bxe.h revision 297155
1/*-
2 * Copyright (c) 2007-2014 QLogic Corporation. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 *
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 *    notice, this list of conditions and the following disclaimer in the
12 *    documentation and/or other materials provided with the distribution.
13 *
14 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
15 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17 * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
18 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
19 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
20 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
21 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
22 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
23 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
24 * THE POSSIBILITY OF SUCH DAMAGE.
25 */
26
27#ifndef __BXE_H__
28#define __BXE_H__
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/bxe/bxe.h 297155 2016-03-21 18:48:20Z davidcs $");
32
33#include <sys/param.h>
34#include <sys/kernel.h>
35#include <sys/systm.h>
36#include <sys/lock.h>
37#include <sys/mutex.h>
38#include <sys/sx.h>
39#include <sys/module.h>
40#include <sys/endian.h>
41#include <sys/types.h>
42#include <sys/malloc.h>
43#include <sys/kobj.h>
44#include <sys/bus.h>
45#include <sys/rman.h>
46#include <sys/socket.h>
47#include <sys/sockio.h>
48#include <sys/sysctl.h>
49#include <sys/smp.h>
50#include <sys/bitstring.h>
51#include <sys/limits.h>
52#include <sys/queue.h>
53#include <sys/taskqueue.h>
54#include <sys/zlib.h>
55
56#include <net/if.h>
57#include <net/if_types.h>
58#include <net/if_arp.h>
59#include <net/ethernet.h>
60#include <net/if_dl.h>
61#include <net/if_var.h>
62#include <net/if_media.h>
63#include <net/if_vlan_var.h>
64#include <net/bpf.h>
65
66#include <netinet/in.h>
67#include <netinet/ip.h>
68#include <netinet/ip6.h>
69#include <netinet/tcp.h>
70#include <netinet/udp.h>
71
72#include <dev/pci/pcireg.h>
73#include <dev/pci/pcivar.h>
74
75#include <machine/atomic.h>
76#include <machine/resource.h>
77#include <machine/endian.h>
78#include <machine/bus.h>
79#include <machine/in_cksum.h>
80
81#include "device_if.h"
82#include "bus_if.h"
83#include "pci_if.h"
84
85#if _BYTE_ORDER == _LITTLE_ENDIAN
86#ifndef LITTLE_ENDIAN
87#define LITTLE_ENDIAN
88#endif
89#ifndef __LITTLE_ENDIAN
90#define __LITTLE_ENDIAN
91#endif
92#undef BIG_ENDIAN
93#undef __BIG_ENDIAN
94#else /* _BIG_ENDIAN */
95#ifndef BIG_ENDIAN
96#define BIG_ENDIAN
97#endif
98#ifndef __BIG_ENDIAN
99#define __BIG_ENDIAN
100#endif
101#undef LITTLE_ENDIAN
102#undef __LITTLE_ENDIAN
103#endif
104
105#include "ecore_mfw_req.h"
106#include "ecore_fw_defs.h"
107#include "ecore_hsi.h"
108#include "ecore_reg.h"
109#include "bxe_dcb.h"
110#include "bxe_stats.h"
111
112#include "bxe_elink.h"
113
114#define VF_MAC_CREDIT_CNT 0
115#define VF_VLAN_CREDIT_CNT (0)
116
117#if __FreeBSD_version < 800054
118#if defined(__i386__) || defined(__amd64__)
119#define mb()  __asm volatile("mfence;" : : : "memory")
120#define wmb() __asm volatile("sfence;" : : : "memory")
121#define rmb() __asm volatile("lfence;" : : : "memory")
122static __inline void prefetch(void *x)
123{
124    __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
125}
126#else
127#define mb()
128#define rmb()
129#define wmb()
130#define prefetch(x)
131#endif
132#endif
133
134#if __FreeBSD_version >= 1000000
135#define PCIR_EXPRESS_DEVICE_STA        PCIER_DEVICE_STA
136#define PCIM_EXP_STA_TRANSACTION_PND   PCIEM_STA_TRANSACTION_PND
137#define PCIR_EXPRESS_LINK_STA          PCIER_LINK_STA
138#define PCIM_LINK_STA_WIDTH            PCIEM_LINK_STA_WIDTH
139#define PCIM_LINK_STA_SPEED            PCIEM_LINK_STA_SPEED
140#define PCIR_EXPRESS_DEVICE_CTL        PCIER_DEVICE_CTL
141#define PCIM_EXP_CTL_MAX_PAYLOAD       PCIEM_CTL_MAX_PAYLOAD
142#define PCIM_EXP_CTL_MAX_READ_REQUEST  PCIEM_CTL_MAX_READ_REQUEST
143#endif
144
145#ifndef ARRAY_SIZE
146#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
147#endif
148#ifndef ARRSIZE
149#define ARRSIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
150#endif
151#ifndef DIV_ROUND_UP
152#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
153#endif
154#ifndef roundup
155#define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
156#endif
157#ifndef ilog2
158static inline
159int bxe_ilog2(int x)
160{
161    int log = 0;
162    while (x >>= 1) log++;
163    return (log);
164}
165#define ilog2(x) bxe_ilog2(x)
166#endif
167
168#include "ecore_sp.h"
169
170#define BRCM_VENDORID 0x14e4
171#define PCI_ANY_ID    (uint16_t)(~0U)
172
173struct bxe_device_type
174{
175    uint16_t bxe_vid;
176    uint16_t bxe_did;
177    uint16_t bxe_svid;
178    uint16_t bxe_sdid;
179    char     *bxe_name;
180};
181
182#define BCM_PAGE_SHIFT       12
183#define BCM_PAGE_SIZE        (1 << BCM_PAGE_SHIFT)
184#define BCM_PAGE_MASK        (~(BCM_PAGE_SIZE - 1))
185#define BCM_PAGE_ALIGN(addr) ((addr + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
186
187#if BCM_PAGE_SIZE != 4096
188#error Page sizes other than 4KB are unsupported!
189#endif
190
191#if (BUS_SPACE_MAXADDR > 0xFFFFFFFF)
192#define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF))
193#define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32))
194#else
195#define U64_LO(addr) ((uint32_t)(addr))
196#define U64_HI(addr) (0)
197#endif
198#define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo))
199
200#define SET_FLAG(value, mask, flag)            \
201    do {                                       \
202        (value) &= ~(mask);                    \
203        (value) |= ((flag) << (mask##_SHIFT)); \
204    } while (0)
205
206#define GET_FLAG(value, mask)              \
207    (((value) & (mask)) >> (mask##_SHIFT))
208
209#define GET_FIELD(value, fname)                     \
210    (((value) & (fname##_MASK)) >> (fname##_SHIFT))
211
212#define BXE_MAX_SEGMENTS     12 /* 13-1 for parsing buffer */
213#define BXE_TSO_MAX_SEGMENTS 32
214#define BXE_TSO_MAX_SIZE     (65535 + sizeof(struct ether_vlan_header))
215#define BXE_TSO_MAX_SEG_SIZE 4096
216
217/* dropless fc FW/HW related params */
218#define BRB_SIZE(sc)         (CHIP_IS_E3(sc) ? 1024 : 512)
219#define MAX_AGG_QS(sc)       (CHIP_IS_E1(sc) ?                       \
220                                  ETH_MAX_AGGREGATION_QUEUES_E1 :    \
221                                  ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
222#define FW_DROP_LEVEL(sc)    (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc))
223#define FW_PREFETCH_CNT      16
224#define DROPLESS_FC_HEADROOM 100
225
226/******************/
227/* RX SGE defines */
228/******************/
229
230#define RX_SGE_NUM_PAGES       2 /* must be a power of 2 */
231#define RX_SGE_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
232#define RX_SGE_NEXT_PAGE_DESC_CNT 2
233#define RX_SGE_USABLE_PER_PAGE (RX_SGE_TOTAL_PER_PAGE - RX_SGE_NEXT_PAGE_DESC_CNT)
234#define RX_SGE_PER_PAGE_MASK   (RX_SGE_TOTAL_PER_PAGE - 1)
235#define RX_SGE_TOTAL           (RX_SGE_TOTAL_PER_PAGE * RX_SGE_NUM_PAGES)
236#define RX_SGE_USABLE          (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)
237#define RX_SGE_MAX             (RX_SGE_TOTAL - 1)
238#define RX_SGE(x)              ((x) & RX_SGE_MAX)
239
240#define RX_SGE_NEXT(x)                                              \
241    ((((x) & RX_SGE_PER_PAGE_MASK) == (RX_SGE_USABLE_PER_PAGE - 1)) \
242     ? (x) + 1 + RX_SGE_NEXT_PAGE_DESC_CNT : (x) + 1)
243
244#define RX_SGE_MASK_ELEM_SZ    64
245#define RX_SGE_MASK_ELEM_SHIFT 6
246#define RX_SGE_MASK_ELEM_MASK  ((uint64_t)RX_SGE_MASK_ELEM_SZ - 1)
247
248/*
249 * Creates a bitmask of all ones in less significant bits.
250 * idx - index of the most significant bit in the created mask.
251 */
252#define RX_SGE_ONES_MASK(idx)                                      \
253    (((uint64_t)0x1 << (((idx) & RX_SGE_MASK_ELEM_MASK) + 1)) - 1)
254#define RX_SGE_MASK_ELEM_ONE_MASK ((uint64_t)(~0))
255
256/* Number of uint64_t elements in SGE mask array. */
257#define RX_SGE_MASK_LEN                                                \
258    ((RX_SGE_NUM_PAGES * RX_SGE_TOTAL_PER_PAGE) / RX_SGE_MASK_ELEM_SZ)
259#define RX_SGE_MASK_LEN_MASK      (RX_SGE_MASK_LEN - 1)
260#define RX_SGE_NEXT_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK)
261
262/*
263 * dropless fc calculations for SGEs
264 * Number of required SGEs is the sum of two:
265 * 1. Number of possible opened aggregations (next packet for
266 *    these aggregations will probably consume SGE immidiatelly)
267 * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
268 *    after placement on BD for new TPA aggregation)
269 * Takes into account RX_SGE_NEXT_PAGE_DESC_CNT "next" elements on each page
270 */
271#define NUM_SGE_REQ(sc)                                    \
272    (MAX_AGG_QS(sc) + (BRB_SIZE(sc) - MAX_AGG_QS(sc)) / 2)
273#define NUM_SGE_PG_REQ(sc)                                                    \
274    ((NUM_SGE_REQ(sc) + RX_SGE_USABLE_PER_PAGE - 1) / RX_SGE_USABLE_PER_PAGE)
275#define SGE_TH_LO(sc)                                                  \
276    (NUM_SGE_REQ(sc) + NUM_SGE_PG_REQ(sc) * RX_SGE_NEXT_PAGE_DESC_CNT)
277#define SGE_TH_HI(sc)                      \
278    (SGE_TH_LO(sc) + DROPLESS_FC_HEADROOM)
279
280#define PAGES_PER_SGE_SHIFT  0
281#define PAGES_PER_SGE        (1 << PAGES_PER_SGE_SHIFT)
282#define SGE_PAGE_SIZE        BCM_PAGE_SIZE
283#define SGE_PAGE_SHIFT       BCM_PAGE_SHIFT
284#define SGE_PAGE_ALIGN(addr) BCM_PAGE_ALIGN(addr)
285#define SGE_PAGES            (SGE_PAGE_SIZE * PAGES_PER_SGE)
286#define TPA_AGG_SIZE         min((8 * SGE_PAGES), 0xffff)
287
288/*****************/
289/* TX BD defines */
290/*****************/
291
292#define TX_BD_NUM_PAGES       16 /* must be a power of 2 */
293#define TX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
294#define TX_BD_USABLE_PER_PAGE (TX_BD_TOTAL_PER_PAGE - 1)
295#define TX_BD_TOTAL           (TX_BD_TOTAL_PER_PAGE * TX_BD_NUM_PAGES)
296#define TX_BD_USABLE          (TX_BD_USABLE_PER_PAGE * TX_BD_NUM_PAGES)
297#define TX_BD_MAX             (TX_BD_TOTAL - 1)
298
299#define TX_BD_NEXT(x)                                                 \
300    ((((x) & TX_BD_USABLE_PER_PAGE) == (TX_BD_USABLE_PER_PAGE - 1)) ? \
301     ((x) + 2) : ((x) + 1))
302#define TX_BD(x)      ((x) & TX_BD_MAX)
303#define TX_BD_PAGE(x) (((x) & ~TX_BD_USABLE_PER_PAGE) >> 8)
304#define TX_BD_IDX(x)  ((x) & TX_BD_USABLE_PER_PAGE)
305
306/*
307 * Trigger pending transmits when the number of available BDs is greater
308 * than 1/8 of the total number of usable BDs.
309 */
310#define BXE_TX_CLEANUP_THRESHOLD (TX_BD_USABLE / 8)
311#define BXE_TX_TIMEOUT 5
312
313/*****************/
314/* RX BD defines */
315/*****************/
316
317#define RX_BD_NUM_PAGES       8 /* power of 2 */
318#define RX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
319#define RX_BD_NEXT_PAGE_DESC_CNT 2
320#define RX_BD_USABLE_PER_PAGE (RX_BD_TOTAL_PER_PAGE - RX_BD_NEXT_PAGE_DESC_CNT)
321#define RX_BD_PER_PAGE_MASK   (RX_BD_TOTAL_PER_PAGE - 1)
322#define RX_BD_TOTAL           (RX_BD_TOTAL_PER_PAGE * RX_BD_NUM_PAGES)
323#define RX_BD_USABLE          (RX_BD_USABLE_PER_PAGE * RX_BD_NUM_PAGES)
324#define RX_BD_MAX             (RX_BD_TOTAL - 1)
325
326#define RX_BD_NEXT(x)                                               \
327    ((((x) & RX_BD_PER_PAGE_MASK) == (RX_BD_USABLE_PER_PAGE - 1)) ? \
328     ((x) + 3) : ((x) + 1))
329#define RX_BD(x)      ((x) & RX_BD_MAX)
330#define RX_BD_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9)
331#define RX_BD_IDX(x)  ((x) & RX_BD_PER_PAGE_MASK)
332
333/*
334 * dropless fc calculations for BDs
335 * Number of BDs should be as number of buffers in BRB:
336 * Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT
337 * "next" elements on each page
338 */
339#define NUM_BD_REQ(sc) \
340    BRB_SIZE(sc)
341#define NUM_BD_PG_REQ(sc)                                                  \
342    ((NUM_BD_REQ(sc) + RX_BD_USABLE_PER_PAGE - 1) / RX_BD_USABLE_PER_PAGE)
343#define BD_TH_LO(sc)                                \
344    (NUM_BD_REQ(sc) +                               \
345     NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \
346     FW_DROP_LEVEL(sc))
347#define BD_TH_HI(sc)                      \
348    (BD_TH_LO(sc) + DROPLESS_FC_HEADROOM)
349#define MIN_RX_AVAIL(sc)                           \
350    ((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128)
351#define MIN_RX_SIZE_TPA_HW(sc)                         \
352    (CHIP_IS_E1(sc) ? ETH_MIN_RX_CQES_WITH_TPA_E1 :    \
353                      ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
354#define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
355#define MIN_RX_SIZE_TPA(sc)                         \
356    (max(MIN_RX_SIZE_TPA_HW(sc), MIN_RX_AVAIL(sc)))
357#define MIN_RX_SIZE_NONTPA(sc)                     \
358    (max(MIN_RX_SIZE_NONTPA_HW, MIN_RX_AVAIL(sc)))
359
360/***************/
361/* RCQ defines */
362/***************/
363
364/*
365 * As long as CQE is X times bigger than BD entry we have to allocate X times
366 * more pages for CQ ring in order to keep it balanced with BD ring
367 */
368#define CQE_BD_REL          (sizeof(union eth_rx_cqe) / \
369                             sizeof(struct eth_rx_bd))
370#define RCQ_NUM_PAGES       (RX_BD_NUM_PAGES * CQE_BD_REL) /* power of 2 */
371#define RCQ_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
372#define RCQ_NEXT_PAGE_DESC_CNT 1
373#define RCQ_USABLE_PER_PAGE (RCQ_TOTAL_PER_PAGE - RCQ_NEXT_PAGE_DESC_CNT)
374#define RCQ_TOTAL           (RCQ_TOTAL_PER_PAGE * RCQ_NUM_PAGES)
375#define RCQ_USABLE          (RCQ_USABLE_PER_PAGE * RCQ_NUM_PAGES)
376#define RCQ_MAX             (RCQ_TOTAL - 1)
377
378#define RCQ_NEXT(x)                                               \
379    ((((x) & RCQ_USABLE_PER_PAGE) == (RCQ_USABLE_PER_PAGE - 1)) ? \
380     ((x) + 1 + RCQ_NEXT_PAGE_DESC_CNT) : ((x) + 1))
381#define RCQ(x)      ((x) & RCQ_MAX)
382#define RCQ_PAGE(x) (((x) & ~RCQ_USABLE_PER_PAGE) >> 7)
383#define RCQ_IDX(x)  ((x) & RCQ_USABLE_PER_PAGE)
384
385/*
386 * dropless fc calculations for RCQs
387 * Number of RCQs should be as number of buffers in BRB:
388 * Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT
389 * "next" elements on each page
390 */
391#define NUM_RCQ_REQ(sc) \
392    BRB_SIZE(sc)
393#define NUM_RCQ_PG_REQ(sc)                                              \
394    ((NUM_RCQ_REQ(sc) + RCQ_USABLE_PER_PAGE - 1) / RCQ_USABLE_PER_PAGE)
395#define RCQ_TH_LO(sc)                              \
396    (NUM_RCQ_REQ(sc) +                             \
397     NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \
398     FW_DROP_LEVEL(sc))
399#define RCQ_TH_HI(sc)                      \
400    (RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM)
401
402/* This is needed for determening of last_max */
403#define SUB_S16(a, b) (int16_t)((int16_t)(a) - (int16_t)(b))
404
405#define __SGE_MASK_SET_BIT(el, bit)               \
406    do {                                          \
407        (el) = ((el) | ((uint64_t)0x1 << (bit))); \
408    } while (0)
409
410#define __SGE_MASK_CLEAR_BIT(el, bit)                \
411    do {                                             \
412        (el) = ((el) & (~((uint64_t)0x1 << (bit)))); \
413    } while (0)
414
415#define SGE_MASK_SET_BIT(fp, idx)                                       \
416    __SGE_MASK_SET_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
417                       ((idx) & RX_SGE_MASK_ELEM_MASK))
418
419#define SGE_MASK_CLEAR_BIT(fp, idx)                                       \
420    __SGE_MASK_CLEAR_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
421                         ((idx) & RX_SGE_MASK_ELEM_MASK))
422
423/* Load / Unload modes */
424#define LOAD_NORMAL       0
425#define LOAD_OPEN         1
426#define LOAD_DIAG         2
427#define LOAD_LOOPBACK_EXT 3
428#define UNLOAD_NORMAL     0
429#define UNLOAD_CLOSE      1
430#define UNLOAD_RECOVERY   2
431
432/* Some constants... */
433//#define MAX_PATH_NUM       2
434//#define E2_MAX_NUM_OF_VFS  64
435//#define E1H_FUNC_MAX       8
436//#define E2_FUNC_MAX        4   /* per path */
437#define MAX_VNIC_NUM       4
438#define MAX_FUNC_NUM       8   /* common to all chips */
439//#define MAX_NDSB           HC_SB_MAX_SB_E2 /* max non-default status block */
440#define MAX_RSS_CHAINS     16 /* a constant for HW limit */
441#define MAX_MSI_VECTOR     8  /* a constant for HW limit */
442
443#define ILT_NUM_PAGE_ENTRIES 3072
444/*
445 * 57710/11 we use whole table since we have 8 functions.
446 * 57712 we have only 4 functions, but use same size per func, so only half
447 * of the table is used.
448 */
449#define ILT_PER_FUNC        (ILT_NUM_PAGE_ENTRIES / 8)
450#define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
451/*
452 * the phys address is shifted right 12 bits and has an added
453 * 1=valid bit added to the 53rd bit
454 * then since this is a wide register(TM)
455 * we split it into two 32 bit writes
456 */
457#define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
458#define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
459
460/* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
461#define ETH_HLEN                  14
462#define ETH_OVERHEAD              (ETH_HLEN + 8 + 8)
463#define ETH_MIN_PACKET_SIZE       60
464#define ETH_MAX_PACKET_SIZE       ETHERMTU /* 1500 */
465#define ETH_MAX_JUMBO_PACKET_SIZE 9600
466/* TCP with Timestamp Option (32) + IPv6 (40) */
467#define ETH_MAX_TPA_HEADER_SIZE   72
468
469/* max supported alignment is 256 (8 shift) */
470//#define BXE_RX_ALIGN_SHIFT ((CACHE_LINE_SHIFT < 8) ? CACHE_LINE_SHIFT : 8)
471#define BXE_RX_ALIGN_SHIFT 8
472/* FW uses 2 cache lines alignment for start packet and size  */
473#define BXE_FW_RX_ALIGN_START (1 << BXE_RX_ALIGN_SHIFT)
474#define BXE_FW_RX_ALIGN_END   (1 << BXE_RX_ALIGN_SHIFT)
475
476#define BXE_PXP_DRAM_ALIGN (BXE_RX_ALIGN_SHIFT - 5) /* XXX ??? */
477
478struct bxe_bar {
479    struct resource    *resource;
480    int                rid;
481    bus_space_tag_t    tag;
482    bus_space_handle_t handle;
483    vm_offset_t        kva;
484};
485
486struct bxe_intr {
487    struct resource *resource;
488    int             rid;
489    void            *tag;
490};
491
492/* Used to manage DMA allocations. */
493struct bxe_dma {
494    struct bxe_softc  *sc;
495    bus_addr_t        paddr;
496    void              *vaddr;
497    bus_dma_tag_t     tag;
498    bus_dmamap_t      map;
499    bus_dma_segment_t seg;
500    bus_size_t        size;
501    int               nseg;
502    char              msg[32];
503};
504
505/* attn group wiring */
506#define MAX_DYNAMIC_ATTN_GRPS 8
507
508struct attn_route {
509    uint32_t sig[5];
510};
511
512struct iro {
513    uint32_t base;
514    uint16_t m1;
515    uint16_t m2;
516    uint16_t m3;
517    uint16_t size;
518};
519
520union bxe_host_hc_status_block {
521    /* pointer to fp status block e2 */
522    struct host_hc_status_block_e2  *e2_sb;
523    /* pointer to fp status block e1x */
524    struct host_hc_status_block_e1x *e1x_sb;
525};
526
527union bxe_db_prod {
528    struct doorbell_set_prod data;
529    uint32_t                 raw;
530};
531
532struct bxe_sw_tx_bd {
533    struct mbuf  *m;
534    bus_dmamap_t m_map;
535    uint16_t     first_bd;
536    uint8_t      flags;
537/* set on the first BD descriptor when there is a split BD */
538#define BXE_TSO_SPLIT_BD (1 << 0)
539};
540
541struct bxe_sw_rx_bd {
542    struct mbuf  *m;
543    bus_dmamap_t m_map;
544};
545
546struct bxe_sw_tpa_info {
547    struct bxe_sw_rx_bd bd;
548    bus_dma_segment_t   seg;
549    uint8_t             state;
550#define BXE_TPA_STATE_START 1
551#define BXE_TPA_STATE_STOP  2
552    uint8_t             placement_offset;
553    uint16_t            parsing_flags;
554    uint16_t            vlan_tag;
555    uint16_t            len_on_bd;
556};
557
558/*
559 * This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN
560 * instances of the fastpath structure when using multiple queues.
561 */
562struct bxe_fastpath {
563    /* pointer back to parent structure */
564    struct bxe_softc *sc;
565
566    struct mtx tx_mtx;
567    char       tx_mtx_name[32];
568    struct mtx rx_mtx;
569    char       rx_mtx_name[32];
570
571#define BXE_FP_TX_LOCK(fp)        mtx_lock(&fp->tx_mtx)
572#define BXE_FP_TX_UNLOCK(fp)      mtx_unlock(&fp->tx_mtx)
573#define BXE_FP_TX_LOCK_ASSERT(fp) mtx_assert(&fp->tx_mtx, MA_OWNED)
574#define BXE_FP_TX_TRYLOCK(fp)     mtx_trylock(&fp->tx_mtx)
575
576#define BXE_FP_RX_LOCK(fp)        mtx_lock(&fp->rx_mtx)
577#define BXE_FP_RX_UNLOCK(fp)      mtx_unlock(&fp->rx_mtx)
578#define BXE_FP_RX_LOCK_ASSERT(fp) mtx_assert(&fp->rx_mtx, MA_OWNED)
579
580    /* status block */
581    struct bxe_dma                 sb_dma;
582    union bxe_host_hc_status_block status_block;
583
584    /* transmit chain (tx bds) */
585    struct bxe_dma        tx_dma;
586    union eth_tx_bd_types *tx_chain;
587
588    /* receive chain (rx bds) */
589    struct bxe_dma   rx_dma;
590    struct eth_rx_bd *rx_chain;
591
592    /* receive completion queue chain (rcq bds) */
593    struct bxe_dma   rcq_dma;
594    union eth_rx_cqe *rcq_chain;
595
596    /* receive scatter/gather entry chain (for TPA) */
597    struct bxe_dma    rx_sge_dma;
598    struct eth_rx_sge *rx_sge_chain;
599
600    /* tx mbufs */
601    bus_dma_tag_t       tx_mbuf_tag;
602    struct bxe_sw_tx_bd tx_mbuf_chain[TX_BD_TOTAL];
603
604    /* rx mbufs */
605    bus_dma_tag_t       rx_mbuf_tag;
606    struct bxe_sw_rx_bd rx_mbuf_chain[RX_BD_TOTAL];
607    bus_dmamap_t        rx_mbuf_spare_map;
608
609    /* rx sge mbufs */
610    bus_dma_tag_t       rx_sge_mbuf_tag;
611    struct bxe_sw_rx_bd rx_sge_mbuf_chain[RX_SGE_TOTAL];
612    bus_dmamap_t        rx_sge_mbuf_spare_map;
613
614    /* rx tpa mbufs (use the larger size for TPA queue length) */
615    int                    tpa_enable; /* disabled per fastpath upon error */
616    struct bxe_sw_tpa_info rx_tpa_info[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
617    bus_dmamap_t           rx_tpa_info_mbuf_spare_map;
618    uint64_t               rx_tpa_queue_used;
619
620    uint16_t *sb_index_values;
621    uint16_t *sb_running_index;
622    uint32_t ustorm_rx_prods_offset;
623
624    uint8_t igu_sb_id; /* status block number in HW */
625    uint8_t fw_sb_id;  /* status block number in FW */
626
627    uint32_t rx_buf_size;
628    int mbuf_alloc_size;
629
630    int state;
631#define BXE_FP_STATE_CLOSED  0x01
632#define BXE_FP_STATE_IRQ     0x02
633#define BXE_FP_STATE_OPENING 0x04
634#define BXE_FP_STATE_OPEN    0x08
635#define BXE_FP_STATE_HALTING 0x10
636#define BXE_FP_STATE_HALTED  0x20
637
638    /* reference back to this fastpath queue number */
639    uint8_t index; /* this is also the 'cid' */
640#define FP_IDX(fp) (fp->index)
641
642    /* interrupt taskqueue (fast) */
643    struct task      tq_task;
644    struct taskqueue *tq;
645    char             tq_name[32];
646
647    /* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */
648    uint8_t cl_id;
649#define FP_CL_ID(fp) (fp->cl_id)
650    uint8_t cl_qzone_id;
651
652    uint16_t fp_hc_idx;
653
654    /* driver copy of the receive buffer descriptor prod/cons indices */
655    uint16_t rx_bd_prod;
656    uint16_t rx_bd_cons;
657
658    /* driver copy of the receive completion queue prod/cons indices */
659    uint16_t rx_cq_prod;
660    uint16_t rx_cq_cons;
661
662    union bxe_db_prod tx_db;
663
664    /* Transmit packet producer index (used in eth_tx_bd). */
665    uint16_t tx_pkt_prod;
666    uint16_t tx_pkt_cons;
667
668    /* Transmit buffer descriptor producer index. */
669    uint16_t tx_bd_prod;
670    uint16_t tx_bd_cons;
671
672    uint64_t sge_mask[RX_SGE_MASK_LEN];
673    uint16_t rx_sge_prod;
674
675    struct tstorm_per_queue_stats old_tclient;
676    struct ustorm_per_queue_stats old_uclient;
677    struct xstorm_per_queue_stats old_xclient;
678    struct bxe_eth_q_stats        eth_q_stats;
679    struct bxe_eth_q_stats_old    eth_q_stats_old;
680
681    /* Pointer to the receive consumer in the status block */
682    uint16_t *rx_cq_cons_sb;
683
684    /* Pointer to the transmit consumer in the status block */
685    uint16_t *tx_cons_sb;
686
687    /* transmit timeout until chip reset */
688    int watchdog_timer;
689
690    /* Free/used buffer descriptor counters. */
691    //uint16_t used_tx_bd;
692
693    /* Last maximal completed SGE */
694    uint16_t last_max_sge;
695
696    //uint16_t rx_sge_free_idx;
697
698    //uint8_t segs;
699
700#if __FreeBSD_version >= 800000
701#define BXE_BR_SIZE 4096
702    struct buf_ring *tx_br;
703#endif
704}; /* struct bxe_fastpath */
705
706/* sriov XXX */
707#define BXE_MAX_NUM_OF_VFS 64
708#define BXE_VF_CID_WND     0
709#define BXE_CIDS_PER_VF    (1 << BXE_VF_CID_WND)
710#define BXE_CLIENTS_PER_VF 1
711#define BXE_FIRST_VF_CID   256
712#define BXE_VF_CIDS        (BXE_MAX_NUM_OF_VFS * BXE_CIDS_PER_VF)
713#define BXE_VF_ID_INVALID  0xFF
714#define IS_SRIOV(sc) 0
715
716#define GET_NUM_VFS_PER_PATH(sc) 0
717#define GET_NUM_VFS_PER_PF(sc)   0
718
719/* maximum number of fast-path interrupt contexts */
720#define FP_SB_MAX_E1x 16
721#define FP_SB_MAX_E2  HC_SB_MAX_SB_E2
722
723union cdu_context {
724    struct eth_context eth;
725    char pad[1024];
726};
727
728/* CDU host DB constants */
729#define CDU_ILT_PAGE_SZ_HW 2
730#define CDU_ILT_PAGE_SZ    (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
731#define ILT_PAGE_CIDS      (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
732
733#define CNIC_ISCSI_CID_MAX 256
734#define CNIC_FCOE_CID_MAX  2048
735#define CNIC_CID_MAX       (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
736#define CNIC_ILT_LINES     DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
737
738#define QM_ILT_PAGE_SZ_HW  0
739#define QM_ILT_PAGE_SZ     (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
740#define QM_CID_ROUND       1024
741
742/* TM (timers) host DB constants */
743#define TM_ILT_PAGE_SZ_HW  0
744#define TM_ILT_PAGE_SZ     (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
745/*#define TM_CONN_NUM        (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
746#define TM_CONN_NUM        1024
747#define TM_ILT_SZ          (8 * TM_CONN_NUM)
748#define TM_ILT_LINES       DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
749
750/* SRC (Searcher) host DB constants */
751#define SRC_ILT_PAGE_SZ_HW 0
752#define SRC_ILT_PAGE_SZ    (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
753#define SRC_HASH_BITS      10
754#define SRC_CONN_NUM       (1 << SRC_HASH_BITS) /* 1024 */
755#define SRC_ILT_SZ         (sizeof(struct src_ent) * SRC_CONN_NUM)
756#define SRC_T2_SZ          SRC_ILT_SZ
757#define SRC_ILT_LINES      DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
758
759struct hw_context {
760    struct bxe_dma    vcxt_dma;
761    union cdu_context *vcxt;
762    //bus_addr_t        cxt_mapping;
763    size_t            size;
764};
765
766#define SM_RX_ID 0
767#define SM_TX_ID 1
768
769/* defines for multiple tx priority indices */
770#define FIRST_TX_ONLY_COS_INDEX 1
771#define FIRST_TX_COS_INDEX      0
772
773#define CID_TO_FP(cid, sc) ((cid) % BXE_NUM_NON_CNIC_QUEUES(sc))
774
775#define HC_INDEX_ETH_RX_CQ_CONS       1
776#define HC_INDEX_OOO_TX_CQ_CONS       4
777#define HC_INDEX_ETH_TX_CQ_CONS_COS0  5
778#define HC_INDEX_ETH_TX_CQ_CONS_COS1  6
779#define HC_INDEX_ETH_TX_CQ_CONS_COS2  7
780#define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
781
782/* congestion management fairness mode */
783#define CMNG_FNS_NONE   0
784#define CMNG_FNS_MINMAX 1
785
786/* CMNG constants, as derived from system spec calculations */
787/* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
788#define DEF_MIN_RATE 100
789/* resolution of the rate shaping timer - 400 usec */
790#define RS_PERIODIC_TIMEOUT_USEC 400
791/* number of bytes in single QM arbitration cycle -
792 * coefficient for calculating the fairness timer */
793#define QM_ARB_BYTES 160000
794/* resolution of Min algorithm 1:100 */
795#define MIN_RES 100
796/* how many bytes above threshold for the minimal credit of Min algorithm*/
797#define MIN_ABOVE_THRESH 32768
798/* fairness algorithm integration time coefficient -
799 * for calculating the actual Tfair */
800#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
801/* memory of fairness algorithm - 2 cycles */
802#define FAIR_MEM 2
803
804#define HC_SEG_ACCESS_DEF   0 /* Driver decision 0-3 */
805#define HC_SEG_ACCESS_ATTN  4
806#define HC_SEG_ACCESS_NORM  0 /* Driver decision 0-1 */
807
808/*
809 * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
810 * control by the number of fast-path status blocks supported by the
811 * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
812 * status block represents an independent interrupts context that can
813 * serve a regular L2 networking queue. However special L2 queues such
814 * as the FCoE queue do not require a FP-SB and other components like
815 * the CNIC may consume FP-SB reducing the number of possible L2 queues
816 *
817 * If the maximum number of FP-SB available is X then:
818 * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
819 *    regular L2 queues is Y=X-1
820 * b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
821 * c. If the FCoE L2 queue is supported the actual number of L2 queues
822 *    is Y+1
823 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
824 *    slow-path interrupts) or Y+2 if CNIC is supported (one additional
825 *    FP interrupt context for the CNIC).
826 * e. The number of HW context (CID count) is always X or X+1 if FCoE
827 *    L2 queue is supported. the cid for the FCoE L2 queue is always X.
828 *
829 * So this is quite simple for now as no ULPs are supported yet. :-)
830 */
831#define BXE_NUM_QUEUES(sc)          ((sc)->num_queues)
832#define BXE_NUM_ETH_QUEUES(sc)      BXE_NUM_QUEUES(sc)
833#define BXE_NUM_NON_CNIC_QUEUES(sc) BXE_NUM_QUEUES(sc)
834#define BXE_NUM_RX_QUEUES(sc)       BXE_NUM_QUEUES(sc)
835
836#define FOR_EACH_QUEUE(sc, var)                          \
837    for ((var) = 0; (var) < BXE_NUM_QUEUES(sc); (var)++)
838
839#define FOR_EACH_NONDEFAULT_QUEUE(sc, var)               \
840    for ((var) = 1; (var) < BXE_NUM_QUEUES(sc); (var)++)
841
842#define FOR_EACH_ETH_QUEUE(sc, var)                          \
843    for ((var) = 0; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
844
845#define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var)               \
846    for ((var) = 1; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
847
848#define FOR_EACH_COS_IN_TX_QUEUE(sc, var)           \
849    for ((var) = 0; (var) < (sc)->max_cos; (var)++)
850
851#define FOR_EACH_CNIC_QUEUE(sc, var)     \
852    for ((var) = BXE_NUM_ETH_QUEUES(sc); \
853         (var) < BXE_NUM_QUEUES(sc);     \
854         (var)++)
855
856enum {
857    OOO_IDX_OFFSET,
858    FCOE_IDX_OFFSET,
859    FWD_IDX_OFFSET,
860};
861
862#define FCOE_IDX(sc)              (BXE_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET)
863#define bxe_fcoe_fp(sc)           (&sc->fp[FCOE_IDX(sc)])
864#define bxe_fcoe(sc, var)         (bxe_fcoe_fp(sc)->var)
865#define bxe_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)])
866#define bxe_fcoe_sp_obj(sc, var)  (bxe_fcoe_inner_sp_obj(sc)->var)
867#define bxe_fcoe_tx(sc, var)      (bxe_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var)
868
869#define OOO_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET)
870#define bxe_ooo_fp(sc)            (&sc->fp[OOO_IDX(sc)])
871#define bxe_ooo(sc, var)          (bxe_ooo_fp(sc)->var)
872#define bxe_ooo_inner_sp_obj(sc)  (&sc->sp_objs[OOO_IDX(sc)])
873#define bxe_ooo_sp_obj(sc, var)   (bxe_ooo_inner_sp_obj(sc)->var)
874
875#define FWD_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET)
876#define bxe_fwd_fp(sc)            (&sc->fp[FWD_IDX(sc)])
877#define bxe_fwd(sc, var)          (bxe_fwd_fp(sc)->var)
878#define bxe_fwd_inner_sp_obj(sc)  (&sc->sp_objs[FWD_IDX(sc)])
879#define bxe_fwd_sp_obj(sc, var)   (bxe_fwd_inner_sp_obj(sc)->var)
880#define bxe_fwd_txdata(fp)        (fp->txdata_ptr[FIRST_TX_COS_INDEX])
881
882#define IS_ETH_FP(fp)    ((fp)->index < BXE_NUM_ETH_QUEUES((fp)->sc))
883#define IS_FCOE_FP(fp)   ((fp)->index == FCOE_IDX((fp)->sc))
884#define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc))
885#define IS_FWD_FP(fp)    ((fp)->index == FWD_IDX((fp)->sc))
886#define IS_FWD_IDX(idx)  ((idx) == FWD_IDX(sc))
887#define IS_OOO_FP(fp)    ((fp)->index == OOO_IDX((fp)->sc))
888#define IS_OOO_IDX(idx)  ((idx) == OOO_IDX(sc))
889
890enum {
891    BXE_PORT_QUERY_IDX,
892    BXE_PF_QUERY_IDX,
893    BXE_FCOE_QUERY_IDX,
894    BXE_FIRST_QUEUE_QUERY_IDX,
895};
896
897struct bxe_fw_stats_req {
898    struct stats_query_header hdr;
899    struct stats_query_entry  query[FP_SB_MAX_E1x +
900                                    BXE_FIRST_QUEUE_QUERY_IDX];
901};
902
903struct bxe_fw_stats_data {
904    struct stats_counter          storm_counters;
905    struct per_port_stats         port;
906    struct per_pf_stats           pf;
907    //struct fcoe_statistics_params fcoe;
908    struct per_queue_stats        queue_stats[1];
909};
910
911/* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
912#define BXE_IGU_STAS_MSG_VF_CNT 64
913#define BXE_IGU_STAS_MSG_PF_CNT 4
914
915#define MAX_DMAE_C 8
916
917/*
918 * For the main interface up/down code paths, a not-so-fine-grained CORE
919 * mutex lock is used. Inside this code are various calls to kernel routines
920 * that can cause a sleep to occur. Namely memory allocations and taskqueue
921 * handling. If using an MTX lock we are *not* allowed to sleep but we can
922 * with an SX lock. This define forces the CORE lock to use and SX lock.
923 * Undefine this and an MTX lock will be used instead. Note that the IOCTL
924 * path can cause problems since it's called by a non-sleepable thread. To
925 * alleviate a potential sleep, any IOCTL processing that results in the
926 * chip/interface being started/stopped/reinitialized, the actual work is
927 * offloaded to a taskqueue.
928 */
929#define BXE_CORE_LOCK_SX
930
931/*
932 * This is the slowpath data structure. It is mapped into non-paged memory
933 * so that the hardware can access it's contents directly and must be page
934 * aligned.
935 */
936struct bxe_slowpath {
937
938    /* used by the DMAE command executer */
939    struct dmae_cmd dmae[MAX_DMAE_C];
940
941    /* statistics completion */
942    uint32_t stats_comp;
943
944    /* firmware defined statistics blocks */
945    union mac_stats        mac_stats;
946    struct nig_stats       nig_stats;
947    struct host_port_stats port_stats;
948    struct host_func_stats func_stats;
949    //struct host_func_stats func_stats_base;
950
951    /* DMAE completion value and data source/sink */
952    uint32_t wb_comp;
953    uint32_t wb_data[4];
954
955    union {
956        struct mac_configuration_cmd          e1x;
957        struct eth_classify_rules_ramrod_data e2;
958    } mac_rdata;
959
960    union {
961        struct tstorm_eth_mac_filter_config e1x;
962        struct eth_filter_rules_ramrod_data e2;
963    } rx_mode_rdata;
964
965    struct eth_rss_update_ramrod_data rss_rdata;
966
967    union {
968        struct mac_configuration_cmd           e1;
969        struct eth_multicast_rules_ramrod_data e2;
970    } mcast_rdata;
971
972    union {
973        struct function_start_data        func_start;
974        struct flow_control_configuration pfc_config; /* for DCBX ramrod */
975    } func_rdata;
976
977    /* Queue State related ramrods */
978    union {
979        struct client_init_ramrod_data   init_data;
980        struct client_update_ramrod_data update_data;
981    } q_rdata;
982
983    /*
984     * AFEX ramrod can not be a part of func_rdata union because these
985     * events might arrive in parallel to other events from func_rdata.
986     * If they were defined in the same union the data can get corrupted.
987     */
988    struct afex_vif_list_ramrod_data func_afex_rdata;
989
990    union drv_info_to_mcp drv_info_to_mcp;
991}; /* struct bxe_slowpath */
992
993/*
994 * Port specifc data structure.
995 */
996struct bxe_port {
997    /*
998     * Port Management Function (for 57711E only).
999     * When this field is set the driver instance is
1000     * responsible for managing port specifc
1001     * configurations such as handling link attentions.
1002     */
1003    uint32_t pmf;
1004
1005    /* Ethernet maximum transmission unit. */
1006    uint16_t ether_mtu;
1007
1008    uint32_t link_config[ELINK_LINK_CONFIG_SIZE];
1009
1010    uint32_t ext_phy_config;
1011
1012    /* Port feature config.*/
1013    uint32_t config;
1014
1015    /* Defines the features supported by the PHY. */
1016    uint32_t supported[ELINK_LINK_CONFIG_SIZE];
1017
1018    /* Defines the features advertised by the PHY. */
1019    uint32_t advertising[ELINK_LINK_CONFIG_SIZE];
1020#define ADVERTISED_10baseT_Half    (1 << 1)
1021#define ADVERTISED_10baseT_Full    (1 << 2)
1022#define ADVERTISED_100baseT_Half   (1 << 3)
1023#define ADVERTISED_100baseT_Full   (1 << 4)
1024#define ADVERTISED_1000baseT_Half  (1 << 5)
1025#define ADVERTISED_1000baseT_Full  (1 << 6)
1026#define ADVERTISED_TP              (1 << 7)
1027#define ADVERTISED_FIBRE           (1 << 8)
1028#define ADVERTISED_Autoneg         (1 << 9)
1029#define ADVERTISED_Asym_Pause      (1 << 10)
1030#define ADVERTISED_Pause           (1 << 11)
1031#define ADVERTISED_2500baseX_Full  (1 << 15)
1032#define ADVERTISED_10000baseT_Full (1 << 16)
1033
1034    uint32_t    phy_addr;
1035
1036    /* Used to synchronize phy accesses. */
1037    struct mtx  phy_mtx;
1038    char        phy_mtx_name[32];
1039
1040#define BXE_PHY_LOCK(sc)          mtx_lock(&sc->port.phy_mtx)
1041#define BXE_PHY_UNLOCK(sc)        mtx_unlock(&sc->port.phy_mtx)
1042#define BXE_PHY_LOCK_ASSERT(sc)   mtx_assert(&sc->port.phy_mtx, MA_OWNED)
1043
1044    /*
1045     * MCP scratchpad address for port specific statistics.
1046     * The device is responsible for writing statistcss
1047     * back to the MCP for use with management firmware such
1048     * as UMP/NC-SI.
1049     */
1050    uint32_t port_stx;
1051
1052    struct nig_stats old_nig_stats;
1053}; /* struct bxe_port */
1054
1055struct bxe_mf_info {
1056    uint32_t mf_config[E1HVN_MAX];
1057
1058    uint32_t vnics_per_port;   /* 1, 2 or 4 */
1059    uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */
1060    uint32_t path_has_ovlan;   /* MF mode in the path (can be different than the MF mode of the function */
1061
1062#define IS_MULTI_VNIC(sc)  ((sc)->devinfo.mf_info.multi_vnics_mode)
1063#define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port)
1064#define VNICS_PER_PATH(sc)                                  \
1065    ((sc)->devinfo.mf_info.vnics_per_port *                 \
1066     ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 ))
1067
1068    uint8_t min_bw[MAX_VNIC_NUM];
1069    uint8_t max_bw[MAX_VNIC_NUM];
1070
1071    uint16_t ext_id; /* vnic outer vlan or VIF ID */
1072#define VALID_OVLAN(ovlan) ((ovlan) <= 4096)
1073#define INVALID_VIF_ID 0xFFFF
1074#define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id)
1075#define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id)
1076
1077    uint16_t default_vlan;
1078#define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan)
1079
1080    uint8_t niv_allowed_priorities;
1081#define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities)
1082
1083    uint8_t niv_default_cos;
1084#define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos)
1085
1086    uint8_t niv_mba_enabled;
1087
1088    enum mf_cfg_afex_vlan_mode afex_vlan_mode;
1089#define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode)
1090    int                        afex_def_vlan_tag;
1091    uint32_t                   pending_max;
1092
1093    uint16_t flags;
1094#define MF_INFO_VALID_MAC       0x0001
1095
1096    uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */
1097#define IS_MF(sc)                        \
1098    (IS_MULTI_VNIC(sc) &&                \
1099     ((sc)->devinfo.mf_info.mf_mode != 0))
1100#define IS_MF_SD(sc)                                     \
1101    (IS_MULTI_VNIC(sc) &&                                \
1102     ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD))
1103#define IS_MF_SI(sc)                                     \
1104    (IS_MULTI_VNIC(sc) &&                                \
1105     ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI))
1106#define IS_MF_AFEX(sc)                              \
1107    (IS_MULTI_VNIC(sc) &&                           \
1108     ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX))
1109#define IS_MF_SD_MODE(sc)   IS_MF_SD(sc)
1110#define IS_MF_SI_MODE(sc)   IS_MF_SI(sc)
1111#define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc)
1112
1113    uint32_t mf_protos_supported;
1114    #define MF_PROTO_SUPPORT_ETHERNET 0x1
1115    #define MF_PROTO_SUPPORT_ISCSI    0x2
1116    #define MF_PROTO_SUPPORT_FCOE     0x4
1117}; /* struct bxe_mf_info */
1118
1119/* Device information data structure. */
1120struct bxe_devinfo {
1121    /* PCIe info */
1122    uint16_t vendor_id;
1123    uint16_t device_id;
1124    uint16_t subvendor_id;
1125    uint16_t subdevice_id;
1126
1127    /*
1128     * chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB'
1129     *   C = Chip Number   (bits 16-31)
1130     *   R = Chip Revision (bits 12-15)
1131     *   M = Chip Metal    (bits 4-11)
1132     *   B = Chip Bond ID  (bits 0-3)
1133     */
1134    uint32_t chip_id;
1135#define CHIP_ID(sc)           ((sc)->devinfo.chip_id & 0xffff0000)
1136#define CHIP_NUM(sc)          ((sc)->devinfo.chip_id >> 16)
1137/* device ids */
1138#define CHIP_NUM_57710        0x164e
1139#define CHIP_NUM_57711        0x164f
1140#define CHIP_NUM_57711E       0x1650
1141#define CHIP_NUM_57712        0x1662
1142#define CHIP_NUM_57712_MF     0x1663
1143#define CHIP_NUM_57712_VF     0x166f
1144#define CHIP_NUM_57800        0x168a
1145#define CHIP_NUM_57800_MF     0x16a5
1146#define CHIP_NUM_57800_VF     0x16a9
1147#define CHIP_NUM_57810        0x168e
1148#define CHIP_NUM_57810_MF     0x16ae
1149#define CHIP_NUM_57810_VF     0x16af
1150#define CHIP_NUM_57811        0x163d
1151#define CHIP_NUM_57811_MF     0x163e
1152#define CHIP_NUM_57811_VF     0x163f
1153#define CHIP_NUM_57840_OBS    0x168d
1154#define CHIP_NUM_57840_OBS_MF 0x16ab
1155#define CHIP_NUM_57840_4_10   0x16a1
1156#define CHIP_NUM_57840_2_20   0x16a2
1157#define CHIP_NUM_57840_MF     0x16a4
1158#define CHIP_NUM_57840_VF     0x16ad
1159
1160#define CHIP_REV_SHIFT      12
1161#define CHIP_REV_MASK       (0xF << CHIP_REV_SHIFT)
1162#define CHIP_REV(sc)        ((sc)->devinfo.chip_id & CHIP_REV_MASK)
1163
1164#define CHIP_REV_Ax         (0x0 << CHIP_REV_SHIFT)
1165#define CHIP_REV_Bx         (0x1 << CHIP_REV_SHIFT)
1166#define CHIP_REV_Cx         (0x2 << CHIP_REV_SHIFT)
1167
1168#define CHIP_REV_IS_SLOW(sc)    \
1169    (CHIP_REV(sc) > 0x00005000)
1170#define CHIP_REV_IS_FPGA(sc)                              \
1171    (CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000))
1172#define CHIP_REV_IS_EMUL(sc)                               \
1173    (CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000))
1174#define CHIP_REV_IS_ASIC(sc) \
1175    (!CHIP_REV_IS_SLOW(sc))
1176
1177#define CHIP_METAL(sc)      ((sc->devinfo.chip_id) & 0x00000ff0)
1178#define CHIP_BOND_ID(sc)    ((sc->devinfo.chip_id) & 0x0000000f)
1179
1180#define CHIP_IS_E1(sc)      (CHIP_NUM(sc) == CHIP_NUM_57710)
1181#define CHIP_IS_57710(sc)   (CHIP_NUM(sc) == CHIP_NUM_57710)
1182#define CHIP_IS_57711(sc)   (CHIP_NUM(sc) == CHIP_NUM_57711)
1183#define CHIP_IS_57711E(sc)  (CHIP_NUM(sc) == CHIP_NUM_57711E)
1184#define CHIP_IS_E1H(sc)     ((CHIP_IS_57711(sc)) || \
1185                             (CHIP_IS_57711E(sc)))
1186#define CHIP_IS_E1x(sc)     (CHIP_IS_E1((sc)) || \
1187                             CHIP_IS_E1H((sc)))
1188
1189#define CHIP_IS_57712(sc)    (CHIP_NUM(sc) == CHIP_NUM_57712)
1190#define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF)
1191#define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF)
1192#define CHIP_IS_E2(sc)       (CHIP_IS_57712(sc) ||  \
1193                              CHIP_IS_57712_MF(sc))
1194
1195#define CHIP_IS_57800(sc)    (CHIP_NUM(sc) == CHIP_NUM_57800)
1196#define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF)
1197#define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF)
1198#define CHIP_IS_57810(sc)    (CHIP_NUM(sc) == CHIP_NUM_57810)
1199#define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF)
1200#define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF)
1201#define CHIP_IS_57811(sc)    (CHIP_NUM(sc) == CHIP_NUM_57811)
1202#define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF)
1203#define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF)
1204#define CHIP_IS_57840(sc)    ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS)  || \
1205                              (CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \
1206                              (CHIP_NUM(sc) == CHIP_NUM_57840_2_20))
1207#define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \
1208                              (CHIP_NUM(sc) == CHIP_NUM_57840_MF))
1209#define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF)
1210
1211#define CHIP_IS_E3(sc)      (CHIP_IS_57800(sc)    || \
1212                             CHIP_IS_57800_MF(sc) || \
1213                             CHIP_IS_57800_VF(sc) || \
1214                             CHIP_IS_57810(sc)    || \
1215                             CHIP_IS_57810_MF(sc) || \
1216                             CHIP_IS_57810_VF(sc) || \
1217                             CHIP_IS_57811(sc)    || \
1218                             CHIP_IS_57811_MF(sc) || \
1219                             CHIP_IS_57811_VF(sc) || \
1220                             CHIP_IS_57840(sc)    || \
1221                             CHIP_IS_57840_MF(sc) || \
1222                             CHIP_IS_57840_VF(sc))
1223#define CHIP_IS_E3A0(sc)    (CHIP_IS_E3(sc) &&              \
1224                             (CHIP_REV(sc) == CHIP_REV_Ax))
1225#define CHIP_IS_E3B0(sc)    (CHIP_IS_E3(sc) &&              \
1226                             (CHIP_REV(sc) == CHIP_REV_Bx))
1227
1228#define USES_WARPCORE(sc)   (CHIP_IS_E3(sc))
1229#define CHIP_IS_E2E3(sc)    (CHIP_IS_E2(sc) || \
1230                             CHIP_IS_E3(sc))
1231
1232#define CHIP_IS_MF_CAP(sc)  (CHIP_IS_57711E(sc)  ||  \
1233                             CHIP_IS_57712_MF(sc) || \
1234                             CHIP_IS_E3(sc))
1235
1236#define IS_VF(sc)           (CHIP_IS_57712_VF(sc) || \
1237                             CHIP_IS_57800_VF(sc) || \
1238                             CHIP_IS_57810_VF(sc) || \
1239                             CHIP_IS_57840_VF(sc))
1240#define IS_PF(sc)           (!IS_VF(sc))
1241
1242/*
1243 * This define is used in two main places:
1244 * 1. In the early stages of nic_load, to know if to configure Parser/Searcher
1245 * to nic-only mode or to offload mode. Offload mode is configured if either
1246 * the chip is E1x (where NIC_MODE register is not applicable), or if cnic
1247 * already registered for this port (which means that the user wants storage
1248 * services).
1249 * 2. During cnic-related load, to know if offload mode is already configured
1250 * in the HW or needs to be configrued. Since the transition from nic-mode to
1251 * offload-mode in HW causes traffic coruption, nic-mode is configured only
1252 * in ports on which storage services where never requested.
1253 */
1254#define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc))
1255
1256    uint8_t  chip_port_mode;
1257#define CHIP_4_PORT_MODE        0x0
1258#define CHIP_2_PORT_MODE        0x1
1259#define CHIP_PORT_MODE_NONE     0x2
1260#define CHIP_PORT_MODE(sc)      ((sc)->devinfo.chip_port_mode)
1261#define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE)
1262
1263    uint8_t int_block;
1264#define INT_BLOCK_HC            0
1265#define INT_BLOCK_IGU           1
1266#define INT_BLOCK_MODE_NORMAL   0
1267#define INT_BLOCK_MODE_BW_COMP  2
1268#define CHIP_INT_MODE_IS_NBC(sc)                          \
1269    (!CHIP_IS_E1x(sc) &&                                  \
1270     !((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP))
1271#define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc))
1272
1273    uint32_t shmem_base;
1274    uint32_t shmem2_base;
1275    uint32_t bc_ver;
1276    char bc_ver_str[32];
1277    uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */
1278    struct bxe_mf_info mf_info;
1279
1280    int flash_size;
1281#define NVRAM_1MB_SIZE      0x20000
1282#define NVRAM_TIMEOUT_COUNT 30000
1283#define NVRAM_PAGE_SIZE     256
1284
1285    /* PCIe capability information */
1286    uint32_t pcie_cap_flags;
1287#define BXE_PM_CAPABLE_FLAG     0x00000001
1288#define BXE_PCIE_CAPABLE_FLAG   0x00000002
1289#define BXE_MSI_CAPABLE_FLAG    0x00000004
1290#define BXE_MSIX_CAPABLE_FLAG   0x00000008
1291    uint16_t pcie_pm_cap_reg;
1292    uint16_t pcie_pcie_cap_reg;
1293    //uint16_t pcie_devctl;
1294    uint16_t pcie_link_width;
1295    uint16_t pcie_link_speed;
1296    uint16_t pcie_msi_cap_reg;
1297    uint16_t pcie_msix_cap_reg;
1298
1299    /* device configuration read from bootcode shared memory */
1300    uint32_t hw_config;
1301    uint32_t hw_config2;
1302}; /* struct bxe_devinfo */
1303
1304struct bxe_sp_objs {
1305    struct ecore_vlan_mac_obj mac_obj; /* MACs object */
1306    struct ecore_queue_sp_obj q_obj; /* Queue State object */
1307}; /* struct bxe_sp_objs */
1308
1309/*
1310 * Data that will be used to create a link report message. We will keep the
1311 * data used for the last link report in order to prevent reporting the same
1312 * link parameters twice.
1313 */
1314struct bxe_link_report_data {
1315    uint16_t      line_speed;        /* Effective line speed */
1316    unsigned long link_report_flags; /* BXE_LINK_REPORT_XXX flags */
1317};
1318enum {
1319    BXE_LINK_REPORT_FULL_DUPLEX,
1320    BXE_LINK_REPORT_LINK_DOWN,
1321    BXE_LINK_REPORT_RX_FC_ON,
1322    BXE_LINK_REPORT_TX_FC_ON
1323};
1324
1325/* Top level device private data structure. */
1326struct bxe_softc {
1327    /*
1328     * First entry must be a pointer to the BSD ifnet struct which
1329     * has a first element of 'void *if_softc' (which is us). XXX
1330     */
1331    if_t 	    ifp;
1332    struct ifmedia  ifmedia; /* network interface media structure */
1333    int             media;
1334
1335    int             state; /* device state */
1336#define BXE_STATE_CLOSED                 0x0000
1337#define BXE_STATE_OPENING_WAITING_LOAD   0x1000
1338#define BXE_STATE_OPENING_WAITING_PORT   0x2000
1339#define BXE_STATE_OPEN                   0x3000
1340#define BXE_STATE_CLOSING_WAITING_HALT   0x4000
1341#define BXE_STATE_CLOSING_WAITING_DELETE 0x5000
1342#define BXE_STATE_CLOSING_WAITING_UNLOAD 0x6000
1343#define BXE_STATE_DISABLED               0xD000
1344#define BXE_STATE_DIAG                   0xE000
1345#define BXE_STATE_ERROR                  0xF000
1346
1347    int flags;
1348#define BXE_ONE_PORT_FLAG    0x00000001
1349#define BXE_NO_ISCSI         0x00000002
1350#define BXE_NO_FCOE          0x00000004
1351#define BXE_ONE_PORT(sc)     (sc->flags & BXE_ONE_PORT_FLAG)
1352//#define BXE_NO_WOL_FLAG      0x00000008
1353//#define BXE_USING_DAC_FLAG   0x00000010
1354//#define BXE_USING_MSIX_FLAG  0x00000020
1355//#define BXE_USING_MSI_FLAG   0x00000040
1356//#define BXE_DISABLE_MSI_FLAG 0x00000080
1357#define BXE_NO_MCP_FLAG      0x00000200
1358#define BXE_NOMCP(sc)        (sc->flags & BXE_NO_MCP_FLAG)
1359//#define BXE_SAFC_TX_FLAG     0x00000400
1360#define BXE_MF_FUNC_DIS      0x00000800
1361#define BXE_TX_SWITCHING     0x00001000
1362#define BXE_NO_PULSE	     0x00002000
1363
1364    unsigned long debug; /* per-instance debug logging config */
1365
1366#define MAX_BARS 5
1367    struct bxe_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */
1368
1369    uint16_t doorbell_size;
1370
1371    /* periodic timer callout */
1372#define PERIODIC_STOP 0
1373#define PERIODIC_GO   1
1374    volatile unsigned long periodic_flags;
1375    struct callout         periodic_callout;
1376
1377    /* chip start/stop/reset taskqueue */
1378#define CHIP_TQ_NONE   0
1379#define CHIP_TQ_START  1
1380#define CHIP_TQ_STOP   2
1381#define CHIP_TQ_REINIT 3
1382    volatile unsigned long chip_tq_flags;
1383    struct task            chip_tq_task;
1384    struct taskqueue       *chip_tq;
1385    char                   chip_tq_name[32];
1386
1387    /* slowpath interrupt taskqueue */
1388    struct task      sp_tq_task;
1389    struct taskqueue *sp_tq;
1390    char             sp_tq_name[32];
1391
1392    struct bxe_fastpath fp[MAX_RSS_CHAINS];
1393    struct bxe_sp_objs  sp_objs[MAX_RSS_CHAINS];
1394
1395    device_t dev;  /* parent device handle */
1396    uint8_t  unit; /* driver instance number */
1397
1398    int pcie_bus;    /* PCIe bus number */
1399    int pcie_device; /* PCIe device/slot number */
1400    int pcie_func;   /* PCIe function number */
1401
1402    uint8_t pfunc_rel; /* function relative */
1403    uint8_t pfunc_abs; /* function absolute */
1404    uint8_t path_id;   /* function absolute */
1405#define SC_PATH(sc)     (sc->path_id)
1406#define SC_PORT(sc)     (sc->pfunc_rel & 1)
1407#define SC_FUNC(sc)     (sc->pfunc_rel)
1408#define SC_ABS_FUNC(sc) (sc->pfunc_abs)
1409#define SC_VN(sc)       (sc->pfunc_rel >> 1)
1410#define SC_L_ID(sc)     (SC_VN(sc) << 2)
1411#define PORT_ID(sc)     SC_PORT(sc)
1412#define PATH_ID(sc)     SC_PATH(sc)
1413#define VNIC_ID(sc)     SC_VN(sc)
1414#define FUNC_ID(sc)     SC_FUNC(sc)
1415#define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc)
1416#define SC_FW_MB_IDX_VN(sc, vn)                                \
1417    (SC_PORT(sc) + (vn) *                                      \
1418     ((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1))
1419#define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc))
1420
1421    int if_capen; /* enabled interface capabilities */
1422
1423    struct bxe_devinfo devinfo;
1424    char fw_ver_str[32];
1425    char mf_mode_str[32];
1426    char pci_link_str[32];
1427
1428    const struct iro *iro_array;
1429
1430#ifdef BXE_CORE_LOCK_SX
1431    struct sx      core_sx;
1432    char           core_sx_name[32];
1433#else
1434    struct mtx     core_mtx;
1435    char           core_mtx_name[32];
1436#endif
1437    struct mtx     sp_mtx;
1438    char           sp_mtx_name[32];
1439    struct mtx     dmae_mtx;
1440    char           dmae_mtx_name[32];
1441    struct mtx     fwmb_mtx;
1442    char           fwmb_mtx_name[32];
1443    struct mtx     print_mtx;
1444    char           print_mtx_name[32];
1445    struct mtx     stats_mtx;
1446    char           stats_mtx_name[32];
1447    struct mtx     mcast_mtx;
1448    char           mcast_mtx_name[32];
1449
1450#ifdef BXE_CORE_LOCK_SX
1451#define BXE_CORE_TRYLOCK(sc)      sx_try_xlock(&sc->core_sx)
1452#define BXE_CORE_LOCK(sc)         sx_xlock(&sc->core_sx)
1453#define BXE_CORE_UNLOCK(sc)       sx_xunlock(&sc->core_sx)
1454#define BXE_CORE_LOCK_ASSERT(sc)  sx_assert(&sc->core_sx, SA_XLOCKED)
1455#else
1456#define BXE_CORE_TRYLOCK(sc)      mtx_trylock(&sc->core_mtx)
1457#define BXE_CORE_LOCK(sc)         mtx_lock(&sc->core_mtx)
1458#define BXE_CORE_UNLOCK(sc)       mtx_unlock(&sc->core_mtx)
1459#define BXE_CORE_LOCK_ASSERT(sc)  mtx_assert(&sc->core_mtx, MA_OWNED)
1460#endif
1461
1462#define BXE_SP_LOCK(sc)           mtx_lock(&sc->sp_mtx)
1463#define BXE_SP_UNLOCK(sc)         mtx_unlock(&sc->sp_mtx)
1464#define BXE_SP_LOCK_ASSERT(sc)    mtx_assert(&sc->sp_mtx, MA_OWNED)
1465
1466#define BXE_DMAE_LOCK(sc)         mtx_lock(&sc->dmae_mtx)
1467#define BXE_DMAE_UNLOCK(sc)       mtx_unlock(&sc->dmae_mtx)
1468#define BXE_DMAE_LOCK_ASSERT(sc)  mtx_assert(&sc->dmae_mtx, MA_OWNED)
1469
1470#define BXE_FWMB_LOCK(sc)         mtx_lock(&sc->fwmb_mtx)
1471#define BXE_FWMB_UNLOCK(sc)       mtx_unlock(&sc->fwmb_mtx)
1472#define BXE_FWMB_LOCK_ASSERT(sc)  mtx_assert(&sc->fwmb_mtx, MA_OWNED)
1473
1474#define BXE_PRINT_LOCK(sc)        mtx_lock(&sc->print_mtx)
1475#define BXE_PRINT_UNLOCK(sc)      mtx_unlock(&sc->print_mtx)
1476#define BXE_PRINT_LOCK_ASSERT(sc) mtx_assert(&sc->print_mtx, MA_OWNED)
1477
1478#define BXE_STATS_LOCK(sc)        mtx_lock(&sc->stats_mtx)
1479#define BXE_STATS_UNLOCK(sc)      mtx_unlock(&sc->stats_mtx)
1480#define BXE_STATS_LOCK_ASSERT(sc) mtx_assert(&sc->stats_mtx, MA_OWNED)
1481
1482#if __FreeBSD_version < 800000
1483#define BXE_MCAST_LOCK(sc)        \
1484    do {                          \
1485        mtx_lock(&sc->mcast_mtx); \
1486        IF_ADDR_LOCK(sc->ifp);  \
1487    } while (0)
1488#define BXE_MCAST_UNLOCK(sc)        \
1489    do {                            \
1490        IF_ADDR_UNLOCK(sc->ifp);  \
1491        mtx_unlock(&sc->mcast_mtx); \
1492    } while (0)
1493#else
1494#define BXE_MCAST_LOCK(sc)         \
1495    do {                           \
1496        mtx_lock(&sc->mcast_mtx);  \
1497        if_maddr_rlock(sc->ifp); \
1498    } while (0)
1499#define BXE_MCAST_UNLOCK(sc)         \
1500    do {                             \
1501        if_maddr_runlock(sc->ifp); \
1502        mtx_unlock(&sc->mcast_mtx);  \
1503    } while (0)
1504#endif
1505#define BXE_MCAST_LOCK_ASSERT(sc) mtx_assert(&sc->mcast_mtx, MA_OWNED)
1506
1507    int dmae_ready;
1508#define DMAE_READY(sc) (sc->dmae_ready)
1509
1510    struct ecore_credit_pool_obj vlans_pool;
1511    struct ecore_credit_pool_obj macs_pool;
1512    struct ecore_rx_mode_obj     rx_mode_obj;
1513    struct ecore_mcast_obj       mcast_obj;
1514    struct ecore_rss_config_obj  rss_conf_obj;
1515    struct ecore_func_sp_obj     func_obj;
1516
1517    uint16_t fw_seq;
1518    uint16_t fw_drv_pulse_wr_seq;
1519    uint32_t func_stx;
1520
1521    struct elink_params         link_params;
1522    struct elink_vars           link_vars;
1523    uint32_t                    link_cnt;
1524    struct bxe_link_report_data last_reported_link;
1525    char mac_addr_str[32];
1526
1527    int last_reported_link_state;
1528
1529    int tx_ring_size;
1530    int rx_ring_size;
1531    int wol;
1532
1533    int is_leader;
1534    int recovery_state;
1535#define BXE_RECOVERY_DONE        1
1536#define BXE_RECOVERY_INIT        2
1537#define BXE_RECOVERY_WAIT        3
1538#define BXE_RECOVERY_FAILED      4
1539#define BXE_RECOVERY_NIC_LOADING 5
1540
1541    uint32_t rx_mode;
1542#define BXE_RX_MODE_NONE     0
1543#define BXE_RX_MODE_NORMAL   1
1544#define BXE_RX_MODE_ALLMULTI 2
1545#define BXE_RX_MODE_PROMISC  3
1546#define BXE_MAX_MULTICAST    64
1547
1548    struct bxe_port port;
1549
1550    struct cmng_init cmng;
1551
1552    /* user configs */
1553    int      num_queues;
1554    int      max_rx_bufs;
1555    int      hc_rx_ticks;
1556    int      hc_tx_ticks;
1557    int      rx_budget;
1558    int      max_aggregation_size;
1559    int      mrrs;
1560    int      autogreeen;
1561#define AUTO_GREEN_HW_DEFAULT 0
1562#define AUTO_GREEN_FORCE_ON   1
1563#define AUTO_GREEN_FORCE_OFF  2
1564    int      interrupt_mode;
1565#define INTR_MODE_INTX 0
1566#define INTR_MODE_MSI  1
1567#define INTR_MODE_MSIX 2
1568    int      udp_rss;
1569
1570    /* interrupt allocations */
1571    struct bxe_intr intr[MAX_RSS_CHAINS+1];
1572    int             intr_count;
1573    uint8_t         igu_dsb_id;
1574    uint8_t         igu_base_sb;
1575    uint8_t         igu_sb_cnt;
1576    //uint8_t         min_msix_vec_cnt;
1577    uint32_t        igu_base_addr;
1578    //bus_addr_t      def_status_blk_mapping;
1579    uint8_t         base_fw_ndsb;
1580#define DEF_SB_IGU_ID 16
1581#define DEF_SB_ID     HC_SP_SB_ID
1582
1583    /* parent bus DMA tag  */
1584    bus_dma_tag_t parent_dma_tag;
1585
1586    /* default status block */
1587    struct bxe_dma              def_sb_dma;
1588    struct host_sp_status_block *def_sb;
1589    uint16_t                    def_idx;
1590    uint16_t                    def_att_idx;
1591    uint32_t                    attn_state;
1592    struct attn_route           attn_group[MAX_DYNAMIC_ATTN_GRPS];
1593
1594/* general SP events - stats query, cfc delete, etc */
1595#define HC_SP_INDEX_ETH_DEF_CONS         3
1596/* EQ completions */
1597#define HC_SP_INDEX_EQ_CONS              7
1598/* FCoE L2 connection completions */
1599#define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS  6
1600#define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS  4
1601/* iSCSI L2 */
1602#define HC_SP_INDEX_ETH_ISCSI_CQ_CONS    5
1603#define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
1604
1605    /* event queue */
1606    struct bxe_dma        eq_dma;
1607    union event_ring_elem *eq;
1608    uint16_t              eq_prod;
1609    uint16_t              eq_cons;
1610    uint16_t              *eq_cons_sb;
1611#define NUM_EQ_PAGES     1 /* must be a power of 2 */
1612#define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1613#define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
1614#define NUM_EQ_DESC      (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1615#define EQ_DESC_MASK     (NUM_EQ_DESC - 1)
1616#define MAX_EQ_AVAIL     (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1617/* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1618#define NEXT_EQ_IDX(x)                                      \
1619    ((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \
1620         ((x) + 2) : ((x) + 1))
1621/* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1622#define EQ_DESC(x) ((x) & EQ_DESC_MASK)
1623
1624    /* slow path */
1625    struct bxe_dma      sp_dma;
1626    struct bxe_slowpath *sp;
1627    unsigned long       sp_state;
1628
1629    /* slow path queue */
1630    struct bxe_dma spq_dma;
1631    struct eth_spe *spq;
1632#define SP_DESC_CNT     (BCM_PAGE_SIZE / sizeof(struct eth_spe))
1633#define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
1634#define MAX_SPQ_PENDING 8
1635
1636    uint16_t       spq_prod_idx;
1637    struct eth_spe *spq_prod_bd;
1638    struct eth_spe *spq_last_bd;
1639    uint16_t       *dsb_sp_prod;
1640    //uint16_t       *spq_hw_con;
1641    //uint16_t       spq_left;
1642
1643    volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */
1644    volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */
1645
1646    /* fw decompression buffer */
1647    struct bxe_dma gz_buf_dma;
1648    void           *gz_buf;
1649    z_streamp      gz_strm;
1650    uint32_t       gz_outlen;
1651#define GUNZIP_BUF(sc)    (sc->gz_buf)
1652#define GUNZIP_OUTLEN(sc) (sc->gz_outlen)
1653#define GUNZIP_PHYS(sc)   (sc->gz_buf_dma.paddr)
1654#define FW_BUF_SIZE       0x40000
1655
1656    const struct raw_op *init_ops;
1657    const uint16_t *init_ops_offsets; /* init block offsets inside init_ops */
1658    const uint32_t *init_data;        /* data blob, 32 bit granularity */
1659    uint32_t       init_mode_flags;
1660#define INIT_MODE_FLAGS(sc) (sc->init_mode_flags)
1661    /* PRAM blobs - raw data */
1662    const uint8_t *tsem_int_table_data;
1663    const uint8_t *tsem_pram_data;
1664    const uint8_t *usem_int_table_data;
1665    const uint8_t *usem_pram_data;
1666    const uint8_t *xsem_int_table_data;
1667    const uint8_t *xsem_pram_data;
1668    const uint8_t *csem_int_table_data;
1669    const uint8_t *csem_pram_data;
1670#define INIT_OPS(sc)                 (sc->init_ops)
1671#define INIT_OPS_OFFSETS(sc)         (sc->init_ops_offsets)
1672#define INIT_DATA(sc)                (sc->init_data)
1673#define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data)
1674#define INIT_TSEM_PRAM_DATA(sc)      (sc->tsem_pram_data)
1675#define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data)
1676#define INIT_USEM_PRAM_DATA(sc)      (sc->usem_pram_data)
1677#define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data)
1678#define INIT_XSEM_PRAM_DATA(sc)      (sc->xsem_pram_data)
1679#define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data)
1680#define INIT_CSEM_PRAM_DATA(sc)      (sc->csem_pram_data)
1681
1682    /* ILT
1683     * For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB
1684     * context size we need 8 ILT entries.
1685     */
1686#define ILT_MAX_L2_LINES 8
1687    struct hw_context context[ILT_MAX_L2_LINES];
1688    struct ecore_ilt *ilt;
1689#define ILT_MAX_LINES 256
1690
1691/* max supported number of RSS queues: IGU SBs minus one for CNIC */
1692#define BXE_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc))
1693/* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */
1694#if 1
1695#define BXE_L2_MAX_CID(sc)                                              \
1696    (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1697#else
1698#define BXE_L2_MAX_CID(sc) /* OOO + FWD */                              \
1699    (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1700#endif
1701#if 1
1702#define BXE_L2_CID_COUNT(sc)                                             \
1703    (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1704#else
1705#define BXE_L2_CID_COUNT(sc) /* OOO + FWD */                             \
1706    (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1707#endif
1708#define L2_ILT_LINES(sc)                                \
1709    (DIV_ROUND_UP(BXE_L2_CID_COUNT(sc), ILT_PAGE_CIDS))
1710
1711    int qm_cid_count;
1712
1713    uint8_t dropless_fc;
1714
1715    /* total number of FW statistics requests */
1716    uint8_t fw_stats_num;
1717    /*
1718     * This is a memory buffer that will contain both statistics ramrod
1719     * request and data.
1720     */
1721    struct bxe_dma fw_stats_dma;
1722    /*
1723     * FW statistics request shortcut (points at the beginning of fw_stats
1724     * buffer).
1725     */
1726    int                     fw_stats_req_size;
1727    struct bxe_fw_stats_req *fw_stats_req;
1728    bus_addr_t              fw_stats_req_mapping;
1729    /*
1730     * FW statistics data shortcut (points at the beginning of fw_stats
1731     * buffer + fw_stats_req_size).
1732     */
1733    int                      fw_stats_data_size;
1734    struct bxe_fw_stats_data *fw_stats_data;
1735    bus_addr_t               fw_stats_data_mapping;
1736
1737    /* tracking a pending STAT_QUERY ramrod */
1738    uint16_t stats_pending;
1739    /* number of completed statistics ramrods */
1740    uint16_t stats_comp;
1741    uint16_t stats_counter;
1742    uint8_t  stats_init;
1743    int      stats_state;
1744
1745    struct bxe_eth_stats         eth_stats;
1746    struct host_func_stats       func_stats;
1747    struct bxe_eth_stats_old     eth_stats_old;
1748    struct bxe_net_stats_old     net_stats_old;
1749    struct bxe_fw_port_stats_old fw_stats_old;
1750
1751    struct dmae_cmd stats_dmae; /* used by dmae command loader */
1752    int                 executer_idx;
1753
1754    int mtu;
1755
1756    /* LLDP params */
1757    struct bxe_config_lldp_params lldp_config_params;
1758    /* DCB support on/off */
1759    int dcb_state;
1760#define BXE_DCB_STATE_OFF 0
1761#define BXE_DCB_STATE_ON  1
1762    /* DCBX engine mode */
1763    int dcbx_enabled;
1764#define BXE_DCBX_ENABLED_OFF        0
1765#define BXE_DCBX_ENABLED_ON_NEG_OFF 1
1766#define BXE_DCBX_ENABLED_ON_NEG_ON  2
1767#define BXE_DCBX_ENABLED_INVALID    -1
1768    uint8_t dcbx_mode_uset;
1769    struct bxe_config_dcbx_params dcbx_config_params;
1770    struct bxe_dcbx_port_params   dcbx_port_params;
1771    int dcb_version;
1772
1773    uint8_t cnic_support;
1774    uint8_t cnic_enabled;
1775    uint8_t cnic_loaded;
1776#define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */
1777#define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */
1778#define CNIC_LOADED(sc)  0 /* ((sc)->cnic_loaded) */
1779
1780    /* multiple tx classes of service */
1781    uint8_t max_cos;
1782#define BXE_MAX_PRIORITY 8
1783    /* priority to cos mapping */
1784    uint8_t prio_to_cos[BXE_MAX_PRIORITY];
1785
1786    int panic;
1787
1788    struct cdev *ioctl_dev;
1789    void *grc_dump;
1790    int grcdump_done;
1791}; /* struct bxe_softc */
1792
1793/* IOCTL sub-commands for edebug and firmware upgrade */
1794#define BXE_IOC_RD_NVRAM        1
1795#define BXE_IOC_WR_NVRAM        2
1796#define BXE_IOC_STATS_SHOW_NUM  3
1797#define BXE_IOC_STATS_SHOW_STR  4
1798#define BXE_IOC_STATS_SHOW_CNT  5
1799
1800struct bxe_nvram_data {
1801    uint32_t op; /* ioctl sub-command */
1802    uint32_t offset;
1803    uint32_t len;
1804    uint32_t value[1]; /* variable */
1805};
1806
1807union bxe_stats_show_data {
1808    uint32_t op; /* ioctl sub-command */
1809
1810    struct {
1811        uint32_t num; /* return number of stats */
1812        uint32_t len; /* length of each string item */
1813    } desc;
1814
1815    /* variable length... */
1816    char str[1]; /* holds names of desc.num stats, each desc.len in length */
1817
1818    /* variable length... */
1819    uint64_t stats[1]; /* holds all stats */
1820};
1821
1822/* function init flags */
1823#define FUNC_FLG_RSS     0x0001
1824#define FUNC_FLG_STATS   0x0002
1825/* FUNC_FLG_UNMATCHED       0x0004 */
1826#define FUNC_FLG_TPA     0x0008
1827#define FUNC_FLG_SPQ     0x0010
1828#define FUNC_FLG_LEADING 0x0020 /* PF only */
1829
1830struct bxe_func_init_params {
1831    bus_addr_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */
1832    bus_addr_t spq_map;     /* (dma) valid if FUNC_FLG_SPQ */
1833    uint16_t   func_flgs;
1834    uint16_t   func_id;     /* abs function id */
1835    uint16_t   pf_id;
1836    uint16_t   spq_prod;    /* valid if FUNC_FLG_SPQ */
1837};
1838
1839/* memory resources reside at BARs 0, 2, 4 */
1840/* Run `pciconf -lb` to see mappings */
1841#define BAR0 0
1842#define BAR1 2
1843#define BAR2 4
1844
1845#ifdef BXE_REG_NO_INLINE
1846
1847uint8_t bxe_reg_read8(struct bxe_softc *sc, bus_size_t offset);
1848uint16_t bxe_reg_read16(struct bxe_softc *sc, bus_size_t offset);
1849uint32_t bxe_reg_read32(struct bxe_softc *sc, bus_size_t offset);
1850
1851void bxe_reg_write8(struct bxe_softc *sc, bus_size_t offset, uint8_t val);
1852void bxe_reg_write16(struct bxe_softc *sc, bus_size_t offset, uint16_t val);
1853void bxe_reg_write32(struct bxe_softc *sc, bus_size_t offset, uint32_t val);
1854
1855#define REG_RD8(sc, offset)  bxe_reg_read8(sc, offset)
1856#define REG_RD16(sc, offset) bxe_reg_read16(sc, offset)
1857#define REG_RD32(sc, offset) bxe_reg_read32(sc, offset)
1858
1859#define REG_WR8(sc, offset, val)  bxe_reg_write8(sc, offset, val)
1860#define REG_WR16(sc, offset, val) bxe_reg_write16(sc, offset, val)
1861#define REG_WR32(sc, offset, val) bxe_reg_write32(sc, offset, val)
1862
1863#else /* not BXE_REG_NO_INLINE */
1864
1865#define REG_WR8(sc, offset, val)            \
1866    bus_space_write_1(sc->bar[BAR0].tag,    \
1867                      sc->bar[BAR0].handle, \
1868                      offset, val)
1869
1870#define REG_WR16(sc, offset, val)           \
1871    bus_space_write_2(sc->bar[BAR0].tag,    \
1872                      sc->bar[BAR0].handle, \
1873                      offset, val)
1874
1875#define REG_WR32(sc, offset, val)           \
1876    bus_space_write_4(sc->bar[BAR0].tag,    \
1877                      sc->bar[BAR0].handle, \
1878                      offset, val)
1879
1880#define REG_RD8(sc, offset)                \
1881    bus_space_read_1(sc->bar[BAR0].tag,    \
1882                     sc->bar[BAR0].handle, \
1883                     offset)
1884
1885#define REG_RD16(sc, offset)               \
1886    bus_space_read_2(sc->bar[BAR0].tag,    \
1887                     sc->bar[BAR0].handle, \
1888                     offset)
1889
1890#define REG_RD32(sc, offset)               \
1891    bus_space_read_4(sc->bar[BAR0].tag,    \
1892                     sc->bar[BAR0].handle, \
1893                     offset)
1894
1895#endif /* BXE_REG_NO_INLINE */
1896
1897#define REG_RD(sc, offset)      REG_RD32(sc, offset)
1898#define REG_WR(sc, offset, val) REG_WR32(sc, offset, val)
1899
1900#define REG_RD_IND(sc, offset)      bxe_reg_rd_ind(sc, offset)
1901#define REG_WR_IND(sc, offset, val) bxe_reg_wr_ind(sc, offset, val)
1902
1903#define BXE_SP(sc, var) (&(sc)->sp->var)
1904#define BXE_SP_MAPPING(sc, var) \
1905    (sc->sp_dma.paddr + offsetof(struct bxe_slowpath, var))
1906
1907#define BXE_FP(sc, nr, var) ((sc)->fp[(nr)].var)
1908#define BXE_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index])
1909
1910#define REG_RD_DMAE(sc, offset, valp, len32)               \
1911    do {                                                   \
1912        bxe_read_dmae(sc, offset, len32);                  \
1913        memcpy(valp, BXE_SP(sc, wb_data[0]), (len32) * 4); \
1914    } while (0)
1915
1916#define REG_WR_DMAE(sc, offset, valp, len32)                            \
1917    do {                                                                \
1918        memcpy(BXE_SP(sc, wb_data[0]), valp, (len32) * 4);              \
1919        bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), offset, len32); \
1920    } while (0)
1921
1922#define REG_WR_DMAE_LEN(sc, offset, valp, len32) \
1923    REG_WR_DMAE(sc, offset, valp, len32)
1924
1925#define REG_RD_DMAE_LEN(sc, offset, valp, len32) \
1926    REG_RD_DMAE(sc, offset, valp, len32)
1927
1928#define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap)         \
1929    do {                                                           \
1930        /* if (le32_swap) {                                     */ \
1931        /*    BLOGW(sc, "VIRT_WR_DMAE_LEN with le32_swap=1\n"); */ \
1932        /* }                                                    */ \
1933        memcpy(GUNZIP_BUF(sc), data, len32 * 4);                   \
1934        ecore_write_big_buf_wb(sc, addr, len32);                   \
1935    } while (0)
1936
1937#define BXE_DB_MIN_SHIFT 3   /* 8 bytes */
1938#define BXE_DB_SHIFT     7   /* 128 bytes */
1939#if (BXE_DB_SHIFT < BXE_DB_MIN_SHIFT)
1940#error "Minimum DB doorbell stride is 8"
1941#endif
1942#define DPM_TRIGGER_TYPE 0x40
1943#define DOORBELL(sc, cid, val)                                              \
1944    do {                                                                    \
1945        bus_space_write_4(sc->bar[BAR1].tag, sc->bar[BAR1].handle,          \
1946                          ((sc->doorbell_size * (cid)) + DPM_TRIGGER_TYPE), \
1947                          (uint32_t)val);                                   \
1948    } while(0)
1949
1950#define SHMEM_ADDR(sc, field)                                       \
1951    (sc->devinfo.shmem_base + offsetof(struct shmem_region, field))
1952#define SHMEM_RD(sc, field)      REG_RD(sc, SHMEM_ADDR(sc, field))
1953#define SHMEM_RD16(sc, field)    REG_RD16(sc, SHMEM_ADDR(sc, field))
1954#define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val)
1955
1956#define SHMEM2_ADDR(sc, field)                                        \
1957    (sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field))
1958#define SHMEM2_HAS(sc, field)                                            \
1959    (sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) >     \
1960                                 offsetof(struct shmem2_region, field)))
1961#define SHMEM2_RD(sc, field)      REG_RD(sc, SHMEM2_ADDR(sc, field))
1962#define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val)
1963
1964#define MFCFG_ADDR(sc, field)                                  \
1965    (sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field))
1966#define MFCFG_RD(sc, field)      REG_RD(sc, MFCFG_ADDR(sc, field))
1967#define MFCFG_RD16(sc, field)    REG_RD16(sc, MFCFG_ADDR(sc, field))
1968#define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val)
1969
1970/* DMAE command defines */
1971
1972#define DMAE_TIMEOUT      -1
1973#define DMAE_PCI_ERROR    -2 /* E2 and onward */
1974#define DMAE_NOT_RDY      -3
1975#define DMAE_PCI_ERR_FLAG 0x80000000
1976
1977#define DMAE_SRC_PCI      0
1978#define DMAE_SRC_GRC      1
1979
1980#define DMAE_DST_NONE     0
1981#define DMAE_DST_PCI      1
1982#define DMAE_DST_GRC      2
1983
1984#define DMAE_COMP_PCI     0
1985#define DMAE_COMP_GRC     1
1986
1987#define DMAE_COMP_REGULAR 0
1988#define DMAE_COM_SET_ERR  1
1989
1990#define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_CMD_SRC_SHIFT)
1991#define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_CMD_SRC_SHIFT)
1992#define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_CMD_DST_SHIFT)
1993#define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_CMD_DST_SHIFT)
1994
1995#define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_CMD_C_DST_SHIFT)
1996#define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_CMD_C_DST_SHIFT)
1997
1998#define DMAE_CMD_ENDIANITY_NO_SWAP   (0 << DMAE_CMD_ENDIANITY_SHIFT)
1999#define DMAE_CMD_ENDIANITY_B_SWAP    (1 << DMAE_CMD_ENDIANITY_SHIFT)
2000#define DMAE_CMD_ENDIANITY_DW_SWAP   (2 << DMAE_CMD_ENDIANITY_SHIFT)
2001#define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_CMD_ENDIANITY_SHIFT)
2002
2003#define DMAE_CMD_PORT_0 0
2004#define DMAE_CMD_PORT_1 DMAE_CMD_PORT
2005
2006#define DMAE_SRC_PF 0
2007#define DMAE_SRC_VF 1
2008
2009#define DMAE_DST_PF 0
2010#define DMAE_DST_VF 1
2011
2012#define DMAE_C_SRC 0
2013#define DMAE_C_DST 1
2014
2015#define DMAE_LEN32_RD_MAX     0x80
2016#define DMAE_LEN32_WR_MAX(sc) (CHIP_IS_E1(sc) ? 0x400 : 0x2000)
2017
2018#define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */
2019
2020#define MAX_DMAE_C_PER_PORT 8
2021#define INIT_DMAE_C(sc)     ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc))
2022#define PMF_DMAE_C(sc)      ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX)
2023
2024static const uint32_t dmae_reg_go_c[] = {
2025    DMAE_REG_GO_C0,  DMAE_REG_GO_C1,  DMAE_REG_GO_C2,  DMAE_REG_GO_C3,
2026    DMAE_REG_GO_C4,  DMAE_REG_GO_C5,  DMAE_REG_GO_C6,  DMAE_REG_GO_C7,
2027    DMAE_REG_GO_C8,  DMAE_REG_GO_C9,  DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2028    DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2029};
2030
2031#define ATTN_NIG_FOR_FUNC     (1L << 8)
2032#define ATTN_SW_TIMER_4_FUNC  (1L << 9)
2033#define GPIO_2_FUNC           (1L << 10)
2034#define GPIO_3_FUNC           (1L << 11)
2035#define GPIO_4_FUNC           (1L << 12)
2036#define ATTN_GENERAL_ATTN_1   (1L << 13)
2037#define ATTN_GENERAL_ATTN_2   (1L << 14)
2038#define ATTN_GENERAL_ATTN_3   (1L << 15)
2039#define ATTN_GENERAL_ATTN_4   (1L << 13)
2040#define ATTN_GENERAL_ATTN_5   (1L << 14)
2041#define ATTN_GENERAL_ATTN_6   (1L << 15)
2042#define ATTN_HARD_WIRED_MASK  0xff00
2043#define ATTENTION_ID          4
2044
2045#define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
2046    AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
2047
2048#define MAX_IGU_ATTN_ACK_TO 100
2049
2050#define STORM_ASSERT_ARRAY_SIZE 50
2051
2052#define BXE_PMF_LINK_ASSERT(sc) \
2053    GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc))
2054
2055#define BXE_MC_ASSERT_BITS \
2056    (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2057     GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2058     GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2059     GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2060
2061#define BXE_MCP_ASSERT \
2062    GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2063
2064#define BXE_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2065#define BXE_GRC_RSV     (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2066                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2067                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2068                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2069                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2070                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2071
2072#define MULTI_MASK 0x7f
2073
2074#define PFS_PER_PORT(sc)                               \
2075    ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4)
2076#define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc)
2077
2078#define FIRST_ABS_FUNC_IN_PORT(sc)                    \
2079    ((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ?    \
2080     PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc))))
2081
2082#define FOREACH_ABS_FUNC_IN_PORT(sc, i)            \
2083    for ((i) = FIRST_ABS_FUNC_IN_PORT(sc);         \
2084         (i) < MAX_FUNC_NUM;                       \
2085         (i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc)))
2086
2087#define BXE_SWCID_SHIFT 17
2088#define BXE_SWCID_MASK  ((0x1 << BXE_SWCID_SHIFT) - 1)
2089
2090#define SW_CID(x)  (le32toh(x) & BXE_SWCID_MASK)
2091#define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
2092
2093#define CQE_TYPE(cqe_fp_flags)   ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
2094#define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
2095#define CQE_TYPE_STOP(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
2096#define CQE_TYPE_SLOW(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
2097#define CQE_TYPE_FAST(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
2098
2099/* must be used on a CID before placing it on a HW ring */
2100#define HW_CID(sc, x) \
2101    ((SC_PORT(sc) << 23) | (SC_VN(sc) << BXE_SWCID_SHIFT) | (x))
2102
2103#define SPEED_10    10
2104#define SPEED_100   100
2105#define SPEED_1000  1000
2106#define SPEED_2500  2500
2107#define SPEED_10000 10000
2108
2109#define PCI_PM_D0    1
2110#define PCI_PM_D3hot 2
2111
2112int  bxe_test_bit(int nr, volatile unsigned long * addr);
2113void bxe_set_bit(unsigned int nr, volatile unsigned long * addr);
2114void bxe_clear_bit(int nr, volatile unsigned long * addr);
2115int  bxe_test_and_set_bit(int nr, volatile unsigned long * addr);
2116int  bxe_test_and_clear_bit(int nr, volatile unsigned long * addr);
2117int  bxe_cmpxchg(volatile int *addr, int old, int new);
2118
2119void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr,
2120                    uint32_t val);
2121uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr);
2122
2123
2124int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size,
2125                  struct bxe_dma *dma, const char *msg);
2126void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma);
2127
2128uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type);
2129uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode);
2130uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type,
2131                         uint8_t dst_type, uint8_t with_comp,
2132                         uint8_t comp_type);
2133void bxe_post_dmae(struct bxe_softc *sc, struct dmae_cmd *dmae, int idx);
2134void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32);
2135void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr,
2136                    uint32_t dst_addr, uint32_t len32);
2137void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr,
2138                             uint32_t addr, uint32_t len);
2139
2140void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt,
2141                            uint32_t cid);
2142void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id,
2143                                  uint8_t sb_index, uint8_t disable,
2144                                  uint16_t usec);
2145
2146int bxe_sp_post(struct bxe_softc *sc, int command, int cid,
2147                uint32_t data_hi, uint32_t data_lo, int cmd_type);
2148
2149void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id,
2150                    uint8_t segment, uint16_t index, uint8_t op,
2151                    uint8_t update);
2152
2153void ecore_init_e1_firmware(struct bxe_softc *sc);
2154void ecore_init_e1h_firmware(struct bxe_softc *sc);
2155void ecore_init_e2_firmware(struct bxe_softc *sc);
2156
2157void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr,
2158                               size_t size, uint32_t *data);
2159
2160/*********************/
2161/* LOGGING AND DEBUG */
2162/*********************/
2163
2164/* debug logging codepaths */
2165#define DBG_LOAD   0x00000001 /* load and unload    */
2166#define DBG_INTR   0x00000002 /* interrupt handling */
2167#define DBG_SP     0x00000004 /* slowpath handling  */
2168#define DBG_STATS  0x00000008 /* stats updates      */
2169#define DBG_TX     0x00000010 /* packet transmit    */
2170#define DBG_RX     0x00000020 /* packet receive     */
2171#define DBG_PHY    0x00000040 /* phy/link handling  */
2172#define DBG_IOCTL  0x00000080 /* ioctl handling     */
2173#define DBG_MBUF   0x00000100 /* dumping mbuf info  */
2174#define DBG_REGS   0x00000200 /* register access    */
2175#define DBG_LRO    0x00000400 /* lro processing     */
2176#define DBG_ASSERT 0x80000000 /* debug assert       */
2177#define DBG_ALL    0xFFFFFFFF /* flying monkeys     */
2178
2179#define DBASSERT(sc, exp, msg)                         \
2180    do {                                               \
2181        if (__predict_false(sc->debug & DBG_ASSERT)) { \
2182            if (__predict_false(!(exp))) {             \
2183                panic msg;                             \
2184            }                                          \
2185        }                                              \
2186    } while (0)
2187
2188/* log a debug message */
2189#define BLOGD(sc, codepath, format, args...)           \
2190    do {                                               \
2191        if (__predict_false(sc->debug & (codepath))) { \
2192            device_printf((sc)->dev,                   \
2193                          "%s(%s:%d) " format,         \
2194                          __FUNCTION__,                \
2195                          __FILE__,                    \
2196                          __LINE__,                    \
2197                          ## args);                    \
2198        }                                              \
2199    } while(0)
2200
2201/* log a info message */
2202#define BLOGI(sc, format, args...)             \
2203    do {                                       \
2204        if (__predict_false(sc->debug)) {      \
2205            device_printf((sc)->dev,           \
2206                          "%s(%s:%d) " format, \
2207                          __FUNCTION__,        \
2208                          __FILE__,            \
2209                          __LINE__,            \
2210                          ## args);            \
2211        } else {                               \
2212            device_printf((sc)->dev,           \
2213                          format,              \
2214                          ## args);            \
2215        }                                      \
2216    } while(0)
2217
2218/* log a warning message */
2219#define BLOGW(sc, format, args...)                      \
2220    do {                                                \
2221        if (__predict_false(sc->debug)) {               \
2222            device_printf((sc)->dev,                    \
2223                          "%s(%s:%d) WARNING: " format, \
2224                          __FUNCTION__,                 \
2225                          __FILE__,                     \
2226                          __LINE__,                     \
2227                          ## args);                     \
2228        } else {                                        \
2229            device_printf((sc)->dev,                    \
2230                          "WARNING: " format,           \
2231                          ## args);                     \
2232        }                                               \
2233    } while(0)
2234
2235/* log a error message */
2236#define BLOGE(sc, format, args...)                    \
2237    do {                                              \
2238        if (__predict_false(sc->debug)) {             \
2239            device_printf((sc)->dev,                  \
2240                          "%s(%s:%d) ERROR: " format, \
2241                          __FUNCTION__,               \
2242                          __FILE__,                   \
2243                          __LINE__,                   \
2244                          ## args);                   \
2245        } else {                                      \
2246            device_printf((sc)->dev,                  \
2247                          "ERROR: " format,           \
2248                          ## args);                   \
2249        }                                             \
2250    } while(0)
2251
2252#ifdef ECORE_STOP_ON_ERROR
2253
2254#define bxe_panic(sc, msg) \
2255    do {                   \
2256        panic msg;         \
2257    } while (0)
2258
2259#else
2260
2261#define bxe_panic(sc, msg) \
2262    device_printf((sc)->dev, "%s (%s,%d)\n", __FUNCTION__, __FILE__, __LINE__);
2263
2264#endif
2265
2266#define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data));
2267#define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe)
2268
2269void bxe_dump_mem(struct bxe_softc *sc, char *tag,
2270                  uint8_t *mem, uint32_t len);
2271void bxe_dump_mbuf_data(struct bxe_softc *sc, char *pTag,
2272                        struct mbuf *m, uint8_t contents);
2273
2274
2275#if __FreeBSD_version >= 800000
2276#if __FreeBSD_version >= 1000000
2277#define BXE_SET_FLOWID(m) M_HASHTYPE_SET(m, M_HASHTYPE_OPAQUE)
2278#define BXE_VALID_FLOWID(m) (M_HASHTYPE_GET(m) != M_HASHTYPE_NONE)
2279#else
2280#define BXE_VALID_FLOWID(m) ((m->m_flags & M_FLOWID) != 0)
2281#define BXE_SET_FLOWID(m) m->m_flags |= M_FLOWID
2282#endif
2283#endif /* #if __FreeBSD_version >= 800000 */
2284
2285/***********/
2286/* INLINES */
2287/***********/
2288
2289static inline uint32_t
2290reg_poll(struct bxe_softc *sc,
2291         uint32_t         reg,
2292         uint32_t         expected,
2293         int              ms,
2294         int              wait)
2295{
2296    uint32_t val;
2297
2298    do {
2299        val = REG_RD(sc, reg);
2300        if (val == expected) {
2301            break;
2302        }
2303        ms -= wait;
2304        DELAY(wait * 1000);
2305    } while (ms > 0);
2306
2307    return (val);
2308}
2309
2310static inline void
2311bxe_update_fp_sb_idx(struct bxe_fastpath *fp)
2312{
2313    mb(); /* status block is written to by the chip */
2314    fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
2315}
2316
2317static inline void
2318bxe_igu_ack_sb_gen(struct bxe_softc *sc,
2319                   uint8_t          igu_sb_id,
2320                   uint8_t          segment,
2321                   uint16_t         index,
2322                   uint8_t          op,
2323                   uint8_t          update,
2324                   uint32_t         igu_addr)
2325{
2326    struct igu_regular cmd_data = {0};
2327
2328    cmd_data.sb_id_and_flags =
2329        ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
2330         (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
2331         (update << IGU_REGULAR_BUPDATE_SHIFT) |
2332         (op << IGU_REGULAR_ENABLE_INT_SHIFT));
2333
2334    BLOGD(sc, DBG_INTR, "write 0x%08x to IGU addr 0x%x\n",
2335            cmd_data.sb_id_and_flags, igu_addr);
2336    REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags);
2337
2338    /* Make sure that ACK is written */
2339    bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2340                      BUS_SPACE_BARRIER_WRITE);
2341    mb();
2342}
2343
2344static inline void
2345bxe_hc_ack_sb(struct bxe_softc *sc,
2346              uint8_t          sb_id,
2347              uint8_t          storm,
2348              uint16_t         index,
2349              uint8_t          op,
2350              uint8_t          update)
2351{
2352    uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2353                        COMMAND_REG_INT_ACK);
2354    struct igu_ack_register igu_ack;
2355
2356    igu_ack.status_block_index = index;
2357    igu_ack.sb_id_and_flags =
2358        ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
2359         (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
2360         (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
2361         (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
2362
2363    REG_WR(sc, hc_addr, (*(uint32_t *)&igu_ack));
2364
2365    /* Make sure that ACK is written */
2366    bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2367                      BUS_SPACE_BARRIER_WRITE);
2368    mb();
2369}
2370
2371static inline void
2372bxe_ack_sb(struct bxe_softc *sc,
2373           uint8_t          igu_sb_id,
2374           uint8_t          storm,
2375           uint16_t         index,
2376           uint8_t          op,
2377           uint8_t          update)
2378{
2379    if (sc->devinfo.int_block == INT_BLOCK_HC)
2380        bxe_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
2381    else {
2382        uint8_t segment;
2383        if (CHIP_INT_MODE_IS_BC(sc)) {
2384            segment = storm;
2385        } else if (igu_sb_id != sc->igu_dsb_id) {
2386            segment = IGU_SEG_ACCESS_DEF;
2387        } else if (storm == ATTENTION_ID) {
2388            segment = IGU_SEG_ACCESS_ATTN;
2389        } else {
2390            segment = IGU_SEG_ACCESS_DEF;
2391        }
2392        bxe_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
2393    }
2394}
2395
2396static inline uint16_t
2397bxe_hc_ack_int(struct bxe_softc *sc)
2398{
2399    uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2400                        COMMAND_REG_SIMD_MASK);
2401    uint32_t result = REG_RD(sc, hc_addr);
2402
2403    mb();
2404    return (result);
2405}
2406
2407static inline uint16_t
2408bxe_igu_ack_int(struct bxe_softc *sc)
2409{
2410    uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
2411    uint32_t result = REG_RD(sc, igu_addr);
2412
2413    BLOGD(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x\n",
2414          result, igu_addr);
2415
2416    mb();
2417    return (result);
2418}
2419
2420static inline uint16_t
2421bxe_ack_int(struct bxe_softc *sc)
2422{
2423    mb();
2424    if (sc->devinfo.int_block == INT_BLOCK_HC) {
2425        return (bxe_hc_ack_int(sc));
2426    } else {
2427        return (bxe_igu_ack_int(sc));
2428    }
2429}
2430
2431static inline int
2432func_by_vn(struct bxe_softc *sc,
2433           int              vn)
2434{
2435    return (2 * vn + SC_PORT(sc));
2436}
2437
2438/*
2439 * Statistics ID are global per chip/path, while Client IDs for E1x
2440 * are per port.
2441 */
2442static inline uint8_t
2443bxe_stats_id(struct bxe_fastpath *fp)
2444{
2445    struct bxe_softc *sc = fp->sc;
2446
2447    if (!CHIP_IS_E1x(sc)) {
2448        return (fp->cl_id);
2449    }
2450
2451    return (fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x);
2452}
2453
2454#endif /* __BXE_H__ */
2455
2456