if_ath.c revision 271823
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 271823 2014-09-18 20:47:39Z glebius $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42/*
43 * This is needed for register operations which are performed
44 * by the driver - eg, calls to ath_hal_gettsf32().
45 *
46 * It's also required for any AH_DEBUG checks in here, eg the
47 * module dependencies.
48 */
49#include "opt_ah.h"
50#include "opt_wlan.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/sysctl.h>
55#include <sys/mbuf.h>
56#include <sys/malloc.h>
57#include <sys/lock.h>
58#include <sys/mutex.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/sockio.h>
62#include <sys/errno.h>
63#include <sys/callout.h>
64#include <sys/bus.h>
65#include <sys/endian.h>
66#include <sys/kthread.h>
67#include <sys/taskqueue.h>
68#include <sys/priv.h>
69#include <sys/module.h>
70#include <sys/ktr.h>
71#include <sys/smp.h>	/* for mp_ncpus */
72
73#include <machine/bus.h>
74
75#include <net/if.h>
76#include <net/if_var.h>
77#include <net/if_dl.h>
78#include <net/if_media.h>
79#include <net/if_types.h>
80#include <net/if_arp.h>
81#include <net/ethernet.h>
82#include <net/if_llc.h>
83
84#include <net80211/ieee80211_var.h>
85#include <net80211/ieee80211_regdomain.h>
86#ifdef IEEE80211_SUPPORT_SUPERG
87#include <net80211/ieee80211_superg.h>
88#endif
89#ifdef IEEE80211_SUPPORT_TDMA
90#include <net80211/ieee80211_tdma.h>
91#endif
92
93#include <net/bpf.h>
94
95#ifdef INET
96#include <netinet/in.h>
97#include <netinet/if_ether.h>
98#endif
99
100#include <dev/ath/if_athvar.h>
101#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
102#include <dev/ath/ath_hal/ah_diagcodes.h>
103
104#include <dev/ath/if_ath_debug.h>
105#include <dev/ath/if_ath_misc.h>
106#include <dev/ath/if_ath_tsf.h>
107#include <dev/ath/if_ath_tx.h>
108#include <dev/ath/if_ath_sysctl.h>
109#include <dev/ath/if_ath_led.h>
110#include <dev/ath/if_ath_keycache.h>
111#include <dev/ath/if_ath_rx.h>
112#include <dev/ath/if_ath_rx_edma.h>
113#include <dev/ath/if_ath_tx_edma.h>
114#include <dev/ath/if_ath_beacon.h>
115#include <dev/ath/if_ath_btcoex.h>
116#include <dev/ath/if_ath_spectral.h>
117#include <dev/ath/if_ath_lna_div.h>
118#include <dev/ath/if_athdfs.h>
119
120#ifdef ATH_TX99_DIAG
121#include <dev/ath/ath_tx99/ath_tx99.h>
122#endif
123
124#ifdef	ATH_DEBUG_ALQ
125#include <dev/ath/if_ath_alq.h>
126#endif
127
128/*
129 * Only enable this if you're working on PS-POLL support.
130 */
131#define	ATH_SW_PSQ
132
133/*
134 * ATH_BCBUF determines the number of vap's that can transmit
135 * beacons and also (currently) the number of vap's that can
136 * have unique mac addresses/bssid.  When staggering beacons
137 * 4 is probably a good max as otherwise the beacons become
138 * very closely spaced and there is limited time for cab q traffic
139 * to go out.  You can burst beacons instead but that is not good
140 * for stations in power save and at some point you really want
141 * another radio (and channel).
142 *
143 * The limit on the number of mac addresses is tied to our use of
144 * the U/L bit and tracking addresses in a byte; it would be
145 * worthwhile to allow more for applications like proxy sta.
146 */
147CTASSERT(ATH_BCBUF <= 8);
148
149static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
150		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
151		    const uint8_t [IEEE80211_ADDR_LEN],
152		    const uint8_t [IEEE80211_ADDR_LEN]);
153static void	ath_vap_delete(struct ieee80211vap *);
154static void	ath_init(void *);
155static void	ath_stop_locked(struct ifnet *);
156static void	ath_stop(struct ifnet *);
157static int	ath_reset_vap(struct ieee80211vap *, u_long);
158static int	ath_transmit(struct ifnet *ifp, struct mbuf *m);
159static void	ath_qflush(struct ifnet *ifp);
160static int	ath_media_change(struct ifnet *);
161static void	ath_watchdog(void *);
162static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
163static void	ath_fatal_proc(void *, int);
164static void	ath_bmiss_vap(struct ieee80211vap *);
165static void	ath_bmiss_proc(void *, int);
166static void	ath_key_update_begin(struct ieee80211vap *);
167static void	ath_key_update_end(struct ieee80211vap *);
168static void	ath_update_mcast_hw(struct ath_softc *);
169static void	ath_update_mcast(struct ifnet *);
170static void	ath_update_promisc(struct ifnet *);
171static void	ath_updateslot(struct ifnet *);
172static void	ath_bstuck_proc(void *, int);
173static void	ath_reset_proc(void *, int);
174static int	ath_desc_alloc(struct ath_softc *);
175static void	ath_desc_free(struct ath_softc *);
176static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
177			const uint8_t [IEEE80211_ADDR_LEN]);
178static void	ath_node_cleanup(struct ieee80211_node *);
179static void	ath_node_free(struct ieee80211_node *);
180static void	ath_node_getsignal(const struct ieee80211_node *,
181			int8_t *, int8_t *);
182static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
183static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
184static int	ath_tx_setup(struct ath_softc *, int, int);
185static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
186static void	ath_tx_cleanup(struct ath_softc *);
187static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
188		    int dosched);
189static void	ath_tx_proc_q0(void *, int);
190static void	ath_tx_proc_q0123(void *, int);
191static void	ath_tx_proc(void *, int);
192static void	ath_txq_sched_tasklet(void *, int);
193static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
194static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
195static void	ath_scan_start(struct ieee80211com *);
196static void	ath_scan_end(struct ieee80211com *);
197static void	ath_set_channel(struct ieee80211com *);
198#ifdef	ATH_ENABLE_11N
199static void	ath_update_chw(struct ieee80211com *);
200#endif	/* ATH_ENABLE_11N */
201static void	ath_calibrate(void *);
202static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
203static void	ath_setup_stationkey(struct ieee80211_node *);
204static void	ath_newassoc(struct ieee80211_node *, int);
205static int	ath_setregdomain(struct ieee80211com *,
206		    struct ieee80211_regdomain *, int,
207		    struct ieee80211_channel []);
208static void	ath_getradiocaps(struct ieee80211com *, int, int *,
209		    struct ieee80211_channel []);
210static int	ath_getchannels(struct ath_softc *);
211
212static int	ath_rate_setup(struct ath_softc *, u_int mode);
213static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
214
215static void	ath_announce(struct ath_softc *);
216
217static void	ath_dfs_tasklet(void *, int);
218static void	ath_node_powersave(struct ieee80211_node *, int);
219static int	ath_node_set_tim(struct ieee80211_node *, int);
220static void	ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
221
222#ifdef IEEE80211_SUPPORT_TDMA
223#include <dev/ath/if_ath_tdma.h>
224#endif
225
226SYSCTL_DECL(_hw_ath);
227
228/* XXX validate sysctl values */
229static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
230SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
231	    0, "long chip calibration interval (secs)");
232static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
233SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
234	    0, "short chip calibration interval (msecs)");
235static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
236SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
237	    0, "reset chip calibration results (secs)");
238static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
239SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
240	    0, "ANI calibration (msecs)");
241
242int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
243SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RWTUN, &ath_rxbuf,
244	    0, "rx buffers allocated");
245int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
246SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RWTUN, &ath_txbuf,
247	    0, "tx buffers allocated");
248int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
249SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RWTUN, &ath_txbuf_mgmt,
250	    0, "tx (mgmt) buffers allocated");
251
252int ath_bstuck_threshold = 4;		/* max missed beacons */
253SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
254	    0, "max missed beacon xmits before chip reset");
255
256MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
257
258void
259ath_legacy_attach_comp_func(struct ath_softc *sc)
260{
261
262	/*
263	 * Special case certain configurations.  Note the
264	 * CAB queue is handled by these specially so don't
265	 * include them when checking the txq setup mask.
266	 */
267	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
268	case 0x01:
269		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
270		break;
271	case 0x0f:
272		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
273		break;
274	default:
275		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
276		break;
277	}
278}
279
280/*
281 * Set the target power mode.
282 *
283 * If this is called during a point in time where
284 * the hardware is being programmed elsewhere, it will
285 * simply store it away and update it when all current
286 * uses of the hardware are completed.
287 */
288void
289_ath_power_setpower(struct ath_softc *sc, int power_state, const char *file, int line)
290{
291	ATH_LOCK_ASSERT(sc);
292
293	sc->sc_target_powerstate = power_state;
294
295	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
296	    __func__,
297	    file,
298	    line,
299	    power_state,
300	    sc->sc_powersave_refcnt);
301
302	if (sc->sc_powersave_refcnt == 0 &&
303	    power_state != sc->sc_cur_powerstate) {
304		sc->sc_cur_powerstate = power_state;
305		ath_hal_setpower(sc->sc_ah, power_state);
306
307		/*
308		 * If the NIC is force-awake, then set the
309		 * self-gen frame state appropriately.
310		 *
311		 * If the nic is in network sleep or full-sleep,
312		 * we let the above call leave the self-gen
313		 * state as "sleep".
314		 */
315		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
316		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
317			ath_hal_setselfgenpower(sc->sc_ah,
318			    sc->sc_target_selfgen_state);
319		}
320	}
321}
322
323/*
324 * Set the current self-generated frames state.
325 *
326 * This is separate from the target power mode.  The chip may be
327 * awake but the desired state is "sleep", so frames sent to the
328 * destination has PWRMGT=1 in the 802.11 header.  The NIC also
329 * needs to know to set PWRMGT=1 in self-generated frames.
330 */
331void
332_ath_power_set_selfgen(struct ath_softc *sc, int power_state, const char *file, int line)
333{
334
335	ATH_LOCK_ASSERT(sc);
336
337	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
338	    __func__,
339	    file,
340	    line,
341	    power_state,
342	    sc->sc_target_selfgen_state);
343
344	sc->sc_target_selfgen_state = power_state;
345
346	/*
347	 * If the NIC is force-awake, then set the power state.
348	 * Network-state and full-sleep will already transition it to
349	 * mark self-gen frames as sleeping - and we can't
350	 * guarantee the NIC is awake to program the self-gen frame
351	 * setting anyway.
352	 */
353	if (sc->sc_cur_powerstate == HAL_PM_AWAKE) {
354		ath_hal_setselfgenpower(sc->sc_ah, power_state);
355	}
356}
357
358/*
359 * Set the hardware power mode and take a reference.
360 *
361 * This doesn't update the target power mode in the driver;
362 * it just updates the hardware power state.
363 *
364 * XXX it should only ever force the hardware awake; it should
365 * never be called to set it asleep.
366 */
367void
368_ath_power_set_power_state(struct ath_softc *sc, int power_state, const char *file, int line)
369{
370	ATH_LOCK_ASSERT(sc);
371
372	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) state=%d, refcnt=%d\n",
373	    __func__,
374	    file,
375	    line,
376	    power_state,
377	    sc->sc_powersave_refcnt);
378
379	sc->sc_powersave_refcnt++;
380
381	if (power_state != sc->sc_cur_powerstate) {
382		ath_hal_setpower(sc->sc_ah, power_state);
383		sc->sc_cur_powerstate = power_state;
384
385		/*
386		 * Adjust the self-gen powerstate if appropriate.
387		 */
388		if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
389		    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
390			ath_hal_setselfgenpower(sc->sc_ah,
391			    sc->sc_target_selfgen_state);
392		}
393
394	}
395}
396
397/*
398 * Restore the power save mode to what it once was.
399 *
400 * This will decrement the reference counter and once it hits
401 * zero, it'll restore the powersave state.
402 */
403void
404_ath_power_restore_power_state(struct ath_softc *sc, const char *file, int line)
405{
406
407	ATH_LOCK_ASSERT(sc);
408
409	DPRINTF(sc, ATH_DEBUG_PWRSAVE, "%s: (%s:%d) refcnt=%d, target state=%d\n",
410	    __func__,
411	    file,
412	    line,
413	    sc->sc_powersave_refcnt,
414	    sc->sc_target_powerstate);
415
416	if (sc->sc_powersave_refcnt == 0)
417		device_printf(sc->sc_dev, "%s: refcnt=0?\n", __func__);
418	else
419		sc->sc_powersave_refcnt--;
420
421	if (sc->sc_powersave_refcnt == 0 &&
422	    sc->sc_target_powerstate != sc->sc_cur_powerstate) {
423		sc->sc_cur_powerstate = sc->sc_target_powerstate;
424		ath_hal_setpower(sc->sc_ah, sc->sc_target_powerstate);
425	}
426
427	/*
428	 * Adjust the self-gen powerstate if appropriate.
429	 */
430	if (sc->sc_cur_powerstate == HAL_PM_AWAKE &&
431	    sc->sc_target_selfgen_state != HAL_PM_AWAKE) {
432		ath_hal_setselfgenpower(sc->sc_ah,
433		    sc->sc_target_selfgen_state);
434	}
435
436}
437
438#define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
439#define	HAL_MODE_HT40 \
440	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
441	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
442int
443ath_attach(u_int16_t devid, struct ath_softc *sc)
444{
445	struct ifnet *ifp;
446	struct ieee80211com *ic;
447	struct ath_hal *ah = NULL;
448	HAL_STATUS status;
449	int error = 0, i;
450	u_int wmodes;
451	uint8_t macaddr[IEEE80211_ADDR_LEN];
452	int rx_chainmask, tx_chainmask;
453
454	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
455
456	CURVNET_SET(vnet0);
457	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
458	if (ifp == NULL) {
459		device_printf(sc->sc_dev, "can not if_alloc()\n");
460		error = ENOSPC;
461		CURVNET_RESTORE();
462		goto bad;
463	}
464	ic = ifp->if_l2com;
465
466	/* set these up early for if_printf use */
467	if_initname(ifp, device_get_name(sc->sc_dev),
468		device_get_unit(sc->sc_dev));
469	CURVNET_RESTORE();
470
471	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
472	    sc->sc_eepromdata, &status);
473	if (ah == NULL) {
474		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
475			status);
476		error = ENXIO;
477		goto bad;
478	}
479	sc->sc_ah = ah;
480	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
481#ifdef	ATH_DEBUG
482	sc->sc_debug = ath_debug;
483#endif
484
485	/*
486	 * Setup the DMA/EDMA functions based on the current
487	 * hardware support.
488	 *
489	 * This is required before the descriptors are allocated.
490	 */
491	if (ath_hal_hasedma(sc->sc_ah)) {
492		sc->sc_isedma = 1;
493		ath_recv_setup_edma(sc);
494		ath_xmit_setup_edma(sc);
495	} else {
496		ath_recv_setup_legacy(sc);
497		ath_xmit_setup_legacy(sc);
498	}
499
500	if (ath_hal_hasmybeacon(sc->sc_ah)) {
501		sc->sc_do_mybeacon = 1;
502	}
503
504	/*
505	 * Check if the MAC has multi-rate retry support.
506	 * We do this by trying to setup a fake extended
507	 * descriptor.  MAC's that don't have support will
508	 * return false w/o doing anything.  MAC's that do
509	 * support it will return true w/o doing anything.
510	 */
511	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
512
513	/*
514	 * Check if the device has hardware counters for PHY
515	 * errors.  If so we need to enable the MIB interrupt
516	 * so we can act on stat triggers.
517	 */
518	if (ath_hal_hwphycounters(ah))
519		sc->sc_needmib = 1;
520
521	/*
522	 * Get the hardware key cache size.
523	 */
524	sc->sc_keymax = ath_hal_keycachesize(ah);
525	if (sc->sc_keymax > ATH_KEYMAX) {
526		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
527			ATH_KEYMAX, sc->sc_keymax);
528		sc->sc_keymax = ATH_KEYMAX;
529	}
530	/*
531	 * Reset the key cache since some parts do not
532	 * reset the contents on initial power up.
533	 */
534	for (i = 0; i < sc->sc_keymax; i++)
535		ath_hal_keyreset(ah, i);
536
537	/*
538	 * Collect the default channel list.
539	 */
540	error = ath_getchannels(sc);
541	if (error != 0)
542		goto bad;
543
544	/*
545	 * Setup rate tables for all potential media types.
546	 */
547	ath_rate_setup(sc, IEEE80211_MODE_11A);
548	ath_rate_setup(sc, IEEE80211_MODE_11B);
549	ath_rate_setup(sc, IEEE80211_MODE_11G);
550	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
551	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
552	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
553	ath_rate_setup(sc, IEEE80211_MODE_11NA);
554	ath_rate_setup(sc, IEEE80211_MODE_11NG);
555	ath_rate_setup(sc, IEEE80211_MODE_HALF);
556	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
557
558	/* NB: setup here so ath_rate_update is happy */
559	ath_setcurmode(sc, IEEE80211_MODE_11A);
560
561	/*
562	 * Allocate TX descriptors and populate the lists.
563	 */
564	error = ath_desc_alloc(sc);
565	if (error != 0) {
566		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
567		    error);
568		goto bad;
569	}
570	error = ath_txdma_setup(sc);
571	if (error != 0) {
572		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
573		    error);
574		goto bad;
575	}
576
577	/*
578	 * Allocate RX descriptors and populate the lists.
579	 */
580	error = ath_rxdma_setup(sc);
581	if (error != 0) {
582		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
583		    error);
584		goto bad;
585	}
586
587	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
588	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
589
590	ATH_TXBUF_LOCK_INIT(sc);
591
592	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
593		taskqueue_thread_enqueue, &sc->sc_tq);
594	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
595		"%s taskq", ifp->if_xname);
596
597	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
598	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
599	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
600	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
601	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
602	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
603
604	/*
605	 * Allocate hardware transmit queues: one queue for
606	 * beacon frames and one data queue for each QoS
607	 * priority.  Note that the hal handles resetting
608	 * these queues at the needed time.
609	 *
610	 * XXX PS-Poll
611	 */
612	sc->sc_bhalq = ath_beaconq_setup(sc);
613	if (sc->sc_bhalq == (u_int) -1) {
614		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
615		error = EIO;
616		goto bad2;
617	}
618	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
619	if (sc->sc_cabq == NULL) {
620		if_printf(ifp, "unable to setup CAB xmit queue!\n");
621		error = EIO;
622		goto bad2;
623	}
624	/* NB: insure BK queue is the lowest priority h/w queue */
625	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
626		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
627			ieee80211_wme_acnames[WME_AC_BK]);
628		error = EIO;
629		goto bad2;
630	}
631	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
632	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
633	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
634		/*
635		 * Not enough hardware tx queues to properly do WME;
636		 * just punt and assign them all to the same h/w queue.
637		 * We could do a better job of this if, for example,
638		 * we allocate queues when we switch from station to
639		 * AP mode.
640		 */
641		if (sc->sc_ac2q[WME_AC_VI] != NULL)
642			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
643		if (sc->sc_ac2q[WME_AC_BE] != NULL)
644			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
645		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
646		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
647		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
648	}
649
650	/*
651	 * Attach the TX completion function.
652	 *
653	 * The non-EDMA chips may have some special case optimisations;
654	 * this method gives everyone a chance to attach cleanly.
655	 */
656	sc->sc_tx.xmit_attach_comp_func(sc);
657
658	/*
659	 * Setup rate control.  Some rate control modules
660	 * call back to change the anntena state so expose
661	 * the necessary entry points.
662	 * XXX maybe belongs in struct ath_ratectrl?
663	 */
664	sc->sc_setdefantenna = ath_setdefantenna;
665	sc->sc_rc = ath_rate_attach(sc);
666	if (sc->sc_rc == NULL) {
667		error = EIO;
668		goto bad2;
669	}
670
671	/* Attach DFS module */
672	if (! ath_dfs_attach(sc)) {
673		device_printf(sc->sc_dev,
674		    "%s: unable to attach DFS\n", __func__);
675		error = EIO;
676		goto bad2;
677	}
678
679	/* Attach spectral module */
680	if (ath_spectral_attach(sc) < 0) {
681		device_printf(sc->sc_dev,
682		    "%s: unable to attach spectral\n", __func__);
683		error = EIO;
684		goto bad2;
685	}
686
687	/* Attach bluetooth coexistence module */
688	if (ath_btcoex_attach(sc) < 0) {
689		device_printf(sc->sc_dev,
690		    "%s: unable to attach bluetooth coexistence\n", __func__);
691		error = EIO;
692		goto bad2;
693	}
694
695	/* Attach LNA diversity module */
696	if (ath_lna_div_attach(sc) < 0) {
697		device_printf(sc->sc_dev,
698		    "%s: unable to attach LNA diversity\n", __func__);
699		error = EIO;
700		goto bad2;
701	}
702
703	/* Start DFS processing tasklet */
704	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
705
706	/* Configure LED state */
707	sc->sc_blinking = 0;
708	sc->sc_ledstate = 1;
709	sc->sc_ledon = 0;			/* low true */
710	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
711	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
712
713	/*
714	 * Don't setup hardware-based blinking.
715	 *
716	 * Although some NICs may have this configured in the
717	 * default reset register values, the user may wish
718	 * to alter which pins have which function.
719	 *
720	 * The reference driver attaches the MAC network LED to GPIO1 and
721	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
722	 * NIC has these reversed.
723	 */
724	sc->sc_hardled = (1 == 0);
725	sc->sc_led_net_pin = -1;
726	sc->sc_led_pwr_pin = -1;
727	/*
728	 * Auto-enable soft led processing for IBM cards and for
729	 * 5211 minipci cards.  Users can also manually enable/disable
730	 * support with a sysctl.
731	 */
732	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
733	ath_led_config(sc);
734	ath_hal_setledstate(ah, HAL_LED_INIT);
735
736	ifp->if_softc = sc;
737	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
738	ifp->if_transmit = ath_transmit;
739	ifp->if_qflush = ath_qflush;
740	ifp->if_ioctl = ath_ioctl;
741	ifp->if_init = ath_init;
742	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
743	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
744	IFQ_SET_READY(&ifp->if_snd);
745
746	ic->ic_ifp = ifp;
747	/* XXX not right but it's not used anywhere important */
748	ic->ic_phytype = IEEE80211_T_OFDM;
749	ic->ic_opmode = IEEE80211_M_STA;
750	ic->ic_caps =
751		  IEEE80211_C_STA		/* station mode */
752		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
753		| IEEE80211_C_HOSTAP		/* hostap mode */
754		| IEEE80211_C_MONITOR		/* monitor mode */
755		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
756		| IEEE80211_C_WDS		/* 4-address traffic works */
757		| IEEE80211_C_MBSS		/* mesh point link mode */
758		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
759		| IEEE80211_C_SHSLOT		/* short slot time supported */
760		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
761#ifndef	ATH_ENABLE_11N
762		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
763#endif
764		| IEEE80211_C_TXFRAG		/* handle tx frags */
765#ifdef	ATH_ENABLE_DFS
766		| IEEE80211_C_DFS		/* Enable radar detection */
767#endif
768		| IEEE80211_C_PMGT		/* Station side power mgmt */
769		| IEEE80211_C_SWSLEEP
770		;
771	/*
772	 * Query the hal to figure out h/w crypto support.
773	 */
774	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
775		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
776	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
777		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
778	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
779		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
780	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
781		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
782	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
783		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
784		/*
785		 * Check if h/w does the MIC and/or whether the
786		 * separate key cache entries are required to
787		 * handle both tx+rx MIC keys.
788		 */
789		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
790			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
791		/*
792		 * If the h/w supports storing tx+rx MIC keys
793		 * in one cache slot automatically enable use.
794		 */
795		if (ath_hal_hastkipsplit(ah) ||
796		    !ath_hal_settkipsplit(ah, AH_FALSE))
797			sc->sc_splitmic = 1;
798		/*
799		 * If the h/w can do TKIP MIC together with WME then
800		 * we use it; otherwise we force the MIC to be done
801		 * in software by the net80211 layer.
802		 */
803		if (ath_hal_haswmetkipmic(ah))
804			sc->sc_wmetkipmic = 1;
805	}
806	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
807	/*
808	 * Check for multicast key search support.
809	 */
810	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
811	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
812		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
813	}
814	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
815	/*
816	 * Mark key cache slots associated with global keys
817	 * as in use.  If we knew TKIP was not to be used we
818	 * could leave the +32, +64, and +32+64 slots free.
819	 */
820	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
821		setbit(sc->sc_keymap, i);
822		setbit(sc->sc_keymap, i+64);
823		if (sc->sc_splitmic) {
824			setbit(sc->sc_keymap, i+32);
825			setbit(sc->sc_keymap, i+32+64);
826		}
827	}
828	/*
829	 * TPC support can be done either with a global cap or
830	 * per-packet support.  The latter is not available on
831	 * all parts.  We're a bit pedantic here as all parts
832	 * support a global cap.
833	 */
834	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
835		ic->ic_caps |= IEEE80211_C_TXPMGT;
836
837	/*
838	 * Mark WME capability only if we have sufficient
839	 * hardware queues to do proper priority scheduling.
840	 */
841	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
842		ic->ic_caps |= IEEE80211_C_WME;
843	/*
844	 * Check for misc other capabilities.
845	 */
846	if (ath_hal_hasbursting(ah))
847		ic->ic_caps |= IEEE80211_C_BURST;
848	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
849	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
850	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
851	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
852	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
853	sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
854	sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
855	sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
856
857	if (ath_hal_hasfastframes(ah))
858		ic->ic_caps |= IEEE80211_C_FF;
859	wmodes = ath_hal_getwirelessmodes(ah);
860	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
861		ic->ic_caps |= IEEE80211_C_TURBOP;
862#ifdef IEEE80211_SUPPORT_TDMA
863	if (ath_hal_macversion(ah) > 0x78) {
864		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
865		ic->ic_tdma_update = ath_tdma_update;
866	}
867#endif
868
869	/*
870	 * TODO: enforce that at least this many frames are available
871	 * in the txbuf list before allowing data frames (raw or
872	 * otherwise) to be transmitted.
873	 */
874	sc->sc_txq_data_minfree = 10;
875	/*
876	 * Leave this as default to maintain legacy behaviour.
877	 * Shortening the cabq/mcastq may end up causing some
878	 * undesirable behaviour.
879	 */
880	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
881
882	/*
883	 * How deep can the node software TX queue get whilst it's asleep.
884	 */
885	sc->sc_txq_node_psq_maxdepth = 16;
886
887	/*
888	 * Default the maximum queue depth for a given node
889	 * to 1/4'th the TX buffers, or 64, whichever
890	 * is larger.
891	 */
892	sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4);
893
894	/* Enable CABQ by default */
895	sc->sc_cabq_enable = 1;
896
897	/*
898	 * Allow the TX and RX chainmasks to be overridden by
899	 * environment variables and/or device.hints.
900	 *
901	 * This must be done early - before the hardware is
902	 * calibrated or before the 802.11n stream calculation
903	 * is done.
904	 */
905	if (resource_int_value(device_get_name(sc->sc_dev),
906	    device_get_unit(sc->sc_dev), "rx_chainmask",
907	    &rx_chainmask) == 0) {
908		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
909		    rx_chainmask);
910		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
911	}
912	if (resource_int_value(device_get_name(sc->sc_dev),
913	    device_get_unit(sc->sc_dev), "tx_chainmask",
914	    &tx_chainmask) == 0) {
915		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
916		    tx_chainmask);
917		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
918	}
919
920	/*
921	 * Query the TX/RX chainmask configuration.
922	 *
923	 * This is only relevant for 11n devices.
924	 */
925	ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
926	ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
927
928	/*
929	 * Disable MRR with protected frames by default.
930	 * Only 802.11n series NICs can handle this.
931	 */
932	sc->sc_mrrprot = 0;	/* XXX should be a capability */
933
934	/*
935	 * Query the enterprise mode information the HAL.
936	 */
937	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
938	    &sc->sc_ent_cfg) == HAL_OK)
939		sc->sc_use_ent = 1;
940
941#ifdef	ATH_ENABLE_11N
942	/*
943	 * Query HT capabilities
944	 */
945	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
946	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
947		uint32_t rxs, txs;
948
949		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
950
951		sc->sc_mrrprot = 1;	/* XXX should be a capability */
952
953		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
954			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
955			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
956			    | IEEE80211_HTCAP_MAXAMSDU_3839
957			    				/* max A-MSDU length */
958			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
959			;
960
961		/*
962		 * Enable short-GI for HT20 only if the hardware
963		 * advertises support.
964		 * Notably, anything earlier than the AR9287 doesn't.
965		 */
966		if ((ath_hal_getcapability(ah,
967		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
968		    (wmodes & HAL_MODE_HT20)) {
969			device_printf(sc->sc_dev,
970			    "[HT] enabling short-GI in 20MHz mode\n");
971			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
972		}
973
974		if (wmodes & HAL_MODE_HT40)
975			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
976			    |  IEEE80211_HTCAP_SHORTGI40;
977
978		/*
979		 * TX/RX streams need to be taken into account when
980		 * negotiating which MCS rates it'll receive and
981		 * what MCS rates are available for TX.
982		 */
983		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
984		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
985		ic->ic_txstream = txs;
986		ic->ic_rxstream = rxs;
987
988		/*
989		 * Setup TX and RX STBC based on what the HAL allows and
990		 * the currently configured chainmask set.
991		 * Ie - don't enable STBC TX if only one chain is enabled.
992		 * STBC RX is fine on a single RX chain; it just won't
993		 * provide any real benefit.
994		 */
995		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
996		    NULL) == HAL_OK) {
997			sc->sc_rx_stbc = 1;
998			device_printf(sc->sc_dev,
999			    "[HT] 1 stream STBC receive enabled\n");
1000			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
1001		}
1002		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
1003		    NULL) == HAL_OK) {
1004			sc->sc_tx_stbc = 1;
1005			device_printf(sc->sc_dev,
1006			    "[HT] 1 stream STBC transmit enabled\n");
1007			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
1008		}
1009
1010		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
1011		    &sc->sc_rts_aggr_limit);
1012		if (sc->sc_rts_aggr_limit != (64 * 1024))
1013			device_printf(sc->sc_dev,
1014			    "[HT] RTS aggregates limited to %d KiB\n",
1015			    sc->sc_rts_aggr_limit / 1024);
1016
1017		device_printf(sc->sc_dev,
1018		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
1019	}
1020#endif
1021
1022	/*
1023	 * Initial aggregation settings.
1024	 */
1025	sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
1026	sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
1027	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1028	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1029	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
1030	sc->sc_delim_min_pad = 0;
1031
1032	/*
1033	 * Check if the hardware requires PCI register serialisation.
1034	 * Some of the Owl based MACs require this.
1035	 */
1036	if (mp_ncpus > 1 &&
1037	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
1038	     0, NULL) == HAL_OK) {
1039		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
1040		device_printf(sc->sc_dev,
1041		    "Enabling register serialisation\n");
1042	}
1043
1044	/*
1045	 * Initialise the deferred completed RX buffer list.
1046	 */
1047	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
1048	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
1049
1050	/*
1051	 * Indicate we need the 802.11 header padded to a
1052	 * 32-bit boundary for 4-address and QoS frames.
1053	 */
1054	ic->ic_flags |= IEEE80211_F_DATAPAD;
1055
1056	/*
1057	 * Query the hal about antenna support.
1058	 */
1059	sc->sc_defant = ath_hal_getdefantenna(ah);
1060
1061	/*
1062	 * Not all chips have the VEOL support we want to
1063	 * use with IBSS beacons; check here for it.
1064	 */
1065	sc->sc_hasveol = ath_hal_hasveol(ah);
1066
1067	/* get mac address from hardware */
1068	ath_hal_getmac(ah, macaddr);
1069	if (sc->sc_hasbmask)
1070		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
1071
1072	/* NB: used to size node table key mapping array */
1073	ic->ic_max_keyix = sc->sc_keymax;
1074	/* call MI attach routine. */
1075	ieee80211_ifattach(ic, macaddr);
1076	ic->ic_setregdomain = ath_setregdomain;
1077	ic->ic_getradiocaps = ath_getradiocaps;
1078	sc->sc_opmode = HAL_M_STA;
1079
1080	/* override default methods */
1081	ic->ic_newassoc = ath_newassoc;
1082	ic->ic_updateslot = ath_updateslot;
1083	ic->ic_wme.wme_update = ath_wme_update;
1084	ic->ic_vap_create = ath_vap_create;
1085	ic->ic_vap_delete = ath_vap_delete;
1086	ic->ic_raw_xmit = ath_raw_xmit;
1087	ic->ic_update_mcast = ath_update_mcast;
1088	ic->ic_update_promisc = ath_update_promisc;
1089	ic->ic_node_alloc = ath_node_alloc;
1090	sc->sc_node_free = ic->ic_node_free;
1091	ic->ic_node_free = ath_node_free;
1092	sc->sc_node_cleanup = ic->ic_node_cleanup;
1093	ic->ic_node_cleanup = ath_node_cleanup;
1094	ic->ic_node_getsignal = ath_node_getsignal;
1095	ic->ic_scan_start = ath_scan_start;
1096	ic->ic_scan_end = ath_scan_end;
1097	ic->ic_set_channel = ath_set_channel;
1098#ifdef	ATH_ENABLE_11N
1099	/* 802.11n specific - but just override anyway */
1100	sc->sc_addba_request = ic->ic_addba_request;
1101	sc->sc_addba_response = ic->ic_addba_response;
1102	sc->sc_addba_stop = ic->ic_addba_stop;
1103	sc->sc_bar_response = ic->ic_bar_response;
1104	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
1105
1106	ic->ic_addba_request = ath_addba_request;
1107	ic->ic_addba_response = ath_addba_response;
1108	ic->ic_addba_response_timeout = ath_addba_response_timeout;
1109	ic->ic_addba_stop = ath_addba_stop;
1110	ic->ic_bar_response = ath_bar_response;
1111
1112	ic->ic_update_chw = ath_update_chw;
1113#endif	/* ATH_ENABLE_11N */
1114
1115#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
1116	/*
1117	 * There's one vendor bitmap entry in the RX radiotap
1118	 * header; make sure that's taken into account.
1119	 */
1120	ieee80211_radiotap_attachv(ic,
1121	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
1122		ATH_TX_RADIOTAP_PRESENT,
1123	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
1124		ATH_RX_RADIOTAP_PRESENT);
1125#else
1126	/*
1127	 * No vendor bitmap/extensions are present.
1128	 */
1129	ieee80211_radiotap_attach(ic,
1130	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
1131		ATH_TX_RADIOTAP_PRESENT,
1132	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
1133		ATH_RX_RADIOTAP_PRESENT);
1134#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
1135
1136	/*
1137	 * Setup the ALQ logging if required
1138	 */
1139#ifdef	ATH_DEBUG_ALQ
1140	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
1141	if_ath_alq_setcfg(&sc->sc_alq,
1142	    sc->sc_ah->ah_macVersion,
1143	    sc->sc_ah->ah_macRev,
1144	    sc->sc_ah->ah_phyRev,
1145	    sc->sc_ah->ah_magic);
1146#endif
1147
1148	/*
1149	 * Setup dynamic sysctl's now that country code and
1150	 * regdomain are available from the hal.
1151	 */
1152	ath_sysctlattach(sc);
1153	ath_sysctl_stats_attach(sc);
1154	ath_sysctl_hal_attach(sc);
1155
1156	if (bootverbose)
1157		ieee80211_announce(ic);
1158	ath_announce(sc);
1159
1160	/*
1161	 * Put it to sleep for now.
1162	 */
1163	ATH_LOCK(sc);
1164	ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
1165	ATH_UNLOCK(sc);
1166
1167	return 0;
1168bad2:
1169	ath_tx_cleanup(sc);
1170	ath_desc_free(sc);
1171	ath_txdma_teardown(sc);
1172	ath_rxdma_teardown(sc);
1173bad:
1174	if (ah)
1175		ath_hal_detach(ah);
1176
1177	/*
1178	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
1179	 */
1180	if (ifp != NULL && ifp->if_vnet) {
1181		CURVNET_SET(ifp->if_vnet);
1182		if_free(ifp);
1183		CURVNET_RESTORE();
1184	} else if (ifp != NULL)
1185		if_free(ifp);
1186	sc->sc_invalid = 1;
1187	return error;
1188}
1189
1190int
1191ath_detach(struct ath_softc *sc)
1192{
1193	struct ifnet *ifp = sc->sc_ifp;
1194
1195	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1196		__func__, ifp->if_flags);
1197
1198	/*
1199	 * NB: the order of these is important:
1200	 * o stop the chip so no more interrupts will fire
1201	 * o call the 802.11 layer before detaching the hal to
1202	 *   insure callbacks into the driver to delete global
1203	 *   key cache entries can be handled
1204	 * o free the taskqueue which drains any pending tasks
1205	 * o reclaim the tx queue data structures after calling
1206	 *   the 802.11 layer as we'll get called back to reclaim
1207	 *   node state and potentially want to use them
1208	 * o to cleanup the tx queues the hal is called, so detach
1209	 *   it last
1210	 * Other than that, it's straightforward...
1211	 */
1212
1213	/*
1214	 * XXX Wake the hardware up first.  ath_stop() will still
1215	 * wake it up first, but I'd rather do it here just to
1216	 * ensure it's awake.
1217	 */
1218	ATH_LOCK(sc);
1219	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1220	ath_power_setpower(sc, HAL_PM_AWAKE);
1221	ATH_UNLOCK(sc);
1222
1223	/*
1224	 * Stop things cleanly.
1225	 */
1226	ath_stop(ifp);
1227
1228	ieee80211_ifdetach(ifp->if_l2com);
1229	taskqueue_free(sc->sc_tq);
1230#ifdef ATH_TX99_DIAG
1231	if (sc->sc_tx99 != NULL)
1232		sc->sc_tx99->detach(sc->sc_tx99);
1233#endif
1234	ath_rate_detach(sc->sc_rc);
1235#ifdef	ATH_DEBUG_ALQ
1236	if_ath_alq_tidyup(&sc->sc_alq);
1237#endif
1238	ath_lna_div_detach(sc);
1239	ath_btcoex_detach(sc);
1240	ath_spectral_detach(sc);
1241	ath_dfs_detach(sc);
1242	ath_desc_free(sc);
1243	ath_txdma_teardown(sc);
1244	ath_rxdma_teardown(sc);
1245	ath_tx_cleanup(sc);
1246	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1247
1248	CURVNET_SET(ifp->if_vnet);
1249	if_free(ifp);
1250	CURVNET_RESTORE();
1251
1252	return 0;
1253}
1254
1255/*
1256 * MAC address handling for multiple BSS on the same radio.
1257 * The first vap uses the MAC address from the EEPROM.  For
1258 * subsequent vap's we set the U/L bit (bit 1) in the MAC
1259 * address and use the next six bits as an index.
1260 */
1261static void
1262assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1263{
1264	int i;
1265
1266	if (clone && sc->sc_hasbmask) {
1267		/* NB: we only do this if h/w supports multiple bssid */
1268		for (i = 0; i < 8; i++)
1269			if ((sc->sc_bssidmask & (1<<i)) == 0)
1270				break;
1271		if (i != 0)
1272			mac[0] |= (i << 2)|0x2;
1273	} else
1274		i = 0;
1275	sc->sc_bssidmask |= 1<<i;
1276	sc->sc_hwbssidmask[0] &= ~mac[0];
1277	if (i == 0)
1278		sc->sc_nbssid0++;
1279}
1280
1281static void
1282reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1283{
1284	int i = mac[0] >> 2;
1285	uint8_t mask;
1286
1287	if (i != 0 || --sc->sc_nbssid0 == 0) {
1288		sc->sc_bssidmask &= ~(1<<i);
1289		/* recalculate bssid mask from remaining addresses */
1290		mask = 0xff;
1291		for (i = 1; i < 8; i++)
1292			if (sc->sc_bssidmask & (1<<i))
1293				mask &= ~((i<<2)|0x2);
1294		sc->sc_hwbssidmask[0] |= mask;
1295	}
1296}
1297
1298/*
1299 * Assign a beacon xmit slot.  We try to space out
1300 * assignments so when beacons are staggered the
1301 * traffic coming out of the cab q has maximal time
1302 * to go out before the next beacon is scheduled.
1303 */
1304static int
1305assign_bslot(struct ath_softc *sc)
1306{
1307	u_int slot, free;
1308
1309	free = 0;
1310	for (slot = 0; slot < ATH_BCBUF; slot++)
1311		if (sc->sc_bslot[slot] == NULL) {
1312			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1313			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1314				return slot;
1315			free = slot;
1316			/* NB: keep looking for a double slot */
1317		}
1318	return free;
1319}
1320
1321static struct ieee80211vap *
1322ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1323    enum ieee80211_opmode opmode, int flags,
1324    const uint8_t bssid[IEEE80211_ADDR_LEN],
1325    const uint8_t mac0[IEEE80211_ADDR_LEN])
1326{
1327	struct ath_softc *sc = ic->ic_ifp->if_softc;
1328	struct ath_vap *avp;
1329	struct ieee80211vap *vap;
1330	uint8_t mac[IEEE80211_ADDR_LEN];
1331	int needbeacon, error;
1332	enum ieee80211_opmode ic_opmode;
1333
1334	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1335	    M_80211_VAP, M_WAITOK | M_ZERO);
1336	needbeacon = 0;
1337	IEEE80211_ADDR_COPY(mac, mac0);
1338
1339	ATH_LOCK(sc);
1340	ic_opmode = opmode;		/* default to opmode of new vap */
1341	switch (opmode) {
1342	case IEEE80211_M_STA:
1343		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1344			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1345			goto bad;
1346		}
1347		if (sc->sc_nvaps) {
1348			/*
1349			 * With multiple vaps we must fall back
1350			 * to s/w beacon miss handling.
1351			 */
1352			flags |= IEEE80211_CLONE_NOBEACONS;
1353		}
1354		if (flags & IEEE80211_CLONE_NOBEACONS) {
1355			/*
1356			 * Station mode w/o beacons are implemented w/ AP mode.
1357			 */
1358			ic_opmode = IEEE80211_M_HOSTAP;
1359		}
1360		break;
1361	case IEEE80211_M_IBSS:
1362		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1363			device_printf(sc->sc_dev,
1364			    "only 1 ibss vap supported\n");
1365			goto bad;
1366		}
1367		needbeacon = 1;
1368		break;
1369	case IEEE80211_M_AHDEMO:
1370#ifdef IEEE80211_SUPPORT_TDMA
1371		if (flags & IEEE80211_CLONE_TDMA) {
1372			if (sc->sc_nvaps != 0) {
1373				device_printf(sc->sc_dev,
1374				    "only 1 tdma vap supported\n");
1375				goto bad;
1376			}
1377			needbeacon = 1;
1378			flags |= IEEE80211_CLONE_NOBEACONS;
1379		}
1380		/* fall thru... */
1381#endif
1382	case IEEE80211_M_MONITOR:
1383		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1384			/*
1385			 * Adopt existing mode.  Adding a monitor or ahdemo
1386			 * vap to an existing configuration is of dubious
1387			 * value but should be ok.
1388			 */
1389			/* XXX not right for monitor mode */
1390			ic_opmode = ic->ic_opmode;
1391		}
1392		break;
1393	case IEEE80211_M_HOSTAP:
1394	case IEEE80211_M_MBSS:
1395		needbeacon = 1;
1396		break;
1397	case IEEE80211_M_WDS:
1398		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1399			device_printf(sc->sc_dev,
1400			    "wds not supported in sta mode\n");
1401			goto bad;
1402		}
1403		/*
1404		 * Silently remove any request for a unique
1405		 * bssid; WDS vap's always share the local
1406		 * mac address.
1407		 */
1408		flags &= ~IEEE80211_CLONE_BSSID;
1409		if (sc->sc_nvaps == 0)
1410			ic_opmode = IEEE80211_M_HOSTAP;
1411		else
1412			ic_opmode = ic->ic_opmode;
1413		break;
1414	default:
1415		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1416		goto bad;
1417	}
1418	/*
1419	 * Check that a beacon buffer is available; the code below assumes it.
1420	 */
1421	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1422		device_printf(sc->sc_dev, "no beacon buffer available\n");
1423		goto bad;
1424	}
1425
1426	/* STA, AHDEMO? */
1427	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1428		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1429		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1430	}
1431
1432	vap = &avp->av_vap;
1433	/* XXX can't hold mutex across if_alloc */
1434	ATH_UNLOCK(sc);
1435	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1436	    bssid, mac);
1437	ATH_LOCK(sc);
1438	if (error != 0) {
1439		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1440		    __func__, error);
1441		goto bad2;
1442	}
1443
1444	/* h/w crypto support */
1445	vap->iv_key_alloc = ath_key_alloc;
1446	vap->iv_key_delete = ath_key_delete;
1447	vap->iv_key_set = ath_key_set;
1448	vap->iv_key_update_begin = ath_key_update_begin;
1449	vap->iv_key_update_end = ath_key_update_end;
1450
1451	/* override various methods */
1452	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1453	vap->iv_recv_mgmt = ath_recv_mgmt;
1454	vap->iv_reset = ath_reset_vap;
1455	vap->iv_update_beacon = ath_beacon_update;
1456	avp->av_newstate = vap->iv_newstate;
1457	vap->iv_newstate = ath_newstate;
1458	avp->av_bmiss = vap->iv_bmiss;
1459	vap->iv_bmiss = ath_bmiss_vap;
1460
1461	avp->av_node_ps = vap->iv_node_ps;
1462	vap->iv_node_ps = ath_node_powersave;
1463
1464	avp->av_set_tim = vap->iv_set_tim;
1465	vap->iv_set_tim = ath_node_set_tim;
1466
1467	avp->av_recv_pspoll = vap->iv_recv_pspoll;
1468	vap->iv_recv_pspoll = ath_node_recv_pspoll;
1469
1470	/* Set default parameters */
1471
1472	/*
1473	 * Anything earlier than some AR9300 series MACs don't
1474	 * support a smaller MPDU density.
1475	 */
1476	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1477	/*
1478	 * All NICs can handle the maximum size, however
1479	 * AR5416 based MACs can only TX aggregates w/ RTS
1480	 * protection when the total aggregate size is <= 8k.
1481	 * However, for now that's enforced by the TX path.
1482	 */
1483	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1484
1485	avp->av_bslot = -1;
1486	if (needbeacon) {
1487		/*
1488		 * Allocate beacon state and setup the q for buffered
1489		 * multicast frames.  We know a beacon buffer is
1490		 * available because we checked above.
1491		 */
1492		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1493		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1494		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1495			/*
1496			 * Assign the vap to a beacon xmit slot.  As above
1497			 * this cannot fail to find a free one.
1498			 */
1499			avp->av_bslot = assign_bslot(sc);
1500			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1501			    ("beacon slot %u not empty", avp->av_bslot));
1502			sc->sc_bslot[avp->av_bslot] = vap;
1503			sc->sc_nbcnvaps++;
1504		}
1505		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1506			/*
1507			 * Multple vaps are to transmit beacons and we
1508			 * have h/w support for TSF adjusting; enable
1509			 * use of staggered beacons.
1510			 */
1511			sc->sc_stagbeacons = 1;
1512		}
1513		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1514	}
1515
1516	ic->ic_opmode = ic_opmode;
1517	if (opmode != IEEE80211_M_WDS) {
1518		sc->sc_nvaps++;
1519		if (opmode == IEEE80211_M_STA)
1520			sc->sc_nstavaps++;
1521		if (opmode == IEEE80211_M_MBSS)
1522			sc->sc_nmeshvaps++;
1523	}
1524	switch (ic_opmode) {
1525	case IEEE80211_M_IBSS:
1526		sc->sc_opmode = HAL_M_IBSS;
1527		break;
1528	case IEEE80211_M_STA:
1529		sc->sc_opmode = HAL_M_STA;
1530		break;
1531	case IEEE80211_M_AHDEMO:
1532#ifdef IEEE80211_SUPPORT_TDMA
1533		if (vap->iv_caps & IEEE80211_C_TDMA) {
1534			sc->sc_tdma = 1;
1535			/* NB: disable tsf adjust */
1536			sc->sc_stagbeacons = 0;
1537		}
1538		/*
1539		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1540		 * just ap mode.
1541		 */
1542		/* fall thru... */
1543#endif
1544	case IEEE80211_M_HOSTAP:
1545	case IEEE80211_M_MBSS:
1546		sc->sc_opmode = HAL_M_HOSTAP;
1547		break;
1548	case IEEE80211_M_MONITOR:
1549		sc->sc_opmode = HAL_M_MONITOR;
1550		break;
1551	default:
1552		/* XXX should not happen */
1553		break;
1554	}
1555	if (sc->sc_hastsfadd) {
1556		/*
1557		 * Configure whether or not TSF adjust should be done.
1558		 */
1559		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1560	}
1561	if (flags & IEEE80211_CLONE_NOBEACONS) {
1562		/*
1563		 * Enable s/w beacon miss handling.
1564		 */
1565		sc->sc_swbmiss = 1;
1566	}
1567	ATH_UNLOCK(sc);
1568
1569	/* complete setup */
1570	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1571	return vap;
1572bad2:
1573	reclaim_address(sc, mac);
1574	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1575bad:
1576	free(avp, M_80211_VAP);
1577	ATH_UNLOCK(sc);
1578	return NULL;
1579}
1580
1581static void
1582ath_vap_delete(struct ieee80211vap *vap)
1583{
1584	struct ieee80211com *ic = vap->iv_ic;
1585	struct ifnet *ifp = ic->ic_ifp;
1586	struct ath_softc *sc = ifp->if_softc;
1587	struct ath_hal *ah = sc->sc_ah;
1588	struct ath_vap *avp = ATH_VAP(vap);
1589
1590	ATH_LOCK(sc);
1591	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1592	ATH_UNLOCK(sc);
1593
1594	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1595	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1596		/*
1597		 * Quiesce the hardware while we remove the vap.  In
1598		 * particular we need to reclaim all references to
1599		 * the vap state by any frames pending on the tx queues.
1600		 */
1601		ath_hal_intrset(ah, 0);		/* disable interrupts */
1602		/* XXX Do all frames from all vaps/nodes need draining here? */
1603		ath_stoprecv(sc, 1);		/* stop recv side */
1604		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1605	}
1606
1607	/* .. leave the hardware awake for now. */
1608
1609	ieee80211_vap_detach(vap);
1610
1611	/*
1612	 * XXX Danger Will Robinson! Danger!
1613	 *
1614	 * Because ieee80211_vap_detach() can queue a frame (the station
1615	 * diassociate message?) after we've drained the TXQ and
1616	 * flushed the software TXQ, we will end up with a frame queued
1617	 * to a node whose vap is about to be freed.
1618	 *
1619	 * To work around this, flush the hardware/software again.
1620	 * This may be racy - the ath task may be running and the packet
1621	 * may be being scheduled between sw->hw txq. Tsk.
1622	 *
1623	 * TODO: figure out why a new node gets allocated somewhere around
1624	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1625	 * call!)
1626	 */
1627
1628	ath_draintxq(sc, ATH_RESET_DEFAULT);
1629
1630	ATH_LOCK(sc);
1631	/*
1632	 * Reclaim beacon state.  Note this must be done before
1633	 * the vap instance is reclaimed as we may have a reference
1634	 * to it in the buffer for the beacon frame.
1635	 */
1636	if (avp->av_bcbuf != NULL) {
1637		if (avp->av_bslot != -1) {
1638			sc->sc_bslot[avp->av_bslot] = NULL;
1639			sc->sc_nbcnvaps--;
1640		}
1641		ath_beacon_return(sc, avp->av_bcbuf);
1642		avp->av_bcbuf = NULL;
1643		if (sc->sc_nbcnvaps == 0) {
1644			sc->sc_stagbeacons = 0;
1645			if (sc->sc_hastsfadd)
1646				ath_hal_settsfadjust(sc->sc_ah, 0);
1647		}
1648		/*
1649		 * Reclaim any pending mcast frames for the vap.
1650		 */
1651		ath_tx_draintxq(sc, &avp->av_mcastq);
1652	}
1653	/*
1654	 * Update bookkeeping.
1655	 */
1656	if (vap->iv_opmode == IEEE80211_M_STA) {
1657		sc->sc_nstavaps--;
1658		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1659			sc->sc_swbmiss = 0;
1660	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1661	    vap->iv_opmode == IEEE80211_M_MBSS) {
1662		reclaim_address(sc, vap->iv_myaddr);
1663		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1664		if (vap->iv_opmode == IEEE80211_M_MBSS)
1665			sc->sc_nmeshvaps--;
1666	}
1667	if (vap->iv_opmode != IEEE80211_M_WDS)
1668		sc->sc_nvaps--;
1669#ifdef IEEE80211_SUPPORT_TDMA
1670	/* TDMA operation ceases when the last vap is destroyed */
1671	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1672		sc->sc_tdma = 0;
1673		sc->sc_swbmiss = 0;
1674	}
1675#endif
1676	free(avp, M_80211_VAP);
1677
1678	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1679		/*
1680		 * Restart rx+tx machines if still running (RUNNING will
1681		 * be reset if we just destroyed the last vap).
1682		 */
1683		if (ath_startrecv(sc) != 0)
1684			if_printf(ifp, "%s: unable to restart recv logic\n",
1685			    __func__);
1686		if (sc->sc_beacons) {		/* restart beacons */
1687#ifdef IEEE80211_SUPPORT_TDMA
1688			if (sc->sc_tdma)
1689				ath_tdma_config(sc, NULL);
1690			else
1691#endif
1692				ath_beacon_config(sc, NULL);
1693		}
1694		ath_hal_intrset(ah, sc->sc_imask);
1695	}
1696
1697	/* Ok, let the hardware asleep. */
1698	ath_power_restore_power_state(sc);
1699	ATH_UNLOCK(sc);
1700}
1701
1702void
1703ath_suspend(struct ath_softc *sc)
1704{
1705	struct ifnet *ifp = sc->sc_ifp;
1706	struct ieee80211com *ic = ifp->if_l2com;
1707
1708	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1709		__func__, ifp->if_flags);
1710
1711	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1712
1713	ieee80211_suspend_all(ic);
1714	/*
1715	 * NB: don't worry about putting the chip in low power
1716	 * mode; pci will power off our socket on suspend and
1717	 * CardBus detaches the device.
1718	 */
1719
1720	/*
1721	 * XXX ensure none of the taskqueues are running
1722	 * XXX ensure sc_invalid is 1
1723	 * XXX ensure the calibration callout is disabled
1724	 */
1725
1726	/* Disable the PCIe PHY, complete with workarounds */
1727	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1728}
1729
1730/*
1731 * Reset the key cache since some parts do not reset the
1732 * contents on resume.  First we clear all entries, then
1733 * re-load keys that the 802.11 layer assumes are setup
1734 * in h/w.
1735 */
1736static void
1737ath_reset_keycache(struct ath_softc *sc)
1738{
1739	struct ifnet *ifp = sc->sc_ifp;
1740	struct ieee80211com *ic = ifp->if_l2com;
1741	struct ath_hal *ah = sc->sc_ah;
1742	int i;
1743
1744	ATH_LOCK(sc);
1745	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1746	for (i = 0; i < sc->sc_keymax; i++)
1747		ath_hal_keyreset(ah, i);
1748	ath_power_restore_power_state(sc);
1749	ATH_UNLOCK(sc);
1750	ieee80211_crypto_reload_keys(ic);
1751}
1752
1753/*
1754 * Fetch the current chainmask configuration based on the current
1755 * operating channel and options.
1756 */
1757static void
1758ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1759{
1760
1761	/*
1762	 * Set TX chainmask to the currently configured chainmask;
1763	 * the TX chainmask depends upon the current operating mode.
1764	 */
1765	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1766	if (IEEE80211_IS_CHAN_HT(chan)) {
1767		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1768	} else {
1769		sc->sc_cur_txchainmask = 1;
1770	}
1771
1772	DPRINTF(sc, ATH_DEBUG_RESET,
1773	    "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1774	    __func__,
1775	    sc->sc_cur_txchainmask,
1776	    sc->sc_cur_rxchainmask);
1777}
1778
1779void
1780ath_resume(struct ath_softc *sc)
1781{
1782	struct ifnet *ifp = sc->sc_ifp;
1783	struct ieee80211com *ic = ifp->if_l2com;
1784	struct ath_hal *ah = sc->sc_ah;
1785	HAL_STATUS status;
1786
1787	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1788		__func__, ifp->if_flags);
1789
1790	/* Re-enable PCIe, re-enable the PCIe bus */
1791	ath_hal_enablepcie(ah, 0, 0);
1792
1793	/*
1794	 * Must reset the chip before we reload the
1795	 * keycache as we were powered down on suspend.
1796	 */
1797	ath_update_chainmasks(sc,
1798	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1799	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1800	    sc->sc_cur_rxchainmask);
1801
1802	/* Ensure we set the current power state to on */
1803	ATH_LOCK(sc);
1804	ath_power_setselfgen(sc, HAL_PM_AWAKE);
1805	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1806	ath_power_setpower(sc, HAL_PM_AWAKE);
1807	ATH_UNLOCK(sc);
1808
1809	ath_hal_reset(ah, sc->sc_opmode,
1810	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1811	    AH_FALSE, &status);
1812	ath_reset_keycache(sc);
1813
1814	/* Let DFS at it in case it's a DFS channel */
1815	ath_dfs_radar_enable(sc, ic->ic_curchan);
1816
1817	/* Let spectral at in case spectral is enabled */
1818	ath_spectral_enable(sc, ic->ic_curchan);
1819
1820	/*
1821	 * Let bluetooth coexistence at in case it's needed for this channel
1822	 */
1823	ath_btcoex_enable(sc, ic->ic_curchan);
1824
1825	/*
1826	 * If we're doing TDMA, enforce the TXOP limitation for chips that
1827	 * support it.
1828	 */
1829	if (sc->sc_hasenforcetxop && sc->sc_tdma)
1830		ath_hal_setenforcetxop(sc->sc_ah, 1);
1831	else
1832		ath_hal_setenforcetxop(sc->sc_ah, 0);
1833
1834	/* Restore the LED configuration */
1835	ath_led_config(sc);
1836	ath_hal_setledstate(ah, HAL_LED_INIT);
1837
1838	if (sc->sc_resume_up)
1839		ieee80211_resume_all(ic);
1840
1841	ATH_LOCK(sc);
1842	ath_power_restore_power_state(sc);
1843	ATH_UNLOCK(sc);
1844
1845	/* XXX beacons ? */
1846}
1847
1848void
1849ath_shutdown(struct ath_softc *sc)
1850{
1851	struct ifnet *ifp = sc->sc_ifp;
1852
1853	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1854		__func__, ifp->if_flags);
1855
1856	ath_stop(ifp);
1857	/* NB: no point powering down chip as we're about to reboot */
1858}
1859
1860/*
1861 * Interrupt handler.  Most of the actual processing is deferred.
1862 */
1863void
1864ath_intr(void *arg)
1865{
1866	struct ath_softc *sc = arg;
1867	struct ifnet *ifp = sc->sc_ifp;
1868	struct ath_hal *ah = sc->sc_ah;
1869	HAL_INT status = 0;
1870	uint32_t txqs;
1871
1872	/*
1873	 * If we're inside a reset path, just print a warning and
1874	 * clear the ISR. The reset routine will finish it for us.
1875	 */
1876	ATH_PCU_LOCK(sc);
1877	if (sc->sc_inreset_cnt) {
1878		HAL_INT status;
1879		ath_hal_getisr(ah, &status);	/* clear ISR */
1880		ath_hal_intrset(ah, 0);		/* disable further intr's */
1881		DPRINTF(sc, ATH_DEBUG_ANY,
1882		    "%s: in reset, ignoring: status=0x%x\n",
1883		    __func__, status);
1884		ATH_PCU_UNLOCK(sc);
1885		return;
1886	}
1887
1888	if (sc->sc_invalid) {
1889		/*
1890		 * The hardware is not ready/present, don't touch anything.
1891		 * Note this can happen early on if the IRQ is shared.
1892		 */
1893		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1894		ATH_PCU_UNLOCK(sc);
1895		return;
1896	}
1897	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1898		ATH_PCU_UNLOCK(sc);
1899		return;
1900	}
1901
1902	ATH_LOCK(sc);
1903	ath_power_set_power_state(sc, HAL_PM_AWAKE);
1904	ATH_UNLOCK(sc);
1905
1906	if ((ifp->if_flags & IFF_UP) == 0 ||
1907	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1908		HAL_INT status;
1909
1910		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1911			__func__, ifp->if_flags);
1912		ath_hal_getisr(ah, &status);	/* clear ISR */
1913		ath_hal_intrset(ah, 0);		/* disable further intr's */
1914		ATH_PCU_UNLOCK(sc);
1915
1916		ATH_LOCK(sc);
1917		ath_power_restore_power_state(sc);
1918		ATH_UNLOCK(sc);
1919		return;
1920	}
1921
1922	/*
1923	 * Figure out the reason(s) for the interrupt.  Note
1924	 * that the hal returns a pseudo-ISR that may include
1925	 * bits we haven't explicitly enabled so we mask the
1926	 * value to insure we only process bits we requested.
1927	 */
1928	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1929	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1930	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
1931#ifdef	ATH_DEBUG_ALQ
1932	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
1933	    ah->ah_syncstate);
1934#endif	/* ATH_DEBUG_ALQ */
1935#ifdef	ATH_KTR_INTR_DEBUG
1936	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
1937	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1938	    ah->ah_intrstate[0],
1939	    ah->ah_intrstate[1],
1940	    ah->ah_intrstate[2],
1941	    ah->ah_intrstate[3],
1942	    ah->ah_intrstate[6]);
1943#endif
1944
1945	/* Squirrel away SYNC interrupt debugging */
1946	if (ah->ah_syncstate != 0) {
1947		int i;
1948		for (i = 0; i < 32; i++)
1949			if (ah->ah_syncstate & (i << i))
1950				sc->sc_intr_stats.sync_intr[i]++;
1951	}
1952
1953	status &= sc->sc_imask;			/* discard unasked for bits */
1954
1955	/* Short-circuit un-handled interrupts */
1956	if (status == 0x0) {
1957		ATH_PCU_UNLOCK(sc);
1958
1959		ATH_LOCK(sc);
1960		ath_power_restore_power_state(sc);
1961		ATH_UNLOCK(sc);
1962
1963		return;
1964	}
1965
1966	/*
1967	 * Take a note that we're inside the interrupt handler, so
1968	 * the reset routines know to wait.
1969	 */
1970	sc->sc_intr_cnt++;
1971	ATH_PCU_UNLOCK(sc);
1972
1973	/*
1974	 * Handle the interrupt. We won't run concurrent with the reset
1975	 * or channel change routines as they'll wait for sc_intr_cnt
1976	 * to be 0 before continuing.
1977	 */
1978	if (status & HAL_INT_FATAL) {
1979		sc->sc_stats.ast_hardware++;
1980		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1981		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1982	} else {
1983		if (status & HAL_INT_SWBA) {
1984			/*
1985			 * Software beacon alert--time to send a beacon.
1986			 * Handle beacon transmission directly; deferring
1987			 * this is too slow to meet timing constraints
1988			 * under load.
1989			 */
1990#ifdef IEEE80211_SUPPORT_TDMA
1991			if (sc->sc_tdma) {
1992				if (sc->sc_tdmaswba == 0) {
1993					struct ieee80211com *ic = ifp->if_l2com;
1994					struct ieee80211vap *vap =
1995					    TAILQ_FIRST(&ic->ic_vaps);
1996					ath_tdma_beacon_send(sc, vap);
1997					sc->sc_tdmaswba =
1998					    vap->iv_tdma->tdma_bintval;
1999				} else
2000					sc->sc_tdmaswba--;
2001			} else
2002#endif
2003			{
2004				ath_beacon_proc(sc, 0);
2005#ifdef IEEE80211_SUPPORT_SUPERG
2006				/*
2007				 * Schedule the rx taskq in case there's no
2008				 * traffic so any frames held on the staging
2009				 * queue are aged and potentially flushed.
2010				 */
2011				sc->sc_rx.recv_sched(sc, 1);
2012#endif
2013			}
2014		}
2015		if (status & HAL_INT_RXEOL) {
2016			int imask;
2017			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
2018			ATH_PCU_LOCK(sc);
2019			/*
2020			 * NB: the hardware should re-read the link when
2021			 *     RXE bit is written, but it doesn't work at
2022			 *     least on older hardware revs.
2023			 */
2024			sc->sc_stats.ast_rxeol++;
2025			/*
2026			 * Disable RXEOL/RXORN - prevent an interrupt
2027			 * storm until the PCU logic can be reset.
2028			 * In case the interface is reset some other
2029			 * way before "sc_kickpcu" is called, don't
2030			 * modify sc_imask - that way if it is reset
2031			 * by a call to ath_reset() somehow, the
2032			 * interrupt mask will be correctly reprogrammed.
2033			 */
2034			imask = sc->sc_imask;
2035			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
2036			ath_hal_intrset(ah, imask);
2037			/*
2038			 * Only blank sc_rxlink if we've not yet kicked
2039			 * the PCU.
2040			 *
2041			 * This isn't entirely correct - the correct solution
2042			 * would be to have a PCU lock and engage that for
2043			 * the duration of the PCU fiddling; which would include
2044			 * running the RX process. Otherwise we could end up
2045			 * messing up the RX descriptor chain and making the
2046			 * RX desc list much shorter.
2047			 */
2048			if (! sc->sc_kickpcu)
2049				sc->sc_rxlink = NULL;
2050			sc->sc_kickpcu = 1;
2051			ATH_PCU_UNLOCK(sc);
2052			/*
2053			 * Enqueue an RX proc, to handled whatever
2054			 * is in the RX queue.
2055			 * This will then kick the PCU.
2056			 */
2057			sc->sc_rx.recv_sched(sc, 1);
2058		}
2059		if (status & HAL_INT_TXURN) {
2060			sc->sc_stats.ast_txurn++;
2061			/* bump tx trigger level */
2062			ath_hal_updatetxtriglevel(ah, AH_TRUE);
2063		}
2064		/*
2065		 * Handle both the legacy and RX EDMA interrupt bits.
2066		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
2067		 */
2068		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
2069			sc->sc_stats.ast_rx_intr++;
2070			sc->sc_rx.recv_sched(sc, 1);
2071		}
2072		if (status & HAL_INT_TX) {
2073			sc->sc_stats.ast_tx_intr++;
2074			/*
2075			 * Grab all the currently set bits in the HAL txq bitmap
2076			 * and blank them. This is the only place we should be
2077			 * doing this.
2078			 */
2079			if (! sc->sc_isedma) {
2080				ATH_PCU_LOCK(sc);
2081				txqs = 0xffffffff;
2082				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
2083				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
2084				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
2085				    txqs,
2086				    sc->sc_txq_active,
2087				    sc->sc_txq_active | txqs);
2088				sc->sc_txq_active |= txqs;
2089				ATH_PCU_UNLOCK(sc);
2090			}
2091			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
2092		}
2093		if (status & HAL_INT_BMISS) {
2094			sc->sc_stats.ast_bmiss++;
2095			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
2096		}
2097		if (status & HAL_INT_GTT)
2098			sc->sc_stats.ast_tx_timeout++;
2099		if (status & HAL_INT_CST)
2100			sc->sc_stats.ast_tx_cst++;
2101		if (status & HAL_INT_MIB) {
2102			sc->sc_stats.ast_mib++;
2103			ATH_PCU_LOCK(sc);
2104			/*
2105			 * Disable interrupts until we service the MIB
2106			 * interrupt; otherwise it will continue to fire.
2107			 */
2108			ath_hal_intrset(ah, 0);
2109			/*
2110			 * Let the hal handle the event.  We assume it will
2111			 * clear whatever condition caused the interrupt.
2112			 */
2113			ath_hal_mibevent(ah, &sc->sc_halstats);
2114			/*
2115			 * Don't reset the interrupt if we've just
2116			 * kicked the PCU, or we may get a nested
2117			 * RXEOL before the rxproc has had a chance
2118			 * to run.
2119			 */
2120			if (sc->sc_kickpcu == 0)
2121				ath_hal_intrset(ah, sc->sc_imask);
2122			ATH_PCU_UNLOCK(sc);
2123		}
2124		if (status & HAL_INT_RXORN) {
2125			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
2126			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
2127			sc->sc_stats.ast_rxorn++;
2128		}
2129		if (status & HAL_INT_TSFOOR) {
2130			device_printf(sc->sc_dev, "%s: TSFOOR\n", __func__);
2131			sc->sc_syncbeacon = 1;
2132		}
2133	}
2134	ATH_PCU_LOCK(sc);
2135	sc->sc_intr_cnt--;
2136	ATH_PCU_UNLOCK(sc);
2137
2138	ATH_LOCK(sc);
2139	ath_power_restore_power_state(sc);
2140	ATH_UNLOCK(sc);
2141}
2142
2143static void
2144ath_fatal_proc(void *arg, int pending)
2145{
2146	struct ath_softc *sc = arg;
2147	struct ifnet *ifp = sc->sc_ifp;
2148	u_int32_t *state;
2149	u_int32_t len;
2150	void *sp;
2151
2152	if_printf(ifp, "hardware error; resetting\n");
2153	/*
2154	 * Fatal errors are unrecoverable.  Typically these
2155	 * are caused by DMA errors.  Collect h/w state from
2156	 * the hal so we can diagnose what's going on.
2157	 */
2158	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
2159		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
2160		state = sp;
2161		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
2162		    state[0], state[1] , state[2], state[3],
2163		    state[4], state[5]);
2164	}
2165	ath_reset(ifp, ATH_RESET_NOLOSS);
2166}
2167
2168static void
2169ath_bmiss_vap(struct ieee80211vap *vap)
2170{
2171	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2172
2173	/*
2174	 * Workaround phantom bmiss interrupts by sanity-checking
2175	 * the time of our last rx'd frame.  If it is within the
2176	 * beacon miss interval then ignore the interrupt.  If it's
2177	 * truly a bmiss we'll get another interrupt soon and that'll
2178	 * be dispatched up for processing.  Note this applies only
2179	 * for h/w beacon miss events.
2180	 */
2181
2182	/*
2183	 * XXX TODO: Just read the TSF during the interrupt path;
2184	 * that way we don't have to wake up again just to read it
2185	 * again.
2186	 */
2187	ATH_LOCK(sc);
2188	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2189	ATH_UNLOCK(sc);
2190
2191	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
2192		struct ifnet *ifp = vap->iv_ic->ic_ifp;
2193		struct ath_softc *sc = ifp->if_softc;
2194		u_int64_t lastrx = sc->sc_lastrx;
2195		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
2196		/* XXX should take a locked ref to iv_bss */
2197		u_int bmisstimeout =
2198			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
2199
2200		DPRINTF(sc, ATH_DEBUG_BEACON,
2201		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
2202		    __func__, (unsigned long long) tsf,
2203		    (unsigned long long)(tsf - lastrx),
2204		    (unsigned long long) lastrx, bmisstimeout);
2205
2206		if (tsf - lastrx <= bmisstimeout) {
2207			sc->sc_stats.ast_bmiss_phantom++;
2208
2209			ATH_LOCK(sc);
2210			ath_power_restore_power_state(sc);
2211			ATH_UNLOCK(sc);
2212
2213			return;
2214		}
2215	}
2216
2217	/*
2218	 * There's no need to keep the hardware awake during the call
2219	 * to av_bmiss().
2220	 */
2221	ATH_LOCK(sc);
2222	ath_power_restore_power_state(sc);
2223	ATH_UNLOCK(sc);
2224
2225	/*
2226	 * Attempt to force a beacon resync.
2227	 */
2228	sc->sc_syncbeacon = 1;
2229
2230	ATH_VAP(vap)->av_bmiss(vap);
2231}
2232
2233/* XXX this needs a force wakeup! */
2234int
2235ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
2236{
2237	uint32_t rsize;
2238	void *sp;
2239
2240	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
2241		return 0;
2242	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
2243	*hangs = *(uint32_t *)sp;
2244	return 1;
2245}
2246
2247static void
2248ath_bmiss_proc(void *arg, int pending)
2249{
2250	struct ath_softc *sc = arg;
2251	struct ifnet *ifp = sc->sc_ifp;
2252	uint32_t hangs;
2253
2254	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
2255
2256	ATH_LOCK(sc);
2257	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2258	ATH_UNLOCK(sc);
2259
2260	ath_beacon_miss(sc);
2261
2262	/*
2263	 * Do a reset upon any becaon miss event.
2264	 *
2265	 * It may be a non-recognised RX clear hang which needs a reset
2266	 * to clear.
2267	 */
2268	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
2269		ath_reset(ifp, ATH_RESET_NOLOSS);
2270		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
2271	} else {
2272		ath_reset(ifp, ATH_RESET_NOLOSS);
2273		ieee80211_beacon_miss(ifp->if_l2com);
2274	}
2275
2276	/* Force a beacon resync, in case they've drifted */
2277	sc->sc_syncbeacon = 1;
2278
2279	ATH_LOCK(sc);
2280	ath_power_restore_power_state(sc);
2281	ATH_UNLOCK(sc);
2282}
2283
2284/*
2285 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
2286 * calcs together with WME.  If necessary disable the crypto
2287 * hardware and mark the 802.11 state so keys will be setup
2288 * with the MIC work done in software.
2289 */
2290static void
2291ath_settkipmic(struct ath_softc *sc)
2292{
2293	struct ifnet *ifp = sc->sc_ifp;
2294	struct ieee80211com *ic = ifp->if_l2com;
2295
2296	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2297		if (ic->ic_flags & IEEE80211_F_WME) {
2298			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
2299			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2300		} else {
2301			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
2302			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2303		}
2304	}
2305}
2306
2307static void
2308ath_init(void *arg)
2309{
2310	struct ath_softc *sc = (struct ath_softc *) arg;
2311	struct ifnet *ifp = sc->sc_ifp;
2312	struct ieee80211com *ic = ifp->if_l2com;
2313	struct ath_hal *ah = sc->sc_ah;
2314	HAL_STATUS status;
2315
2316	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
2317		__func__, ifp->if_flags);
2318
2319	ATH_LOCK(sc);
2320	/*
2321	 * Force the sleep state awake.
2322	 */
2323	ath_power_setselfgen(sc, HAL_PM_AWAKE);
2324	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2325	ath_power_setpower(sc, HAL_PM_AWAKE);
2326
2327	/*
2328	 * Stop anything previously setup.  This is safe
2329	 * whether this is the first time through or not.
2330	 */
2331	ath_stop_locked(ifp);
2332
2333	/*
2334	 * The basic interface to setting the hardware in a good
2335	 * state is ``reset''.  On return the hardware is known to
2336	 * be powered up and with interrupts disabled.  This must
2337	 * be followed by initialization of the appropriate bits
2338	 * and then setup of the interrupt mask.
2339	 */
2340	ath_settkipmic(sc);
2341	ath_update_chainmasks(sc, ic->ic_curchan);
2342	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2343	    sc->sc_cur_rxchainmask);
2344
2345	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
2346		if_printf(ifp, "unable to reset hardware; hal status %u\n",
2347			status);
2348		ATH_UNLOCK(sc);
2349		return;
2350	}
2351	ath_chan_change(sc, ic->ic_curchan);
2352
2353	/* Let DFS at it in case it's a DFS channel */
2354	ath_dfs_radar_enable(sc, ic->ic_curchan);
2355
2356	/* Let spectral at in case spectral is enabled */
2357	ath_spectral_enable(sc, ic->ic_curchan);
2358
2359	/*
2360	 * Let bluetooth coexistence at in case it's needed for this channel
2361	 */
2362	ath_btcoex_enable(sc, ic->ic_curchan);
2363
2364	/*
2365	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2366	 * support it.
2367	 */
2368	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2369		ath_hal_setenforcetxop(sc->sc_ah, 1);
2370	else
2371		ath_hal_setenforcetxop(sc->sc_ah, 0);
2372
2373	/*
2374	 * Likewise this is set during reset so update
2375	 * state cached in the driver.
2376	 */
2377	sc->sc_diversity = ath_hal_getdiversity(ah);
2378	sc->sc_lastlongcal = 0;
2379	sc->sc_resetcal = 1;
2380	sc->sc_lastcalreset = 0;
2381	sc->sc_lastani = 0;
2382	sc->sc_lastshortcal = 0;
2383	sc->sc_doresetcal = AH_FALSE;
2384	/*
2385	 * Beacon timers were cleared here; give ath_newstate()
2386	 * a hint that the beacon timers should be poked when
2387	 * things transition to the RUN state.
2388	 */
2389	sc->sc_beacons = 0;
2390
2391	/*
2392	 * Setup the hardware after reset: the key cache
2393	 * is filled as needed and the receive engine is
2394	 * set going.  Frame transmit is handled entirely
2395	 * in the frame output path; there's nothing to do
2396	 * here except setup the interrupt mask.
2397	 */
2398	if (ath_startrecv(sc) != 0) {
2399		if_printf(ifp, "unable to start recv logic\n");
2400		ath_power_restore_power_state(sc);
2401		ATH_UNLOCK(sc);
2402		return;
2403	}
2404
2405	/*
2406	 * Enable interrupts.
2407	 */
2408	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2409		  | HAL_INT_RXEOL | HAL_INT_RXORN
2410		  | HAL_INT_TXURN
2411		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2412
2413	/*
2414	 * Enable RX EDMA bits.  Note these overlap with
2415	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2416	 */
2417	if (sc->sc_isedma)
2418		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2419
2420	/*
2421	 * Enable MIB interrupts when there are hardware phy counters.
2422	 * Note we only do this (at the moment) for station mode.
2423	 */
2424	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2425		sc->sc_imask |= HAL_INT_MIB;
2426
2427	/*
2428	 * XXX add capability for this.
2429	 *
2430	 * If we're in STA mode (and maybe IBSS?) then register for
2431	 * TSFOOR interrupts.
2432	 */
2433	if (ic->ic_opmode == IEEE80211_M_STA)
2434		sc->sc_imask |= HAL_INT_TSFOOR;
2435
2436	/* Enable global TX timeout and carrier sense timeout if available */
2437	if (ath_hal_gtxto_supported(ah))
2438		sc->sc_imask |= HAL_INT_GTT;
2439
2440	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2441		__func__, sc->sc_imask);
2442
2443	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2444	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2445	ath_hal_intrset(ah, sc->sc_imask);
2446
2447	ath_power_restore_power_state(sc);
2448	ATH_UNLOCK(sc);
2449
2450#ifdef ATH_TX99_DIAG
2451	if (sc->sc_tx99 != NULL)
2452		sc->sc_tx99->start(sc->sc_tx99);
2453	else
2454#endif
2455	ieee80211_start_all(ic);		/* start all vap's */
2456}
2457
2458static void
2459ath_stop_locked(struct ifnet *ifp)
2460{
2461	struct ath_softc *sc = ifp->if_softc;
2462	struct ath_hal *ah = sc->sc_ah;
2463
2464	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2465		__func__, sc->sc_invalid, ifp->if_flags);
2466
2467	ATH_LOCK_ASSERT(sc);
2468
2469	/*
2470	 * Wake the hardware up before fiddling with it.
2471	 */
2472	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2473
2474	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2475		/*
2476		 * Shutdown the hardware and driver:
2477		 *    reset 802.11 state machine
2478		 *    turn off timers
2479		 *    disable interrupts
2480		 *    turn off the radio
2481		 *    clear transmit machinery
2482		 *    clear receive machinery
2483		 *    drain and release tx queues
2484		 *    reclaim beacon resources
2485		 *    power down hardware
2486		 *
2487		 * Note that some of this work is not possible if the
2488		 * hardware is gone (invalid).
2489		 */
2490#ifdef ATH_TX99_DIAG
2491		if (sc->sc_tx99 != NULL)
2492			sc->sc_tx99->stop(sc->sc_tx99);
2493#endif
2494		callout_stop(&sc->sc_wd_ch);
2495		sc->sc_wd_timer = 0;
2496		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2497		if (!sc->sc_invalid) {
2498			if (sc->sc_softled) {
2499				callout_stop(&sc->sc_ledtimer);
2500				ath_hal_gpioset(ah, sc->sc_ledpin,
2501					!sc->sc_ledon);
2502				sc->sc_blinking = 0;
2503			}
2504			ath_hal_intrset(ah, 0);
2505		}
2506		/* XXX we should stop RX regardless of whether it's valid */
2507		if (!sc->sc_invalid) {
2508			ath_stoprecv(sc, 1);
2509			ath_hal_phydisable(ah);
2510		} else
2511			sc->sc_rxlink = NULL;
2512		ath_draintxq(sc, ATH_RESET_DEFAULT);
2513		ath_beacon_free(sc);	/* XXX not needed */
2514	}
2515
2516	/* And now, restore the current power state */
2517	ath_power_restore_power_state(sc);
2518}
2519
2520/*
2521 * Wait until all pending TX/RX has completed.
2522 *
2523 * This waits until all existing transmit, receive and interrupts
2524 * have completed.  It's assumed that the caller has first
2525 * grabbed the reset lock so it doesn't try to do overlapping
2526 * chip resets.
2527 */
2528#define	MAX_TXRX_ITERATIONS	100
2529static void
2530ath_txrx_stop_locked(struct ath_softc *sc)
2531{
2532	int i = MAX_TXRX_ITERATIONS;
2533
2534	ATH_UNLOCK_ASSERT(sc);
2535	ATH_PCU_LOCK_ASSERT(sc);
2536
2537	/*
2538	 * Sleep until all the pending operations have completed.
2539	 *
2540	 * The caller must ensure that reset has been incremented
2541	 * or the pending operations may continue being queued.
2542	 */
2543	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2544	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2545		if (i <= 0)
2546			break;
2547		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop",
2548		    msecs_to_ticks(10));
2549		i--;
2550	}
2551
2552	if (i <= 0)
2553		device_printf(sc->sc_dev,
2554		    "%s: didn't finish after %d iterations\n",
2555		    __func__, MAX_TXRX_ITERATIONS);
2556}
2557#undef	MAX_TXRX_ITERATIONS
2558
2559#if 0
2560static void
2561ath_txrx_stop(struct ath_softc *sc)
2562{
2563	ATH_UNLOCK_ASSERT(sc);
2564	ATH_PCU_UNLOCK_ASSERT(sc);
2565
2566	ATH_PCU_LOCK(sc);
2567	ath_txrx_stop_locked(sc);
2568	ATH_PCU_UNLOCK(sc);
2569}
2570#endif
2571
2572static void
2573ath_txrx_start(struct ath_softc *sc)
2574{
2575
2576	taskqueue_unblock(sc->sc_tq);
2577}
2578
2579/*
2580 * Grab the reset lock, and wait around until noone else
2581 * is trying to do anything with it.
2582 *
2583 * This is totally horrible but we can't hold this lock for
2584 * long enough to do TX/RX or we end up with net80211/ip stack
2585 * LORs and eventual deadlock.
2586 *
2587 * "dowait" signals whether to spin, waiting for the reset
2588 * lock count to reach 0. This should (for now) only be used
2589 * during the reset path, as the rest of the code may not
2590 * be locking-reentrant enough to behave correctly.
2591 *
2592 * Another, cleaner way should be found to serialise all of
2593 * these operations.
2594 */
2595#define	MAX_RESET_ITERATIONS	25
2596static int
2597ath_reset_grablock(struct ath_softc *sc, int dowait)
2598{
2599	int w = 0;
2600	int i = MAX_RESET_ITERATIONS;
2601
2602	ATH_PCU_LOCK_ASSERT(sc);
2603	do {
2604		if (sc->sc_inreset_cnt == 0) {
2605			w = 1;
2606			break;
2607		}
2608		if (dowait == 0) {
2609			w = 0;
2610			break;
2611		}
2612		ATH_PCU_UNLOCK(sc);
2613		/*
2614		 * 1 tick is likely not enough time for long calibrations
2615		 * to complete.  So we should wait quite a while.
2616		 */
2617		pause("ath_reset_grablock", msecs_to_ticks(100));
2618		i--;
2619		ATH_PCU_LOCK(sc);
2620	} while (i > 0);
2621
2622	/*
2623	 * We always increment the refcounter, regardless
2624	 * of whether we succeeded to get it in an exclusive
2625	 * way.
2626	 */
2627	sc->sc_inreset_cnt++;
2628
2629	if (i <= 0)
2630		device_printf(sc->sc_dev,
2631		    "%s: didn't finish after %d iterations\n",
2632		    __func__, MAX_RESET_ITERATIONS);
2633
2634	if (w == 0)
2635		device_printf(sc->sc_dev,
2636		    "%s: warning, recursive reset path!\n",
2637		    __func__);
2638
2639	return w;
2640}
2641#undef MAX_RESET_ITERATIONS
2642
2643/*
2644 * XXX TODO: write ath_reset_releaselock
2645 */
2646
2647static void
2648ath_stop(struct ifnet *ifp)
2649{
2650	struct ath_softc *sc = ifp->if_softc;
2651
2652	ATH_LOCK(sc);
2653	ath_stop_locked(ifp);
2654	ATH_UNLOCK(sc);
2655}
2656
2657/*
2658 * Reset the hardware w/o losing operational state.  This is
2659 * basically a more efficient way of doing ath_stop, ath_init,
2660 * followed by state transitions to the current 802.11
2661 * operational state.  Used to recover from various errors and
2662 * to reset or reload hardware state.
2663 */
2664int
2665ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2666{
2667	struct ath_softc *sc = ifp->if_softc;
2668	struct ieee80211com *ic = ifp->if_l2com;
2669	struct ath_hal *ah = sc->sc_ah;
2670	HAL_STATUS status;
2671	int i;
2672
2673	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2674
2675	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2676	ATH_PCU_UNLOCK_ASSERT(sc);
2677	ATH_UNLOCK_ASSERT(sc);
2678
2679	/* Try to (stop any further TX/RX from occuring */
2680	taskqueue_block(sc->sc_tq);
2681
2682	/*
2683	 * Wake the hardware up.
2684	 */
2685	ATH_LOCK(sc);
2686	ath_power_set_power_state(sc, HAL_PM_AWAKE);
2687	ATH_UNLOCK(sc);
2688
2689	ATH_PCU_LOCK(sc);
2690
2691	/*
2692	 * Grab the reset lock before TX/RX is stopped.
2693	 *
2694	 * This is needed to ensure that when the TX/RX actually does finish,
2695	 * no further TX/RX/reset runs in parallel with this.
2696	 */
2697	if (ath_reset_grablock(sc, 1) == 0) {
2698		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2699		    __func__);
2700	}
2701
2702	/* disable interrupts */
2703	ath_hal_intrset(ah, 0);
2704
2705	/*
2706	 * Now, ensure that any in progress TX/RX completes before we
2707	 * continue.
2708	 */
2709	ath_txrx_stop_locked(sc);
2710
2711	ATH_PCU_UNLOCK(sc);
2712
2713	/*
2714	 * Regardless of whether we're doing a no-loss flush or
2715	 * not, stop the PCU and handle what's in the RX queue.
2716	 * That way frames aren't dropped which shouldn't be.
2717	 */
2718	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2719	ath_rx_flush(sc);
2720
2721	/*
2722	 * Should now wait for pending TX/RX to complete
2723	 * and block future ones from occuring. This needs to be
2724	 * done before the TX queue is drained.
2725	 */
2726	ath_draintxq(sc, reset_type);	/* stop xmit side */
2727
2728	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2729	/* NB: indicate channel change so we do a full reset */
2730	ath_update_chainmasks(sc, ic->ic_curchan);
2731	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2732	    sc->sc_cur_rxchainmask);
2733	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2734		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2735			__func__, status);
2736	sc->sc_diversity = ath_hal_getdiversity(ah);
2737
2738	/* Let DFS at it in case it's a DFS channel */
2739	ath_dfs_radar_enable(sc, ic->ic_curchan);
2740
2741	/* Let spectral at in case spectral is enabled */
2742	ath_spectral_enable(sc, ic->ic_curchan);
2743
2744	/*
2745	 * Let bluetooth coexistence at in case it's needed for this channel
2746	 */
2747	ath_btcoex_enable(sc, ic->ic_curchan);
2748
2749	/*
2750	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2751	 * support it.
2752	 */
2753	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2754		ath_hal_setenforcetxop(sc->sc_ah, 1);
2755	else
2756		ath_hal_setenforcetxop(sc->sc_ah, 0);
2757
2758	if (ath_startrecv(sc) != 0)	/* restart recv */
2759		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2760	/*
2761	 * We may be doing a reset in response to an ioctl
2762	 * that changes the channel so update any state that
2763	 * might change as a result.
2764	 */
2765	ath_chan_change(sc, ic->ic_curchan);
2766	if (sc->sc_beacons) {		/* restart beacons */
2767#ifdef IEEE80211_SUPPORT_TDMA
2768		if (sc->sc_tdma)
2769			ath_tdma_config(sc, NULL);
2770		else
2771#endif
2772			ath_beacon_config(sc, NULL);
2773	}
2774
2775	/*
2776	 * Release the reset lock and re-enable interrupts here.
2777	 * If an interrupt was being processed in ath_intr(),
2778	 * it would disable interrupts at this point. So we have
2779	 * to atomically enable interrupts and decrement the
2780	 * reset counter - this way ath_intr() doesn't end up
2781	 * disabling interrupts without a corresponding enable
2782	 * in the rest or channel change path.
2783	 *
2784	 * Grab the TX reference in case we need to transmit.
2785	 * That way a parallel transmit doesn't.
2786	 */
2787	ATH_PCU_LOCK(sc);
2788	sc->sc_inreset_cnt--;
2789	sc->sc_txstart_cnt++;
2790	/* XXX only do this if sc_inreset_cnt == 0? */
2791	ath_hal_intrset(ah, sc->sc_imask);
2792	ATH_PCU_UNLOCK(sc);
2793
2794	/*
2795	 * TX and RX can be started here. If it were started with
2796	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2797	 * Thus if this is a nested call through the reset or
2798	 * channel change code, TX completion will occur but
2799	 * RX completion and ath_start / ath_tx_start will not
2800	 * run.
2801	 */
2802
2803	/* Restart TX/RX as needed */
2804	ath_txrx_start(sc);
2805
2806	/* XXX TODO: we need to hold the tx refcount here! */
2807
2808	/* Restart TX completion and pending TX */
2809	if (reset_type == ATH_RESET_NOLOSS) {
2810		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2811			if (ATH_TXQ_SETUP(sc, i)) {
2812				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2813				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2814				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2815
2816				ATH_TX_LOCK(sc);
2817				ath_txq_sched(sc, &sc->sc_txq[i]);
2818				ATH_TX_UNLOCK(sc);
2819			}
2820		}
2821	}
2822
2823	/*
2824	 * This may have been set during an ath_start() call which
2825	 * set this once it detected a concurrent TX was going on.
2826	 * So, clear it.
2827	 */
2828	IF_LOCK(&ifp->if_snd);
2829	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2830	IF_UNLOCK(&ifp->if_snd);
2831
2832	ATH_LOCK(sc);
2833	ath_power_restore_power_state(sc);
2834	ATH_UNLOCK(sc);
2835
2836	ATH_PCU_LOCK(sc);
2837	sc->sc_txstart_cnt--;
2838	ATH_PCU_UNLOCK(sc);
2839
2840	/* Handle any frames in the TX queue */
2841	/*
2842	 * XXX should this be done by the caller, rather than
2843	 * ath_reset() ?
2844	 */
2845	ath_tx_kick(sc);		/* restart xmit */
2846	return 0;
2847}
2848
2849static int
2850ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2851{
2852	struct ieee80211com *ic = vap->iv_ic;
2853	struct ifnet *ifp = ic->ic_ifp;
2854	struct ath_softc *sc = ifp->if_softc;
2855	struct ath_hal *ah = sc->sc_ah;
2856
2857	switch (cmd) {
2858	case IEEE80211_IOC_TXPOWER:
2859		/*
2860		 * If per-packet TPC is enabled, then we have nothing
2861		 * to do; otherwise we need to force the global limit.
2862		 * All this can happen directly; no need to reset.
2863		 */
2864		if (!ath_hal_gettpc(ah))
2865			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2866		return 0;
2867	}
2868	/* XXX? Full or NOLOSS? */
2869	return ath_reset(ifp, ATH_RESET_FULL);
2870}
2871
2872struct ath_buf *
2873_ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2874{
2875	struct ath_buf *bf;
2876
2877	ATH_TXBUF_LOCK_ASSERT(sc);
2878
2879	if (btype == ATH_BUFTYPE_MGMT)
2880		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2881	else
2882		bf = TAILQ_FIRST(&sc->sc_txbuf);
2883
2884	if (bf == NULL) {
2885		sc->sc_stats.ast_tx_getnobuf++;
2886	} else {
2887		if (bf->bf_flags & ATH_BUF_BUSY) {
2888			sc->sc_stats.ast_tx_getbusybuf++;
2889			bf = NULL;
2890		}
2891	}
2892
2893	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2894		if (btype == ATH_BUFTYPE_MGMT)
2895			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2896		else {
2897			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2898			sc->sc_txbuf_cnt--;
2899
2900			/*
2901			 * This shuldn't happen; however just to be
2902			 * safe print a warning and fudge the txbuf
2903			 * count.
2904			 */
2905			if (sc->sc_txbuf_cnt < 0) {
2906				device_printf(sc->sc_dev,
2907				    "%s: sc_txbuf_cnt < 0?\n",
2908				    __func__);
2909				sc->sc_txbuf_cnt = 0;
2910			}
2911		}
2912	} else
2913		bf = NULL;
2914
2915	if (bf == NULL) {
2916		/* XXX should check which list, mgmt or otherwise */
2917		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2918		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2919			"out of xmit buffers" : "xmit buffer busy");
2920		return NULL;
2921	}
2922
2923	/* XXX TODO: should do this at buffer list initialisation */
2924	/* XXX (then, ensure the buffer has the right flag set) */
2925	bf->bf_flags = 0;
2926	if (btype == ATH_BUFTYPE_MGMT)
2927		bf->bf_flags |= ATH_BUF_MGMT;
2928	else
2929		bf->bf_flags &= (~ATH_BUF_MGMT);
2930
2931	/* Valid bf here; clear some basic fields */
2932	bf->bf_next = NULL;	/* XXX just to be sure */
2933	bf->bf_last = NULL;	/* XXX again, just to be sure */
2934	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2935	bzero(&bf->bf_state, sizeof(bf->bf_state));
2936
2937	/*
2938	 * Track the descriptor ID only if doing EDMA
2939	 */
2940	if (sc->sc_isedma) {
2941		bf->bf_descid = sc->sc_txbuf_descid;
2942		sc->sc_txbuf_descid++;
2943	}
2944
2945	return bf;
2946}
2947
2948/*
2949 * When retrying a software frame, buffers marked ATH_BUF_BUSY
2950 * can't be thrown back on the queue as they could still be
2951 * in use by the hardware.
2952 *
2953 * This duplicates the buffer, or returns NULL.
2954 *
2955 * The descriptor is also copied but the link pointers and
2956 * the DMA segments aren't copied; this frame should thus
2957 * be again passed through the descriptor setup/chain routines
2958 * so the link is correct.
2959 *
2960 * The caller must free the buffer using ath_freebuf().
2961 */
2962struct ath_buf *
2963ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
2964{
2965	struct ath_buf *tbf;
2966
2967	tbf = ath_getbuf(sc,
2968	    (bf->bf_flags & ATH_BUF_MGMT) ?
2969	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2970	if (tbf == NULL)
2971		return NULL;	/* XXX failure? Why? */
2972
2973	/* Copy basics */
2974	tbf->bf_next = NULL;
2975	tbf->bf_nseg = bf->bf_nseg;
2976	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
2977	tbf->bf_status = bf->bf_status;
2978	tbf->bf_m = bf->bf_m;
2979	tbf->bf_node = bf->bf_node;
2980	KASSERT((bf->bf_node != NULL), ("%s: bf_node=NULL!", __func__));
2981	/* will be setup by the chain/setup function */
2982	tbf->bf_lastds = NULL;
2983	/* for now, last == self */
2984	tbf->bf_last = tbf;
2985	tbf->bf_comp = bf->bf_comp;
2986
2987	/* NOTE: DMA segments will be setup by the setup/chain functions */
2988
2989	/* The caller has to re-init the descriptor + links */
2990
2991	/*
2992	 * Free the DMA mapping here, before we NULL the mbuf.
2993	 * We must only call bus_dmamap_unload() once per mbuf chain
2994	 * or behaviour is undefined.
2995	 */
2996	if (bf->bf_m != NULL) {
2997		/*
2998		 * XXX is this POSTWRITE call required?
2999		 */
3000		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3001		    BUS_DMASYNC_POSTWRITE);
3002		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3003	}
3004
3005	bf->bf_m = NULL;
3006	bf->bf_node = NULL;
3007
3008	/* Copy state */
3009	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
3010
3011	return tbf;
3012}
3013
3014struct ath_buf *
3015ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
3016{
3017	struct ath_buf *bf;
3018
3019	ATH_TXBUF_LOCK(sc);
3020	bf = _ath_getbuf_locked(sc, btype);
3021	/*
3022	 * If a mgmt buffer was requested but we're out of those,
3023	 * try requesting a normal one.
3024	 */
3025	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
3026		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
3027	ATH_TXBUF_UNLOCK(sc);
3028	if (bf == NULL) {
3029		struct ifnet *ifp = sc->sc_ifp;
3030
3031		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
3032		sc->sc_stats.ast_tx_qstop++;
3033		IF_LOCK(&ifp->if_snd);
3034		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3035		IF_UNLOCK(&ifp->if_snd);
3036	}
3037	return bf;
3038}
3039
3040static void
3041ath_qflush(struct ifnet *ifp)
3042{
3043
3044	/* XXX TODO */
3045}
3046
3047/*
3048 * Transmit a single frame.
3049 *
3050 * net80211 will free the node reference if the transmit
3051 * fails, so don't free the node reference here.
3052 */
3053static int
3054ath_transmit(struct ifnet *ifp, struct mbuf *m)
3055{
3056	struct ieee80211com *ic = ifp->if_l2com;
3057	struct ath_softc *sc = ic->ic_ifp->if_softc;
3058	struct ieee80211_node *ni;
3059	struct mbuf *next;
3060	struct ath_buf *bf;
3061	ath_bufhead frags;
3062	int retval = 0;
3063
3064	/*
3065	 * Tell the reset path that we're currently transmitting.
3066	 */
3067	ATH_PCU_LOCK(sc);
3068	if (sc->sc_inreset_cnt > 0) {
3069		DPRINTF(sc, ATH_DEBUG_XMIT,
3070		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
3071		ATH_PCU_UNLOCK(sc);
3072		IF_LOCK(&ifp->if_snd);
3073		sc->sc_stats.ast_tx_qstop++;
3074		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3075		IF_UNLOCK(&ifp->if_snd);
3076		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
3077		return (ENOBUFS);	/* XXX should be EINVAL or? */
3078	}
3079	sc->sc_txstart_cnt++;
3080	ATH_PCU_UNLOCK(sc);
3081
3082	/* Wake the hardware up already */
3083	ATH_LOCK(sc);
3084	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3085	ATH_UNLOCK(sc);
3086
3087	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
3088	/*
3089	 * Grab the TX lock - it's ok to do this here; we haven't
3090	 * yet started transmitting.
3091	 */
3092	ATH_TX_LOCK(sc);
3093
3094	/*
3095	 * Node reference, if there's one.
3096	 */
3097	ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
3098
3099	/*
3100	 * Enforce how deep a node queue can get.
3101	 *
3102	 * XXX it would be nicer if we kept an mbuf queue per
3103	 * node and only whacked them into ath_bufs when we
3104	 * are ready to schedule some traffic from them.
3105	 * .. that may come later.
3106	 *
3107	 * XXX we should also track the per-node hardware queue
3108	 * depth so it is easy to limit the _SUM_ of the swq and
3109	 * hwq frames.  Since we only schedule two HWQ frames
3110	 * at a time, this should be OK for now.
3111	 */
3112	if ((!(m->m_flags & M_EAPOL)) &&
3113	    (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
3114		sc->sc_stats.ast_tx_nodeq_overflow++;
3115		m_freem(m);
3116		m = NULL;
3117		retval = ENOBUFS;
3118		goto finish;
3119	}
3120
3121	/*
3122	 * Check how many TX buffers are available.
3123	 *
3124	 * If this is for non-EAPOL traffic, just leave some
3125	 * space free in order for buffer cloning and raw
3126	 * frame transmission to occur.
3127	 *
3128	 * If it's for EAPOL traffic, ignore this for now.
3129	 * Management traffic will be sent via the raw transmit
3130	 * method which bypasses this check.
3131	 *
3132	 * This is needed to ensure that EAPOL frames during
3133	 * (re) keying have a chance to go out.
3134	 *
3135	 * See kern/138379 for more information.
3136	 */
3137	if ((!(m->m_flags & M_EAPOL)) &&
3138	    (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
3139		sc->sc_stats.ast_tx_nobuf++;
3140		m_freem(m);
3141		m = NULL;
3142		retval = ENOBUFS;
3143		goto finish;
3144	}
3145
3146	/*
3147	 * Grab a TX buffer and associated resources.
3148	 *
3149	 * If it's an EAPOL frame, allocate a MGMT ath_buf.
3150	 * That way even with temporary buffer exhaustion due to
3151	 * the data path doesn't leave us without the ability
3152	 * to transmit management frames.
3153	 *
3154	 * Otherwise allocate a normal buffer.
3155	 */
3156	if (m->m_flags & M_EAPOL)
3157		bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
3158	else
3159		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
3160
3161	if (bf == NULL) {
3162		/*
3163		 * If we failed to allocate a buffer, fail.
3164		 *
3165		 * We shouldn't fail normally, due to the check
3166		 * above.
3167		 */
3168		sc->sc_stats.ast_tx_nobuf++;
3169		IF_LOCK(&ifp->if_snd);
3170		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
3171		IF_UNLOCK(&ifp->if_snd);
3172		m_freem(m);
3173		m = NULL;
3174		retval = ENOBUFS;
3175		goto finish;
3176	}
3177
3178	/*
3179	 * At this point we have a buffer; so we need to free it
3180	 * if we hit any error conditions.
3181	 */
3182
3183	/*
3184	 * Check for fragmentation.  If this frame
3185	 * has been broken up verify we have enough
3186	 * buffers to send all the fragments so all
3187	 * go out or none...
3188	 */
3189	TAILQ_INIT(&frags);
3190	if ((m->m_flags & M_FRAG) &&
3191	    !ath_txfrag_setup(sc, &frags, m, ni)) {
3192		DPRINTF(sc, ATH_DEBUG_XMIT,
3193		    "%s: out of txfrag buffers\n", __func__);
3194		sc->sc_stats.ast_tx_nofrag++;
3195		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3196		ath_freetx(m);
3197		goto bad;
3198	}
3199
3200	/*
3201	 * At this point if we have any TX fragments, then we will
3202	 * have bumped the node reference once for each of those.
3203	 */
3204
3205	/*
3206	 * XXX Is there anything actually _enforcing_ that the
3207	 * fragments are being transmitted in one hit, rather than
3208	 * being interleaved with other transmissions on that
3209	 * hardware queue?
3210	 *
3211	 * The ATH TX output lock is the only thing serialising this
3212	 * right now.
3213	 */
3214
3215	/*
3216	 * Calculate the "next fragment" length field in ath_buf
3217	 * in order to let the transmit path know enough about
3218	 * what to next write to the hardware.
3219	 */
3220	if (m->m_flags & M_FRAG) {
3221		struct ath_buf *fbf = bf;
3222		struct ath_buf *n_fbf = NULL;
3223		struct mbuf *fm = m->m_nextpkt;
3224
3225		/*
3226		 * We need to walk the list of fragments and set
3227		 * the next size to the following buffer.
3228		 * However, the first buffer isn't in the frag
3229		 * list, so we have to do some gymnastics here.
3230		 */
3231		TAILQ_FOREACH(n_fbf, &frags, bf_list) {
3232			fbf->bf_nextfraglen = fm->m_pkthdr.len;
3233			fbf = n_fbf;
3234			fm = fm->m_nextpkt;
3235		}
3236	}
3237
3238	/*
3239	 * Bump the ifp output counter.
3240	 *
3241	 * XXX should use atomics?
3242	 */
3243	if_inc_counter(ifp, IFCOUNTER_OPACKETS, 1);
3244nextfrag:
3245	/*
3246	 * Pass the frame to the h/w for transmission.
3247	 * Fragmented frames have each frag chained together
3248	 * with m_nextpkt.  We know there are sufficient ath_buf's
3249	 * to send all the frags because of work done by
3250	 * ath_txfrag_setup.  We leave m_nextpkt set while
3251	 * calling ath_tx_start so it can use it to extend the
3252	 * the tx duration to cover the subsequent frag and
3253	 * so it can reclaim all the mbufs in case of an error;
3254	 * ath_tx_start clears m_nextpkt once it commits to
3255	 * handing the frame to the hardware.
3256	 *
3257	 * Note: if this fails, then the mbufs are freed but
3258	 * not the node reference.
3259	 */
3260	next = m->m_nextpkt;
3261	if (ath_tx_start(sc, ni, bf, m)) {
3262bad:
3263		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
3264reclaim:
3265		bf->bf_m = NULL;
3266		bf->bf_node = NULL;
3267		ATH_TXBUF_LOCK(sc);
3268		ath_returnbuf_head(sc, bf);
3269		/*
3270		 * Free the rest of the node references and
3271		 * buffers for the fragment list.
3272		 */
3273		ath_txfrag_cleanup(sc, &frags, ni);
3274		ATH_TXBUF_UNLOCK(sc);
3275		retval = ENOBUFS;
3276		goto finish;
3277	}
3278
3279	/*
3280	 * Check here if the node is in power save state.
3281	 */
3282	ath_tx_update_tim(sc, ni, 1);
3283
3284	if (next != NULL) {
3285		/*
3286		 * Beware of state changing between frags.
3287		 * XXX check sta power-save state?
3288		 */
3289		if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
3290			DPRINTF(sc, ATH_DEBUG_XMIT,
3291			    "%s: flush fragmented packet, state %s\n",
3292			    __func__,
3293			    ieee80211_state_name[ni->ni_vap->iv_state]);
3294			/* XXX dmamap */
3295			ath_freetx(next);
3296			goto reclaim;
3297		}
3298		m = next;
3299		bf = TAILQ_FIRST(&frags);
3300		KASSERT(bf != NULL, ("no buf for txfrag"));
3301		TAILQ_REMOVE(&frags, bf, bf_list);
3302		goto nextfrag;
3303	}
3304
3305	/*
3306	 * Bump watchdog timer.
3307	 */
3308	sc->sc_wd_timer = 5;
3309
3310finish:
3311	ATH_TX_UNLOCK(sc);
3312
3313	/*
3314	 * Finished transmitting!
3315	 */
3316	ATH_PCU_LOCK(sc);
3317	sc->sc_txstart_cnt--;
3318	ATH_PCU_UNLOCK(sc);
3319
3320	/* Sleep the hardware if required */
3321	ATH_LOCK(sc);
3322	ath_power_restore_power_state(sc);
3323	ATH_UNLOCK(sc);
3324
3325	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
3326
3327	return (retval);
3328}
3329
3330static int
3331ath_media_change(struct ifnet *ifp)
3332{
3333	int error = ieee80211_media_change(ifp);
3334	/* NB: only the fixed rate can change and that doesn't need a reset */
3335	return (error == ENETRESET ? 0 : error);
3336}
3337
3338/*
3339 * Block/unblock tx+rx processing while a key change is done.
3340 * We assume the caller serializes key management operations
3341 * so we only need to worry about synchronization with other
3342 * uses that originate in the driver.
3343 */
3344static void
3345ath_key_update_begin(struct ieee80211vap *vap)
3346{
3347	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3348	struct ath_softc *sc = ifp->if_softc;
3349
3350	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3351	taskqueue_block(sc->sc_tq);
3352}
3353
3354static void
3355ath_key_update_end(struct ieee80211vap *vap)
3356{
3357	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3358	struct ath_softc *sc = ifp->if_softc;
3359
3360	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3361	taskqueue_unblock(sc->sc_tq);
3362}
3363
3364static void
3365ath_update_promisc(struct ifnet *ifp)
3366{
3367	struct ath_softc *sc = ifp->if_softc;
3368	u_int32_t rfilt;
3369
3370	/* configure rx filter */
3371	ATH_LOCK(sc);
3372	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3373	rfilt = ath_calcrxfilter(sc);
3374	ath_hal_setrxfilter(sc->sc_ah, rfilt);
3375	ath_power_restore_power_state(sc);
3376	ATH_UNLOCK(sc);
3377
3378	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3379}
3380
3381/*
3382 * Driver-internal mcast update call.
3383 *
3384 * Assumes the hardware is already awake.
3385 */
3386static void
3387ath_update_mcast_hw(struct ath_softc *sc)
3388{
3389	struct ifnet *ifp = sc->sc_ifp;
3390	u_int32_t mfilt[2];
3391
3392	/* calculate and install multicast filter */
3393	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3394		struct ifmultiaddr *ifma;
3395		/*
3396		 * Merge multicast addresses to form the hardware filter.
3397		 */
3398		mfilt[0] = mfilt[1] = 0;
3399		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
3400		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3401			caddr_t dl;
3402			u_int32_t val;
3403			u_int8_t pos;
3404
3405			/* calculate XOR of eight 6bit values */
3406			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
3407			val = LE_READ_4(dl + 0);
3408			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3409			val = LE_READ_4(dl + 3);
3410			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3411			pos &= 0x3f;
3412			mfilt[pos / 32] |= (1 << (pos % 32));
3413		}
3414		if_maddr_runlock(ifp);
3415	} else
3416		mfilt[0] = mfilt[1] = ~0;
3417
3418	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3419
3420	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3421		__func__, mfilt[0], mfilt[1]);
3422}
3423
3424/*
3425 * Called from the net80211 layer - force the hardware
3426 * awake before operating.
3427 */
3428static void
3429ath_update_mcast(struct ifnet *ifp)
3430{
3431	struct ath_softc *sc = ifp->if_softc;
3432
3433	ATH_LOCK(sc);
3434	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3435	ATH_UNLOCK(sc);
3436
3437	ath_update_mcast_hw(sc);
3438
3439	ATH_LOCK(sc);
3440	ath_power_restore_power_state(sc);
3441	ATH_UNLOCK(sc);
3442}
3443
3444void
3445ath_mode_init(struct ath_softc *sc)
3446{
3447	struct ifnet *ifp = sc->sc_ifp;
3448	struct ath_hal *ah = sc->sc_ah;
3449	u_int32_t rfilt;
3450
3451	/* configure rx filter */
3452	rfilt = ath_calcrxfilter(sc);
3453	ath_hal_setrxfilter(ah, rfilt);
3454
3455	/* configure operational mode */
3456	ath_hal_setopmode(ah);
3457
3458	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
3459	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
3460	    __func__,
3461	    ah,
3462	    ifp,
3463	    (ifp == NULL) ? NULL : ifp->if_addr);
3464
3465	/* handle any link-level address change */
3466	ath_hal_setmac(ah, IF_LLADDR(ifp));
3467
3468	/* calculate and install multicast filter */
3469	ath_update_mcast_hw(sc);
3470}
3471
3472/*
3473 * Set the slot time based on the current setting.
3474 */
3475void
3476ath_setslottime(struct ath_softc *sc)
3477{
3478	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3479	struct ath_hal *ah = sc->sc_ah;
3480	u_int usec;
3481
3482	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3483		usec = 13;
3484	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3485		usec = 21;
3486	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3487		/* honor short/long slot time only in 11g */
3488		/* XXX shouldn't honor on pure g or turbo g channel */
3489		if (ic->ic_flags & IEEE80211_F_SHSLOT)
3490			usec = HAL_SLOT_TIME_9;
3491		else
3492			usec = HAL_SLOT_TIME_20;
3493	} else
3494		usec = HAL_SLOT_TIME_9;
3495
3496	DPRINTF(sc, ATH_DEBUG_RESET,
3497	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3498	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3499	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3500
3501	/* Wake up the hardware first before updating the slot time */
3502	ATH_LOCK(sc);
3503	ath_power_set_power_state(sc, HAL_PM_AWAKE);
3504	ath_hal_setslottime(ah, usec);
3505	ath_power_restore_power_state(sc);
3506	sc->sc_updateslot = OK;
3507	ATH_UNLOCK(sc);
3508}
3509
3510/*
3511 * Callback from the 802.11 layer to update the
3512 * slot time based on the current setting.
3513 */
3514static void
3515ath_updateslot(struct ifnet *ifp)
3516{
3517	struct ath_softc *sc = ifp->if_softc;
3518	struct ieee80211com *ic = ifp->if_l2com;
3519
3520	/*
3521	 * When not coordinating the BSS, change the hardware
3522	 * immediately.  For other operation we defer the change
3523	 * until beacon updates have propagated to the stations.
3524	 *
3525	 * XXX sc_updateslot isn't changed behind a lock?
3526	 */
3527	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3528	    ic->ic_opmode == IEEE80211_M_MBSS)
3529		sc->sc_updateslot = UPDATE;
3530	else
3531		ath_setslottime(sc);
3532}
3533
3534/*
3535 * Append the contents of src to dst; both queues
3536 * are assumed to be locked.
3537 */
3538void
3539ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3540{
3541
3542	ATH_TXQ_LOCK_ASSERT(src);
3543	ATH_TXQ_LOCK_ASSERT(dst);
3544
3545	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3546	dst->axq_link = src->axq_link;
3547	src->axq_link = NULL;
3548	dst->axq_depth += src->axq_depth;
3549	dst->axq_aggr_depth += src->axq_aggr_depth;
3550	src->axq_depth = 0;
3551	src->axq_aggr_depth = 0;
3552}
3553
3554/*
3555 * Reset the hardware, with no loss.
3556 *
3557 * This can't be used for a general case reset.
3558 */
3559static void
3560ath_reset_proc(void *arg, int pending)
3561{
3562	struct ath_softc *sc = arg;
3563	struct ifnet *ifp = sc->sc_ifp;
3564
3565#if 0
3566	if_printf(ifp, "%s: resetting\n", __func__);
3567#endif
3568	ath_reset(ifp, ATH_RESET_NOLOSS);
3569}
3570
3571/*
3572 * Reset the hardware after detecting beacons have stopped.
3573 */
3574static void
3575ath_bstuck_proc(void *arg, int pending)
3576{
3577	struct ath_softc *sc = arg;
3578	struct ifnet *ifp = sc->sc_ifp;
3579	uint32_t hangs = 0;
3580
3581	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3582		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3583
3584#ifdef	ATH_DEBUG_ALQ
3585	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
3586		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3587#endif
3588
3589	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3590		sc->sc_bmisscount);
3591	sc->sc_stats.ast_bstuck++;
3592	/*
3593	 * This assumes that there's no simultaneous channel mode change
3594	 * occuring.
3595	 */
3596	ath_reset(ifp, ATH_RESET_NOLOSS);
3597}
3598
3599static void
3600ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3601{
3602	bus_addr_t *paddr = (bus_addr_t*) arg;
3603	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3604	*paddr = segs->ds_addr;
3605}
3606
3607/*
3608 * Allocate the descriptors and appropriate DMA tag/setup.
3609 *
3610 * For some situations (eg EDMA TX completion), there isn't a requirement
3611 * for the ath_buf entries to be allocated.
3612 */
3613int
3614ath_descdma_alloc_desc(struct ath_softc *sc,
3615	struct ath_descdma *dd, ath_bufhead *head,
3616	const char *name, int ds_size, int ndesc)
3617{
3618#define	DS2PHYS(_dd, _ds) \
3619	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3620#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3621	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3622	struct ifnet *ifp = sc->sc_ifp;
3623	int error;
3624
3625	dd->dd_descsize = ds_size;
3626
3627	DPRINTF(sc, ATH_DEBUG_RESET,
3628	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
3629	    __func__, name, ndesc, dd->dd_descsize);
3630
3631	dd->dd_name = name;
3632	dd->dd_desc_len = dd->dd_descsize * ndesc;
3633
3634	/*
3635	 * Merlin work-around:
3636	 * Descriptors that cross the 4KB boundary can't be used.
3637	 * Assume one skipped descriptor per 4KB page.
3638	 */
3639	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3640		int numpages = dd->dd_desc_len / 4096;
3641		dd->dd_desc_len += ds_size * numpages;
3642	}
3643
3644	/*
3645	 * Setup DMA descriptor area.
3646	 *
3647	 * BUS_DMA_ALLOCNOW is not used; we never use bounce
3648	 * buffers for the descriptors themselves.
3649	 */
3650	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3651		       PAGE_SIZE, 0,		/* alignment, bounds */
3652		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3653		       BUS_SPACE_MAXADDR,	/* highaddr */
3654		       NULL, NULL,		/* filter, filterarg */
3655		       dd->dd_desc_len,		/* maxsize */
3656		       1,			/* nsegments */
3657		       dd->dd_desc_len,		/* maxsegsize */
3658		       0,			/* flags */
3659		       NULL,			/* lockfunc */
3660		       NULL,			/* lockarg */
3661		       &dd->dd_dmat);
3662	if (error != 0) {
3663		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3664		return error;
3665	}
3666
3667	/* allocate descriptors */
3668	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3669				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3670				 &dd->dd_dmamap);
3671	if (error != 0) {
3672		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3673			"error %u\n", ndesc, dd->dd_name, error);
3674		goto fail1;
3675	}
3676
3677	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3678				dd->dd_desc, dd->dd_desc_len,
3679				ath_load_cb, &dd->dd_desc_paddr,
3680				BUS_DMA_NOWAIT);
3681	if (error != 0) {
3682		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3683			dd->dd_name, error);
3684		goto fail2;
3685	}
3686
3687	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3688	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
3689	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
3690	    /*XXX*/ (u_long) dd->dd_desc_len);
3691
3692	return (0);
3693
3694fail2:
3695	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3696fail1:
3697	bus_dma_tag_destroy(dd->dd_dmat);
3698	memset(dd, 0, sizeof(*dd));
3699	return error;
3700#undef DS2PHYS
3701#undef ATH_DESC_4KB_BOUND_CHECK
3702}
3703
3704int
3705ath_descdma_setup(struct ath_softc *sc,
3706	struct ath_descdma *dd, ath_bufhead *head,
3707	const char *name, int ds_size, int nbuf, int ndesc)
3708{
3709#define	DS2PHYS(_dd, _ds) \
3710	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3711#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3712	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3713	struct ifnet *ifp = sc->sc_ifp;
3714	uint8_t *ds;
3715	struct ath_buf *bf;
3716	int i, bsize, error;
3717
3718	/* Allocate descriptors */
3719	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3720	    nbuf * ndesc);
3721
3722	/* Assume any errors during allocation were dealt with */
3723	if (error != 0) {
3724		return (error);
3725	}
3726
3727	ds = (uint8_t *) dd->dd_desc;
3728
3729	/* allocate rx buffers */
3730	bsize = sizeof(struct ath_buf) * nbuf;
3731	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3732	if (bf == NULL) {
3733		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3734			dd->dd_name, bsize);
3735		goto fail3;
3736	}
3737	dd->dd_bufptr = bf;
3738
3739	TAILQ_INIT(head);
3740	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3741		bf->bf_desc = (struct ath_desc *) ds;
3742		bf->bf_daddr = DS2PHYS(dd, ds);
3743		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3744			/*
3745			 * Merlin WAR: Skip descriptor addresses which
3746			 * cause 4KB boundary crossing along any point
3747			 * in the descriptor.
3748			 */
3749			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3750			     dd->dd_descsize)) {
3751				/* Start at the next page */
3752				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3753				bf->bf_desc = (struct ath_desc *) ds;
3754				bf->bf_daddr = DS2PHYS(dd, ds);
3755			}
3756		}
3757		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3758				&bf->bf_dmamap);
3759		if (error != 0) {
3760			if_printf(ifp, "unable to create dmamap for %s "
3761				"buffer %u, error %u\n", dd->dd_name, i, error);
3762			ath_descdma_cleanup(sc, dd, head);
3763			return error;
3764		}
3765		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3766		TAILQ_INSERT_TAIL(head, bf, bf_list);
3767	}
3768
3769	/*
3770	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3771	 * allocation otherwise weird stuff will occur and crash your
3772	 * machine.
3773	 */
3774	return 0;
3775	/* XXX this should likely just call ath_descdma_cleanup() */
3776fail3:
3777	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3778	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3779	bus_dma_tag_destroy(dd->dd_dmat);
3780	memset(dd, 0, sizeof(*dd));
3781	return error;
3782#undef DS2PHYS
3783#undef ATH_DESC_4KB_BOUND_CHECK
3784}
3785
3786/*
3787 * Allocate ath_buf entries but no descriptor contents.
3788 *
3789 * This is for RX EDMA where the descriptors are the header part of
3790 * the RX buffer.
3791 */
3792int
3793ath_descdma_setup_rx_edma(struct ath_softc *sc,
3794	struct ath_descdma *dd, ath_bufhead *head,
3795	const char *name, int nbuf, int rx_status_len)
3796{
3797	struct ifnet *ifp = sc->sc_ifp;
3798	struct ath_buf *bf;
3799	int i, bsize, error;
3800
3801	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3802	    __func__, name, nbuf);
3803
3804	dd->dd_name = name;
3805	/*
3806	 * This is (mostly) purely for show.  We're not allocating any actual
3807	 * descriptors here as EDMA RX has the descriptor be part
3808	 * of the RX buffer.
3809	 *
3810	 * However, dd_desc_len is used by ath_descdma_free() to determine
3811	 * whether we have already freed this DMA mapping.
3812	 */
3813	dd->dd_desc_len = rx_status_len * nbuf;
3814	dd->dd_descsize = rx_status_len;
3815
3816	/* allocate rx buffers */
3817	bsize = sizeof(struct ath_buf) * nbuf;
3818	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3819	if (bf == NULL) {
3820		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3821			dd->dd_name, bsize);
3822		error = ENOMEM;
3823		goto fail3;
3824	}
3825	dd->dd_bufptr = bf;
3826
3827	TAILQ_INIT(head);
3828	for (i = 0; i < nbuf; i++, bf++) {
3829		bf->bf_desc = NULL;
3830		bf->bf_daddr = 0;
3831		bf->bf_lastds = NULL;	/* Just an initial value */
3832
3833		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3834				&bf->bf_dmamap);
3835		if (error != 0) {
3836			if_printf(ifp, "unable to create dmamap for %s "
3837				"buffer %u, error %u\n", dd->dd_name, i, error);
3838			ath_descdma_cleanup(sc, dd, head);
3839			return error;
3840		}
3841		TAILQ_INSERT_TAIL(head, bf, bf_list);
3842	}
3843	return 0;
3844fail3:
3845	memset(dd, 0, sizeof(*dd));
3846	return error;
3847}
3848
3849void
3850ath_descdma_cleanup(struct ath_softc *sc,
3851	struct ath_descdma *dd, ath_bufhead *head)
3852{
3853	struct ath_buf *bf;
3854	struct ieee80211_node *ni;
3855	int do_warning = 0;
3856
3857	if (dd->dd_dmamap != 0) {
3858		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3859		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3860		bus_dma_tag_destroy(dd->dd_dmat);
3861	}
3862
3863	if (head != NULL) {
3864		TAILQ_FOREACH(bf, head, bf_list) {
3865			if (bf->bf_m) {
3866				/*
3867				 * XXX warn if there's buffers here.
3868				 * XXX it should have been freed by the
3869				 * owner!
3870				 */
3871
3872				if (do_warning == 0) {
3873					do_warning = 1;
3874					device_printf(sc->sc_dev,
3875					    "%s: %s: mbuf should've been"
3876					    " unmapped/freed!\n",
3877					    __func__,
3878					    dd->dd_name);
3879				}
3880				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3881				    BUS_DMASYNC_POSTREAD);
3882				bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3883				m_freem(bf->bf_m);
3884				bf->bf_m = NULL;
3885			}
3886			if (bf->bf_dmamap != NULL) {
3887				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3888				bf->bf_dmamap = NULL;
3889			}
3890			ni = bf->bf_node;
3891			bf->bf_node = NULL;
3892			if (ni != NULL) {
3893				/*
3894				 * Reclaim node reference.
3895				 */
3896				ieee80211_free_node(ni);
3897			}
3898		}
3899	}
3900
3901	if (head != NULL)
3902		TAILQ_INIT(head);
3903
3904	if (dd->dd_bufptr != NULL)
3905		free(dd->dd_bufptr, M_ATHDEV);
3906	memset(dd, 0, sizeof(*dd));
3907}
3908
3909static int
3910ath_desc_alloc(struct ath_softc *sc)
3911{
3912	int error;
3913
3914	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3915		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
3916	if (error != 0) {
3917		return error;
3918	}
3919	sc->sc_txbuf_cnt = ath_txbuf;
3920
3921	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3922		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3923		    ATH_TXDESC);
3924	if (error != 0) {
3925		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3926		return error;
3927	}
3928
3929	/*
3930	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3931	 * flag doesn't have to be set in ath_getbuf_locked().
3932	 */
3933
3934	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3935			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3936	if (error != 0) {
3937		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3938		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3939		    &sc->sc_txbuf_mgmt);
3940		return error;
3941	}
3942	return 0;
3943}
3944
3945static void
3946ath_desc_free(struct ath_softc *sc)
3947{
3948
3949	if (sc->sc_bdma.dd_desc_len != 0)
3950		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3951	if (sc->sc_txdma.dd_desc_len != 0)
3952		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3953	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3954		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3955		    &sc->sc_txbuf_mgmt);
3956}
3957
3958static struct ieee80211_node *
3959ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3960{
3961	struct ieee80211com *ic = vap->iv_ic;
3962	struct ath_softc *sc = ic->ic_ifp->if_softc;
3963	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3964	struct ath_node *an;
3965
3966	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3967	if (an == NULL) {
3968		/* XXX stat+msg */
3969		return NULL;
3970	}
3971	ath_rate_node_init(sc, an);
3972
3973	/* Setup the mutex - there's no associd yet so set the name to NULL */
3974	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3975	    device_get_nameunit(sc->sc_dev), an);
3976	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3977
3978	/* XXX setup ath_tid */
3979	ath_tx_tid_init(sc, an);
3980
3981	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an);
3982	return &an->an_node;
3983}
3984
3985static void
3986ath_node_cleanup(struct ieee80211_node *ni)
3987{
3988	struct ieee80211com *ic = ni->ni_ic;
3989	struct ath_softc *sc = ic->ic_ifp->if_softc;
3990
3991	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3992	    ni->ni_macaddr, ":", ATH_NODE(ni));
3993
3994	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3995	ath_tx_node_flush(sc, ATH_NODE(ni));
3996	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3997	sc->sc_node_cleanup(ni);
3998}
3999
4000static void
4001ath_node_free(struct ieee80211_node *ni)
4002{
4003	struct ieee80211com *ic = ni->ni_ic;
4004	struct ath_softc *sc = ic->ic_ifp->if_softc;
4005
4006	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
4007	    ni->ni_macaddr, ":", ATH_NODE(ni));
4008	mtx_destroy(&ATH_NODE(ni)->an_mtx);
4009	sc->sc_node_free(ni);
4010}
4011
4012static void
4013ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
4014{
4015	struct ieee80211com *ic = ni->ni_ic;
4016	struct ath_softc *sc = ic->ic_ifp->if_softc;
4017	struct ath_hal *ah = sc->sc_ah;
4018
4019	*rssi = ic->ic_node_getrssi(ni);
4020	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
4021		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
4022	else
4023		*noise = -95;		/* nominally correct */
4024}
4025
4026/*
4027 * Set the default antenna.
4028 */
4029void
4030ath_setdefantenna(struct ath_softc *sc, u_int antenna)
4031{
4032	struct ath_hal *ah = sc->sc_ah;
4033
4034	/* XXX block beacon interrupts */
4035	ath_hal_setdefantenna(ah, antenna);
4036	if (sc->sc_defant != antenna)
4037		sc->sc_stats.ast_ant_defswitch++;
4038	sc->sc_defant = antenna;
4039	sc->sc_rxotherant = 0;
4040}
4041
4042static void
4043ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4044{
4045	txq->axq_qnum = qnum;
4046	txq->axq_ac = 0;
4047	txq->axq_depth = 0;
4048	txq->axq_aggr_depth = 0;
4049	txq->axq_intrcnt = 0;
4050	txq->axq_link = NULL;
4051	txq->axq_softc = sc;
4052	TAILQ_INIT(&txq->axq_q);
4053	TAILQ_INIT(&txq->axq_tidq);
4054	TAILQ_INIT(&txq->fifo.axq_q);
4055	ATH_TXQ_LOCK_INIT(sc, txq);
4056}
4057
4058/*
4059 * Setup a h/w transmit queue.
4060 */
4061static struct ath_txq *
4062ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4063{
4064#define	N(a)	(sizeof(a)/sizeof(a[0]))
4065	struct ath_hal *ah = sc->sc_ah;
4066	HAL_TXQ_INFO qi;
4067	int qnum;
4068
4069	memset(&qi, 0, sizeof(qi));
4070	qi.tqi_subtype = subtype;
4071	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4072	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4073	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4074	/*
4075	 * Enable interrupts only for EOL and DESC conditions.
4076	 * We mark tx descriptors to receive a DESC interrupt
4077	 * when a tx queue gets deep; otherwise waiting for the
4078	 * EOL to reap descriptors.  Note that this is done to
4079	 * reduce interrupt load and this only defers reaping
4080	 * descriptors, never transmitting frames.  Aside from
4081	 * reducing interrupts this also permits more concurrency.
4082	 * The only potential downside is if the tx queue backs
4083	 * up in which case the top half of the kernel may backup
4084	 * due to a lack of tx descriptors.
4085	 */
4086	if (sc->sc_isedma)
4087		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4088		    HAL_TXQ_TXOKINT_ENABLE;
4089	else
4090		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
4091		    HAL_TXQ_TXDESCINT_ENABLE;
4092
4093	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4094	if (qnum == -1) {
4095		/*
4096		 * NB: don't print a message, this happens
4097		 * normally on parts with too few tx queues
4098		 */
4099		return NULL;
4100	}
4101	if (qnum >= N(sc->sc_txq)) {
4102		device_printf(sc->sc_dev,
4103			"hal qnum %u out of range, max %zu!\n",
4104			qnum, N(sc->sc_txq));
4105		ath_hal_releasetxqueue(ah, qnum);
4106		return NULL;
4107	}
4108	if (!ATH_TXQ_SETUP(sc, qnum)) {
4109		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4110		sc->sc_txqsetup |= 1<<qnum;
4111	}
4112	return &sc->sc_txq[qnum];
4113#undef N
4114}
4115
4116/*
4117 * Setup a hardware data transmit queue for the specified
4118 * access control.  The hal may not support all requested
4119 * queues in which case it will return a reference to a
4120 * previously setup queue.  We record the mapping from ac's
4121 * to h/w queues for use by ath_tx_start and also track
4122 * the set of h/w queues being used to optimize work in the
4123 * transmit interrupt handler and related routines.
4124 */
4125static int
4126ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4127{
4128#define	N(a)	(sizeof(a)/sizeof(a[0]))
4129	struct ath_txq *txq;
4130
4131	if (ac >= N(sc->sc_ac2q)) {
4132		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4133			ac, N(sc->sc_ac2q));
4134		return 0;
4135	}
4136	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4137	if (txq != NULL) {
4138		txq->axq_ac = ac;
4139		sc->sc_ac2q[ac] = txq;
4140		return 1;
4141	} else
4142		return 0;
4143#undef N
4144}
4145
4146/*
4147 * Update WME parameters for a transmit queue.
4148 */
4149static int
4150ath_txq_update(struct ath_softc *sc, int ac)
4151{
4152#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4153#define	ATH_TXOP_TO_US(v)		(v<<5)
4154	struct ifnet *ifp = sc->sc_ifp;
4155	struct ieee80211com *ic = ifp->if_l2com;
4156	struct ath_txq *txq = sc->sc_ac2q[ac];
4157	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4158	struct ath_hal *ah = sc->sc_ah;
4159	HAL_TXQ_INFO qi;
4160
4161	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4162#ifdef IEEE80211_SUPPORT_TDMA
4163	if (sc->sc_tdma) {
4164		/*
4165		 * AIFS is zero so there's no pre-transmit wait.  The
4166		 * burst time defines the slot duration and is configured
4167		 * through net80211.  The QCU is setup to not do post-xmit
4168		 * back off, lockout all lower-priority QCU's, and fire
4169		 * off the DMA beacon alert timer which is setup based
4170		 * on the slot configuration.
4171		 */
4172		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4173			      | HAL_TXQ_TXERRINT_ENABLE
4174			      | HAL_TXQ_TXURNINT_ENABLE
4175			      | HAL_TXQ_TXEOLINT_ENABLE
4176			      | HAL_TXQ_DBA_GATED
4177			      | HAL_TXQ_BACKOFF_DISABLE
4178			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4179			      ;
4180		qi.tqi_aifs = 0;
4181		/* XXX +dbaprep? */
4182		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4183		qi.tqi_burstTime = qi.tqi_readyTime;
4184	} else {
4185#endif
4186		/*
4187		 * XXX shouldn't this just use the default flags
4188		 * used in the previous queue setup?
4189		 */
4190		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4191			      | HAL_TXQ_TXERRINT_ENABLE
4192			      | HAL_TXQ_TXDESCINT_ENABLE
4193			      | HAL_TXQ_TXURNINT_ENABLE
4194			      | HAL_TXQ_TXEOLINT_ENABLE
4195			      ;
4196		qi.tqi_aifs = wmep->wmep_aifsn;
4197		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4198		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4199		qi.tqi_readyTime = 0;
4200		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4201#ifdef IEEE80211_SUPPORT_TDMA
4202	}
4203#endif
4204
4205	DPRINTF(sc, ATH_DEBUG_RESET,
4206	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4207	    __func__, txq->axq_qnum, qi.tqi_qflags,
4208	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4209
4210	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4211		if_printf(ifp, "unable to update hardware queue "
4212			"parameters for %s traffic!\n",
4213			ieee80211_wme_acnames[ac]);
4214		return 0;
4215	} else {
4216		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4217		return 1;
4218	}
4219#undef ATH_TXOP_TO_US
4220#undef ATH_EXPONENT_TO_VALUE
4221}
4222
4223/*
4224 * Callback from the 802.11 layer to update WME parameters.
4225 */
4226int
4227ath_wme_update(struct ieee80211com *ic)
4228{
4229	struct ath_softc *sc = ic->ic_ifp->if_softc;
4230
4231	return !ath_txq_update(sc, WME_AC_BE) ||
4232	    !ath_txq_update(sc, WME_AC_BK) ||
4233	    !ath_txq_update(sc, WME_AC_VI) ||
4234	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4235}
4236
4237/*
4238 * Reclaim resources for a setup queue.
4239 */
4240static void
4241ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4242{
4243
4244	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4245	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4246	ATH_TXQ_LOCK_DESTROY(txq);
4247}
4248
4249/*
4250 * Reclaim all tx queue resources.
4251 */
4252static void
4253ath_tx_cleanup(struct ath_softc *sc)
4254{
4255	int i;
4256
4257	ATH_TXBUF_LOCK_DESTROY(sc);
4258	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4259		if (ATH_TXQ_SETUP(sc, i))
4260			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4261}
4262
4263/*
4264 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4265 * using the current rates in sc_rixmap.
4266 */
4267int
4268ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4269{
4270	int rix = sc->sc_rixmap[rate];
4271	/* NB: return lowest rix for invalid rate */
4272	return (rix == 0xff ? 0 : rix);
4273}
4274
4275static void
4276ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
4277    struct ath_buf *bf)
4278{
4279	struct ieee80211_node *ni = bf->bf_node;
4280	struct ifnet *ifp = sc->sc_ifp;
4281	struct ieee80211com *ic = ifp->if_l2com;
4282	int sr, lr, pri;
4283
4284	if (ts->ts_status == 0) {
4285		u_int8_t txant = ts->ts_antenna;
4286		sc->sc_stats.ast_ant_tx[txant]++;
4287		sc->sc_ant_tx[txant]++;
4288		if (ts->ts_finaltsi != 0)
4289			sc->sc_stats.ast_tx_altrate++;
4290		pri = M_WME_GETAC(bf->bf_m);
4291		if (pri >= WME_AC_VO)
4292			ic->ic_wme.wme_hipri_traffic++;
4293		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
4294			ni->ni_inact = ni->ni_inact_reload;
4295	} else {
4296		if (ts->ts_status & HAL_TXERR_XRETRY)
4297			sc->sc_stats.ast_tx_xretries++;
4298		if (ts->ts_status & HAL_TXERR_FIFO)
4299			sc->sc_stats.ast_tx_fifoerr++;
4300		if (ts->ts_status & HAL_TXERR_FILT)
4301			sc->sc_stats.ast_tx_filtered++;
4302		if (ts->ts_status & HAL_TXERR_XTXOP)
4303			sc->sc_stats.ast_tx_xtxop++;
4304		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4305			sc->sc_stats.ast_tx_timerexpired++;
4306
4307		if (bf->bf_m->m_flags & M_FF)
4308			sc->sc_stats.ast_ff_txerr++;
4309	}
4310	/* XXX when is this valid? */
4311	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
4312		sc->sc_stats.ast_tx_desccfgerr++;
4313	/*
4314	 * This can be valid for successful frame transmission!
4315	 * If there's a TX FIFO underrun during aggregate transmission,
4316	 * the MAC will pad the rest of the aggregate with delimiters.
4317	 * If a BA is returned, the frame is marked as "OK" and it's up
4318	 * to the TX completion code to notice which frames weren't
4319	 * successfully transmitted.
4320	 */
4321	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
4322		sc->sc_stats.ast_tx_data_underrun++;
4323	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
4324		sc->sc_stats.ast_tx_delim_underrun++;
4325
4326	sr = ts->ts_shortretry;
4327	lr = ts->ts_longretry;
4328	sc->sc_stats.ast_tx_shortretry += sr;
4329	sc->sc_stats.ast_tx_longretry += lr;
4330
4331}
4332
4333/*
4334 * The default completion. If fail is 1, this means
4335 * "please don't retry the frame, and just return -1 status
4336 * to the net80211 stack.
4337 */
4338void
4339ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
4340{
4341	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
4342	int st;
4343
4344	if (fail == 1)
4345		st = -1;
4346	else
4347		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
4348		    ts->ts_status : HAL_TXERR_XRETRY;
4349
4350#if 0
4351	if (bf->bf_state.bfs_dobaw)
4352		device_printf(sc->sc_dev,
4353		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
4354		    __func__,
4355		    bf,
4356		    SEQNO(bf->bf_state.bfs_seqno));
4357#endif
4358	if (bf->bf_next != NULL)
4359		device_printf(sc->sc_dev,
4360		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
4361		    __func__,
4362		    bf,
4363		    SEQNO(bf->bf_state.bfs_seqno));
4364
4365	/*
4366	 * Check if the node software queue is empty; if so
4367	 * then clear the TIM.
4368	 *
4369	 * This needs to be done before the buffer is freed as
4370	 * otherwise the node reference will have been released
4371	 * and the node may not actually exist any longer.
4372	 *
4373	 * XXX I don't like this belonging here, but it's cleaner
4374	 * to do it here right now then all the other places
4375	 * where ath_tx_default_comp() is called.
4376	 *
4377	 * XXX TODO: during drain, ensure that the callback is
4378	 * being called so we get a chance to update the TIM.
4379	 */
4380	if (bf->bf_node) {
4381		ATH_TX_LOCK(sc);
4382		ath_tx_update_tim(sc, bf->bf_node, 0);
4383		ATH_TX_UNLOCK(sc);
4384	}
4385
4386	/*
4387	 * Do any tx complete callback.  Note this must
4388	 * be done before releasing the node reference.
4389	 * This will free the mbuf, release the net80211
4390	 * node and recycle the ath_buf.
4391	 */
4392	ath_tx_freebuf(sc, bf, st);
4393}
4394
4395/*
4396 * Update rate control with the given completion status.
4397 */
4398void
4399ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4400    struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4401    int nframes, int nbad)
4402{
4403	struct ath_node *an;
4404
4405	/* Only for unicast frames */
4406	if (ni == NULL)
4407		return;
4408
4409	an = ATH_NODE(ni);
4410	ATH_NODE_UNLOCK_ASSERT(an);
4411
4412	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4413		ATH_NODE_LOCK(an);
4414		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4415		ATH_NODE_UNLOCK(an);
4416	}
4417}
4418
4419/*
4420 * Process the completion of the given buffer.
4421 *
4422 * This calls the rate control update and then the buffer completion.
4423 * This will either free the buffer or requeue it.  In any case, the
4424 * bf pointer should be treated as invalid after this function is called.
4425 */
4426void
4427ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
4428    struct ath_tx_status *ts, struct ath_buf *bf)
4429{
4430	struct ieee80211_node *ni = bf->bf_node;
4431
4432	ATH_TX_UNLOCK_ASSERT(sc);
4433	ATH_TXQ_UNLOCK_ASSERT(txq);
4434
4435	/* If unicast frame, update general statistics */
4436	if (ni != NULL) {
4437		/* update statistics */
4438		ath_tx_update_stats(sc, ts, bf);
4439	}
4440
4441	/*
4442	 * Call the completion handler.
4443	 * The completion handler is responsible for
4444	 * calling the rate control code.
4445	 *
4446	 * Frames with no completion handler get the
4447	 * rate control code called here.
4448	 */
4449	if (bf->bf_comp == NULL) {
4450		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4451		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4452			/*
4453			 * XXX assume this isn't an aggregate
4454			 * frame.
4455			 */
4456			ath_tx_update_ratectrl(sc, ni,
4457			     bf->bf_state.bfs_rc, ts,
4458			    bf->bf_state.bfs_pktlen, 1,
4459			    (ts->ts_status == 0 ? 0 : 1));
4460		}
4461		ath_tx_default_comp(sc, bf, 0);
4462	} else
4463		bf->bf_comp(sc, bf, 0);
4464}
4465
4466
4467
4468/*
4469 * Process completed xmit descriptors from the specified queue.
4470 * Kick the packet scheduler if needed. This can occur from this
4471 * particular task.
4472 */
4473static int
4474ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4475{
4476	struct ath_hal *ah = sc->sc_ah;
4477	struct ath_buf *bf;
4478	struct ath_desc *ds;
4479	struct ath_tx_status *ts;
4480	struct ieee80211_node *ni;
4481#ifdef	IEEE80211_SUPPORT_SUPERG
4482	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4483#endif	/* IEEE80211_SUPPORT_SUPERG */
4484	int nacked;
4485	HAL_STATUS status;
4486
4487	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4488		__func__, txq->axq_qnum,
4489		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4490		txq->axq_link);
4491
4492	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4493	    "ath_tx_processq: txq=%u head %p link %p depth %p",
4494	    txq->axq_qnum,
4495	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4496	    txq->axq_link,
4497	    txq->axq_depth);
4498
4499	nacked = 0;
4500	for (;;) {
4501		ATH_TXQ_LOCK(txq);
4502		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4503		bf = TAILQ_FIRST(&txq->axq_q);
4504		if (bf == NULL) {
4505			ATH_TXQ_UNLOCK(txq);
4506			break;
4507		}
4508		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4509		ts = &bf->bf_status.ds_txstat;
4510
4511		status = ath_hal_txprocdesc(ah, ds, ts);
4512#ifdef ATH_DEBUG
4513		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4514			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4515			    status == HAL_OK);
4516		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4517			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4518			    status == HAL_OK);
4519#endif
4520#ifdef	ATH_DEBUG_ALQ
4521		if (if_ath_alq_checkdebug(&sc->sc_alq,
4522		    ATH_ALQ_EDMA_TXSTATUS)) {
4523			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
4524			sc->sc_tx_statuslen,
4525			(char *) ds);
4526		}
4527#endif
4528
4529		if (status == HAL_EINPROGRESS) {
4530			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4531			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4532			    txq->axq_qnum, bf, ds);
4533			ATH_TXQ_UNLOCK(txq);
4534			break;
4535		}
4536		ATH_TXQ_REMOVE(txq, bf, bf_list);
4537
4538		/*
4539		 * Sanity check.
4540		 */
4541		if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4542			device_printf(sc->sc_dev,
4543			    "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4544			    __func__,
4545			    txq->axq_qnum,
4546			    bf,
4547			    bf->bf_state.bfs_tx_queue);
4548		}
4549		if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4550			device_printf(sc->sc_dev,
4551			    "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4552			    __func__,
4553			    txq->axq_qnum,
4554			    bf->bf_last,
4555			    bf->bf_last->bf_state.bfs_tx_queue);
4556		}
4557
4558#if 0
4559		if (txq->axq_depth > 0) {
4560			/*
4561			 * More frames follow.  Mark the buffer busy
4562			 * so it's not re-used while the hardware may
4563			 * still re-read the link field in the descriptor.
4564			 *
4565			 * Use the last buffer in an aggregate as that
4566			 * is where the hardware may be - intermediate
4567			 * descriptors won't be "busy".
4568			 */
4569			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4570		} else
4571			txq->axq_link = NULL;
4572#else
4573		bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4574#endif
4575		if (bf->bf_state.bfs_aggr)
4576			txq->axq_aggr_depth--;
4577
4578		ni = bf->bf_node;
4579
4580		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4581		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4582		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
4583		/*
4584		 * If unicast frame was ack'd update RSSI,
4585		 * including the last rx time used to
4586		 * workaround phantom bmiss interrupts.
4587		 */
4588		if (ni != NULL && ts->ts_status == 0 &&
4589		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4590			nacked++;
4591			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4592			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4593				ts->ts_rssi);
4594		}
4595		ATH_TXQ_UNLOCK(txq);
4596
4597		/*
4598		 * Update statistics and call completion
4599		 */
4600		ath_tx_process_buf_completion(sc, txq, ts, bf);
4601
4602		/* XXX at this point, bf and ni may be totally invalid */
4603	}
4604#ifdef IEEE80211_SUPPORT_SUPERG
4605	/*
4606	 * Flush fast-frame staging queue when traffic slows.
4607	 */
4608	if (txq->axq_depth <= 1)
4609		ieee80211_ff_flush(ic, txq->axq_ac);
4610#endif
4611
4612	/* Kick the software TXQ scheduler */
4613	if (dosched) {
4614		ATH_TX_LOCK(sc);
4615		ath_txq_sched(sc, txq);
4616		ATH_TX_UNLOCK(sc);
4617	}
4618
4619	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4620	    "ath_tx_processq: txq=%u: done",
4621	    txq->axq_qnum);
4622
4623	return nacked;
4624}
4625
4626#define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4627
4628/*
4629 * Deferred processing of transmit interrupt; special-cased
4630 * for a single hardware transmit queue (e.g. 5210 and 5211).
4631 */
4632static void
4633ath_tx_proc_q0(void *arg, int npending)
4634{
4635	struct ath_softc *sc = arg;
4636	struct ifnet *ifp = sc->sc_ifp;
4637	uint32_t txqs;
4638
4639	ATH_PCU_LOCK(sc);
4640	sc->sc_txproc_cnt++;
4641	txqs = sc->sc_txq_active;
4642	sc->sc_txq_active &= ~txqs;
4643	ATH_PCU_UNLOCK(sc);
4644
4645	ATH_LOCK(sc);
4646	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4647	ATH_UNLOCK(sc);
4648
4649	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4650	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4651
4652	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4653		/* XXX why is lastrx updated in tx code? */
4654		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4655	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4656		ath_tx_processq(sc, sc->sc_cabq, 1);
4657	IF_LOCK(&ifp->if_snd);
4658	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4659	IF_UNLOCK(&ifp->if_snd);
4660	sc->sc_wd_timer = 0;
4661
4662	if (sc->sc_softled)
4663		ath_led_event(sc, sc->sc_txrix);
4664
4665	ATH_PCU_LOCK(sc);
4666	sc->sc_txproc_cnt--;
4667	ATH_PCU_UNLOCK(sc);
4668
4669	ATH_LOCK(sc);
4670	ath_power_restore_power_state(sc);
4671	ATH_UNLOCK(sc);
4672
4673	ath_tx_kick(sc);
4674}
4675
4676/*
4677 * Deferred processing of transmit interrupt; special-cased
4678 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4679 */
4680static void
4681ath_tx_proc_q0123(void *arg, int npending)
4682{
4683	struct ath_softc *sc = arg;
4684	struct ifnet *ifp = sc->sc_ifp;
4685	int nacked;
4686	uint32_t txqs;
4687
4688	ATH_PCU_LOCK(sc);
4689	sc->sc_txproc_cnt++;
4690	txqs = sc->sc_txq_active;
4691	sc->sc_txq_active &= ~txqs;
4692	ATH_PCU_UNLOCK(sc);
4693
4694	ATH_LOCK(sc);
4695	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4696	ATH_UNLOCK(sc);
4697
4698	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4699	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4700
4701	/*
4702	 * Process each active queue.
4703	 */
4704	nacked = 0;
4705	if (TXQACTIVE(txqs, 0))
4706		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4707	if (TXQACTIVE(txqs, 1))
4708		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4709	if (TXQACTIVE(txqs, 2))
4710		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4711	if (TXQACTIVE(txqs, 3))
4712		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4713	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4714		ath_tx_processq(sc, sc->sc_cabq, 1);
4715	if (nacked)
4716		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4717
4718	IF_LOCK(&ifp->if_snd);
4719	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4720	IF_UNLOCK(&ifp->if_snd);
4721	sc->sc_wd_timer = 0;
4722
4723	if (sc->sc_softled)
4724		ath_led_event(sc, sc->sc_txrix);
4725
4726	ATH_PCU_LOCK(sc);
4727	sc->sc_txproc_cnt--;
4728	ATH_PCU_UNLOCK(sc);
4729
4730	ATH_LOCK(sc);
4731	ath_power_restore_power_state(sc);
4732	ATH_UNLOCK(sc);
4733
4734	ath_tx_kick(sc);
4735}
4736
4737/*
4738 * Deferred processing of transmit interrupt.
4739 */
4740static void
4741ath_tx_proc(void *arg, int npending)
4742{
4743	struct ath_softc *sc = arg;
4744	struct ifnet *ifp = sc->sc_ifp;
4745	int i, nacked;
4746	uint32_t txqs;
4747
4748	ATH_PCU_LOCK(sc);
4749	sc->sc_txproc_cnt++;
4750	txqs = sc->sc_txq_active;
4751	sc->sc_txq_active &= ~txqs;
4752	ATH_PCU_UNLOCK(sc);
4753
4754	ATH_LOCK(sc);
4755	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4756	ATH_UNLOCK(sc);
4757
4758	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4759
4760	/*
4761	 * Process each active queue.
4762	 */
4763	nacked = 0;
4764	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4765		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4766			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4767	if (nacked)
4768		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4769
4770	/* XXX check this inside of IF_LOCK? */
4771	IF_LOCK(&ifp->if_snd);
4772	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4773	IF_UNLOCK(&ifp->if_snd);
4774	sc->sc_wd_timer = 0;
4775
4776	if (sc->sc_softled)
4777		ath_led_event(sc, sc->sc_txrix);
4778
4779	ATH_PCU_LOCK(sc);
4780	sc->sc_txproc_cnt--;
4781	ATH_PCU_UNLOCK(sc);
4782
4783	ATH_LOCK(sc);
4784	ath_power_restore_power_state(sc);
4785	ATH_UNLOCK(sc);
4786
4787	ath_tx_kick(sc);
4788}
4789#undef	TXQACTIVE
4790
4791/*
4792 * Deferred processing of TXQ rescheduling.
4793 */
4794static void
4795ath_txq_sched_tasklet(void *arg, int npending)
4796{
4797	struct ath_softc *sc = arg;
4798	int i;
4799
4800	/* XXX is skipping ok? */
4801	ATH_PCU_LOCK(sc);
4802#if 0
4803	if (sc->sc_inreset_cnt > 0) {
4804		device_printf(sc->sc_dev,
4805		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4806		ATH_PCU_UNLOCK(sc);
4807		return;
4808	}
4809#endif
4810	sc->sc_txproc_cnt++;
4811	ATH_PCU_UNLOCK(sc);
4812
4813	ATH_LOCK(sc);
4814	ath_power_set_power_state(sc, HAL_PM_AWAKE);
4815	ATH_UNLOCK(sc);
4816
4817	ATH_TX_LOCK(sc);
4818	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4819		if (ATH_TXQ_SETUP(sc, i)) {
4820			ath_txq_sched(sc, &sc->sc_txq[i]);
4821		}
4822	}
4823	ATH_TX_UNLOCK(sc);
4824
4825	ATH_LOCK(sc);
4826	ath_power_restore_power_state(sc);
4827	ATH_UNLOCK(sc);
4828
4829	ATH_PCU_LOCK(sc);
4830	sc->sc_txproc_cnt--;
4831	ATH_PCU_UNLOCK(sc);
4832}
4833
4834void
4835ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4836{
4837
4838	ATH_TXBUF_LOCK_ASSERT(sc);
4839
4840	if (bf->bf_flags & ATH_BUF_MGMT)
4841		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4842	else {
4843		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4844		sc->sc_txbuf_cnt++;
4845		if (sc->sc_txbuf_cnt > ath_txbuf) {
4846			device_printf(sc->sc_dev,
4847			    "%s: sc_txbuf_cnt > %d?\n",
4848			    __func__,
4849			    ath_txbuf);
4850			sc->sc_txbuf_cnt = ath_txbuf;
4851		}
4852	}
4853}
4854
4855void
4856ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4857{
4858
4859	ATH_TXBUF_LOCK_ASSERT(sc);
4860
4861	if (bf->bf_flags & ATH_BUF_MGMT)
4862		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4863	else {
4864		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4865		sc->sc_txbuf_cnt++;
4866		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4867			device_printf(sc->sc_dev,
4868			    "%s: sc_txbuf_cnt > %d?\n",
4869			    __func__,
4870			    ATH_TXBUF);
4871			sc->sc_txbuf_cnt = ATH_TXBUF;
4872		}
4873	}
4874}
4875
4876/*
4877 * Free the holding buffer if it exists
4878 */
4879void
4880ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
4881{
4882	ATH_TXBUF_UNLOCK_ASSERT(sc);
4883	ATH_TXQ_LOCK_ASSERT(txq);
4884
4885	if (txq->axq_holdingbf == NULL)
4886		return;
4887
4888	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
4889
4890	ATH_TXBUF_LOCK(sc);
4891	ath_returnbuf_tail(sc, txq->axq_holdingbf);
4892	ATH_TXBUF_UNLOCK(sc);
4893
4894	txq->axq_holdingbf = NULL;
4895}
4896
4897/*
4898 * Add this buffer to the holding queue, freeing the previous
4899 * one if it exists.
4900 */
4901static void
4902ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
4903{
4904	struct ath_txq *txq;
4905
4906	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4907
4908	ATH_TXBUF_UNLOCK_ASSERT(sc);
4909	ATH_TXQ_LOCK_ASSERT(txq);
4910
4911	/* XXX assert ATH_BUF_BUSY is set */
4912
4913	/* XXX assert the tx queue is under the max number */
4914	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
4915		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
4916		    __func__,
4917		    bf,
4918		    bf->bf_state.bfs_tx_queue);
4919		bf->bf_flags &= ~ATH_BUF_BUSY;
4920		ath_returnbuf_tail(sc, bf);
4921		return;
4922	}
4923	ath_txq_freeholdingbuf(sc, txq);
4924	txq->axq_holdingbf = bf;
4925}
4926
4927/*
4928 * Return a buffer to the pool and update the 'busy' flag on the
4929 * previous 'tail' entry.
4930 *
4931 * This _must_ only be called when the buffer is involved in a completed
4932 * TX. The logic is that if it was part of an active TX, the previous
4933 * buffer on the list is now not involved in a halted TX DMA queue, waiting
4934 * for restart (eg for TDMA.)
4935 *
4936 * The caller must free the mbuf and recycle the node reference.
4937 *
4938 * XXX This method of handling busy / holding buffers is insanely stupid.
4939 * It requires bf_state.bfs_tx_queue to be correctly assigned.  It would
4940 * be much nicer if buffers in the processq() methods would instead be
4941 * always completed there (pushed onto a txq or ath_bufhead) so we knew
4942 * exactly what hardware queue they came from in the first place.
4943 */
4944void
4945ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4946{
4947	struct ath_txq *txq;
4948
4949	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4950
4951	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4952	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4953
4954	/*
4955	 * If this buffer is busy, push it onto the holding queue.
4956	 */
4957	if (bf->bf_flags & ATH_BUF_BUSY) {
4958		ATH_TXQ_LOCK(txq);
4959		ath_txq_addholdingbuf(sc, bf);
4960		ATH_TXQ_UNLOCK(txq);
4961		return;
4962	}
4963
4964	/*
4965	 * Not a busy buffer, so free normally
4966	 */
4967	ATH_TXBUF_LOCK(sc);
4968	ath_returnbuf_tail(sc, bf);
4969	ATH_TXBUF_UNLOCK(sc);
4970}
4971
4972/*
4973 * This is currently used by ath_tx_draintxq() and
4974 * ath_tx_tid_free_pkts().
4975 *
4976 * It recycles a single ath_buf.
4977 */
4978void
4979ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4980{
4981	struct ieee80211_node *ni = bf->bf_node;
4982	struct mbuf *m0 = bf->bf_m;
4983
4984	/*
4985	 * Make sure that we only sync/unload if there's an mbuf.
4986	 * If not (eg we cloned a buffer), the unload will have already
4987	 * occured.
4988	 */
4989	if (bf->bf_m != NULL) {
4990		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4991		    BUS_DMASYNC_POSTWRITE);
4992		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4993	}
4994
4995	bf->bf_node = NULL;
4996	bf->bf_m = NULL;
4997
4998	/* Free the buffer, it's not needed any longer */
4999	ath_freebuf(sc, bf);
5000
5001	/* Pass the buffer back to net80211 - completing it */
5002	ieee80211_tx_complete(ni, m0, status);
5003}
5004
5005static struct ath_buf *
5006ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
5007{
5008	struct ath_buf *bf;
5009
5010	ATH_TXQ_LOCK_ASSERT(txq);
5011
5012	/*
5013	 * Drain the FIFO queue first, then if it's
5014	 * empty, move to the normal frame queue.
5015	 */
5016	bf = TAILQ_FIRST(&txq->fifo.axq_q);
5017	if (bf != NULL) {
5018		/*
5019		 * Is it the last buffer in this set?
5020		 * Decrement the FIFO counter.
5021		 */
5022		if (bf->bf_flags & ATH_BUF_FIFOEND) {
5023			if (txq->axq_fifo_depth == 0) {
5024				device_printf(sc->sc_dev,
5025				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
5026				    __func__,
5027				    txq->axq_qnum,
5028				    txq->fifo.axq_depth);
5029			} else
5030				txq->axq_fifo_depth--;
5031		}
5032		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
5033		return (bf);
5034	}
5035
5036	/*
5037	 * Debugging!
5038	 */
5039	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
5040		device_printf(sc->sc_dev,
5041		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
5042		    __func__,
5043		    txq->axq_qnum,
5044		    txq->axq_fifo_depth,
5045		    txq->fifo.axq_depth);
5046	}
5047
5048	/*
5049	 * Now drain the pending queue.
5050	 */
5051	bf = TAILQ_FIRST(&txq->axq_q);
5052	if (bf == NULL) {
5053		txq->axq_link = NULL;
5054		return (NULL);
5055	}
5056	ATH_TXQ_REMOVE(txq, bf, bf_list);
5057	return (bf);
5058}
5059
5060void
5061ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5062{
5063#ifdef ATH_DEBUG
5064	struct ath_hal *ah = sc->sc_ah;
5065#endif
5066	struct ath_buf *bf;
5067	u_int ix;
5068
5069	/*
5070	 * NB: this assumes output has been stopped and
5071	 *     we do not need to block ath_tx_proc
5072	 */
5073	for (ix = 0;; ix++) {
5074		ATH_TXQ_LOCK(txq);
5075		bf = ath_tx_draintxq_get_one(sc, txq);
5076		if (bf == NULL) {
5077			ATH_TXQ_UNLOCK(txq);
5078			break;
5079		}
5080		if (bf->bf_state.bfs_aggr)
5081			txq->axq_aggr_depth--;
5082#ifdef ATH_DEBUG
5083		if (sc->sc_debug & ATH_DEBUG_RESET) {
5084			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5085			int status = 0;
5086
5087			/*
5088			 * EDMA operation has a TX completion FIFO
5089			 * separate from the TX descriptor, so this
5090			 * method of checking the "completion" status
5091			 * is wrong.
5092			 */
5093			if (! sc->sc_isedma) {
5094				status = (ath_hal_txprocdesc(ah,
5095				    bf->bf_lastds,
5096				    &bf->bf_status.ds_txstat) == HAL_OK);
5097			}
5098			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
5099			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5100			    bf->bf_m->m_len, 0, -1);
5101		}
5102#endif /* ATH_DEBUG */
5103		/*
5104		 * Since we're now doing magic in the completion
5105		 * functions, we -must- call it for aggregation
5106		 * destinations or BAW tracking will get upset.
5107		 */
5108		/*
5109		 * Clear ATH_BUF_BUSY; the completion handler
5110		 * will free the buffer.
5111		 */
5112		ATH_TXQ_UNLOCK(txq);
5113		bf->bf_flags &= ~ATH_BUF_BUSY;
5114		if (bf->bf_comp)
5115			bf->bf_comp(sc, bf, 1);
5116		else
5117			ath_tx_default_comp(sc, bf, 1);
5118	}
5119
5120	/*
5121	 * Free the holding buffer if it exists
5122	 */
5123	ATH_TXQ_LOCK(txq);
5124	ath_txq_freeholdingbuf(sc, txq);
5125	ATH_TXQ_UNLOCK(txq);
5126
5127	/*
5128	 * Drain software queued frames which are on
5129	 * active TIDs.
5130	 */
5131	ath_tx_txq_drain(sc, txq);
5132}
5133
5134static void
5135ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5136{
5137	struct ath_hal *ah = sc->sc_ah;
5138
5139	ATH_TXQ_LOCK_ASSERT(txq);
5140
5141	DPRINTF(sc, ATH_DEBUG_RESET,
5142	    "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
5143	    "link %p, holdingbf=%p\n",
5144	    __func__,
5145	    txq->axq_qnum,
5146	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5147	    (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
5148	    (int) ath_hal_numtxpending(ah, txq->axq_qnum),
5149	    txq->axq_flags,
5150	    txq->axq_link,
5151	    txq->axq_holdingbf);
5152
5153	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5154	/* We've stopped TX DMA, so mark this as stopped. */
5155	txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
5156
5157#ifdef	ATH_DEBUG
5158	if ((sc->sc_debug & ATH_DEBUG_RESET)
5159	    && (txq->axq_holdingbf != NULL)) {
5160		ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
5161	}
5162#endif
5163}
5164
5165int
5166ath_stoptxdma(struct ath_softc *sc)
5167{
5168	struct ath_hal *ah = sc->sc_ah;
5169	int i;
5170
5171	/* XXX return value */
5172	if (sc->sc_invalid)
5173		return 0;
5174
5175	if (!sc->sc_invalid) {
5176		/* don't touch the hardware if marked invalid */
5177		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5178		    __func__, sc->sc_bhalq,
5179		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5180		    NULL);
5181
5182		/* stop the beacon queue */
5183		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5184
5185		/* Stop the data queues */
5186		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5187			if (ATH_TXQ_SETUP(sc, i)) {
5188				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5189				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5190				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5191			}
5192		}
5193	}
5194
5195	return 1;
5196}
5197
5198#ifdef	ATH_DEBUG
5199void
5200ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
5201{
5202	struct ath_hal *ah = sc->sc_ah;
5203	struct ath_buf *bf;
5204	int i = 0;
5205
5206	if (! (sc->sc_debug & ATH_DEBUG_RESET))
5207		return;
5208
5209	device_printf(sc->sc_dev, "%s: Q%d: begin\n",
5210	    __func__, txq->axq_qnum);
5211	TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
5212		ath_printtxbuf(sc, bf, txq->axq_qnum, i,
5213			ath_hal_txprocdesc(ah, bf->bf_lastds,
5214			    &bf->bf_status.ds_txstat) == HAL_OK);
5215		i++;
5216	}
5217	device_printf(sc->sc_dev, "%s: Q%d: end\n",
5218	    __func__, txq->axq_qnum);
5219}
5220#endif /* ATH_DEBUG */
5221
5222/*
5223 * Drain the transmit queues and reclaim resources.
5224 */
5225void
5226ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
5227{
5228	struct ath_hal *ah = sc->sc_ah;
5229	struct ifnet *ifp = sc->sc_ifp;
5230	int i;
5231	struct ath_buf *bf_last;
5232
5233	(void) ath_stoptxdma(sc);
5234
5235	/*
5236	 * Dump the queue contents
5237	 */
5238	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
5239		/*
5240		 * XXX TODO: should we just handle the completed TX frames
5241		 * here, whether or not the reset is a full one or not?
5242		 */
5243		if (ATH_TXQ_SETUP(sc, i)) {
5244#ifdef	ATH_DEBUG
5245			if (sc->sc_debug & ATH_DEBUG_RESET)
5246				ath_tx_dump(sc, &sc->sc_txq[i]);
5247#endif	/* ATH_DEBUG */
5248			if (reset_type == ATH_RESET_NOLOSS) {
5249				ath_tx_processq(sc, &sc->sc_txq[i], 0);
5250				ATH_TXQ_LOCK(&sc->sc_txq[i]);
5251				/*
5252				 * Free the holding buffer; DMA is now
5253				 * stopped.
5254				 */
5255				ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
5256				/*
5257				 * Setup the link pointer to be the
5258				 * _last_ buffer/descriptor in the list.
5259				 * If there's nothing in the list, set it
5260				 * to NULL.
5261				 */
5262				bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
5263				    axq_q_s);
5264				if (bf_last != NULL) {
5265					ath_hal_gettxdesclinkptr(ah,
5266					    bf_last->bf_lastds,
5267					    &sc->sc_txq[i].axq_link);
5268				} else {
5269					sc->sc_txq[i].axq_link = NULL;
5270				}
5271				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
5272			} else
5273				ath_tx_draintxq(sc, &sc->sc_txq[i]);
5274		}
5275	}
5276#ifdef ATH_DEBUG
5277	if (sc->sc_debug & ATH_DEBUG_RESET) {
5278		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
5279		if (bf != NULL && bf->bf_m != NULL) {
5280			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5281				ath_hal_txprocdesc(ah, bf->bf_lastds,
5282				    &bf->bf_status.ds_txstat) == HAL_OK);
5283			ieee80211_dump_pkt(ifp->if_l2com,
5284			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5285			    0, -1);
5286		}
5287	}
5288#endif /* ATH_DEBUG */
5289	IF_LOCK(&ifp->if_snd);
5290	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5291	IF_UNLOCK(&ifp->if_snd);
5292	sc->sc_wd_timer = 0;
5293}
5294
5295/*
5296 * Update internal state after a channel change.
5297 */
5298static void
5299ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5300{
5301	enum ieee80211_phymode mode;
5302
5303	/*
5304	 * Change channels and update the h/w rate map
5305	 * if we're switching; e.g. 11a to 11b/g.
5306	 */
5307	mode = ieee80211_chan2mode(chan);
5308	if (mode != sc->sc_curmode)
5309		ath_setcurmode(sc, mode);
5310	sc->sc_curchan = chan;
5311}
5312
5313/*
5314 * Set/change channels.  If the channel is really being changed,
5315 * it's done by resetting the chip.  To accomplish this we must
5316 * first cleanup any pending DMA, then restart stuff after a la
5317 * ath_init.
5318 */
5319static int
5320ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5321{
5322	struct ifnet *ifp = sc->sc_ifp;
5323	struct ieee80211com *ic = ifp->if_l2com;
5324	struct ath_hal *ah = sc->sc_ah;
5325	int ret = 0;
5326
5327	/* Treat this as an interface reset */
5328	ATH_PCU_UNLOCK_ASSERT(sc);
5329	ATH_UNLOCK_ASSERT(sc);
5330
5331	/* (Try to) stop TX/RX from occuring */
5332	taskqueue_block(sc->sc_tq);
5333
5334	ATH_PCU_LOCK(sc);
5335
5336	/* Stop new RX/TX/interrupt completion */
5337	if (ath_reset_grablock(sc, 1) == 0) {
5338		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
5339		    __func__);
5340	}
5341
5342	ath_hal_intrset(ah, 0);
5343
5344	/* Stop pending RX/TX completion */
5345	ath_txrx_stop_locked(sc);
5346
5347	ATH_PCU_UNLOCK(sc);
5348
5349	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5350	    __func__, ieee80211_chan2ieee(ic, chan),
5351	    chan->ic_freq, chan->ic_flags);
5352	if (chan != sc->sc_curchan) {
5353		HAL_STATUS status;
5354		/*
5355		 * To switch channels clear any pending DMA operations;
5356		 * wait long enough for the RX fifo to drain, reset the
5357		 * hardware at the new frequency, and then re-enable
5358		 * the relevant bits of the h/w.
5359		 */
5360#if 0
5361		ath_hal_intrset(ah, 0);		/* disable interrupts */
5362#endif
5363		ath_stoprecv(sc, 1);		/* turn off frame recv */
5364		/*
5365		 * First, handle completed TX/RX frames.
5366		 */
5367		ath_rx_flush(sc);
5368		ath_draintxq(sc, ATH_RESET_NOLOSS);
5369		/*
5370		 * Next, flush the non-scheduled frames.
5371		 */
5372		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
5373
5374		ath_update_chainmasks(sc, chan);
5375		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
5376		    sc->sc_cur_rxchainmask);
5377		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5378			if_printf(ifp, "%s: unable to reset "
5379			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5380			    __func__, ieee80211_chan2ieee(ic, chan),
5381			    chan->ic_freq, chan->ic_flags, status);
5382			ret = EIO;
5383			goto finish;
5384		}
5385		sc->sc_diversity = ath_hal_getdiversity(ah);
5386
5387		/* Let DFS at it in case it's a DFS channel */
5388		ath_dfs_radar_enable(sc, chan);
5389
5390		/* Let spectral at in case spectral is enabled */
5391		ath_spectral_enable(sc, chan);
5392
5393		/*
5394		 * Let bluetooth coexistence at in case it's needed for this
5395		 * channel
5396		 */
5397		ath_btcoex_enable(sc, ic->ic_curchan);
5398
5399		/*
5400		 * If we're doing TDMA, enforce the TXOP limitation for chips
5401		 * that support it.
5402		 */
5403		if (sc->sc_hasenforcetxop && sc->sc_tdma)
5404			ath_hal_setenforcetxop(sc->sc_ah, 1);
5405		else
5406			ath_hal_setenforcetxop(sc->sc_ah, 0);
5407
5408		/*
5409		 * Re-enable rx framework.
5410		 */
5411		if (ath_startrecv(sc) != 0) {
5412			if_printf(ifp, "%s: unable to restart recv logic\n",
5413			    __func__);
5414			ret = EIO;
5415			goto finish;
5416		}
5417
5418		/*
5419		 * Change channels and update the h/w rate map
5420		 * if we're switching; e.g. 11a to 11b/g.
5421		 */
5422		ath_chan_change(sc, chan);
5423
5424		/*
5425		 * Reset clears the beacon timers; reset them
5426		 * here if needed.
5427		 */
5428		if (sc->sc_beacons) {		/* restart beacons */
5429#ifdef IEEE80211_SUPPORT_TDMA
5430			if (sc->sc_tdma)
5431				ath_tdma_config(sc, NULL);
5432			else
5433#endif
5434			ath_beacon_config(sc, NULL);
5435		}
5436
5437		/*
5438		 * Re-enable interrupts.
5439		 */
5440#if 0
5441		ath_hal_intrset(ah, sc->sc_imask);
5442#endif
5443	}
5444
5445finish:
5446	ATH_PCU_LOCK(sc);
5447	sc->sc_inreset_cnt--;
5448	/* XXX only do this if sc_inreset_cnt == 0? */
5449	ath_hal_intrset(ah, sc->sc_imask);
5450	ATH_PCU_UNLOCK(sc);
5451
5452	IF_LOCK(&ifp->if_snd);
5453	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5454	IF_UNLOCK(&ifp->if_snd);
5455	ath_txrx_start(sc);
5456	/* XXX ath_start? */
5457
5458	return ret;
5459}
5460
5461/*
5462 * Periodically recalibrate the PHY to account
5463 * for temperature/environment changes.
5464 */
5465static void
5466ath_calibrate(void *arg)
5467{
5468	struct ath_softc *sc = arg;
5469	struct ath_hal *ah = sc->sc_ah;
5470	struct ifnet *ifp = sc->sc_ifp;
5471	struct ieee80211com *ic = ifp->if_l2com;
5472	HAL_BOOL longCal, isCalDone = AH_TRUE;
5473	HAL_BOOL aniCal, shortCal = AH_FALSE;
5474	int nextcal;
5475
5476	/*
5477	 * Force the hardware awake for ANI work.
5478	 */
5479	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5480
5481	/* Skip trying to do this if we're in reset */
5482	if (sc->sc_inreset_cnt)
5483		goto restart;
5484
5485	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5486		goto restart;
5487	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5488	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5489	if (sc->sc_doresetcal)
5490		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5491
5492	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5493	if (aniCal) {
5494		sc->sc_stats.ast_ani_cal++;
5495		sc->sc_lastani = ticks;
5496		ath_hal_ani_poll(ah, sc->sc_curchan);
5497	}
5498
5499	if (longCal) {
5500		sc->sc_stats.ast_per_cal++;
5501		sc->sc_lastlongcal = ticks;
5502		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5503			/*
5504			 * Rfgain is out of bounds, reset the chip
5505			 * to load new gain values.
5506			 */
5507			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5508				"%s: rfgain change\n", __func__);
5509			sc->sc_stats.ast_per_rfgain++;
5510			sc->sc_resetcal = 0;
5511			sc->sc_doresetcal = AH_TRUE;
5512			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5513			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5514			ath_power_restore_power_state(sc);
5515			return;
5516		}
5517		/*
5518		 * If this long cal is after an idle period, then
5519		 * reset the data collection state so we start fresh.
5520		 */
5521		if (sc->sc_resetcal) {
5522			(void) ath_hal_calreset(ah, sc->sc_curchan);
5523			sc->sc_lastcalreset = ticks;
5524			sc->sc_lastshortcal = ticks;
5525			sc->sc_resetcal = 0;
5526			sc->sc_doresetcal = AH_TRUE;
5527		}
5528	}
5529
5530	/* Only call if we're doing a short/long cal, not for ANI calibration */
5531	if (shortCal || longCal) {
5532		isCalDone = AH_FALSE;
5533		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5534			if (longCal) {
5535				/*
5536				 * Calibrate noise floor data again in case of change.
5537				 */
5538				ath_hal_process_noisefloor(ah);
5539			}
5540		} else {
5541			DPRINTF(sc, ATH_DEBUG_ANY,
5542				"%s: calibration of channel %u failed\n",
5543				__func__, sc->sc_curchan->ic_freq);
5544			sc->sc_stats.ast_per_calfail++;
5545		}
5546		if (shortCal)
5547			sc->sc_lastshortcal = ticks;
5548	}
5549	if (!isCalDone) {
5550restart:
5551		/*
5552		 * Use a shorter interval to potentially collect multiple
5553		 * data samples required to complete calibration.  Once
5554		 * we're told the work is done we drop back to a longer
5555		 * interval between requests.  We're more aggressive doing
5556		 * work when operating as an AP to improve operation right
5557		 * after startup.
5558		 */
5559		sc->sc_lastshortcal = ticks;
5560		nextcal = ath_shortcalinterval*hz/1000;
5561		if (sc->sc_opmode != HAL_M_HOSTAP)
5562			nextcal *= 10;
5563		sc->sc_doresetcal = AH_TRUE;
5564	} else {
5565		/* nextcal should be the shortest time for next event */
5566		nextcal = ath_longcalinterval*hz;
5567		if (sc->sc_lastcalreset == 0)
5568			sc->sc_lastcalreset = sc->sc_lastlongcal;
5569		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5570			sc->sc_resetcal = 1;	/* setup reset next trip */
5571		sc->sc_doresetcal = AH_FALSE;
5572	}
5573	/* ANI calibration may occur more often than short/long/resetcal */
5574	if (ath_anicalinterval > 0)
5575		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5576
5577	if (nextcal != 0) {
5578		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5579		    __func__, nextcal, isCalDone ? "" : "!");
5580		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5581	} else {
5582		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5583		    __func__);
5584		/* NB: don't rearm timer */
5585	}
5586	/*
5587	 * Restore power state now that we're done.
5588	 */
5589	ath_power_restore_power_state(sc);
5590}
5591
5592static void
5593ath_scan_start(struct ieee80211com *ic)
5594{
5595	struct ifnet *ifp = ic->ic_ifp;
5596	struct ath_softc *sc = ifp->if_softc;
5597	struct ath_hal *ah = sc->sc_ah;
5598	u_int32_t rfilt;
5599
5600	/* XXX calibration timer? */
5601
5602	ATH_LOCK(sc);
5603	sc->sc_scanning = 1;
5604	sc->sc_syncbeacon = 0;
5605	rfilt = ath_calcrxfilter(sc);
5606	ATH_UNLOCK(sc);
5607
5608	ATH_PCU_LOCK(sc);
5609	ath_hal_setrxfilter(ah, rfilt);
5610	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5611	ATH_PCU_UNLOCK(sc);
5612
5613	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5614		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5615}
5616
5617static void
5618ath_scan_end(struct ieee80211com *ic)
5619{
5620	struct ifnet *ifp = ic->ic_ifp;
5621	struct ath_softc *sc = ifp->if_softc;
5622	struct ath_hal *ah = sc->sc_ah;
5623	u_int32_t rfilt;
5624
5625	ATH_LOCK(sc);
5626	sc->sc_scanning = 0;
5627	rfilt = ath_calcrxfilter(sc);
5628	ATH_UNLOCK(sc);
5629
5630	ATH_PCU_LOCK(sc);
5631	ath_hal_setrxfilter(ah, rfilt);
5632	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5633
5634	ath_hal_process_noisefloor(ah);
5635	ATH_PCU_UNLOCK(sc);
5636
5637	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5638		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5639		 sc->sc_curaid);
5640}
5641
5642#ifdef	ATH_ENABLE_11N
5643/*
5644 * For now, just do a channel change.
5645 *
5646 * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5647 * control state and resetting the hardware without dropping frames out
5648 * of the queue.
5649 *
5650 * The unfortunate trouble here is making absolutely sure that the
5651 * channel width change has propagated enough so the hardware
5652 * absolutely isn't handed bogus frames for it's current operating
5653 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5654 * does occur in parallel, we need to make certain we've blocked
5655 * any further ongoing TX (and RX, that can cause raw TX)
5656 * before we do this.
5657 */
5658static void
5659ath_update_chw(struct ieee80211com *ic)
5660{
5661	struct ifnet *ifp = ic->ic_ifp;
5662	struct ath_softc *sc = ifp->if_softc;
5663
5664	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5665	ath_set_channel(ic);
5666}
5667#endif	/* ATH_ENABLE_11N */
5668
5669static void
5670ath_set_channel(struct ieee80211com *ic)
5671{
5672	struct ifnet *ifp = ic->ic_ifp;
5673	struct ath_softc *sc = ifp->if_softc;
5674
5675	ATH_LOCK(sc);
5676	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5677	ATH_UNLOCK(sc);
5678
5679	(void) ath_chan_set(sc, ic->ic_curchan);
5680	/*
5681	 * If we are returning to our bss channel then mark state
5682	 * so the next recv'd beacon's tsf will be used to sync the
5683	 * beacon timers.  Note that since we only hear beacons in
5684	 * sta/ibss mode this has no effect in other operating modes.
5685	 */
5686	ATH_LOCK(sc);
5687	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5688		sc->sc_syncbeacon = 1;
5689	ath_power_restore_power_state(sc);
5690	ATH_UNLOCK(sc);
5691}
5692
5693/*
5694 * Walk the vap list and check if there any vap's in RUN state.
5695 */
5696static int
5697ath_isanyrunningvaps(struct ieee80211vap *this)
5698{
5699	struct ieee80211com *ic = this->iv_ic;
5700	struct ieee80211vap *vap;
5701
5702	IEEE80211_LOCK_ASSERT(ic);
5703
5704	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5705		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5706			return 1;
5707	}
5708	return 0;
5709}
5710
5711static int
5712ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5713{
5714	struct ieee80211com *ic = vap->iv_ic;
5715	struct ath_softc *sc = ic->ic_ifp->if_softc;
5716	struct ath_vap *avp = ATH_VAP(vap);
5717	struct ath_hal *ah = sc->sc_ah;
5718	struct ieee80211_node *ni = NULL;
5719	int i, error, stamode;
5720	u_int32_t rfilt;
5721	int csa_run_transition = 0;
5722	enum ieee80211_state ostate = vap->iv_state;
5723
5724	static const HAL_LED_STATE leds[] = {
5725	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5726	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5727	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5728	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5729	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5730	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5731	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5732	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5733	};
5734
5735	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5736		ieee80211_state_name[ostate],
5737		ieee80211_state_name[nstate]);
5738
5739	/*
5740	 * net80211 _should_ have the comlock asserted at this point.
5741	 * There are some comments around the calls to vap->iv_newstate
5742	 * which indicate that it (newstate) may end up dropping the
5743	 * lock.  This and the subsequent lock assert check after newstate
5744	 * are an attempt to catch these and figure out how/why.
5745	 */
5746	IEEE80211_LOCK_ASSERT(ic);
5747
5748	/* Before we touch the hardware - wake it up */
5749	ATH_LOCK(sc);
5750	/*
5751	 * If the NIC is in anything other than SLEEP state,
5752	 * we need to ensure that self-generated frames are
5753	 * set for PWRMGT=0.  Otherwise we may end up with
5754	 * strange situations.
5755	 *
5756	 * XXX TODO: is this actually the case? :-)
5757	 */
5758	if (nstate != IEEE80211_S_SLEEP)
5759		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5760
5761	/*
5762	 * Now, wake the thing up.
5763	 */
5764	ath_power_set_power_state(sc, HAL_PM_AWAKE);
5765	ATH_UNLOCK(sc);
5766
5767	if (ostate == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5768		csa_run_transition = 1;
5769
5770	callout_drain(&sc->sc_cal_ch);
5771	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5772
5773	if (nstate == IEEE80211_S_SCAN) {
5774		/*
5775		 * Scanning: turn off beacon miss and don't beacon.
5776		 * Mark beacon state so when we reach RUN state we'll
5777		 * [re]setup beacons.  Unblock the task q thread so
5778		 * deferred interrupt processing is done.
5779		 */
5780
5781		/* Ensure we stay awake during scan */
5782		ATH_LOCK(sc);
5783		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5784		ath_power_setpower(sc, HAL_PM_AWAKE);
5785		ATH_UNLOCK(sc);
5786
5787		ath_hal_intrset(ah,
5788		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5789		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5790		sc->sc_beacons = 0;
5791		taskqueue_unblock(sc->sc_tq);
5792	}
5793
5794	ni = ieee80211_ref_node(vap->iv_bss);
5795	rfilt = ath_calcrxfilter(sc);
5796	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5797		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5798		   vap->iv_opmode == IEEE80211_M_IBSS);
5799
5800	/*
5801	 * XXX Dont need to do this (and others) if we've transitioned
5802	 * from SLEEP->RUN.
5803	 */
5804	if (stamode && nstate == IEEE80211_S_RUN) {
5805		sc->sc_curaid = ni->ni_associd;
5806		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5807		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5808	}
5809	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5810	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5811	ath_hal_setrxfilter(ah, rfilt);
5812
5813	/* XXX is this to restore keycache on resume? */
5814	if (vap->iv_opmode != IEEE80211_M_STA &&
5815	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5816		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5817			if (ath_hal_keyisvalid(ah, i))
5818				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5819	}
5820
5821	/*
5822	 * Invoke the parent method to do net80211 work.
5823	 */
5824	error = avp->av_newstate(vap, nstate, arg);
5825	if (error != 0)
5826		goto bad;
5827
5828	/*
5829	 * See above: ensure av_newstate() doesn't drop the lock
5830	 * on us.
5831	 */
5832	IEEE80211_LOCK_ASSERT(ic);
5833
5834	if (nstate == IEEE80211_S_RUN) {
5835		/* NB: collect bss node again, it may have changed */
5836		ieee80211_free_node(ni);
5837		ni = ieee80211_ref_node(vap->iv_bss);
5838
5839		DPRINTF(sc, ATH_DEBUG_STATE,
5840		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5841		    "capinfo 0x%04x chan %d\n", __func__,
5842		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5843		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5844
5845		switch (vap->iv_opmode) {
5846#ifdef IEEE80211_SUPPORT_TDMA
5847		case IEEE80211_M_AHDEMO:
5848			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5849				break;
5850			/* fall thru... */
5851#endif
5852		case IEEE80211_M_HOSTAP:
5853		case IEEE80211_M_IBSS:
5854		case IEEE80211_M_MBSS:
5855			/*
5856			 * Allocate and setup the beacon frame.
5857			 *
5858			 * Stop any previous beacon DMA.  This may be
5859			 * necessary, for example, when an ibss merge
5860			 * causes reconfiguration; there will be a state
5861			 * transition from RUN->RUN that means we may
5862			 * be called with beacon transmission active.
5863			 */
5864			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5865
5866			error = ath_beacon_alloc(sc, ni);
5867			if (error != 0)
5868				goto bad;
5869			/*
5870			 * If joining an adhoc network defer beacon timer
5871			 * configuration to the next beacon frame so we
5872			 * have a current TSF to use.  Otherwise we're
5873			 * starting an ibss/bss so there's no need to delay;
5874			 * if this is the first vap moving to RUN state, then
5875			 * beacon state needs to be [re]configured.
5876			 */
5877			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5878			    ni->ni_tstamp.tsf != 0) {
5879				sc->sc_syncbeacon = 1;
5880			} else if (!sc->sc_beacons) {
5881#ifdef IEEE80211_SUPPORT_TDMA
5882				if (vap->iv_caps & IEEE80211_C_TDMA)
5883					ath_tdma_config(sc, vap);
5884				else
5885#endif
5886					ath_beacon_config(sc, vap);
5887				sc->sc_beacons = 1;
5888			}
5889			break;
5890		case IEEE80211_M_STA:
5891			/*
5892			 * Defer beacon timer configuration to the next
5893			 * beacon frame so we have a current TSF to use
5894			 * (any TSF collected when scanning is likely old).
5895			 * However if it's due to a CSA -> RUN transition,
5896			 * force a beacon update so we pick up a lack of
5897			 * beacons from an AP in CAC and thus force a
5898			 * scan.
5899			 *
5900			 * And, there's also corner cases here where
5901			 * after a scan, the AP may have disappeared.
5902			 * In that case, we may not receive an actual
5903			 * beacon to update the beacon timer and thus we
5904			 * won't get notified of the missing beacons.
5905			 */
5906			if (ostate != IEEE80211_S_RUN &&
5907			    ostate != IEEE80211_S_SLEEP) {
5908				DPRINTF(sc, ATH_DEBUG_BEACON,
5909				    "%s: STA; syncbeacon=1\n", __func__);
5910				sc->sc_syncbeacon = 1;
5911
5912				if (csa_run_transition)
5913					ath_beacon_config(sc, vap);
5914
5915			/*
5916			 * PR: kern/175227
5917			 *
5918			 * Reconfigure beacons during reset; as otherwise
5919			 * we won't get the beacon timers reprogrammed
5920			 * after a reset and thus we won't pick up a
5921			 * beacon miss interrupt.
5922			 *
5923			 * Hopefully we'll see a beacon before the BMISS
5924			 * timer fires (too often), leading to a STA
5925			 * disassociation.
5926			 */
5927				sc->sc_beacons = 1;
5928			}
5929			break;
5930		case IEEE80211_M_MONITOR:
5931			/*
5932			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5933			 * transitions so we must re-enable interrupts here to
5934			 * handle the case of a single monitor mode vap.
5935			 */
5936			ath_hal_intrset(ah, sc->sc_imask);
5937			break;
5938		case IEEE80211_M_WDS:
5939			break;
5940		default:
5941			break;
5942		}
5943		/*
5944		 * Let the hal process statistics collected during a
5945		 * scan so it can provide calibrated noise floor data.
5946		 */
5947		ath_hal_process_noisefloor(ah);
5948		/*
5949		 * Reset rssi stats; maybe not the best place...
5950		 */
5951		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5952		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5953		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5954
5955		/*
5956		 * Force awake for RUN mode.
5957		 */
5958		ATH_LOCK(sc);
5959		ath_power_setselfgen(sc, HAL_PM_AWAKE);
5960		ath_power_setpower(sc, HAL_PM_AWAKE);
5961		ATH_UNLOCK(sc);
5962
5963		/*
5964		 * Finally, start any timers and the task q thread
5965		 * (in case we didn't go through SCAN state).
5966		 */
5967		if (ath_longcalinterval != 0) {
5968			/* start periodic recalibration timer */
5969			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5970		} else {
5971			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5972			    "%s: calibration disabled\n", __func__);
5973		}
5974
5975		taskqueue_unblock(sc->sc_tq);
5976	} else if (nstate == IEEE80211_S_INIT) {
5977		/*
5978		 * If there are no vaps left in RUN state then
5979		 * shutdown host/driver operation:
5980		 * o disable interrupts
5981		 * o disable the task queue thread
5982		 * o mark beacon processing as stopped
5983		 */
5984		if (!ath_isanyrunningvaps(vap)) {
5985			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5986			/* disable interrupts  */
5987			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5988			taskqueue_block(sc->sc_tq);
5989			sc->sc_beacons = 0;
5990		}
5991#ifdef IEEE80211_SUPPORT_TDMA
5992		ath_hal_setcca(ah, AH_TRUE);
5993#endif
5994	} else if (nstate == IEEE80211_S_SLEEP) {
5995		/* We're going to sleep, so transition appropriately */
5996		/* For now, only do this if we're a single STA vap */
5997		if (sc->sc_nvaps == 1 &&
5998		    vap->iv_opmode == IEEE80211_M_STA) {
5999			DPRINTF(sc, ATH_DEBUG_BEACON, "%s: syncbeacon=%d\n", __func__, sc->sc_syncbeacon);
6000			ATH_LOCK(sc);
6001			/*
6002			 * Always at least set the self-generated
6003			 * frame config to set PWRMGT=1.
6004			 */
6005			ath_power_setselfgen(sc, HAL_PM_NETWORK_SLEEP);
6006
6007			/*
6008			 * If we're not syncing beacons, transition
6009			 * to NETWORK_SLEEP.
6010			 *
6011			 * We stay awake if syncbeacon > 0 in case
6012			 * we need to listen for some beacons otherwise
6013			 * our beacon timer config may be wrong.
6014			 */
6015			if (sc->sc_syncbeacon == 0) {
6016				ath_power_setpower(sc, HAL_PM_NETWORK_SLEEP);
6017			}
6018			ATH_UNLOCK(sc);
6019		}
6020	}
6021bad:
6022	ieee80211_free_node(ni);
6023
6024	/*
6025	 * Restore the power state - either to what it was, or
6026	 * to network_sleep if it's alright.
6027	 */
6028	ATH_LOCK(sc);
6029	ath_power_restore_power_state(sc);
6030	ATH_UNLOCK(sc);
6031	return error;
6032}
6033
6034/*
6035 * Allocate a key cache slot to the station so we can
6036 * setup a mapping from key index to node. The key cache
6037 * slot is needed for managing antenna state and for
6038 * compression when stations do not use crypto.  We do
6039 * it uniliaterally here; if crypto is employed this slot
6040 * will be reassigned.
6041 */
6042static void
6043ath_setup_stationkey(struct ieee80211_node *ni)
6044{
6045	struct ieee80211vap *vap = ni->ni_vap;
6046	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6047	ieee80211_keyix keyix, rxkeyix;
6048
6049	/* XXX should take a locked ref to vap->iv_bss */
6050	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6051		/*
6052		 * Key cache is full; we'll fall back to doing
6053		 * the more expensive lookup in software.  Note
6054		 * this also means no h/w compression.
6055		 */
6056		/* XXX msg+statistic */
6057	} else {
6058		/* XXX locking? */
6059		ni->ni_ucastkey.wk_keyix = keyix;
6060		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6061		/* NB: must mark device key to get called back on delete */
6062		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6063		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6064		/* NB: this will create a pass-thru key entry */
6065		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
6066	}
6067}
6068
6069/*
6070 * Setup driver-specific state for a newly associated node.
6071 * Note that we're called also on a re-associate, the isnew
6072 * param tells us if this is the first time or not.
6073 */
6074static void
6075ath_newassoc(struct ieee80211_node *ni, int isnew)
6076{
6077	struct ath_node *an = ATH_NODE(ni);
6078	struct ieee80211vap *vap = ni->ni_vap;
6079	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6080	const struct ieee80211_txparam *tp = ni->ni_txparms;
6081
6082	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
6083	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
6084
6085	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: reassoc; isnew=%d, is_powersave=%d\n",
6086	    __func__,
6087	    ni->ni_macaddr,
6088	    ":",
6089	    isnew,
6090	    an->an_is_powersave);
6091
6092	ATH_NODE_LOCK(an);
6093	ath_rate_newassoc(sc, an, isnew);
6094	ATH_NODE_UNLOCK(an);
6095
6096	if (isnew &&
6097	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6098	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6099		ath_setup_stationkey(ni);
6100
6101	/*
6102	 * If we're reassociating, make sure that any paused queues
6103	 * get unpaused.
6104	 *
6105	 * Now, we may hvae frames in the hardware queue for this node.
6106	 * So if we are reassociating and there are frames in the queue,
6107	 * we need to go through the cleanup path to ensure that they're
6108	 * marked as non-aggregate.
6109	 */
6110	if (! isnew) {
6111		DPRINTF(sc, ATH_DEBUG_NODE,
6112		    "%s: %6D: reassoc; is_powersave=%d\n",
6113		    __func__,
6114		    ni->ni_macaddr,
6115		    ":",
6116		    an->an_is_powersave);
6117
6118		/* XXX for now, we can't hold the lock across assoc */
6119		ath_tx_node_reassoc(sc, an);
6120
6121		/* XXX for now, we can't hold the lock across wakeup */
6122		if (an->an_is_powersave)
6123			ath_tx_node_wakeup(sc, an);
6124	}
6125}
6126
6127static int
6128ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6129	int nchans, struct ieee80211_channel chans[])
6130{
6131	struct ath_softc *sc = ic->ic_ifp->if_softc;
6132	struct ath_hal *ah = sc->sc_ah;
6133	HAL_STATUS status;
6134
6135	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6136	    "%s: rd %u cc %u location %c%s\n",
6137	    __func__, reg->regdomain, reg->country, reg->location,
6138	    reg->ecm ? " ecm" : "");
6139
6140	status = ath_hal_set_channels(ah, chans, nchans,
6141	    reg->country, reg->regdomain);
6142	if (status != HAL_OK) {
6143		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6144		    __func__, status);
6145		return EINVAL;		/* XXX */
6146	}
6147
6148	return 0;
6149}
6150
6151static void
6152ath_getradiocaps(struct ieee80211com *ic,
6153	int maxchans, int *nchans, struct ieee80211_channel chans[])
6154{
6155	struct ath_softc *sc = ic->ic_ifp->if_softc;
6156	struct ath_hal *ah = sc->sc_ah;
6157
6158	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6159	    __func__, SKU_DEBUG, CTRY_DEFAULT);
6160
6161	/* XXX check return */
6162	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6163	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6164
6165}
6166
6167static int
6168ath_getchannels(struct ath_softc *sc)
6169{
6170	struct ifnet *ifp = sc->sc_ifp;
6171	struct ieee80211com *ic = ifp->if_l2com;
6172	struct ath_hal *ah = sc->sc_ah;
6173	HAL_STATUS status;
6174
6175	/*
6176	 * Collect channel set based on EEPROM contents.
6177	 */
6178	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6179	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6180	if (status != HAL_OK) {
6181		if_printf(ifp, "%s: unable to collect channel list from hal, "
6182		    "status %d\n", __func__, status);
6183		return EINVAL;
6184	}
6185	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6186	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6187	/* XXX map Atheros sku's to net80211 SKU's */
6188	/* XXX net80211 types too small */
6189	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6190	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6191	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
6192	ic->ic_regdomain.isocc[1] = ' ';
6193
6194	ic->ic_regdomain.ecm = 1;
6195	ic->ic_regdomain.location = 'I';
6196
6197	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6198	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6199	    __func__, sc->sc_eerd, sc->sc_eecc,
6200	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6201	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6202	return 0;
6203}
6204
6205static int
6206ath_rate_setup(struct ath_softc *sc, u_int mode)
6207{
6208	struct ath_hal *ah = sc->sc_ah;
6209	const HAL_RATE_TABLE *rt;
6210
6211	switch (mode) {
6212	case IEEE80211_MODE_11A:
6213		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6214		break;
6215	case IEEE80211_MODE_HALF:
6216		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6217		break;
6218	case IEEE80211_MODE_QUARTER:
6219		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6220		break;
6221	case IEEE80211_MODE_11B:
6222		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6223		break;
6224	case IEEE80211_MODE_11G:
6225		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6226		break;
6227	case IEEE80211_MODE_TURBO_A:
6228		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6229		break;
6230	case IEEE80211_MODE_TURBO_G:
6231		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6232		break;
6233	case IEEE80211_MODE_STURBO_A:
6234		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6235		break;
6236	case IEEE80211_MODE_11NA:
6237		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6238		break;
6239	case IEEE80211_MODE_11NG:
6240		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6241		break;
6242	default:
6243		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6244			__func__, mode);
6245		return 0;
6246	}
6247	sc->sc_rates[mode] = rt;
6248	return (rt != NULL);
6249}
6250
6251static void
6252ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6253{
6254#define	N(a)	(sizeof(a)/sizeof(a[0]))
6255	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6256	static const struct {
6257		u_int		rate;		/* tx/rx 802.11 rate */
6258		u_int16_t	timeOn;		/* LED on time (ms) */
6259		u_int16_t	timeOff;	/* LED off time (ms) */
6260	} blinkrates[] = {
6261		{ 108,  40,  10 },
6262		{  96,  44,  11 },
6263		{  72,  50,  13 },
6264		{  48,  57,  14 },
6265		{  36,  67,  16 },
6266		{  24,  80,  20 },
6267		{  22, 100,  25 },
6268		{  18, 133,  34 },
6269		{  12, 160,  40 },
6270		{  10, 200,  50 },
6271		{   6, 240,  58 },
6272		{   4, 267,  66 },
6273		{   2, 400, 100 },
6274		{   0, 500, 130 },
6275		/* XXX half/quarter rates */
6276	};
6277	const HAL_RATE_TABLE *rt;
6278	int i, j;
6279
6280	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6281	rt = sc->sc_rates[mode];
6282	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6283	for (i = 0; i < rt->rateCount; i++) {
6284		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6285		if (rt->info[i].phy != IEEE80211_T_HT)
6286			sc->sc_rixmap[ieeerate] = i;
6287		else
6288			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6289	}
6290	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6291	for (i = 0; i < N(sc->sc_hwmap); i++) {
6292		if (i >= rt->rateCount) {
6293			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6294			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6295			continue;
6296		}
6297		sc->sc_hwmap[i].ieeerate =
6298			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6299		if (rt->info[i].phy == IEEE80211_T_HT)
6300			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6301		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6302		if (rt->info[i].shortPreamble ||
6303		    rt->info[i].phy == IEEE80211_T_OFDM)
6304			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6305		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6306		for (j = 0; j < N(blinkrates)-1; j++)
6307			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6308				break;
6309		/* NB: this uses the last entry if the rate isn't found */
6310		/* XXX beware of overlow */
6311		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6312		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6313	}
6314	sc->sc_currates = rt;
6315	sc->sc_curmode = mode;
6316	/*
6317	 * All protection frames are transmited at 2Mb/s for
6318	 * 11g, otherwise at 1Mb/s.
6319	 */
6320	if (mode == IEEE80211_MODE_11G)
6321		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6322	else
6323		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6324	/* NB: caller is responsible for resetting rate control state */
6325#undef N
6326}
6327
6328static void
6329ath_watchdog(void *arg)
6330{
6331	struct ath_softc *sc = arg;
6332	int do_reset = 0;
6333
6334	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6335		struct ifnet *ifp = sc->sc_ifp;
6336		uint32_t hangs;
6337
6338		ATH_LOCK(sc);
6339		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6340		ATH_UNLOCK(sc);
6341
6342		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6343		    hangs != 0) {
6344			if_printf(ifp, "%s hang detected (0x%x)\n",
6345			    hangs & 0xff ? "bb" : "mac", hangs);
6346		} else
6347			if_printf(ifp, "device timeout\n");
6348		do_reset = 1;
6349		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
6350		sc->sc_stats.ast_watchdog++;
6351
6352		ATH_LOCK(sc);
6353		ath_power_restore_power_state(sc);
6354		ATH_UNLOCK(sc);
6355	}
6356
6357	/*
6358	 * We can't hold the lock across the ath_reset() call.
6359	 *
6360	 * And since this routine can't hold a lock and sleep,
6361	 * do the reset deferred.
6362	 */
6363	if (do_reset) {
6364		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
6365	}
6366
6367	callout_schedule(&sc->sc_wd_ch, hz);
6368}
6369
6370/*
6371 * Fetch the rate control statistics for the given node.
6372 */
6373static int
6374ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
6375{
6376	struct ath_node *an;
6377	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
6378	struct ieee80211_node *ni;
6379	int error = 0;
6380
6381	/* Perform a lookup on the given node */
6382	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
6383	if (ni == NULL) {
6384		error = EINVAL;
6385		goto bad;
6386	}
6387
6388	/* Lock the ath_node */
6389	an = ATH_NODE(ni);
6390	ATH_NODE_LOCK(an);
6391
6392	/* Fetch the rate control stats for this node */
6393	error = ath_rate_fetch_node_stats(sc, an, rs);
6394
6395	/* No matter what happens here, just drop through */
6396
6397	/* Unlock the ath_node */
6398	ATH_NODE_UNLOCK(an);
6399
6400	/* Unref the node */
6401	ieee80211_node_decref(ni);
6402
6403bad:
6404	return (error);
6405}
6406
6407#ifdef ATH_DIAGAPI
6408/*
6409 * Diagnostic interface to the HAL.  This is used by various
6410 * tools to do things like retrieve register contents for
6411 * debugging.  The mechanism is intentionally opaque so that
6412 * it can change frequently w/o concern for compatiblity.
6413 */
6414static int
6415ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6416{
6417	struct ath_hal *ah = sc->sc_ah;
6418	u_int id = ad->ad_id & ATH_DIAG_ID;
6419	void *indata = NULL;
6420	void *outdata = NULL;
6421	u_int32_t insize = ad->ad_in_size;
6422	u_int32_t outsize = ad->ad_out_size;
6423	int error = 0;
6424
6425	if (ad->ad_id & ATH_DIAG_IN) {
6426		/*
6427		 * Copy in data.
6428		 */
6429		indata = malloc(insize, M_TEMP, M_NOWAIT);
6430		if (indata == NULL) {
6431			error = ENOMEM;
6432			goto bad;
6433		}
6434		error = copyin(ad->ad_in_data, indata, insize);
6435		if (error)
6436			goto bad;
6437	}
6438	if (ad->ad_id & ATH_DIAG_DYN) {
6439		/*
6440		 * Allocate a buffer for the results (otherwise the HAL
6441		 * returns a pointer to a buffer where we can read the
6442		 * results).  Note that we depend on the HAL leaving this
6443		 * pointer for us to use below in reclaiming the buffer;
6444		 * may want to be more defensive.
6445		 */
6446		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6447		if (outdata == NULL) {
6448			error = ENOMEM;
6449			goto bad;
6450		}
6451	}
6452
6453
6454	ATH_LOCK(sc);
6455	if (id != HAL_DIAG_REGS)
6456		ath_power_set_power_state(sc, HAL_PM_AWAKE);
6457	ATH_UNLOCK(sc);
6458
6459	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6460		if (outsize < ad->ad_out_size)
6461			ad->ad_out_size = outsize;
6462		if (outdata != NULL)
6463			error = copyout(outdata, ad->ad_out_data,
6464					ad->ad_out_size);
6465	} else {
6466		error = EINVAL;
6467	}
6468
6469	ATH_LOCK(sc);
6470	if (id != HAL_DIAG_REGS)
6471		ath_power_restore_power_state(sc);
6472	ATH_UNLOCK(sc);
6473
6474bad:
6475	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6476		free(indata, M_TEMP);
6477	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6478		free(outdata, M_TEMP);
6479	return error;
6480}
6481#endif /* ATH_DIAGAPI */
6482
6483static int
6484ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6485{
6486#define	IS_RUNNING(ifp) \
6487	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6488	struct ath_softc *sc = ifp->if_softc;
6489	struct ieee80211com *ic = ifp->if_l2com;
6490	struct ifreq *ifr = (struct ifreq *)data;
6491	const HAL_RATE_TABLE *rt;
6492	int error = 0;
6493
6494	switch (cmd) {
6495	case SIOCSIFFLAGS:
6496		if (IS_RUNNING(ifp)) {
6497			/*
6498			 * To avoid rescanning another access point,
6499			 * do not call ath_init() here.  Instead,
6500			 * only reflect promisc mode settings.
6501			 */
6502			ATH_LOCK(sc);
6503			ath_power_set_power_state(sc, HAL_PM_AWAKE);
6504			ath_mode_init(sc);
6505			ath_power_restore_power_state(sc);
6506			ATH_UNLOCK(sc);
6507		} else if (ifp->if_flags & IFF_UP) {
6508			/*
6509			 * Beware of being called during attach/detach
6510			 * to reset promiscuous mode.  In that case we
6511			 * will still be marked UP but not RUNNING.
6512			 * However trying to re-init the interface
6513			 * is the wrong thing to do as we've already
6514			 * torn down much of our state.  There's
6515			 * probably a better way to deal with this.
6516			 */
6517			if (!sc->sc_invalid)
6518				ath_init(sc);	/* XXX lose error */
6519		} else {
6520			ATH_LOCK(sc);
6521			ath_stop_locked(ifp);
6522			if (!sc->sc_invalid)
6523				ath_power_setpower(sc, HAL_PM_FULL_SLEEP);
6524			ATH_UNLOCK(sc);
6525		}
6526		break;
6527	case SIOCGIFMEDIA:
6528	case SIOCSIFMEDIA:
6529		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6530		break;
6531	case SIOCGATHSTATS:
6532		/* NB: embed these numbers to get a consistent view */
6533		sc->sc_stats.ast_tx_packets = ifp->if_get_counter(ifp,
6534		    IFCOUNTER_OPACKETS);
6535		sc->sc_stats.ast_rx_packets = ifp->if_get_counter(ifp,
6536		    IFCOUNTER_IPACKETS);
6537		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6538		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6539#ifdef IEEE80211_SUPPORT_TDMA
6540		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6541		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6542#endif
6543		rt = sc->sc_currates;
6544		sc->sc_stats.ast_tx_rate =
6545		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6546		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
6547			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
6548		return copyout(&sc->sc_stats,
6549		    ifr->ifr_data, sizeof (sc->sc_stats));
6550	case SIOCGATHAGSTATS:
6551		return copyout(&sc->sc_aggr_stats,
6552		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
6553	case SIOCZATHSTATS:
6554		error = priv_check(curthread, PRIV_DRIVER);
6555		if (error == 0) {
6556			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6557			memset(&sc->sc_aggr_stats, 0,
6558			    sizeof(sc->sc_aggr_stats));
6559			memset(&sc->sc_intr_stats, 0,
6560			    sizeof(sc->sc_intr_stats));
6561		}
6562		break;
6563#ifdef ATH_DIAGAPI
6564	case SIOCGATHDIAG:
6565		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6566		break;
6567	case SIOCGATHPHYERR:
6568		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
6569		break;
6570#endif
6571	case SIOCGATHSPECTRAL:
6572		error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
6573		break;
6574	case SIOCGATHNODERATESTATS:
6575		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
6576		break;
6577	case SIOCGIFADDR:
6578		error = ether_ioctl(ifp, cmd, data);
6579		break;
6580	default:
6581		error = EINVAL;
6582		break;
6583	}
6584	return error;
6585#undef IS_RUNNING
6586}
6587
6588/*
6589 * Announce various information on device/driver attach.
6590 */
6591static void
6592ath_announce(struct ath_softc *sc)
6593{
6594	struct ifnet *ifp = sc->sc_ifp;
6595	struct ath_hal *ah = sc->sc_ah;
6596
6597	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6598		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6599		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6600	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6601		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6602	if (bootverbose) {
6603		int i;
6604		for (i = 0; i <= WME_AC_VO; i++) {
6605			struct ath_txq *txq = sc->sc_ac2q[i];
6606			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6607				txq->axq_qnum, ieee80211_wme_acnames[i]);
6608		}
6609		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6610			sc->sc_cabq->axq_qnum);
6611		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6612	}
6613	if (ath_rxbuf != ATH_RXBUF)
6614		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6615	if (ath_txbuf != ATH_TXBUF)
6616		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6617	if (sc->sc_mcastkey && bootverbose)
6618		if_printf(ifp, "using multicast key search\n");
6619}
6620
6621static void
6622ath_dfs_tasklet(void *p, int npending)
6623{
6624	struct ath_softc *sc = (struct ath_softc *) p;
6625	struct ifnet *ifp = sc->sc_ifp;
6626	struct ieee80211com *ic = ifp->if_l2com;
6627
6628	/*
6629	 * If previous processing has found a radar event,
6630	 * signal this to the net80211 layer to begin DFS
6631	 * processing.
6632	 */
6633	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6634		/* DFS event found, initiate channel change */
6635		/*
6636		 * XXX doesn't currently tell us whether the event
6637		 * XXX was found in the primary or extension
6638		 * XXX channel!
6639		 */
6640		IEEE80211_LOCK(ic);
6641		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6642		IEEE80211_UNLOCK(ic);
6643	}
6644}
6645
6646/*
6647 * Enable/disable power save.  This must be called with
6648 * no TX driver locks currently held, so it should only
6649 * be called from the RX path (which doesn't hold any
6650 * TX driver locks.)
6651 */
6652static void
6653ath_node_powersave(struct ieee80211_node *ni, int enable)
6654{
6655#ifdef	ATH_SW_PSQ
6656	struct ath_node *an = ATH_NODE(ni);
6657	struct ieee80211com *ic = ni->ni_ic;
6658	struct ath_softc *sc = ic->ic_ifp->if_softc;
6659	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6660
6661	/* XXX and no TXQ locks should be held here */
6662
6663	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n",
6664	    __func__,
6665	    ni->ni_macaddr,
6666	    ":",
6667	    !! enable);
6668
6669	/* Suspend or resume software queue handling */
6670	if (enable)
6671		ath_tx_node_sleep(sc, an);
6672	else
6673		ath_tx_node_wakeup(sc, an);
6674
6675	/* Update net80211 state */
6676	avp->av_node_ps(ni, enable);
6677#else
6678	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6679
6680	/* Update net80211 state */
6681	avp->av_node_ps(ni, enable);
6682#endif/* ATH_SW_PSQ */
6683}
6684
6685/*
6686 * Notification from net80211 that the powersave queue state has
6687 * changed.
6688 *
6689 * Since the software queue also may have some frames:
6690 *
6691 * + if the node software queue has frames and the TID state
6692 *   is 0, we set the TIM;
6693 * + if the node and the stack are both empty, we clear the TIM bit.
6694 * + If the stack tries to set the bit, always set it.
6695 * + If the stack tries to clear the bit, only clear it if the
6696 *   software queue in question is also cleared.
6697 *
6698 * TODO: this is called during node teardown; so let's ensure this
6699 * is all correctly handled and that the TIM bit is cleared.
6700 * It may be that the node flush is called _AFTER_ the net80211
6701 * stack clears the TIM.
6702 *
6703 * Here is the racy part.  Since it's possible >1 concurrent,
6704 * overlapping TXes will appear complete with a TX completion in
6705 * another thread, it's possible that the concurrent TIM calls will
6706 * clash.  We can't hold the node lock here because setting the
6707 * TIM grabs the net80211 comlock and this may cause a LOR.
6708 * The solution is either to totally serialise _everything_ at
6709 * this point (ie, all TX, completion and any reset/flush go into
6710 * one taskqueue) or a new "ath TIM lock" needs to be created that
6711 * just wraps the driver state change and this call to avp->av_set_tim().
6712 *
6713 * The same race exists in the net80211 power save queue handling
6714 * as well.  Since multiple transmitting threads may queue frames
6715 * into the driver, as well as ps-poll and the driver transmitting
6716 * frames (and thus clearing the psq), it's quite possible that
6717 * a packet entering the PSQ and a ps-poll being handled will
6718 * race, causing the TIM to be cleared and not re-set.
6719 */
6720static int
6721ath_node_set_tim(struct ieee80211_node *ni, int enable)
6722{
6723#ifdef	ATH_SW_PSQ
6724	struct ieee80211com *ic = ni->ni_ic;
6725	struct ath_softc *sc = ic->ic_ifp->if_softc;
6726	struct ath_node *an = ATH_NODE(ni);
6727	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6728	int changed = 0;
6729
6730	ATH_TX_LOCK(sc);
6731	an->an_stack_psq = enable;
6732
6733	/*
6734	 * This will get called for all operating modes,
6735	 * even if avp->av_set_tim is unset.
6736	 * It's currently set for hostap/ibss modes; but
6737	 * the same infrastructure is used for both STA
6738	 * and AP/IBSS node power save.
6739	 */
6740	if (avp->av_set_tim == NULL) {
6741		ATH_TX_UNLOCK(sc);
6742		return (0);
6743	}
6744
6745	/*
6746	 * If setting the bit, always set it here.
6747	 * If clearing the bit, only clear it if the
6748	 * software queue is also empty.
6749	 *
6750	 * If the node has left power save, just clear the TIM
6751	 * bit regardless of the state of the power save queue.
6752	 *
6753	 * XXX TODO: although atomics are used, it's quite possible
6754	 * that a race will occur between this and setting/clearing
6755	 * in another thread.  TX completion will occur always in
6756	 * one thread, however setting/clearing the TIM bit can come
6757	 * from a variety of different process contexts!
6758	 */
6759	if (enable && an->an_tim_set == 1) {
6760		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6761		    "%s: %6D: enable=%d, tim_set=1, ignoring\n",
6762		    __func__,
6763		    ni->ni_macaddr,
6764		    ":",
6765		    enable);
6766		ATH_TX_UNLOCK(sc);
6767	} else if (enable) {
6768		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6769		    "%s: %6D: enable=%d, enabling TIM\n",
6770		    __func__,
6771		    ni->ni_macaddr,
6772		    ":",
6773		    enable);
6774		an->an_tim_set = 1;
6775		ATH_TX_UNLOCK(sc);
6776		changed = avp->av_set_tim(ni, enable);
6777	} else if (an->an_swq_depth == 0) {
6778		/* disable */
6779		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6780		    "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n",
6781		    __func__,
6782		    ni->ni_macaddr,
6783		    ":",
6784		    enable);
6785		an->an_tim_set = 0;
6786		ATH_TX_UNLOCK(sc);
6787		changed = avp->av_set_tim(ni, enable);
6788	} else if (! an->an_is_powersave) {
6789		/*
6790		 * disable regardless; the node isn't in powersave now
6791		 */
6792		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6793		    "%s: %6D: enable=%d, an_pwrsave=0, disabling\n",
6794		    __func__,
6795		    ni->ni_macaddr,
6796		    ":",
6797		    enable);
6798		an->an_tim_set = 0;
6799		ATH_TX_UNLOCK(sc);
6800		changed = avp->av_set_tim(ni, enable);
6801	} else {
6802		/*
6803		 * psq disable, node is currently in powersave, node
6804		 * software queue isn't empty, so don't clear the TIM bit
6805		 * for now.
6806		 */
6807		ATH_TX_UNLOCK(sc);
6808		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6809		    "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n",
6810		    __func__,
6811		    ni->ni_macaddr,
6812		    ":",
6813		    enable);
6814		changed = 0;
6815	}
6816
6817	return (changed);
6818#else
6819	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6820
6821	/*
6822	 * Some operating modes don't set av_set_tim(), so don't
6823	 * update it here.
6824	 */
6825	if (avp->av_set_tim == NULL)
6826		return (0);
6827
6828	return (avp->av_set_tim(ni, enable));
6829#endif /* ATH_SW_PSQ */
6830}
6831
6832/*
6833 * Set or update the TIM from the software queue.
6834 *
6835 * Check the software queue depth before attempting to do lock
6836 * anything; that avoids trying to obtain the lock.  Then,
6837 * re-check afterwards to ensure nothing has changed in the
6838 * meantime.
6839 *
6840 * set:   This is designed to be called from the TX path, after
6841 *        a frame has been queued; to see if the swq > 0.
6842 *
6843 * clear: This is designed to be called from the buffer completion point
6844 *        (right now it's ath_tx_default_comp()) where the state of
6845 *        a software queue has changed.
6846 *
6847 * It makes sense to place it at buffer free / completion rather
6848 * than after each software queue operation, as there's no real
6849 * point in churning the TIM bit as the last frames in the software
6850 * queue are transmitted.  If they fail and we retry them, we'd
6851 * just be setting the TIM bit again anyway.
6852 */
6853void
6854ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
6855     int enable)
6856{
6857#ifdef	ATH_SW_PSQ
6858	struct ath_node *an;
6859	struct ath_vap *avp;
6860
6861	/* Don't do this for broadcast/etc frames */
6862	if (ni == NULL)
6863		return;
6864
6865	an = ATH_NODE(ni);
6866	avp = ATH_VAP(ni->ni_vap);
6867
6868	/*
6869	 * And for operating modes without the TIM handler set, let's
6870	 * just skip those.
6871	 */
6872	if (avp->av_set_tim == NULL)
6873		return;
6874
6875	ATH_TX_LOCK_ASSERT(sc);
6876
6877	if (enable) {
6878		if (an->an_is_powersave &&
6879		    an->an_tim_set == 0 &&
6880		    an->an_swq_depth != 0) {
6881			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6882			    "%s: %6D: swq_depth>0, tim_set=0, set!\n",
6883			    __func__,
6884			    ni->ni_macaddr,
6885			    ":");
6886			an->an_tim_set = 1;
6887			(void) avp->av_set_tim(ni, 1);
6888		}
6889	} else {
6890		/*
6891		 * Don't bother grabbing the lock unless the queue is empty.
6892		 */
6893		if (&an->an_swq_depth != 0)
6894			return;
6895
6896		if (an->an_is_powersave &&
6897		    an->an_stack_psq == 0 &&
6898		    an->an_tim_set == 1 &&
6899		    an->an_swq_depth == 0) {
6900			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6901			    "%s: %6D: swq_depth=0, tim_set=1, psq_set=0,"
6902			    " clear!\n",
6903			    __func__,
6904			    ni->ni_macaddr,
6905			    ":");
6906			an->an_tim_set = 0;
6907			(void) avp->av_set_tim(ni, 0);
6908		}
6909	}
6910#else
6911	return;
6912#endif	/* ATH_SW_PSQ */
6913}
6914
6915/*
6916 * Received a ps-poll frame from net80211.
6917 *
6918 * Here we get a chance to serve out a software-queued frame ourselves
6919 * before we punt it to net80211 to transmit us one itself - either
6920 * because there's traffic in the net80211 psq, or a NULL frame to
6921 * indicate there's nothing else.
6922 */
6923static void
6924ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
6925{
6926#ifdef	ATH_SW_PSQ
6927	struct ath_node *an;
6928	struct ath_vap *avp;
6929	struct ieee80211com *ic = ni->ni_ic;
6930	struct ath_softc *sc = ic->ic_ifp->if_softc;
6931	int tid;
6932
6933	/* Just paranoia */
6934	if (ni == NULL)
6935		return;
6936
6937	/*
6938	 * Unassociated (temporary node) station.
6939	 */
6940	if (ni->ni_associd == 0)
6941		return;
6942
6943	/*
6944	 * We do have an active node, so let's begin looking into it.
6945	 */
6946	an = ATH_NODE(ni);
6947	avp = ATH_VAP(ni->ni_vap);
6948
6949	/*
6950	 * For now, we just call the original ps-poll method.
6951	 * Once we're ready to flip this on:
6952	 *
6953	 * + Set leak to 1, as no matter what we're going to have
6954	 *   to send a frame;
6955	 * + Check the software queue and if there's something in it,
6956	 *   schedule the highest TID thas has traffic from this node.
6957	 *   Then make sure we schedule the software scheduler to
6958	 *   run so it picks up said frame.
6959	 *
6960	 * That way whatever happens, we'll at least send _a_ frame
6961	 * to the given node.
6962	 *
6963	 * Again, yes, it's crappy QoS if the node has multiple
6964	 * TIDs worth of traffic - but let's get it working first
6965	 * before we optimise it.
6966	 *
6967	 * Also yes, there's definitely latency here - we're not
6968	 * direct dispatching to the hardware in this path (and
6969	 * we're likely being called from the packet receive path,
6970	 * so going back into TX may be a little hairy!) but again
6971	 * I'd like to get this working first before optimising
6972	 * turn-around time.
6973	 */
6974
6975	ATH_TX_LOCK(sc);
6976
6977	/*
6978	 * Legacy - we're called and the node isn't asleep.
6979	 * Immediately punt.
6980	 */
6981	if (! an->an_is_powersave) {
6982		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6983		    "%s: %6D: not in powersave?\n",
6984		    __func__,
6985		    ni->ni_macaddr,
6986		    ":");
6987		ATH_TX_UNLOCK(sc);
6988		avp->av_recv_pspoll(ni, m);
6989		return;
6990	}
6991
6992	/*
6993	 * We're in powersave.
6994	 *
6995	 * Leak a frame.
6996	 */
6997	an->an_leak_count = 1;
6998
6999	/*
7000	 * Now, if there's no frames in the node, just punt to
7001	 * recv_pspoll.
7002	 *
7003	 * Don't bother checking if the TIM bit is set, we really
7004	 * only care if there are any frames here!
7005	 */
7006	if (an->an_swq_depth == 0) {
7007		ATH_TX_UNLOCK(sc);
7008		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7009		    "%s: %6D: SWQ empty; punting to net80211\n",
7010		    __func__,
7011		    ni->ni_macaddr,
7012		    ":");
7013		avp->av_recv_pspoll(ni, m);
7014		return;
7015	}
7016
7017	/*
7018	 * Ok, let's schedule the highest TID that has traffic
7019	 * and then schedule something.
7020	 */
7021	for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
7022		struct ath_tid *atid = &an->an_tid[tid];
7023		/*
7024		 * No frames? Skip.
7025		 */
7026		if (atid->axq_depth == 0)
7027			continue;
7028		ath_tx_tid_sched(sc, atid);
7029		/*
7030		 * XXX we could do a direct call to the TXQ
7031		 * scheduler code here to optimise latency
7032		 * at the expense of a REALLY deep callstack.
7033		 */
7034		ATH_TX_UNLOCK(sc);
7035		taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
7036		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7037		    "%s: %6D: leaking frame to TID %d\n",
7038		    __func__,
7039		    ni->ni_macaddr,
7040		    ":",
7041		    tid);
7042		return;
7043	}
7044
7045	ATH_TX_UNLOCK(sc);
7046
7047	/*
7048	 * XXX nothing in the TIDs at this point? Eek.
7049	 */
7050	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
7051	    "%s: %6D: TIDs empty, but ath_node showed traffic?!\n",
7052	    __func__,
7053	    ni->ni_macaddr,
7054	    ":");
7055	avp->av_recv_pspoll(ni, m);
7056#else
7057	avp->av_recv_pspoll(ni, m);
7058#endif	/* ATH_SW_PSQ */
7059}
7060
7061MODULE_VERSION(if_ath, 1);
7062MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
7063#if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
7064MODULE_DEPEND(if_ath, alq, 1, 1, 1);
7065#endif
7066