if_ath.c revision 280825
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 280825 2015-03-29 21:41:05Z adrian $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42/*
43 * This is needed for register operations which are performed
44 * by the driver - eg, calls to ath_hal_gettsf32().
45 *
46 * It's also required for any AH_DEBUG checks in here, eg the
47 * module dependencies.
48 */
49#include "opt_ah.h"
50#include "opt_wlan.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/sysctl.h>
55#include <sys/mbuf.h>
56#include <sys/malloc.h>
57#include <sys/lock.h>
58#include <sys/mutex.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/sockio.h>
62#include <sys/errno.h>
63#include <sys/callout.h>
64#include <sys/bus.h>
65#include <sys/endian.h>
66#include <sys/kthread.h>
67#include <sys/taskqueue.h>
68#include <sys/priv.h>
69#include <sys/module.h>
70#include <sys/ktr.h>
71#include <sys/smp.h>	/* for mp_ncpus */
72
73#include <machine/bus.h>
74
75#include <net/if.h>
76#include <net/if_var.h>
77#include <net/if_dl.h>
78#include <net/if_media.h>
79#include <net/if_types.h>
80#include <net/if_arp.h>
81#include <net/ethernet.h>
82#include <net/if_llc.h>
83
84#include <net80211/ieee80211_var.h>
85#include <net80211/ieee80211_regdomain.h>
86#ifdef IEEE80211_SUPPORT_SUPERG
87#include <net80211/ieee80211_superg.h>
88#endif
89#ifdef IEEE80211_SUPPORT_TDMA
90#include <net80211/ieee80211_tdma.h>
91#endif
92
93#include <net/bpf.h>
94
95#ifdef INET
96#include <netinet/in.h>
97#include <netinet/if_ether.h>
98#endif
99
100#include <dev/ath/if_athvar.h>
101#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
102#include <dev/ath/ath_hal/ah_diagcodes.h>
103
104#include <dev/ath/if_ath_debug.h>
105#include <dev/ath/if_ath_misc.h>
106#include <dev/ath/if_ath_tsf.h>
107#include <dev/ath/if_ath_tx.h>
108#include <dev/ath/if_ath_sysctl.h>
109#include <dev/ath/if_ath_led.h>
110#include <dev/ath/if_ath_keycache.h>
111#include <dev/ath/if_ath_rx.h>
112#include <dev/ath/if_ath_rx_edma.h>
113#include <dev/ath/if_ath_tx_edma.h>
114#include <dev/ath/if_ath_beacon.h>
115#include <dev/ath/if_ath_btcoex.h>
116#include <dev/ath/if_ath_spectral.h>
117#include <dev/ath/if_ath_lna_div.h>
118#include <dev/ath/if_athdfs.h>
119
120#ifdef ATH_TX99_DIAG
121#include <dev/ath/ath_tx99/ath_tx99.h>
122#endif
123
124#ifdef	ATH_DEBUG_ALQ
125#include <dev/ath/if_ath_alq.h>
126#endif
127
128/*
129 * Only enable this if you're working on PS-POLL support.
130 */
131#define	ATH_SW_PSQ
132
133/*
134 * ATH_BCBUF determines the number of vap's that can transmit
135 * beacons and also (currently) the number of vap's that can
136 * have unique mac addresses/bssid.  When staggering beacons
137 * 4 is probably a good max as otherwise the beacons become
138 * very closely spaced and there is limited time for cab q traffic
139 * to go out.  You can burst beacons instead but that is not good
140 * for stations in power save and at some point you really want
141 * another radio (and channel).
142 *
143 * The limit on the number of mac addresses is tied to our use of
144 * the U/L bit and tracking addresses in a byte; it would be
145 * worthwhile to allow more for applications like proxy sta.
146 */
147CTASSERT(ATH_BCBUF <= 8);
148
149static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
150		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
151		    const uint8_t [IEEE80211_ADDR_LEN],
152		    const uint8_t [IEEE80211_ADDR_LEN]);
153static void	ath_vap_delete(struct ieee80211vap *);
154static void	ath_init(void *);
155static void	ath_stop_locked(struct ifnet *);
156static void	ath_stop(struct ifnet *);
157static int	ath_reset_vap(struct ieee80211vap *, u_long);
158static int	ath_transmit(struct ifnet *ifp, struct mbuf *m);
159static void	ath_qflush(struct ifnet *ifp);
160static int	ath_media_change(struct ifnet *);
161static void	ath_watchdog(void *);
162static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
163static void	ath_fatal_proc(void *, int);
164static void	ath_bmiss_vap(struct ieee80211vap *);
165static void	ath_bmiss_proc(void *, int);
166static void	ath_key_update_begin(struct ieee80211vap *);
167static void	ath_key_update_end(struct ieee80211vap *);
168static void	ath_update_mcast_hw(struct ath_softc *);
169static void	ath_update_mcast(struct ifnet *);
170static void	ath_update_promisc(struct ifnet *);
171static void	ath_updateslot(struct ifnet *);
172static void	ath_bstuck_proc(void *, int);
173static void	ath_reset_proc(void *, int);
174static int	ath_desc_alloc(struct ath_softc *);
175static void	ath_desc_free(struct ath_softc *);
176static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
177			const uint8_t [IEEE80211_ADDR_LEN]);
178static void	ath_node_cleanup(struct ieee80211_node *);
179static void	ath_node_free(struct ieee80211_node *);
180static void	ath_node_getsignal(const struct ieee80211_node *,
181			int8_t *, int8_t *);
182static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
183static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
184static int	ath_tx_setup(struct ath_softc *, int, int);
185static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
186static void	ath_tx_cleanup(struct ath_softc *);
187static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
188		    int dosched);
189static void	ath_tx_proc_q0(void *, int);
190static void	ath_tx_proc_q0123(void *, int);
191static void	ath_tx_proc(void *, int);
192static void	ath_txq_sched_tasklet(void *, int);
193static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
194static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
195static void	ath_scan_start(struct ieee80211com *);
196static void	ath_scan_end(struct ieee80211com *);
197static void	ath_set_channel(struct ieee80211com *);
198#ifdef	ATH_ENABLE_11N
199static void	ath_update_chw(struct ieee80211com *);
200#endif	/* ATH_ENABLE_11N */
201static void	ath_calibrate(void *);
202static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
203static void	ath_setup_stationkey(struct ieee80211_node *);
204static void	ath_newassoc(struct ieee80211_node *, int);
205static int	ath_setregdomain(struct ieee80211com *,
206		    struct ieee80211_regdomain *, int,
207		    struct ieee80211_channel []);
208static void	ath_getradiocaps(struct ieee80211com *, int, int *,
209		    struct ieee80211_channel []);
210static int	ath_getchannels(struct ath_softc *);
211
212static int	ath_rate_setup(struct ath_softc *, u_int mode);
213static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
214
215static void	ath_announce(struct ath_softc *);
216
217static void	ath_dfs_tasklet(void *, int);
218static void	ath_node_powersave(struct ieee80211_node *, int);
219static int	ath_node_set_tim(struct ieee80211_node *, int);
220static void	ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
221
222#ifdef IEEE80211_SUPPORT_TDMA
223#include <dev/ath/if_ath_tdma.h>
224#endif
225
226SYSCTL_DECL(_hw_ath);
227
228/* XXX validate sysctl values */
229static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
230SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
231	    0, "long chip calibration interval (secs)");
232static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
233SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
234	    0, "short chip calibration interval (msecs)");
235static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
236SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
237	    0, "reset chip calibration results (secs)");
238static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
239SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
240	    0, "ANI calibration (msecs)");
241
242int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
243SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf,
244	    0, "rx buffers allocated");
245int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
246SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf,
247	    0, "tx buffers allocated");
248int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
249SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt,
250	    0, "tx (mgmt) buffers allocated");
251
252int ath_bstuck_threshold = 4;		/* max missed beacons */
253SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
254	    0, "max missed beacon xmits before chip reset");
255
256MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
257
258void
259ath_legacy_attach_comp_func(struct ath_softc *sc)
260{
261
262	/*
263	 * Special case certain configurations.  Note the
264	 * CAB queue is handled by these specially so don't
265	 * include them when checking the txq setup mask.
266	 */
267	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
268	case 0x01:
269		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
270		break;
271	case 0x0f:
272		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
273		break;
274	default:
275		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
276		break;
277	}
278}
279
280/*
281 * Set the target power mode.
282 *
283 * If this is called during a point in time where
284 * the hardware is being programmed elsewhere, it will
285 * simply store it away and update it when all current
286 * uses of the hardware are completed.
287 */
288void
289_ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line)
290{
291	ATH_LOCK_ASSERT(sc);
292
293	sc->sc_target_powerstate = power_state;
294
295	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
296	    __func__,
297	    file,
298	    line,
299	    power_state,
300	    sc->sc_powersave_refcnt);
301
302	if (sc->sc_powersave_refcnt == 0 &&
303	    power_state != sc->sc_cur_powerstate) {
304		sc->sc_cur_powerstate = power_state;
305		ath_hal_setpower(sc->sc_ah, power_state);
306
307		/*
308		 * If the NIC is force-awake, then set the
309		 * self-gen frame state appropriately.
310		 *
311		 * If the nic is in network sleep or full-sleep,
312		 * we let the above call leave the self-gen
313		 * state as "sleep".
314		 */
315		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
316		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
317			ath_hal_setselfgenpower(sc->sc_ah,
318			    sc->sc_target_selfgen_state);
319		}
320	}
321}
322
323/*
324 * Set the current self-generated frames state.
325 *
326 * This is separate from the target power mode.  The chip may be
327 * awake but the desired state is "sleep", so frames sent to the
328 * destination has PWRMGT=1 in the 802.11 header.  The NIC also
329 * needs to know to set PWRMGT=1 in self-generated frames.
330 */
331void
332_ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line)
333{
334
335	ATH_LOCK_ASSERT(sc);
336
337	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
338	    __func__,
339	    file,
340	    line,
341	    power_state,
342	    sc->sc_target_selfgen_state);
343
344	sc->sc_target_selfgen_state = power_state;
345
346	/*
347	 * If the NIC is force-awake, then set the power state.
348	 * Network-state and full-sleep will already transition it to
349	 * mark self-gen frames as sleeping - and we can't
350	 * guarantee the NIC is awake to program the self-gen frame
351	 * setting anyway.
352	 */
353	if (sc->sc_cur_powerstate == HAL_PM_AWAKE) {
354		ath_hal_setselfgenpower(sc->sc_ah, power_state);
355	}
356}
357
358/*
359 * Set the hardware power mode and take a reference.
360 *
361 * This doesn't update the target power mode in the driver;
362 * it just updates the hardware power state.
363 *
364 * XXX it should only ever force the hardware awake; it should
365 * never be called to set it asleep.
366 */
367void
368_ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line)
369{
370	ATH_LOCK_ASSERT(sc);
371
372	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
373	    __func__,
374	    file,
375	    line,
376	    power_state,
377	    sc->sc_powersave_refcnt);
378
379	sc->sc_powersave_refcnt++;
380
381	if (power_state != sc->sc_cur_powerstate) {
382		ath_hal_setpower(sc->sc_ah, power_state);
383		sc->sc_cur_powerstate = power_state;
384
385		/*
386		 * Adjust the self-gen powerstate if appropriate.
387		 */
388		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
389		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
390			ath_hal_setselfgenpower(sc->sc_ah,
391			    sc->sc_target_selfgen_state);
392		}
393
394	}
395}
396
397/*
398 * Restore the power save mode to what it once was.
399 *
400 * This will decrement the reference counter and once it hits
401 * zero, it'll restore the powersave state.
402 */
403void
404_ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line)
405{
406
407	ATH_LOCK_ASSERT(sc);
408
409	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n",
410	    __func__,
411	    file,
412	    line,
413	    sc->sc_powersave_refcnt,
414	    sc->sc_target_powerstate);
415
416	if (sc->sc_powersave_refcnt == 0)
417		device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__);
418	else
419		sc->sc_powersave_refcnt--;
420
421	if (sc->sc_powersave_refcnt == 0 &&
422	    sc->sc_target_powerstate != sc->sc_cur_powerstate) {
423		sc->sc_cur_powerstate = sc->sc_target_powerstate;
424		ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate);
425	}
426
427	/*
428	 * Adjust the self-gen powerstate if appropriate.
429	 */
430	if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
431	    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
432		ath_hal_setselfgenpower(sc->sc_ah,
433		    sc->sc_target_selfgen_state);
434	}
435
436}
437
438/*
439 * Configure the initial HAL configuration values based on bus
440 * specific parameters.
441 *
442 * Some PCI IDs and other information may need tweaking.
443 *
444 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable
445 * if BT antenna diversity isn't enabled.
446 *
447 * So, let's also figure out how to enable BT diversity for AR9485.
448 */
449static void
450ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config)
451{
452	/* XXX TODO: only for PCI devices? */
453
454	if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) {
455		ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */
456		ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE;
457		ah_config->ath_hal_min_gainidx = AH_TRUE;
458		ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88;
459		/* XXX low_rssi_thresh */
460		/* XXX fast_div_bias */
461		device_printf(sc->sc_dev, "configuring for %s\n",
462		    (sc->sc_pci_devinfo & ATH_PCI_CUS198) ?
463		    "CUS198" : "CUS230");
464	}
465
466	if (sc->sc_pci_devinfo & ATH_PCI_CUS217)
467		device_printf(sc->sc_dev, "CUS217 card detected\n");
468
469	if (sc->sc_pci_devinfo & ATH_PCI_CUS252)
470		device_printf(sc->sc_dev, "CUS252 card detected\n");
471
472	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT)
473		device_printf(sc->sc_dev, "WB335 1-ANT card detected\n");
474
475	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT)
476		device_printf(sc->sc_dev, "WB335 2-ANT card detected\n");
477
478	if (sc->sc_pci_devinfo & ATH_PCI_KILLER)
479		device_printf(sc->sc_dev, "Killer Wireless card detected\n");
480
481#if 0
482        /*
483         * Some WB335 cards do not support antenna diversity. Since
484         * we use a hardcoded value for AR9565 instead of using the
485         * EEPROM/OTP data, remove the combining feature from
486         * the HW capabilities bitmap.
487         */
488        if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
489                if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV))
490                        pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB;
491        }
492
493        if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) {
494                pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV;
495                device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n");
496        }
497#endif
498
499        if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) {
500                ah_config->ath_hal_pcie_waen = 0x0040473b;
501                device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n");
502        }
503
504#if 0
505        if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) {
506                ah->config.no_pll_pwrsave = true;
507                device_printf(sc->sc_dev, "Disable PLL PowerSave\n");
508        }
509#endif
510
511}
512
513/*
514 * Attempt to fetch the MAC address from the kernel environment.
515 *
516 * Returns 0, macaddr in macaddr if successful; -1 otherwise.
517 */
518static int
519ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr)
520{
521	char devid_str[32];
522	int local_mac = 0;
523	char *local_macstr;
524
525	/*
526	 * Fetch from the kenv rather than using hints.
527	 *
528	 * Hints would be nice but the transition to dynamic
529	 * hints/kenv doesn't happen early enough for this
530	 * to work reliably (eg on anything embedded.)
531	 */
532	snprintf(devid_str, 32, "hint.%s.%d.macaddr",
533	    device_get_name(sc->sc_dev),
534	    device_get_unit(sc->sc_dev));
535
536	if ((local_macstr = kern_getenv(devid_str)) != NULL) {
537		uint32_t tmpmac[ETHER_ADDR_LEN];
538		int count;
539		int i;
540
541		/* Have a MAC address; should use it */
542		device_printf(sc->sc_dev,
543		    "Overriding MAC address from environment: '%s'\n",
544		    local_macstr);
545
546		/* Extract out the MAC address */
547		count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x",
548		    &tmpmac[0], &tmpmac[1],
549		    &tmpmac[2], &tmpmac[3],
550		    &tmpmac[4], &tmpmac[5]);
551		if (count == 6) {
552			/* Valid! */
553			local_mac = 1;
554			for (i = 0; i < ETHER_ADDR_LEN; i++)
555				macaddr[i] = tmpmac[i];
556		}
557		/* Done! */
558		freeenv(local_macstr);
559		local_macstr = NULL;
560	}
561
562	if (local_mac)
563		return (0);
564	return (-1);
565}
566
567#define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
568#define	HAL_MODE_HT40 \
569	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
570	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
571int
572ath_attach(u_int16_t devid, struct ath_softc *sc)
573{
574	struct ifnet *ifp;
575	struct ieee80211com *ic;
576	struct ath_hal *ah = NULL;
577	HAL_STATUS status;
578	int error = 0, i;
579	u_int wmodes;
580	uint8_t macaddr[IEEE80211_ADDR_LEN];
581	int rx_chainmask, tx_chainmask;
582	HAL_OPS_CONFIG ah_config;
583
584	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
585
586	CURVNET_SET(vnet0);
587	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
588	if (ifp == NULL) {
589		device_printf(sc->sc_dev, "can not if_alloc()\n");
590		error = ENOSPC;
591		CURVNET_RESTORE();
592		goto bad;
593	}
594	ic = ifp->if_l2com;
595
596	/* set these up early for if_printf use */
597	if_initname(ifp, device_get_name(sc->sc_dev),
598		device_get_unit(sc->sc_dev));
599	CURVNET_RESTORE();
600
601	/*
602	 * Configure the initial configuration data.
603	 *
604	 * This is stuff that may be needed early during attach
605	 * rather than done via configuration calls later.
606	 */
607	bzero(&ah_config, sizeof(ah_config));
608	ath_setup_hal_config(sc, &ah_config);
609
610	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
611	    sc->sc_eepromdata, &ah_config, &status);
612	if (ah == NULL) {
613		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
614			status);
615		error = ENXIO;
616		goto bad;
617	}
618	sc->sc_ah = ah;
619	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
620#ifdef	ATH_DEBUG
621	sc->sc_debug = ath_debug;
622#endif
623
624	/*
625	 * Setup the DMA/EDMA functions based on the current
626	 * hardware support.
627	 *
628	 * This is required before the descriptors are allocated.
629	 */
630	if (ath_hal_hasedma(sc->sc_ah)) {
631		sc->sc_isedma = 1;
632		ath_recv_setup_edma(sc);
633		ath_xmit_setup_edma(sc);
634	} else {
635		ath_recv_setup_legacy(sc);
636		ath_xmit_setup_legacy(sc);
637	}
638
639	if (ath_hal_hasmybeacon(sc->sc_ah)) {
640		sc->sc_do_mybeacon = 1;
641	}
642
643	/*
644	 * Check if the MAC has multi-rate retry support.
645	 * We do this by trying to setup a fake extended
646	 * descriptor.  MAC's that don't have support will
647	 * return false w/o doing anything.  MAC's that do
648	 * support it will return true w/o doing anything.
649	 */
650	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
651
652	/*
653	 * Check if the device has hardware counters for PHY
654	 * errors.  If so we need to enable the MIB interrupt
655	 * so we can act on stat triggers.
656	 */
657	if (ath_hal_hwphycounters(ah))
658		sc->sc_needmib = 1;
659
660	/*
661	 * Get the hardware key cache size.
662	 */
663	sc->sc_keymax = ath_hal_keycachesize(ah);
664	if (sc->sc_keymax > ATH_KEYMAX) {
665		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
666			ATH_KEYMAX, sc->sc_keymax);
667		sc->sc_keymax = ATH_KEYMAX;
668	}
669	/*
670	 * Reset the key cache since some parts do not
671	 * reset the contents on initial power up.
672	 */
673	for (i = 0; i < sc->sc_keymax; i++)
674		ath_hal_keyreset(ah, i);
675
676	/*
677	 * Collect the default channel list.
678	 */
679	error = ath_getchannels(sc);
680	if (error != 0)
681		goto bad;
682
683	/*
684	 * Setup rate tables for all potential media types.
685	 */
686	ath_rate_setup(sc, IEEE80211_MODE_11A);
687	ath_rate_setup(sc, IEEE80211_MODE_11B);
688	ath_rate_setup(sc, IEEE80211_MODE_11G);
689	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
690	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
691	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
692	ath_rate_setup(sc, IEEE80211_MODE_11NA);
693	ath_rate_setup(sc, IEEE80211_MODE_11NG);
694	ath_rate_setup(sc, IEEE80211_MODE_HALF);
695	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
696
697	/* NB: setup here so ath_rate_update is happy */
698	ath_setcurmode(sc, IEEE80211_MODE_11A);
699
700	/*
701	 * Allocate TX descriptors and populate the lists.
702	 */
703	error = ath_desc_alloc(sc);
704	if (error != 0) {
705		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
706		    error);
707		goto bad;
708	}
709	error = ath_txdma_setup(sc);
710	if (error != 0) {
711		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
712		    error);
713		goto bad;
714	}
715
716	/*
717	 * Allocate RX descriptors and populate the lists.
718	 */
719	error = ath_rxdma_setup(sc);
720	if (error != 0) {
721		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
722		    error);
723		goto bad;
724	}
725
726	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
727	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
728
729	ATH_TXBUF_LOCK_INIT(sc);
730
731	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
732		taskqueue_thread_enqueue, &sc->sc_tq);
733	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
734		"%s taskq", ifp->if_xname);
735
736	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
737	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
738	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
739	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
740	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
741	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
742
743	/*
744	 * Allocate hardware transmit queues: one queue for
745	 * beacon frames and one data queue for each QoS
746	 * priority.  Note that the hal handles resetting
747	 * these queues at the needed time.
748	 *
749	 * XXX PS-Poll
750	 */
751	sc->sc_bhalq = ath_beaconq_setup(sc);
752	if (sc->sc_bhalq == (u_int) -1) {
753		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
754		error = EIO;
755		goto bad2;
756	}
757	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
758	if (sc->sc_cabq == NULL) {
759		if_printf(ifp, "unable to setup CAB xmit queue!\n");
760		error = EIO;
761		goto bad2;
762	}
763	/* NB: insure BK queue is the lowest priority h/w queue */
764	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
765		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
766			ieee80211_wme_acnames[WME_AC_BK]);
767		error = EIO;
768		goto bad2;
769	}
770	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
771	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
772	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
773		/*
774		 * Not enough hardware tx queues to properly do WME;
775		 * just punt and assign them all to the same h/w queue.
776		 * We could do a better job of this if, for example,
777		 * we allocate queues when we switch from station to
778		 * AP mode.
779		 */
780		if (sc->sc_ac2q[WME_AC_VI] != NULL)
781			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
782		if (sc->sc_ac2q[WME_AC_BE] != NULL)
783			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
784		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
785		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
786		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
787	}
788
789	/*
790	 * Attach the TX completion function.
791	 *
792	 * The non-EDMA chips may have some special case optimisations;
793	 * this method gives everyone a chance to attach cleanly.
794	 */
795	sc->sc_tx.xmit_attach_comp_func(sc);
796
797	/*
798	 * Setup rate control.  Some rate control modules
799	 * call back to change the anntena state so expose
800	 * the necessary entry points.
801	 * XXX maybe belongs in struct ath_ratectrl?
802	 */
803	sc->sc_setdefantenna = ath_setdefantenna;
804	sc->sc_rc = ath_rate_attach(sc);
805	if (sc->sc_rc == NULL) {
806		error = EIO;
807		goto bad2;
808	}
809
810	/* Attach DFS module */
811	if (! ath_dfs_attach(sc)) {
812		device_printf(sc->sc_dev,
813		    "%s: unable to attach DFS\n", __func__);
814		error = EIO;
815		goto bad2;
816	}
817
818	/* Attach spectral module */
819	if (ath_spectral_attach(sc) < 0) {
820		device_printf(sc->sc_dev,
821		    "%s: unable to attach spectral\n", __func__);
822		error = EIO;
823		goto bad2;
824	}
825
826	/* Attach bluetooth coexistence module */
827	if (ath_btcoex_attach(sc) < 0) {
828		device_printf(sc->sc_dev,
829		    "%s: unable to attach bluetooth coexistence\n", __func__);
830		error = EIO;
831		goto bad2;
832	}
833
834	/* Attach LNA diversity module */
835	if (ath_lna_div_attach(sc) < 0) {
836		device_printf(sc->sc_dev,
837		    "%s: unable to attach LNA diversity\n", __func__);
838		error = EIO;
839		goto bad2;
840	}
841
842	/* Start DFS processing tasklet */
843	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
844
845	/* Configure LED state */
846	sc->sc_blinking = 0;
847	sc->sc_ledstate = 1;
848	sc->sc_ledon = 0;			/* low true */
849	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
850	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
851
852	/*
853	 * Don't setup hardware-based blinking.
854	 *
855	 * Although some NICs may have this configured in the
856	 * default reset register values, the user may wish
857	 * to alter which pins have which function.
858	 *
859	 * The reference driver attaches the MAC network LED to GPIO1 and
860	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
861	 * NIC has these reversed.
862	 */
863	sc->sc_hardled = (1 == 0);
864	sc->sc_led_net_pin = -1;
865	sc->sc_led_pwr_pin = -1;
866	/*
867	 * Auto-enable soft led processing for IBM cards and for
868	 * 5211 minipci cards.  Users can also manually enable/disable
869	 * support with a sysctl.
870	 */
871	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
872	ath_led_config(sc);
873	ath_hal_setledstate(ah, HAL_LED_INIT);
874
875	ifp->if_softc = sc;
876	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
877	ifp->if_transmit = ath_transmit;
878	ifp->if_qflush = ath_qflush;
879	ifp->if_ioctl = ath_ioctl;
880	ifp->if_init = ath_init;
881	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
882	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
883	IFQ_SET_READY(&ifp->if_snd);
884
885	ic->ic_ifp = ifp;
886	/* XXX not right but it's not used anywhere important */
887	ic->ic_phytype = IEEE80211_T_OFDM;
888	ic->ic_opmode = IEEE80211_M_STA;
889	ic->ic_caps =
890		  IEEE80211_C_STA		/* station mode */
891		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
892		| IEEE80211_C_HOSTAP		/* hostap mode */
893		| IEEE80211_C_MONITOR		/* monitor mode */
894		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
895		| IEEE80211_C_WDS		/* 4-address traffic works */
896		| IEEE80211_C_MBSS		/* mesh point link mode */
897		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
898		| IEEE80211_C_SHSLOT		/* short slot time supported */
899		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
900#ifndef	ATH_ENABLE_11N
901		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
902#endif
903		| IEEE80211_C_TXFRAG		/* handle tx frags */
904#ifdef	ATH_ENABLE_DFS
905		| IEEE80211_C_DFS		/* Enable radar detection */
906#endif
907		| IEEE80211_C_PMGT		/* Station side power mgmt */
908		| IEEE80211_C_SWSLEEP
909		;
910	/*
911	 * Query the hal to figure out h/w crypto support.
912	 */
913	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
914		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
915	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
916		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
917	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
918		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
919	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
920		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
921	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
922		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
923		/*
924		 * Check if h/w does the MIC and/or whether the
925		 * separate key cache entries are required to
926		 * handle both tx+rx MIC keys.
927		 */
928		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
929			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
930		/*
931		 * If the h/w supports storing tx+rx MIC keys
932		 * in one cache slot automatically enable use.
933		 */
934		if (ath_hal_hastkipsplit(ah) ||
935		    !ath_hal_settkipsplit(ah, AH_FALSE))
936			sc->sc_splitmic = 1;
937		/*
938		 * If the h/w can do TKIP MIC together with WME then
939		 * we use it; otherwise we force the MIC to be done
940		 * in software by the net80211 layer.
941		 */
942		if (ath_hal_haswmetkipmic(ah))
943			sc->sc_wmetkipmic = 1;
944	}
945	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
946	/*
947	 * Check for multicast key search support.
948	 */
949	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
950	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
951		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
952	}
953	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
954	/*
955	 * Mark key cache slots associated with global keys
956	 * as in use.  If we knew TKIP was not to be used we
957	 * could leave the +32, +64, and +32+64 slots free.
958	 */
959	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
960		setbit(sc->sc_keymap, i);
961		setbit(sc->sc_keymap, i+64);
962		if (sc->sc_splitmic) {
963			setbit(sc->sc_keymap, i+32);
964			setbit(sc->sc_keymap, i+32+64);
965		}
966	}
967	/*
968	 * TPC support can be done either with a global cap or
969	 * per-packet support.  The latter is not available on
970	 * all parts.  We're a bit pedantic here as all parts
971	 * support a global cap.
972	 */
973	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
974		ic->ic_caps |= IEEE80211_C_TXPMGT;
975
976	/*
977	 * Mark WME capability only if we have sufficient
978	 * hardware queues to do proper priority scheduling.
979	 */
980	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
981		ic->ic_caps |= IEEE80211_C_WME;
982	/*
983	 * Check for misc other capabilities.
984	 */
985	if (ath_hal_hasbursting(ah))
986		ic->ic_caps |= IEEE80211_C_BURST;
987	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
988	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
989	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
990	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
991	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
992	sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
993	sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
994	sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
995
996	if (ath_hal_hasfastframes(ah))
997		ic->ic_caps |= IEEE80211_C_FF;
998	wmodes = ath_hal_getwirelessmodes(ah);
999	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
1000		ic->ic_caps |= IEEE80211_C_TURBOP;
1001#ifdef IEEE80211_SUPPORT_TDMA
1002	if (ath_hal_macversion(ah) > 0x78) {
1003		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
1004		ic->ic_tdma_update = ath_tdma_update;
1005	}
1006#endif
1007
1008	/*
1009	 * TODO: enforce that at least this many frames are available
1010	 * in the txbuf list before allowing data frames (raw or
1011	 * otherwise) to be transmitted.
1012	 */
1013	sc->sc_txq_data_minfree = 10;
1014	/*
1015	 * Leave this as default to maintain legacy behaviour.
1016	 * Shortening the cabq/mcastq may end up causing some
1017	 * undesirable behaviour.
1018	 */
1019	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
1020
1021	/*
1022	 * How deep can the node software TX queue get whilst it's asleep.
1023	 */
1024	sc->sc_txq_node_psq_maxdepth = 16;
1025
1026	/*
1027	 * Default the maximum queue depth for a given node
1028	 * to 1/4'th the TX buffers, or 64, whichever
1029	 * is larger.
1030	 */
1031	sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4);
1032
1033	/* Enable CABQ by default */
1034	sc->sc_cabq_enable = 1;
1035
1036	/*
1037	 * Allow the TX and RX chainmasks to be overridden by
1038	 * environment variables and/or device.hints.
1039	 *
1040	 * This must be done early - before the hardware is
1041	 * calibrated or before the 802.11n stream calculation
1042	 * is done.
1043	 */
1044	if (resource_int_value(device_get_name(sc->sc_dev),
1045	    device_get_unit(sc->sc_dev), "rx_chainmask",
1046	    &rx_chainmask) == 0) {
1047		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
1048		    rx_chainmask);
1049		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
1050	}
1051	if (resource_int_value(device_get_name(sc->sc_dev),
1052	    device_get_unit(sc->sc_dev), "tx_chainmask",
1053	    &tx_chainmask) == 0) {
1054		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
1055		    tx_chainmask);
1056		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
1057	}
1058
1059	/*
1060	 * Query the TX/RX chainmask configuration.
1061	 *
1062	 * This is only relevant for 11n devices.
1063	 */
1064	ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
1065	ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
1066
1067	/*
1068	 * Disable MRR with protected frames by default.
1069	 * Only 802.11n series NICs can handle this.
1070	 */
1071	sc->sc_mrrprot = 0;	/* XXX should be a capability */
1072
1073	/*
1074	 * Query the enterprise mode information the HAL.
1075	 */
1076	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
1077	    &sc->sc_ent_cfg) == HAL_OK)
1078		sc->sc_use_ent = 1;
1079
1080#ifdef	ATH_ENABLE_11N
1081	/*
1082	 * Query HT capabilities
1083	 */
1084	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
1085	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
1086		uint32_t rxs, txs;
1087
1088		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
1089
1090		sc->sc_mrrprot = 1;	/* XXX should be a capability */
1091
1092		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
1093			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
1094			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
1095			    | IEEE80211_HTCAP_MAXAMSDU_3839
1096			    				/* max A-MSDU length */
1097			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
1098			;
1099
1100		/*
1101		 * Enable short-GI for HT20 only if the hardware
1102		 * advertises support.
1103		 * Notably, anything earlier than the AR9287 doesn't.
1104		 */
1105		if ((ath_hal_getcapability(ah,
1106		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
1107		    (wmodes & HAL_MODE_HT20)) {
1108			device_printf(sc->sc_dev,
1109			    "[HT] enabling short-GI in 20MHz mode\n");
1110			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
1111		}
1112
1113		if (wmodes & HAL_MODE_HT40)
1114			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
1115			    |  IEEE80211_HTCAP_SHORTGI40;
1116
1117		/*
1118		 * TX/RX streams need to be taken into account when
1119		 * negotiating which MCS rates it'll receive and
1120		 * what MCS rates are available for TX.
1121		 */
1122		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
1123		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
1124		ic->ic_txstream = txs;
1125		ic->ic_rxstream = rxs;
1126
1127		/*
1128		 * Setup TX and RX STBC based on what the HAL allows and
1129		 * the currently configured chainmask set.
1130		 * Ie - don't enable STBC TX if only one chain is enabled.
1131		 * STBC RX is fine on a single RX chain; it just won't
1132		 * provide any real benefit.
1133		 */
1134		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
1135		    NULL) == HAL_OK) {
1136			sc->sc_rx_stbc = 1;
1137			device_printf(sc->sc_dev,
1138			    "[HT] 1 stream STBC receive enabled\n");
1139			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
1140		}
1141		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
1142		    NULL) == HAL_OK) {
1143			sc->sc_tx_stbc = 1;
1144			device_printf(sc->sc_dev,
1145			    "[HT] 1 stream STBC transmit enabled\n");
1146			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
1147		}
1148
1149		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
1150		    &sc->sc_rts_aggr_limit);
1151		if (sc->sc_rts_aggr_limit != (64 * 1024))
1152			device_printf(sc->sc_dev,
1153			    "[HT] RTS aggregates limited to %d KiB\n",
1154			    sc->sc_rts_aggr_limit / 1024);
1155
1156		device_printf(sc->sc_dev,
1157		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
1158	}
1159#endif
1160
1161	/*
1162	 * Initial aggregation settings.
1163	 */
1164	sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
1165	sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
1166	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1167	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1168	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
1169	sc->sc_delim_min_pad = 0;
1170
1171	/*
1172	 * Check if the hardware requires PCI register serialisation.
1173	 * Some of the Owl based MACs require this.
1174	 */
1175	if (mp_ncpus > 1 &&
1176	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
1177	     0, NULL) == HAL_OK) {
1178		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
1179		device_printf(sc->sc_dev,
1180		    "Enabling register serialisation\n");
1181	}
1182
1183	/*
1184	 * Initialise the deferred completed RX buffer list.
1185	 */
1186	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
1187	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
1188
1189	/*
1190	 * Indicate we need the 802.11 header padded to a
1191	 * 32-bit boundary for 4-address and QoS frames.
1192	 */
1193	ic->ic_flags |= IEEE80211_F_DATAPAD;
1194
1195	/*
1196	 * Query the hal about antenna support.
1197	 */
1198	sc->sc_defant = ath_hal_getdefantenna(ah);
1199
1200	/*
1201	 * Not all chips have the VEOL support we want to
1202	 * use with IBSS beacons; check here for it.
1203	 */
1204	sc->sc_hasveol = ath_hal_hasveol(ah);
1205
1206	/* get mac address from kenv first, then hardware */
1207	if (ath_fetch_mac_kenv(sc, macaddr) == 0) {
1208		/* Tell the HAL now about the new MAC */
1209		ath_hal_setmac(ah, macaddr);
1210	} else {
1211		ath_hal_getmac(ah, macaddr);
1212	}
1213
1214	if (sc->sc_hasbmask)
1215		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
1216
1217	/* NB: used to size node table key mapping array */
1218	ic->ic_max_keyix = sc->sc_keymax;
1219	/* call MI attach routine. */
1220	ieee80211_ifattach(ic, macaddr);
1221	ic->ic_setregdomain = ath_setregdomain;
1222	ic->ic_getradiocaps = ath_getradiocaps;
1223	sc->sc_opmode = HAL_M_STA;
1224
1225	/* override default methods */
1226	ic->ic_newassoc = ath_newassoc;
1227	ic->ic_updateslot = ath_updateslot;
1228	ic->ic_wme.wme_update = ath_wme_update;
1229	ic->ic_vap_create = ath_vap_create;
1230	ic->ic_vap_delete = ath_vap_delete;
1231	ic->ic_raw_xmit = ath_raw_xmit;
1232	ic->ic_update_mcast = ath_update_mcast;
1233	ic->ic_update_promisc = ath_update_promisc;
1234	ic->ic_node_alloc = ath_node_alloc;
1235	sc->sc_node_free = ic->ic_node_free;
1236	ic->ic_node_free = ath_node_free;
1237	sc->sc_node_cleanup = ic->ic_node_cleanup;
1238	ic->ic_node_cleanup = ath_node_cleanup;
1239	ic->ic_node_getsignal = ath_node_getsignal;
1240	ic->ic_scan_start = ath_scan_start;
1241	ic->ic_scan_end = ath_scan_end;
1242	ic->ic_set_channel = ath_set_channel;
1243#ifdef	ATH_ENABLE_11N
1244	/* 802.11n specific - but just override anyway */
1245	sc->sc_addba_request = ic->ic_addba_request;
1246	sc->sc_addba_response = ic->ic_addba_response;
1247	sc->sc_addba_stop = ic->ic_addba_stop;
1248	sc->sc_bar_response = ic->ic_bar_response;
1249	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
1250
1251	ic->ic_addba_request = ath_addba_request;
1252	ic->ic_addba_response = ath_addba_response;
1253	ic->ic_addba_response_timeout = ath_addba_response_timeout;
1254	ic->ic_addba_stop = ath_addba_stop;
1255	ic->ic_bar_response = ath_bar_response;
1256
1257	ic->ic_update_chw = ath_update_chw;
1258#endif	/* ATH_ENABLE_11N */
1259
1260#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
1261	/*
1262	 * There's one vendor bitmap entry in the RX radiotap
1263	 * header; make sure that's taken into account.
1264	 */
1265	ieee80211_radiotap_attachv(ic,
1266	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
1267		ATH_TX_RADIOTAP_PRESENT,
1268	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
1269		ATH_RX_RADIOTAP_PRESENT);
1270#else
1271	/*
1272	 * No vendor bitmap/extensions are present.
1273	 */
1274	ieee80211_radiotap_attach(ic,
1275	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
1276		ATH_TX_RADIOTAP_PRESENT,
1277	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
1278		ATH_RX_RADIOTAP_PRESENT);
1279#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
1280
1281	/*
1282	 * Setup the ALQ logging if required
1283	 */
1284#ifdef	ATH_DEBUG_ALQ
1285	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
1286	if_ath_alq_setcfg(&sc->sc_alq,
1287	    sc->sc_ah->ah_macVersion,
1288	    sc->sc_ah->ah_macRev,
1289	    sc->sc_ah->ah_phyRev,
1290	    sc->sc_ah->ah_magic);
1291#endif
1292
1293	/*
1294	 * Setup dynamic sysctl's now that country code and
1295	 * regdomain are available from the hal.
1296	 */
1297	ath_sysctlattach(sc);
1298	ath_sysctl_stats_attach(sc);
1299	ath_sysctl_hal_attach(sc);
1300
1301	if (bootverbose)
1302		ieee80211_announce(ic);
1303	ath_announce(sc);
1304
1305	/*
1306	 * Put it to sleep for now.
1307	 */
1308	ATH_LOCK(sc);
1309	ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
1310	ATH_UNLOCK(sc);
1311
1312	return 0;
1313bad2:
1314	ath_tx_cleanup(sc);
1315	ath_desc_free(sc);
1316	ath_txdma_teardown(sc);
1317	ath_rxdma_teardown(sc);
1318bad:
1319	if (ah)
1320		ath_hal_detach(ah);
1321
1322	/*
1323	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
1324	 */
1325	if (ifp != NULL && ifp->if_vnet) {
1326		CURVNET_SET(ifp->if_vnet);
1327		if_free(ifp);
1328		CURVNET_RESTORE();
1329	} else if (ifp != NULL)
1330		if_free(ifp);
1331	sc->sc_invalid = 1;
1332	return error;
1333}
1334
1335int
1336ath_detach(struct ath_softc *sc)
1337{
1338	struct ifnet *ifp = sc->sc_ifp;
1339
1340	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1341		__func__, ifp->if_flags);
1342
1343	/*
1344	 * NB: the order of these is important:
1345	 * o stop the chip so no more interrupts will fire
1346	 * o call the 802.11 layer before detaching the hal to
1347	 *   insure callbacks into the driver to delete global
1348	 *   key cache entries can be handled
1349	 * o free the taskqueue which drains any pending tasks
1350	 * o reclaim the tx queue data structures after calling
1351	 *   the 802.11 layer as we'll get called back to reclaim
1352	 *   node state and potentially want to use them
1353	 * o to cleanup the tx queues the hal is called, so detach
1354	 *   it last
1355	 * Other than that, it's straightforward...
1356	 */
1357
1358	/*
1359	 * XXX Wake the hardware up first.  ath_stop() will still
1360	 * wake it up first, but I'd rather do it here just to
1361	 * ensure it's awake.
1362	 */
1363	ATH_LOCK(sc);
1364	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1365	ath_power_setpower(sc, HAL_PM_AWAKE);
1366	ATH_UNLOCK(sc);
1367
1368	/*
1369	 * Stop things cleanly.
1370	 */
1371	ath_stop(ifp);
1372
1373	ieee80211_ifdetach(ifp->if_l2com);
1374	taskqueue_free(sc->sc_tq);
1375#ifdef ATH_TX99_DIAG
1376	if (sc->sc_tx99 != NULL)
1377		sc->sc_tx99->detach(sc->sc_tx99);
1378#endif
1379	ath_rate_detach(sc->sc_rc);
1380#ifdef	ATH_DEBUG_ALQ
1381	if_ath_alq_tidyup(&sc->sc_alq);
1382#endif
1383	ath_lna_div_detach(sc);
1384	ath_btcoex_detach(sc);
1385	ath_spectral_detach(sc);
1386	ath_dfs_detach(sc);
1387	ath_desc_free(sc);
1388	ath_txdma_teardown(sc);
1389	ath_rxdma_teardown(sc);
1390	ath_tx_cleanup(sc);
1391	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1392
1393	CURVNET_SET(ifp->if_vnet);
1394	if_free(ifp);
1395	CURVNET_RESTORE();
1396
1397	return 0;
1398}
1399
1400/*
1401 * MAC address handling for multiple BSS on the same radio.
1402 * The first vap uses the MAC address from the EEPROM.  For
1403 * subsequent vap's we set the U/L bit (bit 1) in the MAC
1404 * address and use the next six bits as an index.
1405 */
1406static void
1407assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1408{
1409	int i;
1410
1411	if (clone && sc->sc_hasbmask) {
1412		/* NB: we only do this if h/w supports multiple bssid */
1413		for (i = 0; i < 8; i++)
1414			if ((sc->sc_bssidmask & (1<<i)) == 0)
1415				break;
1416		if (i != 0)
1417			mac[0] |= (i << 2)|0x2;
1418	} else
1419		i = 0;
1420	sc->sc_bssidmask |= 1<<i;
1421	sc->sc_hwbssidmask[0] &= ~mac[0];
1422	if (i == 0)
1423		sc->sc_nbssid0++;
1424}
1425
1426static void
1427reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1428{
1429	int i = mac[0] >> 2;
1430	uint8_t mask;
1431
1432	if (i != 0 || --sc->sc_nbssid0 == 0) {
1433		sc->sc_bssidmask &= ~(1<<i);
1434		/* recalculate bssid mask from remaining addresses */
1435		mask = 0xff;
1436		for (i = 1; i < 8; i++)
1437			if (sc->sc_bssidmask & (1<<i))
1438				mask &= ~((i<<2)|0x2);
1439		sc->sc_hwbssidmask[0] |= mask;
1440	}
1441}
1442
1443/*
1444 * Assign a beacon xmit slot.  We try to space out
1445 * assignments so when beacons are staggered the
1446 * traffic coming out of the cab q has maximal time
1447 * to go out before the next beacon is scheduled.
1448 */
1449static int
1450assign_bslot(struct ath_softc *sc)
1451{
1452	u_int slot, free;
1453
1454	free = 0;
1455	for (slot = 0; slot < ATH_BCBUF; slot++)
1456		if (sc->sc_bslot[slot] == NULL) {
1457			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1458			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1459				return slot;
1460			free = slot;
1461			/* NB: keep looking for a double slot */
1462		}
1463	return free;
1464}
1465
1466static struct ieee80211vap *
1467ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1468    enum ieee80211_opmode opmode, int flags,
1469    const uint8_t bssid[IEEE80211_ADDR_LEN],
1470    const uint8_t mac0[IEEE80211_ADDR_LEN])
1471{
1472	struct ath_softc *sc = ic->ic_ifp->if_softc;
1473	struct ath_vap *avp;
1474	struct ieee80211vap *vap;
1475	uint8_t mac[IEEE80211_ADDR_LEN];
1476	int needbeacon, error;
1477	enum ieee80211_opmode ic_opmode;
1478
1479	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1480	    M_80211_VAP, M_WAITOK | M_ZERO);
1481	needbeacon = 0;
1482	IEEE80211_ADDR_COPY(mac, mac0);
1483
1484	ATH_LOCK(sc);
1485	ic_opmode = opmode;		/* default to opmode of new vap */
1486	switch (opmode) {
1487	case IEEE80211_M_STA:
1488		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1489			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1490			goto bad;
1491		}
1492		if (sc->sc_nvaps) {
1493			/*
1494			 * With multiple vaps we must fall back
1495			 * to s/w beacon miss handling.
1496			 */
1497			flags |= IEEE80211_CLONE_NOBEACONS;
1498		}
1499		if (flags & IEEE80211_CLONE_NOBEACONS) {
1500			/*
1501			 * Station mode w/o beacons are implemented w/ AP mode.
1502			 */
1503			ic_opmode = IEEE80211_M_HOSTAP;
1504		}
1505		break;
1506	case IEEE80211_M_IBSS:
1507		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1508			device_printf(sc->sc_dev,
1509			    "only 1 ibss vap supported\n");
1510			goto bad;
1511		}
1512		needbeacon = 1;
1513		break;
1514	case IEEE80211_M_AHDEMO:
1515#ifdef IEEE80211_SUPPORT_TDMA
1516		if (flags & IEEE80211_CLONE_TDMA) {
1517			if (sc->sc_nvaps != 0) {
1518				device_printf(sc->sc_dev,
1519				    "only 1 tdma vap supported\n");
1520				goto bad;
1521			}
1522			needbeacon = 1;
1523			flags |= IEEE80211_CLONE_NOBEACONS;
1524		}
1525		/* fall thru... */
1526#endif
1527	case IEEE80211_M_MONITOR:
1528		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1529			/*
1530			 * Adopt existing mode.  Adding a monitor or ahdemo
1531			 * vap to an existing configuration is of dubious
1532			 * value but should be ok.
1533			 */
1534			/* XXX not right for monitor mode */
1535			ic_opmode = ic->ic_opmode;
1536		}
1537		break;
1538	case IEEE80211_M_HOSTAP:
1539	case IEEE80211_M_MBSS:
1540		needbeacon = 1;
1541		break;
1542	case IEEE80211_M_WDS:
1543		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1544			device_printf(sc->sc_dev,
1545			    "wds not supported in sta mode\n");
1546			goto bad;
1547		}
1548		/*
1549		 * Silently remove any request for a unique
1550		 * bssid; WDS vap's always share the local
1551		 * mac address.
1552		 */
1553		flags &= ~IEEE80211_CLONE_BSSID;
1554		if (sc->sc_nvaps == 0)
1555			ic_opmode = IEEE80211_M_HOSTAP;
1556		else
1557			ic_opmode = ic->ic_opmode;
1558		break;
1559	default:
1560		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1561		goto bad;
1562	}
1563	/*
1564	 * Check that a beacon buffer is available; the code below assumes it.
1565	 */
1566	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1567		device_printf(sc->sc_dev, "no beacon buffer available\n");
1568		goto bad;
1569	}
1570
1571	/* STA, AHDEMO? */
1572	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1573		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1574		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1575	}
1576
1577	vap = &avp->av_vap;
1578	/* XXX can't hold mutex across if_alloc */
1579	ATH_UNLOCK(sc);
1580	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1581	    bssid, mac);
1582	ATH_LOCK(sc);
1583	if (error != 0) {
1584		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1585		    __func__, error);
1586		goto bad2;
1587	}
1588
1589	/* h/w crypto support */
1590	vap->iv_key_alloc = ath_key_alloc;
1591	vap->iv_key_delete = ath_key_delete;
1592	vap->iv_key_set = ath_key_set;
1593	vap->iv_key_update_begin = ath_key_update_begin;
1594	vap->iv_key_update_end = ath_key_update_end;
1595
1596	/* override various methods */
1597	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1598	vap->iv_recv_mgmt = ath_recv_mgmt;
1599	vap->iv_reset = ath_reset_vap;
1600	vap->iv_update_beacon = ath_beacon_update;
1601	avp->av_newstate = vap->iv_newstate;
1602	vap->iv_newstate = ath_newstate;
1603	avp->av_bmiss = vap->iv_bmiss;
1604	vap->iv_bmiss = ath_bmiss_vap;
1605
1606	avp->av_node_ps = vap->iv_node_ps;
1607	vap->iv_node_ps = ath_node_powersave;
1608
1609	avp->av_set_tim = vap->iv_set_tim;
1610	vap->iv_set_tim = ath_node_set_tim;
1611
1612	avp->av_recv_pspoll = vap->iv_recv_pspoll;
1613	vap->iv_recv_pspoll = ath_node_recv_pspoll;
1614
1615	/* Set default parameters */
1616
1617	/*
1618	 * Anything earlier than some AR9300 series MACs don't
1619	 * support a smaller MPDU density.
1620	 */
1621	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1622	/*
1623	 * All NICs can handle the maximum size, however
1624	 * AR5416 based MACs can only TX aggregates w/ RTS
1625	 * protection when the total aggregate size is <= 8k.
1626	 * However, for now that's enforced by the TX path.
1627	 */
1628	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1629
1630	avp->av_bslot = -1;
1631	if (needbeacon) {
1632		/*
1633		 * Allocate beacon state and setup the q for buffered
1634		 * multicast frames.  We know a beacon buffer is
1635		 * available because we checked above.
1636		 */
1637		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1638		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1639		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1640			/*
1641			 * Assign the vap to a beacon xmit slot.  As above
1642			 * this cannot fail to find a free one.
1643			 */
1644			avp->av_bslot = assign_bslot(sc);
1645			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1646			    ("beacon slot %u not empty", avp->av_bslot));
1647			sc->sc_bslot[avp->av_bslot] = vap;
1648			sc->sc_nbcnvaps++;
1649		}
1650		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1651			/*
1652			 * Multple vaps are to transmit beacons and we
1653			 * have h/w support for TSF adjusting; enable
1654			 * use of staggered beacons.
1655			 */
1656			sc->sc_stagbeacons = 1;
1657		}
1658		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1659	}
1660
1661	ic->ic_opmode = ic_opmode;
1662	if (opmode != IEEE80211_M_WDS) {
1663		sc->sc_nvaps++;
1664		if (opmode == IEEE80211_M_STA)
1665			sc->sc_nstavaps++;
1666		if (opmode == IEEE80211_M_MBSS)
1667			sc->sc_nmeshvaps++;
1668	}
1669	switch (ic_opmode) {
1670	case IEEE80211_M_IBSS:
1671		sc->sc_opmode = HAL_M_IBSS;
1672		break;
1673	case IEEE80211_M_STA:
1674		sc->sc_opmode = HAL_M_STA;
1675		break;
1676	case IEEE80211_M_AHDEMO:
1677#ifdef IEEE80211_SUPPORT_TDMA
1678		if (vap->iv_caps & IEEE80211_C_TDMA) {
1679			sc->sc_tdma = 1;
1680			/* NB: disable tsf adjust */
1681			sc->sc_stagbeacons = 0;
1682		}
1683		/*
1684		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1685		 * just ap mode.
1686		 */
1687		/* fall thru... */
1688#endif
1689	case IEEE80211_M_HOSTAP:
1690	case IEEE80211_M_MBSS:
1691		sc->sc_opmode = HAL_M_HOSTAP;
1692		break;
1693	case IEEE80211_M_MONITOR:
1694		sc->sc_opmode = HAL_M_MONITOR;
1695		break;
1696	default:
1697		/* XXX should not happen */
1698		break;
1699	}
1700	if (sc->sc_hastsfadd) {
1701		/*
1702		 * Configure whether or not TSF adjust should be done.
1703		 */
1704		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1705	}
1706	if (flags & IEEE80211_CLONE_NOBEACONS) {
1707		/*
1708		 * Enable s/w beacon miss handling.
1709		 */
1710		sc->sc_swbmiss = 1;
1711	}
1712	ATH_UNLOCK(sc);
1713
1714	/* complete setup */
1715	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1716	return vap;
1717bad2:
1718	reclaim_address(sc, mac);
1719	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1720bad:
1721	free(avp, M_80211_VAP);
1722	ATH_UNLOCK(sc);
1723	return NULL;
1724}
1725
1726static void
1727ath_vap_delete(struct ieee80211vap *vap)
1728{
1729	struct ieee80211com *ic = vap->iv_ic;
1730	struct ifnet *ifp = ic->ic_ifp;
1731	struct ath_softc *sc = ifp->if_softc;
1732	struct ath_hal *ah = sc->sc_ah;
1733	struct ath_vap *avp = ATH_VAP(vap);
1734
1735	ATH_LOCK(sc);
1736	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1737	ATH_UNLOCK(sc);
1738
1739	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1740	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1741		/*
1742		 * Quiesce the hardware while we remove the vap.  In
1743		 * particular we need to reclaim all references to
1744		 * the vap state by any frames pending on the tx queues.
1745		 */
1746		ath_hal_intrset(ah, 0);		/* disable interrupts */
1747		/* XXX Do all frames from all vaps/nodes need draining here? */
1748		ath_stoprecv(sc, 1);		/* stop recv side */
1749		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1750	}
1751
1752	/* .. leave the hardware awake for now. */
1753
1754	ieee80211_vap_detach(vap);
1755
1756	/*
1757	 * XXX Danger Will Robinson! Danger!
1758	 *
1759	 * Because ieee80211_vap_detach() can queue a frame (the station
1760	 * diassociate message?) after we've drained the TXQ and
1761	 * flushed the software TXQ, we will end up with a frame queued
1762	 * to a node whose vap is about to be freed.
1763	 *
1764	 * To work around this, flush the hardware/software again.
1765	 * This may be racy - the ath task may be running and the packet
1766	 * may be being scheduled between sw->hw txq. Tsk.
1767	 *
1768	 * TODO: figure out why a new node gets allocated somewhere around
1769	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1770	 * call!)
1771	 */
1772
1773	ath_draintxq(sc, ATH_RESET_DEFAULT);
1774
1775	ATH_LOCK(sc);
1776	/*
1777	 * Reclaim beacon state.  Note this must be done before
1778	 * the vap instance is reclaimed as we may have a reference
1779	 * to it in the buffer for the beacon frame.
1780	 */
1781	if (avp->av_bcbuf != NULL) {
1782		if (avp->av_bslot != -1) {
1783			sc->sc_bslot[avp->av_bslot] = NULL;
1784			sc->sc_nbcnvaps--;
1785		}
1786		ath_beacon_return(sc, avp->av_bcbuf);
1787		avp->av_bcbuf = NULL;
1788		if (sc->sc_nbcnvaps == 0) {
1789			sc->sc_stagbeacons = 0;
1790			if (sc->sc_hastsfadd)
1791				ath_hal_settsfadjust(sc->sc_ah, 0);
1792		}
1793		/*
1794		 * Reclaim any pending mcast frames for the vap.
1795		 */
1796		ath_tx_draintxq(sc, &avp->av_mcastq);
1797	}
1798	/*
1799	 * Update bookkeeping.
1800	 */
1801	if (vap->iv_opmode == IEEE80211_M_STA) {
1802		sc->sc_nstavaps--;
1803		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1804			sc->sc_swbmiss = 0;
1805	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1806	    vap->iv_opmode == IEEE80211_M_MBSS) {
1807		reclaim_address(sc, vap->iv_myaddr);
1808		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1809		if (vap->iv_opmode == IEEE80211_M_MBSS)
1810			sc->sc_nmeshvaps--;
1811	}
1812	if (vap->iv_opmode != IEEE80211_M_WDS)
1813		sc->sc_nvaps--;
1814#ifdef IEEE80211_SUPPORT_TDMA
1815	/* TDMA operation ceases when the last vap is destroyed */
1816	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1817		sc->sc_tdma = 0;
1818		sc->sc_swbmiss = 0;
1819	}
1820#endif
1821	free(avp, M_80211_VAP);
1822
1823	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1824		/*
1825		 * Restart rx+tx machines if still running (RUNNING will
1826		 * be reset if we just destroyed the last vap).
1827		 */
1828		if (ath_startrecv(sc) != 0)
1829			if_printf(ifp, "%s: unable to restart recv logic\n",
1830			    __func__);
1831		if (sc->sc_beacons) {		/* restart beacons */
1832#ifdef IEEE80211_SUPPORT_TDMA
1833			if (sc->sc_tdma)
1834				ath_tdma_config(sc, NULL);
1835			else
1836#endif
1837				ath_beacon_config(sc, NULL);
1838		}
1839		ath_hal_intrset(ah, sc->sc_imask);
1840	}
1841
1842	/* Ok, let the hardware asleep. */
1843	ath_power_restore_power_state(sc);
1844	ATH_UNLOCK(sc);
1845}
1846
1847void
1848ath_suspend(struct ath_softc *sc)
1849{
1850	struct ifnet *ifp = sc->sc_ifp;
1851	struct ieee80211com *ic = ifp->if_l2com;
1852
1853	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1854		__func__, ifp->if_flags);
1855
1856	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1857
1858	ieee80211_suspend_all(ic);
1859	/*
1860	 * NB: don't worry about putting the chip in low power
1861	 * mode; pci will power off our socket on suspend and
1862	 * CardBus detaches the device.
1863	 *
1864	 * XXX TODO: well, that's great, except for non-cardbus
1865	 * devices!
1866	 */
1867
1868	/*
1869	 * XXX This doesn't wait until all pending taskqueue
1870	 * items and parallel transmit/receive/other threads
1871	 * are running!
1872	 */
1873	ath_hal_intrset(sc->sc_ah, 0);
1874	taskqueue_block(sc->sc_tq);
1875
1876	ATH_LOCK(sc);
1877	callout_stop(&sc->sc_cal_ch);
1878	ATH_UNLOCK(sc);
1879
1880	/*
1881	 * XXX ensure sc_invalid is 1
1882	 */
1883
1884	/* Disable the PCIe PHY, complete with workarounds */
1885	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1886}
1887
1888/*
1889 * Reset the key cache since some parts do not reset the
1890 * contents on resume.  First we clear all entries, then
1891 * re-load keys that the 802.11 layer assumes are setup
1892 * in h/w.
1893 */
1894static void
1895ath_reset_keycache(struct ath_softc *sc)
1896{
1897	struct ifnet *ifp = sc->sc_ifp;
1898	struct ieee80211com *ic = ifp->if_l2com;
1899	struct ath_hal *ah = sc->sc_ah;
1900	int i;
1901
1902	ATH_LOCK(sc);
1903	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1904	for (i = 0; i < sc->sc_keymax; i++)
1905		ath_hal_keyreset(ah, i);
1906	ath_power_restore_power_state(sc);
1907	ATH_UNLOCK(sc);
1908	ieee80211_crypto_reload_keys(ic);
1909}
1910
1911/*
1912 * Fetch the current chainmask configuration based on the current
1913 * operating channel and options.
1914 */
1915static void
1916ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1917{
1918
1919	/*
1920	 * Set TX chainmask to the currently configured chainmask;
1921	 * the TX chainmask depends upon the current operating mode.
1922	 */
1923	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1924	if (IEEE80211_IS_CHAN_HT(chan)) {
1925		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1926	} else {
1927		sc->sc_cur_txchainmask = 1;
1928	}
1929
1930	DPRINTF(sc, ATH_DEBUG_RESET,
1931	    "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1932	    __func__,
1933	    sc->sc_cur_txchainmask,
1934	    sc->sc_cur_rxchainmask);
1935}
1936
1937void
1938ath_resume(struct ath_softc *sc)
1939{
1940	struct ifnet *ifp = sc->sc_ifp;
1941	struct ieee80211com *ic = ifp->if_l2com;
1942	struct ath_hal *ah = sc->sc_ah;
1943	HAL_STATUS status;
1944
1945	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1946		__func__, ifp->if_flags);
1947
1948	/* Re-enable PCIe, re-enable the PCIe bus */
1949	ath_hal_enablepcie(ah, 0, 0);
1950
1951	/*
1952	 * Must reset the chip before we reload the
1953	 * keycache as we were powered down on suspend.
1954	 */
1955	ath_update_chainmasks(sc,
1956	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1957	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1958	    sc->sc_cur_rxchainmask);
1959
1960	/* Ensure we set the current power state to on */
1961	ATH_LOCK(sc);
1962	ath_power_setselfgen(sc, HAL_PM_AWAKE);
1963	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1964	ath_power_setpower(sc, HAL_PM_AWAKE);
1965	ATH_UNLOCK(sc);
1966
1967	ath_hal_reset(ah, sc->sc_opmode,
1968	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1969	    AH_FALSE, &status);
1970	ath_reset_keycache(sc);
1971
1972	ATH_RX_LOCK(sc);
1973	sc->sc_rx_stopped = 1;
1974	sc->sc_rx_resetted = 1;
1975	ATH_RX_UNLOCK(sc);
1976
1977	/* Let DFS at it in case it's a DFS channel */
1978	ath_dfs_radar_enable(sc, ic->ic_curchan);
1979
1980	/* Let spectral at in case spectral is enabled */
1981	ath_spectral_enable(sc, ic->ic_curchan);
1982
1983	/*
1984	 * Let bluetooth coexistence at in case it's needed for this channel
1985	 */
1986	ath_btcoex_enable(sc, ic->ic_curchan);
1987
1988	/*
1989	 * If we're doing TDMA, enforce the TXOP limitation for chips that
1990	 * support it.
1991	 */
1992	if (sc->sc_hasenforcetxop && sc->sc_tdma)
1993		ath_hal_setenforcetxop(sc->sc_ah, 1);
1994	else
1995		ath_hal_setenforcetxop(sc->sc_ah, 0);
1996
1997	/* Restore the LED configuration */
1998	ath_led_config(sc);
1999	ath_hal_setledstate(ah, HAL_LED_INIT);
2000
2001	if (sc->sc_resume_up)
2002		ieee80211_resume_all(ic);
2003
2004	ATH_LOCK(sc);
2005	ath_power_restore_power_state(sc);
2006	ATH_UNLOCK(sc);
2007
2008	/* XXX beacons ? */
2009}
2010
2011void
2012ath_shutdown(struct ath_softc *sc)
2013{
2014	struct ifnet *ifp = sc->sc_ifp;
2015
2016	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
2017		__func__, ifp->if_flags);
2018
2019	ath_stop(ifp);
2020	/* NB: no point powering down chip as we're about to reboot */
2021}
2022
2023/*
2024 * Interrupt handler.  Most of the actual processing is deferred.
2025 */
2026void
2027ath_intr(void *arg)
2028{
2029	struct ath_softc *sc = arg;
2030	struct ifnet *ifp = sc->sc_ifp;
2031	struct ath_hal *ah = sc->sc_ah;
2032	HAL_INT status = 0;
2033	uint32_t txqs;
2034
2035	/*
2036	 * If we're inside a reset path, just print a warning and
2037	 * clear the ISR. The reset routine will finish it for us.
2038	 */
2039	ATH_PCU_LOCK(sc);
2040	if (sc->sc_inreset_cnt) {
2041		HAL_INT status;
2042		ath_hal_getisr(ah, &status);	/* clear ISR */
2043		ath_hal_intrset(ah, 0);		/* disable further intr's */
2044		DPRINTF(sc, ATH_DEBUG_ANY,
2045		    "%s: in reset, ignoring: status=0x%x\n",
2046		    __func__, status);
2047		ATH_PCU_UNLOCK(sc);
2048		return;
2049	}
2050
2051	if (sc->sc_invalid) {
2052		/*
2053		 * The hardware is not ready/present, don't touch anything.
2054		 * Note this can happen early on if the IRQ is shared.
2055		 */
2056		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
2057		ATH_PCU_UNLOCK(sc);
2058		return;
2059	}
2060	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
2061		ATH_PCU_UNLOCK(sc);
2062		return;
2063	}
2064
2065	ATH_LOCK(sc);
2066	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2067	ATH_UNLOCK(sc);
2068
2069	if ((ifp->if_flags & IFF_UP) == 0 ||
2070	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2071		HAL_INT status;
2072
2073		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
2074			__func__, ifp->if_flags);
2075		ath_hal_getisr(ah, &status);	/* clear ISR */
2076		ath_hal_intrset(ah, 0);		/* disable further intr's */
2077		ATH_PCU_UNLOCK(sc);
2078
2079		ATH_LOCK(sc);
2080		ath_power_restore_power_state(sc);
2081		ATH_UNLOCK(sc);
2082		return;
2083	}
2084
2085	/*
2086	 * Figure out the reason(s) for the interrupt.  Note
2087	 * that the hal returns a pseudo-ISR that may include
2088	 * bits we haven't explicitly enabled so we mask the
2089	 * value to insure we only process bits we requested.
2090	 */
2091	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
2092	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
2093	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
2094#ifdef	ATH_DEBUG_ALQ
2095	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
2096	    ah->ah_syncstate);
2097#endif	/* ATH_DEBUG_ALQ */
2098#ifdef	ATH_KTR_INTR_DEBUG
2099	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
2100	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
2101	    ah->ah_intrstate[0],
2102	    ah->ah_intrstate[1],
2103	    ah->ah_intrstate[2],
2104	    ah->ah_intrstate[3],
2105	    ah->ah_intrstate[6]);
2106#endif
2107
2108	/* Squirrel away SYNC interrupt debugging */
2109	if (ah->ah_syncstate != 0) {
2110		int i;
2111		for (i = 0; i < 32; i++)
2112			if (ah->ah_syncstate & (i << i))
2113				sc->sc_intr_stats.sync_intr[i]++;
2114	}
2115
2116	status &= sc->sc_imask;			/* discard unasked for bits */
2117
2118	/* Short-circuit un-handled interrupts */
2119	if (status == 0x0) {
2120		ATH_PCU_UNLOCK(sc);
2121
2122		ATH_LOCK(sc);
2123		ath_power_restore_power_state(sc);
2124		ATH_UNLOCK(sc);
2125
2126		return;
2127	}
2128
2129	/*
2130	 * Take a note that we're inside the interrupt handler, so
2131	 * the reset routines know to wait.
2132	 */
2133	sc->sc_intr_cnt++;
2134	ATH_PCU_UNLOCK(sc);
2135
2136	/*
2137	 * Handle the interrupt. We won't run concurrent with the reset
2138	 * or channel change routines as they'll wait for sc_intr_cnt
2139	 * to be 0 before continuing.
2140	 */
2141	if (status & HAL_INT_FATAL) {
2142		sc->sc_stats.ast_hardware++;
2143		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
2144		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
2145	} else {
2146		if (status & HAL_INT_SWBA) {
2147			/*
2148			 * Software beacon alert--time to send a beacon.
2149			 * Handle beacon transmission directly; deferring
2150			 * this is too slow to meet timing constraints
2151			 * under load.
2152			 */
2153#ifdef IEEE80211_SUPPORT_TDMA
2154			if (sc->sc_tdma) {
2155				if (sc->sc_tdmaswba == 0) {
2156					struct ieee80211com *ic = ifp->if_l2com;
2157					struct ieee80211vap *vap =
2158					    TAILQ_FIRST(&ic->ic_vaps);
2159					ath_tdma_beacon_send(sc, vap);
2160					sc->sc_tdmaswba =
2161					    vap->iv_tdma->tdma_bintval;
2162				} else
2163					sc->sc_tdmaswba--;
2164			} else
2165#endif
2166			{
2167				ath_beacon_proc(sc, 0);
2168#ifdef IEEE80211_SUPPORT_SUPERG
2169				/*
2170				 * Schedule the rx taskq in case there's no
2171				 * traffic so any frames held on the staging
2172				 * queue are aged and potentially flushed.
2173				 */
2174				sc->sc_rx.recv_sched(sc, 1);
2175#endif
2176			}
2177		}
2178		if (status & HAL_INT_RXEOL) {
2179			int imask;
2180			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
2181			if (! sc->sc_isedma) {
2182				ATH_PCU_LOCK(sc);
2183				/*
2184				 * NB: the hardware should re-read the link when
2185				 *     RXE bit is written, but it doesn't work at
2186				 *     least on older hardware revs.
2187				 */
2188				sc->sc_stats.ast_rxeol++;
2189				/*
2190				 * Disable RXEOL/RXORN - prevent an interrupt
2191				 * storm until the PCU logic can be reset.
2192				 * In case the interface is reset some other
2193				 * way before "sc_kickpcu" is called, don't
2194				 * modify sc_imask - that way if it is reset
2195				 * by a call to ath_reset() somehow, the
2196				 * interrupt mask will be correctly reprogrammed.
2197				 */
2198				imask = sc->sc_imask;
2199				imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
2200				ath_hal_intrset(ah, imask);
2201				/*
2202				 * Only blank sc_rxlink if we've not yet kicked
2203				 * the PCU.
2204				 *
2205				 * This isn't entirely correct - the correct solution
2206				 * would be to have a PCU lock and engage that for
2207				 * the duration of the PCU fiddling; which would include
2208				 * running the RX process. Otherwise we could end up
2209				 * messing up the RX descriptor chain and making the
2210				 * RX desc list much shorter.
2211				 */
2212				if (! sc->sc_kickpcu)
2213					sc->sc_rxlink = NULL;
2214				sc->sc_kickpcu = 1;
2215				ATH_PCU_UNLOCK(sc);
2216			}
2217			/*
2218			 * Enqueue an RX proc to handle whatever
2219			 * is in the RX queue.
2220			 * This will then kick the PCU if required.
2221			 */
2222			sc->sc_rx.recv_sched(sc, 1);
2223		}
2224		if (status & HAL_INT_TXURN) {
2225			sc->sc_stats.ast_txurn++;
2226			/* bump tx trigger level */
2227			ath_hal_updatetxtriglevel(ah, AH_TRUE);
2228		}
2229		/*
2230		 * Handle both the legacy and RX EDMA interrupt bits.
2231		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
2232		 */
2233		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
2234			sc->sc_stats.ast_rx_intr++;
2235			sc->sc_rx.recv_sched(sc, 1);
2236		}
2237		if (status & HAL_INT_TX) {
2238			sc->sc_stats.ast_tx_intr++;
2239			/*
2240			 * Grab all the currently set bits in the HAL txq bitmap
2241			 * and blank them. This is the only place we should be
2242			 * doing this.
2243			 */
2244			if (! sc->sc_isedma) {
2245				ATH_PCU_LOCK(sc);
2246				txqs = 0xffffffff;
2247				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
2248				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
2249				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
2250				    txqs,
2251				    sc->sc_txq_active,
2252				    sc->sc_txq_active | txqs);
2253				sc->sc_txq_active |= txqs;
2254				ATH_PCU_UNLOCK(sc);
2255			}
2256			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
2257		}
2258		if (status & HAL_INT_BMISS) {
2259			sc->sc_stats.ast_bmiss++;
2260			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
2261		}
2262		if (status & HAL_INT_GTT)
2263			sc->sc_stats.ast_tx_timeout++;
2264		if (status & HAL_INT_CST)
2265			sc->sc_stats.ast_tx_cst++;
2266		if (status & HAL_INT_MIB) {
2267			sc->sc_stats.ast_mib++;
2268			ATH_PCU_LOCK(sc);
2269			/*
2270			 * Disable interrupts until we service the MIB
2271			 * interrupt; otherwise it will continue to fire.
2272			 */
2273			ath_hal_intrset(ah, 0);
2274			/*
2275			 * Let the hal handle the event.  We assume it will
2276			 * clear whatever condition caused the interrupt.
2277			 */
2278			ath_hal_mibevent(ah, &sc->sc_halstats);
2279			/*
2280			 * Don't reset the interrupt if we've just
2281			 * kicked the PCU, or we may get a nested
2282			 * RXEOL before the rxproc has had a chance
2283			 * to run.
2284			 */
2285			if (sc->sc_kickpcu == 0)
2286				ath_hal_intrset(ah, sc->sc_imask);
2287			ATH_PCU_UNLOCK(sc);
2288		}
2289		if (status & HAL_INT_RXORN) {
2290			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
2291			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
2292			sc->sc_stats.ast_rxorn++;
2293		}
2294		if (status & HAL_INT_TSFOOR) {
2295			device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__);
2296			sc->sc_syncbeacon = 1;
2297		}
2298	}
2299	ATH_PCU_LOCK(sc);
2300	sc->sc_intr_cnt--;
2301	ATH_PCU_UNLOCK(sc);
2302
2303	ATH_LOCK(sc);
2304	ath_power_restore_power_state(sc);
2305	ATH_UNLOCK(sc);
2306}
2307
2308static void
2309ath_fatal_proc(void *arg, int pending)
2310{
2311	struct ath_softc *sc = arg;
2312	struct ifnet *ifp = sc->sc_ifp;
2313	u_int32_t *state;
2314	u_int32_t len;
2315	void *sp;
2316
2317	if_printf(ifp, "hardware error; resetting\n");
2318	/*
2319	 * Fatal errors are unrecoverable.  Typically these
2320	 * are caused by DMA errors.  Collect h/w state from
2321	 * the hal so we can diagnose what's going on.
2322	 */
2323	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
2324		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
2325		state = sp;
2326		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
2327		    state[0], state[1] , state[2], state[3],
2328		    state[4], state[5]);
2329	}
2330	ath_reset(ifp, ATH_RESET_NOLOSS);
2331}
2332
2333static void
2334ath_bmiss_vap(struct ieee80211vap *vap)
2335{
2336	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2337
2338	/*
2339	 * Workaround phantom bmiss interrupts by sanity-checking
2340	 * the time of our last rx'd frame.  If it is within the
2341	 * beacon miss interval then ignore the interrupt.  If it's
2342	 * truly a bmiss we'll get another interrupt soon and that'll
2343	 * be dispatched up for processing.  Note this applies only
2344	 * for h/w beacon miss events.
2345	 */
2346
2347	/*
2348	 * XXX TODO: Just read the TSF during the interrupt path;
2349	 * that way we don't have to wake up again just to read it
2350	 * again.
2351	 */
2352	ATH_LOCK(sc);
2353	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2354	ATH_UNLOCK(sc);
2355
2356	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2357		struct ifnet *ifp = vap->iv_ic->ic_ifp;
2358		struct ath_softc *sc = ifp->if_softc;
2359		u_int64_t lastrx = sc->sc_lastrx;
2360		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
2361		/* XXX should take a locked ref to iv_bss */
2362		u_int bmisstimeout =
2363			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
2364
2365		DPRINTF(sc, ATH_DEBUG_BEACON,
2366		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
2367		    __func__, (unsigned long long) tsf,
2368		    (unsigned long long)(tsf - lastrx),
2369		    (unsigned long long) lastrx, bmisstimeout);
2370
2371		if (tsf - lastrx <= bmisstimeout) {
2372			sc->sc_stats.ast_bmiss_phantom++;
2373
2374			ATH_LOCK(sc);
2375			ath_power_restore_power_state(sc);
2376			ATH_UNLOCK(sc);
2377
2378			return;
2379		}
2380	}
2381
2382	/*
2383	 * There's no need to keep the hardware awake during the call
2384	 * to av_bmiss().
2385	 */
2386	ATH_LOCK(sc);
2387	ath_power_restore_power_state(sc);
2388	ATH_UNLOCK(sc);
2389
2390	/*
2391	 * Attempt to force a beacon resync.
2392	 */
2393	sc->sc_syncbeacon = 1;
2394
2395	ATH_VAP(vap)->av_bmiss(vap);
2396}
2397
2398/* XXX this needs a force wakeup! */
2399int
2400ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
2401{
2402	uint32_t rsize;
2403	void *sp;
2404
2405	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
2406		return 0;
2407	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
2408	*hangs = *(uint32_t *)sp;
2409	return 1;
2410}
2411
2412static void
2413ath_bmiss_proc(void *arg, int pending)
2414{
2415	struct ath_softc *sc = arg;
2416	struct ifnet *ifp = sc->sc_ifp;
2417	uint32_t hangs;
2418
2419	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2420
2421	ATH_LOCK(sc);
2422	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2423	ATH_UNLOCK(sc);
2424
2425	ath_beacon_miss(sc);
2426
2427	/*
2428	 * Do a reset upon any becaon miss event.
2429	 *
2430	 * It may be a non-recognised RX clear hang which needs a reset
2431	 * to clear.
2432	 */
2433	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
2434		ath_reset(ifp, ATH_RESET_NOLOSS);
2435		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
2436	} else {
2437		ath_reset(ifp, ATH_RESET_NOLOSS);
2438		ieee80211_beacon_miss(ifp->if_l2com);
2439	}
2440
2441	/* Force a beacon resync, in case they've drifted */
2442	sc->sc_syncbeacon = 1;
2443
2444	ATH_LOCK(sc);
2445	ath_power_restore_power_state(sc);
2446	ATH_UNLOCK(sc);
2447}
2448
2449/*
2450 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
2451 * calcs together with WME.  If necessary disable the crypto
2452 * hardware and mark the 802.11 state so keys will be setup
2453 * with the MIC work done in software.
2454 */
2455static void
2456ath_settkipmic(struct ath_softc *sc)
2457{
2458	struct ifnet *ifp = sc->sc_ifp;
2459	struct ieee80211com *ic = ifp->if_l2com;
2460
2461	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2462		if (ic->ic_flags & IEEE80211_F_WME) {
2463			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
2464			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2465		} else {
2466			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
2467			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2468		}
2469	}
2470}
2471
2472static void
2473ath_init(void *arg)
2474{
2475	struct ath_softc *sc = (struct ath_softc *) arg;
2476	struct ifnet *ifp = sc->sc_ifp;
2477	struct ieee80211com *ic = ifp->if_l2com;
2478	struct ath_hal *ah = sc->sc_ah;
2479	HAL_STATUS status;
2480
2481	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
2482		__func__, ifp->if_flags);
2483
2484	ATH_LOCK(sc);
2485	/*
2486	 * Force the sleep state awake.
2487	 */
2488	ath_power_setselfgen(sc, HAL_PM_AWAKE);
2489	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2490	ath_power_setpower(sc, HAL_PM_AWAKE);
2491
2492	/*
2493	 * Stop anything previously setup.  This is safe
2494	 * whether this is the first time through or not.
2495	 */
2496	ath_stop_locked(ifp);
2497
2498	/*
2499	 * The basic interface to setting the hardware in a good
2500	 * state is ``reset''.  On return the hardware is known to
2501	 * be powered up and with interrupts disabled.  This must
2502	 * be followed by initialization of the appropriate bits
2503	 * and then setup of the interrupt mask.
2504	 */
2505	ath_settkipmic(sc);
2506	ath_update_chainmasks(sc, ic->ic_curchan);
2507	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2508	    sc->sc_cur_rxchainmask);
2509
2510	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
2511		if_printf(ifp, "unable to reset hardware; hal status %u\n",
2512			status);
2513		ATH_UNLOCK(sc);
2514		return;
2515	}
2516
2517	ATH_RX_LOCK(sc);
2518	sc->sc_rx_stopped = 1;
2519	sc->sc_rx_resetted = 1;
2520	ATH_RX_UNLOCK(sc);
2521
2522	ath_chan_change(sc, ic->ic_curchan);
2523
2524	/* Let DFS at it in case it's a DFS channel */
2525	ath_dfs_radar_enable(sc, ic->ic_curchan);
2526
2527	/* Let spectral at in case spectral is enabled */
2528	ath_spectral_enable(sc, ic->ic_curchan);
2529
2530	/*
2531	 * Let bluetooth coexistence at in case it's needed for this channel
2532	 */
2533	ath_btcoex_enable(sc, ic->ic_curchan);
2534
2535	/*
2536	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2537	 * support it.
2538	 */
2539	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2540		ath_hal_setenforcetxop(sc->sc_ah, 1);
2541	else
2542		ath_hal_setenforcetxop(sc->sc_ah, 0);
2543
2544	/*
2545	 * Likewise this is set during reset so update
2546	 * state cached in the driver.
2547	 */
2548	sc->sc_diversity = ath_hal_getdiversity(ah);
2549	sc->sc_lastlongcal = ticks;
2550	sc->sc_resetcal = 1;
2551	sc->sc_lastcalreset = 0;
2552	sc->sc_lastani = ticks;
2553	sc->sc_lastshortcal = ticks;
2554	sc->sc_doresetcal = AH_FALSE;
2555	/*
2556	 * Beacon timers were cleared here; give ath_newstate()
2557	 * a hint that the beacon timers should be poked when
2558	 * things transition to the RUN state.
2559	 */
2560	sc->sc_beacons = 0;
2561
2562	/*
2563	 * Setup the hardware after reset: the key cache
2564	 * is filled as needed and the receive engine is
2565	 * set going.  Frame transmit is handled entirely
2566	 * in the frame output path; there's nothing to do
2567	 * here except setup the interrupt mask.
2568	 */
2569	if (ath_startrecv(sc) != 0) {
2570		if_printf(ifp, "unable to start recv logic\n");
2571		ath_power_restore_power_state(sc);
2572		ATH_UNLOCK(sc);
2573		return;
2574	}
2575
2576	/*
2577	 * Enable interrupts.
2578	 */
2579	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2580		  | HAL_INT_RXORN | HAL_INT_TXURN
2581		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2582
2583	/*
2584	 * Enable RX EDMA bits.  Note these overlap with
2585	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2586	 */
2587	if (sc->sc_isedma)
2588		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2589
2590	/*
2591	 * If we're an EDMA NIC, we don't care about RXEOL.
2592	 * Writing a new descriptor in will simply restart
2593	 * RX DMA.
2594	 */
2595	if (! sc->sc_isedma)
2596		sc->sc_imask |= HAL_INT_RXEOL;
2597
2598	/*
2599	 * Enable MIB interrupts when there are hardware phy counters.
2600	 * Note we only do this (at the moment) for station mode.
2601	 */
2602	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2603		sc->sc_imask |= HAL_INT_MIB;
2604
2605	/*
2606	 * XXX add capability for this.
2607	 *
2608	 * If we're in STA mode (and maybe IBSS?) then register for
2609	 * TSFOOR interrupts.
2610	 */
2611	if (ic->ic_opmode == IEEE80211_M_STA)
2612		sc->sc_imask |= HAL_INT_TSFOOR;
2613
2614	/* Enable global TX timeout and carrier sense timeout if available */
2615	if (ath_hal_gtxto_supported(ah))
2616		sc->sc_imask |= HAL_INT_GTT;
2617
2618	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2619		__func__, sc->sc_imask);
2620
2621	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2622	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2623	ath_hal_intrset(ah, sc->sc_imask);
2624
2625	ath_power_restore_power_state(sc);
2626	ATH_UNLOCK(sc);
2627
2628#ifdef ATH_TX99_DIAG
2629	if (sc->sc_tx99 != NULL)
2630		sc->sc_tx99->start(sc->sc_tx99);
2631	else
2632#endif
2633	ieee80211_start_all(ic);		/* start all vap's */
2634}
2635
2636static void
2637ath_stop_locked(struct ifnet *ifp)
2638{
2639	struct ath_softc *sc = ifp->if_softc;
2640	struct ath_hal *ah = sc->sc_ah;
2641
2642	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2643		__func__, sc->sc_invalid, ifp->if_flags);
2644
2645	ATH_LOCK_ASSERT(sc);
2646
2647	/*
2648	 * Wake the hardware up before fiddling with it.
2649	 */
2650	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2651
2652	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2653		/*
2654		 * Shutdown the hardware and driver:
2655		 *    reset 802.11 state machine
2656		 *    turn off timers
2657		 *    disable interrupts
2658		 *    turn off the radio
2659		 *    clear transmit machinery
2660		 *    clear receive machinery
2661		 *    drain and release tx queues
2662		 *    reclaim beacon resources
2663		 *    power down hardware
2664		 *
2665		 * Note that some of this work is not possible if the
2666		 * hardware is gone (invalid).
2667		 */
2668#ifdef ATH_TX99_DIAG
2669		if (sc->sc_tx99 != NULL)
2670			sc->sc_tx99->stop(sc->sc_tx99);
2671#endif
2672		callout_stop(&sc->sc_wd_ch);
2673		sc->sc_wd_timer = 0;
2674		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2675		if (!sc->sc_invalid) {
2676			if (sc->sc_softled) {
2677				callout_stop(&sc->sc_ledtimer);
2678				ath_hal_gpioset(ah, sc->sc_ledpin,
2679					!sc->sc_ledon);
2680				sc->sc_blinking = 0;
2681			}
2682			ath_hal_intrset(ah, 0);
2683		}
2684		/* XXX we should stop RX regardless of whether it's valid */
2685		if (!sc->sc_invalid) {
2686			ath_stoprecv(sc, 1);
2687			ath_hal_phydisable(ah);
2688		} else
2689			sc->sc_rxlink = NULL;
2690		ath_draintxq(sc, ATH_RESET_DEFAULT);
2691		ath_beacon_free(sc);	/* XXX not needed */
2692	}
2693
2694	/* And now, restore the current power state */
2695	ath_power_restore_power_state(sc);
2696}
2697
2698/*
2699 * Wait until all pending TX/RX has completed.
2700 *
2701 * This waits until all existing transmit, receive and interrupts
2702 * have completed.  It's assumed that the caller has first
2703 * grabbed the reset lock so it doesn't try to do overlapping
2704 * chip resets.
2705 */
2706#define	MAX_TXRX_ITERATIONS	100
2707static void
2708ath_txrx_stop_locked(struct ath_softc *sc)
2709{
2710	int i = MAX_TXRX_ITERATIONS;
2711
2712	ATH_UNLOCK_ASSERT(sc);
2713	ATH_PCU_LOCK_ASSERT(sc);
2714
2715	/*
2716	 * Sleep until all the pending operations have completed.
2717	 *
2718	 * The caller must ensure that reset has been incremented
2719	 * or the pending operations may continue being queued.
2720	 */
2721	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2722	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2723		if (i <= 0)
2724			break;
2725		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
2726		    msecs_to_ticks(10));
2727		i--;
2728	}
2729
2730	if (i <= 0)
2731		device_printf(sc->sc_dev,
2732		    "%s: didn't finish after %d iterations\n",
2733		    __func__, MAX_TXRX_ITERATIONS);
2734}
2735#undef	MAX_TXRX_ITERATIONS
2736
2737#if 0
2738static void
2739ath_txrx_stop(struct ath_softc *sc)
2740{
2741	ATH_UNLOCK_ASSERT(sc);
2742	ATH_PCU_UNLOCK_ASSERT(sc);
2743
2744	ATH_PCU_LOCK(sc);
2745	ath_txrx_stop_locked(sc);
2746	ATH_PCU_UNLOCK(sc);
2747}
2748#endif
2749
2750static void
2751ath_txrx_start(struct ath_softc *sc)
2752{
2753
2754	taskqueue_unblock(sc->sc_tq);
2755}
2756
2757/*
2758 * Grab the reset lock, and wait around until noone else
2759 * is trying to do anything with it.
2760 *
2761 * This is totally horrible but we can't hold this lock for
2762 * long enough to do TX/RX or we end up with net80211/ip stack
2763 * LORs and eventual deadlock.
2764 *
2765 * "dowait" signals whether to spin, waiting for the reset
2766 * lock count to reach 0. This should (for now) only be used
2767 * during the reset path, as the rest of the code may not
2768 * be locking-reentrant enough to behave correctly.
2769 *
2770 * Another, cleaner way should be found to serialise all of
2771 * these operations.
2772 */
2773#define	MAX_RESET_ITERATIONS	25
2774static int
2775ath_reset_grablock(struct ath_softc *sc, int dowait)
2776{
2777	int w = 0;
2778	int i = MAX_RESET_ITERATIONS;
2779
2780	ATH_PCU_LOCK_ASSERT(sc);
2781	do {
2782		if (sc->sc_inreset_cnt == 0) {
2783			w = 1;
2784			break;
2785		}
2786		if (dowait == 0) {
2787			w = 0;
2788			break;
2789		}
2790		ATH_PCU_UNLOCK(sc);
2791		/*
2792		 * 1 tick is likely not enough time for long calibrations
2793		 * to complete.  So we should wait quite a while.
2794		 */
2795		pause("ath_reset_grablock", msecs_to_ticks(100));
2796		i--;
2797		ATH_PCU_LOCK(sc);
2798	} while (i > 0);
2799
2800	/*
2801	 * We always increment the refcounter, regardless
2802	 * of whether we succeeded to get it in an exclusive
2803	 * way.
2804	 */
2805	sc->sc_inreset_cnt++;
2806
2807	if (i <= 0)
2808		device_printf(sc->sc_dev,
2809		    "%s: didn't finish after %d iterations\n",
2810		    __func__, MAX_RESET_ITERATIONS);
2811
2812	if (w == 0)
2813		device_printf(sc->sc_dev,
2814		    "%s: warning, recursive reset path!\n",
2815		    __func__);
2816
2817	return w;
2818}
2819#undef MAX_RESET_ITERATIONS
2820
2821/*
2822 * XXX TODO: write ath_reset_releaselock
2823 */
2824
2825static void
2826ath_stop(struct ifnet *ifp)
2827{
2828	struct ath_softc *sc = ifp->if_softc;
2829
2830	ATH_LOCK(sc);
2831	ath_stop_locked(ifp);
2832	ATH_UNLOCK(sc);
2833}
2834
2835/*
2836 * Reset the hardware w/o losing operational state.  This is
2837 * basically a more efficient way of doing ath_stop, ath_init,
2838 * followed by state transitions to the current 802.11
2839 * operational state.  Used to recover from various errors and
2840 * to reset or reload hardware state.
2841 */
2842int
2843ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2844{
2845	struct ath_softc *sc = ifp->if_softc;
2846	struct ieee80211com *ic = ifp->if_l2com;
2847	struct ath_hal *ah = sc->sc_ah;
2848	HAL_STATUS status;
2849	int i;
2850
2851	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2852
2853	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2854	ATH_PCU_UNLOCK_ASSERT(sc);
2855	ATH_UNLOCK_ASSERT(sc);
2856
2857	/* Try to (stop any further TX/RX from occuring */
2858	taskqueue_block(sc->sc_tq);
2859
2860	/*
2861	 * Wake the hardware up.
2862	 */
2863	ATH_LOCK(sc);
2864	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2865	ATH_UNLOCK(sc);
2866
2867	ATH_PCU_LOCK(sc);
2868
2869	/*
2870	 * Grab the reset lock before TX/RX is stopped.
2871	 *
2872	 * This is needed to ensure that when the TX/RX actually does finish,
2873	 * no further TX/RX/reset runs in parallel with this.
2874	 */
2875	if (ath_reset_grablock(sc, 1) == 0) {
2876		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2877		    __func__);
2878	}
2879
2880	/* disable interrupts */
2881	ath_hal_intrset(ah, 0);
2882
2883	/*
2884	 * Now, ensure that any in progress TX/RX completes before we
2885	 * continue.
2886	 */
2887	ath_txrx_stop_locked(sc);
2888
2889	ATH_PCU_UNLOCK(sc);
2890
2891	/*
2892	 * Regardless of whether we're doing a no-loss flush or
2893	 * not, stop the PCU and handle what's in the RX queue.
2894	 * That way frames aren't dropped which shouldn't be.
2895	 */
2896	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2897	ath_rx_flush(sc);
2898
2899	/*
2900	 * Should now wait for pending TX/RX to complete
2901	 * and block future ones from occuring. This needs to be
2902	 * done before the TX queue is drained.
2903	 */
2904	ath_draintxq(sc, reset_type);	/* stop xmit side */
2905
2906	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2907	/* NB: indicate channel change so we do a full reset */
2908	ath_update_chainmasks(sc, ic->ic_curchan);
2909	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2910	    sc->sc_cur_rxchainmask);
2911	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2912		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2913			__func__, status);
2914	sc->sc_diversity = ath_hal_getdiversity(ah);
2915
2916	ATH_RX_LOCK(sc);
2917	sc->sc_rx_stopped = 1;
2918	sc->sc_rx_resetted = 1;
2919	ATH_RX_UNLOCK(sc);
2920
2921	/* Let DFS at it in case it's a DFS channel */
2922	ath_dfs_radar_enable(sc, ic->ic_curchan);
2923
2924	/* Let spectral at in case spectral is enabled */
2925	ath_spectral_enable(sc, ic->ic_curchan);
2926
2927	/*
2928	 * Let bluetooth coexistence at in case it's needed for this channel
2929	 */
2930	ath_btcoex_enable(sc, ic->ic_curchan);
2931
2932	/*
2933	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2934	 * support it.
2935	 */
2936	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2937		ath_hal_setenforcetxop(sc->sc_ah, 1);
2938	else
2939		ath_hal_setenforcetxop(sc->sc_ah, 0);
2940
2941	if (ath_startrecv(sc) != 0)	/* restart recv */
2942		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2943	/*
2944	 * We may be doing a reset in response to an ioctl
2945	 * that changes the channel so update any state that
2946	 * might change as a result.
2947	 */
2948	ath_chan_change(sc, ic->ic_curchan);
2949	if (sc->sc_beacons) {		/* restart beacons */
2950#ifdef IEEE80211_SUPPORT_TDMA
2951		if (sc->sc_tdma)
2952			ath_tdma_config(sc, NULL);
2953		else
2954#endif
2955			ath_beacon_config(sc, NULL);
2956	}
2957
2958	/*
2959	 * Release the reset lock and re-enable interrupts here.
2960	 * If an interrupt was being processed in ath_intr(),
2961	 * it would disable interrupts at this point. So we have
2962	 * to atomically enable interrupts and decrement the
2963	 * reset counter - this way ath_intr() doesn't end up
2964	 * disabling interrupts without a corresponding enable
2965	 * in the rest or channel change path.
2966	 *
2967	 * Grab the TX reference in case we need to transmit.
2968	 * That way a parallel transmit doesn't.
2969	 */
2970	ATH_PCU_LOCK(sc);
2971	sc->sc_inreset_cnt--;
2972	sc->sc_txstart_cnt++;
2973	/* XXX only do this if sc_inreset_cnt == 0? */
2974	ath_hal_intrset(ah, sc->sc_imask);
2975	ATH_PCU_UNLOCK(sc);
2976
2977	/*
2978	 * TX and RX can be started here. If it were started with
2979	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2980	 * Thus if this is a nested call through the reset or
2981	 * channel change code, TX completion will occur but
2982	 * RX completion and ath_start / ath_tx_start will not
2983	 * run.
2984	 */
2985
2986	/* Restart TX/RX as needed */
2987	ath_txrx_start(sc);
2988
2989	/* XXX TODO: we need to hold the tx refcount here! */
2990
2991	/* Restart TX completion and pending TX */
2992	if (reset_type == ATH_RESET_NOLOSS) {
2993		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2994			if (ATH_TXQ_SETUP(sc, i)) {
2995				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2996				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2997				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2998
2999				ATH_TX_LOCK(sc);
3000				ath_txq_sched(sc, &sc->sc_txq[i]);
3001				ATH_TX_UNLOCK(sc);
3002			}
3003		}
3004	}
3005
3006	/*
3007	 * This may have been set during an ath_start() call which
3008	 * set this once it detected a concurrent TX was going on.
3009	 * So, clear it.
3010	 */
3011	IF_LOCK(&ifp->if_snd);
3012	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3013	IF_UNLOCK(&ifp->if_snd);
3014
3015	ATH_LOCK(sc);
3016	ath_power_restore_power_state(sc);
3017	ATH_UNLOCK(sc);
3018
3019	ATH_PCU_LOCK(sc);
3020	sc->sc_txstart_cnt--;
3021	ATH_PCU_UNLOCK(sc);
3022
3023	/* Handle any frames in the TX queue */
3024	/*
3025	 * XXX should this be done by the caller, rather than
3026	 * ath_reset() ?
3027	 */
3028	ath_tx_kick(sc);		/* restart xmit */
3029	return 0;
3030}
3031
3032static int
3033ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
3034{
3035	struct ieee80211com *ic = vap->iv_ic;
3036	struct ifnet *ifp = ic->ic_ifp;
3037	struct ath_softc *sc = ifp->if_softc;
3038	struct ath_hal *ah = sc->sc_ah;
3039
3040	switch (cmd) {
3041	case IEEE80211_IOC_TXPOWER:
3042		/*
3043		 * If per-packet TPC is enabled, then we have nothing
3044		 * to do; otherwise we need to force the global limit.
3045		 * All this can happen directly; no need to reset.
3046		 */
3047		if (!ath_hal_gettpc(ah))
3048			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
3049		return 0;
3050	}
3051	/* XXX? Full or NOLOSS? */
3052	return ath_reset(ifp, ATH_RESET_FULL);
3053}
3054
3055struct ath_buf *
3056_ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
3057{
3058	struct ath_buf *bf;
3059
3060	ATH_TXBUF_LOCK_ASSERT(sc);
3061
3062	if (btype == ATH_BUFTYPE_MGMT)
3063		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
3064	else
3065		bf = TAILQ_FIRST(&sc->sc_txbuf);
3066
3067	if (bf == NULL) {
3068		sc->sc_stats.ast_tx_getnobuf++;
3069	} else {
3070		if (bf->bf_flags & ATH_BUF_BUSY) {
3071			sc->sc_stats.ast_tx_getbusybuf++;
3072			bf = NULL;
3073		}
3074	}
3075
3076	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
3077		if (btype == ATH_BUFTYPE_MGMT)
3078			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
3079		else {
3080			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
3081			sc->sc_txbuf_cnt--;
3082
3083			/*
3084			 * This shuldn't happen; however just to be
3085			 * safe print a warning and fudge the txbuf
3086			 * count.
3087			 */
3088			if (sc->sc_txbuf_cnt < 0) {
3089				device_printf(sc->sc_dev,
3090				    "%s: sc_txbuf_cnt < 0?\n",
3091				    __func__);
3092				sc->sc_txbuf_cnt = 0;
3093			}
3094		}
3095	} else
3096		bf = NULL;
3097
3098	if (bf == NULL) {
3099		/* XXX should check which list, mgmt or otherwise */
3100		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
3101		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
3102			"out of xmit buffers" : "xmit buffer busy");
3103		return NULL;
3104	}
3105
3106	/* XXX TODO: should do this at buffer list initialisation */
3107	/* XXX (then, ensure the buffer has the right flag set) */
3108	bf->bf_flags = 0;
3109	if (btype == ATH_BUFTYPE_MGMT)
3110		bf->bf_flags |= ATH_BUF_MGMT;
3111	else
3112		bf->bf_flags &= (~ATH_BUF_MGMT);
3113
3114	/* Valid bf here; clear some basic fields */
3115	bf->bf_next = NULL;	/* XXX just to be sure */
3116	bf->bf_last = NULL;	/* XXX again, just to be sure */
3117	bf->bf_comp = NULL;	/* XXX again, just to be sure */
3118	bzero(&bf->bf_state, sizeof(bf->bf_state));
3119
3120	/*
3121	 * Track the descriptor ID only if doing EDMA
3122	 */
3123	if (sc->sc_isedma) {
3124		bf->bf_descid = sc->sc_txbuf_descid;
3125		sc->sc_txbuf_descid++;
3126	}
3127
3128	return bf;
3129}
3130
3131/*
3132 * When retrying a software frame, buffers marked ATH_BUF_BUSY
3133 * can't be thrown back on the queue as they could still be
3134 * in use by the hardware.
3135 *
3136 * This duplicates the buffer, or returns NULL.
3137 *
3138 * The descriptor is also copied but the link pointers and
3139 * the DMA segments aren't copied; this frame should thus
3140 * be again passed through the descriptor setup/chain routines
3141 * so the link is correct.
3142 *
3143 * The caller must free the buffer using ath_freebuf().
3144 */
3145struct ath_buf *
3146ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
3147{
3148	struct ath_buf *tbf;
3149
3150	tbf = ath_getbuf(sc,
3151	    (bf->bf_flags & ATH_BUF_MGMT) ?
3152	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
3153	if (tbf == NULL)
3154		return NULL;	/* XXX failure? Why? */
3155
3156	/* Copy basics */
3157	tbf->bf_next = NULL;
3158	tbf->bf_nseg = bf->bf_nseg;
3159	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
3160	tbf->bf_status = bf->bf_status;
3161	tbf->bf_m = bf->bf_m;
3162	tbf->bf_node = bf->bf_node;
3163	KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__));
3164	/* will be setup by the chain/setup function */
3165	tbf->bf_lastds = NULL;
3166	/* for now, last == self */
3167	tbf->bf_last = tbf;
3168	tbf->bf_comp = bf->bf_comp;
3169
3170	/* NOTE: DMA segments will be setup by the setup/chain functions */
3171
3172	/* The caller has to re-init the descriptor + links */
3173
3174	/*
3175	 * Free the DMA mapping here, before we NULL the mbuf.
3176	 * We must only call bus_dmamap_unload() once per mbuf chain
3177	 * or behaviour is undefined.
3178	 */
3179	if (bf->bf_m != NULL) {
3180		/*
3181		 * XXX is this POSTWRITE call required?
3182		 */
3183		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3184		    BUS_DMASYNC_POSTWRITE);
3185		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3186	}
3187
3188	bf->bf_m = NULL;
3189	bf->bf_node = NULL;
3190
3191	/* Copy state */
3192	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
3193
3194	return tbf;
3195}
3196
3197struct ath_buf *
3198ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
3199{
3200	struct ath_buf *bf;
3201
3202	ATH_TXBUF_LOCK(sc);
3203	bf = _ath_getbuf_locked(sc, btype);
3204	/*
3205	 * If a mgmt buffer was requested but we're out of those,
3206	 * try requesting a normal one.
3207	 */
3208	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
3209		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
3210	ATH_TXBUF_UNLOCK(sc);
3211	if (bf == NULL) {
3212		struct ifnet *ifp = sc->sc_ifp;
3213
3214		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
3215		sc->sc_stats.ast_tx_qstop++;
3216		IF_LOCK(&ifp->if_snd);
3217		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3218		IF_UNLOCK(&ifp->if_snd);
3219	}
3220	return bf;
3221}
3222
3223static void
3224ath_qflush(struct ifnet *ifp)
3225{
3226
3227	/* XXX TODO */
3228}
3229
3230/*
3231 * Transmit a single frame.
3232 *
3233 * net80211 will free the node reference if the transmit
3234 * fails, so don't free the node reference here.
3235 */
3236static int
3237ath_transmit(struct ifnet *ifp, struct mbuf *m)
3238{
3239	struct ieee80211com *ic = ifp->if_l2com;
3240	struct ath_softc *sc = ic->ic_ifp->if_softc;
3241	struct ieee80211_node *ni;
3242	struct mbuf *next;
3243	struct ath_buf *bf;
3244	ath_bufhead frags;
3245	int retval = 0;
3246
3247	/*
3248	 * Tell the reset path that we're currently transmitting.
3249	 */
3250	ATH_PCU_LOCK(sc);
3251	if (sc->sc_inreset_cnt > 0) {
3252		DPRINTF(sc, ATH_DEBUG_XMIT,
3253		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
3254		ATH_PCU_UNLOCK(sc);
3255		IF_LOCK(&ifp->if_snd);
3256		sc->sc_stats.ast_tx_qstop++;
3257		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3258		IF_UNLOCK(&ifp->if_snd);
3259		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
3260		return (ENOBUFS);	/* XXX should be EINVAL or? */
3261	}
3262	sc->sc_txstart_cnt++;
3263	ATH_PCU_UNLOCK(sc);
3264
3265	/* Wake the hardware up already */
3266	ATH_LOCK(sc);
3267	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3268	ATH_UNLOCK(sc);
3269
3270	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
3271	/*
3272	 * Grab the TX lock - it's ok to do this here; we haven't
3273	 * yet started transmitting.
3274	 */
3275	ATH_TX_LOCK(sc);
3276
3277	/*
3278	 * Node reference, if there's one.
3279	 */
3280	ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
3281
3282	/*
3283	 * Enforce how deep a node queue can get.
3284	 *
3285	 * XXX it would be nicer if we kept an mbuf queue per
3286	 * node and only whacked them into ath_bufs when we
3287	 * are ready to schedule some traffic from them.
3288	 * .. that may come later.
3289	 *
3290	 * XXX we should also track the per-node hardware queue
3291	 * depth so it is easy to limit the _SUM_ of the swq and
3292	 * hwq frames.  Since we only schedule two HWQ frames
3293	 * at a time, this should be OK for now.
3294	 */
3295	if ((!(m->m_flags & M_EAPOL)) &&
3296	    (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
3297		sc->sc_stats.ast_tx_nodeq_overflow++;
3298		m_freem(m);
3299		m = NULL;
3300		retval = ENOBUFS;
3301		goto finish;
3302	}
3303
3304	/*
3305	 * Check how many TX buffers are available.
3306	 *
3307	 * If this is for non-EAPOL traffic, just leave some
3308	 * space free in order for buffer cloning and raw
3309	 * frame transmission to occur.
3310	 *
3311	 * If it's for EAPOL traffic, ignore this for now.
3312	 * Management traffic will be sent via the raw transmit
3313	 * method which bypasses this check.
3314	 *
3315	 * This is needed to ensure that EAPOL frames during
3316	 * (re) keying have a chance to go out.
3317	 *
3318	 * See kern/138379 for more information.
3319	 */
3320	if ((!(m->m_flags & M_EAPOL)) &&
3321	    (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
3322		sc->sc_stats.ast_tx_nobuf++;
3323		m_freem(m);
3324		m = NULL;
3325		retval = ENOBUFS;
3326		goto finish;
3327	}
3328
3329	/*
3330	 * Grab a TX buffer and associated resources.
3331	 *
3332	 * If it's an EAPOL frame, allocate a MGMT ath_buf.
3333	 * That way even with temporary buffer exhaustion due to
3334	 * the data path doesn't leave us without the ability
3335	 * to transmit management frames.
3336	 *
3337	 * Otherwise allocate a normal buffer.
3338	 */
3339	if (m->m_flags & M_EAPOL)
3340		bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
3341	else
3342		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
3343
3344	if (bf == NULL) {
3345		/*
3346		 * If we failed to allocate a buffer, fail.
3347		 *
3348		 * We shouldn't fail normally, due to the check
3349		 * above.
3350		 */
3351		sc->sc_stats.ast_tx_nobuf++;
3352		IF_LOCK(&ifp->if_snd);
3353		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3354		IF_UNLOCK(&ifp->if_snd);
3355		m_freem(m);
3356		m = NULL;
3357		retval = ENOBUFS;
3358		goto finish;
3359	}
3360
3361	/*
3362	 * At this point we have a buffer; so we need to free it
3363	 * if we hit any error conditions.
3364	 */
3365
3366	/*
3367	 * Check for fragmentation.  If this frame
3368	 * has been broken up verify we have enough
3369	 * buffers to send all the fragments so all
3370	 * go out or none...
3371	 */
3372	TAILQ_INIT(&frags);
3373	if ((m->m_flags & M_FRAG) &&
3374	    !ath_txfrag_setup(sc, &frags, m, ni)) {
3375		DPRINTF(sc, ATH_DEBUG_XMIT,
3376		    "%s: out of txfrag buffers\n", __func__);
3377		sc->sc_stats.ast_tx_nofrag++;
3378		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3379		ath_freetx(m);
3380		goto bad;
3381	}
3382
3383	/*
3384	 * At this point if we have any TX fragments, then we will
3385	 * have bumped the node reference once for each of those.
3386	 */
3387
3388	/*
3389	 * XXX Is there anything actually _enforcing_ that the
3390	 * fragments are being transmitted in one hit, rather than
3391	 * being interleaved with other transmissions on that
3392	 * hardware queue?
3393	 *
3394	 * The ATH TX output lock is the only thing serialising this
3395	 * right now.
3396	 */
3397
3398	/*
3399	 * Calculate the "next fragment" length field in ath_buf
3400	 * in order to let the transmit path know enough about
3401	 * what to next write to the hardware.
3402	 */
3403	if (m->m_flags & M_FRAG) {
3404		struct ath_buf *fbf = bf;
3405		struct ath_buf *n_fbf = NULL;
3406		struct mbuf *fm = m->m_nextpkt;
3407
3408		/*
3409		 * We need to walk the list of fragments and set
3410		 * the next size to the following buffer.
3411		 * However, the first buffer isn't in the frag
3412		 * list, so we have to do some gymnastics here.
3413		 */
3414		TAILQ_FOREACH(n_fbf, &frags, bf_list) {
3415			fbf->bf_nextfraglen = fm->m_pkthdr.len;
3416			fbf = n_fbf;
3417			fm = fm->m_nextpkt;
3418		}
3419	}
3420
3421	/*
3422	 * Bump the ifp output counter.
3423	 *
3424	 * XXX should use atomics?
3425	 */
3426	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3427nextfrag:
3428	/*
3429	 * Pass the frame to the h/w for transmission.
3430	 * Fragmented frames have each frag chained together
3431	 * with m_nextpkt.  We know there are sufficient ath_buf's
3432	 * to send all the frags because of work done by
3433	 * ath_txfrag_setup.  We leave m_nextpkt set while
3434	 * calling ath_tx_start so it can use it to extend the
3435	 * the tx duration to cover the subsequent frag and
3436	 * so it can reclaim all the mbufs in case of an error;
3437	 * ath_tx_start clears m_nextpkt once it commits to
3438	 * handing the frame to the hardware.
3439	 *
3440	 * Note: if this fails, then the mbufs are freed but
3441	 * not the node reference.
3442	 */
3443	next = m->m_nextpkt;
3444	if (ath_tx_start(sc, ni, bf, m)) {
3445bad:
3446		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3447reclaim:
3448		bf->bf_m = NULL;
3449		bf->bf_node = NULL;
3450		ATH_TXBUF_LOCK(sc);
3451		ath_returnbuf_head(sc, bf);
3452		/*
3453		 * Free the rest of the node references and
3454		 * buffers for the fragment list.
3455		 */
3456		ath_txfrag_cleanup(sc, &frags, ni);
3457		ATH_TXBUF_UNLOCK(sc);
3458		retval = ENOBUFS;
3459		goto finish;
3460	}
3461
3462	/*
3463	 * Check here if the node is in power save state.
3464	 */
3465	ath_tx_update_tim(sc, ni, 1);
3466
3467	if (next != NULL) {
3468		/*
3469		 * Beware of state changing between frags.
3470		 * XXX check sta power-save state?
3471		 */
3472		if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
3473			DPRINTF(sc, ATH_DEBUG_XMIT,
3474			    "%s: flush fragmented packet, state %s\n",
3475			    __func__,
3476			    ieee80211_state_name[ni->ni_vap->iv_state]);
3477			/* XXX dmamap */
3478			ath_freetx(next);
3479			goto reclaim;
3480		}
3481		m = next;
3482		bf = TAILQ_FIRST(&frags);
3483		KASSERT(bf != NULL, ("no buf for txfrag"));
3484		TAILQ_REMOVE(&frags, bf, bf_list);
3485		goto nextfrag;
3486	}
3487
3488	/*
3489	 * Bump watchdog timer.
3490	 */
3491	sc->sc_wd_timer = 5;
3492
3493finish:
3494	ATH_TX_UNLOCK(sc);
3495
3496	/*
3497	 * Finished transmitting!
3498	 */
3499	ATH_PCU_LOCK(sc);
3500	sc->sc_txstart_cnt--;
3501	ATH_PCU_UNLOCK(sc);
3502
3503	/* Sleep the hardware if required */
3504	ATH_LOCK(sc);
3505	ath_power_restore_power_state(sc);
3506	ATH_UNLOCK(sc);
3507
3508	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
3509
3510	return (retval);
3511}
3512
3513static int
3514ath_media_change(struct ifnet *ifp)
3515{
3516	int error = ieee80211_media_change(ifp);
3517	/* NB: only the fixed rate can change and that doesn't need a reset */
3518	return (error == ENETRESET ? 0 : error);
3519}
3520
3521/*
3522 * Block/unblock tx+rx processing while a key change is done.
3523 * We assume the caller serializes key management operations
3524 * so we only need to worry about synchronization with other
3525 * uses that originate in the driver.
3526 */
3527static void
3528ath_key_update_begin(struct ieee80211vap *vap)
3529{
3530	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3531	struct ath_softc *sc = ifp->if_softc;
3532
3533	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3534	taskqueue_block(sc->sc_tq);
3535}
3536
3537static void
3538ath_key_update_end(struct ieee80211vap *vap)
3539{
3540	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3541	struct ath_softc *sc = ifp->if_softc;
3542
3543	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3544	taskqueue_unblock(sc->sc_tq);
3545}
3546
3547static void
3548ath_update_promisc(struct ifnet *ifp)
3549{
3550	struct ath_softc *sc = ifp->if_softc;
3551	u_int32_t rfilt;
3552
3553	/* configure rx filter */
3554	ATH_LOCK(sc);
3555	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3556	rfilt = ath_calcrxfilter(sc);
3557	ath_hal_setrxfilter(sc->sc_ah, rfilt);
3558	ath_power_restore_power_state(sc);
3559	ATH_UNLOCK(sc);
3560
3561	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3562}
3563
3564/*
3565 * Driver-internal mcast update call.
3566 *
3567 * Assumes the hardware is already awake.
3568 */
3569static void
3570ath_update_mcast_hw(struct ath_softc *sc)
3571{
3572	struct ifnet *ifp = sc->sc_ifp;
3573	u_int32_t mfilt[2];
3574
3575	/* calculate and install multicast filter */
3576	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3577		struct ifmultiaddr *ifma;
3578		/*
3579		 * Merge multicast addresses to form the hardware filter.
3580		 */
3581		mfilt[0] = mfilt[1] = 0;
3582		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
3583		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3584			caddr_t dl;
3585			u_int32_t val;
3586			u_int8_t pos;
3587
3588			/* calculate XOR of eight 6bit values */
3589			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
3590			val = LE_READ_4(dl + 0);
3591			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3592			val = LE_READ_4(dl + 3);
3593			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3594			pos &= 0x3f;
3595			mfilt[pos / 32] |= (1 << (pos % 32));
3596		}
3597		if_maddr_runlock(ifp);
3598	} else
3599		mfilt[0] = mfilt[1] = ~0;
3600
3601	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3602
3603	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3604		__func__, mfilt[0], mfilt[1]);
3605}
3606
3607/*
3608 * Called from the net80211 layer - force the hardware
3609 * awake before operating.
3610 */
3611static void
3612ath_update_mcast(struct ifnet *ifp)
3613{
3614	struct ath_softc *sc = ifp->if_softc;
3615
3616	ATH_LOCK(sc);
3617	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3618	ATH_UNLOCK(sc);
3619
3620	ath_update_mcast_hw(sc);
3621
3622	ATH_LOCK(sc);
3623	ath_power_restore_power_state(sc);
3624	ATH_UNLOCK(sc);
3625}
3626
3627void
3628ath_mode_init(struct ath_softc *sc)
3629{
3630	struct ifnet *ifp = sc->sc_ifp;
3631	struct ath_hal *ah = sc->sc_ah;
3632	u_int32_t rfilt;
3633
3634	/* configure rx filter */
3635	rfilt = ath_calcrxfilter(sc);
3636	ath_hal_setrxfilter(ah, rfilt);
3637
3638	/* configure operational mode */
3639	ath_hal_setopmode(ah);
3640
3641	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
3642	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
3643	    __func__,
3644	    ah,
3645	    ifp,
3646	    (ifp == NULL) ? NULL : ifp->if_addr);
3647
3648	/* handle any link-level address change */
3649	ath_hal_setmac(ah, IF_LLADDR(ifp));
3650
3651	/* calculate and install multicast filter */
3652	ath_update_mcast_hw(sc);
3653}
3654
3655/*
3656 * Set the slot time based on the current setting.
3657 */
3658void
3659ath_setslottime(struct ath_softc *sc)
3660{
3661	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3662	struct ath_hal *ah = sc->sc_ah;
3663	u_int usec;
3664
3665	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3666		usec = 13;
3667	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3668		usec = 21;
3669	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3670		/* honor short/long slot time only in 11g */
3671		/* XXX shouldn't honor on pure g or turbo g channel */
3672		if (ic->ic_flags & IEEE80211_F_SHSLOT)
3673			usec = HAL_SLOT_TIME_9;
3674		else
3675			usec = HAL_SLOT_TIME_20;
3676	} else
3677		usec = HAL_SLOT_TIME_9;
3678
3679	DPRINTF(sc, ATH_DEBUG_RESET,
3680	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3681	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3682	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3683
3684	/* Wake up the hardware first before updating the slot time */
3685	ATH_LOCK(sc);
3686	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3687	ath_hal_setslottime(ah, usec);
3688	ath_power_restore_power_state(sc);
3689	sc->sc_updateslot = OK;
3690	ATH_UNLOCK(sc);
3691}
3692
3693/*
3694 * Callback from the 802.11 layer to update the
3695 * slot time based on the current setting.
3696 */
3697static void
3698ath_updateslot(struct ifnet *ifp)
3699{
3700	struct ath_softc *sc = ifp->if_softc;
3701	struct ieee80211com *ic = ifp->if_l2com;
3702
3703	/*
3704	 * When not coordinating the BSS, change the hardware
3705	 * immediately.  For other operation we defer the change
3706	 * until beacon updates have propagated to the stations.
3707	 *
3708	 * XXX sc_updateslot isn't changed behind a lock?
3709	 */
3710	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3711	    ic->ic_opmode == IEEE80211_M_MBSS)
3712		sc->sc_updateslot = UPDATE;
3713	else
3714		ath_setslottime(sc);
3715}
3716
3717/*
3718 * Append the contents of src to dst; both queues
3719 * are assumed to be locked.
3720 */
3721void
3722ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3723{
3724
3725	ATH_TXQ_LOCK_ASSERT(src);
3726	ATH_TXQ_LOCK_ASSERT(dst);
3727
3728	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3729	dst->axq_link = src->axq_link;
3730	src->axq_link = NULL;
3731	dst->axq_depth += src->axq_depth;
3732	dst->axq_aggr_depth += src->axq_aggr_depth;
3733	src->axq_depth = 0;
3734	src->axq_aggr_depth = 0;
3735}
3736
3737/*
3738 * Reset the hardware, with no loss.
3739 *
3740 * This can't be used for a general case reset.
3741 */
3742static void
3743ath_reset_proc(void *arg, int pending)
3744{
3745	struct ath_softc *sc = arg;
3746	struct ifnet *ifp = sc->sc_ifp;
3747
3748#if 0
3749	if_printf(ifp, "%s: resetting\n", __func__);
3750#endif
3751	ath_reset(ifp, ATH_RESET_NOLOSS);
3752}
3753
3754/*
3755 * Reset the hardware after detecting beacons have stopped.
3756 */
3757static void
3758ath_bstuck_proc(void *arg, int pending)
3759{
3760	struct ath_softc *sc = arg;
3761	struct ifnet *ifp = sc->sc_ifp;
3762	uint32_t hangs = 0;
3763
3764	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3765		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3766
3767#ifdef	ATH_DEBUG_ALQ
3768	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
3769		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3770#endif
3771
3772	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3773		sc->sc_bmisscount);
3774	sc->sc_stats.ast_bstuck++;
3775	/*
3776	 * This assumes that there's no simultaneous channel mode change
3777	 * occuring.
3778	 */
3779	ath_reset(ifp, ATH_RESET_NOLOSS);
3780}
3781
3782static void
3783ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3784{
3785	bus_addr_t *paddr = (bus_addr_t*) arg;
3786	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3787	*paddr = segs->ds_addr;
3788}
3789
3790/*
3791 * Allocate the descriptors and appropriate DMA tag/setup.
3792 *
3793 * For some situations (eg EDMA TX completion), there isn't a requirement
3794 * for the ath_buf entries to be allocated.
3795 */
3796int
3797ath_descdma_alloc_desc(struct ath_softc *sc,
3798	struct ath_descdma *dd, ath_bufhead *head,
3799	const char *name, int ds_size, int ndesc)
3800{
3801#define	DS2PHYS(_dd, _ds) \
3802	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3803#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3804	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3805	struct ifnet *ifp = sc->sc_ifp;
3806	int error;
3807
3808	dd->dd_descsize = ds_size;
3809
3810	DPRINTF(sc, ATH_DEBUG_RESET,
3811	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
3812	    __func__, name, ndesc, dd->dd_descsize);
3813
3814	dd->dd_name = name;
3815	dd->dd_desc_len = dd->dd_descsize * ndesc;
3816
3817	/*
3818	 * Merlin work-around:
3819	 * Descriptors that cross the 4KB boundary can't be used.
3820	 * Assume one skipped descriptor per 4KB page.
3821	 */
3822	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3823		int numpages = dd->dd_desc_len / 4096;
3824		dd->dd_desc_len += ds_size * numpages;
3825	}
3826
3827	/*
3828	 * Setup DMA descriptor area.
3829	 *
3830	 * BUS_DMA_ALLOCNOW is not used; we never use bounce
3831	 * buffers for the descriptors themselves.
3832	 */
3833	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3834		       PAGE_SIZE, 0,		/* alignment, bounds */
3835		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3836		       BUS_SPACE_MAXADDR,	/* highaddr */
3837		       NULL, NULL,		/* filter, filterarg */
3838		       dd->dd_desc_len,		/* maxsize */
3839		       1,			/* nsegments */
3840		       dd->dd_desc_len,		/* maxsegsize */
3841		       0,			/* flags */
3842		       NULL,			/* lockfunc */
3843		       NULL,			/* lockarg */
3844		       &dd->dd_dmat);
3845	if (error != 0) {
3846		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3847		return error;
3848	}
3849
3850	/* allocate descriptors */
3851	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3852				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3853				 &dd->dd_dmamap);
3854	if (error != 0) {
3855		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3856			"error %u\n", ndesc, dd->dd_name, error);
3857		goto fail1;
3858	}
3859
3860	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3861				dd->dd_desc, dd->dd_desc_len,
3862				ath_load_cb, &dd->dd_desc_paddr,
3863				BUS_DMA_NOWAIT);
3864	if (error != 0) {
3865		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3866			dd->dd_name, error);
3867		goto fail2;
3868	}
3869
3870	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3871	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
3872	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
3873	    /*XXX*/ (u_long) dd->dd_desc_len);
3874
3875	return (0);
3876
3877fail2:
3878	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3879fail1:
3880	bus_dma_tag_destroy(dd->dd_dmat);
3881	memset(dd, 0, sizeof(*dd));
3882	return error;
3883#undef DS2PHYS
3884#undef ATH_DESC_4KB_BOUND_CHECK
3885}
3886
3887int
3888ath_descdma_setup(struct ath_softc *sc,
3889	struct ath_descdma *dd, ath_bufhead *head,
3890	const char *name, int ds_size, int nbuf, int ndesc)
3891{
3892#define	DS2PHYS(_dd, _ds) \
3893	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3894#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3895	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3896	struct ifnet *ifp = sc->sc_ifp;
3897	uint8_t *ds;
3898	struct ath_buf *bf;
3899	int i, bsize, error;
3900
3901	/* Allocate descriptors */
3902	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3903	    nbuf * ndesc);
3904
3905	/* Assume any errors during allocation were dealt with */
3906	if (error != 0) {
3907		return (error);
3908	}
3909
3910	ds = (uint8_t *) dd->dd_desc;
3911
3912	/* allocate rx buffers */
3913	bsize = sizeof(struct ath_buf) * nbuf;
3914	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3915	if (bf == NULL) {
3916		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3917			dd->dd_name, bsize);
3918		goto fail3;
3919	}
3920	dd->dd_bufptr = bf;
3921
3922	TAILQ_INIT(head);
3923	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3924		bf->bf_desc = (struct ath_desc *) ds;
3925		bf->bf_daddr = DS2PHYS(dd, ds);
3926		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3927			/*
3928			 * Merlin WAR: Skip descriptor addresses which
3929			 * cause 4KB boundary crossing along any point
3930			 * in the descriptor.
3931			 */
3932			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3933			     dd->dd_descsize)) {
3934				/* Start at the next page */
3935				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3936				bf->bf_desc = (struct ath_desc *) ds;
3937				bf->bf_daddr = DS2PHYS(dd, ds);
3938			}
3939		}
3940		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3941				&bf->bf_dmamap);
3942		if (error != 0) {
3943			if_printf(ifp, "unable to create dmamap for %s "
3944				"buffer %u, error %u\n", dd->dd_name, i, error);
3945			ath_descdma_cleanup(sc, dd, head);
3946			return error;
3947		}
3948		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3949		TAILQ_INSERT_TAIL(head, bf, bf_list);
3950	}
3951
3952	/*
3953	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3954	 * allocation otherwise weird stuff will occur and crash your
3955	 * machine.
3956	 */
3957	return 0;
3958	/* XXX this should likely just call ath_descdma_cleanup() */
3959fail3:
3960	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3961	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3962	bus_dma_tag_destroy(dd->dd_dmat);
3963	memset(dd, 0, sizeof(*dd));
3964	return error;
3965#undef DS2PHYS
3966#undef ATH_DESC_4KB_BOUND_CHECK
3967}
3968
3969/*
3970 * Allocate ath_buf entries but no descriptor contents.
3971 *
3972 * This is for RX EDMA where the descriptors are the header part of
3973 * the RX buffer.
3974 */
3975int
3976ath_descdma_setup_rx_edma(struct ath_softc *sc,
3977	struct ath_descdma *dd, ath_bufhead *head,
3978	const char *name, int nbuf, int rx_status_len)
3979{
3980	struct ifnet *ifp = sc->sc_ifp;
3981	struct ath_buf *bf;
3982	int i, bsize, error;
3983
3984	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3985	    __func__, name, nbuf);
3986
3987	dd->dd_name = name;
3988	/*
3989	 * This is (mostly) purely for show.  We're not allocating any actual
3990	 * descriptors here as EDMA RX has the descriptor be part
3991	 * of the RX buffer.
3992	 *
3993	 * However, dd_desc_len is used by ath_descdma_free() to determine
3994	 * whether we have already freed this DMA mapping.
3995	 */
3996	dd->dd_desc_len = rx_status_len * nbuf;
3997	dd->dd_descsize = rx_status_len;
3998
3999	/* allocate rx buffers */
4000	bsize = sizeof(struct ath_buf) * nbuf;
4001	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
4002	if (bf == NULL) {
4003		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
4004			dd->dd_name, bsize);
4005		error = ENOMEM;
4006		goto fail3;
4007	}
4008	dd->dd_bufptr = bf;
4009
4010	TAILQ_INIT(head);
4011	for (i = 0; i < nbuf; i++, bf++) {
4012		bf->bf_desc = NULL;
4013		bf->bf_daddr = 0;
4014		bf->bf_lastds = NULL;	/* Just an initial value */
4015
4016		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
4017				&bf->bf_dmamap);
4018		if (error != 0) {
4019			if_printf(ifp, "unable to create dmamap for %s "
4020				"buffer %u, error %u\n", dd->dd_name, i, error);
4021			ath_descdma_cleanup(sc, dd, head);
4022			return error;
4023		}
4024		TAILQ_INSERT_TAIL(head, bf, bf_list);
4025	}
4026	return 0;
4027fail3:
4028	memset(dd, 0, sizeof(*dd));
4029	return error;
4030}
4031
4032void
4033ath_descdma_cleanup(struct ath_softc *sc,
4034	struct ath_descdma *dd, ath_bufhead *head)
4035{
4036	struct ath_buf *bf;
4037	struct ieee80211_node *ni;
4038	int do_warning = 0;
4039
4040	if (dd->dd_dmamap != 0) {
4041		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
4042		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
4043		bus_dma_tag_destroy(dd->dd_dmat);
4044	}
4045
4046	if (head != NULL) {
4047		TAILQ_FOREACH(bf, head, bf_list) {
4048			if (bf->bf_m) {
4049				/*
4050				 * XXX warn if there's buffers here.
4051				 * XXX it should have been freed by the
4052				 * owner!
4053				 */
4054
4055				if (do_warning == 0) {
4056					do_warning = 1;
4057					device_printf(sc->sc_dev,
4058					    "%s: %s: mbuf should've been"
4059					    " unmapped/freed!\n",
4060					    __func__,
4061					    dd->dd_name);
4062				}
4063				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4064				    BUS_DMASYNC_POSTREAD);
4065				bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4066				m_freem(bf->bf_m);
4067				bf->bf_m = NULL;
4068			}
4069			if (bf->bf_dmamap != NULL) {
4070				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
4071				bf->bf_dmamap = NULL;
4072			}
4073			ni = bf->bf_node;
4074			bf->bf_node = NULL;
4075			if (ni != NULL) {
4076				/*
4077				 * Reclaim node reference.
4078				 */
4079				ieee80211_free_node(ni);
4080			}
4081		}
4082	}
4083
4084	if (head != NULL)
4085		TAILQ_INIT(head);
4086
4087	if (dd->dd_bufptr != NULL)
4088		free(dd->dd_bufptr, M_ATHDEV);
4089	memset(dd, 0, sizeof(*dd));
4090}
4091
4092static int
4093ath_desc_alloc(struct ath_softc *sc)
4094{
4095	int error;
4096
4097	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
4098		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
4099	if (error != 0) {
4100		return error;
4101	}
4102	sc->sc_txbuf_cnt = ath_txbuf;
4103
4104	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
4105		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
4106		    ATH_TXDESC);
4107	if (error != 0) {
4108		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4109		return error;
4110	}
4111
4112	/*
4113	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
4114	 * flag doesn't have to be set in ath_getbuf_locked().
4115	 */
4116
4117	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
4118			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
4119	if (error != 0) {
4120		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4121		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
4122		    &sc->sc_txbuf_mgmt);
4123		return error;
4124	}
4125	return 0;
4126}
4127
4128static void
4129ath_desc_free(struct ath_softc *sc)
4130{
4131
4132	if (sc->sc_bdma.dd_desc_len != 0)
4133		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
4134	if (sc->sc_txdma.dd_desc_len != 0)
4135		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4136	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
4137		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
4138		    &sc->sc_txbuf_mgmt);
4139}
4140
4141static struct ieee80211_node *
4142ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
4143{
4144	struct ieee80211com *ic = vap->iv_ic;
4145	struct ath_softc *sc = ic->ic_ifp->if_softc;
4146	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
4147	struct ath_node *an;
4148
4149	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
4150	if (an == NULL) {
4151		/* XXX stat+msg */
4152		return NULL;
4153	}
4154	ath_rate_node_init(sc, an);
4155
4156	/* Setup the mutex - there's no associd yet so set the name to NULL */
4157	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
4158	    device_get_nameunit(sc->sc_dev), an);
4159	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
4160
4161	/* XXX setup ath_tid */
4162	ath_tx_tid_init(sc, an);
4163
4164	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an);
4165	return &an->an_node;
4166}
4167
4168static void
4169ath_node_cleanup(struct ieee80211_node *ni)
4170{
4171	struct ieee80211com *ic = ni->ni_ic;
4172	struct ath_softc *sc = ic->ic_ifp->if_softc;
4173
4174	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
4175	    ni->ni_macaddr, ":", ATH_NODE(ni));
4176
4177	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
4178	ath_tx_node_flush(sc, ATH_NODE(ni));
4179	ath_rate_node_cleanup(sc, ATH_NODE(ni));
4180	sc->sc_node_cleanup(ni);
4181}
4182
4183static void
4184ath_node_free(struct ieee80211_node *ni)
4185{
4186	struct ieee80211com *ic = ni->ni_ic;
4187	struct ath_softc *sc = ic->ic_ifp->if_softc;
4188
4189	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
4190	    ni->ni_macaddr, ":", ATH_NODE(ni));
4191	mtx_destroy(&ATH_NODE(ni)->an_mtx);
4192	sc->sc_node_free(ni);
4193}
4194
4195static void
4196ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
4197{
4198	struct ieee80211com *ic = ni->ni_ic;
4199	struct ath_softc *sc = ic->ic_ifp->if_softc;
4200	struct ath_hal *ah = sc->sc_ah;
4201
4202	*rssi = ic->ic_node_getrssi(ni);
4203	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
4204		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
4205	else
4206		*noise = -95;		/* nominally correct */
4207}
4208
4209/*
4210 * Set the default antenna.
4211 */
4212void
4213ath_setdefantenna(struct ath_softc *sc, u_int antenna)
4214{
4215	struct ath_hal *ah = sc->sc_ah;
4216
4217	/* XXX block beacon interrupts */
4218	ath_hal_setdefantenna(ah, antenna);
4219	if (sc->sc_defant != antenna)
4220		sc->sc_stats.ast_ant_defswitch++;
4221	sc->sc_defant = antenna;
4222	sc->sc_rxotherant = 0;
4223}
4224
4225static void
4226ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4227{
4228	txq->axq_qnum = qnum;
4229	txq->axq_ac = 0;
4230	txq->axq_depth = 0;
4231	txq->axq_aggr_depth = 0;
4232	txq->axq_intrcnt = 0;
4233	txq->axq_link = NULL;
4234	txq->axq_softc = sc;
4235	TAILQ_INIT(&txq->axq_q);
4236	TAILQ_INIT(&txq->axq_tidq);
4237	TAILQ_INIT(&txq->fifo.axq_q);
4238	ATH_TXQ_LOCK_INIT(sc, txq);
4239}
4240
4241/*
4242 * Setup a h/w transmit queue.
4243 */
4244static struct ath_txq *
4245ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4246{
4247#define	N(a)	(sizeof(a)/sizeof(a[0]))
4248	struct ath_hal *ah = sc->sc_ah;
4249	HAL_TXQ_INFO qi;
4250	int qnum;
4251
4252	memset(&qi, 0, sizeof(qi));
4253	qi.tqi_subtype = subtype;
4254	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4255	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4256	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4257	/*
4258	 * Enable interrupts only for EOL and DESC conditions.
4259	 * We mark tx descriptors to receive a DESC interrupt
4260	 * when a tx queue gets deep; otherwise waiting for the
4261	 * EOL to reap descriptors.  Note that this is done to
4262	 * reduce interrupt load and this only defers reaping
4263	 * descriptors, never transmitting frames.  Aside from
4264	 * reducing interrupts this also permits more concurrency.
4265	 * The only potential downside is if the tx queue backs
4266	 * up in which case the top half of the kernel may backup
4267	 * due to a lack of tx descriptors.
4268	 */
4269	if (sc->sc_isedma)
4270		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4271		    HAL_TXQ_TXOKINT_ENABLE;
4272	else
4273		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4274		    HAL_TXQ_TXDESCINT_ENABLE;
4275
4276	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4277	if (qnum == -1) {
4278		/*
4279		 * NB: don't print a message, this happens
4280		 * normally on parts with too few tx queues
4281		 */
4282		return NULL;
4283	}
4284	if (qnum >= N(sc->sc_txq)) {
4285		device_printf(sc->sc_dev,
4286			"hal qnum %u out of range, max %zu!\n",
4287			qnum, N(sc->sc_txq));
4288		ath_hal_releasetxqueue(ah, qnum);
4289		return NULL;
4290	}
4291	if (!ATH_TXQ_SETUP(sc, qnum)) {
4292		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4293		sc->sc_txqsetup |= 1<<qnum;
4294	}
4295	return &sc->sc_txq[qnum];
4296#undef N
4297}
4298
4299/*
4300 * Setup a hardware data transmit queue for the specified
4301 * access control.  The hal may not support all requested
4302 * queues in which case it will return a reference to a
4303 * previously setup queue.  We record the mapping from ac's
4304 * to h/w queues for use by ath_tx_start and also track
4305 * the set of h/w queues being used to optimize work in the
4306 * transmit interrupt handler and related routines.
4307 */
4308static int
4309ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4310{
4311#define	N(a)	(sizeof(a)/sizeof(a[0]))
4312	struct ath_txq *txq;
4313
4314	if (ac >= N(sc->sc_ac2q)) {
4315		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4316			ac, N(sc->sc_ac2q));
4317		return 0;
4318	}
4319	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4320	if (txq != NULL) {
4321		txq->axq_ac = ac;
4322		sc->sc_ac2q[ac] = txq;
4323		return 1;
4324	} else
4325		return 0;
4326#undef N
4327}
4328
4329/*
4330 * Update WME parameters for a transmit queue.
4331 */
4332static int
4333ath_txq_update(struct ath_softc *sc, int ac)
4334{
4335#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4336#define	ATH_TXOP_TO_US(v)		(v<<5)
4337	struct ifnet *ifp = sc->sc_ifp;
4338	struct ieee80211com *ic = ifp->if_l2com;
4339	struct ath_txq *txq = sc->sc_ac2q[ac];
4340	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4341	struct ath_hal *ah = sc->sc_ah;
4342	HAL_TXQ_INFO qi;
4343
4344	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4345#ifdef IEEE80211_SUPPORT_TDMA
4346	if (sc->sc_tdma) {
4347		/*
4348		 * AIFS is zero so there's no pre-transmit wait.  The
4349		 * burst time defines the slot duration and is configured
4350		 * through net80211.  The QCU is setup to not do post-xmit
4351		 * back off, lockout all lower-priority QCU's, and fire
4352		 * off the DMA beacon alert timer which is setup based
4353		 * on the slot configuration.
4354		 */
4355		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4356			      | HAL_TXQ_TXERRINT_ENABLE
4357			      | HAL_TXQ_TXURNINT_ENABLE
4358			      | HAL_TXQ_TXEOLINT_ENABLE
4359			      | HAL_TXQ_DBA_GATED
4360			      | HAL_TXQ_BACKOFF_DISABLE
4361			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4362			      ;
4363		qi.tqi_aifs = 0;
4364		/* XXX +dbaprep? */
4365		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4366		qi.tqi_burstTime = qi.tqi_readyTime;
4367	} else {
4368#endif
4369		/*
4370		 * XXX shouldn't this just use the default flags
4371		 * used in the previous queue setup?
4372		 */
4373		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4374			      | HAL_TXQ_TXERRINT_ENABLE
4375			      | HAL_TXQ_TXDESCINT_ENABLE
4376			      | HAL_TXQ_TXURNINT_ENABLE
4377			      | HAL_TXQ_TXEOLINT_ENABLE
4378			      ;
4379		qi.tqi_aifs = wmep->wmep_aifsn;
4380		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4381		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4382		qi.tqi_readyTime = 0;
4383		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4384#ifdef IEEE80211_SUPPORT_TDMA
4385	}
4386#endif
4387
4388	DPRINTF(sc, ATH_DEBUG_RESET,
4389	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4390	    __func__, txq->axq_qnum, qi.tqi_qflags,
4391	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4392
4393	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4394		if_printf(ifp, "unable to update hardware queue "
4395			"parameters for %s traffic!\n",
4396			ieee80211_wme_acnames[ac]);
4397		return 0;
4398	} else {
4399		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4400		return 1;
4401	}
4402#undef ATH_TXOP_TO_US
4403#undef ATH_EXPONENT_TO_VALUE
4404}
4405
4406/*
4407 * Callback from the 802.11 layer to update WME parameters.
4408 */
4409int
4410ath_wme_update(struct ieee80211com *ic)
4411{
4412	struct ath_softc *sc = ic->ic_ifp->if_softc;
4413
4414	return !ath_txq_update(sc, WME_AC_BE) ||
4415	    !ath_txq_update(sc, WME_AC_BK) ||
4416	    !ath_txq_update(sc, WME_AC_VI) ||
4417	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4418}
4419
4420/*
4421 * Reclaim resources for a setup queue.
4422 */
4423static void
4424ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4425{
4426
4427	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4428	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4429	ATH_TXQ_LOCK_DESTROY(txq);
4430}
4431
4432/*
4433 * Reclaim all tx queue resources.
4434 */
4435static void
4436ath_tx_cleanup(struct ath_softc *sc)
4437{
4438	int i;
4439
4440	ATH_TXBUF_LOCK_DESTROY(sc);
4441	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4442		if (ATH_TXQ_SETUP(sc, i))
4443			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4444}
4445
4446/*
4447 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4448 * using the current rates in sc_rixmap.
4449 */
4450int
4451ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4452{
4453	int rix = sc->sc_rixmap[rate];
4454	/* NB: return lowest rix for invalid rate */
4455	return (rix == 0xff ? 0 : rix);
4456}
4457
4458static void
4459ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4460    struct ath_buf *bf)
4461{
4462	struct ieee80211_node *ni = bf->bf_node;
4463	struct ifnet *ifp = sc->sc_ifp;
4464	struct ieee80211com *ic = ifp->if_l2com;
4465	int sr, lr, pri;
4466
4467	if (ts->ts_status == 0) {
4468		u_int8_t txant = ts->ts_antenna;
4469		sc->sc_stats.ast_ant_tx[txant]++;
4470		sc->sc_ant_tx[txant]++;
4471		if (ts->ts_finaltsi != 0)
4472			sc->sc_stats.ast_tx_altrate++;
4473		pri = M_WME_GETAC(bf->bf_m);
4474		if (pri >= WME_AC_VO)
4475			ic->ic_wme.wme_hipri_traffic++;
4476		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
4477			ni->ni_inact = ni->ni_inact_reload;
4478	} else {
4479		if (ts->ts_status & HAL_TXERR_XRETRY)
4480			sc->sc_stats.ast_tx_xretries++;
4481		if (ts->ts_status & HAL_TXERR_FIFO)
4482			sc->sc_stats.ast_tx_fifoerr++;
4483		if (ts->ts_status & HAL_TXERR_FILT)
4484			sc->sc_stats.ast_tx_filtered++;
4485		if (ts->ts_status & HAL_TXERR_XTXOP)
4486			sc->sc_stats.ast_tx_xtxop++;
4487		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4488			sc->sc_stats.ast_tx_timerexpired++;
4489
4490		if (bf->bf_m->m_flags & M_FF)
4491			sc->sc_stats.ast_ff_txerr++;
4492	}
4493	/* XXX when is this valid? */
4494	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
4495		sc->sc_stats.ast_tx_desccfgerr++;
4496	/*
4497	 * This can be valid for successful frame transmission!
4498	 * If there's a TX FIFO underrun during aggregate transmission,
4499	 * the MAC will pad the rest of the aggregate with delimiters.
4500	 * If a BA is returned, the frame is marked as "OK" and it's up
4501	 * to the TX completion code to notice which frames weren't
4502	 * successfully transmitted.
4503	 */
4504	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
4505		sc->sc_stats.ast_tx_data_underrun++;
4506	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
4507		sc->sc_stats.ast_tx_delim_underrun++;
4508
4509	sr = ts->ts_shortretry;
4510	lr = ts->ts_longretry;
4511	sc->sc_stats.ast_tx_shortretry += sr;
4512	sc->sc_stats.ast_tx_longretry += lr;
4513
4514}
4515
4516/*
4517 * The default completion. If fail is 1, this means
4518 * "please don't retry the frame, and just return -1 status
4519 * to the net80211 stack.
4520 */
4521void
4522ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4523{
4524	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4525	int st;
4526
4527	if (fail == 1)
4528		st = -1;
4529	else
4530		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
4531		    ts->ts_status : HAL_TXERR_XRETRY;
4532
4533#if 0
4534	if (bf->bf_state.bfs_dobaw)
4535		device_printf(sc->sc_dev,
4536		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4537		    __func__,
4538		    bf,
4539		    SEQNO(bf->bf_state.bfs_seqno));
4540#endif
4541	if (bf->bf_next != NULL)
4542		device_printf(sc->sc_dev,
4543		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
4544		    __func__,
4545		    bf,
4546		    SEQNO(bf->bf_state.bfs_seqno));
4547
4548	/*
4549	 * Check if the node software queue is empty; if so
4550	 * then clear the TIM.
4551	 *
4552	 * This needs to be done before the buffer is freed as
4553	 * otherwise the node reference will have been released
4554	 * and the node may not actually exist any longer.
4555	 *
4556	 * XXX I don't like this belonging here, but it's cleaner
4557	 * to do it here right now then all the other places
4558	 * where ath_tx_default_comp() is called.
4559	 *
4560	 * XXX TODO: during drain, ensure that the callback is
4561	 * being called so we get a chance to update the TIM.
4562	 */
4563	if (bf->bf_node) {
4564		ATH_TX_LOCK(sc);
4565		ath_tx_update_tim(sc, bf->bf_node, 0);
4566		ATH_TX_UNLOCK(sc);
4567	}
4568
4569	/*
4570	 * Do any tx complete callback.  Note this must
4571	 * be done before releasing the node reference.
4572	 * This will free the mbuf, release the net80211
4573	 * node and recycle the ath_buf.
4574	 */
4575	ath_tx_freebuf(sc, bf, st);
4576}
4577
4578/*
4579 * Update rate control with the given completion status.
4580 */
4581void
4582ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4583    struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4584    int nframes, int nbad)
4585{
4586	struct ath_node *an;
4587
4588	/* Only for unicast frames */
4589	if (ni == NULL)
4590		return;
4591
4592	an = ATH_NODE(ni);
4593	ATH_NODE_UNLOCK_ASSERT(an);
4594
4595	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4596		ATH_NODE_LOCK(an);
4597		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4598		ATH_NODE_UNLOCK(an);
4599	}
4600}
4601
4602/*
4603 * Process the completion of the given buffer.
4604 *
4605 * This calls the rate control update and then the buffer completion.
4606 * This will either free the buffer or requeue it.  In any case, the
4607 * bf pointer should be treated as invalid after this function is called.
4608 */
4609void
4610ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
4611    struct ath_tx_status *ts, struct ath_buf *bf)
4612{
4613	struct ieee80211_node *ni = bf->bf_node;
4614
4615	ATH_TX_UNLOCK_ASSERT(sc);
4616	ATH_TXQ_UNLOCK_ASSERT(txq);
4617
4618	/* If unicast frame, update general statistics */
4619	if (ni != NULL) {
4620		/* update statistics */
4621		ath_tx_update_stats(sc, ts, bf);
4622	}
4623
4624	/*
4625	 * Call the completion handler.
4626	 * The completion handler is responsible for
4627	 * calling the rate control code.
4628	 *
4629	 * Frames with no completion handler get the
4630	 * rate control code called here.
4631	 */
4632	if (bf->bf_comp == NULL) {
4633		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4634		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4635			/*
4636			 * XXX assume this isn't an aggregate
4637			 * frame.
4638			 */
4639			ath_tx_update_ratectrl(sc, ni,
4640			     bf->bf_state.bfs_rc, ts,
4641			    bf->bf_state.bfs_pktlen, 1,
4642			    (ts->ts_status == 0 ? 0 : 1));
4643		}
4644		ath_tx_default_comp(sc, bf, 0);
4645	} else
4646		bf->bf_comp(sc, bf, 0);
4647}
4648
4649
4650
4651/*
4652 * Process completed xmit descriptors from the specified queue.
4653 * Kick the packet scheduler if needed. This can occur from this
4654 * particular task.
4655 */
4656static int
4657ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4658{
4659	struct ath_hal *ah = sc->sc_ah;
4660	struct ath_buf *bf;
4661	struct ath_desc *ds;
4662	struct ath_tx_status *ts;
4663	struct ieee80211_node *ni;
4664#ifdef	IEEE80211_SUPPORT_SUPERG
4665	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4666#endif	/* IEEE80211_SUPPORT_SUPERG */
4667	int nacked;
4668	HAL_STATUS status;
4669
4670	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4671		__func__, txq->axq_qnum,
4672		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4673		txq->axq_link);
4674
4675	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4676	    "ath_tx_processq: txq=%u head %p link %p depth %p",
4677	    txq->axq_qnum,
4678	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4679	    txq->axq_link,
4680	    txq->axq_depth);
4681
4682	nacked = 0;
4683	for (;;) {
4684		ATH_TXQ_LOCK(txq);
4685		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4686		bf = TAILQ_FIRST(&txq->axq_q);
4687		if (bf == NULL) {
4688			ATH_TXQ_UNLOCK(txq);
4689			break;
4690		}
4691		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4692		ts = &bf->bf_status.ds_txstat;
4693
4694		status = ath_hal_txprocdesc(ah, ds, ts);
4695#ifdef ATH_DEBUG
4696		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4697			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4698			    status == HAL_OK);
4699		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4700			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4701			    status == HAL_OK);
4702#endif
4703#ifdef	ATH_DEBUG_ALQ
4704		if (if_ath_alq_checkdebug(&sc->sc_alq,
4705		    ATH_ALQ_EDMA_TXSTATUS)) {
4706			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
4707			sc->sc_tx_statuslen,
4708			(char *) ds);
4709		}
4710#endif
4711
4712		if (status == HAL_EINPROGRESS) {
4713			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4714			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4715			    txq->axq_qnum, bf, ds);
4716			ATH_TXQ_UNLOCK(txq);
4717			break;
4718		}
4719		ATH_TXQ_REMOVE(txq, bf, bf_list);
4720
4721		/*
4722		 * Sanity check.
4723		 */
4724		if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4725			device_printf(sc->sc_dev,
4726			    "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4727			    __func__,
4728			    txq->axq_qnum,
4729			    bf,
4730			    bf->bf_state.bfs_tx_queue);
4731		}
4732		if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4733			device_printf(sc->sc_dev,
4734			    "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4735			    __func__,
4736			    txq->axq_qnum,
4737			    bf->bf_last,
4738			    bf->bf_last->bf_state.bfs_tx_queue);
4739		}
4740
4741#if 0
4742		if (txq->axq_depth > 0) {
4743			/*
4744			 * More frames follow.  Mark the buffer busy
4745			 * so it's not re-used while the hardware may
4746			 * still re-read the link field in the descriptor.
4747			 *
4748			 * Use the last buffer in an aggregate as that
4749			 * is where the hardware may be - intermediate
4750			 * descriptors won't be "busy".
4751			 */
4752			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4753		} else
4754			txq->axq_link = NULL;
4755#else
4756		bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4757#endif
4758		if (bf->bf_state.bfs_aggr)
4759			txq->axq_aggr_depth--;
4760
4761		ni = bf->bf_node;
4762
4763		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4764		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4765		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
4766		/*
4767		 * If unicast frame was ack'd update RSSI,
4768		 * including the last rx time used to
4769		 * workaround phantom bmiss interrupts.
4770		 */
4771		if (ni != NULL && ts->ts_status == 0 &&
4772		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4773			nacked++;
4774			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4775			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4776				ts->ts_rssi);
4777		}
4778		ATH_TXQ_UNLOCK(txq);
4779
4780		/*
4781		 * Update statistics and call completion
4782		 */
4783		ath_tx_process_buf_completion(sc, txq, ts, bf);
4784
4785		/* XXX at this point, bf and ni may be totally invalid */
4786	}
4787#ifdef IEEE80211_SUPPORT_SUPERG
4788	/*
4789	 * Flush fast-frame staging queue when traffic slows.
4790	 */
4791	if (txq->axq_depth <= 1)
4792		ieee80211_ff_flush(ic, txq->axq_ac);
4793#endif
4794
4795	/* Kick the software TXQ scheduler */
4796	if (dosched) {
4797		ATH_TX_LOCK(sc);
4798		ath_txq_sched(sc, txq);
4799		ATH_TX_UNLOCK(sc);
4800	}
4801
4802	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4803	    "ath_tx_processq: txq=%u: done",
4804	    txq->axq_qnum);
4805
4806	return nacked;
4807}
4808
4809#define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4810
4811/*
4812 * Deferred processing of transmit interrupt; special-cased
4813 * for a single hardware transmit queue (e.g. 5210 and 5211).
4814 */
4815static void
4816ath_tx_proc_q0(void *arg, int npending)
4817{
4818	struct ath_softc *sc = arg;
4819	struct ifnet *ifp = sc->sc_ifp;
4820	uint32_t txqs;
4821
4822	ATH_PCU_LOCK(sc);
4823	sc->sc_txproc_cnt++;
4824	txqs = sc->sc_txq_active;
4825	sc->sc_txq_active &= ~txqs;
4826	ATH_PCU_UNLOCK(sc);
4827
4828	ATH_LOCK(sc);
4829	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4830	ATH_UNLOCK(sc);
4831
4832	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4833	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4834
4835	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4836		/* XXX why is lastrx updated in tx code? */
4837		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4838	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4839		ath_tx_processq(sc, sc->sc_cabq, 1);
4840	IF_LOCK(&ifp->if_snd);
4841	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4842	IF_UNLOCK(&ifp->if_snd);
4843	sc->sc_wd_timer = 0;
4844
4845	if (sc->sc_softled)
4846		ath_led_event(sc, sc->sc_txrix);
4847
4848	ATH_PCU_LOCK(sc);
4849	sc->sc_txproc_cnt--;
4850	ATH_PCU_UNLOCK(sc);
4851
4852	ATH_LOCK(sc);
4853	ath_power_restore_power_state(sc);
4854	ATH_UNLOCK(sc);
4855
4856	ath_tx_kick(sc);
4857}
4858
4859/*
4860 * Deferred processing of transmit interrupt; special-cased
4861 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4862 */
4863static void
4864ath_tx_proc_q0123(void *arg, int npending)
4865{
4866	struct ath_softc *sc = arg;
4867	struct ifnet *ifp = sc->sc_ifp;
4868	int nacked;
4869	uint32_t txqs;
4870
4871	ATH_PCU_LOCK(sc);
4872	sc->sc_txproc_cnt++;
4873	txqs = sc->sc_txq_active;
4874	sc->sc_txq_active &= ~txqs;
4875	ATH_PCU_UNLOCK(sc);
4876
4877	ATH_LOCK(sc);
4878	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4879	ATH_UNLOCK(sc);
4880
4881	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4882	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4883
4884	/*
4885	 * Process each active queue.
4886	 */
4887	nacked = 0;
4888	if (TXQACTIVE(txqs, 0))
4889		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4890	if (TXQACTIVE(txqs, 1))
4891		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4892	if (TXQACTIVE(txqs, 2))
4893		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4894	if (TXQACTIVE(txqs, 3))
4895		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4896	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4897		ath_tx_processq(sc, sc->sc_cabq, 1);
4898	if (nacked)
4899		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4900
4901	IF_LOCK(&ifp->if_snd);
4902	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4903	IF_UNLOCK(&ifp->if_snd);
4904	sc->sc_wd_timer = 0;
4905
4906	if (sc->sc_softled)
4907		ath_led_event(sc, sc->sc_txrix);
4908
4909	ATH_PCU_LOCK(sc);
4910	sc->sc_txproc_cnt--;
4911	ATH_PCU_UNLOCK(sc);
4912
4913	ATH_LOCK(sc);
4914	ath_power_restore_power_state(sc);
4915	ATH_UNLOCK(sc);
4916
4917	ath_tx_kick(sc);
4918}
4919
4920/*
4921 * Deferred processing of transmit interrupt.
4922 */
4923static void
4924ath_tx_proc(void *arg, int npending)
4925{
4926	struct ath_softc *sc = arg;
4927	struct ifnet *ifp = sc->sc_ifp;
4928	int i, nacked;
4929	uint32_t txqs;
4930
4931	ATH_PCU_LOCK(sc);
4932	sc->sc_txproc_cnt++;
4933	txqs = sc->sc_txq_active;
4934	sc->sc_txq_active &= ~txqs;
4935	ATH_PCU_UNLOCK(sc);
4936
4937	ATH_LOCK(sc);
4938	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4939	ATH_UNLOCK(sc);
4940
4941	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4942
4943	/*
4944	 * Process each active queue.
4945	 */
4946	nacked = 0;
4947	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4948		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4949			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4950	if (nacked)
4951		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4952
4953	/* XXX check this inside of IF_LOCK? */
4954	IF_LOCK(&ifp->if_snd);
4955	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4956	IF_UNLOCK(&ifp->if_snd);
4957	sc->sc_wd_timer = 0;
4958
4959	if (sc->sc_softled)
4960		ath_led_event(sc, sc->sc_txrix);
4961
4962	ATH_PCU_LOCK(sc);
4963	sc->sc_txproc_cnt--;
4964	ATH_PCU_UNLOCK(sc);
4965
4966	ATH_LOCK(sc);
4967	ath_power_restore_power_state(sc);
4968	ATH_UNLOCK(sc);
4969
4970	ath_tx_kick(sc);
4971}
4972#undef	TXQACTIVE
4973
4974/*
4975 * Deferred processing of TXQ rescheduling.
4976 */
4977static void
4978ath_txq_sched_tasklet(void *arg, int npending)
4979{
4980	struct ath_softc *sc = arg;
4981	int i;
4982
4983	/* XXX is skipping ok? */
4984	ATH_PCU_LOCK(sc);
4985#if 0
4986	if (sc->sc_inreset_cnt > 0) {
4987		device_printf(sc->sc_dev,
4988		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4989		ATH_PCU_UNLOCK(sc);
4990		return;
4991	}
4992#endif
4993	sc->sc_txproc_cnt++;
4994	ATH_PCU_UNLOCK(sc);
4995
4996	ATH_LOCK(sc);
4997	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4998	ATH_UNLOCK(sc);
4999
5000	ATH_TX_LOCK(sc);
5001	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5002		if (ATH_TXQ_SETUP(sc, i)) {
5003			ath_txq_sched(sc, &sc->sc_txq[i]);
5004		}
5005	}
5006	ATH_TX_UNLOCK(sc);
5007
5008	ATH_LOCK(sc);
5009	ath_power_restore_power_state(sc);
5010	ATH_UNLOCK(sc);
5011
5012	ATH_PCU_LOCK(sc);
5013	sc->sc_txproc_cnt--;
5014	ATH_PCU_UNLOCK(sc);
5015}
5016
5017void
5018ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
5019{
5020
5021	ATH_TXBUF_LOCK_ASSERT(sc);
5022
5023	if (bf->bf_flags & ATH_BUF_MGMT)
5024		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
5025	else {
5026		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5027		sc->sc_txbuf_cnt++;
5028		if (sc->sc_txbuf_cnt > ath_txbuf) {
5029			device_printf(sc->sc_dev,
5030			    "%s: sc_txbuf_cnt > %d?\n",
5031			    __func__,
5032			    ath_txbuf);
5033			sc->sc_txbuf_cnt = ath_txbuf;
5034		}
5035	}
5036}
5037
5038void
5039ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
5040{
5041
5042	ATH_TXBUF_LOCK_ASSERT(sc);
5043
5044	if (bf->bf_flags & ATH_BUF_MGMT)
5045		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
5046	else {
5047		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
5048		sc->sc_txbuf_cnt++;
5049		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
5050			device_printf(sc->sc_dev,
5051			    "%s: sc_txbuf_cnt > %d?\n",
5052			    __func__,
5053			    ATH_TXBUF);
5054			sc->sc_txbuf_cnt = ATH_TXBUF;
5055		}
5056	}
5057}
5058
5059/*
5060 * Free the holding buffer if it exists
5061 */
5062void
5063ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
5064{
5065	ATH_TXBUF_UNLOCK_ASSERT(sc);
5066	ATH_TXQ_LOCK_ASSERT(txq);
5067
5068	if (txq->axq_holdingbf == NULL)
5069		return;
5070
5071	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
5072
5073	ATH_TXBUF_LOCK(sc);
5074	ath_returnbuf_tail(sc, txq->axq_holdingbf);
5075	ATH_TXBUF_UNLOCK(sc);
5076
5077	txq->axq_holdingbf = NULL;
5078}
5079
5080/*
5081 * Add this buffer to the holding queue, freeing the previous
5082 * one if it exists.
5083 */
5084static void
5085ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
5086{
5087	struct ath_txq *txq;
5088
5089	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
5090
5091	ATH_TXBUF_UNLOCK_ASSERT(sc);
5092	ATH_TXQ_LOCK_ASSERT(txq);
5093
5094	/* XXX assert ATH_BUF_BUSY is set */
5095
5096	/* XXX assert the tx queue is under the max number */
5097	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
5098		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
5099		    __func__,
5100		    bf,
5101		    bf->bf_state.bfs_tx_queue);
5102		bf->bf_flags &= ~ATH_BUF_BUSY;
5103		ath_returnbuf_tail(sc, bf);
5104		return;
5105	}
5106	ath_txq_freeholdingbuf(sc, txq);
5107	txq->axq_holdingbf = bf;
5108}
5109
5110/*
5111 * Return a buffer to the pool and update the 'busy' flag on the
5112 * previous 'tail' entry.
5113 *
5114 * This _must_ only be called when the buffer is involved in a completed
5115 * TX. The logic is that if it was part of an active TX, the previous
5116 * buffer on the list is now not involved in a halted TX DMA queue, waiting
5117 * for restart (eg for TDMA.)
5118 *
5119 * The caller must free the mbuf and recycle the node reference.
5120 *
5121 * XXX This method of handling busy / holding buffers is insanely stupid.
5122 * It requires bf_state.bfs_tx_queue to be correctly assigned.  It would
5123 * be much nicer if buffers in the processq() methods would instead be
5124 * always completed there (pushed onto a txq or ath_bufhead) so we knew
5125 * exactly what hardware queue they came from in the first place.
5126 */
5127void
5128ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
5129{
5130	struct ath_txq *txq;
5131
5132	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
5133
5134	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
5135	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
5136
5137	/*
5138	 * If this buffer is busy, push it onto the holding queue.
5139	 */
5140	if (bf->bf_flags & ATH_BUF_BUSY) {
5141		ATH_TXQ_LOCK(txq);
5142		ath_txq_addholdingbuf(sc, bf);
5143		ATH_TXQ_UNLOCK(txq);
5144		return;
5145	}
5146
5147	/*
5148	 * Not a busy buffer, so free normally
5149	 */
5150	ATH_TXBUF_LOCK(sc);
5151	ath_returnbuf_tail(sc, bf);
5152	ATH_TXBUF_UNLOCK(sc);
5153}
5154
5155/*
5156 * This is currently used by ath_tx_draintxq() and
5157 * ath_tx_tid_free_pkts().
5158 *
5159 * It recycles a single ath_buf.
5160 */
5161void
5162ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
5163{
5164	struct ieee80211_node *ni = bf->bf_node;
5165	struct mbuf *m0 = bf->bf_m;
5166
5167	/*
5168	 * Make sure that we only sync/unload if there's an mbuf.
5169	 * If not (eg we cloned a buffer), the unload will have already
5170	 * occured.
5171	 */
5172	if (bf->bf_m != NULL) {
5173		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5174		    BUS_DMASYNC_POSTWRITE);
5175		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5176	}
5177
5178	bf->bf_node = NULL;
5179	bf->bf_m = NULL;
5180
5181	/* Free the buffer, it's not needed any longer */
5182	ath_freebuf(sc, bf);
5183
5184	/* Pass the buffer back to net80211 - completing it */
5185	ieee80211_tx_complete(ni, m0, status);
5186}
5187
5188static struct ath_buf *
5189ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
5190{
5191	struct ath_buf *bf;
5192
5193	ATH_TXQ_LOCK_ASSERT(txq);
5194
5195	/*
5196	 * Drain the FIFO queue first, then if it's
5197	 * empty, move to the normal frame queue.
5198	 */
5199	bf = TAILQ_FIRST(&txq->fifo.axq_q);
5200	if (bf != NULL) {
5201		/*
5202		 * Is it the last buffer in this set?
5203		 * Decrement the FIFO counter.
5204		 */
5205		if (bf->bf_flags & ATH_BUF_FIFOEND) {
5206			if (txq->axq_fifo_depth == 0) {
5207				device_printf(sc->sc_dev,
5208				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
5209				    __func__,
5210				    txq->axq_qnum,
5211				    txq->fifo.axq_depth);
5212			} else
5213				txq->axq_fifo_depth--;
5214		}
5215		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
5216		return (bf);
5217	}
5218
5219	/*
5220	 * Debugging!
5221	 */
5222	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
5223		device_printf(sc->sc_dev,
5224		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
5225		    __func__,
5226		    txq->axq_qnum,
5227		    txq->axq_fifo_depth,
5228		    txq->fifo.axq_depth);
5229	}
5230
5231	/*
5232	 * Now drain the pending queue.
5233	 */
5234	bf = TAILQ_FIRST(&txq->axq_q);
5235	if (bf == NULL) {
5236		txq->axq_link = NULL;
5237		return (NULL);
5238	}
5239	ATH_TXQ_REMOVE(txq, bf, bf_list);
5240	return (bf);
5241}
5242
5243void
5244ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5245{
5246#ifdef ATH_DEBUG
5247	struct ath_hal *ah = sc->sc_ah;
5248#endif
5249	struct ath_buf *bf;
5250	u_int ix;
5251
5252	/*
5253	 * NB: this assumes output has been stopped and
5254	 *     we do not need to block ath_tx_proc
5255	 */
5256	for (ix = 0;; ix++) {
5257		ATH_TXQ_LOCK(txq);
5258		bf = ath_tx_draintxq_get_one(sc, txq);
5259		if (bf == NULL) {
5260			ATH_TXQ_UNLOCK(txq);
5261			break;
5262		}
5263		if (bf->bf_state.bfs_aggr)
5264			txq->axq_aggr_depth--;
5265#ifdef ATH_DEBUG
5266		if (sc->sc_debug & ATH_DEBUG_RESET) {
5267			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5268			int status = 0;
5269
5270			/*
5271			 * EDMA operation has a TX completion FIFO
5272			 * separate from the TX descriptor, so this
5273			 * method of checking the "completion" status
5274			 * is wrong.
5275			 */
5276			if (! sc->sc_isedma) {
5277				status = (ath_hal_txprocdesc(ah,
5278				    bf->bf_lastds,
5279				    &bf->bf_status.ds_txstat) == HAL_OK);
5280			}
5281			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
5282			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5283			    bf->bf_m->m_len, 0, -1);
5284		}
5285#endif /* ATH_DEBUG */
5286		/*
5287		 * Since we're now doing magic in the completion
5288		 * functions, we -must- call it for aggregation
5289		 * destinations or BAW tracking will get upset.
5290		 */
5291		/*
5292		 * Clear ATH_BUF_BUSY; the completion handler
5293		 * will free the buffer.
5294		 */
5295		ATH_TXQ_UNLOCK(txq);
5296		bf->bf_flags &= ~ATH_BUF_BUSY;
5297		if (bf->bf_comp)
5298			bf->bf_comp(sc, bf, 1);
5299		else
5300			ath_tx_default_comp(sc, bf, 1);
5301	}
5302
5303	/*
5304	 * Free the holding buffer if it exists
5305	 */
5306	ATH_TXQ_LOCK(txq);
5307	ath_txq_freeholdingbuf(sc, txq);
5308	ATH_TXQ_UNLOCK(txq);
5309
5310	/*
5311	 * Drain software queued frames which are on
5312	 * active TIDs.
5313	 */
5314	ath_tx_txq_drain(sc, txq);
5315}
5316
5317static void
5318ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5319{
5320	struct ath_hal *ah = sc->sc_ah;
5321
5322	ATH_TXQ_LOCK_ASSERT(txq);
5323
5324	DPRINTF(sc, ATH_DEBUG_RESET,
5325	    "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
5326	    "link %p, holdingbf=%p\n",
5327	    __func__,
5328	    txq->axq_qnum,
5329	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5330	    (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
5331	    (int) ath_hal_numtxpending(ah, txq->axq_qnum),
5332	    txq->axq_flags,
5333	    txq->axq_link,
5334	    txq->axq_holdingbf);
5335
5336	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5337	/* We've stopped TX DMA, so mark this as stopped. */
5338	txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
5339
5340#ifdef	ATH_DEBUG
5341	if ((sc->sc_debug & ATH_DEBUG_RESET)
5342	    && (txq->axq_holdingbf != NULL)) {
5343		ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
5344	}
5345#endif
5346}
5347
5348int
5349ath_stoptxdma(struct ath_softc *sc)
5350{
5351	struct ath_hal *ah = sc->sc_ah;
5352	int i;
5353
5354	/* XXX return value */
5355	if (sc->sc_invalid)
5356		return 0;
5357
5358	if (!sc->sc_invalid) {
5359		/* don't touch the hardware if marked invalid */
5360		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5361		    __func__, sc->sc_bhalq,
5362		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5363		    NULL);
5364
5365		/* stop the beacon queue */
5366		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5367
5368		/* Stop the data queues */
5369		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5370			if (ATH_TXQ_SETUP(sc, i)) {
5371				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5372				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5373				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5374			}
5375		}
5376	}
5377
5378	return 1;
5379}
5380
5381#ifdef	ATH_DEBUG
5382void
5383ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
5384{
5385	struct ath_hal *ah = sc->sc_ah;
5386	struct ath_buf *bf;
5387	int i = 0;
5388
5389	if (! (sc->sc_debug & ATH_DEBUG_RESET))
5390		return;
5391
5392	device_printf(sc->sc_dev, "%s: Q%d: begin\n",
5393	    __func__, txq->axq_qnum);
5394	TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
5395		ath_printtxbuf(sc, bf, txq->axq_qnum, i,
5396			ath_hal_txprocdesc(ah, bf->bf_lastds,
5397			    &bf->bf_status.ds_txstat) == HAL_OK);
5398		i++;
5399	}
5400	device_printf(sc->sc_dev, "%s: Q%d: end\n",
5401	    __func__, txq->axq_qnum);
5402}
5403#endif /* ATH_DEBUG */
5404
5405/*
5406 * Drain the transmit queues and reclaim resources.
5407 */
5408void
5409ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5410{
5411	struct ath_hal *ah = sc->sc_ah;
5412	struct ifnet *ifp = sc->sc_ifp;
5413	int i;
5414	struct ath_buf *bf_last;
5415
5416	(void) ath_stoptxdma(sc);
5417
5418	/*
5419	 * Dump the queue contents
5420	 */
5421	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5422		/*
5423		 * XXX TODO: should we just handle the completed TX frames
5424		 * here, whether or not the reset is a full one or not?
5425		 */
5426		if (ATH_TXQ_SETUP(sc, i)) {
5427#ifdef	ATH_DEBUG
5428			if (sc->sc_debug & ATH_DEBUG_RESET)
5429				ath_tx_dump(sc, &sc->sc_txq[i]);
5430#endif	/* ATH_DEBUG */
5431			if (reset_type == ATH_RESET_NOLOSS) {
5432				ath_tx_processq(sc, &sc->sc_txq[i], 0);
5433				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5434				/*
5435				 * Free the holding buffer; DMA is now
5436				 * stopped.
5437				 */
5438				ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
5439				/*
5440				 * Setup the link pointer to be the
5441				 * _last_ buffer/descriptor in the list.
5442				 * If there's nothing in the list, set it
5443				 * to NULL.
5444				 */
5445				bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
5446				    axq_q_s);
5447				if (bf_last != NULL) {
5448					ath_hal_gettxdesclinkptr(ah,
5449					    bf_last->bf_lastds,
5450					    &sc->sc_txq[i].axq_link);
5451				} else {
5452					sc->sc_txq[i].axq_link = NULL;
5453				}
5454				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5455			} else
5456				ath_tx_draintxq(sc, &sc->sc_txq[i]);
5457		}
5458	}
5459#ifdef ATH_DEBUG
5460	if (sc->sc_debug & ATH_DEBUG_RESET) {
5461		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5462		if (bf != NULL && bf->bf_m != NULL) {
5463			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5464				ath_hal_txprocdesc(ah, bf->bf_lastds,
5465				    &bf->bf_status.ds_txstat) == HAL_OK);
5466			ieee80211_dump_pkt(ifp->if_l2com,
5467			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5468			    0, -1);
5469		}
5470	}
5471#endif /* ATH_DEBUG */
5472	IF_LOCK(&ifp->if_snd);
5473	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5474	IF_UNLOCK(&ifp->if_snd);
5475	sc->sc_wd_timer = 0;
5476}
5477
5478/*
5479 * Update internal state after a channel change.
5480 */
5481static void
5482ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5483{
5484	enum ieee80211_phymode mode;
5485
5486	/*
5487	 * Change channels and update the h/w rate map
5488	 * if we're switching; e.g. 11a to 11b/g.
5489	 */
5490	mode = ieee80211_chan2mode(chan);
5491	if (mode != sc->sc_curmode)
5492		ath_setcurmode(sc, mode);
5493	sc->sc_curchan = chan;
5494}
5495
5496/*
5497 * Set/change channels.  If the channel is really being changed,
5498 * it's done by resetting the chip.  To accomplish this we must
5499 * first cleanup any pending DMA, then restart stuff after a la
5500 * ath_init.
5501 */
5502static int
5503ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5504{
5505	struct ifnet *ifp = sc->sc_ifp;
5506	struct ieee80211com *ic = ifp->if_l2com;
5507	struct ath_hal *ah = sc->sc_ah;
5508	int ret = 0;
5509
5510	/* Treat this as an interface reset */
5511	ATH_PCU_UNLOCK_ASSERT(sc);
5512	ATH_UNLOCK_ASSERT(sc);
5513
5514	/* (Try to) stop TX/RX from occuring */
5515	taskqueue_block(sc->sc_tq);
5516
5517	ATH_PCU_LOCK(sc);
5518
5519	/* Disable interrupts */
5520	ath_hal_intrset(ah, 0);
5521
5522	/* Stop new RX/TX/interrupt completion */
5523	if (ath_reset_grablock(sc, 1) == 0) {
5524		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5525		    __func__);
5526	}
5527
5528	/* Stop pending RX/TX completion */
5529	ath_txrx_stop_locked(sc);
5530
5531	ATH_PCU_UNLOCK(sc);
5532
5533	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5534	    __func__, ieee80211_chan2ieee(ic, chan),
5535	    chan->ic_freq, chan->ic_flags);
5536	if (chan != sc->sc_curchan) {
5537		HAL_STATUS status;
5538		/*
5539		 * To switch channels clear any pending DMA operations;
5540		 * wait long enough for the RX fifo to drain, reset the
5541		 * hardware at the new frequency, and then re-enable
5542		 * the relevant bits of the h/w.
5543		 */
5544#if 0
5545		ath_hal_intrset(ah, 0);		/* disable interrupts */
5546#endif
5547		ath_stoprecv(sc, 1);		/* turn off frame recv */
5548		/*
5549		 * First, handle completed TX/RX frames.
5550		 */
5551		ath_rx_flush(sc);
5552		ath_draintxq(sc, ATH_RESET_NOLOSS);
5553		/*
5554		 * Next, flush the non-scheduled frames.
5555		 */
5556		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5557
5558		ath_update_chainmasks(sc, chan);
5559		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
5560		    sc->sc_cur_rxchainmask);
5561		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5562			if_printf(ifp, "%s: unable to reset "
5563			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5564			    __func__, ieee80211_chan2ieee(ic, chan),
5565			    chan->ic_freq, chan->ic_flags, status);
5566			ret = EIO;
5567			goto finish;
5568		}
5569		sc->sc_diversity = ath_hal_getdiversity(ah);
5570
5571		ATH_RX_LOCK(sc);
5572		sc->sc_rx_stopped = 1;
5573		sc->sc_rx_resetted = 1;
5574		ATH_RX_UNLOCK(sc);
5575
5576		/* Let DFS at it in case it's a DFS channel */
5577		ath_dfs_radar_enable(sc, chan);
5578
5579		/* Let spectral at in case spectral is enabled */
5580		ath_spectral_enable(sc, chan);
5581
5582		/*
5583		 * Let bluetooth coexistence at in case it's needed for this
5584		 * channel
5585		 */
5586		ath_btcoex_enable(sc, ic->ic_curchan);
5587
5588		/*
5589		 * If we're doing TDMA, enforce the TXOP limitation for chips
5590		 * that support it.
5591		 */
5592		if (sc->sc_hasenforcetxop && sc->sc_tdma)
5593			ath_hal_setenforcetxop(sc->sc_ah, 1);
5594		else
5595			ath_hal_setenforcetxop(sc->sc_ah, 0);
5596
5597		/*
5598		 * Re-enable rx framework.
5599		 */
5600		if (ath_startrecv(sc) != 0) {
5601			if_printf(ifp, "%s: unable to restart recv logic\n",
5602			    __func__);
5603			ret = EIO;
5604			goto finish;
5605		}
5606
5607		/*
5608		 * Change channels and update the h/w rate map
5609		 * if we're switching; e.g. 11a to 11b/g.
5610		 */
5611		ath_chan_change(sc, chan);
5612
5613		/*
5614		 * Reset clears the beacon timers; reset them
5615		 * here if needed.
5616		 */
5617		if (sc->sc_beacons) {		/* restart beacons */
5618#ifdef IEEE80211_SUPPORT_TDMA
5619			if (sc->sc_tdma)
5620				ath_tdma_config(sc, NULL);
5621			else
5622#endif
5623			ath_beacon_config(sc, NULL);
5624		}
5625
5626		/*
5627		 * Re-enable interrupts.
5628		 */
5629#if 0
5630		ath_hal_intrset(ah, sc->sc_imask);
5631#endif
5632	}
5633
5634finish:
5635	ATH_PCU_LOCK(sc);
5636	sc->sc_inreset_cnt--;
5637	/* XXX only do this if sc_inreset_cnt == 0? */
5638	ath_hal_intrset(ah, sc->sc_imask);
5639	ATH_PCU_UNLOCK(sc);
5640
5641	IF_LOCK(&ifp->if_snd);
5642	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5643	IF_UNLOCK(&ifp->if_snd);
5644	ath_txrx_start(sc);
5645	/* XXX ath_start? */
5646
5647	return ret;
5648}
5649
5650/*
5651 * Periodically recalibrate the PHY to account
5652 * for temperature/environment changes.
5653 */
5654static void
5655ath_calibrate(void *arg)
5656{
5657	struct ath_softc *sc = arg;
5658	struct ath_hal *ah = sc->sc_ah;
5659	struct ifnet *ifp = sc->sc_ifp;
5660	struct ieee80211com *ic = ifp->if_l2com;
5661	HAL_BOOL longCal, isCalDone = AH_TRUE;
5662	HAL_BOOL aniCal, shortCal = AH_FALSE;
5663	int nextcal;
5664
5665	ATH_LOCK_ASSERT(sc);
5666
5667	/*
5668	 * Force the hardware awake for ANI work.
5669	 */
5670	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5671
5672	/* Skip trying to do this if we're in reset */
5673	if (sc->sc_inreset_cnt)
5674		goto restart;
5675
5676	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5677		goto restart;
5678	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5679	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5680	if (sc->sc_doresetcal)
5681		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5682
5683	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5684	if (aniCal) {
5685		sc->sc_stats.ast_ani_cal++;
5686		sc->sc_lastani = ticks;
5687		ath_hal_ani_poll(ah, sc->sc_curchan);
5688	}
5689
5690	if (longCal) {
5691		sc->sc_stats.ast_per_cal++;
5692		sc->sc_lastlongcal = ticks;
5693		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5694			/*
5695			 * Rfgain is out of bounds, reset the chip
5696			 * to load new gain values.
5697			 */
5698			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5699				"%s: rfgain change\n", __func__);
5700			sc->sc_stats.ast_per_rfgain++;
5701			sc->sc_resetcal = 0;
5702			sc->sc_doresetcal = AH_TRUE;
5703			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5704			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5705			ath_power_restore_power_state(sc);
5706			return;
5707		}
5708		/*
5709		 * If this long cal is after an idle period, then
5710		 * reset the data collection state so we start fresh.
5711		 */
5712		if (sc->sc_resetcal) {
5713			(void) ath_hal_calreset(ah, sc->sc_curchan);
5714			sc->sc_lastcalreset = ticks;
5715			sc->sc_lastshortcal = ticks;
5716			sc->sc_resetcal = 0;
5717			sc->sc_doresetcal = AH_TRUE;
5718		}
5719	}
5720
5721	/* Only call if we're doing a short/long cal, not for ANI calibration */
5722	if (shortCal || longCal) {
5723		isCalDone = AH_FALSE;
5724		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5725			if (longCal) {
5726				/*
5727				 * Calibrate noise floor data again in case of change.
5728				 */
5729				ath_hal_process_noisefloor(ah);
5730			}
5731		} else {
5732			DPRINTF(sc, ATH_DEBUG_ANY,
5733				"%s: calibration of channel %u failed\n",
5734				__func__, sc->sc_curchan->ic_freq);
5735			sc->sc_stats.ast_per_calfail++;
5736		}
5737		if (shortCal)
5738			sc->sc_lastshortcal = ticks;
5739	}
5740	if (!isCalDone) {
5741restart:
5742		/*
5743		 * Use a shorter interval to potentially collect multiple
5744		 * data samples required to complete calibration.  Once
5745		 * we're told the work is done we drop back to a longer
5746		 * interval between requests.  We're more aggressive doing
5747		 * work when operating as an AP to improve operation right
5748		 * after startup.
5749		 */
5750		sc->sc_lastshortcal = ticks;
5751		nextcal = ath_shortcalinterval*hz/1000;
5752		if (sc->sc_opmode != HAL_M_HOSTAP)
5753			nextcal *= 10;
5754		sc->sc_doresetcal = AH_TRUE;
5755	} else {
5756		/* nextcal should be the shortest time for next event */
5757		nextcal = ath_longcalinterval*hz;
5758		if (sc->sc_lastcalreset == 0)
5759			sc->sc_lastcalreset = sc->sc_lastlongcal;
5760		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5761			sc->sc_resetcal = 1;	/* setup reset next trip */
5762		sc->sc_doresetcal = AH_FALSE;
5763	}
5764	/* ANI calibration may occur more often than short/long/resetcal */
5765	if (ath_anicalinterval > 0)
5766		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5767
5768	if (nextcal != 0) {
5769		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5770		    __func__, nextcal, isCalDone ? "" : "!");
5771		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5772	} else {
5773		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5774		    __func__);
5775		/* NB: don't rearm timer */
5776	}
5777	/*
5778	 * Restore power state now that we're done.
5779	 */
5780	ath_power_restore_power_state(sc);
5781}
5782
5783static void
5784ath_scan_start(struct ieee80211com *ic)
5785{
5786	struct ifnet *ifp = ic->ic_ifp;
5787	struct ath_softc *sc = ifp->if_softc;
5788	struct ath_hal *ah = sc->sc_ah;
5789	u_int32_t rfilt;
5790
5791	/* XXX calibration timer? */
5792
5793	ATH_LOCK(sc);
5794	sc->sc_scanning = 1;
5795	sc->sc_syncbeacon = 0;
5796	rfilt = ath_calcrxfilter(sc);
5797	ATH_UNLOCK(sc);
5798
5799	ATH_PCU_LOCK(sc);
5800	ath_hal_setrxfilter(ah, rfilt);
5801	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5802	ATH_PCU_UNLOCK(sc);
5803
5804	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5805		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5806}
5807
5808static void
5809ath_scan_end(struct ieee80211com *ic)
5810{
5811	struct ifnet *ifp = ic->ic_ifp;
5812	struct ath_softc *sc = ifp->if_softc;
5813	struct ath_hal *ah = sc->sc_ah;
5814	u_int32_t rfilt;
5815
5816	ATH_LOCK(sc);
5817	sc->sc_scanning = 0;
5818	rfilt = ath_calcrxfilter(sc);
5819	ATH_UNLOCK(sc);
5820
5821	ATH_PCU_LOCK(sc);
5822	ath_hal_setrxfilter(ah, rfilt);
5823	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5824
5825	ath_hal_process_noisefloor(ah);
5826	ATH_PCU_UNLOCK(sc);
5827
5828	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5829		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5830		 sc->sc_curaid);
5831}
5832
5833#ifdef	ATH_ENABLE_11N
5834/*
5835 * For now, just do a channel change.
5836 *
5837 * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5838 * control state and resetting the hardware without dropping frames out
5839 * of the queue.
5840 *
5841 * The unfortunate trouble here is making absolutely sure that the
5842 * channel width change has propagated enough so the hardware
5843 * absolutely isn't handed bogus frames for it's current operating
5844 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5845 * does occur in parallel, we need to make certain we've blocked
5846 * any further ongoing TX (and RX, that can cause raw TX)
5847 * before we do this.
5848 */
5849static void
5850ath_update_chw(struct ieee80211com *ic)
5851{
5852	struct ifnet *ifp = ic->ic_ifp;
5853	struct ath_softc *sc = ifp->if_softc;
5854
5855	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5856	ath_set_channel(ic);
5857}
5858#endif	/* ATH_ENABLE_11N */
5859
5860static void
5861ath_set_channel(struct ieee80211com *ic)
5862{
5863	struct ifnet *ifp = ic->ic_ifp;
5864	struct ath_softc *sc = ifp->if_softc;
5865
5866	ATH_LOCK(sc);
5867	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5868	ATH_UNLOCK(sc);
5869
5870	(void) ath_chan_set(sc, ic->ic_curchan);
5871	/*
5872	 * If we are returning to our bss channel then mark state
5873	 * so the next recv'd beacon's tsf will be used to sync the
5874	 * beacon timers.  Note that since we only hear beacons in
5875	 * sta/ibss mode this has no effect in other operating modes.
5876	 */
5877	ATH_LOCK(sc);
5878	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5879		sc->sc_syncbeacon = 1;
5880	ath_power_restore_power_state(sc);
5881	ATH_UNLOCK(sc);
5882}
5883
5884/*
5885 * Walk the vap list and check if there any vap's in RUN state.
5886 */
5887static int
5888ath_isanyrunningvaps(struct ieee80211vap *this)
5889{
5890	struct ieee80211com *ic = this->iv_ic;
5891	struct ieee80211vap *vap;
5892
5893	IEEE80211_LOCK_ASSERT(ic);
5894
5895	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5896		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5897			return 1;
5898	}
5899	return 0;
5900}
5901
5902static int
5903ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5904{
5905	struct ieee80211com *ic = vap->iv_ic;
5906	struct ath_softc *sc = ic->ic_ifp->if_softc;
5907	struct ath_vap *avp = ATH_VAP(vap);
5908	struct ath_hal *ah = sc->sc_ah;
5909	struct ieee80211_node *ni = NULL;
5910	int i, error, stamode;
5911	u_int32_t rfilt;
5912	int csa_run_transition = 0;
5913	enum ieee80211_state ostate = vap->iv_state;
5914
5915	static const HAL_LED_STATE leds[] = {
5916	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5917	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5918	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5919	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5920	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5921	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5922	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5923	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5924	};
5925
5926	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5927		ieee80211_state_name[ostate],
5928		ieee80211_state_name[nstate]);
5929
5930	/*
5931	 * net80211 _should_ have the comlock asserted at this point.
5932	 * There are some comments around the calls to vap->iv_newstate
5933	 * which indicate that it (newstate) may end up dropping the
5934	 * lock.  This and the subsequent lock assert check after newstate
5935	 * are an attempt to catch these and figure out how/why.
5936	 */
5937	IEEE80211_LOCK_ASSERT(ic);
5938
5939	/* Before we touch the hardware - wake it up */
5940	ATH_LOCK(sc);
5941	/*
5942	 * If the NIC is in anything other than SLEEP state,
5943	 * we need to ensure that self-generated frames are
5944	 * set for PWRMGT=0.  Otherwise we may end up with
5945	 * strange situations.
5946	 *
5947	 * XXX TODO: is this actually the case? :-)
5948	 */
5949	if (nstate != IEEE80211_S_SLEEP)
5950		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5951
5952	/*
5953	 * Now, wake the thing up.
5954	 */
5955	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5956
5957	/*
5958	 * And stop the calibration callout whilst we have
5959	 * ATH_LOCK held.
5960	 */
5961	callout_stop(&sc->sc_cal_ch);
5962	ATH_UNLOCK(sc);
5963
5964	if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5965		csa_run_transition = 1;
5966
5967	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5968
5969	if (nstate == IEEE80211_S_SCAN) {
5970		/*
5971		 * Scanning: turn off beacon miss and don't beacon.
5972		 * Mark beacon state so when we reach RUN state we'll
5973		 * [re]setup beacons.  Unblock the task q thread so
5974		 * deferred interrupt processing is done.
5975		 */
5976
5977		/* Ensure we stay awake during scan */
5978		ATH_LOCK(sc);
5979		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5980		ath_power_setpower(sc, HAL_PM_AWAKE);
5981		ATH_UNLOCK(sc);
5982
5983		ath_hal_intrset(ah,
5984		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5985		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5986		sc->sc_beacons = 0;
5987		taskqueue_unblock(sc->sc_tq);
5988	}
5989
5990	ni = ieee80211_ref_node(vap->iv_bss);
5991	rfilt = ath_calcrxfilter(sc);
5992	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5993		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5994		   vap->iv_opmode == IEEE80211_M_IBSS);
5995
5996	/*
5997	 * XXX Dont need to do this (and others) if we've transitioned
5998	 * from SLEEP->RUN.
5999	 */
6000	if (stamode && nstate == IEEE80211_S_RUN) {
6001		sc->sc_curaid = ni->ni_associd;
6002		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
6003		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
6004	}
6005	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
6006	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
6007	ath_hal_setrxfilter(ah, rfilt);
6008
6009	/* XXX is this to restore keycache on resume? */
6010	if (vap->iv_opmode != IEEE80211_M_STA &&
6011	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
6012		for (i = 0; i < IEEE80211_WEP_NKID; i++)
6013			if (ath_hal_keyisvalid(ah, i))
6014				ath_hal_keysetmac(ah, i, ni->ni_bssid);
6015	}
6016
6017	/*
6018	 * Invoke the parent method to do net80211 work.
6019	 */
6020	error = avp->av_newstate(vap, nstate, arg);
6021	if (error != 0)
6022		goto bad;
6023
6024	/*
6025	 * See above: ensure av_newstate() doesn't drop the lock
6026	 * on us.
6027	 */
6028	IEEE80211_LOCK_ASSERT(ic);
6029
6030	if (nstate == IEEE80211_S_RUN) {
6031		/* NB: collect bss node again, it may have changed */
6032		ieee80211_free_node(ni);
6033		ni = ieee80211_ref_node(vap->iv_bss);
6034
6035		DPRINTF(sc, ATH_DEBUG_STATE,
6036		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
6037		    "capinfo 0x%04x chan %d\n", __func__,
6038		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
6039		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
6040
6041		switch (vap->iv_opmode) {
6042#ifdef IEEE80211_SUPPORT_TDMA
6043		case IEEE80211_M_AHDEMO:
6044			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
6045				break;
6046			/* fall thru... */
6047#endif
6048		case IEEE80211_M_HOSTAP:
6049		case IEEE80211_M_IBSS:
6050		case IEEE80211_M_MBSS:
6051			/*
6052			 * Allocate and setup the beacon frame.
6053			 *
6054			 * Stop any previous beacon DMA.  This may be
6055			 * necessary, for example, when an ibss merge
6056			 * causes reconfiguration; there will be a state
6057			 * transition from RUN->RUN that means we may
6058			 * be called with beacon transmission active.
6059			 */
6060			ath_hal_stoptxdma(ah, sc->sc_bhalq);
6061
6062			error = ath_beacon_alloc(sc, ni);
6063			if (error != 0)
6064				goto bad;
6065			/*
6066			 * If joining an adhoc network defer beacon timer
6067			 * configuration to the next beacon frame so we
6068			 * have a current TSF to use.  Otherwise we're
6069			 * starting an ibss/bss so there's no need to delay;
6070			 * if this is the first vap moving to RUN state, then
6071			 * beacon state needs to be [re]configured.
6072			 */
6073			if (vap->iv_opmode == IEEE80211_M_IBSS &&
6074			    ni->ni_tstamp.tsf != 0) {
6075				sc->sc_syncbeacon = 1;
6076			} else if (!sc->sc_beacons) {
6077#ifdef IEEE80211_SUPPORT_TDMA
6078				if (vap->iv_caps & IEEE80211_C_TDMA)
6079					ath_tdma_config(sc, vap);
6080				else
6081#endif
6082					ath_beacon_config(sc, vap);
6083				sc->sc_beacons = 1;
6084			}
6085			break;
6086		case IEEE80211_M_STA:
6087			/*
6088			 * Defer beacon timer configuration to the next
6089			 * beacon frame so we have a current TSF to use
6090			 * (any TSF collected when scanning is likely old).
6091			 * However if it's due to a CSA -> RUN transition,
6092			 * force a beacon update so we pick up a lack of
6093			 * beacons from an AP in CAC and thus force a
6094			 * scan.
6095			 *
6096			 * And, there's also corner cases here where
6097			 * after a scan, the AP may have disappeared.
6098			 * In that case, we may not receive an actual
6099			 * beacon to update the beacon timer and thus we
6100			 * won't get notified of the missing beacons.
6101			 */
6102			if (ostate != IEEE80211_S_RUN &&
6103			    ostate != IEEE80211_S_SLEEP) {
6104				DPRINTF(sc, ATH_DEBUG_BEACON,
6105				    "%s: STA; syncbeacon=1\n", __func__);
6106				sc->sc_syncbeacon = 1;
6107
6108				if (csa_run_transition)
6109					ath_beacon_config(sc, vap);
6110
6111			/*
6112			 * PR: kern/175227
6113			 *
6114			 * Reconfigure beacons during reset; as otherwise
6115			 * we won't get the beacon timers reprogrammed
6116			 * after a reset and thus we won't pick up a
6117			 * beacon miss interrupt.
6118			 *
6119			 * Hopefully we'll see a beacon before the BMISS
6120			 * timer fires (too often), leading to a STA
6121			 * disassociation.
6122			 */
6123				sc->sc_beacons = 1;
6124			}
6125			break;
6126		case IEEE80211_M_MONITOR:
6127			/*
6128			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
6129			 * transitions so we must re-enable interrupts here to
6130			 * handle the case of a single monitor mode vap.
6131			 */
6132			ath_hal_intrset(ah, sc->sc_imask);
6133			break;
6134		case IEEE80211_M_WDS:
6135			break;
6136		default:
6137			break;
6138		}
6139		/*
6140		 * Let the hal process statistics collected during a
6141		 * scan so it can provide calibrated noise floor data.
6142		 */
6143		ath_hal_process_noisefloor(ah);
6144		/*
6145		 * Reset rssi stats; maybe not the best place...
6146		 */
6147		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
6148		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
6149		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
6150
6151		/*
6152		 * Force awake for RUN mode.
6153		 */
6154		ATH_LOCK(sc);
6155		ath_power_setselfgen(sc, HAL_PM_AWAKE);
6156		ath_power_setpower(sc, HAL_PM_AWAKE);
6157
6158		/*
6159		 * Finally, start any timers and the task q thread
6160		 * (in case we didn't go through SCAN state).
6161		 */
6162		if (ath_longcalinterval != 0) {
6163			/* start periodic recalibration timer */
6164			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6165		} else {
6166			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6167			    "%s: calibration disabled\n", __func__);
6168		}
6169		ATH_UNLOCK(sc);
6170
6171		taskqueue_unblock(sc->sc_tq);
6172	} else if (nstate == IEEE80211_S_INIT) {
6173		/*
6174		 * If there are no vaps left in RUN state then
6175		 * shutdown host/driver operation:
6176		 * o disable interrupts
6177		 * o disable the task queue thread
6178		 * o mark beacon processing as stopped
6179		 */
6180		if (!ath_isanyrunningvaps(vap)) {
6181			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6182			/* disable interrupts  */
6183			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
6184			taskqueue_block(sc->sc_tq);
6185			sc->sc_beacons = 0;
6186		}
6187#ifdef IEEE80211_SUPPORT_TDMA
6188		ath_hal_setcca(ah, AH_TRUE);
6189#endif
6190	} else if (nstate == IEEE80211_S_SLEEP) {
6191		/* We're going to sleep, so transition appropriately */
6192		/* For now, only do this if we're a single STA vap */
6193		if (sc->sc_nvaps == 1 &&
6194		    vap->iv_opmode == IEEE80211_M_STA) {
6195			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon);
6196			ATH_LOCK(sc);
6197			/*
6198			 * Always at least set the self-generated
6199			 * frame config to set PWRMGT=1.
6200			 */
6201			ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP);
6202
6203			/*
6204			 * If we're not syncing beacons, transition
6205			 * to NETWORK_SLEEP.
6206			 *
6207			 * We stay awake if syncbeacon > 0 in case
6208			 * we need to listen for some beacons otherwise
6209			 * our beacon timer config may be wrong.
6210			 */
6211			if (sc->sc_syncbeacon == 0) {
6212				ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP);
6213			}
6214			ATH_UNLOCK(sc);
6215		}
6216	}
6217bad:
6218	ieee80211_free_node(ni);
6219
6220	/*
6221	 * Restore the power state - either to what it was, or
6222	 * to network_sleep if it's alright.
6223	 */
6224	ATH_LOCK(sc);
6225	ath_power_restore_power_state(sc);
6226	ATH_UNLOCK(sc);
6227	return error;
6228}
6229
6230/*
6231 * Allocate a key cache slot to the station so we can
6232 * setup a mapping from key index to node. The key cache
6233 * slot is needed for managing antenna state and for
6234 * compression when stations do not use crypto.  We do
6235 * it uniliaterally here; if crypto is employed this slot
6236 * will be reassigned.
6237 */
6238static void
6239ath_setup_stationkey(struct ieee80211_node *ni)
6240{
6241	struct ieee80211vap *vap = ni->ni_vap;
6242	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6243	ieee80211_keyix keyix, rxkeyix;
6244
6245	/* XXX should take a locked ref to vap->iv_bss */
6246	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6247		/*
6248		 * Key cache is full; we'll fall back to doing
6249		 * the more expensive lookup in software.  Note
6250		 * this also means no h/w compression.
6251		 */
6252		/* XXX msg+statistic */
6253	} else {
6254		/* XXX locking? */
6255		ni->ni_ucastkey.wk_keyix = keyix;
6256		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6257		/* NB: must mark device key to get called back on delete */
6258		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6259		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6260		/* NB: this will create a pass-thru key entry */
6261		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
6262	}
6263}
6264
6265/*
6266 * Setup driver-specific state for a newly associated node.
6267 * Note that we're called also on a re-associate, the isnew
6268 * param tells us if this is the first time or not.
6269 */
6270static void
6271ath_newassoc(struct ieee80211_node *ni, int isnew)
6272{
6273	struct ath_node *an = ATH_NODE(ni);
6274	struct ieee80211vap *vap = ni->ni_vap;
6275	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6276	const struct ieee80211_txparam *tp = ni->ni_txparms;
6277
6278	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
6279	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
6280
6281	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n",
6282	    __func__,
6283	    ni->ni_macaddr,
6284	    ":",
6285	    isnew,
6286	    an->an_is_powersave);
6287
6288	ATH_NODE_LOCK(an);
6289	ath_rate_newassoc(sc, an, isnew);
6290	ATH_NODE_UNLOCK(an);
6291
6292	if (isnew &&
6293	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6294	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6295		ath_setup_stationkey(ni);
6296
6297	/*
6298	 * If we're reassociating, make sure that any paused queues
6299	 * get unpaused.
6300	 *
6301	 * Now, we may hvae frames in the hardware queue for this node.
6302	 * So if we are reassociating and there are frames in the queue,
6303	 * we need to go through the cleanup path to ensure that they're
6304	 * marked as non-aggregate.
6305	 */
6306	if (! isnew) {
6307		DPRINTF(sc, ATH_DEBUG_NODE,
6308		    "%s: %6D: reassoc; is_powersave=%d\n",
6309		    __func__,
6310		    ni->ni_macaddr,
6311		    ":",
6312		    an->an_is_powersave);
6313
6314		/* XXX for now, we can't hold the lock across assoc */
6315		ath_tx_node_reassoc(sc, an);
6316
6317		/* XXX for now, we can't hold the lock across wakeup */
6318		if (an->an_is_powersave)
6319			ath_tx_node_wakeup(sc, an);
6320	}
6321}
6322
6323static int
6324ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6325	int nchans, struct ieee80211_channel chans[])
6326{
6327	struct ath_softc *sc = ic->ic_ifp->if_softc;
6328	struct ath_hal *ah = sc->sc_ah;
6329	HAL_STATUS status;
6330
6331	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6332	    "%s: rd %u cc %u location %c%s\n",
6333	    __func__, reg->regdomain, reg->country, reg->location,
6334	    reg->ecm ? " ecm" : "");
6335
6336	status = ath_hal_set_channels(ah, chans, nchans,
6337	    reg->country, reg->regdomain);
6338	if (status != HAL_OK) {
6339		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6340		    __func__, status);
6341		return EINVAL;		/* XXX */
6342	}
6343
6344	return 0;
6345}
6346
6347static void
6348ath_getradiocaps(struct ieee80211com *ic,
6349	int maxchans, int *nchans, struct ieee80211_channel chans[])
6350{
6351	struct ath_softc *sc = ic->ic_ifp->if_softc;
6352	struct ath_hal *ah = sc->sc_ah;
6353
6354	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6355	    __func__, SKU_DEBUG, CTRY_DEFAULT);
6356
6357	/* XXX check return */
6358	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6359	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6360
6361}
6362
6363static int
6364ath_getchannels(struct ath_softc *sc)
6365{
6366	struct ifnet *ifp = sc->sc_ifp;
6367	struct ieee80211com *ic = ifp->if_l2com;
6368	struct ath_hal *ah = sc->sc_ah;
6369	HAL_STATUS status;
6370
6371	/*
6372	 * Collect channel set based on EEPROM contents.
6373	 */
6374	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6375	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6376	if (status != HAL_OK) {
6377		if_printf(ifp, "%s: unable to collect channel list from hal, "
6378		    "status %d\n", __func__, status);
6379		return EINVAL;
6380	}
6381	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6382	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6383	/* XXX map Atheros sku's to net80211 SKU's */
6384	/* XXX net80211 types too small */
6385	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6386	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6387	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
6388	ic->ic_regdomain.isocc[1] = ' ';
6389
6390	ic->ic_regdomain.ecm = 1;
6391	ic->ic_regdomain.location = 'I';
6392
6393	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6394	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6395	    __func__, sc->sc_eerd, sc->sc_eecc,
6396	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6397	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6398	return 0;
6399}
6400
6401static int
6402ath_rate_setup(struct ath_softc *sc, u_int mode)
6403{
6404	struct ath_hal *ah = sc->sc_ah;
6405	const HAL_RATE_TABLE *rt;
6406
6407	switch (mode) {
6408	case IEEE80211_MODE_11A:
6409		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6410		break;
6411	case IEEE80211_MODE_HALF:
6412		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6413		break;
6414	case IEEE80211_MODE_QUARTER:
6415		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6416		break;
6417	case IEEE80211_MODE_11B:
6418		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6419		break;
6420	case IEEE80211_MODE_11G:
6421		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6422		break;
6423	case IEEE80211_MODE_TURBO_A:
6424		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6425		break;
6426	case IEEE80211_MODE_TURBO_G:
6427		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6428		break;
6429	case IEEE80211_MODE_STURBO_A:
6430		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6431		break;
6432	case IEEE80211_MODE_11NA:
6433		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6434		break;
6435	case IEEE80211_MODE_11NG:
6436		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6437		break;
6438	default:
6439		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6440			__func__, mode);
6441		return 0;
6442	}
6443	sc->sc_rates[mode] = rt;
6444	return (rt != NULL);
6445}
6446
6447static void
6448ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6449{
6450#define	N(a)	(sizeof(a)/sizeof(a[0]))
6451	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6452	static const struct {
6453		u_int		rate;		/* tx/rx 802.11 rate */
6454		u_int16_t	timeOn;		/* LED on time (ms) */
6455		u_int16_t	timeOff;	/* LED off time (ms) */
6456	} blinkrates[] = {
6457		{ 108,  40,  10 },
6458		{  96,  44,  11 },
6459		{  72,  50,  13 },
6460		{  48,  57,  14 },
6461		{  36,  67,  16 },
6462		{  24,  80,  20 },
6463		{  22, 100,  25 },
6464		{  18, 133,  34 },
6465		{  12, 160,  40 },
6466		{  10, 200,  50 },
6467		{   6, 240,  58 },
6468		{   4, 267,  66 },
6469		{   2, 400, 100 },
6470		{   0, 500, 130 },
6471		/* XXX half/quarter rates */
6472	};
6473	const HAL_RATE_TABLE *rt;
6474	int i, j;
6475
6476	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6477	rt = sc->sc_rates[mode];
6478	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6479	for (i = 0; i < rt->rateCount; i++) {
6480		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6481		if (rt->info[i].phy != IEEE80211_T_HT)
6482			sc->sc_rixmap[ieeerate] = i;
6483		else
6484			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6485	}
6486	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6487	for (i = 0; i < N(sc->sc_hwmap); i++) {
6488		if (i >= rt->rateCount) {
6489			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6490			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6491			continue;
6492		}
6493		sc->sc_hwmap[i].ieeerate =
6494			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6495		if (rt->info[i].phy == IEEE80211_T_HT)
6496			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6497		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6498		if (rt->info[i].shortPreamble ||
6499		    rt->info[i].phy == IEEE80211_T_OFDM)
6500			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6501		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6502		for (j = 0; j < N(blinkrates)-1; j++)
6503			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6504				break;
6505		/* NB: this uses the last entry if the rate isn't found */
6506		/* XXX beware of overlow */
6507		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6508		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6509	}
6510	sc->sc_currates = rt;
6511	sc->sc_curmode = mode;
6512	/*
6513	 * All protection frames are transmited at 2Mb/s for
6514	 * 11g, otherwise at 1Mb/s.
6515	 */
6516	if (mode == IEEE80211_MODE_11G)
6517		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6518	else
6519		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6520	/* NB: caller is responsible for resetting rate control state */
6521#undef N
6522}
6523
6524static void
6525ath_watchdog(void *arg)
6526{
6527	struct ath_softc *sc = arg;
6528	int do_reset = 0;
6529
6530	ATH_LOCK_ASSERT(sc);
6531
6532	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6533		struct ifnet *ifp = sc->sc_ifp;
6534		uint32_t hangs;
6535
6536		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6537
6538		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6539		    hangs != 0) {
6540			if_printf(ifp, "%s hang detected (0x%x)\n",
6541			    hangs & 0xff ? "bb" : "mac", hangs);
6542		} else
6543			if_printf(ifp, "device timeout\n");
6544		do_reset = 1;
6545		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
6546		sc->sc_stats.ast_watchdog++;
6547
6548		ath_power_restore_power_state(sc);
6549	}
6550
6551	/*
6552	 * We can't hold the lock across the ath_reset() call.
6553	 *
6554	 * And since this routine can't hold a lock and sleep,
6555	 * do the reset deferred.
6556	 */
6557	if (do_reset) {
6558		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
6559	}
6560
6561	callout_schedule(&sc->sc_wd_ch, hz);
6562}
6563
6564/*
6565 * Fetch the rate control statistics for the given node.
6566 */
6567static int
6568ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
6569{
6570	struct ath_node *an;
6571	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
6572	struct ieee80211_node *ni;
6573	int error = 0;
6574
6575	/* Perform a lookup on the given node */
6576	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
6577	if (ni == NULL) {
6578		error = EINVAL;
6579		goto bad;
6580	}
6581
6582	/* Lock the ath_node */
6583	an = ATH_NODE(ni);
6584	ATH_NODE_LOCK(an);
6585
6586	/* Fetch the rate control stats for this node */
6587	error = ath_rate_fetch_node_stats(sc, an, rs);
6588
6589	/* No matter what happens here, just drop through */
6590
6591	/* Unlock the ath_node */
6592	ATH_NODE_UNLOCK(an);
6593
6594	/* Unref the node */
6595	ieee80211_node_decref(ni);
6596
6597bad:
6598	return (error);
6599}
6600
6601#ifdef ATH_DIAGAPI
6602/*
6603 * Diagnostic interface to the HAL.  This is used by various
6604 * tools to do things like retrieve register contents for
6605 * debugging.  The mechanism is intentionally opaque so that
6606 * it can change frequently w/o concern for compatiblity.
6607 */
6608static int
6609ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6610{
6611	struct ath_hal *ah = sc->sc_ah;
6612	u_int id = ad->ad_id & ATH_DIAG_ID;
6613	void *indata = NULL;
6614	void *outdata = NULL;
6615	u_int32_t insize = ad->ad_in_size;
6616	u_int32_t outsize = ad->ad_out_size;
6617	int error = 0;
6618
6619	if (ad->ad_id & ATH_DIAG_IN) {
6620		/*
6621		 * Copy in data.
6622		 */
6623		indata = malloc(insize, M_TEMP, M_NOWAIT);
6624		if (indata == NULL) {
6625			error = ENOMEM;
6626			goto bad;
6627		}
6628		error = copyin(ad->ad_in_data, indata, insize);
6629		if (error)
6630			goto bad;
6631	}
6632	if (ad->ad_id & ATH_DIAG_DYN) {
6633		/*
6634		 * Allocate a buffer for the results (otherwise the HAL
6635		 * returns a pointer to a buffer where we can read the
6636		 * results).  Note that we depend on the HAL leaving this
6637		 * pointer for us to use below in reclaiming the buffer;
6638		 * may want to be more defensive.
6639		 */
6640		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6641		if (outdata == NULL) {
6642			error = ENOMEM;
6643			goto bad;
6644		}
6645	}
6646
6647
6648	ATH_LOCK(sc);
6649	if (id != HAL_DIAG_REGS)
6650		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6651	ATH_UNLOCK(sc);
6652
6653	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6654		if (outsize < ad->ad_out_size)
6655			ad->ad_out_size = outsize;
6656		if (outdata != NULL)
6657			error = copyout(outdata, ad->ad_out_data,
6658					ad->ad_out_size);
6659	} else {
6660		error = EINVAL;
6661	}
6662
6663	ATH_LOCK(sc);
6664	if (id != HAL_DIAG_REGS)
6665		ath_power_restore_power_state(sc);
6666	ATH_UNLOCK(sc);
6667
6668bad:
6669	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6670		free(indata, M_TEMP);
6671	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6672		free(outdata, M_TEMP);
6673	return error;
6674}
6675#endif /* ATH_DIAGAPI */
6676
6677static int
6678ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6679{
6680#define	IS_RUNNING(ifp) \
6681	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6682	struct ath_softc *sc = ifp->if_softc;
6683	struct ieee80211com *ic = ifp->if_l2com;
6684	struct ifreq *ifr = (struct ifreq *)data;
6685	const HAL_RATE_TABLE *rt;
6686	int error = 0;
6687
6688	switch (cmd) {
6689	case SIOCSIFFLAGS:
6690		if (IS_RUNNING(ifp)) {
6691			/*
6692			 * To avoid rescanning another access point,
6693			 * do not call ath_init() here.  Instead,
6694			 * only reflect promisc mode settings.
6695			 */
6696			ATH_LOCK(sc);
6697			ath_power_set_power_state(sc, HAL_PM_AWAKE);
6698			ath_mode_init(sc);
6699			ath_power_restore_power_state(sc);
6700			ATH_UNLOCK(sc);
6701		} else if (ifp->if_flags & IFF_UP) {
6702			/*
6703			 * Beware of being called during attach/detach
6704			 * to reset promiscuous mode.  In that case we
6705			 * will still be marked UP but not RUNNING.
6706			 * However trying to re-init the interface
6707			 * is the wrong thing to do as we've already
6708			 * torn down much of our state.  There's
6709			 * probably a better way to deal with this.
6710			 */
6711			if (!sc->sc_invalid)
6712				ath_init(sc);	/* XXX lose error */
6713		} else {
6714			ATH_LOCK(sc);
6715			ath_stop_locked(ifp);
6716			if (!sc->sc_invalid)
6717				ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
6718			ATH_UNLOCK(sc);
6719		}
6720		break;
6721	case SIOCGIFMEDIA:
6722	case SIOCSIFMEDIA:
6723		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6724		break;
6725	case SIOCGATHSTATS:
6726		/* NB: embed these numbers to get a consistent view */
6727		sc->sc_stats.ast_tx_packets = ifp->if_get_counter(ifp,
6728		    IFCOUNTER_OPACKETS);
6729		sc->sc_stats.ast_rx_packets = ifp->if_get_counter(ifp,
6730		    IFCOUNTER_IPACKETS);
6731		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6732		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6733#ifdef IEEE80211_SUPPORT_TDMA
6734		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6735		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6736#endif
6737		rt = sc->sc_currates;
6738		sc->sc_stats.ast_tx_rate =
6739		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6740		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
6741			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
6742		return copyout(&sc->sc_stats,
6743		    ifr->ifr_data, sizeof (sc->sc_stats));
6744	case SIOCGATHAGSTATS:
6745		return copyout(&sc->sc_aggr_stats,
6746		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
6747	case SIOCZATHSTATS:
6748		error = priv_check(curthread, PRIV_DRIVER);
6749		if (error == 0) {
6750			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6751			memset(&sc->sc_aggr_stats, 0,
6752			    sizeof(sc->sc_aggr_stats));
6753			memset(&sc->sc_intr_stats, 0,
6754			    sizeof(sc->sc_intr_stats));
6755		}
6756		break;
6757#ifdef ATH_DIAGAPI
6758	case SIOCGATHDIAG:
6759		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6760		break;
6761	case SIOCGATHPHYERR:
6762		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
6763		break;
6764#endif
6765	case SIOCGATHSPECTRAL:
6766		error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
6767		break;
6768	case SIOCGATHNODERATESTATS:
6769		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
6770		break;
6771	case SIOCGIFADDR:
6772		error = ether_ioctl(ifp, cmd, data);
6773		break;
6774	default:
6775		error = EINVAL;
6776		break;
6777	}
6778	return error;
6779#undef IS_RUNNING
6780}
6781
6782/*
6783 * Announce various information on device/driver attach.
6784 */
6785static void
6786ath_announce(struct ath_softc *sc)
6787{
6788	struct ifnet *ifp = sc->sc_ifp;
6789	struct ath_hal *ah = sc->sc_ah;
6790
6791	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6792		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6793		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6794	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6795		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6796	if (bootverbose) {
6797		int i;
6798		for (i = 0; i <= WME_AC_VO; i++) {
6799			struct ath_txq *txq = sc->sc_ac2q[i];
6800			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6801				txq->axq_qnum, ieee80211_wme_acnames[i]);
6802		}
6803		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6804			sc->sc_cabq->axq_qnum);
6805		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6806	}
6807	if (ath_rxbuf != ATH_RXBUF)
6808		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6809	if (ath_txbuf != ATH_TXBUF)
6810		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6811	if (sc->sc_mcastkey && bootverbose)
6812		if_printf(ifp, "using multicast key search\n");
6813}
6814
6815static void
6816ath_dfs_tasklet(void *p, int npending)
6817{
6818	struct ath_softc *sc = (struct ath_softc *) p;
6819	struct ifnet *ifp = sc->sc_ifp;
6820	struct ieee80211com *ic = ifp->if_l2com;
6821
6822	/*
6823	 * If previous processing has found a radar event,
6824	 * signal this to the net80211 layer to begin DFS
6825	 * processing.
6826	 */
6827	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6828		/* DFS event found, initiate channel change */
6829		/*
6830		 * XXX doesn't currently tell us whether the event
6831		 * XXX was found in the primary or extension
6832		 * XXX channel!
6833		 */
6834		IEEE80211_LOCK(ic);
6835		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6836		IEEE80211_UNLOCK(ic);
6837	}
6838}
6839
6840/*
6841 * Enable/disable power save.  This must be called with
6842 * no TX driver locks currently held, so it should only
6843 * be called from the RX path (which doesn't hold any
6844 * TX driver locks.)
6845 */
6846static void
6847ath_node_powersave(struct ieee80211_node *ni, int enable)
6848{
6849#ifdef	ATH_SW_PSQ
6850	struct ath_node *an = ATH_NODE(ni);
6851	struct ieee80211com *ic = ni->ni_ic;
6852	struct ath_softc *sc = ic->ic_ifp->if_softc;
6853	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6854
6855	/* XXX and no TXQ locks should be held here */
6856
6857	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n",
6858	    __func__,
6859	    ni->ni_macaddr,
6860	    ":",
6861	    !! enable);
6862
6863	/* Suspend or resume software queue handling */
6864	if (enable)
6865		ath_tx_node_sleep(sc, an);
6866	else
6867		ath_tx_node_wakeup(sc, an);
6868
6869	/* Update net80211 state */
6870	avp->av_node_ps(ni, enable);
6871#else
6872	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6873
6874	/* Update net80211 state */
6875	avp->av_node_ps(ni, enable);
6876#endif/* ATH_SW_PSQ */
6877}
6878
6879/*
6880 * Notification from net80211 that the powersave queue state has
6881 * changed.
6882 *
6883 * Since the software queue also may have some frames:
6884 *
6885 * + if the node software queue has frames and the TID state
6886 *   is 0, we set the TIM;
6887 * + if the node and the stack are both empty, we clear the TIM bit.
6888 * + If the stack tries to set the bit, always set it.
6889 * + If the stack tries to clear the bit, only clear it if the
6890 *   software queue in question is also cleared.
6891 *
6892 * TODO: this is called during node teardown; so let's ensure this
6893 * is all correctly handled and that the TIM bit is cleared.
6894 * It may be that the node flush is called _AFTER_ the net80211
6895 * stack clears the TIM.
6896 *
6897 * Here is the racy part.  Since it's possible >1 concurrent,
6898 * overlapping TXes will appear complete with a TX completion in
6899 * another thread, it's possible that the concurrent TIM calls will
6900 * clash.  We can't hold the node lock here because setting the
6901 * TIM grabs the net80211 comlock and this may cause a LOR.
6902 * The solution is either to totally serialise _everything_ at
6903 * this point (ie, all TX, completion and any reset/flush go into
6904 * one taskqueue) or a new "ath TIM lock" needs to be created that
6905 * just wraps the driver state change and this call to avp->av_set_tim().
6906 *
6907 * The same race exists in the net80211 power save queue handling
6908 * as well.  Since multiple transmitting threads may queue frames
6909 * into the driver, as well as ps-poll and the driver transmitting
6910 * frames (and thus clearing the psq), it's quite possible that
6911 * a packet entering the PSQ and a ps-poll being handled will
6912 * race, causing the TIM to be cleared and not re-set.
6913 */
6914static int
6915ath_node_set_tim(struct ieee80211_node *ni, int enable)
6916{
6917#ifdef	ATH_SW_PSQ
6918	struct ieee80211com *ic = ni->ni_ic;
6919	struct ath_softc *sc = ic->ic_ifp->if_softc;
6920	struct ath_node *an = ATH_NODE(ni);
6921	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6922	int changed = 0;
6923
6924	ATH_TX_LOCK(sc);
6925	an->an_stack_psq = enable;
6926
6927	/*
6928	 * This will get called for all operating modes,
6929	 * even if avp->av_set_tim is unset.
6930	 * It's currently set for hostap/ibss modes; but
6931	 * the same infrastructure is used for both STA
6932	 * and AP/IBSS node power save.
6933	 */
6934	if (avp->av_set_tim == NULL) {
6935		ATH_TX_UNLOCK(sc);
6936		return (0);
6937	}
6938
6939	/*
6940	 * If setting the bit, always set it here.
6941	 * If clearing the bit, only clear it if the
6942	 * software queue is also empty.
6943	 *
6944	 * If the node has left power save, just clear the TIM
6945	 * bit regardless of the state of the power save queue.
6946	 *
6947	 * XXX TODO: although atomics are used, it's quite possible
6948	 * that a race will occur between this and setting/clearing
6949	 * in another thread.  TX completion will occur always in
6950	 * one thread, however setting/clearing the TIM bit can come
6951	 * from a variety of different process contexts!
6952	 */
6953	if (enable && an->an_tim_set == 1) {
6954		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6955		    "%s: %6D: enable=%d, tim_set=1, ignoring\n",
6956		    __func__,
6957		    ni->ni_macaddr,
6958		    ":",
6959		    enable);
6960		ATH_TX_UNLOCK(sc);
6961	} else if (enable) {
6962		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6963		    "%s: %6D: enable=%d, enabling TIM\n",
6964		    __func__,
6965		    ni->ni_macaddr,
6966		    ":",
6967		    enable);
6968		an->an_tim_set = 1;
6969		ATH_TX_UNLOCK(sc);
6970		changed = avp->av_set_tim(ni, enable);
6971	} else if (an->an_swq_depth == 0) {
6972		/* disable */
6973		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6974		    "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n",
6975		    __func__,
6976		    ni->ni_macaddr,
6977		    ":",
6978		    enable);
6979		an->an_tim_set = 0;
6980		ATH_TX_UNLOCK(sc);
6981		changed = avp->av_set_tim(ni, enable);
6982	} else if (! an->an_is_powersave) {
6983		/*
6984		 * disable regardless; the node isn't in powersave now
6985		 */
6986		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6987		    "%s: %6D: enable=%d, an_pwrsave=0, disabling\n",
6988		    __func__,
6989		    ni->ni_macaddr,
6990		    ":",
6991		    enable);
6992		an->an_tim_set = 0;
6993		ATH_TX_UNLOCK(sc);
6994		changed = avp->av_set_tim(ni, enable);
6995	} else {
6996		/*
6997		 * psq disable, node is currently in powersave, node
6998		 * software queue isn't empty, so don't clear the TIM bit
6999		 * for now.
7000		 */
7001		ATH_TX_UNLOCK(sc);
7002		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7003		    "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n",
7004		    __func__,
7005		    ni->ni_macaddr,
7006		    ":",
7007		    enable);
7008		changed = 0;
7009	}
7010
7011	return (changed);
7012#else
7013	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
7014
7015	/*
7016	 * Some operating modes don't set av_set_tim(), so don't
7017	 * update it here.
7018	 */
7019	if (avp->av_set_tim == NULL)
7020		return (0);
7021
7022	return (avp->av_set_tim(ni, enable));
7023#endif /* ATH_SW_PSQ */
7024}
7025
7026/*
7027 * Set or update the TIM from the software queue.
7028 *
7029 * Check the software queue depth before attempting to do lock
7030 * anything; that avoids trying to obtain the lock.  Then,
7031 * re-check afterwards to ensure nothing has changed in the
7032 * meantime.
7033 *
7034 * set:   This is designed to be called from the TX path, after
7035 *        a frame has been queued; to see if the swq > 0.
7036 *
7037 * clear: This is designed to be called from the buffer completion point
7038 *        (right now it's ath_tx_default_comp()) where the state of
7039 *        a software queue has changed.
7040 *
7041 * It makes sense to place it at buffer free / completion rather
7042 * than after each software queue operation, as there's no real
7043 * point in churning the TIM bit as the last frames in the software
7044 * queue are transmitted.  If they fail and we retry them, we'd
7045 * just be setting the TIM bit again anyway.
7046 */
7047void
7048ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
7049     int enable)
7050{
7051#ifdef	ATH_SW_PSQ
7052	struct ath_node *an;
7053	struct ath_vap *avp;
7054
7055	/* Don't do this for broadcast/etc frames */
7056	if (ni == NULL)
7057		return;
7058
7059	an = ATH_NODE(ni);
7060	avp = ATH_VAP(ni->ni_vap);
7061
7062	/*
7063	 * And for operating modes without the TIM handler set, let's
7064	 * just skip those.
7065	 */
7066	if (avp->av_set_tim == NULL)
7067		return;
7068
7069	ATH_TX_LOCK_ASSERT(sc);
7070
7071	if (enable) {
7072		if (an->an_is_powersave &&
7073		    an->an_tim_set == 0 &&
7074		    an->an_swq_depth != 0) {
7075			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7076			    "%s: %6D: swq_depth>0, tim_set=0, set!\n",
7077			    __func__,
7078			    ni->ni_macaddr,
7079			    ":");
7080			an->an_tim_set = 1;
7081			(void) avp->av_set_tim(ni, 1);
7082		}
7083	} else {
7084		/*
7085		 * Don't bother grabbing the lock unless the queue is empty.
7086		 */
7087		if (an->an_swq_depth != 0)
7088			return;
7089
7090		if (an->an_is_powersave &&
7091		    an->an_stack_psq == 0 &&
7092		    an->an_tim_set == 1 &&
7093		    an->an_swq_depth == 0) {
7094			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7095			    "%s: %6D: swq_depth=0, tim_set=1, psq_set=0,"
7096			    " clear!\n",
7097			    __func__,
7098			    ni->ni_macaddr,
7099			    ":");
7100			an->an_tim_set = 0;
7101			(void) avp->av_set_tim(ni, 0);
7102		}
7103	}
7104#else
7105	return;
7106#endif	/* ATH_SW_PSQ */
7107}
7108
7109/*
7110 * Received a ps-poll frame from net80211.
7111 *
7112 * Here we get a chance to serve out a software-queued frame ourselves
7113 * before we punt it to net80211 to transmit us one itself - either
7114 * because there's traffic in the net80211 psq, or a NULL frame to
7115 * indicate there's nothing else.
7116 */
7117static void
7118ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
7119{
7120#ifdef	ATH_SW_PSQ
7121	struct ath_node *an;
7122	struct ath_vap *avp;
7123	struct ieee80211com *ic = ni->ni_ic;
7124	struct ath_softc *sc = ic->ic_ifp->if_softc;
7125	int tid;
7126
7127	/* Just paranoia */
7128	if (ni == NULL)
7129		return;
7130
7131	/*
7132	 * Unassociated (temporary node) station.
7133	 */
7134	if (ni->ni_associd == 0)
7135		return;
7136
7137	/*
7138	 * We do have an active node, so let's begin looking into it.
7139	 */
7140	an = ATH_NODE(ni);
7141	avp = ATH_VAP(ni->ni_vap);
7142
7143	/*
7144	 * For now, we just call the original ps-poll method.
7145	 * Once we're ready to flip this on:
7146	 *
7147	 * + Set leak to 1, as no matter what we're going to have
7148	 *   to send a frame;
7149	 * + Check the software queue and if there's something in it,
7150	 *   schedule the highest TID thas has traffic from this node.
7151	 *   Then make sure we schedule the software scheduler to
7152	 *   run so it picks up said frame.
7153	 *
7154	 * That way whatever happens, we'll at least send _a_ frame
7155	 * to the given node.
7156	 *
7157	 * Again, yes, it's crappy QoS if the node has multiple
7158	 * TIDs worth of traffic - but let's get it working first
7159	 * before we optimise it.
7160	 *
7161	 * Also yes, there's definitely latency here - we're not
7162	 * direct dispatching to the hardware in this path (and
7163	 * we're likely being called from the packet receive path,
7164	 * so going back into TX may be a little hairy!) but again
7165	 * I'd like to get this working first before optimising
7166	 * turn-around time.
7167	 */
7168
7169	ATH_TX_LOCK(sc);
7170
7171	/*
7172	 * Legacy - we're called and the node isn't asleep.
7173	 * Immediately punt.
7174	 */
7175	if (! an->an_is_powersave) {
7176		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7177		    "%s: %6D: not in powersave?\n",
7178		    __func__,
7179		    ni->ni_macaddr,
7180		    ":");
7181		ATH_TX_UNLOCK(sc);
7182		avp->av_recv_pspoll(ni, m);
7183		return;
7184	}
7185
7186	/*
7187	 * We're in powersave.
7188	 *
7189	 * Leak a frame.
7190	 */
7191	an->an_leak_count = 1;
7192
7193	/*
7194	 * Now, if there's no frames in the node, just punt to
7195	 * recv_pspoll.
7196	 *
7197	 * Don't bother checking if the TIM bit is set, we really
7198	 * only care if there are any frames here!
7199	 */
7200	if (an->an_swq_depth == 0) {
7201		ATH_TX_UNLOCK(sc);
7202		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7203		    "%s: %6D: SWQ empty; punting to net80211\n",
7204		    __func__,
7205		    ni->ni_macaddr,
7206		    ":");
7207		avp->av_recv_pspoll(ni, m);
7208		return;
7209	}
7210
7211	/*
7212	 * Ok, let's schedule the highest TID that has traffic
7213	 * and then schedule something.
7214	 */
7215	for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
7216		struct ath_tid *atid = &an->an_tid[tid];
7217		/*
7218		 * No frames? Skip.
7219		 */
7220		if (atid->axq_depth == 0)
7221			continue;
7222		ath_tx_tid_sched(sc, atid);
7223		/*
7224		 * XXX we could do a direct call to the TXQ
7225		 * scheduler code here to optimise latency
7226		 * at the expense of a REALLY deep callstack.
7227		 */
7228		ATH_TX_UNLOCK(sc);
7229		taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
7230		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7231		    "%s: %6D: leaking frame to TID %d\n",
7232		    __func__,
7233		    ni->ni_macaddr,
7234		    ":",
7235		    tid);
7236		return;
7237	}
7238
7239	ATH_TX_UNLOCK(sc);
7240
7241	/*
7242	 * XXX nothing in the TIDs at this point? Eek.
7243	 */
7244	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7245	    "%s: %6D: TIDs empty, but ath_node showed traffic?!\n",
7246	    __func__,
7247	    ni->ni_macaddr,
7248	    ":");
7249	avp->av_recv_pspoll(ni, m);
7250#else
7251	avp->av_recv_pspoll(ni, m);
7252#endif	/* ATH_SW_PSQ */
7253}
7254
7255MODULE_VERSION(if_ath, 1);
7256MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
7257#if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ)
7258MODULE_DEPEND(if_ath, alq, 1, 1, 1);
7259#endif
7260