1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: stable/11/sys/dev/ath/if_ath.c 330446 2018-03-05 06:59:30Z eadler $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42/*
43 * This is needed for register operations which are performed
44 * by the driver - eg, calls to ath_hal_gettsf32().
45 *
46 * It's also required for any AH_DEBUG checks in here, eg the
47 * module dependencies.
48 */
49#include "opt_ah.h"
50#include "opt_wlan.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/sysctl.h>
55#include <sys/mbuf.h>
56#include <sys/malloc.h>
57#include <sys/lock.h>
58#include <sys/mutex.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/sockio.h>
62#include <sys/errno.h>
63#include <sys/callout.h>
64#include <sys/bus.h>
65#include <sys/endian.h>
66#include <sys/kthread.h>
67#include <sys/taskqueue.h>
68#include <sys/priv.h>
69#include <sys/module.h>
70#include <sys/ktr.h>
71#include <sys/smp.h>	/* for mp_ncpus */
72
73#include <machine/bus.h>
74
75#include <net/if.h>
76#include <net/if_var.h>
77#include <net/if_dl.h>
78#include <net/if_media.h>
79#include <net/if_types.h>
80#include <net/if_arp.h>
81#include <net/ethernet.h>
82#include <net/if_llc.h>
83
84#include <net80211/ieee80211_var.h>
85#include <net80211/ieee80211_regdomain.h>
86#ifdef IEEE80211_SUPPORT_SUPERG
87#include <net80211/ieee80211_superg.h>
88#endif
89#ifdef IEEE80211_SUPPORT_TDMA
90#include <net80211/ieee80211_tdma.h>
91#endif
92
93#include <net/bpf.h>
94
95#ifdef INET
96#include <netinet/in.h>
97#include <netinet/if_ether.h>
98#endif
99
100#include <dev/ath/if_athvar.h>
101#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
102#include <dev/ath/ath_hal/ah_diagcodes.h>
103
104#include <dev/ath/if_ath_debug.h>
105#include <dev/ath/if_ath_misc.h>
106#include <dev/ath/if_ath_tsf.h>
107#include <dev/ath/if_ath_tx.h>
108#include <dev/ath/if_ath_sysctl.h>
109#include <dev/ath/if_ath_led.h>
110#include <dev/ath/if_ath_keycache.h>
111#include <dev/ath/if_ath_rx.h>
112#include <dev/ath/if_ath_rx_edma.h>
113#include <dev/ath/if_ath_tx_edma.h>
114#include <dev/ath/if_ath_beacon.h>
115#include <dev/ath/if_ath_btcoex.h>
116#include <dev/ath/if_ath_btcoex_mci.h>
117#include <dev/ath/if_ath_spectral.h>
118#include <dev/ath/if_ath_lna_div.h>
119#include <dev/ath/if_athdfs.h>
120#include <dev/ath/if_ath_ioctl.h>
121#include <dev/ath/if_ath_descdma.h>
122
123#ifdef ATH_TX99_DIAG
124#include <dev/ath/ath_tx99/ath_tx99.h>
125#endif
126
127#ifdef	ATH_DEBUG_ALQ
128#include <dev/ath/if_ath_alq.h>
129#endif
130
131/*
132 * Only enable this if you're working on PS-POLL support.
133 */
134#define	ATH_SW_PSQ
135
136/*
137 * ATH_BCBUF determines the number of vap's that can transmit
138 * beacons and also (currently) the number of vap's that can
139 * have unique mac addresses/bssid.  When staggering beacons
140 * 4 is probably a good max as otherwise the beacons become
141 * very closely spaced and there is limited time for cab q traffic
142 * to go out.  You can burst beacons instead but that is not good
143 * for stations in power save and at some point you really want
144 * another radio (and channel).
145 *
146 * The limit on the number of mac addresses is tied to our use of
147 * the U/L bit and tracking addresses in a byte; it would be
148 * worthwhile to allow more for applications like proxy sta.
149 */
150CTASSERT(ATH_BCBUF <= 8);
151
152static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
153		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
154		    const uint8_t [IEEE80211_ADDR_LEN],
155		    const uint8_t [IEEE80211_ADDR_LEN]);
156static void	ath_vap_delete(struct ieee80211vap *);
157static int	ath_init(struct ath_softc *);
158static void	ath_stop(struct ath_softc *);
159static int	ath_reset_vap(struct ieee80211vap *, u_long);
160static int	ath_transmit(struct ieee80211com *, struct mbuf *);
161static int	ath_media_change(struct ifnet *);
162static void	ath_watchdog(void *);
163static void	ath_parent(struct ieee80211com *);
164static void	ath_fatal_proc(void *, int);
165static void	ath_bmiss_vap(struct ieee80211vap *);
166static void	ath_bmiss_proc(void *, int);
167static void	ath_key_update_begin(struct ieee80211vap *);
168static void	ath_key_update_end(struct ieee80211vap *);
169static void	ath_update_mcast_hw(struct ath_softc *);
170static void	ath_update_mcast(struct ieee80211com *);
171static void	ath_update_promisc(struct ieee80211com *);
172static void	ath_updateslot(struct ieee80211com *);
173static void	ath_bstuck_proc(void *, int);
174static void	ath_reset_proc(void *, int);
175static int	ath_desc_alloc(struct ath_softc *);
176static void	ath_desc_free(struct ath_softc *);
177static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
178			const uint8_t [IEEE80211_ADDR_LEN]);
179static void	ath_node_cleanup(struct ieee80211_node *);
180static void	ath_node_free(struct ieee80211_node *);
181static void	ath_node_getsignal(const struct ieee80211_node *,
182			int8_t *, int8_t *);
183static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
184static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
185static int	ath_tx_setup(struct ath_softc *, int, int);
186static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
187static void	ath_tx_cleanup(struct ath_softc *);
188static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
189		    int dosched);
190static void	ath_tx_proc_q0(void *, int);
191static void	ath_tx_proc_q0123(void *, int);
192static void	ath_tx_proc(void *, int);
193static void	ath_txq_sched_tasklet(void *, int);
194static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
195static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
196static void	ath_scan_start(struct ieee80211com *);
197static void	ath_scan_end(struct ieee80211com *);
198static void	ath_set_channel(struct ieee80211com *);
199#ifdef	ATH_ENABLE_11N
200static void	ath_update_chw(struct ieee80211com *);
201#endif	/* ATH_ENABLE_11N */
202static void	ath_calibrate(void *);
203static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
204static void	ath_setup_stationkey(struct ieee80211_node *);
205static void	ath_newassoc(struct ieee80211_node *, int);
206static int	ath_setregdomain(struct ieee80211com *,
207		    struct ieee80211_regdomain *, int,
208		    struct ieee80211_channel []);
209static void	ath_getradiocaps(struct ieee80211com *, int, int *,
210		    struct ieee80211_channel []);
211static int	ath_getchannels(struct ath_softc *);
212
213static int	ath_rate_setup(struct ath_softc *, u_int mode);
214static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
215
216static void	ath_announce(struct ath_softc *);
217
218static void	ath_dfs_tasklet(void *, int);
219static void	ath_node_powersave(struct ieee80211_node *, int);
220static int	ath_node_set_tim(struct ieee80211_node *, int);
221static void	ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
222
223#ifdef IEEE80211_SUPPORT_TDMA
224#include <dev/ath/if_ath_tdma.h>
225#endif
226
227SYSCTL_DECL(_hw_ath);
228
229/* XXX validate sysctl values */
230static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
231SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
232	    0, "long chip calibration interval (secs)");
233static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
234SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
235	    0, "short chip calibration interval (msecs)");
236static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
237SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
238	    0, "reset chip calibration results (secs)");
239static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
240SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
241	    0, "ANI calibration (msecs)");
242
243int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
244SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf,
245	    0, "rx buffers allocated");
246int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
247SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf,
248	    0, "tx buffers allocated");
249int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
250SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt,
251	    0, "tx (mgmt) buffers allocated");
252
253int ath_bstuck_threshold = 4;		/* max missed beacons */
254SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
255	    0, "max missed beacon xmits before chip reset");
256
257MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
258
259void
260ath_legacy_attach_comp_func(struct ath_softc *sc)
261{
262
263	/*
264	 * Special case certain configurations.  Note the
265	 * CAB queue is handled by these specially so don't
266	 * include them when checking the txq setup mask.
267	 */
268	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
269	case 0x01:
270		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
271		break;
272	case 0x0f:
273		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
274		break;
275	default:
276		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
277		break;
278	}
279}
280
281/*
282 * Set the target power mode.
283 *
284 * If this is called during a point in time where
285 * the hardware is being programmed elsewhere, it will
286 * simply store it away and update it when all current
287 * uses of the hardware are completed.
288 */
289void
290_ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line)
291{
292	ATH_LOCK_ASSERT(sc);
293
294	sc->sc_target_powerstate = power_state;
295
296	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
297	    __func__,
298	    file,
299	    line,
300	    power_state,
301	    sc->sc_powersave_refcnt);
302
303	if (sc->sc_powersave_refcnt == 0 &&
304	    power_state != sc->sc_cur_powerstate) {
305		sc->sc_cur_powerstate = power_state;
306		ath_hal_setpower(sc->sc_ah, power_state);
307
308		/*
309		 * If the NIC is force-awake, then set the
310		 * self-gen frame state appropriately.
311		 *
312		 * If the nic is in network sleep or full-sleep,
313		 * we let the above call leave the self-gen
314		 * state as "sleep".
315		 */
316		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
317		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
318			ath_hal_setselfgenpower(sc->sc_ah,
319			    sc->sc_target_selfgen_state);
320		}
321	}
322}
323
324/*
325 * Set the current self-generated frames state.
326 *
327 * This is separate from the target power mode.  The chip may be
328 * awake but the desired state is "sleep", so frames sent to the
329 * destination has PWRMGT=1 in the 802.11 header.  The NIC also
330 * needs to know to set PWRMGT=1 in self-generated frames.
331 */
332void
333_ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line)
334{
335
336	ATH_LOCK_ASSERT(sc);
337
338	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
339	    __func__,
340	    file,
341	    line,
342	    power_state,
343	    sc->sc_target_selfgen_state);
344
345	sc->sc_target_selfgen_state = power_state;
346
347	/*
348	 * If the NIC is force-awake, then set the power state.
349	 * Network-state and full-sleep will already transition it to
350	 * mark self-gen frames as sleeping - and we can't
351	 * guarantee the NIC is awake to program the self-gen frame
352	 * setting anyway.
353	 */
354	if (sc->sc_cur_powerstate == HAL_PM_AWAKE) {
355		ath_hal_setselfgenpower(sc->sc_ah, power_state);
356	}
357}
358
359/*
360 * Set the hardware power mode and take a reference.
361 *
362 * This doesn't update the target power mode in the driver;
363 * it just updates the hardware power state.
364 *
365 * XXX it should only ever force the hardware awake; it should
366 * never be called to set it asleep.
367 */
368void
369_ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line)
370{
371	ATH_LOCK_ASSERT(sc);
372
373	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
374	    __func__,
375	    file,
376	    line,
377	    power_state,
378	    sc->sc_powersave_refcnt);
379
380	sc->sc_powersave_refcnt++;
381
382	if (power_state != sc->sc_cur_powerstate) {
383		ath_hal_setpower(sc->sc_ah, power_state);
384		sc->sc_cur_powerstate = power_state;
385
386		/*
387		 * Adjust the self-gen powerstate if appropriate.
388		 */
389		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
390		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
391			ath_hal_setselfgenpower(sc->sc_ah,
392			    sc->sc_target_selfgen_state);
393		}
394
395	}
396}
397
398/*
399 * Restore the power save mode to what it once was.
400 *
401 * This will decrement the reference counter and once it hits
402 * zero, it'll restore the powersave state.
403 */
404void
405_ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line)
406{
407
408	ATH_LOCK_ASSERT(sc);
409
410	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n",
411	    __func__,
412	    file,
413	    line,
414	    sc->sc_powersave_refcnt,
415	    sc->sc_target_powerstate);
416
417	if (sc->sc_powersave_refcnt == 0)
418		device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__);
419	else
420		sc->sc_powersave_refcnt--;
421
422	if (sc->sc_powersave_refcnt == 0 &&
423	    sc->sc_target_powerstate != sc->sc_cur_powerstate) {
424		sc->sc_cur_powerstate = sc->sc_target_powerstate;
425		ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate);
426	}
427
428	/*
429	 * Adjust the self-gen powerstate if appropriate.
430	 */
431	if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
432	    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
433		ath_hal_setselfgenpower(sc->sc_ah,
434		    sc->sc_target_selfgen_state);
435	}
436
437}
438
439/*
440 * Configure the initial HAL configuration values based on bus
441 * specific parameters.
442 *
443 * Some PCI IDs and other information may need tweaking.
444 *
445 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable
446 * if BT antenna diversity isn't enabled.
447 *
448 * So, let's also figure out how to enable BT diversity for AR9485.
449 */
450static void
451ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config)
452{
453	/* XXX TODO: only for PCI devices? */
454
455	if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) {
456		ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */
457		ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE;
458		ah_config->ath_hal_min_gainidx = AH_TRUE;
459		ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88;
460		/* XXX low_rssi_thresh */
461		/* XXX fast_div_bias */
462		device_printf(sc->sc_dev, "configuring for %s\n",
463		    (sc->sc_pci_devinfo & ATH_PCI_CUS198) ?
464		    "CUS198" : "CUS230");
465	}
466
467	if (sc->sc_pci_devinfo & ATH_PCI_CUS217)
468		device_printf(sc->sc_dev, "CUS217 card detected\n");
469
470	if (sc->sc_pci_devinfo & ATH_PCI_CUS252)
471		device_printf(sc->sc_dev, "CUS252 card detected\n");
472
473	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT)
474		device_printf(sc->sc_dev, "WB335 1-ANT card detected\n");
475
476	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT)
477		device_printf(sc->sc_dev, "WB335 2-ANT card detected\n");
478
479	if (sc->sc_pci_devinfo & ATH_PCI_BT_ANT_DIV)
480		device_printf(sc->sc_dev,
481		    "Bluetooth Antenna Diversity card detected\n");
482
483	if (sc->sc_pci_devinfo & ATH_PCI_KILLER)
484		device_printf(sc->sc_dev, "Killer Wireless card detected\n");
485
486#if 0
487        /*
488         * Some WB335 cards do not support antenna diversity. Since
489         * we use a hardcoded value for AR9565 instead of using the
490         * EEPROM/OTP data, remove the combining feature from
491         * the HW capabilities bitmap.
492         */
493        if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
494                if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV))
495                        pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB;
496        }
497
498        if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) {
499                pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV;
500                device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n");
501        }
502#endif
503
504        if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) {
505                ah_config->ath_hal_pcie_waen = 0x0040473b;
506                device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n");
507        }
508
509#if 0
510        if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) {
511                ah->config.no_pll_pwrsave = true;
512                device_printf(sc->sc_dev, "Disable PLL PowerSave\n");
513        }
514#endif
515
516}
517
518/*
519 * Attempt to fetch the MAC address from the kernel environment.
520 *
521 * Returns 0, macaddr in macaddr if successful; -1 otherwise.
522 */
523static int
524ath_fetch_mac_kenv(struct ath_softc *sc, uint8_t *macaddr)
525{
526	char devid_str[32];
527	int local_mac = 0;
528	char *local_macstr;
529
530	/*
531	 * Fetch from the kenv rather than using hints.
532	 *
533	 * Hints would be nice but the transition to dynamic
534	 * hints/kenv doesn't happen early enough for this
535	 * to work reliably (eg on anything embedded.)
536	 */
537	snprintf(devid_str, 32, "hint.%s.%d.macaddr",
538	    device_get_name(sc->sc_dev),
539	    device_get_unit(sc->sc_dev));
540
541	if ((local_macstr = kern_getenv(devid_str)) != NULL) {
542		uint32_t tmpmac[ETHER_ADDR_LEN];
543		int count;
544		int i;
545
546		/* Have a MAC address; should use it */
547		device_printf(sc->sc_dev,
548		    "Overriding MAC address from environment: '%s'\n",
549		    local_macstr);
550
551		/* Extract out the MAC address */
552		count = sscanf(local_macstr, "%x%*c%x%*c%x%*c%x%*c%x%*c%x",
553		    &tmpmac[0], &tmpmac[1],
554		    &tmpmac[2], &tmpmac[3],
555		    &tmpmac[4], &tmpmac[5]);
556		if (count == 6) {
557			/* Valid! */
558			local_mac = 1;
559			for (i = 0; i < ETHER_ADDR_LEN; i++)
560				macaddr[i] = tmpmac[i];
561		}
562		/* Done! */
563		freeenv(local_macstr);
564		local_macstr = NULL;
565	}
566
567	if (local_mac)
568		return (0);
569	return (-1);
570}
571
572#define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
573#define	HAL_MODE_HT40 \
574	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
575	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
576int
577ath_attach(u_int16_t devid, struct ath_softc *sc)
578{
579	struct ieee80211com *ic = &sc->sc_ic;
580	struct ath_hal *ah = NULL;
581	HAL_STATUS status;
582	int error = 0, i;
583	u_int wmodes;
584	int rx_chainmask, tx_chainmask;
585	HAL_OPS_CONFIG ah_config;
586
587	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
588
589	ic->ic_softc = sc;
590	ic->ic_name = device_get_nameunit(sc->sc_dev);
591
592	/*
593	 * Configure the initial configuration data.
594	 *
595	 * This is stuff that may be needed early during attach
596	 * rather than done via configuration calls later.
597	 */
598	bzero(&ah_config, sizeof(ah_config));
599	ath_setup_hal_config(sc, &ah_config);
600
601	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
602	    sc->sc_eepromdata, &ah_config, &status);
603	if (ah == NULL) {
604		device_printf(sc->sc_dev,
605		    "unable to attach hardware; HAL status %u\n", status);
606		error = ENXIO;
607		goto bad;
608	}
609	sc->sc_ah = ah;
610	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
611#ifdef	ATH_DEBUG
612	sc->sc_debug = ath_debug;
613#endif
614
615	/*
616	 * Setup the DMA/EDMA functions based on the current
617	 * hardware support.
618	 *
619	 * This is required before the descriptors are allocated.
620	 */
621	if (ath_hal_hasedma(sc->sc_ah)) {
622		sc->sc_isedma = 1;
623		ath_recv_setup_edma(sc);
624		ath_xmit_setup_edma(sc);
625	} else {
626		ath_recv_setup_legacy(sc);
627		ath_xmit_setup_legacy(sc);
628	}
629
630	if (ath_hal_hasmybeacon(sc->sc_ah)) {
631		sc->sc_do_mybeacon = 1;
632	}
633
634	/*
635	 * Check if the MAC has multi-rate retry support.
636	 * We do this by trying to setup a fake extended
637	 * descriptor.  MAC's that don't have support will
638	 * return false w/o doing anything.  MAC's that do
639	 * support it will return true w/o doing anything.
640	 */
641	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
642
643	/*
644	 * Check if the device has hardware counters for PHY
645	 * errors.  If so we need to enable the MIB interrupt
646	 * so we can act on stat triggers.
647	 */
648	if (ath_hal_hwphycounters(ah))
649		sc->sc_needmib = 1;
650
651	/*
652	 * Get the hardware key cache size.
653	 */
654	sc->sc_keymax = ath_hal_keycachesize(ah);
655	if (sc->sc_keymax > ATH_KEYMAX) {
656		device_printf(sc->sc_dev,
657		    "Warning, using only %u of %u key cache slots\n",
658		    ATH_KEYMAX, sc->sc_keymax);
659		sc->sc_keymax = ATH_KEYMAX;
660	}
661	/*
662	 * Reset the key cache since some parts do not
663	 * reset the contents on initial power up.
664	 */
665	for (i = 0; i < sc->sc_keymax; i++)
666		ath_hal_keyreset(ah, i);
667
668	/*
669	 * Collect the default channel list.
670	 */
671	error = ath_getchannels(sc);
672	if (error != 0)
673		goto bad;
674
675	/*
676	 * Setup rate tables for all potential media types.
677	 */
678	ath_rate_setup(sc, IEEE80211_MODE_11A);
679	ath_rate_setup(sc, IEEE80211_MODE_11B);
680	ath_rate_setup(sc, IEEE80211_MODE_11G);
681	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
682	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
683	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
684	ath_rate_setup(sc, IEEE80211_MODE_11NA);
685	ath_rate_setup(sc, IEEE80211_MODE_11NG);
686	ath_rate_setup(sc, IEEE80211_MODE_HALF);
687	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
688
689	/* NB: setup here so ath_rate_update is happy */
690	ath_setcurmode(sc, IEEE80211_MODE_11A);
691
692	/*
693	 * Allocate TX descriptors and populate the lists.
694	 */
695	error = ath_desc_alloc(sc);
696	if (error != 0) {
697		device_printf(sc->sc_dev,
698		    "failed to allocate TX descriptors: %d\n", error);
699		goto bad;
700	}
701	error = ath_txdma_setup(sc);
702	if (error != 0) {
703		device_printf(sc->sc_dev,
704		    "failed to allocate TX descriptors: %d\n", error);
705		goto bad;
706	}
707
708	/*
709	 * Allocate RX descriptors and populate the lists.
710	 */
711	error = ath_rxdma_setup(sc);
712	if (error != 0) {
713		device_printf(sc->sc_dev,
714		     "failed to allocate RX descriptors: %d\n", error);
715		goto bad;
716	}
717
718	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
719	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
720
721	ATH_TXBUF_LOCK_INIT(sc);
722
723	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
724		taskqueue_thread_enqueue, &sc->sc_tq);
725	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET, "%s taskq",
726	    device_get_nameunit(sc->sc_dev));
727
728	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
729	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
730	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
731	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
732	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
733	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
734
735	/*
736	 * Allocate hardware transmit queues: one queue for
737	 * beacon frames and one data queue for each QoS
738	 * priority.  Note that the hal handles resetting
739	 * these queues at the needed time.
740	 *
741	 * XXX PS-Poll
742	 */
743	sc->sc_bhalq = ath_beaconq_setup(sc);
744	if (sc->sc_bhalq == (u_int) -1) {
745		device_printf(sc->sc_dev,
746		    "unable to setup a beacon xmit queue!\n");
747		error = EIO;
748		goto bad2;
749	}
750	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
751	if (sc->sc_cabq == NULL) {
752		device_printf(sc->sc_dev, "unable to setup CAB xmit queue!\n");
753		error = EIO;
754		goto bad2;
755	}
756	/* NB: insure BK queue is the lowest priority h/w queue */
757	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
758		device_printf(sc->sc_dev,
759		    "unable to setup xmit queue for %s traffic!\n",
760		    ieee80211_wme_acnames[WME_AC_BK]);
761		error = EIO;
762		goto bad2;
763	}
764	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
765	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
766	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
767		/*
768		 * Not enough hardware tx queues to properly do WME;
769		 * just punt and assign them all to the same h/w queue.
770		 * We could do a better job of this if, for example,
771		 * we allocate queues when we switch from station to
772		 * AP mode.
773		 */
774		if (sc->sc_ac2q[WME_AC_VI] != NULL)
775			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
776		if (sc->sc_ac2q[WME_AC_BE] != NULL)
777			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
778		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
779		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
780		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
781	}
782
783	/*
784	 * Attach the TX completion function.
785	 *
786	 * The non-EDMA chips may have some special case optimisations;
787	 * this method gives everyone a chance to attach cleanly.
788	 */
789	sc->sc_tx.xmit_attach_comp_func(sc);
790
791	/*
792	 * Setup rate control.  Some rate control modules
793	 * call back to change the anntena state so expose
794	 * the necessary entry points.
795	 * XXX maybe belongs in struct ath_ratectrl?
796	 */
797	sc->sc_setdefantenna = ath_setdefantenna;
798	sc->sc_rc = ath_rate_attach(sc);
799	if (sc->sc_rc == NULL) {
800		error = EIO;
801		goto bad2;
802	}
803
804	/* Attach DFS module */
805	if (! ath_dfs_attach(sc)) {
806		device_printf(sc->sc_dev,
807		    "%s: unable to attach DFS\n", __func__);
808		error = EIO;
809		goto bad2;
810	}
811
812	/* Attach spectral module */
813	if (ath_spectral_attach(sc) < 0) {
814		device_printf(sc->sc_dev,
815		    "%s: unable to attach spectral\n", __func__);
816		error = EIO;
817		goto bad2;
818	}
819
820	/* Attach bluetooth coexistence module */
821	if (ath_btcoex_attach(sc) < 0) {
822		device_printf(sc->sc_dev,
823		    "%s: unable to attach bluetooth coexistence\n", __func__);
824		error = EIO;
825		goto bad2;
826	}
827
828	/* Attach LNA diversity module */
829	if (ath_lna_div_attach(sc) < 0) {
830		device_printf(sc->sc_dev,
831		    "%s: unable to attach LNA diversity\n", __func__);
832		error = EIO;
833		goto bad2;
834	}
835
836	/* Start DFS processing tasklet */
837	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
838
839	/* Configure LED state */
840	sc->sc_blinking = 0;
841	sc->sc_ledstate = 1;
842	sc->sc_ledon = 0;			/* low true */
843	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
844	callout_init(&sc->sc_ledtimer, 1);
845
846	/*
847	 * Don't setup hardware-based blinking.
848	 *
849	 * Although some NICs may have this configured in the
850	 * default reset register values, the user may wish
851	 * to alter which pins have which function.
852	 *
853	 * The reference driver attaches the MAC network LED to GPIO1 and
854	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
855	 * NIC has these reversed.
856	 */
857	sc->sc_hardled = (1 == 0);
858	sc->sc_led_net_pin = -1;
859	sc->sc_led_pwr_pin = -1;
860	/*
861	 * Auto-enable soft led processing for IBM cards and for
862	 * 5211 minipci cards.  Users can also manually enable/disable
863	 * support with a sysctl.
864	 */
865	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
866	ath_led_config(sc);
867	ath_hal_setledstate(ah, HAL_LED_INIT);
868
869	/* XXX not right but it's not used anywhere important */
870	ic->ic_phytype = IEEE80211_T_OFDM;
871	ic->ic_opmode = IEEE80211_M_STA;
872	ic->ic_caps =
873		  IEEE80211_C_STA		/* station mode */
874		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
875		| IEEE80211_C_HOSTAP		/* hostap mode */
876		| IEEE80211_C_MONITOR		/* monitor mode */
877		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
878		| IEEE80211_C_WDS		/* 4-address traffic works */
879		| IEEE80211_C_MBSS		/* mesh point link mode */
880		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
881		| IEEE80211_C_SHSLOT		/* short slot time supported */
882		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
883#ifndef	ATH_ENABLE_11N
884		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
885#endif
886		| IEEE80211_C_TXFRAG		/* handle tx frags */
887#ifdef	ATH_ENABLE_DFS
888		| IEEE80211_C_DFS		/* Enable radar detection */
889#endif
890		| IEEE80211_C_PMGT		/* Station side power mgmt */
891		| IEEE80211_C_SWSLEEP
892		;
893	/*
894	 * Query the hal to figure out h/w crypto support.
895	 */
896	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
897		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
898	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
899		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
900	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
901		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
902	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
903		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
904	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
905		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
906		/*
907		 * Check if h/w does the MIC and/or whether the
908		 * separate key cache entries are required to
909		 * handle both tx+rx MIC keys.
910		 */
911		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
912			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
913		/*
914		 * If the h/w supports storing tx+rx MIC keys
915		 * in one cache slot automatically enable use.
916		 */
917		if (ath_hal_hastkipsplit(ah) ||
918		    !ath_hal_settkipsplit(ah, AH_FALSE))
919			sc->sc_splitmic = 1;
920		/*
921		 * If the h/w can do TKIP MIC together with WME then
922		 * we use it; otherwise we force the MIC to be done
923		 * in software by the net80211 layer.
924		 */
925		if (ath_hal_haswmetkipmic(ah))
926			sc->sc_wmetkipmic = 1;
927	}
928	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
929	/*
930	 * Check for multicast key search support.
931	 */
932	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
933	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
934		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
935	}
936	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
937	/*
938	 * Mark key cache slots associated with global keys
939	 * as in use.  If we knew TKIP was not to be used we
940	 * could leave the +32, +64, and +32+64 slots free.
941	 */
942	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
943		setbit(sc->sc_keymap, i);
944		setbit(sc->sc_keymap, i+64);
945		if (sc->sc_splitmic) {
946			setbit(sc->sc_keymap, i+32);
947			setbit(sc->sc_keymap, i+32+64);
948		}
949	}
950	/*
951	 * TPC support can be done either with a global cap or
952	 * per-packet support.  The latter is not available on
953	 * all parts.  We're a bit pedantic here as all parts
954	 * support a global cap.
955	 */
956	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
957		ic->ic_caps |= IEEE80211_C_TXPMGT;
958
959	/*
960	 * Mark WME capability only if we have sufficient
961	 * hardware queues to do proper priority scheduling.
962	 */
963	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
964		ic->ic_caps |= IEEE80211_C_WME;
965	/*
966	 * Check for misc other capabilities.
967	 */
968	if (ath_hal_hasbursting(ah))
969		ic->ic_caps |= IEEE80211_C_BURST;
970	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
971	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
972	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
973	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
974	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
975	sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
976	sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
977	sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
978
979	if (ath_hal_hasfastframes(ah))
980		ic->ic_caps |= IEEE80211_C_FF;
981	wmodes = ath_hal_getwirelessmodes(ah);
982	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
983		ic->ic_caps |= IEEE80211_C_TURBOP;
984#ifdef IEEE80211_SUPPORT_TDMA
985	if (ath_hal_macversion(ah) > 0x78) {
986		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
987		ic->ic_tdma_update = ath_tdma_update;
988	}
989#endif
990
991	/*
992	 * TODO: enforce that at least this many frames are available
993	 * in the txbuf list before allowing data frames (raw or
994	 * otherwise) to be transmitted.
995	 */
996	sc->sc_txq_data_minfree = 10;
997	/*
998	 * Leave this as default to maintain legacy behaviour.
999	 * Shortening the cabq/mcastq may end up causing some
1000	 * undesirable behaviour.
1001	 */
1002	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
1003
1004	/*
1005	 * How deep can the node software TX queue get whilst it's asleep.
1006	 */
1007	sc->sc_txq_node_psq_maxdepth = 16;
1008
1009	/*
1010	 * Default the maximum queue to to 1/4'th the TX buffers, or
1011	 * 64, whichever is smaller.
1012	 */
1013	sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4);
1014
1015	/* Enable CABQ by default */
1016	sc->sc_cabq_enable = 1;
1017
1018	/*
1019	 * Allow the TX and RX chainmasks to be overridden by
1020	 * environment variables and/or device.hints.
1021	 *
1022	 * This must be done early - before the hardware is
1023	 * calibrated or before the 802.11n stream calculation
1024	 * is done.
1025	 */
1026	if (resource_int_value(device_get_name(sc->sc_dev),
1027	    device_get_unit(sc->sc_dev), "rx_chainmask",
1028	    &rx_chainmask) == 0) {
1029		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
1030		    rx_chainmask);
1031		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
1032	}
1033	if (resource_int_value(device_get_name(sc->sc_dev),
1034	    device_get_unit(sc->sc_dev), "tx_chainmask",
1035	    &tx_chainmask) == 0) {
1036		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
1037		    tx_chainmask);
1038		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
1039	}
1040
1041	/*
1042	 * Query the TX/RX chainmask configuration.
1043	 *
1044	 * This is only relevant for 11n devices.
1045	 */
1046	ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
1047	ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
1048
1049	/*
1050	 * Disable MRR with protected frames by default.
1051	 * Only 802.11n series NICs can handle this.
1052	 */
1053	sc->sc_mrrprot = 0;	/* XXX should be a capability */
1054
1055	/*
1056	 * Query the enterprise mode information the HAL.
1057	 */
1058	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
1059	    &sc->sc_ent_cfg) == HAL_OK)
1060		sc->sc_use_ent = 1;
1061
1062#ifdef	ATH_ENABLE_11N
1063	/*
1064	 * Query HT capabilities
1065	 */
1066	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
1067	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
1068		uint32_t rxs, txs;
1069		uint32_t ldpc;
1070
1071		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
1072
1073		sc->sc_mrrprot = 1;	/* XXX should be a capability */
1074
1075		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
1076			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
1077			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
1078			    | IEEE80211_HTCAP_MAXAMSDU_3839
1079			    				/* max A-MSDU length */
1080			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
1081
1082		/*
1083		 * Enable short-GI for HT20 only if the hardware
1084		 * advertises support.
1085		 * Notably, anything earlier than the AR9287 doesn't.
1086		 */
1087		if ((ath_hal_getcapability(ah,
1088		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
1089		    (wmodes & HAL_MODE_HT20)) {
1090			device_printf(sc->sc_dev,
1091			    "[HT] enabling short-GI in 20MHz mode\n");
1092			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
1093		}
1094
1095		if (wmodes & HAL_MODE_HT40)
1096			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
1097			    |  IEEE80211_HTCAP_SHORTGI40;
1098
1099		/*
1100		 * TX/RX streams need to be taken into account when
1101		 * negotiating which MCS rates it'll receive and
1102		 * what MCS rates are available for TX.
1103		 */
1104		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
1105		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
1106		ic->ic_txstream = txs;
1107		ic->ic_rxstream = rxs;
1108
1109		/*
1110		 * Setup TX and RX STBC based on what the HAL allows and
1111		 * the currently configured chainmask set.
1112		 * Ie - don't enable STBC TX if only one chain is enabled.
1113		 * STBC RX is fine on a single RX chain; it just won't
1114		 * provide any real benefit.
1115		 */
1116		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
1117		    NULL) == HAL_OK) {
1118			sc->sc_rx_stbc = 1;
1119			device_printf(sc->sc_dev,
1120			    "[HT] 1 stream STBC receive enabled\n");
1121			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
1122		}
1123		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
1124		    NULL) == HAL_OK) {
1125			sc->sc_tx_stbc = 1;
1126			device_printf(sc->sc_dev,
1127			    "[HT] 1 stream STBC transmit enabled\n");
1128			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
1129		}
1130
1131		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
1132		    &sc->sc_rts_aggr_limit);
1133		if (sc->sc_rts_aggr_limit != (64 * 1024))
1134			device_printf(sc->sc_dev,
1135			    "[HT] RTS aggregates limited to %d KiB\n",
1136			    sc->sc_rts_aggr_limit / 1024);
1137
1138		/*
1139		 * LDPC
1140		 */
1141		if ((ath_hal_getcapability(ah, HAL_CAP_LDPC, 0, &ldpc))
1142		    == HAL_OK && (ldpc == 1)) {
1143			sc->sc_has_ldpc = 1;
1144			device_printf(sc->sc_dev,
1145			    "[HT] LDPC transmit/receive enabled\n");
1146			ic->ic_htcaps |= IEEE80211_HTCAP_LDPC;
1147		}
1148
1149
1150		device_printf(sc->sc_dev,
1151		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
1152	}
1153#endif
1154
1155	/*
1156	 * Initial aggregation settings.
1157	 */
1158	sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
1159	sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
1160	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1161	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1162	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
1163	sc->sc_delim_min_pad = 0;
1164
1165	/*
1166	 * Check if the hardware requires PCI register serialisation.
1167	 * Some of the Owl based MACs require this.
1168	 */
1169	if (mp_ncpus > 1 &&
1170	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
1171	     0, NULL) == HAL_OK) {
1172		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
1173		device_printf(sc->sc_dev,
1174		    "Enabling register serialisation\n");
1175	}
1176
1177	/*
1178	 * Initialise the deferred completed RX buffer list.
1179	 */
1180	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
1181	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
1182
1183	/*
1184	 * Indicate we need the 802.11 header padded to a
1185	 * 32-bit boundary for 4-address and QoS frames.
1186	 */
1187	ic->ic_flags |= IEEE80211_F_DATAPAD;
1188
1189	/*
1190	 * Query the hal about antenna support.
1191	 */
1192	sc->sc_defant = ath_hal_getdefantenna(ah);
1193
1194	/*
1195	 * Not all chips have the VEOL support we want to
1196	 * use with IBSS beacons; check here for it.
1197	 */
1198	sc->sc_hasveol = ath_hal_hasveol(ah);
1199
1200	/* get mac address from kenv first, then hardware */
1201	if (ath_fetch_mac_kenv(sc, ic->ic_macaddr) == 0) {
1202		/* Tell the HAL now about the new MAC */
1203		ath_hal_setmac(ah, ic->ic_macaddr);
1204	} else {
1205		ath_hal_getmac(ah, ic->ic_macaddr);
1206	}
1207
1208	if (sc->sc_hasbmask)
1209		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
1210
1211	/* NB: used to size node table key mapping array */
1212	ic->ic_max_keyix = sc->sc_keymax;
1213	/* call MI attach routine. */
1214	ieee80211_ifattach(ic);
1215	ic->ic_setregdomain = ath_setregdomain;
1216	ic->ic_getradiocaps = ath_getradiocaps;
1217	sc->sc_opmode = HAL_M_STA;
1218
1219	/* override default methods */
1220	ic->ic_ioctl = ath_ioctl;
1221	ic->ic_parent = ath_parent;
1222	ic->ic_transmit = ath_transmit;
1223	ic->ic_newassoc = ath_newassoc;
1224	ic->ic_updateslot = ath_updateslot;
1225	ic->ic_wme.wme_update = ath_wme_update;
1226	ic->ic_vap_create = ath_vap_create;
1227	ic->ic_vap_delete = ath_vap_delete;
1228	ic->ic_raw_xmit = ath_raw_xmit;
1229	ic->ic_update_mcast = ath_update_mcast;
1230	ic->ic_update_promisc = ath_update_promisc;
1231	ic->ic_node_alloc = ath_node_alloc;
1232	sc->sc_node_free = ic->ic_node_free;
1233	ic->ic_node_free = ath_node_free;
1234	sc->sc_node_cleanup = ic->ic_node_cleanup;
1235	ic->ic_node_cleanup = ath_node_cleanup;
1236	ic->ic_node_getsignal = ath_node_getsignal;
1237	ic->ic_scan_start = ath_scan_start;
1238	ic->ic_scan_end = ath_scan_end;
1239	ic->ic_set_channel = ath_set_channel;
1240#ifdef	ATH_ENABLE_11N
1241	/* 802.11n specific - but just override anyway */
1242	sc->sc_addba_request = ic->ic_addba_request;
1243	sc->sc_addba_response = ic->ic_addba_response;
1244	sc->sc_addba_stop = ic->ic_addba_stop;
1245	sc->sc_bar_response = ic->ic_bar_response;
1246	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
1247
1248	ic->ic_addba_request = ath_addba_request;
1249	ic->ic_addba_response = ath_addba_response;
1250	ic->ic_addba_response_timeout = ath_addba_response_timeout;
1251	ic->ic_addba_stop = ath_addba_stop;
1252	ic->ic_bar_response = ath_bar_response;
1253
1254	ic->ic_update_chw = ath_update_chw;
1255#endif	/* ATH_ENABLE_11N */
1256
1257#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
1258	/*
1259	 * There's one vendor bitmap entry in the RX radiotap
1260	 * header; make sure that's taken into account.
1261	 */
1262	ieee80211_radiotap_attachv(ic,
1263	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
1264		ATH_TX_RADIOTAP_PRESENT,
1265	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
1266		ATH_RX_RADIOTAP_PRESENT);
1267#else
1268	/*
1269	 * No vendor bitmap/extensions are present.
1270	 */
1271	ieee80211_radiotap_attach(ic,
1272	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
1273		ATH_TX_RADIOTAP_PRESENT,
1274	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
1275		ATH_RX_RADIOTAP_PRESENT);
1276#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
1277
1278	/*
1279	 * Setup the ALQ logging if required
1280	 */
1281#ifdef	ATH_DEBUG_ALQ
1282	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
1283	if_ath_alq_setcfg(&sc->sc_alq,
1284	    sc->sc_ah->ah_macVersion,
1285	    sc->sc_ah->ah_macRev,
1286	    sc->sc_ah->ah_phyRev,
1287	    sc->sc_ah->ah_magic);
1288#endif
1289
1290	/*
1291	 * Setup dynamic sysctl's now that country code and
1292	 * regdomain are available from the hal.
1293	 */
1294	ath_sysctlattach(sc);
1295	ath_sysctl_stats_attach(sc);
1296	ath_sysctl_hal_attach(sc);
1297
1298	if (bootverbose)
1299		ieee80211_announce(ic);
1300	ath_announce(sc);
1301
1302	/*
1303	 * Put it to sleep for now.
1304	 */
1305	ATH_LOCK(sc);
1306	ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
1307	ATH_UNLOCK(sc);
1308
1309	return 0;
1310bad2:
1311	ath_tx_cleanup(sc);
1312	ath_desc_free(sc);
1313	ath_txdma_teardown(sc);
1314	ath_rxdma_teardown(sc);
1315bad:
1316	if (ah)
1317		ath_hal_detach(ah);
1318	sc->sc_invalid = 1;
1319	return error;
1320}
1321
1322int
1323ath_detach(struct ath_softc *sc)
1324{
1325
1326	/*
1327	 * NB: the order of these is important:
1328	 * o stop the chip so no more interrupts will fire
1329	 * o call the 802.11 layer before detaching the hal to
1330	 *   insure callbacks into the driver to delete global
1331	 *   key cache entries can be handled
1332	 * o free the taskqueue which drains any pending tasks
1333	 * o reclaim the tx queue data structures after calling
1334	 *   the 802.11 layer as we'll get called back to reclaim
1335	 *   node state and potentially want to use them
1336	 * o to cleanup the tx queues the hal is called, so detach
1337	 *   it last
1338	 * Other than that, it's straightforward...
1339	 */
1340
1341	/*
1342	 * XXX Wake the hardware up first.  ath_stop() will still
1343	 * wake it up first, but I'd rather do it here just to
1344	 * ensure it's awake.
1345	 */
1346	ATH_LOCK(sc);
1347	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1348	ath_power_setpower(sc, HAL_PM_AWAKE);
1349
1350	/*
1351	 * Stop things cleanly.
1352	 */
1353	ath_stop(sc);
1354	ATH_UNLOCK(sc);
1355
1356	ieee80211_ifdetach(&sc->sc_ic);
1357	taskqueue_free(sc->sc_tq);
1358#ifdef ATH_TX99_DIAG
1359	if (sc->sc_tx99 != NULL)
1360		sc->sc_tx99->detach(sc->sc_tx99);
1361#endif
1362	ath_rate_detach(sc->sc_rc);
1363#ifdef	ATH_DEBUG_ALQ
1364	if_ath_alq_tidyup(&sc->sc_alq);
1365#endif
1366	ath_lna_div_detach(sc);
1367	ath_btcoex_detach(sc);
1368	ath_spectral_detach(sc);
1369	ath_dfs_detach(sc);
1370	ath_desc_free(sc);
1371	ath_txdma_teardown(sc);
1372	ath_rxdma_teardown(sc);
1373	ath_tx_cleanup(sc);
1374	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1375
1376	return 0;
1377}
1378
1379/*
1380 * MAC address handling for multiple BSS on the same radio.
1381 * The first vap uses the MAC address from the EEPROM.  For
1382 * subsequent vap's we set the U/L bit (bit 1) in the MAC
1383 * address and use the next six bits as an index.
1384 */
1385static void
1386assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1387{
1388	int i;
1389
1390	if (clone && sc->sc_hasbmask) {
1391		/* NB: we only do this if h/w supports multiple bssid */
1392		for (i = 0; i < 8; i++)
1393			if ((sc->sc_bssidmask & (1<<i)) == 0)
1394				break;
1395		if (i != 0)
1396			mac[0] |= (i << 2)|0x2;
1397	} else
1398		i = 0;
1399	sc->sc_bssidmask |= 1<<i;
1400	sc->sc_hwbssidmask[0] &= ~mac[0];
1401	if (i == 0)
1402		sc->sc_nbssid0++;
1403}
1404
1405static void
1406reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1407{
1408	int i = mac[0] >> 2;
1409	uint8_t mask;
1410
1411	if (i != 0 || --sc->sc_nbssid0 == 0) {
1412		sc->sc_bssidmask &= ~(1<<i);
1413		/* recalculate bssid mask from remaining addresses */
1414		mask = 0xff;
1415		for (i = 1; i < 8; i++)
1416			if (sc->sc_bssidmask & (1<<i))
1417				mask &= ~((i<<2)|0x2);
1418		sc->sc_hwbssidmask[0] |= mask;
1419	}
1420}
1421
1422/*
1423 * Assign a beacon xmit slot.  We try to space out
1424 * assignments so when beacons are staggered the
1425 * traffic coming out of the cab q has maximal time
1426 * to go out before the next beacon is scheduled.
1427 */
1428static int
1429assign_bslot(struct ath_softc *sc)
1430{
1431	u_int slot, free;
1432
1433	free = 0;
1434	for (slot = 0; slot < ATH_BCBUF; slot++)
1435		if (sc->sc_bslot[slot] == NULL) {
1436			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1437			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1438				return slot;
1439			free = slot;
1440			/* NB: keep looking for a double slot */
1441		}
1442	return free;
1443}
1444
1445static struct ieee80211vap *
1446ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1447    enum ieee80211_opmode opmode, int flags,
1448    const uint8_t bssid[IEEE80211_ADDR_LEN],
1449    const uint8_t mac0[IEEE80211_ADDR_LEN])
1450{
1451	struct ath_softc *sc = ic->ic_softc;
1452	struct ath_vap *avp;
1453	struct ieee80211vap *vap;
1454	uint8_t mac[IEEE80211_ADDR_LEN];
1455	int needbeacon, error;
1456	enum ieee80211_opmode ic_opmode;
1457
1458	avp = malloc(sizeof(struct ath_vap), M_80211_VAP, M_WAITOK | M_ZERO);
1459	needbeacon = 0;
1460	IEEE80211_ADDR_COPY(mac, mac0);
1461
1462	ATH_LOCK(sc);
1463	ic_opmode = opmode;		/* default to opmode of new vap */
1464	switch (opmode) {
1465	case IEEE80211_M_STA:
1466		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1467			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1468			goto bad;
1469		}
1470		if (sc->sc_nvaps) {
1471			/*
1472			 * With multiple vaps we must fall back
1473			 * to s/w beacon miss handling.
1474			 */
1475			flags |= IEEE80211_CLONE_NOBEACONS;
1476		}
1477		if (flags & IEEE80211_CLONE_NOBEACONS) {
1478			/*
1479			 * Station mode w/o beacons are implemented w/ AP mode.
1480			 */
1481			ic_opmode = IEEE80211_M_HOSTAP;
1482		}
1483		break;
1484	case IEEE80211_M_IBSS:
1485		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1486			device_printf(sc->sc_dev,
1487			    "only 1 ibss vap supported\n");
1488			goto bad;
1489		}
1490		needbeacon = 1;
1491		break;
1492	case IEEE80211_M_AHDEMO:
1493#ifdef IEEE80211_SUPPORT_TDMA
1494		if (flags & IEEE80211_CLONE_TDMA) {
1495			if (sc->sc_nvaps != 0) {
1496				device_printf(sc->sc_dev,
1497				    "only 1 tdma vap supported\n");
1498				goto bad;
1499			}
1500			needbeacon = 1;
1501			flags |= IEEE80211_CLONE_NOBEACONS;
1502		}
1503		/* fall thru... */
1504#endif
1505	case IEEE80211_M_MONITOR:
1506		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1507			/*
1508			 * Adopt existing mode.  Adding a monitor or ahdemo
1509			 * vap to an existing configuration is of dubious
1510			 * value but should be ok.
1511			 */
1512			/* XXX not right for monitor mode */
1513			ic_opmode = ic->ic_opmode;
1514		}
1515		break;
1516	case IEEE80211_M_HOSTAP:
1517	case IEEE80211_M_MBSS:
1518		needbeacon = 1;
1519		break;
1520	case IEEE80211_M_WDS:
1521		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1522			device_printf(sc->sc_dev,
1523			    "wds not supported in sta mode\n");
1524			goto bad;
1525		}
1526		/*
1527		 * Silently remove any request for a unique
1528		 * bssid; WDS vap's always share the local
1529		 * mac address.
1530		 */
1531		flags &= ~IEEE80211_CLONE_BSSID;
1532		if (sc->sc_nvaps == 0)
1533			ic_opmode = IEEE80211_M_HOSTAP;
1534		else
1535			ic_opmode = ic->ic_opmode;
1536		break;
1537	default:
1538		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1539		goto bad;
1540	}
1541	/*
1542	 * Check that a beacon buffer is available; the code below assumes it.
1543	 */
1544	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1545		device_printf(sc->sc_dev, "no beacon buffer available\n");
1546		goto bad;
1547	}
1548
1549	/* STA, AHDEMO? */
1550	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1551		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1552		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1553	}
1554
1555	vap = &avp->av_vap;
1556	/* XXX can't hold mutex across if_alloc */
1557	ATH_UNLOCK(sc);
1558	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
1559	ATH_LOCK(sc);
1560	if (error != 0) {
1561		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1562		    __func__, error);
1563		goto bad2;
1564	}
1565
1566	/* h/w crypto support */
1567	vap->iv_key_alloc = ath_key_alloc;
1568	vap->iv_key_delete = ath_key_delete;
1569	vap->iv_key_set = ath_key_set;
1570	vap->iv_key_update_begin = ath_key_update_begin;
1571	vap->iv_key_update_end = ath_key_update_end;
1572
1573	/* override various methods */
1574	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1575	vap->iv_recv_mgmt = ath_recv_mgmt;
1576	vap->iv_reset = ath_reset_vap;
1577	vap->iv_update_beacon = ath_beacon_update;
1578	avp->av_newstate = vap->iv_newstate;
1579	vap->iv_newstate = ath_newstate;
1580	avp->av_bmiss = vap->iv_bmiss;
1581	vap->iv_bmiss = ath_bmiss_vap;
1582
1583	avp->av_node_ps = vap->iv_node_ps;
1584	vap->iv_node_ps = ath_node_powersave;
1585
1586	avp->av_set_tim = vap->iv_set_tim;
1587	vap->iv_set_tim = ath_node_set_tim;
1588
1589	avp->av_recv_pspoll = vap->iv_recv_pspoll;
1590	vap->iv_recv_pspoll = ath_node_recv_pspoll;
1591
1592	/* Set default parameters */
1593
1594	/*
1595	 * Anything earlier than some AR9300 series MACs don't
1596	 * support a smaller MPDU density.
1597	 */
1598	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1599	/*
1600	 * All NICs can handle the maximum size, however
1601	 * AR5416 based MACs can only TX aggregates w/ RTS
1602	 * protection when the total aggregate size is <= 8k.
1603	 * However, for now that's enforced by the TX path.
1604	 */
1605	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1606
1607	avp->av_bslot = -1;
1608	if (needbeacon) {
1609		/*
1610		 * Allocate beacon state and setup the q for buffered
1611		 * multicast frames.  We know a beacon buffer is
1612		 * available because we checked above.
1613		 */
1614		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1615		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1616		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1617			/*
1618			 * Assign the vap to a beacon xmit slot.  As above
1619			 * this cannot fail to find a free one.
1620			 */
1621			avp->av_bslot = assign_bslot(sc);
1622			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1623			    ("beacon slot %u not empty", avp->av_bslot));
1624			sc->sc_bslot[avp->av_bslot] = vap;
1625			sc->sc_nbcnvaps++;
1626		}
1627		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1628			/*
1629			 * Multple vaps are to transmit beacons and we
1630			 * have h/w support for TSF adjusting; enable
1631			 * use of staggered beacons.
1632			 */
1633			sc->sc_stagbeacons = 1;
1634		}
1635		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1636	}
1637
1638	ic->ic_opmode = ic_opmode;
1639	if (opmode != IEEE80211_M_WDS) {
1640		sc->sc_nvaps++;
1641		if (opmode == IEEE80211_M_STA)
1642			sc->sc_nstavaps++;
1643		if (opmode == IEEE80211_M_MBSS)
1644			sc->sc_nmeshvaps++;
1645	}
1646	switch (ic_opmode) {
1647	case IEEE80211_M_IBSS:
1648		sc->sc_opmode = HAL_M_IBSS;
1649		break;
1650	case IEEE80211_M_STA:
1651		sc->sc_opmode = HAL_M_STA;
1652		break;
1653	case IEEE80211_M_AHDEMO:
1654#ifdef IEEE80211_SUPPORT_TDMA
1655		if (vap->iv_caps & IEEE80211_C_TDMA) {
1656			sc->sc_tdma = 1;
1657			/* NB: disable tsf adjust */
1658			sc->sc_stagbeacons = 0;
1659		}
1660		/*
1661		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1662		 * just ap mode.
1663		 */
1664		/* fall thru... */
1665#endif
1666	case IEEE80211_M_HOSTAP:
1667	case IEEE80211_M_MBSS:
1668		sc->sc_opmode = HAL_M_HOSTAP;
1669		break;
1670	case IEEE80211_M_MONITOR:
1671		sc->sc_opmode = HAL_M_MONITOR;
1672		break;
1673	default:
1674		/* XXX should not happen */
1675		break;
1676	}
1677	if (sc->sc_hastsfadd) {
1678		/*
1679		 * Configure whether or not TSF adjust should be done.
1680		 */
1681		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1682	}
1683	if (flags & IEEE80211_CLONE_NOBEACONS) {
1684		/*
1685		 * Enable s/w beacon miss handling.
1686		 */
1687		sc->sc_swbmiss = 1;
1688	}
1689	ATH_UNLOCK(sc);
1690
1691	/* complete setup */
1692	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status,
1693	    mac);
1694	return vap;
1695bad2:
1696	reclaim_address(sc, mac);
1697	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1698bad:
1699	free(avp, M_80211_VAP);
1700	ATH_UNLOCK(sc);
1701	return NULL;
1702}
1703
1704static void
1705ath_vap_delete(struct ieee80211vap *vap)
1706{
1707	struct ieee80211com *ic = vap->iv_ic;
1708	struct ath_softc *sc = ic->ic_softc;
1709	struct ath_hal *ah = sc->sc_ah;
1710	struct ath_vap *avp = ATH_VAP(vap);
1711
1712	ATH_LOCK(sc);
1713	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1714	ATH_UNLOCK(sc);
1715
1716	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1717	if (sc->sc_running) {
1718		/*
1719		 * Quiesce the hardware while we remove the vap.  In
1720		 * particular we need to reclaim all references to
1721		 * the vap state by any frames pending on the tx queues.
1722		 */
1723		ath_hal_intrset(ah, 0);		/* disable interrupts */
1724		/* XXX Do all frames from all vaps/nodes need draining here? */
1725		ath_stoprecv(sc, 1);		/* stop recv side */
1726		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1727	}
1728
1729	/* .. leave the hardware awake for now. */
1730
1731	ieee80211_vap_detach(vap);
1732
1733	/*
1734	 * XXX Danger Will Robinson! Danger!
1735	 *
1736	 * Because ieee80211_vap_detach() can queue a frame (the station
1737	 * diassociate message?) after we've drained the TXQ and
1738	 * flushed the software TXQ, we will end up with a frame queued
1739	 * to a node whose vap is about to be freed.
1740	 *
1741	 * To work around this, flush the hardware/software again.
1742	 * This may be racy - the ath task may be running and the packet
1743	 * may be being scheduled between sw->hw txq. Tsk.
1744	 *
1745	 * TODO: figure out why a new node gets allocated somewhere around
1746	 * here (after the ath_tx_swq() call; and after an ath_stop()
1747	 * call!)
1748	 */
1749
1750	ath_draintxq(sc, ATH_RESET_DEFAULT);
1751
1752	ATH_LOCK(sc);
1753	/*
1754	 * Reclaim beacon state.  Note this must be done before
1755	 * the vap instance is reclaimed as we may have a reference
1756	 * to it in the buffer for the beacon frame.
1757	 */
1758	if (avp->av_bcbuf != NULL) {
1759		if (avp->av_bslot != -1) {
1760			sc->sc_bslot[avp->av_bslot] = NULL;
1761			sc->sc_nbcnvaps--;
1762		}
1763		ath_beacon_return(sc, avp->av_bcbuf);
1764		avp->av_bcbuf = NULL;
1765		if (sc->sc_nbcnvaps == 0) {
1766			sc->sc_stagbeacons = 0;
1767			if (sc->sc_hastsfadd)
1768				ath_hal_settsfadjust(sc->sc_ah, 0);
1769		}
1770		/*
1771		 * Reclaim any pending mcast frames for the vap.
1772		 */
1773		ath_tx_draintxq(sc, &avp->av_mcastq);
1774	}
1775	/*
1776	 * Update bookkeeping.
1777	 */
1778	if (vap->iv_opmode == IEEE80211_M_STA) {
1779		sc->sc_nstavaps--;
1780		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1781			sc->sc_swbmiss = 0;
1782	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1783	    vap->iv_opmode == IEEE80211_M_MBSS) {
1784		reclaim_address(sc, vap->iv_myaddr);
1785		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1786		if (vap->iv_opmode == IEEE80211_M_MBSS)
1787			sc->sc_nmeshvaps--;
1788	}
1789	if (vap->iv_opmode != IEEE80211_M_WDS)
1790		sc->sc_nvaps--;
1791#ifdef IEEE80211_SUPPORT_TDMA
1792	/* TDMA operation ceases when the last vap is destroyed */
1793	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1794		sc->sc_tdma = 0;
1795		sc->sc_swbmiss = 0;
1796	}
1797#endif
1798	free(avp, M_80211_VAP);
1799
1800	if (sc->sc_running) {
1801		/*
1802		 * Restart rx+tx machines if still running (RUNNING will
1803		 * be reset if we just destroyed the last vap).
1804		 */
1805		if (ath_startrecv(sc) != 0)
1806			device_printf(sc->sc_dev,
1807			    "%s: unable to restart recv logic\n", __func__);
1808		if (sc->sc_beacons) {		/* restart beacons */
1809#ifdef IEEE80211_SUPPORT_TDMA
1810			if (sc->sc_tdma)
1811				ath_tdma_config(sc, NULL);
1812			else
1813#endif
1814				ath_beacon_config(sc, NULL);
1815		}
1816		ath_hal_intrset(ah, sc->sc_imask);
1817	}
1818
1819	/* Ok, let the hardware asleep. */
1820	ath_power_restore_power_state(sc);
1821	ATH_UNLOCK(sc);
1822}
1823
1824void
1825ath_suspend(struct ath_softc *sc)
1826{
1827	struct ieee80211com *ic = &sc->sc_ic;
1828
1829	sc->sc_resume_up = ic->ic_nrunning != 0;
1830
1831	ieee80211_suspend_all(ic);
1832	/*
1833	 * NB: don't worry about putting the chip in low power
1834	 * mode; pci will power off our socket on suspend and
1835	 * CardBus detaches the device.
1836	 *
1837	 * XXX TODO: well, that's great, except for non-cardbus
1838	 * devices!
1839	 */
1840
1841	/*
1842	 * XXX This doesn't wait until all pending taskqueue
1843	 * items and parallel transmit/receive/other threads
1844	 * are running!
1845	 */
1846	ath_hal_intrset(sc->sc_ah, 0);
1847	taskqueue_block(sc->sc_tq);
1848
1849	ATH_LOCK(sc);
1850	callout_stop(&sc->sc_cal_ch);
1851	ATH_UNLOCK(sc);
1852
1853	/*
1854	 * XXX ensure sc_invalid is 1
1855	 */
1856
1857	/* Disable the PCIe PHY, complete with workarounds */
1858	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1859}
1860
1861/*
1862 * Reset the key cache since some parts do not reset the
1863 * contents on resume.  First we clear all entries, then
1864 * re-load keys that the 802.11 layer assumes are setup
1865 * in h/w.
1866 */
1867static void
1868ath_reset_keycache(struct ath_softc *sc)
1869{
1870	struct ieee80211com *ic = &sc->sc_ic;
1871	struct ath_hal *ah = sc->sc_ah;
1872	int i;
1873
1874	ATH_LOCK(sc);
1875	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1876	for (i = 0; i < sc->sc_keymax; i++)
1877		ath_hal_keyreset(ah, i);
1878	ath_power_restore_power_state(sc);
1879	ATH_UNLOCK(sc);
1880	ieee80211_crypto_reload_keys(ic);
1881}
1882
1883/*
1884 * Fetch the current chainmask configuration based on the current
1885 * operating channel and options.
1886 */
1887static void
1888ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1889{
1890
1891	/*
1892	 * Set TX chainmask to the currently configured chainmask;
1893	 * the TX chainmask depends upon the current operating mode.
1894	 */
1895	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1896	if (IEEE80211_IS_CHAN_HT(chan)) {
1897		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1898	} else {
1899		sc->sc_cur_txchainmask = 1;
1900	}
1901
1902	DPRINTF(sc, ATH_DEBUG_RESET,
1903	    "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1904	    __func__,
1905	    sc->sc_cur_txchainmask,
1906	    sc->sc_cur_rxchainmask);
1907}
1908
1909void
1910ath_resume(struct ath_softc *sc)
1911{
1912	struct ieee80211com *ic = &sc->sc_ic;
1913	struct ath_hal *ah = sc->sc_ah;
1914	HAL_STATUS status;
1915
1916	ath_hal_enablepcie(ah, 0, 0);
1917
1918	/*
1919	 * Must reset the chip before we reload the
1920	 * keycache as we were powered down on suspend.
1921	 */
1922	ath_update_chainmasks(sc,
1923	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1924	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1925	    sc->sc_cur_rxchainmask);
1926
1927	/* Ensure we set the current power state to on */
1928	ATH_LOCK(sc);
1929	ath_power_setselfgen(sc, HAL_PM_AWAKE);
1930	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1931	ath_power_setpower(sc, HAL_PM_AWAKE);
1932	ATH_UNLOCK(sc);
1933
1934	ath_hal_reset(ah, sc->sc_opmode,
1935	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1936	    AH_FALSE, HAL_RESET_NORMAL, &status);
1937	ath_reset_keycache(sc);
1938
1939	ATH_RX_LOCK(sc);
1940	sc->sc_rx_stopped = 1;
1941	sc->sc_rx_resetted = 1;
1942	ATH_RX_UNLOCK(sc);
1943
1944	/* Let DFS at it in case it's a DFS channel */
1945	ath_dfs_radar_enable(sc, ic->ic_curchan);
1946
1947	/* Let spectral at in case spectral is enabled */
1948	ath_spectral_enable(sc, ic->ic_curchan);
1949
1950	/*
1951	 * Let bluetooth coexistence at in case it's needed for this channel
1952	 */
1953	ath_btcoex_enable(sc, ic->ic_curchan);
1954
1955	/*
1956	 * If we're doing TDMA, enforce the TXOP limitation for chips that
1957	 * support it.
1958	 */
1959	if (sc->sc_hasenforcetxop && sc->sc_tdma)
1960		ath_hal_setenforcetxop(sc->sc_ah, 1);
1961	else
1962		ath_hal_setenforcetxop(sc->sc_ah, 0);
1963
1964	/* Restore the LED configuration */
1965	ath_led_config(sc);
1966	ath_hal_setledstate(ah, HAL_LED_INIT);
1967
1968	if (sc->sc_resume_up)
1969		ieee80211_resume_all(ic);
1970
1971	ATH_LOCK(sc);
1972	ath_power_restore_power_state(sc);
1973	ATH_UNLOCK(sc);
1974
1975	/* XXX beacons ? */
1976}
1977
1978void
1979ath_shutdown(struct ath_softc *sc)
1980{
1981
1982	ATH_LOCK(sc);
1983	ath_stop(sc);
1984	ATH_UNLOCK(sc);
1985	/* NB: no point powering down chip as we're about to reboot */
1986}
1987
1988/*
1989 * Interrupt handler.  Most of the actual processing is deferred.
1990 */
1991void
1992ath_intr(void *arg)
1993{
1994	struct ath_softc *sc = arg;
1995	struct ath_hal *ah = sc->sc_ah;
1996	HAL_INT status = 0;
1997	uint32_t txqs;
1998
1999	/*
2000	 * If we're inside a reset path, just print a warning and
2001	 * clear the ISR. The reset routine will finish it for us.
2002	 */
2003	ATH_PCU_LOCK(sc);
2004	if (sc->sc_inreset_cnt) {
2005		HAL_INT status;
2006		ath_hal_getisr(ah, &status);	/* clear ISR */
2007		ath_hal_intrset(ah, 0);		/* disable further intr's */
2008		DPRINTF(sc, ATH_DEBUG_ANY,
2009		    "%s: in reset, ignoring: status=0x%x\n",
2010		    __func__, status);
2011		ATH_PCU_UNLOCK(sc);
2012		return;
2013	}
2014
2015	if (sc->sc_invalid) {
2016		/*
2017		 * The hardware is not ready/present, don't touch anything.
2018		 * Note this can happen early on if the IRQ is shared.
2019		 */
2020		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
2021		ATH_PCU_UNLOCK(sc);
2022		return;
2023	}
2024	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
2025		ATH_PCU_UNLOCK(sc);
2026		return;
2027	}
2028
2029	ATH_LOCK(sc);
2030	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2031	ATH_UNLOCK(sc);
2032
2033	if (sc->sc_ic.ic_nrunning == 0 && sc->sc_running == 0) {
2034		HAL_INT status;
2035
2036		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_nrunning %d sc_running %d\n",
2037		    __func__, sc->sc_ic.ic_nrunning, sc->sc_running);
2038		ath_hal_getisr(ah, &status);	/* clear ISR */
2039		ath_hal_intrset(ah, 0);		/* disable further intr's */
2040		ATH_PCU_UNLOCK(sc);
2041
2042		ATH_LOCK(sc);
2043		ath_power_restore_power_state(sc);
2044		ATH_UNLOCK(sc);
2045		return;
2046	}
2047
2048	/*
2049	 * Figure out the reason(s) for the interrupt.  Note
2050	 * that the hal returns a pseudo-ISR that may include
2051	 * bits we haven't explicitly enabled so we mask the
2052	 * value to insure we only process bits we requested.
2053	 */
2054	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
2055	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
2056	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
2057#ifdef	ATH_DEBUG_ALQ
2058	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
2059	    ah->ah_syncstate);
2060#endif	/* ATH_DEBUG_ALQ */
2061#ifdef	ATH_KTR_INTR_DEBUG
2062	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
2063	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
2064	    ah->ah_intrstate[0],
2065	    ah->ah_intrstate[1],
2066	    ah->ah_intrstate[2],
2067	    ah->ah_intrstate[3],
2068	    ah->ah_intrstate[6]);
2069#endif
2070
2071	/* Squirrel away SYNC interrupt debugging */
2072	if (ah->ah_syncstate != 0) {
2073		int i;
2074		for (i = 0; i < 32; i++)
2075			if (ah->ah_syncstate & (i << i))
2076				sc->sc_intr_stats.sync_intr[i]++;
2077	}
2078
2079	status &= sc->sc_imask;			/* discard unasked for bits */
2080
2081	/* Short-circuit un-handled interrupts */
2082	if (status == 0x0) {
2083		ATH_PCU_UNLOCK(sc);
2084
2085		ATH_LOCK(sc);
2086		ath_power_restore_power_state(sc);
2087		ATH_UNLOCK(sc);
2088
2089		return;
2090	}
2091
2092	/*
2093	 * Take a note that we're inside the interrupt handler, so
2094	 * the reset routines know to wait.
2095	 */
2096	sc->sc_intr_cnt++;
2097	ATH_PCU_UNLOCK(sc);
2098
2099	/*
2100	 * Handle the interrupt. We won't run concurrent with the reset
2101	 * or channel change routines as they'll wait for sc_intr_cnt
2102	 * to be 0 before continuing.
2103	 */
2104	if (status & HAL_INT_FATAL) {
2105		sc->sc_stats.ast_hardware++;
2106		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
2107		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
2108	} else {
2109		if (status & HAL_INT_SWBA) {
2110			/*
2111			 * Software beacon alert--time to send a beacon.
2112			 * Handle beacon transmission directly; deferring
2113			 * this is too slow to meet timing constraints
2114			 * under load.
2115			 */
2116#ifdef IEEE80211_SUPPORT_TDMA
2117			if (sc->sc_tdma) {
2118				if (sc->sc_tdmaswba == 0) {
2119					struct ieee80211com *ic = &sc->sc_ic;
2120					struct ieee80211vap *vap =
2121					    TAILQ_FIRST(&ic->ic_vaps);
2122					ath_tdma_beacon_send(sc, vap);
2123					sc->sc_tdmaswba =
2124					    vap->iv_tdma->tdma_bintval;
2125				} else
2126					sc->sc_tdmaswba--;
2127			} else
2128#endif
2129			{
2130				ath_beacon_proc(sc, 0);
2131#ifdef IEEE80211_SUPPORT_SUPERG
2132				/*
2133				 * Schedule the rx taskq in case there's no
2134				 * traffic so any frames held on the staging
2135				 * queue are aged and potentially flushed.
2136				 */
2137				sc->sc_rx.recv_sched(sc, 1);
2138#endif
2139			}
2140		}
2141		if (status & HAL_INT_RXEOL) {
2142			int imask;
2143			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
2144			if (! sc->sc_isedma) {
2145				ATH_PCU_LOCK(sc);
2146				/*
2147				 * NB: the hardware should re-read the link when
2148				 *     RXE bit is written, but it doesn't work at
2149				 *     least on older hardware revs.
2150				 */
2151				sc->sc_stats.ast_rxeol++;
2152				/*
2153				 * Disable RXEOL/RXORN - prevent an interrupt
2154				 * storm until the PCU logic can be reset.
2155				 * In case the interface is reset some other
2156				 * way before "sc_kickpcu" is called, don't
2157				 * modify sc_imask - that way if it is reset
2158				 * by a call to ath_reset() somehow, the
2159				 * interrupt mask will be correctly reprogrammed.
2160				 */
2161				imask = sc->sc_imask;
2162				imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
2163				ath_hal_intrset(ah, imask);
2164				/*
2165				 * Only blank sc_rxlink if we've not yet kicked
2166				 * the PCU.
2167				 *
2168				 * This isn't entirely correct - the correct solution
2169				 * would be to have a PCU lock and engage that for
2170				 * the duration of the PCU fiddling; which would include
2171				 * running the RX process. Otherwise we could end up
2172				 * messing up the RX descriptor chain and making the
2173				 * RX desc list much shorter.
2174				 */
2175				if (! sc->sc_kickpcu)
2176					sc->sc_rxlink = NULL;
2177				sc->sc_kickpcu = 1;
2178				ATH_PCU_UNLOCK(sc);
2179			}
2180			/*
2181			 * Enqueue an RX proc to handle whatever
2182			 * is in the RX queue.
2183			 * This will then kick the PCU if required.
2184			 */
2185			sc->sc_rx.recv_sched(sc, 1);
2186		}
2187		if (status & HAL_INT_TXURN) {
2188			sc->sc_stats.ast_txurn++;
2189			/* bump tx trigger level */
2190			ath_hal_updatetxtriglevel(ah, AH_TRUE);
2191		}
2192		/*
2193		 * Handle both the legacy and RX EDMA interrupt bits.
2194		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
2195		 */
2196		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
2197			sc->sc_stats.ast_rx_intr++;
2198			sc->sc_rx.recv_sched(sc, 1);
2199		}
2200		if (status & HAL_INT_TX) {
2201			sc->sc_stats.ast_tx_intr++;
2202			/*
2203			 * Grab all the currently set bits in the HAL txq bitmap
2204			 * and blank them. This is the only place we should be
2205			 * doing this.
2206			 */
2207			if (! sc->sc_isedma) {
2208				ATH_PCU_LOCK(sc);
2209				txqs = 0xffffffff;
2210				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
2211				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
2212				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
2213				    txqs,
2214				    sc->sc_txq_active,
2215				    sc->sc_txq_active | txqs);
2216				sc->sc_txq_active |= txqs;
2217				ATH_PCU_UNLOCK(sc);
2218			}
2219			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
2220		}
2221		if (status & HAL_INT_BMISS) {
2222			sc->sc_stats.ast_bmiss++;
2223			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
2224		}
2225		if (status & HAL_INT_GTT)
2226			sc->sc_stats.ast_tx_timeout++;
2227		if (status & HAL_INT_CST)
2228			sc->sc_stats.ast_tx_cst++;
2229		if (status & HAL_INT_MIB) {
2230			sc->sc_stats.ast_mib++;
2231			ATH_PCU_LOCK(sc);
2232			/*
2233			 * Disable interrupts until we service the MIB
2234			 * interrupt; otherwise it will continue to fire.
2235			 */
2236			ath_hal_intrset(ah, 0);
2237			/*
2238			 * Let the hal handle the event.  We assume it will
2239			 * clear whatever condition caused the interrupt.
2240			 */
2241			ath_hal_mibevent(ah, &sc->sc_halstats);
2242			/*
2243			 * Don't reset the interrupt if we've just
2244			 * kicked the PCU, or we may get a nested
2245			 * RXEOL before the rxproc has had a chance
2246			 * to run.
2247			 */
2248			if (sc->sc_kickpcu == 0)
2249				ath_hal_intrset(ah, sc->sc_imask);
2250			ATH_PCU_UNLOCK(sc);
2251		}
2252		if (status & HAL_INT_RXORN) {
2253			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
2254			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
2255			sc->sc_stats.ast_rxorn++;
2256		}
2257		if (status & HAL_INT_TSFOOR) {
2258			device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__);
2259			sc->sc_syncbeacon = 1;
2260		}
2261		if (status & HAL_INT_MCI) {
2262			ath_btcoex_mci_intr(sc);
2263		}
2264	}
2265	ATH_PCU_LOCK(sc);
2266	sc->sc_intr_cnt--;
2267	ATH_PCU_UNLOCK(sc);
2268
2269	ATH_LOCK(sc);
2270	ath_power_restore_power_state(sc);
2271	ATH_UNLOCK(sc);
2272}
2273
2274static void
2275ath_fatal_proc(void *arg, int pending)
2276{
2277	struct ath_softc *sc = arg;
2278	u_int32_t *state;
2279	u_int32_t len;
2280	void *sp;
2281
2282	if (sc->sc_invalid)
2283		return;
2284
2285	device_printf(sc->sc_dev, "hardware error; resetting\n");
2286	/*
2287	 * Fatal errors are unrecoverable.  Typically these
2288	 * are caused by DMA errors.  Collect h/w state from
2289	 * the hal so we can diagnose what's going on.
2290	 */
2291	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
2292		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
2293		state = sp;
2294		device_printf(sc->sc_dev,
2295		    "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n", state[0],
2296		    state[1] , state[2], state[3], state[4], state[5]);
2297	}
2298	ath_reset(sc, ATH_RESET_NOLOSS);
2299}
2300
2301static void
2302ath_bmiss_vap(struct ieee80211vap *vap)
2303{
2304	struct ath_softc *sc = vap->iv_ic->ic_softc;
2305
2306	/*
2307	 * Workaround phantom bmiss interrupts by sanity-checking
2308	 * the time of our last rx'd frame.  If it is within the
2309	 * beacon miss interval then ignore the interrupt.  If it's
2310	 * truly a bmiss we'll get another interrupt soon and that'll
2311	 * be dispatched up for processing.  Note this applies only
2312	 * for h/w beacon miss events.
2313	 */
2314
2315	/*
2316	 * XXX TODO: Just read the TSF during the interrupt path;
2317	 * that way we don't have to wake up again just to read it
2318	 * again.
2319	 */
2320	ATH_LOCK(sc);
2321	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2322	ATH_UNLOCK(sc);
2323
2324	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2325		u_int64_t lastrx = sc->sc_lastrx;
2326		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
2327		/* XXX should take a locked ref to iv_bss */
2328		u_int bmisstimeout =
2329			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
2330
2331		DPRINTF(sc, ATH_DEBUG_BEACON,
2332		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
2333		    __func__, (unsigned long long) tsf,
2334		    (unsigned long long)(tsf - lastrx),
2335		    (unsigned long long) lastrx, bmisstimeout);
2336
2337		if (tsf - lastrx <= bmisstimeout) {
2338			sc->sc_stats.ast_bmiss_phantom++;
2339
2340			ATH_LOCK(sc);
2341			ath_power_restore_power_state(sc);
2342			ATH_UNLOCK(sc);
2343
2344			return;
2345		}
2346	}
2347
2348	/*
2349	 * There's no need to keep the hardware awake during the call
2350	 * to av_bmiss().
2351	 */
2352	ATH_LOCK(sc);
2353	ath_power_restore_power_state(sc);
2354	ATH_UNLOCK(sc);
2355
2356	/*
2357	 * Attempt to force a beacon resync.
2358	 */
2359	sc->sc_syncbeacon = 1;
2360
2361	ATH_VAP(vap)->av_bmiss(vap);
2362}
2363
2364/* XXX this needs a force wakeup! */
2365int
2366ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
2367{
2368	uint32_t rsize;
2369	void *sp;
2370
2371	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
2372		return 0;
2373	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
2374	*hangs = *(uint32_t *)sp;
2375	return 1;
2376}
2377
2378static void
2379ath_bmiss_proc(void *arg, int pending)
2380{
2381	struct ath_softc *sc = arg;
2382	uint32_t hangs;
2383
2384	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2385
2386	ATH_LOCK(sc);
2387	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2388	ATH_UNLOCK(sc);
2389
2390	ath_beacon_miss(sc);
2391
2392	/*
2393	 * Do a reset upon any becaon miss event.
2394	 *
2395	 * It may be a non-recognised RX clear hang which needs a reset
2396	 * to clear.
2397	 */
2398	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
2399		ath_reset(sc, ATH_RESET_NOLOSS);
2400		device_printf(sc->sc_dev,
2401		    "bb hang detected (0x%x), resetting\n", hangs);
2402	} else {
2403		ath_reset(sc, ATH_RESET_NOLOSS);
2404		ieee80211_beacon_miss(&sc->sc_ic);
2405	}
2406
2407	/* Force a beacon resync, in case they've drifted */
2408	sc->sc_syncbeacon = 1;
2409
2410	ATH_LOCK(sc);
2411	ath_power_restore_power_state(sc);
2412	ATH_UNLOCK(sc);
2413}
2414
2415/*
2416 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
2417 * calcs together with WME.  If necessary disable the crypto
2418 * hardware and mark the 802.11 state so keys will be setup
2419 * with the MIC work done in software.
2420 */
2421static void
2422ath_settkipmic(struct ath_softc *sc)
2423{
2424	struct ieee80211com *ic = &sc->sc_ic;
2425
2426	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2427		if (ic->ic_flags & IEEE80211_F_WME) {
2428			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
2429			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2430		} else {
2431			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
2432			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2433		}
2434	}
2435}
2436
2437static int
2438ath_init(struct ath_softc *sc)
2439{
2440	struct ieee80211com *ic = &sc->sc_ic;
2441	struct ath_hal *ah = sc->sc_ah;
2442	HAL_STATUS status;
2443
2444	ATH_LOCK_ASSERT(sc);
2445
2446	/*
2447	 * Force the sleep state awake.
2448	 */
2449	ath_power_setselfgen(sc, HAL_PM_AWAKE);
2450	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2451	ath_power_setpower(sc, HAL_PM_AWAKE);
2452
2453	/*
2454	 * Stop anything previously setup.  This is safe
2455	 * whether this is the first time through or not.
2456	 */
2457	ath_stop(sc);
2458
2459	/*
2460	 * The basic interface to setting the hardware in a good
2461	 * state is ``reset''.  On return the hardware is known to
2462	 * be powered up and with interrupts disabled.  This must
2463	 * be followed by initialization of the appropriate bits
2464	 * and then setup of the interrupt mask.
2465	 */
2466	ath_settkipmic(sc);
2467	ath_update_chainmasks(sc, ic->ic_curchan);
2468	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2469	    sc->sc_cur_rxchainmask);
2470
2471	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE,
2472	    HAL_RESET_NORMAL, &status)) {
2473		device_printf(sc->sc_dev,
2474		    "unable to reset hardware; hal status %u\n", status);
2475		return (ENODEV);
2476	}
2477
2478	ATH_RX_LOCK(sc);
2479	sc->sc_rx_stopped = 1;
2480	sc->sc_rx_resetted = 1;
2481	ATH_RX_UNLOCK(sc);
2482
2483	ath_chan_change(sc, ic->ic_curchan);
2484
2485	/* Let DFS at it in case it's a DFS channel */
2486	ath_dfs_radar_enable(sc, ic->ic_curchan);
2487
2488	/* Let spectral at in case spectral is enabled */
2489	ath_spectral_enable(sc, ic->ic_curchan);
2490
2491	/*
2492	 * Let bluetooth coexistence at in case it's needed for this channel
2493	 */
2494	ath_btcoex_enable(sc, ic->ic_curchan);
2495
2496	/*
2497	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2498	 * support it.
2499	 */
2500	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2501		ath_hal_setenforcetxop(sc->sc_ah, 1);
2502	else
2503		ath_hal_setenforcetxop(sc->sc_ah, 0);
2504
2505	/*
2506	 * Likewise this is set during reset so update
2507	 * state cached in the driver.
2508	 */
2509	sc->sc_diversity = ath_hal_getdiversity(ah);
2510	sc->sc_lastlongcal = ticks;
2511	sc->sc_resetcal = 1;
2512	sc->sc_lastcalreset = 0;
2513	sc->sc_lastani = ticks;
2514	sc->sc_lastshortcal = ticks;
2515	sc->sc_doresetcal = AH_FALSE;
2516	/*
2517	 * Beacon timers were cleared here; give ath_newstate()
2518	 * a hint that the beacon timers should be poked when
2519	 * things transition to the RUN state.
2520	 */
2521	sc->sc_beacons = 0;
2522
2523	/*
2524	 * Setup the hardware after reset: the key cache
2525	 * is filled as needed and the receive engine is
2526	 * set going.  Frame transmit is handled entirely
2527	 * in the frame output path; there's nothing to do
2528	 * here except setup the interrupt mask.
2529	 */
2530	if (ath_startrecv(sc) != 0) {
2531		device_printf(sc->sc_dev, "unable to start recv logic\n");
2532		ath_power_restore_power_state(sc);
2533		return (ENODEV);
2534	}
2535
2536	/*
2537	 * Enable interrupts.
2538	 */
2539	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2540		  | HAL_INT_RXORN | HAL_INT_TXURN
2541		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2542
2543	/*
2544	 * Enable RX EDMA bits.  Note these overlap with
2545	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2546	 */
2547	if (sc->sc_isedma)
2548		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2549
2550	/*
2551	 * If we're an EDMA NIC, we don't care about RXEOL.
2552	 * Writing a new descriptor in will simply restart
2553	 * RX DMA.
2554	 */
2555	if (! sc->sc_isedma)
2556		sc->sc_imask |= HAL_INT_RXEOL;
2557
2558	/*
2559	 * Enable MCI interrupt for MCI devices.
2560	 */
2561	if (sc->sc_btcoex_mci)
2562		sc->sc_imask |= HAL_INT_MCI;
2563
2564	/*
2565	 * Enable MIB interrupts when there are hardware phy counters.
2566	 * Note we only do this (at the moment) for station mode.
2567	 */
2568	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2569		sc->sc_imask |= HAL_INT_MIB;
2570
2571	/*
2572	 * XXX add capability for this.
2573	 *
2574	 * If we're in STA mode (and maybe IBSS?) then register for
2575	 * TSFOOR interrupts.
2576	 */
2577	if (ic->ic_opmode == IEEE80211_M_STA)
2578		sc->sc_imask |= HAL_INT_TSFOOR;
2579
2580	/* Enable global TX timeout and carrier sense timeout if available */
2581	if (ath_hal_gtxto_supported(ah))
2582		sc->sc_imask |= HAL_INT_GTT;
2583
2584	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2585		__func__, sc->sc_imask);
2586
2587	sc->sc_running = 1;
2588	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2589	ath_hal_intrset(ah, sc->sc_imask);
2590
2591	ath_power_restore_power_state(sc);
2592
2593	return (0);
2594}
2595
2596static void
2597ath_stop(struct ath_softc *sc)
2598{
2599	struct ath_hal *ah = sc->sc_ah;
2600
2601	ATH_LOCK_ASSERT(sc);
2602
2603	/*
2604	 * Wake the hardware up before fiddling with it.
2605	 */
2606	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2607
2608	if (sc->sc_running) {
2609		/*
2610		 * Shutdown the hardware and driver:
2611		 *    reset 802.11 state machine
2612		 *    turn off timers
2613		 *    disable interrupts
2614		 *    turn off the radio
2615		 *    clear transmit machinery
2616		 *    clear receive machinery
2617		 *    drain and release tx queues
2618		 *    reclaim beacon resources
2619		 *    power down hardware
2620		 *
2621		 * Note that some of this work is not possible if the
2622		 * hardware is gone (invalid).
2623		 */
2624#ifdef ATH_TX99_DIAG
2625		if (sc->sc_tx99 != NULL)
2626			sc->sc_tx99->stop(sc->sc_tx99);
2627#endif
2628		callout_stop(&sc->sc_wd_ch);
2629		sc->sc_wd_timer = 0;
2630		sc->sc_running = 0;
2631		if (!sc->sc_invalid) {
2632			if (sc->sc_softled) {
2633				callout_stop(&sc->sc_ledtimer);
2634				ath_hal_gpioset(ah, sc->sc_ledpin,
2635					!sc->sc_ledon);
2636				sc->sc_blinking = 0;
2637			}
2638			ath_hal_intrset(ah, 0);
2639		}
2640		/* XXX we should stop RX regardless of whether it's valid */
2641		if (!sc->sc_invalid) {
2642			ath_stoprecv(sc, 1);
2643			ath_hal_phydisable(ah);
2644		} else
2645			sc->sc_rxlink = NULL;
2646		ath_draintxq(sc, ATH_RESET_DEFAULT);
2647		ath_beacon_free(sc);	/* XXX not needed */
2648	}
2649
2650	/* And now, restore the current power state */
2651	ath_power_restore_power_state(sc);
2652}
2653
2654/*
2655 * Wait until all pending TX/RX has completed.
2656 *
2657 * This waits until all existing transmit, receive and interrupts
2658 * have completed.  It's assumed that the caller has first
2659 * grabbed the reset lock so it doesn't try to do overlapping
2660 * chip resets.
2661 */
2662#define	MAX_TXRX_ITERATIONS	100
2663static void
2664ath_txrx_stop_locked(struct ath_softc *sc)
2665{
2666	int i = MAX_TXRX_ITERATIONS;
2667
2668	ATH_UNLOCK_ASSERT(sc);
2669	ATH_PCU_LOCK_ASSERT(sc);
2670
2671	/*
2672	 * Sleep until all the pending operations have completed.
2673	 *
2674	 * The caller must ensure that reset has been incremented
2675	 * or the pending operations may continue being queued.
2676	 */
2677	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2678	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2679		if (i <= 0)
2680			break;
2681		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
2682		    msecs_to_ticks(10));
2683		i--;
2684	}
2685
2686	if (i <= 0)
2687		device_printf(sc->sc_dev,
2688		    "%s: didn't finish after %d iterations\n",
2689		    __func__, MAX_TXRX_ITERATIONS);
2690}
2691#undef	MAX_TXRX_ITERATIONS
2692
2693#if 0
2694static void
2695ath_txrx_stop(struct ath_softc *sc)
2696{
2697	ATH_UNLOCK_ASSERT(sc);
2698	ATH_PCU_UNLOCK_ASSERT(sc);
2699
2700	ATH_PCU_LOCK(sc);
2701	ath_txrx_stop_locked(sc);
2702	ATH_PCU_UNLOCK(sc);
2703}
2704#endif
2705
2706static void
2707ath_txrx_start(struct ath_softc *sc)
2708{
2709
2710	taskqueue_unblock(sc->sc_tq);
2711}
2712
2713/*
2714 * Grab the reset lock, and wait around until no one else
2715 * is trying to do anything with it.
2716 *
2717 * This is totally horrible but we can't hold this lock for
2718 * long enough to do TX/RX or we end up with net80211/ip stack
2719 * LORs and eventual deadlock.
2720 *
2721 * "dowait" signals whether to spin, waiting for the reset
2722 * lock count to reach 0. This should (for now) only be used
2723 * during the reset path, as the rest of the code may not
2724 * be locking-reentrant enough to behave correctly.
2725 *
2726 * Another, cleaner way should be found to serialise all of
2727 * these operations.
2728 */
2729#define	MAX_RESET_ITERATIONS	25
2730static int
2731ath_reset_grablock(struct ath_softc *sc, int dowait)
2732{
2733	int w = 0;
2734	int i = MAX_RESET_ITERATIONS;
2735
2736	ATH_PCU_LOCK_ASSERT(sc);
2737	do {
2738		if (sc->sc_inreset_cnt == 0) {
2739			w = 1;
2740			break;
2741		}
2742		if (dowait == 0) {
2743			w = 0;
2744			break;
2745		}
2746		ATH_PCU_UNLOCK(sc);
2747		/*
2748		 * 1 tick is likely not enough time for long calibrations
2749		 * to complete.  So we should wait quite a while.
2750		 */
2751		pause("ath_reset_grablock", msecs_to_ticks(100));
2752		i--;
2753		ATH_PCU_LOCK(sc);
2754	} while (i > 0);
2755
2756	/*
2757	 * We always increment the refcounter, regardless
2758	 * of whether we succeeded to get it in an exclusive
2759	 * way.
2760	 */
2761	sc->sc_inreset_cnt++;
2762
2763	if (i <= 0)
2764		device_printf(sc->sc_dev,
2765		    "%s: didn't finish after %d iterations\n",
2766		    __func__, MAX_RESET_ITERATIONS);
2767
2768	if (w == 0)
2769		device_printf(sc->sc_dev,
2770		    "%s: warning, recursive reset path!\n",
2771		    __func__);
2772
2773	return w;
2774}
2775#undef MAX_RESET_ITERATIONS
2776
2777/*
2778 * Reset the hardware w/o losing operational state.  This is
2779 * basically a more efficient way of doing ath_stop, ath_init,
2780 * followed by state transitions to the current 802.11
2781 * operational state.  Used to recover from various errors and
2782 * to reset or reload hardware state.
2783 */
2784int
2785ath_reset(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
2786{
2787	struct ieee80211com *ic = &sc->sc_ic;
2788	struct ath_hal *ah = sc->sc_ah;
2789	HAL_STATUS status;
2790	int i;
2791
2792	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2793
2794	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2795	ATH_PCU_UNLOCK_ASSERT(sc);
2796	ATH_UNLOCK_ASSERT(sc);
2797
2798	/* Try to (stop any further TX/RX from occurring */
2799	taskqueue_block(sc->sc_tq);
2800
2801	/*
2802	 * Wake the hardware up.
2803	 */
2804	ATH_LOCK(sc);
2805	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2806	ATH_UNLOCK(sc);
2807
2808	ATH_PCU_LOCK(sc);
2809
2810	/*
2811	 * Grab the reset lock before TX/RX is stopped.
2812	 *
2813	 * This is needed to ensure that when the TX/RX actually does finish,
2814	 * no further TX/RX/reset runs in parallel with this.
2815	 */
2816	if (ath_reset_grablock(sc, 1) == 0) {
2817		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2818		    __func__);
2819	}
2820
2821	/* disable interrupts */
2822	ath_hal_intrset(ah, 0);
2823
2824	/*
2825	 * Now, ensure that any in progress TX/RX completes before we
2826	 * continue.
2827	 */
2828	ath_txrx_stop_locked(sc);
2829
2830	ATH_PCU_UNLOCK(sc);
2831
2832	/*
2833	 * Regardless of whether we're doing a no-loss flush or
2834	 * not, stop the PCU and handle what's in the RX queue.
2835	 * That way frames aren't dropped which shouldn't be.
2836	 */
2837	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2838	ath_rx_flush(sc);
2839
2840	/*
2841	 * Should now wait for pending TX/RX to complete
2842	 * and block future ones from occurring. This needs to be
2843	 * done before the TX queue is drained.
2844	 */
2845	ath_draintxq(sc, reset_type);	/* stop xmit side */
2846
2847	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2848	/* NB: indicate channel change so we do a full reset */
2849	ath_update_chainmasks(sc, ic->ic_curchan);
2850	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2851	    sc->sc_cur_rxchainmask);
2852	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE,
2853	    HAL_RESET_NORMAL, &status))
2854		device_printf(sc->sc_dev,
2855		    "%s: unable to reset hardware; hal status %u\n",
2856		    __func__, status);
2857	sc->sc_diversity = ath_hal_getdiversity(ah);
2858
2859	ATH_RX_LOCK(sc);
2860	sc->sc_rx_stopped = 1;
2861	sc->sc_rx_resetted = 1;
2862	ATH_RX_UNLOCK(sc);
2863
2864	/* Let DFS at it in case it's a DFS channel */
2865	ath_dfs_radar_enable(sc, ic->ic_curchan);
2866
2867	/* Let spectral at in case spectral is enabled */
2868	ath_spectral_enable(sc, ic->ic_curchan);
2869
2870	/*
2871	 * Let bluetooth coexistence at in case it's needed for this channel
2872	 */
2873	ath_btcoex_enable(sc, ic->ic_curchan);
2874
2875	/*
2876	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2877	 * support it.
2878	 */
2879	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2880		ath_hal_setenforcetxop(sc->sc_ah, 1);
2881	else
2882		ath_hal_setenforcetxop(sc->sc_ah, 0);
2883
2884	if (ath_startrecv(sc) != 0)	/* restart recv */
2885		device_printf(sc->sc_dev,
2886		    "%s: unable to start recv logic\n", __func__);
2887	/*
2888	 * We may be doing a reset in response to an ioctl
2889	 * that changes the channel so update any state that
2890	 * might change as a result.
2891	 */
2892	ath_chan_change(sc, ic->ic_curchan);
2893	if (sc->sc_beacons) {		/* restart beacons */
2894#ifdef IEEE80211_SUPPORT_TDMA
2895		if (sc->sc_tdma)
2896			ath_tdma_config(sc, NULL);
2897		else
2898#endif
2899			ath_beacon_config(sc, NULL);
2900	}
2901
2902	/*
2903	 * Release the reset lock and re-enable interrupts here.
2904	 * If an interrupt was being processed in ath_intr(),
2905	 * it would disable interrupts at this point. So we have
2906	 * to atomically enable interrupts and decrement the
2907	 * reset counter - this way ath_intr() doesn't end up
2908	 * disabling interrupts without a corresponding enable
2909	 * in the rest or channel change path.
2910	 *
2911	 * Grab the TX reference in case we need to transmit.
2912	 * That way a parallel transmit doesn't.
2913	 */
2914	ATH_PCU_LOCK(sc);
2915	sc->sc_inreset_cnt--;
2916	sc->sc_txstart_cnt++;
2917	/* XXX only do this if sc_inreset_cnt == 0? */
2918	ath_hal_intrset(ah, sc->sc_imask);
2919	ATH_PCU_UNLOCK(sc);
2920
2921	/*
2922	 * TX and RX can be started here. If it were started with
2923	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2924	 * Thus if this is a nested call through the reset or
2925	 * channel change code, TX completion will occur but
2926	 * RX completion and ath_start / ath_tx_start will not
2927	 * run.
2928	 */
2929
2930	/* Restart TX/RX as needed */
2931	ath_txrx_start(sc);
2932
2933	/* XXX TODO: we need to hold the tx refcount here! */
2934
2935	/* Restart TX completion and pending TX */
2936	if (reset_type == ATH_RESET_NOLOSS) {
2937		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2938			if (ATH_TXQ_SETUP(sc, i)) {
2939				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2940				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2941				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2942
2943				ATH_TX_LOCK(sc);
2944				ath_txq_sched(sc, &sc->sc_txq[i]);
2945				ATH_TX_UNLOCK(sc);
2946			}
2947		}
2948	}
2949
2950	ATH_LOCK(sc);
2951	ath_power_restore_power_state(sc);
2952	ATH_UNLOCK(sc);
2953
2954	ATH_PCU_LOCK(sc);
2955	sc->sc_txstart_cnt--;
2956	ATH_PCU_UNLOCK(sc);
2957
2958	/* Handle any frames in the TX queue */
2959	/*
2960	 * XXX should this be done by the caller, rather than
2961	 * ath_reset() ?
2962	 */
2963	ath_tx_kick(sc);		/* restart xmit */
2964	return 0;
2965}
2966
2967static int
2968ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2969{
2970	struct ieee80211com *ic = vap->iv_ic;
2971	struct ath_softc *sc = ic->ic_softc;
2972	struct ath_hal *ah = sc->sc_ah;
2973
2974	switch (cmd) {
2975	case IEEE80211_IOC_TXPOWER:
2976		/*
2977		 * If per-packet TPC is enabled, then we have nothing
2978		 * to do; otherwise we need to force the global limit.
2979		 * All this can happen directly; no need to reset.
2980		 */
2981		if (!ath_hal_gettpc(ah))
2982			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2983		return 0;
2984	}
2985	/* XXX? Full or NOLOSS? */
2986	return ath_reset(sc, ATH_RESET_FULL);
2987}
2988
2989struct ath_buf *
2990_ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2991{
2992	struct ath_buf *bf;
2993
2994	ATH_TXBUF_LOCK_ASSERT(sc);
2995
2996	if (btype == ATH_BUFTYPE_MGMT)
2997		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2998	else
2999		bf = TAILQ_FIRST(&sc->sc_txbuf);
3000
3001	if (bf == NULL) {
3002		sc->sc_stats.ast_tx_getnobuf++;
3003	} else {
3004		if (bf->bf_flags & ATH_BUF_BUSY) {
3005			sc->sc_stats.ast_tx_getbusybuf++;
3006			bf = NULL;
3007		}
3008	}
3009
3010	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
3011		if (btype == ATH_BUFTYPE_MGMT)
3012			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
3013		else {
3014			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
3015			sc->sc_txbuf_cnt--;
3016
3017			/*
3018			 * This shuldn't happen; however just to be
3019			 * safe print a warning and fudge the txbuf
3020			 * count.
3021			 */
3022			if (sc->sc_txbuf_cnt < 0) {
3023				device_printf(sc->sc_dev,
3024				    "%s: sc_txbuf_cnt < 0?\n",
3025				    __func__);
3026				sc->sc_txbuf_cnt = 0;
3027			}
3028		}
3029	} else
3030		bf = NULL;
3031
3032	if (bf == NULL) {
3033		/* XXX should check which list, mgmt or otherwise */
3034		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
3035		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
3036			"out of xmit buffers" : "xmit buffer busy");
3037		return NULL;
3038	}
3039
3040	/* XXX TODO: should do this at buffer list initialisation */
3041	/* XXX (then, ensure the buffer has the right flag set) */
3042	bf->bf_flags = 0;
3043	if (btype == ATH_BUFTYPE_MGMT)
3044		bf->bf_flags |= ATH_BUF_MGMT;
3045	else
3046		bf->bf_flags &= (~ATH_BUF_MGMT);
3047
3048	/* Valid bf here; clear some basic fields */
3049	bf->bf_next = NULL;	/* XXX just to be sure */
3050	bf->bf_last = NULL;	/* XXX again, just to be sure */
3051	bf->bf_comp = NULL;	/* XXX again, just to be sure */
3052	bzero(&bf->bf_state, sizeof(bf->bf_state));
3053
3054	/*
3055	 * Track the descriptor ID only if doing EDMA
3056	 */
3057	if (sc->sc_isedma) {
3058		bf->bf_descid = sc->sc_txbuf_descid;
3059		sc->sc_txbuf_descid++;
3060	}
3061
3062	return bf;
3063}
3064
3065/*
3066 * When retrying a software frame, buffers marked ATH_BUF_BUSY
3067 * can't be thrown back on the queue as they could still be
3068 * in use by the hardware.
3069 *
3070 * This duplicates the buffer, or returns NULL.
3071 *
3072 * The descriptor is also copied but the link pointers and
3073 * the DMA segments aren't copied; this frame should thus
3074 * be again passed through the descriptor setup/chain routines
3075 * so the link is correct.
3076 *
3077 * The caller must free the buffer using ath_freebuf().
3078 */
3079struct ath_buf *
3080ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
3081{
3082	struct ath_buf *tbf;
3083
3084	tbf = ath_getbuf(sc,
3085	    (bf->bf_flags & ATH_BUF_MGMT) ?
3086	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
3087	if (tbf == NULL)
3088		return NULL;	/* XXX failure? Why? */
3089
3090	/* Copy basics */
3091	tbf->bf_next = NULL;
3092	tbf->bf_nseg = bf->bf_nseg;
3093	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
3094	tbf->bf_status = bf->bf_status;
3095	tbf->bf_m = bf->bf_m;
3096	tbf->bf_node = bf->bf_node;
3097	KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__));
3098	/* will be setup by the chain/setup function */
3099	tbf->bf_lastds = NULL;
3100	/* for now, last == self */
3101	tbf->bf_last = tbf;
3102	tbf->bf_comp = bf->bf_comp;
3103
3104	/* NOTE: DMA segments will be setup by the setup/chain functions */
3105
3106	/* The caller has to re-init the descriptor + links */
3107
3108	/*
3109	 * Free the DMA mapping here, before we NULL the mbuf.
3110	 * We must only call bus_dmamap_unload() once per mbuf chain
3111	 * or behaviour is undefined.
3112	 */
3113	if (bf->bf_m != NULL) {
3114		/*
3115		 * XXX is this POSTWRITE call required?
3116		 */
3117		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3118		    BUS_DMASYNC_POSTWRITE);
3119		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3120	}
3121
3122	bf->bf_m = NULL;
3123	bf->bf_node = NULL;
3124
3125	/* Copy state */
3126	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
3127
3128	return tbf;
3129}
3130
3131struct ath_buf *
3132ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
3133{
3134	struct ath_buf *bf;
3135
3136	ATH_TXBUF_LOCK(sc);
3137	bf = _ath_getbuf_locked(sc, btype);
3138	/*
3139	 * If a mgmt buffer was requested but we're out of those,
3140	 * try requesting a normal one.
3141	 */
3142	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
3143		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
3144	ATH_TXBUF_UNLOCK(sc);
3145	if (bf == NULL) {
3146		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
3147		sc->sc_stats.ast_tx_qstop++;
3148	}
3149	return bf;
3150}
3151
3152/*
3153 * Transmit a single frame.
3154 *
3155 * net80211 will free the node reference if the transmit
3156 * fails, so don't free the node reference here.
3157 */
3158static int
3159ath_transmit(struct ieee80211com *ic, struct mbuf *m)
3160{
3161	struct ath_softc *sc = ic->ic_softc;
3162	struct ieee80211_node *ni;
3163	struct mbuf *next;
3164	struct ath_buf *bf;
3165	ath_bufhead frags;
3166	int retval = 0;
3167
3168	/*
3169	 * Tell the reset path that we're currently transmitting.
3170	 */
3171	ATH_PCU_LOCK(sc);
3172	if (sc->sc_inreset_cnt > 0) {
3173		DPRINTF(sc, ATH_DEBUG_XMIT,
3174		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
3175		ATH_PCU_UNLOCK(sc);
3176		sc->sc_stats.ast_tx_qstop++;
3177		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
3178		return (ENOBUFS);	/* XXX should be EINVAL or? */
3179	}
3180	sc->sc_txstart_cnt++;
3181	ATH_PCU_UNLOCK(sc);
3182
3183	/* Wake the hardware up already */
3184	ATH_LOCK(sc);
3185	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3186	ATH_UNLOCK(sc);
3187
3188	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
3189	/*
3190	 * Grab the TX lock - it's ok to do this here; we haven't
3191	 * yet started transmitting.
3192	 */
3193	ATH_TX_LOCK(sc);
3194
3195	/*
3196	 * Node reference, if there's one.
3197	 */
3198	ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
3199
3200	/*
3201	 * Enforce how deep a node queue can get.
3202	 *
3203	 * XXX it would be nicer if we kept an mbuf queue per
3204	 * node and only whacked them into ath_bufs when we
3205	 * are ready to schedule some traffic from them.
3206	 * .. that may come later.
3207	 *
3208	 * XXX we should also track the per-node hardware queue
3209	 * depth so it is easy to limit the _SUM_ of the swq and
3210	 * hwq frames.  Since we only schedule two HWQ frames
3211	 * at a time, this should be OK for now.
3212	 */
3213	if ((!(m->m_flags & M_EAPOL)) &&
3214	    (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
3215		sc->sc_stats.ast_tx_nodeq_overflow++;
3216		retval = ENOBUFS;
3217		goto finish;
3218	}
3219
3220	/*
3221	 * Check how many TX buffers are available.
3222	 *
3223	 * If this is for non-EAPOL traffic, just leave some
3224	 * space free in order for buffer cloning and raw
3225	 * frame transmission to occur.
3226	 *
3227	 * If it's for EAPOL traffic, ignore this for now.
3228	 * Management traffic will be sent via the raw transmit
3229	 * method which bypasses this check.
3230	 *
3231	 * This is needed to ensure that EAPOL frames during
3232	 * (re) keying have a chance to go out.
3233	 *
3234	 * See kern/138379 for more information.
3235	 */
3236	if ((!(m->m_flags & M_EAPOL)) &&
3237	    (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
3238		sc->sc_stats.ast_tx_nobuf++;
3239		retval = ENOBUFS;
3240		goto finish;
3241	}
3242
3243	/*
3244	 * Grab a TX buffer and associated resources.
3245	 *
3246	 * If it's an EAPOL frame, allocate a MGMT ath_buf.
3247	 * That way even with temporary buffer exhaustion due to
3248	 * the data path doesn't leave us without the ability
3249	 * to transmit management frames.
3250	 *
3251	 * Otherwise allocate a normal buffer.
3252	 */
3253	if (m->m_flags & M_EAPOL)
3254		bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
3255	else
3256		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
3257
3258	if (bf == NULL) {
3259		/*
3260		 * If we failed to allocate a buffer, fail.
3261		 *
3262		 * We shouldn't fail normally, due to the check
3263		 * above.
3264		 */
3265		sc->sc_stats.ast_tx_nobuf++;
3266		retval = ENOBUFS;
3267		goto finish;
3268	}
3269
3270	/*
3271	 * At this point we have a buffer; so we need to free it
3272	 * if we hit any error conditions.
3273	 */
3274
3275	/*
3276	 * Check for fragmentation.  If this frame
3277	 * has been broken up verify we have enough
3278	 * buffers to send all the fragments so all
3279	 * go out or none...
3280	 */
3281	TAILQ_INIT(&frags);
3282	if ((m->m_flags & M_FRAG) &&
3283	    !ath_txfrag_setup(sc, &frags, m, ni)) {
3284		DPRINTF(sc, ATH_DEBUG_XMIT,
3285		    "%s: out of txfrag buffers\n", __func__);
3286		sc->sc_stats.ast_tx_nofrag++;
3287		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
3288		/*
3289		 * XXXGL: is mbuf valid after ath_txfrag_setup? If yes,
3290		 * we shouldn't free it but return back.
3291		 */
3292		ieee80211_free_mbuf(m);
3293		m = NULL;
3294		goto bad;
3295	}
3296
3297	/*
3298	 * At this point if we have any TX fragments, then we will
3299	 * have bumped the node reference once for each of those.
3300	 */
3301
3302	/*
3303	 * XXX Is there anything actually _enforcing_ that the
3304	 * fragments are being transmitted in one hit, rather than
3305	 * being interleaved with other transmissions on that
3306	 * hardware queue?
3307	 *
3308	 * The ATH TX output lock is the only thing serialising this
3309	 * right now.
3310	 */
3311
3312	/*
3313	 * Calculate the "next fragment" length field in ath_buf
3314	 * in order to let the transmit path know enough about
3315	 * what to next write to the hardware.
3316	 */
3317	if (m->m_flags & M_FRAG) {
3318		struct ath_buf *fbf = bf;
3319		struct ath_buf *n_fbf = NULL;
3320		struct mbuf *fm = m->m_nextpkt;
3321
3322		/*
3323		 * We need to walk the list of fragments and set
3324		 * the next size to the following buffer.
3325		 * However, the first buffer isn't in the frag
3326		 * list, so we have to do some gymnastics here.
3327		 */
3328		TAILQ_FOREACH(n_fbf, &frags, bf_list) {
3329			fbf->bf_nextfraglen = fm->m_pkthdr.len;
3330			fbf = n_fbf;
3331			fm = fm->m_nextpkt;
3332		}
3333	}
3334
3335nextfrag:
3336	/*
3337	 * Pass the frame to the h/w for transmission.
3338	 * Fragmented frames have each frag chained together
3339	 * with m_nextpkt.  We know there are sufficient ath_buf's
3340	 * to send all the frags because of work done by
3341	 * ath_txfrag_setup.  We leave m_nextpkt set while
3342	 * calling ath_tx_start so it can use it to extend the
3343	 * the tx duration to cover the subsequent frag and
3344	 * so it can reclaim all the mbufs in case of an error;
3345	 * ath_tx_start clears m_nextpkt once it commits to
3346	 * handing the frame to the hardware.
3347	 *
3348	 * Note: if this fails, then the mbufs are freed but
3349	 * not the node reference.
3350	 *
3351	 * So, we now have to free the node reference ourselves here
3352	 * and return OK up to the stack.
3353	 */
3354	next = m->m_nextpkt;
3355	if (ath_tx_start(sc, ni, bf, m)) {
3356bad:
3357		if_inc_counter(ni->ni_vap->iv_ifp, IFCOUNTER_OERRORS, 1);
3358reclaim:
3359		bf->bf_m = NULL;
3360		bf->bf_node = NULL;
3361		ATH_TXBUF_LOCK(sc);
3362		ath_returnbuf_head(sc, bf);
3363		/*
3364		 * Free the rest of the node references and
3365		 * buffers for the fragment list.
3366		 */
3367		ath_txfrag_cleanup(sc, &frags, ni);
3368		ATH_TXBUF_UNLOCK(sc);
3369
3370		/*
3371		 * XXX: And free the node/return OK; ath_tx_start() may have
3372		 *      modified the buffer.  We currently have no way to
3373		 *      signify that the mbuf was freed but there was an error.
3374		 */
3375		ieee80211_free_node(ni);
3376		retval = 0;
3377		goto finish;
3378	}
3379
3380	/*
3381	 * Check here if the node is in power save state.
3382	 */
3383	ath_tx_update_tim(sc, ni, 1);
3384
3385	if (next != NULL) {
3386		/*
3387		 * Beware of state changing between frags.
3388		 * XXX check sta power-save state?
3389		 */
3390		if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
3391			DPRINTF(sc, ATH_DEBUG_XMIT,
3392			    "%s: flush fragmented packet, state %s\n",
3393			    __func__,
3394			    ieee80211_state_name[ni->ni_vap->iv_state]);
3395			/* XXX dmamap */
3396			ieee80211_free_mbuf(next);
3397			goto reclaim;
3398		}
3399		m = next;
3400		bf = TAILQ_FIRST(&frags);
3401		KASSERT(bf != NULL, ("no buf for txfrag"));
3402		TAILQ_REMOVE(&frags, bf, bf_list);
3403		goto nextfrag;
3404	}
3405
3406	/*
3407	 * Bump watchdog timer.
3408	 */
3409	sc->sc_wd_timer = 5;
3410
3411finish:
3412	ATH_TX_UNLOCK(sc);
3413
3414	/*
3415	 * Finished transmitting!
3416	 */
3417	ATH_PCU_LOCK(sc);
3418	sc->sc_txstart_cnt--;
3419	ATH_PCU_UNLOCK(sc);
3420
3421	/* Sleep the hardware if required */
3422	ATH_LOCK(sc);
3423	ath_power_restore_power_state(sc);
3424	ATH_UNLOCK(sc);
3425
3426	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
3427
3428	return (retval);
3429}
3430
3431static int
3432ath_media_change(struct ifnet *ifp)
3433{
3434	int error = ieee80211_media_change(ifp);
3435	/* NB: only the fixed rate can change and that doesn't need a reset */
3436	return (error == ENETRESET ? 0 : error);
3437}
3438
3439/*
3440 * Block/unblock tx+rx processing while a key change is done.
3441 * We assume the caller serializes key management operations
3442 * so we only need to worry about synchronization with other
3443 * uses that originate in the driver.
3444 */
3445static void
3446ath_key_update_begin(struct ieee80211vap *vap)
3447{
3448	struct ath_softc *sc = vap->iv_ic->ic_softc;
3449
3450	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3451	taskqueue_block(sc->sc_tq);
3452}
3453
3454static void
3455ath_key_update_end(struct ieee80211vap *vap)
3456{
3457	struct ath_softc *sc = vap->iv_ic->ic_softc;
3458
3459	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3460	taskqueue_unblock(sc->sc_tq);
3461}
3462
3463static void
3464ath_update_promisc(struct ieee80211com *ic)
3465{
3466	struct ath_softc *sc = ic->ic_softc;
3467	u_int32_t rfilt;
3468
3469	/* configure rx filter */
3470	ATH_LOCK(sc);
3471	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3472	rfilt = ath_calcrxfilter(sc);
3473	ath_hal_setrxfilter(sc->sc_ah, rfilt);
3474	ath_power_restore_power_state(sc);
3475	ATH_UNLOCK(sc);
3476
3477	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3478}
3479
3480/*
3481 * Driver-internal mcast update call.
3482 *
3483 * Assumes the hardware is already awake.
3484 */
3485static void
3486ath_update_mcast_hw(struct ath_softc *sc)
3487{
3488	struct ieee80211com *ic = &sc->sc_ic;
3489	u_int32_t mfilt[2];
3490
3491	/* calculate and install multicast filter */
3492	if (ic->ic_allmulti == 0) {
3493		struct ieee80211vap *vap;
3494		struct ifnet *ifp;
3495		struct ifmultiaddr *ifma;
3496
3497		/*
3498		 * Merge multicast addresses to form the hardware filter.
3499		 */
3500		mfilt[0] = mfilt[1] = 0;
3501		TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
3502			ifp = vap->iv_ifp;
3503			if_maddr_rlock(ifp);
3504			TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3505				caddr_t dl;
3506				uint32_t val;
3507				uint8_t pos;
3508
3509				/* calculate XOR of eight 6bit values */
3510				dl = LLADDR((struct sockaddr_dl *)
3511				    ifma->ifma_addr);
3512				val = le32dec(dl + 0);
3513				pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^
3514				    val;
3515				val = le32dec(dl + 3);
3516				pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^
3517				    val;
3518				pos &= 0x3f;
3519				mfilt[pos / 32] |= (1 << (pos % 32));
3520			}
3521			if_maddr_runlock(ifp);
3522		}
3523	} else
3524		mfilt[0] = mfilt[1] = ~0;
3525
3526	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3527
3528	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3529		__func__, mfilt[0], mfilt[1]);
3530}
3531
3532/*
3533 * Called from the net80211 layer - force the hardware
3534 * awake before operating.
3535 */
3536static void
3537ath_update_mcast(struct ieee80211com *ic)
3538{
3539	struct ath_softc *sc = ic->ic_softc;
3540
3541	ATH_LOCK(sc);
3542	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3543	ATH_UNLOCK(sc);
3544
3545	ath_update_mcast_hw(sc);
3546
3547	ATH_LOCK(sc);
3548	ath_power_restore_power_state(sc);
3549	ATH_UNLOCK(sc);
3550}
3551
3552void
3553ath_mode_init(struct ath_softc *sc)
3554{
3555	struct ieee80211com *ic = &sc->sc_ic;
3556	struct ath_hal *ah = sc->sc_ah;
3557	u_int32_t rfilt;
3558
3559	/* configure rx filter */
3560	rfilt = ath_calcrxfilter(sc);
3561	ath_hal_setrxfilter(ah, rfilt);
3562
3563	/* configure operational mode */
3564	ath_hal_setopmode(ah);
3565
3566	/* handle any link-level address change */
3567	ath_hal_setmac(ah, ic->ic_macaddr);
3568
3569	/* calculate and install multicast filter */
3570	ath_update_mcast_hw(sc);
3571}
3572
3573/*
3574 * Set the slot time based on the current setting.
3575 */
3576void
3577ath_setslottime(struct ath_softc *sc)
3578{
3579	struct ieee80211com *ic = &sc->sc_ic;
3580	struct ath_hal *ah = sc->sc_ah;
3581	u_int usec;
3582
3583	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3584		usec = 13;
3585	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3586		usec = 21;
3587	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3588		/* honor short/long slot time only in 11g */
3589		/* XXX shouldn't honor on pure g or turbo g channel */
3590		if (ic->ic_flags & IEEE80211_F_SHSLOT)
3591			usec = HAL_SLOT_TIME_9;
3592		else
3593			usec = HAL_SLOT_TIME_20;
3594	} else
3595		usec = HAL_SLOT_TIME_9;
3596
3597	DPRINTF(sc, ATH_DEBUG_RESET,
3598	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3599	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3600	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3601
3602	/* Wake up the hardware first before updating the slot time */
3603	ATH_LOCK(sc);
3604	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3605	ath_hal_setslottime(ah, usec);
3606	ath_power_restore_power_state(sc);
3607	sc->sc_updateslot = OK;
3608	ATH_UNLOCK(sc);
3609}
3610
3611/*
3612 * Callback from the 802.11 layer to update the
3613 * slot time based on the current setting.
3614 */
3615static void
3616ath_updateslot(struct ieee80211com *ic)
3617{
3618	struct ath_softc *sc = ic->ic_softc;
3619
3620	/*
3621	 * When not coordinating the BSS, change the hardware
3622	 * immediately.  For other operation we defer the change
3623	 * until beacon updates have propagated to the stations.
3624	 *
3625	 * XXX sc_updateslot isn't changed behind a lock?
3626	 */
3627	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3628	    ic->ic_opmode == IEEE80211_M_MBSS)
3629		sc->sc_updateslot = UPDATE;
3630	else
3631		ath_setslottime(sc);
3632}
3633
3634/*
3635 * Append the contents of src to dst; both queues
3636 * are assumed to be locked.
3637 */
3638void
3639ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3640{
3641
3642	ATH_TXQ_LOCK_ASSERT(src);
3643	ATH_TXQ_LOCK_ASSERT(dst);
3644
3645	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3646	dst->axq_link = src->axq_link;
3647	src->axq_link = NULL;
3648	dst->axq_depth += src->axq_depth;
3649	dst->axq_aggr_depth += src->axq_aggr_depth;
3650	src->axq_depth = 0;
3651	src->axq_aggr_depth = 0;
3652}
3653
3654/*
3655 * Reset the hardware, with no loss.
3656 *
3657 * This can't be used for a general case reset.
3658 */
3659static void
3660ath_reset_proc(void *arg, int pending)
3661{
3662	struct ath_softc *sc = arg;
3663
3664#if 0
3665	device_printf(sc->sc_dev, "%s: resetting\n", __func__);
3666#endif
3667	ath_reset(sc, ATH_RESET_NOLOSS);
3668}
3669
3670/*
3671 * Reset the hardware after detecting beacons have stopped.
3672 */
3673static void
3674ath_bstuck_proc(void *arg, int pending)
3675{
3676	struct ath_softc *sc = arg;
3677	uint32_t hangs = 0;
3678
3679	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3680		device_printf(sc->sc_dev, "bb hang detected (0x%x)\n", hangs);
3681
3682#ifdef	ATH_DEBUG_ALQ
3683	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
3684		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3685#endif
3686
3687	device_printf(sc->sc_dev, "stuck beacon; resetting (bmiss count %u)\n",
3688	    sc->sc_bmisscount);
3689	sc->sc_stats.ast_bstuck++;
3690	/*
3691	 * This assumes that there's no simultaneous channel mode change
3692	 * occurring.
3693	 */
3694	ath_reset(sc, ATH_RESET_NOLOSS);
3695}
3696
3697static int
3698ath_desc_alloc(struct ath_softc *sc)
3699{
3700	int error;
3701
3702	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3703		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
3704	if (error != 0) {
3705		return error;
3706	}
3707	sc->sc_txbuf_cnt = ath_txbuf;
3708
3709	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3710		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3711		    ATH_TXDESC);
3712	if (error != 0) {
3713		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3714		return error;
3715	}
3716
3717	/*
3718	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3719	 * flag doesn't have to be set in ath_getbuf_locked().
3720	 */
3721
3722	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3723			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3724	if (error != 0) {
3725		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3726		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3727		    &sc->sc_txbuf_mgmt);
3728		return error;
3729	}
3730	return 0;
3731}
3732
3733static void
3734ath_desc_free(struct ath_softc *sc)
3735{
3736
3737	if (sc->sc_bdma.dd_desc_len != 0)
3738		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3739	if (sc->sc_txdma.dd_desc_len != 0)
3740		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3741	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3742		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3743		    &sc->sc_txbuf_mgmt);
3744}
3745
3746static struct ieee80211_node *
3747ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3748{
3749	struct ieee80211com *ic = vap->iv_ic;
3750	struct ath_softc *sc = ic->ic_softc;
3751	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3752	struct ath_node *an;
3753
3754	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3755	if (an == NULL) {
3756		/* XXX stat+msg */
3757		return NULL;
3758	}
3759	ath_rate_node_init(sc, an);
3760
3761	/* Setup the mutex - there's no associd yet so set the name to NULL */
3762	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3763	    device_get_nameunit(sc->sc_dev), an);
3764	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3765
3766	/* XXX setup ath_tid */
3767	ath_tx_tid_init(sc, an);
3768
3769	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an);
3770	return &an->an_node;
3771}
3772
3773static void
3774ath_node_cleanup(struct ieee80211_node *ni)
3775{
3776	struct ieee80211com *ic = ni->ni_ic;
3777	struct ath_softc *sc = ic->ic_softc;
3778
3779	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3780	    ni->ni_macaddr, ":", ATH_NODE(ni));
3781
3782	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3783	ath_tx_node_flush(sc, ATH_NODE(ni));
3784	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3785	sc->sc_node_cleanup(ni);
3786}
3787
3788static void
3789ath_node_free(struct ieee80211_node *ni)
3790{
3791	struct ieee80211com *ic = ni->ni_ic;
3792	struct ath_softc *sc = ic->ic_softc;
3793
3794	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3795	    ni->ni_macaddr, ":", ATH_NODE(ni));
3796	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3797	sc->sc_node_free(ni);
3798}
3799
3800static void
3801ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3802{
3803	struct ieee80211com *ic = ni->ni_ic;
3804	struct ath_softc *sc = ic->ic_softc;
3805	struct ath_hal *ah = sc->sc_ah;
3806
3807	*rssi = ic->ic_node_getrssi(ni);
3808	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3809		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3810	else
3811		*noise = -95;		/* nominally correct */
3812}
3813
3814/*
3815 * Set the default antenna.
3816 */
3817void
3818ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3819{
3820	struct ath_hal *ah = sc->sc_ah;
3821
3822	/* XXX block beacon interrupts */
3823	ath_hal_setdefantenna(ah, antenna);
3824	if (sc->sc_defant != antenna)
3825		sc->sc_stats.ast_ant_defswitch++;
3826	sc->sc_defant = antenna;
3827	sc->sc_rxotherant = 0;
3828}
3829
3830static void
3831ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3832{
3833	txq->axq_qnum = qnum;
3834	txq->axq_ac = 0;
3835	txq->axq_depth = 0;
3836	txq->axq_aggr_depth = 0;
3837	txq->axq_intrcnt = 0;
3838	txq->axq_link = NULL;
3839	txq->axq_softc = sc;
3840	TAILQ_INIT(&txq->axq_q);
3841	TAILQ_INIT(&txq->axq_tidq);
3842	TAILQ_INIT(&txq->fifo.axq_q);
3843	ATH_TXQ_LOCK_INIT(sc, txq);
3844}
3845
3846/*
3847 * Setup a h/w transmit queue.
3848 */
3849static struct ath_txq *
3850ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3851{
3852	struct ath_hal *ah = sc->sc_ah;
3853	HAL_TXQ_INFO qi;
3854	int qnum;
3855
3856	memset(&qi, 0, sizeof(qi));
3857	qi.tqi_subtype = subtype;
3858	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3859	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3860	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3861	/*
3862	 * Enable interrupts only for EOL and DESC conditions.
3863	 * We mark tx descriptors to receive a DESC interrupt
3864	 * when a tx queue gets deep; otherwise waiting for the
3865	 * EOL to reap descriptors.  Note that this is done to
3866	 * reduce interrupt load and this only defers reaping
3867	 * descriptors, never transmitting frames.  Aside from
3868	 * reducing interrupts this also permits more concurrency.
3869	 * The only potential downside is if the tx queue backs
3870	 * up in which case the top half of the kernel may backup
3871	 * due to a lack of tx descriptors.
3872	 */
3873	if (sc->sc_isedma)
3874		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
3875		    HAL_TXQ_TXOKINT_ENABLE;
3876	else
3877		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
3878		    HAL_TXQ_TXDESCINT_ENABLE;
3879
3880	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3881	if (qnum == -1) {
3882		/*
3883		 * NB: don't print a message, this happens
3884		 * normally on parts with too few tx queues
3885		 */
3886		return NULL;
3887	}
3888	if (qnum >= nitems(sc->sc_txq)) {
3889		device_printf(sc->sc_dev,
3890			"hal qnum %u out of range, max %zu!\n",
3891			qnum, nitems(sc->sc_txq));
3892		ath_hal_releasetxqueue(ah, qnum);
3893		return NULL;
3894	}
3895	if (!ATH_TXQ_SETUP(sc, qnum)) {
3896		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3897		sc->sc_txqsetup |= 1<<qnum;
3898	}
3899	return &sc->sc_txq[qnum];
3900}
3901
3902/*
3903 * Setup a hardware data transmit queue for the specified
3904 * access control.  The hal may not support all requested
3905 * queues in which case it will return a reference to a
3906 * previously setup queue.  We record the mapping from ac's
3907 * to h/w queues for use by ath_tx_start and also track
3908 * the set of h/w queues being used to optimize work in the
3909 * transmit interrupt handler and related routines.
3910 */
3911static int
3912ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3913{
3914	struct ath_txq *txq;
3915
3916	if (ac >= nitems(sc->sc_ac2q)) {
3917		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3918			ac, nitems(sc->sc_ac2q));
3919		return 0;
3920	}
3921	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3922	if (txq != NULL) {
3923		txq->axq_ac = ac;
3924		sc->sc_ac2q[ac] = txq;
3925		return 1;
3926	} else
3927		return 0;
3928}
3929
3930/*
3931 * Update WME parameters for a transmit queue.
3932 */
3933static int
3934ath_txq_update(struct ath_softc *sc, int ac)
3935{
3936#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3937	struct ieee80211com *ic = &sc->sc_ic;
3938	struct ath_txq *txq = sc->sc_ac2q[ac];
3939	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3940	struct ath_hal *ah = sc->sc_ah;
3941	HAL_TXQ_INFO qi;
3942
3943	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3944#ifdef IEEE80211_SUPPORT_TDMA
3945	if (sc->sc_tdma) {
3946		/*
3947		 * AIFS is zero so there's no pre-transmit wait.  The
3948		 * burst time defines the slot duration and is configured
3949		 * through net80211.  The QCU is setup to not do post-xmit
3950		 * back off, lockout all lower-priority QCU's, and fire
3951		 * off the DMA beacon alert timer which is setup based
3952		 * on the slot configuration.
3953		 */
3954		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3955			      | HAL_TXQ_TXERRINT_ENABLE
3956			      | HAL_TXQ_TXURNINT_ENABLE
3957			      | HAL_TXQ_TXEOLINT_ENABLE
3958			      | HAL_TXQ_DBA_GATED
3959			      | HAL_TXQ_BACKOFF_DISABLE
3960			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3961			      ;
3962		qi.tqi_aifs = 0;
3963		/* XXX +dbaprep? */
3964		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3965		qi.tqi_burstTime = qi.tqi_readyTime;
3966	} else {
3967#endif
3968		/*
3969		 * XXX shouldn't this just use the default flags
3970		 * used in the previous queue setup?
3971		 */
3972		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3973			      | HAL_TXQ_TXERRINT_ENABLE
3974			      | HAL_TXQ_TXDESCINT_ENABLE
3975			      | HAL_TXQ_TXURNINT_ENABLE
3976			      | HAL_TXQ_TXEOLINT_ENABLE
3977			      ;
3978		qi.tqi_aifs = wmep->wmep_aifsn;
3979		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3980		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3981		qi.tqi_readyTime = 0;
3982		qi.tqi_burstTime = IEEE80211_TXOP_TO_US(wmep->wmep_txopLimit);
3983#ifdef IEEE80211_SUPPORT_TDMA
3984	}
3985#endif
3986
3987	DPRINTF(sc, ATH_DEBUG_RESET,
3988	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3989	    __func__, txq->axq_qnum, qi.tqi_qflags,
3990	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3991
3992	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3993		device_printf(sc->sc_dev, "unable to update hardware queue "
3994		    "parameters for %s traffic!\n", ieee80211_wme_acnames[ac]);
3995		return 0;
3996	} else {
3997		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3998		return 1;
3999	}
4000#undef ATH_EXPONENT_TO_VALUE
4001}
4002
4003/*
4004 * Callback from the 802.11 layer to update WME parameters.
4005 */
4006int
4007ath_wme_update(struct ieee80211com *ic)
4008{
4009	struct ath_softc *sc = ic->ic_softc;
4010
4011	return !ath_txq_update(sc, WME_AC_BE) ||
4012	    !ath_txq_update(sc, WME_AC_BK) ||
4013	    !ath_txq_update(sc, WME_AC_VI) ||
4014	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4015}
4016
4017/*
4018 * Reclaim resources for a setup queue.
4019 */
4020static void
4021ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4022{
4023
4024	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4025	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4026	ATH_TXQ_LOCK_DESTROY(txq);
4027}
4028
4029/*
4030 * Reclaim all tx queue resources.
4031 */
4032static void
4033ath_tx_cleanup(struct ath_softc *sc)
4034{
4035	int i;
4036
4037	ATH_TXBUF_LOCK_DESTROY(sc);
4038	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4039		if (ATH_TXQ_SETUP(sc, i))
4040			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4041}
4042
4043/*
4044 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4045 * using the current rates in sc_rixmap.
4046 */
4047int
4048ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4049{
4050	int rix = sc->sc_rixmap[rate];
4051	/* NB: return lowest rix for invalid rate */
4052	return (rix == 0xff ? 0 : rix);
4053}
4054
4055static void
4056ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4057    struct ath_buf *bf)
4058{
4059	struct ieee80211_node *ni = bf->bf_node;
4060	struct ieee80211com *ic = &sc->sc_ic;
4061	int sr, lr, pri;
4062
4063	if (ts->ts_status == 0) {
4064		u_int8_t txant = ts->ts_antenna;
4065		sc->sc_stats.ast_ant_tx[txant]++;
4066		sc->sc_ant_tx[txant]++;
4067		if (ts->ts_finaltsi != 0)
4068			sc->sc_stats.ast_tx_altrate++;
4069		pri = M_WME_GETAC(bf->bf_m);
4070		if (pri >= WME_AC_VO)
4071			ic->ic_wme.wme_hipri_traffic++;
4072		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
4073			ni->ni_inact = ni->ni_inact_reload;
4074	} else {
4075		if (ts->ts_status & HAL_TXERR_XRETRY)
4076			sc->sc_stats.ast_tx_xretries++;
4077		if (ts->ts_status & HAL_TXERR_FIFO)
4078			sc->sc_stats.ast_tx_fifoerr++;
4079		if (ts->ts_status & HAL_TXERR_FILT)
4080			sc->sc_stats.ast_tx_filtered++;
4081		if (ts->ts_status & HAL_TXERR_XTXOP)
4082			sc->sc_stats.ast_tx_xtxop++;
4083		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4084			sc->sc_stats.ast_tx_timerexpired++;
4085
4086		if (bf->bf_m->m_flags & M_FF)
4087			sc->sc_stats.ast_ff_txerr++;
4088	}
4089	/* XXX when is this valid? */
4090	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
4091		sc->sc_stats.ast_tx_desccfgerr++;
4092	/*
4093	 * This can be valid for successful frame transmission!
4094	 * If there's a TX FIFO underrun during aggregate transmission,
4095	 * the MAC will pad the rest of the aggregate with delimiters.
4096	 * If a BA is returned, the frame is marked as "OK" and it's up
4097	 * to the TX completion code to notice which frames weren't
4098	 * successfully transmitted.
4099	 */
4100	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
4101		sc->sc_stats.ast_tx_data_underrun++;
4102	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
4103		sc->sc_stats.ast_tx_delim_underrun++;
4104
4105	sr = ts->ts_shortretry;
4106	lr = ts->ts_longretry;
4107	sc->sc_stats.ast_tx_shortretry += sr;
4108	sc->sc_stats.ast_tx_longretry += lr;
4109
4110}
4111
4112/*
4113 * The default completion. If fail is 1, this means
4114 * "please don't retry the frame, and just return -1 status
4115 * to the net80211 stack.
4116 */
4117void
4118ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4119{
4120	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4121	int st;
4122
4123	if (fail == 1)
4124		st = -1;
4125	else
4126		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
4127		    ts->ts_status : HAL_TXERR_XRETRY;
4128
4129#if 0
4130	if (bf->bf_state.bfs_dobaw)
4131		device_printf(sc->sc_dev,
4132		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4133		    __func__,
4134		    bf,
4135		    SEQNO(bf->bf_state.bfs_seqno));
4136#endif
4137	if (bf->bf_next != NULL)
4138		device_printf(sc->sc_dev,
4139		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
4140		    __func__,
4141		    bf,
4142		    SEQNO(bf->bf_state.bfs_seqno));
4143
4144	/*
4145	 * Check if the node software queue is empty; if so
4146	 * then clear the TIM.
4147	 *
4148	 * This needs to be done before the buffer is freed as
4149	 * otherwise the node reference will have been released
4150	 * and the node may not actually exist any longer.
4151	 *
4152	 * XXX I don't like this belonging here, but it's cleaner
4153	 * to do it here right now then all the other places
4154	 * where ath_tx_default_comp() is called.
4155	 *
4156	 * XXX TODO: during drain, ensure that the callback is
4157	 * being called so we get a chance to update the TIM.
4158	 */
4159	if (bf->bf_node) {
4160		ATH_TX_LOCK(sc);
4161		ath_tx_update_tim(sc, bf->bf_node, 0);
4162		ATH_TX_UNLOCK(sc);
4163	}
4164
4165	/*
4166	 * Do any tx complete callback.  Note this must
4167	 * be done before releasing the node reference.
4168	 * This will free the mbuf, release the net80211
4169	 * node and recycle the ath_buf.
4170	 */
4171	ath_tx_freebuf(sc, bf, st);
4172}
4173
4174/*
4175 * Update rate control with the given completion status.
4176 */
4177void
4178ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4179    struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4180    int nframes, int nbad)
4181{
4182	struct ath_node *an;
4183
4184	/* Only for unicast frames */
4185	if (ni == NULL)
4186		return;
4187
4188	an = ATH_NODE(ni);
4189	ATH_NODE_UNLOCK_ASSERT(an);
4190
4191	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4192		ATH_NODE_LOCK(an);
4193		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4194		ATH_NODE_UNLOCK(an);
4195	}
4196}
4197
4198/*
4199 * Process the completion of the given buffer.
4200 *
4201 * This calls the rate control update and then the buffer completion.
4202 * This will either free the buffer or requeue it.  In any case, the
4203 * bf pointer should be treated as invalid after this function is called.
4204 */
4205void
4206ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
4207    struct ath_tx_status *ts, struct ath_buf *bf)
4208{
4209	struct ieee80211_node *ni = bf->bf_node;
4210
4211	ATH_TX_UNLOCK_ASSERT(sc);
4212	ATH_TXQ_UNLOCK_ASSERT(txq);
4213
4214	/* If unicast frame, update general statistics */
4215	if (ni != NULL) {
4216		/* update statistics */
4217		ath_tx_update_stats(sc, ts, bf);
4218	}
4219
4220	/*
4221	 * Call the completion handler.
4222	 * The completion handler is responsible for
4223	 * calling the rate control code.
4224	 *
4225	 * Frames with no completion handler get the
4226	 * rate control code called here.
4227	 */
4228	if (bf->bf_comp == NULL) {
4229		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4230		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4231			/*
4232			 * XXX assume this isn't an aggregate
4233			 * frame.
4234			 */
4235			ath_tx_update_ratectrl(sc, ni,
4236			     bf->bf_state.bfs_rc, ts,
4237			    bf->bf_state.bfs_pktlen, 1,
4238			    (ts->ts_status == 0 ? 0 : 1));
4239		}
4240		ath_tx_default_comp(sc, bf, 0);
4241	} else
4242		bf->bf_comp(sc, bf, 0);
4243}
4244
4245
4246
4247/*
4248 * Process completed xmit descriptors from the specified queue.
4249 * Kick the packet scheduler if needed. This can occur from this
4250 * particular task.
4251 */
4252static int
4253ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4254{
4255	struct ath_hal *ah = sc->sc_ah;
4256	struct ath_buf *bf;
4257	struct ath_desc *ds;
4258	struct ath_tx_status *ts;
4259	struct ieee80211_node *ni;
4260#ifdef	IEEE80211_SUPPORT_SUPERG
4261	struct ieee80211com *ic = &sc->sc_ic;
4262#endif	/* IEEE80211_SUPPORT_SUPERG */
4263	int nacked;
4264	HAL_STATUS status;
4265
4266	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4267		__func__, txq->axq_qnum,
4268		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4269		txq->axq_link);
4270
4271	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4272	    "ath_tx_processq: txq=%u head %p link %p depth %p",
4273	    txq->axq_qnum,
4274	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4275	    txq->axq_link,
4276	    txq->axq_depth);
4277
4278	nacked = 0;
4279	for (;;) {
4280		ATH_TXQ_LOCK(txq);
4281		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4282		bf = TAILQ_FIRST(&txq->axq_q);
4283		if (bf == NULL) {
4284			ATH_TXQ_UNLOCK(txq);
4285			break;
4286		}
4287		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4288		ts = &bf->bf_status.ds_txstat;
4289
4290		status = ath_hal_txprocdesc(ah, ds, ts);
4291#ifdef ATH_DEBUG
4292		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4293			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4294			    status == HAL_OK);
4295		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4296			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4297			    status == HAL_OK);
4298#endif
4299#ifdef	ATH_DEBUG_ALQ
4300		if (if_ath_alq_checkdebug(&sc->sc_alq,
4301		    ATH_ALQ_EDMA_TXSTATUS)) {
4302			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
4303			sc->sc_tx_statuslen,
4304			(char *) ds);
4305		}
4306#endif
4307
4308		if (status == HAL_EINPROGRESS) {
4309			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4310			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4311			    txq->axq_qnum, bf, ds);
4312			ATH_TXQ_UNLOCK(txq);
4313			break;
4314		}
4315		ATH_TXQ_REMOVE(txq, bf, bf_list);
4316
4317		/*
4318		 * Sanity check.
4319		 */
4320		if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4321			device_printf(sc->sc_dev,
4322			    "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4323			    __func__,
4324			    txq->axq_qnum,
4325			    bf,
4326			    bf->bf_state.bfs_tx_queue);
4327		}
4328		if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4329			device_printf(sc->sc_dev,
4330			    "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4331			    __func__,
4332			    txq->axq_qnum,
4333			    bf->bf_last,
4334			    bf->bf_last->bf_state.bfs_tx_queue);
4335		}
4336
4337#if 0
4338		if (txq->axq_depth > 0) {
4339			/*
4340			 * More frames follow.  Mark the buffer busy
4341			 * so it's not re-used while the hardware may
4342			 * still re-read the link field in the descriptor.
4343			 *
4344			 * Use the last buffer in an aggregate as that
4345			 * is where the hardware may be - intermediate
4346			 * descriptors won't be "busy".
4347			 */
4348			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4349		} else
4350			txq->axq_link = NULL;
4351#else
4352		bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4353#endif
4354		if (bf->bf_state.bfs_aggr)
4355			txq->axq_aggr_depth--;
4356
4357		ni = bf->bf_node;
4358
4359		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4360		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4361		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
4362		/*
4363		 * If unicast frame was ack'd update RSSI,
4364		 * including the last rx time used to
4365		 * workaround phantom bmiss interrupts.
4366		 */
4367		if (ni != NULL && ts->ts_status == 0 &&
4368		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4369			nacked++;
4370			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4371			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4372				ts->ts_rssi);
4373		}
4374		ATH_TXQ_UNLOCK(txq);
4375
4376		/*
4377		 * Update statistics and call completion
4378		 */
4379		ath_tx_process_buf_completion(sc, txq, ts, bf);
4380
4381		/* XXX at this point, bf and ni may be totally invalid */
4382	}
4383#ifdef IEEE80211_SUPPORT_SUPERG
4384	/*
4385	 * Flush fast-frame staging queue when traffic slows.
4386	 */
4387	if (txq->axq_depth <= 1)
4388		ieee80211_ff_flush(ic, txq->axq_ac);
4389#endif
4390
4391	/* Kick the software TXQ scheduler */
4392	if (dosched) {
4393		ATH_TX_LOCK(sc);
4394		ath_txq_sched(sc, txq);
4395		ATH_TX_UNLOCK(sc);
4396	}
4397
4398	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4399	    "ath_tx_processq: txq=%u: done",
4400	    txq->axq_qnum);
4401
4402	return nacked;
4403}
4404
4405#define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4406
4407/*
4408 * Deferred processing of transmit interrupt; special-cased
4409 * for a single hardware transmit queue (e.g. 5210 and 5211).
4410 */
4411static void
4412ath_tx_proc_q0(void *arg, int npending)
4413{
4414	struct ath_softc *sc = arg;
4415	uint32_t txqs;
4416
4417	ATH_PCU_LOCK(sc);
4418	sc->sc_txproc_cnt++;
4419	txqs = sc->sc_txq_active;
4420	sc->sc_txq_active &= ~txqs;
4421	ATH_PCU_UNLOCK(sc);
4422
4423	ATH_LOCK(sc);
4424	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4425	ATH_UNLOCK(sc);
4426
4427	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4428	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4429
4430	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4431		/* XXX why is lastrx updated in tx code? */
4432		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4433	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4434		ath_tx_processq(sc, sc->sc_cabq, 1);
4435	sc->sc_wd_timer = 0;
4436
4437	if (sc->sc_softled)
4438		ath_led_event(sc, sc->sc_txrix);
4439
4440	ATH_PCU_LOCK(sc);
4441	sc->sc_txproc_cnt--;
4442	ATH_PCU_UNLOCK(sc);
4443
4444	ATH_LOCK(sc);
4445	ath_power_restore_power_state(sc);
4446	ATH_UNLOCK(sc);
4447
4448	ath_tx_kick(sc);
4449}
4450
4451/*
4452 * Deferred processing of transmit interrupt; special-cased
4453 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4454 */
4455static void
4456ath_tx_proc_q0123(void *arg, int npending)
4457{
4458	struct ath_softc *sc = arg;
4459	int nacked;
4460	uint32_t txqs;
4461
4462	ATH_PCU_LOCK(sc);
4463	sc->sc_txproc_cnt++;
4464	txqs = sc->sc_txq_active;
4465	sc->sc_txq_active &= ~txqs;
4466	ATH_PCU_UNLOCK(sc);
4467
4468	ATH_LOCK(sc);
4469	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4470	ATH_UNLOCK(sc);
4471
4472	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4473	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4474
4475	/*
4476	 * Process each active queue.
4477	 */
4478	nacked = 0;
4479	if (TXQACTIVE(txqs, 0))
4480		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4481	if (TXQACTIVE(txqs, 1))
4482		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4483	if (TXQACTIVE(txqs, 2))
4484		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4485	if (TXQACTIVE(txqs, 3))
4486		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4487	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4488		ath_tx_processq(sc, sc->sc_cabq, 1);
4489	if (nacked)
4490		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4491
4492	sc->sc_wd_timer = 0;
4493
4494	if (sc->sc_softled)
4495		ath_led_event(sc, sc->sc_txrix);
4496
4497	ATH_PCU_LOCK(sc);
4498	sc->sc_txproc_cnt--;
4499	ATH_PCU_UNLOCK(sc);
4500
4501	ATH_LOCK(sc);
4502	ath_power_restore_power_state(sc);
4503	ATH_UNLOCK(sc);
4504
4505	ath_tx_kick(sc);
4506}
4507
4508/*
4509 * Deferred processing of transmit interrupt.
4510 */
4511static void
4512ath_tx_proc(void *arg, int npending)
4513{
4514	struct ath_softc *sc = arg;
4515	int i, nacked;
4516	uint32_t txqs;
4517
4518	ATH_PCU_LOCK(sc);
4519	sc->sc_txproc_cnt++;
4520	txqs = sc->sc_txq_active;
4521	sc->sc_txq_active &= ~txqs;
4522	ATH_PCU_UNLOCK(sc);
4523
4524	ATH_LOCK(sc);
4525	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4526	ATH_UNLOCK(sc);
4527
4528	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4529
4530	/*
4531	 * Process each active queue.
4532	 */
4533	nacked = 0;
4534	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4535		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4536			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4537	if (nacked)
4538		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4539
4540	sc->sc_wd_timer = 0;
4541
4542	if (sc->sc_softled)
4543		ath_led_event(sc, sc->sc_txrix);
4544
4545	ATH_PCU_LOCK(sc);
4546	sc->sc_txproc_cnt--;
4547	ATH_PCU_UNLOCK(sc);
4548
4549	ATH_LOCK(sc);
4550	ath_power_restore_power_state(sc);
4551	ATH_UNLOCK(sc);
4552
4553	ath_tx_kick(sc);
4554}
4555#undef	TXQACTIVE
4556
4557/*
4558 * Deferred processing of TXQ rescheduling.
4559 */
4560static void
4561ath_txq_sched_tasklet(void *arg, int npending)
4562{
4563	struct ath_softc *sc = arg;
4564	int i;
4565
4566	/* XXX is skipping ok? */
4567	ATH_PCU_LOCK(sc);
4568#if 0
4569	if (sc->sc_inreset_cnt > 0) {
4570		device_printf(sc->sc_dev,
4571		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4572		ATH_PCU_UNLOCK(sc);
4573		return;
4574	}
4575#endif
4576	sc->sc_txproc_cnt++;
4577	ATH_PCU_UNLOCK(sc);
4578
4579	ATH_LOCK(sc);
4580	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4581	ATH_UNLOCK(sc);
4582
4583	ATH_TX_LOCK(sc);
4584	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4585		if (ATH_TXQ_SETUP(sc, i)) {
4586			ath_txq_sched(sc, &sc->sc_txq[i]);
4587		}
4588	}
4589	ATH_TX_UNLOCK(sc);
4590
4591	ATH_LOCK(sc);
4592	ath_power_restore_power_state(sc);
4593	ATH_UNLOCK(sc);
4594
4595	ATH_PCU_LOCK(sc);
4596	sc->sc_txproc_cnt--;
4597	ATH_PCU_UNLOCK(sc);
4598}
4599
4600void
4601ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4602{
4603
4604	ATH_TXBUF_LOCK_ASSERT(sc);
4605
4606	if (bf->bf_flags & ATH_BUF_MGMT)
4607		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4608	else {
4609		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4610		sc->sc_txbuf_cnt++;
4611		if (sc->sc_txbuf_cnt > ath_txbuf) {
4612			device_printf(sc->sc_dev,
4613			    "%s: sc_txbuf_cnt > %d?\n",
4614			    __func__,
4615			    ath_txbuf);
4616			sc->sc_txbuf_cnt = ath_txbuf;
4617		}
4618	}
4619}
4620
4621void
4622ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4623{
4624
4625	ATH_TXBUF_LOCK_ASSERT(sc);
4626
4627	if (bf->bf_flags & ATH_BUF_MGMT)
4628		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4629	else {
4630		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4631		sc->sc_txbuf_cnt++;
4632		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4633			device_printf(sc->sc_dev,
4634			    "%s: sc_txbuf_cnt > %d?\n",
4635			    __func__,
4636			    ATH_TXBUF);
4637			sc->sc_txbuf_cnt = ATH_TXBUF;
4638		}
4639	}
4640}
4641
4642/*
4643 * Free the holding buffer if it exists
4644 */
4645void
4646ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
4647{
4648	ATH_TXBUF_UNLOCK_ASSERT(sc);
4649	ATH_TXQ_LOCK_ASSERT(txq);
4650
4651	if (txq->axq_holdingbf == NULL)
4652		return;
4653
4654	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
4655
4656	ATH_TXBUF_LOCK(sc);
4657	ath_returnbuf_tail(sc, txq->axq_holdingbf);
4658	ATH_TXBUF_UNLOCK(sc);
4659
4660	txq->axq_holdingbf = NULL;
4661}
4662
4663/*
4664 * Add this buffer to the holding queue, freeing the previous
4665 * one if it exists.
4666 */
4667static void
4668ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
4669{
4670	struct ath_txq *txq;
4671
4672	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4673
4674	ATH_TXBUF_UNLOCK_ASSERT(sc);
4675	ATH_TXQ_LOCK_ASSERT(txq);
4676
4677	/* XXX assert ATH_BUF_BUSY is set */
4678
4679	/* XXX assert the tx queue is under the max number */
4680	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
4681		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
4682		    __func__,
4683		    bf,
4684		    bf->bf_state.bfs_tx_queue);
4685		bf->bf_flags &= ~ATH_BUF_BUSY;
4686		ath_returnbuf_tail(sc, bf);
4687		return;
4688	}
4689	ath_txq_freeholdingbuf(sc, txq);
4690	txq->axq_holdingbf = bf;
4691}
4692
4693/*
4694 * Return a buffer to the pool and update the 'busy' flag on the
4695 * previous 'tail' entry.
4696 *
4697 * This _must_ only be called when the buffer is involved in a completed
4698 * TX. The logic is that if it was part of an active TX, the previous
4699 * buffer on the list is now not involved in a halted TX DMA queue, waiting
4700 * for restart (eg for TDMA.)
4701 *
4702 * The caller must free the mbuf and recycle the node reference.
4703 *
4704 * XXX This method of handling busy / holding buffers is insanely stupid.
4705 * It requires bf_state.bfs_tx_queue to be correctly assigned.  It would
4706 * be much nicer if buffers in the processq() methods would instead be
4707 * always completed there (pushed onto a txq or ath_bufhead) so we knew
4708 * exactly what hardware queue they came from in the first place.
4709 */
4710void
4711ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4712{
4713	struct ath_txq *txq;
4714
4715	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4716
4717	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4718	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4719
4720	/*
4721	 * If this buffer is busy, push it onto the holding queue.
4722	 */
4723	if (bf->bf_flags & ATH_BUF_BUSY) {
4724		ATH_TXQ_LOCK(txq);
4725		ath_txq_addholdingbuf(sc, bf);
4726		ATH_TXQ_UNLOCK(txq);
4727		return;
4728	}
4729
4730	/*
4731	 * Not a busy buffer, so free normally
4732	 */
4733	ATH_TXBUF_LOCK(sc);
4734	ath_returnbuf_tail(sc, bf);
4735	ATH_TXBUF_UNLOCK(sc);
4736}
4737
4738/*
4739 * This is currently used by ath_tx_draintxq() and
4740 * ath_tx_tid_free_pkts().
4741 *
4742 * It recycles a single ath_buf.
4743 */
4744void
4745ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4746{
4747	struct ieee80211_node *ni = bf->bf_node;
4748	struct mbuf *m0 = bf->bf_m;
4749
4750	/*
4751	 * Make sure that we only sync/unload if there's an mbuf.
4752	 * If not (eg we cloned a buffer), the unload will have already
4753	 * occurred.
4754	 */
4755	if (bf->bf_m != NULL) {
4756		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4757		    BUS_DMASYNC_POSTWRITE);
4758		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4759	}
4760
4761	bf->bf_node = NULL;
4762	bf->bf_m = NULL;
4763
4764	/* Free the buffer, it's not needed any longer */
4765	ath_freebuf(sc, bf);
4766
4767	/* Pass the buffer back to net80211 - completing it */
4768	ieee80211_tx_complete(ni, m0, status);
4769}
4770
4771static struct ath_buf *
4772ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
4773{
4774	struct ath_buf *bf;
4775
4776	ATH_TXQ_LOCK_ASSERT(txq);
4777
4778	/*
4779	 * Drain the FIFO queue first, then if it's
4780	 * empty, move to the normal frame queue.
4781	 */
4782	bf = TAILQ_FIRST(&txq->fifo.axq_q);
4783	if (bf != NULL) {
4784		/*
4785		 * Is it the last buffer in this set?
4786		 * Decrement the FIFO counter.
4787		 */
4788		if (bf->bf_flags & ATH_BUF_FIFOEND) {
4789			if (txq->axq_fifo_depth == 0) {
4790				device_printf(sc->sc_dev,
4791				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
4792				    __func__,
4793				    txq->axq_qnum,
4794				    txq->fifo.axq_depth);
4795			} else
4796				txq->axq_fifo_depth--;
4797		}
4798		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
4799		return (bf);
4800	}
4801
4802	/*
4803	 * Debugging!
4804	 */
4805	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
4806		device_printf(sc->sc_dev,
4807		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
4808		    __func__,
4809		    txq->axq_qnum,
4810		    txq->axq_fifo_depth,
4811		    txq->fifo.axq_depth);
4812	}
4813
4814	/*
4815	 * Now drain the pending queue.
4816	 */
4817	bf = TAILQ_FIRST(&txq->axq_q);
4818	if (bf == NULL) {
4819		txq->axq_link = NULL;
4820		return (NULL);
4821	}
4822	ATH_TXQ_REMOVE(txq, bf, bf_list);
4823	return (bf);
4824}
4825
4826void
4827ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4828{
4829#ifdef ATH_DEBUG
4830	struct ath_hal *ah = sc->sc_ah;
4831#endif
4832	struct ath_buf *bf;
4833	u_int ix;
4834
4835	/*
4836	 * NB: this assumes output has been stopped and
4837	 *     we do not need to block ath_tx_proc
4838	 */
4839	for (ix = 0;; ix++) {
4840		ATH_TXQ_LOCK(txq);
4841		bf = ath_tx_draintxq_get_one(sc, txq);
4842		if (bf == NULL) {
4843			ATH_TXQ_UNLOCK(txq);
4844			break;
4845		}
4846		if (bf->bf_state.bfs_aggr)
4847			txq->axq_aggr_depth--;
4848#ifdef ATH_DEBUG
4849		if (sc->sc_debug & ATH_DEBUG_RESET) {
4850			struct ieee80211com *ic = &sc->sc_ic;
4851			int status = 0;
4852
4853			/*
4854			 * EDMA operation has a TX completion FIFO
4855			 * separate from the TX descriptor, so this
4856			 * method of checking the "completion" status
4857			 * is wrong.
4858			 */
4859			if (! sc->sc_isedma) {
4860				status = (ath_hal_txprocdesc(ah,
4861				    bf->bf_lastds,
4862				    &bf->bf_status.ds_txstat) == HAL_OK);
4863			}
4864			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
4865			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4866			    bf->bf_m->m_len, 0, -1);
4867		}
4868#endif /* ATH_DEBUG */
4869		/*
4870		 * Since we're now doing magic in the completion
4871		 * functions, we -must- call it for aggregation
4872		 * destinations or BAW tracking will get upset.
4873		 */
4874		/*
4875		 * Clear ATH_BUF_BUSY; the completion handler
4876		 * will free the buffer.
4877		 */
4878		ATH_TXQ_UNLOCK(txq);
4879		bf->bf_flags &= ~ATH_BUF_BUSY;
4880		if (bf->bf_comp)
4881			bf->bf_comp(sc, bf, 1);
4882		else
4883			ath_tx_default_comp(sc, bf, 1);
4884	}
4885
4886	/*
4887	 * Free the holding buffer if it exists
4888	 */
4889	ATH_TXQ_LOCK(txq);
4890	ath_txq_freeholdingbuf(sc, txq);
4891	ATH_TXQ_UNLOCK(txq);
4892
4893	/*
4894	 * Drain software queued frames which are on
4895	 * active TIDs.
4896	 */
4897	ath_tx_txq_drain(sc, txq);
4898}
4899
4900static void
4901ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4902{
4903	struct ath_hal *ah = sc->sc_ah;
4904
4905	ATH_TXQ_LOCK_ASSERT(txq);
4906
4907	DPRINTF(sc, ATH_DEBUG_RESET,
4908	    "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
4909	    "link %p, holdingbf=%p\n",
4910	    __func__,
4911	    txq->axq_qnum,
4912	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4913	    (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
4914	    (int) ath_hal_numtxpending(ah, txq->axq_qnum),
4915	    txq->axq_flags,
4916	    txq->axq_link,
4917	    txq->axq_holdingbf);
4918
4919	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4920	/* We've stopped TX DMA, so mark this as stopped. */
4921	txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
4922
4923#ifdef	ATH_DEBUG
4924	if ((sc->sc_debug & ATH_DEBUG_RESET)
4925	    && (txq->axq_holdingbf != NULL)) {
4926		ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
4927	}
4928#endif
4929}
4930
4931int
4932ath_stoptxdma(struct ath_softc *sc)
4933{
4934	struct ath_hal *ah = sc->sc_ah;
4935	int i;
4936
4937	/* XXX return value */
4938	if (sc->sc_invalid)
4939		return 0;
4940
4941	if (!sc->sc_invalid) {
4942		/* don't touch the hardware if marked invalid */
4943		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4944		    __func__, sc->sc_bhalq,
4945		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4946		    NULL);
4947
4948		/* stop the beacon queue */
4949		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4950
4951		/* Stop the data queues */
4952		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4953			if (ATH_TXQ_SETUP(sc, i)) {
4954				ATH_TXQ_LOCK(&sc->sc_txq[i]);
4955				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4956				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
4957			}
4958		}
4959	}
4960
4961	return 1;
4962}
4963
4964#ifdef	ATH_DEBUG
4965void
4966ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
4967{
4968	struct ath_hal *ah = sc->sc_ah;
4969	struct ath_buf *bf;
4970	int i = 0;
4971
4972	if (! (sc->sc_debug & ATH_DEBUG_RESET))
4973		return;
4974
4975	device_printf(sc->sc_dev, "%s: Q%d: begin\n",
4976	    __func__, txq->axq_qnum);
4977	TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
4978		ath_printtxbuf(sc, bf, txq->axq_qnum, i,
4979			ath_hal_txprocdesc(ah, bf->bf_lastds,
4980			    &bf->bf_status.ds_txstat) == HAL_OK);
4981		i++;
4982	}
4983	device_printf(sc->sc_dev, "%s: Q%d: end\n",
4984	    __func__, txq->axq_qnum);
4985}
4986#endif /* ATH_DEBUG */
4987
4988/*
4989 * Drain the transmit queues and reclaim resources.
4990 */
4991void
4992ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
4993{
4994	struct ath_hal *ah = sc->sc_ah;
4995	struct ath_buf *bf_last;
4996	int i;
4997
4998	(void) ath_stoptxdma(sc);
4999
5000	/*
5001	 * Dump the queue contents
5002	 */
5003	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5004		/*
5005		 * XXX TODO: should we just handle the completed TX frames
5006		 * here, whether or not the reset is a full one or not?
5007		 */
5008		if (ATH_TXQ_SETUP(sc, i)) {
5009#ifdef	ATH_DEBUG
5010			if (sc->sc_debug & ATH_DEBUG_RESET)
5011				ath_tx_dump(sc, &sc->sc_txq[i]);
5012#endif	/* ATH_DEBUG */
5013			if (reset_type == ATH_RESET_NOLOSS) {
5014				ath_tx_processq(sc, &sc->sc_txq[i], 0);
5015				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5016				/*
5017				 * Free the holding buffer; DMA is now
5018				 * stopped.
5019				 */
5020				ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
5021				/*
5022				 * Setup the link pointer to be the
5023				 * _last_ buffer/descriptor in the list.
5024				 * If there's nothing in the list, set it
5025				 * to NULL.
5026				 */
5027				bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
5028				    axq_q_s);
5029				if (bf_last != NULL) {
5030					ath_hal_gettxdesclinkptr(ah,
5031					    bf_last->bf_lastds,
5032					    &sc->sc_txq[i].axq_link);
5033				} else {
5034					sc->sc_txq[i].axq_link = NULL;
5035				}
5036				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5037			} else
5038				ath_tx_draintxq(sc, &sc->sc_txq[i]);
5039		}
5040	}
5041#ifdef ATH_DEBUG
5042	if (sc->sc_debug & ATH_DEBUG_RESET) {
5043		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5044		if (bf != NULL && bf->bf_m != NULL) {
5045			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5046				ath_hal_txprocdesc(ah, bf->bf_lastds,
5047				    &bf->bf_status.ds_txstat) == HAL_OK);
5048			ieee80211_dump_pkt(&sc->sc_ic,
5049			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5050			    0, -1);
5051		}
5052	}
5053#endif /* ATH_DEBUG */
5054	sc->sc_wd_timer = 0;
5055}
5056
5057/*
5058 * Update internal state after a channel change.
5059 */
5060static void
5061ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5062{
5063	enum ieee80211_phymode mode;
5064
5065	/*
5066	 * Change channels and update the h/w rate map
5067	 * if we're switching; e.g. 11a to 11b/g.
5068	 */
5069	mode = ieee80211_chan2mode(chan);
5070	if (mode != sc->sc_curmode)
5071		ath_setcurmode(sc, mode);
5072	sc->sc_curchan = chan;
5073}
5074
5075/*
5076 * Set/change channels.  If the channel is really being changed,
5077 * it's done by resetting the chip.  To accomplish this we must
5078 * first cleanup any pending DMA, then restart stuff after a la
5079 * ath_init.
5080 */
5081static int
5082ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5083{
5084	struct ieee80211com *ic = &sc->sc_ic;
5085	struct ath_hal *ah = sc->sc_ah;
5086	int ret = 0;
5087
5088	/* Treat this as an interface reset */
5089	ATH_PCU_UNLOCK_ASSERT(sc);
5090	ATH_UNLOCK_ASSERT(sc);
5091
5092	/* (Try to) stop TX/RX from occurring */
5093	taskqueue_block(sc->sc_tq);
5094
5095	ATH_PCU_LOCK(sc);
5096
5097	/* Disable interrupts */
5098	ath_hal_intrset(ah, 0);
5099
5100	/* Stop new RX/TX/interrupt completion */
5101	if (ath_reset_grablock(sc, 1) == 0) {
5102		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5103		    __func__);
5104	}
5105
5106	/* Stop pending RX/TX completion */
5107	ath_txrx_stop_locked(sc);
5108
5109	ATH_PCU_UNLOCK(sc);
5110
5111	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5112	    __func__, ieee80211_chan2ieee(ic, chan),
5113	    chan->ic_freq, chan->ic_flags);
5114	if (chan != sc->sc_curchan) {
5115		HAL_STATUS status;
5116		/*
5117		 * To switch channels clear any pending DMA operations;
5118		 * wait long enough for the RX fifo to drain, reset the
5119		 * hardware at the new frequency, and then re-enable
5120		 * the relevant bits of the h/w.
5121		 */
5122#if 0
5123		ath_hal_intrset(ah, 0);		/* disable interrupts */
5124#endif
5125		ath_stoprecv(sc, 1);		/* turn off frame recv */
5126		/*
5127		 * First, handle completed TX/RX frames.
5128		 */
5129		ath_rx_flush(sc);
5130		ath_draintxq(sc, ATH_RESET_NOLOSS);
5131		/*
5132		 * Next, flush the non-scheduled frames.
5133		 */
5134		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5135
5136		ath_update_chainmasks(sc, chan);
5137		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
5138		    sc->sc_cur_rxchainmask);
5139		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE,
5140		    HAL_RESET_NORMAL, &status)) {
5141			device_printf(sc->sc_dev, "%s: unable to reset "
5142			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5143			    __func__, ieee80211_chan2ieee(ic, chan),
5144			    chan->ic_freq, chan->ic_flags, status);
5145			ret = EIO;
5146			goto finish;
5147		}
5148		sc->sc_diversity = ath_hal_getdiversity(ah);
5149
5150		ATH_RX_LOCK(sc);
5151		sc->sc_rx_stopped = 1;
5152		sc->sc_rx_resetted = 1;
5153		ATH_RX_UNLOCK(sc);
5154
5155		/* Let DFS at it in case it's a DFS channel */
5156		ath_dfs_radar_enable(sc, chan);
5157
5158		/* Let spectral at in case spectral is enabled */
5159		ath_spectral_enable(sc, chan);
5160
5161		/*
5162		 * Let bluetooth coexistence at in case it's needed for this
5163		 * channel
5164		 */
5165		ath_btcoex_enable(sc, ic->ic_curchan);
5166
5167		/*
5168		 * If we're doing TDMA, enforce the TXOP limitation for chips
5169		 * that support it.
5170		 */
5171		if (sc->sc_hasenforcetxop && sc->sc_tdma)
5172			ath_hal_setenforcetxop(sc->sc_ah, 1);
5173		else
5174			ath_hal_setenforcetxop(sc->sc_ah, 0);
5175
5176		/*
5177		 * Re-enable rx framework.
5178		 */
5179		if (ath_startrecv(sc) != 0) {
5180			device_printf(sc->sc_dev,
5181			    "%s: unable to restart recv logic\n", __func__);
5182			ret = EIO;
5183			goto finish;
5184		}
5185
5186		/*
5187		 * Change channels and update the h/w rate map
5188		 * if we're switching; e.g. 11a to 11b/g.
5189		 */
5190		ath_chan_change(sc, chan);
5191
5192		/*
5193		 * Reset clears the beacon timers; reset them
5194		 * here if needed.
5195		 */
5196		if (sc->sc_beacons) {		/* restart beacons */
5197#ifdef IEEE80211_SUPPORT_TDMA
5198			if (sc->sc_tdma)
5199				ath_tdma_config(sc, NULL);
5200			else
5201#endif
5202			ath_beacon_config(sc, NULL);
5203		}
5204
5205		/*
5206		 * Re-enable interrupts.
5207		 */
5208#if 0
5209		ath_hal_intrset(ah, sc->sc_imask);
5210#endif
5211	}
5212
5213finish:
5214	ATH_PCU_LOCK(sc);
5215	sc->sc_inreset_cnt--;
5216	/* XXX only do this if sc_inreset_cnt == 0? */
5217	ath_hal_intrset(ah, sc->sc_imask);
5218	ATH_PCU_UNLOCK(sc);
5219
5220	ath_txrx_start(sc);
5221	/* XXX ath_start? */
5222
5223	return ret;
5224}
5225
5226/*
5227 * Periodically recalibrate the PHY to account
5228 * for temperature/environment changes.
5229 */
5230static void
5231ath_calibrate(void *arg)
5232{
5233	struct ath_softc *sc = arg;
5234	struct ath_hal *ah = sc->sc_ah;
5235	struct ieee80211com *ic = &sc->sc_ic;
5236	HAL_BOOL longCal, isCalDone = AH_TRUE;
5237	HAL_BOOL aniCal, shortCal = AH_FALSE;
5238	int nextcal;
5239
5240	ATH_LOCK_ASSERT(sc);
5241
5242	/*
5243	 * Force the hardware awake for ANI work.
5244	 */
5245	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5246
5247	/* Skip trying to do this if we're in reset */
5248	if (sc->sc_inreset_cnt)
5249		goto restart;
5250
5251	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5252		goto restart;
5253	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5254	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5255	if (sc->sc_doresetcal)
5256		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5257
5258	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5259	if (aniCal) {
5260		sc->sc_stats.ast_ani_cal++;
5261		sc->sc_lastani = ticks;
5262		ath_hal_ani_poll(ah, sc->sc_curchan);
5263	}
5264
5265	if (longCal) {
5266		sc->sc_stats.ast_per_cal++;
5267		sc->sc_lastlongcal = ticks;
5268		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5269			/*
5270			 * Rfgain is out of bounds, reset the chip
5271			 * to load new gain values.
5272			 */
5273			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5274				"%s: rfgain change\n", __func__);
5275			sc->sc_stats.ast_per_rfgain++;
5276			sc->sc_resetcal = 0;
5277			sc->sc_doresetcal = AH_TRUE;
5278			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5279			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5280			ath_power_restore_power_state(sc);
5281			return;
5282		}
5283		/*
5284		 * If this long cal is after an idle period, then
5285		 * reset the data collection state so we start fresh.
5286		 */
5287		if (sc->sc_resetcal) {
5288			(void) ath_hal_calreset(ah, sc->sc_curchan);
5289			sc->sc_lastcalreset = ticks;
5290			sc->sc_lastshortcal = ticks;
5291			sc->sc_resetcal = 0;
5292			sc->sc_doresetcal = AH_TRUE;
5293		}
5294	}
5295
5296	/* Only call if we're doing a short/long cal, not for ANI calibration */
5297	if (shortCal || longCal) {
5298		isCalDone = AH_FALSE;
5299		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5300			if (longCal) {
5301				/*
5302				 * Calibrate noise floor data again in case of change.
5303				 */
5304				ath_hal_process_noisefloor(ah);
5305			}
5306		} else {
5307			DPRINTF(sc, ATH_DEBUG_ANY,
5308				"%s: calibration of channel %u failed\n",
5309				__func__, sc->sc_curchan->ic_freq);
5310			sc->sc_stats.ast_per_calfail++;
5311		}
5312		if (shortCal)
5313			sc->sc_lastshortcal = ticks;
5314	}
5315	if (!isCalDone) {
5316restart:
5317		/*
5318		 * Use a shorter interval to potentially collect multiple
5319		 * data samples required to complete calibration.  Once
5320		 * we're told the work is done we drop back to a longer
5321		 * interval between requests.  We're more aggressive doing
5322		 * work when operating as an AP to improve operation right
5323		 * after startup.
5324		 */
5325		sc->sc_lastshortcal = ticks;
5326		nextcal = ath_shortcalinterval*hz/1000;
5327		if (sc->sc_opmode != HAL_M_HOSTAP)
5328			nextcal *= 10;
5329		sc->sc_doresetcal = AH_TRUE;
5330	} else {
5331		/* nextcal should be the shortest time for next event */
5332		nextcal = ath_longcalinterval*hz;
5333		if (sc->sc_lastcalreset == 0)
5334			sc->sc_lastcalreset = sc->sc_lastlongcal;
5335		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5336			sc->sc_resetcal = 1;	/* setup reset next trip */
5337		sc->sc_doresetcal = AH_FALSE;
5338	}
5339	/* ANI calibration may occur more often than short/long/resetcal */
5340	if (ath_anicalinterval > 0)
5341		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5342
5343	if (nextcal != 0) {
5344		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5345		    __func__, nextcal, isCalDone ? "" : "!");
5346		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5347	} else {
5348		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5349		    __func__);
5350		/* NB: don't rearm timer */
5351	}
5352	/*
5353	 * Restore power state now that we're done.
5354	 */
5355	ath_power_restore_power_state(sc);
5356}
5357
5358static void
5359ath_scan_start(struct ieee80211com *ic)
5360{
5361	struct ath_softc *sc = ic->ic_softc;
5362	struct ath_hal *ah = sc->sc_ah;
5363	u_int32_t rfilt;
5364
5365	/* XXX calibration timer? */
5366	/* XXXGL: is constant ieee80211broadcastaddr a correct choice? */
5367
5368	ATH_LOCK(sc);
5369	sc->sc_scanning = 1;
5370	sc->sc_syncbeacon = 0;
5371	rfilt = ath_calcrxfilter(sc);
5372	ATH_UNLOCK(sc);
5373
5374	ATH_PCU_LOCK(sc);
5375	ath_hal_setrxfilter(ah, rfilt);
5376	ath_hal_setassocid(ah, ieee80211broadcastaddr, 0);
5377	ATH_PCU_UNLOCK(sc);
5378
5379	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5380		 __func__, rfilt, ether_sprintf(ieee80211broadcastaddr));
5381}
5382
5383static void
5384ath_scan_end(struct ieee80211com *ic)
5385{
5386	struct ath_softc *sc = ic->ic_softc;
5387	struct ath_hal *ah = sc->sc_ah;
5388	u_int32_t rfilt;
5389
5390	ATH_LOCK(sc);
5391	sc->sc_scanning = 0;
5392	rfilt = ath_calcrxfilter(sc);
5393	ATH_UNLOCK(sc);
5394
5395	ATH_PCU_LOCK(sc);
5396	ath_hal_setrxfilter(ah, rfilt);
5397	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5398
5399	ath_hal_process_noisefloor(ah);
5400	ATH_PCU_UNLOCK(sc);
5401
5402	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5403		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5404		 sc->sc_curaid);
5405}
5406
5407#ifdef	ATH_ENABLE_11N
5408/*
5409 * For now, just do a channel change.
5410 *
5411 * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5412 * control state and resetting the hardware without dropping frames out
5413 * of the queue.
5414 *
5415 * The unfortunate trouble here is making absolutely sure that the
5416 * channel width change has propagated enough so the hardware
5417 * absolutely isn't handed bogus frames for it's current operating
5418 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5419 * does occur in parallel, we need to make certain we've blocked
5420 * any further ongoing TX (and RX, that can cause raw TX)
5421 * before we do this.
5422 */
5423static void
5424ath_update_chw(struct ieee80211com *ic)
5425{
5426	struct ath_softc *sc = ic->ic_softc;
5427
5428	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5429	ath_set_channel(ic);
5430}
5431#endif	/* ATH_ENABLE_11N */
5432
5433static void
5434ath_set_channel(struct ieee80211com *ic)
5435{
5436	struct ath_softc *sc = ic->ic_softc;
5437
5438	ATH_LOCK(sc);
5439	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5440	ATH_UNLOCK(sc);
5441
5442	(void) ath_chan_set(sc, ic->ic_curchan);
5443	/*
5444	 * If we are returning to our bss channel then mark state
5445	 * so the next recv'd beacon's tsf will be used to sync the
5446	 * beacon timers.  Note that since we only hear beacons in
5447	 * sta/ibss mode this has no effect in other operating modes.
5448	 */
5449	ATH_LOCK(sc);
5450	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5451		sc->sc_syncbeacon = 1;
5452	ath_power_restore_power_state(sc);
5453	ATH_UNLOCK(sc);
5454}
5455
5456/*
5457 * Walk the vap list and check if there any vap's in RUN state.
5458 */
5459static int
5460ath_isanyrunningvaps(struct ieee80211vap *this)
5461{
5462	struct ieee80211com *ic = this->iv_ic;
5463	struct ieee80211vap *vap;
5464
5465	IEEE80211_LOCK_ASSERT(ic);
5466
5467	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5468		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5469			return 1;
5470	}
5471	return 0;
5472}
5473
5474static int
5475ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5476{
5477	struct ieee80211com *ic = vap->iv_ic;
5478	struct ath_softc *sc = ic->ic_softc;
5479	struct ath_vap *avp = ATH_VAP(vap);
5480	struct ath_hal *ah = sc->sc_ah;
5481	struct ieee80211_node *ni = NULL;
5482	int i, error, stamode;
5483	u_int32_t rfilt;
5484	int csa_run_transition = 0;
5485	enum ieee80211_state ostate = vap->iv_state;
5486
5487	static const HAL_LED_STATE leds[] = {
5488	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5489	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5490	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5491	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5492	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5493	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5494	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5495	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5496	};
5497
5498	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5499		ieee80211_state_name[ostate],
5500		ieee80211_state_name[nstate]);
5501
5502	/*
5503	 * net80211 _should_ have the comlock asserted at this point.
5504	 * There are some comments around the calls to vap->iv_newstate
5505	 * which indicate that it (newstate) may end up dropping the
5506	 * lock.  This and the subsequent lock assert check after newstate
5507	 * are an attempt to catch these and figure out how/why.
5508	 */
5509	IEEE80211_LOCK_ASSERT(ic);
5510
5511	/* Before we touch the hardware - wake it up */
5512	ATH_LOCK(sc);
5513	/*
5514	 * If the NIC is in anything other than SLEEP state,
5515	 * we need to ensure that self-generated frames are
5516	 * set for PWRMGT=0.  Otherwise we may end up with
5517	 * strange situations.
5518	 *
5519	 * XXX TODO: is this actually the case? :-)
5520	 */
5521	if (nstate != IEEE80211_S_SLEEP)
5522		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5523
5524	/*
5525	 * Now, wake the thing up.
5526	 */
5527	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5528
5529	/*
5530	 * And stop the calibration callout whilst we have
5531	 * ATH_LOCK held.
5532	 */
5533	callout_stop(&sc->sc_cal_ch);
5534	ATH_UNLOCK(sc);
5535
5536	if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5537		csa_run_transition = 1;
5538
5539	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5540
5541	if (nstate == IEEE80211_S_SCAN) {
5542		/*
5543		 * Scanning: turn off beacon miss and don't beacon.
5544		 * Mark beacon state so when we reach RUN state we'll
5545		 * [re]setup beacons.  Unblock the task q thread so
5546		 * deferred interrupt processing is done.
5547		 */
5548
5549		/* Ensure we stay awake during scan */
5550		ATH_LOCK(sc);
5551		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5552		ath_power_setpower(sc, HAL_PM_AWAKE);
5553		ATH_UNLOCK(sc);
5554
5555		ath_hal_intrset(ah,
5556		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5557		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5558		sc->sc_beacons = 0;
5559		taskqueue_unblock(sc->sc_tq);
5560	}
5561
5562	ni = ieee80211_ref_node(vap->iv_bss);
5563	rfilt = ath_calcrxfilter(sc);
5564	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5565		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5566		   vap->iv_opmode == IEEE80211_M_IBSS);
5567
5568	/*
5569	 * XXX Dont need to do this (and others) if we've transitioned
5570	 * from SLEEP->RUN.
5571	 */
5572	if (stamode && nstate == IEEE80211_S_RUN) {
5573		sc->sc_curaid = ni->ni_associd;
5574		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5575		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5576	}
5577	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5578	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5579	ath_hal_setrxfilter(ah, rfilt);
5580
5581	/* XXX is this to restore keycache on resume? */
5582	if (vap->iv_opmode != IEEE80211_M_STA &&
5583	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5584		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5585			if (ath_hal_keyisvalid(ah, i))
5586				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5587	}
5588
5589	/*
5590	 * Invoke the parent method to do net80211 work.
5591	 */
5592	error = avp->av_newstate(vap, nstate, arg);
5593	if (error != 0)
5594		goto bad;
5595
5596	/*
5597	 * See above: ensure av_newstate() doesn't drop the lock
5598	 * on us.
5599	 */
5600	IEEE80211_LOCK_ASSERT(ic);
5601
5602	if (nstate == IEEE80211_S_RUN) {
5603		/* NB: collect bss node again, it may have changed */
5604		ieee80211_free_node(ni);
5605		ni = ieee80211_ref_node(vap->iv_bss);
5606
5607		DPRINTF(sc, ATH_DEBUG_STATE,
5608		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5609		    "capinfo 0x%04x chan %d\n", __func__,
5610		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5611		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5612
5613		switch (vap->iv_opmode) {
5614#ifdef IEEE80211_SUPPORT_TDMA
5615		case IEEE80211_M_AHDEMO:
5616			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5617				break;
5618			/* fall thru... */
5619#endif
5620		case IEEE80211_M_HOSTAP:
5621		case IEEE80211_M_IBSS:
5622		case IEEE80211_M_MBSS:
5623			/*
5624			 * Allocate and setup the beacon frame.
5625			 *
5626			 * Stop any previous beacon DMA.  This may be
5627			 * necessary, for example, when an ibss merge
5628			 * causes reconfiguration; there will be a state
5629			 * transition from RUN->RUN that means we may
5630			 * be called with beacon transmission active.
5631			 */
5632			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5633
5634			error = ath_beacon_alloc(sc, ni);
5635			if (error != 0)
5636				goto bad;
5637			/*
5638			 * If joining an adhoc network defer beacon timer
5639			 * configuration to the next beacon frame so we
5640			 * have a current TSF to use.  Otherwise we're
5641			 * starting an ibss/bss so there's no need to delay;
5642			 * if this is the first vap moving to RUN state, then
5643			 * beacon state needs to be [re]configured.
5644			 */
5645			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5646			    ni->ni_tstamp.tsf != 0) {
5647				sc->sc_syncbeacon = 1;
5648			} else if (!sc->sc_beacons) {
5649#ifdef IEEE80211_SUPPORT_TDMA
5650				if (vap->iv_caps & IEEE80211_C_TDMA)
5651					ath_tdma_config(sc, vap);
5652				else
5653#endif
5654					ath_beacon_config(sc, vap);
5655				sc->sc_beacons = 1;
5656			}
5657			break;
5658		case IEEE80211_M_STA:
5659			/*
5660			 * Defer beacon timer configuration to the next
5661			 * beacon frame so we have a current TSF to use
5662			 * (any TSF collected when scanning is likely old).
5663			 * However if it's due to a CSA -> RUN transition,
5664			 * force a beacon update so we pick up a lack of
5665			 * beacons from an AP in CAC and thus force a
5666			 * scan.
5667			 *
5668			 * And, there's also corner cases here where
5669			 * after a scan, the AP may have disappeared.
5670			 * In that case, we may not receive an actual
5671			 * beacon to update the beacon timer and thus we
5672			 * won't get notified of the missing beacons.
5673			 */
5674			if (ostate != IEEE80211_S_RUN &&
5675			    ostate != IEEE80211_S_SLEEP) {
5676				DPRINTF(sc, ATH_DEBUG_BEACON,
5677				    "%s: STA; syncbeacon=1\n", __func__);
5678				sc->sc_syncbeacon = 1;
5679
5680				if (csa_run_transition)
5681					ath_beacon_config(sc, vap);
5682
5683			/*
5684			 * PR: kern/175227
5685			 *
5686			 * Reconfigure beacons during reset; as otherwise
5687			 * we won't get the beacon timers reprogrammed
5688			 * after a reset and thus we won't pick up a
5689			 * beacon miss interrupt.
5690			 *
5691			 * Hopefully we'll see a beacon before the BMISS
5692			 * timer fires (too often), leading to a STA
5693			 * disassociation.
5694			 */
5695				sc->sc_beacons = 1;
5696			}
5697			break;
5698		case IEEE80211_M_MONITOR:
5699			/*
5700			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5701			 * transitions so we must re-enable interrupts here to
5702			 * handle the case of a single monitor mode vap.
5703			 */
5704			ath_hal_intrset(ah, sc->sc_imask);
5705			break;
5706		case IEEE80211_M_WDS:
5707			break;
5708		default:
5709			break;
5710		}
5711		/*
5712		 * Let the hal process statistics collected during a
5713		 * scan so it can provide calibrated noise floor data.
5714		 */
5715		ath_hal_process_noisefloor(ah);
5716		/*
5717		 * Reset rssi stats; maybe not the best place...
5718		 */
5719		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5720		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5721		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5722
5723		/*
5724		 * Force awake for RUN mode.
5725		 */
5726		ATH_LOCK(sc);
5727		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5728		ath_power_setpower(sc, HAL_PM_AWAKE);
5729
5730		/*
5731		 * Finally, start any timers and the task q thread
5732		 * (in case we didn't go through SCAN state).
5733		 */
5734		if (ath_longcalinterval != 0) {
5735			/* start periodic recalibration timer */
5736			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5737		} else {
5738			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5739			    "%s: calibration disabled\n", __func__);
5740		}
5741		ATH_UNLOCK(sc);
5742
5743		taskqueue_unblock(sc->sc_tq);
5744	} else if (nstate == IEEE80211_S_INIT) {
5745		/*
5746		 * If there are no vaps left in RUN state then
5747		 * shutdown host/driver operation:
5748		 * o disable interrupts
5749		 * o disable the task queue thread
5750		 * o mark beacon processing as stopped
5751		 */
5752		if (!ath_isanyrunningvaps(vap)) {
5753			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5754			/* disable interrupts  */
5755			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5756			taskqueue_block(sc->sc_tq);
5757			sc->sc_beacons = 0;
5758		}
5759#ifdef IEEE80211_SUPPORT_TDMA
5760		ath_hal_setcca(ah, AH_TRUE);
5761#endif
5762	} else if (nstate == IEEE80211_S_SLEEP) {
5763		/* We're going to sleep, so transition appropriately */
5764		/* For now, only do this if we're a single STA vap */
5765		if (sc->sc_nvaps == 1 &&
5766		    vap->iv_opmode == IEEE80211_M_STA) {
5767			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon);
5768			ATH_LOCK(sc);
5769			/*
5770			 * Always at least set the self-generated
5771			 * frame config to set PWRMGT=1.
5772			 */
5773			ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP);
5774
5775			/*
5776			 * If we're not syncing beacons, transition
5777			 * to NETWORK_SLEEP.
5778			 *
5779			 * We stay awake if syncbeacon > 0 in case
5780			 * we need to listen for some beacons otherwise
5781			 * our beacon timer config may be wrong.
5782			 */
5783			if (sc->sc_syncbeacon == 0) {
5784				ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP);
5785			}
5786			ATH_UNLOCK(sc);
5787		}
5788	}
5789bad:
5790	ieee80211_free_node(ni);
5791
5792	/*
5793	 * Restore the power state - either to what it was, or
5794	 * to network_sleep if it's alright.
5795	 */
5796	ATH_LOCK(sc);
5797	ath_power_restore_power_state(sc);
5798	ATH_UNLOCK(sc);
5799	return error;
5800}
5801
5802/*
5803 * Allocate a key cache slot to the station so we can
5804 * setup a mapping from key index to node. The key cache
5805 * slot is needed for managing antenna state and for
5806 * compression when stations do not use crypto.  We do
5807 * it uniliaterally here; if crypto is employed this slot
5808 * will be reassigned.
5809 */
5810static void
5811ath_setup_stationkey(struct ieee80211_node *ni)
5812{
5813	struct ieee80211vap *vap = ni->ni_vap;
5814	struct ath_softc *sc = vap->iv_ic->ic_softc;
5815	ieee80211_keyix keyix, rxkeyix;
5816
5817	/* XXX should take a locked ref to vap->iv_bss */
5818	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5819		/*
5820		 * Key cache is full; we'll fall back to doing
5821		 * the more expensive lookup in software.  Note
5822		 * this also means no h/w compression.
5823		 */
5824		/* XXX msg+statistic */
5825	} else {
5826		/* XXX locking? */
5827		ni->ni_ucastkey.wk_keyix = keyix;
5828		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5829		/* NB: must mark device key to get called back on delete */
5830		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5831		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5832		/* NB: this will create a pass-thru key entry */
5833		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
5834	}
5835}
5836
5837/*
5838 * Setup driver-specific state for a newly associated node.
5839 * Note that we're called also on a re-associate, the isnew
5840 * param tells us if this is the first time or not.
5841 */
5842static void
5843ath_newassoc(struct ieee80211_node *ni, int isnew)
5844{
5845	struct ath_node *an = ATH_NODE(ni);
5846	struct ieee80211vap *vap = ni->ni_vap;
5847	struct ath_softc *sc = vap->iv_ic->ic_softc;
5848	const struct ieee80211_txparam *tp = ni->ni_txparms;
5849
5850	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5851	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5852
5853	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n",
5854	    __func__,
5855	    ni->ni_macaddr,
5856	    ":",
5857	    isnew,
5858	    an->an_is_powersave);
5859
5860	ATH_NODE_LOCK(an);
5861	ath_rate_newassoc(sc, an, isnew);
5862	ATH_NODE_UNLOCK(an);
5863
5864	if (isnew &&
5865	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5866	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5867		ath_setup_stationkey(ni);
5868
5869	/*
5870	 * If we're reassociating, make sure that any paused queues
5871	 * get unpaused.
5872	 *
5873	 * Now, we may have frames in the hardware queue for this node.
5874	 * So if we are reassociating and there are frames in the queue,
5875	 * we need to go through the cleanup path to ensure that they're
5876	 * marked as non-aggregate.
5877	 */
5878	if (! isnew) {
5879		DPRINTF(sc, ATH_DEBUG_NODE,
5880		    "%s: %6D: reassoc; is_powersave=%d\n",
5881		    __func__,
5882		    ni->ni_macaddr,
5883		    ":",
5884		    an->an_is_powersave);
5885
5886		/* XXX for now, we can't hold the lock across assoc */
5887		ath_tx_node_reassoc(sc, an);
5888
5889		/* XXX for now, we can't hold the lock across wakeup */
5890		if (an->an_is_powersave)
5891			ath_tx_node_wakeup(sc, an);
5892	}
5893}
5894
5895static int
5896ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5897	int nchans, struct ieee80211_channel chans[])
5898{
5899	struct ath_softc *sc = ic->ic_softc;
5900	struct ath_hal *ah = sc->sc_ah;
5901	HAL_STATUS status;
5902
5903	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5904	    "%s: rd %u cc %u location %c%s\n",
5905	    __func__, reg->regdomain, reg->country, reg->location,
5906	    reg->ecm ? " ecm" : "");
5907
5908	status = ath_hal_set_channels(ah, chans, nchans,
5909	    reg->country, reg->regdomain);
5910	if (status != HAL_OK) {
5911		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5912		    __func__, status);
5913		return EINVAL;		/* XXX */
5914	}
5915
5916	return 0;
5917}
5918
5919static void
5920ath_getradiocaps(struct ieee80211com *ic,
5921	int maxchans, int *nchans, struct ieee80211_channel chans[])
5922{
5923	struct ath_softc *sc = ic->ic_softc;
5924	struct ath_hal *ah = sc->sc_ah;
5925
5926	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5927	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5928
5929	/* XXX check return */
5930	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5931	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5932
5933}
5934
5935static int
5936ath_getchannels(struct ath_softc *sc)
5937{
5938	struct ieee80211com *ic = &sc->sc_ic;
5939	struct ath_hal *ah = sc->sc_ah;
5940	HAL_STATUS status;
5941
5942	/*
5943	 * Collect channel set based on EEPROM contents.
5944	 */
5945	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5946	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5947	if (status != HAL_OK) {
5948		device_printf(sc->sc_dev,
5949		    "%s: unable to collect channel list from hal, status %d\n",
5950		    __func__, status);
5951		return EINVAL;
5952	}
5953	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5954	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5955	/* XXX map Atheros sku's to net80211 SKU's */
5956	/* XXX net80211 types too small */
5957	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5958	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5959	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5960	ic->ic_regdomain.isocc[1] = ' ';
5961
5962	ic->ic_regdomain.ecm = 1;
5963	ic->ic_regdomain.location = 'I';
5964
5965	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5966	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5967	    __func__, sc->sc_eerd, sc->sc_eecc,
5968	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5969	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5970	return 0;
5971}
5972
5973static int
5974ath_rate_setup(struct ath_softc *sc, u_int mode)
5975{
5976	struct ath_hal *ah = sc->sc_ah;
5977	const HAL_RATE_TABLE *rt;
5978
5979	switch (mode) {
5980	case IEEE80211_MODE_11A:
5981		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5982		break;
5983	case IEEE80211_MODE_HALF:
5984		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5985		break;
5986	case IEEE80211_MODE_QUARTER:
5987		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5988		break;
5989	case IEEE80211_MODE_11B:
5990		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5991		break;
5992	case IEEE80211_MODE_11G:
5993		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5994		break;
5995	case IEEE80211_MODE_TURBO_A:
5996		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5997		break;
5998	case IEEE80211_MODE_TURBO_G:
5999		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6000		break;
6001	case IEEE80211_MODE_STURBO_A:
6002		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6003		break;
6004	case IEEE80211_MODE_11NA:
6005		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6006		break;
6007	case IEEE80211_MODE_11NG:
6008		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6009		break;
6010	default:
6011		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6012			__func__, mode);
6013		return 0;
6014	}
6015	sc->sc_rates[mode] = rt;
6016	return (rt != NULL);
6017}
6018
6019static void
6020ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6021{
6022	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6023	static const struct {
6024		u_int		rate;		/* tx/rx 802.11 rate */
6025		u_int16_t	timeOn;		/* LED on time (ms) */
6026		u_int16_t	timeOff;	/* LED off time (ms) */
6027	} blinkrates[] = {
6028		{ 108,  40,  10 },
6029		{  96,  44,  11 },
6030		{  72,  50,  13 },
6031		{  48,  57,  14 },
6032		{  36,  67,  16 },
6033		{  24,  80,  20 },
6034		{  22, 100,  25 },
6035		{  18, 133,  34 },
6036		{  12, 160,  40 },
6037		{  10, 200,  50 },
6038		{   6, 240,  58 },
6039		{   4, 267,  66 },
6040		{   2, 400, 100 },
6041		{   0, 500, 130 },
6042		/* XXX half/quarter rates */
6043	};
6044	const HAL_RATE_TABLE *rt;
6045	int i, j;
6046
6047	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6048	rt = sc->sc_rates[mode];
6049	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6050	for (i = 0; i < rt->rateCount; i++) {
6051		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6052		if (rt->info[i].phy != IEEE80211_T_HT)
6053			sc->sc_rixmap[ieeerate] = i;
6054		else
6055			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6056	}
6057	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6058	for (i = 0; i < nitems(sc->sc_hwmap); i++) {
6059		if (i >= rt->rateCount) {
6060			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6061			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6062			continue;
6063		}
6064		sc->sc_hwmap[i].ieeerate =
6065			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6066		if (rt->info[i].phy == IEEE80211_T_HT)
6067			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6068		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6069		if (rt->info[i].shortPreamble ||
6070		    rt->info[i].phy == IEEE80211_T_OFDM)
6071			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6072		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6073		for (j = 0; j < nitems(blinkrates)-1; j++)
6074			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6075				break;
6076		/* NB: this uses the last entry if the rate isn't found */
6077		/* XXX beware of overlow */
6078		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6079		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6080	}
6081	sc->sc_currates = rt;
6082	sc->sc_curmode = mode;
6083	/*
6084	 * All protection frames are transmitted at 2Mb/s for
6085	 * 11g, otherwise at 1Mb/s.
6086	 */
6087	if (mode == IEEE80211_MODE_11G)
6088		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6089	else
6090		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6091	/* NB: caller is responsible for resetting rate control state */
6092}
6093
6094static void
6095ath_watchdog(void *arg)
6096{
6097	struct ath_softc *sc = arg;
6098	struct ieee80211com *ic = &sc->sc_ic;
6099	int do_reset = 0;
6100
6101	ATH_LOCK_ASSERT(sc);
6102
6103	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6104		uint32_t hangs;
6105
6106		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6107
6108		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6109		    hangs != 0) {
6110			device_printf(sc->sc_dev, "%s hang detected (0x%x)\n",
6111			    hangs & 0xff ? "bb" : "mac", hangs);
6112		} else
6113			device_printf(sc->sc_dev, "device timeout\n");
6114		do_reset = 1;
6115		counter_u64_add(ic->ic_oerrors, 1);
6116		sc->sc_stats.ast_watchdog++;
6117
6118		ath_power_restore_power_state(sc);
6119	}
6120
6121	/*
6122	 * We can't hold the lock across the ath_reset() call.
6123	 *
6124	 * And since this routine can't hold a lock and sleep,
6125	 * do the reset deferred.
6126	 */
6127	if (do_reset) {
6128		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
6129	}
6130
6131	callout_schedule(&sc->sc_wd_ch, hz);
6132}
6133
6134static void
6135ath_parent(struct ieee80211com *ic)
6136{
6137	struct ath_softc *sc = ic->ic_softc;
6138	int error = EDOOFUS;
6139
6140	ATH_LOCK(sc);
6141	if (ic->ic_nrunning > 0) {
6142		/*
6143		 * To avoid rescanning another access point,
6144		 * do not call ath_init() here.  Instead,
6145		 * only reflect promisc mode settings.
6146		 */
6147		if (sc->sc_running) {
6148			ath_power_set_power_state(sc, HAL_PM_AWAKE);
6149			ath_mode_init(sc);
6150			ath_power_restore_power_state(sc);
6151		} else if (!sc->sc_invalid) {
6152			/*
6153			 * Beware of being called during attach/detach
6154			 * to reset promiscuous mode.  In that case we
6155			 * will still be marked UP but not RUNNING.
6156			 * However trying to re-init the interface
6157			 * is the wrong thing to do as we've already
6158			 * torn down much of our state.  There's
6159			 * probably a better way to deal with this.
6160			 */
6161			error = ath_init(sc);
6162		}
6163	} else {
6164		ath_stop(sc);
6165		if (!sc->sc_invalid)
6166			ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
6167	}
6168	ATH_UNLOCK(sc);
6169
6170	if (error == 0) {
6171#ifdef ATH_TX99_DIAG
6172		if (sc->sc_tx99 != NULL)
6173			sc->sc_tx99->start(sc->sc_tx99);
6174		else
6175#endif
6176		ieee80211_start_all(ic);
6177	}
6178}
6179
6180/*
6181 * Announce various information on device/driver attach.
6182 */
6183static void
6184ath_announce(struct ath_softc *sc)
6185{
6186	struct ath_hal *ah = sc->sc_ah;
6187
6188	device_printf(sc->sc_dev, "%s mac %d.%d RF%s phy %d.%d\n",
6189		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6190		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6191	device_printf(sc->sc_dev, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6192		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6193	if (bootverbose) {
6194		int i;
6195		for (i = 0; i <= WME_AC_VO; i++) {
6196			struct ath_txq *txq = sc->sc_ac2q[i];
6197			device_printf(sc->sc_dev,
6198			    "Use hw queue %u for %s traffic\n",
6199			    txq->axq_qnum, ieee80211_wme_acnames[i]);
6200		}
6201		device_printf(sc->sc_dev, "Use hw queue %u for CAB traffic\n",
6202		    sc->sc_cabq->axq_qnum);
6203		device_printf(sc->sc_dev, "Use hw queue %u for beacons\n",
6204		    sc->sc_bhalq);
6205	}
6206	if (ath_rxbuf != ATH_RXBUF)
6207		device_printf(sc->sc_dev, "using %u rx buffers\n", ath_rxbuf);
6208	if (ath_txbuf != ATH_TXBUF)
6209		device_printf(sc->sc_dev, "using %u tx buffers\n", ath_txbuf);
6210	if (sc->sc_mcastkey && bootverbose)
6211		device_printf(sc->sc_dev, "using multicast key search\n");
6212}
6213
6214static void
6215ath_dfs_tasklet(void *p, int npending)
6216{
6217	struct ath_softc *sc = (struct ath_softc *) p;
6218	struct ieee80211com *ic = &sc->sc_ic;
6219
6220	/*
6221	 * If previous processing has found a radar event,
6222	 * signal this to the net80211 layer to begin DFS
6223	 * processing.
6224	 */
6225	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6226		/* DFS event found, initiate channel change */
6227		/*
6228		 * XXX doesn't currently tell us whether the event
6229		 * XXX was found in the primary or extension
6230		 * XXX channel!
6231		 */
6232		IEEE80211_LOCK(ic);
6233		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6234		IEEE80211_UNLOCK(ic);
6235	}
6236}
6237
6238/*
6239 * Enable/disable power save.  This must be called with
6240 * no TX driver locks currently held, so it should only
6241 * be called from the RX path (which doesn't hold any
6242 * TX driver locks.)
6243 */
6244static void
6245ath_node_powersave(struct ieee80211_node *ni, int enable)
6246{
6247#ifdef	ATH_SW_PSQ
6248	struct ath_node *an = ATH_NODE(ni);
6249	struct ieee80211com *ic = ni->ni_ic;
6250	struct ath_softc *sc = ic->ic_softc;
6251	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6252
6253	/* XXX and no TXQ locks should be held here */
6254
6255	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n",
6256	    __func__,
6257	    ni->ni_macaddr,
6258	    ":",
6259	    !! enable);
6260
6261	/* Suspend or resume software queue handling */
6262	if (enable)
6263		ath_tx_node_sleep(sc, an);
6264	else
6265		ath_tx_node_wakeup(sc, an);
6266
6267	/* Update net80211 state */
6268	avp->av_node_ps(ni, enable);
6269#else
6270	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6271
6272	/* Update net80211 state */
6273	avp->av_node_ps(ni, enable);
6274#endif/* ATH_SW_PSQ */
6275}
6276
6277/*
6278 * Notification from net80211 that the powersave queue state has
6279 * changed.
6280 *
6281 * Since the software queue also may have some frames:
6282 *
6283 * + if the node software queue has frames and the TID state
6284 *   is 0, we set the TIM;
6285 * + if the node and the stack are both empty, we clear the TIM bit.
6286 * + If the stack tries to set the bit, always set it.
6287 * + If the stack tries to clear the bit, only clear it if the
6288 *   software queue in question is also cleared.
6289 *
6290 * TODO: this is called during node teardown; so let's ensure this
6291 * is all correctly handled and that the TIM bit is cleared.
6292 * It may be that the node flush is called _AFTER_ the net80211
6293 * stack clears the TIM.
6294 *
6295 * Here is the racy part.  Since it's possible >1 concurrent,
6296 * overlapping TXes will appear complete with a TX completion in
6297 * another thread, it's possible that the concurrent TIM calls will
6298 * clash.  We can't hold the node lock here because setting the
6299 * TIM grabs the net80211 comlock and this may cause a LOR.
6300 * The solution is either to totally serialise _everything_ at
6301 * this point (ie, all TX, completion and any reset/flush go into
6302 * one taskqueue) or a new "ath TIM lock" needs to be created that
6303 * just wraps the driver state change and this call to avp->av_set_tim().
6304 *
6305 * The same race exists in the net80211 power save queue handling
6306 * as well.  Since multiple transmitting threads may queue frames
6307 * into the driver, as well as ps-poll and the driver transmitting
6308 * frames (and thus clearing the psq), it's quite possible that
6309 * a packet entering the PSQ and a ps-poll being handled will
6310 * race, causing the TIM to be cleared and not re-set.
6311 */
6312static int
6313ath_node_set_tim(struct ieee80211_node *ni, int enable)
6314{
6315#ifdef	ATH_SW_PSQ
6316	struct ieee80211com *ic = ni->ni_ic;
6317	struct ath_softc *sc = ic->ic_softc;
6318	struct ath_node *an = ATH_NODE(ni);
6319	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6320	int changed = 0;
6321
6322	ATH_TX_LOCK(sc);
6323	an->an_stack_psq = enable;
6324
6325	/*
6326	 * This will get called for all operating modes,
6327	 * even if avp->av_set_tim is unset.
6328	 * It's currently set for hostap/ibss modes; but
6329	 * the same infrastructure is used for both STA
6330	 * and AP/IBSS node power save.
6331	 */
6332	if (avp->av_set_tim == NULL) {
6333		ATH_TX_UNLOCK(sc);
6334		return (0);
6335	}
6336
6337	/*
6338	 * If setting the bit, always set it here.
6339	 * If clearing the bit, only clear it if the
6340	 * software queue is also empty.
6341	 *
6342	 * If the node has left power save, just clear the TIM
6343	 * bit regardless of the state of the power save queue.
6344	 *
6345	 * XXX TODO: although atomics are used, it's quite possible
6346	 * that a race will occur between this and setting/clearing
6347	 * in another thread.  TX completion will occur always in
6348	 * one thread, however setting/clearing the TIM bit can come
6349	 * from a variety of different process contexts!
6350	 */
6351	if (enable && an->an_tim_set == 1) {
6352		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6353		    "%s: %6D: enable=%d, tim_set=1, ignoring\n",
6354		    __func__,
6355		    ni->ni_macaddr,
6356		    ":",
6357		    enable);
6358		ATH_TX_UNLOCK(sc);
6359	} else if (enable) {
6360		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6361		    "%s: %6D: enable=%d, enabling TIM\n",
6362		    __func__,
6363		    ni->ni_macaddr,
6364		    ":",
6365		    enable);
6366		an->an_tim_set = 1;
6367		ATH_TX_UNLOCK(sc);
6368		changed = avp->av_set_tim(ni, enable);
6369	} else if (an->an_swq_depth == 0) {
6370		/* disable */
6371		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6372		    "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n",
6373		    __func__,
6374		    ni->ni_macaddr,
6375		    ":",
6376		    enable);
6377		an->an_tim_set = 0;
6378		ATH_TX_UNLOCK(sc);
6379		changed = avp->av_set_tim(ni, enable);
6380	} else if (! an->an_is_powersave) {
6381		/*
6382		 * disable regardless; the node isn't in powersave now
6383		 */
6384		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6385		    "%s: %6D: enable=%d, an_pwrsave=0, disabling\n",
6386		    __func__,
6387		    ni->ni_macaddr,
6388		    ":",
6389		    enable);
6390		an->an_tim_set = 0;
6391		ATH_TX_UNLOCK(sc);
6392		changed = avp->av_set_tim(ni, enable);
6393	} else {
6394		/*
6395		 * psq disable, node is currently in powersave, node
6396		 * software queue isn't empty, so don't clear the TIM bit
6397		 * for now.
6398		 */
6399		ATH_TX_UNLOCK(sc);
6400		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6401		    "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n",
6402		    __func__,
6403		    ni->ni_macaddr,
6404		    ":",
6405		    enable);
6406		changed = 0;
6407	}
6408
6409	return (changed);
6410#else
6411	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6412
6413	/*
6414	 * Some operating modes don't set av_set_tim(), so don't
6415	 * update it here.
6416	 */
6417	if (avp->av_set_tim == NULL)
6418		return (0);
6419
6420	return (avp->av_set_tim(ni, enable));
6421#endif /* ATH_SW_PSQ */
6422}
6423
6424/*
6425 * Set or update the TIM from the software queue.
6426 *
6427 * Check the software queue depth before attempting to do lock
6428 * anything; that avoids trying to obtain the lock.  Then,
6429 * re-check afterwards to ensure nothing has changed in the
6430 * meantime.
6431 *
6432 * set:   This is designed to be called from the TX path, after
6433 *        a frame has been queued; to see if the swq > 0.
6434 *
6435 * clear: This is designed to be called from the buffer completion point
6436 *        (right now it's ath_tx_default_comp()) where the state of
6437 *        a software queue has changed.
6438 *
6439 * It makes sense to place it at buffer free / completion rather
6440 * than after each software queue operation, as there's no real
6441 * point in churning the TIM bit as the last frames in the software
6442 * queue are transmitted.  If they fail and we retry them, we'd
6443 * just be setting the TIM bit again anyway.
6444 */
6445void
6446ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
6447     int enable)
6448{
6449#ifdef	ATH_SW_PSQ
6450	struct ath_node *an;
6451	struct ath_vap *avp;
6452
6453	/* Don't do this for broadcast/etc frames */
6454	if (ni == NULL)
6455		return;
6456
6457	an = ATH_NODE(ni);
6458	avp = ATH_VAP(ni->ni_vap);
6459
6460	/*
6461	 * And for operating modes without the TIM handler set, let's
6462	 * just skip those.
6463	 */
6464	if (avp->av_set_tim == NULL)
6465		return;
6466
6467	ATH_TX_LOCK_ASSERT(sc);
6468
6469	if (enable) {
6470		if (an->an_is_powersave &&
6471		    an->an_tim_set == 0 &&
6472		    an->an_swq_depth != 0) {
6473			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6474			    "%s: %6D: swq_depth>0, tim_set=0, set!\n",
6475			    __func__,
6476			    ni->ni_macaddr,
6477			    ":");
6478			an->an_tim_set = 1;
6479			(void) avp->av_set_tim(ni, 1);
6480		}
6481	} else {
6482		/*
6483		 * Don't bother grabbing the lock unless the queue is empty.
6484		 */
6485		if (an->an_swq_depth != 0)
6486			return;
6487
6488		if (an->an_is_powersave &&
6489		    an->an_stack_psq == 0 &&
6490		    an->an_tim_set == 1 &&
6491		    an->an_swq_depth == 0) {
6492			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6493			    "%s: %6D: swq_depth=0, tim_set=1, psq_set=0,"
6494			    " clear!\n",
6495			    __func__,
6496			    ni->ni_macaddr,
6497			    ":");
6498			an->an_tim_set = 0;
6499			(void) avp->av_set_tim(ni, 0);
6500		}
6501	}
6502#else
6503	return;
6504#endif	/* ATH_SW_PSQ */
6505}
6506
6507/*
6508 * Received a ps-poll frame from net80211.
6509 *
6510 * Here we get a chance to serve out a software-queued frame ourselves
6511 * before we punt it to net80211 to transmit us one itself - either
6512 * because there's traffic in the net80211 psq, or a NULL frame to
6513 * indicate there's nothing else.
6514 */
6515static void
6516ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
6517{
6518#ifdef	ATH_SW_PSQ
6519	struct ath_node *an;
6520	struct ath_vap *avp;
6521	struct ieee80211com *ic = ni->ni_ic;
6522	struct ath_softc *sc = ic->ic_softc;
6523	int tid;
6524
6525	/* Just paranoia */
6526	if (ni == NULL)
6527		return;
6528
6529	/*
6530	 * Unassociated (temporary node) station.
6531	 */
6532	if (ni->ni_associd == 0)
6533		return;
6534
6535	/*
6536	 * We do have an active node, so let's begin looking into it.
6537	 */
6538	an = ATH_NODE(ni);
6539	avp = ATH_VAP(ni->ni_vap);
6540
6541	/*
6542	 * For now, we just call the original ps-poll method.
6543	 * Once we're ready to flip this on:
6544	 *
6545	 * + Set leak to 1, as no matter what we're going to have
6546	 *   to send a frame;
6547	 * + Check the software queue and if there's something in it,
6548	 *   schedule the highest TID thas has traffic from this node.
6549	 *   Then make sure we schedule the software scheduler to
6550	 *   run so it picks up said frame.
6551	 *
6552	 * That way whatever happens, we'll at least send _a_ frame
6553	 * to the given node.
6554	 *
6555	 * Again, yes, it's crappy QoS if the node has multiple
6556	 * TIDs worth of traffic - but let's get it working first
6557	 * before we optimise it.
6558	 *
6559	 * Also yes, there's definitely latency here - we're not
6560	 * direct dispatching to the hardware in this path (and
6561	 * we're likely being called from the packet receive path,
6562	 * so going back into TX may be a little hairy!) but again
6563	 * I'd like to get this working first before optimising
6564	 * turn-around time.
6565	 */
6566
6567	ATH_TX_LOCK(sc);
6568
6569	/*
6570	 * Legacy - we're called and the node isn't asleep.
6571	 * Immediately punt.
6572	 */
6573	if (! an->an_is_powersave) {
6574		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6575		    "%s: %6D: not in powersave?\n",
6576		    __func__,
6577		    ni->ni_macaddr,
6578		    ":");
6579		ATH_TX_UNLOCK(sc);
6580		avp->av_recv_pspoll(ni, m);
6581		return;
6582	}
6583
6584	/*
6585	 * We're in powersave.
6586	 *
6587	 * Leak a frame.
6588	 */
6589	an->an_leak_count = 1;
6590
6591	/*
6592	 * Now, if there's no frames in the node, just punt to
6593	 * recv_pspoll.
6594	 *
6595	 * Don't bother checking if the TIM bit is set, we really
6596	 * only care if there are any frames here!
6597	 */
6598	if (an->an_swq_depth == 0) {
6599		ATH_TX_UNLOCK(sc);
6600		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6601		    "%s: %6D: SWQ empty; punting to net80211\n",
6602		    __func__,
6603		    ni->ni_macaddr,
6604		    ":");
6605		avp->av_recv_pspoll(ni, m);
6606		return;
6607	}
6608
6609	/*
6610	 * Ok, let's schedule the highest TID that has traffic
6611	 * and then schedule something.
6612	 */
6613	for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
6614		struct ath_tid *atid = &an->an_tid[tid];
6615		/*
6616		 * No frames? Skip.
6617		 */
6618		if (atid->axq_depth == 0)
6619			continue;
6620		ath_tx_tid_sched(sc, atid);
6621		/*
6622		 * XXX we could do a direct call to the TXQ
6623		 * scheduler code here to optimise latency
6624		 * at the expense of a REALLY deep callstack.
6625		 */
6626		ATH_TX_UNLOCK(sc);
6627		taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
6628		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6629		    "%s: %6D: leaking frame to TID %d\n",
6630		    __func__,
6631		    ni->ni_macaddr,
6632		    ":",
6633		    tid);
6634		return;
6635	}
6636
6637	ATH_TX_UNLOCK(sc);
6638
6639	/*
6640	 * XXX nothing in the TIDs at this point? Eek.
6641	 */
6642	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6643	    "%s: %6D: TIDs empty, but ath_node showed traffic?!\n",
6644	    __func__,
6645	    ni->ni_macaddr,
6646	    ":");
6647	avp->av_recv_pspoll(ni, m);
6648#else
6649	avp->av_recv_pspoll(ni, m);
6650#endif	/* ATH_SW_PSQ */
6651}
6652
6653MODULE_VERSION(if_ath, 1);
6654MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
6655#if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ)
6656MODULE_DEPEND(if_ath, alq, 1, 1, 1);
6657#endif
6658