1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD$");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42/*
43 * This is needed for register operations which are performed
44 * by the driver - eg, calls to ath_hal_gettsf32().
45 *
46 * It's also required for any AH_DEBUG checks in here, eg the
47 * module dependencies.
48 */
49#include "opt_ah.h"
50#include "opt_wlan.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/sysctl.h>
55#include <sys/mbuf.h>
56#include <sys/malloc.h>
57#include <sys/lock.h>
58#include <sys/mutex.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/sockio.h>
62#include <sys/errno.h>
63#include <sys/callout.h>
64#include <sys/bus.h>
65#include <sys/endian.h>
66#include <sys/kthread.h>
67#include <sys/taskqueue.h>
68#include <sys/priv.h>
69#include <sys/module.h>
70#include <sys/ktr.h>
71#include <sys/smp.h>	/* for mp_ncpus */
72
73#include <machine/bus.h>
74
75#include <net/if.h>
76#include <net/if_var.h>
77#include <net/if_dl.h>
78#include <net/if_media.h>
79#include <net/if_types.h>
80#include <net/if_arp.h>
81#include <net/ethernet.h>
82#include <net/if_llc.h>
83
84#include <net80211/ieee80211_var.h>
85#include <net80211/ieee80211_regdomain.h>
86#ifdef IEEE80211_SUPPORT_SUPERG
87#include <net80211/ieee80211_superg.h>
88#endif
89#ifdef IEEE80211_SUPPORT_TDMA
90#include <net80211/ieee80211_tdma.h>
91#endif
92
93#include <net/bpf.h>
94
95#ifdef INET
96#include <netinet/in.h>
97#include <netinet/if_ether.h>
98#endif
99
100#include <dev/ath/if_athvar.h>
101#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
102#include <dev/ath/ath_hal/ah_diagcodes.h>
103
104#include <dev/ath/if_ath_debug.h>
105#include <dev/ath/if_ath_misc.h>
106#include <dev/ath/if_ath_tsf.h>
107#include <dev/ath/if_ath_tx.h>
108#include <dev/ath/if_ath_sysctl.h>
109#include <dev/ath/if_ath_led.h>
110#include <dev/ath/if_ath_keycache.h>
111#include <dev/ath/if_ath_rx.h>
112#include <dev/ath/if_ath_beacon.h>
113#include <dev/ath/if_athdfs.h>
114#include <dev/ath/if_ath_descdma.h>
115
116#ifdef ATH_TX99_DIAG
117#include <dev/ath/ath_tx99/ath_tx99.h>
118#endif
119
120#ifdef	ATH_DEBUG_ALQ
121#include <dev/ath/if_ath_alq.h>
122#endif
123
124#include <dev/ath/if_ath_lna_div.h>
125
126/*
127 * Calculate the receive filter according to the
128 * operating mode and state:
129 *
130 * o always accept unicast, broadcast, and multicast traffic
131 * o accept PHY error frames when hardware doesn't have MIB support
132 *   to count and we need them for ANI (sta mode only until recently)
133 *   and we are not scanning (ANI is disabled)
134 *   NB: older hal's add rx filter bits out of sight and we need to
135 *	 blindly preserve them
136 * o probe request frames are accepted only when operating in
137 *   hostap, adhoc, mesh, or monitor modes
138 * o enable promiscuous mode
139 *   - when in monitor mode
140 *   - if interface marked PROMISC (assumes bridge setting is filtered)
141 * o accept beacons:
142 *   - when operating in station mode for collecting rssi data when
143 *     the station is otherwise quiet, or
144 *   - when operating in adhoc mode so the 802.11 layer creates
145 *     node table entries for peers,
146 *   - when scanning
147 *   - when doing s/w beacon miss (e.g. for ap+sta)
148 *   - when operating in ap mode in 11g to detect overlapping bss that
149 *     require protection
150 *   - when operating in mesh mode to detect neighbors
151 * o accept control frames:
152 *   - when in monitor mode
153 * XXX HT protection for 11n
154 */
155u_int32_t
156ath_calcrxfilter(struct ath_softc *sc)
157{
158	struct ieee80211com *ic = &sc->sc_ic;
159	u_int32_t rfilt;
160
161	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
162	if (!sc->sc_needmib && !sc->sc_scanning)
163		rfilt |= HAL_RX_FILTER_PHYERR;
164	if (ic->ic_opmode != IEEE80211_M_STA)
165		rfilt |= HAL_RX_FILTER_PROBEREQ;
166	/* XXX ic->ic_monvaps != 0? */
167	if (ic->ic_opmode == IEEE80211_M_MONITOR || ic->ic_promisc > 0)
168		rfilt |= HAL_RX_FILTER_PROM;
169
170	/*
171	 * Only listen to all beacons if we're scanning.
172	 *
173	 * Otherwise we only really need to hear beacons from
174	 * our own BSSID.
175	 *
176	 * IBSS? software beacon miss? Just receive all beacons.
177	 * We need to hear beacons/probe requests from everyone so
178	 * we can merge ibss.
179	 */
180	if (ic->ic_opmode == IEEE80211_M_IBSS || sc->sc_swbmiss) {
181		rfilt |= HAL_RX_FILTER_BEACON;
182	} else if (ic->ic_opmode == IEEE80211_M_STA) {
183		if (sc->sc_do_mybeacon && ! sc->sc_scanning) {
184			rfilt |= HAL_RX_FILTER_MYBEACON;
185		} else { /* scanning, non-mybeacon chips */
186			rfilt |= HAL_RX_FILTER_BEACON;
187		}
188	}
189
190	/*
191	 * NB: We don't recalculate the rx filter when
192	 * ic_protmode changes; otherwise we could do
193	 * this only when ic_protmode != NONE.
194	 */
195	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
196	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
197		rfilt |= HAL_RX_FILTER_BEACON;
198
199	/*
200	 * Enable hardware PS-POLL RX only for hostap mode;
201	 * STA mode sends PS-POLL frames but never
202	 * receives them.
203	 */
204	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
205	    0, NULL) == HAL_OK &&
206	    ic->ic_opmode == IEEE80211_M_HOSTAP)
207		rfilt |= HAL_RX_FILTER_PSPOLL;
208
209	if (sc->sc_nmeshvaps) {
210		rfilt |= HAL_RX_FILTER_BEACON;
211		if (sc->sc_hasbmatch)
212			rfilt |= HAL_RX_FILTER_BSSID;
213		else
214			rfilt |= HAL_RX_FILTER_PROM;
215	}
216	if (ic->ic_opmode == IEEE80211_M_MONITOR)
217		rfilt |= HAL_RX_FILTER_CONTROL;
218
219	/*
220	 * Enable RX of compressed BAR frames only when doing
221	 * 802.11n. Required for A-MPDU.
222	 */
223	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
224		rfilt |= HAL_RX_FILTER_COMPBAR;
225
226	/*
227	 * Enable radar PHY errors if requested by the
228	 * DFS module.
229	 */
230	if (sc->sc_dodfs)
231		rfilt |= HAL_RX_FILTER_PHYRADAR;
232
233	/*
234	 * Enable spectral PHY errors if requested by the
235	 * spectral module.
236	 */
237	if (sc->sc_dospectral)
238		rfilt |= HAL_RX_FILTER_PHYRADAR;
239
240	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s\n",
241	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode]);
242	return rfilt;
243}
244
245static int
246ath_legacy_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
247{
248	struct ath_hal *ah = sc->sc_ah;
249	int error;
250	struct mbuf *m;
251	struct ath_desc *ds;
252
253	/* XXX TODO: ATH_RX_LOCK_ASSERT(sc); */
254
255	m = bf->bf_m;
256	if (m == NULL) {
257		/*
258		 * NB: by assigning a page to the rx dma buffer we
259		 * implicitly satisfy the Atheros requirement that
260		 * this buffer be cache-line-aligned and sized to be
261		 * multiple of the cache line size.  Not doing this
262		 * causes weird stuff to happen (for the 5210 at least).
263		 */
264		m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
265		if (m == NULL) {
266			DPRINTF(sc, ATH_DEBUG_ANY,
267				"%s: no mbuf/cluster\n", __func__);
268			sc->sc_stats.ast_rx_nombuf++;
269			return ENOMEM;
270		}
271		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
272
273		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
274					     bf->bf_dmamap, m,
275					     bf->bf_segs, &bf->bf_nseg,
276					     BUS_DMA_NOWAIT);
277		if (error != 0) {
278			DPRINTF(sc, ATH_DEBUG_ANY,
279			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
280			    __func__, error);
281			sc->sc_stats.ast_rx_busdma++;
282			m_freem(m);
283			return error;
284		}
285		KASSERT(bf->bf_nseg == 1,
286			("multi-segment packet; nseg %u", bf->bf_nseg));
287		bf->bf_m = m;
288	}
289	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
290
291	/*
292	 * Setup descriptors.  For receive we always terminate
293	 * the descriptor list with a self-linked entry so we'll
294	 * not get overrun under high load (as can happen with a
295	 * 5212 when ANI processing enables PHY error frames).
296	 *
297	 * To insure the last descriptor is self-linked we create
298	 * each descriptor as self-linked and add it to the end.  As
299	 * each additional descriptor is added the previous self-linked
300	 * entry is ``fixed'' naturally.  This should be safe even
301	 * if DMA is happening.  When processing RX interrupts we
302	 * never remove/process the last, self-linked, entry on the
303	 * descriptor list.  This insures the hardware always has
304	 * someplace to write a new frame.
305	 */
306	/*
307	 * 11N: we can no longer afford to self link the last descriptor.
308	 * MAC acknowledges BA status as long as it copies frames to host
309	 * buffer (or rx fifo). This can incorrectly acknowledge packets
310	 * to a sender if last desc is self-linked.
311	 */
312	ds = bf->bf_desc;
313	if (sc->sc_rxslink)
314		ds->ds_link = bf->bf_daddr;	/* link to self */
315	else
316		ds->ds_link = 0;		/* terminate the list */
317	ds->ds_data = bf->bf_segs[0].ds_addr;
318	ath_hal_setuprxdesc(ah, ds
319		, m->m_len		/* buffer size */
320		, 0
321	);
322
323	if (sc->sc_rxlink != NULL)
324		*sc->sc_rxlink = bf->bf_daddr;
325	sc->sc_rxlink = &ds->ds_link;
326	return 0;
327}
328
329/*
330 * Intercept management frames to collect beacon rssi data
331 * and to do ibss merges.
332 */
333void
334ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
335	int subtype, const struct ieee80211_rx_stats *rxs, int rssi, int nf)
336{
337	struct ieee80211vap *vap = ni->ni_vap;
338	struct ath_softc *sc = vap->iv_ic->ic_softc;
339	uint64_t tsf_beacon_old, tsf_beacon;
340	uint64_t nexttbtt;
341	int64_t tsf_delta;
342	int32_t tsf_delta_bmiss;
343	int32_t tsf_remainder;
344	uint64_t tsf_beacon_target;
345	int tsf_intval;
346
347	tsf_beacon_old = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32;
348	tsf_beacon_old |= le32dec(ni->ni_tstamp.data);
349
350#define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
351	tsf_intval = 1;
352	if (ni->ni_intval > 0) {
353		tsf_intval = TU_TO_TSF(ni->ni_intval);
354	}
355#undef	TU_TO_TSF
356
357	/*
358	 * Call up first so subsequent work can use information
359	 * potentially stored in the node (e.g. for ibss merge).
360	 */
361	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rxs, rssi, nf);
362	switch (subtype) {
363	case IEEE80211_FC0_SUBTYPE_BEACON:
364
365		/*
366		 * Only do the following processing if it's for
367		 * the current BSS.
368		 *
369		 * In scan and IBSS mode we receive all beacons,
370		 * which means we need to filter out stuff
371		 * that isn't for us or we'll end up constantly
372		 * trying to sync / merge to BSSes that aren't
373		 * actually us.
374		 */
375		if (IEEE80211_ADDR_EQ(ni->ni_bssid, vap->iv_bss->ni_bssid)) {
376			/* update rssi statistics for use by the hal */
377			/* XXX unlocked check against vap->iv_bss? */
378			ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
379
380
381			tsf_beacon = ((uint64_t) le32dec(ni->ni_tstamp.data + 4)) << 32;
382			tsf_beacon |= le32dec(ni->ni_tstamp.data);
383
384			nexttbtt = ath_hal_getnexttbtt(sc->sc_ah);
385
386			/*
387			 * Let's calculate the delta and remainder, so we can see
388			 * if the beacon timer from the AP is varying by more than
389			 * a few TU.  (Which would be a huge, huge problem.)
390			 */
391			tsf_delta = (long long) tsf_beacon - (long long) tsf_beacon_old;
392
393			tsf_delta_bmiss = tsf_delta / tsf_intval;
394
395			/*
396			 * If our delta is greater than half the beacon interval,
397			 * let's round the bmiss value up to the next beacon
398			 * interval.  Ie, we're running really, really early
399			 * on the next beacon.
400			 */
401			if (tsf_delta % tsf_intval > (tsf_intval / 2))
402				tsf_delta_bmiss ++;
403
404			tsf_beacon_target = tsf_beacon_old +
405			    (((unsigned long long) tsf_delta_bmiss) * (long long) tsf_intval);
406
407			/*
408			 * The remainder using '%' is between 0 .. intval-1.
409			 * If we're actually running too fast, then the remainder
410			 * will be some large number just under intval-1.
411			 * So we need to look at whether we're running
412			 * before or after the target beacon interval
413			 * and if we are, modify how we do the remainder
414			 * calculation.
415			 */
416			if (tsf_beacon < tsf_beacon_target) {
417				tsf_remainder =
418				    -(tsf_intval - ((tsf_beacon - tsf_beacon_old) % tsf_intval));
419			} else {
420				tsf_remainder = (tsf_beacon - tsf_beacon_old) % tsf_intval;
421			}
422
423			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: old_tsf=%llu, new_tsf=%llu, target_tsf=%llu, delta=%lld, bmiss=%d, remainder=%d\n",
424			    __func__,
425			    (unsigned long long) tsf_beacon_old,
426			    (unsigned long long) tsf_beacon,
427			    (unsigned long long) tsf_beacon_target,
428			    (long long) tsf_delta,
429			    tsf_delta_bmiss,
430			    tsf_remainder);
431
432			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: tsf=%llu, nexttbtt=%llu, delta=%d\n",
433			    __func__,
434			    (unsigned long long) tsf_beacon,
435			    (unsigned long long) nexttbtt,
436			    (int32_t) tsf_beacon - (int32_t) nexttbtt + tsf_intval);
437
438			/* We only do syncbeacon on STA VAPs; not on IBSS */
439			if (vap->iv_opmode == IEEE80211_M_STA &&
440			    sc->sc_syncbeacon &&
441			    ni == vap->iv_bss &&
442			    (vap->iv_state == IEEE80211_S_RUN || vap->iv_state == IEEE80211_S_SLEEP)) {
443				DPRINTF(sc, ATH_DEBUG_BEACON,
444				    "%s: syncbeacon=1; syncing\n",
445				    __func__);
446				/*
447				 * Resync beacon timers using the tsf of the beacon
448				 * frame we just received.
449				 */
450				ath_beacon_config(sc, vap);
451				sc->sc_syncbeacon = 0;
452			}
453		}
454
455		/* fall thru... */
456	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
457		if (vap->iv_opmode == IEEE80211_M_IBSS &&
458		    vap->iv_state == IEEE80211_S_RUN &&
459		    ieee80211_ibss_merge_check(ni)) {
460			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
461			uint64_t tsf = ath_extend_tsf(sc, rstamp,
462				ath_hal_gettsf64(sc->sc_ah));
463			/*
464			 * Handle ibss merge as needed; check the tsf on the
465			 * frame before attempting the merge.  The 802.11 spec
466			 * says the station should change it's bssid to match
467			 * the oldest station with the same ssid, where oldest
468			 * is determined by the tsf.  Note that hardware
469			 * reconfiguration happens through callback to
470			 * ath_newstate as the state machine will go from
471			 * RUN -> RUN when this happens.
472			 */
473			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
474				DPRINTF(sc, ATH_DEBUG_STATE,
475				    "ibss merge, rstamp %u tsf %ju "
476				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
477				    (uintmax_t)ni->ni_tstamp.tsf);
478				(void) ieee80211_ibss_merge(ni);
479			}
480		}
481		break;
482	}
483}
484
485#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
486static void
487ath_rx_tap_vendor(struct ath_softc *sc, struct mbuf *m,
488    const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
489{
490
491	/* Fill in the extension bitmap */
492	sc->sc_rx_th.wr_ext_bitmap = htole32(1 << ATH_RADIOTAP_VENDOR_HEADER);
493
494	/* Fill in the vendor header */
495	sc->sc_rx_th.wr_vh.vh_oui[0] = 0x7f;
496	sc->sc_rx_th.wr_vh.vh_oui[1] = 0x03;
497	sc->sc_rx_th.wr_vh.vh_oui[2] = 0x00;
498
499	/* XXX what should this be? */
500	sc->sc_rx_th.wr_vh.vh_sub_ns = 0;
501	sc->sc_rx_th.wr_vh.vh_skip_len =
502	    htole16(sizeof(struct ath_radiotap_vendor_hdr));
503
504	/* General version info */
505	sc->sc_rx_th.wr_v.vh_version = 1;
506
507	sc->sc_rx_th.wr_v.vh_rx_chainmask = sc->sc_rxchainmask;
508
509	/* rssi */
510	sc->sc_rx_th.wr_v.rssi_ctl[0] = rs->rs_rssi_ctl[0];
511	sc->sc_rx_th.wr_v.rssi_ctl[1] = rs->rs_rssi_ctl[1];
512	sc->sc_rx_th.wr_v.rssi_ctl[2] = rs->rs_rssi_ctl[2];
513	sc->sc_rx_th.wr_v.rssi_ext[0] = rs->rs_rssi_ext[0];
514	sc->sc_rx_th.wr_v.rssi_ext[1] = rs->rs_rssi_ext[1];
515	sc->sc_rx_th.wr_v.rssi_ext[2] = rs->rs_rssi_ext[2];
516
517	/* evm */
518	sc->sc_rx_th.wr_v.evm[0] = rs->rs_evm0;
519	sc->sc_rx_th.wr_v.evm[1] = rs->rs_evm1;
520	sc->sc_rx_th.wr_v.evm[2] = rs->rs_evm2;
521	/* These are only populated from the AR9300 or later */
522	sc->sc_rx_th.wr_v.evm[3] = rs->rs_evm3;
523	sc->sc_rx_th.wr_v.evm[4] = rs->rs_evm4;
524
525	/* direction */
526	sc->sc_rx_th.wr_v.vh_flags = ATH_VENDOR_PKT_RX;
527
528	/* RX rate */
529	sc->sc_rx_th.wr_v.vh_rx_hwrate = rs->rs_rate;
530
531	/* RX flags */
532	sc->sc_rx_th.wr_v.vh_rs_flags = rs->rs_flags;
533
534	if (rs->rs_isaggr)
535		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_ISAGGR;
536	if (rs->rs_moreaggr)
537		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_MOREAGGR;
538
539	/* phyerr info */
540	if (rs->rs_status & HAL_RXERR_PHY) {
541		sc->sc_rx_th.wr_v.vh_phyerr_code = rs->rs_phyerr;
542		sc->sc_rx_th.wr_v.vh_flags |= ATH_VENDOR_PKT_RXPHYERR;
543	} else {
544		sc->sc_rx_th.wr_v.vh_phyerr_code = 0xff;
545	}
546	sc->sc_rx_th.wr_v.vh_rs_status = rs->rs_status;
547	sc->sc_rx_th.wr_v.vh_rssi = rs->rs_rssi;
548}
549#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
550
551static void
552ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
553	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
554{
555#define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
556#define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
557#define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
558#define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
559	const HAL_RATE_TABLE *rt;
560	uint8_t rix;
561
562	rt = sc->sc_currates;
563	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
564	rix = rt->rateCodeToIndex[rs->rs_rate];
565	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
566	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
567#ifdef AH_SUPPORT_AR5416
568	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
569	if (rs->rs_status & HAL_RXERR_PHY) {
570		/*
571		 * PHY error - make sure the channel flags
572		 * reflect the actual channel configuration,
573		 * not the received frame.
574		 */
575		if (IEEE80211_IS_CHAN_HT40U(sc->sc_curchan))
576			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
577		else if (IEEE80211_IS_CHAN_HT40D(sc->sc_curchan))
578			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
579		else if (IEEE80211_IS_CHAN_HT20(sc->sc_curchan))
580			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
581	} else if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
582		struct ieee80211com *ic = &sc->sc_ic;
583
584		if ((rs->rs_flags & HAL_RX_2040) == 0)
585			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
586		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
587			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
588		else
589			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
590		if ((rs->rs_flags & HAL_RX_GI) == 0)
591			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
592	}
593
594#endif
595	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
596	if (rs->rs_status & HAL_RXERR_CRC)
597		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
598	/* XXX propagate other error flags from descriptor */
599	sc->sc_rx_th.wr_antnoise = nf;
600	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
601	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
602#undef CHAN_HT
603#undef CHAN_HT20
604#undef CHAN_HT40U
605#undef CHAN_HT40D
606}
607
608static void
609ath_handle_micerror(struct ieee80211com *ic,
610	struct ieee80211_frame *wh, int keyix)
611{
612	struct ieee80211_node *ni;
613
614	/* XXX recheck MIC to deal w/ chips that lie */
615	/* XXX discard MIC errors on !data frames */
616	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
617	if (ni != NULL) {
618		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
619		ieee80211_free_node(ni);
620	}
621}
622
623/*
624 * Process a single packet.
625 *
626 * The mbuf must already be synced, unmapped and removed from bf->bf_m
627 * by this stage.
628 *
629 * The mbuf must be consumed by this routine - either passed up the
630 * net80211 stack, put on the holding queue, or freed.
631 */
632int
633ath_rx_pkt(struct ath_softc *sc, struct ath_rx_status *rs, HAL_STATUS status,
634    uint64_t tsf, int nf, HAL_RX_QUEUE qtype, struct ath_buf *bf,
635    struct mbuf *m)
636{
637	uint64_t rstamp;
638	int len, type;
639	struct ieee80211com *ic = &sc->sc_ic;
640	struct ieee80211_node *ni;
641	int is_good = 0;
642	struct ath_rx_edma *re = &sc->sc_rxedma[qtype];
643
644	/*
645	 * Calculate the correct 64 bit TSF given
646	 * the TSF64 register value and rs_tstamp.
647	 */
648	rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
649
650	/* These aren't specifically errors */
651#ifdef	AH_SUPPORT_AR5416
652	if (rs->rs_flags & HAL_RX_GI)
653		sc->sc_stats.ast_rx_halfgi++;
654	if (rs->rs_flags & HAL_RX_2040)
655		sc->sc_stats.ast_rx_2040++;
656	if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
657		sc->sc_stats.ast_rx_pre_crc_err++;
658	if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
659		sc->sc_stats.ast_rx_post_crc_err++;
660	if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
661		sc->sc_stats.ast_rx_decrypt_busy_err++;
662	if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
663		sc->sc_stats.ast_rx_hi_rx_chain++;
664	if (rs->rs_flags & HAL_RX_STBC)
665		sc->sc_stats.ast_rx_stbc++;
666#endif /* AH_SUPPORT_AR5416 */
667
668	if (rs->rs_status != 0) {
669		if (rs->rs_status & HAL_RXERR_CRC)
670			sc->sc_stats.ast_rx_crcerr++;
671		if (rs->rs_status & HAL_RXERR_FIFO)
672			sc->sc_stats.ast_rx_fifoerr++;
673		if (rs->rs_status & HAL_RXERR_PHY) {
674			sc->sc_stats.ast_rx_phyerr++;
675			/* Process DFS radar events */
676			if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
677			    (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
678				/* Now pass it to the radar processing code */
679				ath_dfs_process_phy_err(sc, m, rstamp, rs);
680			}
681
682			/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
683			if (rs->rs_phyerr < 64)
684				sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
685			goto rx_error;	/* NB: don't count in ierrors */
686		}
687		if (rs->rs_status & HAL_RXERR_DECRYPT) {
688			/*
689			 * Decrypt error.  If the error occurred
690			 * because there was no hardware key, then
691			 * let the frame through so the upper layers
692			 * can process it.  This is necessary for 5210
693			 * parts which have no way to setup a ``clear''
694			 * key cache entry.
695			 *
696			 * XXX do key cache faulting
697			 */
698			if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
699				goto rx_accept;
700			sc->sc_stats.ast_rx_badcrypt++;
701		}
702		/*
703		 * Similar as above - if the failure was a keymiss
704		 * just punt it up to the upper layers for now.
705		 */
706		if (rs->rs_status & HAL_RXERR_KEYMISS) {
707			sc->sc_stats.ast_rx_keymiss++;
708			goto rx_accept;
709		}
710		if (rs->rs_status & HAL_RXERR_MIC) {
711			sc->sc_stats.ast_rx_badmic++;
712			/*
713			 * Do minimal work required to hand off
714			 * the 802.11 header for notification.
715			 */
716			/* XXX frag's and qos frames */
717			len = rs->rs_datalen;
718			if (len >= sizeof (struct ieee80211_frame)) {
719				ath_handle_micerror(ic,
720				    mtod(m, struct ieee80211_frame *),
721				    sc->sc_splitmic ?
722					rs->rs_keyix-32 : rs->rs_keyix);
723			}
724		}
725		counter_u64_add(ic->ic_ierrors, 1);
726rx_error:
727		/*
728		 * Cleanup any pending partial frame.
729		 */
730		if (re->m_rxpending != NULL) {
731			m_freem(re->m_rxpending);
732			re->m_rxpending = NULL;
733		}
734		/*
735		 * When a tap is present pass error frames
736		 * that have been requested.  By default we
737		 * pass decrypt+mic errors but others may be
738		 * interesting (e.g. crc).
739		 */
740		if (ieee80211_radiotap_active(ic) &&
741		    (rs->rs_status & sc->sc_monpass)) {
742			/* NB: bpf needs the mbuf length setup */
743			len = rs->rs_datalen;
744			m->m_pkthdr.len = m->m_len = len;
745			ath_rx_tap(sc, m, rs, rstamp, nf);
746#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
747			ath_rx_tap_vendor(sc, m, rs, rstamp, nf);
748#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
749			ieee80211_radiotap_rx_all(ic, m);
750		}
751		/* XXX pass MIC errors up for s/w reclaculation */
752		m_freem(m); m = NULL;
753		goto rx_next;
754	}
755rx_accept:
756	len = rs->rs_datalen;
757	m->m_len = len;
758
759	if (rs->rs_more) {
760		/*
761		 * Frame spans multiple descriptors; save
762		 * it for the next completed descriptor, it
763		 * will be used to construct a jumbogram.
764		 */
765		if (re->m_rxpending != NULL) {
766			/* NB: max frame size is currently 2 clusters */
767			sc->sc_stats.ast_rx_toobig++;
768			m_freem(re->m_rxpending);
769		}
770		m->m_pkthdr.len = len;
771		re->m_rxpending = m;
772		m = NULL;
773		goto rx_next;
774	} else if (re->m_rxpending != NULL) {
775		/*
776		 * This is the second part of a jumbogram,
777		 * chain it to the first mbuf, adjust the
778		 * frame length, and clear the rxpending state.
779		 */
780		re->m_rxpending->m_next = m;
781		re->m_rxpending->m_pkthdr.len += len;
782		m = re->m_rxpending;
783		re->m_rxpending = NULL;
784	} else {
785		/*
786		 * Normal single-descriptor receive; setup packet length.
787		 */
788		m->m_pkthdr.len = len;
789	}
790
791	/*
792	 * Validate rs->rs_antenna.
793	 *
794	 * Some users w/ AR9285 NICs have reported crashes
795	 * here because rs_antenna field is bogusly large.
796	 * Let's enforce the maximum antenna limit of 8
797	 * (and it shouldn't be hard coded, but that's a
798	 * separate problem) and if there's an issue, print
799	 * out an error and adjust rs_antenna to something
800	 * sensible.
801	 *
802	 * This code should be removed once the actual
803	 * root cause of the issue has been identified.
804	 * For example, it may be that the rs_antenna
805	 * field is only valid for the last frame of
806	 * an aggregate and it just happens that it is
807	 * "mostly" right. (This is a general statement -
808	 * the majority of the statistics are only valid
809	 * for the last frame in an aggregate.
810	 */
811	if (rs->rs_antenna > 7) {
812		device_printf(sc->sc_dev, "%s: rs_antenna > 7 (%d)\n",
813		    __func__, rs->rs_antenna);
814#ifdef	ATH_DEBUG
815		ath_printrxbuf(sc, bf, 0, status == HAL_OK);
816#endif /* ATH_DEBUG */
817		rs->rs_antenna = 0;	/* XXX better than nothing */
818	}
819
820	/*
821	 * If this is an AR9285/AR9485, then the receive and LNA
822	 * configuration is stored in RSSI[2] / EXTRSSI[2].
823	 * We can extract this out to build a much better
824	 * receive antenna profile.
825	 *
826	 * Yes, this just blurts over the above RX antenna field
827	 * for now.  It's fine, the AR9285 doesn't really use
828	 * that.
829	 *
830	 * Later on we should store away the fine grained LNA
831	 * information and keep separate counters just for
832	 * that.  It'll help when debugging the AR9285/AR9485
833	 * combined diversity code.
834	 */
835	if (sc->sc_rx_lnamixer) {
836		rs->rs_antenna = 0;
837
838		/* Bits 0:1 - the LNA configuration used */
839		rs->rs_antenna |=
840		    ((rs->rs_rssi_ctl[2] & HAL_RX_LNA_CFG_USED)
841		      >> HAL_RX_LNA_CFG_USED_S);
842
843		/* Bit 2 - the external RX antenna switch */
844		if (rs->rs_rssi_ctl[2] & HAL_RX_LNA_EXTCFG)
845			rs->rs_antenna |= 0x4;
846	}
847
848	sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
849
850	/*
851	 * Populate the rx status block.  When there are bpf
852	 * listeners we do the additional work to provide
853	 * complete status.  Otherwise we fill in only the
854	 * material required by ieee80211_input.  Note that
855	 * noise setting is filled in above.
856	 */
857	if (ieee80211_radiotap_active(ic)) {
858		ath_rx_tap(sc, m, rs, rstamp, nf);
859#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
860		ath_rx_tap_vendor(sc, m, rs, rstamp, nf);
861#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
862	}
863
864	/*
865	 * From this point on we assume the frame is at least
866	 * as large as ieee80211_frame_min; verify that.
867	 */
868	if (len < IEEE80211_MIN_LEN) {
869		if (!ieee80211_radiotap_active(ic)) {
870			DPRINTF(sc, ATH_DEBUG_RECV,
871			    "%s: short packet %d\n", __func__, len);
872			sc->sc_stats.ast_rx_tooshort++;
873		} else {
874			/* NB: in particular this captures ack's */
875			ieee80211_radiotap_rx_all(ic, m);
876		}
877		m_freem(m); m = NULL;
878		goto rx_next;
879	}
880
881	if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
882		const HAL_RATE_TABLE *rt = sc->sc_currates;
883		uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
884
885		ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
886		    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
887	}
888
889	m_adj(m, -IEEE80211_CRC_LEN);
890
891	/*
892	 * Locate the node for sender, track state, and then
893	 * pass the (referenced) node up to the 802.11 layer
894	 * for its use.
895	 */
896	ni = ieee80211_find_rxnode_withkey(ic,
897		mtod(m, const struct ieee80211_frame_min *),
898		rs->rs_keyix == HAL_RXKEYIX_INVALID ?
899			IEEE80211_KEYIX_NONE : rs->rs_keyix);
900	sc->sc_lastrs = rs;
901
902#ifdef	AH_SUPPORT_AR5416
903	if (rs->rs_isaggr)
904		sc->sc_stats.ast_rx_agg++;
905#endif /* AH_SUPPORT_AR5416 */
906
907	if (ni != NULL) {
908		/*
909		 * Only punt packets for ampdu reorder processing for
910		 * 11n nodes; net80211 enforces that M_AMPDU is only
911		 * set for 11n nodes.
912		 */
913		if (ni->ni_flags & IEEE80211_NODE_HT)
914			m->m_flags |= M_AMPDU;
915
916		/*
917		 * Sending station is known, dispatch directly.
918		 */
919		type = ieee80211_input(ni, m, rs->rs_rssi, nf);
920		ieee80211_free_node(ni);
921		m = NULL;
922		/*
923		 * Arrange to update the last rx timestamp only for
924		 * frames from our ap when operating in station mode.
925		 * This assumes the rx key is always setup when
926		 * associated.
927		 */
928		if (ic->ic_opmode == IEEE80211_M_STA &&
929		    rs->rs_keyix != HAL_RXKEYIX_INVALID)
930			is_good = 1;
931	} else {
932		type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
933		m = NULL;
934	}
935
936	/*
937	 * At this point we have passed the frame up the stack; thus
938	 * the mbuf is no longer ours.
939	 */
940
941	/*
942	 * Track rx rssi and do any rx antenna management.
943	 */
944	ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
945	if (sc->sc_diversity) {
946		/*
947		 * When using fast diversity, change the default rx
948		 * antenna if diversity chooses the other antenna 3
949		 * times in a row.
950		 */
951		if (sc->sc_defant != rs->rs_antenna) {
952			if (++sc->sc_rxotherant >= 3)
953				ath_setdefantenna(sc, rs->rs_antenna);
954		} else
955			sc->sc_rxotherant = 0;
956	}
957
958	/* Handle slow diversity if enabled */
959	if (sc->sc_dolnadiv) {
960		ath_lna_rx_comb_scan(sc, rs, ticks, hz);
961	}
962
963	if (sc->sc_softled) {
964		/*
965		 * Blink for any data frame.  Otherwise do a
966		 * heartbeat-style blink when idle.  The latter
967		 * is mainly for station mode where we depend on
968		 * periodic beacon frames to trigger the poll event.
969		 */
970		if (type == IEEE80211_FC0_TYPE_DATA) {
971			const HAL_RATE_TABLE *rt = sc->sc_currates;
972			ath_led_event(sc,
973			    rt->rateCodeToIndex[rs->rs_rate]);
974		} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
975			ath_led_event(sc, 0);
976		}
977rx_next:
978	/*
979	 * Debugging - complain if we didn't NULL the mbuf pointer
980	 * here.
981	 */
982	if (m != NULL) {
983		device_printf(sc->sc_dev,
984		    "%s: mbuf %p should've been freed!\n",
985		    __func__,
986		    m);
987	}
988	return (is_good);
989}
990
991#define	ATH_RX_MAX		128
992
993/*
994 * XXX TODO: break out the "get buffers" from "call ath_rx_pkt()" like
995 * the EDMA code does.
996 *
997 * XXX TODO: then, do all of the RX list management stuff inside
998 * ATH_RX_LOCK() so we don't end up potentially racing.  The EDMA
999 * code is doing it right.
1000 */
1001static void
1002ath_rx_proc(struct ath_softc *sc, int resched)
1003{
1004#define	PA2DESC(_sc, _pa) \
1005	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
1006		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
1007	struct ath_buf *bf;
1008	struct ath_hal *ah = sc->sc_ah;
1009#ifdef IEEE80211_SUPPORT_SUPERG
1010	struct ieee80211com *ic = &sc->sc_ic;
1011#endif
1012	struct ath_desc *ds;
1013	struct ath_rx_status *rs;
1014	struct mbuf *m;
1015	int ngood;
1016	HAL_STATUS status;
1017	int16_t nf;
1018	u_int64_t tsf;
1019	int npkts = 0;
1020	int kickpcu = 0;
1021	int ret;
1022
1023	/* XXX we must not hold the ATH_LOCK here */
1024	ATH_UNLOCK_ASSERT(sc);
1025	ATH_PCU_UNLOCK_ASSERT(sc);
1026
1027	ATH_PCU_LOCK(sc);
1028	sc->sc_rxproc_cnt++;
1029	kickpcu = sc->sc_kickpcu;
1030	ATH_PCU_UNLOCK(sc);
1031
1032	ATH_LOCK(sc);
1033	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1034	ATH_UNLOCK(sc);
1035
1036	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: called\n", __func__);
1037	ngood = 0;
1038	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
1039	sc->sc_stats.ast_rx_noise = nf;
1040	tsf = ath_hal_gettsf64(ah);
1041	do {
1042		/*
1043		 * Don't process too many packets at a time; give the
1044		 * TX thread time to also run - otherwise the TX
1045		 * latency can jump by quite a bit, causing throughput
1046		 * degredation.
1047		 */
1048		if (!kickpcu && npkts >= ATH_RX_MAX)
1049			break;
1050
1051		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1052		if (sc->sc_rxslink && bf == NULL) {	/* NB: shouldn't happen */
1053			device_printf(sc->sc_dev, "%s: no buffer!\n", __func__);
1054			break;
1055		} else if (bf == NULL) {
1056			/*
1057			 * End of List:
1058			 * this can happen for non-self-linked RX chains
1059			 */
1060			sc->sc_stats.ast_rx_hitqueueend++;
1061			break;
1062		}
1063		m = bf->bf_m;
1064		if (m == NULL) {		/* NB: shouldn't happen */
1065			/*
1066			 * If mbuf allocation failed previously there
1067			 * will be no mbuf; try again to re-populate it.
1068			 */
1069			/* XXX make debug msg */
1070			device_printf(sc->sc_dev, "%s: no mbuf!\n", __func__);
1071			TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1072			goto rx_proc_next;
1073		}
1074		ds = bf->bf_desc;
1075		if (ds->ds_link == bf->bf_daddr) {
1076			/* NB: never process the self-linked entry at the end */
1077			sc->sc_stats.ast_rx_hitqueueend++;
1078			break;
1079		}
1080		/* XXX sync descriptor memory */
1081		/*
1082		 * Must provide the virtual address of the current
1083		 * descriptor, the physical address, and the virtual
1084		 * address of the next descriptor in the h/w chain.
1085		 * This allows the HAL to look ahead to see if the
1086		 * hardware is done with a descriptor by checking the
1087		 * done bit in the following descriptor and the address
1088		 * of the current descriptor the DMA engine is working
1089		 * on.  All this is necessary because of our use of
1090		 * a self-linked list to avoid rx overruns.
1091		 */
1092		rs = &bf->bf_status.ds_rxstat;
1093		status = ath_hal_rxprocdesc(ah, ds,
1094				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
1095#ifdef ATH_DEBUG
1096		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
1097			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
1098#endif
1099
1100#ifdef	ATH_DEBUG_ALQ
1101		if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS))
1102		    if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_RXSTATUS,
1103		    sc->sc_rx_statuslen, (char *) ds);
1104#endif	/* ATH_DEBUG_ALQ */
1105
1106		if (status == HAL_EINPROGRESS)
1107			break;
1108
1109		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1110		npkts++;
1111
1112		/*
1113		 * Process a single frame.
1114		 */
1115		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTREAD);
1116		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1117		bf->bf_m = NULL;
1118		if (ath_rx_pkt(sc, rs, status, tsf, nf, HAL_RX_QUEUE_HP, bf, m))
1119			ngood++;
1120rx_proc_next:
1121		/*
1122		 * If there's a holding buffer, insert that onto
1123		 * the RX list; the hardware is now definitely not pointing
1124		 * to it now.
1125		 */
1126		ret = 0;
1127		if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf != NULL) {
1128			TAILQ_INSERT_TAIL(&sc->sc_rxbuf,
1129			    sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf,
1130			    bf_list);
1131			ret = ath_rxbuf_init(sc,
1132			    sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf);
1133		}
1134		/*
1135		 * Next, throw our buffer into the holding entry.  The hardware
1136		 * may use the descriptor to read the link pointer before
1137		 * DMAing the next descriptor in to write out a packet.
1138		 */
1139		sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = bf;
1140	} while (ret == 0);
1141
1142	/* rx signal state monitoring */
1143	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
1144	if (ngood)
1145		sc->sc_lastrx = tsf;
1146
1147	ATH_KTR(sc, ATH_KTR_RXPROC, 2, "ath_rx_proc: npkts=%d, ngood=%d", npkts, ngood);
1148	/* Queue DFS tasklet if needed */
1149	if (resched && ath_dfs_tasklet_needed(sc, sc->sc_curchan))
1150		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
1151
1152	/*
1153	 * Now that all the RX frames were handled that
1154	 * need to be handled, kick the PCU if there's
1155	 * been an RXEOL condition.
1156	 */
1157	if (resched && kickpcu) {
1158		ATH_PCU_LOCK(sc);
1159		ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_rx_proc: kickpcu");
1160		device_printf(sc->sc_dev, "%s: kickpcu; handled %d packets\n",
1161		    __func__, npkts);
1162
1163		/*
1164		 * Go through the process of fully tearing down
1165		 * the RX buffers and reinitialising them.
1166		 *
1167		 * There's a hardware bug that causes the RX FIFO
1168		 * to get confused under certain conditions and
1169		 * constantly write over the same frame, leading
1170		 * the RX driver code here to get heavily confused.
1171		 */
1172		/*
1173		 * XXX Has RX DMA stopped enough here to just call
1174		 *     ath_startrecv()?
1175		 * XXX Do we need to use the holding buffer to restart
1176		 *     RX DMA by appending entries to the final
1177		 *     descriptor?  Quite likely.
1178		 */
1179#if 1
1180		ath_startrecv(sc);
1181#else
1182		/*
1183		 * Disabled for now - it'd be nice to be able to do
1184		 * this in order to limit the amount of CPU time spent
1185		 * reinitialising the RX side (and thus minimise RX
1186		 * drops) however there's a hardware issue that
1187		 * causes things to get too far out of whack.
1188		 */
1189		/*
1190		 * XXX can we hold the PCU lock here?
1191		 * Are there any net80211 buffer calls involved?
1192		 */
1193		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1194		ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1195		ath_hal_rxena(ah);		/* enable recv descriptors */
1196		ath_mode_init(sc);		/* set filters, etc. */
1197		ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
1198#endif
1199
1200		ath_hal_intrset(ah, sc->sc_imask);
1201		sc->sc_kickpcu = 0;
1202		ATH_PCU_UNLOCK(sc);
1203	}
1204
1205#ifdef IEEE80211_SUPPORT_SUPERG
1206	if (resched)
1207		ieee80211_ff_age_all(ic, 100);
1208#endif
1209
1210	/*
1211	 * Put the hardware to sleep again if we're done with it.
1212	 */
1213	ATH_LOCK(sc);
1214	ath_power_restore_power_state(sc);
1215	ATH_UNLOCK(sc);
1216
1217	/*
1218	 * If we hit the maximum number of frames in this round,
1219	 * reschedule for another immediate pass.  This gives
1220	 * the TX and TX completion routines time to run, which
1221	 * will reduce latency.
1222	 */
1223	if (npkts >= ATH_RX_MAX)
1224		sc->sc_rx.recv_sched(sc, resched);
1225
1226	ATH_PCU_LOCK(sc);
1227	sc->sc_rxproc_cnt--;
1228	ATH_PCU_UNLOCK(sc);
1229}
1230#undef	PA2DESC
1231#undef	ATH_RX_MAX
1232
1233/*
1234 * Only run the RX proc if it's not already running.
1235 * Since this may get run as part of the reset/flush path,
1236 * the task can't clash with an existing, running tasklet.
1237 */
1238static void
1239ath_legacy_rx_tasklet(void *arg, int npending)
1240{
1241	struct ath_softc *sc = arg;
1242
1243	ATH_KTR(sc, ATH_KTR_RXPROC, 1, "ath_rx_proc: pending=%d", npending);
1244	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
1245	ATH_PCU_LOCK(sc);
1246	if (sc->sc_inreset_cnt > 0) {
1247		device_printf(sc->sc_dev,
1248		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
1249		ATH_PCU_UNLOCK(sc);
1250		return;
1251	}
1252	ATH_PCU_UNLOCK(sc);
1253
1254	ath_rx_proc(sc, 1);
1255}
1256
1257static void
1258ath_legacy_flushrecv(struct ath_softc *sc)
1259{
1260
1261	ath_rx_proc(sc, 0);
1262}
1263
1264static void
1265ath_legacy_flush_rxpending(struct ath_softc *sc)
1266{
1267
1268	/* XXX ATH_RX_LOCK_ASSERT(sc); */
1269
1270	if (sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending != NULL) {
1271		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending);
1272		sc->sc_rxedma[HAL_RX_QUEUE_LP].m_rxpending = NULL;
1273	}
1274	if (sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending != NULL) {
1275		m_freem(sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending);
1276		sc->sc_rxedma[HAL_RX_QUEUE_HP].m_rxpending = NULL;
1277	}
1278}
1279
1280static int
1281ath_legacy_flush_rxholdbf(struct ath_softc *sc)
1282{
1283	struct ath_buf *bf;
1284
1285	/* XXX ATH_RX_LOCK_ASSERT(sc); */
1286	/*
1287	 * If there are RX holding buffers, free them here and return
1288	 * them to the list.
1289	 *
1290	 * XXX should just verify that bf->bf_m is NULL, as it must
1291	 * be at this point!
1292	 */
1293	bf = sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf;
1294	if (bf != NULL) {
1295		if (bf->bf_m != NULL)
1296			m_freem(bf->bf_m);
1297		bf->bf_m = NULL;
1298		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1299		(void) ath_rxbuf_init(sc, bf);
1300	}
1301	sc->sc_rxedma[HAL_RX_QUEUE_HP].m_holdbf = NULL;
1302
1303	bf = sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf;
1304	if (bf != NULL) {
1305		if (bf->bf_m != NULL)
1306			m_freem(bf->bf_m);
1307		bf->bf_m = NULL;
1308		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1309		(void) ath_rxbuf_init(sc, bf);
1310	}
1311	sc->sc_rxedma[HAL_RX_QUEUE_LP].m_holdbf = NULL;
1312
1313	return (0);
1314}
1315
1316/*
1317 * Disable the receive h/w in preparation for a reset.
1318 */
1319static void
1320ath_legacy_stoprecv(struct ath_softc *sc, int dodelay)
1321{
1322#define	PA2DESC(_sc, _pa) \
1323	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
1324		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
1325	struct ath_hal *ah = sc->sc_ah;
1326
1327	ATH_RX_LOCK(sc);
1328
1329	ath_hal_stoppcurecv(ah);	/* disable PCU */
1330	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
1331	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
1332	/*
1333	 * TODO: see if this particular DELAY() is required; it may be
1334	 * masking some missing FIFO flush or DMA sync.
1335	 */
1336#if 0
1337	if (dodelay)
1338#endif
1339		DELAY(3000);		/* 3ms is long enough for 1 frame */
1340#ifdef ATH_DEBUG
1341	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
1342		struct ath_buf *bf;
1343		u_int ix;
1344
1345		device_printf(sc->sc_dev,
1346		    "%s: rx queue %p, link %p\n",
1347		    __func__,
1348		    (caddr_t)(uintptr_t) ath_hal_getrxbuf(ah, HAL_RX_QUEUE_HP),
1349		    sc->sc_rxlink);
1350		ix = 0;
1351		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1352			struct ath_desc *ds = bf->bf_desc;
1353			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
1354			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
1355				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
1356			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
1357				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
1358			ix++;
1359		}
1360	}
1361#endif
1362
1363	(void) ath_legacy_flush_rxpending(sc);
1364	(void) ath_legacy_flush_rxholdbf(sc);
1365
1366	sc->sc_rxlink = NULL;		/* just in case */
1367
1368	ATH_RX_UNLOCK(sc);
1369#undef PA2DESC
1370}
1371
1372/*
1373 * XXX TODO: something was calling startrecv without calling
1374 * stoprecv.  Let's figure out what/why.  It was showing up
1375 * as a mbuf leak (rxpending) and ath_buf leak (holdbf.)
1376 */
1377
1378/*
1379 * Enable the receive h/w following a reset.
1380 */
1381static int
1382ath_legacy_startrecv(struct ath_softc *sc)
1383{
1384	struct ath_hal *ah = sc->sc_ah;
1385	struct ath_buf *bf;
1386
1387	ATH_RX_LOCK(sc);
1388
1389	/*
1390	 * XXX should verify these are already all NULL!
1391	 */
1392	sc->sc_rxlink = NULL;
1393	(void) ath_legacy_flush_rxpending(sc);
1394	(void) ath_legacy_flush_rxholdbf(sc);
1395
1396	/*
1397	 * Re-chain all of the buffers in the RX buffer list.
1398	 */
1399	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1400		int error = ath_rxbuf_init(sc, bf);
1401		if (error != 0) {
1402			DPRINTF(sc, ATH_DEBUG_RECV,
1403				"%s: ath_rxbuf_init failed %d\n",
1404				__func__, error);
1405			return error;
1406		}
1407	}
1408
1409	bf = TAILQ_FIRST(&sc->sc_rxbuf);
1410	ath_hal_putrxbuf(ah, bf->bf_daddr, HAL_RX_QUEUE_HP);
1411	ath_hal_rxena(ah);		/* enable recv descriptors */
1412	ath_mode_init(sc);		/* set filters, etc. */
1413	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
1414
1415	ATH_RX_UNLOCK(sc);
1416	return 0;
1417}
1418
1419static int
1420ath_legacy_dma_rxsetup(struct ath_softc *sc)
1421{
1422	int error;
1423
1424	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
1425	    "rx", sizeof(struct ath_desc), ath_rxbuf, 1);
1426	if (error != 0)
1427		return (error);
1428
1429	return (0);
1430}
1431
1432static int
1433ath_legacy_dma_rxteardown(struct ath_softc *sc)
1434{
1435
1436	if (sc->sc_rxdma.dd_desc_len != 0)
1437		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
1438	return (0);
1439}
1440
1441static void
1442ath_legacy_recv_sched(struct ath_softc *sc, int dosched)
1443{
1444
1445	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1446}
1447
1448static void
1449ath_legacy_recv_sched_queue(struct ath_softc *sc, HAL_RX_QUEUE q,
1450    int dosched)
1451{
1452
1453	taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1454}
1455
1456void
1457ath_recv_setup_legacy(struct ath_softc *sc)
1458{
1459
1460	/* Sensible legacy defaults */
1461	/*
1462	 * XXX this should be changed to properly support the
1463	 * exact RX descriptor size for each HAL.
1464	 */
1465	sc->sc_rx_statuslen = sizeof(struct ath_desc);
1466
1467	sc->sc_rx.recv_start = ath_legacy_startrecv;
1468	sc->sc_rx.recv_stop = ath_legacy_stoprecv;
1469	sc->sc_rx.recv_flush = ath_legacy_flushrecv;
1470	sc->sc_rx.recv_tasklet = ath_legacy_rx_tasklet;
1471	sc->sc_rx.recv_rxbuf_init = ath_legacy_rxbuf_init;
1472
1473	sc->sc_rx.recv_setup = ath_legacy_dma_rxsetup;
1474	sc->sc_rx.recv_teardown = ath_legacy_dma_rxteardown;
1475	sc->sc_rx.recv_sched = ath_legacy_recv_sched;
1476	sc->sc_rx.recv_sched_queue = ath_legacy_recv_sched_queue;
1477}
1478