bxe.h revision 284335
1/*-
2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24 * THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#ifndef __BXE_H__
28#define __BXE_H__
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/bxe/bxe.h 284335 2015-06-13 01:28:19Z davidcs $");
32
33#include <sys/param.h>
34#include <sys/kernel.h>
35#include <sys/systm.h>
36#include <sys/lock.h>
37#include <sys/mutex.h>
38#include <sys/sx.h>
39#include <sys/module.h>
40#include <sys/endian.h>
41#include <sys/types.h>
42#include <sys/malloc.h>
43#include <sys/kobj.h>
44#include <sys/bus.h>
45#include <sys/rman.h>
46#include <sys/socket.h>
47#include <sys/sockio.h>
48#include <sys/sysctl.h>
49#include <sys/smp.h>
50#include <sys/bitstring.h>
51#include <sys/limits.h>
52#include <sys/queue.h>
53#include <sys/taskqueue.h>
54#include <sys/zlib.h>
55
56#include <net/if.h>
57#include <net/if_types.h>
58#include <net/if_arp.h>
59#include <net/ethernet.h>
60#include <net/if_dl.h>
61#include <net/if_var.h>
62#include <net/if_media.h>
63#include <net/if_vlan_var.h>
64#include <net/bpf.h>
65
66#include <netinet/in.h>
67#include <netinet/ip.h>
68#include <netinet/ip6.h>
69#include <netinet/tcp.h>
70#include <netinet/udp.h>
71
72#include <dev/pci/pcireg.h>
73#include <dev/pci/pcivar.h>
74
75#include <machine/atomic.h>
76#include <machine/resource.h>
77#include <machine/endian.h>
78#include <machine/bus.h>
79#include <machine/in_cksum.h>
80
81#include "device_if.h"
82#include "bus_if.h"
83#include "pci_if.h"
84
85#if _BYTE_ORDER == _LITTLE_ENDIAN
86#ifndef LITTLE_ENDIAN
87#define LITTLE_ENDIAN
88#endif
89#ifndef __LITTLE_ENDIAN
90#define __LITTLE_ENDIAN
91#endif
92#undef BIG_ENDIAN
93#undef __BIG_ENDIAN
94#else /* _BIG_ENDIAN */
95#ifndef BIG_ENDIAN
96#define BIG_ENDIAN
97#endif
98#ifndef __BIG_ENDIAN
99#define __BIG_ENDIAN
100#endif
101#undef LITTLE_ENDIAN
102#undef __LITTLE_ENDIAN
103#endif
104
105#include "ecore_mfw_req.h"
106#include "ecore_fw_defs.h"
107#include "ecore_hsi.h"
108#include "ecore_reg.h"
109#include "bxe_dcb.h"
110#include "bxe_stats.h"
111
112#include "bxe_elink.h"
113
114#if __FreeBSD_version < 800054
115#if defined(__i386__) || defined(__amd64__)
116#define mb()  __asm volatile("mfence;" : : : "memory")
117#define wmb() __asm volatile("sfence;" : : : "memory")
118#define rmb() __asm volatile("lfence;" : : : "memory")
119static __inline void prefetch(void *x)
120{
121    __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
122}
123#else
124#define mb()
125#define rmb()
126#define wmb()
127#define prefetch(x)
128#endif
129#endif
130
131#if __FreeBSD_version >= 1000000
132#define PCIR_EXPRESS_DEVICE_STA        PCIER_DEVICE_STA
133#define PCIM_EXP_STA_TRANSACTION_PND   PCIEM_STA_TRANSACTION_PND
134#define PCIR_EXPRESS_LINK_STA          PCIER_LINK_STA
135#define PCIM_LINK_STA_WIDTH            PCIEM_LINK_STA_WIDTH
136#define PCIM_LINK_STA_SPEED            PCIEM_LINK_STA_SPEED
137#define PCIR_EXPRESS_DEVICE_CTL        PCIER_DEVICE_CTL
138#define PCIM_EXP_CTL_MAX_PAYLOAD       PCIEM_CTL_MAX_PAYLOAD
139#define PCIM_EXP_CTL_MAX_READ_REQUEST  PCIEM_CTL_MAX_READ_REQUEST
140#endif
141
142#ifndef ARRAY_SIZE
143#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
144#endif
145#ifndef ARRSIZE
146#define ARRSIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
147#endif
148#ifndef DIV_ROUND_UP
149#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
150#endif
151#ifndef roundup
152#define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
153#endif
154#ifndef ilog2
155static inline
156int bxe_ilog2(int x)
157{
158    int log = 0;
159    while (x >>= 1) log++;
160    return (log);
161}
162#define ilog2(x) bxe_ilog2(x)
163#endif
164
165#include "ecore_sp.h"
166
167#define BRCM_VENDORID 0x14e4
168#define PCI_ANY_ID    (uint16_t)(~0U)
169
170struct bxe_device_type
171{
172    uint16_t bxe_vid;
173    uint16_t bxe_did;
174    uint16_t bxe_svid;
175    uint16_t bxe_sdid;
176    char     *bxe_name;
177};
178
179#define BCM_PAGE_SHIFT       12
180#define BCM_PAGE_SIZE        (1 << BCM_PAGE_SHIFT)
181#define BCM_PAGE_MASK        (~(BCM_PAGE_SIZE - 1))
182#define BCM_PAGE_ALIGN(addr) ((addr + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
183
184#if BCM_PAGE_SIZE != 4096
185#error Page sizes other than 4KB are unsupported!
186#endif
187
188#if (BUS_SPACE_MAXADDR > 0xFFFFFFFF)
189#define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF))
190#define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32))
191#else
192#define U64_LO(addr) ((uint32_t)(addr))
193#define U64_HI(addr) (0)
194#endif
195#define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo))
196
197#define SET_FLAG(value, mask, flag)            \
198    do {                                       \
199        (value) &= ~(mask);                    \
200        (value) |= ((flag) << (mask##_SHIFT)); \
201    } while (0)
202
203#define GET_FLAG(value, mask)              \
204    (((value) & (mask)) >> (mask##_SHIFT))
205
206#define GET_FIELD(value, fname)                     \
207    (((value) & (fname##_MASK)) >> (fname##_SHIFT))
208
209#define BXE_MAX_SEGMENTS     12 /* 13-1 for parsing buffer */
210#define BXE_TSO_MAX_SEGMENTS 32
211#define BXE_TSO_MAX_SIZE     (65535 + sizeof(struct ether_vlan_header))
212#define BXE_TSO_MAX_SEG_SIZE 4096
213
214/* dropless fc FW/HW related params */
215#define BRB_SIZE(sc)         (CHIP_IS_E3(sc) ? 1024 : 512)
216#define MAX_AGG_QS(sc)       (CHIP_IS_E1(sc) ?                       \
217                                  ETH_MAX_AGGREGATION_QUEUES_E1 :    \
218                                  ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
219#define FW_DROP_LEVEL(sc)    (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc))
220#define FW_PREFETCH_CNT      16
221#define DROPLESS_FC_HEADROOM 100
222
223/******************/
224/* RX SGE defines */
225/******************/
226
227#define RX_SGE_NUM_PAGES       2 /* must be a power of 2 */
228#define RX_SGE_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
229#define RX_SGE_NEXT_PAGE_DESC_CNT 2
230#define RX_SGE_USABLE_PER_PAGE (RX_SGE_TOTAL_PER_PAGE - RX_SGE_NEXT_PAGE_DESC_CNT)
231#define RX_SGE_PER_PAGE_MASK   (RX_SGE_TOTAL_PER_PAGE - 1)
232#define RX_SGE_TOTAL           (RX_SGE_TOTAL_PER_PAGE * RX_SGE_NUM_PAGES)
233#define RX_SGE_USABLE          (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)
234#define RX_SGE_MAX             (RX_SGE_TOTAL - 1)
235#define RX_SGE(x)              ((x) & RX_SGE_MAX)
236
237#define RX_SGE_NEXT(x)                                              \
238    ((((x) & RX_SGE_PER_PAGE_MASK) == (RX_SGE_USABLE_PER_PAGE - 1)) \
239     ? (x) + 1 + RX_SGE_NEXT_PAGE_DESC_CNT : (x) + 1)
240
241#define RX_SGE_MASK_ELEM_SZ    64
242#define RX_SGE_MASK_ELEM_SHIFT 6
243#define RX_SGE_MASK_ELEM_MASK  ((uint64_t)RX_SGE_MASK_ELEM_SZ - 1)
244
245/*
246 * Creates a bitmask of all ones in less significant bits.
247 * idx - index of the most significant bit in the created mask.
248 */
249#define RX_SGE_ONES_MASK(idx)                                      \
250    (((uint64_t)0x1 << (((idx) & RX_SGE_MASK_ELEM_MASK) + 1)) - 1)
251#define RX_SGE_MASK_ELEM_ONE_MASK ((uint64_t)(~0))
252
253/* Number of uint64_t elements in SGE mask array. */
254#define RX_SGE_MASK_LEN                                                \
255    ((RX_SGE_NUM_PAGES * RX_SGE_TOTAL_PER_PAGE) / RX_SGE_MASK_ELEM_SZ)
256#define RX_SGE_MASK_LEN_MASK      (RX_SGE_MASK_LEN - 1)
257#define RX_SGE_NEXT_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK)
258
259/*
260 * dropless fc calculations for SGEs
261 * Number of required SGEs is the sum of two:
262 * 1. Number of possible opened aggregations (next packet for
263 *    these aggregations will probably consume SGE immidiatelly)
264 * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
265 *    after placement on BD for new TPA aggregation)
266 * Takes into account RX_SGE_NEXT_PAGE_DESC_CNT "next" elements on each page
267 */
268#define NUM_SGE_REQ(sc)                                    \
269    (MAX_AGG_QS(sc) + (BRB_SIZE(sc) - MAX_AGG_QS(sc)) / 2)
270#define NUM_SGE_PG_REQ(sc)                                                    \
271    ((NUM_SGE_REQ(sc) + RX_SGE_USABLE_PER_PAGE - 1) / RX_SGE_USABLE_PER_PAGE)
272#define SGE_TH_LO(sc)                                                  \
273    (NUM_SGE_REQ(sc) + NUM_SGE_PG_REQ(sc) * RX_SGE_NEXT_PAGE_DESC_CNT)
274#define SGE_TH_HI(sc)                      \
275    (SGE_TH_LO(sc) + DROPLESS_FC_HEADROOM)
276
277#define PAGES_PER_SGE_SHIFT  0
278#define PAGES_PER_SGE        (1 << PAGES_PER_SGE_SHIFT)
279#define SGE_PAGE_SIZE        BCM_PAGE_SIZE
280#define SGE_PAGE_SHIFT       BCM_PAGE_SHIFT
281#define SGE_PAGE_ALIGN(addr) BCM_PAGE_ALIGN(addr)
282#define SGE_PAGES            (SGE_PAGE_SIZE * PAGES_PER_SGE)
283#define TPA_AGG_SIZE         min((8 * SGE_PAGES), 0xffff)
284
285/*****************/
286/* TX BD defines */
287/*****************/
288
289#define TX_BD_NUM_PAGES       16 /* must be a power of 2 */
290#define TX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
291#define TX_BD_USABLE_PER_PAGE (TX_BD_TOTAL_PER_PAGE - 1)
292#define TX_BD_TOTAL           (TX_BD_TOTAL_PER_PAGE * TX_BD_NUM_PAGES)
293#define TX_BD_USABLE          (TX_BD_USABLE_PER_PAGE * TX_BD_NUM_PAGES)
294#define TX_BD_MAX             (TX_BD_TOTAL - 1)
295
296#define TX_BD_NEXT(x)                                                 \
297    ((((x) & TX_BD_USABLE_PER_PAGE) == (TX_BD_USABLE_PER_PAGE - 1)) ? \
298     ((x) + 2) : ((x) + 1))
299#define TX_BD(x)      ((x) & TX_BD_MAX)
300#define TX_BD_PAGE(x) (((x) & ~TX_BD_USABLE_PER_PAGE) >> 8)
301#define TX_BD_IDX(x)  ((x) & TX_BD_USABLE_PER_PAGE)
302
303/*
304 * Trigger pending transmits when the number of available BDs is greater
305 * than 1/8 of the total number of usable BDs.
306 */
307#define BXE_TX_CLEANUP_THRESHOLD (TX_BD_USABLE / 8)
308#define BXE_TX_TIMEOUT 5
309
310/*****************/
311/* RX BD defines */
312/*****************/
313
314#define RX_BD_NUM_PAGES       8 /* power of 2 */
315#define RX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
316#define RX_BD_NEXT_PAGE_DESC_CNT 2
317#define RX_BD_USABLE_PER_PAGE (RX_BD_TOTAL_PER_PAGE - RX_BD_NEXT_PAGE_DESC_CNT)
318#define RX_BD_PER_PAGE_MASK   (RX_BD_TOTAL_PER_PAGE - 1)
319#define RX_BD_TOTAL           (RX_BD_TOTAL_PER_PAGE * RX_BD_NUM_PAGES)
320#define RX_BD_USABLE          (RX_BD_USABLE_PER_PAGE * RX_BD_NUM_PAGES)
321#define RX_BD_MAX             (RX_BD_TOTAL - 1)
322
323#if 0
324#define NUM_RX_RINGS RX_BD_NUM_PAGES
325#define NUM_RX_BD    RX_BD_TOTAL
326#define MAX_RX_BD    RX_BD_MAX
327#define MAX_RX_AVAIL RX_BD_USABLE
328#endif
329
330#define RX_BD_NEXT(x)                                               \
331    ((((x) & RX_BD_PER_PAGE_MASK) == (RX_BD_USABLE_PER_PAGE - 1)) ? \
332     ((x) + 3) : ((x) + 1))
333#define RX_BD(x)      ((x) & RX_BD_MAX)
334#define RX_BD_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9)
335#define RX_BD_IDX(x)  ((x) & RX_BD_PER_PAGE_MASK)
336
337/*
338 * dropless fc calculations for BDs
339 * Number of BDs should be as number of buffers in BRB:
340 * Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT
341 * "next" elements on each page
342 */
343#define NUM_BD_REQ(sc) \
344    BRB_SIZE(sc)
345#define NUM_BD_PG_REQ(sc)                                                  \
346    ((NUM_BD_REQ(sc) + RX_BD_USABLE_PER_PAGE - 1) / RX_BD_USABLE_PER_PAGE)
347#define BD_TH_LO(sc)                                \
348    (NUM_BD_REQ(sc) +                               \
349     NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \
350     FW_DROP_LEVEL(sc))
351#define BD_TH_HI(sc)                      \
352    (BD_TH_LO(sc) + DROPLESS_FC_HEADROOM)
353#define MIN_RX_AVAIL(sc)                           \
354    ((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128)
355#define MIN_RX_SIZE_TPA_HW(sc)                         \
356    (CHIP_IS_E1(sc) ? ETH_MIN_RX_CQES_WITH_TPA_E1 :    \
357                      ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
358#define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
359#define MIN_RX_SIZE_TPA(sc)                         \
360    (max(MIN_RX_SIZE_TPA_HW(sc), MIN_RX_AVAIL(sc)))
361#define MIN_RX_SIZE_NONTPA(sc)                     \
362    (max(MIN_RX_SIZE_NONTPA_HW, MIN_RX_AVAIL(sc)))
363
364/***************/
365/* RCQ defines */
366/***************/
367
368/*
369 * As long as CQE is X times bigger than BD entry we have to allocate X times
370 * more pages for CQ ring in order to keep it balanced with BD ring
371 */
372#define CQE_BD_REL          (sizeof(union eth_rx_cqe) / \
373                             sizeof(struct eth_rx_bd))
374#define RCQ_NUM_PAGES       (RX_BD_NUM_PAGES * CQE_BD_REL) /* power of 2 */
375#define RCQ_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
376#define RCQ_NEXT_PAGE_DESC_CNT 1
377#define RCQ_USABLE_PER_PAGE (RCQ_TOTAL_PER_PAGE - RCQ_NEXT_PAGE_DESC_CNT)
378#define RCQ_TOTAL           (RCQ_TOTAL_PER_PAGE * RCQ_NUM_PAGES)
379#define RCQ_USABLE          (RCQ_USABLE_PER_PAGE * RCQ_NUM_PAGES)
380#define RCQ_MAX             (RCQ_TOTAL - 1)
381
382#define RCQ_NEXT(x)                                               \
383    ((((x) & RCQ_USABLE_PER_PAGE) == (RCQ_USABLE_PER_PAGE - 1)) ? \
384     ((x) + 1 + RCQ_NEXT_PAGE_DESC_CNT) : ((x) + 1))
385#define RCQ(x)      ((x) & RCQ_MAX)
386#define RCQ_PAGE(x) (((x) & ~RCQ_USABLE_PER_PAGE) >> 7)
387#define RCQ_IDX(x)  ((x) & RCQ_USABLE_PER_PAGE)
388
389#if 0
390#define NUM_RCQ_RINGS RCQ_NUM_PAGES
391#define NUM_RCQ_BD    RCQ_TOTAL
392#define MAX_RCQ_BD    RCQ_MAX
393#define MAX_RCQ_AVAIL RCQ_USABLE
394#endif
395
396/*
397 * dropless fc calculations for RCQs
398 * Number of RCQs should be as number of buffers in BRB:
399 * Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT
400 * "next" elements on each page
401 */
402#define NUM_RCQ_REQ(sc) \
403    BRB_SIZE(sc)
404#define NUM_RCQ_PG_REQ(sc)                                              \
405    ((NUM_RCQ_REQ(sc) + RCQ_USABLE_PER_PAGE - 1) / RCQ_USABLE_PER_PAGE)
406#define RCQ_TH_LO(sc)                              \
407    (NUM_RCQ_REQ(sc) +                             \
408     NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \
409     FW_DROP_LEVEL(sc))
410#define RCQ_TH_HI(sc)                      \
411    (RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM)
412
413/* This is needed for determening of last_max */
414#define SUB_S16(a, b) (int16_t)((int16_t)(a) - (int16_t)(b))
415
416#define __SGE_MASK_SET_BIT(el, bit)               \
417    do {                                          \
418        (el) = ((el) | ((uint64_t)0x1 << (bit))); \
419    } while (0)
420
421#define __SGE_MASK_CLEAR_BIT(el, bit)                \
422    do {                                             \
423        (el) = ((el) & (~((uint64_t)0x1 << (bit)))); \
424    } while (0)
425
426#define SGE_MASK_SET_BIT(fp, idx)                                       \
427    __SGE_MASK_SET_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
428                       ((idx) & RX_SGE_MASK_ELEM_MASK))
429
430#define SGE_MASK_CLEAR_BIT(fp, idx)                                       \
431    __SGE_MASK_CLEAR_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
432                         ((idx) & RX_SGE_MASK_ELEM_MASK))
433
434/* Load / Unload modes */
435#define LOAD_NORMAL       0
436#define LOAD_OPEN         1
437#define LOAD_DIAG         2
438#define LOAD_LOOPBACK_EXT 3
439#define UNLOAD_NORMAL     0
440#define UNLOAD_CLOSE      1
441#define UNLOAD_RECOVERY   2
442
443/* Some constants... */
444//#define MAX_PATH_NUM       2
445//#define E2_MAX_NUM_OF_VFS  64
446//#define E1H_FUNC_MAX       8
447//#define E2_FUNC_MAX        4   /* per path */
448#define MAX_VNIC_NUM       4
449#define MAX_FUNC_NUM       8   /* common to all chips */
450//#define MAX_NDSB           HC_SB_MAX_SB_E2 /* max non-default status block */
451#define MAX_RSS_CHAINS     16 /* a constant for HW limit */
452#define MAX_MSI_VECTOR     8  /* a constant for HW limit */
453
454#define ILT_NUM_PAGE_ENTRIES 3072
455/*
456 * 57710/11 we use whole table since we have 8 functions.
457 * 57712 we have only 4 functions, but use same size per func, so only half
458 * of the table is used.
459 */
460#define ILT_PER_FUNC        (ILT_NUM_PAGE_ENTRIES / 8)
461#define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
462/*
463 * the phys address is shifted right 12 bits and has an added
464 * 1=valid bit added to the 53rd bit
465 * then since this is a wide register(TM)
466 * we split it into two 32 bit writes
467 */
468#define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
469#define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
470
471/* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
472#define ETH_HLEN                  14
473#define ETH_OVERHEAD              (ETH_HLEN + 8 + 8)
474#define ETH_MIN_PACKET_SIZE       60
475#define ETH_MAX_PACKET_SIZE       ETHERMTU /* 1500 */
476#define ETH_MAX_JUMBO_PACKET_SIZE 9600
477/* TCP with Timestamp Option (32) + IPv6 (40) */
478#define ETH_MAX_TPA_HEADER_SIZE   72
479
480/* max supported alignment is 256 (8 shift) */
481//#define BXE_RX_ALIGN_SHIFT ((CACHE_LINE_SHIFT < 8) ? CACHE_LINE_SHIFT : 8)
482#define BXE_RX_ALIGN_SHIFT 8
483/* FW uses 2 cache lines alignment for start packet and size  */
484#define BXE_FW_RX_ALIGN_START (1 << BXE_RX_ALIGN_SHIFT)
485#define BXE_FW_RX_ALIGN_END   (1 << BXE_RX_ALIGN_SHIFT)
486
487#define BXE_PXP_DRAM_ALIGN (BXE_RX_ALIGN_SHIFT - 5) /* XXX ??? */
488
489struct bxe_bar {
490    struct resource    *resource;
491    int                rid;
492    bus_space_tag_t    tag;
493    bus_space_handle_t handle;
494    vm_offset_t        kva;
495};
496
497struct bxe_intr {
498    struct resource *resource;
499    int             rid;
500    void            *tag;
501};
502
503/* Used to manage DMA allocations. */
504struct bxe_dma {
505    struct bxe_softc  *sc;
506    bus_addr_t        paddr;
507    void              *vaddr;
508    bus_dma_tag_t     tag;
509    bus_dmamap_t      map;
510    bus_dma_segment_t seg;
511    bus_size_t        size;
512    int               nseg;
513    char              msg[32];
514};
515
516/* attn group wiring */
517#define MAX_DYNAMIC_ATTN_GRPS 8
518
519struct attn_route {
520    uint32_t sig[5];
521};
522
523struct iro {
524    uint32_t base;
525    uint16_t m1;
526    uint16_t m2;
527    uint16_t m3;
528    uint16_t size;
529};
530
531union bxe_host_hc_status_block {
532    /* pointer to fp status block e2 */
533    struct host_hc_status_block_e2  *e2_sb;
534    /* pointer to fp status block e1x */
535    struct host_hc_status_block_e1x *e1x_sb;
536};
537
538union bxe_db_prod {
539    struct doorbell_set_prod data;
540    uint32_t                 raw;
541};
542
543struct bxe_sw_tx_bd {
544    struct mbuf  *m;
545    bus_dmamap_t m_map;
546    uint16_t     first_bd;
547    uint8_t      flags;
548/* set on the first BD descriptor when there is a split BD */
549#define BXE_TSO_SPLIT_BD (1 << 0)
550};
551
552struct bxe_sw_rx_bd {
553    struct mbuf  *m;
554    bus_dmamap_t m_map;
555};
556
557struct bxe_sw_tpa_info {
558    struct bxe_sw_rx_bd bd;
559    bus_dma_segment_t   seg;
560    uint8_t             state;
561#define BXE_TPA_STATE_START 1
562#define BXE_TPA_STATE_STOP  2
563    uint8_t             placement_offset;
564    uint16_t            parsing_flags;
565    uint16_t            vlan_tag;
566    uint16_t            len_on_bd;
567};
568
569/*
570 * This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN
571 * instances of the fastpath structure when using multiple queues.
572 */
573struct bxe_fastpath {
574    /* pointer back to parent structure */
575    struct bxe_softc *sc;
576
577    struct mtx tx_mtx;
578    char       tx_mtx_name[32];
579    struct mtx rx_mtx;
580    char       rx_mtx_name[32];
581
582#define BXE_FP_TX_LOCK(fp)        mtx_lock(&fp->tx_mtx)
583#define BXE_FP_TX_UNLOCK(fp)      mtx_unlock(&fp->tx_mtx)
584#define BXE_FP_TX_LOCK_ASSERT(fp) mtx_assert(&fp->tx_mtx, MA_OWNED)
585
586#define BXE_FP_RX_LOCK(fp)        mtx_lock(&fp->rx_mtx)
587#define BXE_FP_RX_UNLOCK(fp)      mtx_unlock(&fp->rx_mtx)
588#define BXE_FP_RX_LOCK_ASSERT(fp) mtx_assert(&fp->rx_mtx, MA_OWNED)
589
590    /* status block */
591    struct bxe_dma                 sb_dma;
592    union bxe_host_hc_status_block status_block;
593
594    /* transmit chain (tx bds) */
595    struct bxe_dma        tx_dma;
596    union eth_tx_bd_types *tx_chain;
597
598    /* receive chain (rx bds) */
599    struct bxe_dma   rx_dma;
600    struct eth_rx_bd *rx_chain;
601
602    /* receive completion queue chain (rcq bds) */
603    struct bxe_dma   rcq_dma;
604    union eth_rx_cqe *rcq_chain;
605
606    /* receive scatter/gather entry chain (for TPA) */
607    struct bxe_dma    rx_sge_dma;
608    struct eth_rx_sge *rx_sge_chain;
609
610    /* tx mbufs */
611    bus_dma_tag_t       tx_mbuf_tag;
612    struct bxe_sw_tx_bd tx_mbuf_chain[TX_BD_TOTAL];
613
614    /* rx mbufs */
615    bus_dma_tag_t       rx_mbuf_tag;
616    struct bxe_sw_rx_bd rx_mbuf_chain[RX_BD_TOTAL];
617    bus_dmamap_t        rx_mbuf_spare_map;
618
619    /* rx sge mbufs */
620    bus_dma_tag_t       rx_sge_mbuf_tag;
621    struct bxe_sw_rx_bd rx_sge_mbuf_chain[RX_SGE_TOTAL];
622    bus_dmamap_t        rx_sge_mbuf_spare_map;
623
624    /* rx tpa mbufs (use the larger size for TPA queue length) */
625    int                    tpa_enable; /* disabled per fastpath upon error */
626    struct bxe_sw_tpa_info rx_tpa_info[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
627    bus_dmamap_t           rx_tpa_info_mbuf_spare_map;
628    uint64_t               rx_tpa_queue_used;
629#if 0
630    bus_dmamap_t      rx_tpa_mbuf_map[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
631    bus_dmamap_t      rx_tpa_mbuf_spare_map;
632    struct mbuf       *rx_tpa_mbuf_ptr[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
633    bus_dma_segment_t rx_tpa_mbuf_segs[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
634
635    uint8_t tpa_state[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
636#endif
637
638    uint16_t *sb_index_values;
639    uint16_t *sb_running_index;
640    uint32_t ustorm_rx_prods_offset;
641
642    uint8_t igu_sb_id; /* status block number in HW */
643    uint8_t fw_sb_id;  /* status block number in FW */
644
645    uint32_t rx_buf_size;
646    int mbuf_alloc_size;
647
648    int state;
649#define BXE_FP_STATE_CLOSED  0x01
650#define BXE_FP_STATE_IRQ     0x02
651#define BXE_FP_STATE_OPENING 0x04
652#define BXE_FP_STATE_OPEN    0x08
653#define BXE_FP_STATE_HALTING 0x10
654#define BXE_FP_STATE_HALTED  0x20
655
656    /* reference back to this fastpath queue number */
657    uint8_t index; /* this is also the 'cid' */
658#define FP_IDX(fp) (fp->index)
659
660    /* interrupt taskqueue (fast) */
661    struct task      tq_task;
662    struct taskqueue *tq;
663    char             tq_name[32];
664
665    /* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */
666    uint8_t cl_id;
667#define FP_CL_ID(fp) (fp->cl_id)
668    uint8_t cl_qzone_id;
669
670    uint16_t fp_hc_idx;
671
672    /* driver copy of the receive buffer descriptor prod/cons indices */
673    uint16_t rx_bd_prod;
674    uint16_t rx_bd_cons;
675
676    /* driver copy of the receive completion queue prod/cons indices */
677    uint16_t rx_cq_prod;
678    uint16_t rx_cq_cons;
679
680    union bxe_db_prod tx_db;
681
682    /* Transmit packet producer index (used in eth_tx_bd). */
683    uint16_t tx_pkt_prod;
684    uint16_t tx_pkt_cons;
685
686    /* Transmit buffer descriptor producer index. */
687    uint16_t tx_bd_prod;
688    uint16_t tx_bd_cons;
689
690#if 0
691    /* status block number in hardware */
692    uint8_t sb_id;
693#define FP_SB_ID(fp) (fp->sb_id)
694
695    /* driver copy of the fastpath CSTORM/USTORM indices */
696    uint16_t fp_c_idx;
697    uint16_t fp_u_idx;
698#endif
699
700    uint64_t sge_mask[RX_SGE_MASK_LEN];
701    uint16_t rx_sge_prod;
702
703    struct tstorm_per_queue_stats old_tclient;
704    struct ustorm_per_queue_stats old_uclient;
705    struct xstorm_per_queue_stats old_xclient;
706    struct bxe_eth_q_stats        eth_q_stats;
707    struct bxe_eth_q_stats_old    eth_q_stats_old;
708
709    /* Pointer to the receive consumer in the status block */
710    uint16_t *rx_cq_cons_sb;
711
712    /* Pointer to the transmit consumer in the status block */
713    uint16_t *tx_cons_sb;
714
715    /* transmit timeout until chip reset */
716    int watchdog_timer;
717
718    /* Free/used buffer descriptor counters. */
719    //uint16_t used_tx_bd;
720
721    /* Last maximal completed SGE */
722    uint16_t last_max_sge;
723
724    //uint16_t rx_sge_free_idx;
725
726    //uint8_t segs;
727
728#if __FreeBSD_version >= 800000
729#define BXE_BR_SIZE 4096
730    struct buf_ring *tx_br;
731#endif
732}; /* struct bxe_fastpath */
733
734/* sriov XXX */
735#define BXE_MAX_NUM_OF_VFS 64
736#define BXE_VF_CID_WND     0
737#define BXE_CIDS_PER_VF    (1 << BXE_VF_CID_WND)
738#define BXE_CLIENTS_PER_VF 1
739#define BXE_FIRST_VF_CID   256
740#define BXE_VF_CIDS        (BXE_MAX_NUM_OF_VFS * BXE_CIDS_PER_VF)
741#define BXE_VF_ID_INVALID  0xFF
742#define IS_SRIOV(sc) 0
743
744#define GET_NUM_VFS_PER_PATH(sc) 0
745#define GET_NUM_VFS_PER_PF(sc)   0
746
747/* maximum number of fast-path interrupt contexts */
748#define FP_SB_MAX_E1x 16
749#define FP_SB_MAX_E2  HC_SB_MAX_SB_E2
750
751union cdu_context {
752    struct eth_context eth;
753    char pad[1024];
754};
755
756/* CDU host DB constants */
757#define CDU_ILT_PAGE_SZ_HW 2
758#define CDU_ILT_PAGE_SZ    (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
759#define ILT_PAGE_CIDS      (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
760
761#define CNIC_ISCSI_CID_MAX 256
762#define CNIC_FCOE_CID_MAX  2048
763#define CNIC_CID_MAX       (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
764#define CNIC_ILT_LINES     DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
765
766#define QM_ILT_PAGE_SZ_HW  0
767#define QM_ILT_PAGE_SZ     (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
768#define QM_CID_ROUND       1024
769
770/* TM (timers) host DB constants */
771#define TM_ILT_PAGE_SZ_HW  0
772#define TM_ILT_PAGE_SZ     (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
773/*#define TM_CONN_NUM        (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
774#define TM_CONN_NUM        1024
775#define TM_ILT_SZ          (8 * TM_CONN_NUM)
776#define TM_ILT_LINES       DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
777
778/* SRC (Searcher) host DB constants */
779#define SRC_ILT_PAGE_SZ_HW 0
780#define SRC_ILT_PAGE_SZ    (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
781#define SRC_HASH_BITS      10
782#define SRC_CONN_NUM       (1 << SRC_HASH_BITS) /* 1024 */
783#define SRC_ILT_SZ         (sizeof(struct src_ent) * SRC_CONN_NUM)
784#define SRC_T2_SZ          SRC_ILT_SZ
785#define SRC_ILT_LINES      DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
786
787struct hw_context {
788    struct bxe_dma    vcxt_dma;
789    union cdu_context *vcxt;
790    //bus_addr_t        cxt_mapping;
791    size_t            size;
792};
793
794#define SM_RX_ID 0
795#define SM_TX_ID 1
796
797/* defines for multiple tx priority indices */
798#define FIRST_TX_ONLY_COS_INDEX 1
799#define FIRST_TX_COS_INDEX      0
800
801#define CID_TO_FP(cid, sc) ((cid) % BXE_NUM_NON_CNIC_QUEUES(sc))
802
803#define HC_INDEX_ETH_RX_CQ_CONS       1
804#define HC_INDEX_OOO_TX_CQ_CONS       4
805#define HC_INDEX_ETH_TX_CQ_CONS_COS0  5
806#define HC_INDEX_ETH_TX_CQ_CONS_COS1  6
807#define HC_INDEX_ETH_TX_CQ_CONS_COS2  7
808#define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
809
810/* congestion management fairness mode */
811#define CMNG_FNS_NONE   0
812#define CMNG_FNS_MINMAX 1
813
814/* CMNG constants, as derived from system spec calculations */
815/* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
816#define DEF_MIN_RATE 100
817/* resolution of the rate shaping timer - 400 usec */
818#define RS_PERIODIC_TIMEOUT_USEC 400
819/* number of bytes in single QM arbitration cycle -
820 * coefficient for calculating the fairness timer */
821#define QM_ARB_BYTES 160000
822/* resolution of Min algorithm 1:100 */
823#define MIN_RES 100
824/* how many bytes above threshold for the minimal credit of Min algorithm*/
825#define MIN_ABOVE_THRESH 32768
826/* fairness algorithm integration time coefficient -
827 * for calculating the actual Tfair */
828#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
829/* memory of fairness algorithm - 2 cycles */
830#define FAIR_MEM 2
831
832#define HC_SEG_ACCESS_DEF   0 /* Driver decision 0-3 */
833#define HC_SEG_ACCESS_ATTN  4
834#define HC_SEG_ACCESS_NORM  0 /* Driver decision 0-1 */
835
836/*
837 * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
838 * control by the number of fast-path status blocks supported by the
839 * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
840 * status block represents an independent interrupts context that can
841 * serve a regular L2 networking queue. However special L2 queues such
842 * as the FCoE queue do not require a FP-SB and other components like
843 * the CNIC may consume FP-SB reducing the number of possible L2 queues
844 *
845 * If the maximum number of FP-SB available is X then:
846 * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
847 *    regular L2 queues is Y=X-1
848 * b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
849 * c. If the FCoE L2 queue is supported the actual number of L2 queues
850 *    is Y+1
851 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
852 *    slow-path interrupts) or Y+2 if CNIC is supported (one additional
853 *    FP interrupt context for the CNIC).
854 * e. The number of HW context (CID count) is always X or X+1 if FCoE
855 *    L2 queue is supported. the cid for the FCoE L2 queue is always X.
856 *
857 * So this is quite simple for now as no ULPs are supported yet. :-)
858 */
859#define BXE_NUM_QUEUES(sc)          ((sc)->num_queues)
860#define BXE_NUM_ETH_QUEUES(sc)      BXE_NUM_QUEUES(sc)
861#define BXE_NUM_NON_CNIC_QUEUES(sc) BXE_NUM_QUEUES(sc)
862#define BXE_NUM_RX_QUEUES(sc)       BXE_NUM_QUEUES(sc)
863
864#define FOR_EACH_QUEUE(sc, var)                          \
865    for ((var) = 0; (var) < BXE_NUM_QUEUES(sc); (var)++)
866
867#define FOR_EACH_NONDEFAULT_QUEUE(sc, var)               \
868    for ((var) = 1; (var) < BXE_NUM_QUEUES(sc); (var)++)
869
870#define FOR_EACH_ETH_QUEUE(sc, var)                          \
871    for ((var) = 0; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
872
873#define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var)               \
874    for ((var) = 1; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
875
876#define FOR_EACH_COS_IN_TX_QUEUE(sc, var)           \
877    for ((var) = 0; (var) < (sc)->max_cos; (var)++)
878
879#define FOR_EACH_CNIC_QUEUE(sc, var)     \
880    for ((var) = BXE_NUM_ETH_QUEUES(sc); \
881         (var) < BXE_NUM_QUEUES(sc);     \
882         (var)++)
883
884enum {
885    OOO_IDX_OFFSET,
886    FCOE_IDX_OFFSET,
887    FWD_IDX_OFFSET,
888};
889
890#define FCOE_IDX(sc)              (BXE_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET)
891#define bxe_fcoe_fp(sc)           (&sc->fp[FCOE_IDX(sc)])
892#define bxe_fcoe(sc, var)         (bxe_fcoe_fp(sc)->var)
893#define bxe_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)])
894#define bxe_fcoe_sp_obj(sc, var)  (bxe_fcoe_inner_sp_obj(sc)->var)
895#define bxe_fcoe_tx(sc, var)      (bxe_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var)
896
897#define OOO_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET)
898#define bxe_ooo_fp(sc)            (&sc->fp[OOO_IDX(sc)])
899#define bxe_ooo(sc, var)          (bxe_ooo_fp(sc)->var)
900#define bxe_ooo_inner_sp_obj(sc)  (&sc->sp_objs[OOO_IDX(sc)])
901#define bxe_ooo_sp_obj(sc, var)   (bxe_ooo_inner_sp_obj(sc)->var)
902
903#define FWD_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET)
904#define bxe_fwd_fp(sc)            (&sc->fp[FWD_IDX(sc)])
905#define bxe_fwd(sc, var)          (bxe_fwd_fp(sc)->var)
906#define bxe_fwd_inner_sp_obj(sc)  (&sc->sp_objs[FWD_IDX(sc)])
907#define bxe_fwd_sp_obj(sc, var)   (bxe_fwd_inner_sp_obj(sc)->var)
908#define bxe_fwd_txdata(fp)        (fp->txdata_ptr[FIRST_TX_COS_INDEX])
909
910#define IS_ETH_FP(fp)    ((fp)->index < BXE_NUM_ETH_QUEUES((fp)->sc))
911#define IS_FCOE_FP(fp)   ((fp)->index == FCOE_IDX((fp)->sc))
912#define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc))
913#define IS_FWD_FP(fp)    ((fp)->index == FWD_IDX((fp)->sc))
914#define IS_FWD_IDX(idx)  ((idx) == FWD_IDX(sc))
915#define IS_OOO_FP(fp)    ((fp)->index == OOO_IDX((fp)->sc))
916#define IS_OOO_IDX(idx)  ((idx) == OOO_IDX(sc))
917
918enum {
919    BXE_PORT_QUERY_IDX,
920    BXE_PF_QUERY_IDX,
921    BXE_FCOE_QUERY_IDX,
922    BXE_FIRST_QUEUE_QUERY_IDX,
923};
924
925struct bxe_fw_stats_req {
926    struct stats_query_header hdr;
927    struct stats_query_entry  query[FP_SB_MAX_E1x +
928                                    BXE_FIRST_QUEUE_QUERY_IDX];
929};
930
931struct bxe_fw_stats_data {
932    struct stats_counter          storm_counters;
933    struct per_port_stats         port;
934    struct per_pf_stats           pf;
935    //struct fcoe_statistics_params fcoe;
936    struct per_queue_stats        queue_stats[1];
937};
938
939/* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
940#define BXE_IGU_STAS_MSG_VF_CNT 64
941#define BXE_IGU_STAS_MSG_PF_CNT 4
942
943#define MAX_DMAE_C 8
944
945/*
946 * For the main interface up/down code paths, a not-so-fine-grained CORE
947 * mutex lock is used. Inside this code are various calls to kernel routines
948 * that can cause a sleep to occur. Namely memory allocations and taskqueue
949 * handling. If using an MTX lock we are *not* allowed to sleep but we can
950 * with an SX lock. This define forces the CORE lock to use and SX lock.
951 * Undefine this and an MTX lock will be used instead. Note that the IOCTL
952 * path can cause problems since it's called by a non-sleepable thread. To
953 * alleviate a potential sleep, any IOCTL processing that results in the
954 * chip/interface being started/stopped/reinitialized, the actual work is
955 * offloaded to a taskqueue.
956 */
957#define BXE_CORE_LOCK_SX
958
959/*
960 * This is the slowpath data structure. It is mapped into non-paged memory
961 * so that the hardware can access it's contents directly and must be page
962 * aligned.
963 */
964struct bxe_slowpath {
965
966#if 0
967    /*
968     * The cdu_context array MUST be the first element in this
969     * structure. It is used during the leading edge ramrod
970     * operation.
971     */
972    union cdu_context context[MAX_CONTEXT];
973
974    /* Used as a DMA source for MAC configuration. */
975    struct mac_configuration_cmd    mac_config;
976    struct mac_configuration_cmd    mcast_config;
977#endif
978
979    /* used by the DMAE command executer */
980    struct dmae_command dmae[MAX_DMAE_C];
981
982    /* statistics completion */
983    uint32_t stats_comp;
984
985    /* firmware defined statistics blocks */
986    union mac_stats        mac_stats;
987    struct nig_stats       nig_stats;
988    struct host_port_stats port_stats;
989    struct host_func_stats func_stats;
990    //struct host_func_stats func_stats_base;
991
992    /* DMAE completion value and data source/sink */
993    uint32_t wb_comp;
994    uint32_t wb_data[4];
995
996    union {
997        struct mac_configuration_cmd          e1x;
998        struct eth_classify_rules_ramrod_data e2;
999    } mac_rdata;
1000
1001    union {
1002        struct tstorm_eth_mac_filter_config e1x;
1003        struct eth_filter_rules_ramrod_data e2;
1004    } rx_mode_rdata;
1005
1006    struct eth_rss_update_ramrod_data rss_rdata;
1007
1008    union {
1009        struct mac_configuration_cmd           e1;
1010        struct eth_multicast_rules_ramrod_data e2;
1011    } mcast_rdata;
1012
1013    union {
1014        struct function_start_data        func_start;
1015        struct flow_control_configuration pfc_config; /* for DCBX ramrod */
1016    } func_rdata;
1017
1018    /* Queue State related ramrods */
1019    union {
1020        struct client_init_ramrod_data   init_data;
1021        struct client_update_ramrod_data update_data;
1022    } q_rdata;
1023
1024    /*
1025     * AFEX ramrod can not be a part of func_rdata union because these
1026     * events might arrive in parallel to other events from func_rdata.
1027     * If they were defined in the same union the data can get corrupted.
1028     */
1029    struct afex_vif_list_ramrod_data func_afex_rdata;
1030
1031    union drv_info_to_mcp drv_info_to_mcp;
1032}; /* struct bxe_slowpath */
1033
1034/*
1035 * Port specifc data structure.
1036 */
1037struct bxe_port {
1038    /*
1039     * Port Management Function (for 57711E only).
1040     * When this field is set the driver instance is
1041     * responsible for managing port specifc
1042     * configurations such as handling link attentions.
1043     */
1044    uint32_t pmf;
1045
1046    /* Ethernet maximum transmission unit. */
1047    uint16_t ether_mtu;
1048
1049    uint32_t link_config[ELINK_LINK_CONFIG_SIZE];
1050
1051    uint32_t ext_phy_config;
1052
1053    /* Port feature config.*/
1054    uint32_t config;
1055
1056    /* Defines the features supported by the PHY. */
1057    uint32_t supported[ELINK_LINK_CONFIG_SIZE];
1058
1059    /* Defines the features advertised by the PHY. */
1060    uint32_t advertising[ELINK_LINK_CONFIG_SIZE];
1061#define ADVERTISED_10baseT_Half    (1 << 1)
1062#define ADVERTISED_10baseT_Full    (1 << 2)
1063#define ADVERTISED_100baseT_Half   (1 << 3)
1064#define ADVERTISED_100baseT_Full   (1 << 4)
1065#define ADVERTISED_1000baseT_Half  (1 << 5)
1066#define ADVERTISED_1000baseT_Full  (1 << 6)
1067#define ADVERTISED_TP              (1 << 7)
1068#define ADVERTISED_FIBRE           (1 << 8)
1069#define ADVERTISED_Autoneg         (1 << 9)
1070#define ADVERTISED_Asym_Pause      (1 << 10)
1071#define ADVERTISED_Pause           (1 << 11)
1072#define ADVERTISED_2500baseX_Full  (1 << 15)
1073#define ADVERTISED_10000baseT_Full (1 << 16)
1074
1075    uint32_t    phy_addr;
1076
1077    /* Used to synchronize phy accesses. */
1078    struct mtx  phy_mtx;
1079    char        phy_mtx_name[32];
1080
1081#define BXE_PHY_LOCK(sc)          mtx_lock(&sc->port.phy_mtx)
1082#define BXE_PHY_UNLOCK(sc)        mtx_unlock(&sc->port.phy_mtx)
1083#define BXE_PHY_LOCK_ASSERT(sc)   mtx_assert(&sc->port.phy_mtx, MA_OWNED)
1084
1085    /*
1086     * MCP scratchpad address for port specific statistics.
1087     * The device is responsible for writing statistcss
1088     * back to the MCP for use with management firmware such
1089     * as UMP/NC-SI.
1090     */
1091    uint32_t port_stx;
1092
1093    struct nig_stats old_nig_stats;
1094}; /* struct bxe_port */
1095
1096struct bxe_mf_info {
1097    uint32_t mf_config[E1HVN_MAX];
1098
1099    uint32_t vnics_per_port;   /* 1, 2 or 4 */
1100    uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */
1101    uint32_t path_has_ovlan;   /* MF mode in the path (can be different than the MF mode of the function */
1102
1103#define IS_MULTI_VNIC(sc)  ((sc)->devinfo.mf_info.multi_vnics_mode)
1104#define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port)
1105#define VNICS_PER_PATH(sc)                                  \
1106    ((sc)->devinfo.mf_info.vnics_per_port *                 \
1107     ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 ))
1108
1109    uint8_t min_bw[MAX_VNIC_NUM];
1110    uint8_t max_bw[MAX_VNIC_NUM];
1111
1112    uint16_t ext_id; /* vnic outer vlan or VIF ID */
1113#define VALID_OVLAN(ovlan) ((ovlan) <= 4096)
1114#define INVALID_VIF_ID 0xFFFF
1115#define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id)
1116#define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id)
1117
1118    uint16_t default_vlan;
1119#define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan)
1120
1121    uint8_t niv_allowed_priorities;
1122#define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities)
1123
1124    uint8_t niv_default_cos;
1125#define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos)
1126
1127    uint8_t niv_mba_enabled;
1128
1129    enum mf_cfg_afex_vlan_mode afex_vlan_mode;
1130#define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode)
1131    int                        afex_def_vlan_tag;
1132    uint32_t                   pending_max;
1133
1134    uint16_t flags;
1135#define MF_INFO_VALID_MAC       0x0001
1136
1137    uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */
1138#define IS_MF(sc)                        \
1139    (IS_MULTI_VNIC(sc) &&                \
1140     ((sc)->devinfo.mf_info.mf_mode != 0))
1141#define IS_MF_SD(sc)                                     \
1142    (IS_MULTI_VNIC(sc) &&                                \
1143     ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD))
1144#define IS_MF_SI(sc)                                     \
1145    (IS_MULTI_VNIC(sc) &&                                \
1146     ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI))
1147#define IS_MF_AFEX(sc)                              \
1148    (IS_MULTI_VNIC(sc) &&                           \
1149     ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX))
1150#define IS_MF_SD_MODE(sc)   IS_MF_SD(sc)
1151#define IS_MF_SI_MODE(sc)   IS_MF_SI(sc)
1152#define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc)
1153
1154    uint32_t mf_protos_supported;
1155    #define MF_PROTO_SUPPORT_ETHERNET 0x1
1156    #define MF_PROTO_SUPPORT_ISCSI    0x2
1157    #define MF_PROTO_SUPPORT_FCOE     0x4
1158}; /* struct bxe_mf_info */
1159
1160/* Device information data structure. */
1161struct bxe_devinfo {
1162    /* PCIe info */
1163    uint16_t vendor_id;
1164    uint16_t device_id;
1165    uint16_t subvendor_id;
1166    uint16_t subdevice_id;
1167
1168    /*
1169     * chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB'
1170     *   C = Chip Number   (bits 16-31)
1171     *   R = Chip Revision (bits 12-15)
1172     *   M = Chip Metal    (bits 4-11)
1173     *   B = Chip Bond ID  (bits 0-3)
1174     */
1175    uint32_t chip_id;
1176#define CHIP_ID(sc)           ((sc)->devinfo.chip_id & 0xffff0000)
1177#define CHIP_NUM(sc)          ((sc)->devinfo.chip_id >> 16)
1178/* device ids */
1179#define CHIP_NUM_57710        0x164e
1180#define CHIP_NUM_57711        0x164f
1181#define CHIP_NUM_57711E       0x1650
1182#define CHIP_NUM_57712        0x1662
1183#define CHIP_NUM_57712_MF     0x1663
1184#define CHIP_NUM_57712_VF     0x166f
1185#define CHIP_NUM_57800        0x168a
1186#define CHIP_NUM_57800_MF     0x16a5
1187#define CHIP_NUM_57800_VF     0x16a9
1188#define CHIP_NUM_57810        0x168e
1189#define CHIP_NUM_57810_MF     0x16ae
1190#define CHIP_NUM_57810_VF     0x16af
1191#define CHIP_NUM_57811        0x163d
1192#define CHIP_NUM_57811_MF     0x163e
1193#define CHIP_NUM_57811_VF     0x163f
1194#define CHIP_NUM_57840_OBS    0x168d
1195#define CHIP_NUM_57840_OBS_MF 0x16ab
1196#define CHIP_NUM_57840_4_10   0x16a1
1197#define CHIP_NUM_57840_2_20   0x16a2
1198#define CHIP_NUM_57840_MF     0x16a4
1199#define CHIP_NUM_57840_VF     0x16ad
1200
1201#define CHIP_REV_SHIFT      12
1202#define CHIP_REV_MASK       (0xF << CHIP_REV_SHIFT)
1203#define CHIP_REV(sc)        ((sc)->devinfo.chip_id & CHIP_REV_MASK)
1204
1205#define CHIP_REV_Ax         (0x0 << CHIP_REV_SHIFT)
1206#define CHIP_REV_Bx         (0x1 << CHIP_REV_SHIFT)
1207#define CHIP_REV_Cx         (0x2 << CHIP_REV_SHIFT)
1208
1209#define CHIP_REV_IS_SLOW(sc)    \
1210    (CHIP_REV(sc) > 0x00005000)
1211#define CHIP_REV_IS_FPGA(sc)                              \
1212    (CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000))
1213#define CHIP_REV_IS_EMUL(sc)                               \
1214    (CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000))
1215#define CHIP_REV_IS_ASIC(sc) \
1216    (!CHIP_REV_IS_SLOW(sc))
1217
1218#define CHIP_METAL(sc)      ((sc->devinfo.chip_id) & 0x00000ff0)
1219#define CHIP_BOND_ID(sc)    ((sc->devinfo.chip_id) & 0x0000000f)
1220
1221#define CHIP_IS_E1(sc)      (CHIP_NUM(sc) == CHIP_NUM_57710)
1222#define CHIP_IS_57710(sc)   (CHIP_NUM(sc) == CHIP_NUM_57710)
1223#define CHIP_IS_57711(sc)   (CHIP_NUM(sc) == CHIP_NUM_57711)
1224#define CHIP_IS_57711E(sc)  (CHIP_NUM(sc) == CHIP_NUM_57711E)
1225#define CHIP_IS_E1H(sc)     ((CHIP_IS_57711(sc)) || \
1226                             (CHIP_IS_57711E(sc)))
1227#define CHIP_IS_E1x(sc)     (CHIP_IS_E1((sc)) || \
1228                             CHIP_IS_E1H((sc)))
1229
1230#define CHIP_IS_57712(sc)    (CHIP_NUM(sc) == CHIP_NUM_57712)
1231#define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF)
1232#define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF)
1233#define CHIP_IS_E2(sc)       (CHIP_IS_57712(sc) ||  \
1234                              CHIP_IS_57712_MF(sc))
1235
1236#define CHIP_IS_57800(sc)    (CHIP_NUM(sc) == CHIP_NUM_57800)
1237#define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF)
1238#define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF)
1239#define CHIP_IS_57810(sc)    (CHIP_NUM(sc) == CHIP_NUM_57810)
1240#define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF)
1241#define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF)
1242#define CHIP_IS_57811(sc)    (CHIP_NUM(sc) == CHIP_NUM_57811)
1243#define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF)
1244#define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF)
1245#define CHIP_IS_57840(sc)    ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS)  || \
1246                              (CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \
1247                              (CHIP_NUM(sc) == CHIP_NUM_57840_2_20))
1248#define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \
1249                              (CHIP_NUM(sc) == CHIP_NUM_57840_MF))
1250#define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF)
1251
1252#define CHIP_IS_E3(sc)      (CHIP_IS_57800(sc)    || \
1253                             CHIP_IS_57800_MF(sc) || \
1254                             CHIP_IS_57800_VF(sc) || \
1255                             CHIP_IS_57810(sc)    || \
1256                             CHIP_IS_57810_MF(sc) || \
1257                             CHIP_IS_57810_VF(sc) || \
1258                             CHIP_IS_57811(sc)    || \
1259                             CHIP_IS_57811_MF(sc) || \
1260                             CHIP_IS_57811_VF(sc) || \
1261                             CHIP_IS_57840(sc)    || \
1262                             CHIP_IS_57840_MF(sc) || \
1263                             CHIP_IS_57840_VF(sc))
1264#define CHIP_IS_E3A0(sc)    (CHIP_IS_E3(sc) &&              \
1265                             (CHIP_REV(sc) == CHIP_REV_Ax))
1266#define CHIP_IS_E3B0(sc)    (CHIP_IS_E3(sc) &&              \
1267                             (CHIP_REV(sc) == CHIP_REV_Bx))
1268
1269#define USES_WARPCORE(sc)   (CHIP_IS_E3(sc))
1270#define CHIP_IS_E2E3(sc)    (CHIP_IS_E2(sc) || \
1271                             CHIP_IS_E3(sc))
1272
1273#define CHIP_IS_MF_CAP(sc)  (CHIP_IS_57711E(sc)  ||  \
1274                             CHIP_IS_57712_MF(sc) || \
1275                             CHIP_IS_E3(sc))
1276
1277#define IS_VF(sc)           (CHIP_IS_57712_VF(sc) || \
1278                             CHIP_IS_57800_VF(sc) || \
1279                             CHIP_IS_57810_VF(sc) || \
1280                             CHIP_IS_57840_VF(sc))
1281#define IS_PF(sc)           (!IS_VF(sc))
1282
1283/*
1284 * This define is used in two main places:
1285 * 1. In the early stages of nic_load, to know if to configure Parser/Searcher
1286 * to nic-only mode or to offload mode. Offload mode is configured if either
1287 * the chip is E1x (where NIC_MODE register is not applicable), or if cnic
1288 * already registered for this port (which means that the user wants storage
1289 * services).
1290 * 2. During cnic-related load, to know if offload mode is already configured
1291 * in the HW or needs to be configrued. Since the transition from nic-mode to
1292 * offload-mode in HW causes traffic coruption, nic-mode is configured only
1293 * in ports on which storage services where never requested.
1294 */
1295#define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc))
1296
1297    uint8_t  chip_port_mode;
1298#define CHIP_4_PORT_MODE        0x0
1299#define CHIP_2_PORT_MODE        0x1
1300#define CHIP_PORT_MODE_NONE     0x2
1301#define CHIP_PORT_MODE(sc)      ((sc)->devinfo.chip_port_mode)
1302#define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE)
1303
1304    uint8_t int_block;
1305#define INT_BLOCK_HC            0
1306#define INT_BLOCK_IGU           1
1307#define INT_BLOCK_MODE_NORMAL   0
1308#define INT_BLOCK_MODE_BW_COMP  2
1309#define CHIP_INT_MODE_IS_NBC(sc)                          \
1310    (!CHIP_IS_E1x(sc) &&                                  \
1311     !((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP))
1312#define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc))
1313
1314    uint32_t shmem_base;
1315    uint32_t shmem2_base;
1316    uint32_t bc_ver;
1317    char bc_ver_str[32];
1318    uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */
1319    struct bxe_mf_info mf_info;
1320
1321    int flash_size;
1322#define NVRAM_1MB_SIZE      0x20000
1323#define NVRAM_TIMEOUT_COUNT 30000
1324#define NVRAM_PAGE_SIZE     256
1325
1326    /* PCIe capability information */
1327    uint32_t pcie_cap_flags;
1328#define BXE_PM_CAPABLE_FLAG     0x00000001
1329#define BXE_PCIE_CAPABLE_FLAG   0x00000002
1330#define BXE_MSI_CAPABLE_FLAG    0x00000004
1331#define BXE_MSIX_CAPABLE_FLAG   0x00000008
1332    uint16_t pcie_pm_cap_reg;
1333    uint16_t pcie_pcie_cap_reg;
1334    //uint16_t pcie_devctl;
1335    uint16_t pcie_link_width;
1336    uint16_t pcie_link_speed;
1337    uint16_t pcie_msi_cap_reg;
1338    uint16_t pcie_msix_cap_reg;
1339
1340    /* device configuration read from bootcode shared memory */
1341    uint32_t hw_config;
1342    uint32_t hw_config2;
1343}; /* struct bxe_devinfo */
1344
1345struct bxe_sp_objs {
1346    struct ecore_vlan_mac_obj mac_obj; /* MACs object */
1347    struct ecore_queue_sp_obj q_obj; /* Queue State object */
1348}; /* struct bxe_sp_objs */
1349
1350/*
1351 * Data that will be used to create a link report message. We will keep the
1352 * data used for the last link report in order to prevent reporting the same
1353 * link parameters twice.
1354 */
1355struct bxe_link_report_data {
1356    uint16_t      line_speed;        /* Effective line speed */
1357    unsigned long link_report_flags; /* BXE_LINK_REPORT_XXX flags */
1358};
1359enum {
1360    BXE_LINK_REPORT_FULL_DUPLEX,
1361    BXE_LINK_REPORT_LINK_DOWN,
1362    BXE_LINK_REPORT_RX_FC_ON,
1363    BXE_LINK_REPORT_TX_FC_ON
1364};
1365
1366/* Top level device private data structure. */
1367struct bxe_softc {
1368    /*
1369     * First entry must be a pointer to the BSD ifnet struct which
1370     * has a first element of 'void *if_softc' (which is us). XXX
1371     */
1372    if_t 	    ifp;
1373    struct ifmedia  ifmedia; /* network interface media structure */
1374    int             media;
1375
1376    int             state; /* device state */
1377#define BXE_STATE_CLOSED                 0x0000
1378#define BXE_STATE_OPENING_WAITING_LOAD   0x1000
1379#define BXE_STATE_OPENING_WAITING_PORT   0x2000
1380#define BXE_STATE_OPEN                   0x3000
1381#define BXE_STATE_CLOSING_WAITING_HALT   0x4000
1382#define BXE_STATE_CLOSING_WAITING_DELETE 0x5000
1383#define BXE_STATE_CLOSING_WAITING_UNLOAD 0x6000
1384#define BXE_STATE_DISABLED               0xD000
1385#define BXE_STATE_DIAG                   0xE000
1386#define BXE_STATE_ERROR                  0xF000
1387
1388    int flags;
1389#define BXE_ONE_PORT_FLAG    0x00000001
1390#define BXE_NO_ISCSI         0x00000002
1391#define BXE_NO_FCOE          0x00000004
1392#define BXE_ONE_PORT(sc)     (sc->flags & BXE_ONE_PORT_FLAG)
1393//#define BXE_NO_WOL_FLAG      0x00000008
1394//#define BXE_USING_DAC_FLAG   0x00000010
1395//#define BXE_USING_MSIX_FLAG  0x00000020
1396//#define BXE_USING_MSI_FLAG   0x00000040
1397//#define BXE_DISABLE_MSI_FLAG 0x00000080
1398#define BXE_NO_MCP_FLAG      0x00000200
1399#define BXE_NOMCP(sc)        (sc->flags & BXE_NO_MCP_FLAG)
1400//#define BXE_SAFC_TX_FLAG     0x00000400
1401#define BXE_MF_FUNC_DIS      0x00000800
1402#define BXE_TX_SWITCHING     0x00001000
1403#define BXE_NO_PULSE	     0x00002000
1404
1405    unsigned long debug; /* per-instance debug logging config */
1406
1407#define MAX_BARS 5
1408    struct bxe_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */
1409
1410    uint16_t doorbell_size;
1411
1412    /* periodic timer callout */
1413#define PERIODIC_STOP 0
1414#define PERIODIC_GO   1
1415    volatile unsigned long periodic_flags;
1416    struct callout         periodic_callout;
1417
1418    /* chip start/stop/reset taskqueue */
1419#define CHIP_TQ_NONE   0
1420#define CHIP_TQ_START  1
1421#define CHIP_TQ_STOP   2
1422#define CHIP_TQ_REINIT 3
1423    volatile unsigned long chip_tq_flags;
1424    struct task            chip_tq_task;
1425    struct taskqueue       *chip_tq;
1426    char                   chip_tq_name[32];
1427
1428    /* slowpath interrupt taskqueue */
1429    struct task      sp_tq_task;
1430    struct taskqueue *sp_tq;
1431    char             sp_tq_name[32];
1432
1433    struct bxe_fastpath fp[MAX_RSS_CHAINS];
1434    struct bxe_sp_objs  sp_objs[MAX_RSS_CHAINS];
1435
1436    device_t dev;  /* parent device handle */
1437    uint8_t  unit; /* driver instance number */
1438
1439    int pcie_bus;    /* PCIe bus number */
1440    int pcie_device; /* PCIe device/slot number */
1441    int pcie_func;   /* PCIe function number */
1442
1443    uint8_t pfunc_rel; /* function relative */
1444    uint8_t pfunc_abs; /* function absolute */
1445    uint8_t path_id;   /* function absolute */
1446#define SC_PATH(sc)     (sc->path_id)
1447#define SC_PORT(sc)     (sc->pfunc_rel & 1)
1448#define SC_FUNC(sc)     (sc->pfunc_rel)
1449#define SC_ABS_FUNC(sc) (sc->pfunc_abs)
1450#define SC_VN(sc)       (sc->pfunc_rel >> 1)
1451#define SC_L_ID(sc)     (SC_VN(sc) << 2)
1452#define PORT_ID(sc)     SC_PORT(sc)
1453#define PATH_ID(sc)     SC_PATH(sc)
1454#define VNIC_ID(sc)     SC_VN(sc)
1455#define FUNC_ID(sc)     SC_FUNC(sc)
1456#define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc)
1457#define SC_FW_MB_IDX_VN(sc, vn)                                \
1458    (SC_PORT(sc) + (vn) *                                      \
1459     ((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1))
1460#define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc))
1461
1462    int if_capen; /* enabled interface capabilities */
1463
1464    struct bxe_devinfo devinfo;
1465    char fw_ver_str[32];
1466    char mf_mode_str[32];
1467    char pci_link_str[32];
1468
1469    const struct iro *iro_array;
1470
1471#ifdef BXE_CORE_LOCK_SX
1472    struct sx      core_sx;
1473    char           core_sx_name[32];
1474#else
1475    struct mtx     core_mtx;
1476    char           core_mtx_name[32];
1477#endif
1478    struct mtx     sp_mtx;
1479    char           sp_mtx_name[32];
1480    struct mtx     dmae_mtx;
1481    char           dmae_mtx_name[32];
1482    struct mtx     fwmb_mtx;
1483    char           fwmb_mtx_name[32];
1484    struct mtx     print_mtx;
1485    char           print_mtx_name[32];
1486    struct mtx     stats_mtx;
1487    char           stats_mtx_name[32];
1488    struct mtx     mcast_mtx;
1489    char           mcast_mtx_name[32];
1490
1491#ifdef BXE_CORE_LOCK_SX
1492#define BXE_CORE_TRYLOCK(sc)      sx_try_xlock(&sc->core_sx)
1493#define BXE_CORE_LOCK(sc)         sx_xlock(&sc->core_sx)
1494#define BXE_CORE_UNLOCK(sc)       sx_xunlock(&sc->core_sx)
1495#define BXE_CORE_LOCK_ASSERT(sc)  sx_assert(&sc->core_sx, SA_XLOCKED)
1496#else
1497#define BXE_CORE_TRYLOCK(sc)      mtx_trylock(&sc->core_mtx)
1498#define BXE_CORE_LOCK(sc)         mtx_lock(&sc->core_mtx)
1499#define BXE_CORE_UNLOCK(sc)       mtx_unlock(&sc->core_mtx)
1500#define BXE_CORE_LOCK_ASSERT(sc)  mtx_assert(&sc->core_mtx, MA_OWNED)
1501#endif
1502
1503#define BXE_SP_LOCK(sc)           mtx_lock(&sc->sp_mtx)
1504#define BXE_SP_UNLOCK(sc)         mtx_unlock(&sc->sp_mtx)
1505#define BXE_SP_LOCK_ASSERT(sc)    mtx_assert(&sc->sp_mtx, MA_OWNED)
1506
1507#define BXE_DMAE_LOCK(sc)         mtx_lock(&sc->dmae_mtx)
1508#define BXE_DMAE_UNLOCK(sc)       mtx_unlock(&sc->dmae_mtx)
1509#define BXE_DMAE_LOCK_ASSERT(sc)  mtx_assert(&sc->dmae_mtx, MA_OWNED)
1510
1511#define BXE_FWMB_LOCK(sc)         mtx_lock(&sc->fwmb_mtx)
1512#define BXE_FWMB_UNLOCK(sc)       mtx_unlock(&sc->fwmb_mtx)
1513#define BXE_FWMB_LOCK_ASSERT(sc)  mtx_assert(&sc->fwmb_mtx, MA_OWNED)
1514
1515#define BXE_PRINT_LOCK(sc)        mtx_lock(&sc->print_mtx)
1516#define BXE_PRINT_UNLOCK(sc)      mtx_unlock(&sc->print_mtx)
1517#define BXE_PRINT_LOCK_ASSERT(sc) mtx_assert(&sc->print_mtx, MA_OWNED)
1518
1519#define BXE_STATS_LOCK(sc)        mtx_lock(&sc->stats_mtx)
1520#define BXE_STATS_UNLOCK(sc)      mtx_unlock(&sc->stats_mtx)
1521#define BXE_STATS_LOCK_ASSERT(sc) mtx_assert(&sc->stats_mtx, MA_OWNED)
1522
1523#if __FreeBSD_version < 800000
1524#define BXE_MCAST_LOCK(sc)        \
1525    do {                          \
1526        mtx_lock(&sc->mcast_mtx); \
1527        IF_ADDR_LOCK(sc->ifp);  \
1528    } while (0)
1529#define BXE_MCAST_UNLOCK(sc)        \
1530    do {                            \
1531        IF_ADDR_UNLOCK(sc->ifp);  \
1532        mtx_unlock(&sc->mcast_mtx); \
1533    } while (0)
1534#else
1535#define BXE_MCAST_LOCK(sc)         \
1536    do {                           \
1537        mtx_lock(&sc->mcast_mtx);  \
1538        if_maddr_rlock(sc->ifp); \
1539    } while (0)
1540#define BXE_MCAST_UNLOCK(sc)         \
1541    do {                             \
1542        if_maddr_runlock(sc->ifp); \
1543        mtx_unlock(&sc->mcast_mtx);  \
1544    } while (0)
1545#endif
1546#define BXE_MCAST_LOCK_ASSERT(sc) mtx_assert(&sc->mcast_mtx, MA_OWNED)
1547
1548    int dmae_ready;
1549#define DMAE_READY(sc) (sc->dmae_ready)
1550
1551    struct ecore_credit_pool_obj vlans_pool;
1552    struct ecore_credit_pool_obj macs_pool;
1553    struct ecore_rx_mode_obj     rx_mode_obj;
1554    struct ecore_mcast_obj       mcast_obj;
1555    struct ecore_rss_config_obj  rss_conf_obj;
1556    struct ecore_func_sp_obj     func_obj;
1557
1558    uint16_t fw_seq;
1559    uint16_t fw_drv_pulse_wr_seq;
1560    uint32_t func_stx;
1561
1562    struct elink_params         link_params;
1563    struct elink_vars           link_vars;
1564    uint32_t                    link_cnt;
1565    struct bxe_link_report_data last_reported_link;
1566    char mac_addr_str[32];
1567
1568    int last_reported_link_state;
1569
1570    int tx_ring_size;
1571    int rx_ring_size;
1572    int wol;
1573
1574    int is_leader;
1575    int recovery_state;
1576#define BXE_RECOVERY_DONE        1
1577#define BXE_RECOVERY_INIT        2
1578#define BXE_RECOVERY_WAIT        3
1579#define BXE_RECOVERY_FAILED      4
1580#define BXE_RECOVERY_NIC_LOADING 5
1581
1582    uint32_t rx_mode;
1583#define BXE_RX_MODE_NONE     0
1584#define BXE_RX_MODE_NORMAL   1
1585#define BXE_RX_MODE_ALLMULTI 2
1586#define BXE_RX_MODE_PROMISC  3
1587#define BXE_MAX_MULTICAST    64
1588
1589    struct bxe_port port;
1590
1591    struct cmng_init cmng;
1592
1593    /* user configs */
1594    int      num_queues;
1595    int      max_rx_bufs;
1596    int      hc_rx_ticks;
1597    int      hc_tx_ticks;
1598    int      rx_budget;
1599    int      max_aggregation_size;
1600    int      mrrs;
1601    int      autogreeen;
1602#define AUTO_GREEN_HW_DEFAULT 0
1603#define AUTO_GREEN_FORCE_ON   1
1604#define AUTO_GREEN_FORCE_OFF  2
1605    int      interrupt_mode;
1606#define INTR_MODE_INTX 0
1607#define INTR_MODE_MSI  1
1608#define INTR_MODE_MSIX 2
1609    int      udp_rss;
1610
1611    /* interrupt allocations */
1612    struct bxe_intr intr[MAX_RSS_CHAINS+1];
1613    int             intr_count;
1614    uint8_t         igu_dsb_id;
1615    uint8_t         igu_base_sb;
1616    uint8_t         igu_sb_cnt;
1617    //uint8_t         min_msix_vec_cnt;
1618    uint32_t        igu_base_addr;
1619    //bus_addr_t      def_status_blk_mapping;
1620    uint8_t         base_fw_ndsb;
1621#define DEF_SB_IGU_ID 16
1622#define DEF_SB_ID     HC_SP_SB_ID
1623
1624    /* parent bus DMA tag  */
1625    bus_dma_tag_t parent_dma_tag;
1626
1627    /* default status block */
1628    struct bxe_dma              def_sb_dma;
1629    struct host_sp_status_block *def_sb;
1630    uint16_t                    def_idx;
1631    uint16_t                    def_att_idx;
1632    uint32_t                    attn_state;
1633    struct attn_route           attn_group[MAX_DYNAMIC_ATTN_GRPS];
1634
1635/* general SP events - stats query, cfc delete, etc */
1636#define HC_SP_INDEX_ETH_DEF_CONS         3
1637/* EQ completions */
1638#define HC_SP_INDEX_EQ_CONS              7
1639/* FCoE L2 connection completions */
1640#define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS  6
1641#define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS  4
1642/* iSCSI L2 */
1643#define HC_SP_INDEX_ETH_ISCSI_CQ_CONS    5
1644#define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
1645
1646    /* event queue */
1647    struct bxe_dma        eq_dma;
1648    union event_ring_elem *eq;
1649    uint16_t              eq_prod;
1650    uint16_t              eq_cons;
1651    uint16_t              *eq_cons_sb;
1652#define NUM_EQ_PAGES     1 /* must be a power of 2 */
1653#define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1654#define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
1655#define NUM_EQ_DESC      (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1656#define EQ_DESC_MASK     (NUM_EQ_DESC - 1)
1657#define MAX_EQ_AVAIL     (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1658/* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1659#define NEXT_EQ_IDX(x)                                      \
1660    ((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \
1661         ((x) + 2) : ((x) + 1))
1662/* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1663#define EQ_DESC(x) ((x) & EQ_DESC_MASK)
1664
1665    /* slow path */
1666    struct bxe_dma      sp_dma;
1667    struct bxe_slowpath *sp;
1668    unsigned long       sp_state;
1669
1670    /* slow path queue */
1671    struct bxe_dma spq_dma;
1672    struct eth_spe *spq;
1673#define SP_DESC_CNT     (BCM_PAGE_SIZE / sizeof(struct eth_spe))
1674#define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
1675#define MAX_SPQ_PENDING 8
1676
1677    uint16_t       spq_prod_idx;
1678    struct eth_spe *spq_prod_bd;
1679    struct eth_spe *spq_last_bd;
1680    uint16_t       *dsb_sp_prod;
1681    //uint16_t       *spq_hw_con;
1682    //uint16_t       spq_left;
1683
1684    volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */
1685    volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */
1686
1687    /* fw decompression buffer */
1688    struct bxe_dma gz_buf_dma;
1689    void           *gz_buf;
1690    z_streamp      gz_strm;
1691    uint32_t       gz_outlen;
1692#define GUNZIP_BUF(sc)    (sc->gz_buf)
1693#define GUNZIP_OUTLEN(sc) (sc->gz_outlen)
1694#define GUNZIP_PHYS(sc)   (sc->gz_buf_dma.paddr)
1695#define FW_BUF_SIZE       0x40000
1696
1697    const struct raw_op *init_ops;
1698    const uint16_t *init_ops_offsets; /* init block offsets inside init_ops */
1699    const uint32_t *init_data;        /* data blob, 32 bit granularity */
1700    uint32_t       init_mode_flags;
1701#define INIT_MODE_FLAGS(sc) (sc->init_mode_flags)
1702    /* PRAM blobs - raw data */
1703    const uint8_t *tsem_int_table_data;
1704    const uint8_t *tsem_pram_data;
1705    const uint8_t *usem_int_table_data;
1706    const uint8_t *usem_pram_data;
1707    const uint8_t *xsem_int_table_data;
1708    const uint8_t *xsem_pram_data;
1709    const uint8_t *csem_int_table_data;
1710    const uint8_t *csem_pram_data;
1711#define INIT_OPS(sc)                 (sc->init_ops)
1712#define INIT_OPS_OFFSETS(sc)         (sc->init_ops_offsets)
1713#define INIT_DATA(sc)                (sc->init_data)
1714#define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data)
1715#define INIT_TSEM_PRAM_DATA(sc)      (sc->tsem_pram_data)
1716#define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data)
1717#define INIT_USEM_PRAM_DATA(sc)      (sc->usem_pram_data)
1718#define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data)
1719#define INIT_XSEM_PRAM_DATA(sc)      (sc->xsem_pram_data)
1720#define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data)
1721#define INIT_CSEM_PRAM_DATA(sc)      (sc->csem_pram_data)
1722
1723    /* ILT
1724     * For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB
1725     * context size we need 8 ILT entries.
1726     */
1727#define ILT_MAX_L2_LINES 8
1728    struct hw_context context[ILT_MAX_L2_LINES];
1729    struct ecore_ilt *ilt;
1730#define ILT_MAX_LINES 256
1731
1732/* max supported number of RSS queues: IGU SBs minus one for CNIC */
1733#define BXE_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc))
1734/* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */
1735#if 1
1736#define BXE_L2_MAX_CID(sc)                                              \
1737    (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1738#else
1739#define BXE_L2_MAX_CID(sc) /* OOO + FWD */                              \
1740    (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1741#endif
1742#if 1
1743#define BXE_L2_CID_COUNT(sc)                                             \
1744    (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1745#else
1746#define BXE_L2_CID_COUNT(sc) /* OOO + FWD */                             \
1747    (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1748#endif
1749#define L2_ILT_LINES(sc)                                \
1750    (DIV_ROUND_UP(BXE_L2_CID_COUNT(sc), ILT_PAGE_CIDS))
1751
1752    int qm_cid_count;
1753
1754    uint8_t dropless_fc;
1755
1756#if 0
1757    struct bxe_dma *t2;
1758#endif
1759
1760    /* total number of FW statistics requests */
1761    uint8_t fw_stats_num;
1762    /*
1763     * This is a memory buffer that will contain both statistics ramrod
1764     * request and data.
1765     */
1766    struct bxe_dma fw_stats_dma;
1767    /*
1768     * FW statistics request shortcut (points at the beginning of fw_stats
1769     * buffer).
1770     */
1771    int                     fw_stats_req_size;
1772    struct bxe_fw_stats_req *fw_stats_req;
1773    bus_addr_t              fw_stats_req_mapping;
1774    /*
1775     * FW statistics data shortcut (points at the beginning of fw_stats
1776     * buffer + fw_stats_req_size).
1777     */
1778    int                      fw_stats_data_size;
1779    struct bxe_fw_stats_data *fw_stats_data;
1780    bus_addr_t               fw_stats_data_mapping;
1781
1782    /* tracking a pending STAT_QUERY ramrod */
1783    uint16_t stats_pending;
1784    /* number of completed statistics ramrods */
1785    uint16_t stats_comp;
1786    uint16_t stats_counter;
1787    uint8_t  stats_init;
1788    int      stats_state;
1789
1790    struct bxe_eth_stats         eth_stats;
1791    struct host_func_stats       func_stats;
1792    struct bxe_eth_stats_old     eth_stats_old;
1793    struct bxe_net_stats_old     net_stats_old;
1794    struct bxe_fw_port_stats_old fw_stats_old;
1795
1796    struct dmae_command stats_dmae; /* used by dmae command loader */
1797    int                 executer_idx;
1798
1799    int mtu;
1800
1801    /* LLDP params */
1802    struct bxe_config_lldp_params lldp_config_params;
1803    /* DCB support on/off */
1804    int dcb_state;
1805#define BXE_DCB_STATE_OFF 0
1806#define BXE_DCB_STATE_ON  1
1807    /* DCBX engine mode */
1808    int dcbx_enabled;
1809#define BXE_DCBX_ENABLED_OFF        0
1810#define BXE_DCBX_ENABLED_ON_NEG_OFF 1
1811#define BXE_DCBX_ENABLED_ON_NEG_ON  2
1812#define BXE_DCBX_ENABLED_INVALID    -1
1813    uint8_t dcbx_mode_uset;
1814    struct bxe_config_dcbx_params dcbx_config_params;
1815    struct bxe_dcbx_port_params   dcbx_port_params;
1816    int dcb_version;
1817
1818    uint8_t cnic_support;
1819    uint8_t cnic_enabled;
1820    uint8_t cnic_loaded;
1821#define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */
1822#define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */
1823#define CNIC_LOADED(sc)  0 /* ((sc)->cnic_loaded) */
1824
1825    /* multiple tx classes of service */
1826    uint8_t max_cos;
1827#define BXE_MAX_PRIORITY 8
1828    /* priority to cos mapping */
1829    uint8_t prio_to_cos[BXE_MAX_PRIORITY];
1830
1831    int panic;
1832}; /* struct bxe_softc */
1833
1834/* IOCTL sub-commands for edebug and firmware upgrade */
1835#define BXE_IOC_RD_NVRAM        1
1836#define BXE_IOC_WR_NVRAM        2
1837#define BXE_IOC_STATS_SHOW_NUM  3
1838#define BXE_IOC_STATS_SHOW_STR  4
1839#define BXE_IOC_STATS_SHOW_CNT  5
1840
1841struct bxe_nvram_data {
1842    uint32_t op; /* ioctl sub-command */
1843    uint32_t offset;
1844    uint32_t len;
1845    uint32_t value[1]; /* variable */
1846};
1847
1848union bxe_stats_show_data {
1849    uint32_t op; /* ioctl sub-command */
1850
1851    struct {
1852        uint32_t num; /* return number of stats */
1853        uint32_t len; /* length of each string item */
1854    } desc;
1855
1856    /* variable length... */
1857    char str[1]; /* holds names of desc.num stats, each desc.len in length */
1858
1859    /* variable length... */
1860    uint64_t stats[1]; /* holds all stats */
1861};
1862
1863/* function init flags */
1864#define FUNC_FLG_RSS     0x0001
1865#define FUNC_FLG_STATS   0x0002
1866/* FUNC_FLG_UNMATCHED       0x0004 */
1867#define FUNC_FLG_TPA     0x0008
1868#define FUNC_FLG_SPQ     0x0010
1869#define FUNC_FLG_LEADING 0x0020 /* PF only */
1870
1871struct bxe_func_init_params {
1872    bus_addr_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */
1873    bus_addr_t spq_map;     /* (dma) valid if FUNC_FLG_SPQ */
1874    uint16_t   func_flgs;
1875    uint16_t   func_id;     /* abs function id */
1876    uint16_t   pf_id;
1877    uint16_t   spq_prod;    /* valid if FUNC_FLG_SPQ */
1878};
1879
1880/* memory resources reside at BARs 0, 2, 4 */
1881/* Run `pciconf -lb` to see mappings */
1882#define BAR0 0
1883#define BAR1 2
1884#define BAR2 4
1885
1886#ifdef BXE_REG_NO_INLINE
1887
1888uint8_t bxe_reg_read8(struct bxe_softc *sc, bus_size_t offset);
1889uint16_t bxe_reg_read16(struct bxe_softc *sc, bus_size_t offset);
1890uint32_t bxe_reg_read32(struct bxe_softc *sc, bus_size_t offset);
1891
1892void bxe_reg_write8(struct bxe_softc *sc, bus_size_t offset, uint8_t val);
1893void bxe_reg_write16(struct bxe_softc *sc, bus_size_t offset, uint16_t val);
1894void bxe_reg_write32(struct bxe_softc *sc, bus_size_t offset, uint32_t val);
1895
1896#define REG_RD8(sc, offset)  bxe_reg_read8(sc, offset)
1897#define REG_RD16(sc, offset) bxe_reg_read16(sc, offset)
1898#define REG_RD32(sc, offset) bxe_reg_read32(sc, offset)
1899
1900#define REG_WR8(sc, offset, val)  bxe_reg_write8(sc, offset, val)
1901#define REG_WR16(sc, offset, val) bxe_reg_write16(sc, offset, val)
1902#define REG_WR32(sc, offset, val) bxe_reg_write32(sc, offset, val)
1903
1904#else /* not BXE_REG_NO_INLINE */
1905
1906#define REG_WR8(sc, offset, val)            \
1907    bus_space_write_1(sc->bar[BAR0].tag,    \
1908                      sc->bar[BAR0].handle, \
1909                      offset, val)
1910
1911#define REG_WR16(sc, offset, val)           \
1912    bus_space_write_2(sc->bar[BAR0].tag,    \
1913                      sc->bar[BAR0].handle, \
1914                      offset, val)
1915
1916#define REG_WR32(sc, offset, val)           \
1917    bus_space_write_4(sc->bar[BAR0].tag,    \
1918                      sc->bar[BAR0].handle, \
1919                      offset, val)
1920
1921#define REG_RD8(sc, offset)                \
1922    bus_space_read_1(sc->bar[BAR0].tag,    \
1923                     sc->bar[BAR0].handle, \
1924                     offset)
1925
1926#define REG_RD16(sc, offset)               \
1927    bus_space_read_2(sc->bar[BAR0].tag,    \
1928                     sc->bar[BAR0].handle, \
1929                     offset)
1930
1931#define REG_RD32(sc, offset)               \
1932    bus_space_read_4(sc->bar[BAR0].tag,    \
1933                     sc->bar[BAR0].handle, \
1934                     offset)
1935
1936#endif /* BXE_REG_NO_INLINE */
1937
1938#define REG_RD(sc, offset)      REG_RD32(sc, offset)
1939#define REG_WR(sc, offset, val) REG_WR32(sc, offset, val)
1940
1941#define REG_RD_IND(sc, offset)      bxe_reg_rd_ind(sc, offset)
1942#define REG_WR_IND(sc, offset, val) bxe_reg_wr_ind(sc, offset, val)
1943
1944#define BXE_SP(sc, var) (&(sc)->sp->var)
1945#define BXE_SP_MAPPING(sc, var) \
1946    (sc->sp_dma.paddr + offsetof(struct bxe_slowpath, var))
1947
1948#define BXE_FP(sc, nr, var) ((sc)->fp[(nr)].var)
1949#define BXE_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index])
1950
1951#if 0
1952#define bxe_fp(sc, nr, var)   ((sc)->fp[nr].var)
1953#define bxe_sp_obj(sc, fp)    ((sc)->sp_objs[(fp)->index])
1954#define bxe_fp_stats(sc, fp)  (&(sc)->fp_stats[(fp)->index])
1955#define bxe_fp_qstats(sc, fp) (&(sc)->fp_stats[(fp)->index].eth_q_stats)
1956#endif
1957
1958#define REG_RD_DMAE(sc, offset, valp, len32)               \
1959    do {                                                   \
1960        bxe_read_dmae(sc, offset, len32);                  \
1961        memcpy(valp, BXE_SP(sc, wb_data[0]), (len32) * 4); \
1962    } while (0)
1963
1964#define REG_WR_DMAE(sc, offset, valp, len32)                            \
1965    do {                                                                \
1966        memcpy(BXE_SP(sc, wb_data[0]), valp, (len32) * 4);              \
1967        bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), offset, len32); \
1968    } while (0)
1969
1970#define REG_WR_DMAE_LEN(sc, offset, valp, len32) \
1971    REG_WR_DMAE(sc, offset, valp, len32)
1972
1973#define REG_RD_DMAE_LEN(sc, offset, valp, len32) \
1974    REG_RD_DMAE(sc, offset, valp, len32)
1975
1976#define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap)         \
1977    do {                                                           \
1978        /* if (le32_swap) {                                     */ \
1979        /*    BLOGW(sc, "VIRT_WR_DMAE_LEN with le32_swap=1\n"); */ \
1980        /* }                                                    */ \
1981        memcpy(GUNZIP_BUF(sc), data, len32 * 4);                   \
1982        ecore_write_big_buf_wb(sc, addr, len32);                   \
1983    } while (0)
1984
1985#define BXE_DB_MIN_SHIFT 3   /* 8 bytes */
1986#define BXE_DB_SHIFT     7   /* 128 bytes */
1987#if (BXE_DB_SHIFT < BXE_DB_MIN_SHIFT)
1988#error "Minimum DB doorbell stride is 8"
1989#endif
1990#define DPM_TRIGGER_TYPE 0x40
1991#define DOORBELL(sc, cid, val)                                              \
1992    do {                                                                    \
1993        bus_space_write_4(sc->bar[BAR1].tag, sc->bar[BAR1].handle,          \
1994                          ((sc->doorbell_size * (cid)) + DPM_TRIGGER_TYPE), \
1995                          (uint32_t)val);                                   \
1996    } while(0)
1997
1998#define SHMEM_ADDR(sc, field)                                       \
1999    (sc->devinfo.shmem_base + offsetof(struct shmem_region, field))
2000#define SHMEM_RD(sc, field)      REG_RD(sc, SHMEM_ADDR(sc, field))
2001#define SHMEM_RD16(sc, field)    REG_RD16(sc, SHMEM_ADDR(sc, field))
2002#define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val)
2003
2004#define SHMEM2_ADDR(sc, field)                                        \
2005    (sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field))
2006#define SHMEM2_HAS(sc, field)                                            \
2007    (sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) >     \
2008                                 offsetof(struct shmem2_region, field)))
2009#define SHMEM2_RD(sc, field)      REG_RD(sc, SHMEM2_ADDR(sc, field))
2010#define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val)
2011
2012#define MFCFG_ADDR(sc, field)                                  \
2013    (sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field))
2014#define MFCFG_RD(sc, field)      REG_RD(sc, MFCFG_ADDR(sc, field))
2015#define MFCFG_RD16(sc, field)    REG_RD16(sc, MFCFG_ADDR(sc, field))
2016#define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val)
2017
2018/* DMAE command defines */
2019
2020#define DMAE_TIMEOUT      -1
2021#define DMAE_PCI_ERROR    -2 /* E2 and onward */
2022#define DMAE_NOT_RDY      -3
2023#define DMAE_PCI_ERR_FLAG 0x80000000
2024
2025#define DMAE_SRC_PCI      0
2026#define DMAE_SRC_GRC      1
2027
2028#define DMAE_DST_NONE     0
2029#define DMAE_DST_PCI      1
2030#define DMAE_DST_GRC      2
2031
2032#define DMAE_COMP_PCI     0
2033#define DMAE_COMP_GRC     1
2034
2035#define DMAE_COMP_REGULAR 0
2036#define DMAE_COM_SET_ERR  1
2037
2038#define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_COMMAND_SRC_SHIFT)
2039#define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_COMMAND_SRC_SHIFT)
2040#define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_COMMAND_DST_SHIFT)
2041#define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_COMMAND_DST_SHIFT)
2042
2043#define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_COMMAND_C_DST_SHIFT)
2044#define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_COMMAND_C_DST_SHIFT)
2045
2046#define DMAE_CMD_ENDIANITY_NO_SWAP   (0 << DMAE_COMMAND_ENDIANITY_SHIFT)
2047#define DMAE_CMD_ENDIANITY_B_SWAP    (1 << DMAE_COMMAND_ENDIANITY_SHIFT)
2048#define DMAE_CMD_ENDIANITY_DW_SWAP   (2 << DMAE_COMMAND_ENDIANITY_SHIFT)
2049#define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_COMMAND_ENDIANITY_SHIFT)
2050
2051#define DMAE_CMD_PORT_0 0
2052#define DMAE_CMD_PORT_1 DMAE_COMMAND_PORT
2053
2054#define DMAE_SRC_PF 0
2055#define DMAE_SRC_VF 1
2056
2057#define DMAE_DST_PF 0
2058#define DMAE_DST_VF 1
2059
2060#define DMAE_C_SRC 0
2061#define DMAE_C_DST 1
2062
2063#define DMAE_LEN32_RD_MAX     0x80
2064#define DMAE_LEN32_WR_MAX(sc) (CHIP_IS_E1(sc) ? 0x400 : 0x2000)
2065
2066#define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */
2067
2068#define MAX_DMAE_C_PER_PORT 8
2069#define INIT_DMAE_C(sc)     ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc))
2070#define PMF_DMAE_C(sc)      ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX)
2071
2072static const uint32_t dmae_reg_go_c[] = {
2073    DMAE_REG_GO_C0,  DMAE_REG_GO_C1,  DMAE_REG_GO_C2,  DMAE_REG_GO_C3,
2074    DMAE_REG_GO_C4,  DMAE_REG_GO_C5,  DMAE_REG_GO_C6,  DMAE_REG_GO_C7,
2075    DMAE_REG_GO_C8,  DMAE_REG_GO_C9,  DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2076    DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2077};
2078
2079#define ATTN_NIG_FOR_FUNC     (1L << 8)
2080#define ATTN_SW_TIMER_4_FUNC  (1L << 9)
2081#define GPIO_2_FUNC           (1L << 10)
2082#define GPIO_3_FUNC           (1L << 11)
2083#define GPIO_4_FUNC           (1L << 12)
2084#define ATTN_GENERAL_ATTN_1   (1L << 13)
2085#define ATTN_GENERAL_ATTN_2   (1L << 14)
2086#define ATTN_GENERAL_ATTN_3   (1L << 15)
2087#define ATTN_GENERAL_ATTN_4   (1L << 13)
2088#define ATTN_GENERAL_ATTN_5   (1L << 14)
2089#define ATTN_GENERAL_ATTN_6   (1L << 15)
2090#define ATTN_HARD_WIRED_MASK  0xff00
2091#define ATTENTION_ID          4
2092
2093#define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
2094    AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
2095
2096#define MAX_IGU_ATTN_ACK_TO 100
2097
2098#define STORM_ASSERT_ARRAY_SIZE 50
2099
2100#define BXE_PMF_LINK_ASSERT(sc) \
2101    GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc))
2102
2103#define BXE_MC_ASSERT_BITS \
2104    (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2105     GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2106     GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2107     GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2108
2109#define BXE_MCP_ASSERT \
2110    GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2111
2112#define BXE_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2113#define BXE_GRC_RSV     (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2114                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2115                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2116                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2117                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2118                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2119
2120#define MULTI_MASK 0x7f
2121
2122#define PFS_PER_PORT(sc)                               \
2123    ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4)
2124#define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc)
2125
2126#define FIRST_ABS_FUNC_IN_PORT(sc)                    \
2127    ((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ?    \
2128     PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc))))
2129
2130#define FOREACH_ABS_FUNC_IN_PORT(sc, i)            \
2131    for ((i) = FIRST_ABS_FUNC_IN_PORT(sc);         \
2132         (i) < MAX_FUNC_NUM;                       \
2133         (i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc)))
2134
2135#define BXE_SWCID_SHIFT 17
2136#define BXE_SWCID_MASK  ((0x1 << BXE_SWCID_SHIFT) - 1)
2137
2138#define SW_CID(x)  (le32toh(x) & BXE_SWCID_MASK)
2139#define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
2140
2141#define CQE_TYPE(cqe_fp_flags)   ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
2142#define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
2143#define CQE_TYPE_STOP(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
2144#define CQE_TYPE_SLOW(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
2145#define CQE_TYPE_FAST(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
2146
2147/* must be used on a CID before placing it on a HW ring */
2148#define HW_CID(sc, x) \
2149    ((SC_PORT(sc) << 23) | (SC_VN(sc) << BXE_SWCID_SHIFT) | (x))
2150
2151#define SPEED_10    10
2152#define SPEED_100   100
2153#define SPEED_1000  1000
2154#define SPEED_2500  2500
2155#define SPEED_10000 10000
2156
2157#define PCI_PM_D0    1
2158#define PCI_PM_D3hot 2
2159
2160int  bxe_test_bit(int nr, volatile unsigned long * addr);
2161void bxe_set_bit(unsigned int nr, volatile unsigned long * addr);
2162void bxe_clear_bit(int nr, volatile unsigned long * addr);
2163int  bxe_test_and_set_bit(int nr, volatile unsigned long * addr);
2164int  bxe_test_and_clear_bit(int nr, volatile unsigned long * addr);
2165int  bxe_cmpxchg(volatile int *addr, int old, int new);
2166
2167void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr,
2168                    uint32_t val);
2169uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr);
2170
2171
2172int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size,
2173                  struct bxe_dma *dma, const char *msg);
2174void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma);
2175
2176uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type);
2177uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode);
2178uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type,
2179                         uint8_t dst_type, uint8_t with_comp,
2180                         uint8_t comp_type);
2181void bxe_post_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int idx);
2182void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32);
2183void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr,
2184                    uint32_t dst_addr, uint32_t len32);
2185void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr,
2186                             uint32_t addr, uint32_t len);
2187
2188void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt,
2189                            uint32_t cid);
2190void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id,
2191                                  uint8_t sb_index, uint8_t disable,
2192                                  uint16_t usec);
2193
2194int bxe_sp_post(struct bxe_softc *sc, int command, int cid,
2195                uint32_t data_hi, uint32_t data_lo, int cmd_type);
2196
2197void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id,
2198                    uint8_t segment, uint16_t index, uint8_t op,
2199                    uint8_t update);
2200
2201void ecore_init_e1_firmware(struct bxe_softc *sc);
2202void ecore_init_e1h_firmware(struct bxe_softc *sc);
2203void ecore_init_e2_firmware(struct bxe_softc *sc);
2204
2205void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr,
2206                               size_t size, uint32_t *data);
2207
2208/*********************/
2209/* LOGGING AND DEBUG */
2210/*********************/
2211
2212/* debug logging codepaths */
2213#define DBG_LOAD   0x00000001 /* load and unload    */
2214#define DBG_INTR   0x00000002 /* interrupt handling */
2215#define DBG_SP     0x00000004 /* slowpath handling  */
2216#define DBG_STATS  0x00000008 /* stats updates      */
2217#define DBG_TX     0x00000010 /* packet transmit    */
2218#define DBG_RX     0x00000020 /* packet receive     */
2219#define DBG_PHY    0x00000040 /* phy/link handling  */
2220#define DBG_IOCTL  0x00000080 /* ioctl handling     */
2221#define DBG_MBUF   0x00000100 /* dumping mbuf info  */
2222#define DBG_REGS   0x00000200 /* register access    */
2223#define DBG_LRO    0x00000400 /* lro processing     */
2224#define DBG_ASSERT 0x80000000 /* debug assert       */
2225#define DBG_ALL    0xFFFFFFFF /* flying monkeys     */
2226
2227#define DBASSERT(sc, exp, msg)                         \
2228    do {                                               \
2229        if (__predict_false(sc->debug & DBG_ASSERT)) { \
2230            if (__predict_false(!(exp))) {             \
2231                panic msg;                             \
2232            }                                          \
2233        }                                              \
2234    } while (0)
2235
2236/* log a debug message */
2237#define BLOGD(sc, codepath, format, args...)           \
2238    do {                                               \
2239        if (__predict_false(sc->debug & (codepath))) { \
2240            device_printf((sc)->dev,                   \
2241                          "%s(%s:%d) " format,         \
2242                          __FUNCTION__,                \
2243                          __FILE__,                    \
2244                          __LINE__,                    \
2245                          ## args);                    \
2246        }                                              \
2247    } while(0)
2248
2249/* log a info message */
2250#define BLOGI(sc, format, args...)             \
2251    do {                                       \
2252        if (__predict_false(sc->debug)) {      \
2253            device_printf((sc)->dev,           \
2254                          "%s(%s:%d) " format, \
2255                          __FUNCTION__,        \
2256                          __FILE__,            \
2257                          __LINE__,            \
2258                          ## args);            \
2259        } else {                               \
2260            device_printf((sc)->dev,           \
2261                          format,              \
2262                          ## args);            \
2263        }                                      \
2264    } while(0)
2265
2266/* log a warning message */
2267#define BLOGW(sc, format, args...)                      \
2268    do {                                                \
2269        if (__predict_false(sc->debug)) {               \
2270            device_printf((sc)->dev,                    \
2271                          "%s(%s:%d) WARNING: " format, \
2272                          __FUNCTION__,                 \
2273                          __FILE__,                     \
2274                          __LINE__,                     \
2275                          ## args);                     \
2276        } else {                                        \
2277            device_printf((sc)->dev,                    \
2278                          "WARNING: " format,           \
2279                          ## args);                     \
2280        }                                               \
2281    } while(0)
2282
2283/* log a error message */
2284#define BLOGE(sc, format, args...)                    \
2285    do {                                              \
2286        if (__predict_false(sc->debug)) {             \
2287            device_printf((sc)->dev,                  \
2288                          "%s(%s:%d) ERROR: " format, \
2289                          __FUNCTION__,               \
2290                          __FILE__,                   \
2291                          __LINE__,                   \
2292                          ## args);                   \
2293        } else {                                      \
2294            device_printf((sc)->dev,                  \
2295                          "ERROR: " format,           \
2296                          ## args);                   \
2297        }                                             \
2298    } while(0)
2299
2300#ifdef ECORE_STOP_ON_ERROR
2301
2302#define bxe_panic(sc, msg) \
2303    do {                   \
2304        panic msg;         \
2305    } while (0)
2306
2307#else
2308
2309#define bxe_panic(sc, msg) \
2310    device_printf((sc)->dev, "%s (%s,%d)\n", __FUNCTION__, __FILE__, __LINE__);
2311
2312#endif
2313
2314#define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data));
2315#define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe)
2316
2317void bxe_dump_mem(struct bxe_softc *sc, char *tag,
2318                  uint8_t *mem, uint32_t len);
2319void bxe_dump_mbuf_data(struct bxe_softc *sc, char *pTag,
2320                        struct mbuf *m, uint8_t contents);
2321
2322/***********/
2323/* INLINES */
2324/***********/
2325
2326static inline uint32_t
2327reg_poll(struct bxe_softc *sc,
2328         uint32_t         reg,
2329         uint32_t         expected,
2330         int              ms,
2331         int              wait)
2332{
2333    uint32_t val;
2334
2335    do {
2336        val = REG_RD(sc, reg);
2337        if (val == expected) {
2338            break;
2339        }
2340        ms -= wait;
2341        DELAY(wait * 1000);
2342    } while (ms > 0);
2343
2344    return (val);
2345}
2346
2347static inline void
2348bxe_update_fp_sb_idx(struct bxe_fastpath *fp)
2349{
2350    mb(); /* status block is written to by the chip */
2351    fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
2352}
2353
2354static inline void
2355bxe_igu_ack_sb_gen(struct bxe_softc *sc,
2356                   uint8_t          igu_sb_id,
2357                   uint8_t          segment,
2358                   uint16_t         index,
2359                   uint8_t          op,
2360                   uint8_t          update,
2361                   uint32_t         igu_addr)
2362{
2363    struct igu_regular cmd_data = {0};
2364
2365    cmd_data.sb_id_and_flags =
2366        ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
2367         (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
2368         (update << IGU_REGULAR_BUPDATE_SHIFT) |
2369         (op << IGU_REGULAR_ENABLE_INT_SHIFT));
2370
2371    BLOGD(sc, DBG_INTR, "write 0x%08x to IGU addr 0x%x\n",
2372            cmd_data.sb_id_and_flags, igu_addr);
2373    REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags);
2374
2375    /* Make sure that ACK is written */
2376    bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2377                      BUS_SPACE_BARRIER_WRITE);
2378    mb();
2379}
2380
2381static inline void
2382bxe_hc_ack_sb(struct bxe_softc *sc,
2383              uint8_t          sb_id,
2384              uint8_t          storm,
2385              uint16_t         index,
2386              uint8_t          op,
2387              uint8_t          update)
2388{
2389    uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2390                        COMMAND_REG_INT_ACK);
2391    struct igu_ack_register igu_ack;
2392
2393    igu_ack.status_block_index = index;
2394    igu_ack.sb_id_and_flags =
2395        ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
2396         (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
2397         (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
2398         (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
2399
2400    REG_WR(sc, hc_addr, (*(uint32_t *)&igu_ack));
2401
2402    /* Make sure that ACK is written */
2403    bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2404                      BUS_SPACE_BARRIER_WRITE);
2405    mb();
2406}
2407
2408static inline void
2409bxe_ack_sb(struct bxe_softc *sc,
2410           uint8_t          igu_sb_id,
2411           uint8_t          storm,
2412           uint16_t         index,
2413           uint8_t          op,
2414           uint8_t          update)
2415{
2416    if (sc->devinfo.int_block == INT_BLOCK_HC)
2417        bxe_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
2418    else {
2419        uint8_t segment;
2420        if (CHIP_INT_MODE_IS_BC(sc)) {
2421            segment = storm;
2422        } else if (igu_sb_id != sc->igu_dsb_id) {
2423            segment = IGU_SEG_ACCESS_DEF;
2424        } else if (storm == ATTENTION_ID) {
2425            segment = IGU_SEG_ACCESS_ATTN;
2426        } else {
2427            segment = IGU_SEG_ACCESS_DEF;
2428        }
2429        bxe_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
2430    }
2431}
2432
2433static inline uint16_t
2434bxe_hc_ack_int(struct bxe_softc *sc)
2435{
2436    uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2437                        COMMAND_REG_SIMD_MASK);
2438    uint32_t result = REG_RD(sc, hc_addr);
2439
2440    mb();
2441    return (result);
2442}
2443
2444static inline uint16_t
2445bxe_igu_ack_int(struct bxe_softc *sc)
2446{
2447    uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
2448    uint32_t result = REG_RD(sc, igu_addr);
2449
2450    BLOGD(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x\n",
2451          result, igu_addr);
2452
2453    mb();
2454    return (result);
2455}
2456
2457static inline uint16_t
2458bxe_ack_int(struct bxe_softc *sc)
2459{
2460    mb();
2461    if (sc->devinfo.int_block == INT_BLOCK_HC) {
2462        return (bxe_hc_ack_int(sc));
2463    } else {
2464        return (bxe_igu_ack_int(sc));
2465    }
2466}
2467
2468static inline int
2469func_by_vn(struct bxe_softc *sc,
2470           int              vn)
2471{
2472    return (2 * vn + SC_PORT(sc));
2473}
2474
2475/*
2476 * Statistics ID are global per chip/path, while Client IDs for E1x
2477 * are per port.
2478 */
2479static inline uint8_t
2480bxe_stats_id(struct bxe_fastpath *fp)
2481{
2482    struct bxe_softc *sc = fp->sc;
2483
2484    if (!CHIP_IS_E1x(sc)) {
2485#if 0
2486        /* there are special statistics counters for FCoE 136..140 */
2487        if (IS_FCOE_FP(fp)) {
2488            return (sc->cnic_base_cl_id + (sc->pf_num >> 1));
2489        }
2490#endif
2491        return (fp->cl_id);
2492    }
2493
2494    return (fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x);
2495}
2496
2497#endif /* __BXE_H__ */
2498
2499