1/*-
2 * Copyright (c) 2007-2017 QLogic Corporation. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24 * THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#include <sys/cdefs.h>
28__FBSDID("$FreeBSD$");
29
30#ifndef ECORE_INIT_H
31#define ECORE_INIT_H
32
33/* Init operation types and structures */
34enum {
35	OP_RD = 0x1,	/* read a single register */
36	OP_WR,		/* write a single register */
37	OP_SW,		/* copy a string to the device */
38	OP_ZR,		/* clear memory */
39	OP_ZP,		/* unzip then copy with DMAE */
40	OP_WR_64,	/* write 64 bit pattern */
41	OP_WB,		/* copy a string using DMAE */
42#ifndef FW_ZIP_SUPPORT
43	OP_FW,		/* copy an array from fw data (only used with unzipped FW) */
44#endif
45	OP_WB_ZR,	/* Clear a string using DMAE or indirect-wr */
46	OP_IF_MODE_OR,  /* Skip the following ops if all init modes don't match */
47	OP_IF_MODE_AND, /* Skip the following ops if any init modes don't match */
48	OP_IF_PHASE,
49	OP_RT,
50	OP_DELAY,
51	OP_VERIFY,
52	OP_MAX
53};
54
55enum {
56	STAGE_START,
57	STAGE_END,
58};
59
60/* Returns the index of start or end of a specific block stage in ops array*/
61#define BLOCK_OPS_IDX(block, stage, end) \
62	(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
63
64
65/* structs for the various opcodes */
66struct raw_op {
67	uint32_t op:8;
68	uint32_t offset:24;
69	uint32_t raw_data;
70};
71
72struct op_read {
73	uint32_t op:8;
74	uint32_t offset:24;
75	uint32_t val;
76};
77
78struct op_write {
79	uint32_t op:8;
80	uint32_t offset:24;
81	uint32_t val;
82};
83
84struct op_arr_write {
85	uint32_t op:8;
86	uint32_t offset:24;
87#ifdef __BIG_ENDIAN
88	uint16_t data_len;
89	uint16_t data_off;
90#else /* __LITTLE_ENDIAN */
91	uint16_t data_off;
92	uint16_t data_len;
93#endif
94};
95
96struct op_zero {
97	uint32_t op:8;
98	uint32_t offset:24;
99	uint32_t len;
100};
101
102struct op_if_mode {
103	uint32_t op:8;
104	uint32_t cmd_offset:24;
105	uint32_t mode_bit_map;
106};
107
108struct op_if_phase {
109	uint32_t op:8;
110	uint32_t cmd_offset:24;
111	uint32_t phase_bit_map;
112};
113
114struct op_delay {
115	uint32_t op:8;
116	uint32_t reserved:24;
117	uint32_t delay;
118};
119
120union init_op {
121	struct op_read		read;
122	struct op_write		write;
123	struct op_arr_write	arr_wr;
124	struct op_zero		zero;
125	struct raw_op		raw;
126	struct op_if_mode	if_mode;
127	struct op_if_phase	if_phase;
128	struct op_delay		delay;
129};
130
131
132/* Init Phases */
133enum {
134	PHASE_COMMON,
135	PHASE_PORT0,
136	PHASE_PORT1,
137	PHASE_PF0,
138	PHASE_PF1,
139	PHASE_PF2,
140	PHASE_PF3,
141	PHASE_PF4,
142	PHASE_PF5,
143	PHASE_PF6,
144	PHASE_PF7,
145	NUM_OF_INIT_PHASES
146};
147
148/* Init Modes */
149enum {
150	MODE_ASIC                      = 0x00000001,
151	MODE_FPGA                      = 0x00000002,
152	MODE_EMUL                      = 0x00000004,
153	MODE_E2                        = 0x00000008,
154	MODE_E3                        = 0x00000010,
155	MODE_PORT2                     = 0x00000020,
156	MODE_PORT4                     = 0x00000040,
157	MODE_SF                        = 0x00000080,
158	MODE_MF                        = 0x00000100,
159	MODE_MF_SD                     = 0x00000200,
160	MODE_MF_SI                     = 0x00000400,
161	MODE_MF_AFEX                   = 0x00000800,
162	MODE_E3_A0                     = 0x00001000,
163	MODE_E3_B0                     = 0x00002000,
164	MODE_COS3                      = 0x00004000,
165	MODE_COS6                      = 0x00008000,
166	MODE_LITTLE_ENDIAN             = 0x00010000,
167	MODE_BIG_ENDIAN                = 0x00020000,
168};
169
170/* Init Blocks */
171enum {
172	BLOCK_ATC,
173	BLOCK_BRB1,
174	BLOCK_CCM,
175	BLOCK_CDU,
176	BLOCK_CFC,
177	BLOCK_CSDM,
178	BLOCK_CSEM,
179	BLOCK_DBG,
180	BLOCK_DMAE,
181	BLOCK_DORQ,
182	BLOCK_HC,
183	BLOCK_IGU,
184	BLOCK_MISC,
185	BLOCK_NIG,
186	BLOCK_PBF,
187	BLOCK_PGLUE_B,
188	BLOCK_PRS,
189	BLOCK_PXP2,
190	BLOCK_PXP,
191	BLOCK_QM,
192	BLOCK_SRC,
193	BLOCK_TCM,
194	BLOCK_TM,
195	BLOCK_TSDM,
196	BLOCK_TSEM,
197	BLOCK_UCM,
198	BLOCK_UPB,
199	BLOCK_USDM,
200	BLOCK_USEM,
201	BLOCK_XCM,
202	BLOCK_XPB,
203	BLOCK_XSDM,
204	BLOCK_XSEM,
205	BLOCK_MISC_AEU,
206	NUM_OF_INIT_BLOCKS
207};
208
209
210
211
212
213
214
215
216/* Vnics per mode */
217#define ECORE_PORT2_MODE_NUM_VNICS 4
218
219
220/* QM queue numbers */
221#define ECORE_ETH_Q		0
222#define ECORE_TOE_Q		3
223#define ECORE_TOE_ACK_Q		6
224#define ECORE_ISCSI_Q		9
225#define ECORE_ISCSI_ACK_Q	11
226#define ECORE_FCOE_Q		10
227
228/* Vnics per mode */
229#define ECORE_PORT4_MODE_NUM_VNICS 2
230
231/* COS offset for port1 in E3 B0 4port mode */
232#define ECORE_E3B0_PORT1_COS_OFFSET 3
233
234/* QM Register addresses */
235#define ECORE_Q_VOQ_REG_ADDR(pf_q_num)\
236	(QM_REG_QVOQIDX_0 + 4 * (pf_q_num))
237#define ECORE_VOQ_Q_REG_ADDR(cos, pf_q_num)\
238	(QM_REG_VOQQMASK_0_LSB + 4 * ((cos) * 2 + ((pf_q_num) >> 5)))
239#define ECORE_Q_CMDQ_REG_ADDR(pf_q_num)\
240	(QM_REG_BYTECRDCMDQ_0 + 4 * ((pf_q_num) >> 4))
241
242/* extracts the QM queue number for the specified port and vnic */
243#define ECORE_PF_Q_NUM(q_num, port, vnic)\
244	((((port) << 1) | (vnic)) * 16 + (q_num))
245
246
247/* Maps the specified queue to the specified COS */
248static inline void ecore_map_q_cos(struct bxe_softc *sc, uint32_t q_num, uint32_t new_cos)
249{
250	/* find current COS mapping */
251	uint32_t curr_cos = REG_RD(sc, QM_REG_QVOQIDX_0 + q_num * 4);
252
253	/* check if queue->COS mapping has changed */
254	if (curr_cos != new_cos) {
255		uint32_t num_vnics = ECORE_PORT2_MODE_NUM_VNICS;
256		uint32_t reg_addr, reg_bit_map, vnic;
257
258		/* update parameters for 4port mode */
259		if (INIT_MODE_FLAGS(sc) & MODE_PORT4) {
260			num_vnics = ECORE_PORT4_MODE_NUM_VNICS;
261			if (PORT_ID(sc)) {
262				curr_cos += ECORE_E3B0_PORT1_COS_OFFSET;
263				new_cos += ECORE_E3B0_PORT1_COS_OFFSET;
264			}
265		}
266
267		/* change queue mapping for each VNIC */
268		for (vnic = 0; vnic < num_vnics; vnic++) {
269			uint32_t pf_q_num =
270				ECORE_PF_Q_NUM(q_num, PORT_ID(sc), vnic);
271			uint32_t q_bit_map = 1 << (pf_q_num & 0x1f);
272
273			/* overwrite queue->VOQ mapping */
274			REG_WR(sc, ECORE_Q_VOQ_REG_ADDR(pf_q_num), new_cos);
275
276			/* clear queue bit from current COS bit map */
277			reg_addr = ECORE_VOQ_Q_REG_ADDR(curr_cos, pf_q_num);
278			reg_bit_map = REG_RD(sc, reg_addr);
279			REG_WR(sc, reg_addr, reg_bit_map & (~q_bit_map));
280
281			/* set queue bit in new COS bit map */
282			reg_addr = ECORE_VOQ_Q_REG_ADDR(new_cos, pf_q_num);
283			reg_bit_map = REG_RD(sc, reg_addr);
284			REG_WR(sc, reg_addr, reg_bit_map | q_bit_map);
285
286			/* set/clear queue bit in command-queue bit map
287			(E2/E3A0 only, valid COS values are 0/1) */
288			if (!(INIT_MODE_FLAGS(sc) & MODE_E3_B0)) {
289				reg_addr = ECORE_Q_CMDQ_REG_ADDR(pf_q_num);
290				reg_bit_map = REG_RD(sc, reg_addr);
291				q_bit_map = 1 << (2 * (pf_q_num & 0xf));
292				reg_bit_map = new_cos ?
293					      (reg_bit_map | q_bit_map) :
294					      (reg_bit_map & (~q_bit_map));
295				REG_WR(sc, reg_addr, reg_bit_map);
296			}
297		}
298	}
299}
300
301/* Configures the QM according to the specified per-traffic-type COSes */
302static inline void ecore_dcb_config_qm(struct bxe_softc *sc, enum cos_mode mode,
303				       struct priority_cos *traffic_cos)
304{
305	ecore_map_q_cos(sc, ECORE_FCOE_Q,
306			traffic_cos[LLFC_TRAFFIC_TYPE_FCOE].cos);
307	ecore_map_q_cos(sc, ECORE_ISCSI_Q,
308			traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
309	ecore_map_q_cos(sc, ECORE_ISCSI_ACK_Q,
310		traffic_cos[LLFC_TRAFFIC_TYPE_ISCSI].cos);
311	if (mode != STATIC_COS) {
312		/* required only in OVERRIDE_COS mode */
313		ecore_map_q_cos(sc, ECORE_ETH_Q,
314				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
315		ecore_map_q_cos(sc, ECORE_TOE_Q,
316				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
317		ecore_map_q_cos(sc, ECORE_TOE_ACK_Q,
318				traffic_cos[LLFC_TRAFFIC_TYPE_NW].cos);
319	}
320}
321
322
323/*
324 * congestion management port init api description
325 * the api works as follows:
326 * the driver should pass the cmng_init_input struct, the port_init function
327 * will prepare the required internal ram structure which will be passed back
328 * to the driver (cmng_init) that will write it into the internal ram.
329 *
330 * IMPORTANT REMARKS:
331 * 1. the cmng_init struct does not represent the contiguous internal ram
332 *    structure. the driver should use the XSTORM_CMNG_PERPORT_VARS_OFFSET
333 *    offset in order to write the port sub struct and the
334 *    PFID_FROM_PORT_AND_VNIC offset for writing the vnic sub struct (in other
335 *    words - don't use memcpy!).
336 * 2. although the cmng_init struct is filled for the maximal vnic number
337 *    possible, the driver should only write the valid vnics into the internal
338 *    ram according to the appropriate port mode.
339 */
340#define BITS_TO_BYTES(x) ((x)/8)
341
342/* CMNG constants, as derived from system spec calculations */
343
344/* default MIN rate in case VNIC min rate is configured to zero- 100Mbps */
345#define DEF_MIN_RATE 100
346
347/* resolution of the rate shaping timer - 400 usec */
348#define RS_PERIODIC_TIMEOUT_USEC 400
349
350/*
351 *  number of bytes in single QM arbitration cycle -
352 *  coefficient for calculating the fairness timer
353 */
354#define QM_ARB_BYTES 160000
355
356/* resolution of Min algorithm 1:100 */
357#define MIN_RES 100
358
359/*
360 *  how many bytes above threshold for
361 *  the minimal credit of Min algorithm
362 */
363#define MIN_ABOVE_THRESH 32768
364
365/*
366 *  Fairness algorithm integration time coefficient -
367 *  for calculating the actual Tfair
368 */
369#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
370
371/* Memory of fairness algorithm - 2 cycles */
372#define FAIR_MEM 2
373#define SAFC_TIMEOUT_USEC 52
374
375#define SDM_TICKS 4
376
377
378static inline void ecore_init_max(const struct cmng_init_input *input_data,
379				  uint32_t r_param, struct cmng_init *ram_data)
380{
381	uint32_t vnic;
382	struct cmng_vnic *vdata = &ram_data->vnic;
383	struct cmng_struct_per_port *pdata = &ram_data->port;
384	/*
385	 * rate shaping per-port variables
386	 *  100 micro seconds in SDM ticks = 25
387	 *  since each tick is 4 microSeconds
388	 */
389
390	pdata->rs_vars.rs_periodic_timeout =
391	RS_PERIODIC_TIMEOUT_USEC / SDM_TICKS;
392
393	/* this is the threshold below which no timer arming will occur.
394	 *  1.25 coefficient is for the threshold to be a little bigger
395	 *  then the real time to compensate for timer in-accuracy
396	 */
397	pdata->rs_vars.rs_threshold =
398	(5 * RS_PERIODIC_TIMEOUT_USEC * r_param)/4;
399
400	/* rate shaping per-vnic variables */
401	for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
402		/* global vnic counter */
403		vdata->vnic_max_rate[vnic].vn_counter.rate =
404		input_data->vnic_max_rate[vnic];
405		/*
406		 * maximal Mbps for this vnic
407		 * the quota in each timer period - number of bytes
408		 * transmitted in this period
409		 */
410		vdata->vnic_max_rate[vnic].vn_counter.quota =
411			RS_PERIODIC_TIMEOUT_USEC *
412			(uint32_t)vdata->vnic_max_rate[vnic].vn_counter.rate / 8;
413	}
414
415}
416
417static inline void ecore_init_max_per_vn(uint16_t vnic_max_rate,
418				  struct rate_shaping_vars_per_vn *ram_data)
419{
420	/* global vnic counter */
421	ram_data->vn_counter.rate = vnic_max_rate;
422
423	/*
424	* maximal Mbps for this vnic
425	* the quota in each timer period - number of bytes
426	* transmitted in this period
427	*/
428	ram_data->vn_counter.quota =
429		RS_PERIODIC_TIMEOUT_USEC * (uint32_t)vnic_max_rate / 8;
430}
431
432static inline void ecore_init_min(const struct cmng_init_input *input_data,
433				  uint32_t r_param, struct cmng_init *ram_data)
434{
435	uint32_t vnic, fair_periodic_timeout_usec, vnicWeightSum, tFair;
436	struct cmng_vnic *vdata = &ram_data->vnic;
437	struct cmng_struct_per_port *pdata = &ram_data->port;
438
439	/* this is the resolution of the fairness timer */
440	fair_periodic_timeout_usec = QM_ARB_BYTES / r_param;
441
442	/*
443	 * fairness per-port variables
444	 * for 10G it is 1000usec. for 1G it is 10000usec.
445	 */
446	tFair = T_FAIR_COEF / input_data->port_rate;
447
448	/* this is the threshold below which we won't arm the timer anymore */
449	pdata->fair_vars.fair_threshold = QM_ARB_BYTES;
450
451	/*
452	 *  we multiply by 1e3/8 to get bytes/msec. We don't want the credits
453	 *  to pass a credit of the T_FAIR*FAIR_MEM (algorithm resolution)
454	 */
455	pdata->fair_vars.upper_bound = r_param * tFair * FAIR_MEM;
456
457	/* since each tick is 4 microSeconds */
458	pdata->fair_vars.fairness_timeout =
459				fair_periodic_timeout_usec / SDM_TICKS;
460
461	/* calculate sum of weights */
462	vnicWeightSum = 0;
463
464	for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++)
465		vnicWeightSum += input_data->vnic_min_rate[vnic];
466
467	/* global vnic counter */
468	if (vnicWeightSum > 0) {
469		/* fairness per-vnic variables */
470		for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
471			/*
472			 *  this is the credit for each period of the fairness
473			 *  algorithm - number of bytes in T_FAIR (this vnic
474			 *  share of the port rate)
475			 */
476			vdata->vnic_min_rate[vnic].vn_credit_delta =
477				((uint32_t)(input_data->vnic_min_rate[vnic]) * 100 *
478				(T_FAIR_COEF / (8 * 100 * vnicWeightSum)));
479			if (vdata->vnic_min_rate[vnic].vn_credit_delta <
480			    pdata->fair_vars.fair_threshold +
481			    MIN_ABOVE_THRESH) {
482				vdata->vnic_min_rate[vnic].vn_credit_delta =
483					pdata->fair_vars.fair_threshold +
484					MIN_ABOVE_THRESH;
485			}
486		}
487	}
488}
489
490static inline void ecore_init_fw_wrr(const struct cmng_init_input *input_data,
491				     uint32_t r_param, struct cmng_init *ram_data)
492{
493	uint32_t vnic, cos;
494	uint32_t cosWeightSum = 0;
495	struct cmng_vnic *vdata = &ram_data->vnic;
496	struct cmng_struct_per_port *pdata = &ram_data->port;
497
498	for (cos = 0; cos < MAX_COS_NUMBER; cos++)
499		cosWeightSum += input_data->cos_min_rate[cos];
500
501	if (cosWeightSum > 0) {
502
503		for (vnic = 0; vnic < ECORE_PORT2_MODE_NUM_VNICS; vnic++) {
504			/*
505			 *  Since cos and vnic shouldn't work together the rate
506			 *  to divide between the coses is the port rate.
507			 */
508			uint32_t *ccd = vdata->vnic_min_rate[vnic].cos_credit_delta;
509			for (cos = 0; cos < MAX_COS_NUMBER; cos++) {
510				/*
511				 * this is the credit for each period of
512				 * the fairness algorithm - number of bytes
513				 * in T_FAIR (this cos share of the vnic rate)
514				 */
515				ccd[cos] =
516				    ((uint32_t)input_data->cos_min_rate[cos] * 100 *
517				    (T_FAIR_COEF / (8 * 100 * cosWeightSum)));
518				 if (ccd[cos] < pdata->fair_vars.fair_threshold
519						+ MIN_ABOVE_THRESH) {
520					ccd[cos] =
521					    pdata->fair_vars.fair_threshold +
522					    MIN_ABOVE_THRESH;
523				}
524			}
525		}
526	}
527}
528
529static inline void ecore_init_safc(const struct cmng_init_input *input_data,
530				   struct cmng_init *ram_data)
531{
532	/* in microSeconds */
533	ram_data->port.safc_vars.safc_timeout_usec = SAFC_TIMEOUT_USEC;
534}
535
536/* Congestion management port init */
537static inline void ecore_init_cmng(const struct cmng_init_input *input_data,
538				   struct cmng_init *ram_data)
539{
540	uint32_t r_param;
541	ECORE_MEMSET(ram_data, 0,sizeof(struct cmng_init));
542
543	ram_data->port.flags = input_data->flags;
544
545	/*
546	 *  number of bytes transmitted in a rate of 10Gbps
547	 *  in one usec = 1.25KB.
548	 */
549	r_param = BITS_TO_BYTES(input_data->port_rate);
550	ecore_init_max(input_data, r_param, ram_data);
551	ecore_init_min(input_data, r_param, ram_data);
552	ecore_init_fw_wrr(input_data, r_param, ram_data);
553	ecore_init_safc(input_data, ram_data);
554}
555
556
557
558
559/* Returns the index of start or end of a specific block stage in ops array*/
560#define BLOCK_OPS_IDX(block, stage, end) \
561			(2*(((block)*NUM_OF_INIT_PHASES) + (stage)) + (end))
562
563
564#define INITOP_SET		0	/* set the HW directly */
565#define INITOP_CLEAR		1	/* clear the HW directly */
566#define INITOP_INIT		2	/* set the init-value array */
567
568/****************************************************************************
569* ILT management
570****************************************************************************/
571struct ilt_line {
572	ecore_dma_addr_t page_mapping;
573	void *page;
574	uint32_t size;
575};
576
577struct ilt_client_info {
578	uint32_t page_size;
579	uint16_t start;
580	uint16_t end;
581	uint16_t client_num;
582	uint16_t flags;
583#define ILT_CLIENT_SKIP_INIT	0x1
584#define ILT_CLIENT_SKIP_MEM	0x2
585};
586
587struct ecore_ilt {
588	uint32_t start_line;
589	struct ilt_line		*lines;
590	struct ilt_client_info	clients[4];
591#define ILT_CLIENT_CDU	0
592#define ILT_CLIENT_QM	1
593#define ILT_CLIENT_SRC	2
594#define ILT_CLIENT_TM	3
595};
596
597/****************************************************************************
598* SRC configuration
599****************************************************************************/
600struct src_ent {
601	uint8_t opaque[56];
602	uint64_t next;
603};
604
605/****************************************************************************
606* Parity configuration
607****************************************************************************/
608#define BLOCK_PRTY_INFO(block, en_mask, m1, m1h, m2, m3) \
609{ \
610	block##_REG_##block##_PRTY_MASK, \
611	block##_REG_##block##_PRTY_STS_CLR, \
612	en_mask, {m1, m1h, m2, m3}, #block \
613}
614
615#define BLOCK_PRTY_INFO_0(block, en_mask, m1, m1h, m2, m3) \
616{ \
617	block##_REG_##block##_PRTY_MASK_0, \
618	block##_REG_##block##_PRTY_STS_CLR_0, \
619	en_mask, {m1, m1h, m2, m3}, #block"_0" \
620}
621
622#define BLOCK_PRTY_INFO_1(block, en_mask, m1, m1h, m2, m3) \
623{ \
624	block##_REG_##block##_PRTY_MASK_1, \
625	block##_REG_##block##_PRTY_STS_CLR_1, \
626	en_mask, {m1, m1h, m2, m3}, #block"_1" \
627}
628
629static const struct {
630	uint32_t mask_addr;
631	uint32_t sts_clr_addr;
632	uint32_t en_mask;		/* Mask to enable parity attentions */
633	struct {
634		uint32_t e1;		/* 57710 */
635		uint32_t e1h;	/* 57711 */
636		uint32_t e2;		/* 57712 */
637		uint32_t e3;		/* 578xx */
638	} reg_mask;		/* Register mask (all valid bits) */
639	char name[8];		/* Block's longest name is 7 characters long
640				 * (name + suffix)
641				 */
642} ecore_blocks_parity_data[] = {
643	/* bit 19 masked */
644	/* REG_WR(bp, PXP_REG_PXP_PRTY_MASK, 0x80000); */
645	/* bit 5,18,20-31 */
646	/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_0, 0xfff40020); */
647	/* bit 5 */
648	/* REG_WR(bp, PXP2_REG_PXP2_PRTY_MASK_1, 0x20);	*/
649	/* REG_WR(bp, HC_REG_HC_PRTY_MASK, 0x0); */
650	/* REG_WR(bp, MISC_REG_MISC_PRTY_MASK, 0x0); */
651
652	/* Block IGU, MISC, PXP and PXP2 parity errors as long as we don't
653	 * want to handle "system kill" flow at the moment.
654	 */
655	BLOCK_PRTY_INFO(PXP, 0x7ffffff, 0x3ffffff, 0x3ffffff, 0x7ffffff,
656			0x7ffffff),
657	BLOCK_PRTY_INFO_0(PXP2,	0xffffffff, 0xffffffff, 0xffffffff, 0xffffffff,
658			  0xffffffff),
659	BLOCK_PRTY_INFO_1(PXP2,	0x1ffffff, 0x7f, 0x7f, 0x7ff, 0x1ffffff),
660	BLOCK_PRTY_INFO(HC, 0x7, 0x7, 0x7, 0, 0),
661	BLOCK_PRTY_INFO(NIG, 0xffffffff, 0x3fffffff, 0xffffffff, 0, 0),
662	BLOCK_PRTY_INFO_0(NIG,	0xffffffff, 0, 0, 0xffffffff, 0xffffffff),
663	BLOCK_PRTY_INFO_1(NIG,	0xffff, 0, 0, 0xff, 0xffff),
664	BLOCK_PRTY_INFO(IGU, 0x7ff, 0, 0, 0x7ff, 0x7ff),
665	BLOCK_PRTY_INFO(MISC, 0x1, 0x1, 0x1, 0x1, 0x1),
666	BLOCK_PRTY_INFO(QM, 0, 0x1ff, 0xfff, 0xfff, 0xfff),
667	BLOCK_PRTY_INFO(ATC, 0x1f, 0, 0, 0x1f, 0x1f),
668	BLOCK_PRTY_INFO(PGLUE_B, 0x3, 0, 0, 0x3, 0x3),
669	BLOCK_PRTY_INFO(DORQ, 0, 0x3, 0x3, 0x3, 0x3),
670	{GRCBASE_UPB + PB_REG_PB_PRTY_MASK,
671		GRCBASE_UPB + PB_REG_PB_PRTY_STS_CLR, 0xf,
672		{0xf, 0xf, 0xf, 0xf}, "UPB"},
673	{GRCBASE_XPB + PB_REG_PB_PRTY_MASK,
674		GRCBASE_XPB + PB_REG_PB_PRTY_STS_CLR, 0,
675		{0xf, 0xf, 0xf, 0xf}, "XPB"},
676	BLOCK_PRTY_INFO(SRC, 0x4, 0x7, 0x7, 0x7, 0x7),
677	BLOCK_PRTY_INFO(CDU, 0, 0x1f, 0x1f, 0x1f, 0x1f),
678	BLOCK_PRTY_INFO(CFC, 0, 0xf, 0xf, 0xf, 0x3f),
679	BLOCK_PRTY_INFO(DBG, 0, 0x1, 0x1, 0x1, 0x1),
680	BLOCK_PRTY_INFO(DMAE, 0, 0xf, 0xf, 0xf, 0xf),
681	BLOCK_PRTY_INFO(BRB1, 0, 0xf, 0xf, 0xf, 0xf),
682	BLOCK_PRTY_INFO(PRS, (1<<6), 0xff, 0xff, 0xff, 0xff),
683	BLOCK_PRTY_INFO(PBF, 0, 0, 0x3ffff, 0xfffff, 0xfffffff),
684	BLOCK_PRTY_INFO(TM, 0, 0, 0x7f, 0x7f, 0x7f),
685	BLOCK_PRTY_INFO(TSDM, 0x18, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
686	BLOCK_PRTY_INFO(CSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
687	BLOCK_PRTY_INFO(USDM, 0x38, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
688	BLOCK_PRTY_INFO(XSDM, 0x8, 0x7ff, 0x7ff, 0x7ff, 0x7ff),
689	BLOCK_PRTY_INFO(TCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
690	BLOCK_PRTY_INFO(CCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
691	BLOCK_PRTY_INFO(UCM, 0, 0, 0x7ffffff, 0x7ffffff, 0x7ffffff),
692	BLOCK_PRTY_INFO(XCM, 0, 0, 0x3fffffff, 0x3fffffff, 0x3fffffff),
693	BLOCK_PRTY_INFO_0(TSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
694			  0xffffffff),
695	BLOCK_PRTY_INFO_1(TSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
696	BLOCK_PRTY_INFO_0(USEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
697			  0xffffffff),
698	BLOCK_PRTY_INFO_1(USEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
699	BLOCK_PRTY_INFO_0(CSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
700			  0xffffffff),
701	BLOCK_PRTY_INFO_1(CSEM, 0, 0x3, 0x1f, 0x1f, 0x1f),
702	BLOCK_PRTY_INFO_0(XSEM, 0, 0xffffffff, 0xffffffff, 0xffffffff,
703			  0xffffffff),
704	BLOCK_PRTY_INFO_1(XSEM, 0, 0x3, 0x1f, 0x3f, 0x3f),
705};
706
707
708/* [28] MCP Latched rom_parity
709 * [29] MCP Latched ump_rx_parity
710 * [30] MCP Latched ump_tx_parity
711 * [31] MCP Latched scpad_parity
712 */
713#define MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS	\
714	(AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY | \
715	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY | \
716	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY)
717
718#define MISC_AEU_ENABLE_MCP_PRTY_BITS	\
719	(MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS | \
720	 AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY)
721
722/* Below registers control the MCP parity attention output. When
723 * MISC_AEU_ENABLE_MCP_PRTY_BITS are set - attentions are
724 * enabled, when cleared - disabled.
725 */
726static const struct {
727	uint32_t addr;
728	uint32_t bits;
729} mcp_attn_ctl_regs[] = {
730	{ MISC_REG_AEU_ENABLE4_FUNC_0_OUT_0,
731		MISC_AEU_ENABLE_MCP_PRTY_BITS },
732	{ MISC_REG_AEU_ENABLE4_NIG_0,
733		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
734	{ MISC_REG_AEU_ENABLE4_PXP_0,
735		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
736	{ MISC_REG_AEU_ENABLE4_FUNC_1_OUT_0,
737		MISC_AEU_ENABLE_MCP_PRTY_BITS },
738	{ MISC_REG_AEU_ENABLE4_NIG_1,
739		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS },
740	{ MISC_REG_AEU_ENABLE4_PXP_1,
741		MISC_AEU_ENABLE_MCP_PRTY_SUB_BITS }
742};
743
744static inline void ecore_set_mcp_parity(struct bxe_softc *sc, uint8_t enable)
745{
746	int i;
747	uint32_t reg_val;
748
749	for (i = 0; i < ARRSIZE(mcp_attn_ctl_regs); i++) {
750		reg_val = REG_RD(sc, mcp_attn_ctl_regs[i].addr);
751
752		if (enable)
753			reg_val |= MISC_AEU_ENABLE_MCP_PRTY_BITS; /* Linux is using mcp_attn_ctl_regs[i].bits */
754		else
755			reg_val &= ~MISC_AEU_ENABLE_MCP_PRTY_BITS; /* Linux is using mcp_attn_ctl_regs[i].bits */
756
757		REG_WR(sc, mcp_attn_ctl_regs[i].addr, reg_val);
758	}
759}
760
761static inline uint32_t ecore_parity_reg_mask(struct bxe_softc *sc, int idx)
762{
763	if (CHIP_IS_E1(sc))
764		return ecore_blocks_parity_data[idx].reg_mask.e1;
765	else if (CHIP_IS_E1H(sc))
766		return ecore_blocks_parity_data[idx].reg_mask.e1h;
767	else if (CHIP_IS_E2(sc))
768		return ecore_blocks_parity_data[idx].reg_mask.e2;
769	else /* CHIP_IS_E3 */
770		return ecore_blocks_parity_data[idx].reg_mask.e3;
771}
772
773static inline void ecore_disable_blocks_parity(struct bxe_softc *sc)
774{
775	int i;
776
777	for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
778		uint32_t dis_mask = ecore_parity_reg_mask(sc, i);
779
780		if (dis_mask) {
781			REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
782			       dis_mask);
783			ECORE_MSG(sc, "Setting parity mask "
784						 "for %s to\t\t0x%x\n",
785				    ecore_blocks_parity_data[i].name, dis_mask);
786		}
787	}
788
789	/* Disable MCP parity attentions */
790	ecore_set_mcp_parity(sc, FALSE);
791}
792
793/**
794 * Clear the parity error status registers.
795 */
796static inline void ecore_clear_blocks_parity(struct bxe_softc *sc)
797{
798	int i;
799	uint32_t reg_val, mcp_aeu_bits =
800		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_ROM_PARITY |
801		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_SCPAD_PARITY |
802		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_RX_PARITY |
803		AEU_INPUTS_ATTN_BITS_MCP_LATCHED_UMP_TX_PARITY;
804
805	/* Clear SEM_FAST parities */
806	REG_WR(sc, XSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
807	REG_WR(sc, TSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
808	REG_WR(sc, USEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
809	REG_WR(sc, CSEM_REG_FAST_MEMORY + SEM_FAST_REG_PARITY_RST, 0x1);
810
811	for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
812		uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
813
814		if (reg_mask) {
815			reg_val = REG_RD(sc, ecore_blocks_parity_data[i].
816					 sts_clr_addr);
817			if (reg_val & reg_mask)
818				ECORE_MSG(sc,
819					   "Parity errors in %s: 0x%x\n",
820					   ecore_blocks_parity_data[i].name,
821					   reg_val & reg_mask);
822		}
823	}
824
825	/* Check if there were parity attentions in MCP */
826	reg_val = REG_RD(sc, MISC_REG_AEU_AFTER_INVERT_4_MCP);
827	if (reg_val & mcp_aeu_bits)
828		ECORE_MSG(sc, "Parity error in MCP: 0x%x\n",
829			   reg_val & mcp_aeu_bits);
830
831	/* Clear parity attentions in MCP:
832	 * [7]  clears Latched rom_parity
833	 * [8]  clears Latched ump_rx_parity
834	 * [9]  clears Latched ump_tx_parity
835	 * [10] clears Latched scpad_parity (both ports)
836	 */
837	REG_WR(sc, MISC_REG_AEU_CLR_LATCH_SIGNAL, 0x780);
838}
839
840static inline void ecore_enable_blocks_parity(struct bxe_softc *sc)
841{
842	int i;
843
844	for (i = 0; i < ARRSIZE(ecore_blocks_parity_data); i++) {
845		uint32_t reg_mask = ecore_parity_reg_mask(sc, i);
846
847		if (reg_mask)
848			REG_WR(sc, ecore_blocks_parity_data[i].mask_addr,
849				ecore_blocks_parity_data[i].en_mask & reg_mask);
850	}
851
852	/* Enable MCP parity attentions */
853	ecore_set_mcp_parity(sc, TRUE);
854}
855
856
857#endif /* ECORE_INIT_H */
858
859