bxe.h revision 255736
175295Sdes/*-
275295Sdes * Copyright (c) 2007-2013 Broadcom Corporation. All rights reserved.
375295Sdes *
475295Sdes * Eric Davis        <edavis@broadcom.com>
575295Sdes * David Christensen <davidch@broadcom.com>
675295Sdes * Gary Zambrano     <zambrano@broadcom.com>
775295Sdes *
875295Sdes * Redistribution and use in source and binary forms, with or without
975295Sdes * modification, are permitted provided that the following conditions
1075295Sdes * are met:
1175295Sdes *
1275295Sdes * 1. Redistributions of source code must retain the above copyright
1375295Sdes *    notice, this list of conditions and the following disclaimer.
1475295Sdes * 2. Redistributions in binary form must reproduce the above copyright
1575295Sdes *    notice, this list of conditions and the following disclaimer in the
1675295Sdes *    documentation and/or other materials provided with the distribution.
1775295Sdes * 3. Neither the name of Broadcom Corporation nor the name of its contributors
1875295Sdes *    may be used to endorse or promote products derived from this software
1975295Sdes *    without specific prior written consent.
2075295Sdes *
2175295Sdes * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
2275295Sdes * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
2375295Sdes * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
2475295Sdes * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
2575295Sdes * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
2675295Sdes * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
2775295Sdes * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
2875295Sdes * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
2975295Sdes * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
3075295Sdes * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
3175295Sdes * THE POSSIBILITY OF SUCH DAMAGE.
3275295Sdes */
3375295Sdes
3475295Sdes#ifndef __BXE_H__
3575295Sdes#define __BXE_H__
3677965Sdes
3775295Sdes#include <sys/cdefs.h>
3875295Sdes__FBSDID("$FreeBSD: head/sys/dev/bxe/bxe.h 255736 2013-09-20 20:18:49Z davidch $");
3975295Sdes
4075295Sdes#include <sys/param.h>
4175295Sdes#include <sys/kernel.h>
4275295Sdes#include <sys/systm.h>
4375295Sdes#include <sys/lock.h>
4477998Sdes#include <sys/mutex.h>
4575295Sdes#include <sys/sx.h>
4675295Sdes#include <sys/module.h>
4775295Sdes#include <sys/endian.h>
4875295Sdes#include <sys/types.h>
4975295Sdes#include <sys/malloc.h>
5075295Sdes#include <sys/kobj.h>
5175295Sdes#include <sys/bus.h>
5275295Sdes#include <sys/rman.h>
5375295Sdes#include <sys/socket.h>
5475295Sdes#include <sys/sockio.h>
5575295Sdes#include <sys/sysctl.h>
5675295Sdes#include <sys/smp.h>
5775295Sdes#include <sys/bitstring.h>
5875295Sdes#include <sys/limits.h>
5975295Sdes#include <sys/queue.h>
6075295Sdes#include <sys/taskqueue.h>
6175295Sdes
6275295Sdes#include <net/if.h>
6375295Sdes#include <net/if_types.h>
6475295Sdes#include <net/if_arp.h>
6575295Sdes#include <net/ethernet.h>
6675295Sdes#include <net/if_dl.h>
6775295Sdes#include <net/if_media.h>
6875295Sdes#include <net/if_var.h>
6975295Sdes#include <net/if_vlan_var.h>
7075295Sdes#include <net/zlib.h>
7175295Sdes#include <net/bpf.h>
7275295Sdes
7375295Sdes#include <netinet/in.h>
7475295Sdes#include <netinet/ip.h>
7575295Sdes#include <netinet/ip6.h>
7675295Sdes#include <netinet/tcp.h>
7775295Sdes#include <netinet/udp.h>
7875295Sdes
7975295Sdes#include <dev/pci/pcireg.h>
8075295Sdes#include <dev/pci/pcivar.h>
8175295Sdes
8275295Sdes#include <machine/atomic.h>
8375295Sdes#include <machine/resource.h>
8475295Sdes#include <machine/endian.h>
8575295Sdes#include <machine/bus.h>
8675295Sdes#include <machine/in_cksum.h>
8775295Sdes
8877998Sdes#include "device_if.h"
8977998Sdes#include "bus_if.h"
9075295Sdes#include "pci_if.h"
9175295Sdes
9277998Sdes#if _BYTE_ORDER == _LITTLE_ENDIAN
9375295Sdes#ifndef LITTLE_ENDIAN
9475295Sdes#define LITTLE_ENDIAN
9577998Sdes#endif
9675295Sdes#ifndef __LITTLE_ENDIAN
9777998Sdes#define __LITTLE_ENDIAN
9877998Sdes#endif
9977998Sdes#undef BIG_ENDIAN
10075295Sdes#undef __BIG_ENDIAN
10175295Sdes#else /* _BIG_ENDIAN */
10275295Sdes#ifndef BIG_ENDIAN
10375295Sdes#define BIG_ENDIAN
10475295Sdes#endif
10575295Sdes#ifndef __BIG_ENDIAN
10677998Sdes#define __BIG_ENDIAN
10777998Sdes#endif
10877998Sdes#undef LITTLE_ENDIAN
10977998Sdes#undef __LITTLE_ENDIAN
11077998Sdes#endif
11175295Sdes
11275295Sdes#include "ecore_mfw_req.h"
11375295Sdes#include "ecore_fw_defs.h"
11475295Sdes#include "ecore_hsi.h"
11577998Sdes#include "ecore_reg.h"
11675295Sdes#include "bxe_dcb.h"
11777998Sdes#include "bxe_stats.h"
11875295Sdes
11977998Sdes#include "bxe_elink.h"
12077998Sdes
12177998Sdes#if __FreeBSD_version < 800054
12275295Sdes#if defined(__i386__) || defined(__amd64__)
12375295Sdes#define mb()  __asm volatile("mfence;" : : : "memory")
12475295Sdes#define wmb() __asm volatile("sfence;" : : : "memory")
12575295Sdes#define rmb() __asm volatile("lfence;" : : : "memory")
12675295Sdesstatic __inline void prefetch(void *x)
12775295Sdes{
12875295Sdes    __asm volatile("prefetcht0 %0" :: "m" (*(unsigned long *)x));
12975295Sdes}
13075295Sdes#else
13177998Sdes#define mb()
13275295Sdes#define rmb()
13375295Sdes#define wmb()
13475295Sdes#define prefetch(x)
13575295Sdes#endif
13675295Sdes#endif
13775295Sdes
13875295Sdes#if __FreeBSD_version >= 1000000
13975295Sdes#define PCIR_EXPRESS_DEVICE_STA        PCIER_DEVICE_STA
14077998Sdes#define PCIM_EXP_STA_TRANSACTION_PND   PCIEM_STA_TRANSACTION_PND
14177998Sdes#define PCIR_EXPRESS_LINK_STA          PCIER_LINK_STA
14275295Sdes#define PCIM_LINK_STA_WIDTH            PCIEM_LINK_STA_WIDTH
14375295Sdes#define PCIM_LINK_STA_SPEED            PCIEM_LINK_STA_SPEED
14475295Sdes#define PCIR_EXPRESS_DEVICE_CTL        PCIER_DEVICE_CTL
14575295Sdes#define PCIM_EXP_CTL_MAX_PAYLOAD       PCIEM_CTL_MAX_PAYLOAD
14677998Sdes#define PCIM_EXP_CTL_MAX_READ_REQUEST  PCIEM_CTL_MAX_READ_REQUEST
14775295Sdes#endif
14875295Sdes
14975295Sdes#ifndef ARRAY_SIZE
15075295Sdes#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
15175295Sdes#endif
15275295Sdes#ifndef ARRSIZE
15375295Sdes#define ARRSIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
15475295Sdes#endif
15575295Sdes#ifndef DIV_ROUND_UP
15675295Sdes#define DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d))
15775295Sdes#endif
15875295Sdes#ifndef roundup
15975295Sdes#define roundup(x, y) ((((x) + ((y) - 1)) / (y)) * (y))
16077998Sdes#endif
16175295Sdes#ifndef ilog2
16275295Sdesstatic inline
16375295Sdesint bxe_ilog2(int x)
16475295Sdes{
16575295Sdes    int log = 0;
16677998Sdes    while (x >>= 1) log++;
16777998Sdes    return (log);
16877998Sdes}
16977998Sdes#define ilog2(x) bxe_ilog2(x)
17077998Sdes#endif
17177998Sdes
17277998Sdes#include "ecore_sp.h"
17377998Sdes
17477998Sdes#define BRCM_VENDORID 0x14e4
17575295Sdes#define PCI_ANY_ID    (uint16_t)(~0U)
17677998Sdes
17775295Sdesstruct bxe_device_type
17875295Sdes{
179    uint16_t bxe_vid;
180    uint16_t bxe_did;
181    uint16_t bxe_svid;
182    uint16_t bxe_sdid;
183    char     *bxe_name;
184};
185
186#define BCM_PAGE_SHIFT       12
187#define BCM_PAGE_SIZE        (1 << BCM_PAGE_SHIFT)
188#define BCM_PAGE_MASK        (~(BCM_PAGE_SIZE - 1))
189#define BCM_PAGE_ALIGN(addr) ((addr + BCM_PAGE_SIZE - 1) & BCM_PAGE_MASK)
190
191#if BCM_PAGE_SIZE != 4096
192#error Page sizes other than 4KB are unsupported!
193#endif
194
195#if (BUS_SPACE_MAXADDR > 0xFFFFFFFF)
196#define U64_LO(addr) ((uint32_t)(((uint64_t)(addr)) & 0xFFFFFFFF))
197#define U64_HI(addr) ((uint32_t)(((uint64_t)(addr)) >> 32))
198#else
199#define U64_LO(addr) ((uint32_t)(addr))
200#define U64_HI(addr) (0)
201#endif
202#define HILO_U64(hi, lo) ((((uint64_t)(hi)) << 32) + (lo))
203
204#define SET_FLAG(value, mask, flag)            \
205    do {                                       \
206        (value) &= ~(mask);                    \
207        (value) |= ((flag) << (mask##_SHIFT)); \
208    } while (0)
209
210#define GET_FLAG(value, mask)              \
211    (((value) & (mask)) >> (mask##_SHIFT))
212
213#define GET_FIELD(value, fname)                     \
214    (((value) & (fname##_MASK)) >> (fname##_SHIFT))
215
216#define BXE_MAX_SEGMENTS     12 /* 13-1 for parsing buffer */
217#define BXE_TSO_MAX_SEGMENTS 32
218#define BXE_TSO_MAX_SIZE     (65535 + sizeof(struct ether_vlan_header))
219#define BXE_TSO_MAX_SEG_SIZE 4096
220
221/* dropless fc FW/HW related params */
222#define BRB_SIZE(sc)         (CHIP_IS_E3(sc) ? 1024 : 512)
223#define MAX_AGG_QS(sc)       (CHIP_IS_E1(sc) ?                       \
224                                  ETH_MAX_AGGREGATION_QUEUES_E1 :    \
225                                  ETH_MAX_AGGREGATION_QUEUES_E1H_E2)
226#define FW_DROP_LEVEL(sc)    (3 + MAX_SPQ_PENDING + MAX_AGG_QS(sc))
227#define FW_PREFETCH_CNT      16
228#define DROPLESS_FC_HEADROOM 100
229
230/******************/
231/* RX SGE defines */
232/******************/
233
234#define RX_SGE_NUM_PAGES       2 /* must be a power of 2 */
235#define RX_SGE_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_sge))
236#define RX_SGE_NEXT_PAGE_DESC_CNT 2
237#define RX_SGE_USABLE_PER_PAGE (RX_SGE_TOTAL_PER_PAGE - RX_SGE_NEXT_PAGE_DESC_CNT)
238#define RX_SGE_PER_PAGE_MASK   (RX_SGE_TOTAL_PER_PAGE - 1)
239#define RX_SGE_TOTAL           (RX_SGE_TOTAL_PER_PAGE * RX_SGE_NUM_PAGES)
240#define RX_SGE_USABLE          (RX_SGE_USABLE_PER_PAGE * RX_SGE_NUM_PAGES)
241#define RX_SGE_MAX             (RX_SGE_TOTAL - 1)
242#define RX_SGE(x)              ((x) & RX_SGE_MAX)
243
244#define RX_SGE_NEXT(x)                                              \
245    ((((x) & RX_SGE_PER_PAGE_MASK) == (RX_SGE_USABLE_PER_PAGE - 1)) \
246     ? (x) + 1 + RX_SGE_NEXT_PAGE_DESC_CNT : (x) + 1)
247
248#define RX_SGE_MASK_ELEM_SZ    64
249#define RX_SGE_MASK_ELEM_SHIFT 6
250#define RX_SGE_MASK_ELEM_MASK  ((uint64_t)RX_SGE_MASK_ELEM_SZ - 1)
251
252/*
253 * Creates a bitmask of all ones in less significant bits.
254 * idx - index of the most significant bit in the created mask.
255 */
256#define RX_SGE_ONES_MASK(idx)                                      \
257    (((uint64_t)0x1 << (((idx) & RX_SGE_MASK_ELEM_MASK) + 1)) - 1)
258#define RX_SGE_MASK_ELEM_ONE_MASK ((uint64_t)(~0))
259
260/* Number of uint64_t elements in SGE mask array. */
261#define RX_SGE_MASK_LEN                                                \
262    ((RX_SGE_NUM_PAGES * RX_SGE_TOTAL_PER_PAGE) / RX_SGE_MASK_ELEM_SZ)
263#define RX_SGE_MASK_LEN_MASK      (RX_SGE_MASK_LEN - 1)
264#define RX_SGE_NEXT_MASK_ELEM(el) (((el) + 1) & RX_SGE_MASK_LEN_MASK)
265
266/*
267 * dropless fc calculations for SGEs
268 * Number of required SGEs is the sum of two:
269 * 1. Number of possible opened aggregations (next packet for
270 *    these aggregations will probably consume SGE immidiatelly)
271 * 2. Rest of BRB blocks divided by 2 (block will consume new SGE only
272 *    after placement on BD for new TPA aggregation)
273 * Takes into account RX_SGE_NEXT_PAGE_DESC_CNT "next" elements on each page
274 */
275#define NUM_SGE_REQ(sc)                                    \
276    (MAX_AGG_QS(sc) + (BRB_SIZE(sc) - MAX_AGG_QS(sc)) / 2)
277#define NUM_SGE_PG_REQ(sc)                                                    \
278    ((NUM_SGE_REQ(sc) + RX_SGE_USABLE_PER_PAGE - 1) / RX_SGE_USABLE_PER_PAGE)
279#define SGE_TH_LO(sc)                                                  \
280    (NUM_SGE_REQ(sc) + NUM_SGE_PG_REQ(sc) * RX_SGE_NEXT_PAGE_DESC_CNT)
281#define SGE_TH_HI(sc)                      \
282    (SGE_TH_LO(sc) + DROPLESS_FC_HEADROOM)
283
284#define PAGES_PER_SGE_SHIFT  0
285#define PAGES_PER_SGE        (1 << PAGES_PER_SGE_SHIFT)
286#define SGE_PAGE_SIZE        BCM_PAGE_SIZE
287#define SGE_PAGE_SHIFT       BCM_PAGE_SHIFT
288#define SGE_PAGE_ALIGN(addr) BCM_PAGE_ALIGN(addr)
289#define SGE_PAGES            (SGE_PAGE_SIZE * PAGES_PER_SGE)
290#define TPA_AGG_SIZE         min((8 * SGE_PAGES), 0xffff)
291
292/*****************/
293/* TX BD defines */
294/*****************/
295
296#define TX_BD_NUM_PAGES       16 /* must be a power of 2 */
297#define TX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_tx_bd_types))
298#define TX_BD_USABLE_PER_PAGE (TX_BD_TOTAL_PER_PAGE - 1)
299#define TX_BD_TOTAL           (TX_BD_TOTAL_PER_PAGE * TX_BD_NUM_PAGES)
300#define TX_BD_USABLE          (TX_BD_USABLE_PER_PAGE * TX_BD_NUM_PAGES)
301#define TX_BD_MAX             (TX_BD_TOTAL - 1)
302
303#define TX_BD_NEXT(x)                                                 \
304    ((((x) & TX_BD_USABLE_PER_PAGE) == (TX_BD_USABLE_PER_PAGE - 1)) ? \
305     ((x) + 2) : ((x) + 1))
306#define TX_BD(x)      ((x) & TX_BD_MAX)
307#define TX_BD_PAGE(x) (((x) & ~TX_BD_USABLE_PER_PAGE) >> 8)
308#define TX_BD_IDX(x)  ((x) & TX_BD_USABLE_PER_PAGE)
309
310/*
311 * Trigger pending transmits when the number of available BDs is greater
312 * than 1/8 of the total number of usable BDs.
313 */
314#define BXE_TX_CLEANUP_THRESHOLD (TX_BD_USABLE / 8)
315#define BXE_TX_TIMEOUT 5
316
317/*****************/
318/* RX BD defines */
319/*****************/
320
321#define RX_BD_NUM_PAGES       8 /* power of 2 */
322#define RX_BD_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(struct eth_rx_bd))
323#define RX_BD_NEXT_PAGE_DESC_CNT 2
324#define RX_BD_USABLE_PER_PAGE (RX_BD_TOTAL_PER_PAGE - RX_BD_NEXT_PAGE_DESC_CNT)
325#define RX_BD_PER_PAGE_MASK   (RX_BD_TOTAL_PER_PAGE - 1)
326#define RX_BD_TOTAL           (RX_BD_TOTAL_PER_PAGE * RX_BD_NUM_PAGES)
327#define RX_BD_USABLE          (RX_BD_USABLE_PER_PAGE * RX_BD_NUM_PAGES)
328#define RX_BD_MAX             (RX_BD_TOTAL - 1)
329
330#if 0
331#define NUM_RX_RINGS RX_BD_NUM_PAGES
332#define NUM_RX_BD    RX_BD_TOTAL
333#define MAX_RX_BD    RX_BD_MAX
334#define MAX_RX_AVAIL RX_BD_USABLE
335#endif
336
337#define RX_BD_NEXT(x)                                               \
338    ((((x) & RX_BD_PER_PAGE_MASK) == (RX_BD_USABLE_PER_PAGE - 1)) ? \
339     ((x) + 3) : ((x) + 1))
340#define RX_BD(x)      ((x) & RX_BD_MAX)
341#define RX_BD_PAGE(x) (((x) & ~RX_BD_PER_PAGE_MASK) >> 9)
342#define RX_BD_IDX(x)  ((x) & RX_BD_PER_PAGE_MASK)
343
344/*
345 * dropless fc calculations for BDs
346 * Number of BDs should be as number of buffers in BRB:
347 * Low threshold takes into account RX_BD_NEXT_PAGE_DESC_CNT
348 * "next" elements on each page
349 */
350#define NUM_BD_REQ(sc) \
351    BRB_SIZE(sc)
352#define NUM_BD_PG_REQ(sc)                                                  \
353    ((NUM_BD_REQ(sc) + RX_BD_USABLE_PER_PAGE - 1) / RX_BD_USABLE_PER_PAGE)
354#define BD_TH_LO(sc)                                \
355    (NUM_BD_REQ(sc) +                               \
356     NUM_BD_PG_REQ(sc) * RX_BD_NEXT_PAGE_DESC_CNT + \
357     FW_DROP_LEVEL(sc))
358#define BD_TH_HI(sc)                      \
359    (BD_TH_LO(sc) + DROPLESS_FC_HEADROOM)
360#define MIN_RX_AVAIL(sc)                           \
361    ((sc)->dropless_fc ? BD_TH_HI(sc) + 128 : 128)
362#define MIN_RX_SIZE_TPA_HW(sc)                         \
363    (CHIP_IS_E1(sc) ? ETH_MIN_RX_CQES_WITH_TPA_E1 :    \
364                      ETH_MIN_RX_CQES_WITH_TPA_E1H_E2)
365#define MIN_RX_SIZE_NONTPA_HW ETH_MIN_RX_CQES_WITHOUT_TPA
366#define MIN_RX_SIZE_TPA(sc)                         \
367    (max(MIN_RX_SIZE_TPA_HW(sc), MIN_RX_AVAIL(sc)))
368#define MIN_RX_SIZE_NONTPA(sc)                     \
369    (max(MIN_RX_SIZE_NONTPA_HW, MIN_RX_AVAIL(sc)))
370
371/***************/
372/* RCQ defines */
373/***************/
374
375/*
376 * As long as CQE is X times bigger than BD entry we have to allocate X times
377 * more pages for CQ ring in order to keep it balanced with BD ring
378 */
379#define CQE_BD_REL          (sizeof(union eth_rx_cqe) / \
380                             sizeof(struct eth_rx_bd))
381#define RCQ_NUM_PAGES       (RX_BD_NUM_PAGES * CQE_BD_REL) /* power of 2 */
382#define RCQ_TOTAL_PER_PAGE  (BCM_PAGE_SIZE / sizeof(union eth_rx_cqe))
383#define RCQ_NEXT_PAGE_DESC_CNT 1
384#define RCQ_USABLE_PER_PAGE (RCQ_TOTAL_PER_PAGE - RCQ_NEXT_PAGE_DESC_CNT)
385#define RCQ_TOTAL           (RCQ_TOTAL_PER_PAGE * RCQ_NUM_PAGES)
386#define RCQ_USABLE          (RCQ_USABLE_PER_PAGE * RCQ_NUM_PAGES)
387#define RCQ_MAX             (RCQ_TOTAL - 1)
388
389#define RCQ_NEXT(x)                                               \
390    ((((x) & RCQ_USABLE_PER_PAGE) == (RCQ_USABLE_PER_PAGE - 1)) ? \
391     ((x) + 1 + RCQ_NEXT_PAGE_DESC_CNT) : ((x) + 1))
392#define RCQ(x)      ((x) & RCQ_MAX)
393#define RCQ_PAGE(x) (((x) & ~RCQ_USABLE_PER_PAGE) >> 7)
394#define RCQ_IDX(x)  ((x) & RCQ_USABLE_PER_PAGE)
395
396#if 0
397#define NUM_RCQ_RINGS RCQ_NUM_PAGES
398#define NUM_RCQ_BD    RCQ_TOTAL
399#define MAX_RCQ_BD    RCQ_MAX
400#define MAX_RCQ_AVAIL RCQ_USABLE
401#endif
402
403/*
404 * dropless fc calculations for RCQs
405 * Number of RCQs should be as number of buffers in BRB:
406 * Low threshold takes into account RCQ_NEXT_PAGE_DESC_CNT
407 * "next" elements on each page
408 */
409#define NUM_RCQ_REQ(sc) \
410    BRB_SIZE(sc)
411#define NUM_RCQ_PG_REQ(sc)                                              \
412    ((NUM_RCQ_REQ(sc) + RCQ_USABLE_PER_PAGE - 1) / RCQ_USABLE_PER_PAGE)
413#define RCQ_TH_LO(sc)                              \
414    (NUM_RCQ_REQ(sc) +                             \
415     NUM_RCQ_PG_REQ(sc) * RCQ_NEXT_PAGE_DESC_CNT + \
416     FW_DROP_LEVEL(sc))
417#define RCQ_TH_HI(sc)                      \
418    (RCQ_TH_LO(sc) + DROPLESS_FC_HEADROOM)
419
420/* This is needed for determening of last_max */
421#define SUB_S16(a, b) (int16_t)((int16_t)(a) - (int16_t)(b))
422
423#define __SGE_MASK_SET_BIT(el, bit)               \
424    do {                                          \
425        (el) = ((el) | ((uint64_t)0x1 << (bit))); \
426    } while (0)
427
428#define __SGE_MASK_CLEAR_BIT(el, bit)                \
429    do {                                             \
430        (el) = ((el) & (~((uint64_t)0x1 << (bit)))); \
431    } while (0)
432
433#define SGE_MASK_SET_BIT(fp, idx)                                       \
434    __SGE_MASK_SET_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
435                       ((idx) & RX_SGE_MASK_ELEM_MASK))
436
437#define SGE_MASK_CLEAR_BIT(fp, idx)                                       \
438    __SGE_MASK_CLEAR_BIT((fp)->sge_mask[(idx) >> RX_SGE_MASK_ELEM_SHIFT], \
439                         ((idx) & RX_SGE_MASK_ELEM_MASK))
440
441/* Load / Unload modes */
442#define LOAD_NORMAL       0
443#define LOAD_OPEN         1
444#define LOAD_DIAG         2
445#define LOAD_LOOPBACK_EXT 3
446#define UNLOAD_NORMAL     0
447#define UNLOAD_CLOSE      1
448#define UNLOAD_RECOVERY   2
449
450/* Some constants... */
451//#define MAX_PATH_NUM       2
452//#define E2_MAX_NUM_OF_VFS  64
453//#define E1H_FUNC_MAX       8
454//#define E2_FUNC_MAX        4   /* per path */
455#define MAX_VNIC_NUM       4
456#define MAX_FUNC_NUM       8   /* common to all chips */
457//#define MAX_NDSB           HC_SB_MAX_SB_E2 /* max non-default status block */
458#define MAX_RSS_CHAINS     16 /* a constant for HW limit */
459#define MAX_MSI_VECTOR     8  /* a constant for HW limit */
460
461#define ILT_NUM_PAGE_ENTRIES 3072
462/*
463 * 57710/11 we use whole table since we have 8 functions.
464 * 57712 we have only 4 functions, but use same size per func, so only half
465 * of the table is used.
466 */
467#define ILT_PER_FUNC        (ILT_NUM_PAGE_ENTRIES / 8)
468#define FUNC_ILT_BASE(func) (func * ILT_PER_FUNC)
469/*
470 * the phys address is shifted right 12 bits and has an added
471 * 1=valid bit added to the 53rd bit
472 * then since this is a wide register(TM)
473 * we split it into two 32 bit writes
474 */
475#define ONCHIP_ADDR1(x) ((uint32_t)(((uint64_t)x >> 12) & 0xFFFFFFFF))
476#define ONCHIP_ADDR2(x) ((uint32_t)((1 << 20) | ((uint64_t)x >> 44)))
477
478/* L2 header size + 2*VLANs (8 bytes) + LLC SNAP (8 bytes) */
479#define ETH_HLEN                  14
480#define ETH_OVERHEAD              (ETH_HLEN + 8 + 8)
481#define ETH_MIN_PACKET_SIZE       60
482#define ETH_MAX_PACKET_SIZE       ETHERMTU /* 1500 */
483#define ETH_MAX_JUMBO_PACKET_SIZE 9600
484/* TCP with Timestamp Option (32) + IPv6 (40) */
485#define ETH_MAX_TPA_HEADER_SIZE   72
486
487/* max supported alignment is 256 (8 shift) */
488//#define BXE_RX_ALIGN_SHIFT ((CACHE_LINE_SHIFT < 8) ? CACHE_LINE_SHIFT : 8)
489#define BXE_RX_ALIGN_SHIFT 8
490/* FW uses 2 cache lines alignment for start packet and size  */
491#define BXE_FW_RX_ALIGN_START (1 << BXE_RX_ALIGN_SHIFT)
492#define BXE_FW_RX_ALIGN_END   (1 << BXE_RX_ALIGN_SHIFT)
493
494#define BXE_PXP_DRAM_ALIGN (BXE_RX_ALIGN_SHIFT - 5) /* XXX ??? */
495
496struct bxe_bar {
497    struct resource    *resource;
498    int                rid;
499    bus_space_tag_t    tag;
500    bus_space_handle_t handle;
501    vm_offset_t        kva;
502};
503
504struct bxe_intr {
505    struct resource *resource;
506    int             rid;
507    void            *tag;
508};
509
510/* Used to manage DMA allocations. */
511struct bxe_dma {
512    struct bxe_softc  *sc;
513    bus_addr_t        paddr;
514    void              *vaddr;
515    bus_dma_tag_t     tag;
516    bus_dmamap_t      map;
517    bus_dma_segment_t seg;
518    bus_size_t        size;
519    int               nseg;
520    char              msg[32];
521};
522
523/* attn group wiring */
524#define MAX_DYNAMIC_ATTN_GRPS 8
525
526struct attn_route {
527    uint32_t sig[5];
528};
529
530struct iro {
531    uint32_t base;
532    uint16_t m1;
533    uint16_t m2;
534    uint16_t m3;
535    uint16_t size;
536};
537
538union bxe_host_hc_status_block {
539    /* pointer to fp status block e2 */
540    struct host_hc_status_block_e2  *e2_sb;
541    /* pointer to fp status block e1x */
542    struct host_hc_status_block_e1x *e1x_sb;
543};
544
545union bxe_db_prod {
546    struct doorbell_set_prod data;
547    uint32_t                 raw;
548};
549
550struct bxe_sw_tx_bd {
551    struct mbuf  *m;
552    bus_dmamap_t m_map;
553    uint16_t     first_bd;
554    uint8_t      flags;
555/* set on the first BD descriptor when there is a split BD */
556#define BXE_TSO_SPLIT_BD (1 << 0)
557};
558
559struct bxe_sw_rx_bd {
560    struct mbuf  *m;
561    bus_dmamap_t m_map;
562};
563
564struct bxe_sw_tpa_info {
565    struct bxe_sw_rx_bd bd;
566    bus_dma_segment_t   seg;
567    uint8_t             state;
568#define BXE_TPA_STATE_START 1
569#define BXE_TPA_STATE_STOP  2
570    uint8_t             placement_offset;
571    uint16_t            parsing_flags;
572    uint16_t            vlan_tag;
573    uint16_t            len_on_bd;
574};
575
576/*
577 * This is the HSI fastpath data structure. There can be up to MAX_RSS_CHAIN
578 * instances of the fastpath structure when using multiple queues.
579 */
580struct bxe_fastpath {
581    /* pointer back to parent structure */
582    struct bxe_softc *sc;
583
584    struct mtx tx_mtx;
585    char       tx_mtx_name[32];
586    struct mtx rx_mtx;
587    char       rx_mtx_name[32];
588
589#define BXE_FP_TX_LOCK(fp)        mtx_lock(&fp->tx_mtx)
590#define BXE_FP_TX_UNLOCK(fp)      mtx_unlock(&fp->tx_mtx)
591#define BXE_FP_TX_LOCK_ASSERT(fp) mtx_assert(&fp->tx_mtx, MA_OWNED)
592
593#define BXE_FP_RX_LOCK(fp)        mtx_lock(&fp->rx_mtx)
594#define BXE_FP_RX_UNLOCK(fp)      mtx_unlock(&fp->rx_mtx)
595#define BXE_FP_RX_LOCK_ASSERT(fp) mtx_assert(&fp->rx_mtx, MA_OWNED)
596
597    /* status block */
598    struct bxe_dma                 sb_dma;
599    union bxe_host_hc_status_block status_block;
600
601    /* transmit chain (tx bds) */
602    struct bxe_dma        tx_dma;
603    union eth_tx_bd_types *tx_chain;
604
605    /* receive chain (rx bds) */
606    struct bxe_dma   rx_dma;
607    struct eth_rx_bd *rx_chain;
608
609    /* receive completion queue chain (rcq bds) */
610    struct bxe_dma   rcq_dma;
611    union eth_rx_cqe *rcq_chain;
612
613    /* receive scatter/gather entry chain (for TPA) */
614    struct bxe_dma    rx_sge_dma;
615    struct eth_rx_sge *rx_sge_chain;
616
617    /* tx mbufs */
618    bus_dma_tag_t       tx_mbuf_tag;
619    struct bxe_sw_tx_bd tx_mbuf_chain[TX_BD_TOTAL];
620
621    /* rx mbufs */
622    bus_dma_tag_t       rx_mbuf_tag;
623    struct bxe_sw_rx_bd rx_mbuf_chain[RX_BD_TOTAL];
624    bus_dmamap_t        rx_mbuf_spare_map;
625
626    /* rx sge mbufs */
627    bus_dma_tag_t       rx_sge_mbuf_tag;
628    struct bxe_sw_rx_bd rx_sge_mbuf_chain[RX_SGE_TOTAL];
629    bus_dmamap_t        rx_sge_mbuf_spare_map;
630
631    /* rx tpa mbufs (use the larger size for TPA queue length) */
632    int                    tpa_enable; /* disabled per fastpath upon error */
633    struct bxe_sw_tpa_info rx_tpa_info[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
634    bus_dmamap_t           rx_tpa_info_mbuf_spare_map;
635    uint64_t               rx_tpa_queue_used;
636#if 0
637    bus_dmamap_t      rx_tpa_mbuf_map[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
638    bus_dmamap_t      rx_tpa_mbuf_spare_map;
639    struct mbuf       *rx_tpa_mbuf_ptr[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
640    bus_dma_segment_t rx_tpa_mbuf_segs[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
641
642    uint8_t tpa_state[ETH_MAX_AGGREGATION_QUEUES_E1H_E2];
643#endif
644
645    uint16_t *sb_index_values;
646    uint16_t *sb_running_index;
647    uint32_t ustorm_rx_prods_offset;
648
649    uint8_t igu_sb_id; /* status block number in HW */
650    uint8_t fw_sb_id;  /* status block number in FW */
651
652    uint32_t rx_buf_size;
653    int mbuf_alloc_size;
654
655    int state;
656#define BXE_FP_STATE_CLOSED  0x01
657#define BXE_FP_STATE_IRQ     0x02
658#define BXE_FP_STATE_OPENING 0x04
659#define BXE_FP_STATE_OPEN    0x08
660#define BXE_FP_STATE_HALTING 0x10
661#define BXE_FP_STATE_HALTED  0x20
662
663    /* reference back to this fastpath queue number */
664    uint8_t index; /* this is also the 'cid' */
665#define FP_IDX(fp) (fp->index)
666
667    /* interrupt taskqueue (fast) */
668    struct task      tq_task;
669    struct taskqueue *tq;
670    char             tq_name[32];
671
672    /* ethernet client ID (each fastpath set of RX/TX/CQE is a client) */
673    uint8_t cl_id;
674#define FP_CL_ID(fp) (fp->cl_id)
675    uint8_t cl_qzone_id;
676
677    uint16_t fp_hc_idx;
678
679    /* driver copy of the receive buffer descriptor prod/cons indices */
680    uint16_t rx_bd_prod;
681    uint16_t rx_bd_cons;
682
683    /* driver copy of the receive completion queue prod/cons indices */
684    uint16_t rx_cq_prod;
685    uint16_t rx_cq_cons;
686
687    union bxe_db_prod tx_db;
688
689    /* Transmit packet producer index (used in eth_tx_bd). */
690    uint16_t tx_pkt_prod;
691    uint16_t tx_pkt_cons;
692
693    /* Transmit buffer descriptor producer index. */
694    uint16_t tx_bd_prod;
695    uint16_t tx_bd_cons;
696
697#if 0
698    /* status block number in hardware */
699    uint8_t sb_id;
700#define FP_SB_ID(fp) (fp->sb_id)
701
702    /* driver copy of the fastpath CSTORM/USTORM indices */
703    uint16_t fp_c_idx;
704    uint16_t fp_u_idx;
705#endif
706
707    uint64_t sge_mask[RX_SGE_MASK_LEN];
708    uint16_t rx_sge_prod;
709
710    struct tstorm_per_queue_stats old_tclient;
711    struct ustorm_per_queue_stats old_uclient;
712    struct xstorm_per_queue_stats old_xclient;
713    struct bxe_eth_q_stats        eth_q_stats;
714    struct bxe_eth_q_stats_old    eth_q_stats_old;
715
716    /* Pointer to the receive consumer in the status block */
717    uint16_t *rx_cq_cons_sb;
718
719    /* Pointer to the transmit consumer in the status block */
720    uint16_t *tx_cons_sb;
721
722    /* transmit timeout until chip reset */
723    int watchdog_timer;
724
725    /* Free/used buffer descriptor counters. */
726    //uint16_t used_tx_bd;
727
728    /* Last maximal completed SGE */
729    uint16_t last_max_sge;
730
731    //uint16_t rx_sge_free_idx;
732
733    //uint8_t segs;
734
735#if __FreeBSD_version >= 800000
736#define BXE_BR_SIZE 4096
737    struct buf_ring *tx_br;
738#endif
739}; /* struct bxe_fastpath */
740
741/* sriov XXX */
742#define BXE_MAX_NUM_OF_VFS 64
743#define BXE_VF_CID_WND     0
744#define BXE_CIDS_PER_VF    (1 << BXE_VF_CID_WND)
745#define BXE_CLIENTS_PER_VF 1
746#define BXE_FIRST_VF_CID   256
747#define BXE_VF_CIDS        (BXE_MAX_NUM_OF_VFS * BXE_CIDS_PER_VF)
748#define BXE_VF_ID_INVALID  0xFF
749#define IS_SRIOV(sc) 0
750
751/* maximum number of fast-path interrupt contexts */
752#define FP_SB_MAX_E1x 16
753#define FP_SB_MAX_E2  HC_SB_MAX_SB_E2
754
755union cdu_context {
756    struct eth_context eth;
757    char pad[1024];
758};
759
760/* CDU host DB constants */
761#define CDU_ILT_PAGE_SZ_HW 2
762#define CDU_ILT_PAGE_SZ    (8192 << CDU_ILT_PAGE_SZ_HW) /* 32K */
763#define ILT_PAGE_CIDS      (CDU_ILT_PAGE_SZ / sizeof(union cdu_context))
764
765#define CNIC_ISCSI_CID_MAX 256
766#define CNIC_FCOE_CID_MAX  2048
767#define CNIC_CID_MAX       (CNIC_ISCSI_CID_MAX + CNIC_FCOE_CID_MAX)
768#define CNIC_ILT_LINES     DIV_ROUND_UP(CNIC_CID_MAX, ILT_PAGE_CIDS)
769
770#define QM_ILT_PAGE_SZ_HW  0
771#define QM_ILT_PAGE_SZ     (4096 << QM_ILT_PAGE_SZ_HW) /* 4K */
772#define QM_CID_ROUND       1024
773
774/* TM (timers) host DB constants */
775#define TM_ILT_PAGE_SZ_HW  0
776#define TM_ILT_PAGE_SZ     (4096 << TM_ILT_PAGE_SZ_HW) /* 4K */
777/*#define TM_CONN_NUM        (CNIC_STARTING_CID+CNIC_ISCSI_CXT_MAX) */
778#define TM_CONN_NUM        1024
779#define TM_ILT_SZ          (8 * TM_CONN_NUM)
780#define TM_ILT_LINES       DIV_ROUND_UP(TM_ILT_SZ, TM_ILT_PAGE_SZ)
781
782/* SRC (Searcher) host DB constants */
783#define SRC_ILT_PAGE_SZ_HW 0
784#define SRC_ILT_PAGE_SZ    (4096 << SRC_ILT_PAGE_SZ_HW) /* 4K */
785#define SRC_HASH_BITS      10
786#define SRC_CONN_NUM       (1 << SRC_HASH_BITS) /* 1024 */
787#define SRC_ILT_SZ         (sizeof(struct src_ent) * SRC_CONN_NUM)
788#define SRC_T2_SZ          SRC_ILT_SZ
789#define SRC_ILT_LINES      DIV_ROUND_UP(SRC_ILT_SZ, SRC_ILT_PAGE_SZ)
790
791struct hw_context {
792    struct bxe_dma    vcxt_dma;
793    union cdu_context *vcxt;
794    //bus_addr_t        cxt_mapping;
795    size_t            size;
796};
797
798#define SM_RX_ID 0
799#define SM_TX_ID 1
800
801/* defines for multiple tx priority indices */
802#define FIRST_TX_ONLY_COS_INDEX 1
803#define FIRST_TX_COS_INDEX      0
804
805#define CID_TO_FP(cid, sc) ((cid) % BXE_NUM_NON_CNIC_QUEUES(sc))
806
807#define HC_INDEX_ETH_RX_CQ_CONS       1
808#define HC_INDEX_OOO_TX_CQ_CONS       4
809#define HC_INDEX_ETH_TX_CQ_CONS_COS0  5
810#define HC_INDEX_ETH_TX_CQ_CONS_COS1  6
811#define HC_INDEX_ETH_TX_CQ_CONS_COS2  7
812#define HC_INDEX_ETH_FIRST_TX_CQ_CONS HC_INDEX_ETH_TX_CQ_CONS_COS0
813
814/* congestion management fairness mode */
815#define CMNG_FNS_NONE   0
816#define CMNG_FNS_MINMAX 1
817
818/* CMNG constants, as derived from system spec calculations */
819/* default MIN rate in case VNIC min rate is configured to zero - 100Mbps */
820#define DEF_MIN_RATE 100
821/* resolution of the rate shaping timer - 400 usec */
822#define RS_PERIODIC_TIMEOUT_USEC 400
823/* number of bytes in single QM arbitration cycle -
824 * coefficient for calculating the fairness timer */
825#define QM_ARB_BYTES 160000
826/* resolution of Min algorithm 1:100 */
827#define MIN_RES 100
828/* how many bytes above threshold for the minimal credit of Min algorithm*/
829#define MIN_ABOVE_THRESH 32768
830/* fairness algorithm integration time coefficient -
831 * for calculating the actual Tfair */
832#define T_FAIR_COEF ((MIN_ABOVE_THRESH + QM_ARB_BYTES) * 8 * MIN_RES)
833/* memory of fairness algorithm - 2 cycles */
834#define FAIR_MEM 2
835
836#define HC_SEG_ACCESS_DEF   0 /* Driver decision 0-3 */
837#define HC_SEG_ACCESS_ATTN  4
838#define HC_SEG_ACCESS_NORM  0 /* Driver decision 0-1 */
839
840/*
841 * The total number of L2 queues, MSIX vectors and HW contexts (CIDs) is
842 * control by the number of fast-path status blocks supported by the
843 * device (HW/FW). Each fast-path status block (FP-SB) aka non-default
844 * status block represents an independent interrupts context that can
845 * serve a regular L2 networking queue. However special L2 queues such
846 * as the FCoE queue do not require a FP-SB and other components like
847 * the CNIC may consume FP-SB reducing the number of possible L2 queues
848 *
849 * If the maximum number of FP-SB available is X then:
850 * a. If CNIC is supported it consumes 1 FP-SB thus the max number of
851 *    regular L2 queues is Y=X-1
852 * b. in MF mode the actual number of L2 queues is Y= (X-1/MF_factor)
853 * c. If the FCoE L2 queue is supported the actual number of L2 queues
854 *    is Y+1
855 * d. The number of irqs (MSIX vectors) is either Y+1 (one extra for
856 *    slow-path interrupts) or Y+2 if CNIC is supported (one additional
857 *    FP interrupt context for the CNIC).
858 * e. The number of HW context (CID count) is always X or X+1 if FCoE
859 *    L2 queue is supported. the cid for the FCoE L2 queue is always X.
860 *
861 * So this is quite simple for now as no ULPs are supported yet. :-)
862 */
863#define BXE_NUM_QUEUES(sc)          ((sc)->num_queues)
864#define BXE_NUM_ETH_QUEUES(sc)      BXE_NUM_QUEUES(sc)
865#define BXE_NUM_NON_CNIC_QUEUES(sc) BXE_NUM_QUEUES(sc)
866#define BXE_NUM_RX_QUEUES(sc)       BXE_NUM_QUEUES(sc)
867
868#define FOR_EACH_QUEUE(sc, var)                          \
869    for ((var) = 0; (var) < BXE_NUM_QUEUES(sc); (var)++)
870
871#define FOR_EACH_NONDEFAULT_QUEUE(sc, var)               \
872    for ((var) = 1; (var) < BXE_NUM_QUEUES(sc); (var)++)
873
874#define FOR_EACH_ETH_QUEUE(sc, var)                          \
875    for ((var) = 0; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
876
877#define FOR_EACH_NONDEFAULT_ETH_QUEUE(sc, var)               \
878    for ((var) = 1; (var) < BXE_NUM_ETH_QUEUES(sc); (var)++)
879
880#define FOR_EACH_COS_IN_TX_QUEUE(sc, var)           \
881    for ((var) = 0; (var) < (sc)->max_cos; (var)++)
882
883#define FOR_EACH_CNIC_QUEUE(sc, var)     \
884    for ((var) = BXE_NUM_ETH_QUEUES(sc); \
885         (var) < BXE_NUM_QUEUES(sc);     \
886         (var)++)
887
888enum {
889    OOO_IDX_OFFSET,
890    FCOE_IDX_OFFSET,
891    FWD_IDX_OFFSET,
892};
893
894#define FCOE_IDX(sc)              (BXE_NUM_NON_CNIC_QUEUES(sc) + FCOE_IDX_OFFSET)
895#define bxe_fcoe_fp(sc)           (&sc->fp[FCOE_IDX(sc)])
896#define bxe_fcoe(sc, var)         (bxe_fcoe_fp(sc)->var)
897#define bxe_fcoe_inner_sp_obj(sc) (&sc->sp_objs[FCOE_IDX(sc)])
898#define bxe_fcoe_sp_obj(sc, var)  (bxe_fcoe_inner_sp_obj(sc)->var)
899#define bxe_fcoe_tx(sc, var)      (bxe_fcoe_fp(sc)->txdata_ptr[FIRST_TX_COS_INDEX]->var)
900
901#define OOO_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + OOO_IDX_OFFSET)
902#define bxe_ooo_fp(sc)            (&sc->fp[OOO_IDX(sc)])
903#define bxe_ooo(sc, var)          (bxe_ooo_fp(sc)->var)
904#define bxe_ooo_inner_sp_obj(sc)  (&sc->sp_objs[OOO_IDX(sc)])
905#define bxe_ooo_sp_obj(sc, var)   (bxe_ooo_inner_sp_obj(sc)->var)
906
907#define FWD_IDX(sc)               (BXE_NUM_NON_CNIC_QUEUES(sc) + FWD_IDX_OFFSET)
908#define bxe_fwd_fp(sc)            (&sc->fp[FWD_IDX(sc)])
909#define bxe_fwd(sc, var)          (bxe_fwd_fp(sc)->var)
910#define bxe_fwd_inner_sp_obj(sc)  (&sc->sp_objs[FWD_IDX(sc)])
911#define bxe_fwd_sp_obj(sc, var)   (bxe_fwd_inner_sp_obj(sc)->var)
912#define bxe_fwd_txdata(fp)        (fp->txdata_ptr[FIRST_TX_COS_INDEX])
913
914#define IS_ETH_FP(fp)    ((fp)->index < BXE_NUM_ETH_QUEUES((fp)->sc))
915#define IS_FCOE_FP(fp)   ((fp)->index == FCOE_IDX((fp)->sc))
916#define IS_FCOE_IDX(idx) ((idx) == FCOE_IDX(sc))
917#define IS_FWD_FP(fp)    ((fp)->index == FWD_IDX((fp)->sc))
918#define IS_FWD_IDX(idx)  ((idx) == FWD_IDX(sc))
919#define IS_OOO_FP(fp)    ((fp)->index == OOO_IDX((fp)->sc))
920#define IS_OOO_IDX(idx)  ((idx) == OOO_IDX(sc))
921
922enum {
923    BXE_PORT_QUERY_IDX,
924    BXE_PF_QUERY_IDX,
925    BXE_FCOE_QUERY_IDX,
926    BXE_FIRST_QUEUE_QUERY_IDX,
927};
928
929struct bxe_fw_stats_req {
930    struct stats_query_header hdr;
931    struct stats_query_entry  query[FP_SB_MAX_E1x +
932                                    BXE_FIRST_QUEUE_QUERY_IDX];
933};
934
935struct bxe_fw_stats_data {
936    struct stats_counter          storm_counters;
937    struct per_port_stats         port;
938    struct per_pf_stats           pf;
939    //struct fcoe_statistics_params fcoe;
940    struct per_queue_stats        queue_stats[1];
941};
942
943/* IGU MSIX STATISTICS on 57712: 64 for VFs; 4 for PFs; 4 for Attentions */
944#define BXE_IGU_STAS_MSG_VF_CNT 64
945#define BXE_IGU_STAS_MSG_PF_CNT 4
946
947#define MAX_DMAE_C 8
948
949/*
950 * For the main interface up/down code paths, a not-so-fine-grained CORE
951 * mutex lock is used. Inside this code are various calls to kernel routines
952 * that can cause a sleep to occur. Namely memory allocations and taskqueue
953 * handling. If using an MTX lock we are *not* allowed to sleep but we can
954 * with an SX lock. This define forces the CORE lock to use and SX lock.
955 * Undefine this and an MTX lock will be used instead. Note that the IOCTL
956 * path can cause problems since it's called by a non-sleepable thread. To
957 * alleviate a potential sleep, any IOCTL processing that results in the
958 * chip/interface being started/stopped/reinitialized, the actual work is
959 * offloaded to a taskqueue.
960 */
961#define BXE_CORE_LOCK_SX
962
963/*
964 * This is the slowpath data structure. It is mapped into non-paged memory
965 * so that the hardware can access it's contents directly and must be page
966 * aligned.
967 */
968struct bxe_slowpath {
969
970#if 0
971    /*
972     * The cdu_context array MUST be the first element in this
973     * structure. It is used during the leading edge ramrod
974     * operation.
975     */
976    union cdu_context context[MAX_CONTEXT];
977
978    /* Used as a DMA source for MAC configuration. */
979    struct mac_configuration_cmd    mac_config;
980    struct mac_configuration_cmd    mcast_config;
981#endif
982
983    /* used by the DMAE command executer */
984    struct dmae_command dmae[MAX_DMAE_C];
985
986    /* statistics completion */
987    uint32_t stats_comp;
988
989    /* firmware defined statistics blocks */
990    union mac_stats        mac_stats;
991    struct nig_stats       nig_stats;
992    struct host_port_stats port_stats;
993    struct host_func_stats func_stats;
994    //struct host_func_stats func_stats_base;
995
996    /* DMAE completion value and data source/sink */
997    uint32_t wb_comp;
998    uint32_t wb_data[4];
999
1000    union {
1001        struct mac_configuration_cmd          e1x;
1002        struct eth_classify_rules_ramrod_data e2;
1003    } mac_rdata;
1004
1005    union {
1006        struct tstorm_eth_mac_filter_config e1x;
1007        struct eth_filter_rules_ramrod_data e2;
1008    } rx_mode_rdata;
1009
1010    struct eth_rss_update_ramrod_data rss_rdata;
1011
1012    union {
1013        struct mac_configuration_cmd           e1;
1014        struct eth_multicast_rules_ramrod_data e2;
1015    } mcast_rdata;
1016
1017    union {
1018        struct function_start_data        func_start;
1019        struct flow_control_configuration pfc_config; /* for DCBX ramrod */
1020    } func_rdata;
1021
1022    /* Queue State related ramrods */
1023    union {
1024        struct client_init_ramrod_data   init_data;
1025        struct client_update_ramrod_data update_data;
1026    } q_rdata;
1027
1028    /*
1029     * AFEX ramrod can not be a part of func_rdata union because these
1030     * events might arrive in parallel to other events from func_rdata.
1031     * If they were defined in the same union the data can get corrupted.
1032     */
1033    struct afex_vif_list_ramrod_data func_afex_rdata;
1034
1035    union drv_info_to_mcp drv_info_to_mcp;
1036}; /* struct bxe_slowpath */
1037
1038/*
1039 * Port specifc data structure.
1040 */
1041struct bxe_port {
1042    /*
1043     * Port Management Function (for 57711E only).
1044     * When this field is set the driver instance is
1045     * responsible for managing port specifc
1046     * configurations such as handling link attentions.
1047     */
1048    uint32_t pmf;
1049
1050    /* Ethernet maximum transmission unit. */
1051    uint16_t ether_mtu;
1052
1053    uint32_t link_config[ELINK_LINK_CONFIG_SIZE];
1054
1055    uint32_t ext_phy_config;
1056
1057    /* Port feature config.*/
1058    uint32_t config;
1059
1060    /* Defines the features supported by the PHY. */
1061    uint32_t supported[ELINK_LINK_CONFIG_SIZE];
1062
1063    /* Defines the features advertised by the PHY. */
1064    uint32_t advertising[ELINK_LINK_CONFIG_SIZE];
1065#define ADVERTISED_10baseT_Half    (1 << 1)
1066#define ADVERTISED_10baseT_Full    (1 << 2)
1067#define ADVERTISED_100baseT_Half   (1 << 3)
1068#define ADVERTISED_100baseT_Full   (1 << 4)
1069#define ADVERTISED_1000baseT_Half  (1 << 5)
1070#define ADVERTISED_1000baseT_Full  (1 << 6)
1071#define ADVERTISED_TP              (1 << 7)
1072#define ADVERTISED_FIBRE           (1 << 8)
1073#define ADVERTISED_Autoneg         (1 << 9)
1074#define ADVERTISED_Asym_Pause      (1 << 10)
1075#define ADVERTISED_Pause           (1 << 11)
1076#define ADVERTISED_2500baseX_Full  (1 << 15)
1077#define ADVERTISED_10000baseT_Full (1 << 16)
1078
1079    uint32_t    phy_addr;
1080
1081    /* Used to synchronize phy accesses. */
1082    struct mtx  phy_mtx;
1083    char        phy_mtx_name[32];
1084
1085#define BXE_PHY_LOCK(sc)          mtx_lock(&sc->port.phy_mtx)
1086#define BXE_PHY_UNLOCK(sc)        mtx_unlock(&sc->port.phy_mtx)
1087#define BXE_PHY_LOCK_ASSERT(sc)   mtx_assert(&sc->port.phy_mtx, MA_OWNED)
1088
1089    /*
1090     * MCP scratchpad address for port specific statistics.
1091     * The device is responsible for writing statistcss
1092     * back to the MCP for use with management firmware such
1093     * as UMP/NC-SI.
1094     */
1095    uint32_t port_stx;
1096
1097    struct nig_stats old_nig_stats;
1098}; /* struct bxe_port */
1099
1100struct bxe_mf_info {
1101    uint32_t mf_config[E1HVN_MAX];
1102
1103    uint32_t vnics_per_port;   /* 1, 2 or 4 */
1104    uint32_t multi_vnics_mode; /* can be set even if vnics_per_port = 1 */
1105    uint32_t path_has_ovlan;   /* MF mode in the path (can be different than the MF mode of the function */
1106
1107#define IS_MULTI_VNIC(sc)  ((sc)->devinfo.mf_info.multi_vnics_mode)
1108#define VNICS_PER_PORT(sc) ((sc)->devinfo.mf_info.vnics_per_port)
1109#define VNICS_PER_PATH(sc)                                  \
1110    ((sc)->devinfo.mf_info.vnics_per_port *                 \
1111     ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 1 ))
1112
1113    uint8_t min_bw[MAX_VNIC_NUM];
1114    uint8_t max_bw[MAX_VNIC_NUM];
1115
1116    uint16_t ext_id; /* vnic outer vlan or VIF ID */
1117#define VALID_OVLAN(ovlan) ((ovlan) <= 4096)
1118#define INVALID_VIF_ID 0xFFFF
1119#define OVLAN(sc) ((sc)->devinfo.mf_info.ext_id)
1120#define VIF_ID(sc) ((sc)->devinfo.mf_info.ext_id)
1121
1122    uint16_t default_vlan;
1123#define NIV_DEFAULT_VLAN(sc) ((sc)->devinfo.mf_info.default_vlan)
1124
1125    uint8_t niv_allowed_priorities;
1126#define NIV_ALLOWED_PRIORITIES(sc) ((sc)->devinfo.mf_info.niv_allowed_priorities)
1127
1128    uint8_t niv_default_cos;
1129#define NIV_DEFAULT_COS(sc) ((sc)->devinfo.mf_info.niv_default_cos)
1130
1131    uint8_t niv_mba_enabled;
1132
1133    enum mf_cfg_afex_vlan_mode afex_vlan_mode;
1134#define AFEX_VLAN_MODE(sc) ((sc)->devinfo.mf_info.afex_vlan_mode)
1135    int                        afex_def_vlan_tag;
1136    uint32_t                   pending_max;
1137
1138    uint16_t flags;
1139#define MF_INFO_VALID_MAC       0x0001
1140
1141    uint8_t mf_mode; /* Switch-Dependent or Switch-Independent */
1142#define IS_MF(sc)                        \
1143    (IS_MULTI_VNIC(sc) &&                \
1144     ((sc)->devinfo.mf_info.mf_mode != 0))
1145#define IS_MF_SD(sc)                                     \
1146    (IS_MULTI_VNIC(sc) &&                                \
1147     ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SD))
1148#define IS_MF_SI(sc)                                     \
1149    (IS_MULTI_VNIC(sc) &&                                \
1150     ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_SI))
1151#define IS_MF_AFEX(sc)                              \
1152    (IS_MULTI_VNIC(sc) &&                           \
1153     ((sc)->devinfo.mf_info.mf_mode == MULTI_FUNCTION_AFEX))
1154#define IS_MF_SD_MODE(sc)   IS_MF_SD(sc)
1155#define IS_MF_SI_MODE(sc)   IS_MF_SI(sc)
1156#define IS_MF_AFEX_MODE(sc) IS_MF_AFEX(sc)
1157
1158    uint32_t mf_protos_supported;
1159    #define MF_PROTO_SUPPORT_ETHERNET 0x1
1160    #define MF_PROTO_SUPPORT_ISCSI    0x2
1161    #define MF_PROTO_SUPPORT_FCOE     0x4
1162}; /* struct bxe_mf_info */
1163
1164/* Device information data structure. */
1165struct bxe_devinfo {
1166    /* PCIe info */
1167    uint16_t vendor_id;
1168    uint16_t device_id;
1169    uint16_t subvendor_id;
1170    uint16_t subdevice_id;
1171
1172    /*
1173     * chip_id = 0b'CCCCCCCCCCCCCCCCRRRRMMMMMMMMBBBB'
1174     *   C = Chip Number   (bits 16-31)
1175     *   R = Chip Revision (bits 12-15)
1176     *   M = Chip Metal    (bits 4-11)
1177     *   B = Chip Bond ID  (bits 0-3)
1178     */
1179    uint32_t chip_id;
1180#define CHIP_ID(sc)           ((sc)->devinfo.chip_id & 0xffff0000)
1181#define CHIP_NUM(sc)          ((sc)->devinfo.chip_id >> 16)
1182/* device ids */
1183#define CHIP_NUM_57710        0x164e
1184#define CHIP_NUM_57711        0x164f
1185#define CHIP_NUM_57711E       0x1650
1186#define CHIP_NUM_57712        0x1662
1187#define CHIP_NUM_57712_MF     0x1663
1188#define CHIP_NUM_57712_VF     0x166f
1189#define CHIP_NUM_57800        0x168a
1190#define CHIP_NUM_57800_MF     0x16a5
1191#define CHIP_NUM_57800_VF     0x16a9
1192#define CHIP_NUM_57810        0x168e
1193#define CHIP_NUM_57810_MF     0x16ae
1194#define CHIP_NUM_57810_VF     0x16af
1195#define CHIP_NUM_57811        0x163d
1196#define CHIP_NUM_57811_MF     0x163e
1197#define CHIP_NUM_57811_VF     0x163f
1198#define CHIP_NUM_57840_OBS    0x168d
1199#define CHIP_NUM_57840_OBS_MF 0x16ab
1200#define CHIP_NUM_57840_4_10   0x16a1
1201#define CHIP_NUM_57840_2_20   0x16a2
1202#define CHIP_NUM_57840_MF     0x16a4
1203#define CHIP_NUM_57840_VF     0x16ad
1204
1205#define CHIP_REV_SHIFT      12
1206#define CHIP_REV_MASK       (0xF << CHIP_REV_SHIFT)
1207#define CHIP_REV(sc)        ((sc)->devinfo.chip_id & CHIP_REV_MASK)
1208
1209#define CHIP_REV_Ax         (0x0 << CHIP_REV_SHIFT)
1210#define CHIP_REV_Bx         (0x1 << CHIP_REV_SHIFT)
1211#define CHIP_REV_Cx         (0x2 << CHIP_REV_SHIFT)
1212
1213#define CHIP_REV_IS_SLOW(sc)    \
1214    (CHIP_REV(sc) > 0x00005000)
1215#define CHIP_REV_IS_FPGA(sc)                              \
1216    (CHIP_REV_IS_SLOW(sc) && (CHIP_REV(sc) & 0x00001000))
1217#define CHIP_REV_IS_EMUL(sc)                               \
1218    (CHIP_REV_IS_SLOW(sc) && !(CHIP_REV(sc) & 0x00001000))
1219#define CHIP_REV_IS_ASIC(sc) \
1220    (!CHIP_REV_IS_SLOW(sc))
1221
1222#define CHIP_METAL(sc)      ((sc->devinfo.chip_id) & 0x00000ff0)
1223#define CHIP_BOND_ID(sc)    ((sc->devinfo.chip_id) & 0x0000000f)
1224
1225#define CHIP_IS_E1(sc)      (CHIP_NUM(sc) == CHIP_NUM_57710)
1226#define CHIP_IS_57710(sc)   (CHIP_NUM(sc) == CHIP_NUM_57710)
1227#define CHIP_IS_57711(sc)   (CHIP_NUM(sc) == CHIP_NUM_57711)
1228#define CHIP_IS_57711E(sc)  (CHIP_NUM(sc) == CHIP_NUM_57711E)
1229#define CHIP_IS_E1H(sc)     ((CHIP_IS_57711(sc)) || \
1230                             (CHIP_IS_57711E(sc)))
1231#define CHIP_IS_E1x(sc)     (CHIP_IS_E1((sc)) || \
1232                             CHIP_IS_E1H((sc)))
1233
1234#define CHIP_IS_57712(sc)    (CHIP_NUM(sc) == CHIP_NUM_57712)
1235#define CHIP_IS_57712_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_MF)
1236#define CHIP_IS_57712_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57712_VF)
1237#define CHIP_IS_E2(sc)       (CHIP_IS_57712(sc) ||  \
1238                              CHIP_IS_57712_MF(sc))
1239
1240#define CHIP_IS_57800(sc)    (CHIP_NUM(sc) == CHIP_NUM_57800)
1241#define CHIP_IS_57800_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_MF)
1242#define CHIP_IS_57800_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57800_VF)
1243#define CHIP_IS_57810(sc)    (CHIP_NUM(sc) == CHIP_NUM_57810)
1244#define CHIP_IS_57810_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_MF)
1245#define CHIP_IS_57810_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57810_VF)
1246#define CHIP_IS_57811(sc)    (CHIP_NUM(sc) == CHIP_NUM_57811)
1247#define CHIP_IS_57811_MF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_MF)
1248#define CHIP_IS_57811_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57811_VF)
1249#define CHIP_IS_57840(sc)    ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS)  || \
1250                              (CHIP_NUM(sc) == CHIP_NUM_57840_4_10) || \
1251                              (CHIP_NUM(sc) == CHIP_NUM_57840_2_20))
1252#define CHIP_IS_57840_MF(sc) ((CHIP_NUM(sc) == CHIP_NUM_57840_OBS_MF) || \
1253                              (CHIP_NUM(sc) == CHIP_NUM_57840_MF))
1254#define CHIP_IS_57840_VF(sc) (CHIP_NUM(sc) == CHIP_NUM_57840_VF)
1255
1256#define CHIP_IS_E3(sc)      (CHIP_IS_57800(sc)    || \
1257                             CHIP_IS_57800_MF(sc) || \
1258                             CHIP_IS_57800_VF(sc) || \
1259                             CHIP_IS_57810(sc)    || \
1260                             CHIP_IS_57810_MF(sc) || \
1261                             CHIP_IS_57810_VF(sc) || \
1262                             CHIP_IS_57811(sc)    || \
1263                             CHIP_IS_57811_MF(sc) || \
1264                             CHIP_IS_57811_VF(sc) || \
1265                             CHIP_IS_57840(sc)    || \
1266                             CHIP_IS_57840_MF(sc) || \
1267                             CHIP_IS_57840_VF(sc))
1268#define CHIP_IS_E3A0(sc)    (CHIP_IS_E3(sc) &&              \
1269                             (CHIP_REV(sc) == CHIP_REV_Ax))
1270#define CHIP_IS_E3B0(sc)    (CHIP_IS_E3(sc) &&              \
1271                             (CHIP_REV(sc) == CHIP_REV_Bx))
1272
1273#define USES_WARPCORE(sc)   (CHIP_IS_E3(sc))
1274#define CHIP_IS_E2E3(sc)    (CHIP_IS_E2(sc) || \
1275                             CHIP_IS_E3(sc))
1276
1277#define CHIP_IS_MF_CAP(sc)  (CHIP_IS_57711E(sc)  ||  \
1278                             CHIP_IS_57712_MF(sc) || \
1279                             CHIP_IS_E3(sc))
1280
1281#define IS_VF(sc)           (CHIP_IS_57712_VF(sc) || \
1282                             CHIP_IS_57800_VF(sc) || \
1283                             CHIP_IS_57810_VF(sc) || \
1284                             CHIP_IS_57840_VF(sc))
1285#define IS_PF(sc)           (!IS_VF(sc))
1286
1287/*
1288 * This define is used in two main places:
1289 * 1. In the early stages of nic_load, to know if to configure Parser/Searcher
1290 * to nic-only mode or to offload mode. Offload mode is configured if either
1291 * the chip is E1x (where NIC_MODE register is not applicable), or if cnic
1292 * already registered for this port (which means that the user wants storage
1293 * services).
1294 * 2. During cnic-related load, to know if offload mode is already configured
1295 * in the HW or needs to be configrued. Since the transition from nic-mode to
1296 * offload-mode in HW causes traffic coruption, nic-mode is configured only
1297 * in ports on which storage services where never requested.
1298 */
1299#define CONFIGURE_NIC_MODE(sc) (!CHIP_IS_E1x(sc) && !CNIC_ENABLED(sc))
1300
1301    uint8_t  chip_port_mode;
1302#define CHIP_4_PORT_MODE        0x0
1303#define CHIP_2_PORT_MODE        0x1
1304#define CHIP_PORT_MODE_NONE     0x2
1305#define CHIP_PORT_MODE(sc)      ((sc)->devinfo.chip_port_mode)
1306#define CHIP_IS_MODE_4_PORT(sc) (CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE)
1307
1308    uint8_t int_block;
1309#define INT_BLOCK_HC            0
1310#define INT_BLOCK_IGU           1
1311#define INT_BLOCK_MODE_NORMAL   0
1312#define INT_BLOCK_MODE_BW_COMP  2
1313#define CHIP_INT_MODE_IS_NBC(sc)                          \
1314    (!CHIP_IS_E1x(sc) &&                                  \
1315     !((sc)->devinfo.int_block & INT_BLOCK_MODE_BW_COMP))
1316#define CHIP_INT_MODE_IS_BC(sc) (!CHIP_INT_MODE_IS_NBC(sc))
1317
1318    uint32_t shmem_base;
1319    uint32_t shmem2_base;
1320    uint32_t bc_ver;
1321    char bc_ver_str[32];
1322    uint32_t mf_cfg_base; /* bootcode shmem address in BAR memory */
1323    struct bxe_mf_info mf_info;
1324
1325    int flash_size;
1326#define NVRAM_1MB_SIZE      0x20000
1327#define NVRAM_TIMEOUT_COUNT 30000
1328#define NVRAM_PAGE_SIZE     256
1329
1330    /* PCIe capability information */
1331    uint32_t pcie_cap_flags;
1332#define BXE_PM_CAPABLE_FLAG     0x00000001
1333#define BXE_PCIE_CAPABLE_FLAG   0x00000002
1334#define BXE_MSI_CAPABLE_FLAG    0x00000004
1335#define BXE_MSIX_CAPABLE_FLAG   0x00000008
1336    uint16_t pcie_pm_cap_reg;
1337    uint16_t pcie_pcie_cap_reg;
1338    //uint16_t pcie_devctl;
1339    uint16_t pcie_link_width;
1340    uint16_t pcie_link_speed;
1341    uint16_t pcie_msi_cap_reg;
1342    uint16_t pcie_msix_cap_reg;
1343
1344    /* device configuration read from bootcode shared memory */
1345    uint32_t hw_config;
1346    uint32_t hw_config2;
1347}; /* struct bxe_devinfo */
1348
1349struct bxe_sp_objs {
1350    struct ecore_vlan_mac_obj mac_obj; /* MACs object */
1351    struct ecore_queue_sp_obj q_obj; /* Queue State object */
1352}; /* struct bxe_sp_objs */
1353
1354/*
1355 * Data that will be used to create a link report message. We will keep the
1356 * data used for the last link report in order to prevent reporting the same
1357 * link parameters twice.
1358 */
1359struct bxe_link_report_data {
1360    uint16_t      line_speed;        /* Effective line speed */
1361    unsigned long link_report_flags; /* BXE_LINK_REPORT_XXX flags */
1362};
1363enum {
1364    BXE_LINK_REPORT_FULL_DUPLEX,
1365    BXE_LINK_REPORT_LINK_DOWN,
1366    BXE_LINK_REPORT_RX_FC_ON,
1367    BXE_LINK_REPORT_TX_FC_ON
1368};
1369
1370/* Top level device private data structure. */
1371struct bxe_softc {
1372    /*
1373     * First entry must be a pointer to the BSD ifnet struct which
1374     * has a first element of 'void *if_softc' (which is us).
1375     */
1376    struct ifnet   *ifnet;
1377    struct ifmedia  ifmedia; /* network interface media structure */
1378    int             media;
1379
1380    int             state; /* device state */
1381#define BXE_STATE_CLOSED                 0x0000
1382#define BXE_STATE_OPENING_WAITING_LOAD   0x1000
1383#define BXE_STATE_OPENING_WAITING_PORT   0x2000
1384#define BXE_STATE_OPEN                   0x3000
1385#define BXE_STATE_CLOSING_WAITING_HALT   0x4000
1386#define BXE_STATE_CLOSING_WAITING_DELETE 0x5000
1387#define BXE_STATE_CLOSING_WAITING_UNLOAD 0x6000
1388#define BXE_STATE_DISABLED               0xD000
1389#define BXE_STATE_DIAG                   0xE000
1390#define BXE_STATE_ERROR                  0xF000
1391
1392    int flags;
1393#define BXE_ONE_PORT_FLAG    0x00000001
1394#define BXE_NO_ISCSI         0x00000002
1395#define BXE_NO_FCOE          0x00000004
1396#define BXE_ONE_PORT(sc)     (sc->flags & BXE_ONE_PORT_FLAG)
1397//#define BXE_NO_WOL_FLAG      0x00000008
1398//#define BXE_USING_DAC_FLAG   0x00000010
1399//#define BXE_USING_MSIX_FLAG  0x00000020
1400//#define BXE_USING_MSI_FLAG   0x00000040
1401//#define BXE_DISABLE_MSI_FLAG 0x00000080
1402#define BXE_NO_MCP_FLAG      0x00000200
1403#define BXE_NOMCP(sc)        (sc->flags & BXE_NO_MCP_FLAG)
1404//#define BXE_SAFC_TX_FLAG     0x00000400
1405#define BXE_MF_FUNC_DIS      0x00000800
1406#define BXE_TX_SWITCHING     0x00001000
1407
1408    uint32_t debug; /* per-instance debug logging config */
1409
1410#define MAX_BARS 5
1411    struct bxe_bar bar[MAX_BARS]; /* map BARs 0, 2, 4 */
1412
1413    uint16_t doorbell_size;
1414
1415    /* periodic timer callout */
1416#define PERIODIC_STOP 0
1417#define PERIODIC_GO   1
1418    volatile unsigned long periodic_flags;
1419    struct callout         periodic_callout;
1420
1421    /* chip start/stop/reset taskqueue */
1422#define CHIP_TQ_NONE   0
1423#define CHIP_TQ_START  1
1424#define CHIP_TQ_STOP   2
1425#define CHIP_TQ_REINIT 3
1426    volatile unsigned long chip_tq_flags;
1427    struct task            chip_tq_task;
1428    struct taskqueue       *chip_tq;
1429    char                   chip_tq_name[32];
1430
1431    /* slowpath interrupt taskqueue */
1432    struct task      sp_tq_task;
1433    struct taskqueue *sp_tq;
1434    char             sp_tq_name[32];
1435
1436    /* set rx_mode asynchronous taskqueue */
1437    struct task      rx_mode_tq_task;
1438    struct taskqueue *rx_mode_tq;
1439    char             rx_mode_tq_name[32];
1440
1441    struct bxe_fastpath fp[MAX_RSS_CHAINS];
1442    struct bxe_sp_objs  sp_objs[MAX_RSS_CHAINS];
1443
1444    device_t dev;  /* parent device handle */
1445    uint8_t  unit; /* driver instance number */
1446
1447    int pcie_bus;    /* PCIe bus number */
1448    int pcie_device; /* PCIe device/slot number */
1449    int pcie_func;   /* PCIe function number */
1450
1451    uint8_t pfunc_rel; /* function relative */
1452    uint8_t pfunc_abs; /* function absolute */
1453    uint8_t path_id;   /* function absolute */
1454#define SC_PATH(sc)     (sc->path_id)
1455#define SC_PORT(sc)     (sc->pfunc_rel & 1)
1456#define SC_FUNC(sc)     (sc->pfunc_rel)
1457#define SC_ABS_FUNC(sc) (sc->pfunc_abs)
1458#define SC_VN(sc)       (sc->pfunc_rel >> 1)
1459#define SC_L_ID(sc)     (SC_VN(sc) << 2)
1460#define PORT_ID(sc)     SC_PORT(sc)
1461#define PATH_ID(sc)     SC_PATH(sc)
1462#define VNIC_ID(sc)     SC_VN(sc)
1463#define FUNC_ID(sc)     SC_FUNC(sc)
1464#define ABS_FUNC_ID(sc) SC_ABS_FUNC(sc)
1465#define SC_FW_MB_IDX_VN(sc, vn)                                \
1466    (SC_PORT(sc) + (vn) *                                      \
1467     ((CHIP_IS_E1x(sc) || (CHIP_IS_MODE_4_PORT(sc))) ? 2 : 1))
1468#define SC_FW_MB_IDX(sc) SC_FW_MB_IDX_VN(sc, SC_VN(sc))
1469
1470    int if_capen; /* enabled interface capabilities */
1471
1472    struct bxe_devinfo devinfo;
1473    char fw_ver_str[32];
1474    char mf_mode_str[32];
1475    char pci_link_str[32];
1476
1477    const struct iro *iro_array;
1478
1479#ifdef BXE_CORE_LOCK_SX
1480    struct sx      core_sx;
1481    char           core_sx_name[32];
1482#else
1483    struct mtx     core_mtx;
1484    char           core_mtx_name[32];
1485#endif
1486    struct mtx     sp_mtx;
1487    char           sp_mtx_name[32];
1488    struct mtx     dmae_mtx;
1489    char           dmae_mtx_name[32];
1490    struct mtx     fwmb_mtx;
1491    char           fwmb_mtx_name[32];
1492    struct mtx     print_mtx;
1493    char           print_mtx_name[32];
1494    struct mtx     stats_mtx;
1495    char           stats_mtx_name[32];
1496    struct mtx     mcast_mtx;
1497    char           mcast_mtx_name[32];
1498
1499#ifdef BXE_CORE_LOCK_SX
1500#define BXE_CORE_TRYLOCK(sc)      sx_try_xlock(&sc->core_sx)
1501#define BXE_CORE_LOCK(sc)         sx_xlock(&sc->core_sx)
1502#define BXE_CORE_UNLOCK(sc)       sx_xunlock(&sc->core_sx)
1503#define BXE_CORE_LOCK_ASSERT(sc)  sx_assert(&sc->core_sx, SA_XLOCKED)
1504#else
1505#define BXE_CORE_TRYLOCK(sc)      mtx_trylock(&sc->core_mtx)
1506#define BXE_CORE_LOCK(sc)         mtx_lock(&sc->core_mtx)
1507#define BXE_CORE_UNLOCK(sc)       mtx_unlock(&sc->core_mtx)
1508#define BXE_CORE_LOCK_ASSERT(sc)  mtx_assert(&sc->core_mtx, MA_OWNED)
1509#endif
1510
1511#define BXE_SP_LOCK(sc)           mtx_lock(&sc->sp_mtx)
1512#define BXE_SP_UNLOCK(sc)         mtx_unlock(&sc->sp_mtx)
1513#define BXE_SP_LOCK_ASSERT(sc)    mtx_assert(&sc->sp_mtx, MA_OWNED)
1514
1515#define BXE_DMAE_LOCK(sc)         mtx_lock(&sc->dmae_mtx)
1516#define BXE_DMAE_UNLOCK(sc)       mtx_unlock(&sc->dmae_mtx)
1517#define BXE_DMAE_LOCK_ASSERT(sc)  mtx_assert(&sc->dmae_mtx, MA_OWNED)
1518
1519#define BXE_FWMB_LOCK(sc)         mtx_lock(&sc->fwmb_mtx)
1520#define BXE_FWMB_UNLOCK(sc)       mtx_unlock(&sc->fwmb_mtx)
1521#define BXE_FWMB_LOCK_ASSERT(sc)  mtx_assert(&sc->fwmb_mtx, MA_OWNED)
1522
1523#define BXE_PRINT_LOCK(sc)        mtx_lock(&sc->print_mtx)
1524#define BXE_PRINT_UNLOCK(sc)      mtx_unlock(&sc->print_mtx)
1525#define BXE_PRINT_LOCK_ASSERT(sc) mtx_assert(&sc->print_mtx, MA_OWNED)
1526
1527#define BXE_STATS_LOCK(sc)        mtx_lock(&sc->stats_mtx)
1528#define BXE_STATS_UNLOCK(sc)      mtx_unlock(&sc->stats_mtx)
1529#define BXE_STATS_LOCK_ASSERT(sc) mtx_assert(&sc->stats_mtx, MA_OWNED)
1530
1531#if __FreeBSD_version < 800000
1532#define BXE_MCAST_LOCK(sc)        \
1533    do {                          \
1534        mtx_lock(&sc->mcast_mtx); \
1535        IF_ADDR_LOCK(sc->ifnet);  \
1536    } while (0)
1537#define BXE_MCAST_UNLOCK(sc)        \
1538    do {                            \
1539        IF_ADDR_UNLOCK(sc->ifnet);  \
1540        mtx_unlock(&sc->mcast_mtx); \
1541    } while (0)
1542#else
1543#define BXE_MCAST_LOCK(sc)         \
1544    do {                           \
1545        mtx_lock(&sc->mcast_mtx);  \
1546        if_maddr_rlock(sc->ifnet); \
1547    } while (0)
1548#define BXE_MCAST_UNLOCK(sc)         \
1549    do {                             \
1550        if_maddr_runlock(sc->ifnet); \
1551        mtx_unlock(&sc->mcast_mtx);  \
1552    } while (0)
1553#endif
1554#define BXE_MCAST_LOCK_ASSERT(sc) mtx_assert(&sc->mcast_mtx, MA_OWNED)
1555
1556    int dmae_ready;
1557#define DMAE_READY(sc) (sc->dmae_ready)
1558
1559    struct ecore_credit_pool_obj vlans_pool;
1560    struct ecore_credit_pool_obj macs_pool;
1561    struct ecore_rx_mode_obj     rx_mode_obj;
1562    struct ecore_mcast_obj       mcast_obj;
1563    struct ecore_rss_config_obj  rss_conf_obj;
1564    struct ecore_func_sp_obj     func_obj;
1565
1566    uint16_t fw_seq;
1567    uint16_t fw_drv_pulse_wr_seq;
1568    uint32_t func_stx;
1569
1570    struct elink_params         link_params;
1571    struct elink_vars           link_vars;
1572    uint32_t                    link_cnt;
1573    struct bxe_link_report_data last_reported_link;
1574    char mac_addr_str[32];
1575
1576    int last_reported_link_state;
1577
1578    int tx_ring_size;
1579    int rx_ring_size;
1580    int wol;
1581
1582    int is_leader;
1583    int recovery_state;
1584#define BXE_RECOVERY_DONE        1
1585#define BXE_RECOVERY_INIT        2
1586#define BXE_RECOVERY_WAIT        3
1587#define BXE_RECOVERY_FAILED      4
1588#define BXE_RECOVERY_NIC_LOADING 5
1589
1590    uint32_t rx_mode;
1591#define BXE_RX_MODE_NONE     0
1592#define BXE_RX_MODE_NORMAL   1
1593#define BXE_RX_MODE_ALLMULTI 2
1594#define BXE_RX_MODE_PROMISC  3
1595#define BXE_MAX_MULTICAST    64
1596
1597    struct bxe_port port;
1598
1599    struct cmng_init cmng;
1600
1601    /* user configs */
1602    int      num_queues;
1603    int      max_rx_bufs;
1604    int      hc_rx_ticks;
1605    int      hc_tx_ticks;
1606    uint32_t rx_budget;
1607    int      max_aggregation_size;
1608    int      mrrs;
1609    int      autogreeen;
1610#define AUTO_GREEN_HW_DEFAULT 0
1611#define AUTO_GREEN_FORCE_ON   1
1612#define AUTO_GREEN_FORCE_OFF  2
1613    int      interrupt_mode;
1614#define INTR_MODE_INTX 0
1615#define INTR_MODE_MSI  1
1616#define INTR_MODE_MSIX 2
1617    int      udp_rss;
1618
1619    /* interrupt allocations */
1620    struct bxe_intr intr[MAX_RSS_CHAINS+1];
1621    int             intr_count;
1622    uint8_t         igu_dsb_id;
1623    uint8_t         igu_base_sb;
1624    uint8_t         igu_sb_cnt;
1625    //uint8_t         min_msix_vec_cnt;
1626    uint32_t        igu_base_addr;
1627    //bus_addr_t      def_status_blk_mapping;
1628    uint8_t         base_fw_ndsb;
1629#define DEF_SB_IGU_ID 16
1630#define DEF_SB_ID     HC_SP_SB_ID
1631
1632    /* parent bus DMA tag  */
1633    bus_dma_tag_t parent_dma_tag;
1634
1635    /* default status block */
1636    struct bxe_dma              def_sb_dma;
1637    struct host_sp_status_block *def_sb;
1638    uint16_t                    def_idx;
1639    uint16_t                    def_att_idx;
1640    uint32_t                    attn_state;
1641    struct attn_route           attn_group[MAX_DYNAMIC_ATTN_GRPS];
1642
1643/* general SP events - stats query, cfc delete, etc */
1644#define HC_SP_INDEX_ETH_DEF_CONS         3
1645/* EQ completions */
1646#define HC_SP_INDEX_EQ_CONS              7
1647/* FCoE L2 connection completions */
1648#define HC_SP_INDEX_ETH_FCOE_TX_CQ_CONS  6
1649#define HC_SP_INDEX_ETH_FCOE_RX_CQ_CONS  4
1650/* iSCSI L2 */
1651#define HC_SP_INDEX_ETH_ISCSI_CQ_CONS    5
1652#define HC_SP_INDEX_ETH_ISCSI_RX_CQ_CONS 1
1653
1654    /* event queue */
1655    struct bxe_dma        eq_dma;
1656    union event_ring_elem *eq;
1657    uint16_t              eq_prod;
1658    uint16_t              eq_cons;
1659    uint16_t              *eq_cons_sb;
1660#define NUM_EQ_PAGES     1 /* must be a power of 2 */
1661#define EQ_DESC_CNT_PAGE (BCM_PAGE_SIZE / sizeof(union event_ring_elem))
1662#define EQ_DESC_MAX_PAGE (EQ_DESC_CNT_PAGE - 1)
1663#define NUM_EQ_DESC      (EQ_DESC_CNT_PAGE * NUM_EQ_PAGES)
1664#define EQ_DESC_MASK     (NUM_EQ_DESC - 1)
1665#define MAX_EQ_AVAIL     (EQ_DESC_MAX_PAGE * NUM_EQ_PAGES - 2)
1666/* depends on EQ_DESC_CNT_PAGE being a power of 2 */
1667#define NEXT_EQ_IDX(x)                                      \
1668    ((((x) & EQ_DESC_MAX_PAGE) == (EQ_DESC_MAX_PAGE - 1)) ? \
1669         ((x) + 2) : ((x) + 1))
1670/* depends on the above and on NUM_EQ_PAGES being a power of 2 */
1671#define EQ_DESC(x) ((x) & EQ_DESC_MASK)
1672
1673    /* slow path */
1674    struct bxe_dma      sp_dma;
1675    struct bxe_slowpath *sp;
1676    unsigned long       sp_state;
1677
1678    /* slow path queue */
1679    struct bxe_dma spq_dma;
1680    struct eth_spe *spq;
1681#define SP_DESC_CNT     (BCM_PAGE_SIZE / sizeof(struct eth_spe))
1682#define MAX_SP_DESC_CNT (SP_DESC_CNT - 1)
1683#define MAX_SPQ_PENDING 8
1684
1685    uint16_t       spq_prod_idx;
1686    struct eth_spe *spq_prod_bd;
1687    struct eth_spe *spq_last_bd;
1688    uint16_t       *dsb_sp_prod;
1689    //uint16_t       *spq_hw_con;
1690    //uint16_t       spq_left;
1691
1692    volatile unsigned long eq_spq_left; /* COMMON_xxx ramrod credit */
1693    volatile unsigned long cq_spq_left; /* ETH_xxx ramrod credit */
1694
1695    /* fw decompression buffer */
1696    struct bxe_dma gz_buf_dma;
1697    void           *gz_buf;
1698    z_streamp      gz_strm;
1699    uint32_t       gz_outlen;
1700#define GUNZIP_BUF(sc)    (sc->gz_buf)
1701#define GUNZIP_OUTLEN(sc) (sc->gz_outlen)
1702#define GUNZIP_PHYS(sc)   (sc->gz_buf_dma.paddr)
1703#define FW_BUF_SIZE       0x40000
1704
1705    const struct raw_op *init_ops;
1706    const uint16_t *init_ops_offsets; /* init block offsets inside init_ops */
1707    const uint32_t *init_data;        /* data blob, 32 bit granularity */
1708    uint32_t       init_mode_flags;
1709#define INIT_MODE_FLAGS(sc) (sc->init_mode_flags)
1710    /* PRAM blobs - raw data */
1711    const uint8_t *tsem_int_table_data;
1712    const uint8_t *tsem_pram_data;
1713    const uint8_t *usem_int_table_data;
1714    const uint8_t *usem_pram_data;
1715    const uint8_t *xsem_int_table_data;
1716    const uint8_t *xsem_pram_data;
1717    const uint8_t *csem_int_table_data;
1718    const uint8_t *csem_pram_data;
1719#define INIT_OPS(sc)                 (sc->init_ops)
1720#define INIT_OPS_OFFSETS(sc)         (sc->init_ops_offsets)
1721#define INIT_DATA(sc)                (sc->init_data)
1722#define INIT_TSEM_INT_TABLE_DATA(sc) (sc->tsem_int_table_data)
1723#define INIT_TSEM_PRAM_DATA(sc)      (sc->tsem_pram_data)
1724#define INIT_USEM_INT_TABLE_DATA(sc) (sc->usem_int_table_data)
1725#define INIT_USEM_PRAM_DATA(sc)      (sc->usem_pram_data)
1726#define INIT_XSEM_INT_TABLE_DATA(sc) (sc->xsem_int_table_data)
1727#define INIT_XSEM_PRAM_DATA(sc)      (sc->xsem_pram_data)
1728#define INIT_CSEM_INT_TABLE_DATA(sc) (sc->csem_int_table_data)
1729#define INIT_CSEM_PRAM_DATA(sc)      (sc->csem_pram_data)
1730
1731    /* ILT
1732     * For max 196 cids (64*3 + non-eth), 32KB ILT page size and 1KB
1733     * context size we need 8 ILT entries.
1734     */
1735#define ILT_MAX_L2_LINES 8
1736    struct hw_context context[ILT_MAX_L2_LINES];
1737    struct ecore_ilt *ilt;
1738#define ILT_MAX_LINES 256
1739
1740/* max supported number of RSS queues: IGU SBs minus one for CNIC */
1741#define BXE_MAX_RSS_COUNT(sc) ((sc)->igu_sb_cnt - CNIC_SUPPORT(sc))
1742/* max CID count: Max RSS * Max_Tx_Multi_Cos + FCoE + iSCSI */
1743#if 1
1744#define BXE_L2_MAX_CID(sc)                                              \
1745    (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1746#else
1747#define BXE_L2_MAX_CID(sc) /* OOO + FWD */                              \
1748    (BXE_MAX_RSS_COUNT(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1749#endif
1750#if 1
1751#define BXE_L2_CID_COUNT(sc)                                             \
1752    (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 2 * CNIC_SUPPORT(sc))
1753#else
1754#define BXE_L2_CID_COUNT(sc) /* OOO + FWD */                             \
1755    (BXE_NUM_ETH_QUEUES(sc) * ECORE_MULTI_TX_COS + 4 * CNIC_SUPPORT(sc))
1756#endif
1757#define L2_ILT_LINES(sc)                                \
1758    (DIV_ROUND_UP(BXE_L2_CID_COUNT(sc), ILT_PAGE_CIDS))
1759
1760    int qm_cid_count;
1761
1762    uint8_t dropless_fc;
1763
1764#if 0
1765    struct bxe_dma *t2;
1766#endif
1767
1768    /* total number of FW statistics requests */
1769    uint8_t fw_stats_num;
1770    /*
1771     * This is a memory buffer that will contain both statistics ramrod
1772     * request and data.
1773     */
1774    struct bxe_dma fw_stats_dma;
1775    /*
1776     * FW statistics request shortcut (points at the beginning of fw_stats
1777     * buffer).
1778     */
1779    int                     fw_stats_req_size;
1780    struct bxe_fw_stats_req *fw_stats_req;
1781    bus_addr_t              fw_stats_req_mapping;
1782    /*
1783     * FW statistics data shortcut (points at the beginning of fw_stats
1784     * buffer + fw_stats_req_size).
1785     */
1786    int                      fw_stats_data_size;
1787    struct bxe_fw_stats_data *fw_stats_data;
1788    bus_addr_t               fw_stats_data_mapping;
1789
1790    /* tracking a pending STAT_QUERY ramrod */
1791    uint16_t stats_pending;
1792    /* number of completed statistics ramrods */
1793    uint16_t stats_comp;
1794    uint16_t stats_counter;
1795    uint8_t  stats_init;
1796    int      stats_state;
1797
1798    struct bxe_eth_stats         eth_stats;
1799    struct host_func_stats       func_stats;
1800    struct bxe_eth_stats_old     eth_stats_old;
1801    struct bxe_net_stats_old     net_stats_old;
1802    struct bxe_fw_port_stats_old fw_stats_old;
1803
1804    struct dmae_command stats_dmae; /* used by dmae command loader */
1805    int                 executer_idx;
1806
1807    int mtu;
1808
1809    /* LLDP params */
1810    struct bxe_config_lldp_params lldp_config_params;
1811    /* DCB support on/off */
1812    int dcb_state;
1813#define BXE_DCB_STATE_OFF 0
1814#define BXE_DCB_STATE_ON  1
1815    /* DCBX engine mode */
1816    int dcbx_enabled;
1817#define BXE_DCBX_ENABLED_OFF        0
1818#define BXE_DCBX_ENABLED_ON_NEG_OFF 1
1819#define BXE_DCBX_ENABLED_ON_NEG_ON  2
1820#define BXE_DCBX_ENABLED_INVALID    -1
1821    uint8_t dcbx_mode_uset;
1822    struct bxe_config_dcbx_params dcbx_config_params;
1823    struct bxe_dcbx_port_params   dcbx_port_params;
1824    int dcb_version;
1825
1826    uint8_t cnic_support;
1827    uint8_t cnic_enabled;
1828    uint8_t cnic_loaded;
1829#define CNIC_SUPPORT(sc) 0 /* ((sc)->cnic_support) */
1830#define CNIC_ENABLED(sc) 0 /* ((sc)->cnic_enabled) */
1831#define CNIC_LOADED(sc)  0 /* ((sc)->cnic_loaded) */
1832
1833    /* multiple tx classes of service */
1834    uint8_t max_cos;
1835#define BXE_MAX_PRIORITY 8
1836    /* priority to cos mapping */
1837    uint8_t prio_to_cos[BXE_MAX_PRIORITY];
1838
1839    int panic;
1840}; /* struct bxe_softc */
1841
1842/* IOCTL sub-commands for edebug and firmware upgrade */
1843#define BXE_IOC_RD_NVRAM        1
1844#define BXE_IOC_WR_NVRAM        2
1845#define BXE_IOC_STATS_SHOW_NUM  3
1846#define BXE_IOC_STATS_SHOW_STR  4
1847#define BXE_IOC_STATS_SHOW_CNT  5
1848
1849struct bxe_nvram_data {
1850    uint32_t op; /* ioctl sub-command */
1851    uint32_t offset;
1852    uint32_t len;
1853    uint32_t value[1]; /* variable */
1854};
1855
1856union bxe_stats_show_data {
1857    uint32_t op; /* ioctl sub-command */
1858
1859    struct {
1860        uint32_t num; /* return number of stats */
1861        uint32_t len; /* length of each string item */
1862    } desc;
1863
1864    /* variable length... */
1865    char str[1]; /* holds names of desc.num stats, each desc.len in length */
1866
1867    /* variable length... */
1868    uint64_t stats[1]; /* holds all stats */
1869};
1870
1871/* function init flags */
1872#define FUNC_FLG_RSS     0x0001
1873#define FUNC_FLG_STATS   0x0002
1874/* FUNC_FLG_UNMATCHED       0x0004 */
1875#define FUNC_FLG_TPA     0x0008
1876#define FUNC_FLG_SPQ     0x0010
1877#define FUNC_FLG_LEADING 0x0020 /* PF only */
1878
1879struct bxe_func_init_params {
1880    bus_addr_t fw_stat_map; /* (dma) valid if FUNC_FLG_STATS */
1881    bus_addr_t spq_map;     /* (dma) valid if FUNC_FLG_SPQ */
1882    uint16_t   func_flgs;
1883    uint16_t   func_id;     /* abs function id */
1884    uint16_t   pf_id;
1885    uint16_t   spq_prod;    /* valid if FUNC_FLG_SPQ */
1886};
1887
1888/* memory resources reside at BARs 0, 2, 4 */
1889/* Run `pciconf -lb` to see mappings */
1890#define BAR0 0
1891#define BAR1 2
1892#define BAR2 4
1893
1894#ifdef BXE_REG_NO_INLINE
1895
1896uint8_t bxe_reg_read8(struct bxe_softc *sc, bus_size_t offset);
1897uint16_t bxe_reg_read16(struct bxe_softc *sc, bus_size_t offset);
1898uint32_t bxe_reg_read32(struct bxe_softc *sc, bus_size_t offset);
1899
1900void bxe_reg_write8(struct bxe_softc *sc, bus_size_t offset, uint8_t val);
1901void bxe_reg_write16(struct bxe_softc *sc, bus_size_t offset, uint16_t val);
1902void bxe_reg_write32(struct bxe_softc *sc, bus_size_t offset, uint32_t val);
1903
1904#define REG_RD8(sc, offset)  bxe_reg_read8(sc, offset)
1905#define REG_RD16(sc, offset) bxe_reg_read16(sc, offset)
1906#define REG_RD32(sc, offset) bxe_reg_read32(sc, offset)
1907
1908#define REG_WR8(sc, offset, val)  bxe_reg_write8(sc, offset, val)
1909#define REG_WR16(sc, offset, val) bxe_reg_write16(sc, offset, val)
1910#define REG_WR32(sc, offset, val) bxe_reg_write32(sc, offset, val)
1911
1912#else /* not BXE_REG_NO_INLINE */
1913
1914#define REG_WR8(sc, offset, val)            \
1915    bus_space_write_1(sc->bar[BAR0].tag,    \
1916                      sc->bar[BAR0].handle, \
1917                      offset, val)
1918
1919#define REG_WR16(sc, offset, val)           \
1920    bus_space_write_2(sc->bar[BAR0].tag,    \
1921                      sc->bar[BAR0].handle, \
1922                      offset, val)
1923
1924#define REG_WR32(sc, offset, val)           \
1925    bus_space_write_4(sc->bar[BAR0].tag,    \
1926                      sc->bar[BAR0].handle, \
1927                      offset, val)
1928
1929#define REG_RD8(sc, offset)                \
1930    bus_space_read_1(sc->bar[BAR0].tag,    \
1931                     sc->bar[BAR0].handle, \
1932                     offset)
1933
1934#define REG_RD16(sc, offset)               \
1935    bus_space_read_2(sc->bar[BAR0].tag,    \
1936                     sc->bar[BAR0].handle, \
1937                     offset)
1938
1939#define REG_RD32(sc, offset)               \
1940    bus_space_read_4(sc->bar[BAR0].tag,    \
1941                     sc->bar[BAR0].handle, \
1942                     offset)
1943
1944#endif /* BXE_REG_NO_INLINE */
1945
1946#define REG_RD(sc, offset)      REG_RD32(sc, offset)
1947#define REG_WR(sc, offset, val) REG_WR32(sc, offset, val)
1948
1949#define REG_RD_IND(sc, offset)      bxe_reg_rd_ind(sc, offset)
1950#define REG_WR_IND(sc, offset, val) bxe_reg_wr_ind(sc, offset, val)
1951
1952#define BXE_SP(sc, var) (&(sc)->sp->var)
1953#define BXE_SP_MAPPING(sc, var) \
1954    (sc->sp_dma.paddr + offsetof(struct bxe_slowpath, var))
1955
1956#define BXE_FP(sc, nr, var) ((sc)->fp[(nr)].var)
1957#define BXE_SP_OBJ(sc, fp) ((sc)->sp_objs[(fp)->index])
1958
1959#if 0
1960#define bxe_fp(sc, nr, var)   ((sc)->fp[nr].var)
1961#define bxe_sp_obj(sc, fp)    ((sc)->sp_objs[(fp)->index])
1962#define bxe_fp_stats(sc, fp)  (&(sc)->fp_stats[(fp)->index])
1963#define bxe_fp_qstats(sc, fp) (&(sc)->fp_stats[(fp)->index].eth_q_stats)
1964#endif
1965
1966#define REG_RD_DMAE(sc, offset, valp, len32)               \
1967    do {                                                   \
1968        bxe_read_dmae(sc, offset, len32);                  \
1969        memcpy(valp, BXE_SP(sc, wb_data[0]), (len32) * 4); \
1970    } while (0)
1971
1972#define REG_WR_DMAE(sc, offset, valp, len32)                            \
1973    do {                                                                \
1974        memcpy(BXE_SP(sc, wb_data[0]), valp, (len32) * 4);              \
1975        bxe_write_dmae(sc, BXE_SP_MAPPING(sc, wb_data), offset, len32); \
1976    } while (0)
1977
1978#define REG_WR_DMAE_LEN(sc, offset, valp, len32) \
1979    REG_WR_DMAE(sc, offset, valp, len32)
1980
1981#define REG_RD_DMAE_LEN(sc, offset, valp, len32) \
1982    REG_RD_DMAE(sc, offset, valp, len32)
1983
1984#define VIRT_WR_DMAE_LEN(sc, data, addr, len32, le32_swap)         \
1985    do {                                                           \
1986        /* if (le32_swap) {                                     */ \
1987        /*    BLOGW(sc, "VIRT_WR_DMAE_LEN with le32_swap=1\n"); */ \
1988        /* }                                                    */ \
1989        memcpy(GUNZIP_BUF(sc), data, len32 * 4);                   \
1990        ecore_write_big_buf_wb(sc, addr, len32);                   \
1991    } while (0)
1992
1993#define BXE_DB_MIN_SHIFT 3   /* 8 bytes */
1994#define BXE_DB_SHIFT     7   /* 128 bytes */
1995#if (BXE_DB_SHIFT < BXE_DB_MIN_SHIFT)
1996#error "Minimum DB doorbell stride is 8"
1997#endif
1998#define DPM_TRIGGER_TYPE 0x40
1999#define DOORBELL(sc, cid, val)                                              \
2000    do {                                                                    \
2001        bus_space_write_4(sc->bar[BAR1].tag, sc->bar[BAR1].handle,          \
2002                          ((sc->doorbell_size * (cid)) + DPM_TRIGGER_TYPE), \
2003                          (uint32_t)val);                                   \
2004    } while(0)
2005
2006#define SHMEM_ADDR(sc, field)                                       \
2007    (sc->devinfo.shmem_base + offsetof(struct shmem_region, field))
2008#define SHMEM_RD(sc, field)      REG_RD(sc, SHMEM_ADDR(sc, field))
2009#define SHMEM_RD16(sc, field)    REG_RD16(sc, SHMEM_ADDR(sc, field))
2010#define SHMEM_WR(sc, field, val) REG_WR(sc, SHMEM_ADDR(sc, field), val)
2011
2012#define SHMEM2_ADDR(sc, field)                                        \
2013    (sc->devinfo.shmem2_base + offsetof(struct shmem2_region, field))
2014#define SHMEM2_HAS(sc, field)                                            \
2015    (sc->devinfo.shmem2_base && (REG_RD(sc, SHMEM2_ADDR(sc, size)) >     \
2016                                 offsetof(struct shmem2_region, field)))
2017#define SHMEM2_RD(sc, field)      REG_RD(sc, SHMEM2_ADDR(sc, field))
2018#define SHMEM2_WR(sc, field, val) REG_WR(sc, SHMEM2_ADDR(sc, field), val)
2019
2020#define MFCFG_ADDR(sc, field)                                  \
2021    (sc->devinfo.mf_cfg_base + offsetof(struct mf_cfg, field))
2022#define MFCFG_RD(sc, field)      REG_RD(sc, MFCFG_ADDR(sc, field))
2023#define MFCFG_RD16(sc, field)    REG_RD16(sc, MFCFG_ADDR(sc, field))
2024#define MFCFG_WR(sc, field, val) REG_WR(sc, MFCFG_ADDR(sc, field), val)
2025
2026/* DMAE command defines */
2027
2028#define DMAE_TIMEOUT      -1
2029#define DMAE_PCI_ERROR    -2 /* E2 and onward */
2030#define DMAE_NOT_RDY      -3
2031#define DMAE_PCI_ERR_FLAG 0x80000000
2032
2033#define DMAE_SRC_PCI      0
2034#define DMAE_SRC_GRC      1
2035
2036#define DMAE_DST_NONE     0
2037#define DMAE_DST_PCI      1
2038#define DMAE_DST_GRC      2
2039
2040#define DMAE_COMP_PCI     0
2041#define DMAE_COMP_GRC     1
2042
2043#define DMAE_COMP_REGULAR 0
2044#define DMAE_COM_SET_ERR  1
2045
2046#define DMAE_CMD_SRC_PCI (DMAE_SRC_PCI << DMAE_COMMAND_SRC_SHIFT)
2047#define DMAE_CMD_SRC_GRC (DMAE_SRC_GRC << DMAE_COMMAND_SRC_SHIFT)
2048#define DMAE_CMD_DST_PCI (DMAE_DST_PCI << DMAE_COMMAND_DST_SHIFT)
2049#define DMAE_CMD_DST_GRC (DMAE_DST_GRC << DMAE_COMMAND_DST_SHIFT)
2050
2051#define DMAE_CMD_C_DST_PCI (DMAE_COMP_PCI << DMAE_COMMAND_C_DST_SHIFT)
2052#define DMAE_CMD_C_DST_GRC (DMAE_COMP_GRC << DMAE_COMMAND_C_DST_SHIFT)
2053
2054#define DMAE_CMD_ENDIANITY_NO_SWAP   (0 << DMAE_COMMAND_ENDIANITY_SHIFT)
2055#define DMAE_CMD_ENDIANITY_B_SWAP    (1 << DMAE_COMMAND_ENDIANITY_SHIFT)
2056#define DMAE_CMD_ENDIANITY_DW_SWAP   (2 << DMAE_COMMAND_ENDIANITY_SHIFT)
2057#define DMAE_CMD_ENDIANITY_B_DW_SWAP (3 << DMAE_COMMAND_ENDIANITY_SHIFT)
2058
2059#define DMAE_CMD_PORT_0 0
2060#define DMAE_CMD_PORT_1 DMAE_COMMAND_PORT
2061
2062#define DMAE_SRC_PF 0
2063#define DMAE_SRC_VF 1
2064
2065#define DMAE_DST_PF 0
2066#define DMAE_DST_VF 1
2067
2068#define DMAE_C_SRC 0
2069#define DMAE_C_DST 1
2070
2071#define DMAE_LEN32_RD_MAX     0x80
2072#define DMAE_LEN32_WR_MAX(sc) (CHIP_IS_E1(sc) ? 0x400 : 0x2000)
2073
2074#define DMAE_COMP_VAL 0x60d0d0ae /* E2 and beyond, upper bit indicates error */
2075
2076#define MAX_DMAE_C_PER_PORT 8
2077#define INIT_DMAE_C(sc)     ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + SC_VN(sc))
2078#define PMF_DMAE_C(sc)      ((SC_PORT(sc) * MAX_DMAE_C_PER_PORT) + E1HVN_MAX)
2079
2080static const uint32_t dmae_reg_go_c[] = {
2081    DMAE_REG_GO_C0,  DMAE_REG_GO_C1,  DMAE_REG_GO_C2,  DMAE_REG_GO_C3,
2082    DMAE_REG_GO_C4,  DMAE_REG_GO_C5,  DMAE_REG_GO_C6,  DMAE_REG_GO_C7,
2083    DMAE_REG_GO_C8,  DMAE_REG_GO_C9,  DMAE_REG_GO_C10, DMAE_REG_GO_C11,
2084    DMAE_REG_GO_C12, DMAE_REG_GO_C13, DMAE_REG_GO_C14, DMAE_REG_GO_C15
2085};
2086
2087#define ATTN_NIG_FOR_FUNC     (1L << 8)
2088#define ATTN_SW_TIMER_4_FUNC  (1L << 9)
2089#define GPIO_2_FUNC           (1L << 10)
2090#define GPIO_3_FUNC           (1L << 11)
2091#define GPIO_4_FUNC           (1L << 12)
2092#define ATTN_GENERAL_ATTN_1   (1L << 13)
2093#define ATTN_GENERAL_ATTN_2   (1L << 14)
2094#define ATTN_GENERAL_ATTN_3   (1L << 15)
2095#define ATTN_GENERAL_ATTN_4   (1L << 13)
2096#define ATTN_GENERAL_ATTN_5   (1L << 14)
2097#define ATTN_GENERAL_ATTN_6   (1L << 15)
2098#define ATTN_HARD_WIRED_MASK  0xff00
2099#define ATTENTION_ID          4
2100
2101#define AEU_IN_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR \
2102    AEU_INPUTS_ATTN_BITS_PXPPCICLOCKCLIENT_PARITY_ERROR
2103
2104#define MAX_IGU_ATTN_ACK_TO 100
2105
2106#define STORM_ASSERT_ARRAY_SIZE 50
2107
2108#define BXE_PMF_LINK_ASSERT(sc) \
2109    GENERAL_ATTEN_OFFSET(LINK_SYNC_ATTENTION_BIT_FUNC_0 + SC_FUNC(sc))
2110
2111#define BXE_MC_ASSERT_BITS \
2112    (GENERAL_ATTEN_OFFSET(TSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2113     GENERAL_ATTEN_OFFSET(USTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2114     GENERAL_ATTEN_OFFSET(CSTORM_FATAL_ASSERT_ATTENTION_BIT) | \
2115     GENERAL_ATTEN_OFFSET(XSTORM_FATAL_ASSERT_ATTENTION_BIT))
2116
2117#define BXE_MCP_ASSERT \
2118    GENERAL_ATTEN_OFFSET(MCP_FATAL_ASSERT_ATTENTION_BIT)
2119
2120#define BXE_GRC_TIMEOUT GENERAL_ATTEN_OFFSET(LATCHED_ATTN_TIMEOUT_GRC)
2121#define BXE_GRC_RSV     (GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCR) | \
2122                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCT) | \
2123                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCN) | \
2124                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCU) | \
2125                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RBCP) | \
2126                         GENERAL_ATTEN_OFFSET(LATCHED_ATTN_RSVD_GRC))
2127
2128#define MULTI_MASK 0x7f
2129
2130#define PFS_PER_PORT(sc)                               \
2131    ((CHIP_PORT_MODE(sc) == CHIP_4_PORT_MODE) ? 2 : 4)
2132#define SC_MAX_VN_NUM(sc) PFS_PER_PORT(sc)
2133
2134#define FIRST_ABS_FUNC_IN_PORT(sc)                    \
2135    ((CHIP_PORT_MODE(sc) == CHIP_PORT_MODE_NONE) ?    \
2136     PORT_ID(sc) : (PATH_ID(sc) + (2 * PORT_ID(sc))))
2137
2138#define FOREACH_ABS_FUNC_IN_PORT(sc, i)            \
2139    for ((i) = FIRST_ABS_FUNC_IN_PORT(sc);         \
2140         (i) < MAX_FUNC_NUM;                       \
2141         (i) += (MAX_FUNC_NUM / PFS_PER_PORT(sc)))
2142
2143#define BXE_SWCID_SHIFT 17
2144#define BXE_SWCID_MASK  ((0x1 << BXE_SWCID_SHIFT) - 1)
2145
2146#define SW_CID(x)  (le32toh(x) & BXE_SWCID_MASK)
2147#define CQE_CMD(x) (le32toh(x) >> COMMON_RAMROD_ETH_RX_CQE_CMD_ID_SHIFT)
2148
2149#define CQE_TYPE(cqe_fp_flags)   ((cqe_fp_flags) & ETH_FAST_PATH_RX_CQE_TYPE)
2150#define CQE_TYPE_START(cqe_type) ((cqe_type) == RX_ETH_CQE_TYPE_ETH_START_AGG)
2151#define CQE_TYPE_STOP(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_STOP_AGG)
2152#define CQE_TYPE_SLOW(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_RAMROD)
2153#define CQE_TYPE_FAST(cqe_type)  ((cqe_type) == RX_ETH_CQE_TYPE_ETH_FASTPATH)
2154
2155/* must be used on a CID before placing it on a HW ring */
2156#define HW_CID(sc, x) \
2157    ((SC_PORT(sc) << 23) | (SC_VN(sc) << BXE_SWCID_SHIFT) | (x))
2158
2159#define SPEED_10    10
2160#define SPEED_100   100
2161#define SPEED_1000  1000
2162#define SPEED_2500  2500
2163#define SPEED_10000 10000
2164
2165#define PCI_PM_D0    1
2166#define PCI_PM_D3hot 2
2167
2168int  bxe_test_bit(int nr, volatile unsigned long * addr);
2169void bxe_set_bit(unsigned int nr, volatile unsigned long * addr);
2170void bxe_clear_bit(int nr, volatile unsigned long * addr);
2171int  bxe_test_and_set_bit(int nr, volatile unsigned long * addr);
2172int  bxe_test_and_clear_bit(int nr, volatile unsigned long * addr);
2173int  bxe_cmpxchg(volatile int *addr, int old, int new);
2174
2175void bxe_reg_wr_ind(struct bxe_softc *sc, uint32_t addr,
2176                    uint32_t val);
2177uint32_t bxe_reg_rd_ind(struct bxe_softc *sc, uint32_t addr);
2178
2179
2180int bxe_dma_alloc(struct bxe_softc *sc, bus_size_t size,
2181                  struct bxe_dma *dma, const char *msg);
2182void bxe_dma_free(struct bxe_softc *sc, struct bxe_dma *dma);
2183
2184uint32_t bxe_dmae_opcode_add_comp(uint32_t opcode, uint8_t comp_type);
2185uint32_t bxe_dmae_opcode_clr_src_reset(uint32_t opcode);
2186uint32_t bxe_dmae_opcode(struct bxe_softc *sc, uint8_t src_type,
2187                         uint8_t dst_type, uint8_t with_comp,
2188                         uint8_t comp_type);
2189void bxe_post_dmae(struct bxe_softc *sc, struct dmae_command *dmae, int idx);
2190void bxe_read_dmae(struct bxe_softc *sc, uint32_t src_addr, uint32_t len32);
2191void bxe_write_dmae(struct bxe_softc *sc, bus_addr_t dma_addr,
2192                    uint32_t dst_addr, uint32_t len32);
2193void bxe_write_dmae_phys_len(struct bxe_softc *sc, bus_addr_t phys_addr,
2194                             uint32_t addr, uint32_t len);
2195
2196void bxe_set_ctx_validation(struct bxe_softc *sc, struct eth_context *cxt,
2197                            uint32_t cid);
2198void bxe_update_coalesce_sb_index(struct bxe_softc *sc, uint8_t fw_sb_id,
2199                                  uint8_t sb_index, uint8_t disable,
2200                                  uint16_t usec);
2201
2202int bxe_sp_post(struct bxe_softc *sc, int command, int cid,
2203                uint32_t data_hi, uint32_t data_lo, int cmd_type);
2204
2205void bxe_igu_ack_sb(struct bxe_softc *sc, uint8_t igu_sb_id,
2206                    uint8_t segment, uint16_t index, uint8_t op,
2207                    uint8_t update);
2208
2209void ecore_init_e1_firmware(struct bxe_softc *sc);
2210void ecore_init_e1h_firmware(struct bxe_softc *sc);
2211void ecore_init_e2_firmware(struct bxe_softc *sc);
2212
2213void ecore_storm_memset_struct(struct bxe_softc *sc, uint32_t addr,
2214                               size_t size, uint32_t *data);
2215
2216/*********************/
2217/* LOGGING AND DEBUG */
2218/*********************/
2219
2220/* debug logging codepaths */
2221#define DBG_LOAD   0x00000001 /* load and unload    */
2222#define DBG_INTR   0x00000002 /* interrupt handling */
2223#define DBG_SP     0x00000004 /* slowpath handling  */
2224#define DBG_STATS  0x00000008 /* stats updates      */
2225#define DBG_TX     0x00000010 /* packet transmit    */
2226#define DBG_RX     0x00000020 /* packet receive     */
2227#define DBG_PHY    0x00000040 /* phy/link handling  */
2228#define DBG_IOCTL  0x00000080 /* ioctl handling     */
2229#define DBG_MBUF   0x00000100 /* dumping mbuf info  */
2230#define DBG_REGS   0x00000200 /* register access    */
2231#define DBG_LRO    0x00000400 /* lro processing     */
2232#define DBG_ASSERT 0x80000000 /* debug assert       */
2233#define DBG_ALL    0xFFFFFFFF /* flying monkeys     */
2234
2235#define DBASSERT(sc, exp, msg)                         \
2236    do {                                               \
2237        if (__predict_false(sc->debug & DBG_ASSERT)) { \
2238            if (__predict_false(!(exp))) {             \
2239                panic msg;                             \
2240            }                                          \
2241        }                                              \
2242    } while (0)
2243
2244/* log a debug message */
2245#define BLOGD(sc, codepath, format, args...)           \
2246    do {                                               \
2247        if (__predict_false(sc->debug & (codepath))) { \
2248            device_printf((sc)->dev,                   \
2249                          "%s(%s:%d) " format,         \
2250                          __FUNCTION__,                \
2251                          __FILE__,                    \
2252                          __LINE__,                    \
2253                          ## args);                    \
2254        }                                              \
2255    } while(0)
2256
2257/* log a info message */
2258#define BLOGI(sc, format, args...)             \
2259    do {                                       \
2260        if (__predict_false(sc->debug)) {      \
2261            device_printf((sc)->dev,           \
2262                          "%s(%s:%d) " format, \
2263                          __FUNCTION__,        \
2264                          __FILE__,            \
2265                          __LINE__,            \
2266                          ## args);            \
2267        } else {                               \
2268            device_printf((sc)->dev,           \
2269                          format,              \
2270                          ## args);            \
2271        }                                      \
2272    } while(0)
2273
2274/* log a warning message */
2275#define BLOGW(sc, format, args...)                      \
2276    do {                                                \
2277        if (__predict_false(sc->debug)) {               \
2278            device_printf((sc)->dev,                    \
2279                          "%s(%s:%d) WARNING: " format, \
2280                          __FUNCTION__,                 \
2281                          __FILE__,                     \
2282                          __LINE__,                     \
2283                          ## args);                     \
2284        } else {                                        \
2285            device_printf((sc)->dev,                    \
2286                          "WARNING: " format,           \
2287                          ## args);                     \
2288        }                                               \
2289    } while(0)
2290
2291/* log a error message */
2292#define BLOGE(sc, format, args...)                    \
2293    do {                                              \
2294        if (__predict_false(sc->debug)) {             \
2295            device_printf((sc)->dev,                  \
2296                          "%s(%s:%d) ERROR: " format, \
2297                          __FUNCTION__,               \
2298                          __FILE__,                   \
2299                          __LINE__,                   \
2300                          ## args);                   \
2301        } else {                                      \
2302            device_printf((sc)->dev,                  \
2303                          "ERROR: " format,           \
2304                          ## args);                   \
2305        }                                             \
2306    } while(0)
2307
2308#define bxe_panic(sc, msg) \
2309    do {                   \
2310        panic msg;         \
2311    } while (0)
2312
2313#define CATC_TRIGGER(sc, data) REG_WR((sc), 0x2000, (data));
2314#define CATC_TRIGGER_START(sc) CATC_TRIGGER((sc), 0xcafecafe)
2315
2316void bxe_dump_mem(struct bxe_softc *sc, char *tag,
2317                  uint8_t *mem, uint32_t len);
2318void bxe_dump_mbuf_data(struct bxe_softc *sc, char *pTag,
2319                        struct mbuf *m, uint8_t contents);
2320
2321/***********/
2322/* INLINES */
2323/***********/
2324
2325static inline uint32_t
2326reg_poll(struct bxe_softc *sc,
2327         uint32_t         reg,
2328         uint32_t         expected,
2329         int              ms,
2330         int              wait)
2331{
2332    uint32_t val;
2333
2334    do {
2335        val = REG_RD(sc, reg);
2336        if (val == expected) {
2337            break;
2338        }
2339        ms -= wait;
2340        DELAY(wait * 1000);
2341    } while (ms > 0);
2342
2343    return (val);
2344}
2345
2346static inline void
2347bxe_update_fp_sb_idx(struct bxe_fastpath *fp)
2348{
2349    mb(); /* status block is written to by the chip */
2350    fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID];
2351}
2352
2353static inline void
2354bxe_igu_ack_sb_gen(struct bxe_softc *sc,
2355                   uint8_t          igu_sb_id,
2356                   uint8_t          segment,
2357                   uint16_t         index,
2358                   uint8_t          op,
2359                   uint8_t          update,
2360                   uint32_t         igu_addr)
2361{
2362    struct igu_regular cmd_data = {0};
2363
2364    cmd_data.sb_id_and_flags =
2365        ((index << IGU_REGULAR_SB_INDEX_SHIFT) |
2366         (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) |
2367         (update << IGU_REGULAR_BUPDATE_SHIFT) |
2368         (op << IGU_REGULAR_ENABLE_INT_SHIFT));
2369
2370    BLOGD(sc, DBG_INTR, "write 0x%08x to IGU addr 0x%x\n",
2371            cmd_data.sb_id_and_flags, igu_addr);
2372    REG_WR(sc, igu_addr, cmd_data.sb_id_and_flags);
2373
2374    /* Make sure that ACK is written */
2375    bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2376                      BUS_SPACE_BARRIER_WRITE);
2377    mb();
2378}
2379
2380static inline void
2381bxe_hc_ack_sb(struct bxe_softc *sc,
2382              uint8_t          sb_id,
2383              uint8_t          storm,
2384              uint16_t         index,
2385              uint8_t          op,
2386              uint8_t          update)
2387{
2388    uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2389                        COMMAND_REG_INT_ACK);
2390    struct igu_ack_register igu_ack;
2391
2392    igu_ack.status_block_index = index;
2393    igu_ack.sb_id_and_flags =
2394        ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) |
2395         (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) |
2396         (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) |
2397         (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT));
2398
2399    REG_WR(sc, hc_addr, (*(uint32_t *)&igu_ack));
2400
2401    /* Make sure that ACK is written */
2402    bus_space_barrier(sc->bar[0].tag, sc->bar[0].handle, 0, 0,
2403                      BUS_SPACE_BARRIER_WRITE);
2404    mb();
2405}
2406
2407static inline void
2408bxe_ack_sb(struct bxe_softc *sc,
2409           uint8_t          igu_sb_id,
2410           uint8_t          storm,
2411           uint16_t         index,
2412           uint8_t          op,
2413           uint8_t          update)
2414{
2415    if (sc->devinfo.int_block == INT_BLOCK_HC)
2416        bxe_hc_ack_sb(sc, igu_sb_id, storm, index, op, update);
2417    else {
2418        uint8_t segment;
2419        if (CHIP_INT_MODE_IS_BC(sc)) {
2420            segment = storm;
2421        } else if (igu_sb_id != sc->igu_dsb_id) {
2422            segment = IGU_SEG_ACCESS_DEF;
2423        } else if (storm == ATTENTION_ID) {
2424            segment = IGU_SEG_ACCESS_ATTN;
2425        } else {
2426            segment = IGU_SEG_ACCESS_DEF;
2427        }
2428        bxe_igu_ack_sb(sc, igu_sb_id, segment, index, op, update);
2429    }
2430}
2431
2432static inline uint16_t
2433bxe_hc_ack_int(struct bxe_softc *sc)
2434{
2435    uint32_t hc_addr = (HC_REG_COMMAND_REG + SC_PORT(sc)*32 +
2436                        COMMAND_REG_SIMD_MASK);
2437    uint32_t result = REG_RD(sc, hc_addr);
2438
2439    mb();
2440    return (result);
2441}
2442
2443static inline uint16_t
2444bxe_igu_ack_int(struct bxe_softc *sc)
2445{
2446    uint32_t igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8);
2447    uint32_t result = REG_RD(sc, igu_addr);
2448
2449    BLOGD(sc, DBG_INTR, "read 0x%08x from IGU addr 0x%x\n",
2450          result, igu_addr);
2451
2452    mb();
2453    return (result);
2454}
2455
2456static inline uint16_t
2457bxe_ack_int(struct bxe_softc *sc)
2458{
2459    mb();
2460    if (sc->devinfo.int_block == INT_BLOCK_HC) {
2461        return (bxe_hc_ack_int(sc));
2462    } else {
2463        return (bxe_igu_ack_int(sc));
2464    }
2465}
2466
2467static inline int
2468func_by_vn(struct bxe_softc *sc,
2469           int              vn)
2470{
2471    return (2 * vn + SC_PORT(sc));
2472}
2473
2474/*
2475 * Statistics ID are global per chip/path, while Client IDs for E1x
2476 * are per port.
2477 */
2478static inline uint8_t
2479bxe_stats_id(struct bxe_fastpath *fp)
2480{
2481    struct bxe_softc *sc = fp->sc;
2482
2483    if (!CHIP_IS_E1x(sc)) {
2484#if 0
2485        /* there are special statistics counters for FCoE 136..140 */
2486        if (IS_FCOE_FP(fp)) {
2487            return (sc->cnic_base_cl_id + (sc->pf_num >> 1));
2488        }
2489#endif
2490        return (fp->cl_id);
2491    }
2492
2493    return (fp->cl_id + SC_PORT(sc) * FP_SB_MAX_E1x);
2494}
2495
2496#endif /* __BXE_H__ */
2497
2498