcpy(first_page, fw_data, SF_PAGE_SIZE);
3553	((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
3554	ret = t4_write_flash(adap, fw_start, SF_PAGE_SIZE, first_page, 1);
3555	if (ret)
3556		goto out;
3557
3558	addr = fw_start;
3559	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3560		addr += SF_PAGE_SIZE;
3561		fw_data += SF_PAGE_SIZE;
3562		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data, 1);
3563		if (ret)
3564			goto out;
3565	}
3566
3567	ret = t4_write_flash(adap,
3568			     fw_start + offsetof(struct fw_hdr, fw_ver),
3569			     sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver, 1);
3570out:
3571	if (ret)
3572		CH_ERR(adap, "firmware download failed, error %d\n",
3573			ret);
3574	return ret;
3575}
3576
3577/**
3578 *	t4_fwcache - firmware cache operation
3579 *	@adap: the adapter
3580 *	@op  : the operation (flush or flush and invalidate)
3581 */
3582int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3583{
3584	struct fw_params_cmd c;
3585
3586	memset(&c, 0, sizeof(c));
3587	c.op_to_vfn =
3588	    cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
3589			    F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
3590				V_FW_PARAMS_CMD_PFN(adap->pf) |
3591				V_FW_PARAMS_CMD_VFN(0));
3592	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3593	c.param[0].mnem =
3594	    cpu_to_be32(V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
3595			    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_FWCACHE));
3596	c.param[0].val = (__force __be32)op;
3597
3598	return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3599}
3600
3601void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3602			unsigned int *pif_req_wrptr,
3603			unsigned int *pif_rsp_wrptr)
3604{
3605	int i, j;
3606	u32 cfg, val, req, rsp;
3607
3608	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3609	if (cfg & F_LADBGEN)
3610		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3611
3612	val = t4_read_reg(adap, A_CIM_DEBUGSTS);
3613	req = G_POLADBGWRPTR(val);
3614	rsp = G_PILADBGWRPTR(val);
3615	if (pif_req_wrptr)
3616		*pif_req_wrptr = req;
3617	if (pif_rsp_wrptr)
3618		*pif_rsp_wrptr = rsp;
3619
3620	for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3621		for (j = 0; j < 6; j++) {
3622			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(req) |
3623				     V_PILADBGRDPTR(rsp));
3624			*pif_req++ = t4_read_reg(adap, A_CIM_PO_LA_DEBUGDATA);
3625			*pif_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_DEBUGDATA);
3626			req++;
3627			rsp++;
3628		}
3629		req = (req + 2) & M_POLADBGRDPTR;
3630		rsp = (rsp + 2) & M_PILADBGRDPTR;
3631	}
3632	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3633}
3634
3635void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3636{
3637	u32 cfg;
3638	int i, j, idx;
3639
3640	cfg = t4_read_reg(adap, A_CIM_DEBUGCFG);
3641	if (cfg & F_LADBGEN)
3642		t4_write_reg(adap, A_CIM_DEBUGCFG, cfg ^ F_LADBGEN);
3643
3644	for (i = 0; i < CIM_MALA_SIZE; i++) {
3645		for (j = 0; j < 5; j++) {
3646			idx = 8 * i + j;
3647			t4_write_reg(adap, A_CIM_DEBUGCFG, V_POLADBGRDPTR(idx) |
3648				     V_PILADBGRDPTR(idx));
3649			*ma_req++ = t4_read_reg(adap, A_CIM_PO_LA_MADEBUGDATA);
3650			*ma_rsp++ = t4_read_reg(adap, A_CIM_PI_LA_MADEBUGDATA);
3651		}
3652	}
3653	t4_write_reg(adap, A_CIM_DEBUGCFG, cfg);
3654}
3655
3656void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3657{
3658	unsigned int i, j;
3659
3660	for (i = 0; i < 8; i++) {
3661		u32 *p = la_buf + i;
3662
3663		t4_write_reg(adap, A_ULP_RX_LA_CTL, i);
3664		j = t4_read_reg(adap, A_ULP_RX_LA_WRPTR);
3665		t4_write_reg(adap, A_ULP_RX_LA_RDPTR, j);
3666		for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3667			*p = t4_read_reg(adap, A_ULP_RX_LA_RDDATA);
3668	}
3669}
3670
3671#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
3672		     FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3673		     FW_PORT_CAP_SPEED_100G | FW_PORT_CAP_ANEG)
3674
3675/**
3676 *	t4_link_l1cfg - apply link configuration to MAC/PHY
3677 *	@phy: the PHY to setup
3678 *	@mac: the MAC to setup
3679 *	@lc: the requested link configuration
3680 *
3681 *	Set up a port's MAC and PHY according to a desired link configuration.
3682 *	- If the PHY can auto-negotiate first decide what to advertise, then
3683 *	  enable/disable auto-negotiation as desired, and reset.
3684 *	- If the PHY does not auto-negotiate just reset it.
3685 *	- If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3686 *	  otherwise do it later based on the outcome of auto-negotiation.
3687 */
3688int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
3689		  struct link_config *lc)
3690{
3691	struct fw_port_cmd c;
3692	unsigned int fc = 0, mdi = V_FW_PORT_CAP_MDI(FW_PORT_CAP_MDI_AUTO);
3693
3694	lc->link_ok = 0;
3695	if (lc->requested_fc & PAUSE_RX)
3696		fc |= FW_PORT_CAP_FC_RX;
3697	if (lc->requested_fc & PAUSE_TX)
3698		fc |= FW_PORT_CAP_FC_TX;
3699
3700	memset(&c, 0, sizeof(c));
3701	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3702				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3703				     V_FW_PORT_CMD_PORTID(port));
3704	c.action_to_len16 =
3705		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3706			    FW_LEN16(c));
3707
3708	if (!(lc->supported & FW_PORT_CAP_ANEG)) {
3709		c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3710					     fc);
3711		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3712	} else if (lc->autoneg == AUTONEG_DISABLE) {
3713		c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
3714		lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3715	} else
3716		c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
3717
3718	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3719}
3720
3721/**
3722 *	t4_restart_aneg - restart autonegotiation
3723 *	@adap: the adapter
3724 *	@mbox: mbox to use for the FW command
3725 *	@port: the port id
3726 *
3727 *	Restarts autonegotiation for the selected port.
3728 */
3729int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3730{
3731	struct fw_port_cmd c;
3732
3733	memset(&c, 0, sizeof(c));
3734	c.op_to_portid = cpu_to_be32(V_FW_CMD_OP(FW_PORT_CMD) |
3735				     F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
3736				     V_FW_PORT_CMD_PORTID(port));
3737	c.action_to_len16 =
3738		cpu_to_be32(V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_L1_CFG) |
3739			    FW_LEN16(c));
3740	c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
3741	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3742}
3743
3744typedef void (*int_handler_t)(struct adapter *adap);
3745
3746struct intr_info {
3747	unsigned int mask;	/* bits to check in interrupt status */
3748	const char *msg;	/* message to print or NULL */
3749	short stat_idx;		/* stat counter to increment or -1 */
3750	unsigned short fatal;	/* whether the condition reported is fatal */
3751	int_handler_t int_handler;	/* platform-specific int handler */
3752};
3753
3754/**
3755 *	t4_handle_intr_status - table driven interrupt handler
3756 *	@adapter: the adapter that generated the interrupt
3757 *	@reg: the interrupt status register to process
3758 *	@acts: table of interrupt actions
3759 *
3760 *	A table driven interrupt handler that applies a set of masks to an
3761 *	interrupt status word and performs the corresponding actions if the
3762 *	interrupts described by the mask have occurred.  The actions include
3763 *	optionally emitting a warning or alert message.  The table is terminated
3764 *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3765 *	conditions.
3766 */
3767static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3768				 const struct intr_info *acts)
3769{
3770	int fatal = 0;
3771	unsigned int mask = 0;
3772	unsigned int status = t4_read_reg(adapter, reg);
3773
3774	for ( ; acts->mask; ++acts) {
3775		if (!(status & acts->mask))
3776			continue;
3777		if (acts->fatal) {
3778			fatal++;
3779			CH_ALERT(adapter, "%s (0x%x)\n", acts->msg,
3780				  status & acts->mask);
3781		} else if (acts->msg)
3782			CH_WARN_RATELIMIT(adapter, "%s (0x%x)\n", acts->msg,
3783				 status & acts->mask);
3784		if (acts->int_handler)
3785			acts->int_handler(adapter);
3786		mask |= acts->mask;
3787	}
3788	status &= mask;
3789	if (status)	/* clear processed interrupts */
3790		t4_write_reg(adapter, reg, status);
3791	return fatal;
3792}
3793
3794/*
3795 * Interrupt handler for the PCIE module.
3796 */
3797static void pcie_intr_handler(struct adapter *adapter)
3798{
3799	static const struct intr_info sysbus_intr_info[] = {
3800		{ F_RNPP, "RXNP array parity error", -1, 1 },
3801		{ F_RPCP, "RXPC array parity error", -1, 1 },
3802		{ F_RCIP, "RXCIF array parity error", -1, 1 },
3803		{ F_RCCP, "Rx completions control array parity error", -1, 1 },
3804		{ F_RFTP, "RXFT array parity error", -1, 1 },
3805		{ 0 }
3806	};
3807	static const struct intr_info pcie_port_intr_info[] = {
3808		{ F_TPCP, "TXPC array parity error", -1, 1 },
3809		{ F_TNPP, "TXNP array parity error", -1, 1 },
3810		{ F_TFTP, "TXFT array parity error", -1, 1 },
3811		{ F_TCAP, "TXCA array parity error", -1, 1 },
3812		{ F_TCIP, "TXCIF array parity error", -1, 1 },
3813		{ F_RCAP, "RXCA array parity error", -1, 1 },
3814		{ F_OTDD, "outbound request TLP discarded", -1, 1 },
3815		{ F_RDPE, "Rx data parity error", -1, 1 },
3816		{ F_TDUE, "Tx uncorrectable data error", -1, 1 },
3817		{ 0 }
3818	};
3819	static const struct intr_info pcie_intr_info[] = {
3820		{ F_MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3821		{ F_MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3822		{ F_MSIDATAPERR, "MSI data parity error", -1, 1 },
3823		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3824		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3825		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3826		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3827		{ F_PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3828		{ F_PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3829		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3830		{ F_CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3831		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3832		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3833		{ F_DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3834		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3835		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3836		{ F_HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3837		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3838		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3839		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3840		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3841		{ F_INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3842		{ F_MATAGPERR, "PCI MA tag parity error", -1, 1 },
3843		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3844		{ F_RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3845		{ F_RXWRPERR, "PCI Rx write parity error", -1, 1 },
3846		{ F_RPLPERR, "PCI replay buffer parity error", -1, 1 },
3847		{ F_PCIESINT, "PCI core secondary fault", -1, 1 },
3848		{ F_PCIEPINT, "PCI core primary fault", -1, 1 },
3849		{ F_UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3850		  0 },
3851		{ 0 }
3852	};
3853
3854	static const struct intr_info t5_pcie_intr_info[] = {
3855		{ F_MSTGRPPERR, "Master Response Read Queue parity error",
3856		  -1, 1 },
3857		{ F_MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 },
3858		{ F_MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 },
3859		{ F_MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3860		{ F_MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3861		{ F_MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3862		{ F_MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3863		{ F_PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error",
3864		  -1, 1 },
3865		{ F_PIOREQGRPPERR, "PCI PIO request Group FIFO parity error",
3866		  -1, 1 },
3867		{ F_TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3868		{ F_MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 },
3869		{ F_CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3870		{ F_CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3871		{ F_DREQWRPERR, "PCI DMA channel write request parity error",
3872		  -1, 1 },
3873		{ F_DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3874		{ F_DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3875		{ F_HREQWRPERR, "PCI HMA channel count parity error", -1, 1 },
3876		{ F_HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3877		{ F_HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3878		{ F_CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3879		{ F_FIDPERR, "PCI FID parity error", -1, 1 },
3880		{ F_VFIDPERR, "PCI INTx clear parity error", -1, 1 },
3881		{ F_MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 },
3882		{ F_PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3883		{ F_IPRXHDRGRPPERR, "PCI IP Rx header group parity error",
3884		  -1, 1 },
3885		{ F_IPRXDATAGRPPERR, "PCI IP Rx data group parity error",
3886		  -1, 1 },
3887		{ F_RPLPERR, "PCI IP replay buffer parity error", -1, 1 },
3888		{ F_IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 },
3889		{ F_TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3890		{ F_READRSPERR, "Outbound read error", -1,
3891		  0 },
3892		{ 0 }
3893	};
3894
3895	int fat;
3896
3897	if (is_t4(adapter))
3898		fat = t4_handle_intr_status(adapter,
3899				A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3900				sysbus_intr_info) +
3901			t4_handle_intr_status(adapter,
3902					A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3903					pcie_port_intr_info) +
3904			t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3905					      pcie_intr_info);
3906	else
3907		fat = t4_handle_intr_status(adapter, A_PCIE_INT_CAUSE,
3908					    t5_pcie_intr_info);
3909	if (fat)
3910		t4_fatal_err(adapter);
3911}
3912
3913/*
3914 * TP interrupt handler.
3915 */
3916static void tp_intr_handler(struct adapter *adapter)
3917{
3918	static const struct intr_info tp_intr_info[] = {
3919		{ 0x3fffffff, "TP parity error", -1, 1 },
3920		{ F_FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3921		{ 0 }
3922	};
3923
3924	if (t4_handle_intr_status(adapter, A_TP_INT_CAUSE, tp_intr_info))
3925		t4_fatal_err(adapter);
3926}
3927
3928/*
3929 * SGE interrupt handler.
3930 */
3931static void sge_intr_handler(struct adapter *adapter)
3932{
3933	u64 v;
3934	u32 err;
3935
3936	static const struct intr_info sge_intr_info[] = {
3937		{ F_ERR_CPL_EXCEED_IQE_SIZE,
3938		  "SGE received CPL exceeding IQE size", -1, 1 },
3939		{ F_ERR_INVALID_CIDX_INC,
3940		  "SGE GTS CIDX increment too large", -1, 0 },
3941		{ F_ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3942		{ F_DBFIFO_LP_INT, NULL, -1, 0, t4_db_full },
3943		{ F_ERR_DATA_CPL_ON_HIGH_QID1 | F_ERR_DATA_CPL_ON_HIGH_QID0,
3944		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3945		{ F_ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
3946		  0 },
3947		{ F_ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
3948		  0 },
3949		{ F_ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
3950		  0 },
3951		{ F_ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
3952		  0 },
3953		{ F_ERR_ING_CTXT_PRIO,
3954		  "SGE too many priority ingress contexts", -1, 0 },
3955		{ F_INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
3956		{ F_EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
3957		{ 0 }
3958	};
3959
3960	static const struct intr_info t4t5_sge_intr_info[] = {
3961		{ F_ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped },
3962		{ F_DBFIFO_HP_INT, NULL, -1, 0, t4_db_full },
3963		{ F_ERR_EGR_CTXT_PRIO,
3964		  "SGE too many priority egress contexts", -1, 0 },
3965		{ 0 }
3966	};
3967
3968	/*
3969 	* For now, treat below interrupts as fatal so that we disable SGE and
3970 	* get better debug */
3971	static const struct intr_info t6_sge_intr_info[] = {
3972		{ F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1,
3973		  "SGE PCIe error for a DBP thread", -1, 1 },
3974		{ F_FATAL_WRE_LEN,
3975		  "SGE Actual WRE packet is less than advertized length",
3976		  -1, 1 },
3977		{ 0 }
3978	};
3979
3980	v = (u64)t4_read_reg(adapter, A_SGE_INT_CAUSE1) |
3981		((u64)t4_read_reg(adapter, A_SGE_INT_CAUSE2) << 32);
3982	if (v) {
3983		CH_ALERT(adapter, "SGE parity error (%#llx)\n",
3984				(unsigned long long)v);
3985		t4_write_reg(adapter, A_SGE_INT_CAUSE1, v);
3986		t4_write_reg(adapter, A_SGE_INT_CAUSE2, v >> 32);
3987	}
3988
3989	v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3, sge_intr_info);
3990	if (chip_id(adapter) <= CHELSIO_T5)
3991		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
3992					   t4t5_sge_intr_info);
3993	else
3994		v |= t4_handle_intr_status(adapter, A_SGE_INT_CAUSE3,
3995					   t6_sge_intr_info);
3996
3997	err = t4_read_reg(adapter, A_SGE_ERROR_STATS);
3998	if (err & F_ERROR_QID_VALID) {
3999		CH_ERR(adapter, "SGE error for queue %u\n", G_ERROR_QID(err));
4000		if (err & F_UNCAPTURED_ERROR)
4001			CH_ERR(adapter, "SGE UNCAPTURED_ERROR set (clearing)\n");
4002		t4_write_reg(adapter, A_SGE_ERROR_STATS, F_ERROR_QID_VALID |
4003			     F_UNCAPTURED_ERROR);
4004	}
4005
4006	if (v != 0)
4007		t4_fatal_err(adapter);
4008}
4009
4010#define CIM_OBQ_INTR (F_OBQULP0PARERR | F_OBQULP1PARERR | F_OBQULP2PARERR |\
4011		      F_OBQULP3PARERR | F_OBQSGEPARERR | F_OBQNCSIPARERR)
4012#define CIM_IBQ_INTR (F_IBQTP0PARERR | F_IBQTP1PARERR | F_IBQULPPARERR |\
4013		      F_IBQSGEHIPARERR | F_IBQSGELOPARERR | F_IBQNCSIPARERR)
4014
4015/*
4016 * CIM interrupt handler.
4017 */
4018static void cim_intr_handler(struct adapter *adapter)
4019{
4020	static const struct intr_info cim_intr_info[] = {
4021		{ F_PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
4022		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
4023		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
4024		{ F_MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
4025		{ F_MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
4026		{ F_TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
4027		{ F_TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
4028		{ 0 }
4029	};
4030	static const struct intr_info cim_upintr_info[] = {
4031		{ F_RSVDSPACEINT, "CIM reserved space access", -1, 1 },
4032		{ F_ILLTRANSINT, "CIM illegal transaction", -1, 1 },
4033		{ F_ILLWRINT, "CIM illegal write", -1, 1 },
4034		{ F_ILLRDINT, "CIM illegal read", -1, 1 },
4035		{ F_ILLRDBEINT, "CIM illegal read BE", -1, 1 },
4036		{ F_ILLWRBEINT, "CIM illegal write BE", -1, 1 },
4037		{ F_SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
4038		{ F_SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
4039		{ F_BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
4040		{ F_SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
4041		{ F_SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
4042		{ F_BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
4043		{ F_SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
4044		{ F_SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
4045		{ F_BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
4046		{ F_BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
4047		{ F_SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
4048		{ F_SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
4049		{ F_BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
4050		{ F_BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
4051		{ F_SGLRDPLINT , "CIM single read from PL space", -1, 1 },
4052		{ F_SGLWRPLINT , "CIM single write to PL space", -1, 1 },
4053		{ F_BLKRDPLINT , "CIM block read from PL space", -1, 1 },
4054		{ F_BLKWRPLINT , "CIM block write to PL space", -1, 1 },
4055		{ F_REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
4056		{ F_RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
4057		{ F_TIMEOUTINT , "CIM PIF timeout", -1, 1 },
4058		{ F_TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
4059		{ 0 }
4060	};
4061	int fat;
4062
4063	if (t4_read_reg(adapter, A_PCIE_FW) & F_PCIE_FW_ERR)
4064		t4_report_fw_error(adapter);
4065
4066	fat = t4_handle_intr_status(adapter, A_CIM_HOST_INT_CAUSE,
4067				    cim_intr_info) +
4068	      t4_handle_intr_status(adapter, A_CIM_HOST_UPACC_INT_CAUSE,
4069				    cim_upintr_info);
4070	if (fat)
4071		t4_fatal_err(adapter);
4072}
4073
4074/*
4075 * ULP RX interrupt handler.
4076 */
4077static void ulprx_intr_handler(struct adapter *adapter)
4078{
4079	static const struct intr_info ulprx_intr_info[] = {
4080		{ F_CAUSE_CTX_1, "ULPRX channel 1 context error", -1, 1 },
4081		{ F_CAUSE_CTX_0, "ULPRX channel 0 context error", -1, 1 },
4082		{ 0x7fffff, "ULPRX parity error", -1, 1 },
4083		{ 0 }
4084	};
4085
4086	if (t4_handle_intr_status(adapter, A_ULP_RX_INT_CAUSE, ulprx_intr_info))
4087		t4_fatal_err(adapter);
4088}
4089
4090/*
4091 * ULP TX interrupt handler.
4092 */
4093static void ulptx_intr_handler(struct adapter *adapter)
4094{
4095	static const struct intr_info ulptx_intr_info[] = {
4096		{ F_PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
4097		  0 },
4098		{ F_PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
4099		  0 },
4100		{ F_PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
4101		  0 },
4102		{ F_PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
4103		  0 },
4104		{ 0xfffffff, "ULPTX parity error", -1, 1 },
4105		{ 0 }
4106	};
4107
4108	if (t4_handle_intr_status(adapter, A_ULP_TX_INT_CAUSE, ulptx_intr_info))
4109		t4_fatal_err(adapter);
4110}
4111
4112/*
4113 * PM TX interrupt handler.
4114 */
4115static void pmtx_intr_handler(struct adapter *adapter)
4116{
4117	static const struct intr_info pmtx_intr_info[] = {
4118		{ F_PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
4119		{ F_PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
4120		{ F_PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
4121		{ F_ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
4122		{ 0xffffff0, "PMTX framing error", -1, 1 },
4123		{ F_OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
4124		{ F_DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
4125		  1 },
4126		{ F_ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
4127		{ F_C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
4128		{ 0 }
4129	};
4130
4131	if (t4_handle_intr_status(adapter, A_PM_TX_INT_CAUSE, pmtx_intr_info))
4132		t4_fatal_err(adapter);
4133}
4134
4135/*
4136 * PM RX interrupt handler.
4137 */
4138static void pmrx_intr_handler(struct adapter *adapter)
4139{
4140	static const struct intr_info pmrx_intr_info[] = {
4141		{ F_ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
4142		{ 0x3ffff0, "PMRX framing error", -1, 1 },
4143		{ F_OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
4144		{ F_DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
4145		  1 },
4146		{ F_IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
4147		{ F_E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
4148		{ 0 }
4149	};
4150
4151	if (t4_handle_intr_status(adapter, A_PM_RX_INT_CAUSE, pmrx_intr_info))
4152		t4_fatal_err(adapter);
4153}
4154
4155/*
4156 * CPL switch interrupt handler.
4157 */
4158static void cplsw_intr_handler(struct adapter *adapter)
4159{
4160	static const struct intr_info cplsw_intr_info[] = {
4161		{ F_CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
4162		{ F_CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
4163		{ F_TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
4164		{ F_SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
4165		{ F_CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
4166		{ F_ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
4167		{ 0 }
4168	};
4169
4170	if (t4_handle_intr_status(adapter, A_CPL_INTR_CAUSE, cplsw_intr_info))
4171		t4_fatal_err(adapter);
4172}
4173
4174/*
4175 * LE interrupt handler.
4176 */
4177static void le_intr_handler(struct adapter *adap)
4178{
4179	unsigned int chip_ver = chip_id(adap);
4180	static const struct intr_info le_intr_info[] = {
4181		{ F_LIPMISS, "LE LIP miss", -1, 0 },
4182		{ F_LIP0, "LE 0 LIP error", -1, 0 },
4183		{ F_PARITYERR, "LE parity error", -1, 1 },
4184		{ F_UNKNOWNCMD, "LE unknown command", -1, 1 },
4185		{ F_REQQPARERR, "LE request queue parity error", -1, 1 },
4186		{ 0 }
4187	};
4188
4189	static const struct intr_info t6_le_intr_info[] = {
4190		{ F_T6_LIPMISS, "LE LIP miss", -1, 0 },
4191		{ F_T6_LIP0, "LE 0 LIP error", -1, 0 },
4192		{ F_TCAMINTPERR, "LE parity error", -1, 1 },
4193		{ F_T6_UNKNOWNCMD, "LE unknown command", -1, 1 },
4194		{ F_SSRAMINTPERR, "LE request queue parity error", -1, 1 },
4195		{ 0 }
4196	};
4197
4198	if (t4_handle_intr_status(adap, A_LE_DB_INT_CAUSE,
4199				  (chip_ver <= CHELSIO_T5) ?
4200				  le_intr_info : t6_le_intr_info))
4201		t4_fatal_err(adap);
4202}
4203
4204/*
4205 * MPS interrupt handler.
4206 */
4207static void mps_intr_handler(struct adapter *adapter)
4208{
4209	static const struct intr_info mps_rx_intr_info[] = {
4210		{ 0xffffff, "MPS Rx parity error", -1, 1 },
4211		{ 0 }
4212	};
4213	static const struct intr_info mps_tx_intr_info[] = {
4214		{ V_TPFIFO(M_TPFIFO), "MPS Tx TP FIFO parity error", -1, 1 },
4215		{ F_NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4216		{ V_TXDATAFIFO(M_TXDATAFIFO), "MPS Tx data FIFO parity error",
4217		  -1, 1 },
4218		{ V_TXDESCFIFO(M_TXDESCFIFO), "MPS Tx desc FIFO parity error",
4219		  -1, 1 },
4220		{ F_BUBBLE, "MPS Tx underflow", -1, 1 },
4221		{ F_SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
4222		{ F_FRMERR, "MPS Tx framing error", -1, 1 },
4223		{ 0 }
4224	};
4225	static const struct intr_info mps_trc_intr_info[] = {
4226		{ V_FILTMEM(M_FILTMEM), "MPS TRC filter parity error", -1, 1 },
4227		{ V_PKTFIFO(M_PKTFIFO), "MPS TRC packet FIFO parity error", -1,
4228		  1 },
4229		{ F_MISCPERR, "MPS TRC misc parity error", -1, 1 },
4230		{ 0 }
4231	};
4232	static const struct intr_info mps_stat_sram_intr_info[] = {
4233		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4234		{ 0 }
4235	};
4236	static const struct intr_info mps_stat_tx_intr_info[] = {
4237		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4238		{ 0 }
4239	};
4240	static const struct intr_info mps_stat_rx_intr_info[] = {
4241		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4242		{ 0 }
4243	};
4244	static const struct intr_info mps_cls_intr_info[] = {
4245		{ F_MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
4246		{ F_MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
4247		{ F_HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
4248		{ 0 }
4249	};
4250
4251	int fat;
4252
4253	fat = t4_handle_intr_status(adapter, A_MPS_RX_PERR_INT_CAUSE,
4254				    mps_rx_intr_info) +
4255	      t4_handle_intr_status(adapter, A_MPS_TX_INT_CAUSE,
4256				    mps_tx_intr_info) +
4257	      t4_handle_intr_status(adapter, A_MPS_TRC_INT_CAUSE,
4258				    mps_trc_intr_info) +
4259	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_SRAM,
4260				    mps_stat_sram_intr_info) +
4261	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
4262				    mps_stat_tx_intr_info) +
4263	      t4_handle_intr_status(adapter, A_MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
4264				    mps_stat_rx_intr_info) +
4265	      t4_handle_intr_status(adapter, A_MPS_CLS_INT_CAUSE,
4266				    mps_cls_intr_info);
4267
4268	t4_write_reg(adapter, A_MPS_INT_CAUSE, 0);
4269	t4_read_reg(adapter, A_MPS_INT_CAUSE);	/* flush */
4270	if (fat)
4271		t4_fatal_err(adapter);
4272}
4273
4274#define MEM_INT_MASK (F_PERR_INT_CAUSE | F_ECC_CE_INT_CAUSE | \
4275		      F_ECC_UE_INT_CAUSE)
4276
4277/*
4278 * EDC/MC interrupt handler.
4279 */
4280static void mem_intr_handler(struct adapter *adapter, int idx)
4281{
4282	static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
4283
4284	unsigned int addr, cnt_addr, v;
4285
4286	if (idx <= MEM_EDC1) {
4287		addr = EDC_REG(A_EDC_INT_CAUSE, idx);
4288		cnt_addr = EDC_REG(A_EDC_ECC_STATUS, idx);
4289	} else if (idx == MEM_MC) {
4290		if (is_t4(adapter)) {
4291			addr = A_MC_INT_CAUSE;
4292			cnt_addr = A_MC_ECC_STATUS;
4293		} else {
4294			addr = A_MC_P_INT_CAUSE;
4295			cnt_addr = A_MC_P_ECC_STATUS;
4296		}
4297	} else {
4298		addr = MC_REG(A_MC_P_INT_CAUSE, 1);
4299		cnt_addr = MC_REG(A_MC_P_ECC_STATUS, 1);
4300	}
4301
4302	v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
4303	if (v & F_PERR_INT_CAUSE)
4304		CH_ALERT(adapter, "%s FIFO parity error\n",
4305			  name[idx]);
4306	if (v & F_ECC_CE_INT_CAUSE) {
4307		u32 cnt = G_ECC_CECNT(t4_read_reg(adapter, cnt_addr));
4308
4309		t4_edc_err_read(adapter, idx);
4310
4311		t4_write_reg(adapter, cnt_addr, V_ECC_CECNT(M_ECC_CECNT));
4312		CH_WARN_RATELIMIT(adapter,
4313				  "%u %s correctable ECC data error%s\n",
4314				  cnt, name[idx], cnt > 1 ? "s" : "");
4315	}
4316	if (v & F_ECC_UE_INT_CAUSE)
4317		CH_ALERT(adapter,
4318			 "%s uncorrectable ECC data error\n", name[idx]);
4319
4320	t4_write_reg(adapter, addr, v);
4321	if (v & (F_PERR_INT_CAUSE | F_ECC_UE_INT_CAUSE))
4322		t4_fatal_err(adapter);
4323}
4324
4325/*
4326 * MA interrupt handler.
4327 */
4328static void ma_intr_handler(struct adapter *adapter)
4329{
4330	u32 v, status = t4_read_reg(adapter, A_MA_INT_CAUSE);
4331
4332	if (status & F_MEM_PERR_INT_CAUSE) {
4333		CH_ALERT(adapter,
4334			  "MA parity error, parity status %#x\n",
4335			  t4_read_reg(adapter, A_MA_PARITY_ERROR_STATUS1));
4336		if (is_t5(adapter))
4337			CH_ALERT(adapter,
4338				  "MA parity error, parity status %#x\n",
4339				  t4_read_reg(adapter,
4340					      A_MA_PARITY_ERROR_STATUS2));
4341	}
4342	if (status & F_MEM_WRAP_INT_CAUSE) {
4343		v = t4_read_reg(adapter, A_MA_INT_WRAP_STATUS);
4344		CH_ALERT(adapter, "MA address wrap-around error by "
4345			  "client %u to address %#x\n",
4346			  G_MEM_WRAP_CLIENT_NUM(v),
4347			  G_MEM_WRAP_ADDRESS(v) << 4);
4348	}
4349	t4_write_reg(adapter, A_MA_INT_CAUSE, status);
4350	t4_fatal_err(adapter);
4351}
4352
4353/*
4354 * SMB interrupt handler.
4355 */
4356static void smb_intr_handler(struct adapter *adap)
4357{
4358	static const struct intr_info smb_intr_info[] = {
4359		{ F_MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
4360		{ F_MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
4361		{ F_SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
4362		{ 0 }
4363	};
4364
4365	if (t4_handle_intr_status(adap, A_SMB_INT_CAUSE, smb_intr_info))
4366		t4_fatal_err(adap);
4367}
4368
4369/*
4370 * NC-SI interrupt handler.
4371 */
4372static void ncsi_intr_handler(struct adapter *adap)
4373{
4374	static const struct intr_info ncsi_intr_info[] = {
4375		{ F_CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
4376		{ F_MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
4377		{ F_TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
4378		{ F_RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
4379		{ 0 }
4380	};
4381
4382	if (t4_handle_intr_status(adap, A_NCSI_INT_CAUSE, ncsi_intr_info))
4383		t4_fatal_err(adap);
4384}
4385
4386/*
4387 * XGMAC interrupt handler.
4388 */
4389static void xgmac_intr_handler(struct adapter *adap, int port)
4390{
4391	u32 v, int_cause_reg;
4392
4393	if (is_t4(adap))
4394		int_cause_reg = PORT_REG(port, A_XGMAC_PORT_INT_CAUSE);
4395	else
4396		int_cause_reg = T5_PORT_REG(port, A_MAC_PORT_INT_CAUSE);
4397
4398	v = t4_read_reg(adap, int_cause_reg);
4399
4400	v &= (F_TXFIFO_PRTY_ERR | F_RXFIFO_PRTY_ERR);
4401	if (!v)
4402		return;
4403
4404	if (v & F_TXFIFO_PRTY_ERR)
4405		CH_ALERT(adap, "XGMAC %d Tx FIFO parity error\n",
4406			  port);
4407	if (v & F_RXFIFO_PRTY_ERR)
4408		CH_ALERT(adap, "XGMAC %d Rx FIFO parity error\n",
4409			  port);
4410	t4_write_reg(adap, int_cause_reg, v);
4411	t4_fatal_err(adap);
4412}
4413
4414/*
4415 * PL interrupt handler.
4416 */
4417static void pl_intr_handler(struct adapter *adap)
4418{
4419	static const struct intr_info pl_intr_info[] = {
4420		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4421		{ F_PERRVFID, "PL VFID_MAP parity error", -1, 1 },
4422		{ 0 }
4423	};
4424
4425	static const struct intr_info t5_pl_intr_info[] = {
4426		{ F_FATALPERR, "Fatal parity error", -1, 1 },
4427		{ 0 }
4428	};
4429
4430	if (t4_handle_intr_status(adap, A_PL_PL_INT_CAUSE,
4431				  is_t4(adap) ?
4432				  pl_intr_info : t5_pl_intr_info))
4433		t4_fatal_err(adap);
4434}
4435
4436#define PF_INTR_MASK (F_PFSW | F_PFCIM)
4437
4438/**
4439 *	t4_slow_intr_handler - control path interrupt handler
4440 *	@adapter: the adapter
4441 *
4442 *	T4 interrupt handler for non-data global interrupt events, e.g., errors.
4443 *	The designation 'slow' is because it involves register reads, while
4444 *	data interrupts typically don't involve any MMIOs.
4445 */
4446int t4_slow_intr_handler(struct adapter *adapter)
4447{
4448	u32 cause = t4_read_reg(adapter, A_PL_INT_CAUSE);
4449
4450	if (!(cause & GLBL_INTR_MASK))
4451		return 0;
4452	if (cause & F_CIM)
4453		cim_intr_handler(adapter);
4454	if (cause & F_MPS)
4455		mps_intr_handler(adapter);
4456	if (cause & F_NCSI)
4457		ncsi_intr_handler(adapter);
4458	if (cause & F_PL)
4459		pl_intr_handler(adapter);
4460	if (cause & F_SMB)
4461		smb_intr_handler(adapter);
4462	if (cause & F_MAC0)
4463		xgmac_intr_handler(adapter, 0);
4464	if (cause & F_MAC1)
4465		xgmac_intr_handler(adapter, 1);
4466	if (cause & F_MAC2)
4467		xgmac_intr_handler(adapter, 2);
4468	if (cause & F_MAC3)
4469		xgmac_intr_handler(adapter, 3);
4470	if (cause & F_PCIE)
4471		pcie_intr_handler(adapter);
4472	if (cause & F_MC0)
4473		mem_intr_handler(adapter, MEM_MC);
4474	if (is_t5(adapter) && (cause & F_MC1))
4475		mem_intr_handler(adapter, MEM_MC1);
4476	if (cause & F_EDC0)
4477		mem_intr_handler(adapter, MEM_EDC0);
4478	if (cause & F_EDC1)
4479		mem_intr_handler(adapter, MEM_EDC1);
4480	if (cause & F_LE)
4481		le_intr_handler(adapter);
4482	if (cause & F_TP)
4483		tp_intr_handler(adapter);
4484	if (cause & F_MA)
4485		ma_intr_handler(adapter);
4486	if (cause & F_PM_TX)
4487		pmtx_intr_handler(adapter);
4488	if (cause & F_PM_RX)
4489		pmrx_intr_handler(adapter);
4490	if (cause & F_ULP_RX)
4491		ulprx_intr_handler(adapter);
4492	if (cause & F_CPL_SWITCH)
4493		cplsw_intr_handler(adapter);
4494	if (cause & F_SGE)
4495		sge_intr_handler(adapter);
4496	if (cause & F_ULP_TX)
4497		ulptx_intr_handler(adapter);
4498
4499	/* Clear the interrupts just processed for which we are the master. */
4500	t4_write_reg(adapter, A_PL_INT_CAUSE, cause & GLBL_INTR_MASK);
4501	(void)t4_read_reg(adapter, A_PL_INT_CAUSE); /* flush */
4502	return 1;
4503}
4504
4505/**
4506 *	t4_intr_enable - enable interrupts
4507 *	@adapter: the adapter whose interrupts should be enabled
4508 *
4509 *	Enable PF-specific interrupts for the calling function and the top-level
4510 *	interrupt concentrator for global interrupts.  Interrupts are already
4511 *	enabled at each module,	here we just enable the roots of the interrupt
4512 *	hierarchies.
4513 *
4514 *	Note: this function should be called only when the driver manages
4515 *	non PF-specific interrupts from the various HW modules.  Only one PCI
4516 *	function at a time should be doing this.
4517 */
4518void t4_intr_enable(struct adapter *adapter)
4519{
4520	u32 val = 0;
4521	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4522	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4523		  ? G_SOURCEPF(whoami)
4524		  : G_T6_SOURCEPF(whoami));
4525
4526	if (chip_id(adapter) <= CHELSIO_T5)
4527		val = F_ERR_DROPPED_DB | F_ERR_EGR_CTXT_PRIO | F_DBFIFO_HP_INT;
4528	else
4529		val = F_ERR_PCIE_ERROR0 | F_ERR_PCIE_ERROR1 | F_FATAL_WRE_LEN;
4530	t4_write_reg(adapter, A_SGE_INT_ENABLE3, F_ERR_CPL_EXCEED_IQE_SIZE |
4531		     F_ERR_INVALID_CIDX_INC | F_ERR_CPL_OPCODE_0 |
4532		     F_ERR_DATA_CPL_ON_HIGH_QID1 | F_INGRESS_SIZE_ERR |
4533		     F_ERR_DATA_CPL_ON_HIGH_QID0 | F_ERR_BAD_DB_PIDX3 |
4534		     F_ERR_BAD_DB_PIDX2 | F_ERR_BAD_DB_PIDX1 |
4535		     F_ERR_BAD_DB_PIDX0 | F_ERR_ING_CTXT_PRIO |
4536		     F_DBFIFO_LP_INT | F_EGRESS_SIZE_ERR | val);
4537	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), PF_INTR_MASK);
4538	t4_set_reg_field(adapter, A_PL_INT_MAP0, 0, 1 << pf);
4539}
4540
4541/**
4542 *	t4_intr_disable - disable interrupts
4543 *	@adapter: the adapter whose interrupts should be disabled
4544 *
4545 *	Disable interrupts.  We only disable the top-level interrupt
4546 *	concentrators.  The caller must be a PCI function managing global
4547 *	interrupts.
4548 */
4549void t4_intr_disable(struct adapter *adapter)
4550{
4551	u32 whoami = t4_read_reg(adapter, A_PL_WHOAMI);
4552	u32 pf = (chip_id(adapter) <= CHELSIO_T5
4553		  ? G_SOURCEPF(whoami)
4554		  : G_T6_SOURCEPF(whoami));
4555
4556	t4_write_reg(adapter, MYPF_REG(A_PL_PF_INT_ENABLE), 0);
4557	t4_set_reg_field(adapter, A_PL_INT_MAP0, 1 << pf, 0);
4558}
4559
4560/**
4561 *	t4_intr_clear - clear all interrupts
4562 *	@adapter: the adapter whose interrupts should be cleared
4563 *
4564 *	Clears all interrupts.  The caller must be a PCI function managing
4565 *	global interrupts.
4566 */
4567void t4_intr_clear(struct adapter *adapter)
4568{
4569	static const unsigned int cause_reg[] = {
4570		A_SGE_INT_CAUSE1, A_SGE_INT_CAUSE2, A_SGE_INT_CAUSE3,
4571		A_PCIE_NONFAT_ERR, A_PCIE_INT_CAUSE,
4572		A_MA_INT_WRAP_STATUS, A_MA_PARITY_ERROR_STATUS1, A_MA_INT_CAUSE,
4573		A_EDC_INT_CAUSE, EDC_REG(A_EDC_INT_CAUSE, 1),
4574		A_CIM_HOST_INT_CAUSE, A_CIM_HOST_UPACC_INT_CAUSE,
4575		MYPF_REG(A_CIM_PF_HOST_INT_CAUSE),
4576		A_TP_INT_CAUSE,
4577		A_ULP_RX_INT_CAUSE, A_ULP_TX_INT_CAUSE,
4578		A_PM_RX_INT_CAUSE, A_PM_TX_INT_CAUSE,
4579		A_MPS_RX_PERR_INT_CAUSE,
4580		A_CPL_INTR_CAUSE,
4581		MYPF_REG(A_PL_PF_INT_CAUSE),
4582		A_PL_PL_INT_CAUSE,
4583		A_LE_DB_INT_CAUSE,
4584	};
4585
4586	unsigned int i;
4587
4588	for (i = 0; i < ARRAY_SIZE(cause_reg); ++i)
4589		t4_write_reg(adapter, cause_reg[i], 0xffffffff);
4590
4591	t4_write_reg(adapter, is_t4(adapter) ? A_MC_INT_CAUSE :
4592				A_MC_P_INT_CAUSE, 0xffffffff);
4593
4594	if (is_t4(adapter)) {
4595		t4_write_reg(adapter, A_PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
4596				0xffffffff);
4597		t4_write_reg(adapter, A_PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
4598				0xffffffff);
4599	} else
4600		t4_write_reg(adapter, A_MA_PARITY_ERROR_STATUS2, 0xffffffff);
4601
4602	t4_write_reg(adapter, A_PL_INT_CAUSE, GLBL_INTR_MASK);
4603	(void) t4_read_reg(adapter, A_PL_INT_CAUSE);          /* flush */
4604}
4605
4606/**
4607 *	hash_mac_addr - return the hash value of a MAC address
4608 *	@addr: the 48-bit Ethernet MAC address
4609 *
4610 *	Hashes a MAC address according to the hash function used by HW inexact
4611 *	(hash) address matching.
4612 */
4613static int hash_mac_addr(const u8 *addr)
4614{
4615	u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2];
4616	u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5];
4617	a ^= b;
4618	a ^= (a >> 12);
4619	a ^= (a >> 6);
4620	return a & 0x3f;
4621}
4622
4623/**
4624 *	t4_config_rss_range - configure a portion of the RSS mapping table
4625 *	@adapter: the adapter
4626 *	@mbox: mbox to use for the FW command
4627 *	@viid: virtual interface whose RSS subtable is to be written
4628 *	@start: start entry in the table to write
4629 *	@n: how many table entries to write
4630 *	@rspq: values for the "response queue" (Ingress Queue) lookup table
4631 *	@nrspq: number of values in @rspq
4632 *
4633 *	Programs the selected part of the VI's RSS mapping table with the
4634 *	provided values.  If @nrspq < @n the supplied values are used repeatedly
4635 *	until the full table range is populated.
4636 *
4637 *	The caller must ensure the values in @rspq are in the range allowed for
4638 *	@viid.
4639 */
4640int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4641			int start, int n, const u16 *rspq, unsigned int nrspq)
4642{
4643	int ret;
4644	const u16 *rsp = rspq;
4645	const u16 *rsp_end = rspq + nrspq;
4646	struct fw_rss_ind_tbl_cmd cmd;
4647
4648	memset(&cmd, 0, sizeof(cmd));
4649	cmd.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_IND_TBL_CMD) |
4650				     F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4651				     V_FW_RSS_IND_TBL_CMD_VIID(viid));
4652	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
4653
4654	/*
4655	 * Each firmware RSS command can accommodate up to 32 RSS Ingress
4656	 * Queue Identifiers.  These Ingress Queue IDs are packed three to
4657	 * a 32-bit word as 10-bit values with the upper remaining 2 bits
4658	 * reserved.
4659	 */
4660	while (n > 0) {
4661		int nq = min(n, 32);
4662		int nq_packed = 0;
4663		__be32 *qp = &cmd.iq0_to_iq2;
4664
4665		/*
4666		 * Set up the firmware RSS command header to send the next
4667		 * "nq" Ingress Queue IDs to the firmware.
4668		 */
4669		cmd.niqid = cpu_to_be16(nq);
4670		cmd.startidx = cpu_to_be16(start);
4671
4672		/*
4673		 * "nq" more done for the start of the next loop.
4674		 */
4675		start += nq;
4676		n -= nq;
4677
4678		/*
4679		 * While there are still Ingress Queue IDs to stuff into the
4680		 * current firmware RSS command, retrieve them from the
4681		 * Ingress Queue ID array and insert them into the command.
4682		 */
4683		while (nq > 0) {
4684			/*
4685			 * Grab up to the next 3 Ingress Queue IDs (wrapping
4686			 * around the Ingress Queue ID array if necessary) and
4687			 * insert them into the firmware RSS command at the
4688			 * current 3-tuple position within the commad.
4689			 */
4690			u16 qbuf[3];
4691			u16 *qbp = qbuf;
4692			int nqbuf = min(3, nq);
4693
4694			nq -= nqbuf;
4695			qbuf[0] = qbuf[1] = qbuf[2] = 0;
4696			while (nqbuf && nq_packed < 32) {
4697				nqbuf--;
4698				nq_packed++;
4699				*qbp++ = *rsp++;
4700				if (rsp >= rsp_end)
4701					rsp = rspq;
4702			}
4703			*qp++ = cpu_to_be32(V_FW_RSS_IND_TBL_CMD_IQ0(qbuf[0]) |
4704					    V_FW_RSS_IND_TBL_CMD_IQ1(qbuf[1]) |
4705					    V_FW_RSS_IND_TBL_CMD_IQ2(qbuf[2]));
4706		}
4707
4708		/*
4709		 * Send this portion of the RRS table update to the firmware;
4710		 * bail out on any errors.
4711		 */
4712		ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4713		if (ret)
4714			return ret;
4715	}
4716	return 0;
4717}
4718
4719/**
4720 *	t4_config_glbl_rss - configure the global RSS mode
4721 *	@adapter: the adapter
4722 *	@mbox: mbox to use for the FW command
4723 *	@mode: global RSS mode
4724 *	@flags: mode-specific flags
4725 *
4726 *	Sets the global RSS mode.
4727 */
4728int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4729		       unsigned int flags)
4730{
4731	struct fw_rss_glb_config_cmd c;
4732
4733	memset(&c, 0, sizeof(c));
4734	c.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_RSS_GLB_CONFIG_CMD) |
4735				    F_FW_CMD_REQUEST | F_FW_CMD_WRITE);
4736	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4737	if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
4738		c.u.manual.mode_pkd =
4739			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4740	} else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4741		c.u.basicvirtual.mode_pkd =
4742			cpu_to_be32(V_FW_RSS_GLB_CONFIG_CMD_MODE(mode));
4743		c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
4744	} else
4745		return -EINVAL;
4746	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4747}
4748
4749/**
4750 *	t4_config_vi_rss - configure per VI RSS settings
4751 *	@adapter: the adapter
4752 *	@mbox: mbox to use for the FW command
4753 *	@viid: the VI id
4754 *	@flags: RSS flags
4755 *	@defq: id of the default RSS queue for the VI.
4756 *
4757 *	Configures VI-specific RSS properties.
4758 */
4759int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4760		     unsigned int flags, unsigned int defq)
4761{
4762	struct fw_rss_vi_config_cmd c;
4763
4764	memset(&c, 0, sizeof(c));
4765	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_RSS_VI_CONFIG_CMD) |
4766				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
4767				   V_FW_RSS_VI_CONFIG_CMD_VIID(viid));
4768	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4769	c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4770					V_FW_RSS_VI_CONFIG_CMD_DEFAULTQ(defq));
4771	return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4772}
4773
4774/* Read an RSS table row */
4775static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4776{
4777	t4_write_reg(adap, A_TP_RSS_LKP_TABLE, 0xfff00000 | row);
4778	return t4_wait_op_done_val(adap, A_TP_RSS_LKP_TABLE, F_LKPTBLROWVLD, 1,
4779				   5, 0, val);
4780}
4781
4782/**
4783 *	t4_read_rss - read the contents of the RSS mapping table
4784 *	@adapter: the adapter
4785 *	@map: holds the contents of the RSS mapping table
4786 *
4787 *	Reads the contents of the RSS hash->queue mapping table.
4788 */
4789int t4_read_rss(struct adapter *adapter, u16 *map)
4790{
4791	u32 val;
4792	int i, ret;
4793
4794	for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4795		ret = rd_rss_row(adapter, i, &val);
4796		if (ret)
4797			return ret;
4798		*map++ = G_LKPTBLQUEUE0(val);
4799		*map++ = G_LKPTBLQUEUE1(val);
4800	}
4801	return 0;
4802}
4803
4804/**
4805 *	t4_fw_tp_pio_rw - Access TP PIO through LDST
4806 *	@adap: the adapter
4807 *	@vals: where the indirect register values are stored/written
4808 *	@nregs: how many indirect registers to read/write
4809 *	@start_idx: index of first indirect register to read/write
4810 *	@rw: Read (1) or Write (0)
4811 *
4812 *	Access TP PIO registers through LDST
4813 */
4814void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4815		     unsigned int start_index, unsigned int rw)
4816{
4817	int ret, i;
4818	int cmd = FW_LDST_ADDRSPC_TP_PIO;
4819	struct fw_ldst_cmd c;
4820
4821	for (i = 0 ; i < nregs; i++) {
4822		memset(&c, 0, sizeof(c));
4823		c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
4824						F_FW_CMD_REQUEST |
4825						(rw ? F_FW_CMD_READ :
4826						     F_FW_CMD_WRITE) |
4827						V_FW_LDST_CMD_ADDRSPACE(cmd));
4828		c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4829
4830		c.u.addrval.addr = cpu_to_be32(start_index + i);
4831		c.u.addrval.val  = rw ? 0 : cpu_to_be32(vals[i]);
4832		ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4833		if (ret == 0) {
4834			if (rw)
4835				vals[i] = be32_to_cpu(c.u.addrval.val);
4836		}
4837	}
4838}
4839
4840/**
4841 *	t4_read_rss_key - read the global RSS key
4842 *	@adap: the adapter
4843 *	@key: 10-entry array holding the 320-bit RSS key
4844 *
4845 *	Reads the global 320-bit RSS key.
4846 */
4847void t4_read_rss_key(struct adapter *adap, u32 *key)
4848{
4849	if (t4_use_ldst(adap))
4850		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 1);
4851	else
4852		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4853				 A_TP_RSS_SECRET_KEY0);
4854}
4855
4856/**
4857 *	t4_write_rss_key - program one of the RSS keys
4858 *	@adap: the adapter
4859 *	@key: 10-entry array holding the 320-bit RSS key
4860 *	@idx: which RSS key to write
4861 *
4862 *	Writes one of the RSS keys with the given 320-bit value.  If @idx is
4863 *	0..15 the corresponding entry in the RSS key table is written,
4864 *	otherwise the global RSS key is written.
4865 */
4866void t4_write_rss_key(struct adapter *adap, u32 *key, int idx)
4867{
4868	u8 rss_key_addr_cnt = 16;
4869	u32 vrt = t4_read_reg(adap, A_TP_RSS_CONFIG_VRT);
4870
4871	/*
4872	 * T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4873	 * allows access to key addresses 16-63 by using KeyWrAddrX
4874	 * as index[5:4](upper 2) into key table
4875	 */
4876	if ((chip_id(adap) > CHELSIO_T5) &&
4877	    (vrt & F_KEYEXTEND) && (G_KEYMODE(vrt) == 3))
4878		rss_key_addr_cnt = 32;
4879
4880	if (t4_use_ldst(adap))
4881		t4_fw_tp_pio_rw(adap, key, 10, A_TP_RSS_SECRET_KEY0, 0);
4882	else
4883		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, key, 10,
4884				  A_TP_RSS_SECRET_KEY0);
4885
4886	if (idx >= 0 && idx < rss_key_addr_cnt) {
4887		if (rss_key_addr_cnt > 16)
4888			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4889				     V_KEYWRADDRX(idx >> 4) |
4890				     V_T6_VFWRADDR(idx) | F_KEYWREN);
4891		else
4892			t4_write_reg(adap, A_TP_RSS_CONFIG_VRT,
4893				     V_KEYWRADDR(idx) | F_KEYWREN);
4894	}
4895}
4896
4897/**
4898 *	t4_read_rss_pf_config - read PF RSS Configuration Table
4899 *	@adapter: the adapter
4900 *	@index: the entry in the PF RSS table to read
4901 *	@valp: where to store the returned value
4902 *
4903 *	Reads the PF RSS Configuration Table at the specified index and returns
4904 *	the value found there.
4905 */
4906void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4907			   u32 *valp)
4908{
4909	if (t4_use_ldst(adapter))
4910		t4_fw_tp_pio_rw(adapter, valp, 1,
4911				A_TP_RSS_PF0_CONFIG + index, 1);
4912	else
4913		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4914				 valp, 1, A_TP_RSS_PF0_CONFIG + index);
4915}
4916
4917/**
4918 *	t4_write_rss_pf_config - write PF RSS Configuration Table
4919 *	@adapter: the adapter
4920 *	@index: the entry in the VF RSS table to read
4921 *	@val: the value to store
4922 *
4923 *	Writes the PF RSS Configuration Table at the specified index with the
4924 *	specified value.
4925 */
4926void t4_write_rss_pf_config(struct adapter *adapter, unsigned int index,
4927			    u32 val)
4928{
4929	if (t4_use_ldst(adapter))
4930		t4_fw_tp_pio_rw(adapter, &val, 1,
4931				A_TP_RSS_PF0_CONFIG + index, 0);
4932	else
4933		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4934				  &val, 1, A_TP_RSS_PF0_CONFIG + index);
4935}
4936
4937/**
4938 *	t4_read_rss_vf_config - read VF RSS Configuration Table
4939 *	@adapter: the adapter
4940 *	@index: the entry in the VF RSS table to read
4941 *	@vfl: where to store the returned VFL
4942 *	@vfh: where to store the returned VFH
4943 *
4944 *	Reads the VF RSS Configuration Table at the specified index and returns
4945 *	the (VFL, VFH) values found there.
4946 */
4947void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4948			   u32 *vfl, u32 *vfh)
4949{
4950	u32 vrt, mask, data;
4951
4952	if (chip_id(adapter) <= CHELSIO_T5) {
4953		mask = V_VFWRADDR(M_VFWRADDR);
4954		data = V_VFWRADDR(index);
4955	} else {
4956		 mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
4957		 data = V_T6_VFWRADDR(index);
4958	}
4959	/*
4960	 * Request that the index'th VF Table values be read into VFL/VFH.
4961	 */
4962	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
4963	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
4964	vrt |= data | F_VFRDEN;
4965	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
4966
4967	/*
4968	 * Grab the VFL/VFH values ...
4969	 */
4970	if (t4_use_ldst(adapter)) {
4971		t4_fw_tp_pio_rw(adapter, vfl, 1, A_TP_RSS_VFL_CONFIG, 1);
4972		t4_fw_tp_pio_rw(adapter, vfh, 1, A_TP_RSS_VFH_CONFIG, 1);
4973	} else {
4974		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4975				 vfl, 1, A_TP_RSS_VFL_CONFIG);
4976		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
4977				 vfh, 1, A_TP_RSS_VFH_CONFIG);
4978	}
4979}
4980
4981/**
4982 *	t4_write_rss_vf_config - write VF RSS Configuration Table
4983 *
4984 *	@adapter: the adapter
4985 *	@index: the entry in the VF RSS table to write
4986 *	@vfl: the VFL to store
4987 *	@vfh: the VFH to store
4988 *
4989 *	Writes the VF RSS Configuration Table at the specified index with the
4990 *	specified (VFL, VFH) values.
4991 */
4992void t4_write_rss_vf_config(struct adapter *adapter, unsigned int index,
4993			    u32 vfl, u32 vfh)
4994{
4995	u32 vrt, mask, data;
4996
4997	if (chip_id(adapter) <= CHELSIO_T5) {
4998		mask = V_VFWRADDR(M_VFWRADDR);
4999		data = V_VFWRADDR(index);
5000	} else {
5001		mask =  V_T6_VFWRADDR(M_T6_VFWRADDR);
5002		data = V_T6_VFWRADDR(index);
5003	}
5004
5005	/*
5006	 * Load up VFL/VFH with the values to be written ...
5007	 */
5008	if (t4_use_ldst(adapter)) {
5009		t4_fw_tp_pio_rw(adapter, &vfl, 1, A_TP_RSS_VFL_CONFIG, 0);
5010		t4_fw_tp_pio_rw(adapter, &vfh, 1, A_TP_RSS_VFH_CONFIG, 0);
5011	} else {
5012		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5013				  &vfl, 1, A_TP_RSS_VFL_CONFIG);
5014		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5015				  &vfh, 1, A_TP_RSS_VFH_CONFIG);
5016	}
5017
5018	/*
5019	 * Write the VFL/VFH into the VF Table at index'th location.
5020	 */
5021	vrt = t4_read_reg(adapter, A_TP_RSS_CONFIG_VRT);
5022	vrt &= ~(F_VFRDRG | F_VFWREN | F_KEYWREN | mask);
5023	vrt |= data | F_VFRDEN;
5024	t4_write_reg(adapter, A_TP_RSS_CONFIG_VRT, vrt);
5025}
5026
5027/**
5028 *	t4_read_rss_pf_map - read PF RSS Map
5029 *	@adapter: the adapter
5030 *
5031 *	Reads the PF RSS Map register and returns its value.
5032 */
5033u32 t4_read_rss_pf_map(struct adapter *adapter)
5034{
5035	u32 pfmap;
5036
5037	if (t4_use_ldst(adapter))
5038		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 1);
5039	else
5040		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5041				 &pfmap, 1, A_TP_RSS_PF_MAP);
5042	return pfmap;
5043}
5044
5045/**
5046 *	t4_write_rss_pf_map - write PF RSS Map
5047 *	@adapter: the adapter
5048 *	@pfmap: PF RSS Map value
5049 *
5050 *	Writes the specified value to the PF RSS Map register.
5051 */
5052void t4_write_rss_pf_map(struct adapter *adapter, u32 pfmap)
5053{
5054	if (t4_use_ldst(adapter))
5055		t4_fw_tp_pio_rw(adapter, &pfmap, 1, A_TP_RSS_PF_MAP, 0);
5056	else
5057		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5058				  &pfmap, 1, A_TP_RSS_PF_MAP);
5059}
5060
5061/**
5062 *	t4_read_rss_pf_mask - read PF RSS Mask
5063 *	@adapter: the adapter
5064 *
5065 *	Reads the PF RSS Mask register and returns its value.
5066 */
5067u32 t4_read_rss_pf_mask(struct adapter *adapter)
5068{
5069	u32 pfmask;
5070
5071	if (t4_use_ldst(adapter))
5072		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 1);
5073	else
5074		t4_read_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5075				 &pfmask, 1, A_TP_RSS_PF_MSK);
5076	return pfmask;
5077}
5078
5079/**
5080 *	t4_write_rss_pf_mask - write PF RSS Mask
5081 *	@adapter: the adapter
5082 *	@pfmask: PF RSS Mask value
5083 *
5084 *	Writes the specified value to the PF RSS Mask register.
5085 */
5086void t4_write_rss_pf_mask(struct adapter *adapter, u32 pfmask)
5087{
5088	if (t4_use_ldst(adapter))
5089		t4_fw_tp_pio_rw(adapter, &pfmask, 1, A_TP_RSS_PF_MSK, 0);
5090	else
5091		t4_write_indirect(adapter, A_TP_PIO_ADDR, A_TP_PIO_DATA,
5092				  &pfmask, 1, A_TP_RSS_PF_MSK);
5093}
5094
5095/**
5096 *	t4_tp_get_tcp_stats - read TP's TCP MIB counters
5097 *	@adap: the adapter
5098 *	@v4: holds the TCP/IP counter values
5099 *	@v6: holds the TCP/IPv6 counter values
5100 *
5101 *	Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
5102 *	Either @v4 or @v6 may be %NULL to skip the corresponding stats.
5103 */
5104void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
5105			 struct tp_tcp_stats *v6)
5106{
5107	u32 val[A_TP_MIB_TCP_RXT_SEG_LO - A_TP_MIB_TCP_OUT_RST + 1];
5108
5109#define STAT_IDX(x) ((A_TP_MIB_TCP_##x) - A_TP_MIB_TCP_OUT_RST)
5110#define STAT(x)     val[STAT_IDX(x)]
5111#define STAT64(x)   (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
5112
5113	if (v4) {
5114		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5115				 ARRAY_SIZE(val), A_TP_MIB_TCP_OUT_RST);
5116		v4->tcp_out_rsts = STAT(OUT_RST);
5117		v4->tcp_in_segs  = STAT64(IN_SEG);
5118		v4->tcp_out_segs = STAT64(OUT_SEG);
5119		v4->tcp_retrans_segs = STAT64(RXT_SEG);
5120	}
5121	if (v6) {
5122		t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5123				 ARRAY_SIZE(val), A_TP_MIB_TCP_V6OUT_RST);
5124		v6->tcp_out_rsts = STAT(OUT_RST);
5125		v6->tcp_in_segs  = STAT64(IN_SEG);
5126		v6->tcp_out_segs = STAT64(OUT_SEG);
5127		v6->tcp_retrans_segs = STAT64(RXT_SEG);
5128	}
5129#undef STAT64
5130#undef STAT
5131#undef STAT_IDX
5132}
5133
5134/**
5135 *	t4_tp_get_err_stats - read TP's error MIB counters
5136 *	@adap: the adapter
5137 *	@st: holds the counter values
5138 *
5139 *	Returns the values of TP's error counters.
5140 */
5141void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
5142{
5143	int nchan = adap->chip_params->nchan;
5144
5145	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5146			st->mac_in_errs, nchan, A_TP_MIB_MAC_IN_ERR_0);
5147	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5148			st->hdr_in_errs, nchan, A_TP_MIB_HDR_IN_ERR_0);
5149	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5150			st->tcp_in_errs, nchan, A_TP_MIB_TCP_IN_ERR_0);
5151	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5152			st->tnl_cong_drops, nchan, A_TP_MIB_TNL_CNG_DROP_0);
5153	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5154			st->ofld_chan_drops, nchan, A_TP_MIB_OFD_CHN_DROP_0);
5155	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5156			st->tnl_tx_drops, nchan, A_TP_MIB_TNL_DROP_0);
5157	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5158			st->ofld_vlan_drops, nchan, A_TP_MIB_OFD_VLN_DROP_0);
5159	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5160			st->tcp6_in_errs, nchan, A_TP_MIB_TCP_V6IN_ERR_0);
5161
5162	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA,
5163			 &st->ofld_no_neigh, 2, A_TP_MIB_OFD_ARP_DROP);
5164}
5165
5166/**
5167 *	t4_tp_get_proxy_stats - read TP's proxy MIB counters
5168 *	@adap: the adapter
5169 *	@st: holds the counter values
5170 *
5171 *	Returns the values of TP's proxy counters.
5172 */
5173void t4_tp_get_proxy_stats(struct adapter *adap, struct tp_proxy_stats *st)
5174{
5175	int nchan = adap->chip_params->nchan;
5176
5177	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->proxy,
5178			 nchan, A_TP_MIB_TNL_LPBK_0);
5179}
5180
5181/**
5182 *	t4_tp_get_cpl_stats - read TP's CPL MIB counters
5183 *	@adap: the adapter
5184 *	@st: holds the counter values
5185 *
5186 *	Returns the values of TP's CPL counters.
5187 */
5188void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
5189{
5190	int nchan = adap->chip_params->nchan;
5191
5192	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->req,
5193			 nchan, A_TP_MIB_CPL_IN_REQ_0);
5194	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, st->rsp,
5195			 nchan, A_TP_MIB_CPL_OUT_RSP_0);
5196}
5197
5198/**
5199 *	t4_tp_get_rdma_stats - read TP's RDMA MIB counters
5200 *	@adap: the adapter
5201 *	@st: holds the counter values
5202 *
5203 *	Returns the values of TP's RDMA counters.
5204 */
5205void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
5206{
5207	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->rqe_dfr_pkt,
5208			 2, A_TP_MIB_RQE_DFR_PKT);
5209}
5210
5211/**
5212 *	t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
5213 *	@adap: the adapter
5214 *	@idx: the port index
5215 *	@st: holds the counter values
5216 *
5217 *	Returns the values of TP's FCoE counters for the selected port.
5218 */
5219void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
5220		       struct tp_fcoe_stats *st)
5221{
5222	u32 val[2];
5223
5224	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_ddp,
5225			 1, A_TP_MIB_FCOE_DDP_0 + idx);
5226	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, &st->frames_drop,
5227			 1, A_TP_MIB_FCOE_DROP_0 + idx);
5228	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val,
5229			 2, A_TP_MIB_FCOE_BYTE_0_HI + 2 * idx);
5230	st->octets_ddp = ((u64)val[0] << 32) | val[1];
5231}
5232
5233/**
5234 *	t4_get_usm_stats - read TP's non-TCP DDP MIB counters
5235 *	@adap: the adapter
5236 *	@st: holds the counter values
5237 *
5238 *	Returns the values of TP's counters for non-TCP directly-placed packets.
5239 */
5240void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
5241{
5242	u32 val[4];
5243
5244	t4_read_indirect(adap, A_TP_MIB_INDEX, A_TP_MIB_DATA, val, 4,
5245			 A_TP_MIB_USM_PKTS);
5246	st->frames = val[0];
5247	st->drops = val[1];
5248	st->octets = ((u64)val[2] << 32) | val[3];
5249}
5250
5251/**
5252 *	t4_read_mtu_tbl - returns the values in the HW path MTU table
5253 *	@adap: the adapter
5254 *	@mtus: where to store the MTU values
5255 *	@mtu_log: where to store the MTU base-2 log (may be %NULL)
5256 *
5257 *	Reads the HW path MTU table.
5258 */
5259void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
5260{
5261	u32 v;
5262	int i;
5263
5264	for (i = 0; i < NMTUS; ++i) {
5265		t4_write_reg(adap, A_TP_MTU_TABLE,
5266			     V_MTUINDEX(0xff) | V_MTUVALUE(i));
5267		v = t4_read_reg(adap, A_TP_MTU_TABLE);
5268		mtus[i] = G_MTUVALUE(v);
5269		if (mtu_log)
5270			mtu_log[i] = G_MTUWIDTH(v);
5271	}
5272}
5273
5274/**
5275 *	t4_read_cong_tbl - reads the congestion control table
5276 *	@adap: the adapter
5277 *	@incr: where to store the alpha values
5278 *
5279 *	Reads the additive increments programmed into the HW congestion
5280 *	control table.
5281 */
5282void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
5283{
5284	unsigned int mtu, w;
5285
5286	for (mtu = 0; mtu < NMTUS; ++mtu)
5287		for (w = 0; w < NCCTRL_WIN; ++w) {
5288			t4_write_reg(adap, A_TP_CCTRL_TABLE,
5289				     V_ROWINDEX(0xffff) | (mtu << 5) | w);
5290			incr[mtu][w] = (u16)t4_read_reg(adap,
5291						A_TP_CCTRL_TABLE) & 0x1fff;
5292		}
5293}
5294
5295/**
5296 *	t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
5297 *	@adap: the adapter
5298 *	@addr: the indirect TP register address
5299 *	@mask: specifies the field within the register to modify
5300 *	@val: new value for the field
5301 *
5302 *	Sets a field of an indirect TP register to the given value.
5303 */
5304void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
5305			    unsigned int mask, unsigned int val)
5306{
5307	t4_write_reg(adap, A_TP_PIO_ADDR, addr);
5308	val |= t4_read_reg(adap, A_TP_PIO_DATA) & ~mask;
5309	t4_write_reg(adap, A_TP_PIO_DATA, val);
5310}
5311
5312/**
5313 *	init_cong_ctrl - initialize congestion control parameters
5314 *	@a: the alpha values for congestion control
5315 *	@b: the beta values for congestion control
5316 *
5317 *	Initialize the congestion control parameters.
5318 */
5319static void init_cong_ctrl(unsigned short *a, unsigned short *b)
5320{
5321	a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5322	a[9] = 2;
5323	a[10] = 3;
5324	a[11] = 4;
5325	a[12] = 5;
5326	a[13] = 6;
5327	a[14] = 7;
5328	a[15] = 8;
5329	a[16] = 9;
5330	a[17] = 10;
5331	a[18] = 14;
5332	a[19] = 17;
5333	a[20] = 21;
5334	a[21] = 25;
5335	a[22] = 30;
5336	a[23] = 35;
5337	a[24] = 45;
5338	a[25] = 60;
5339	a[26] = 80;
5340	a[27] = 100;
5341	a[28] = 200;
5342	a[29] = 300;
5343	a[30] = 400;
5344	a[31] = 500;
5345
5346	b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5347	b[9] = b[10] = 1;
5348	b[11] = b[12] = 2;
5349	b[13] = b[14] = b[15] = b[16] = 3;
5350	b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5351	b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5352	b[28] = b[29] = 6;
5353	b[30] = b[31] = 7;
5354}
5355
5356/* The minimum additive increment value for the congestion control table */
5357#define CC_MIN_INCR 2U
5358
5359/**
5360 *	t4_load_mtus - write the MTU and congestion control HW tables
5361 *	@adap: the adapter
5362 *	@mtus: the values for the MTU table
5363 *	@alpha: the values for the congestion control alpha parameter
5364 *	@beta: the values for the congestion control beta parameter
5365 *
5366 *	Write the HW MTU table with the supplied MTUs and the high-speed
5367 *	congestion control table with the supplied alpha, beta, and MTUs.
5368 *	We write the two tables together because the additive increments
5369 *	depend on the MTUs.
5370 */
5371void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5372		  const unsigned short *alpha, const unsigned short *beta)
5373{
5374	static const unsigned int avg_pkts[NCCTRL_WIN] = {
5375		2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5376		896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5377		28672, 40960, 57344, 81920, 114688, 163840, 229376
5378	};
5379
5380	unsigned int i, w;
5381
5382	for (i = 0; i < NMTUS; ++i) {
5383		unsigned int mtu = mtus[i];
5384		unsigned int log2 = fls(mtu);
5385
5386		if (!(mtu & ((1 << log2) >> 2)))     /* round */
5387			log2--;
5388		t4_write_reg(adap, A_TP_MTU_TABLE, V_MTUINDEX(i) |
5389			     V_MTUWIDTH(log2) | V_MTUVALUE(mtu));
5390
5391		for (w = 0; w < NCCTRL_WIN; ++w) {
5392			unsigned int inc;
5393
5394			inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5395				  CC_MIN_INCR);
5396
5397			t4_write_reg(adap, A_TP_CCTRL_TABLE, (i << 21) |
5398				     (w << 16) | (beta[w] << 13) | inc);
5399		}
5400	}
5401}
5402
5403/**
5404 *	t4_set_pace_tbl - set the pace table
5405 *	@adap: the adapter
5406 *	@pace_vals: the pace values in microseconds
5407 *	@start: index of the first entry in the HW pace table to set
5408 *	@n: how many entries to set
5409 *
5410 *	Sets (a subset of the) HW pace table.
5411 */
5412int t4_set_pace_tbl(struct adapter *adap, const unsigned int *pace_vals,
5413		     unsigned int start, unsigned int n)
5414{
5415	unsigned int vals[NTX_SCHED], i;
5416	unsigned int tick_ns = dack_ticks_to_usec(adap, 1000);
5417
5418	if (n > NTX_SCHED)
5419	    return -ERANGE;
5420
5421	/* convert values from us to dack ticks, rounding to closest value */
5422	for (i = 0; i < n; i++, pace_vals++) {
5423		vals[i] = (1000 * *pace_vals + tick_ns / 2) / tick_ns;
5424		if (vals[i] > 0x7ff)
5425			return -ERANGE;
5426		if (*pace_vals && vals[i] == 0)
5427			return -ERANGE;
5428	}
5429	for (i = 0; i < n; i++, start++)
5430		t4_write_reg(adap, A_TP_PACE_TABLE, (start << 16) | vals[i]);
5431	return 0;
5432}
5433
5434/**
5435 *	t4_set_sched_bps - set the bit rate for a HW traffic scheduler
5436 *	@adap: the adapter
5437 *	@kbps: target rate in Kbps
5438 *	@sched: the scheduler index
5439 *
5440 *	Configure a Tx HW scheduler for the target rate.
5441 */
5442int t4_set_sched_bps(struct adapter *adap, int sched, unsigned int kbps)
5443{
5444	unsigned int v, tps, cpt, bpt, delta, mindelta = ~0;
5445	unsigned int clk = adap->params.vpd.cclk * 1000;
5446	unsigned int selected_cpt = 0, selected_bpt = 0;
5447
5448	if (kbps > 0) {
5449		kbps *= 125;     /* -> bytes */
5450		for (cpt = 1; cpt <= 255; cpt++) {
5451			tps = clk / cpt;
5452			bpt = (kbps + tps / 2) / tps;
5453			if (bpt > 0 && bpt <= 255) {
5454				v = bpt * tps;
5455				delta = v >= kbps ? v - kbps : kbps - v;
5456				if (delta < mindelta) {
5457					mindelta = delta;
5458					selected_cpt = cpt;
5459					selected_bpt = bpt;
5460				}
5461			} else if (selected_cpt)
5462				break;
5463		}
5464		if (!selected_cpt)
5465			return -EINVAL;
5466	}
5467	t4_write_reg(adap, A_TP_TM_PIO_ADDR,
5468		     A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2);
5469	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5470	if (sched & 1)
5471		v = (v & 0xffff) | (selected_cpt << 16) | (selected_bpt << 24);
5472	else
5473		v = (v & 0xffff0000) | selected_cpt | (selected_bpt << 8);
5474	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5475	return 0;
5476}
5477
5478/**
5479 *	t4_set_sched_ipg - set the IPG for a Tx HW packet rate scheduler
5480 *	@adap: the adapter
5481 *	@sched: the scheduler index
5482 *	@ipg: the interpacket delay in tenths of nanoseconds
5483 *
5484 *	Set the interpacket delay for a HW packet rate scheduler.
5485 */
5486int t4_set_sched_ipg(struct adapter *adap, int sched, unsigned int ipg)
5487{
5488	unsigned int v, addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
5489
5490	/* convert ipg to nearest number of core clocks */
5491	ipg *= core_ticks_per_usec(adap);
5492	ipg = (ipg + 5000) / 10000;
5493	if (ipg > M_TXTIMERSEPQ0)
5494		return -EINVAL;
5495
5496	t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
5497	v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
5498	if (sched & 1)
5499		v = (v & V_TXTIMERSEPQ0(M_TXTIMERSEPQ0)) | V_TXTIMERSEPQ1(ipg);
5500	else
5501		v = (v & V_TXTIMERSEPQ1(M_TXTIMERSEPQ1)) | V_TXTIMERSEPQ0(ipg);
5502	t4_write_reg(adap, A_TP_TM_PIO_DATA, v);
5503	t4_read_reg(adap, A_TP_TM_PIO_DATA);
5504	return 0;
5505}
5506
5507/*
5508 * Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5509 * clocks.  The formula is
5510 *
5511 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5512 *
5513 * which is equivalent to
5514 *
5515 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5516 */
5517static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5518{
5519	u64 v = bytes256 * adap->params.vpd.cclk;
5520
5521	return v * 62 + v / 2;
5522}
5523
5524/**
5525 *	t4_get_chan_txrate - get the current per channel Tx rates
5526 *	@adap: the adapter
5527 *	@nic_rate: rates for NIC traffic
5528 *	@ofld_rate: rates for offloaded traffic
5529 *
5530 *	Return the current Tx rates in bytes/s for NIC and offloaded traffic
5531 *	for each channel.
5532 */
5533void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5534{
5535	u32 v;
5536
5537	v = t4_read_reg(adap, A_TP_TX_TRATE);
5538	nic_rate[0] = chan_rate(adap, G_TNLRATE0(v));
5539	nic_rate[1] = chan_rate(adap, G_TNLRATE1(v));
5540	if (adap->chip_params->nchan > 2) {
5541		nic_rate[2] = chan_rate(adap, G_TNLRATE2(v));
5542		nic_rate[3] = chan_rate(adap, G_TNLRATE3(v));
5543	}
5544
5545	v = t4_read_reg(adap, A_TP_TX_ORATE);
5546	ofld_rate[0] = chan_rate(adap, G_OFDRATE0(v));
5547	ofld_rate[1] = chan_rate(adap, G_OFDRATE1(v));
5548	if (adap->chip_params->nchan > 2) {
5549		ofld_rate[2] = chan_rate(adap, G_OFDRATE2(v));
5550		ofld_rate[3] = chan_rate(adap, G_OFDRATE3(v));
5551	}
5552}
5553
5554/**
5555 *	t4_set_trace_filter - configure one of the tracing filters
5556 *	@adap: the adapter
5557 *	@tp: the desired trace filter parameters
5558 *	@idx: which filter to configure
5559 *	@enable: whether to enable or disable the filter
5560 *
5561 *	Configures one of the tracing filters available in HW.  If @tp is %NULL
5562 *	it indicates that the filter is already written in the register and it
5563 *	just needs to be enabled or disabled.
5564 */
5565int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5566    int idx, int enable)
5567{
5568	int i, ofst = idx * 4;
5569	u32 data_reg, mask_reg, cfg;
5570	u32 multitrc = F_TRCMULTIFILTER;
5571	u32 en = is_t4(adap) ? F_TFEN : F_T5_TFEN;
5572
5573	if (idx < 0 || idx >= NTRACE)
5574		return -EINVAL;
5575
5576	if (tp == NULL || !enable) {
5577		t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en,
5578		    enable ? en : 0);
5579		return 0;
5580	}
5581
5582	/*
5583	 * TODO - After T4 data book is updated, specify the exact
5584	 * section below.
5585	 *
5586	 * See T4 data book - MPS section for a complete description
5587	 * of the below if..else handling of A_MPS_TRC_CFG register
5588	 * value.
5589	 */
5590	cfg = t4_read_reg(adap, A_MPS_TRC_CFG);
5591	if (cfg & F_TRCMULTIFILTER) {
5592		/*
5593		 * If multiple tracers are enabled, then maximum
5594		 * capture size is 2.5KB (FIFO size of a single channel)
5595		 * minus 2 flits for CPL_TRACE_PKT header.
5596		 */
5597		if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5598			return -EINVAL;
5599	} else {
5600		/*
5601		 * If multiple tracers are disabled, to avoid deadlocks
5602		 * maximum packet capture size of 9600 bytes is recommended.
5603		 * Also in this mode, only trace0 can be enabled and running.
5604		 */
5605		multitrc = 0;
5606		if (tp->snap_len > 9600 || idx)
5607			return -EINVAL;
5608	}
5609
5610	if (tp->port > (is_t4(adap) ? 11 : 19) || tp->invert > 1 ||
5611	    tp->skip_len > M_TFLENGTH || tp->skip_ofst > M_TFOFFSET ||
5612	    tp->min_len > M_TFMINPKTSIZE)
5613		return -EINVAL;
5614
5615	/* stop the tracer we'll be changing */
5616	t4_set_reg_field(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst, en, 0);
5617
5618	idx *= (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH);
5619	data_reg = A_MPS_TRC_FILTER0_MATCH + idx;
5620	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + idx;
5621
5622	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5623		t4_write_reg(adap, data_reg, tp->data[i]);
5624		t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5625	}
5626	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst,
5627		     V_TFCAPTUREMAX(tp->snap_len) |
5628		     V_TFMINPKTSIZE(tp->min_len));
5629	t4_write_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst,
5630		     V_TFOFFSET(tp->skip_ofst) | V_TFLENGTH(tp->skip_len) | en |
5631		     (is_t4(adap) ?
5632		     V_TFPORT(tp->port) | V_TFINVERTMATCH(tp->invert) :
5633		     V_T5_TFPORT(tp->port) | V_T5_TFINVERTMATCH(tp->invert)));
5634
5635	return 0;
5636}
5637
5638/**
5639 *	t4_get_trace_filter - query one of the tracing filters
5640 *	@adap: the adapter
5641 *	@tp: the current trace filter parameters
5642 *	@idx: which trace filter to query
5643 *	@enabled: non-zero if the filter is enabled
5644 *
5645 *	Returns the current settings of one of the HW tracing filters.
5646 */
5647void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5648			 int *enabled)
5649{
5650	u32 ctla, ctlb;
5651	int i, ofst = idx * 4;
5652	u32 data_reg, mask_reg;
5653
5654	ctla = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_A + ofst);
5655	ctlb = t4_read_reg(adap, A_MPS_TRC_FILTER_MATCH_CTL_B + ofst);
5656
5657	if (is_t4(adap)) {
5658		*enabled = !!(ctla & F_TFEN);
5659		tp->port =  G_TFPORT(ctla);
5660		tp->invert = !!(ctla & F_TFINVERTMATCH);
5661	} else {
5662		*enabled = !!(ctla & F_T5_TFEN);
5663		tp->port = G_T5_TFPORT(ctla);
5664		tp->invert = !!(ctla & F_T5_TFINVERTMATCH);
5665	}
5666	tp->snap_len = G_TFCAPTUREMAX(ctlb);
5667	tp->min_len = G_TFMINPKTSIZE(ctlb);
5668	tp->skip_ofst = G_TFOFFSET(ctla);
5669	tp->skip_len = G_TFLENGTH(ctla);
5670
5671	ofst = (A_MPS_TRC_FILTER1_MATCH - A_MPS_TRC_FILTER0_MATCH) * idx;
5672	data_reg = A_MPS_TRC_FILTER0_MATCH + ofst;
5673	mask_reg = A_MPS_TRC_FILTER0_DONT_CARE + ofst;
5674
5675	for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5676		tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5677		tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5678	}
5679}
5680
5681/**
5682 *	t4_pmtx_get_stats - returns the HW stats from PMTX
5683 *	@adap: the adapter
5684 *	@cnt: where to store the count statistics
5685 *	@cycles: where to store the cycle statistics
5686 *
5687 *	Returns performance statistics from PMTX.
5688 */
5689void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5690{
5691	int i;
5692	u32 data[2];
5693
5694	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5695		t4_write_reg(adap, A_PM_TX_STAT_CONFIG, i + 1);
5696		cnt[i] = t4_read_reg(adap, A_PM_TX_STAT_COUNT);
5697		if (is_t4(adap))
5698			cycles[i] = t4_read_reg64(adap, A_PM_TX_STAT_LSB);
5699		else {
5700			t4_read_indirect(adap, A_PM_TX_DBG_CTRL,
5701					 A_PM_TX_DBG_DATA, data, 2,
5702					 A_PM_TX_DBG_STAT_MSB);
5703			cycles[i] = (((u64)data[0] << 32) | data[1]);
5704		}
5705	}
5706}
5707
5708/**
5709 *	t4_pmrx_get_stats - returns the HW stats from PMRX
5710 *	@adap: the adapter
5711 *	@cnt: where to store the count statistics
5712 *	@cycles: where to store the cycle statistics
5713 *
5714 *	Returns performance statistics from PMRX.
5715 */
5716void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5717{
5718	int i;
5719	u32 data[2];
5720
5721	for (i = 0; i < adap->chip_params->pm_stats_cnt; i++) {
5722		t4_write_reg(adap, A_PM_RX_STAT_CONFIG, i + 1);
5723		cnt[i] = t4_read_reg(adap, A_PM_RX_STAT_COUNT);
5724		if (is_t4(adap)) {
5725			cycles[i] = t4_read_reg64(adap, A_PM_RX_STAT_LSB);
5726		} else {
5727			t4_read_indirect(adap, A_PM_RX_DBG_CTRL,
5728					 A_PM_RX_DBG_DATA, data, 2,
5729					 A_PM_RX_DBG_STAT_MSB);
5730			cycles[i] = (((u64)data[0] << 32) | data[1]);
5731		}
5732	}
5733}
5734
5735/**
5736 *	t4_get_mps_bg_map - return the buffer groups associated with a port
5737 *	@adap: the adapter
5738 *	@idx: the port index
5739 *
5740 *	Returns a bitmap indicating which MPS buffer groups are associated
5741 *	with the given port.  Bit i is set if buffer group i is used by the
5742 *	port.
5743 */
5744static unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
5745{
5746	u32 n = G_NUMPORTS(t4_read_reg(adap, A_MPS_CMN_CTL));
5747
5748	if (n == 0)
5749		return idx == 0 ? 0xf : 0;
5750	if (n == 1 && chip_id(adap) <= CHELSIO_T5)
5751		return idx < 2 ? (3 << (2 * idx)) : 0;
5752	return 1 << idx;
5753}
5754
5755/**
5756 *      t4_get_port_type_description - return Port Type string description
5757 *      @port_type: firmware Port Type enumeration
5758 */
5759const char *t4_get_port_type_description(enum fw_port_type port_type)
5760{
5761	static const char *const port_type_description[] = {
5762		"Fiber_XFI",
5763		"Fiber_XAUI",
5764		"BT_SGMII",
5765		"BT_XFI",
5766		"BT_XAUI",
5767		"KX4",
5768		"CX4",
5769		"KX",
5770		"KR",
5771		"SFP",
5772		"BP_AP",
5773		"BP4_AP",
5774		"QSFP_10G",
5775		"QSA",
5776		"QSFP",
5777		"BP40_BA",
5778	};
5779
5780	if (port_type < ARRAY_SIZE(port_type_description))
5781		return port_type_description[port_type];
5782	return "UNKNOWN";
5783}
5784
5785/**
5786 *      t4_get_port_stats_offset - collect port stats relative to a previous
5787 *				   snapshot
5788 *      @adap: The adapter
5789 *      @idx: The port
5790 *      @stats: Current stats to fill
5791 *      @offset: Previous stats snapshot
5792 */
5793void t4_get_port_stats_offset(struct adapter *adap, int idx,
5794		struct port_stats *stats,
5795		struct port_stats *offset)
5796{
5797	u64 *s, *o;
5798	int i;
5799
5800	t4_get_port_stats(adap, idx, stats);
5801	for (i = 0, s = (u64 *)stats, o = (u64 *)offset ;
5802			i < (sizeof(struct port_stats)/sizeof(u64)) ;
5803			i++, s++, o++)
5804		*s -= *o;
5805}
5806
5807/**
5808 *	t4_get_port_stats - collect port statistics
5809 *	@adap: the adapter
5810 *	@idx: the port index
5811 *	@p: the stats structure to fill
5812 *
5813 *	Collect statistics related to the given port from HW.
5814 */
5815void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5816{
5817	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5818	u32 stat_ctl;
5819
5820#define GET_STAT(name) \
5821	t4_read_reg64(adap, \
5822	(is_t4(adap) ? PORT_REG(idx, A_MPS_PORT_STAT_##name##_L) : \
5823	T5_PORT_REG(idx, A_MPS_PORT_STAT_##name##_L)))
5824#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5825
5826	stat_ctl = t4_read_reg(adap, A_MPS_STAT_CTL);
5827
5828	p->tx_pause		= GET_STAT(TX_PORT_PAUSE);
5829	p->tx_octets		= GET_STAT(TX_PORT_BYTES);
5830	p->tx_frames		= GET_STAT(TX_PORT_FRAMES);
5831	p->tx_bcast_frames	= GET_STAT(TX_PORT_BCAST);
5832	p->tx_mcast_frames	= GET_STAT(TX_PORT_MCAST);
5833	p->tx_ucast_frames	= GET_STAT(TX_PORT_UCAST);
5834	p->tx_error_frames	= GET_STAT(TX_PORT_ERROR);
5835	p->tx_frames_64		= GET_STAT(TX_PORT_64B);
5836	p->tx_frames_65_127	= GET_STAT(TX_PORT_65B_127B);
5837	p->tx_frames_128_255	= GET_STAT(TX_PORT_128B_255B);
5838	p->tx_frames_256_511	= GET_STAT(TX_PORT_256B_511B);
5839	p->tx_frames_512_1023	= GET_STAT(TX_PORT_512B_1023B);
5840	p->tx_frames_1024_1518	= GET_STAT(TX_PORT_1024B_1518B);
5841	p->tx_frames_1519_max	= GET_STAT(TX_PORT_1519B_MAX);
5842	p->tx_drop		= GET_STAT(TX_PORT_DROP);
5843	p->tx_ppp0		= GET_STAT(TX_PORT_PPP0);
5844	p->tx_ppp1		= GET_STAT(TX_PORT_PPP1);
5845	p->tx_ppp2		= GET_STAT(TX_PORT_PPP2);
5846	p->tx_ppp3		= GET_STAT(TX_PORT_PPP3);
5847	p->tx_ppp4		= GET_STAT(TX_PORT_PPP4);
5848	p->tx_ppp5		= GET_STAT(TX_PORT_PPP5);
5849	p->tx_ppp6		= GET_STAT(TX_PORT_PPP6);
5850	p->tx_ppp7		= GET_STAT(TX_PORT_PPP7);
5851
5852	if (stat_ctl & F_COUNTPAUSESTATTX) {
5853		p->tx_frames -= p->tx_pause;
5854		p->tx_octets -= p->tx_pause * 64;
5855		p->tx_mcast_frames -= p->tx_pause;
5856	}
5857
5858	p->rx_pause		= GET_STAT(RX_PORT_PAUSE);
5859	p->rx_octets		= GET_STAT(RX_PORT_BYTES);
5860	p->rx_frames		= GET_STAT(RX_PORT_FRAMES);
5861	p->rx_bcast_frames	= GET_STAT(RX_PORT_BCAST);
5862	p->rx_mcast_frames	= GET_STAT(RX_PORT_MCAST);
5863	p->rx_ucast_frames	= GET_STAT(RX_PORT_UCAST);
5864	p->rx_too_long		= GET_STAT(RX_PORT_MTU_ERROR);
5865	p->rx_jabber		= GET_STAT(RX_PORT_MTU_CRC_ERROR);
5866	p->rx_fcs_err		= GET_STAT(RX_PORT_CRC_ERROR);
5867	p->rx_len_err		= GET_STAT(RX_PORT_LEN_ERROR);
5868	p->rx_symbol_err	= GET_STAT(RX_PORT_SYM_ERROR);
5869	p->rx_runt		= GET_STAT(RX_PORT_LESS_64B);
5870	p->rx_frames_64		= GET_STAT(RX_PORT_64B);
5871	p->rx_frames_65_127	= GET_STAT(RX_PORT_65B_127B);
5872	p->rx_frames_128_255	= GET_STAT(RX_PORT_128B_255B);
5873	p->rx_frames_256_511	= GET_STAT(RX_PORT_256B_511B);
5874	p->rx_frames_512_1023	= GET_STAT(RX_PORT_512B_1023B);
5875	p->rx_frames_1024_1518	= GET_STAT(RX_PORT_1024B_1518B);
5876	p->rx_frames_1519_max	= GET_STAT(RX_PORT_1519B_MAX);
5877	p->rx_ppp0		= GET_STAT(RX_PORT_PPP0);
5878	p->rx_ppp1		= GET_STAT(RX_PORT_PPP1);
5879	p->rx_ppp2		= GET_STAT(RX_PORT_PPP2);
5880	p->rx_ppp3		= GET_STAT(RX_PORT_PPP3);
5881	p->rx_ppp4		= GET_STAT(RX_PORT_PPP4);
5882	p->rx_ppp5		= GET_STAT(RX_PORT_PPP5);
5883	p->rx_ppp6		= GET_STAT(RX_PORT_PPP6);
5884	p->rx_ppp7		= GET_STAT(RX_PORT_PPP7);
5885
5886	if (stat_ctl & F_COUNTPAUSESTATRX) {
5887		p->rx_frames -= p->rx_pause;
5888		p->rx_octets -= p->rx_pause * 64;
5889		p->rx_mcast_frames -= p->rx_pause;
5890	}
5891
5892	p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5893	p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5894	p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5895	p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5896	p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5897	p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5898	p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5899	p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5900
5901#undef GET_STAT
5902#undef GET_STAT_COM
5903}
5904
5905/**
5906 *	t4_get_lb_stats - collect loopback port statistics
5907 *	@adap: the adapter
5908 *	@idx: the loopback port index
5909 *	@p: the stats structure to fill
5910 *
5911 *	Return HW statistics for the given loopback port.
5912 */
5913void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
5914{
5915	u32 bgmap = t4_get_mps_bg_map(adap, idx);
5916
5917#define GET_STAT(name) \
5918	t4_read_reg64(adap, \
5919	(is_t4(adap) ? \
5920	PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L) : \
5921	T5_PORT_REG(idx, A_MPS_PORT_STAT_LB_PORT_##name##_L)))
5922#define GET_STAT_COM(name) t4_read_reg64(adap, A_MPS_STAT_##name##_L)
5923
5924	p->octets	= GET_STAT(BYTES);
5925	p->frames	= GET_STAT(FRAMES);
5926	p->bcast_frames	= GET_STAT(BCAST);
5927	p->mcast_frames	= GET_STAT(MCAST);
5928	p->ucast_frames	= GET_STAT(UCAST);
5929	p->error_frames	= GET_STAT(ERROR);
5930
5931	p->frames_64		= GET_STAT(64B);
5932	p->frames_65_127	= GET_STAT(65B_127B);
5933	p->frames_128_255	= GET_STAT(128B_255B);
5934	p->frames_256_511	= GET_STAT(256B_511B);
5935	p->frames_512_1023	= GET_STAT(512B_1023B);
5936	p->frames_1024_1518	= GET_STAT(1024B_1518B);
5937	p->frames_1519_max	= GET_STAT(1519B_MAX);
5938	p->drop			= GET_STAT(DROP_FRAMES);
5939
5940	p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5941	p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5942	p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5943	p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5944	p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5945	p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5946	p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5947	p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
5948
5949#undef GET_STAT
5950#undef GET_STAT_COM
5951}
5952
5953/**
5954 *	t4_wol_magic_enable - enable/disable magic packet WoL
5955 *	@adap: the adapter
5956 *	@port: the physical port index
5957 *	@addr: MAC address expected in magic packets, %NULL to disable
5958 *
5959 *	Enables/disables magic packet wake-on-LAN for the selected port.
5960 */
5961void t4_wol_magic_enable(struct adapter *adap, unsigned int port,
5962			 const u8 *addr)
5963{
5964	u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg;
5965
5966	if (is_t4(adap)) {
5967		mag_id_reg_l = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_LO);
5968		mag_id_reg_h = PORT_REG(port, A_XGMAC_PORT_MAGIC_MACID_HI);
5969		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
5970	} else {
5971		mag_id_reg_l = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_LO);
5972		mag_id_reg_h = T5_PORT_REG(port, A_MAC_PORT_MAGIC_MACID_HI);
5973		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
5974	}
5975
5976	if (addr) {
5977		t4_write_reg(adap, mag_id_reg_l,
5978			     (addr[2] << 24) | (addr[3] << 16) |
5979			     (addr[4] << 8) | addr[5]);
5980		t4_write_reg(adap, mag_id_reg_h,
5981			     (addr[0] << 8) | addr[1]);
5982	}
5983	t4_set_reg_field(adap, port_cfg_reg, F_MAGICEN,
5984			 V_MAGICEN(addr != NULL));
5985}
5986
5987/**
5988 *	t4_wol_pat_enable - enable/disable pattern-based WoL
5989 *	@adap: the adapter
5990 *	@port: the physical port index
5991 *	@map: bitmap of which HW pattern filters to set
5992 *	@mask0: byte mask for bytes 0-63 of a packet
5993 *	@mask1: byte mask for bytes 64-127 of a packet
5994 *	@crc: Ethernet CRC for selected bytes
5995 *	@enable: enable/disable switch
5996 *
5997 *	Sets the pattern filters indicated in @map to mask out the bytes
5998 *	specified in @mask0/@mask1 in received packets and compare the CRC of
5999 *	the resulting packet against @crc.  If @enable is %true pattern-based
6000 *	WoL is enabled, otherwise disabled.
6001 */
6002int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map,
6003		      u64 mask0, u64 mask1, unsigned int crc, bool enable)
6004{
6005	int i;
6006	u32 port_cfg_reg;
6007
6008	if (is_t4(adap))
6009		port_cfg_reg = PORT_REG(port, A_XGMAC_PORT_CFG2);
6010	else
6011		port_cfg_reg = T5_PORT_REG(port, A_MAC_PORT_CFG2);
6012
6013	if (!enable) {
6014		t4_set_reg_field(adap, port_cfg_reg, F_PATEN, 0);
6015		return 0;
6016	}
6017	if (map > 0xff)
6018		return -EINVAL;
6019
6020#define EPIO_REG(name) \
6021	(is_t4(adap) ? PORT_REG(port, A_XGMAC_PORT_EPIO_##name) : \
6022	T5_PORT_REG(port, A_MAC_PORT_EPIO_##name))
6023
6024	t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32);
6025	t4_write_reg(adap, EPIO_REG(DATA2), mask1);
6026	t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32);
6027
6028	for (i = 0; i < NWOL_PAT; i++, map >>= 1) {
6029		if (!(map & 1))
6030			continue;
6031
6032		/* write byte masks */
6033		t4_write_reg(adap, EPIO_REG(DATA0), mask0);
6034		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i) | F_EPIOWR);
6035		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6036		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6037			return -ETIMEDOUT;
6038
6039		/* write CRC */
6040		t4_write_reg(adap, EPIO_REG(DATA0), crc);
6041		t4_write_reg(adap, EPIO_REG(OP), V_ADDRESS(i + 32) | F_EPIOWR);
6042		t4_read_reg(adap, EPIO_REG(OP));                /* flush */
6043		if (t4_read_reg(adap, EPIO_REG(OP)) & F_BUSY)
6044			return -ETIMEDOUT;
6045	}
6046#undef EPIO_REG
6047
6048	t4_set_reg_field(adap, port_cfg_reg, 0, F_PATEN);
6049	return 0;
6050}
6051
6052/*     t4_mk_filtdelwr - create a delete filter WR
6053 *     @ftid: the filter ID
6054 *     @wr: the filter work request to populate
6055 *     @qid: ingress queue to receive the delete notification
6056 *
6057 *     Creates a filter work request to delete the supplied filter.  If @qid is
6058 *     negative the delete notification is suppressed.
6059 */
6060void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
6061{
6062	memset(wr, 0, sizeof(*wr));
6063	wr->op_pkd = cpu_to_be32(V_FW_WR_OP(FW_FILTER_WR));
6064	wr->len16_pkd = cpu_to_be32(V_FW_WR_LEN16(sizeof(*wr) / 16));
6065	wr->tid_to_iq = cpu_to_be32(V_FW_FILTER_WR_TID(ftid) |
6066				    V_FW_FILTER_WR_NOREPLY(qid < 0));
6067	wr->del_filter_to_l2tix = cpu_to_be32(F_FW_FILTER_WR_DEL_FILTER);
6068	if (qid >= 0)
6069		wr->rx_chan_rx_rpl_iq =
6070				cpu_to_be16(V_FW_FILTER_WR_RX_RPL_IQ(qid));
6071}
6072
6073#define INIT_CMD(var, cmd, rd_wr) do { \
6074	(var).op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_##cmd##_CMD) | \
6075					F_FW_CMD_REQUEST | \
6076					F_FW_CMD_##rd_wr); \
6077	(var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
6078} while (0)
6079
6080int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
6081			  u32 addr, u32 val)
6082{
6083	u32 ldst_addrspace;
6084	struct fw_ldst_cmd c;
6085
6086	memset(&c, 0, sizeof(c));
6087	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_FIRMWARE);
6088	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6089					F_FW_CMD_REQUEST |
6090					F_FW_CMD_WRITE |
6091					ldst_addrspace);
6092	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6093	c.u.addrval.addr = cpu_to_be32(addr);
6094	c.u.addrval.val = cpu_to_be32(val);
6095
6096	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6097}
6098
6099/**
6100 *	t4_mdio_rd - read a PHY register through MDIO
6101 *	@adap: the adapter
6102 *	@mbox: mailbox to use for the FW command
6103 *	@phy_addr: the PHY address
6104 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6105 *	@reg: the register to read
6106 *	@valp: where to store the value
6107 *
6108 *	Issues a FW command through the given mailbox to read a PHY register.
6109 */
6110int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6111	       unsigned int mmd, unsigned int reg, unsigned int *valp)
6112{
6113	int ret;
6114	u32 ldst_addrspace;
6115	struct fw_ldst_cmd c;
6116
6117	memset(&c, 0, sizeof(c));
6118	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6119	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6120					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6121					ldst_addrspace);
6122	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6123	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6124					 V_FW_LDST_CMD_MMD(mmd));
6125	c.u.mdio.raddr = cpu_to_be16(reg);
6126
6127	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6128	if (ret == 0)
6129		*valp = be16_to_cpu(c.u.mdio.rval);
6130	return ret;
6131}
6132
6133/**
6134 *	t4_mdio_wr - write a PHY register through MDIO
6135 *	@adap: the adapter
6136 *	@mbox: mailbox to use for the FW command
6137 *	@phy_addr: the PHY address
6138 *	@mmd: the PHY MMD to access (0 for clause 22 PHYs)
6139 *	@reg: the register to write
6140 *	@valp: value to write
6141 *
6142 *	Issues a FW command through the given mailbox to write a PHY register.
6143 */
6144int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
6145	       unsigned int mmd, unsigned int reg, unsigned int val)
6146{
6147	u32 ldst_addrspace;
6148	struct fw_ldst_cmd c;
6149
6150	memset(&c, 0, sizeof(c));
6151	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_MDIO);
6152	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6153					F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6154					ldst_addrspace);
6155	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6156	c.u.mdio.paddr_mmd = cpu_to_be16(V_FW_LDST_CMD_PADDR(phy_addr) |
6157					 V_FW_LDST_CMD_MMD(mmd));
6158	c.u.mdio.raddr = cpu_to_be16(reg);
6159	c.u.mdio.rval = cpu_to_be16(val);
6160
6161	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6162}
6163
6164/**
6165 *
6166 *	t4_sge_decode_idma_state - decode the idma state
6167 *	@adap: the adapter
6168 *	@state: the state idma is stuck in
6169 */
6170void t4_sge_decode_idma_state(struct adapter *adapter, int state)
6171{
6172	static const char * const t4_decode[] = {
6173		"IDMA_IDLE",
6174		"IDMA_PUSH_MORE_CPL_FIFO",
6175		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6176		"Not used",
6177		"IDMA_PHYSADDR_SEND_PCIEHDR",
6178		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6179		"IDMA_PHYSADDR_SEND_PAYLOAD",
6180		"IDMA_SEND_FIFO_TO_IMSG",
6181		"IDMA_FL_REQ_DATA_FL_PREP",
6182		"IDMA_FL_REQ_DATA_FL",
6183		"IDMA_FL_DROP",
6184		"IDMA_FL_H_REQ_HEADER_FL",
6185		"IDMA_FL_H_SEND_PCIEHDR",
6186		"IDMA_FL_H_PUSH_CPL_FIFO",
6187		"IDMA_FL_H_SEND_CPL",
6188		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6189		"IDMA_FL_H_SEND_IP_HDR",
6190		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6191		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6192		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6193		"IDMA_FL_D_SEND_PCIEHDR",
6194		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6195		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6196		"IDMA_FL_SEND_PCIEHDR",
6197		"IDMA_FL_PUSH_CPL_FIFO",
6198		"IDMA_FL_SEND_CPL",
6199		"IDMA_FL_SEND_PAYLOAD_FIRST",
6200		"IDMA_FL_SEND_PAYLOAD",
6201		"IDMA_FL_REQ_NEXT_DATA_FL",
6202		"IDMA_FL_SEND_NEXT_PCIEHDR",
6203		"IDMA_FL_SEND_PADDING",
6204		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6205		"IDMA_FL_SEND_FIFO_TO_IMSG",
6206		"IDMA_FL_REQ_DATAFL_DONE",
6207		"IDMA_FL_REQ_HEADERFL_DONE",
6208	};
6209	static const char * const t5_decode[] = {
6210		"IDMA_IDLE",
6211		"IDMA_ALMOST_IDLE",
6212		"IDMA_PUSH_MORE_CPL_FIFO",
6213		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6214		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6215		"IDMA_PHYSADDR_SEND_PCIEHDR",
6216		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6217		"IDMA_PHYSADDR_SEND_PAYLOAD",
6218		"IDMA_SEND_FIFO_TO_IMSG",
6219		"IDMA_FL_REQ_DATA_FL",
6220		"IDMA_FL_DROP",
6221		"IDMA_FL_DROP_SEND_INC",
6222		"IDMA_FL_H_REQ_HEADER_FL",
6223		"IDMA_FL_H_SEND_PCIEHDR",
6224		"IDMA_FL_H_PUSH_CPL_FIFO",
6225		"IDMA_FL_H_SEND_CPL",
6226		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6227		"IDMA_FL_H_SEND_IP_HDR",
6228		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6229		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6230		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6231		"IDMA_FL_D_SEND_PCIEHDR",
6232		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6233		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6234		"IDMA_FL_SEND_PCIEHDR",
6235		"IDMA_FL_PUSH_CPL_FIFO",
6236		"IDMA_FL_SEND_CPL",
6237		"IDMA_FL_SEND_PAYLOAD_FIRST",
6238		"IDMA_FL_SEND_PAYLOAD",
6239		"IDMA_FL_REQ_NEXT_DATA_FL",
6240		"IDMA_FL_SEND_NEXT_PCIEHDR",
6241		"IDMA_FL_SEND_PADDING",
6242		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6243	};
6244	static const char * const t6_decode[] = {
6245		"IDMA_IDLE",
6246		"IDMA_PUSH_MORE_CPL_FIFO",
6247		"IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
6248		"IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
6249		"IDMA_PHYSADDR_SEND_PCIEHDR",
6250		"IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
6251		"IDMA_PHYSADDR_SEND_PAYLOAD",
6252		"IDMA_FL_REQ_DATA_FL",
6253		"IDMA_FL_DROP",
6254		"IDMA_FL_DROP_SEND_INC",
6255		"IDMA_FL_H_REQ_HEADER_FL",
6256		"IDMA_FL_H_SEND_PCIEHDR",
6257		"IDMA_FL_H_PUSH_CPL_FIFO",
6258		"IDMA_FL_H_SEND_CPL",
6259		"IDMA_FL_H_SEND_IP_HDR_FIRST",
6260		"IDMA_FL_H_SEND_IP_HDR",
6261		"IDMA_FL_H_REQ_NEXT_HEADER_FL",
6262		"IDMA_FL_H_SEND_NEXT_PCIEHDR",
6263		"IDMA_FL_H_SEND_IP_HDR_PADDING",
6264		"IDMA_FL_D_SEND_PCIEHDR",
6265		"IDMA_FL_D_SEND_CPL_AND_IP_HDR",
6266		"IDMA_FL_D_REQ_NEXT_DATA_FL",
6267		"IDMA_FL_SEND_PCIEHDR",
6268		"IDMA_FL_PUSH_CPL_FIFO",
6269		"IDMA_FL_SEND_CPL",
6270		"IDMA_FL_SEND_PAYLOAD_FIRST",
6271		"IDMA_FL_SEND_PAYLOAD",
6272		"IDMA_FL_REQ_NEXT_DATA_FL",
6273		"IDMA_FL_SEND_NEXT_PCIEHDR",
6274		"IDMA_FL_SEND_PADDING",
6275		"IDMA_FL_SEND_COMPLETION_TO_IMSG",
6276	};
6277	static const u32 sge_regs[] = {
6278		A_SGE_DEBUG_DATA_LOW_INDEX_2,
6279		A_SGE_DEBUG_DATA_LOW_INDEX_3,
6280		A_SGE_DEBUG_DATA_HIGH_INDEX_10,
6281	};
6282	const char * const *sge_idma_decode;
6283	int sge_idma_decode_nstates;
6284	int i;
6285	unsigned int chip_version = chip_id(adapter);
6286
6287	/* Select the right set of decode strings to dump depending on the
6288	 * adapter chip type.
6289	 */
6290	switch (chip_version) {
6291	case CHELSIO_T4:
6292		sge_idma_decode = (const char * const *)t4_decode;
6293		sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
6294		break;
6295
6296	case CHELSIO_T5:
6297		sge_idma_decode = (const char * const *)t5_decode;
6298		sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
6299		break;
6300
6301	case CHELSIO_T6:
6302		sge_idma_decode = (const char * const *)t6_decode;
6303		sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
6304		break;
6305
6306	default:
6307		CH_ERR(adapter,	"Unsupported chip version %d\n", chip_version);
6308		return;
6309	}
6310
6311	if (state < sge_idma_decode_nstates)
6312		CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
6313	else
6314		CH_WARN(adapter, "idma state %d unknown\n", state);
6315
6316	for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
6317		CH_WARN(adapter, "SGE register %#x value %#x\n",
6318			sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
6319}
6320
6321/**
6322 *      t4_sge_ctxt_flush - flush the SGE context cache
6323 *      @adap: the adapter
6324 *      @mbox: mailbox to use for the FW command
6325 *
6326 *      Issues a FW command through the given mailbox to flush the
6327 *      SGE context cache.
6328 */
6329int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
6330{
6331	int ret;
6332	u32 ldst_addrspace;
6333	struct fw_ldst_cmd c;
6334
6335	memset(&c, 0, sizeof(c));
6336	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_SGE_EGRC);
6337	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
6338					F_FW_CMD_REQUEST | F_FW_CMD_READ |
6339					ldst_addrspace);
6340	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
6341	c.u.idctxt.msg_ctxtflush = cpu_to_be32(F_FW_LDST_CMD_CTXTFLUSH);
6342
6343	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6344	return ret;
6345}
6346
6347/**
6348 *      t4_fw_hello - establish communication with FW
6349 *      @adap: the adapter
6350 *      @mbox: mailbox to use for the FW command
6351 *      @evt_mbox: mailbox to receive async FW events
6352 *      @master: specifies the caller's willingness to be the device master
6353 *	@state: returns the current device state (if non-NULL)
6354 *
6355 *	Issues a command to establish communication with FW.  Returns either
6356 *	an error (negative integer) or the mailbox of the Master PF.
6357 */
6358int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
6359		enum dev_master master, enum dev_state *state)
6360{
6361	int ret;
6362	struct fw_hello_cmd c;
6363	u32 v;
6364	unsigned int master_mbox;
6365	int retries = FW_CMD_HELLO_RETRIES;
6366
6367retry:
6368	memset(&c, 0, sizeof(c));
6369	INIT_CMD(c, HELLO, WRITE);
6370	c.err_to_clearinit = cpu_to_be32(
6371		V_FW_HELLO_CMD_MASTERDIS(master == MASTER_CANT) |
6372		V_FW_HELLO_CMD_MASTERFORCE(master == MASTER_MUST) |
6373		V_FW_HELLO_CMD_MBMASTER(master == MASTER_MUST ?
6374					mbox : M_FW_HELLO_CMD_MBMASTER) |
6375		V_FW_HELLO_CMD_MBASYNCNOT(evt_mbox) |
6376		V_FW_HELLO_CMD_STAGE(FW_HELLO_CMD_STAGE_OS) |
6377		F_FW_HELLO_CMD_CLEARINIT);
6378
6379	/*
6380	 * Issue the HELLO command to the firmware.  If it's not successful
6381	 * but indicates that we got a "busy" or "timeout" condition, retry
6382	 * the HELLO until we exhaust our retry limit.  If we do exceed our
6383	 * retry limit, check to see if the firmware left us any error
6384	 * information and report that if so ...
6385	 */
6386	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6387	if (ret != FW_SUCCESS) {
6388		if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
6389			goto retry;
6390		if (t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_ERR)
6391			t4_report_fw_error(adap);
6392		return ret;
6393	}
6394
6395	v = be32_to_cpu(c.err_to_clearinit);
6396	master_mbox = G_FW_HELLO_CMD_MBMASTER(v);
6397	if (state) {
6398		if (v & F_FW_HELLO_CMD_ERR)
6399			*state = DEV_STATE_ERR;
6400		else if (v & F_FW_HELLO_CMD_INIT)
6401			*state = DEV_STATE_INIT;
6402		else
6403			*state = DEV_STATE_UNINIT;
6404	}
6405
6406	/*
6407	 * If we're not the Master PF then we need to wait around for the
6408	 * Master PF Driver to finish setting up the adapter.
6409	 *
6410	 * Note that we also do this wait if we're a non-Master-capable PF and
6411	 * there is no current Master PF; a Master PF may show up momentarily
6412	 * and we wouldn't want to fail pointlessly.  (This can happen when an
6413	 * OS loads lots of different drivers rapidly at the same time).  In
6414	 * this case, the Master PF returned by the firmware will be
6415	 * M_PCIE_FW_MASTER so the test below will work ...
6416	 */
6417	if ((v & (F_FW_HELLO_CMD_ERR|F_FW_HELLO_CMD_INIT)) == 0 &&
6418	    master_mbox != mbox) {
6419		int waiting = FW_CMD_HELLO_TIMEOUT;
6420
6421		/*
6422		 * Wait for the firmware to either indicate an error or
6423		 * initialized state.  If we see either of these we bail out
6424		 * and report the issue to the caller.  If we exhaust the
6425		 * "hello timeout" and we haven't exhausted our retries, try
6426		 * again.  Otherwise bail with a timeout error.
6427		 */
6428		for (;;) {
6429			u32 pcie_fw;
6430
6431			msleep(50);
6432			waiting -= 50;
6433
6434			/*
6435			 * If neither Error nor Initialialized are indicated
6436			 * by the firmware keep waiting till we exhaust our
6437			 * timeout ... and then retry if we haven't exhausted
6438			 * our retries ...
6439			 */
6440			pcie_fw = t4_read_reg(adap, A_PCIE_FW);
6441			if (!(pcie_fw & (F_PCIE_FW_ERR|F_PCIE_FW_INIT))) {
6442				if (waiting <= 0) {
6443					if (retries-- > 0)
6444						goto retry;
6445
6446					return -ETIMEDOUT;
6447				}
6448				continue;
6449			}
6450
6451			/*
6452			 * We either have an Error or Initialized condition
6453			 * report errors preferentially.
6454			 */
6455			if (state) {
6456				if (pcie_fw & F_PCIE_FW_ERR)
6457					*state = DEV_STATE_ERR;
6458				else if (pcie_fw & F_PCIE_FW_INIT)
6459					*state = DEV_STATE_INIT;
6460			}
6461
6462			/*
6463			 * If we arrived before a Master PF was selected and
6464			 * there's not a valid Master PF, grab its identity
6465			 * for our caller.
6466			 */
6467			if (master_mbox == M_PCIE_FW_MASTER &&
6468			    (pcie_fw & F_PCIE_FW_MASTER_VLD))
6469				master_mbox = G_PCIE_FW_MASTER(pcie_fw);
6470			break;
6471		}
6472	}
6473
6474	return master_mbox;
6475}
6476
6477/**
6478 *	t4_fw_bye - end communication with FW
6479 *	@adap: the adapter
6480 *	@mbox: mailbox to use for the FW command
6481 *
6482 *	Issues a command to terminate communication with FW.
6483 */
6484int t4_fw_bye(struct adapter *adap, unsigned int mbox)
6485{
6486	struct fw_bye_cmd c;
6487
6488	memset(&c, 0, sizeof(c));
6489	INIT_CMD(c, BYE, WRITE);
6490	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6491}
6492
6493/**
6494 *	t4_fw_reset - issue a reset to FW
6495 *	@adap: the adapter
6496 *	@mbox: mailbox to use for the FW command
6497 *	@reset: specifies the type of reset to perform
6498 *
6499 *	Issues a reset command of the specified type to FW.
6500 */
6501int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
6502{
6503	struct fw_reset_cmd c;
6504
6505	memset(&c, 0, sizeof(c));
6506	INIT_CMD(c, RESET, WRITE);
6507	c.val = cpu_to_be32(reset);
6508	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6509}
6510
6511/**
6512 *	t4_fw_halt - issue a reset/halt to FW and put uP into RESET
6513 *	@adap: the adapter
6514 *	@mbox: mailbox to use for the FW RESET command (if desired)
6515 *	@force: force uP into RESET even if FW RESET command fails
6516 *
6517 *	Issues a RESET command to firmware (if desired) with a HALT indication
6518 *	and then puts the microprocessor into RESET state.  The RESET command
6519 *	will only be issued if a legitimate mailbox is provided (mbox <=
6520 *	M_PCIE_FW_MASTER).
6521 *
6522 *	This is generally used in order for the host to safely manipulate the
6523 *	adapter without fear of conflicting with whatever the firmware might
6524 *	be doing.  The only way out of this state is to RESTART the firmware
6525 *	...
6526 */
6527int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
6528{
6529	int ret = 0;
6530
6531	/*
6532	 * If a legitimate mailbox is provided, issue a RESET command
6533	 * with a HALT indication.
6534	 */
6535	if (mbox <= M_PCIE_FW_MASTER) {
6536		struct fw_reset_cmd c;
6537
6538		memset(&c, 0, sizeof(c));
6539		INIT_CMD(c, RESET, WRITE);
6540		c.val = cpu_to_be32(F_PIORST | F_PIORSTMODE);
6541		c.halt_pkd = cpu_to_be32(F_FW_RESET_CMD_HALT);
6542		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6543	}
6544
6545	/*
6546	 * Normally we won't complete the operation if the firmware RESET
6547	 * command fails but if our caller insists we'll go ahead and put the
6548	 * uP into RESET.  This can be useful if the firmware is hung or even
6549	 * missing ...  We'll have to take the risk of putting the uP into
6550	 * RESET without the cooperation of firmware in that case.
6551	 *
6552	 * We also force the firmware's HALT flag to be on in case we bypassed
6553	 * the firmware RESET command above or we're dealing with old firmware
6554	 * which doesn't have the HALT capability.  This will serve as a flag
6555	 * for the incoming firmware to know that it's coming out of a HALT
6556	 * rather than a RESET ... if it's new enough to understand that ...
6557	 */
6558	if (ret == 0 || force) {
6559		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, F_UPCRST);
6560		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT,
6561				 F_PCIE_FW_HALT);
6562	}
6563
6564	/*
6565	 * And we always return the result of the firmware RESET command
6566	 * even when we force the uP into RESET ...
6567	 */
6568	return ret;
6569}
6570
6571/**
6572 *	t4_fw_restart - restart the firmware by taking the uP out of RESET
6573 *	@adap: the adapter
6574 *	@reset: if we want to do a RESET to restart things
6575 *
6576 *	Restart firmware previously halted by t4_fw_halt().  On successful
6577 *	return the previous PF Master remains as the new PF Master and there
6578 *	is no need to issue a new HELLO command, etc.
6579 *
6580 *	We do this in two ways:
6581 *
6582 *	 1. If we're dealing with newer firmware we'll simply want to take
6583 *	    the chip's microprocessor out of RESET.  This will cause the
6584 *	    firmware to start up from its start vector.  And then we'll loop
6585 *	    until the firmware indicates it's started again (PCIE_FW.HALT
6586 *	    reset to 0) or we timeout.
6587 *
6588 *	 2. If we're dealing with older firmware then we'll need to RESET
6589 *	    the chip since older firmware won't recognize the PCIE_FW.HALT
6590 *	    flag and automatically RESET itself on startup.
6591 */
6592int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
6593{
6594	if (reset) {
6595		/*
6596		 * Since we're directing the RESET instead of the firmware
6597		 * doing it automatically, we need to clear the PCIE_FW.HALT
6598		 * bit.
6599		 */
6600		t4_set_reg_field(adap, A_PCIE_FW, F_PCIE_FW_HALT, 0);
6601
6602		/*
6603		 * If we've been given a valid mailbox, first try to get the
6604		 * firmware to do the RESET.  If that works, great and we can
6605		 * return success.  Otherwise, if we haven't been given a
6606		 * valid mailbox or the RESET command failed, fall back to
6607		 * hitting the chip with a hammer.
6608		 */
6609		if (mbox <= M_PCIE_FW_MASTER) {
6610			t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6611			msleep(100);
6612			if (t4_fw_reset(adap, mbox,
6613					F_PIORST | F_PIORSTMODE) == 0)
6614				return 0;
6615		}
6616
6617		t4_write_reg(adap, A_PL_RST, F_PIORST | F_PIORSTMODE);
6618		msleep(2000);
6619	} else {
6620		int ms;
6621
6622		t4_set_reg_field(adap, A_CIM_BOOT_CFG, F_UPCRST, 0);
6623		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
6624			if (!(t4_read_reg(adap, A_PCIE_FW) & F_PCIE_FW_HALT))
6625				return FW_SUCCESS;
6626			msleep(100);
6627			ms += 100;
6628		}
6629		return -ETIMEDOUT;
6630	}
6631	return 0;
6632}
6633
6634/**
6635 *	t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6636 *	@adap: the adapter
6637 *	@mbox: mailbox to use for the FW RESET command (if desired)
6638 *	@fw_data: the firmware image to write
6639 *	@size: image size
6640 *	@force: force upgrade even if firmware doesn't cooperate
6641 *
6642 *	Perform all of the steps necessary for upgrading an adapter's
6643 *	firmware image.  Normally this requires the cooperation of the
6644 *	existing firmware in order to halt all existing activities
6645 *	but if an invalid mailbox token is passed in we skip that step
6646 *	(though we'll still put the adapter microprocessor into RESET in
6647 *	that case).
6648 *
6649 *	On successful return the new firmware will have been loaded and
6650 *	the adapter will have been fully RESET losing all previous setup
6651 *	state.  On unsuccessful return the adapter may be completely hosed ...
6652 *	positive errno indicates that the adapter is ~probably~ intact, a
6653 *	negative errno indicates that things are looking bad ...
6654 */
6655int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6656		  const u8 *fw_data, unsigned int size, int force)
6657{
6658	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6659	unsigned int bootstrap =
6660	    be32_to_cpu(fw_hdr->magic) == FW_HDR_MAGIC_BOOTSTRAP;
6661	int reset, ret;
6662
6663	if (!t4_fw_matches_chip(adap, fw_hdr))
6664		return -EINVAL;
6665
6666	if (!bootstrap) {
6667		ret = t4_fw_halt(adap, mbox, force);
6668		if (ret < 0 && !force)
6669			return ret;
6670	}
6671
6672	ret = t4_load_fw(adap, fw_data, size);
6673	if (ret < 0 || bootstrap)
6674		return ret;
6675
6676	/*
6677	 * Older versions of the firmware don't understand the new
6678	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6679	 * restart.  So for newly loaded older firmware we'll have to do the
6680	 * RESET for it so it starts up on a clean slate.  We can tell if
6681	 * the newly loaded firmware will handle this right by checking
6682	 * its header flags to see if it advertises the capability.
6683	 */
6684	reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
6685	return t4_fw_restart(adap, mbox, reset);
6686}
6687
6688/**
6689 *	t4_fw_initialize - ask FW to initialize the device
6690 *	@adap: the adapter
6691 *	@mbox: mailbox to use for the FW command
6692 *
6693 *	Issues a command to FW to partially initialize the device.  This
6694 *	performs initialization that generally doesn't depend on user input.
6695 */
6696int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6697{
6698	struct fw_initialize_cmd c;
6699
6700	memset(&c, 0, sizeof(c));
6701	INIT_CMD(c, INITIALIZE, WRITE);
6702	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6703}
6704
6705/**
6706 *	t4_query_params_rw - query FW or device parameters
6707 *	@adap: the adapter
6708 *	@mbox: mailbox to use for the FW command
6709 *	@pf: the PF
6710 *	@vf: the VF
6711 *	@nparams: the number of parameters
6712 *	@params: the parameter names
6713 *	@val: the parameter values
6714 *	@rw: Write and read flag
6715 *
6716 *	Reads the value of FW or device parameters.  Up to 7 parameters can be
6717 *	queried at once.
6718 */
6719int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6720		       unsigned int vf, unsigned int nparams, const u32 *params,
6721		       u32 *val, int rw)
6722{
6723	int i, ret;
6724	struct fw_params_cmd c;
6725	__be32 *p = &c.param[0].mnem;
6726
6727	if (nparams > 7)
6728		return -EINVAL;
6729
6730	memset(&c, 0, sizeof(c));
6731	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6732				  F_FW_CMD_REQUEST | F_FW_CMD_READ |
6733				  V_FW_PARAMS_CMD_PFN(pf) |
6734				  V_FW_PARAMS_CMD_VFN(vf));
6735	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6736
6737	for (i = 0; i < nparams; i++) {
6738		*p++ = cpu_to_be32(*params++);
6739		if (rw)
6740			*p = cpu_to_be32(*(val + i));
6741		p++;
6742	}
6743
6744	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6745	if (ret == 0)
6746		for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
6747			*val++ = be32_to_cpu(*p);
6748	return ret;
6749}
6750
6751int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6752		    unsigned int vf, unsigned int nparams, const u32 *params,
6753		    u32 *val)
6754{
6755	return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6756}
6757
6758/**
6759 *      t4_set_params_timeout - sets FW or device parameters
6760 *      @adap: the adapter
6761 *      @mbox: mailbox to use for the FW command
6762 *      @pf: the PF
6763 *      @vf: the VF
6764 *      @nparams: the number of parameters
6765 *      @params: the parameter names
6766 *      @val: the parameter values
6767 *      @timeout: the timeout time
6768 *
6769 *      Sets the value of FW or device parameters.  Up to 7 parameters can be
6770 *      specified at once.
6771 */
6772int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
6773			  unsigned int pf, unsigned int vf,
6774			  unsigned int nparams, const u32 *params,
6775			  const u32 *val, int timeout)
6776{
6777	struct fw_params_cmd c;
6778	__be32 *p = &c.param[0].mnem;
6779
6780	if (nparams > 7)
6781		return -EINVAL;
6782
6783	memset(&c, 0, sizeof(c));
6784	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PARAMS_CMD) |
6785				  F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
6786				  V_FW_PARAMS_CMD_PFN(pf) |
6787				  V_FW_PARAMS_CMD_VFN(vf));
6788	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6789
6790	while (nparams--) {
6791		*p++ = cpu_to_be32(*params++);
6792		*p++ = cpu_to_be32(*val++);
6793	}
6794
6795	return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
6796}
6797
6798/**
6799 *	t4_set_params - sets FW or device parameters
6800 *	@adap: the adapter
6801 *	@mbox: mailbox to use for the FW command
6802 *	@pf: the PF
6803 *	@vf: the VF
6804 *	@nparams: the number of parameters
6805 *	@params: the parameter names
6806 *	@val: the parameter values
6807 *
6808 *	Sets the value of FW or device parameters.  Up to 7 parameters can be
6809 *	specified at once.
6810 */
6811int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6812		  unsigned int vf, unsigned int nparams, const u32 *params,
6813		  const u32 *val)
6814{
6815	return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6816				     FW_CMD_MAX_TIMEOUT);
6817}
6818
6819/**
6820 *	t4_cfg_pfvf - configure PF/VF resource limits
6821 *	@adap: the adapter
6822 *	@mbox: mailbox to use for the FW command
6823 *	@pf: the PF being configured
6824 *	@vf: the VF being configured
6825 *	@txq: the max number of egress queues
6826 *	@txq_eth_ctrl: the max number of egress Ethernet or control queues
6827 *	@rxqi: the max number of interrupt-capable ingress queues
6828 *	@rxq: the max number of interruptless ingress queues
6829 *	@tc: the PCI traffic class
6830 *	@vi: the max number of virtual interfaces
6831 *	@cmask: the channel access rights mask for the PF/VF
6832 *	@pmask: the port access rights mask for the PF/VF
6833 *	@nexact: the maximum number of exact MPS filters
6834 *	@rcaps: read capabilities
6835 *	@wxcaps: write/execute capabilities
6836 *
6837 *	Configures resource limits and capabilities for a physical or virtual
6838 *	function.
6839 */
6840int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6841		unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6842		unsigned int rxqi, unsigned int rxq, unsigned int tc,
6843		unsigned int vi, unsigned int cmask, unsigned int pmask,
6844		unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6845{
6846	struct fw_pfvf_cmd c;
6847
6848	memset(&c, 0, sizeof(c));
6849	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_PFVF_CMD) | F_FW_CMD_REQUEST |
6850				  F_FW_CMD_WRITE | V_FW_PFVF_CMD_PFN(pf) |
6851				  V_FW_PFVF_CMD_VFN(vf));
6852	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6853	c.niqflint_niq = cpu_to_be32(V_FW_PFVF_CMD_NIQFLINT(rxqi) |
6854				     V_FW_PFVF_CMD_NIQ(rxq));
6855	c.type_to_neq = cpu_to_be32(V_FW_PFVF_CMD_CMASK(cmask) |
6856				    V_FW_PFVF_CMD_PMASK(pmask) |
6857				    V_FW_PFVF_CMD_NEQ(txq));
6858	c.tc_to_nexactf = cpu_to_be32(V_FW_PFVF_CMD_TC(tc) |
6859				      V_FW_PFVF_CMD_NVI(vi) |
6860				      V_FW_PFVF_CMD_NEXACTF(nexact));
6861	c.r_caps_to_nethctrl = cpu_to_be32(V_FW_PFVF_CMD_R_CAPS(rcaps) |
6862				     V_FW_PFVF_CMD_WX_CAPS(wxcaps) |
6863				     V_FW_PFVF_CMD_NETHCTRL(txq_eth_ctrl));
6864	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6865}
6866
6867/**
6868 *	t4_alloc_vi_func - allocate a virtual interface
6869 *	@adap: the adapter
6870 *	@mbox: mailbox to use for the FW command
6871 *	@port: physical port associated with the VI
6872 *	@pf: the PF owning the VI
6873 *	@vf: the VF owning the VI
6874 *	@nmac: number of MAC addresses needed (1 to 5)
6875 *	@mac: the MAC addresses of the VI
6876 *	@rss_size: size of RSS table slice associated with this VI
6877 *	@portfunc: which Port Application Function MAC Address is desired
6878 *	@idstype: Intrusion Detection Type
6879 *
6880 *	Allocates a virtual interface for the given physical port.  If @mac is
6881 *	not %NULL it contains the MAC addresses of the VI as assigned by FW.
6882 *	If @rss_size is %NULL the VI is not assigned any RSS slice by FW.
6883 *	@mac should be large enough to hold @nmac Ethernet addresses, they are
6884 *	stored consecutively so the space needed is @nmac * 6 bytes.
6885 *	Returns a negative error number or the non-negative VI id.
6886 */
6887int t4_alloc_vi_func(struct adapter *adap, unsigned int mbox,
6888		     unsigned int port, unsigned int pf, unsigned int vf,
6889		     unsigned int nmac, u8 *mac, u16 *rss_size,
6890		     unsigned int portfunc, unsigned int idstype)
6891{
6892	int ret;
6893	struct fw_vi_cmd c;
6894
6895	memset(&c, 0, sizeof(c));
6896	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) | F_FW_CMD_REQUEST |
6897				  F_FW_CMD_WRITE | F_FW_CMD_EXEC |
6898				  V_FW_VI_CMD_PFN(pf) | V_FW_VI_CMD_VFN(vf));
6899	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_ALLOC | FW_LEN16(c));
6900	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_TYPE(idstype) |
6901				     V_FW_VI_CMD_FUNC(portfunc));
6902	c.portid_pkd = V_FW_VI_CMD_PORTID(port);
6903	c.nmac = nmac - 1;
6904	if(!rss_size)
6905		c.norss_rsssize = F_FW_VI_CMD_NORSS;
6906
6907	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6908	if (ret)
6909		return ret;
6910
6911	if (mac) {
6912		memcpy(mac, c.mac, sizeof(c.mac));
6913		switch (nmac) {
6914		case 5:
6915			memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6916		case 4:
6917			memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6918		case 3:
6919			memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6920		case 2:
6921			memcpy(mac + 6,  c.nmac0, sizeof(c.nmac0));
6922		}
6923	}
6924	if (rss_size)
6925		*rss_size = G_FW_VI_CMD_RSSSIZE(be16_to_cpu(c.norss_rsssize));
6926	return G_FW_VI_CMD_VIID(be16_to_cpu(c.type_to_viid));
6927}
6928
6929/**
6930 *      t4_alloc_vi - allocate an [Ethernet Function] virtual interface
6931 *      @adap: the adapter
6932 *      @mbox: mailbox to use for the FW command
6933 *      @port: physical port associated with the VI
6934 *      @pf: the PF owning the VI
6935 *      @vf: the VF owning the VI
6936 *      @nmac: number of MAC addresses needed (1 to 5)
6937 *      @mac: the MAC addresses of the VI
6938 *      @rss_size: size of RSS table slice associated with this VI
6939 *
6940 *	backwards compatible and convieniance routine to allocate a Virtual
6941 *	Interface with a Ethernet Port Application Function and Intrustion
6942 *	Detection System disabled.
6943 */
6944int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6945		unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6946		u16 *rss_size)
6947{
6948	return t4_alloc_vi_func(adap, mbox, port, pf, vf, nmac, mac, rss_size,
6949				FW_VI_FUNC_ETH, 0);
6950}
6951
6952/**
6953 * 	t4_free_vi - free a virtual interface
6954 * 	@adap: the adapter
6955 * 	@mbox: mailbox to use for the FW command
6956 * 	@pf: the PF owning the VI
6957 * 	@vf: the VF owning the VI
6958 * 	@viid: virtual interface identifiler
6959 *
6960 * 	Free a previously allocated virtual interface.
6961 */
6962int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6963	       unsigned int vf, unsigned int viid)
6964{
6965	struct fw_vi_cmd c;
6966
6967	memset(&c, 0, sizeof(c));
6968	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_VI_CMD) |
6969				  F_FW_CMD_REQUEST |
6970				  F_FW_CMD_EXEC |
6971				  V_FW_VI_CMD_PFN(pf) |
6972				  V_FW_VI_CMD_VFN(vf));
6973	c.alloc_to_len16 = cpu_to_be32(F_FW_VI_CMD_FREE | FW_LEN16(c));
6974	c.type_to_viid = cpu_to_be16(V_FW_VI_CMD_VIID(viid));
6975
6976	return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6977}
6978
6979/**
6980 *	t4_set_rxmode - set Rx properties of a virtual interface
6981 *	@adap: the adapter
6982 *	@mbox: mailbox to use for the FW command
6983 *	@viid: the VI id
6984 *	@mtu: the new MTU or -1
6985 *	@promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6986 *	@all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6987 *	@bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
6988 *	@vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
6989 *	@sleep_ok: if true we may sleep while awaiting command completion
6990 *
6991 *	Sets Rx properties of a virtual interface.
6992 */
6993int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
6994		  int mtu, int promisc, int all_multi, int bcast, int vlanex,
6995		  bool sleep_ok)
6996{
6997	struct fw_vi_rxmode_cmd c;
6998
6999	/* convert to FW values */
7000	if (mtu < 0)
7001		mtu = M_FW_VI_RXMODE_CMD_MTU;
7002	if (promisc < 0)
7003		promisc = M_FW_VI_RXMODE_CMD_PROMISCEN;
7004	if (all_multi < 0)
7005		all_multi = M_FW_VI_RXMODE_CMD_ALLMULTIEN;
7006	if (bcast < 0)
7007		bcast = M_FW_VI_RXMODE_CMD_BROADCASTEN;
7008	if (vlanex < 0)
7009		vlanex = M_FW_VI_RXMODE_CMD_VLANEXEN;
7010
7011	memset(&c, 0, sizeof(c));
7012	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_RXMODE_CMD) |
7013				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7014				   V_FW_VI_RXMODE_CMD_VIID(viid));
7015	c.retval_len16 = cpu_to_be32(FW_LEN16(c));
7016	c.mtu_to_vlanexen =
7017		cpu_to_be32(V_FW_VI_RXMODE_CMD_MTU(mtu) |
7018			    V_FW_VI_RXMODE_CMD_PROMISCEN(promisc) |
7019			    V_FW_VI_RXMODE_CMD_ALLMULTIEN(all_multi) |
7020			    V_FW_VI_RXMODE_CMD_BROADCASTEN(bcast) |
7021			    V_FW_VI_RXMODE_CMD_VLANEXEN(vlanex));
7022	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7023}
7024
7025/**
7026 *	t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
7027 *	@adap: the adapter
7028 *	@mbox: mailbox to use for the FW command
7029 *	@viid: the VI id
7030 *	@free: if true any existing filters for this VI id are first removed
7031 *	@naddr: the number of MAC addresses to allocate filters for (up to 7)
7032 *	@addr: the MAC address(es)
7033 *	@idx: where to store the index of each allocated filter
7034 *	@hash: pointer to hash address filter bitmap
7035 *	@sleep_ok: call is allowed to sleep
7036 *
7037 *	Allocates an exact-match filter for each of the supplied addresses and
7038 *	sets it to the corresponding address.  If @idx is not %NULL it should
7039 *	have at least @naddr entries, each of which will be set to the index of
7040 *	the filter allocated for the corresponding MAC address.  If a filter
7041 *	could not be allocated for an address its index is set to 0xffff.
7042 *	If @hash is not %NULL addresses that fail to allocate an exact filter
7043 *	are hashed and update the hash filter bitmap pointed at by @hash.
7044 *
7045 *	Returns a negative error number or the number of filters allocated.
7046 */
7047int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
7048		      unsigned int viid, bool free, unsigned int naddr,
7049		      const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
7050{
7051	int offset, ret = 0;
7052	struct fw_vi_mac_cmd c;
7053	unsigned int nfilters = 0;
7054	unsigned int max_naddr = adap->chip_params->mps_tcam_size;
7055	unsigned int rem = naddr;
7056
7057	if (naddr > max_naddr)
7058		return -EINVAL;
7059
7060	for (offset = 0; offset < naddr ; /**/) {
7061		unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
7062					 ? rem
7063					 : ARRAY_SIZE(c.u.exact));
7064		size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
7065						     u.exact[fw_naddr]), 16);
7066		struct fw_vi_mac_exact *p;
7067		int i;
7068
7069		memset(&c, 0, sizeof(c));
7070		c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7071					   F_FW_CMD_REQUEST |
7072					   F_FW_CMD_WRITE |
7073					   V_FW_CMD_EXEC(free) |
7074					   V_FW_VI_MAC_CMD_VIID(viid));
7075		c.freemacs_to_len16 = cpu_to_be32(V_FW_VI_MAC_CMD_FREEMACS(free) |
7076						  V_FW_CMD_LEN16(len16));
7077
7078		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7079			p->valid_to_idx =
7080				cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7081					    V_FW_VI_MAC_CMD_IDX(FW_VI_MAC_ADD_MAC));
7082			memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
7083		}
7084
7085		/*
7086		 * It's okay if we run out of space in our MAC address arena.
7087		 * Some of the addresses we submit may get stored so we need
7088		 * to run through the reply to see what the results were ...
7089		 */
7090		ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
7091		if (ret && ret != -FW_ENOMEM)
7092			break;
7093
7094		for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
7095			u16 index = G_FW_VI_MAC_CMD_IDX(
7096						be16_to_cpu(p->valid_to_idx));
7097
7098			if (idx)
7099				idx[offset+i] = (index >=  max_naddr
7100						 ? 0xffff
7101						 : index);
7102			if (index < max_naddr)
7103				nfilters++;
7104			else if (hash)
7105				*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
7106		}
7107
7108		free = false;
7109		offset += fw_naddr;
7110		rem -= fw_naddr;
7111	}
7112
7113	if (ret == 0 || ret == -FW_ENOMEM)
7114		ret = nfilters;
7115	return ret;
7116}
7117
7118/**
7119 *	t4_change_mac - modifies the exact-match filter for a MAC address
7120 *	@adap: the adapter
7121 *	@mbox: mailbox to use for the FW command
7122 *	@viid: the VI id
7123 *	@idx: index of existing filter for old value of MAC address, or -1
7124 *	@addr: the new MAC address value
7125 *	@persist: whether a new MAC allocation should be persistent
7126 *	@add_smt: if true also add the address to the HW SMT
7127 *
7128 *	Modifies an exact-match filter and sets it to the new MAC address if
7129 *	@idx >= 0, or adds the MAC address to a new filter if @idx < 0.  In the
7130 *	latter case the address is added persistently if @persist is %true.
7131 *
7132 *	Note that in general it is not possible to modify the value of a given
7133 *	filter so the generic way to modify an address filter is to free the one
7134 *	being used by the old address value and allocate a new filter for the
7135 *	new address value.
7136 *
7137 *	Returns a negative error number or the index of the filter with the new
7138 *	MAC value.  Note that this index may differ from @idx.
7139 */
7140int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
7141		  int idx, const u8 *addr, bool persist, bool add_smt)
7142{
7143	int ret, mode;
7144	struct fw_vi_mac_cmd c;
7145	struct fw_vi_mac_exact *p = c.u.exact;
7146	unsigned int max_mac_addr = adap->chip_params->mps_tcam_size;
7147
7148	if (idx < 0)		/* new allocation */
7149		idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
7150	mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
7151
7152	memset(&c, 0, sizeof(c));
7153	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7154				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7155				   V_FW_VI_MAC_CMD_VIID(viid));
7156	c.freemacs_to_len16 = cpu_to_be32(V_FW_CMD_LEN16(1));
7157	p->valid_to_idx = cpu_to_be16(F_FW_VI_MAC_CMD_VALID |
7158				      V_FW_VI_MAC_CMD_SMAC_RESULT(mode) |
7159				      V_FW_VI_MAC_CMD_IDX(idx));
7160	memcpy(p->macaddr, addr, sizeof(p->macaddr));
7161
7162	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7163	if (ret == 0) {
7164		ret = G_FW_VI_MAC_CMD_IDX(be16_to_cpu(p->valid_to_idx));
7165		if (ret >= max_mac_addr)
7166			ret = -ENOMEM;
7167	}
7168	return ret;
7169}
7170
7171/**
7172 *	t4_set_addr_hash - program the MAC inexact-match hash filter
7173 *	@adap: the adapter
7174 *	@mbox: mailbox to use for the FW command
7175 *	@viid: the VI id
7176 *	@ucast: whether the hash filter should also match unicast addresses
7177 *	@vec: the value to be written to the hash filter
7178 *	@sleep_ok: call is allowed to sleep
7179 *
7180 *	Sets the 64-bit inexact-match hash filter for a virtual interface.
7181 */
7182int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
7183		     bool ucast, u64 vec, bool sleep_ok)
7184{
7185	struct fw_vi_mac_cmd c;
7186	u32 val;
7187
7188	memset(&c, 0, sizeof(c));
7189	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_MAC_CMD) |
7190				   F_FW_CMD_REQUEST | F_FW_CMD_WRITE |
7191				   V_FW_VI_ENABLE_CMD_VIID(viid));
7192	val = V_FW_VI_MAC_CMD_ENTRY_TYPE(FW_VI_MAC_TYPE_HASHVEC) |
7193	      V_FW_VI_MAC_CMD_HASHUNIEN(ucast) | V_FW_CMD_LEN16(1);
7194	c.freemacs_to_len16 = cpu_to_be32(val);
7195	c.u.hash.hashvec = cpu_to_be64(vec);
7196	return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
7197}
7198
7199/**
7200 *      t4_enable_vi_params - enable/disable a virtual interface
7201 *      @adap: the adapter
7202 *      @mbox: mailbox to use for the FW command
7203 *      @viid: the VI id
7204 *      @rx_en: 1=enable Rx, 0=disable Rx
7205 *      @tx_en: 1=enable Tx, 0=disable Tx
7206 *      @dcb_en: 1=enable delivery of Data Center Bridging messages.
7207 *
7208 *      Enables/disables a virtual interface.  Note that setting DCB Enable
7209 *      only makes sense when enabling a Virtual Interface ...
7210 */
7211int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
7212			unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
7213{
7214	struct fw_vi_enable_cmd c;
7215
7216	memset(&c, 0, sizeof(c));
7217	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7218				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7219				   V_FW_VI_ENABLE_CMD_VIID(viid));
7220	c.ien_to_len16 = cpu_to_be32(V_FW_VI_ENABLE_CMD_IEN(rx_en) |
7221				     V_FW_VI_ENABLE_CMD_EEN(tx_en) |
7222				     V_FW_VI_ENABLE_CMD_DCB_INFO(dcb_en) |
7223				     FW_LEN16(c));
7224	return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
7225}
7226
7227/**
7228 *	t4_enable_vi - enable/disable a virtual interface
7229 *	@adap: the adapter
7230 *	@mbox: mailbox to use for the FW command
7231 *	@viid: the VI id
7232 *	@rx_en: 1=enable Rx, 0=disable Rx
7233 *	@tx_en: 1=enable Tx, 0=disable Tx
7234 *
7235 *	Enables/disables a virtual interface.  Note that setting DCB Enable
7236 *	only makes sense when enabling a Virtual Interface ...
7237 */
7238int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
7239		 bool rx_en, bool tx_en)
7240{
7241	return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
7242}
7243
7244/**
7245 *	t4_identify_port - identify a VI's port by blinking its LED
7246 *	@adap: the adapter
7247 *	@mbox: mailbox to use for the FW command
7248 *	@viid: the VI id
7249 *	@nblinks: how many times to blink LED at 2.5 Hz
7250 *
7251 *	Identifies a VI's port by blinking its LED.
7252 */
7253int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
7254		     unsigned int nblinks)
7255{
7256	struct fw_vi_enable_cmd c;
7257
7258	memset(&c, 0, sizeof(c));
7259	c.op_to_viid = cpu_to_be32(V_FW_CMD_OP(FW_VI_ENABLE_CMD) |
7260				   F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7261				   V_FW_VI_ENABLE_CMD_VIID(viid));
7262	c.ien_to_len16 = cpu_to_be32(F_FW_VI_ENABLE_CMD_LED | FW_LEN16(c));
7263	c.blinkdur = cpu_to_be16(nblinks);
7264	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7265}
7266
7267/**
7268 *	t4_iq_stop - stop an ingress queue and its FLs
7269 *	@adap: the adapter
7270 *	@mbox: mailbox to use for the FW command
7271 *	@pf: the PF owning the queues
7272 *	@vf: the VF owning the queues
7273 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7274 *	@iqid: ingress queue id
7275 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7276 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7277 *
7278 *	Stops an ingress queue and its associated FLs, if any.  This causes
7279 *	any current or future data/messages destined for these queues to be
7280 *	tossed.
7281 */
7282int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
7283	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7284	       unsigned int fl0id, unsigned int fl1id)
7285{
7286	struct fw_iq_cmd c;
7287
7288	memset(&c, 0, sizeof(c));
7289	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7290				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7291				  V_FW_IQ_CMD_VFN(vf));
7292	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_IQSTOP | FW_LEN16(c));
7293	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7294	c.iqid = cpu_to_be16(iqid);
7295	c.fl0id = cpu_to_be16(fl0id);
7296	c.fl1id = cpu_to_be16(fl1id);
7297	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7298}
7299
7300/**
7301 *	t4_iq_free - free an ingress queue and its FLs
7302 *	@adap: the adapter
7303 *	@mbox: mailbox to use for the FW command
7304 *	@pf: the PF owning the queues
7305 *	@vf: the VF owning the queues
7306 *	@iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
7307 *	@iqid: ingress queue id
7308 *	@fl0id: FL0 queue id or 0xffff if no attached FL0
7309 *	@fl1id: FL1 queue id or 0xffff if no attached FL1
7310 *
7311 *	Frees an ingress queue and its associated FLs, if any.
7312 */
7313int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7314	       unsigned int vf, unsigned int iqtype, unsigned int iqid,
7315	       unsigned int fl0id, unsigned int fl1id)
7316{
7317	struct fw_iq_cmd c;
7318
7319	memset(&c, 0, sizeof(c));
7320	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST |
7321				  F_FW_CMD_EXEC | V_FW_IQ_CMD_PFN(pf) |
7322				  V_FW_IQ_CMD_VFN(vf));
7323	c.alloc_to_len16 = cpu_to_be32(F_FW_IQ_CMD_FREE | FW_LEN16(c));
7324	c.type_to_iqandstindex = cpu_to_be32(V_FW_IQ_CMD_TYPE(iqtype));
7325	c.iqid = cpu_to_be16(iqid);
7326	c.fl0id = cpu_to_be16(fl0id);
7327	c.fl1id = cpu_to_be16(fl1id);
7328	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7329}
7330
7331/**
7332 *	t4_eth_eq_free - free an Ethernet egress queue
7333 *	@adap: the adapter
7334 *	@mbox: mailbox to use for the FW command
7335 *	@pf: the PF owning the queue
7336 *	@vf: the VF owning the queue
7337 *	@eqid: egress queue id
7338 *
7339 *	Frees an Ethernet egress queue.
7340 */
7341int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7342		   unsigned int vf, unsigned int eqid)
7343{
7344	struct fw_eq_eth_cmd c;
7345
7346	memset(&c, 0, sizeof(c));
7347	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_ETH_CMD) |
7348				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7349				  V_FW_EQ_ETH_CMD_PFN(pf) |
7350				  V_FW_EQ_ETH_CMD_VFN(vf));
7351	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_ETH_CMD_FREE | FW_LEN16(c));
7352	c.eqid_pkd = cpu_to_be32(V_FW_EQ_ETH_CMD_EQID(eqid));
7353	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7354}
7355
7356/**
7357 *	t4_ctrl_eq_free - free a control egress queue
7358 *	@adap: the adapter
7359 *	@mbox: mailbox to use for the FW command
7360 *	@pf: the PF owning the queue
7361 *	@vf: the VF owning the queue
7362 *	@eqid: egress queue id
7363 *
7364 *	Frees a control egress queue.
7365 */
7366int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7367		    unsigned int vf, unsigned int eqid)
7368{
7369	struct fw_eq_ctrl_cmd c;
7370
7371	memset(&c, 0, sizeof(c));
7372	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_CTRL_CMD) |
7373				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7374				  V_FW_EQ_CTRL_CMD_PFN(pf) |
7375				  V_FW_EQ_CTRL_CMD_VFN(vf));
7376	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_CTRL_CMD_FREE | FW_LEN16(c));
7377	c.cmpliqid_eqid = cpu_to_be32(V_FW_EQ_CTRL_CMD_EQID(eqid));
7378	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7379}
7380
7381/**
7382 *	t4_ofld_eq_free - free an offload egress queue
7383 *	@adap: the adapter
7384 *	@mbox: mailbox to use for the FW command
7385 *	@pf: the PF owning the queue
7386 *	@vf: the VF owning the queue
7387 *	@eqid: egress queue id
7388 *
7389 *	Frees a control egress queue.
7390 */
7391int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7392		    unsigned int vf, unsigned int eqid)
7393{
7394	struct fw_eq_ofld_cmd c;
7395
7396	memset(&c, 0, sizeof(c));
7397	c.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_EQ_OFLD_CMD) |
7398				  F_FW_CMD_REQUEST | F_FW_CMD_EXEC |
7399				  V_FW_EQ_OFLD_CMD_PFN(pf) |
7400				  V_FW_EQ_OFLD_CMD_VFN(vf));
7401	c.alloc_to_len16 = cpu_to_be32(F_FW_EQ_OFLD_CMD_FREE | FW_LEN16(c));
7402	c.eqid_pkd = cpu_to_be32(V_FW_EQ_OFLD_CMD_EQID(eqid));
7403	return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7404}
7405
7406/**
7407 *	t4_link_down_rc_str - return a string for a Link Down Reason Code
7408 *	@link_down_rc: Link Down Reason Code
7409 *
7410 *	Returns a string representation of the Link Down Reason Code.
7411 */
7412const char *t4_link_down_rc_str(unsigned char link_down_rc)
7413{
7414	static const char *reason[] = {
7415		"Link Down",
7416		"Remote Fault",
7417		"Auto-negotiation Failure",
7418		"Reserved3",
7419		"Insufficient Airflow",
7420		"Unable To Determine Reason",
7421		"No RX Signal Detected",
7422		"Reserved7",
7423	};
7424
7425	if (link_down_rc >= ARRAY_SIZE(reason))
7426		return "Bad Reason Code";
7427
7428	return reason[link_down_rc];
7429}
7430
7431/**
7432 *	t4_handle_fw_rpl - process a FW reply message
7433 *	@adap: the adapter
7434 *	@rpl: start of the FW message
7435 *
7436 *	Processes a FW message, such as link state change messages.
7437 */
7438int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7439{
7440	u8 opcode = *(const u8 *)rpl;
7441	const struct fw_port_cmd *p = (const void *)rpl;
7442	unsigned int action =
7443			G_FW_PORT_CMD_ACTION(be32_to_cpu(p->action_to_len16));
7444
7445	if (opcode == FW_PORT_CMD && action == FW_PORT_ACTION_GET_PORT_INFO) {
7446		/* link/module state change message */
7447		int speed = 0, fc = 0, i;
7448		int chan = G_FW_PORT_CMD_PORTID(be32_to_cpu(p->op_to_portid));
7449		struct port_info *pi = NULL;
7450		struct link_config *lc;
7451		u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
7452		int link_ok = (stat & F_FW_PORT_CMD_LSTATUS) != 0;
7453		u32 mod = G_FW_PORT_CMD_MODTYPE(stat);
7454
7455		if (stat & F_FW_PORT_CMD_RXPAUSE)
7456			fc |= PAUSE_RX;
7457		if (stat & F_FW_PORT_CMD_TXPAUSE)
7458			fc |= PAUSE_TX;
7459		if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_100M))
7460			speed = 100;
7461		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_1G))
7462			speed = 1000;
7463		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_10G))
7464			speed = 10000;
7465		else if (stat & V_FW_PORT_CMD_LSPEED(FW_PORT_CAP_SPEED_40G))
7466			speed = 40000;
7467
7468		for_each_port(adap, i) {
7469			pi = adap2pinfo(adap, i);
7470			if (pi->tx_chan == chan)
7471				break;
7472		}
7473		lc = &pi->link_cfg;
7474
7475		if (mod != pi->mod_type) {
7476			pi->mod_type = mod;
7477			t4_os_portmod_changed(adap, i);
7478		}
7479		if (link_ok != lc->link_ok || speed != lc->speed ||
7480		    fc != lc->fc) {                    /* something changed */
7481			int reason;
7482
7483			if (!link_ok && lc->link_ok)
7484				reason = G_FW_PORT_CMD_LINKDNRC(stat);
7485			else
7486				reason = -1;
7487
7488			lc->link_ok = link_ok;
7489			lc->speed = speed;
7490			lc->fc = fc;
7491			lc->supported = be16_to_cpu(p->u.info.pcap);
7492			t4_os_link_changed(adap, i, link_ok, reason);
7493		}
7494	} else {
7495		CH_WARN_RATELIMIT(adap, "Unknown firmware reply %d\n", opcode);
7496		return -EINVAL;
7497	}
7498	return 0;
7499}
7500
7501/**
7502 *	get_pci_mode - determine a card's PCI mode
7503 *	@adapter: the adapter
7504 *	@p: where to store the PCI settings
7505 *
7506 *	Determines a card's PCI mode and associated parameters, such as speed
7507 *	and width.
7508 */
7509static void get_pci_mode(struct adapter *adapter,
7510				   struct pci_params *p)
7511{
7512	u16 val;
7513	u32 pcie_cap;
7514
7515	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7516	if (pcie_cap) {
7517		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_LNKSTA, &val);
7518		p->speed = val & PCI_EXP_LNKSTA_CLS;
7519		p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7520	}
7521}
7522
7523/**
7524 *	init_link_config - initialize a link's SW state
7525 *	@lc: structure holding the link state
7526 *	@caps: link capabilities
7527 *
7528 *	Initializes the SW state maintained for each link, including the link's
7529 *	capabilities and default speed/flow-control/autonegotiation settings.
7530 */
7531static void init_link_config(struct link_config *lc, unsigned int caps)
7532{
7533	lc->supported = caps;
7534	lc->requested_speed = 0;
7535	lc->speed = 0;
7536	lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7537	if (lc->supported & FW_PORT_CAP_ANEG) {
7538		lc->advertising = lc->supported & ADVERT_MASK;
7539		lc->autoneg = AUTONEG_ENABLE;
7540		lc->requested_fc |= PAUSE_AUTONEG;
7541	} else {
7542		lc->advertising = 0;
7543		lc->autoneg = AUTONEG_DISABLE;
7544	}
7545}
7546
7547struct flash_desc {
7548	u32 vendor_and_model_id;
7549	u32 size_mb;
7550};
7551
7552int t4_get_flash_params(struct adapter *adapter)
7553{
7554	/*
7555	 * Table for non-Numonix supported flash parts.  Numonix parts are left
7556	 * to the preexisting well-tested code.  All flash parts have 64KB
7557	 * sectors.
7558	 */
7559	static struct flash_desc supported_flash[] = {
7560		{ 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
7561	};
7562
7563	int ret;
7564	u32 info = 0;
7565
7566	ret = sf1_write(adapter, 1, 1, 0, SF_RD_ID);
7567	if (!ret)
7568		ret = sf1_read(adapter, 3, 0, 1, &info);
7569	t4_write_reg(adapter, A_SF_OP, 0);	/* unlock SF */
7570	if (ret < 0)
7571		return ret;
7572
7573	for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7574		if (supported_flash[ret].vendor_and_model_id == info) {
7575			adapter->params.sf_size = supported_flash[ret].size_mb;
7576			adapter->params.sf_nsec =
7577				adapter->params.sf_size / SF_SEC_SIZE;
7578			return 0;
7579		}
7580
7581	if ((info & 0xff) != 0x20)		/* not a Numonix flash */
7582		return -EINVAL;
7583	info >>= 16;				/* log2 of size */
7584	if (info >= 0x14 && info < 0x18)
7585		adapter->params.sf_nsec = 1 << (info - 16);
7586	else if (info == 0x18)
7587		adapter->params.sf_nsec = 64;
7588	else
7589		return -EINVAL;
7590	adapter->params.sf_size = 1 << info;
7591
7592	/*
7593	 * We should ~probably~ reject adapters with FLASHes which are too
7594	 * small but we have some legacy FPGAs with small FLASHes that we'd
7595	 * still like to use.  So instead we emit a scary message ...
7596	 */
7597	if (adapter->params.sf_size < FLASH_MIN_SIZE)
7598		CH_WARN(adapter, "WARNING!!! FLASH size %#x < %#x!!!\n",
7599			adapter->params.sf_size, FLASH_MIN_SIZE);
7600
7601	return 0;
7602}
7603
7604static void set_pcie_completion_timeout(struct adapter *adapter,
7605						  u8 range)
7606{
7607	u16 val;
7608	u32 pcie_cap;
7609
7610	pcie_cap = t4_os_find_pci_capability(adapter, PCI_CAP_ID_EXP);
7611	if (pcie_cap) {
7612		t4_os_pci_read_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, &val);
7613		val &= 0xfff0;
7614		val |= range ;
7615		t4_os_pci_write_cfg2(adapter, pcie_cap + PCI_EXP_DEVCTL2, val);
7616	}
7617}
7618
7619const struct chip_params *t4_get_chip_params(int chipid)
7620{
7621	static const struct chip_params chip_params[] = {
7622		{
7623			/* T4 */
7624			.nchan = NCHAN,
7625			.pm_stats_cnt = PM_NSTATS,
7626			.cng_ch_bits_log = 2,
7627			.nsched_cls = 15,
7628			.cim_num_obq = CIM_NUM_OBQ,
7629			.mps_rplc_size = 128,
7630			.vfcount = 128,
7631			.sge_fl_db = F_DBPRIO,
7632			.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES,
7633		},
7634		{
7635			/* T5 */
7636			.nchan = NCHAN,
7637			.pm_stats_cnt = PM_NSTATS,
7638			.cng_ch_bits_log = 2,
7639			.nsched_cls = 16,
7640			.cim_num_obq = CIM_NUM_OBQ_T5,
7641			.mps_rplc_size = 128,
7642			.vfcount = 128,
7643			.sge_fl_db = F_DBPRIO | F_DBTYPE,
7644			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7645		},
7646		{
7647			/* T6 */
7648			.nchan = T6_NCHAN,
7649			.pm_stats_cnt = T6_PM_NSTATS,
7650			.cng_ch_bits_log = 3,
7651			.nsched_cls = 16,
7652			.cim_num_obq = CIM_NUM_OBQ_T5,
7653			.mps_rplc_size = 256,
7654			.vfcount = 256,
7655			.sge_fl_db = 0,
7656			.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES,
7657		},
7658	};
7659
7660	chipid -= CHELSIO_T4;
7661	if (chipid < 0 || chipid >= ARRAY_SIZE(chip_params))
7662		return NULL;
7663
7664	return &chip_params[chipid];
7665}
7666
7667/**
7668 *	t4_prep_adapter - prepare SW and HW for operation
7669 *	@adapter: the adapter
7670 *	@buf: temporary space of at least VPD_LEN size provided by the caller.
7671 *
7672 *	Initialize adapter SW state for the various HW modules, set initial
7673 *	values for some adapter tunables, take PHYs out of reset, and
7674 *	initialize the MDIO interface.
7675 */
7676int t4_prep_adapter(struct adapter *adapter, u8 *buf)
7677{
7678	int ret;
7679	uint16_t device_id;
7680	uint32_t pl_rev;
7681
7682	get_pci_mode(adapter, &adapter->params.pci);
7683
7684	pl_rev = t4_read_reg(adapter, A_PL_REV);
7685	adapter->params.chipid = G_CHIPID(pl_rev);
7686	adapter->params.rev = G_REV(pl_rev);
7687	if (adapter->params.chipid == 0) {
7688		/* T4 did not have chipid in PL_REV (T5 onwards do) */
7689		adapter->params.chipid = CHELSIO_T4;
7690
7691		/* T4A1 chip is not supported */
7692		if (adapter->params.rev == 1) {
7693			CH_ALERT(adapter, "T4 rev 1 chip is not supported.\n");
7694			return -EINVAL;
7695		}
7696	}
7697
7698	adapter->chip_params = t4_get_chip_params(chip_id(adapter));
7699	if (adapter->chip_params == NULL)
7700		return -EINVAL;
7701
7702	adapter->params.pci.vpd_cap_addr =
7703	    t4_os_find_pci_capability(adapter, PCI_CAP_ID_VPD);
7704
7705	ret = t4_get_flash_params(adapter);
7706	if (ret < 0)
7707		return ret;
7708
7709	ret = get_vpd_params(adapter, &adapter->params.vpd, buf);
7710	if (ret < 0)
7711		return ret;
7712
7713	/* Cards with real ASICs have the chipid in the PCIe device id */
7714	t4_os_pci_read_cfg2(adapter, PCI_DEVICE_ID, &device_id);
7715	if (device_id >> 12 == chip_id(adapter))
7716		adapter->params.cim_la_size = CIMLA_SIZE;
7717	else {
7718		/* FPGA */
7719		adapter->params.fpga = 1;
7720		adapter->params.cim_la_size = 2 * CIMLA_SIZE;
7721	}
7722
7723	init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7724
7725	/*
7726	 * Default port and clock for debugging in case we can't reach FW.
7727	 */
7728	adapter->params.nports = 1;
7729	adapter->params.portvec = 1;
7730	adapter->params.vpd.cclk = 50000;
7731
7732	/* Set pci completion timeout value to 4 seconds. */
7733	set_pcie_completion_timeout(adapter, 0xd);
7734	return 0;
7735}
7736
7737/**
7738 *	t4_shutdown_adapter - shut down adapter, host & wire
7739 *	@adapter: the adapter
7740 *
7741 *	Perform an emergency shutdown of the adapter and stop it from
7742 *	continuing any further communication on the ports or DMA to the
7743 *	host.  This is typically used when the adapter and/or firmware
7744 *	have crashed and we want to prevent any further accidental
7745 *	communication with the rest of the world.  This will also force
7746 *	the port Link Status to go down -- if register writes work --
7747 *	which should help our peers figure out that we're down.
7748 */
7749int t4_shutdown_adapter(struct adapter *adapter)
7750{
7751	int port;
7752
7753	t4_intr_disable(adapter);
7754	t4_write_reg(adapter, A_DBG_GPIO_EN, 0);
7755	for_each_port(adapter, port) {
7756		u32 a_port_cfg = PORT_REG(port,
7757					  is_t4(adapter)
7758					  ? A_XGMAC_PORT_CFG
7759					  : A_MAC_PORT_CFG);
7760
7761		t4_write_reg(adapter, a_port_cfg,
7762			     t4_read_reg(adapter, a_port_cfg)
7763			     & ~V_SIGNAL_DET(1));
7764	}
7765	t4_set_reg_field(adapter, A_SGE_CONTROL, F_GLOBALENABLE, 0);
7766
7767	return 0;
7768}
7769
7770/**
7771 *	t4_init_devlog_params - initialize adapter->params.devlog
7772 *	@adap: the adapter
7773 *	@fw_attach: whether we can talk to the firmware
7774 *
7775 *	Initialize various fields of the adapter's Firmware Device Log
7776 *	Parameters structure.
7777 */
7778int t4_init_devlog_params(struct adapter *adap, int fw_attach)
7779{
7780	struct devlog_params *dparams = &adap->params.devlog;
7781	u32 pf_dparams;
7782	unsigned int devlog_meminfo;
7783	struct fw_devlog_cmd devlog_cmd;
7784	int ret;
7785
7786	/* If we're dealing with newer firmware, the Device Log Paramerters
7787	 * are stored in a designated register which allows us to access the
7788	 * Device Log even if we can't talk to the firmware.
7789	 */
7790	pf_dparams =
7791		t4_read_reg(adap, PCIE_FW_REG(A_PCIE_FW_PF, PCIE_FW_PF_DEVLOG));
7792	if (pf_dparams) {
7793		unsigned int nentries, nentries128;
7794
7795		dparams->memtype = G_PCIE_FW_PF_DEVLOG_MEMTYPE(pf_dparams);
7796		dparams->start = G_PCIE_FW_PF_DEVLOG_ADDR16(pf_dparams) << 4;
7797
7798		nentries128 = G_PCIE_FW_PF_DEVLOG_NENTRIES128(pf_dparams);
7799		nentries = (nentries128 + 1) * 128;
7800		dparams->size = nentries * sizeof(struct fw_devlog_e);
7801
7802		return 0;
7803	}
7804
7805	/*
7806	 * For any failing returns ...
7807	 */
7808	memset(dparams, 0, sizeof *dparams);
7809
7810	/*
7811	 * If we can't talk to the firmware, there's really nothing we can do
7812	 * at this point.
7813	 */
7814	if (!fw_attach)
7815		return -ENXIO;
7816
7817	/* Otherwise, ask the firmware for it's Device Log Parameters.
7818	 */
7819	memset(&devlog_cmd, 0, sizeof devlog_cmd);
7820	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
7821					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
7822	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
7823	ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7824			 &devlog_cmd);
7825	if (ret)
7826		return ret;
7827
7828	devlog_meminfo =
7829		be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
7830	dparams->memtype = G_FW_DEVLOG_CMD_MEMTYPE_DEVLOG(devlog_meminfo);
7831	dparams->start = G_FW_DEVLOG_CMD_MEMADDR16_DEVLOG(devlog_meminfo) << 4;
7832	dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
7833
7834	return 0;
7835}
7836
7837/**
7838 *	t4_init_sge_params - initialize adap->params.sge
7839 *	@adapter: the adapter
7840 *
7841 *	Initialize various fields of the adapter's SGE Parameters structure.
7842 */
7843int t4_init_sge_params(struct adapter *adapter)
7844{
7845	u32 r;
7846	struct sge_params *sp = &adapter->params.sge;
7847	unsigned i;
7848
7849	r = t4_read_reg(adapter, A_SGE_INGRESS_RX_THRESHOLD);
7850	sp->counter_val[0] = G_THRESHOLD_0(r);
7851	sp->counter_val[1] = G_THRESHOLD_1(r);
7852	sp->counter_val[2] = G_THRESHOLD_2(r);
7853	sp->counter_val[3] = G_THRESHOLD_3(r);
7854
7855	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_0_AND_1);
7856	sp->timer_val[0] = core_ticks_to_us(adapter, G_TIMERVALUE0(r));
7857	sp->timer_val[1] = core_ticks_to_us(adapter, G_TIMERVALUE1(r));
7858	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_2_AND_3);
7859	sp->timer_val[2] = core_ticks_to_us(adapter, G_TIMERVALUE2(r));
7860	sp->timer_val[3] = core_ticks_to_us(adapter, G_TIMERVALUE3(r));
7861	r = t4_read_reg(adapter, A_SGE_TIMER_VALUE_4_AND_5);
7862	sp->timer_val[4] = core_ticks_to_us(adapter, G_TIMERVALUE4(r));
7863	sp->timer_val[5] = core_ticks_to_us(adapter, G_TIMERVALUE5(r));
7864
7865	r = t4_read_reg(adapter, A_SGE_CONM_CTRL);
7866	sp->fl_starve_threshold = G_EGRTHRESHOLD(r) * 2 + 1;
7867	if (is_t4(adapter))
7868		sp->fl_starve_threshold2 = sp->fl_starve_threshold;
7869	else
7870		sp->fl_starve_threshold2 = G_EGRTHRESHOLDPACKING(r) * 2 + 1;
7871
7872	/* egress queues: log2 of # of doorbells per BAR2 page */
7873	r = t4_read_reg(adapter, A_SGE_EGRESS_QUEUES_PER_PAGE_PF);
7874	r >>= S_QUEUESPERPAGEPF0 +
7875	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7876	sp->eq_s_qpp = r & M_QUEUESPERPAGEPF0;
7877
7878	/* ingress queues: log2 of # of doorbells per BAR2 page */
7879	r = t4_read_reg(adapter, A_SGE_INGRESS_QUEUES_PER_PAGE_PF);
7880	r >>= S_QUEUESPERPAGEPF0 +
7881	    (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adapter->pf;
7882	sp->iq_s_qpp = r & M_QUEUESPERPAGEPF0;
7883
7884	r = t4_read_reg(adapter, A_SGE_HOST_PAGE_SIZE);
7885	r >>= S_HOSTPAGESIZEPF0 +
7886	    (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adapter->pf;
7887	sp->page_shift = (r & M_HOSTPAGESIZEPF0) + 10;
7888
7889	r = t4_read_reg(adapter, A_SGE_CONTROL);
7890	sp->sge_control = r;
7891	sp->spg_len = r & F_EGRSTATUSPAGESIZE ? 128 : 64;
7892	sp->fl_pktshift = G_PKTSHIFT(r);
7893	sp->pad_boundary = 1 << (G_INGPADBOUNDARY(r) + 5);
7894	if (is_t4(adapter))
7895		sp->pack_boundary = sp->pad_boundary;
7896	else {
7897		r = t4_read_reg(adapter, A_SGE_CONTROL2);
7898		if (G_INGPACKBOUNDARY(r) == 0)
7899			sp->pack_boundary = 16;
7900		else
7901			sp->pack_boundary = 1 << (G_INGPACKBOUNDARY(r) + 5);
7902	}
7903	for (i = 0; i < SGE_FLBUF_SIZES; i++)
7904		sp->sge_fl_buffer_size[i] = t4_read_reg(adapter,
7905		    A_SGE_FL_BUFFER_SIZE0 + (4 * i));
7906
7907	return 0;
7908}
7909
7910/*
7911 * Read and cache the adapter's compressed filter mode and ingress config.
7912 */
7913static void read_filter_mode_and_ingress_config(struct adapter *adap)
7914{
7915	struct tp_params *tpp = &adap->params.tp;
7916
7917	if (t4_use_ldst(adap)) {
7918		t4_fw_tp_pio_rw(adap, &tpp->vlan_pri_map, 1,
7919				A_TP_VLAN_PRI_MAP, 1);
7920		t4_fw_tp_pio_rw(adap, &tpp->ingress_config, 1,
7921				A_TP_INGRESS_CONFIG, 1);
7922	} else {
7923		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7924				 &tpp->vlan_pri_map, 1, A_TP_VLAN_PRI_MAP);
7925		t4_read_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA,
7926				 &tpp->ingress_config, 1, A_TP_INGRESS_CONFIG);
7927	}
7928
7929	/*
7930	 * Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7931	 * shift positions of several elements of the Compressed Filter Tuple
7932	 * for this adapter which we need frequently ...
7933	 */
7934	tpp->fcoe_shift = t4_filter_field_shift(adap, F_FCOE);
7935	tpp->port_shift = t4_filter_field_shift(adap, F_PORT);
7936	tpp->vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID);
7937	tpp->vlan_shift = t4_filter_field_shift(adap, F_VLAN);
7938	tpp->tos_shift = t4_filter_field_shift(adap, F_TOS);
7939	tpp->protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL);
7940	tpp->ethertype_shift = t4_filter_field_shift(adap, F_ETHERTYPE);
7941	tpp->macmatch_shift = t4_filter_field_shift(adap, F_MACMATCH);
7942	tpp->matchtype_shift = t4_filter_field_shift(adap, F_MPSHITTYPE);
7943	tpp->frag_shift = t4_filter_field_shift(adap, F_FRAGMENTATION);
7944
7945	/*
7946	 * If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
7947	 * represents the presence of an Outer VLAN instead of a VNIC ID.
7948	 */
7949	if ((tpp->ingress_config & F_VNIC) == 0)
7950		tpp->vnic_shift = -1;
7951}
7952
7953/**
7954 *      t4_init_tp_params - initialize adap->params.tp
7955 *      @adap: the adapter
7956 *
7957 *      Initialize various fields of the adapter's TP Parameters structure.
7958 */
7959int t4_init_tp_params(struct adapter *adap)
7960{
7961	int chan;
7962	u32 v;
7963	struct tp_params *tpp = &adap->params.tp;
7964
7965	v = t4_read_reg(adap, A_TP_TIMER_RESOLUTION);
7966	tpp->tre = G_TIMERRESOLUTION(v);
7967	tpp->dack_re = G_DELAYEDACKRESOLUTION(v);
7968
7969	/* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7970	for (chan = 0; chan < MAX_NCHAN; chan++)
7971		tpp->tx_modq[chan] = chan;
7972
7973	read_filter_mode_and_ingress_config(adap);
7974
7975	/*
7976	 * For T6, cache the adapter's compressed error vector
7977	 * and passing outer header info for encapsulated packets.
7978	 */
7979	if (chip_id(adap) > CHELSIO_T5) {
7980		v = t4_read_reg(adap, A_TP_OUT_CONFIG);
7981		tpp->rx_pkt_encap = (v & F_CRXPKTENC) ? 1 : 0;
7982	}
7983
7984	return 0;
7985}
7986
7987/**
7988 *      t4_filter_field_shift - calculate filter field shift
7989 *      @adap: the adapter
7990 *      @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7991 *
7992 *      Return the shift position of a filter field within the Compressed
7993 *      Filter Tuple.  The filter field is specified via its selection bit
7994 *      within TP_VLAN_PRI_MAL (filter mode).  E.g. F_VLAN.
7995 */
7996int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7997{
7998	unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7999	unsigned int sel;
8000	int field_shift;
8001
8002	if ((filter_mode & filter_sel) == 0)
8003		return -1;
8004
8005	for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
8006		switch (filter_mode & sel) {
8007		case F_FCOE:
8008			field_shift += W_FT_FCOE;
8009			break;
8010		case F_PORT:
8011			field_shift += W_FT_PORT;
8012			break;
8013		case F_VNIC_ID:
8014			field_shift += W_FT_VNIC_ID;
8015			break;
8016		case F_VLAN:
8017			field_shift += W_FT_VLAN;
8018			break;
8019		case F_TOS:
8020			field_shift += W_FT_TOS;
8021			break;
8022		case F_PROTOCOL:
8023			field_shift += W_FT_PROTOCOL;
8024			break;
8025		case F_ETHERTYPE:
8026			field_shift += W_FT_ETHERTYPE;
8027			break;
8028		case F_MACMATCH:
8029			field_shift += W_FT_MACMATCH;
8030			break;
8031		case F_MPSHITTYPE:
8032			field_shift += W_FT_MPSHITTYPE;
8033			break;
8034		case F_FRAGMENTATION:
8035			field_shift += W_FT_FRAGMENTATION;
8036			break;
8037		}
8038	}
8039	return field_shift;
8040}
8041
8042int t4_port_init(struct adapter *adap, int mbox, int pf, int vf, int port_id)
8043{
8044	u8 addr[6];
8045	int ret, i, j;
8046	struct fw_port_cmd c;
8047	u16 rss_size;
8048	struct port_info *p = adap2pinfo(adap, port_id);
8049	u32 param, val;
8050
8051	memset(&c, 0, sizeof(c));
8052
8053	for (i = 0, j = -1; i <= p->port_id; i++) {
8054		do {
8055			j++;
8056		} while ((adap->params.portvec & (1 << j)) == 0);
8057	}
8058
8059	if (!(adap->flags & IS_VF) ||
8060	    adap->params.vfres.r_caps & FW_CMD_CAP_PORT) {
8061		c.op_to_portid = htonl(V_FW_CMD_OP(FW_PORT_CMD) |
8062				       F_FW_CMD_REQUEST | F_FW_CMD_READ |
8063				       V_FW_PORT_CMD_PORTID(j));
8064		c.action_to_len16 = htonl(
8065			V_FW_PORT_CMD_ACTION(FW_PORT_ACTION_GET_PORT_INFO) |
8066			FW_LEN16(c));
8067		ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
8068		if (ret)
8069			return ret;
8070
8071		ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
8072		p->mdio_addr = (ret & F_FW_PORT_CMD_MDIOCAP) ?
8073			G_FW_PORT_CMD_MDIOADDR(ret) : -1;
8074		p->port_type = G_FW_PORT_CMD_PTYPE(ret);
8075		p->mod_type = G_FW_PORT_CMD_MODTYPE(ret);
8076
8077		init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
8078	}
8079
8080	ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
8081	if (ret < 0)
8082		return ret;
8083
8084	p->vi[0].viid = ret;
8085	p->tx_chan = j;
8086	p->rx_chan_map = t4_get_mps_bg_map(adap, j);
8087	p->lport = j;
8088	p->vi[0].rss_size = rss_size;
8089	t4_os_set_hw_addr(adap, p->port_id, addr);
8090
8091	param = V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8092	    V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_RSSINFO) |
8093	    V_FW_PARAMS_PARAM_YZ(p->vi[0].viid);
8094	ret = t4_query_params(adap, mbox, pf, vf, 1, &param, &val);
8095	if (ret)
8096		p->vi[0].rss_base = 0xffff;
8097	else {
8098		/* MPASS((val >> 16) == rss_size); */
8099		p->vi[0].rss_base = val & 0xffff;
8100	}
8101
8102	return 0;
8103}
8104
8105/**
8106 *	t4_read_cimq_cfg - read CIM queue configuration
8107 *	@adap: the adapter
8108 *	@base: holds the queue base addresses in bytes
8109 *	@size: holds the queue sizes in bytes
8110 *	@thres: holds the queue full thresholds in bytes
8111 *
8112 *	Returns the current configuration of the CIM queues, starting with
8113 *	the IBQs, then the OBQs.
8114 */
8115void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
8116{
8117	unsigned int i, v;
8118	int cim_num_obq = adap->chip_params->cim_num_obq;
8119
8120	for (i = 0; i < CIM_NUM_IBQ; i++) {
8121		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_IBQSELECT |
8122			     V_QUENUMSELECT(i));
8123		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8124		/* value is in 256-byte units */
8125		*base++ = G_CIMQBASE(v) * 256;
8126		*size++ = G_CIMQSIZE(v) * 256;
8127		*thres++ = G_QUEFULLTHRSH(v) * 8; /* 8-byte unit */
8128	}
8129	for (i = 0; i < cim_num_obq; i++) {
8130		t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8131			     V_QUENUMSELECT(i));
8132		v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8133		/* value is in 256-byte units */
8134		*base++ = G_CIMQBASE(v) * 256;
8135		*size++ = G_CIMQSIZE(v) * 256;
8136	}
8137}
8138
8139/**
8140 *	t4_read_cim_ibq - read the contents of a CIM inbound queue
8141 *	@adap: the adapter
8142 *	@qid: the queue index
8143 *	@data: where to store the queue contents
8144 *	@n: capacity of @data in 32-bit words
8145 *
8146 *	Reads the contents of the selected CIM queue starting at address 0 up
8147 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8148 *	error and the number of 32-bit words actually read on success.
8149 */
8150int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8151{
8152	int i, err, attempts;
8153	unsigned int addr;
8154	const unsigned int nwords = CIM_IBQ_SIZE * 4;
8155
8156	if (qid > 5 || (n & 3))
8157		return -EINVAL;
8158
8159	addr = qid * nwords;
8160	if (n > nwords)
8161		n = nwords;
8162
8163	/* It might take 3-10ms before the IBQ debug read access is allowed.
8164	 * Wait for 1 Sec with a delay of 1 usec.
8165	 */
8166	attempts = 1000000;
8167
8168	for (i = 0; i < n; i++, addr++) {
8169		t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, V_IBQDBGADDR(addr) |
8170			     F_IBQDBGEN);
8171		err = t4_wait_op_done(adap, A_CIM_IBQ_DBG_CFG, F_IBQDBGBUSY, 0,
8172				      attempts, 1);
8173		if (err)
8174			return err;
8175		*data++ = t4_read_reg(adap, A_CIM_IBQ_DBG_DATA);
8176	}
8177	t4_write_reg(adap, A_CIM_IBQ_DBG_CFG, 0);
8178	return i;
8179}
8180
8181/**
8182 *	t4_read_cim_obq - read the contents of a CIM outbound queue
8183 *	@adap: the adapter
8184 *	@qid: the queue index
8185 *	@data: where to store the queue contents
8186 *	@n: capacity of @data in 32-bit words
8187 *
8188 *	Reads the contents of the selected CIM queue starting at address 0 up
8189 *	to the capacity of @data.  @n must be a multiple of 4.  Returns < 0 on
8190 *	error and the number of 32-bit words actually read on success.
8191 */
8192int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
8193{
8194	int i, err;
8195	unsigned int addr, v, nwords;
8196	int cim_num_obq = adap->chip_params->cim_num_obq;
8197
8198	if ((qid > (cim_num_obq - 1)) || (n & 3))
8199		return -EINVAL;
8200
8201	t4_write_reg(adap, A_CIM_QUEUE_CONFIG_REF, F_OBQSELECT |
8202		     V_QUENUMSELECT(qid));
8203	v = t4_read_reg(adap, A_CIM_QUEUE_CONFIG_CTRL);
8204
8205	addr = G_CIMQBASE(v) * 64;    /* muliple of 256 -> muliple of 4 */
8206	nwords = G_CIMQSIZE(v) * 64;  /* same */
8207	if (n > nwords)
8208		n = nwords;
8209
8210	for (i = 0; i < n; i++, addr++) {
8211		t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, V_OBQDBGADDR(addr) |
8212			     F_OBQDBGEN);
8213		err = t4_wait_op_done(adap, A_CIM_OBQ_DBG_CFG, F_OBQDBGBUSY, 0,
8214				      2, 1);
8215		if (err)
8216			return err;
8217		*data++ = t4_read_reg(adap, A_CIM_OBQ_DBG_DATA);
8218	}
8219	t4_write_reg(adap, A_CIM_OBQ_DBG_CFG, 0);
8220	return i;
8221}
8222
8223enum {
8224	CIM_QCTL_BASE     = 0,
8225	CIM_CTL_BASE      = 0x2000,
8226	CIM_PBT_ADDR_BASE = 0x2800,
8227	CIM_PBT_LRF_BASE  = 0x3000,
8228	CIM_PBT_DATA_BASE = 0x3800
8229};
8230
8231/**
8232 *	t4_cim_read - read a block from CIM internal address space
8233 *	@adap: the adapter
8234 *	@addr: the start address within the CIM address space
8235 *	@n: number of words to read
8236 *	@valp: where to store the result
8237 *
8238 *	Reads a block of 4-byte words from the CIM intenal address space.
8239 */
8240int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
8241		unsigned int *valp)
8242{
8243	int ret = 0;
8244
8245	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8246		return -EBUSY;
8247
8248	for ( ; !ret && n--; addr += 4) {
8249		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr);
8250		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8251				      0, 5, 2);
8252		if (!ret)
8253			*valp++ = t4_read_reg(adap, A_CIM_HOST_ACC_DATA);
8254	}
8255	return ret;
8256}
8257
8258/**
8259 *	t4_cim_write - write a block into CIM internal address space
8260 *	@adap: the adapter
8261 *	@addr: the start address within the CIM address space
8262 *	@n: number of words to write
8263 *	@valp: set of values to write
8264 *
8265 *	Writes a block of 4-byte words into the CIM intenal address space.
8266 */
8267int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
8268		 const unsigned int *valp)
8269{
8270	int ret = 0;
8271
8272	if (t4_read_reg(adap, A_CIM_HOST_ACC_CTRL) & F_HOSTBUSY)
8273		return -EBUSY;
8274
8275	for ( ; !ret && n--; addr += 4) {
8276		t4_write_reg(adap, A_CIM_HOST_ACC_DATA, *valp++);
8277		t4_write_reg(adap, A_CIM_HOST_ACC_CTRL, addr | F_HOSTWRITE);
8278		ret = t4_wait_op_done(adap, A_CIM_HOST_ACC_CTRL, F_HOSTBUSY,
8279				      0, 5, 2);
8280	}
8281	return ret;
8282}
8283
8284static int t4_cim_write1(struct adapter *adap, unsigned int addr,
8285			 unsigned int val)
8286{
8287	return t4_cim_write(adap, addr, 1, &val);
8288}
8289
8290/**
8291 *	t4_cim_ctl_read - read a block from CIM control region
8292 *	@adap: the adapter
8293 *	@addr: the start address within the CIM control region
8294 *	@n: number of words to read
8295 *	@valp: where to store the result
8296 *
8297 *	Reads a block of 4-byte words from the CIM control region.
8298 */
8299int t4_cim_ctl_read(struct adapter *adap, unsigned int addr, unsigned int n,
8300		    unsigned int *valp)
8301{
8302	return t4_cim_read(adap, addr + CIM_CTL_BASE, n, valp);
8303}
8304
8305/**
8306 *	t4_cim_read_la - read CIM LA capture buffer
8307 *	@adap: the adapter
8308 *	@la_buf: where to store the LA data
8309 *	@wrptr: the HW write pointer within the capture buffer
8310 *
8311 *	Reads the contents of the CIM LA buffer with the most recent entry at
8312 *	the end	of the returned data and with the entry at @wrptr first.
8313 *	We try to leave the LA in the running state we find it in.
8314 */
8315int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
8316{
8317	int i, ret;
8318	unsigned int cfg, val, idx;
8319
8320	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &cfg);
8321	if (ret)
8322		return ret;
8323
8324	if (cfg & F_UPDBGLAEN) {	/* LA is running, freeze it */
8325		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG, 0);
8326		if (ret)
8327			return ret;
8328	}
8329
8330	ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8331	if (ret)
8332		goto restart;
8333
8334	idx = G_UPDBGLAWRPTR(val);
8335	if (wrptr)
8336		*wrptr = idx;
8337
8338	for (i = 0; i < adap->params.cim_la_size; i++) {
8339		ret = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8340				    V_UPDBGLARDPTR(idx) | F_UPDBGLARDEN);
8341		if (ret)
8342			break;
8343		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_CFG, 1, &val);
8344		if (ret)
8345			break;
8346		if (val & F_UPDBGLARDEN) {
8347			ret = -ETIMEDOUT;
8348			break;
8349		}
8350		ret = t4_cim_read(adap, A_UP_UP_DBG_LA_DATA, 1, &la_buf[i]);
8351		if (ret)
8352			break;
8353
8354		/* address can't exceed 0xfff (UpDbgLaRdPtr is of 12-bits) */
8355		idx = (idx + 1) & M_UPDBGLARDPTR;
8356		/*
8357		 * Bits 0-3 of UpDbgLaRdPtr can be between 0000 to 1001 to
8358		 * identify the 32-bit portion of the full 312-bit data
8359		 */
8360		if (is_t6(adap))
8361			while ((idx & 0xf) > 9)
8362				idx = (idx + 1) % M_UPDBGLARDPTR;
8363	}
8364restart:
8365	if (cfg & F_UPDBGLAEN) {
8366		int r = t4_cim_write1(adap, A_UP_UP_DBG_LA_CFG,
8367				      cfg & ~F_UPDBGLARDEN);
8368		if (!ret)
8369			ret = r;
8370	}
8371	return ret;
8372}
8373
8374/**
8375 *	t4_tp_read_la - read TP LA capture buffer
8376 *	@adap: the adapter
8377 *	@la_buf: where to store the LA data
8378 *	@wrptr: the HW write pointer within the capture buffer
8379 *
8380 *	Reads the contents of the TP LA buffer with the most recent entry at
8381 *	the end	of the returned data and with the entry at @wrptr first.
8382 *	We leave the LA in the running state we find it in.
8383 */
8384void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
8385{
8386	bool last_incomplete;
8387	unsigned int i, cfg, val, idx;
8388
8389	cfg = t4_read_reg(adap, A_TP_DBG_LA_CONFIG) & 0xffff;
8390	if (cfg & F_DBGLAENABLE)			/* freeze LA */
8391		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8392			     adap->params.tp.la_mask | (cfg ^ F_DBGLAENABLE));
8393
8394	val = t4_read_reg(adap, A_TP_DBG_LA_CONFIG);
8395	idx = G_DBGLAWPTR(val);
8396	last_incomplete = G_DBGLAMODE(val) >= 2 && (val & F_DBGLAWHLF) == 0;
8397	if (last_incomplete)
8398		idx = (idx + 1) & M_DBGLARPTR;
8399	if (wrptr)
8400		*wrptr = idx;
8401
8402	val &= 0xffff;
8403	val &= ~V_DBGLARPTR(M_DBGLARPTR);
8404	val |= adap->params.tp.la_mask;
8405
8406	for (i = 0; i < TPLA_SIZE; i++) {
8407		t4_write_reg(adap, A_TP_DBG_LA_CONFIG, V_DBGLARPTR(idx) | val);
8408		la_buf[i] = t4_read_reg64(adap, A_TP_DBG_LA_DATAL);
8409		idx = (idx + 1) & M_DBGLARPTR;
8410	}
8411
8412	/* Wipe out last entry if it isn't valid */
8413	if (last_incomplete)
8414		la_buf[TPLA_SIZE - 1] = ~0ULL;
8415
8416	if (cfg & F_DBGLAENABLE)		/* restore running state */
8417		t4_write_reg(adap, A_TP_DBG_LA_CONFIG,
8418			     cfg | adap->params.tp.la_mask);
8419}
8420
8421/*
8422 * SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8423 * seconds).  If we find one of the SGE Ingress DMA State Machines in the same
8424 * state for more than the Warning Threshold then we'll issue a warning about
8425 * a potential hang.  We'll repeat the warning as the SGE Ingress DMA Channel
8426 * appears to be hung every Warning Repeat second till the situation clears.
8427 * If the situation clears, we'll note that as well.
8428 */
8429#define SGE_IDMA_WARN_THRESH 1
8430#define SGE_IDMA_WARN_REPEAT 300
8431
8432/**
8433 *	t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8434 *	@adapter: the adapter
8435 *	@idma: the adapter IDMA Monitor state
8436 *
8437 *	Initialize the state of an SGE Ingress DMA Monitor.
8438 */
8439void t4_idma_monitor_init(struct adapter *adapter,
8440			  struct sge_idma_monitor_state *idma)
8441{
8442	/* Initialize the state variables for detecting an SGE Ingress DMA
8443	 * hang.  The SGE has internal counters which count up on each clock
8444	 * tick whenever the SGE finds its Ingress DMA State Engines in the
8445	 * same state they were on the previous clock tick.  The clock used is
8446	 * the Core Clock so we have a limit on the maximum "time" they can
8447	 * record; typically a very small number of seconds.  For instance,
8448	 * with a 600MHz Core Clock, we can only count up to a bit more than
8449	 * 7s.  So we'll synthesize a larger counter in order to not run the
8450	 * risk of having the "timers" overflow and give us the flexibility to
8451	 * maintain a Hung SGE State Machine of our own which operates across
8452	 * a longer time frame.
8453	 */
8454	idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8455	idma->idma_stalled[0] = idma->idma_stalled[1] = 0;
8456}
8457
8458/**
8459 *	t4_idma_monitor - monitor SGE Ingress DMA state
8460 *	@adapter: the adapter
8461 *	@idma: the adapter IDMA Monitor state
8462 *	@hz: number of ticks/second
8463 *	@ticks: number of ticks since the last IDMA Monitor call
8464 */
8465void t4_idma_monitor(struct adapter *adapter,
8466		     struct sge_idma_monitor_state *idma,
8467		     int hz, int ticks)
8468{
8469	int i, idma_same_state_cnt[2];
8470
8471	 /* Read the SGE Debug Ingress DMA Same State Count registers.  These
8472	  * are counters inside the SGE which count up on each clock when the
8473	  * SGE finds its Ingress DMA State Engines in the same states they
8474	  * were in the previous clock.  The counters will peg out at
8475	  * 0xffffffff without wrapping around so once they pass the 1s
8476	  * threshold they'll stay above that till the IDMA state changes.
8477	  */
8478	t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 13);
8479	idma_same_state_cnt[0] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_HIGH);
8480	idma_same_state_cnt[1] = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8481
8482	for (i = 0; i < 2; i++) {
8483		u32 debug0, debug11;
8484
8485		/* If the Ingress DMA Same State Counter ("timer") is less
8486		 * than 1s, then we can reset our synthesized Stall Timer and
8487		 * continue.  If we have previously emitted warnings about a
8488		 * potential stalled Ingress Queue, issue a note indicating
8489		 * that the Ingress Queue has resumed forward progress.
8490		 */
8491		if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8492			if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH*hz)
8493				CH_WARN(adapter, "SGE idma%d, queue %u, "
8494					"resumed after %d seconds\n",
8495					i, idma->idma_qid[i],
8496					idma->idma_stalled[i]/hz);
8497			idma->idma_stalled[i] = 0;
8498			continue;
8499		}
8500
8501		/* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8502		 * domain.  The first time we get here it'll be because we
8503		 * passed the 1s Threshold; each additional time it'll be
8504		 * because the RX Timer Callback is being fired on its regular
8505		 * schedule.
8506		 *
8507		 * If the stall is below our Potential Hung Ingress Queue
8508		 * Warning Threshold, continue.
8509		 */
8510		if (idma->idma_stalled[i] == 0) {
8511			idma->idma_stalled[i] = hz;
8512			idma->idma_warn[i] = 0;
8513		} else {
8514			idma->idma_stalled[i] += ticks;
8515			idma->idma_warn[i] -= ticks;
8516		}
8517
8518		if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH*hz)
8519			continue;
8520
8521		/* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8522		 */
8523		if (idma->idma_warn[i] > 0)
8524			continue;
8525		idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT*hz;
8526
8527		/* Read and save the SGE IDMA State and Queue ID information.
8528		 * We do this every time in case it changes across time ...
8529		 * can't be too careful ...
8530		 */
8531		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 0);
8532		debug0 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8533		idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8534
8535		t4_write_reg(adapter, A_SGE_DEBUG_INDEX, 11);
8536		debug11 = t4_read_reg(adapter, A_SGE_DEBUG_DATA_LOW);
8537		idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8538
8539		CH_WARN(adapter, "SGE idma%u, queue %u, potentially stuck in "
8540			" state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8541			i, idma->idma_qid[i], idma->idma_state[i],
8542			idma->idma_stalled[i]/hz,
8543			debug0, debug11);
8544		t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8545	}
8546}
8547
8548/**
8549 *	t4_read_pace_tbl - read the pace table
8550 *	@adap: the adapter
8551 *	@pace_vals: holds the returned values
8552 *
8553 *	Returns the values of TP's pace table in microseconds.
8554 */
8555void t4_read_pace_tbl(struct adapter *adap, unsigned int pace_vals[NTX_SCHED])
8556{
8557	unsigned int i, v;
8558
8559	for (i = 0; i < NTX_SCHED; i++) {
8560		t4_write_reg(adap, A_TP_PACE_TABLE, 0xffff0000 + i);
8561		v = t4_read_reg(adap, A_TP_PACE_TABLE);
8562		pace_vals[i] = dack_ticks_to_usec(adap, v);
8563	}
8564}
8565
8566/**
8567 *	t4_get_tx_sched - get the configuration of a Tx HW traffic scheduler
8568 *	@adap: the adapter
8569 *	@sched: the scheduler index
8570 *	@kbps: the byte rate in Kbps
8571 *	@ipg: the interpacket delay in tenths of nanoseconds
8572 *
8573 *	Return the current configuration of a HW Tx scheduler.
8574 */
8575void t4_get_tx_sched(struct adapter *adap, unsigned int sched, unsigned int *kbps,
8576		     unsigned int *ipg)
8577{
8578	unsigned int v, addr, bpt, cpt;
8579
8580	if (kbps) {
8581		addr = A_TP_TX_MOD_Q1_Q0_RATE_LIMIT - sched / 2;
8582		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8583		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8584		if (sched & 1)
8585			v >>= 16;
8586		bpt = (v >> 8) & 0xff;
8587		cpt = v & 0xff;
8588		if (!cpt)
8589			*kbps = 0;	/* scheduler disabled */
8590		else {
8591			v = (adap->params.vpd.cclk * 1000) / cpt; /* ticks/s */
8592			*kbps = (v * bpt) / 125;
8593		}
8594	}
8595	if (ipg) {
8596		addr = A_TP_TX_MOD_Q1_Q0_TIMER_SEPARATOR - sched / 2;
8597		t4_write_reg(adap, A_TP_TM_PIO_ADDR, addr);
8598		v = t4_read_reg(adap, A_TP_TM_PIO_DATA);
8599		if (sched & 1)
8600			v >>= 16;
8601		v &= 0xffff;
8602		*ipg = (10000 * v) / core_ticks_per_usec(adap);
8603	}
8604}
8605
8606/**
8607 *	t4_load_cfg - download config file
8608 *	@adap: the adapter
8609 *	@cfg_data: the cfg text file to write
8610 *	@size: text file size
8611 *
8612 *	Write the supplied config text file to the card's serial flash.
8613 */
8614int t4_load_cfg(struct adapter *adap, const u8 *cfg_data, unsigned int size)
8615{
8616	int ret, i, n, cfg_addr;
8617	unsigned int addr;
8618	unsigned int flash_cfg_start_sec;
8619	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8620
8621	cfg_addr = t4_flash_cfg_addr(adap);
8622	if (cfg_addr < 0)
8623		return cfg_addr;
8624
8625	addr = cfg_addr;
8626	flash_cfg_start_sec = addr / SF_SEC_SIZE;
8627
8628	if (size > FLASH_CFG_MAX_SIZE) {
8629		CH_ERR(adap, "cfg file too large, max is %u bytes\n",
8630		       FLASH_CFG_MAX_SIZE);
8631		return -EFBIG;
8632	}
8633
8634	i = DIV_ROUND_UP(FLASH_CFG_MAX_SIZE,	/* # of sectors spanned */
8635			 sf_sec_size);
8636	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
8637				     flash_cfg_start_sec + i - 1);
8638	/*
8639	 * If size == 0 then we're simply erasing the FLASH sectors associated
8640	 * with the on-adapter Firmware Configuration File.
8641	 */
8642	if (ret || size == 0)
8643		goto out;
8644
8645	/* this will write to the flash up to SF_PAGE_SIZE at a time */
8646	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
8647		if ( (size - i) <  SF_PAGE_SIZE)
8648			n = size - i;
8649		else
8650			n = SF_PAGE_SIZE;
8651		ret = t4_write_flash(adap, addr, n, cfg_data, 1);
8652		if (ret)
8653			goto out;
8654
8655		addr += SF_PAGE_SIZE;
8656		cfg_data += SF_PAGE_SIZE;
8657	}
8658
8659out:
8660	if (ret)
8661		CH_ERR(adap, "config file %s failed %d\n",
8662		       (size == 0 ? "clear" : "download"), ret);
8663	return ret;
8664}
8665
8666/**
8667 *	t5_fw_init_extern_mem - initialize the external memory
8668 *	@adap: the adapter
8669 *
8670 *	Initializes the external memory on T5.
8671 */
8672int t5_fw_init_extern_mem(struct adapter *adap)
8673{
8674	u32 params[1], val[1];
8675	int ret;
8676
8677	if (!is_t5(adap))
8678		return 0;
8679
8680	val[0] = 0xff; /* Initialize all MCs */
8681	params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
8682			V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_MCINIT));
8683	ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1, params, val,
8684			FW_CMD_MAX_TIMEOUT);
8685
8686	return ret;
8687}
8688
8689/* BIOS boot headers */
8690typedef struct pci_expansion_rom_header {
8691	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8692	u8	reserved[22]; /* Reserved per processor Architecture data */
8693	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8694} pci_exp_rom_header_t; /* PCI_EXPANSION_ROM_HEADER */
8695
8696/* Legacy PCI Expansion ROM Header */
8697typedef struct legacy_pci_expansion_rom_header {
8698	u8	signature[2]; /* ROM Signature. Should be 0xaa55 */
8699	u8	size512; /* Current Image Size in units of 512 bytes */
8700	u8	initentry_point[4];
8701	u8	cksum; /* Checksum computed on the entire Image */
8702	u8	reserved[16]; /* Reserved */
8703	u8	pcir_offset[2]; /* Offset to PCI Data Struture */
8704} legacy_pci_exp_rom_header_t; /* LEGACY_PCI_EXPANSION_ROM_HEADER */
8705
8706/* EFI PCI Expansion ROM Header */
8707typedef struct efi_pci_expansion_rom_header {
8708	u8	signature[2]; // ROM signature. The value 0xaa55
8709	u8	initialization_size[2]; /* Units 512. Includes this header */
8710	u8	efi_signature[4]; /* Signature from EFI image header. 0x0EF1 */
8711	u8	efi_subsystem[2]; /* Subsystem value for EFI image header */
8712	u8	efi_machine_type[2]; /* Machine type from EFI image header */
8713	u8	compression_type[2]; /* Compression type. */
8714		/*
8715		 * Compression type definition
8716		 * 0x0: uncompressed
8717		 * 0x1: Compressed
8718		 * 0x2-0xFFFF: Reserved
8719		 */
8720	u8	reserved[8]; /* Reserved */
8721	u8	efi_image_header_offset[2]; /* Offset to EFI Image */
8722	u8	pcir_offset[2]; /* Offset to PCI Data Structure */
8723} efi_pci_exp_rom_header_t; /* EFI PCI Expansion ROM Header */
8724
8725/* PCI Data Structure Format */
8726typedef struct pcir_data_structure { /* PCI Data Structure */
8727	u8	signature[4]; /* Signature. The string "PCIR" */
8728	u8	vendor_id[2]; /* Vendor Identification */
8729	u8	device_id[2]; /* Device Identification */
8730	u8	vital_product[2]; /* Pointer to Vital Product Data */
8731	u8	length[2]; /* PCIR Data Structure Length */
8732	u8	revision; /* PCIR Data Structure Revision */
8733	u8	class_code[3]; /* Class Code */
8734	u8	image_length[2]; /* Image Length. Multiple of 512B */
8735	u8	code_revision[2]; /* Revision Level of Code/Data */
8736	u8	code_type; /* Code Type. */
8737		/*
8738		 * PCI Expansion ROM Code Types
8739		 * 0x00: Intel IA-32, PC-AT compatible. Legacy
8740		 * 0x01: Open Firmware standard for PCI. FCODE
8741		 * 0x02: Hewlett-Packard PA RISC. HP reserved
8742		 * 0x03: EFI Image. EFI
8743		 * 0x04-0xFF: Reserved.
8744		 */
8745	u8	indicator; /* Indicator. Identifies the last image in the ROM */
8746	u8	reserved[2]; /* Reserved */
8747} pcir_data_t; /* PCI__DATA_STRUCTURE */
8748
8749/* BOOT constants */
8750enum {
8751	BOOT_FLASH_BOOT_ADDR = 0x0,/* start address of boot image in flash */
8752	BOOT_SIGNATURE = 0xaa55,   /* signature of BIOS boot ROM */
8753	BOOT_SIZE_INC = 512,       /* image size measured in 512B chunks */
8754	BOOT_MIN_SIZE = sizeof(pci_exp_rom_header_t), /* basic header */
8755	BOOT_MAX_SIZE = 1024*BOOT_SIZE_INC, /* 1 byte * length increment  */
8756	VENDOR_ID = 0x1425, /* Vendor ID */
8757	PCIR_SIGNATURE = 0x52494350 /* PCIR signature */
8758};
8759
8760/*
8761 *	modify_device_id - Modifies the device ID of the Boot BIOS image
8762 *	@adatper: the device ID to write.
8763 *	@boot_data: the boot image to modify.
8764 *
8765 *	Write the supplied device ID to the boot BIOS image.
8766 */
8767static void modify_device_id(int device_id, u8 *boot_data)
8768{
8769	legacy_pci_exp_rom_header_t *header;
8770	pcir_data_t *pcir_header;
8771	u32 cur_header = 0;
8772
8773	/*
8774	 * Loop through all chained images and change the device ID's
8775	 */
8776	while (1) {
8777		header = (legacy_pci_exp_rom_header_t *) &boot_data[cur_header];
8778		pcir_header = (pcir_data_t *) &boot_data[cur_header +
8779			      le16_to_cpu(*(u16*)header->pcir_offset)];
8780
8781		/*
8782		 * Only modify the Device ID if code type is Legacy or HP.
8783		 * 0x00: Okay to modify
8784		 * 0x01: FCODE. Do not be modify
8785		 * 0x03: Okay to modify
8786		 * 0x04-0xFF: Do not modify
8787		 */
8788		if (pcir_header->code_type == 0x00) {
8789			u8 csum = 0;
8790			int i;
8791
8792			/*
8793			 * Modify Device ID to match current adatper
8794			 */
8795			*(u16*) pcir_header->device_id = device_id;
8796
8797			/*
8798			 * Set checksum temporarily to 0.
8799			 * We will recalculate it later.
8800			 */
8801			header->cksum = 0x0;
8802
8803			/*
8804			 * Calculate and update checksum
8805			 */
8806			for (i = 0; i < (header->size512 * 512); i++)
8807				csum += (u8)boot_data[cur_header + i];
8808
8809			/*
8810			 * Invert summed value to create the checksum
8811			 * Writing new checksum value directly to the boot data
8812			 */
8813			boot_data[cur_header + 7] = -csum;
8814
8815		} else if (pcir_header->code_type == 0x03) {
8816
8817			/*
8818			 * Modify Device ID to match current adatper
8819			 */
8820			*(u16*) pcir_header->device_id = device_id;
8821
8822		}
8823
8824
8825		/*
8826		 * Check indicator element to identify if this is the last
8827		 * image in the ROM.
8828		 */
8829		if (pcir_header->indicator & 0x80)
8830			break;
8831
8832		/*
8833		 * Move header pointer up to the next image in the ROM.
8834		 */
8835		cur_header += header->size512 * 512;
8836	}
8837}
8838
8839/*
8840 *	t4_load_boot - download boot flash
8841 *	@adapter: the adapter
8842 *	@boot_data: the boot image to write
8843 *	@boot_addr: offset in flash to write boot_data
8844 *	@size: image size
8845 *
8846 *	Write the supplied boot image to the card's serial flash.
8847 *	The boot image has the following sections: a 28-byte header and the
8848 *	boot image.
8849 */
8850int t4_load_boot(struct adapter *adap, u8 *boot_data,
8851		 unsigned int boot_addr, unsigned int size)
8852{
8853	pci_exp_rom_header_t *header;
8854	int pcir_offset ;
8855	pcir_data_t *pcir_header;
8856	int ret, addr;
8857	uint16_t device_id;
8858	unsigned int i;
8859	unsigned int boot_sector = (boot_addr * 1024 );
8860	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8861
8862	/*
8863	 * Make sure the boot image does not encroach on the firmware region
8864	 */
8865	if ((boot_sector + size) >> 16 > FLASH_FW_START_SEC) {
8866		CH_ERR(adap, "boot image encroaching on firmware region\n");
8867		return -EFBIG;
8868	}
8869
8870	/*
8871	 * The boot sector is comprised of the Expansion-ROM boot, iSCSI boot,
8872	 * and Boot configuration data sections. These 3 boot sections span
8873	 * sectors 0 to 7 in flash and live right before the FW image location.
8874	 */
8875	i = DIV_ROUND_UP(size ? size : FLASH_FW_START,
8876			sf_sec_size);
8877	ret = t4_flash_erase_sectors(adap, boot_sector >> 16,
8878				     (boot_sector >> 16) + i - 1);
8879
8880	/*
8881	 * If size == 0 then we're simply erasing the FLASH sectors associated
8882	 * with the on-adapter option ROM file
8883	 */
8884	if (ret || (size == 0))
8885		goto out;
8886
8887	/* Get boot header */
8888	header = (pci_exp_rom_header_t *)boot_data;
8889	pcir_offset = le16_to_cpu(*(u16 *)header->pcir_offset);
8890	/* PCIR Data Structure */
8891	pcir_header = (pcir_data_t *) &boot_data[pcir_offset];
8892
8893	/*
8894	 * Perform some primitive sanity testing to avoid accidentally
8895	 * writing garbage over the boot sectors.  We ought to check for
8896	 * more but it's not worth it for now ...
8897	 */
8898	if (size < BOOT_MIN_SIZE || size > BOOT_MAX_SIZE) {
8899		CH_ERR(adap, "boot image too small/large\n");
8900		return -EFBIG;
8901	}
8902
8903#ifndef CHELSIO_T4_DIAGS
8904	/*
8905	 * Check BOOT ROM header signature
8906	 */
8907	if (le16_to_cpu(*(u16*)header->signature) != BOOT_SIGNATURE ) {
8908		CH_ERR(adap, "Boot image missing signature\n");
8909		return -EINVAL;
8910	}
8911
8912	/*
8913	 * Check PCI header signature
8914	 */
8915	if (le32_to_cpu(*(u32*)pcir_header->signature) != PCIR_SIGNATURE) {
8916		CH_ERR(adap, "PCI header missing signature\n");
8917		return -EINVAL;
8918	}
8919
8920	/*
8921	 * Check Vendor ID matches Chelsio ID
8922	 */
8923	if (le16_to_cpu(*(u16*)pcir_header->vendor_id) != VENDOR_ID) {
8924		CH_ERR(adap, "Vendor ID missing signature\n");
8925		return -EINVAL;
8926	}
8927#endif
8928
8929	/*
8930	 * Retrieve adapter's device ID
8931	 */
8932	t4_os_pci_read_cfg2(adap, PCI_DEVICE_ID, &device_id);
8933	/* Want to deal with PF 0 so I strip off PF 4 indicator */
8934	device_id = device_id & 0xf0ff;
8935
8936	/*
8937	 * Check PCIE Device ID
8938	 */
8939	if (le16_to_cpu(*(u16*)pcir_header->device_id) != device_id) {
8940		/*
8941		 * Change the device ID in the Boot BIOS image to match
8942		 * the Device ID of the current adapter.
8943		 */
8944		modify_device_id(device_id, boot_data);
8945	}
8946
8947	/*
8948	 * Skip over the first SF_PAGE_SIZE worth of data and write it after
8949	 * we finish copying the rest of the boot image. This will ensure
8950	 * that the BIOS boot header will only be written if the boot image
8951	 * was written in full.
8952	 */
8953	addr = boot_sector;
8954	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
8955		addr += SF_PAGE_SIZE;
8956		boot_data += SF_PAGE_SIZE;
8957		ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, boot_data, 0);
8958		if (ret)
8959			goto out;
8960	}
8961
8962	ret = t4_write_flash(adap, boot_sector, SF_PAGE_SIZE,
8963			     (const u8 *)header, 0);
8964
8965out:
8966	if (ret)
8967		CH_ERR(adap, "boot image download failed, error %d\n", ret);
8968	return ret;
8969}
8970
8971/*
8972 *	t4_flash_bootcfg_addr - return the address of the flash optionrom configuration
8973 *	@adapter: the adapter
8974 *
8975 *	Return the address within the flash where the OptionROM Configuration
8976 *	is stored, or an error if the device FLASH is too small to contain
8977 *	a OptionROM Configuration.
8978 */
8979static int t4_flash_bootcfg_addr(struct adapter *adapter)
8980{
8981	/*
8982	 * If the device FLASH isn't large enough to hold a Firmware
8983	 * Configuration File, return an error.
8984	 */
8985	if (adapter->params.sf_size < FLASH_BOOTCFG_START + FLASH_BOOTCFG_MAX_SIZE)
8986		return -ENOSPC;
8987
8988	return FLASH_BOOTCFG_START;
8989}
8990
8991int t4_load_bootcfg(struct adapter *adap,const u8 *cfg_data, unsigned int size)
8992{
8993	int ret, i, n, cfg_addr;
8994	unsigned int addr;
8995	unsigned int flash_cfg_start_sec;
8996	unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
8997
8998	cfg_addr = t4_flash_bootcfg_addr(adap);
8999	if (cfg_addr < 0)
9000		return cfg_addr;
9001
9002	addr = cfg_addr;
9003	flash_cfg_start_sec = addr / SF_SEC_SIZE;
9004
9005	if (size > FLASH_BOOTCFG_MAX_SIZE) {
9006		CH_ERR(adap, "bootcfg file too large, max is %u bytes\n",
9007			FLASH_BOOTCFG_MAX_SIZE);
9008		return -EFBIG;
9009	}
9010
9011	i = DIV_ROUND_UP(FLASH_BOOTCFG_MAX_SIZE,/* # of sectors spanned */
9012			 sf_sec_size);
9013	ret = t4_flash_erase_sectors(adap, flash_cfg_start_sec,
9014					flash_cfg_start_sec + i - 1);
9015
9016	/*
9017	 * If size == 0 then we're simply erasing the FLASH sectors associated
9018	 * with the on-adapter OptionROM Configuration File.
9019	 */
9020	if (ret || size == 0)
9021		goto out;
9022
9023	/* this will write to the flash up to SF_PAGE_SIZE at a time */
9024	for (i = 0; i< size; i+= SF_PAGE_SIZE) {
9025		if ( (size - i) <  SF_PAGE_SIZE)
9026			n = size - i;
9027		else
9028			n = SF_PAGE_SIZE;
9029		ret = t4_write_flash(adap, addr, n, cfg_data, 0);
9030		if (ret)
9031			goto out;
9032
9033		addr += SF_PAGE_SIZE;
9034		cfg_data += SF_PAGE_SIZE;
9035	}
9036
9037out:
9038	if (ret)
9039		CH_ERR(adap, "boot config data %s failed %d\n",
9040				(size == 0 ? "clear" : "download"), ret);
9041	return ret;
9042}
9043
9044/**
9045 *	t4_set_filter_mode - configure the optional components of filter tuples
9046 *	@adap: the adapter
9047 *	@mode_map: a bitmap selcting which optional filter components to enable
9048 *
9049 *	Sets the filter mode by selecting the optional components to enable
9050 *	in filter tuples.  Returns 0 on success and a negative error if the
9051 *	requested mode needs more bits than are available for optional
9052 *	components.
9053 */
9054int t4_set_filter_mode(struct adapter *adap, unsigned int mode_map)
9055{
9056	static u8 width[] = { 1, 3, 17, 17, 8, 8, 16, 9, 3, 1 };
9057
9058	int i, nbits = 0;
9059
9060	for (i = S_FCOE; i <= S_FRAGMENTATION; i++)
9061		if (mode_map & (1 << i))
9062			nbits += width[i];
9063	if (nbits > FILTER_OPT_LEN)
9064		return -EINVAL;
9065	if (t4_use_ldst(adap))
9066		t4_fw_tp_pio_rw(adap, &mode_map, 1, A_TP_VLAN_PRI_MAP, 0);
9067	else
9068		t4_write_indirect(adap, A_TP_PIO_ADDR, A_TP_PIO_DATA, &mode_map,
9069				  1, A_TP_VLAN_PRI_MAP);
9070	read_filter_mode_and_ingress_config(adap);
9071
9072	return 0;
9073}
9074
9075/**
9076 *	t4_clr_port_stats - clear port statistics
9077 *	@adap: the adapter
9078 *	@idx: the port index
9079 *
9080 *	Clear HW statistics for the given port.
9081 */
9082void t4_clr_port_stats(struct adapter *adap, int idx)
9083{
9084	unsigned int i;
9085	u32 bgmap = t4_get_mps_bg_map(adap, idx);
9086	u32 port_base_addr;
9087
9088	if (is_t4(adap))
9089		port_base_addr = PORT_BASE(idx);
9090	else
9091		port_base_addr = T5_PORT_BASE(idx);
9092
9093	for (i = A_MPS_PORT_STAT_TX_PORT_BYTES_L;
9094			i <= A_MPS_PORT_STAT_TX_PORT_PPP7_H; i += 8)
9095		t4_write_reg(adap, port_base_addr + i, 0);
9096	for (i = A_MPS_PORT_STAT_RX_PORT_BYTES_L;
9097			i <= A_MPS_PORT_STAT_RX_PORT_LESS_64B_H; i += 8)
9098		t4_write_reg(adap, port_base_addr + i, 0);
9099	for (i = 0; i < 4; i++)
9100		if (bgmap & (1 << i)) {
9101			t4_write_reg(adap,
9102			A_MPS_STAT_RX_BG_0_MAC_DROP_FRAME_L + i * 8, 0);
9103			t4_write_reg(adap,
9104			A_MPS_STAT_RX_BG_0_MAC_TRUNC_FRAME_L + i * 8, 0);
9105		}
9106}
9107
9108/**
9109 *	t4_i2c_rd - read I2C data from adapter
9110 *	@adap: the adapter
9111 *	@port: Port number if per-port device; <0 if not
9112 *	@devid: per-port device ID or absolute device ID
9113 *	@offset: byte offset into device I2C space
9114 *	@len: byte length of I2C space data
9115 *	@buf: buffer in which to return I2C data
9116 *
9117 *	Reads the I2C data from the indicated device and location.
9118 */
9119int t4_i2c_rd(struct adapter *adap, unsigned int mbox,
9120	      int port, unsigned int devid,
9121	      unsigned int offset, unsigned int len,
9122	      u8 *buf)
9123{
9124	u32 ldst_addrspace;
9125	struct fw_ldst_cmd ldst;
9126	int ret;
9127
9128	if (port >= 4 ||
9129	    devid >= 256 ||
9130	    offset >= 256 ||
9131	    len > sizeof ldst.u.i2c.data)
9132		return -EINVAL;
9133
9134	memset(&ldst, 0, sizeof ldst);
9135	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9136	ldst.op_to_addrspace =
9137		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9138			    F_FW_CMD_REQUEST |
9139			    F_FW_CMD_READ |
9140			    ldst_addrspace);
9141	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9142	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9143	ldst.u.i2c.did = devid;
9144	ldst.u.i2c.boffset = offset;
9145	ldst.u.i2c.blen = len;
9146	ret = t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9147	if (!ret)
9148		memcpy(buf, ldst.u.i2c.data, len);
9149	return ret;
9150}
9151
9152/**
9153 *	t4_i2c_wr - write I2C data to adapter
9154 *	@adap: the adapter
9155 *	@port: Port number if per-port device; <0 if not
9156 *	@devid: per-port device ID or absolute device ID
9157 *	@offset: byte offset into device I2C space
9158 *	@len: byte length of I2C space data
9159 *	@buf: buffer containing new I2C data
9160 *
9161 *	Write the I2C data to the indicated device and location.
9162 */
9163int t4_i2c_wr(struct adapter *adap, unsigned int mbox,
9164	      int port, unsigned int devid,
9165	      unsigned int offset, unsigned int len,
9166	      u8 *buf)
9167{
9168	u32 ldst_addrspace;
9169	struct fw_ldst_cmd ldst;
9170
9171	if (port >= 4 ||
9172	    devid >= 256 ||
9173	    offset >= 256 ||
9174	    len > sizeof ldst.u.i2c.data)
9175		return -EINVAL;
9176
9177	memset(&ldst, 0, sizeof ldst);
9178	ldst_addrspace = V_FW_LDST_CMD_ADDRSPACE(FW_LDST_ADDRSPC_I2C);
9179	ldst.op_to_addrspace =
9180		cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9181			    F_FW_CMD_REQUEST |
9182			    F_FW_CMD_WRITE |
9183			    ldst_addrspace);
9184	ldst.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst));
9185	ldst.u.i2c.pid = (port < 0 ? 0xff : port);
9186	ldst.u.i2c.did = devid;
9187	ldst.u.i2c.boffset = offset;
9188	ldst.u.i2c.blen = len;
9189	memcpy(ldst.u.i2c.data, buf, len);
9190	return t4_wr_mbox(adap, mbox, &ldst, sizeof ldst, &ldst);
9191}
9192
9193/**
9194 * 	t4_sge_ctxt_rd - read an SGE context through FW
9195 * 	@adap: the adapter
9196 * 	@mbox: mailbox to use for the FW command
9197 * 	@cid: the context id
9198 * 	@ctype: the context type
9199 * 	@data: where to store the context data
9200 *
9201 * 	Issues a FW command through the given mailbox to read an SGE context.
9202 */
9203int t4_sge_ctxt_rd(struct adapter *adap, unsigned int mbox, unsigned int cid,
9204		   enum ctxt_type ctype, u32 *data)
9205{
9206	int ret;
9207	struct fw_ldst_cmd c;
9208
9209	if (ctype == CTXT_EGRESS)
9210		ret = FW_LDST_ADDRSPC_SGE_EGRC;
9211	else if (ctype == CTXT_INGRESS)
9212		ret = FW_LDST_ADDRSPC_SGE_INGC;
9213	else if (ctype == CTXT_FLM)
9214		ret = FW_LDST_ADDRSPC_SGE_FLMC;
9215	else
9216		ret = FW_LDST_ADDRSPC_SGE_CONMC;
9217
9218	memset(&c, 0, sizeof(c));
9219	c.op_to_addrspace = cpu_to_be32(V_FW_CMD_OP(FW_LDST_CMD) |
9220					F_FW_CMD_REQUEST | F_FW_CMD_READ |
9221					V_FW_LDST_CMD_ADDRSPACE(ret));
9222	c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
9223	c.u.idctxt.physid = cpu_to_be32(cid);
9224
9225	ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
9226	if (ret == 0) {
9227		data[0] = be32_to_cpu(c.u.idctxt.ctxt_data0);
9228		data[1] = be32_to_cpu(c.u.idctxt.ctxt_data1);
9229		data[2] = be32_to_cpu(c.u.idctxt.ctxt_data2);
9230		data[3] = be32_to_cpu(c.u.idctxt.ctxt_data3);
9231		data[4] = be32_to_cpu(c.u.idctxt.ctxt_data4);
9232		data[5] = be32_to_cpu(c.u.idctxt.ctxt_data5);
9233	}
9234	return ret;
9235}
9236
9237/**
9238 * 	t4_sge_ctxt_rd_bd - read an SGE context bypassing FW
9239 * 	@adap: the adapter
9240 * 	@cid: the context id
9241 * 	@ctype: the context type
9242 * 	@data: where to store the context data
9243 *
9244 * 	Reads an SGE context directly, bypassing FW.  This is only for
9245 * 	debugging when FW is unavailable.
9246 */
9247int t4_sge_ctxt_rd_bd(struct adapter *adap, unsigned int cid, enum ctxt_type ctype,
9248		      u32 *data)
9249{
9250	int i, ret;
9251
9252	t4_write_reg(adap, A_SGE_CTXT_CMD, V_CTXTQID(cid) | V_CTXTTYPE(ctype));
9253	ret = t4_wait_op_done(adap, A_SGE_CTXT_CMD, F_BUSY, 0, 3, 1);
9254	if (!ret)
9255		for (i = A_SGE_CTXT_DATA0; i <= A_SGE_CTXT_DATA5; i += 4)
9256			*data++ = t4_read_reg(adap, i);
9257	return ret;
9258}
9259
9260int t4_sched_config(struct adapter *adapter, int type, int minmaxen,
9261    		    int sleep_ok)
9262{
9263	struct fw_sched_cmd cmd;
9264
9265	memset(&cmd, 0, sizeof(cmd));
9266	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9267				      F_FW_CMD_REQUEST |
9268				      F_FW_CMD_WRITE);
9269	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9270
9271	cmd.u.config.sc = FW_SCHED_SC_CONFIG;
9272	cmd.u.config.type = type;
9273	cmd.u.config.minmaxen = minmaxen;
9274
9275	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9276			       NULL, sleep_ok);
9277}
9278
9279int t4_sched_params(struct adapter *adapter, int type, int level, int mode,
9280		    int rateunit, int ratemode, int channel, int cl,
9281		    int minrate, int maxrate, int weight, int pktsize,
9282		    int sleep_ok)
9283{
9284	struct fw_sched_cmd cmd;
9285
9286	memset(&cmd, 0, sizeof(cmd));
9287	cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_SCHED_CMD) |
9288				      F_FW_CMD_REQUEST |
9289				      F_FW_CMD_WRITE);
9290	cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
9291
9292	cmd.u.params.sc = FW_SCHED_SC_PARAMS;
9293	cmd.u.params.type = type;
9294	cmd.u.params.level = level;
9295	cmd.u.params.mode = mode;
9296	cmd.u.params.ch = channel;
9297	cmd.u.params.cl = cl;
9298	cmd.u.params.unit = rateunit;
9299	cmd.u.params.rate = ratemode;
9300	cmd.u.params.min = cpu_to_be32(minrate);
9301	cmd.u.params.max = cpu_to_be32(maxrate);
9302	cmd.u.params.weight = cpu_to_be16(weight);
9303	cmd.u.params.pktsize = cpu_to_be16(pktsize);
9304
9305	return t4_wr_mbox_meat(adapter,adapter->mbox, &cmd, sizeof(cmd),
9306			       NULL, sleep_ok);
9307}
9308
9309/*
9310 *	t4_config_watchdog - configure (enable/disable) a watchdog timer
9311 *	@adapter: the adapter
9312 * 	@mbox: mailbox to use for the FW command
9313 * 	@pf: the PF owning the queue
9314 * 	@vf: the VF owning the queue
9315 *	@timeout: watchdog timeout in ms
9316 *	@action: watchdog timer / action
9317 *
9318 *	There are separate watchdog timers for each possible watchdog
9319 *	action.  Configure one of the watchdog timers by setting a non-zero
9320 *	timeout.  Disable a watchdog timer by using a timeout of zero.
9321 */
9322int t4_config_watchdog(struct adapter *adapter, unsigned int mbox,
9323		       unsigned int pf, unsigned int vf,
9324		       unsigned int timeout, unsigned int action)
9325{
9326	struct fw_watchdog_cmd wdog;
9327	unsigned int ticks;
9328
9329	/*
9330	 * The watchdog command expects a timeout in units of 10ms so we need
9331	 * to convert it here (via rounding) and force a minimum of one 10ms
9332	 * "tick" if the timeout is non-zero but the conversion results in 0
9333	 * ticks.
9334	 */
9335	ticks = (timeout + 5)/10;
9336	if (timeout && !ticks)
9337		ticks = 1;
9338
9339	memset(&wdog, 0, sizeof wdog);
9340	wdog.op_to_vfn = cpu_to_be32(V_FW_CMD_OP(FW_WATCHDOG_CMD) |
9341				     F_FW_CMD_REQUEST |
9342				     F_FW_CMD_WRITE |
9343				     V_FW_PARAMS_CMD_PFN(pf) |
9344				     V_FW_PARAMS_CMD_VFN(vf));
9345	wdog.retval_len16 = cpu_to_be32(FW_LEN16(wdog));
9346	wdog.timeout = cpu_to_be32(ticks);
9347	wdog.action = cpu_to_be32(action);
9348
9349	return t4_wr_mbox(adapter, mbox, &wdog, sizeof wdog, NULL);
9350}
9351
9352int t4_get_devlog_level(struct adapter *adapter, unsigned int *level)
9353{
9354	struct fw_devlog_cmd devlog_cmd;
9355	int ret;
9356
9357	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9358	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9359					     F_FW_CMD_REQUEST | F_FW_CMD_READ);
9360	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9361	ret = t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9362			 sizeof(devlog_cmd), &devlog_cmd);
9363	if (ret)
9364		return ret;
9365
9366	*level = devlog_cmd.level;
9367	return 0;
9368}
9369
9370int t4_set_devlog_level(struct adapter *adapter, unsigned int level)
9371{
9372	struct fw_devlog_cmd devlog_cmd;
9373
9374	memset(&devlog_cmd, 0, sizeof(devlog_cmd));
9375	devlog_cmd.op_to_write = cpu_to_be32(V_FW_CMD_OP(FW_DEVLOG_CMD) |
9376					     F_FW_CMD_REQUEST |
9377					     F_FW_CMD_WRITE);
9378	devlog_cmd.level = level;
9379	devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
9380	return t4_wr_mbox(adapter, adapter->mbox, &devlog_cmd,
9381			  sizeof(devlog_cmd), &devlog_cmd);
9382}
9383