if_ath.c revision 277228
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 277228 2015-01-16 01:52:26Z adrian $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42/*
43 * This is needed for register operations which are performed
44 * by the driver - eg, calls to ath_hal_gettsf32().
45 *
46 * It's also required for any AH_DEBUG checks in here, eg the
47 * module dependencies.
48 */
49#include "opt_ah.h"
50#include "opt_wlan.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/sysctl.h>
55#include <sys/mbuf.h>
56#include <sys/malloc.h>
57#include <sys/lock.h>
58#include <sys/mutex.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/sockio.h>
62#include <sys/errno.h>
63#include <sys/callout.h>
64#include <sys/bus.h>
65#include <sys/endian.h>
66#include <sys/kthread.h>
67#include <sys/taskqueue.h>
68#include <sys/priv.h>
69#include <sys/module.h>
70#include <sys/ktr.h>
71#include <sys/smp.h>	/* for mp_ncpus */
72
73#include <machine/bus.h>
74
75#include <net/if.h>
76#include <net/if_var.h>
77#include <net/if_dl.h>
78#include <net/if_media.h>
79#include <net/if_types.h>
80#include <net/if_arp.h>
81#include <net/ethernet.h>
82#include <net/if_llc.h>
83
84#include <net80211/ieee80211_var.h>
85#include <net80211/ieee80211_regdomain.h>
86#ifdef IEEE80211_SUPPORT_SUPERG
87#include <net80211/ieee80211_superg.h>
88#endif
89#ifdef IEEE80211_SUPPORT_TDMA
90#include <net80211/ieee80211_tdma.h>
91#endif
92
93#include <net/bpf.h>
94
95#ifdef INET
96#include <netinet/in.h>
97#include <netinet/if_ether.h>
98#endif
99
100#include <dev/ath/if_athvar.h>
101#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
102#include <dev/ath/ath_hal/ah_diagcodes.h>
103
104#include <dev/ath/if_ath_debug.h>
105#include <dev/ath/if_ath_misc.h>
106#include <dev/ath/if_ath_tsf.h>
107#include <dev/ath/if_ath_tx.h>
108#include <dev/ath/if_ath_sysctl.h>
109#include <dev/ath/if_ath_led.h>
110#include <dev/ath/if_ath_keycache.h>
111#include <dev/ath/if_ath_rx.h>
112#include <dev/ath/if_ath_rx_edma.h>
113#include <dev/ath/if_ath_tx_edma.h>
114#include <dev/ath/if_ath_beacon.h>
115#include <dev/ath/if_ath_btcoex.h>
116#include <dev/ath/if_ath_spectral.h>
117#include <dev/ath/if_ath_lna_div.h>
118#include <dev/ath/if_athdfs.h>
119
120#ifdef ATH_TX99_DIAG
121#include <dev/ath/ath_tx99/ath_tx99.h>
122#endif
123
124#ifdef	ATH_DEBUG_ALQ
125#include <dev/ath/if_ath_alq.h>
126#endif
127
128/*
129 * Only enable this if you're working on PS-POLL support.
130 */
131#define	ATH_SW_PSQ
132
133/*
134 * ATH_BCBUF determines the number of vap's that can transmit
135 * beacons and also (currently) the number of vap's that can
136 * have unique mac addresses/bssid.  When staggering beacons
137 * 4 is probably a good max as otherwise the beacons become
138 * very closely spaced and there is limited time for cab q traffic
139 * to go out.  You can burst beacons instead but that is not good
140 * for stations in power save and at some point you really want
141 * another radio (and channel).
142 *
143 * The limit on the number of mac addresses is tied to our use of
144 * the U/L bit and tracking addresses in a byte; it would be
145 * worthwhile to allow more for applications like proxy sta.
146 */
147CTASSERT(ATH_BCBUF <= 8);
148
149static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
150		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
151		    const uint8_t [IEEE80211_ADDR_LEN],
152		    const uint8_t [IEEE80211_ADDR_LEN]);
153static void	ath_vap_delete(struct ieee80211vap *);
154static void	ath_init(void *);
155static void	ath_stop_locked(struct ifnet *);
156static void	ath_stop(struct ifnet *);
157static int	ath_reset_vap(struct ieee80211vap *, u_long);
158static int	ath_transmit(struct ifnet *ifp, struct mbuf *m);
159static void	ath_qflush(struct ifnet *ifp);
160static int	ath_media_change(struct ifnet *);
161static void	ath_watchdog(void *);
162static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
163static void	ath_fatal_proc(void *, int);
164static void	ath_bmiss_vap(struct ieee80211vap *);
165static void	ath_bmiss_proc(void *, int);
166static void	ath_key_update_begin(struct ieee80211vap *);
167static void	ath_key_update_end(struct ieee80211vap *);
168static void	ath_update_mcast_hw(struct ath_softc *);
169static void	ath_update_mcast(struct ifnet *);
170static void	ath_update_promisc(struct ifnet *);
171static void	ath_updateslot(struct ifnet *);
172static void	ath_bstuck_proc(void *, int);
173static void	ath_reset_proc(void *, int);
174static int	ath_desc_alloc(struct ath_softc *);
175static void	ath_desc_free(struct ath_softc *);
176static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
177			const uint8_t [IEEE80211_ADDR_LEN]);
178static void	ath_node_cleanup(struct ieee80211_node *);
179static void	ath_node_free(struct ieee80211_node *);
180static void	ath_node_getsignal(const struct ieee80211_node *,
181			int8_t *, int8_t *);
182static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
183static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
184static int	ath_tx_setup(struct ath_softc *, int, int);
185static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
186static void	ath_tx_cleanup(struct ath_softc *);
187static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
188		    int dosched);
189static void	ath_tx_proc_q0(void *, int);
190static void	ath_tx_proc_q0123(void *, int);
191static void	ath_tx_proc(void *, int);
192static void	ath_txq_sched_tasklet(void *, int);
193static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
194static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
195static void	ath_scan_start(struct ieee80211com *);
196static void	ath_scan_end(struct ieee80211com *);
197static void	ath_set_channel(struct ieee80211com *);
198#ifdef	ATH_ENABLE_11N
199static void	ath_update_chw(struct ieee80211com *);
200#endif	/* ATH_ENABLE_11N */
201static void	ath_calibrate(void *);
202static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
203static void	ath_setup_stationkey(struct ieee80211_node *);
204static void	ath_newassoc(struct ieee80211_node *, int);
205static int	ath_setregdomain(struct ieee80211com *,
206		    struct ieee80211_regdomain *, int,
207		    struct ieee80211_channel []);
208static void	ath_getradiocaps(struct ieee80211com *, int, int *,
209		    struct ieee80211_channel []);
210static int	ath_getchannels(struct ath_softc *);
211
212static int	ath_rate_setup(struct ath_softc *, u_int mode);
213static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
214
215static void	ath_announce(struct ath_softc *);
216
217static void	ath_dfs_tasklet(void *, int);
218static void	ath_node_powersave(struct ieee80211_node *, int);
219static int	ath_node_set_tim(struct ieee80211_node *, int);
220static void	ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
221
222#ifdef IEEE80211_SUPPORT_TDMA
223#include <dev/ath/if_ath_tdma.h>
224#endif
225
226SYSCTL_DECL(_hw_ath);
227
228/* XXX validate sysctl values */
229static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
230SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
231	    0, "long chip calibration interval (secs)");
232static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
233SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
234	    0, "short chip calibration interval (msecs)");
235static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
236SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
237	    0, "reset chip calibration results (secs)");
238static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
239SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
240	    0, "ANI calibration (msecs)");
241
242int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
243SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf,
244	    0, "rx buffers allocated");
245int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
246SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf,
247	    0, "tx buffers allocated");
248int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
249SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt,
250	    0, "tx (mgmt) buffers allocated");
251
252int ath_bstuck_threshold = 4;		/* max missed beacons */
253SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
254	    0, "max missed beacon xmits before chip reset");
255
256MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
257
258void
259ath_legacy_attach_comp_func(struct ath_softc *sc)
260{
261
262	/*
263	 * Special case certain configurations.  Note the
264	 * CAB queue is handled by these specially so don't
265	 * include them when checking the txq setup mask.
266	 */
267	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
268	case 0x01:
269		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
270		break;
271	case 0x0f:
272		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
273		break;
274	default:
275		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
276		break;
277	}
278}
279
280/*
281 * Set the target power mode.
282 *
283 * If this is called during a point in time where
284 * the hardware is being programmed elsewhere, it will
285 * simply store it away and update it when all current
286 * uses of the hardware are completed.
287 */
288void
289_ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line)
290{
291	ATH_LOCK_ASSERT(sc);
292
293	sc->sc_target_powerstate = power_state;
294
295	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
296	    __func__,
297	    file,
298	    line,
299	    power_state,
300	    sc->sc_powersave_refcnt);
301
302	if (sc->sc_powersave_refcnt == 0 &&
303	    power_state != sc->sc_cur_powerstate) {
304		sc->sc_cur_powerstate = power_state;
305		ath_hal_setpower(sc->sc_ah, power_state);
306
307		/*
308		 * If the NIC is force-awake, then set the
309		 * self-gen frame state appropriately.
310		 *
311		 * If the nic is in network sleep or full-sleep,
312		 * we let the above call leave the self-gen
313		 * state as "sleep".
314		 */
315		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
316		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
317			ath_hal_setselfgenpower(sc->sc_ah,
318			    sc->sc_target_selfgen_state);
319		}
320	}
321}
322
323/*
324 * Set the current self-generated frames state.
325 *
326 * This is separate from the target power mode.  The chip may be
327 * awake but the desired state is "sleep", so frames sent to the
328 * destination has PWRMGT=1 in the 802.11 header.  The NIC also
329 * needs to know to set PWRMGT=1 in self-generated frames.
330 */
331void
332_ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line)
333{
334
335	ATH_LOCK_ASSERT(sc);
336
337	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
338	    __func__,
339	    file,
340	    line,
341	    power_state,
342	    sc->sc_target_selfgen_state);
343
344	sc->sc_target_selfgen_state = power_state;
345
346	/*
347	 * If the NIC is force-awake, then set the power state.
348	 * Network-state and full-sleep will already transition it to
349	 * mark self-gen frames as sleeping - and we can't
350	 * guarantee the NIC is awake to program the self-gen frame
351	 * setting anyway.
352	 */
353	if (sc->sc_cur_powerstate == HAL_PM_AWAKE) {
354		ath_hal_setselfgenpower(sc->sc_ah, power_state);
355	}
356}
357
358/*
359 * Set the hardware power mode and take a reference.
360 *
361 * This doesn't update the target power mode in the driver;
362 * it just updates the hardware power state.
363 *
364 * XXX it should only ever force the hardware awake; it should
365 * never be called to set it asleep.
366 */
367void
368_ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line)
369{
370	ATH_LOCK_ASSERT(sc);
371
372	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
373	    __func__,
374	    file,
375	    line,
376	    power_state,
377	    sc->sc_powersave_refcnt);
378
379	sc->sc_powersave_refcnt++;
380
381	if (power_state != sc->sc_cur_powerstate) {
382		ath_hal_setpower(sc->sc_ah, power_state);
383		sc->sc_cur_powerstate = power_state;
384
385		/*
386		 * Adjust the self-gen powerstate if appropriate.
387		 */
388		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
389		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
390			ath_hal_setselfgenpower(sc->sc_ah,
391			    sc->sc_target_selfgen_state);
392		}
393
394	}
395}
396
397/*
398 * Restore the power save mode to what it once was.
399 *
400 * This will decrement the reference counter and once it hits
401 * zero, it'll restore the powersave state.
402 */
403void
404_ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line)
405{
406
407	ATH_LOCK_ASSERT(sc);
408
409	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n",
410	    __func__,
411	    file,
412	    line,
413	    sc->sc_powersave_refcnt,
414	    sc->sc_target_powerstate);
415
416	if (sc->sc_powersave_refcnt == 0)
417		device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__);
418	else
419		sc->sc_powersave_refcnt--;
420
421	if (sc->sc_powersave_refcnt == 0 &&
422	    sc->sc_target_powerstate != sc->sc_cur_powerstate) {
423		sc->sc_cur_powerstate = sc->sc_target_powerstate;
424		ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate);
425	}
426
427	/*
428	 * Adjust the self-gen powerstate if appropriate.
429	 */
430	if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
431	    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
432		ath_hal_setselfgenpower(sc->sc_ah,
433		    sc->sc_target_selfgen_state);
434	}
435
436}
437
438/*
439 * Configure the initial HAL configuration values based on bus
440 * specific parameters.
441 *
442 * Some PCI IDs and other information may need tweaking.
443 *
444 * XXX TODO: ath9k and the Atheros HAL only program comm2g_switch_enable
445 * if BT antenna diversity isn't enabled.
446 *
447 * So, let's also figure out how to enable BT diversity for AR9485.
448 */
449static void
450ath_setup_hal_config(struct ath_softc *sc, HAL_OPS_CONFIG *ah_config)
451{
452	/* XXX TODO: only for PCI devices? */
453
454	if (sc->sc_pci_devinfo & (ATH_PCI_CUS198 | ATH_PCI_CUS230)) {
455		ah_config->ath_hal_ext_lna_ctl_gpio = 0x200; /* bit 9 */
456		ah_config->ath_hal_ext_atten_margin_cfg = AH_TRUE;
457		ah_config->ath_hal_min_gainidx = AH_TRUE;
458		ah_config->ath_hal_ant_ctrl_comm2g_switch_enable = 0x000bbb88;
459		/* XXX low_rssi_thresh */
460		/* XXX fast_div_bias */
461		device_printf(sc->sc_dev, "configuring for %s\n",
462		    (sc->sc_pci_devinfo & ATH_PCI_CUS198) ?
463		    "CUS198" : "CUS230");
464	}
465
466	if (sc->sc_pci_devinfo & ATH_PCI_CUS217)
467		device_printf(sc->sc_dev, "CUS217 card detected\n");
468
469	if (sc->sc_pci_devinfo & ATH_PCI_CUS252)
470		device_printf(sc->sc_dev, "CUS252 card detected\n");
471
472	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_1ANT)
473		device_printf(sc->sc_dev, "WB335 1-ANT card detected\n");
474
475	if (sc->sc_pci_devinfo & ATH_PCI_AR9565_2ANT)
476		device_printf(sc->sc_dev, "WB335 2-ANT card detected\n");
477
478	if (sc->sc_pci_devinfo & ATH_PCI_KILLER)
479		device_printf(sc->sc_dev, "Killer Wireless card detected\n");
480
481#if 0
482        /*
483         * Some WB335 cards do not support antenna diversity. Since
484         * we use a hardcoded value for AR9565 instead of using the
485         * EEPROM/OTP data, remove the combining feature from
486         * the HW capabilities bitmap.
487         */
488        if (sc->sc_pci_devinfo & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
489                if (!(sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV))
490                        pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB;
491        }
492
493        if (sc->sc_pci_devinfo & ATH9K_PCI_BT_ANT_DIV) {
494                pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV;
495                device_printf(sc->sc_dev, "Set BT/WLAN RX diversity capability\n");
496        }
497#endif
498
499        if (sc->sc_pci_devinfo & ATH_PCI_D3_L1_WAR) {
500                ah_config->ath_hal_pcie_waen = 0x0040473b;
501                device_printf(sc->sc_dev, "Enable WAR for ASPM D3/L1\n");
502        }
503
504#if 0
505        if (sc->sc_pci_devinfo & ATH9K_PCI_NO_PLL_PWRSAVE) {
506                ah->config.no_pll_pwrsave = true;
507                device_printf(sc->sc_dev, "Disable PLL PowerSave\n");
508        }
509#endif
510
511}
512
513#define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
514#define	HAL_MODE_HT40 \
515	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
516	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
517int
518ath_attach(u_int16_t devid, struct ath_softc *sc)
519{
520	struct ifnet *ifp;
521	struct ieee80211com *ic;
522	struct ath_hal *ah = NULL;
523	HAL_STATUS status;
524	int error = 0, i;
525	u_int wmodes;
526	uint8_t macaddr[IEEE80211_ADDR_LEN];
527	int rx_chainmask, tx_chainmask;
528	HAL_OPS_CONFIG ah_config;
529
530	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
531
532	CURVNET_SET(vnet0);
533	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
534	if (ifp == NULL) {
535		device_printf(sc->sc_dev, "can not if_alloc()\n");
536		error = ENOSPC;
537		CURVNET_RESTORE();
538		goto bad;
539	}
540	ic = ifp->if_l2com;
541
542	/* set these up early for if_printf use */
543	if_initname(ifp, device_get_name(sc->sc_dev),
544		device_get_unit(sc->sc_dev));
545	CURVNET_RESTORE();
546
547	/*
548	 * Configure the initial configuration data.
549	 *
550	 * This is stuff that may be needed early during attach
551	 * rather than done via configuration calls later.
552	 */
553	bzero(&ah_config, sizeof(ah_config));
554	ath_setup_hal_config(sc, &ah_config);
555
556	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
557	    sc->sc_eepromdata, &ah_config, &status);
558	if (ah == NULL) {
559		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
560			status);
561		error = ENXIO;
562		goto bad;
563	}
564	sc->sc_ah = ah;
565	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
566#ifdef	ATH_DEBUG
567	sc->sc_debug = ath_debug;
568#endif
569
570	/*
571	 * Setup the DMA/EDMA functions based on the current
572	 * hardware support.
573	 *
574	 * This is required before the descriptors are allocated.
575	 */
576	if (ath_hal_hasedma(sc->sc_ah)) {
577		sc->sc_isedma = 1;
578		ath_recv_setup_edma(sc);
579		ath_xmit_setup_edma(sc);
580	} else {
581		ath_recv_setup_legacy(sc);
582		ath_xmit_setup_legacy(sc);
583	}
584
585	if (ath_hal_hasmybeacon(sc->sc_ah)) {
586		sc->sc_do_mybeacon = 1;
587	}
588
589	/*
590	 * Check if the MAC has multi-rate retry support.
591	 * We do this by trying to setup a fake extended
592	 * descriptor.  MAC's that don't have support will
593	 * return false w/o doing anything.  MAC's that do
594	 * support it will return true w/o doing anything.
595	 */
596	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
597
598	/*
599	 * Check if the device has hardware counters for PHY
600	 * errors.  If so we need to enable the MIB interrupt
601	 * so we can act on stat triggers.
602	 */
603	if (ath_hal_hwphycounters(ah))
604		sc->sc_needmib = 1;
605
606	/*
607	 * Get the hardware key cache size.
608	 */
609	sc->sc_keymax = ath_hal_keycachesize(ah);
610	if (sc->sc_keymax > ATH_KEYMAX) {
611		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
612			ATH_KEYMAX, sc->sc_keymax);
613		sc->sc_keymax = ATH_KEYMAX;
614	}
615	/*
616	 * Reset the key cache since some parts do not
617	 * reset the contents on initial power up.
618	 */
619	for (i = 0; i < sc->sc_keymax; i++)
620		ath_hal_keyreset(ah, i);
621
622	/*
623	 * Collect the default channel list.
624	 */
625	error = ath_getchannels(sc);
626	if (error != 0)
627		goto bad;
628
629	/*
630	 * Setup rate tables for all potential media types.
631	 */
632	ath_rate_setup(sc, IEEE80211_MODE_11A);
633	ath_rate_setup(sc, IEEE80211_MODE_11B);
634	ath_rate_setup(sc, IEEE80211_MODE_11G);
635	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
636	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
637	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
638	ath_rate_setup(sc, IEEE80211_MODE_11NA);
639	ath_rate_setup(sc, IEEE80211_MODE_11NG);
640	ath_rate_setup(sc, IEEE80211_MODE_HALF);
641	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
642
643	/* NB: setup here so ath_rate_update is happy */
644	ath_setcurmode(sc, IEEE80211_MODE_11A);
645
646	/*
647	 * Allocate TX descriptors and populate the lists.
648	 */
649	error = ath_desc_alloc(sc);
650	if (error != 0) {
651		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
652		    error);
653		goto bad;
654	}
655	error = ath_txdma_setup(sc);
656	if (error != 0) {
657		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
658		    error);
659		goto bad;
660	}
661
662	/*
663	 * Allocate RX descriptors and populate the lists.
664	 */
665	error = ath_rxdma_setup(sc);
666	if (error != 0) {
667		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
668		    error);
669		goto bad;
670	}
671
672	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
673	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
674
675	ATH_TXBUF_LOCK_INIT(sc);
676
677	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
678		taskqueue_thread_enqueue, &sc->sc_tq);
679	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
680		"%s taskq", ifp->if_xname);
681
682	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
683	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
684	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
685	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
686	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
687	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
688
689	/*
690	 * Allocate hardware transmit queues: one queue for
691	 * beacon frames and one data queue for each QoS
692	 * priority.  Note that the hal handles resetting
693	 * these queues at the needed time.
694	 *
695	 * XXX PS-Poll
696	 */
697	sc->sc_bhalq = ath_beaconq_setup(sc);
698	if (sc->sc_bhalq == (u_int) -1) {
699		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
700		error = EIO;
701		goto bad2;
702	}
703	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
704	if (sc->sc_cabq == NULL) {
705		if_printf(ifp, "unable to setup CAB xmit queue!\n");
706		error = EIO;
707		goto bad2;
708	}
709	/* NB: insure BK queue is the lowest priority h/w queue */
710	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
711		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
712			ieee80211_wme_acnames[WME_AC_BK]);
713		error = EIO;
714		goto bad2;
715	}
716	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
717	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
718	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
719		/*
720		 * Not enough hardware tx queues to properly do WME;
721		 * just punt and assign them all to the same h/w queue.
722		 * We could do a better job of this if, for example,
723		 * we allocate queues when we switch from station to
724		 * AP mode.
725		 */
726		if (sc->sc_ac2q[WME_AC_VI] != NULL)
727			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
728		if (sc->sc_ac2q[WME_AC_BE] != NULL)
729			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
730		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
731		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
732		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
733	}
734
735	/*
736	 * Attach the TX completion function.
737	 *
738	 * The non-EDMA chips may have some special case optimisations;
739	 * this method gives everyone a chance to attach cleanly.
740	 */
741	sc->sc_tx.xmit_attach_comp_func(sc);
742
743	/*
744	 * Setup rate control.  Some rate control modules
745	 * call back to change the anntena state so expose
746	 * the necessary entry points.
747	 * XXX maybe belongs in struct ath_ratectrl?
748	 */
749	sc->sc_setdefantenna = ath_setdefantenna;
750	sc->sc_rc = ath_rate_attach(sc);
751	if (sc->sc_rc == NULL) {
752		error = EIO;
753		goto bad2;
754	}
755
756	/* Attach DFS module */
757	if (! ath_dfs_attach(sc)) {
758		device_printf(sc->sc_dev,
759		    "%s: unable to attach DFS\n", __func__);
760		error = EIO;
761		goto bad2;
762	}
763
764	/* Attach spectral module */
765	if (ath_spectral_attach(sc) < 0) {
766		device_printf(sc->sc_dev,
767		    "%s: unable to attach spectral\n", __func__);
768		error = EIO;
769		goto bad2;
770	}
771
772	/* Attach bluetooth coexistence module */
773	if (ath_btcoex_attach(sc) < 0) {
774		device_printf(sc->sc_dev,
775		    "%s: unable to attach bluetooth coexistence\n", __func__);
776		error = EIO;
777		goto bad2;
778	}
779
780	/* Attach LNA diversity module */
781	if (ath_lna_div_attach(sc) < 0) {
782		device_printf(sc->sc_dev,
783		    "%s: unable to attach LNA diversity\n", __func__);
784		error = EIO;
785		goto bad2;
786	}
787
788	/* Start DFS processing tasklet */
789	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
790
791	/* Configure LED state */
792	sc->sc_blinking = 0;
793	sc->sc_ledstate = 1;
794	sc->sc_ledon = 0;			/* low true */
795	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
796	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
797
798	/*
799	 * Don't setup hardware-based blinking.
800	 *
801	 * Although some NICs may have this configured in the
802	 * default reset register values, the user may wish
803	 * to alter which pins have which function.
804	 *
805	 * The reference driver attaches the MAC network LED to GPIO1 and
806	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
807	 * NIC has these reversed.
808	 */
809	sc->sc_hardled = (1 == 0);
810	sc->sc_led_net_pin = -1;
811	sc->sc_led_pwr_pin = -1;
812	/*
813	 * Auto-enable soft led processing for IBM cards and for
814	 * 5211 minipci cards.  Users can also manually enable/disable
815	 * support with a sysctl.
816	 */
817	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
818	ath_led_config(sc);
819	ath_hal_setledstate(ah, HAL_LED_INIT);
820
821	ifp->if_softc = sc;
822	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
823	ifp->if_transmit = ath_transmit;
824	ifp->if_qflush = ath_qflush;
825	ifp->if_ioctl = ath_ioctl;
826	ifp->if_init = ath_init;
827	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
828	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
829	IFQ_SET_READY(&ifp->if_snd);
830
831	ic->ic_ifp = ifp;
832	/* XXX not right but it's not used anywhere important */
833	ic->ic_phytype = IEEE80211_T_OFDM;
834	ic->ic_opmode = IEEE80211_M_STA;
835	ic->ic_caps =
836		  IEEE80211_C_STA		/* station mode */
837		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
838		| IEEE80211_C_HOSTAP		/* hostap mode */
839		| IEEE80211_C_MONITOR		/* monitor mode */
840		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
841		| IEEE80211_C_WDS		/* 4-address traffic works */
842		| IEEE80211_C_MBSS		/* mesh point link mode */
843		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
844		| IEEE80211_C_SHSLOT		/* short slot time supported */
845		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
846#ifndef	ATH_ENABLE_11N
847		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
848#endif
849		| IEEE80211_C_TXFRAG		/* handle tx frags */
850#ifdef	ATH_ENABLE_DFS
851		| IEEE80211_C_DFS		/* Enable radar detection */
852#endif
853		| IEEE80211_C_PMGT		/* Station side power mgmt */
854		| IEEE80211_C_SWSLEEP
855		;
856	/*
857	 * Query the hal to figure out h/w crypto support.
858	 */
859	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
860		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
861	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
862		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
863	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
864		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
865	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
866		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
867	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
868		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
869		/*
870		 * Check if h/w does the MIC and/or whether the
871		 * separate key cache entries are required to
872		 * handle both tx+rx MIC keys.
873		 */
874		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
875			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
876		/*
877		 * If the h/w supports storing tx+rx MIC keys
878		 * in one cache slot automatically enable use.
879		 */
880		if (ath_hal_hastkipsplit(ah) ||
881		    !ath_hal_settkipsplit(ah, AH_FALSE))
882			sc->sc_splitmic = 1;
883		/*
884		 * If the h/w can do TKIP MIC together with WME then
885		 * we use it; otherwise we force the MIC to be done
886		 * in software by the net80211 layer.
887		 */
888		if (ath_hal_haswmetkipmic(ah))
889			sc->sc_wmetkipmic = 1;
890	}
891	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
892	/*
893	 * Check for multicast key search support.
894	 */
895	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
896	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
897		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
898	}
899	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
900	/*
901	 * Mark key cache slots associated with global keys
902	 * as in use.  If we knew TKIP was not to be used we
903	 * could leave the +32, +64, and +32+64 slots free.
904	 */
905	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
906		setbit(sc->sc_keymap, i);
907		setbit(sc->sc_keymap, i+64);
908		if (sc->sc_splitmic) {
909			setbit(sc->sc_keymap, i+32);
910			setbit(sc->sc_keymap, i+32+64);
911		}
912	}
913	/*
914	 * TPC support can be done either with a global cap or
915	 * per-packet support.  The latter is not available on
916	 * all parts.  We're a bit pedantic here as all parts
917	 * support a global cap.
918	 */
919	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
920		ic->ic_caps |= IEEE80211_C_TXPMGT;
921
922	/*
923	 * Mark WME capability only if we have sufficient
924	 * hardware queues to do proper priority scheduling.
925	 */
926	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
927		ic->ic_caps |= IEEE80211_C_WME;
928	/*
929	 * Check for misc other capabilities.
930	 */
931	if (ath_hal_hasbursting(ah))
932		ic->ic_caps |= IEEE80211_C_BURST;
933	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
934	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
935	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
936	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
937	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
938	sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
939	sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
940	sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
941
942	if (ath_hal_hasfastframes(ah))
943		ic->ic_caps |= IEEE80211_C_FF;
944	wmodes = ath_hal_getwirelessmodes(ah);
945	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
946		ic->ic_caps |= IEEE80211_C_TURBOP;
947#ifdef IEEE80211_SUPPORT_TDMA
948	if (ath_hal_macversion(ah) > 0x78) {
949		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
950		ic->ic_tdma_update = ath_tdma_update;
951	}
952#endif
953
954	/*
955	 * TODO: enforce that at least this many frames are available
956	 * in the txbuf list before allowing data frames (raw or
957	 * otherwise) to be transmitted.
958	 */
959	sc->sc_txq_data_minfree = 10;
960	/*
961	 * Leave this as default to maintain legacy behaviour.
962	 * Shortening the cabq/mcastq may end up causing some
963	 * undesirable behaviour.
964	 */
965	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
966
967	/*
968	 * How deep can the node software TX queue get whilst it's asleep.
969	 */
970	sc->sc_txq_node_psq_maxdepth = 16;
971
972	/*
973	 * Default the maximum queue depth for a given node
974	 * to 1/4'th the TX buffers, or 64, whichever
975	 * is larger.
976	 */
977	sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4);
978
979	/* Enable CABQ by default */
980	sc->sc_cabq_enable = 1;
981
982	/*
983	 * Allow the TX and RX chainmasks to be overridden by
984	 * environment variables and/or device.hints.
985	 *
986	 * This must be done early - before the hardware is
987	 * calibrated or before the 802.11n stream calculation
988	 * is done.
989	 */
990	if (resource_int_value(device_get_name(sc->sc_dev),
991	    device_get_unit(sc->sc_dev), "rx_chainmask",
992	    &rx_chainmask) == 0) {
993		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
994		    rx_chainmask);
995		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
996	}
997	if (resource_int_value(device_get_name(sc->sc_dev),
998	    device_get_unit(sc->sc_dev), "tx_chainmask",
999	    &tx_chainmask) == 0) {
1000		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
1001		    tx_chainmask);
1002		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
1003	}
1004
1005	/*
1006	 * Query the TX/RX chainmask configuration.
1007	 *
1008	 * This is only relevant for 11n devices.
1009	 */
1010	ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
1011	ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
1012
1013	/*
1014	 * Disable MRR with protected frames by default.
1015	 * Only 802.11n series NICs can handle this.
1016	 */
1017	sc->sc_mrrprot = 0;	/* XXX should be a capability */
1018
1019	/*
1020	 * Query the enterprise mode information the HAL.
1021	 */
1022	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
1023	    &sc->sc_ent_cfg) == HAL_OK)
1024		sc->sc_use_ent = 1;
1025
1026#ifdef	ATH_ENABLE_11N
1027	/*
1028	 * Query HT capabilities
1029	 */
1030	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
1031	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
1032		uint32_t rxs, txs;
1033
1034		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
1035
1036		sc->sc_mrrprot = 1;	/* XXX should be a capability */
1037
1038		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
1039			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
1040			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
1041			    | IEEE80211_HTCAP_MAXAMSDU_3839
1042			    				/* max A-MSDU length */
1043			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
1044			;
1045
1046		/*
1047		 * Enable short-GI for HT20 only if the hardware
1048		 * advertises support.
1049		 * Notably, anything earlier than the AR9287 doesn't.
1050		 */
1051		if ((ath_hal_getcapability(ah,
1052		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
1053		    (wmodes & HAL_MODE_HT20)) {
1054			device_printf(sc->sc_dev,
1055			    "[HT] enabling short-GI in 20MHz mode\n");
1056			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
1057		}
1058
1059		if (wmodes & HAL_MODE_HT40)
1060			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
1061			    |  IEEE80211_HTCAP_SHORTGI40;
1062
1063		/*
1064		 * TX/RX streams need to be taken into account when
1065		 * negotiating which MCS rates it'll receive and
1066		 * what MCS rates are available for TX.
1067		 */
1068		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
1069		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
1070		ic->ic_txstream = txs;
1071		ic->ic_rxstream = rxs;
1072
1073		/*
1074		 * Setup TX and RX STBC based on what the HAL allows and
1075		 * the currently configured chainmask set.
1076		 * Ie - don't enable STBC TX if only one chain is enabled.
1077		 * STBC RX is fine on a single RX chain; it just won't
1078		 * provide any real benefit.
1079		 */
1080		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
1081		    NULL) == HAL_OK) {
1082			sc->sc_rx_stbc = 1;
1083			device_printf(sc->sc_dev,
1084			    "[HT] 1 stream STBC receive enabled\n");
1085			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
1086		}
1087		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
1088		    NULL) == HAL_OK) {
1089			sc->sc_tx_stbc = 1;
1090			device_printf(sc->sc_dev,
1091			    "[HT] 1 stream STBC transmit enabled\n");
1092			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
1093		}
1094
1095		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
1096		    &sc->sc_rts_aggr_limit);
1097		if (sc->sc_rts_aggr_limit != (64 * 1024))
1098			device_printf(sc->sc_dev,
1099			    "[HT] RTS aggregates limited to %d KiB\n",
1100			    sc->sc_rts_aggr_limit / 1024);
1101
1102		device_printf(sc->sc_dev,
1103		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
1104	}
1105#endif
1106
1107	/*
1108	 * Initial aggregation settings.
1109	 */
1110	sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
1111	sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
1112	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1113	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1114	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
1115	sc->sc_delim_min_pad = 0;
1116
1117	/*
1118	 * Check if the hardware requires PCI register serialisation.
1119	 * Some of the Owl based MACs require this.
1120	 */
1121	if (mp_ncpus > 1 &&
1122	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
1123	     0, NULL) == HAL_OK) {
1124		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
1125		device_printf(sc->sc_dev,
1126		    "Enabling register serialisation\n");
1127	}
1128
1129	/*
1130	 * Initialise the deferred completed RX buffer list.
1131	 */
1132	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
1133	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
1134
1135	/*
1136	 * Indicate we need the 802.11 header padded to a
1137	 * 32-bit boundary for 4-address and QoS frames.
1138	 */
1139	ic->ic_flags |= IEEE80211_F_DATAPAD;
1140
1141	/*
1142	 * Query the hal about antenna support.
1143	 */
1144	sc->sc_defant = ath_hal_getdefantenna(ah);
1145
1146	/*
1147	 * Not all chips have the VEOL support we want to
1148	 * use with IBSS beacons; check here for it.
1149	 */
1150	sc->sc_hasveol = ath_hal_hasveol(ah);
1151
1152	/* get mac address from hardware */
1153	ath_hal_getmac(ah, macaddr);
1154	if (sc->sc_hasbmask)
1155		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
1156
1157	/* NB: used to size node table key mapping array */
1158	ic->ic_max_keyix = sc->sc_keymax;
1159	/* call MI attach routine. */
1160	ieee80211_ifattach(ic, macaddr);
1161	ic->ic_setregdomain = ath_setregdomain;
1162	ic->ic_getradiocaps = ath_getradiocaps;
1163	sc->sc_opmode = HAL_M_STA;
1164
1165	/* override default methods */
1166	ic->ic_newassoc = ath_newassoc;
1167	ic->ic_updateslot = ath_updateslot;
1168	ic->ic_wme.wme_update = ath_wme_update;
1169	ic->ic_vap_create = ath_vap_create;
1170	ic->ic_vap_delete = ath_vap_delete;
1171	ic->ic_raw_xmit = ath_raw_xmit;
1172	ic->ic_update_mcast = ath_update_mcast;
1173	ic->ic_update_promisc = ath_update_promisc;
1174	ic->ic_node_alloc = ath_node_alloc;
1175	sc->sc_node_free = ic->ic_node_free;
1176	ic->ic_node_free = ath_node_free;
1177	sc->sc_node_cleanup = ic->ic_node_cleanup;
1178	ic->ic_node_cleanup = ath_node_cleanup;
1179	ic->ic_node_getsignal = ath_node_getsignal;
1180	ic->ic_scan_start = ath_scan_start;
1181	ic->ic_scan_end = ath_scan_end;
1182	ic->ic_set_channel = ath_set_channel;
1183#ifdef	ATH_ENABLE_11N
1184	/* 802.11n specific - but just override anyway */
1185	sc->sc_addba_request = ic->ic_addba_request;
1186	sc->sc_addba_response = ic->ic_addba_response;
1187	sc->sc_addba_stop = ic->ic_addba_stop;
1188	sc->sc_bar_response = ic->ic_bar_response;
1189	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
1190
1191	ic->ic_addba_request = ath_addba_request;
1192	ic->ic_addba_response = ath_addba_response;
1193	ic->ic_addba_response_timeout = ath_addba_response_timeout;
1194	ic->ic_addba_stop = ath_addba_stop;
1195	ic->ic_bar_response = ath_bar_response;
1196
1197	ic->ic_update_chw = ath_update_chw;
1198#endif	/* ATH_ENABLE_11N */
1199
1200#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
1201	/*
1202	 * There's one vendor bitmap entry in the RX radiotap
1203	 * header; make sure that's taken into account.
1204	 */
1205	ieee80211_radiotap_attachv(ic,
1206	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
1207		ATH_TX_RADIOTAP_PRESENT,
1208	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
1209		ATH_RX_RADIOTAP_PRESENT);
1210#else
1211	/*
1212	 * No vendor bitmap/extensions are present.
1213	 */
1214	ieee80211_radiotap_attach(ic,
1215	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
1216		ATH_TX_RADIOTAP_PRESENT,
1217	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
1218		ATH_RX_RADIOTAP_PRESENT);
1219#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
1220
1221	/*
1222	 * Setup the ALQ logging if required
1223	 */
1224#ifdef	ATH_DEBUG_ALQ
1225	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
1226	if_ath_alq_setcfg(&sc->sc_alq,
1227	    sc->sc_ah->ah_macVersion,
1228	    sc->sc_ah->ah_macRev,
1229	    sc->sc_ah->ah_phyRev,
1230	    sc->sc_ah->ah_magic);
1231#endif
1232
1233	/*
1234	 * Setup dynamic sysctl's now that country code and
1235	 * regdomain are available from the hal.
1236	 */
1237	ath_sysctlattach(sc);
1238	ath_sysctl_stats_attach(sc);
1239	ath_sysctl_hal_attach(sc);
1240
1241	if (bootverbose)
1242		ieee80211_announce(ic);
1243	ath_announce(sc);
1244
1245	/*
1246	 * Put it to sleep for now.
1247	 */
1248	ATH_LOCK(sc);
1249	ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
1250	ATH_UNLOCK(sc);
1251
1252	return 0;
1253bad2:
1254	ath_tx_cleanup(sc);
1255	ath_desc_free(sc);
1256	ath_txdma_teardown(sc);
1257	ath_rxdma_teardown(sc);
1258bad:
1259	if (ah)
1260		ath_hal_detach(ah);
1261
1262	/*
1263	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
1264	 */
1265	if (ifp != NULL && ifp->if_vnet) {
1266		CURVNET_SET(ifp->if_vnet);
1267		if_free(ifp);
1268		CURVNET_RESTORE();
1269	} else if (ifp != NULL)
1270		if_free(ifp);
1271	sc->sc_invalid = 1;
1272	return error;
1273}
1274
1275int
1276ath_detach(struct ath_softc *sc)
1277{
1278	struct ifnet *ifp = sc->sc_ifp;
1279
1280	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1281		__func__, ifp->if_flags);
1282
1283	/*
1284	 * NB: the order of these is important:
1285	 * o stop the chip so no more interrupts will fire
1286	 * o call the 802.11 layer before detaching the hal to
1287	 *   insure callbacks into the driver to delete global
1288	 *   key cache entries can be handled
1289	 * o free the taskqueue which drains any pending tasks
1290	 * o reclaim the tx queue data structures after calling
1291	 *   the 802.11 layer as we'll get called back to reclaim
1292	 *   node state and potentially want to use them
1293	 * o to cleanup the tx queues the hal is called, so detach
1294	 *   it last
1295	 * Other than that, it's straightforward...
1296	 */
1297
1298	/*
1299	 * XXX Wake the hardware up first.  ath_stop() will still
1300	 * wake it up first, but I'd rather do it here just to
1301	 * ensure it's awake.
1302	 */
1303	ATH_LOCK(sc);
1304	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1305	ath_power_setpower(sc, HAL_PM_AWAKE);
1306	ATH_UNLOCK(sc);
1307
1308	/*
1309	 * Stop things cleanly.
1310	 */
1311	ath_stop(ifp);
1312
1313	ieee80211_ifdetach(ifp->if_l2com);
1314	taskqueue_free(sc->sc_tq);
1315#ifdef ATH_TX99_DIAG
1316	if (sc->sc_tx99 != NULL)
1317		sc->sc_tx99->detach(sc->sc_tx99);
1318#endif
1319	ath_rate_detach(sc->sc_rc);
1320#ifdef	ATH_DEBUG_ALQ
1321	if_ath_alq_tidyup(&sc->sc_alq);
1322#endif
1323	ath_lna_div_detach(sc);
1324	ath_btcoex_detach(sc);
1325	ath_spectral_detach(sc);
1326	ath_dfs_detach(sc);
1327	ath_desc_free(sc);
1328	ath_txdma_teardown(sc);
1329	ath_rxdma_teardown(sc);
1330	ath_tx_cleanup(sc);
1331	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1332
1333	CURVNET_SET(ifp->if_vnet);
1334	if_free(ifp);
1335	CURVNET_RESTORE();
1336
1337	return 0;
1338}
1339
1340/*
1341 * MAC address handling for multiple BSS on the same radio.
1342 * The first vap uses the MAC address from the EEPROM.  For
1343 * subsequent vap's we set the U/L bit (bit 1) in the MAC
1344 * address and use the next six bits as an index.
1345 */
1346static void
1347assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1348{
1349	int i;
1350
1351	if (clone && sc->sc_hasbmask) {
1352		/* NB: we only do this if h/w supports multiple bssid */
1353		for (i = 0; i < 8; i++)
1354			if ((sc->sc_bssidmask & (1<<i)) == 0)
1355				break;
1356		if (i != 0)
1357			mac[0] |= (i << 2)|0x2;
1358	} else
1359		i = 0;
1360	sc->sc_bssidmask |= 1<<i;
1361	sc->sc_hwbssidmask[0] &= ~mac[0];
1362	if (i == 0)
1363		sc->sc_nbssid0++;
1364}
1365
1366static void
1367reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1368{
1369	int i = mac[0] >> 2;
1370	uint8_t mask;
1371
1372	if (i != 0 || --sc->sc_nbssid0 == 0) {
1373		sc->sc_bssidmask &= ~(1<<i);
1374		/* recalculate bssid mask from remaining addresses */
1375		mask = 0xff;
1376		for (i = 1; i < 8; i++)
1377			if (sc->sc_bssidmask & (1<<i))
1378				mask &= ~((i<<2)|0x2);
1379		sc->sc_hwbssidmask[0] |= mask;
1380	}
1381}
1382
1383/*
1384 * Assign a beacon xmit slot.  We try to space out
1385 * assignments so when beacons are staggered the
1386 * traffic coming out of the cab q has maximal time
1387 * to go out before the next beacon is scheduled.
1388 */
1389static int
1390assign_bslot(struct ath_softc *sc)
1391{
1392	u_int slot, free;
1393
1394	free = 0;
1395	for (slot = 0; slot < ATH_BCBUF; slot++)
1396		if (sc->sc_bslot[slot] == NULL) {
1397			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1398			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1399				return slot;
1400			free = slot;
1401			/* NB: keep looking for a double slot */
1402		}
1403	return free;
1404}
1405
1406static struct ieee80211vap *
1407ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1408    enum ieee80211_opmode opmode, int flags,
1409    const uint8_t bssid[IEEE80211_ADDR_LEN],
1410    const uint8_t mac0[IEEE80211_ADDR_LEN])
1411{
1412	struct ath_softc *sc = ic->ic_ifp->if_softc;
1413	struct ath_vap *avp;
1414	struct ieee80211vap *vap;
1415	uint8_t mac[IEEE80211_ADDR_LEN];
1416	int needbeacon, error;
1417	enum ieee80211_opmode ic_opmode;
1418
1419	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1420	    M_80211_VAP, M_WAITOK | M_ZERO);
1421	needbeacon = 0;
1422	IEEE80211_ADDR_COPY(mac, mac0);
1423
1424	ATH_LOCK(sc);
1425	ic_opmode = opmode;		/* default to opmode of new vap */
1426	switch (opmode) {
1427	case IEEE80211_M_STA:
1428		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1429			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1430			goto bad;
1431		}
1432		if (sc->sc_nvaps) {
1433			/*
1434			 * With multiple vaps we must fall back
1435			 * to s/w beacon miss handling.
1436			 */
1437			flags |= IEEE80211_CLONE_NOBEACONS;
1438		}
1439		if (flags & IEEE80211_CLONE_NOBEACONS) {
1440			/*
1441			 * Station mode w/o beacons are implemented w/ AP mode.
1442			 */
1443			ic_opmode = IEEE80211_M_HOSTAP;
1444		}
1445		break;
1446	case IEEE80211_M_IBSS:
1447		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1448			device_printf(sc->sc_dev,
1449			    "only 1 ibss vap supported\n");
1450			goto bad;
1451		}
1452		needbeacon = 1;
1453		break;
1454	case IEEE80211_M_AHDEMO:
1455#ifdef IEEE80211_SUPPORT_TDMA
1456		if (flags & IEEE80211_CLONE_TDMA) {
1457			if (sc->sc_nvaps != 0) {
1458				device_printf(sc->sc_dev,
1459				    "only 1 tdma vap supported\n");
1460				goto bad;
1461			}
1462			needbeacon = 1;
1463			flags |= IEEE80211_CLONE_NOBEACONS;
1464		}
1465		/* fall thru... */
1466#endif
1467	case IEEE80211_M_MONITOR:
1468		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1469			/*
1470			 * Adopt existing mode.  Adding a monitor or ahdemo
1471			 * vap to an existing configuration is of dubious
1472			 * value but should be ok.
1473			 */
1474			/* XXX not right for monitor mode */
1475			ic_opmode = ic->ic_opmode;
1476		}
1477		break;
1478	case IEEE80211_M_HOSTAP:
1479	case IEEE80211_M_MBSS:
1480		needbeacon = 1;
1481		break;
1482	case IEEE80211_M_WDS:
1483		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1484			device_printf(sc->sc_dev,
1485			    "wds not supported in sta mode\n");
1486			goto bad;
1487		}
1488		/*
1489		 * Silently remove any request for a unique
1490		 * bssid; WDS vap's always share the local
1491		 * mac address.
1492		 */
1493		flags &= ~IEEE80211_CLONE_BSSID;
1494		if (sc->sc_nvaps == 0)
1495			ic_opmode = IEEE80211_M_HOSTAP;
1496		else
1497			ic_opmode = ic->ic_opmode;
1498		break;
1499	default:
1500		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1501		goto bad;
1502	}
1503	/*
1504	 * Check that a beacon buffer is available; the code below assumes it.
1505	 */
1506	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1507		device_printf(sc->sc_dev, "no beacon buffer available\n");
1508		goto bad;
1509	}
1510
1511	/* STA, AHDEMO? */
1512	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1513		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1514		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1515	}
1516
1517	vap = &avp->av_vap;
1518	/* XXX can't hold mutex across if_alloc */
1519	ATH_UNLOCK(sc);
1520	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1521	    bssid, mac);
1522	ATH_LOCK(sc);
1523	if (error != 0) {
1524		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1525		    __func__, error);
1526		goto bad2;
1527	}
1528
1529	/* h/w crypto support */
1530	vap->iv_key_alloc = ath_key_alloc;
1531	vap->iv_key_delete = ath_key_delete;
1532	vap->iv_key_set = ath_key_set;
1533	vap->iv_key_update_begin = ath_key_update_begin;
1534	vap->iv_key_update_end = ath_key_update_end;
1535
1536	/* override various methods */
1537	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1538	vap->iv_recv_mgmt = ath_recv_mgmt;
1539	vap->iv_reset = ath_reset_vap;
1540	vap->iv_update_beacon = ath_beacon_update;
1541	avp->av_newstate = vap->iv_newstate;
1542	vap->iv_newstate = ath_newstate;
1543	avp->av_bmiss = vap->iv_bmiss;
1544	vap->iv_bmiss = ath_bmiss_vap;
1545
1546	avp->av_node_ps = vap->iv_node_ps;
1547	vap->iv_node_ps = ath_node_powersave;
1548
1549	avp->av_set_tim = vap->iv_set_tim;
1550	vap->iv_set_tim = ath_node_set_tim;
1551
1552	avp->av_recv_pspoll = vap->iv_recv_pspoll;
1553	vap->iv_recv_pspoll = ath_node_recv_pspoll;
1554
1555	/* Set default parameters */
1556
1557	/*
1558	 * Anything earlier than some AR9300 series MACs don't
1559	 * support a smaller MPDU density.
1560	 */
1561	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1562	/*
1563	 * All NICs can handle the maximum size, however
1564	 * AR5416 based MACs can only TX aggregates w/ RTS
1565	 * protection when the total aggregate size is <= 8k.
1566	 * However, for now that's enforced by the TX path.
1567	 */
1568	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1569
1570	avp->av_bslot = -1;
1571	if (needbeacon) {
1572		/*
1573		 * Allocate beacon state and setup the q for buffered
1574		 * multicast frames.  We know a beacon buffer is
1575		 * available because we checked above.
1576		 */
1577		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1578		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1579		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1580			/*
1581			 * Assign the vap to a beacon xmit slot.  As above
1582			 * this cannot fail to find a free one.
1583			 */
1584			avp->av_bslot = assign_bslot(sc);
1585			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1586			    ("beacon slot %u not empty", avp->av_bslot));
1587			sc->sc_bslot[avp->av_bslot] = vap;
1588			sc->sc_nbcnvaps++;
1589		}
1590		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1591			/*
1592			 * Multple vaps are to transmit beacons and we
1593			 * have h/w support for TSF adjusting; enable
1594			 * use of staggered beacons.
1595			 */
1596			sc->sc_stagbeacons = 1;
1597		}
1598		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1599	}
1600
1601	ic->ic_opmode = ic_opmode;
1602	if (opmode != IEEE80211_M_WDS) {
1603		sc->sc_nvaps++;
1604		if (opmode == IEEE80211_M_STA)
1605			sc->sc_nstavaps++;
1606		if (opmode == IEEE80211_M_MBSS)
1607			sc->sc_nmeshvaps++;
1608	}
1609	switch (ic_opmode) {
1610	case IEEE80211_M_IBSS:
1611		sc->sc_opmode = HAL_M_IBSS;
1612		break;
1613	case IEEE80211_M_STA:
1614		sc->sc_opmode = HAL_M_STA;
1615		break;
1616	case IEEE80211_M_AHDEMO:
1617#ifdef IEEE80211_SUPPORT_TDMA
1618		if (vap->iv_caps & IEEE80211_C_TDMA) {
1619			sc->sc_tdma = 1;
1620			/* NB: disable tsf adjust */
1621			sc->sc_stagbeacons = 0;
1622		}
1623		/*
1624		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1625		 * just ap mode.
1626		 */
1627		/* fall thru... */
1628#endif
1629	case IEEE80211_M_HOSTAP:
1630	case IEEE80211_M_MBSS:
1631		sc->sc_opmode = HAL_M_HOSTAP;
1632		break;
1633	case IEEE80211_M_MONITOR:
1634		sc->sc_opmode = HAL_M_MONITOR;
1635		break;
1636	default:
1637		/* XXX should not happen */
1638		break;
1639	}
1640	if (sc->sc_hastsfadd) {
1641		/*
1642		 * Configure whether or not TSF adjust should be done.
1643		 */
1644		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1645	}
1646	if (flags & IEEE80211_CLONE_NOBEACONS) {
1647		/*
1648		 * Enable s/w beacon miss handling.
1649		 */
1650		sc->sc_swbmiss = 1;
1651	}
1652	ATH_UNLOCK(sc);
1653
1654	/* complete setup */
1655	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1656	return vap;
1657bad2:
1658	reclaim_address(sc, mac);
1659	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1660bad:
1661	free(avp, M_80211_VAP);
1662	ATH_UNLOCK(sc);
1663	return NULL;
1664}
1665
1666static void
1667ath_vap_delete(struct ieee80211vap *vap)
1668{
1669	struct ieee80211com *ic = vap->iv_ic;
1670	struct ifnet *ifp = ic->ic_ifp;
1671	struct ath_softc *sc = ifp->if_softc;
1672	struct ath_hal *ah = sc->sc_ah;
1673	struct ath_vap *avp = ATH_VAP(vap);
1674
1675	ATH_LOCK(sc);
1676	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1677	ATH_UNLOCK(sc);
1678
1679	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1680	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1681		/*
1682		 * Quiesce the hardware while we remove the vap.  In
1683		 * particular we need to reclaim all references to
1684		 * the vap state by any frames pending on the tx queues.
1685		 */
1686		ath_hal_intrset(ah, 0);		/* disable interrupts */
1687		/* XXX Do all frames from all vaps/nodes need draining here? */
1688		ath_stoprecv(sc, 1);		/* stop recv side */
1689		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1690	}
1691
1692	/* .. leave the hardware awake for now. */
1693
1694	ieee80211_vap_detach(vap);
1695
1696	/*
1697	 * XXX Danger Will Robinson! Danger!
1698	 *
1699	 * Because ieee80211_vap_detach() can queue a frame (the station
1700	 * diassociate message?) after we've drained the TXQ and
1701	 * flushed the software TXQ, we will end up with a frame queued
1702	 * to a node whose vap is about to be freed.
1703	 *
1704	 * To work around this, flush the hardware/software again.
1705	 * This may be racy - the ath task may be running and the packet
1706	 * may be being scheduled between sw->hw txq. Tsk.
1707	 *
1708	 * TODO: figure out why a new node gets allocated somewhere around
1709	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1710	 * call!)
1711	 */
1712
1713	ath_draintxq(sc, ATH_RESET_DEFAULT);
1714
1715	ATH_LOCK(sc);
1716	/*
1717	 * Reclaim beacon state.  Note this must be done before
1718	 * the vap instance is reclaimed as we may have a reference
1719	 * to it in the buffer for the beacon frame.
1720	 */
1721	if (avp->av_bcbuf != NULL) {
1722		if (avp->av_bslot != -1) {
1723			sc->sc_bslot[avp->av_bslot] = NULL;
1724			sc->sc_nbcnvaps--;
1725		}
1726		ath_beacon_return(sc, avp->av_bcbuf);
1727		avp->av_bcbuf = NULL;
1728		if (sc->sc_nbcnvaps == 0) {
1729			sc->sc_stagbeacons = 0;
1730			if (sc->sc_hastsfadd)
1731				ath_hal_settsfadjust(sc->sc_ah, 0);
1732		}
1733		/*
1734		 * Reclaim any pending mcast frames for the vap.
1735		 */
1736		ath_tx_draintxq(sc, &avp->av_mcastq);
1737	}
1738	/*
1739	 * Update bookkeeping.
1740	 */
1741	if (vap->iv_opmode == IEEE80211_M_STA) {
1742		sc->sc_nstavaps--;
1743		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1744			sc->sc_swbmiss = 0;
1745	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1746	    vap->iv_opmode == IEEE80211_M_MBSS) {
1747		reclaim_address(sc, vap->iv_myaddr);
1748		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1749		if (vap->iv_opmode == IEEE80211_M_MBSS)
1750			sc->sc_nmeshvaps--;
1751	}
1752	if (vap->iv_opmode != IEEE80211_M_WDS)
1753		sc->sc_nvaps--;
1754#ifdef IEEE80211_SUPPORT_TDMA
1755	/* TDMA operation ceases when the last vap is destroyed */
1756	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1757		sc->sc_tdma = 0;
1758		sc->sc_swbmiss = 0;
1759	}
1760#endif
1761	free(avp, M_80211_VAP);
1762
1763	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1764		/*
1765		 * Restart rx+tx machines if still running (RUNNING will
1766		 * be reset if we just destroyed the last vap).
1767		 */
1768		if (ath_startrecv(sc) != 0)
1769			if_printf(ifp, "%s: unable to restart recv logic\n",
1770			    __func__);
1771		if (sc->sc_beacons) {		/* restart beacons */
1772#ifdef IEEE80211_SUPPORT_TDMA
1773			if (sc->sc_tdma)
1774				ath_tdma_config(sc, NULL);
1775			else
1776#endif
1777				ath_beacon_config(sc, NULL);
1778		}
1779		ath_hal_intrset(ah, sc->sc_imask);
1780	}
1781
1782	/* Ok, let the hardware asleep. */
1783	ath_power_restore_power_state(sc);
1784	ATH_UNLOCK(sc);
1785}
1786
1787void
1788ath_suspend(struct ath_softc *sc)
1789{
1790	struct ifnet *ifp = sc->sc_ifp;
1791	struct ieee80211com *ic = ifp->if_l2com;
1792
1793	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1794		__func__, ifp->if_flags);
1795
1796	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1797
1798	ieee80211_suspend_all(ic);
1799	/*
1800	 * NB: don't worry about putting the chip in low power
1801	 * mode; pci will power off our socket on suspend and
1802	 * CardBus detaches the device.
1803	 *
1804	 * XXX TODO: well, that's great, except for non-cardbus
1805	 * devices!
1806	 */
1807
1808	/*
1809	 * XXX This doesn't wait until all pending taskqueue
1810	 * items and parallel transmit/receive/other threads
1811	 * are running!
1812	 */
1813	ath_hal_intrset(sc->sc_ah, 0);
1814	taskqueue_block(sc->sc_tq);
1815
1816	ATH_LOCK(sc);
1817	callout_stop(&sc->sc_cal_ch);
1818	ATH_UNLOCK(sc);
1819
1820	/*
1821	 * XXX ensure sc_invalid is 1
1822	 */
1823
1824	/* Disable the PCIe PHY, complete with workarounds */
1825	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1826}
1827
1828/*
1829 * Reset the key cache since some parts do not reset the
1830 * contents on resume.  First we clear all entries, then
1831 * re-load keys that the 802.11 layer assumes are setup
1832 * in h/w.
1833 */
1834static void
1835ath_reset_keycache(struct ath_softc *sc)
1836{
1837	struct ifnet *ifp = sc->sc_ifp;
1838	struct ieee80211com *ic = ifp->if_l2com;
1839	struct ath_hal *ah = sc->sc_ah;
1840	int i;
1841
1842	ATH_LOCK(sc);
1843	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1844	for (i = 0; i < sc->sc_keymax; i++)
1845		ath_hal_keyreset(ah, i);
1846	ath_power_restore_power_state(sc);
1847	ATH_UNLOCK(sc);
1848	ieee80211_crypto_reload_keys(ic);
1849}
1850
1851/*
1852 * Fetch the current chainmask configuration based on the current
1853 * operating channel and options.
1854 */
1855static void
1856ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1857{
1858
1859	/*
1860	 * Set TX chainmask to the currently configured chainmask;
1861	 * the TX chainmask depends upon the current operating mode.
1862	 */
1863	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1864	if (IEEE80211_IS_CHAN_HT(chan)) {
1865		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1866	} else {
1867		sc->sc_cur_txchainmask = 1;
1868	}
1869
1870	DPRINTF(sc, ATH_DEBUG_RESET,
1871	    "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1872	    __func__,
1873	    sc->sc_cur_txchainmask,
1874	    sc->sc_cur_rxchainmask);
1875}
1876
1877void
1878ath_resume(struct ath_softc *sc)
1879{
1880	struct ifnet *ifp = sc->sc_ifp;
1881	struct ieee80211com *ic = ifp->if_l2com;
1882	struct ath_hal *ah = sc->sc_ah;
1883	HAL_STATUS status;
1884
1885	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1886		__func__, ifp->if_flags);
1887
1888	/* Re-enable PCIe, re-enable the PCIe bus */
1889	ath_hal_enablepcie(ah, 0, 0);
1890
1891	/*
1892	 * Must reset the chip before we reload the
1893	 * keycache as we were powered down on suspend.
1894	 */
1895	ath_update_chainmasks(sc,
1896	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1897	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1898	    sc->sc_cur_rxchainmask);
1899
1900	/* Ensure we set the current power state to on */
1901	ATH_LOCK(sc);
1902	ath_power_setselfgen(sc, HAL_PM_AWAKE);
1903	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1904	ath_power_setpower(sc, HAL_PM_AWAKE);
1905	ATH_UNLOCK(sc);
1906
1907	ath_hal_reset(ah, sc->sc_opmode,
1908	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1909	    AH_FALSE, &status);
1910	ath_reset_keycache(sc);
1911
1912	ATH_RX_LOCK(sc);
1913	sc->sc_rx_stopped = 1;
1914	sc->sc_rx_resetted = 1;
1915	ATH_RX_UNLOCK(sc);
1916
1917	/* Let DFS at it in case it's a DFS channel */
1918	ath_dfs_radar_enable(sc, ic->ic_curchan);
1919
1920	/* Let spectral at in case spectral is enabled */
1921	ath_spectral_enable(sc, ic->ic_curchan);
1922
1923	/*
1924	 * Let bluetooth coexistence at in case it's needed for this channel
1925	 */
1926	ath_btcoex_enable(sc, ic->ic_curchan);
1927
1928	/*
1929	 * If we're doing TDMA, enforce the TXOP limitation for chips that
1930	 * support it.
1931	 */
1932	if (sc->sc_hasenforcetxop && sc->sc_tdma)
1933		ath_hal_setenforcetxop(sc->sc_ah, 1);
1934	else
1935		ath_hal_setenforcetxop(sc->sc_ah, 0);
1936
1937	/* Restore the LED configuration */
1938	ath_led_config(sc);
1939	ath_hal_setledstate(ah, HAL_LED_INIT);
1940
1941	if (sc->sc_resume_up)
1942		ieee80211_resume_all(ic);
1943
1944	ATH_LOCK(sc);
1945	ath_power_restore_power_state(sc);
1946	ATH_UNLOCK(sc);
1947
1948	/* XXX beacons ? */
1949}
1950
1951void
1952ath_shutdown(struct ath_softc *sc)
1953{
1954	struct ifnet *ifp = sc->sc_ifp;
1955
1956	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1957		__func__, ifp->if_flags);
1958
1959	ath_stop(ifp);
1960	/* NB: no point powering down chip as we're about to reboot */
1961}
1962
1963/*
1964 * Interrupt handler.  Most of the actual processing is deferred.
1965 */
1966void
1967ath_intr(void *arg)
1968{
1969	struct ath_softc *sc = arg;
1970	struct ifnet *ifp = sc->sc_ifp;
1971	struct ath_hal *ah = sc->sc_ah;
1972	HAL_INT status = 0;
1973	uint32_t txqs;
1974
1975	/*
1976	 * If we're inside a reset path, just print a warning and
1977	 * clear the ISR. The reset routine will finish it for us.
1978	 */
1979	ATH_PCU_LOCK(sc);
1980	if (sc->sc_inreset_cnt) {
1981		HAL_INT status;
1982		ath_hal_getisr(ah, &status);	/* clear ISR */
1983		ath_hal_intrset(ah, 0);		/* disable further intr's */
1984		DPRINTF(sc, ATH_DEBUG_ANY,
1985		    "%s: in reset, ignoring: status=0x%x\n",
1986		    __func__, status);
1987		ATH_PCU_UNLOCK(sc);
1988		return;
1989	}
1990
1991	if (sc->sc_invalid) {
1992		/*
1993		 * The hardware is not ready/present, don't touch anything.
1994		 * Note this can happen early on if the IRQ is shared.
1995		 */
1996		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1997		ATH_PCU_UNLOCK(sc);
1998		return;
1999	}
2000	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
2001		ATH_PCU_UNLOCK(sc);
2002		return;
2003	}
2004
2005	ATH_LOCK(sc);
2006	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2007	ATH_UNLOCK(sc);
2008
2009	if ((ifp->if_flags & IFF_UP) == 0 ||
2010	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2011		HAL_INT status;
2012
2013		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
2014			__func__, ifp->if_flags);
2015		ath_hal_getisr(ah, &status);	/* clear ISR */
2016		ath_hal_intrset(ah, 0);		/* disable further intr's */
2017		ATH_PCU_UNLOCK(sc);
2018
2019		ATH_LOCK(sc);
2020		ath_power_restore_power_state(sc);
2021		ATH_UNLOCK(sc);
2022		return;
2023	}
2024
2025	/*
2026	 * Figure out the reason(s) for the interrupt.  Note
2027	 * that the hal returns a pseudo-ISR that may include
2028	 * bits we haven't explicitly enabled so we mask the
2029	 * value to insure we only process bits we requested.
2030	 */
2031	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
2032	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
2033	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
2034#ifdef	ATH_DEBUG_ALQ
2035	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
2036	    ah->ah_syncstate);
2037#endif	/* ATH_DEBUG_ALQ */
2038#ifdef	ATH_KTR_INTR_DEBUG
2039	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
2040	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
2041	    ah->ah_intrstate[0],
2042	    ah->ah_intrstate[1],
2043	    ah->ah_intrstate[2],
2044	    ah->ah_intrstate[3],
2045	    ah->ah_intrstate[6]);
2046#endif
2047
2048	/* Squirrel away SYNC interrupt debugging */
2049	if (ah->ah_syncstate != 0) {
2050		int i;
2051		for (i = 0; i < 32; i++)
2052			if (ah->ah_syncstate & (i << i))
2053				sc->sc_intr_stats.sync_intr[i]++;
2054	}
2055
2056	status &= sc->sc_imask;			/* discard unasked for bits */
2057
2058	/* Short-circuit un-handled interrupts */
2059	if (status == 0x0) {
2060		ATH_PCU_UNLOCK(sc);
2061
2062		ATH_LOCK(sc);
2063		ath_power_restore_power_state(sc);
2064		ATH_UNLOCK(sc);
2065
2066		return;
2067	}
2068
2069	/*
2070	 * Take a note that we're inside the interrupt handler, so
2071	 * the reset routines know to wait.
2072	 */
2073	sc->sc_intr_cnt++;
2074	ATH_PCU_UNLOCK(sc);
2075
2076	/*
2077	 * Handle the interrupt. We won't run concurrent with the reset
2078	 * or channel change routines as they'll wait for sc_intr_cnt
2079	 * to be 0 before continuing.
2080	 */
2081	if (status & HAL_INT_FATAL) {
2082		sc->sc_stats.ast_hardware++;
2083		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
2084		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
2085	} else {
2086		if (status & HAL_INT_SWBA) {
2087			/*
2088			 * Software beacon alert--time to send a beacon.
2089			 * Handle beacon transmission directly; deferring
2090			 * this is too slow to meet timing constraints
2091			 * under load.
2092			 */
2093#ifdef IEEE80211_SUPPORT_TDMA
2094			if (sc->sc_tdma) {
2095				if (sc->sc_tdmaswba == 0) {
2096					struct ieee80211com *ic = ifp->if_l2com;
2097					struct ieee80211vap *vap =
2098					    TAILQ_FIRST(&ic->ic_vaps);
2099					ath_tdma_beacon_send(sc, vap);
2100					sc->sc_tdmaswba =
2101					    vap->iv_tdma->tdma_bintval;
2102				} else
2103					sc->sc_tdmaswba--;
2104			} else
2105#endif
2106			{
2107				ath_beacon_proc(sc, 0);
2108#ifdef IEEE80211_SUPPORT_SUPERG
2109				/*
2110				 * Schedule the rx taskq in case there's no
2111				 * traffic so any frames held on the staging
2112				 * queue are aged and potentially flushed.
2113				 */
2114				sc->sc_rx.recv_sched(sc, 1);
2115#endif
2116			}
2117		}
2118		if (status & HAL_INT_RXEOL) {
2119			int imask;
2120			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
2121			if (! sc->sc_isedma) {
2122				ATH_PCU_LOCK(sc);
2123				/*
2124				 * NB: the hardware should re-read the link when
2125				 *     RXE bit is written, but it doesn't work at
2126				 *     least on older hardware revs.
2127				 */
2128				sc->sc_stats.ast_rxeol++;
2129				/*
2130				 * Disable RXEOL/RXORN - prevent an interrupt
2131				 * storm until the PCU logic can be reset.
2132				 * In case the interface is reset some other
2133				 * way before "sc_kickpcu" is called, don't
2134				 * modify sc_imask - that way if it is reset
2135				 * by a call to ath_reset() somehow, the
2136				 * interrupt mask will be correctly reprogrammed.
2137				 */
2138				imask = sc->sc_imask;
2139				imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
2140				ath_hal_intrset(ah, imask);
2141				/*
2142				 * Only blank sc_rxlink if we've not yet kicked
2143				 * the PCU.
2144				 *
2145				 * This isn't entirely correct - the correct solution
2146				 * would be to have a PCU lock and engage that for
2147				 * the duration of the PCU fiddling; which would include
2148				 * running the RX process. Otherwise we could end up
2149				 * messing up the RX descriptor chain and making the
2150				 * RX desc list much shorter.
2151				 */
2152				if (! sc->sc_kickpcu)
2153					sc->sc_rxlink = NULL;
2154				sc->sc_kickpcu = 1;
2155				ATH_PCU_UNLOCK(sc);
2156			}
2157			/*
2158			 * Enqueue an RX proc to handle whatever
2159			 * is in the RX queue.
2160			 * This will then kick the PCU if required.
2161			 */
2162			sc->sc_rx.recv_sched(sc, 1);
2163		}
2164		if (status & HAL_INT_TXURN) {
2165			sc->sc_stats.ast_txurn++;
2166			/* bump tx trigger level */
2167			ath_hal_updatetxtriglevel(ah, AH_TRUE);
2168		}
2169		/*
2170		 * Handle both the legacy and RX EDMA interrupt bits.
2171		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
2172		 */
2173		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
2174			sc->sc_stats.ast_rx_intr++;
2175			sc->sc_rx.recv_sched(sc, 1);
2176		}
2177		if (status & HAL_INT_TX) {
2178			sc->sc_stats.ast_tx_intr++;
2179			/*
2180			 * Grab all the currently set bits in the HAL txq bitmap
2181			 * and blank them. This is the only place we should be
2182			 * doing this.
2183			 */
2184			if (! sc->sc_isedma) {
2185				ATH_PCU_LOCK(sc);
2186				txqs = 0xffffffff;
2187				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
2188				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
2189				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
2190				    txqs,
2191				    sc->sc_txq_active,
2192				    sc->sc_txq_active | txqs);
2193				sc->sc_txq_active |= txqs;
2194				ATH_PCU_UNLOCK(sc);
2195			}
2196			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
2197		}
2198		if (status & HAL_INT_BMISS) {
2199			sc->sc_stats.ast_bmiss++;
2200			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
2201		}
2202		if (status & HAL_INT_GTT)
2203			sc->sc_stats.ast_tx_timeout++;
2204		if (status & HAL_INT_CST)
2205			sc->sc_stats.ast_tx_cst++;
2206		if (status & HAL_INT_MIB) {
2207			sc->sc_stats.ast_mib++;
2208			ATH_PCU_LOCK(sc);
2209			/*
2210			 * Disable interrupts until we service the MIB
2211			 * interrupt; otherwise it will continue to fire.
2212			 */
2213			ath_hal_intrset(ah, 0);
2214			/*
2215			 * Let the hal handle the event.  We assume it will
2216			 * clear whatever condition caused the interrupt.
2217			 */
2218			ath_hal_mibevent(ah, &sc->sc_halstats);
2219			/*
2220			 * Don't reset the interrupt if we've just
2221			 * kicked the PCU, or we may get a nested
2222			 * RXEOL before the rxproc has had a chance
2223			 * to run.
2224			 */
2225			if (sc->sc_kickpcu == 0)
2226				ath_hal_intrset(ah, sc->sc_imask);
2227			ATH_PCU_UNLOCK(sc);
2228		}
2229		if (status & HAL_INT_RXORN) {
2230			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
2231			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
2232			sc->sc_stats.ast_rxorn++;
2233		}
2234		if (status & HAL_INT_TSFOOR) {
2235			device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__);
2236			sc->sc_syncbeacon = 1;
2237		}
2238	}
2239	ATH_PCU_LOCK(sc);
2240	sc->sc_intr_cnt--;
2241	ATH_PCU_UNLOCK(sc);
2242
2243	ATH_LOCK(sc);
2244	ath_power_restore_power_state(sc);
2245	ATH_UNLOCK(sc);
2246}
2247
2248static void
2249ath_fatal_proc(void *arg, int pending)
2250{
2251	struct ath_softc *sc = arg;
2252	struct ifnet *ifp = sc->sc_ifp;
2253	u_int32_t *state;
2254	u_int32_t len;
2255	void *sp;
2256
2257	if_printf(ifp, "hardware error; resetting\n");
2258	/*
2259	 * Fatal errors are unrecoverable.  Typically these
2260	 * are caused by DMA errors.  Collect h/w state from
2261	 * the hal so we can diagnose what's going on.
2262	 */
2263	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
2264		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
2265		state = sp;
2266		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
2267		    state[0], state[1] , state[2], state[3],
2268		    state[4], state[5]);
2269	}
2270	ath_reset(ifp, ATH_RESET_NOLOSS);
2271}
2272
2273static void
2274ath_bmiss_vap(struct ieee80211vap *vap)
2275{
2276	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2277
2278	/*
2279	 * Workaround phantom bmiss interrupts by sanity-checking
2280	 * the time of our last rx'd frame.  If it is within the
2281	 * beacon miss interval then ignore the interrupt.  If it's
2282	 * truly a bmiss we'll get another interrupt soon and that'll
2283	 * be dispatched up for processing.  Note this applies only
2284	 * for h/w beacon miss events.
2285	 */
2286
2287	/*
2288	 * XXX TODO: Just read the TSF during the interrupt path;
2289	 * that way we don't have to wake up again just to read it
2290	 * again.
2291	 */
2292	ATH_LOCK(sc);
2293	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2294	ATH_UNLOCK(sc);
2295
2296	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2297		struct ifnet *ifp = vap->iv_ic->ic_ifp;
2298		struct ath_softc *sc = ifp->if_softc;
2299		u_int64_t lastrx = sc->sc_lastrx;
2300		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
2301		/* XXX should take a locked ref to iv_bss */
2302		u_int bmisstimeout =
2303			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
2304
2305		DPRINTF(sc, ATH_DEBUG_BEACON,
2306		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
2307		    __func__, (unsigned long long) tsf,
2308		    (unsigned long long)(tsf - lastrx),
2309		    (unsigned long long) lastrx, bmisstimeout);
2310
2311		if (tsf - lastrx <= bmisstimeout) {
2312			sc->sc_stats.ast_bmiss_phantom++;
2313
2314			ATH_LOCK(sc);
2315			ath_power_restore_power_state(sc);
2316			ATH_UNLOCK(sc);
2317
2318			return;
2319		}
2320	}
2321
2322	/*
2323	 * There's no need to keep the hardware awake during the call
2324	 * to av_bmiss().
2325	 */
2326	ATH_LOCK(sc);
2327	ath_power_restore_power_state(sc);
2328	ATH_UNLOCK(sc);
2329
2330	/*
2331	 * Attempt to force a beacon resync.
2332	 */
2333	sc->sc_syncbeacon = 1;
2334
2335	ATH_VAP(vap)->av_bmiss(vap);
2336}
2337
2338/* XXX this needs a force wakeup! */
2339int
2340ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
2341{
2342	uint32_t rsize;
2343	void *sp;
2344
2345	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
2346		return 0;
2347	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
2348	*hangs = *(uint32_t *)sp;
2349	return 1;
2350}
2351
2352static void
2353ath_bmiss_proc(void *arg, int pending)
2354{
2355	struct ath_softc *sc = arg;
2356	struct ifnet *ifp = sc->sc_ifp;
2357	uint32_t hangs;
2358
2359	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2360
2361	ATH_LOCK(sc);
2362	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2363	ATH_UNLOCK(sc);
2364
2365	ath_beacon_miss(sc);
2366
2367	/*
2368	 * Do a reset upon any becaon miss event.
2369	 *
2370	 * It may be a non-recognised RX clear hang which needs a reset
2371	 * to clear.
2372	 */
2373	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
2374		ath_reset(ifp, ATH_RESET_NOLOSS);
2375		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
2376	} else {
2377		ath_reset(ifp, ATH_RESET_NOLOSS);
2378		ieee80211_beacon_miss(ifp->if_l2com);
2379	}
2380
2381	/* Force a beacon resync, in case they've drifted */
2382	sc->sc_syncbeacon = 1;
2383
2384	ATH_LOCK(sc);
2385	ath_power_restore_power_state(sc);
2386	ATH_UNLOCK(sc);
2387}
2388
2389/*
2390 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
2391 * calcs together with WME.  If necessary disable the crypto
2392 * hardware and mark the 802.11 state so keys will be setup
2393 * with the MIC work done in software.
2394 */
2395static void
2396ath_settkipmic(struct ath_softc *sc)
2397{
2398	struct ifnet *ifp = sc->sc_ifp;
2399	struct ieee80211com *ic = ifp->if_l2com;
2400
2401	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2402		if (ic->ic_flags & IEEE80211_F_WME) {
2403			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
2404			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2405		} else {
2406			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
2407			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2408		}
2409	}
2410}
2411
2412static void
2413ath_init(void *arg)
2414{
2415	struct ath_softc *sc = (struct ath_softc *) arg;
2416	struct ifnet *ifp = sc->sc_ifp;
2417	struct ieee80211com *ic = ifp->if_l2com;
2418	struct ath_hal *ah = sc->sc_ah;
2419	HAL_STATUS status;
2420
2421	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
2422		__func__, ifp->if_flags);
2423
2424	ATH_LOCK(sc);
2425	/*
2426	 * Force the sleep state awake.
2427	 */
2428	ath_power_setselfgen(sc, HAL_PM_AWAKE);
2429	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2430	ath_power_setpower(sc, HAL_PM_AWAKE);
2431
2432	/*
2433	 * Stop anything previously setup.  This is safe
2434	 * whether this is the first time through or not.
2435	 */
2436	ath_stop_locked(ifp);
2437
2438	/*
2439	 * The basic interface to setting the hardware in a good
2440	 * state is ``reset''.  On return the hardware is known to
2441	 * be powered up and with interrupts disabled.  This must
2442	 * be followed by initialization of the appropriate bits
2443	 * and then setup of the interrupt mask.
2444	 */
2445	ath_settkipmic(sc);
2446	ath_update_chainmasks(sc, ic->ic_curchan);
2447	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2448	    sc->sc_cur_rxchainmask);
2449
2450	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
2451		if_printf(ifp, "unable to reset hardware; hal status %u\n",
2452			status);
2453		ATH_UNLOCK(sc);
2454		return;
2455	}
2456
2457	ATH_RX_LOCK(sc);
2458	sc->sc_rx_stopped = 1;
2459	sc->sc_rx_resetted = 1;
2460	ATH_RX_UNLOCK(sc);
2461
2462	ath_chan_change(sc, ic->ic_curchan);
2463
2464	/* Let DFS at it in case it's a DFS channel */
2465	ath_dfs_radar_enable(sc, ic->ic_curchan);
2466
2467	/* Let spectral at in case spectral is enabled */
2468	ath_spectral_enable(sc, ic->ic_curchan);
2469
2470	/*
2471	 * Let bluetooth coexistence at in case it's needed for this channel
2472	 */
2473	ath_btcoex_enable(sc, ic->ic_curchan);
2474
2475	/*
2476	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2477	 * support it.
2478	 */
2479	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2480		ath_hal_setenforcetxop(sc->sc_ah, 1);
2481	else
2482		ath_hal_setenforcetxop(sc->sc_ah, 0);
2483
2484	/*
2485	 * Likewise this is set during reset so update
2486	 * state cached in the driver.
2487	 */
2488	sc->sc_diversity = ath_hal_getdiversity(ah);
2489	sc->sc_lastlongcal = 0;
2490	sc->sc_resetcal = 1;
2491	sc->sc_lastcalreset = 0;
2492	sc->sc_lastani = 0;
2493	sc->sc_lastshortcal = 0;
2494	sc->sc_doresetcal = AH_FALSE;
2495	/*
2496	 * Beacon timers were cleared here; give ath_newstate()
2497	 * a hint that the beacon timers should be poked when
2498	 * things transition to the RUN state.
2499	 */
2500	sc->sc_beacons = 0;
2501
2502	/*
2503	 * Setup the hardware after reset: the key cache
2504	 * is filled as needed and the receive engine is
2505	 * set going.  Frame transmit is handled entirely
2506	 * in the frame output path; there's nothing to do
2507	 * here except setup the interrupt mask.
2508	 */
2509	if (ath_startrecv(sc) != 0) {
2510		if_printf(ifp, "unable to start recv logic\n");
2511		ath_power_restore_power_state(sc);
2512		ATH_UNLOCK(sc);
2513		return;
2514	}
2515
2516	/*
2517	 * Enable interrupts.
2518	 */
2519	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2520		  | HAL_INT_RXORN | HAL_INT_TXURN
2521		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2522
2523	/*
2524	 * Enable RX EDMA bits.  Note these overlap with
2525	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2526	 */
2527	if (sc->sc_isedma)
2528		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2529
2530	/*
2531	 * If we're an EDMA NIC, we don't care about RXEOL.
2532	 * Writing a new descriptor in will simply restart
2533	 * RX DMA.
2534	 */
2535	if (! sc->sc_isedma)
2536		sc->sc_imask |= HAL_INT_RXEOL;
2537
2538	/*
2539	 * Enable MIB interrupts when there are hardware phy counters.
2540	 * Note we only do this (at the moment) for station mode.
2541	 */
2542	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2543		sc->sc_imask |= HAL_INT_MIB;
2544
2545	/*
2546	 * XXX add capability for this.
2547	 *
2548	 * If we're in STA mode (and maybe IBSS?) then register for
2549	 * TSFOOR interrupts.
2550	 */
2551	if (ic->ic_opmode == IEEE80211_M_STA)
2552		sc->sc_imask |= HAL_INT_TSFOOR;
2553
2554	/* Enable global TX timeout and carrier sense timeout if available */
2555	if (ath_hal_gtxto_supported(ah))
2556		sc->sc_imask |= HAL_INT_GTT;
2557
2558	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2559		__func__, sc->sc_imask);
2560
2561	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2562	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2563	ath_hal_intrset(ah, sc->sc_imask);
2564
2565	ath_power_restore_power_state(sc);
2566	ATH_UNLOCK(sc);
2567
2568#ifdef ATH_TX99_DIAG
2569	if (sc->sc_tx99 != NULL)
2570		sc->sc_tx99->start(sc->sc_tx99);
2571	else
2572#endif
2573	ieee80211_start_all(ic);		/* start all vap's */
2574}
2575
2576static void
2577ath_stop_locked(struct ifnet *ifp)
2578{
2579	struct ath_softc *sc = ifp->if_softc;
2580	struct ath_hal *ah = sc->sc_ah;
2581
2582	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2583		__func__, sc->sc_invalid, ifp->if_flags);
2584
2585	ATH_LOCK_ASSERT(sc);
2586
2587	/*
2588	 * Wake the hardware up before fiddling with it.
2589	 */
2590	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2591
2592	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2593		/*
2594		 * Shutdown the hardware and driver:
2595		 *    reset 802.11 state machine
2596		 *    turn off timers
2597		 *    disable interrupts
2598		 *    turn off the radio
2599		 *    clear transmit machinery
2600		 *    clear receive machinery
2601		 *    drain and release tx queues
2602		 *    reclaim beacon resources
2603		 *    power down hardware
2604		 *
2605		 * Note that some of this work is not possible if the
2606		 * hardware is gone (invalid).
2607		 */
2608#ifdef ATH_TX99_DIAG
2609		if (sc->sc_tx99 != NULL)
2610			sc->sc_tx99->stop(sc->sc_tx99);
2611#endif
2612		callout_stop(&sc->sc_wd_ch);
2613		sc->sc_wd_timer = 0;
2614		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2615		if (!sc->sc_invalid) {
2616			if (sc->sc_softled) {
2617				callout_stop(&sc->sc_ledtimer);
2618				ath_hal_gpioset(ah, sc->sc_ledpin,
2619					!sc->sc_ledon);
2620				sc->sc_blinking = 0;
2621			}
2622			ath_hal_intrset(ah, 0);
2623		}
2624		/* XXX we should stop RX regardless of whether it's valid */
2625		if (!sc->sc_invalid) {
2626			ath_stoprecv(sc, 1);
2627			ath_hal_phydisable(ah);
2628		} else
2629			sc->sc_rxlink = NULL;
2630		ath_draintxq(sc, ATH_RESET_DEFAULT);
2631		ath_beacon_free(sc);	/* XXX not needed */
2632	}
2633
2634	/* And now, restore the current power state */
2635	ath_power_restore_power_state(sc);
2636}
2637
2638/*
2639 * Wait until all pending TX/RX has completed.
2640 *
2641 * This waits until all existing transmit, receive and interrupts
2642 * have completed.  It's assumed that the caller has first
2643 * grabbed the reset lock so it doesn't try to do overlapping
2644 * chip resets.
2645 */
2646#define	MAX_TXRX_ITERATIONS	100
2647static void
2648ath_txrx_stop_locked(struct ath_softc *sc)
2649{
2650	int i = MAX_TXRX_ITERATIONS;
2651
2652	ATH_UNLOCK_ASSERT(sc);
2653	ATH_PCU_LOCK_ASSERT(sc);
2654
2655	/*
2656	 * Sleep until all the pending operations have completed.
2657	 *
2658	 * The caller must ensure that reset has been incremented
2659	 * or the pending operations may continue being queued.
2660	 */
2661	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2662	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2663		if (i <= 0)
2664			break;
2665		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
2666		    msecs_to_ticks(10));
2667		i--;
2668	}
2669
2670	if (i <= 0)
2671		device_printf(sc->sc_dev,
2672		    "%s: didn't finish after %d iterations\n",
2673		    __func__, MAX_TXRX_ITERATIONS);
2674}
2675#undef	MAX_TXRX_ITERATIONS
2676
2677#if 0
2678static void
2679ath_txrx_stop(struct ath_softc *sc)
2680{
2681	ATH_UNLOCK_ASSERT(sc);
2682	ATH_PCU_UNLOCK_ASSERT(sc);
2683
2684	ATH_PCU_LOCK(sc);
2685	ath_txrx_stop_locked(sc);
2686	ATH_PCU_UNLOCK(sc);
2687}
2688#endif
2689
2690static void
2691ath_txrx_start(struct ath_softc *sc)
2692{
2693
2694	taskqueue_unblock(sc->sc_tq);
2695}
2696
2697/*
2698 * Grab the reset lock, and wait around until noone else
2699 * is trying to do anything with it.
2700 *
2701 * This is totally horrible but we can't hold this lock for
2702 * long enough to do TX/RX or we end up with net80211/ip stack
2703 * LORs and eventual deadlock.
2704 *
2705 * "dowait" signals whether to spin, waiting for the reset
2706 * lock count to reach 0. This should (for now) only be used
2707 * during the reset path, as the rest of the code may not
2708 * be locking-reentrant enough to behave correctly.
2709 *
2710 * Another, cleaner way should be found to serialise all of
2711 * these operations.
2712 */
2713#define	MAX_RESET_ITERATIONS	25
2714static int
2715ath_reset_grablock(struct ath_softc *sc, int dowait)
2716{
2717	int w = 0;
2718	int i = MAX_RESET_ITERATIONS;
2719
2720	ATH_PCU_LOCK_ASSERT(sc);
2721	do {
2722		if (sc->sc_inreset_cnt == 0) {
2723			w = 1;
2724			break;
2725		}
2726		if (dowait == 0) {
2727			w = 0;
2728			break;
2729		}
2730		ATH_PCU_UNLOCK(sc);
2731		/*
2732		 * 1 tick is likely not enough time for long calibrations
2733		 * to complete.  So we should wait quite a while.
2734		 */
2735		pause("ath_reset_grablock", msecs_to_ticks(100));
2736		i--;
2737		ATH_PCU_LOCK(sc);
2738	} while (i > 0);
2739
2740	/*
2741	 * We always increment the refcounter, regardless
2742	 * of whether we succeeded to get it in an exclusive
2743	 * way.
2744	 */
2745	sc->sc_inreset_cnt++;
2746
2747	if (i <= 0)
2748		device_printf(sc->sc_dev,
2749		    "%s: didn't finish after %d iterations\n",
2750		    __func__, MAX_RESET_ITERATIONS);
2751
2752	if (w == 0)
2753		device_printf(sc->sc_dev,
2754		    "%s: warning, recursive reset path!\n",
2755		    __func__);
2756
2757	return w;
2758}
2759#undef MAX_RESET_ITERATIONS
2760
2761/*
2762 * XXX TODO: write ath_reset_releaselock
2763 */
2764
2765static void
2766ath_stop(struct ifnet *ifp)
2767{
2768	struct ath_softc *sc = ifp->if_softc;
2769
2770	ATH_LOCK(sc);
2771	ath_stop_locked(ifp);
2772	ATH_UNLOCK(sc);
2773}
2774
2775/*
2776 * Reset the hardware w/o losing operational state.  This is
2777 * basically a more efficient way of doing ath_stop, ath_init,
2778 * followed by state transitions to the current 802.11
2779 * operational state.  Used to recover from various errors and
2780 * to reset or reload hardware state.
2781 */
2782int
2783ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2784{
2785	struct ath_softc *sc = ifp->if_softc;
2786	struct ieee80211com *ic = ifp->if_l2com;
2787	struct ath_hal *ah = sc->sc_ah;
2788	HAL_STATUS status;
2789	int i;
2790
2791	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2792
2793	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2794	ATH_PCU_UNLOCK_ASSERT(sc);
2795	ATH_UNLOCK_ASSERT(sc);
2796
2797	/* Try to (stop any further TX/RX from occuring */
2798	taskqueue_block(sc->sc_tq);
2799
2800	/*
2801	 * Wake the hardware up.
2802	 */
2803	ATH_LOCK(sc);
2804	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2805	ATH_UNLOCK(sc);
2806
2807	ATH_PCU_LOCK(sc);
2808
2809	/*
2810	 * Grab the reset lock before TX/RX is stopped.
2811	 *
2812	 * This is needed to ensure that when the TX/RX actually does finish,
2813	 * no further TX/RX/reset runs in parallel with this.
2814	 */
2815	if (ath_reset_grablock(sc, 1) == 0) {
2816		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2817		    __func__);
2818	}
2819
2820	/* disable interrupts */
2821	ath_hal_intrset(ah, 0);
2822
2823	/*
2824	 * Now, ensure that any in progress TX/RX completes before we
2825	 * continue.
2826	 */
2827	ath_txrx_stop_locked(sc);
2828
2829	ATH_PCU_UNLOCK(sc);
2830
2831	/*
2832	 * Regardless of whether we're doing a no-loss flush or
2833	 * not, stop the PCU and handle what's in the RX queue.
2834	 * That way frames aren't dropped which shouldn't be.
2835	 */
2836	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2837	ath_rx_flush(sc);
2838
2839	/*
2840	 * Should now wait for pending TX/RX to complete
2841	 * and block future ones from occuring. This needs to be
2842	 * done before the TX queue is drained.
2843	 */
2844	ath_draintxq(sc, reset_type);	/* stop xmit side */
2845
2846	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2847	/* NB: indicate channel change so we do a full reset */
2848	ath_update_chainmasks(sc, ic->ic_curchan);
2849	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2850	    sc->sc_cur_rxchainmask);
2851	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2852		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2853			__func__, status);
2854	sc->sc_diversity = ath_hal_getdiversity(ah);
2855
2856	ATH_RX_LOCK(sc);
2857	sc->sc_rx_stopped = 1;
2858	sc->sc_rx_resetted = 1;
2859	ATH_RX_UNLOCK(sc);
2860
2861	/* Let DFS at it in case it's a DFS channel */
2862	ath_dfs_radar_enable(sc, ic->ic_curchan);
2863
2864	/* Let spectral at in case spectral is enabled */
2865	ath_spectral_enable(sc, ic->ic_curchan);
2866
2867	/*
2868	 * Let bluetooth coexistence at in case it's needed for this channel
2869	 */
2870	ath_btcoex_enable(sc, ic->ic_curchan);
2871
2872	/*
2873	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2874	 * support it.
2875	 */
2876	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2877		ath_hal_setenforcetxop(sc->sc_ah, 1);
2878	else
2879		ath_hal_setenforcetxop(sc->sc_ah, 0);
2880
2881	if (ath_startrecv(sc) != 0)	/* restart recv */
2882		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2883	/*
2884	 * We may be doing a reset in response to an ioctl
2885	 * that changes the channel so update any state that
2886	 * might change as a result.
2887	 */
2888	ath_chan_change(sc, ic->ic_curchan);
2889	if (sc->sc_beacons) {		/* restart beacons */
2890#ifdef IEEE80211_SUPPORT_TDMA
2891		if (sc->sc_tdma)
2892			ath_tdma_config(sc, NULL);
2893		else
2894#endif
2895			ath_beacon_config(sc, NULL);
2896	}
2897
2898	/*
2899	 * Release the reset lock and re-enable interrupts here.
2900	 * If an interrupt was being processed in ath_intr(),
2901	 * it would disable interrupts at this point. So we have
2902	 * to atomically enable interrupts and decrement the
2903	 * reset counter - this way ath_intr() doesn't end up
2904	 * disabling interrupts without a corresponding enable
2905	 * in the rest or channel change path.
2906	 *
2907	 * Grab the TX reference in case we need to transmit.
2908	 * That way a parallel transmit doesn't.
2909	 */
2910	ATH_PCU_LOCK(sc);
2911	sc->sc_inreset_cnt--;
2912	sc->sc_txstart_cnt++;
2913	/* XXX only do this if sc_inreset_cnt == 0? */
2914	ath_hal_intrset(ah, sc->sc_imask);
2915	ATH_PCU_UNLOCK(sc);
2916
2917	/*
2918	 * TX and RX can be started here. If it were started with
2919	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2920	 * Thus if this is a nested call through the reset or
2921	 * channel change code, TX completion will occur but
2922	 * RX completion and ath_start / ath_tx_start will not
2923	 * run.
2924	 */
2925
2926	/* Restart TX/RX as needed */
2927	ath_txrx_start(sc);
2928
2929	/* XXX TODO: we need to hold the tx refcount here! */
2930
2931	/* Restart TX completion and pending TX */
2932	if (reset_type == ATH_RESET_NOLOSS) {
2933		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2934			if (ATH_TXQ_SETUP(sc, i)) {
2935				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2936				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2937				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2938
2939				ATH_TX_LOCK(sc);
2940				ath_txq_sched(sc, &sc->sc_txq[i]);
2941				ATH_TX_UNLOCK(sc);
2942			}
2943		}
2944	}
2945
2946	/*
2947	 * This may have been set during an ath_start() call which
2948	 * set this once it detected a concurrent TX was going on.
2949	 * So, clear it.
2950	 */
2951	IF_LOCK(&ifp->if_snd);
2952	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2953	IF_UNLOCK(&ifp->if_snd);
2954
2955	ATH_LOCK(sc);
2956	ath_power_restore_power_state(sc);
2957	ATH_UNLOCK(sc);
2958
2959	ATH_PCU_LOCK(sc);
2960	sc->sc_txstart_cnt--;
2961	ATH_PCU_UNLOCK(sc);
2962
2963	/* Handle any frames in the TX queue */
2964	/*
2965	 * XXX should this be done by the caller, rather than
2966	 * ath_reset() ?
2967	 */
2968	ath_tx_kick(sc);		/* restart xmit */
2969	return 0;
2970}
2971
2972static int
2973ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2974{
2975	struct ieee80211com *ic = vap->iv_ic;
2976	struct ifnet *ifp = ic->ic_ifp;
2977	struct ath_softc *sc = ifp->if_softc;
2978	struct ath_hal *ah = sc->sc_ah;
2979
2980	switch (cmd) {
2981	case IEEE80211_IOC_TXPOWER:
2982		/*
2983		 * If per-packet TPC is enabled, then we have nothing
2984		 * to do; otherwise we need to force the global limit.
2985		 * All this can happen directly; no need to reset.
2986		 */
2987		if (!ath_hal_gettpc(ah))
2988			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2989		return 0;
2990	}
2991	/* XXX? Full or NOLOSS? */
2992	return ath_reset(ifp, ATH_RESET_FULL);
2993}
2994
2995struct ath_buf *
2996_ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2997{
2998	struct ath_buf *bf;
2999
3000	ATH_TXBUF_LOCK_ASSERT(sc);
3001
3002	if (btype == ATH_BUFTYPE_MGMT)
3003		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
3004	else
3005		bf = TAILQ_FIRST(&sc->sc_txbuf);
3006
3007	if (bf == NULL) {
3008		sc->sc_stats.ast_tx_getnobuf++;
3009	} else {
3010		if (bf->bf_flags & ATH_BUF_BUSY) {
3011			sc->sc_stats.ast_tx_getbusybuf++;
3012			bf = NULL;
3013		}
3014	}
3015
3016	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
3017		if (btype == ATH_BUFTYPE_MGMT)
3018			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
3019		else {
3020			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
3021			sc->sc_txbuf_cnt--;
3022
3023			/*
3024			 * This shuldn't happen; however just to be
3025			 * safe print a warning and fudge the txbuf
3026			 * count.
3027			 */
3028			if (sc->sc_txbuf_cnt < 0) {
3029				device_printf(sc->sc_dev,
3030				    "%s: sc_txbuf_cnt < 0?\n",
3031				    __func__);
3032				sc->sc_txbuf_cnt = 0;
3033			}
3034		}
3035	} else
3036		bf = NULL;
3037
3038	if (bf == NULL) {
3039		/* XXX should check which list, mgmt or otherwise */
3040		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
3041		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
3042			"out of xmit buffers" : "xmit buffer busy");
3043		return NULL;
3044	}
3045
3046	/* XXX TODO: should do this at buffer list initialisation */
3047	/* XXX (then, ensure the buffer has the right flag set) */
3048	bf->bf_flags = 0;
3049	if (btype == ATH_BUFTYPE_MGMT)
3050		bf->bf_flags |= ATH_BUF_MGMT;
3051	else
3052		bf->bf_flags &= (~ATH_BUF_MGMT);
3053
3054	/* Valid bf here; clear some basic fields */
3055	bf->bf_next = NULL;	/* XXX just to be sure */
3056	bf->bf_last = NULL;	/* XXX again, just to be sure */
3057	bf->bf_comp = NULL;	/* XXX again, just to be sure */
3058	bzero(&bf->bf_state, sizeof(bf->bf_state));
3059
3060	/*
3061	 * Track the descriptor ID only if doing EDMA
3062	 */
3063	if (sc->sc_isedma) {
3064		bf->bf_descid = sc->sc_txbuf_descid;
3065		sc->sc_txbuf_descid++;
3066	}
3067
3068	return bf;
3069}
3070
3071/*
3072 * When retrying a software frame, buffers marked ATH_BUF_BUSY
3073 * can't be thrown back on the queue as they could still be
3074 * in use by the hardware.
3075 *
3076 * This duplicates the buffer, or returns NULL.
3077 *
3078 * The descriptor is also copied but the link pointers and
3079 * the DMA segments aren't copied; this frame should thus
3080 * be again passed through the descriptor setup/chain routines
3081 * so the link is correct.
3082 *
3083 * The caller must free the buffer using ath_freebuf().
3084 */
3085struct ath_buf *
3086ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
3087{
3088	struct ath_buf *tbf;
3089
3090	tbf = ath_getbuf(sc,
3091	    (bf->bf_flags & ATH_BUF_MGMT) ?
3092	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
3093	if (tbf == NULL)
3094		return NULL;	/* XXX failure? Why? */
3095
3096	/* Copy basics */
3097	tbf->bf_next = NULL;
3098	tbf->bf_nseg = bf->bf_nseg;
3099	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
3100	tbf->bf_status = bf->bf_status;
3101	tbf->bf_m = bf->bf_m;
3102	tbf->bf_node = bf->bf_node;
3103	KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__));
3104	/* will be setup by the chain/setup function */
3105	tbf->bf_lastds = NULL;
3106	/* for now, last == self */
3107	tbf->bf_last = tbf;
3108	tbf->bf_comp = bf->bf_comp;
3109
3110	/* NOTE: DMA segments will be setup by the setup/chain functions */
3111
3112	/* The caller has to re-init the descriptor + links */
3113
3114	/*
3115	 * Free the DMA mapping here, before we NULL the mbuf.
3116	 * We must only call bus_dmamap_unload() once per mbuf chain
3117	 * or behaviour is undefined.
3118	 */
3119	if (bf->bf_m != NULL) {
3120		/*
3121		 * XXX is this POSTWRITE call required?
3122		 */
3123		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3124		    BUS_DMASYNC_POSTWRITE);
3125		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3126	}
3127
3128	bf->bf_m = NULL;
3129	bf->bf_node = NULL;
3130
3131	/* Copy state */
3132	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
3133
3134	return tbf;
3135}
3136
3137struct ath_buf *
3138ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
3139{
3140	struct ath_buf *bf;
3141
3142	ATH_TXBUF_LOCK(sc);
3143	bf = _ath_getbuf_locked(sc, btype);
3144	/*
3145	 * If a mgmt buffer was requested but we're out of those,
3146	 * try requesting a normal one.
3147	 */
3148	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
3149		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
3150	ATH_TXBUF_UNLOCK(sc);
3151	if (bf == NULL) {
3152		struct ifnet *ifp = sc->sc_ifp;
3153
3154		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
3155		sc->sc_stats.ast_tx_qstop++;
3156		IF_LOCK(&ifp->if_snd);
3157		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3158		IF_UNLOCK(&ifp->if_snd);
3159	}
3160	return bf;
3161}
3162
3163static void
3164ath_qflush(struct ifnet *ifp)
3165{
3166
3167	/* XXX TODO */
3168}
3169
3170/*
3171 * Transmit a single frame.
3172 *
3173 * net80211 will free the node reference if the transmit
3174 * fails, so don't free the node reference here.
3175 */
3176static int
3177ath_transmit(struct ifnet *ifp, struct mbuf *m)
3178{
3179	struct ieee80211com *ic = ifp->if_l2com;
3180	struct ath_softc *sc = ic->ic_ifp->if_softc;
3181	struct ieee80211_node *ni;
3182	struct mbuf *next;
3183	struct ath_buf *bf;
3184	ath_bufhead frags;
3185	int retval = 0;
3186
3187	/*
3188	 * Tell the reset path that we're currently transmitting.
3189	 */
3190	ATH_PCU_LOCK(sc);
3191	if (sc->sc_inreset_cnt > 0) {
3192		DPRINTF(sc, ATH_DEBUG_XMIT,
3193		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
3194		ATH_PCU_UNLOCK(sc);
3195		IF_LOCK(&ifp->if_snd);
3196		sc->sc_stats.ast_tx_qstop++;
3197		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3198		IF_UNLOCK(&ifp->if_snd);
3199		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
3200		return (ENOBUFS);	/* XXX should be EINVAL or? */
3201	}
3202	sc->sc_txstart_cnt++;
3203	ATH_PCU_UNLOCK(sc);
3204
3205	/* Wake the hardware up already */
3206	ATH_LOCK(sc);
3207	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3208	ATH_UNLOCK(sc);
3209
3210	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
3211	/*
3212	 * Grab the TX lock - it's ok to do this here; we haven't
3213	 * yet started transmitting.
3214	 */
3215	ATH_TX_LOCK(sc);
3216
3217	/*
3218	 * Node reference, if there's one.
3219	 */
3220	ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
3221
3222	/*
3223	 * Enforce how deep a node queue can get.
3224	 *
3225	 * XXX it would be nicer if we kept an mbuf queue per
3226	 * node and only whacked them into ath_bufs when we
3227	 * are ready to schedule some traffic from them.
3228	 * .. that may come later.
3229	 *
3230	 * XXX we should also track the per-node hardware queue
3231	 * depth so it is easy to limit the _SUM_ of the swq and
3232	 * hwq frames.  Since we only schedule two HWQ frames
3233	 * at a time, this should be OK for now.
3234	 */
3235	if ((!(m->m_flags & M_EAPOL)) &&
3236	    (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
3237		sc->sc_stats.ast_tx_nodeq_overflow++;
3238		m_freem(m);
3239		m = NULL;
3240		retval = ENOBUFS;
3241		goto finish;
3242	}
3243
3244	/*
3245	 * Check how many TX buffers are available.
3246	 *
3247	 * If this is for non-EAPOL traffic, just leave some
3248	 * space free in order for buffer cloning and raw
3249	 * frame transmission to occur.
3250	 *
3251	 * If it's for EAPOL traffic, ignore this for now.
3252	 * Management traffic will be sent via the raw transmit
3253	 * method which bypasses this check.
3254	 *
3255	 * This is needed to ensure that EAPOL frames during
3256	 * (re) keying have a chance to go out.
3257	 *
3258	 * See kern/138379 for more information.
3259	 */
3260	if ((!(m->m_flags & M_EAPOL)) &&
3261	    (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
3262		sc->sc_stats.ast_tx_nobuf++;
3263		m_freem(m);
3264		m = NULL;
3265		retval = ENOBUFS;
3266		goto finish;
3267	}
3268
3269	/*
3270	 * Grab a TX buffer and associated resources.
3271	 *
3272	 * If it's an EAPOL frame, allocate a MGMT ath_buf.
3273	 * That way even with temporary buffer exhaustion due to
3274	 * the data path doesn't leave us without the ability
3275	 * to transmit management frames.
3276	 *
3277	 * Otherwise allocate a normal buffer.
3278	 */
3279	if (m->m_flags & M_EAPOL)
3280		bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
3281	else
3282		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
3283
3284	if (bf == NULL) {
3285		/*
3286		 * If we failed to allocate a buffer, fail.
3287		 *
3288		 * We shouldn't fail normally, due to the check
3289		 * above.
3290		 */
3291		sc->sc_stats.ast_tx_nobuf++;
3292		IF_LOCK(&ifp->if_snd);
3293		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3294		IF_UNLOCK(&ifp->if_snd);
3295		m_freem(m);
3296		m = NULL;
3297		retval = ENOBUFS;
3298		goto finish;
3299	}
3300
3301	/*
3302	 * At this point we have a buffer; so we need to free it
3303	 * if we hit any error conditions.
3304	 */
3305
3306	/*
3307	 * Check for fragmentation.  If this frame
3308	 * has been broken up verify we have enough
3309	 * buffers to send all the fragments so all
3310	 * go out or none...
3311	 */
3312	TAILQ_INIT(&frags);
3313	if ((m->m_flags & M_FRAG) &&
3314	    !ath_txfrag_setup(sc, &frags, m, ni)) {
3315		DPRINTF(sc, ATH_DEBUG_XMIT,
3316		    "%s: out of txfrag buffers\n", __func__);
3317		sc->sc_stats.ast_tx_nofrag++;
3318		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3319		ath_freetx(m);
3320		goto bad;
3321	}
3322
3323	/*
3324	 * At this point if we have any TX fragments, then we will
3325	 * have bumped the node reference once for each of those.
3326	 */
3327
3328	/*
3329	 * XXX Is there anything actually _enforcing_ that the
3330	 * fragments are being transmitted in one hit, rather than
3331	 * being interleaved with other transmissions on that
3332	 * hardware queue?
3333	 *
3334	 * The ATH TX output lock is the only thing serialising this
3335	 * right now.
3336	 */
3337
3338	/*
3339	 * Calculate the "next fragment" length field in ath_buf
3340	 * in order to let the transmit path know enough about
3341	 * what to next write to the hardware.
3342	 */
3343	if (m->m_flags & M_FRAG) {
3344		struct ath_buf *fbf = bf;
3345		struct ath_buf *n_fbf = NULL;
3346		struct mbuf *fm = m->m_nextpkt;
3347
3348		/*
3349		 * We need to walk the list of fragments and set
3350		 * the next size to the following buffer.
3351		 * However, the first buffer isn't in the frag
3352		 * list, so we have to do some gymnastics here.
3353		 */
3354		TAILQ_FOREACH(n_fbf, &frags, bf_list) {
3355			fbf->bf_nextfraglen = fm->m_pkthdr.len;
3356			fbf = n_fbf;
3357			fm = fm->m_nextpkt;
3358		}
3359	}
3360
3361	/*
3362	 * Bump the ifp output counter.
3363	 *
3364	 * XXX should use atomics?
3365	 */
3366	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3367nextfrag:
3368	/*
3369	 * Pass the frame to the h/w for transmission.
3370	 * Fragmented frames have each frag chained together
3371	 * with m_nextpkt.  We know there are sufficient ath_buf's
3372	 * to send all the frags because of work done by
3373	 * ath_txfrag_setup.  We leave m_nextpkt set while
3374	 * calling ath_tx_start so it can use it to extend the
3375	 * the tx duration to cover the subsequent frag and
3376	 * so it can reclaim all the mbufs in case of an error;
3377	 * ath_tx_start clears m_nextpkt once it commits to
3378	 * handing the frame to the hardware.
3379	 *
3380	 * Note: if this fails, then the mbufs are freed but
3381	 * not the node reference.
3382	 */
3383	next = m->m_nextpkt;
3384	if (ath_tx_start(sc, ni, bf, m)) {
3385bad:
3386		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3387reclaim:
3388		bf->bf_m = NULL;
3389		bf->bf_node = NULL;
3390		ATH_TXBUF_LOCK(sc);
3391		ath_returnbuf_head(sc, bf);
3392		/*
3393		 * Free the rest of the node references and
3394		 * buffers for the fragment list.
3395		 */
3396		ath_txfrag_cleanup(sc, &frags, ni);
3397		ATH_TXBUF_UNLOCK(sc);
3398		retval = ENOBUFS;
3399		goto finish;
3400	}
3401
3402	/*
3403	 * Check here if the node is in power save state.
3404	 */
3405	ath_tx_update_tim(sc, ni, 1);
3406
3407	if (next != NULL) {
3408		/*
3409		 * Beware of state changing between frags.
3410		 * XXX check sta power-save state?
3411		 */
3412		if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
3413			DPRINTF(sc, ATH_DEBUG_XMIT,
3414			    "%s: flush fragmented packet, state %s\n",
3415			    __func__,
3416			    ieee80211_state_name[ni->ni_vap->iv_state]);
3417			/* XXX dmamap */
3418			ath_freetx(next);
3419			goto reclaim;
3420		}
3421		m = next;
3422		bf = TAILQ_FIRST(&frags);
3423		KASSERT(bf != NULL, ("no buf for txfrag"));
3424		TAILQ_REMOVE(&frags, bf, bf_list);
3425		goto nextfrag;
3426	}
3427
3428	/*
3429	 * Bump watchdog timer.
3430	 */
3431	sc->sc_wd_timer = 5;
3432
3433finish:
3434	ATH_TX_UNLOCK(sc);
3435
3436	/*
3437	 * Finished transmitting!
3438	 */
3439	ATH_PCU_LOCK(sc);
3440	sc->sc_txstart_cnt--;
3441	ATH_PCU_UNLOCK(sc);
3442
3443	/* Sleep the hardware if required */
3444	ATH_LOCK(sc);
3445	ath_power_restore_power_state(sc);
3446	ATH_UNLOCK(sc);
3447
3448	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
3449
3450	return (retval);
3451}
3452
3453static int
3454ath_media_change(struct ifnet *ifp)
3455{
3456	int error = ieee80211_media_change(ifp);
3457	/* NB: only the fixed rate can change and that doesn't need a reset */
3458	return (error == ENETRESET ? 0 : error);
3459}
3460
3461/*
3462 * Block/unblock tx+rx processing while a key change is done.
3463 * We assume the caller serializes key management operations
3464 * so we only need to worry about synchronization with other
3465 * uses that originate in the driver.
3466 */
3467static void
3468ath_key_update_begin(struct ieee80211vap *vap)
3469{
3470	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3471	struct ath_softc *sc = ifp->if_softc;
3472
3473	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3474	taskqueue_block(sc->sc_tq);
3475}
3476
3477static void
3478ath_key_update_end(struct ieee80211vap *vap)
3479{
3480	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3481	struct ath_softc *sc = ifp->if_softc;
3482
3483	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3484	taskqueue_unblock(sc->sc_tq);
3485}
3486
3487static void
3488ath_update_promisc(struct ifnet *ifp)
3489{
3490	struct ath_softc *sc = ifp->if_softc;
3491	u_int32_t rfilt;
3492
3493	/* configure rx filter */
3494	ATH_LOCK(sc);
3495	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3496	rfilt = ath_calcrxfilter(sc);
3497	ath_hal_setrxfilter(sc->sc_ah, rfilt);
3498	ath_power_restore_power_state(sc);
3499	ATH_UNLOCK(sc);
3500
3501	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3502}
3503
3504/*
3505 * Driver-internal mcast update call.
3506 *
3507 * Assumes the hardware is already awake.
3508 */
3509static void
3510ath_update_mcast_hw(struct ath_softc *sc)
3511{
3512	struct ifnet *ifp = sc->sc_ifp;
3513	u_int32_t mfilt[2];
3514
3515	/* calculate and install multicast filter */
3516	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3517		struct ifmultiaddr *ifma;
3518		/*
3519		 * Merge multicast addresses to form the hardware filter.
3520		 */
3521		mfilt[0] = mfilt[1] = 0;
3522		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
3523		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3524			caddr_t dl;
3525			u_int32_t val;
3526			u_int8_t pos;
3527
3528			/* calculate XOR of eight 6bit values */
3529			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
3530			val = LE_READ_4(dl + 0);
3531			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3532			val = LE_READ_4(dl + 3);
3533			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3534			pos &= 0x3f;
3535			mfilt[pos / 32] |= (1 << (pos % 32));
3536		}
3537		if_maddr_runlock(ifp);
3538	} else
3539		mfilt[0] = mfilt[1] = ~0;
3540
3541	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3542
3543	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3544		__func__, mfilt[0], mfilt[1]);
3545}
3546
3547/*
3548 * Called from the net80211 layer - force the hardware
3549 * awake before operating.
3550 */
3551static void
3552ath_update_mcast(struct ifnet *ifp)
3553{
3554	struct ath_softc *sc = ifp->if_softc;
3555
3556	ATH_LOCK(sc);
3557	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3558	ATH_UNLOCK(sc);
3559
3560	ath_update_mcast_hw(sc);
3561
3562	ATH_LOCK(sc);
3563	ath_power_restore_power_state(sc);
3564	ATH_UNLOCK(sc);
3565}
3566
3567void
3568ath_mode_init(struct ath_softc *sc)
3569{
3570	struct ifnet *ifp = sc->sc_ifp;
3571	struct ath_hal *ah = sc->sc_ah;
3572	u_int32_t rfilt;
3573
3574	/* configure rx filter */
3575	rfilt = ath_calcrxfilter(sc);
3576	ath_hal_setrxfilter(ah, rfilt);
3577
3578	/* configure operational mode */
3579	ath_hal_setopmode(ah);
3580
3581	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
3582	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
3583	    __func__,
3584	    ah,
3585	    ifp,
3586	    (ifp == NULL) ? NULL : ifp->if_addr);
3587
3588	/* handle any link-level address change */
3589	ath_hal_setmac(ah, IF_LLADDR(ifp));
3590
3591	/* calculate and install multicast filter */
3592	ath_update_mcast_hw(sc);
3593}
3594
3595/*
3596 * Set the slot time based on the current setting.
3597 */
3598void
3599ath_setslottime(struct ath_softc *sc)
3600{
3601	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3602	struct ath_hal *ah = sc->sc_ah;
3603	u_int usec;
3604
3605	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3606		usec = 13;
3607	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3608		usec = 21;
3609	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3610		/* honor short/long slot time only in 11g */
3611		/* XXX shouldn't honor on pure g or turbo g channel */
3612		if (ic->ic_flags & IEEE80211_F_SHSLOT)
3613			usec = HAL_SLOT_TIME_9;
3614		else
3615			usec = HAL_SLOT_TIME_20;
3616	} else
3617		usec = HAL_SLOT_TIME_9;
3618
3619	DPRINTF(sc, ATH_DEBUG_RESET,
3620	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3621	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3622	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3623
3624	/* Wake up the hardware first before updating the slot time */
3625	ATH_LOCK(sc);
3626	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3627	ath_hal_setslottime(ah, usec);
3628	ath_power_restore_power_state(sc);
3629	sc->sc_updateslot = OK;
3630	ATH_UNLOCK(sc);
3631}
3632
3633/*
3634 * Callback from the 802.11 layer to update the
3635 * slot time based on the current setting.
3636 */
3637static void
3638ath_updateslot(struct ifnet *ifp)
3639{
3640	struct ath_softc *sc = ifp->if_softc;
3641	struct ieee80211com *ic = ifp->if_l2com;
3642
3643	/*
3644	 * When not coordinating the BSS, change the hardware
3645	 * immediately.  For other operation we defer the change
3646	 * until beacon updates have propagated to the stations.
3647	 *
3648	 * XXX sc_updateslot isn't changed behind a lock?
3649	 */
3650	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3651	    ic->ic_opmode == IEEE80211_M_MBSS)
3652		sc->sc_updateslot = UPDATE;
3653	else
3654		ath_setslottime(sc);
3655}
3656
3657/*
3658 * Append the contents of src to dst; both queues
3659 * are assumed to be locked.
3660 */
3661void
3662ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3663{
3664
3665	ATH_TXQ_LOCK_ASSERT(src);
3666	ATH_TXQ_LOCK_ASSERT(dst);
3667
3668	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3669	dst->axq_link = src->axq_link;
3670	src->axq_link = NULL;
3671	dst->axq_depth += src->axq_depth;
3672	dst->axq_aggr_depth += src->axq_aggr_depth;
3673	src->axq_depth = 0;
3674	src->axq_aggr_depth = 0;
3675}
3676
3677/*
3678 * Reset the hardware, with no loss.
3679 *
3680 * This can't be used for a general case reset.
3681 */
3682static void
3683ath_reset_proc(void *arg, int pending)
3684{
3685	struct ath_softc *sc = arg;
3686	struct ifnet *ifp = sc->sc_ifp;
3687
3688#if 0
3689	if_printf(ifp, "%s: resetting\n", __func__);
3690#endif
3691	ath_reset(ifp, ATH_RESET_NOLOSS);
3692}
3693
3694/*
3695 * Reset the hardware after detecting beacons have stopped.
3696 */
3697static void
3698ath_bstuck_proc(void *arg, int pending)
3699{
3700	struct ath_softc *sc = arg;
3701	struct ifnet *ifp = sc->sc_ifp;
3702	uint32_t hangs = 0;
3703
3704	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3705		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3706
3707#ifdef	ATH_DEBUG_ALQ
3708	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
3709		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3710#endif
3711
3712	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3713		sc->sc_bmisscount);
3714	sc->sc_stats.ast_bstuck++;
3715	/*
3716	 * This assumes that there's no simultaneous channel mode change
3717	 * occuring.
3718	 */
3719	ath_reset(ifp, ATH_RESET_NOLOSS);
3720}
3721
3722static void
3723ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3724{
3725	bus_addr_t *paddr = (bus_addr_t*) arg;
3726	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3727	*paddr = segs->ds_addr;
3728}
3729
3730/*
3731 * Allocate the descriptors and appropriate DMA tag/setup.
3732 *
3733 * For some situations (eg EDMA TX completion), there isn't a requirement
3734 * for the ath_buf entries to be allocated.
3735 */
3736int
3737ath_descdma_alloc_desc(struct ath_softc *sc,
3738	struct ath_descdma *dd, ath_bufhead *head,
3739	const char *name, int ds_size, int ndesc)
3740{
3741#define	DS2PHYS(_dd, _ds) \
3742	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3743#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3744	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3745	struct ifnet *ifp = sc->sc_ifp;
3746	int error;
3747
3748	dd->dd_descsize = ds_size;
3749
3750	DPRINTF(sc, ATH_DEBUG_RESET,
3751	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
3752	    __func__, name, ndesc, dd->dd_descsize);
3753
3754	dd->dd_name = name;
3755	dd->dd_desc_len = dd->dd_descsize * ndesc;
3756
3757	/*
3758	 * Merlin work-around:
3759	 * Descriptors that cross the 4KB boundary can't be used.
3760	 * Assume one skipped descriptor per 4KB page.
3761	 */
3762	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3763		int numpages = dd->dd_desc_len / 4096;
3764		dd->dd_desc_len += ds_size * numpages;
3765	}
3766
3767	/*
3768	 * Setup DMA descriptor area.
3769	 *
3770	 * BUS_DMA_ALLOCNOW is not used; we never use bounce
3771	 * buffers for the descriptors themselves.
3772	 */
3773	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3774		       PAGE_SIZE, 0,		/* alignment, bounds */
3775		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3776		       BUS_SPACE_MAXADDR,	/* highaddr */
3777		       NULL, NULL,		/* filter, filterarg */
3778		       dd->dd_desc_len,		/* maxsize */
3779		       1,			/* nsegments */
3780		       dd->dd_desc_len,		/* maxsegsize */
3781		       0,			/* flags */
3782		       NULL,			/* lockfunc */
3783		       NULL,			/* lockarg */
3784		       &dd->dd_dmat);
3785	if (error != 0) {
3786		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3787		return error;
3788	}
3789
3790	/* allocate descriptors */
3791	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3792				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3793				 &dd->dd_dmamap);
3794	if (error != 0) {
3795		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3796			"error %u\n", ndesc, dd->dd_name, error);
3797		goto fail1;
3798	}
3799
3800	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3801				dd->dd_desc, dd->dd_desc_len,
3802				ath_load_cb, &dd->dd_desc_paddr,
3803				BUS_DMA_NOWAIT);
3804	if (error != 0) {
3805		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3806			dd->dd_name, error);
3807		goto fail2;
3808	}
3809
3810	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3811	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
3812	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
3813	    /*XXX*/ (u_long) dd->dd_desc_len);
3814
3815	return (0);
3816
3817fail2:
3818	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3819fail1:
3820	bus_dma_tag_destroy(dd->dd_dmat);
3821	memset(dd, 0, sizeof(*dd));
3822	return error;
3823#undef DS2PHYS
3824#undef ATH_DESC_4KB_BOUND_CHECK
3825}
3826
3827int
3828ath_descdma_setup(struct ath_softc *sc,
3829	struct ath_descdma *dd, ath_bufhead *head,
3830	const char *name, int ds_size, int nbuf, int ndesc)
3831{
3832#define	DS2PHYS(_dd, _ds) \
3833	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3834#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3835	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3836	struct ifnet *ifp = sc->sc_ifp;
3837	uint8_t *ds;
3838	struct ath_buf *bf;
3839	int i, bsize, error;
3840
3841	/* Allocate descriptors */
3842	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3843	    nbuf * ndesc);
3844
3845	/* Assume any errors during allocation were dealt with */
3846	if (error != 0) {
3847		return (error);
3848	}
3849
3850	ds = (uint8_t *) dd->dd_desc;
3851
3852	/* allocate rx buffers */
3853	bsize = sizeof(struct ath_buf) * nbuf;
3854	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3855	if (bf == NULL) {
3856		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3857			dd->dd_name, bsize);
3858		goto fail3;
3859	}
3860	dd->dd_bufptr = bf;
3861
3862	TAILQ_INIT(head);
3863	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3864		bf->bf_desc = (struct ath_desc *) ds;
3865		bf->bf_daddr = DS2PHYS(dd, ds);
3866		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3867			/*
3868			 * Merlin WAR: Skip descriptor addresses which
3869			 * cause 4KB boundary crossing along any point
3870			 * in the descriptor.
3871			 */
3872			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3873			     dd->dd_descsize)) {
3874				/* Start at the next page */
3875				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3876				bf->bf_desc = (struct ath_desc *) ds;
3877				bf->bf_daddr = DS2PHYS(dd, ds);
3878			}
3879		}
3880		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3881				&bf->bf_dmamap);
3882		if (error != 0) {
3883			if_printf(ifp, "unable to create dmamap for %s "
3884				"buffer %u, error %u\n", dd->dd_name, i, error);
3885			ath_descdma_cleanup(sc, dd, head);
3886			return error;
3887		}
3888		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3889		TAILQ_INSERT_TAIL(head, bf, bf_list);
3890	}
3891
3892	/*
3893	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3894	 * allocation otherwise weird stuff will occur and crash your
3895	 * machine.
3896	 */
3897	return 0;
3898	/* XXX this should likely just call ath_descdma_cleanup() */
3899fail3:
3900	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3901	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3902	bus_dma_tag_destroy(dd->dd_dmat);
3903	memset(dd, 0, sizeof(*dd));
3904	return error;
3905#undef DS2PHYS
3906#undef ATH_DESC_4KB_BOUND_CHECK
3907}
3908
3909/*
3910 * Allocate ath_buf entries but no descriptor contents.
3911 *
3912 * This is for RX EDMA where the descriptors are the header part of
3913 * the RX buffer.
3914 */
3915int
3916ath_descdma_setup_rx_edma(struct ath_softc *sc,
3917	struct ath_descdma *dd, ath_bufhead *head,
3918	const char *name, int nbuf, int rx_status_len)
3919{
3920	struct ifnet *ifp = sc->sc_ifp;
3921	struct ath_buf *bf;
3922	int i, bsize, error;
3923
3924	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3925	    __func__, name, nbuf);
3926
3927	dd->dd_name = name;
3928	/*
3929	 * This is (mostly) purely for show.  We're not allocating any actual
3930	 * descriptors here as EDMA RX has the descriptor be part
3931	 * of the RX buffer.
3932	 *
3933	 * However, dd_desc_len is used by ath_descdma_free() to determine
3934	 * whether we have already freed this DMA mapping.
3935	 */
3936	dd->dd_desc_len = rx_status_len * nbuf;
3937	dd->dd_descsize = rx_status_len;
3938
3939	/* allocate rx buffers */
3940	bsize = sizeof(struct ath_buf) * nbuf;
3941	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3942	if (bf == NULL) {
3943		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3944			dd->dd_name, bsize);
3945		error = ENOMEM;
3946		goto fail3;
3947	}
3948	dd->dd_bufptr = bf;
3949
3950	TAILQ_INIT(head);
3951	for (i = 0; i < nbuf; i++, bf++) {
3952		bf->bf_desc = NULL;
3953		bf->bf_daddr = 0;
3954		bf->bf_lastds = NULL;	/* Just an initial value */
3955
3956		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3957				&bf->bf_dmamap);
3958		if (error != 0) {
3959			if_printf(ifp, "unable to create dmamap for %s "
3960				"buffer %u, error %u\n", dd->dd_name, i, error);
3961			ath_descdma_cleanup(sc, dd, head);
3962			return error;
3963		}
3964		TAILQ_INSERT_TAIL(head, bf, bf_list);
3965	}
3966	return 0;
3967fail3:
3968	memset(dd, 0, sizeof(*dd));
3969	return error;
3970}
3971
3972void
3973ath_descdma_cleanup(struct ath_softc *sc,
3974	struct ath_descdma *dd, ath_bufhead *head)
3975{
3976	struct ath_buf *bf;
3977	struct ieee80211_node *ni;
3978	int do_warning = 0;
3979
3980	if (dd->dd_dmamap != 0) {
3981		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3982		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3983		bus_dma_tag_destroy(dd->dd_dmat);
3984	}
3985
3986	if (head != NULL) {
3987		TAILQ_FOREACH(bf, head, bf_list) {
3988			if (bf->bf_m) {
3989				/*
3990				 * XXX warn if there's buffers here.
3991				 * XXX it should have been freed by the
3992				 * owner!
3993				 */
3994
3995				if (do_warning == 0) {
3996					do_warning = 1;
3997					device_printf(sc->sc_dev,
3998					    "%s: %s: mbuf should've been"
3999					    " unmapped/freed!\n",
4000					    __func__,
4001					    dd->dd_name);
4002				}
4003				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4004				    BUS_DMASYNC_POSTREAD);
4005				bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4006				m_freem(bf->bf_m);
4007				bf->bf_m = NULL;
4008			}
4009			if (bf->bf_dmamap != NULL) {
4010				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
4011				bf->bf_dmamap = NULL;
4012			}
4013			ni = bf->bf_node;
4014			bf->bf_node = NULL;
4015			if (ni != NULL) {
4016				/*
4017				 * Reclaim node reference.
4018				 */
4019				ieee80211_free_node(ni);
4020			}
4021		}
4022	}
4023
4024	if (head != NULL)
4025		TAILQ_INIT(head);
4026
4027	if (dd->dd_bufptr != NULL)
4028		free(dd->dd_bufptr, M_ATHDEV);
4029	memset(dd, 0, sizeof(*dd));
4030}
4031
4032static int
4033ath_desc_alloc(struct ath_softc *sc)
4034{
4035	int error;
4036
4037	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
4038		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
4039	if (error != 0) {
4040		return error;
4041	}
4042	sc->sc_txbuf_cnt = ath_txbuf;
4043
4044	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
4045		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
4046		    ATH_TXDESC);
4047	if (error != 0) {
4048		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4049		return error;
4050	}
4051
4052	/*
4053	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
4054	 * flag doesn't have to be set in ath_getbuf_locked().
4055	 */
4056
4057	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
4058			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
4059	if (error != 0) {
4060		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4061		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
4062		    &sc->sc_txbuf_mgmt);
4063		return error;
4064	}
4065	return 0;
4066}
4067
4068static void
4069ath_desc_free(struct ath_softc *sc)
4070{
4071
4072	if (sc->sc_bdma.dd_desc_len != 0)
4073		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
4074	if (sc->sc_txdma.dd_desc_len != 0)
4075		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
4076	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
4077		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
4078		    &sc->sc_txbuf_mgmt);
4079}
4080
4081static struct ieee80211_node *
4082ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
4083{
4084	struct ieee80211com *ic = vap->iv_ic;
4085	struct ath_softc *sc = ic->ic_ifp->if_softc;
4086	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
4087	struct ath_node *an;
4088
4089	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
4090	if (an == NULL) {
4091		/* XXX stat+msg */
4092		return NULL;
4093	}
4094	ath_rate_node_init(sc, an);
4095
4096	/* Setup the mutex - there's no associd yet so set the name to NULL */
4097	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
4098	    device_get_nameunit(sc->sc_dev), an);
4099	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
4100
4101	/* XXX setup ath_tid */
4102	ath_tx_tid_init(sc, an);
4103
4104	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an);
4105	return &an->an_node;
4106}
4107
4108static void
4109ath_node_cleanup(struct ieee80211_node *ni)
4110{
4111	struct ieee80211com *ic = ni->ni_ic;
4112	struct ath_softc *sc = ic->ic_ifp->if_softc;
4113
4114	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
4115	    ni->ni_macaddr, ":", ATH_NODE(ni));
4116
4117	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
4118	ath_tx_node_flush(sc, ATH_NODE(ni));
4119	ath_rate_node_cleanup(sc, ATH_NODE(ni));
4120	sc->sc_node_cleanup(ni);
4121}
4122
4123static void
4124ath_node_free(struct ieee80211_node *ni)
4125{
4126	struct ieee80211com *ic = ni->ni_ic;
4127	struct ath_softc *sc = ic->ic_ifp->if_softc;
4128
4129	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
4130	    ni->ni_macaddr, ":", ATH_NODE(ni));
4131	mtx_destroy(&ATH_NODE(ni)->an_mtx);
4132	sc->sc_node_free(ni);
4133}
4134
4135static void
4136ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
4137{
4138	struct ieee80211com *ic = ni->ni_ic;
4139	struct ath_softc *sc = ic->ic_ifp->if_softc;
4140	struct ath_hal *ah = sc->sc_ah;
4141
4142	*rssi = ic->ic_node_getrssi(ni);
4143	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
4144		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
4145	else
4146		*noise = -95;		/* nominally correct */
4147}
4148
4149/*
4150 * Set the default antenna.
4151 */
4152void
4153ath_setdefantenna(struct ath_softc *sc, u_int antenna)
4154{
4155	struct ath_hal *ah = sc->sc_ah;
4156
4157	/* XXX block beacon interrupts */
4158	ath_hal_setdefantenna(ah, antenna);
4159	if (sc->sc_defant != antenna)
4160		sc->sc_stats.ast_ant_defswitch++;
4161	sc->sc_defant = antenna;
4162	sc->sc_rxotherant = 0;
4163}
4164
4165static void
4166ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4167{
4168	txq->axq_qnum = qnum;
4169	txq->axq_ac = 0;
4170	txq->axq_depth = 0;
4171	txq->axq_aggr_depth = 0;
4172	txq->axq_intrcnt = 0;
4173	txq->axq_link = NULL;
4174	txq->axq_softc = sc;
4175	TAILQ_INIT(&txq->axq_q);
4176	TAILQ_INIT(&txq->axq_tidq);
4177	TAILQ_INIT(&txq->fifo.axq_q);
4178	ATH_TXQ_LOCK_INIT(sc, txq);
4179}
4180
4181/*
4182 * Setup a h/w transmit queue.
4183 */
4184static struct ath_txq *
4185ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4186{
4187#define	N(a)	(sizeof(a)/sizeof(a[0]))
4188	struct ath_hal *ah = sc->sc_ah;
4189	HAL_TXQ_INFO qi;
4190	int qnum;
4191
4192	memset(&qi, 0, sizeof(qi));
4193	qi.tqi_subtype = subtype;
4194	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4195	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4196	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4197	/*
4198	 * Enable interrupts only for EOL and DESC conditions.
4199	 * We mark tx descriptors to receive a DESC interrupt
4200	 * when a tx queue gets deep; otherwise waiting for the
4201	 * EOL to reap descriptors.  Note that this is done to
4202	 * reduce interrupt load and this only defers reaping
4203	 * descriptors, never transmitting frames.  Aside from
4204	 * reducing interrupts this also permits more concurrency.
4205	 * The only potential downside is if the tx queue backs
4206	 * up in which case the top half of the kernel may backup
4207	 * due to a lack of tx descriptors.
4208	 */
4209	if (sc->sc_isedma)
4210		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4211		    HAL_TXQ_TXOKINT_ENABLE;
4212	else
4213		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4214		    HAL_TXQ_TXDESCINT_ENABLE;
4215
4216	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4217	if (qnum == -1) {
4218		/*
4219		 * NB: don't print a message, this happens
4220		 * normally on parts with too few tx queues
4221		 */
4222		return NULL;
4223	}
4224	if (qnum >= N(sc->sc_txq)) {
4225		device_printf(sc->sc_dev,
4226			"hal qnum %u out of range, max %zu!\n",
4227			qnum, N(sc->sc_txq));
4228		ath_hal_releasetxqueue(ah, qnum);
4229		return NULL;
4230	}
4231	if (!ATH_TXQ_SETUP(sc, qnum)) {
4232		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4233		sc->sc_txqsetup |= 1<<qnum;
4234	}
4235	return &sc->sc_txq[qnum];
4236#undef N
4237}
4238
4239/*
4240 * Setup a hardware data transmit queue for the specified
4241 * access control.  The hal may not support all requested
4242 * queues in which case it will return a reference to a
4243 * previously setup queue.  We record the mapping from ac's
4244 * to h/w queues for use by ath_tx_start and also track
4245 * the set of h/w queues being used to optimize work in the
4246 * transmit interrupt handler and related routines.
4247 */
4248static int
4249ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4250{
4251#define	N(a)	(sizeof(a)/sizeof(a[0]))
4252	struct ath_txq *txq;
4253
4254	if (ac >= N(sc->sc_ac2q)) {
4255		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4256			ac, N(sc->sc_ac2q));
4257		return 0;
4258	}
4259	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4260	if (txq != NULL) {
4261		txq->axq_ac = ac;
4262		sc->sc_ac2q[ac] = txq;
4263		return 1;
4264	} else
4265		return 0;
4266#undef N
4267}
4268
4269/*
4270 * Update WME parameters for a transmit queue.
4271 */
4272static int
4273ath_txq_update(struct ath_softc *sc, int ac)
4274{
4275#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4276#define	ATH_TXOP_TO_US(v)		(v<<5)
4277	struct ifnet *ifp = sc->sc_ifp;
4278	struct ieee80211com *ic = ifp->if_l2com;
4279	struct ath_txq *txq = sc->sc_ac2q[ac];
4280	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4281	struct ath_hal *ah = sc->sc_ah;
4282	HAL_TXQ_INFO qi;
4283
4284	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4285#ifdef IEEE80211_SUPPORT_TDMA
4286	if (sc->sc_tdma) {
4287		/*
4288		 * AIFS is zero so there's no pre-transmit wait.  The
4289		 * burst time defines the slot duration and is configured
4290		 * through net80211.  The QCU is setup to not do post-xmit
4291		 * back off, lockout all lower-priority QCU's, and fire
4292		 * off the DMA beacon alert timer which is setup based
4293		 * on the slot configuration.
4294		 */
4295		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4296			      | HAL_TXQ_TXERRINT_ENABLE
4297			      | HAL_TXQ_TXURNINT_ENABLE
4298			      | HAL_TXQ_TXEOLINT_ENABLE
4299			      | HAL_TXQ_DBA_GATED
4300			      | HAL_TXQ_BACKOFF_DISABLE
4301			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4302			      ;
4303		qi.tqi_aifs = 0;
4304		/* XXX +dbaprep? */
4305		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4306		qi.tqi_burstTime = qi.tqi_readyTime;
4307	} else {
4308#endif
4309		/*
4310		 * XXX shouldn't this just use the default flags
4311		 * used in the previous queue setup?
4312		 */
4313		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4314			      | HAL_TXQ_TXERRINT_ENABLE
4315			      | HAL_TXQ_TXDESCINT_ENABLE
4316			      | HAL_TXQ_TXURNINT_ENABLE
4317			      | HAL_TXQ_TXEOLINT_ENABLE
4318			      ;
4319		qi.tqi_aifs = wmep->wmep_aifsn;
4320		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4321		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4322		qi.tqi_readyTime = 0;
4323		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4324#ifdef IEEE80211_SUPPORT_TDMA
4325	}
4326#endif
4327
4328	DPRINTF(sc, ATH_DEBUG_RESET,
4329	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4330	    __func__, txq->axq_qnum, qi.tqi_qflags,
4331	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4332
4333	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4334		if_printf(ifp, "unable to update hardware queue "
4335			"parameters for %s traffic!\n",
4336			ieee80211_wme_acnames[ac]);
4337		return 0;
4338	} else {
4339		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4340		return 1;
4341	}
4342#undef ATH_TXOP_TO_US
4343#undef ATH_EXPONENT_TO_VALUE
4344}
4345
4346/*
4347 * Callback from the 802.11 layer to update WME parameters.
4348 */
4349int
4350ath_wme_update(struct ieee80211com *ic)
4351{
4352	struct ath_softc *sc = ic->ic_ifp->if_softc;
4353
4354	return !ath_txq_update(sc, WME_AC_BE) ||
4355	    !ath_txq_update(sc, WME_AC_BK) ||
4356	    !ath_txq_update(sc, WME_AC_VI) ||
4357	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4358}
4359
4360/*
4361 * Reclaim resources for a setup queue.
4362 */
4363static void
4364ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4365{
4366
4367	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4368	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4369	ATH_TXQ_LOCK_DESTROY(txq);
4370}
4371
4372/*
4373 * Reclaim all tx queue resources.
4374 */
4375static void
4376ath_tx_cleanup(struct ath_softc *sc)
4377{
4378	int i;
4379
4380	ATH_TXBUF_LOCK_DESTROY(sc);
4381	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4382		if (ATH_TXQ_SETUP(sc, i))
4383			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4384}
4385
4386/*
4387 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4388 * using the current rates in sc_rixmap.
4389 */
4390int
4391ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4392{
4393	int rix = sc->sc_rixmap[rate];
4394	/* NB: return lowest rix for invalid rate */
4395	return (rix == 0xff ? 0 : rix);
4396}
4397
4398static void
4399ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4400    struct ath_buf *bf)
4401{
4402	struct ieee80211_node *ni = bf->bf_node;
4403	struct ifnet *ifp = sc->sc_ifp;
4404	struct ieee80211com *ic = ifp->if_l2com;
4405	int sr, lr, pri;
4406
4407	if (ts->ts_status == 0) {
4408		u_int8_t txant = ts->ts_antenna;
4409		sc->sc_stats.ast_ant_tx[txant]++;
4410		sc->sc_ant_tx[txant]++;
4411		if (ts->ts_finaltsi != 0)
4412			sc->sc_stats.ast_tx_altrate++;
4413		pri = M_WME_GETAC(bf->bf_m);
4414		if (pri >= WME_AC_VO)
4415			ic->ic_wme.wme_hipri_traffic++;
4416		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
4417			ni->ni_inact = ni->ni_inact_reload;
4418	} else {
4419		if (ts->ts_status & HAL_TXERR_XRETRY)
4420			sc->sc_stats.ast_tx_xretries++;
4421		if (ts->ts_status & HAL_TXERR_FIFO)
4422			sc->sc_stats.ast_tx_fifoerr++;
4423		if (ts->ts_status & HAL_TXERR_FILT)
4424			sc->sc_stats.ast_tx_filtered++;
4425		if (ts->ts_status & HAL_TXERR_XTXOP)
4426			sc->sc_stats.ast_tx_xtxop++;
4427		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4428			sc->sc_stats.ast_tx_timerexpired++;
4429
4430		if (bf->bf_m->m_flags & M_FF)
4431			sc->sc_stats.ast_ff_txerr++;
4432	}
4433	/* XXX when is this valid? */
4434	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
4435		sc->sc_stats.ast_tx_desccfgerr++;
4436	/*
4437	 * This can be valid for successful frame transmission!
4438	 * If there's a TX FIFO underrun during aggregate transmission,
4439	 * the MAC will pad the rest of the aggregate with delimiters.
4440	 * If a BA is returned, the frame is marked as "OK" and it's up
4441	 * to the TX completion code to notice which frames weren't
4442	 * successfully transmitted.
4443	 */
4444	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
4445		sc->sc_stats.ast_tx_data_underrun++;
4446	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
4447		sc->sc_stats.ast_tx_delim_underrun++;
4448
4449	sr = ts->ts_shortretry;
4450	lr = ts->ts_longretry;
4451	sc->sc_stats.ast_tx_shortretry += sr;
4452	sc->sc_stats.ast_tx_longretry += lr;
4453
4454}
4455
4456/*
4457 * The default completion. If fail is 1, this means
4458 * "please don't retry the frame, and just return -1 status
4459 * to the net80211 stack.
4460 */
4461void
4462ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4463{
4464	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4465	int st;
4466
4467	if (fail == 1)
4468		st = -1;
4469	else
4470		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
4471		    ts->ts_status : HAL_TXERR_XRETRY;
4472
4473#if 0
4474	if (bf->bf_state.bfs_dobaw)
4475		device_printf(sc->sc_dev,
4476		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4477		    __func__,
4478		    bf,
4479		    SEQNO(bf->bf_state.bfs_seqno));
4480#endif
4481	if (bf->bf_next != NULL)
4482		device_printf(sc->sc_dev,
4483		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
4484		    __func__,
4485		    bf,
4486		    SEQNO(bf->bf_state.bfs_seqno));
4487
4488	/*
4489	 * Check if the node software queue is empty; if so
4490	 * then clear the TIM.
4491	 *
4492	 * This needs to be done before the buffer is freed as
4493	 * otherwise the node reference will have been released
4494	 * and the node may not actually exist any longer.
4495	 *
4496	 * XXX I don't like this belonging here, but it's cleaner
4497	 * to do it here right now then all the other places
4498	 * where ath_tx_default_comp() is called.
4499	 *
4500	 * XXX TODO: during drain, ensure that the callback is
4501	 * being called so we get a chance to update the TIM.
4502	 */
4503	if (bf->bf_node) {
4504		ATH_TX_LOCK(sc);
4505		ath_tx_update_tim(sc, bf->bf_node, 0);
4506		ATH_TX_UNLOCK(sc);
4507	}
4508
4509	/*
4510	 * Do any tx complete callback.  Note this must
4511	 * be done before releasing the node reference.
4512	 * This will free the mbuf, release the net80211
4513	 * node and recycle the ath_buf.
4514	 */
4515	ath_tx_freebuf(sc, bf, st);
4516}
4517
4518/*
4519 * Update rate control with the given completion status.
4520 */
4521void
4522ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4523    struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4524    int nframes, int nbad)
4525{
4526	struct ath_node *an;
4527
4528	/* Only for unicast frames */
4529	if (ni == NULL)
4530		return;
4531
4532	an = ATH_NODE(ni);
4533	ATH_NODE_UNLOCK_ASSERT(an);
4534
4535	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4536		ATH_NODE_LOCK(an);
4537		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4538		ATH_NODE_UNLOCK(an);
4539	}
4540}
4541
4542/*
4543 * Process the completion of the given buffer.
4544 *
4545 * This calls the rate control update and then the buffer completion.
4546 * This will either free the buffer or requeue it.  In any case, the
4547 * bf pointer should be treated as invalid after this function is called.
4548 */
4549void
4550ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
4551    struct ath_tx_status *ts, struct ath_buf *bf)
4552{
4553	struct ieee80211_node *ni = bf->bf_node;
4554
4555	ATH_TX_UNLOCK_ASSERT(sc);
4556	ATH_TXQ_UNLOCK_ASSERT(txq);
4557
4558	/* If unicast frame, update general statistics */
4559	if (ni != NULL) {
4560		/* update statistics */
4561		ath_tx_update_stats(sc, ts, bf);
4562	}
4563
4564	/*
4565	 * Call the completion handler.
4566	 * The completion handler is responsible for
4567	 * calling the rate control code.
4568	 *
4569	 * Frames with no completion handler get the
4570	 * rate control code called here.
4571	 */
4572	if (bf->bf_comp == NULL) {
4573		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4574		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4575			/*
4576			 * XXX assume this isn't an aggregate
4577			 * frame.
4578			 */
4579			ath_tx_update_ratectrl(sc, ni,
4580			     bf->bf_state.bfs_rc, ts,
4581			    bf->bf_state.bfs_pktlen, 1,
4582			    (ts->ts_status == 0 ? 0 : 1));
4583		}
4584		ath_tx_default_comp(sc, bf, 0);
4585	} else
4586		bf->bf_comp(sc, bf, 0);
4587}
4588
4589
4590
4591/*
4592 * Process completed xmit descriptors from the specified queue.
4593 * Kick the packet scheduler if needed. This can occur from this
4594 * particular task.
4595 */
4596static int
4597ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4598{
4599	struct ath_hal *ah = sc->sc_ah;
4600	struct ath_buf *bf;
4601	struct ath_desc *ds;
4602	struct ath_tx_status *ts;
4603	struct ieee80211_node *ni;
4604#ifdef	IEEE80211_SUPPORT_SUPERG
4605	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4606#endif	/* IEEE80211_SUPPORT_SUPERG */
4607	int nacked;
4608	HAL_STATUS status;
4609
4610	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4611		__func__, txq->axq_qnum,
4612		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4613		txq->axq_link);
4614
4615	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4616	    "ath_tx_processq: txq=%u head %p link %p depth %p",
4617	    txq->axq_qnum,
4618	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4619	    txq->axq_link,
4620	    txq->axq_depth);
4621
4622	nacked = 0;
4623	for (;;) {
4624		ATH_TXQ_LOCK(txq);
4625		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4626		bf = TAILQ_FIRST(&txq->axq_q);
4627		if (bf == NULL) {
4628			ATH_TXQ_UNLOCK(txq);
4629			break;
4630		}
4631		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4632		ts = &bf->bf_status.ds_txstat;
4633
4634		status = ath_hal_txprocdesc(ah, ds, ts);
4635#ifdef ATH_DEBUG
4636		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4637			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4638			    status == HAL_OK);
4639		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4640			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4641			    status == HAL_OK);
4642#endif
4643#ifdef	ATH_DEBUG_ALQ
4644		if (if_ath_alq_checkdebug(&sc->sc_alq,
4645		    ATH_ALQ_EDMA_TXSTATUS)) {
4646			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
4647			sc->sc_tx_statuslen,
4648			(char *) ds);
4649		}
4650#endif
4651
4652		if (status == HAL_EINPROGRESS) {
4653			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4654			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4655			    txq->axq_qnum, bf, ds);
4656			ATH_TXQ_UNLOCK(txq);
4657			break;
4658		}
4659		ATH_TXQ_REMOVE(txq, bf, bf_list);
4660
4661		/*
4662		 * Sanity check.
4663		 */
4664		if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4665			device_printf(sc->sc_dev,
4666			    "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4667			    __func__,
4668			    txq->axq_qnum,
4669			    bf,
4670			    bf->bf_state.bfs_tx_queue);
4671		}
4672		if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4673			device_printf(sc->sc_dev,
4674			    "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4675			    __func__,
4676			    txq->axq_qnum,
4677			    bf->bf_last,
4678			    bf->bf_last->bf_state.bfs_tx_queue);
4679		}
4680
4681#if 0
4682		if (txq->axq_depth > 0) {
4683			/*
4684			 * More frames follow.  Mark the buffer busy
4685			 * so it's not re-used while the hardware may
4686			 * still re-read the link field in the descriptor.
4687			 *
4688			 * Use the last buffer in an aggregate as that
4689			 * is where the hardware may be - intermediate
4690			 * descriptors won't be "busy".
4691			 */
4692			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4693		} else
4694			txq->axq_link = NULL;
4695#else
4696		bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4697#endif
4698		if (bf->bf_state.bfs_aggr)
4699			txq->axq_aggr_depth--;
4700
4701		ni = bf->bf_node;
4702
4703		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4704		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4705		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
4706		/*
4707		 * If unicast frame was ack'd update RSSI,
4708		 * including the last rx time used to
4709		 * workaround phantom bmiss interrupts.
4710		 */
4711		if (ni != NULL && ts->ts_status == 0 &&
4712		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4713			nacked++;
4714			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4715			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4716				ts->ts_rssi);
4717		}
4718		ATH_TXQ_UNLOCK(txq);
4719
4720		/*
4721		 * Update statistics and call completion
4722		 */
4723		ath_tx_process_buf_completion(sc, txq, ts, bf);
4724
4725		/* XXX at this point, bf and ni may be totally invalid */
4726	}
4727#ifdef IEEE80211_SUPPORT_SUPERG
4728	/*
4729	 * Flush fast-frame staging queue when traffic slows.
4730	 */
4731	if (txq->axq_depth <= 1)
4732		ieee80211_ff_flush(ic, txq->axq_ac);
4733#endif
4734
4735	/* Kick the software TXQ scheduler */
4736	if (dosched) {
4737		ATH_TX_LOCK(sc);
4738		ath_txq_sched(sc, txq);
4739		ATH_TX_UNLOCK(sc);
4740	}
4741
4742	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4743	    "ath_tx_processq: txq=%u: done",
4744	    txq->axq_qnum);
4745
4746	return nacked;
4747}
4748
4749#define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4750
4751/*
4752 * Deferred processing of transmit interrupt; special-cased
4753 * for a single hardware transmit queue (e.g. 5210 and 5211).
4754 */
4755static void
4756ath_tx_proc_q0(void *arg, int npending)
4757{
4758	struct ath_softc *sc = arg;
4759	struct ifnet *ifp = sc->sc_ifp;
4760	uint32_t txqs;
4761
4762	ATH_PCU_LOCK(sc);
4763	sc->sc_txproc_cnt++;
4764	txqs = sc->sc_txq_active;
4765	sc->sc_txq_active &= ~txqs;
4766	ATH_PCU_UNLOCK(sc);
4767
4768	ATH_LOCK(sc);
4769	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4770	ATH_UNLOCK(sc);
4771
4772	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4773	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4774
4775	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4776		/* XXX why is lastrx updated in tx code? */
4777		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4778	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4779		ath_tx_processq(sc, sc->sc_cabq, 1);
4780	IF_LOCK(&ifp->if_snd);
4781	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4782	IF_UNLOCK(&ifp->if_snd);
4783	sc->sc_wd_timer = 0;
4784
4785	if (sc->sc_softled)
4786		ath_led_event(sc, sc->sc_txrix);
4787
4788	ATH_PCU_LOCK(sc);
4789	sc->sc_txproc_cnt--;
4790	ATH_PCU_UNLOCK(sc);
4791
4792	ATH_LOCK(sc);
4793	ath_power_restore_power_state(sc);
4794	ATH_UNLOCK(sc);
4795
4796	ath_tx_kick(sc);
4797}
4798
4799/*
4800 * Deferred processing of transmit interrupt; special-cased
4801 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4802 */
4803static void
4804ath_tx_proc_q0123(void *arg, int npending)
4805{
4806	struct ath_softc *sc = arg;
4807	struct ifnet *ifp = sc->sc_ifp;
4808	int nacked;
4809	uint32_t txqs;
4810
4811	ATH_PCU_LOCK(sc);
4812	sc->sc_txproc_cnt++;
4813	txqs = sc->sc_txq_active;
4814	sc->sc_txq_active &= ~txqs;
4815	ATH_PCU_UNLOCK(sc);
4816
4817	ATH_LOCK(sc);
4818	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4819	ATH_UNLOCK(sc);
4820
4821	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4822	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4823
4824	/*
4825	 * Process each active queue.
4826	 */
4827	nacked = 0;
4828	if (TXQACTIVE(txqs, 0))
4829		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4830	if (TXQACTIVE(txqs, 1))
4831		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4832	if (TXQACTIVE(txqs, 2))
4833		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4834	if (TXQACTIVE(txqs, 3))
4835		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4836	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4837		ath_tx_processq(sc, sc->sc_cabq, 1);
4838	if (nacked)
4839		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4840
4841	IF_LOCK(&ifp->if_snd);
4842	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4843	IF_UNLOCK(&ifp->if_snd);
4844	sc->sc_wd_timer = 0;
4845
4846	if (sc->sc_softled)
4847		ath_led_event(sc, sc->sc_txrix);
4848
4849	ATH_PCU_LOCK(sc);
4850	sc->sc_txproc_cnt--;
4851	ATH_PCU_UNLOCK(sc);
4852
4853	ATH_LOCK(sc);
4854	ath_power_restore_power_state(sc);
4855	ATH_UNLOCK(sc);
4856
4857	ath_tx_kick(sc);
4858}
4859
4860/*
4861 * Deferred processing of transmit interrupt.
4862 */
4863static void
4864ath_tx_proc(void *arg, int npending)
4865{
4866	struct ath_softc *sc = arg;
4867	struct ifnet *ifp = sc->sc_ifp;
4868	int i, nacked;
4869	uint32_t txqs;
4870
4871	ATH_PCU_LOCK(sc);
4872	sc->sc_txproc_cnt++;
4873	txqs = sc->sc_txq_active;
4874	sc->sc_txq_active &= ~txqs;
4875	ATH_PCU_UNLOCK(sc);
4876
4877	ATH_LOCK(sc);
4878	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4879	ATH_UNLOCK(sc);
4880
4881	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4882
4883	/*
4884	 * Process each active queue.
4885	 */
4886	nacked = 0;
4887	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4888		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4889			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4890	if (nacked)
4891		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4892
4893	/* XXX check this inside of IF_LOCK? */
4894	IF_LOCK(&ifp->if_snd);
4895	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4896	IF_UNLOCK(&ifp->if_snd);
4897	sc->sc_wd_timer = 0;
4898
4899	if (sc->sc_softled)
4900		ath_led_event(sc, sc->sc_txrix);
4901
4902	ATH_PCU_LOCK(sc);
4903	sc->sc_txproc_cnt--;
4904	ATH_PCU_UNLOCK(sc);
4905
4906	ATH_LOCK(sc);
4907	ath_power_restore_power_state(sc);
4908	ATH_UNLOCK(sc);
4909
4910	ath_tx_kick(sc);
4911}
4912#undef	TXQACTIVE
4913
4914/*
4915 * Deferred processing of TXQ rescheduling.
4916 */
4917static void
4918ath_txq_sched_tasklet(void *arg, int npending)
4919{
4920	struct ath_softc *sc = arg;
4921	int i;
4922
4923	/* XXX is skipping ok? */
4924	ATH_PCU_LOCK(sc);
4925#if 0
4926	if (sc->sc_inreset_cnt > 0) {
4927		device_printf(sc->sc_dev,
4928		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4929		ATH_PCU_UNLOCK(sc);
4930		return;
4931	}
4932#endif
4933	sc->sc_txproc_cnt++;
4934	ATH_PCU_UNLOCK(sc);
4935
4936	ATH_LOCK(sc);
4937	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4938	ATH_UNLOCK(sc);
4939
4940	ATH_TX_LOCK(sc);
4941	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4942		if (ATH_TXQ_SETUP(sc, i)) {
4943			ath_txq_sched(sc, &sc->sc_txq[i]);
4944		}
4945	}
4946	ATH_TX_UNLOCK(sc);
4947
4948	ATH_LOCK(sc);
4949	ath_power_restore_power_state(sc);
4950	ATH_UNLOCK(sc);
4951
4952	ATH_PCU_LOCK(sc);
4953	sc->sc_txproc_cnt--;
4954	ATH_PCU_UNLOCK(sc);
4955}
4956
4957void
4958ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4959{
4960
4961	ATH_TXBUF_LOCK_ASSERT(sc);
4962
4963	if (bf->bf_flags & ATH_BUF_MGMT)
4964		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4965	else {
4966		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4967		sc->sc_txbuf_cnt++;
4968		if (sc->sc_txbuf_cnt > ath_txbuf) {
4969			device_printf(sc->sc_dev,
4970			    "%s: sc_txbuf_cnt > %d?\n",
4971			    __func__,
4972			    ath_txbuf);
4973			sc->sc_txbuf_cnt = ath_txbuf;
4974		}
4975	}
4976}
4977
4978void
4979ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4980{
4981
4982	ATH_TXBUF_LOCK_ASSERT(sc);
4983
4984	if (bf->bf_flags & ATH_BUF_MGMT)
4985		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4986	else {
4987		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4988		sc->sc_txbuf_cnt++;
4989		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4990			device_printf(sc->sc_dev,
4991			    "%s: sc_txbuf_cnt > %d?\n",
4992			    __func__,
4993			    ATH_TXBUF);
4994			sc->sc_txbuf_cnt = ATH_TXBUF;
4995		}
4996	}
4997}
4998
4999/*
5000 * Free the holding buffer if it exists
5001 */
5002void
5003ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
5004{
5005	ATH_TXBUF_UNLOCK_ASSERT(sc);
5006	ATH_TXQ_LOCK_ASSERT(txq);
5007
5008	if (txq->axq_holdingbf == NULL)
5009		return;
5010
5011	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
5012
5013	ATH_TXBUF_LOCK(sc);
5014	ath_returnbuf_tail(sc, txq->axq_holdingbf);
5015	ATH_TXBUF_UNLOCK(sc);
5016
5017	txq->axq_holdingbf = NULL;
5018}
5019
5020/*
5021 * Add this buffer to the holding queue, freeing the previous
5022 * one if it exists.
5023 */
5024static void
5025ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
5026{
5027	struct ath_txq *txq;
5028
5029	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
5030
5031	ATH_TXBUF_UNLOCK_ASSERT(sc);
5032	ATH_TXQ_LOCK_ASSERT(txq);
5033
5034	/* XXX assert ATH_BUF_BUSY is set */
5035
5036	/* XXX assert the tx queue is under the max number */
5037	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
5038		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
5039		    __func__,
5040		    bf,
5041		    bf->bf_state.bfs_tx_queue);
5042		bf->bf_flags &= ~ATH_BUF_BUSY;
5043		ath_returnbuf_tail(sc, bf);
5044		return;
5045	}
5046	ath_txq_freeholdingbuf(sc, txq);
5047	txq->axq_holdingbf = bf;
5048}
5049
5050/*
5051 * Return a buffer to the pool and update the 'busy' flag on the
5052 * previous 'tail' entry.
5053 *
5054 * This _must_ only be called when the buffer is involved in a completed
5055 * TX. The logic is that if it was part of an active TX, the previous
5056 * buffer on the list is now not involved in a halted TX DMA queue, waiting
5057 * for restart (eg for TDMA.)
5058 *
5059 * The caller must free the mbuf and recycle the node reference.
5060 *
5061 * XXX This method of handling busy / holding buffers is insanely stupid.
5062 * It requires bf_state.bfs_tx_queue to be correctly assigned.  It would
5063 * be much nicer if buffers in the processq() methods would instead be
5064 * always completed there (pushed onto a txq or ath_bufhead) so we knew
5065 * exactly what hardware queue they came from in the first place.
5066 */
5067void
5068ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
5069{
5070	struct ath_txq *txq;
5071
5072	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
5073
5074	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
5075	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
5076
5077	/*
5078	 * If this buffer is busy, push it onto the holding queue.
5079	 */
5080	if (bf->bf_flags & ATH_BUF_BUSY) {
5081		ATH_TXQ_LOCK(txq);
5082		ath_txq_addholdingbuf(sc, bf);
5083		ATH_TXQ_UNLOCK(txq);
5084		return;
5085	}
5086
5087	/*
5088	 * Not a busy buffer, so free normally
5089	 */
5090	ATH_TXBUF_LOCK(sc);
5091	ath_returnbuf_tail(sc, bf);
5092	ATH_TXBUF_UNLOCK(sc);
5093}
5094
5095/*
5096 * This is currently used by ath_tx_draintxq() and
5097 * ath_tx_tid_free_pkts().
5098 *
5099 * It recycles a single ath_buf.
5100 */
5101void
5102ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
5103{
5104	struct ieee80211_node *ni = bf->bf_node;
5105	struct mbuf *m0 = bf->bf_m;
5106
5107	/*
5108	 * Make sure that we only sync/unload if there's an mbuf.
5109	 * If not (eg we cloned a buffer), the unload will have already
5110	 * occured.
5111	 */
5112	if (bf->bf_m != NULL) {
5113		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5114		    BUS_DMASYNC_POSTWRITE);
5115		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5116	}
5117
5118	bf->bf_node = NULL;
5119	bf->bf_m = NULL;
5120
5121	/* Free the buffer, it's not needed any longer */
5122	ath_freebuf(sc, bf);
5123
5124	/* Pass the buffer back to net80211 - completing it */
5125	ieee80211_tx_complete(ni, m0, status);
5126}
5127
5128static struct ath_buf *
5129ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
5130{
5131	struct ath_buf *bf;
5132
5133	ATH_TXQ_LOCK_ASSERT(txq);
5134
5135	/*
5136	 * Drain the FIFO queue first, then if it's
5137	 * empty, move to the normal frame queue.
5138	 */
5139	bf = TAILQ_FIRST(&txq->fifo.axq_q);
5140	if (bf != NULL) {
5141		/*
5142		 * Is it the last buffer in this set?
5143		 * Decrement the FIFO counter.
5144		 */
5145		if (bf->bf_flags & ATH_BUF_FIFOEND) {
5146			if (txq->axq_fifo_depth == 0) {
5147				device_printf(sc->sc_dev,
5148				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
5149				    __func__,
5150				    txq->axq_qnum,
5151				    txq->fifo.axq_depth);
5152			} else
5153				txq->axq_fifo_depth--;
5154		}
5155		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
5156		return (bf);
5157	}
5158
5159	/*
5160	 * Debugging!
5161	 */
5162	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
5163		device_printf(sc->sc_dev,
5164		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
5165		    __func__,
5166		    txq->axq_qnum,
5167		    txq->axq_fifo_depth,
5168		    txq->fifo.axq_depth);
5169	}
5170
5171	/*
5172	 * Now drain the pending queue.
5173	 */
5174	bf = TAILQ_FIRST(&txq->axq_q);
5175	if (bf == NULL) {
5176		txq->axq_link = NULL;
5177		return (NULL);
5178	}
5179	ATH_TXQ_REMOVE(txq, bf, bf_list);
5180	return (bf);
5181}
5182
5183void
5184ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5185{
5186#ifdef ATH_DEBUG
5187	struct ath_hal *ah = sc->sc_ah;
5188#endif
5189	struct ath_buf *bf;
5190	u_int ix;
5191
5192	/*
5193	 * NB: this assumes output has been stopped and
5194	 *     we do not need to block ath_tx_proc
5195	 */
5196	for (ix = 0;; ix++) {
5197		ATH_TXQ_LOCK(txq);
5198		bf = ath_tx_draintxq_get_one(sc, txq);
5199		if (bf == NULL) {
5200			ATH_TXQ_UNLOCK(txq);
5201			break;
5202		}
5203		if (bf->bf_state.bfs_aggr)
5204			txq->axq_aggr_depth--;
5205#ifdef ATH_DEBUG
5206		if (sc->sc_debug & ATH_DEBUG_RESET) {
5207			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5208			int status = 0;
5209
5210			/*
5211			 * EDMA operation has a TX completion FIFO
5212			 * separate from the TX descriptor, so this
5213			 * method of checking the "completion" status
5214			 * is wrong.
5215			 */
5216			if (! sc->sc_isedma) {
5217				status = (ath_hal_txprocdesc(ah,
5218				    bf->bf_lastds,
5219				    &bf->bf_status.ds_txstat) == HAL_OK);
5220			}
5221			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
5222			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5223			    bf->bf_m->m_len, 0, -1);
5224		}
5225#endif /* ATH_DEBUG */
5226		/*
5227		 * Since we're now doing magic in the completion
5228		 * functions, we -must- call it for aggregation
5229		 * destinations or BAW tracking will get upset.
5230		 */
5231		/*
5232		 * Clear ATH_BUF_BUSY; the completion handler
5233		 * will free the buffer.
5234		 */
5235		ATH_TXQ_UNLOCK(txq);
5236		bf->bf_flags &= ~ATH_BUF_BUSY;
5237		if (bf->bf_comp)
5238			bf->bf_comp(sc, bf, 1);
5239		else
5240			ath_tx_default_comp(sc, bf, 1);
5241	}
5242
5243	/*
5244	 * Free the holding buffer if it exists
5245	 */
5246	ATH_TXQ_LOCK(txq);
5247	ath_txq_freeholdingbuf(sc, txq);
5248	ATH_TXQ_UNLOCK(txq);
5249
5250	/*
5251	 * Drain software queued frames which are on
5252	 * active TIDs.
5253	 */
5254	ath_tx_txq_drain(sc, txq);
5255}
5256
5257static void
5258ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5259{
5260	struct ath_hal *ah = sc->sc_ah;
5261
5262	ATH_TXQ_LOCK_ASSERT(txq);
5263
5264	DPRINTF(sc, ATH_DEBUG_RESET,
5265	    "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
5266	    "link %p, holdingbf=%p\n",
5267	    __func__,
5268	    txq->axq_qnum,
5269	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5270	    (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
5271	    (int) ath_hal_numtxpending(ah, txq->axq_qnum),
5272	    txq->axq_flags,
5273	    txq->axq_link,
5274	    txq->axq_holdingbf);
5275
5276	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5277	/* We've stopped TX DMA, so mark this as stopped. */
5278	txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
5279
5280#ifdef	ATH_DEBUG
5281	if ((sc->sc_debug & ATH_DEBUG_RESET)
5282	    && (txq->axq_holdingbf != NULL)) {
5283		ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
5284	}
5285#endif
5286}
5287
5288int
5289ath_stoptxdma(struct ath_softc *sc)
5290{
5291	struct ath_hal *ah = sc->sc_ah;
5292	int i;
5293
5294	/* XXX return value */
5295	if (sc->sc_invalid)
5296		return 0;
5297
5298	if (!sc->sc_invalid) {
5299		/* don't touch the hardware if marked invalid */
5300		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5301		    __func__, sc->sc_bhalq,
5302		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5303		    NULL);
5304
5305		/* stop the beacon queue */
5306		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5307
5308		/* Stop the data queues */
5309		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5310			if (ATH_TXQ_SETUP(sc, i)) {
5311				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5312				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5313				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5314			}
5315		}
5316	}
5317
5318	return 1;
5319}
5320
5321#ifdef	ATH_DEBUG
5322void
5323ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
5324{
5325	struct ath_hal *ah = sc->sc_ah;
5326	struct ath_buf *bf;
5327	int i = 0;
5328
5329	if (! (sc->sc_debug & ATH_DEBUG_RESET))
5330		return;
5331
5332	device_printf(sc->sc_dev, "%s: Q%d: begin\n",
5333	    __func__, txq->axq_qnum);
5334	TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
5335		ath_printtxbuf(sc, bf, txq->axq_qnum, i,
5336			ath_hal_txprocdesc(ah, bf->bf_lastds,
5337			    &bf->bf_status.ds_txstat) == HAL_OK);
5338		i++;
5339	}
5340	device_printf(sc->sc_dev, "%s: Q%d: end\n",
5341	    __func__, txq->axq_qnum);
5342}
5343#endif /* ATH_DEBUG */
5344
5345/*
5346 * Drain the transmit queues and reclaim resources.
5347 */
5348void
5349ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5350{
5351	struct ath_hal *ah = sc->sc_ah;
5352	struct ifnet *ifp = sc->sc_ifp;
5353	int i;
5354	struct ath_buf *bf_last;
5355
5356	(void) ath_stoptxdma(sc);
5357
5358	/*
5359	 * Dump the queue contents
5360	 */
5361	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5362		/*
5363		 * XXX TODO: should we just handle the completed TX frames
5364		 * here, whether or not the reset is a full one or not?
5365		 */
5366		if (ATH_TXQ_SETUP(sc, i)) {
5367#ifdef	ATH_DEBUG
5368			if (sc->sc_debug & ATH_DEBUG_RESET)
5369				ath_tx_dump(sc, &sc->sc_txq[i]);
5370#endif	/* ATH_DEBUG */
5371			if (reset_type == ATH_RESET_NOLOSS) {
5372				ath_tx_processq(sc, &sc->sc_txq[i], 0);
5373				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5374				/*
5375				 * Free the holding buffer; DMA is now
5376				 * stopped.
5377				 */
5378				ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
5379				/*
5380				 * Setup the link pointer to be the
5381				 * _last_ buffer/descriptor in the list.
5382				 * If there's nothing in the list, set it
5383				 * to NULL.
5384				 */
5385				bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
5386				    axq_q_s);
5387				if (bf_last != NULL) {
5388					ath_hal_gettxdesclinkptr(ah,
5389					    bf_last->bf_lastds,
5390					    &sc->sc_txq[i].axq_link);
5391				} else {
5392					sc->sc_txq[i].axq_link = NULL;
5393				}
5394				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5395			} else
5396				ath_tx_draintxq(sc, &sc->sc_txq[i]);
5397		}
5398	}
5399#ifdef ATH_DEBUG
5400	if (sc->sc_debug & ATH_DEBUG_RESET) {
5401		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5402		if (bf != NULL && bf->bf_m != NULL) {
5403			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5404				ath_hal_txprocdesc(ah, bf->bf_lastds,
5405				    &bf->bf_status.ds_txstat) == HAL_OK);
5406			ieee80211_dump_pkt(ifp->if_l2com,
5407			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5408			    0, -1);
5409		}
5410	}
5411#endif /* ATH_DEBUG */
5412	IF_LOCK(&ifp->if_snd);
5413	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5414	IF_UNLOCK(&ifp->if_snd);
5415	sc->sc_wd_timer = 0;
5416}
5417
5418/*
5419 * Update internal state after a channel change.
5420 */
5421static void
5422ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5423{
5424	enum ieee80211_phymode mode;
5425
5426	/*
5427	 * Change channels and update the h/w rate map
5428	 * if we're switching; e.g. 11a to 11b/g.
5429	 */
5430	mode = ieee80211_chan2mode(chan);
5431	if (mode != sc->sc_curmode)
5432		ath_setcurmode(sc, mode);
5433	sc->sc_curchan = chan;
5434}
5435
5436/*
5437 * Set/change channels.  If the channel is really being changed,
5438 * it's done by resetting the chip.  To accomplish this we must
5439 * first cleanup any pending DMA, then restart stuff after a la
5440 * ath_init.
5441 */
5442static int
5443ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5444{
5445	struct ifnet *ifp = sc->sc_ifp;
5446	struct ieee80211com *ic = ifp->if_l2com;
5447	struct ath_hal *ah = sc->sc_ah;
5448	int ret = 0;
5449
5450	/* Treat this as an interface reset */
5451	ATH_PCU_UNLOCK_ASSERT(sc);
5452	ATH_UNLOCK_ASSERT(sc);
5453
5454	/* (Try to) stop TX/RX from occuring */
5455	taskqueue_block(sc->sc_tq);
5456
5457	ATH_PCU_LOCK(sc);
5458
5459	/* Disable interrupts */
5460	ath_hal_intrset(ah, 0);
5461
5462	/* Stop new RX/TX/interrupt completion */
5463	if (ath_reset_grablock(sc, 1) == 0) {
5464		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5465		    __func__);
5466	}
5467
5468	/* Stop pending RX/TX completion */
5469	ath_txrx_stop_locked(sc);
5470
5471	ATH_PCU_UNLOCK(sc);
5472
5473	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5474	    __func__, ieee80211_chan2ieee(ic, chan),
5475	    chan->ic_freq, chan->ic_flags);
5476	if (chan != sc->sc_curchan) {
5477		HAL_STATUS status;
5478		/*
5479		 * To switch channels clear any pending DMA operations;
5480		 * wait long enough for the RX fifo to drain, reset the
5481		 * hardware at the new frequency, and then re-enable
5482		 * the relevant bits of the h/w.
5483		 */
5484#if 0
5485		ath_hal_intrset(ah, 0);		/* disable interrupts */
5486#endif
5487		ath_stoprecv(sc, 1);		/* turn off frame recv */
5488		/*
5489		 * First, handle completed TX/RX frames.
5490		 */
5491		ath_rx_flush(sc);
5492		ath_draintxq(sc, ATH_RESET_NOLOSS);
5493		/*
5494		 * Next, flush the non-scheduled frames.
5495		 */
5496		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5497
5498		ath_update_chainmasks(sc, chan);
5499		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
5500		    sc->sc_cur_rxchainmask);
5501		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5502			if_printf(ifp, "%s: unable to reset "
5503			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5504			    __func__, ieee80211_chan2ieee(ic, chan),
5505			    chan->ic_freq, chan->ic_flags, status);
5506			ret = EIO;
5507			goto finish;
5508		}
5509		sc->sc_diversity = ath_hal_getdiversity(ah);
5510
5511		ATH_RX_LOCK(sc);
5512		sc->sc_rx_stopped = 1;
5513		sc->sc_rx_resetted = 1;
5514		ATH_RX_UNLOCK(sc);
5515
5516		/* Let DFS at it in case it's a DFS channel */
5517		ath_dfs_radar_enable(sc, chan);
5518
5519		/* Let spectral at in case spectral is enabled */
5520		ath_spectral_enable(sc, chan);
5521
5522		/*
5523		 * Let bluetooth coexistence at in case it's needed for this
5524		 * channel
5525		 */
5526		ath_btcoex_enable(sc, ic->ic_curchan);
5527
5528		/*
5529		 * If we're doing TDMA, enforce the TXOP limitation for chips
5530		 * that support it.
5531		 */
5532		if (sc->sc_hasenforcetxop && sc->sc_tdma)
5533			ath_hal_setenforcetxop(sc->sc_ah, 1);
5534		else
5535			ath_hal_setenforcetxop(sc->sc_ah, 0);
5536
5537		/*
5538		 * Re-enable rx framework.
5539		 */
5540		if (ath_startrecv(sc) != 0) {
5541			if_printf(ifp, "%s: unable to restart recv logic\n",
5542			    __func__);
5543			ret = EIO;
5544			goto finish;
5545		}
5546
5547		/*
5548		 * Change channels and update the h/w rate map
5549		 * if we're switching; e.g. 11a to 11b/g.
5550		 */
5551		ath_chan_change(sc, chan);
5552
5553		/*
5554		 * Reset clears the beacon timers; reset them
5555		 * here if needed.
5556		 */
5557		if (sc->sc_beacons) {		/* restart beacons */
5558#ifdef IEEE80211_SUPPORT_TDMA
5559			if (sc->sc_tdma)
5560				ath_tdma_config(sc, NULL);
5561			else
5562#endif
5563			ath_beacon_config(sc, NULL);
5564		}
5565
5566		/*
5567		 * Re-enable interrupts.
5568		 */
5569#if 0
5570		ath_hal_intrset(ah, sc->sc_imask);
5571#endif
5572	}
5573
5574finish:
5575	ATH_PCU_LOCK(sc);
5576	sc->sc_inreset_cnt--;
5577	/* XXX only do this if sc_inreset_cnt == 0? */
5578	ath_hal_intrset(ah, sc->sc_imask);
5579	ATH_PCU_UNLOCK(sc);
5580
5581	IF_LOCK(&ifp->if_snd);
5582	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5583	IF_UNLOCK(&ifp->if_snd);
5584	ath_txrx_start(sc);
5585	/* XXX ath_start? */
5586
5587	return ret;
5588}
5589
5590/*
5591 * Periodically recalibrate the PHY to account
5592 * for temperature/environment changes.
5593 */
5594static void
5595ath_calibrate(void *arg)
5596{
5597	struct ath_softc *sc = arg;
5598	struct ath_hal *ah = sc->sc_ah;
5599	struct ifnet *ifp = sc->sc_ifp;
5600	struct ieee80211com *ic = ifp->if_l2com;
5601	HAL_BOOL longCal, isCalDone = AH_TRUE;
5602	HAL_BOOL aniCal, shortCal = AH_FALSE;
5603	int nextcal;
5604
5605	ATH_LOCK_ASSERT(sc);
5606
5607	/*
5608	 * Force the hardware awake for ANI work.
5609	 */
5610	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5611
5612	/* Skip trying to do this if we're in reset */
5613	if (sc->sc_inreset_cnt)
5614		goto restart;
5615
5616	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5617		goto restart;
5618	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5619	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5620	if (sc->sc_doresetcal)
5621		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5622
5623	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5624	if (aniCal) {
5625		sc->sc_stats.ast_ani_cal++;
5626		sc->sc_lastani = ticks;
5627		ath_hal_ani_poll(ah, sc->sc_curchan);
5628	}
5629
5630	if (longCal) {
5631		sc->sc_stats.ast_per_cal++;
5632		sc->sc_lastlongcal = ticks;
5633		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5634			/*
5635			 * Rfgain is out of bounds, reset the chip
5636			 * to load new gain values.
5637			 */
5638			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5639				"%s: rfgain change\n", __func__);
5640			sc->sc_stats.ast_per_rfgain++;
5641			sc->sc_resetcal = 0;
5642			sc->sc_doresetcal = AH_TRUE;
5643			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5644			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5645			ath_power_restore_power_state(sc);
5646			return;
5647		}
5648		/*
5649		 * If this long cal is after an idle period, then
5650		 * reset the data collection state so we start fresh.
5651		 */
5652		if (sc->sc_resetcal) {
5653			(void) ath_hal_calreset(ah, sc->sc_curchan);
5654			sc->sc_lastcalreset = ticks;
5655			sc->sc_lastshortcal = ticks;
5656			sc->sc_resetcal = 0;
5657			sc->sc_doresetcal = AH_TRUE;
5658		}
5659	}
5660
5661	/* Only call if we're doing a short/long cal, not for ANI calibration */
5662	if (shortCal || longCal) {
5663		isCalDone = AH_FALSE;
5664		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5665			if (longCal) {
5666				/*
5667				 * Calibrate noise floor data again in case of change.
5668				 */
5669				ath_hal_process_noisefloor(ah);
5670			}
5671		} else {
5672			DPRINTF(sc, ATH_DEBUG_ANY,
5673				"%s: calibration of channel %u failed\n",
5674				__func__, sc->sc_curchan->ic_freq);
5675			sc->sc_stats.ast_per_calfail++;
5676		}
5677		if (shortCal)
5678			sc->sc_lastshortcal = ticks;
5679	}
5680	if (!isCalDone) {
5681restart:
5682		/*
5683		 * Use a shorter interval to potentially collect multiple
5684		 * data samples required to complete calibration.  Once
5685		 * we're told the work is done we drop back to a longer
5686		 * interval between requests.  We're more aggressive doing
5687		 * work when operating as an AP to improve operation right
5688		 * after startup.
5689		 */
5690		sc->sc_lastshortcal = ticks;
5691		nextcal = ath_shortcalinterval*hz/1000;
5692		if (sc->sc_opmode != HAL_M_HOSTAP)
5693			nextcal *= 10;
5694		sc->sc_doresetcal = AH_TRUE;
5695	} else {
5696		/* nextcal should be the shortest time for next event */
5697		nextcal = ath_longcalinterval*hz;
5698		if (sc->sc_lastcalreset == 0)
5699			sc->sc_lastcalreset = sc->sc_lastlongcal;
5700		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5701			sc->sc_resetcal = 1;	/* setup reset next trip */
5702		sc->sc_doresetcal = AH_FALSE;
5703	}
5704	/* ANI calibration may occur more often than short/long/resetcal */
5705	if (ath_anicalinterval > 0)
5706		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5707
5708	if (nextcal != 0) {
5709		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5710		    __func__, nextcal, isCalDone ? "" : "!");
5711		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5712	} else {
5713		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5714		    __func__);
5715		/* NB: don't rearm timer */
5716	}
5717	/*
5718	 * Restore power state now that we're done.
5719	 */
5720	ath_power_restore_power_state(sc);
5721}
5722
5723static void
5724ath_scan_start(struct ieee80211com *ic)
5725{
5726	struct ifnet *ifp = ic->ic_ifp;
5727	struct ath_softc *sc = ifp->if_softc;
5728	struct ath_hal *ah = sc->sc_ah;
5729	u_int32_t rfilt;
5730
5731	/* XXX calibration timer? */
5732
5733	ATH_LOCK(sc);
5734	sc->sc_scanning = 1;
5735	sc->sc_syncbeacon = 0;
5736	rfilt = ath_calcrxfilter(sc);
5737	ATH_UNLOCK(sc);
5738
5739	ATH_PCU_LOCK(sc);
5740	ath_hal_setrxfilter(ah, rfilt);
5741	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5742	ATH_PCU_UNLOCK(sc);
5743
5744	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5745		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5746}
5747
5748static void
5749ath_scan_end(struct ieee80211com *ic)
5750{
5751	struct ifnet *ifp = ic->ic_ifp;
5752	struct ath_softc *sc = ifp->if_softc;
5753	struct ath_hal *ah = sc->sc_ah;
5754	u_int32_t rfilt;
5755
5756	ATH_LOCK(sc);
5757	sc->sc_scanning = 0;
5758	rfilt = ath_calcrxfilter(sc);
5759	ATH_UNLOCK(sc);
5760
5761	ATH_PCU_LOCK(sc);
5762	ath_hal_setrxfilter(ah, rfilt);
5763	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5764
5765	ath_hal_process_noisefloor(ah);
5766	ATH_PCU_UNLOCK(sc);
5767
5768	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5769		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5770		 sc->sc_curaid);
5771}
5772
5773#ifdef	ATH_ENABLE_11N
5774/*
5775 * For now, just do a channel change.
5776 *
5777 * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5778 * control state and resetting the hardware without dropping frames out
5779 * of the queue.
5780 *
5781 * The unfortunate trouble here is making absolutely sure that the
5782 * channel width change has propagated enough so the hardware
5783 * absolutely isn't handed bogus frames for it's current operating
5784 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5785 * does occur in parallel, we need to make certain we've blocked
5786 * any further ongoing TX (and RX, that can cause raw TX)
5787 * before we do this.
5788 */
5789static void
5790ath_update_chw(struct ieee80211com *ic)
5791{
5792	struct ifnet *ifp = ic->ic_ifp;
5793	struct ath_softc *sc = ifp->if_softc;
5794
5795	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5796	ath_set_channel(ic);
5797}
5798#endif	/* ATH_ENABLE_11N */
5799
5800static void
5801ath_set_channel(struct ieee80211com *ic)
5802{
5803	struct ifnet *ifp = ic->ic_ifp;
5804	struct ath_softc *sc = ifp->if_softc;
5805
5806	ATH_LOCK(sc);
5807	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5808	ATH_UNLOCK(sc);
5809
5810	(void) ath_chan_set(sc, ic->ic_curchan);
5811	/*
5812	 * If we are returning to our bss channel then mark state
5813	 * so the next recv'd beacon's tsf will be used to sync the
5814	 * beacon timers.  Note that since we only hear beacons in
5815	 * sta/ibss mode this has no effect in other operating modes.
5816	 */
5817	ATH_LOCK(sc);
5818	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5819		sc->sc_syncbeacon = 1;
5820	ath_power_restore_power_state(sc);
5821	ATH_UNLOCK(sc);
5822}
5823
5824/*
5825 * Walk the vap list and check if there any vap's in RUN state.
5826 */
5827static int
5828ath_isanyrunningvaps(struct ieee80211vap *this)
5829{
5830	struct ieee80211com *ic = this->iv_ic;
5831	struct ieee80211vap *vap;
5832
5833	IEEE80211_LOCK_ASSERT(ic);
5834
5835	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5836		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5837			return 1;
5838	}
5839	return 0;
5840}
5841
5842static int
5843ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5844{
5845	struct ieee80211com *ic = vap->iv_ic;
5846	struct ath_softc *sc = ic->ic_ifp->if_softc;
5847	struct ath_vap *avp = ATH_VAP(vap);
5848	struct ath_hal *ah = sc->sc_ah;
5849	struct ieee80211_node *ni = NULL;
5850	int i, error, stamode;
5851	u_int32_t rfilt;
5852	int csa_run_transition = 0;
5853	enum ieee80211_state ostate = vap->iv_state;
5854
5855	static const HAL_LED_STATE leds[] = {
5856	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5857	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5858	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5859	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5860	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5861	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5862	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5863	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5864	};
5865
5866	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5867		ieee80211_state_name[ostate],
5868		ieee80211_state_name[nstate]);
5869
5870	/*
5871	 * net80211 _should_ have the comlock asserted at this point.
5872	 * There are some comments around the calls to vap->iv_newstate
5873	 * which indicate that it (newstate) may end up dropping the
5874	 * lock.  This and the subsequent lock assert check after newstate
5875	 * are an attempt to catch these and figure out how/why.
5876	 */
5877	IEEE80211_LOCK_ASSERT(ic);
5878
5879	/* Before we touch the hardware - wake it up */
5880	ATH_LOCK(sc);
5881	/*
5882	 * If the NIC is in anything other than SLEEP state,
5883	 * we need to ensure that self-generated frames are
5884	 * set for PWRMGT=0.  Otherwise we may end up with
5885	 * strange situations.
5886	 *
5887	 * XXX TODO: is this actually the case? :-)
5888	 */
5889	if (nstate != IEEE80211_S_SLEEP)
5890		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5891
5892	/*
5893	 * Now, wake the thing up.
5894	 */
5895	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5896
5897	/*
5898	 * And stop the calibration callout whilst we have
5899	 * ATH_LOCK held.
5900	 */
5901	callout_stop(&sc->sc_cal_ch);
5902	ATH_UNLOCK(sc);
5903
5904	if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5905		csa_run_transition = 1;
5906
5907	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5908
5909	if (nstate == IEEE80211_S_SCAN) {
5910		/*
5911		 * Scanning: turn off beacon miss and don't beacon.
5912		 * Mark beacon state so when we reach RUN state we'll
5913		 * [re]setup beacons.  Unblock the task q thread so
5914		 * deferred interrupt processing is done.
5915		 */
5916
5917		/* Ensure we stay awake during scan */
5918		ATH_LOCK(sc);
5919		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5920		ath_power_setpower(sc, HAL_PM_AWAKE);
5921		ATH_UNLOCK(sc);
5922
5923		ath_hal_intrset(ah,
5924		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5925		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5926		sc->sc_beacons = 0;
5927		taskqueue_unblock(sc->sc_tq);
5928	}
5929
5930	ni = ieee80211_ref_node(vap->iv_bss);
5931	rfilt = ath_calcrxfilter(sc);
5932	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5933		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5934		   vap->iv_opmode == IEEE80211_M_IBSS);
5935
5936	/*
5937	 * XXX Dont need to do this (and others) if we've transitioned
5938	 * from SLEEP->RUN.
5939	 */
5940	if (stamode && nstate == IEEE80211_S_RUN) {
5941		sc->sc_curaid = ni->ni_associd;
5942		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5943		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5944	}
5945	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5946	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5947	ath_hal_setrxfilter(ah, rfilt);
5948
5949	/* XXX is this to restore keycache on resume? */
5950	if (vap->iv_opmode != IEEE80211_M_STA &&
5951	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5952		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5953			if (ath_hal_keyisvalid(ah, i))
5954				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5955	}
5956
5957	/*
5958	 * Invoke the parent method to do net80211 work.
5959	 */
5960	error = avp->av_newstate(vap, nstate, arg);
5961	if (error != 0)
5962		goto bad;
5963
5964	/*
5965	 * See above: ensure av_newstate() doesn't drop the lock
5966	 * on us.
5967	 */
5968	IEEE80211_LOCK_ASSERT(ic);
5969
5970	if (nstate == IEEE80211_S_RUN) {
5971		/* NB: collect bss node again, it may have changed */
5972		ieee80211_free_node(ni);
5973		ni = ieee80211_ref_node(vap->iv_bss);
5974
5975		DPRINTF(sc, ATH_DEBUG_STATE,
5976		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5977		    "capinfo 0x%04x chan %d\n", __func__,
5978		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5979		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5980
5981		switch (vap->iv_opmode) {
5982#ifdef IEEE80211_SUPPORT_TDMA
5983		case IEEE80211_M_AHDEMO:
5984			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5985				break;
5986			/* fall thru... */
5987#endif
5988		case IEEE80211_M_HOSTAP:
5989		case IEEE80211_M_IBSS:
5990		case IEEE80211_M_MBSS:
5991			/*
5992			 * Allocate and setup the beacon frame.
5993			 *
5994			 * Stop any previous beacon DMA.  This may be
5995			 * necessary, for example, when an ibss merge
5996			 * causes reconfiguration; there will be a state
5997			 * transition from RUN->RUN that means we may
5998			 * be called with beacon transmission active.
5999			 */
6000			ath_hal_stoptxdma(ah, sc->sc_bhalq);
6001
6002			error = ath_beacon_alloc(sc, ni);
6003			if (error != 0)
6004				goto bad;
6005			/*
6006			 * If joining an adhoc network defer beacon timer
6007			 * configuration to the next beacon frame so we
6008			 * have a current TSF to use.  Otherwise we're
6009			 * starting an ibss/bss so there's no need to delay;
6010			 * if this is the first vap moving to RUN state, then
6011			 * beacon state needs to be [re]configured.
6012			 */
6013			if (vap->iv_opmode == IEEE80211_M_IBSS &&
6014			    ni->ni_tstamp.tsf != 0) {
6015				sc->sc_syncbeacon = 1;
6016			} else if (!sc->sc_beacons) {
6017#ifdef IEEE80211_SUPPORT_TDMA
6018				if (vap->iv_caps & IEEE80211_C_TDMA)
6019					ath_tdma_config(sc, vap);
6020				else
6021#endif
6022					ath_beacon_config(sc, vap);
6023				sc->sc_beacons = 1;
6024			}
6025			break;
6026		case IEEE80211_M_STA:
6027			/*
6028			 * Defer beacon timer configuration to the next
6029			 * beacon frame so we have a current TSF to use
6030			 * (any TSF collected when scanning is likely old).
6031			 * However if it's due to a CSA -> RUN transition,
6032			 * force a beacon update so we pick up a lack of
6033			 * beacons from an AP in CAC and thus force a
6034			 * scan.
6035			 *
6036			 * And, there's also corner cases here where
6037			 * after a scan, the AP may have disappeared.
6038			 * In that case, we may not receive an actual
6039			 * beacon to update the beacon timer and thus we
6040			 * won't get notified of the missing beacons.
6041			 */
6042			if (ostate != IEEE80211_S_RUN &&
6043			    ostate != IEEE80211_S_SLEEP) {
6044				DPRINTF(sc, ATH_DEBUG_BEACON,
6045				    "%s: STA; syncbeacon=1\n", __func__);
6046				sc->sc_syncbeacon = 1;
6047
6048				if (csa_run_transition)
6049					ath_beacon_config(sc, vap);
6050
6051			/*
6052			 * PR: kern/175227
6053			 *
6054			 * Reconfigure beacons during reset; as otherwise
6055			 * we won't get the beacon timers reprogrammed
6056			 * after a reset and thus we won't pick up a
6057			 * beacon miss interrupt.
6058			 *
6059			 * Hopefully we'll see a beacon before the BMISS
6060			 * timer fires (too often), leading to a STA
6061			 * disassociation.
6062			 */
6063				sc->sc_beacons = 1;
6064			}
6065			break;
6066		case IEEE80211_M_MONITOR:
6067			/*
6068			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
6069			 * transitions so we must re-enable interrupts here to
6070			 * handle the case of a single monitor mode vap.
6071			 */
6072			ath_hal_intrset(ah, sc->sc_imask);
6073			break;
6074		case IEEE80211_M_WDS:
6075			break;
6076		default:
6077			break;
6078		}
6079		/*
6080		 * Let the hal process statistics collected during a
6081		 * scan so it can provide calibrated noise floor data.
6082		 */
6083		ath_hal_process_noisefloor(ah);
6084		/*
6085		 * Reset rssi stats; maybe not the best place...
6086		 */
6087		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
6088		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
6089		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
6090
6091		/*
6092		 * Force awake for RUN mode.
6093		 */
6094		ATH_LOCK(sc);
6095		ath_power_setselfgen(sc, HAL_PM_AWAKE);
6096		ath_power_setpower(sc, HAL_PM_AWAKE);
6097
6098		/*
6099		 * Finally, start any timers and the task q thread
6100		 * (in case we didn't go through SCAN state).
6101		 */
6102		if (ath_longcalinterval != 0) {
6103			/* start periodic recalibration timer */
6104			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6105		} else {
6106			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6107			    "%s: calibration disabled\n", __func__);
6108		}
6109		ATH_UNLOCK(sc);
6110
6111		taskqueue_unblock(sc->sc_tq);
6112	} else if (nstate == IEEE80211_S_INIT) {
6113		/*
6114		 * If there are no vaps left in RUN state then
6115		 * shutdown host/driver operation:
6116		 * o disable interrupts
6117		 * o disable the task queue thread
6118		 * o mark beacon processing as stopped
6119		 */
6120		if (!ath_isanyrunningvaps(vap)) {
6121			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6122			/* disable interrupts  */
6123			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
6124			taskqueue_block(sc->sc_tq);
6125			sc->sc_beacons = 0;
6126		}
6127#ifdef IEEE80211_SUPPORT_TDMA
6128		ath_hal_setcca(ah, AH_TRUE);
6129#endif
6130	} else if (nstate == IEEE80211_S_SLEEP) {
6131		/* We're going to sleep, so transition appropriately */
6132		/* For now, only do this if we're a single STA vap */
6133		if (sc->sc_nvaps == 1 &&
6134		    vap->iv_opmode == IEEE80211_M_STA) {
6135			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon);
6136			ATH_LOCK(sc);
6137			/*
6138			 * Always at least set the self-generated
6139			 * frame config to set PWRMGT=1.
6140			 */
6141			ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP);
6142
6143			/*
6144			 * If we're not syncing beacons, transition
6145			 * to NETWORK_SLEEP.
6146			 *
6147			 * We stay awake if syncbeacon > 0 in case
6148			 * we need to listen for some beacons otherwise
6149			 * our beacon timer config may be wrong.
6150			 */
6151			if (sc->sc_syncbeacon == 0) {
6152				ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP);
6153			}
6154			ATH_UNLOCK(sc);
6155		}
6156	}
6157bad:
6158	ieee80211_free_node(ni);
6159
6160	/*
6161	 * Restore the power state - either to what it was, or
6162	 * to network_sleep if it's alright.
6163	 */
6164	ATH_LOCK(sc);
6165	ath_power_restore_power_state(sc);
6166	ATH_UNLOCK(sc);
6167	return error;
6168}
6169
6170/*
6171 * Allocate a key cache slot to the station so we can
6172 * setup a mapping from key index to node. The key cache
6173 * slot is needed for managing antenna state and for
6174 * compression when stations do not use crypto.  We do
6175 * it uniliaterally here; if crypto is employed this slot
6176 * will be reassigned.
6177 */
6178static void
6179ath_setup_stationkey(struct ieee80211_node *ni)
6180{
6181	struct ieee80211vap *vap = ni->ni_vap;
6182	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6183	ieee80211_keyix keyix, rxkeyix;
6184
6185	/* XXX should take a locked ref to vap->iv_bss */
6186	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6187		/*
6188		 * Key cache is full; we'll fall back to doing
6189		 * the more expensive lookup in software.  Note
6190		 * this also means no h/w compression.
6191		 */
6192		/* XXX msg+statistic */
6193	} else {
6194		/* XXX locking? */
6195		ni->ni_ucastkey.wk_keyix = keyix;
6196		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6197		/* NB: must mark device key to get called back on delete */
6198		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6199		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6200		/* NB: this will create a pass-thru key entry */
6201		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
6202	}
6203}
6204
6205/*
6206 * Setup driver-specific state for a newly associated node.
6207 * Note that we're called also on a re-associate, the isnew
6208 * param tells us if this is the first time or not.
6209 */
6210static void
6211ath_newassoc(struct ieee80211_node *ni, int isnew)
6212{
6213	struct ath_node *an = ATH_NODE(ni);
6214	struct ieee80211vap *vap = ni->ni_vap;
6215	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6216	const struct ieee80211_txparam *tp = ni->ni_txparms;
6217
6218	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
6219	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
6220
6221	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n",
6222	    __func__,
6223	    ni->ni_macaddr,
6224	    ":",
6225	    isnew,
6226	    an->an_is_powersave);
6227
6228	ATH_NODE_LOCK(an);
6229	ath_rate_newassoc(sc, an, isnew);
6230	ATH_NODE_UNLOCK(an);
6231
6232	if (isnew &&
6233	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6234	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6235		ath_setup_stationkey(ni);
6236
6237	/*
6238	 * If we're reassociating, make sure that any paused queues
6239	 * get unpaused.
6240	 *
6241	 * Now, we may hvae frames in the hardware queue for this node.
6242	 * So if we are reassociating and there are frames in the queue,
6243	 * we need to go through the cleanup path to ensure that they're
6244	 * marked as non-aggregate.
6245	 */
6246	if (! isnew) {
6247		DPRINTF(sc, ATH_DEBUG_NODE,
6248		    "%s: %6D: reassoc; is_powersave=%d\n",
6249		    __func__,
6250		    ni->ni_macaddr,
6251		    ":",
6252		    an->an_is_powersave);
6253
6254		/* XXX for now, we can't hold the lock across assoc */
6255		ath_tx_node_reassoc(sc, an);
6256
6257		/* XXX for now, we can't hold the lock across wakeup */
6258		if (an->an_is_powersave)
6259			ath_tx_node_wakeup(sc, an);
6260	}
6261}
6262
6263static int
6264ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6265	int nchans, struct ieee80211_channel chans[])
6266{
6267	struct ath_softc *sc = ic->ic_ifp->if_softc;
6268	struct ath_hal *ah = sc->sc_ah;
6269	HAL_STATUS status;
6270
6271	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6272	    "%s: rd %u cc %u location %c%s\n",
6273	    __func__, reg->regdomain, reg->country, reg->location,
6274	    reg->ecm ? " ecm" : "");
6275
6276	status = ath_hal_set_channels(ah, chans, nchans,
6277	    reg->country, reg->regdomain);
6278	if (status != HAL_OK) {
6279		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6280		    __func__, status);
6281		return EINVAL;		/* XXX */
6282	}
6283
6284	return 0;
6285}
6286
6287static void
6288ath_getradiocaps(struct ieee80211com *ic,
6289	int maxchans, int *nchans, struct ieee80211_channel chans[])
6290{
6291	struct ath_softc *sc = ic->ic_ifp->if_softc;
6292	struct ath_hal *ah = sc->sc_ah;
6293
6294	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6295	    __func__, SKU_DEBUG, CTRY_DEFAULT);
6296
6297	/* XXX check return */
6298	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6299	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6300
6301}
6302
6303static int
6304ath_getchannels(struct ath_softc *sc)
6305{
6306	struct ifnet *ifp = sc->sc_ifp;
6307	struct ieee80211com *ic = ifp->if_l2com;
6308	struct ath_hal *ah = sc->sc_ah;
6309	HAL_STATUS status;
6310
6311	/*
6312	 * Collect channel set based on EEPROM contents.
6313	 */
6314	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6315	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6316	if (status != HAL_OK) {
6317		if_printf(ifp, "%s: unable to collect channel list from hal, "
6318		    "status %d\n", __func__, status);
6319		return EINVAL;
6320	}
6321	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6322	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6323	/* XXX map Atheros sku's to net80211 SKU's */
6324	/* XXX net80211 types too small */
6325	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6326	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6327	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
6328	ic->ic_regdomain.isocc[1] = ' ';
6329
6330	ic->ic_regdomain.ecm = 1;
6331	ic->ic_regdomain.location = 'I';
6332
6333	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6334	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6335	    __func__, sc->sc_eerd, sc->sc_eecc,
6336	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6337	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6338	return 0;
6339}
6340
6341static int
6342ath_rate_setup(struct ath_softc *sc, u_int mode)
6343{
6344	struct ath_hal *ah = sc->sc_ah;
6345	const HAL_RATE_TABLE *rt;
6346
6347	switch (mode) {
6348	case IEEE80211_MODE_11A:
6349		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6350		break;
6351	case IEEE80211_MODE_HALF:
6352		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6353		break;
6354	case IEEE80211_MODE_QUARTER:
6355		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6356		break;
6357	case IEEE80211_MODE_11B:
6358		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6359		break;
6360	case IEEE80211_MODE_11G:
6361		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6362		break;
6363	case IEEE80211_MODE_TURBO_A:
6364		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6365		break;
6366	case IEEE80211_MODE_TURBO_G:
6367		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6368		break;
6369	case IEEE80211_MODE_STURBO_A:
6370		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6371		break;
6372	case IEEE80211_MODE_11NA:
6373		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6374		break;
6375	case IEEE80211_MODE_11NG:
6376		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6377		break;
6378	default:
6379		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6380			__func__, mode);
6381		return 0;
6382	}
6383	sc->sc_rates[mode] = rt;
6384	return (rt != NULL);
6385}
6386
6387static void
6388ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6389{
6390#define	N(a)	(sizeof(a)/sizeof(a[0]))
6391	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6392	static const struct {
6393		u_int		rate;		/* tx/rx 802.11 rate */
6394		u_int16_t	timeOn;		/* LED on time (ms) */
6395		u_int16_t	timeOff;	/* LED off time (ms) */
6396	} blinkrates[] = {
6397		{ 108,  40,  10 },
6398		{  96,  44,  11 },
6399		{  72,  50,  13 },
6400		{  48,  57,  14 },
6401		{  36,  67,  16 },
6402		{  24,  80,  20 },
6403		{  22, 100,  25 },
6404		{  18, 133,  34 },
6405		{  12, 160,  40 },
6406		{  10, 200,  50 },
6407		{   6, 240,  58 },
6408		{   4, 267,  66 },
6409		{   2, 400, 100 },
6410		{   0, 500, 130 },
6411		/* XXX half/quarter rates */
6412	};
6413	const HAL_RATE_TABLE *rt;
6414	int i, j;
6415
6416	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6417	rt = sc->sc_rates[mode];
6418	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6419	for (i = 0; i < rt->rateCount; i++) {
6420		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6421		if (rt->info[i].phy != IEEE80211_T_HT)
6422			sc->sc_rixmap[ieeerate] = i;
6423		else
6424			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6425	}
6426	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6427	for (i = 0; i < N(sc->sc_hwmap); i++) {
6428		if (i >= rt->rateCount) {
6429			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6430			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6431			continue;
6432		}
6433		sc->sc_hwmap[i].ieeerate =
6434			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6435		if (rt->info[i].phy == IEEE80211_T_HT)
6436			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6437		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6438		if (rt->info[i].shortPreamble ||
6439		    rt->info[i].phy == IEEE80211_T_OFDM)
6440			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6441		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6442		for (j = 0; j < N(blinkrates)-1; j++)
6443			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6444				break;
6445		/* NB: this uses the last entry if the rate isn't found */
6446		/* XXX beware of overlow */
6447		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6448		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6449	}
6450	sc->sc_currates = rt;
6451	sc->sc_curmode = mode;
6452	/*
6453	 * All protection frames are transmited at 2Mb/s for
6454	 * 11g, otherwise at 1Mb/s.
6455	 */
6456	if (mode == IEEE80211_MODE_11G)
6457		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6458	else
6459		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6460	/* NB: caller is responsible for resetting rate control state */
6461#undef N
6462}
6463
6464static void
6465ath_watchdog(void *arg)
6466{
6467	struct ath_softc *sc = arg;
6468	int do_reset = 0;
6469
6470	ATH_LOCK_ASSERT(sc);
6471
6472	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6473		struct ifnet *ifp = sc->sc_ifp;
6474		uint32_t hangs;
6475
6476		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6477
6478		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6479		    hangs != 0) {
6480			if_printf(ifp, "%s hang detected (0x%x)\n",
6481			    hangs & 0xff ? "bb" : "mac", hangs);
6482		} else
6483			if_printf(ifp, "device timeout\n");
6484		do_reset = 1;
6485		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
6486		sc->sc_stats.ast_watchdog++;
6487
6488		ath_power_restore_power_state(sc);
6489	}
6490
6491	/*
6492	 * We can't hold the lock across the ath_reset() call.
6493	 *
6494	 * And since this routine can't hold a lock and sleep,
6495	 * do the reset deferred.
6496	 */
6497	if (do_reset) {
6498		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
6499	}
6500
6501	callout_schedule(&sc->sc_wd_ch, hz);
6502}
6503
6504/*
6505 * Fetch the rate control statistics for the given node.
6506 */
6507static int
6508ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
6509{
6510	struct ath_node *an;
6511	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
6512	struct ieee80211_node *ni;
6513	int error = 0;
6514
6515	/* Perform a lookup on the given node */
6516	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
6517	if (ni == NULL) {
6518		error = EINVAL;
6519		goto bad;
6520	}
6521
6522	/* Lock the ath_node */
6523	an = ATH_NODE(ni);
6524	ATH_NODE_LOCK(an);
6525
6526	/* Fetch the rate control stats for this node */
6527	error = ath_rate_fetch_node_stats(sc, an, rs);
6528
6529	/* No matter what happens here, just drop through */
6530
6531	/* Unlock the ath_node */
6532	ATH_NODE_UNLOCK(an);
6533
6534	/* Unref the node */
6535	ieee80211_node_decref(ni);
6536
6537bad:
6538	return (error);
6539}
6540
6541#ifdef ATH_DIAGAPI
6542/*
6543 * Diagnostic interface to the HAL.  This is used by various
6544 * tools to do things like retrieve register contents for
6545 * debugging.  The mechanism is intentionally opaque so that
6546 * it can change frequently w/o concern for compatiblity.
6547 */
6548static int
6549ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6550{
6551	struct ath_hal *ah = sc->sc_ah;
6552	u_int id = ad->ad_id & ATH_DIAG_ID;
6553	void *indata = NULL;
6554	void *outdata = NULL;
6555	u_int32_t insize = ad->ad_in_size;
6556	u_int32_t outsize = ad->ad_out_size;
6557	int error = 0;
6558
6559	if (ad->ad_id & ATH_DIAG_IN) {
6560		/*
6561		 * Copy in data.
6562		 */
6563		indata = malloc(insize, M_TEMP, M_NOWAIT);
6564		if (indata == NULL) {
6565			error = ENOMEM;
6566			goto bad;
6567		}
6568		error = copyin(ad->ad_in_data, indata, insize);
6569		if (error)
6570			goto bad;
6571	}
6572	if (ad->ad_id & ATH_DIAG_DYN) {
6573		/*
6574		 * Allocate a buffer for the results (otherwise the HAL
6575		 * returns a pointer to a buffer where we can read the
6576		 * results).  Note that we depend on the HAL leaving this
6577		 * pointer for us to use below in reclaiming the buffer;
6578		 * may want to be more defensive.
6579		 */
6580		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6581		if (outdata == NULL) {
6582			error = ENOMEM;
6583			goto bad;
6584		}
6585	}
6586
6587
6588	ATH_LOCK(sc);
6589	if (id != HAL_DIAG_REGS)
6590		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6591	ATH_UNLOCK(sc);
6592
6593	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6594		if (outsize < ad->ad_out_size)
6595			ad->ad_out_size = outsize;
6596		if (outdata != NULL)
6597			error = copyout(outdata, ad->ad_out_data,
6598					ad->ad_out_size);
6599	} else {
6600		error = EINVAL;
6601	}
6602
6603	ATH_LOCK(sc);
6604	if (id != HAL_DIAG_REGS)
6605		ath_power_restore_power_state(sc);
6606	ATH_UNLOCK(sc);
6607
6608bad:
6609	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6610		free(indata, M_TEMP);
6611	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6612		free(outdata, M_TEMP);
6613	return error;
6614}
6615#endif /* ATH_DIAGAPI */
6616
6617static int
6618ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6619{
6620#define	IS_RUNNING(ifp) \
6621	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6622	struct ath_softc *sc = ifp->if_softc;
6623	struct ieee80211com *ic = ifp->if_l2com;
6624	struct ifreq *ifr = (struct ifreq *)data;
6625	const HAL_RATE_TABLE *rt;
6626	int error = 0;
6627
6628	switch (cmd) {
6629	case SIOCSIFFLAGS:
6630		if (IS_RUNNING(ifp)) {
6631			/*
6632			 * To avoid rescanning another access point,
6633			 * do not call ath_init() here.  Instead,
6634			 * only reflect promisc mode settings.
6635			 */
6636			ATH_LOCK(sc);
6637			ath_power_set_power_state(sc, HAL_PM_AWAKE);
6638			ath_mode_init(sc);
6639			ath_power_restore_power_state(sc);
6640			ATH_UNLOCK(sc);
6641		} else if (ifp->if_flags & IFF_UP) {
6642			/*
6643			 * Beware of being called during attach/detach
6644			 * to reset promiscuous mode.  In that case we
6645			 * will still be marked UP but not RUNNING.
6646			 * However trying to re-init the interface
6647			 * is the wrong thing to do as we've already
6648			 * torn down much of our state.  There's
6649			 * probably a better way to deal with this.
6650			 */
6651			if (!sc->sc_invalid)
6652				ath_init(sc);	/* XXX lose error */
6653		} else {
6654			ATH_LOCK(sc);
6655			ath_stop_locked(ifp);
6656			if (!sc->sc_invalid)
6657				ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
6658			ATH_UNLOCK(sc);
6659		}
6660		break;
6661	case SIOCGIFMEDIA:
6662	case SIOCSIFMEDIA:
6663		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6664		break;
6665	case SIOCGATHSTATS:
6666		/* NB: embed these numbers to get a consistent view */
6667		sc->sc_stats.ast_tx_packets = ifp->if_get_counter(ifp,
6668		    IFCOUNTER_OPACKETS);
6669		sc->sc_stats.ast_rx_packets = ifp->if_get_counter(ifp,
6670		    IFCOUNTER_IPACKETS);
6671		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6672		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6673#ifdef IEEE80211_SUPPORT_TDMA
6674		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6675		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6676#endif
6677		rt = sc->sc_currates;
6678		sc->sc_stats.ast_tx_rate =
6679		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6680		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
6681			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
6682		return copyout(&sc->sc_stats,
6683		    ifr->ifr_data, sizeof (sc->sc_stats));
6684	case SIOCGATHAGSTATS:
6685		return copyout(&sc->sc_aggr_stats,
6686		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
6687	case SIOCZATHSTATS:
6688		error = priv_check(curthread, PRIV_DRIVER);
6689		if (error == 0) {
6690			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6691			memset(&sc->sc_aggr_stats, 0,
6692			    sizeof(sc->sc_aggr_stats));
6693			memset(&sc->sc_intr_stats, 0,
6694			    sizeof(sc->sc_intr_stats));
6695		}
6696		break;
6697#ifdef ATH_DIAGAPI
6698	case SIOCGATHDIAG:
6699		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6700		break;
6701	case SIOCGATHPHYERR:
6702		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
6703		break;
6704#endif
6705	case SIOCGATHSPECTRAL:
6706		error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
6707		break;
6708	case SIOCGATHNODERATESTATS:
6709		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
6710		break;
6711	case SIOCGIFADDR:
6712		error = ether_ioctl(ifp, cmd, data);
6713		break;
6714	default:
6715		error = EINVAL;
6716		break;
6717	}
6718	return error;
6719#undef IS_RUNNING
6720}
6721
6722/*
6723 * Announce various information on device/driver attach.
6724 */
6725static void
6726ath_announce(struct ath_softc *sc)
6727{
6728	struct ifnet *ifp = sc->sc_ifp;
6729	struct ath_hal *ah = sc->sc_ah;
6730
6731	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6732		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6733		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6734	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6735		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6736	if (bootverbose) {
6737		int i;
6738		for (i = 0; i <= WME_AC_VO; i++) {
6739			struct ath_txq *txq = sc->sc_ac2q[i];
6740			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6741				txq->axq_qnum, ieee80211_wme_acnames[i]);
6742		}
6743		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6744			sc->sc_cabq->axq_qnum);
6745		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6746	}
6747	if (ath_rxbuf != ATH_RXBUF)
6748		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6749	if (ath_txbuf != ATH_TXBUF)
6750		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6751	if (sc->sc_mcastkey && bootverbose)
6752		if_printf(ifp, "using multicast key search\n");
6753}
6754
6755static void
6756ath_dfs_tasklet(void *p, int npending)
6757{
6758	struct ath_softc *sc = (struct ath_softc *) p;
6759	struct ifnet *ifp = sc->sc_ifp;
6760	struct ieee80211com *ic = ifp->if_l2com;
6761
6762	/*
6763	 * If previous processing has found a radar event,
6764	 * signal this to the net80211 layer to begin DFS
6765	 * processing.
6766	 */
6767	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6768		/* DFS event found, initiate channel change */
6769		/*
6770		 * XXX doesn't currently tell us whether the event
6771		 * XXX was found in the primary or extension
6772		 * XXX channel!
6773		 */
6774		IEEE80211_LOCK(ic);
6775		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6776		IEEE80211_UNLOCK(ic);
6777	}
6778}
6779
6780/*
6781 * Enable/disable power save.  This must be called with
6782 * no TX driver locks currently held, so it should only
6783 * be called from the RX path (which doesn't hold any
6784 * TX driver locks.)
6785 */
6786static void
6787ath_node_powersave(struct ieee80211_node *ni, int enable)
6788{
6789#ifdef	ATH_SW_PSQ
6790	struct ath_node *an = ATH_NODE(ni);
6791	struct ieee80211com *ic = ni->ni_ic;
6792	struct ath_softc *sc = ic->ic_ifp->if_softc;
6793	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6794
6795	/* XXX and no TXQ locks should be held here */
6796
6797	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n",
6798	    __func__,
6799	    ni->ni_macaddr,
6800	    ":",
6801	    !! enable);
6802
6803	/* Suspend or resume software queue handling */
6804	if (enable)
6805		ath_tx_node_sleep(sc, an);
6806	else
6807		ath_tx_node_wakeup(sc, an);
6808
6809	/* Update net80211 state */
6810	avp->av_node_ps(ni, enable);
6811#else
6812	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6813
6814	/* Update net80211 state */
6815	avp->av_node_ps(ni, enable);
6816#endif/* ATH_SW_PSQ */
6817}
6818
6819/*
6820 * Notification from net80211 that the powersave queue state has
6821 * changed.
6822 *
6823 * Since the software queue also may have some frames:
6824 *
6825 * + if the node software queue has frames and the TID state
6826 *   is 0, we set the TIM;
6827 * + if the node and the stack are both empty, we clear the TIM bit.
6828 * + If the stack tries to set the bit, always set it.
6829 * + If the stack tries to clear the bit, only clear it if the
6830 *   software queue in question is also cleared.
6831 *
6832 * TODO: this is called during node teardown; so let's ensure this
6833 * is all correctly handled and that the TIM bit is cleared.
6834 * It may be that the node flush is called _AFTER_ the net80211
6835 * stack clears the TIM.
6836 *
6837 * Here is the racy part.  Since it's possible >1 concurrent,
6838 * overlapping TXes will appear complete with a TX completion in
6839 * another thread, it's possible that the concurrent TIM calls will
6840 * clash.  We can't hold the node lock here because setting the
6841 * TIM grabs the net80211 comlock and this may cause a LOR.
6842 * The solution is either to totally serialise _everything_ at
6843 * this point (ie, all TX, completion and any reset/flush go into
6844 * one taskqueue) or a new "ath TIM lock" needs to be created that
6845 * just wraps the driver state change and this call to avp->av_set_tim().
6846 *
6847 * The same race exists in the net80211 power save queue handling
6848 * as well.  Since multiple transmitting threads may queue frames
6849 * into the driver, as well as ps-poll and the driver transmitting
6850 * frames (and thus clearing the psq), it's quite possible that
6851 * a packet entering the PSQ and a ps-poll being handled will
6852 * race, causing the TIM to be cleared and not re-set.
6853 */
6854static int
6855ath_node_set_tim(struct ieee80211_node *ni, int enable)
6856{
6857#ifdef	ATH_SW_PSQ
6858	struct ieee80211com *ic = ni->ni_ic;
6859	struct ath_softc *sc = ic->ic_ifp->if_softc;
6860	struct ath_node *an = ATH_NODE(ni);
6861	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6862	int changed = 0;
6863
6864	ATH_TX_LOCK(sc);
6865	an->an_stack_psq = enable;
6866
6867	/*
6868	 * This will get called for all operating modes,
6869	 * even if avp->av_set_tim is unset.
6870	 * It's currently set for hostap/ibss modes; but
6871	 * the same infrastructure is used for both STA
6872	 * and AP/IBSS node power save.
6873	 */
6874	if (avp->av_set_tim == NULL) {
6875		ATH_TX_UNLOCK(sc);
6876		return (0);
6877	}
6878
6879	/*
6880	 * If setting the bit, always set it here.
6881	 * If clearing the bit, only clear it if the
6882	 * software queue is also empty.
6883	 *
6884	 * If the node has left power save, just clear the TIM
6885	 * bit regardless of the state of the power save queue.
6886	 *
6887	 * XXX TODO: although atomics are used, it's quite possible
6888	 * that a race will occur between this and setting/clearing
6889	 * in another thread.  TX completion will occur always in
6890	 * one thread, however setting/clearing the TIM bit can come
6891	 * from a variety of different process contexts!
6892	 */
6893	if (enable && an->an_tim_set == 1) {
6894		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6895		    "%s: %6D: enable=%d, tim_set=1, ignoring\n",
6896		    __func__,
6897		    ni->ni_macaddr,
6898		    ":",
6899		    enable);
6900		ATH_TX_UNLOCK(sc);
6901	} else if (enable) {
6902		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6903		    "%s: %6D: enable=%d, enabling TIM\n",
6904		    __func__,
6905		    ni->ni_macaddr,
6906		    ":",
6907		    enable);
6908		an->an_tim_set = 1;
6909		ATH_TX_UNLOCK(sc);
6910		changed = avp->av_set_tim(ni, enable);
6911	} else if (an->an_swq_depth == 0) {
6912		/* disable */
6913		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6914		    "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n",
6915		    __func__,
6916		    ni->ni_macaddr,
6917		    ":",
6918		    enable);
6919		an->an_tim_set = 0;
6920		ATH_TX_UNLOCK(sc);
6921		changed = avp->av_set_tim(ni, enable);
6922	} else if (! an->an_is_powersave) {
6923		/*
6924		 * disable regardless; the node isn't in powersave now
6925		 */
6926		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6927		    "%s: %6D: enable=%d, an_pwrsave=0, disabling\n",
6928		    __func__,
6929		    ni->ni_macaddr,
6930		    ":",
6931		    enable);
6932		an->an_tim_set = 0;
6933		ATH_TX_UNLOCK(sc);
6934		changed = avp->av_set_tim(ni, enable);
6935	} else {
6936		/*
6937		 * psq disable, node is currently in powersave, node
6938		 * software queue isn't empty, so don't clear the TIM bit
6939		 * for now.
6940		 */
6941		ATH_TX_UNLOCK(sc);
6942		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6943		    "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n",
6944		    __func__,
6945		    ni->ni_macaddr,
6946		    ":",
6947		    enable);
6948		changed = 0;
6949	}
6950
6951	return (changed);
6952#else
6953	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6954
6955	/*
6956	 * Some operating modes don't set av_set_tim(), so don't
6957	 * update it here.
6958	 */
6959	if (avp->av_set_tim == NULL)
6960		return (0);
6961
6962	return (avp->av_set_tim(ni, enable));
6963#endif /* ATH_SW_PSQ */
6964}
6965
6966/*
6967 * Set or update the TIM from the software queue.
6968 *
6969 * Check the software queue depth before attempting to do lock
6970 * anything; that avoids trying to obtain the lock.  Then,
6971 * re-check afterwards to ensure nothing has changed in the
6972 * meantime.
6973 *
6974 * set:   This is designed to be called from the TX path, after
6975 *        a frame has been queued; to see if the swq > 0.
6976 *
6977 * clear: This is designed to be called from the buffer completion point
6978 *        (right now it's ath_tx_default_comp()) where the state of
6979 *        a software queue has changed.
6980 *
6981 * It makes sense to place it at buffer free / completion rather
6982 * than after each software queue operation, as there's no real
6983 * point in churning the TIM bit as the last frames in the software
6984 * queue are transmitted.  If they fail and we retry them, we'd
6985 * just be setting the TIM bit again anyway.
6986 */
6987void
6988ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
6989     int enable)
6990{
6991#ifdef	ATH_SW_PSQ
6992	struct ath_node *an;
6993	struct ath_vap *avp;
6994
6995	/* Don't do this for broadcast/etc frames */
6996	if (ni == NULL)
6997		return;
6998
6999	an = ATH_NODE(ni);
7000	avp = ATH_VAP(ni->ni_vap);
7001
7002	/*
7003	 * And for operating modes without the TIM handler set, let's
7004	 * just skip those.
7005	 */
7006	if (avp->av_set_tim == NULL)
7007		return;
7008
7009	ATH_TX_LOCK_ASSERT(sc);
7010
7011	if (enable) {
7012		if (an->an_is_powersave &&
7013		    an->an_tim_set == 0 &&
7014		    an->an_swq_depth != 0) {
7015			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7016			    "%s: %6D: swq_depth>0, tim_set=0, set!\n",
7017			    __func__,
7018			    ni->ni_macaddr,
7019			    ":");
7020			an->an_tim_set = 1;
7021			(void) avp->av_set_tim(ni, 1);
7022		}
7023	} else {
7024		/*
7025		 * Don't bother grabbing the lock unless the queue is empty.
7026		 */
7027		if (an->an_swq_depth != 0)
7028			return;
7029
7030		if (an->an_is_powersave &&
7031		    an->an_stack_psq == 0 &&
7032		    an->an_tim_set == 1 &&
7033		    an->an_swq_depth == 0) {
7034			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7035			    "%s: %6D: swq_depth=0, tim_set=1, psq_set=0,"
7036			    " clear!\n",
7037			    __func__,
7038			    ni->ni_macaddr,
7039			    ":");
7040			an->an_tim_set = 0;
7041			(void) avp->av_set_tim(ni, 0);
7042		}
7043	}
7044#else
7045	return;
7046#endif	/* ATH_SW_PSQ */
7047}
7048
7049/*
7050 * Received a ps-poll frame from net80211.
7051 *
7052 * Here we get a chance to serve out a software-queued frame ourselves
7053 * before we punt it to net80211 to transmit us one itself - either
7054 * because there's traffic in the net80211 psq, or a NULL frame to
7055 * indicate there's nothing else.
7056 */
7057static void
7058ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
7059{
7060#ifdef	ATH_SW_PSQ
7061	struct ath_node *an;
7062	struct ath_vap *avp;
7063	struct ieee80211com *ic = ni->ni_ic;
7064	struct ath_softc *sc = ic->ic_ifp->if_softc;
7065	int tid;
7066
7067	/* Just paranoia */
7068	if (ni == NULL)
7069		return;
7070
7071	/*
7072	 * Unassociated (temporary node) station.
7073	 */
7074	if (ni->ni_associd == 0)
7075		return;
7076
7077	/*
7078	 * We do have an active node, so let's begin looking into it.
7079	 */
7080	an = ATH_NODE(ni);
7081	avp = ATH_VAP(ni->ni_vap);
7082
7083	/*
7084	 * For now, we just call the original ps-poll method.
7085	 * Once we're ready to flip this on:
7086	 *
7087	 * + Set leak to 1, as no matter what we're going to have
7088	 *   to send a frame;
7089	 * + Check the software queue and if there's something in it,
7090	 *   schedule the highest TID thas has traffic from this node.
7091	 *   Then make sure we schedule the software scheduler to
7092	 *   run so it picks up said frame.
7093	 *
7094	 * That way whatever happens, we'll at least send _a_ frame
7095	 * to the given node.
7096	 *
7097	 * Again, yes, it's crappy QoS if the node has multiple
7098	 * TIDs worth of traffic - but let's get it working first
7099	 * before we optimise it.
7100	 *
7101	 * Also yes, there's definitely latency here - we're not
7102	 * direct dispatching to the hardware in this path (and
7103	 * we're likely being called from the packet receive path,
7104	 * so going back into TX may be a little hairy!) but again
7105	 * I'd like to get this working first before optimising
7106	 * turn-around time.
7107	 */
7108
7109	ATH_TX_LOCK(sc);
7110
7111	/*
7112	 * Legacy - we're called and the node isn't asleep.
7113	 * Immediately punt.
7114	 */
7115	if (! an->an_is_powersave) {
7116		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7117		    "%s: %6D: not in powersave?\n",
7118		    __func__,
7119		    ni->ni_macaddr,
7120		    ":");
7121		ATH_TX_UNLOCK(sc);
7122		avp->av_recv_pspoll(ni, m);
7123		return;
7124	}
7125
7126	/*
7127	 * We're in powersave.
7128	 *
7129	 * Leak a frame.
7130	 */
7131	an->an_leak_count = 1;
7132
7133	/*
7134	 * Now, if there's no frames in the node, just punt to
7135	 * recv_pspoll.
7136	 *
7137	 * Don't bother checking if the TIM bit is set, we really
7138	 * only care if there are any frames here!
7139	 */
7140	if (an->an_swq_depth == 0) {
7141		ATH_TX_UNLOCK(sc);
7142		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7143		    "%s: %6D: SWQ empty; punting to net80211\n",
7144		    __func__,
7145		    ni->ni_macaddr,
7146		    ":");
7147		avp->av_recv_pspoll(ni, m);
7148		return;
7149	}
7150
7151	/*
7152	 * Ok, let's schedule the highest TID that has traffic
7153	 * and then schedule something.
7154	 */
7155	for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
7156		struct ath_tid *atid = &an->an_tid[tid];
7157		/*
7158		 * No frames? Skip.
7159		 */
7160		if (atid->axq_depth == 0)
7161			continue;
7162		ath_tx_tid_sched(sc, atid);
7163		/*
7164		 * XXX we could do a direct call to the TXQ
7165		 * scheduler code here to optimise latency
7166		 * at the expense of a REALLY deep callstack.
7167		 */
7168		ATH_TX_UNLOCK(sc);
7169		taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
7170		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7171		    "%s: %6D: leaking frame to TID %d\n",
7172		    __func__,
7173		    ni->ni_macaddr,
7174		    ":",
7175		    tid);
7176		return;
7177	}
7178
7179	ATH_TX_UNLOCK(sc);
7180
7181	/*
7182	 * XXX nothing in the TIDs at this point? Eek.
7183	 */
7184	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7185	    "%s: %6D: TIDs empty, but ath_node showed traffic?!\n",
7186	    __func__,
7187	    ni->ni_macaddr,
7188	    ":");
7189	avp->av_recv_pspoll(ni, m);
7190#else
7191	avp->av_recv_pspoll(ni, m);
7192#endif	/* ATH_SW_PSQ */
7193}
7194
7195MODULE_VERSION(if_ath, 1);
7196MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
7197#if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ) || defined(ATH_DEBUG_ALQ)
7198MODULE_DEPEND(if_ath, alq, 1, 1, 1);
7199#endif
7200