if_ath.c revision 254957
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 254957 2013-08-27 14:39:37Z adrian $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42/*
43 * This is needed for register operations which are performed
44 * by the driver - eg, calls to ath_hal_gettsf32().
45 *
46 * It's also required for any AH_DEBUG checks in here, eg the
47 * module dependencies.
48 */
49#include "opt_ah.h"
50#include "opt_wlan.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/sysctl.h>
55#include <sys/mbuf.h>
56#include <sys/malloc.h>
57#include <sys/lock.h>
58#include <sys/mutex.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/sockio.h>
62#include <sys/errno.h>
63#include <sys/callout.h>
64#include <sys/bus.h>
65#include <sys/endian.h>
66#include <sys/kthread.h>
67#include <sys/taskqueue.h>
68#include <sys/priv.h>
69#include <sys/module.h>
70#include <sys/ktr.h>
71#include <sys/smp.h>	/* for mp_ncpus */
72
73#include <machine/bus.h>
74
75#include <net/if.h>
76#include <net/if_dl.h>
77#include <net/if_media.h>
78#include <net/if_types.h>
79#include <net/if_arp.h>
80#include <net/ethernet.h>
81#include <net/if_llc.h>
82
83#include <net80211/ieee80211_var.h>
84#include <net80211/ieee80211_regdomain.h>
85#ifdef IEEE80211_SUPPORT_SUPERG
86#include <net80211/ieee80211_superg.h>
87#endif
88#ifdef IEEE80211_SUPPORT_TDMA
89#include <net80211/ieee80211_tdma.h>
90#endif
91
92#include <net/bpf.h>
93
94#ifdef INET
95#include <netinet/in.h>
96#include <netinet/if_ether.h>
97#endif
98
99#include <dev/ath/if_athvar.h>
100#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101#include <dev/ath/ath_hal/ah_diagcodes.h>
102
103#include <dev/ath/if_ath_debug.h>
104#include <dev/ath/if_ath_misc.h>
105#include <dev/ath/if_ath_tsf.h>
106#include <dev/ath/if_ath_tx.h>
107#include <dev/ath/if_ath_sysctl.h>
108#include <dev/ath/if_ath_led.h>
109#include <dev/ath/if_ath_keycache.h>
110#include <dev/ath/if_ath_rx.h>
111#include <dev/ath/if_ath_rx_edma.h>
112#include <dev/ath/if_ath_tx_edma.h>
113#include <dev/ath/if_ath_beacon.h>
114#include <dev/ath/if_ath_btcoex.h>
115#include <dev/ath/if_ath_spectral.h>
116#include <dev/ath/if_ath_lna_div.h>
117#include <dev/ath/if_athdfs.h>
118
119#ifdef ATH_TX99_DIAG
120#include <dev/ath/ath_tx99/ath_tx99.h>
121#endif
122
123#ifdef	ATH_DEBUG_ALQ
124#include <dev/ath/if_ath_alq.h>
125#endif
126
127/*
128 * Only enable this if you're working on PS-POLL support.
129 */
130#define	ATH_SW_PSQ
131
132/*
133 * ATH_BCBUF determines the number of vap's that can transmit
134 * beacons and also (currently) the number of vap's that can
135 * have unique mac addresses/bssid.  When staggering beacons
136 * 4 is probably a good max as otherwise the beacons become
137 * very closely spaced and there is limited time for cab q traffic
138 * to go out.  You can burst beacons instead but that is not good
139 * for stations in power save and at some point you really want
140 * another radio (and channel).
141 *
142 * The limit on the number of mac addresses is tied to our use of
143 * the U/L bit and tracking addresses in a byte; it would be
144 * worthwhile to allow more for applications like proxy sta.
145 */
146CTASSERT(ATH_BCBUF <= 8);
147
148static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
149		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
150		    const uint8_t [IEEE80211_ADDR_LEN],
151		    const uint8_t [IEEE80211_ADDR_LEN]);
152static void	ath_vap_delete(struct ieee80211vap *);
153static void	ath_init(void *);
154static void	ath_stop_locked(struct ifnet *);
155static void	ath_stop(struct ifnet *);
156static int	ath_reset_vap(struct ieee80211vap *, u_long);
157static int	ath_transmit(struct ifnet *ifp, struct mbuf *m);
158static void	ath_qflush(struct ifnet *ifp);
159static int	ath_media_change(struct ifnet *);
160static void	ath_watchdog(void *);
161static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
162static void	ath_fatal_proc(void *, int);
163static void	ath_bmiss_vap(struct ieee80211vap *);
164static void	ath_bmiss_proc(void *, int);
165static void	ath_key_update_begin(struct ieee80211vap *);
166static void	ath_key_update_end(struct ieee80211vap *);
167static void	ath_update_mcast(struct ifnet *);
168static void	ath_update_promisc(struct ifnet *);
169static void	ath_updateslot(struct ifnet *);
170static void	ath_bstuck_proc(void *, int);
171static void	ath_reset_proc(void *, int);
172static int	ath_desc_alloc(struct ath_softc *);
173static void	ath_desc_free(struct ath_softc *);
174static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
175			const uint8_t [IEEE80211_ADDR_LEN]);
176static void	ath_node_cleanup(struct ieee80211_node *);
177static void	ath_node_free(struct ieee80211_node *);
178static void	ath_node_getsignal(const struct ieee80211_node *,
179			int8_t *, int8_t *);
180static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
181static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
182static int	ath_tx_setup(struct ath_softc *, int, int);
183static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
184static void	ath_tx_cleanup(struct ath_softc *);
185static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
186		    int dosched);
187static void	ath_tx_proc_q0(void *, int);
188static void	ath_tx_proc_q0123(void *, int);
189static void	ath_tx_proc(void *, int);
190static void	ath_txq_sched_tasklet(void *, int);
191static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
192static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
193static void	ath_scan_start(struct ieee80211com *);
194static void	ath_scan_end(struct ieee80211com *);
195static void	ath_set_channel(struct ieee80211com *);
196#ifdef	ATH_ENABLE_11N
197static void	ath_update_chw(struct ieee80211com *);
198#endif	/* ATH_ENABLE_11N */
199static void	ath_calibrate(void *);
200static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
201static void	ath_setup_stationkey(struct ieee80211_node *);
202static void	ath_newassoc(struct ieee80211_node *, int);
203static int	ath_setregdomain(struct ieee80211com *,
204		    struct ieee80211_regdomain *, int,
205		    struct ieee80211_channel []);
206static void	ath_getradiocaps(struct ieee80211com *, int, int *,
207		    struct ieee80211_channel []);
208static int	ath_getchannels(struct ath_softc *);
209
210static int	ath_rate_setup(struct ath_softc *, u_int mode);
211static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
212
213static void	ath_announce(struct ath_softc *);
214
215static void	ath_dfs_tasklet(void *, int);
216static void	ath_node_powersave(struct ieee80211_node *, int);
217static int	ath_node_set_tim(struct ieee80211_node *, int);
218static void	ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
219
220#ifdef IEEE80211_SUPPORT_TDMA
221#include <dev/ath/if_ath_tdma.h>
222#endif
223
224SYSCTL_DECL(_hw_ath);
225
226/* XXX validate sysctl values */
227static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
228SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
229	    0, "long chip calibration interval (secs)");
230static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
231SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
232	    0, "short chip calibration interval (msecs)");
233static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
234SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
235	    0, "reset chip calibration results (secs)");
236static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
237SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
238	    0, "ANI calibration (msecs)");
239
240int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
241SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
242	    0, "rx buffers allocated");
243TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
244int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
245SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
246	    0, "tx buffers allocated");
247TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
248int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
249SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
250	    0, "tx (mgmt) buffers allocated");
251TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
252
253int ath_bstuck_threshold = 4;		/* max missed beacons */
254SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
255	    0, "max missed beacon xmits before chip reset");
256
257MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
258
259void
260ath_legacy_attach_comp_func(struct ath_softc *sc)
261{
262
263	/*
264	 * Special case certain configurations.  Note the
265	 * CAB queue is handled by these specially so don't
266	 * include them when checking the txq setup mask.
267	 */
268	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
269	case 0x01:
270		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
271		break;
272	case 0x0f:
273		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
274		break;
275	default:
276		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
277		break;
278	}
279}
280
281#define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
282#define	HAL_MODE_HT40 \
283	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
284	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
285int
286ath_attach(u_int16_t devid, struct ath_softc *sc)
287{
288	struct ifnet *ifp;
289	struct ieee80211com *ic;
290	struct ath_hal *ah = NULL;
291	HAL_STATUS status;
292	int error = 0, i;
293	u_int wmodes;
294	uint8_t macaddr[IEEE80211_ADDR_LEN];
295	int rx_chainmask, tx_chainmask;
296
297	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
298
299	CURVNET_SET(vnet0);
300	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
301	if (ifp == NULL) {
302		device_printf(sc->sc_dev, "can not if_alloc()\n");
303		error = ENOSPC;
304		CURVNET_RESTORE();
305		goto bad;
306	}
307	ic = ifp->if_l2com;
308
309	/* set these up early for if_printf use */
310	if_initname(ifp, device_get_name(sc->sc_dev),
311		device_get_unit(sc->sc_dev));
312	CURVNET_RESTORE();
313
314	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
315	    sc->sc_eepromdata, &status);
316	if (ah == NULL) {
317		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
318			status);
319		error = ENXIO;
320		goto bad;
321	}
322	sc->sc_ah = ah;
323	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
324#ifdef	ATH_DEBUG
325	sc->sc_debug = ath_debug;
326#endif
327
328	/*
329	 * Setup the DMA/EDMA functions based on the current
330	 * hardware support.
331	 *
332	 * This is required before the descriptors are allocated.
333	 */
334	if (ath_hal_hasedma(sc->sc_ah)) {
335		sc->sc_isedma = 1;
336		ath_recv_setup_edma(sc);
337		ath_xmit_setup_edma(sc);
338	} else {
339		ath_recv_setup_legacy(sc);
340		ath_xmit_setup_legacy(sc);
341	}
342
343	/*
344	 * Check if the MAC has multi-rate retry support.
345	 * We do this by trying to setup a fake extended
346	 * descriptor.  MAC's that don't have support will
347	 * return false w/o doing anything.  MAC's that do
348	 * support it will return true w/o doing anything.
349	 */
350	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
351
352	/*
353	 * Check if the device has hardware counters for PHY
354	 * errors.  If so we need to enable the MIB interrupt
355	 * so we can act on stat triggers.
356	 */
357	if (ath_hal_hwphycounters(ah))
358		sc->sc_needmib = 1;
359
360	/*
361	 * Get the hardware key cache size.
362	 */
363	sc->sc_keymax = ath_hal_keycachesize(ah);
364	if (sc->sc_keymax > ATH_KEYMAX) {
365		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
366			ATH_KEYMAX, sc->sc_keymax);
367		sc->sc_keymax = ATH_KEYMAX;
368	}
369	/*
370	 * Reset the key cache since some parts do not
371	 * reset the contents on initial power up.
372	 */
373	for (i = 0; i < sc->sc_keymax; i++)
374		ath_hal_keyreset(ah, i);
375
376	/*
377	 * Collect the default channel list.
378	 */
379	error = ath_getchannels(sc);
380	if (error != 0)
381		goto bad;
382
383	/*
384	 * Setup rate tables for all potential media types.
385	 */
386	ath_rate_setup(sc, IEEE80211_MODE_11A);
387	ath_rate_setup(sc, IEEE80211_MODE_11B);
388	ath_rate_setup(sc, IEEE80211_MODE_11G);
389	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
390	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
391	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
392	ath_rate_setup(sc, IEEE80211_MODE_11NA);
393	ath_rate_setup(sc, IEEE80211_MODE_11NG);
394	ath_rate_setup(sc, IEEE80211_MODE_HALF);
395	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
396
397	/* NB: setup here so ath_rate_update is happy */
398	ath_setcurmode(sc, IEEE80211_MODE_11A);
399
400	/*
401	 * Allocate TX descriptors and populate the lists.
402	 */
403	error = ath_desc_alloc(sc);
404	if (error != 0) {
405		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
406		    error);
407		goto bad;
408	}
409	error = ath_txdma_setup(sc);
410	if (error != 0) {
411		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
412		    error);
413		goto bad;
414	}
415
416	/*
417	 * Allocate RX descriptors and populate the lists.
418	 */
419	error = ath_rxdma_setup(sc);
420	if (error != 0) {
421		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
422		    error);
423		goto bad;
424	}
425
426	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
427	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
428
429	ATH_TXBUF_LOCK_INIT(sc);
430
431	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
432		taskqueue_thread_enqueue, &sc->sc_tq);
433	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
434		"%s taskq", ifp->if_xname);
435
436	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
437	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
438	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
439	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
440	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
441	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
442
443	/*
444	 * Allocate hardware transmit queues: one queue for
445	 * beacon frames and one data queue for each QoS
446	 * priority.  Note that the hal handles resetting
447	 * these queues at the needed time.
448	 *
449	 * XXX PS-Poll
450	 */
451	sc->sc_bhalq = ath_beaconq_setup(sc);
452	if (sc->sc_bhalq == (u_int) -1) {
453		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
454		error = EIO;
455		goto bad2;
456	}
457	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
458	if (sc->sc_cabq == NULL) {
459		if_printf(ifp, "unable to setup CAB xmit queue!\n");
460		error = EIO;
461		goto bad2;
462	}
463	/* NB: insure BK queue is the lowest priority h/w queue */
464	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
465		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
466			ieee80211_wme_acnames[WME_AC_BK]);
467		error = EIO;
468		goto bad2;
469	}
470	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
471	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
472	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
473		/*
474		 * Not enough hardware tx queues to properly do WME;
475		 * just punt and assign them all to the same h/w queue.
476		 * We could do a better job of this if, for example,
477		 * we allocate queues when we switch from station to
478		 * AP mode.
479		 */
480		if (sc->sc_ac2q[WME_AC_VI] != NULL)
481			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
482		if (sc->sc_ac2q[WME_AC_BE] != NULL)
483			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
484		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
485		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
486		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
487	}
488
489	/*
490	 * Attach the TX completion function.
491	 *
492	 * The non-EDMA chips may have some special case optimisations;
493	 * this method gives everyone a chance to attach cleanly.
494	 */
495	sc->sc_tx.xmit_attach_comp_func(sc);
496
497	/*
498	 * Setup rate control.  Some rate control modules
499	 * call back to change the anntena state so expose
500	 * the necessary entry points.
501	 * XXX maybe belongs in struct ath_ratectrl?
502	 */
503	sc->sc_setdefantenna = ath_setdefantenna;
504	sc->sc_rc = ath_rate_attach(sc);
505	if (sc->sc_rc == NULL) {
506		error = EIO;
507		goto bad2;
508	}
509
510	/* Attach DFS module */
511	if (! ath_dfs_attach(sc)) {
512		device_printf(sc->sc_dev,
513		    "%s: unable to attach DFS\n", __func__);
514		error = EIO;
515		goto bad2;
516	}
517
518	/* Attach spectral module */
519	if (ath_spectral_attach(sc) < 0) {
520		device_printf(sc->sc_dev,
521		    "%s: unable to attach spectral\n", __func__);
522		error = EIO;
523		goto bad2;
524	}
525
526	/* Attach bluetooth coexistence module */
527	if (ath_btcoex_attach(sc) < 0) {
528		device_printf(sc->sc_dev,
529		    "%s: unable to attach bluetooth coexistence\n", __func__);
530		error = EIO;
531		goto bad2;
532	}
533
534	/* Attach LNA diversity module */
535	if (ath_lna_div_attach(sc) < 0) {
536		device_printf(sc->sc_dev,
537		    "%s: unable to attach LNA diversity\n", __func__);
538		error = EIO;
539		goto bad2;
540	}
541
542	/* Start DFS processing tasklet */
543	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
544
545	/* Configure LED state */
546	sc->sc_blinking = 0;
547	sc->sc_ledstate = 1;
548	sc->sc_ledon = 0;			/* low true */
549	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
550	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
551
552	/*
553	 * Don't setup hardware-based blinking.
554	 *
555	 * Although some NICs may have this configured in the
556	 * default reset register values, the user may wish
557	 * to alter which pins have which function.
558	 *
559	 * The reference driver attaches the MAC network LED to GPIO1 and
560	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
561	 * NIC has these reversed.
562	 */
563	sc->sc_hardled = (1 == 0);
564	sc->sc_led_net_pin = -1;
565	sc->sc_led_pwr_pin = -1;
566	/*
567	 * Auto-enable soft led processing for IBM cards and for
568	 * 5211 minipci cards.  Users can also manually enable/disable
569	 * support with a sysctl.
570	 */
571	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
572	ath_led_config(sc);
573	ath_hal_setledstate(ah, HAL_LED_INIT);
574
575	ifp->if_softc = sc;
576	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
577	ifp->if_transmit = ath_transmit;
578	ifp->if_qflush = ath_qflush;
579	ifp->if_ioctl = ath_ioctl;
580	ifp->if_init = ath_init;
581	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
582	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
583	IFQ_SET_READY(&ifp->if_snd);
584
585	ic->ic_ifp = ifp;
586	/* XXX not right but it's not used anywhere important */
587	ic->ic_phytype = IEEE80211_T_OFDM;
588	ic->ic_opmode = IEEE80211_M_STA;
589	ic->ic_caps =
590		  IEEE80211_C_STA		/* station mode */
591		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
592		| IEEE80211_C_HOSTAP		/* hostap mode */
593		| IEEE80211_C_MONITOR		/* monitor mode */
594		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
595		| IEEE80211_C_WDS		/* 4-address traffic works */
596		| IEEE80211_C_MBSS		/* mesh point link mode */
597		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
598		| IEEE80211_C_SHSLOT		/* short slot time supported */
599		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
600#ifndef	ATH_ENABLE_11N
601		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
602#endif
603		| IEEE80211_C_TXFRAG		/* handle tx frags */
604#ifdef	ATH_ENABLE_DFS
605		| IEEE80211_C_DFS		/* Enable radar detection */
606#endif
607		;
608	/*
609	 * Query the hal to figure out h/w crypto support.
610	 */
611	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
612		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
613	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
614		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
615	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
616		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
617	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
618		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
619	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
620		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
621		/*
622		 * Check if h/w does the MIC and/or whether the
623		 * separate key cache entries are required to
624		 * handle both tx+rx MIC keys.
625		 */
626		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
627			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
628		/*
629		 * If the h/w supports storing tx+rx MIC keys
630		 * in one cache slot automatically enable use.
631		 */
632		if (ath_hal_hastkipsplit(ah) ||
633		    !ath_hal_settkipsplit(ah, AH_FALSE))
634			sc->sc_splitmic = 1;
635		/*
636		 * If the h/w can do TKIP MIC together with WME then
637		 * we use it; otherwise we force the MIC to be done
638		 * in software by the net80211 layer.
639		 */
640		if (ath_hal_haswmetkipmic(ah))
641			sc->sc_wmetkipmic = 1;
642	}
643	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
644	/*
645	 * Check for multicast key search support.
646	 */
647	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
648	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
649		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
650	}
651	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
652	/*
653	 * Mark key cache slots associated with global keys
654	 * as in use.  If we knew TKIP was not to be used we
655	 * could leave the +32, +64, and +32+64 slots free.
656	 */
657	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
658		setbit(sc->sc_keymap, i);
659		setbit(sc->sc_keymap, i+64);
660		if (sc->sc_splitmic) {
661			setbit(sc->sc_keymap, i+32);
662			setbit(sc->sc_keymap, i+32+64);
663		}
664	}
665	/*
666	 * TPC support can be done either with a global cap or
667	 * per-packet support.  The latter is not available on
668	 * all parts.  We're a bit pedantic here as all parts
669	 * support a global cap.
670	 */
671	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
672		ic->ic_caps |= IEEE80211_C_TXPMGT;
673
674	/*
675	 * Mark WME capability only if we have sufficient
676	 * hardware queues to do proper priority scheduling.
677	 */
678	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
679		ic->ic_caps |= IEEE80211_C_WME;
680	/*
681	 * Check for misc other capabilities.
682	 */
683	if (ath_hal_hasbursting(ah))
684		ic->ic_caps |= IEEE80211_C_BURST;
685	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
686	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
687	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
688	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
689	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
690	sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
691	sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
692	sc->sc_hasdivcomb = ath_hal_hasdivantcomb(ah);
693
694	if (ath_hal_hasfastframes(ah))
695		ic->ic_caps |= IEEE80211_C_FF;
696	wmodes = ath_hal_getwirelessmodes(ah);
697	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
698		ic->ic_caps |= IEEE80211_C_TURBOP;
699#ifdef IEEE80211_SUPPORT_TDMA
700	if (ath_hal_macversion(ah) > 0x78) {
701		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
702		ic->ic_tdma_update = ath_tdma_update;
703	}
704#endif
705
706	/*
707	 * TODO: enforce that at least this many frames are available
708	 * in the txbuf list before allowing data frames (raw or
709	 * otherwise) to be transmitted.
710	 */
711	sc->sc_txq_data_minfree = 10;
712	/*
713	 * Leave this as default to maintain legacy behaviour.
714	 * Shortening the cabq/mcastq may end up causing some
715	 * undesirable behaviour.
716	 */
717	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
718
719	/*
720	 * How deep can the node software TX queue get whilst it's asleep.
721	 */
722	sc->sc_txq_node_psq_maxdepth = 16;
723
724	/*
725	 * Default the maximum queue depth for a given node
726	 * to 1/4'th the TX buffers, or 64, whichever
727	 * is larger.
728	 */
729	sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4);
730
731	/* Enable CABQ by default */
732	sc->sc_cabq_enable = 1;
733
734	/*
735	 * Allow the TX and RX chainmasks to be overridden by
736	 * environment variables and/or device.hints.
737	 *
738	 * This must be done early - before the hardware is
739	 * calibrated or before the 802.11n stream calculation
740	 * is done.
741	 */
742	if (resource_int_value(device_get_name(sc->sc_dev),
743	    device_get_unit(sc->sc_dev), "rx_chainmask",
744	    &rx_chainmask) == 0) {
745		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
746		    rx_chainmask);
747		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
748	}
749	if (resource_int_value(device_get_name(sc->sc_dev),
750	    device_get_unit(sc->sc_dev), "tx_chainmask",
751	    &tx_chainmask) == 0) {
752		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
753		    tx_chainmask);
754		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
755	}
756
757	/*
758	 * Query the TX/RX chainmask configuration.
759	 *
760	 * This is only relevant for 11n devices.
761	 */
762	ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
763	ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
764
765	/*
766	 * Disable MRR with protected frames by default.
767	 * Only 802.11n series NICs can handle this.
768	 */
769	sc->sc_mrrprot = 0;	/* XXX should be a capability */
770
771	/*
772	 * Query the enterprise mode information the HAL.
773	 */
774	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
775	    &sc->sc_ent_cfg) == HAL_OK)
776		sc->sc_use_ent = 1;
777
778#ifdef	ATH_ENABLE_11N
779	/*
780	 * Query HT capabilities
781	 */
782	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
783	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
784		uint32_t rxs, txs;
785
786		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
787
788		sc->sc_mrrprot = 1;	/* XXX should be a capability */
789
790		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
791			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
792			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
793			    | IEEE80211_HTCAP_MAXAMSDU_3839
794			    				/* max A-MSDU length */
795			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
796			;
797
798		/*
799		 * Enable short-GI for HT20 only if the hardware
800		 * advertises support.
801		 * Notably, anything earlier than the AR9287 doesn't.
802		 */
803		if ((ath_hal_getcapability(ah,
804		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
805		    (wmodes & HAL_MODE_HT20)) {
806			device_printf(sc->sc_dev,
807			    "[HT] enabling short-GI in 20MHz mode\n");
808			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
809		}
810
811		if (wmodes & HAL_MODE_HT40)
812			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
813			    |  IEEE80211_HTCAP_SHORTGI40;
814
815		/*
816		 * TX/RX streams need to be taken into account when
817		 * negotiating which MCS rates it'll receive and
818		 * what MCS rates are available for TX.
819		 */
820		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
821		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
822		ic->ic_txstream = txs;
823		ic->ic_rxstream = rxs;
824
825		/*
826		 * Setup TX and RX STBC based on what the HAL allows and
827		 * the currently configured chainmask set.
828		 * Ie - don't enable STBC TX if only one chain is enabled.
829		 * STBC RX is fine on a single RX chain; it just won't
830		 * provide any real benefit.
831		 */
832		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
833		    NULL) == HAL_OK) {
834			sc->sc_rx_stbc = 1;
835			device_printf(sc->sc_dev,
836			    "[HT] 1 stream STBC receive enabled\n");
837			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
838		}
839		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
840		    NULL) == HAL_OK) {
841			sc->sc_tx_stbc = 1;
842			device_printf(sc->sc_dev,
843			    "[HT] 1 stream STBC transmit enabled\n");
844			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
845		}
846
847		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
848		    &sc->sc_rts_aggr_limit);
849		if (sc->sc_rts_aggr_limit != (64 * 1024))
850			device_printf(sc->sc_dev,
851			    "[HT] RTS aggregates limited to %d KiB\n",
852			    sc->sc_rts_aggr_limit / 1024);
853
854		device_printf(sc->sc_dev,
855		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
856	}
857#endif
858
859	/*
860	 * Initial aggregation settings.
861	 */
862	sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
863	sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
864	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
865	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
866	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
867	sc->sc_delim_min_pad = 0;
868
869	/*
870	 * Check if the hardware requires PCI register serialisation.
871	 * Some of the Owl based MACs require this.
872	 */
873	if (mp_ncpus > 1 &&
874	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
875	     0, NULL) == HAL_OK) {
876		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
877		device_printf(sc->sc_dev,
878		    "Enabling register serialisation\n");
879	}
880
881	/*
882	 * Initialise the deferred completed RX buffer list.
883	 */
884	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
885	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
886
887	/*
888	 * Indicate we need the 802.11 header padded to a
889	 * 32-bit boundary for 4-address and QoS frames.
890	 */
891	ic->ic_flags |= IEEE80211_F_DATAPAD;
892
893	/*
894	 * Query the hal about antenna support.
895	 */
896	sc->sc_defant = ath_hal_getdefantenna(ah);
897
898	/*
899	 * Not all chips have the VEOL support we want to
900	 * use with IBSS beacons; check here for it.
901	 */
902	sc->sc_hasveol = ath_hal_hasveol(ah);
903
904	/* get mac address from hardware */
905	ath_hal_getmac(ah, macaddr);
906	if (sc->sc_hasbmask)
907		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
908
909	/* NB: used to size node table key mapping array */
910	ic->ic_max_keyix = sc->sc_keymax;
911	/* call MI attach routine. */
912	ieee80211_ifattach(ic, macaddr);
913	ic->ic_setregdomain = ath_setregdomain;
914	ic->ic_getradiocaps = ath_getradiocaps;
915	sc->sc_opmode = HAL_M_STA;
916
917	/* override default methods */
918	ic->ic_newassoc = ath_newassoc;
919	ic->ic_updateslot = ath_updateslot;
920	ic->ic_wme.wme_update = ath_wme_update;
921	ic->ic_vap_create = ath_vap_create;
922	ic->ic_vap_delete = ath_vap_delete;
923	ic->ic_raw_xmit = ath_raw_xmit;
924	ic->ic_update_mcast = ath_update_mcast;
925	ic->ic_update_promisc = ath_update_promisc;
926	ic->ic_node_alloc = ath_node_alloc;
927	sc->sc_node_free = ic->ic_node_free;
928	ic->ic_node_free = ath_node_free;
929	sc->sc_node_cleanup = ic->ic_node_cleanup;
930	ic->ic_node_cleanup = ath_node_cleanup;
931	ic->ic_node_getsignal = ath_node_getsignal;
932	ic->ic_scan_start = ath_scan_start;
933	ic->ic_scan_end = ath_scan_end;
934	ic->ic_set_channel = ath_set_channel;
935#ifdef	ATH_ENABLE_11N
936	/* 802.11n specific - but just override anyway */
937	sc->sc_addba_request = ic->ic_addba_request;
938	sc->sc_addba_response = ic->ic_addba_response;
939	sc->sc_addba_stop = ic->ic_addba_stop;
940	sc->sc_bar_response = ic->ic_bar_response;
941	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
942
943	ic->ic_addba_request = ath_addba_request;
944	ic->ic_addba_response = ath_addba_response;
945	ic->ic_addba_response_timeout = ath_addba_response_timeout;
946	ic->ic_addba_stop = ath_addba_stop;
947	ic->ic_bar_response = ath_bar_response;
948
949	ic->ic_update_chw = ath_update_chw;
950#endif	/* ATH_ENABLE_11N */
951
952#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
953	/*
954	 * There's one vendor bitmap entry in the RX radiotap
955	 * header; make sure that's taken into account.
956	 */
957	ieee80211_radiotap_attachv(ic,
958	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
959		ATH_TX_RADIOTAP_PRESENT,
960	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
961		ATH_RX_RADIOTAP_PRESENT);
962#else
963	/*
964	 * No vendor bitmap/extensions are present.
965	 */
966	ieee80211_radiotap_attach(ic,
967	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
968		ATH_TX_RADIOTAP_PRESENT,
969	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
970		ATH_RX_RADIOTAP_PRESENT);
971#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
972
973	/*
974	 * Setup the ALQ logging if required
975	 */
976#ifdef	ATH_DEBUG_ALQ
977	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
978	if_ath_alq_setcfg(&sc->sc_alq,
979	    sc->sc_ah->ah_macVersion,
980	    sc->sc_ah->ah_macRev,
981	    sc->sc_ah->ah_phyRev,
982	    sc->sc_ah->ah_magic);
983#endif
984
985	/*
986	 * Setup dynamic sysctl's now that country code and
987	 * regdomain are available from the hal.
988	 */
989	ath_sysctlattach(sc);
990	ath_sysctl_stats_attach(sc);
991	ath_sysctl_hal_attach(sc);
992
993	if (bootverbose)
994		ieee80211_announce(ic);
995	ath_announce(sc);
996	return 0;
997bad2:
998	ath_tx_cleanup(sc);
999	ath_desc_free(sc);
1000	ath_txdma_teardown(sc);
1001	ath_rxdma_teardown(sc);
1002bad:
1003	if (ah)
1004		ath_hal_detach(ah);
1005
1006	/*
1007	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
1008	 */
1009	if (ifp != NULL && ifp->if_vnet) {
1010		CURVNET_SET(ifp->if_vnet);
1011		if_free(ifp);
1012		CURVNET_RESTORE();
1013	} else if (ifp != NULL)
1014		if_free(ifp);
1015	sc->sc_invalid = 1;
1016	return error;
1017}
1018
1019int
1020ath_detach(struct ath_softc *sc)
1021{
1022	struct ifnet *ifp = sc->sc_ifp;
1023
1024	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1025		__func__, ifp->if_flags);
1026
1027	/*
1028	 * NB: the order of these is important:
1029	 * o stop the chip so no more interrupts will fire
1030	 * o call the 802.11 layer before detaching the hal to
1031	 *   insure callbacks into the driver to delete global
1032	 *   key cache entries can be handled
1033	 * o free the taskqueue which drains any pending tasks
1034	 * o reclaim the tx queue data structures after calling
1035	 *   the 802.11 layer as we'll get called back to reclaim
1036	 *   node state and potentially want to use them
1037	 * o to cleanup the tx queues the hal is called, so detach
1038	 *   it last
1039	 * Other than that, it's straightforward...
1040	 */
1041	ath_stop(ifp);
1042	ieee80211_ifdetach(ifp->if_l2com);
1043	taskqueue_free(sc->sc_tq);
1044#ifdef ATH_TX99_DIAG
1045	if (sc->sc_tx99 != NULL)
1046		sc->sc_tx99->detach(sc->sc_tx99);
1047#endif
1048	ath_rate_detach(sc->sc_rc);
1049#ifdef	ATH_DEBUG_ALQ
1050	if_ath_alq_tidyup(&sc->sc_alq);
1051#endif
1052	ath_lna_div_detach(sc);
1053	ath_btcoex_detach(sc);
1054	ath_spectral_detach(sc);
1055	ath_dfs_detach(sc);
1056	ath_desc_free(sc);
1057	ath_txdma_teardown(sc);
1058	ath_rxdma_teardown(sc);
1059	ath_tx_cleanup(sc);
1060	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1061
1062	CURVNET_SET(ifp->if_vnet);
1063	if_free(ifp);
1064	CURVNET_RESTORE();
1065
1066	return 0;
1067}
1068
1069/*
1070 * MAC address handling for multiple BSS on the same radio.
1071 * The first vap uses the MAC address from the EEPROM.  For
1072 * subsequent vap's we set the U/L bit (bit 1) in the MAC
1073 * address and use the next six bits as an index.
1074 */
1075static void
1076assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1077{
1078	int i;
1079
1080	if (clone && sc->sc_hasbmask) {
1081		/* NB: we only do this if h/w supports multiple bssid */
1082		for (i = 0; i < 8; i++)
1083			if ((sc->sc_bssidmask & (1<<i)) == 0)
1084				break;
1085		if (i != 0)
1086			mac[0] |= (i << 2)|0x2;
1087	} else
1088		i = 0;
1089	sc->sc_bssidmask |= 1<<i;
1090	sc->sc_hwbssidmask[0] &= ~mac[0];
1091	if (i == 0)
1092		sc->sc_nbssid0++;
1093}
1094
1095static void
1096reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1097{
1098	int i = mac[0] >> 2;
1099	uint8_t mask;
1100
1101	if (i != 0 || --sc->sc_nbssid0 == 0) {
1102		sc->sc_bssidmask &= ~(1<<i);
1103		/* recalculate bssid mask from remaining addresses */
1104		mask = 0xff;
1105		for (i = 1; i < 8; i++)
1106			if (sc->sc_bssidmask & (1<<i))
1107				mask &= ~((i<<2)|0x2);
1108		sc->sc_hwbssidmask[0] |= mask;
1109	}
1110}
1111
1112/*
1113 * Assign a beacon xmit slot.  We try to space out
1114 * assignments so when beacons are staggered the
1115 * traffic coming out of the cab q has maximal time
1116 * to go out before the next beacon is scheduled.
1117 */
1118static int
1119assign_bslot(struct ath_softc *sc)
1120{
1121	u_int slot, free;
1122
1123	free = 0;
1124	for (slot = 0; slot < ATH_BCBUF; slot++)
1125		if (sc->sc_bslot[slot] == NULL) {
1126			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1127			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1128				return slot;
1129			free = slot;
1130			/* NB: keep looking for a double slot */
1131		}
1132	return free;
1133}
1134
1135static struct ieee80211vap *
1136ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1137    enum ieee80211_opmode opmode, int flags,
1138    const uint8_t bssid[IEEE80211_ADDR_LEN],
1139    const uint8_t mac0[IEEE80211_ADDR_LEN])
1140{
1141	struct ath_softc *sc = ic->ic_ifp->if_softc;
1142	struct ath_vap *avp;
1143	struct ieee80211vap *vap;
1144	uint8_t mac[IEEE80211_ADDR_LEN];
1145	int needbeacon, error;
1146	enum ieee80211_opmode ic_opmode;
1147
1148	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1149	    M_80211_VAP, M_WAITOK | M_ZERO);
1150	needbeacon = 0;
1151	IEEE80211_ADDR_COPY(mac, mac0);
1152
1153	ATH_LOCK(sc);
1154	ic_opmode = opmode;		/* default to opmode of new vap */
1155	switch (opmode) {
1156	case IEEE80211_M_STA:
1157		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1158			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1159			goto bad;
1160		}
1161		if (sc->sc_nvaps) {
1162			/*
1163			 * With multiple vaps we must fall back
1164			 * to s/w beacon miss handling.
1165			 */
1166			flags |= IEEE80211_CLONE_NOBEACONS;
1167		}
1168		if (flags & IEEE80211_CLONE_NOBEACONS) {
1169			/*
1170			 * Station mode w/o beacons are implemented w/ AP mode.
1171			 */
1172			ic_opmode = IEEE80211_M_HOSTAP;
1173		}
1174		break;
1175	case IEEE80211_M_IBSS:
1176		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1177			device_printf(sc->sc_dev,
1178			    "only 1 ibss vap supported\n");
1179			goto bad;
1180		}
1181		needbeacon = 1;
1182		break;
1183	case IEEE80211_M_AHDEMO:
1184#ifdef IEEE80211_SUPPORT_TDMA
1185		if (flags & IEEE80211_CLONE_TDMA) {
1186			if (sc->sc_nvaps != 0) {
1187				device_printf(sc->sc_dev,
1188				    "only 1 tdma vap supported\n");
1189				goto bad;
1190			}
1191			needbeacon = 1;
1192			flags |= IEEE80211_CLONE_NOBEACONS;
1193		}
1194		/* fall thru... */
1195#endif
1196	case IEEE80211_M_MONITOR:
1197		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1198			/*
1199			 * Adopt existing mode.  Adding a monitor or ahdemo
1200			 * vap to an existing configuration is of dubious
1201			 * value but should be ok.
1202			 */
1203			/* XXX not right for monitor mode */
1204			ic_opmode = ic->ic_opmode;
1205		}
1206		break;
1207	case IEEE80211_M_HOSTAP:
1208	case IEEE80211_M_MBSS:
1209		needbeacon = 1;
1210		break;
1211	case IEEE80211_M_WDS:
1212		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1213			device_printf(sc->sc_dev,
1214			    "wds not supported in sta mode\n");
1215			goto bad;
1216		}
1217		/*
1218		 * Silently remove any request for a unique
1219		 * bssid; WDS vap's always share the local
1220		 * mac address.
1221		 */
1222		flags &= ~IEEE80211_CLONE_BSSID;
1223		if (sc->sc_nvaps == 0)
1224			ic_opmode = IEEE80211_M_HOSTAP;
1225		else
1226			ic_opmode = ic->ic_opmode;
1227		break;
1228	default:
1229		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1230		goto bad;
1231	}
1232	/*
1233	 * Check that a beacon buffer is available; the code below assumes it.
1234	 */
1235	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1236		device_printf(sc->sc_dev, "no beacon buffer available\n");
1237		goto bad;
1238	}
1239
1240	/* STA, AHDEMO? */
1241	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1242		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1243		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1244	}
1245
1246	vap = &avp->av_vap;
1247	/* XXX can't hold mutex across if_alloc */
1248	ATH_UNLOCK(sc);
1249	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1250	    bssid, mac);
1251	ATH_LOCK(sc);
1252	if (error != 0) {
1253		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1254		    __func__, error);
1255		goto bad2;
1256	}
1257
1258	/* h/w crypto support */
1259	vap->iv_key_alloc = ath_key_alloc;
1260	vap->iv_key_delete = ath_key_delete;
1261	vap->iv_key_set = ath_key_set;
1262	vap->iv_key_update_begin = ath_key_update_begin;
1263	vap->iv_key_update_end = ath_key_update_end;
1264
1265	/* override various methods */
1266	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1267	vap->iv_recv_mgmt = ath_recv_mgmt;
1268	vap->iv_reset = ath_reset_vap;
1269	vap->iv_update_beacon = ath_beacon_update;
1270	avp->av_newstate = vap->iv_newstate;
1271	vap->iv_newstate = ath_newstate;
1272	avp->av_bmiss = vap->iv_bmiss;
1273	vap->iv_bmiss = ath_bmiss_vap;
1274
1275	avp->av_node_ps = vap->iv_node_ps;
1276	vap->iv_node_ps = ath_node_powersave;
1277
1278	avp->av_set_tim = vap->iv_set_tim;
1279	vap->iv_set_tim = ath_node_set_tim;
1280
1281	avp->av_recv_pspoll = vap->iv_recv_pspoll;
1282	vap->iv_recv_pspoll = ath_node_recv_pspoll;
1283
1284	/* Set default parameters */
1285
1286	/*
1287	 * Anything earlier than some AR9300 series MACs don't
1288	 * support a smaller MPDU density.
1289	 */
1290	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1291	/*
1292	 * All NICs can handle the maximum size, however
1293	 * AR5416 based MACs can only TX aggregates w/ RTS
1294	 * protection when the total aggregate size is <= 8k.
1295	 * However, for now that's enforced by the TX path.
1296	 */
1297	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1298
1299	avp->av_bslot = -1;
1300	if (needbeacon) {
1301		/*
1302		 * Allocate beacon state and setup the q for buffered
1303		 * multicast frames.  We know a beacon buffer is
1304		 * available because we checked above.
1305		 */
1306		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1307		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1308		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1309			/*
1310			 * Assign the vap to a beacon xmit slot.  As above
1311			 * this cannot fail to find a free one.
1312			 */
1313			avp->av_bslot = assign_bslot(sc);
1314			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1315			    ("beacon slot %u not empty", avp->av_bslot));
1316			sc->sc_bslot[avp->av_bslot] = vap;
1317			sc->sc_nbcnvaps++;
1318		}
1319		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1320			/*
1321			 * Multple vaps are to transmit beacons and we
1322			 * have h/w support for TSF adjusting; enable
1323			 * use of staggered beacons.
1324			 */
1325			sc->sc_stagbeacons = 1;
1326		}
1327		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1328	}
1329
1330	ic->ic_opmode = ic_opmode;
1331	if (opmode != IEEE80211_M_WDS) {
1332		sc->sc_nvaps++;
1333		if (opmode == IEEE80211_M_STA)
1334			sc->sc_nstavaps++;
1335		if (opmode == IEEE80211_M_MBSS)
1336			sc->sc_nmeshvaps++;
1337	}
1338	switch (ic_opmode) {
1339	case IEEE80211_M_IBSS:
1340		sc->sc_opmode = HAL_M_IBSS;
1341		break;
1342	case IEEE80211_M_STA:
1343		sc->sc_opmode = HAL_M_STA;
1344		break;
1345	case IEEE80211_M_AHDEMO:
1346#ifdef IEEE80211_SUPPORT_TDMA
1347		if (vap->iv_caps & IEEE80211_C_TDMA) {
1348			sc->sc_tdma = 1;
1349			/* NB: disable tsf adjust */
1350			sc->sc_stagbeacons = 0;
1351		}
1352		/*
1353		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1354		 * just ap mode.
1355		 */
1356		/* fall thru... */
1357#endif
1358	case IEEE80211_M_HOSTAP:
1359	case IEEE80211_M_MBSS:
1360		sc->sc_opmode = HAL_M_HOSTAP;
1361		break;
1362	case IEEE80211_M_MONITOR:
1363		sc->sc_opmode = HAL_M_MONITOR;
1364		break;
1365	default:
1366		/* XXX should not happen */
1367		break;
1368	}
1369	if (sc->sc_hastsfadd) {
1370		/*
1371		 * Configure whether or not TSF adjust should be done.
1372		 */
1373		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1374	}
1375	if (flags & IEEE80211_CLONE_NOBEACONS) {
1376		/*
1377		 * Enable s/w beacon miss handling.
1378		 */
1379		sc->sc_swbmiss = 1;
1380	}
1381	ATH_UNLOCK(sc);
1382
1383	/* complete setup */
1384	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1385	return vap;
1386bad2:
1387	reclaim_address(sc, mac);
1388	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1389bad:
1390	free(avp, M_80211_VAP);
1391	ATH_UNLOCK(sc);
1392	return NULL;
1393}
1394
1395static void
1396ath_vap_delete(struct ieee80211vap *vap)
1397{
1398	struct ieee80211com *ic = vap->iv_ic;
1399	struct ifnet *ifp = ic->ic_ifp;
1400	struct ath_softc *sc = ifp->if_softc;
1401	struct ath_hal *ah = sc->sc_ah;
1402	struct ath_vap *avp = ATH_VAP(vap);
1403
1404	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1405	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1406		/*
1407		 * Quiesce the hardware while we remove the vap.  In
1408		 * particular we need to reclaim all references to
1409		 * the vap state by any frames pending on the tx queues.
1410		 */
1411		ath_hal_intrset(ah, 0);		/* disable interrupts */
1412		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1413		/* XXX Do all frames from all vaps/nodes need draining here? */
1414		ath_stoprecv(sc, 1);		/* stop recv side */
1415	}
1416
1417	ieee80211_vap_detach(vap);
1418
1419	/*
1420	 * XXX Danger Will Robinson! Danger!
1421	 *
1422	 * Because ieee80211_vap_detach() can queue a frame (the station
1423	 * diassociate message?) after we've drained the TXQ and
1424	 * flushed the software TXQ, we will end up with a frame queued
1425	 * to a node whose vap is about to be freed.
1426	 *
1427	 * To work around this, flush the hardware/software again.
1428	 * This may be racy - the ath task may be running and the packet
1429	 * may be being scheduled between sw->hw txq. Tsk.
1430	 *
1431	 * TODO: figure out why a new node gets allocated somewhere around
1432	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1433	 * call!)
1434	 */
1435
1436	ath_draintxq(sc, ATH_RESET_DEFAULT);
1437
1438	ATH_LOCK(sc);
1439	/*
1440	 * Reclaim beacon state.  Note this must be done before
1441	 * the vap instance is reclaimed as we may have a reference
1442	 * to it in the buffer for the beacon frame.
1443	 */
1444	if (avp->av_bcbuf != NULL) {
1445		if (avp->av_bslot != -1) {
1446			sc->sc_bslot[avp->av_bslot] = NULL;
1447			sc->sc_nbcnvaps--;
1448		}
1449		ath_beacon_return(sc, avp->av_bcbuf);
1450		avp->av_bcbuf = NULL;
1451		if (sc->sc_nbcnvaps == 0) {
1452			sc->sc_stagbeacons = 0;
1453			if (sc->sc_hastsfadd)
1454				ath_hal_settsfadjust(sc->sc_ah, 0);
1455		}
1456		/*
1457		 * Reclaim any pending mcast frames for the vap.
1458		 */
1459		ath_tx_draintxq(sc, &avp->av_mcastq);
1460	}
1461	/*
1462	 * Update bookkeeping.
1463	 */
1464	if (vap->iv_opmode == IEEE80211_M_STA) {
1465		sc->sc_nstavaps--;
1466		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1467			sc->sc_swbmiss = 0;
1468	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1469	    vap->iv_opmode == IEEE80211_M_MBSS) {
1470		reclaim_address(sc, vap->iv_myaddr);
1471		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1472		if (vap->iv_opmode == IEEE80211_M_MBSS)
1473			sc->sc_nmeshvaps--;
1474	}
1475	if (vap->iv_opmode != IEEE80211_M_WDS)
1476		sc->sc_nvaps--;
1477#ifdef IEEE80211_SUPPORT_TDMA
1478	/* TDMA operation ceases when the last vap is destroyed */
1479	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1480		sc->sc_tdma = 0;
1481		sc->sc_swbmiss = 0;
1482	}
1483#endif
1484	free(avp, M_80211_VAP);
1485
1486	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1487		/*
1488		 * Restart rx+tx machines if still running (RUNNING will
1489		 * be reset if we just destroyed the last vap).
1490		 */
1491		if (ath_startrecv(sc) != 0)
1492			if_printf(ifp, "%s: unable to restart recv logic\n",
1493			    __func__);
1494		if (sc->sc_beacons) {		/* restart beacons */
1495#ifdef IEEE80211_SUPPORT_TDMA
1496			if (sc->sc_tdma)
1497				ath_tdma_config(sc, NULL);
1498			else
1499#endif
1500				ath_beacon_config(sc, NULL);
1501		}
1502		ath_hal_intrset(ah, sc->sc_imask);
1503	}
1504	ATH_UNLOCK(sc);
1505}
1506
1507void
1508ath_suspend(struct ath_softc *sc)
1509{
1510	struct ifnet *ifp = sc->sc_ifp;
1511	struct ieee80211com *ic = ifp->if_l2com;
1512
1513	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1514		__func__, ifp->if_flags);
1515
1516	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1517
1518	ieee80211_suspend_all(ic);
1519	/*
1520	 * NB: don't worry about putting the chip in low power
1521	 * mode; pci will power off our socket on suspend and
1522	 * CardBus detaches the device.
1523	 */
1524
1525	/*
1526	 * XXX ensure none of the taskqueues are running
1527	 * XXX ensure sc_invalid is 1
1528	 * XXX ensure the calibration callout is disabled
1529	 */
1530
1531	/* Disable the PCIe PHY, complete with workarounds */
1532	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1533}
1534
1535/*
1536 * Reset the key cache since some parts do not reset the
1537 * contents on resume.  First we clear all entries, then
1538 * re-load keys that the 802.11 layer assumes are setup
1539 * in h/w.
1540 */
1541static void
1542ath_reset_keycache(struct ath_softc *sc)
1543{
1544	struct ifnet *ifp = sc->sc_ifp;
1545	struct ieee80211com *ic = ifp->if_l2com;
1546	struct ath_hal *ah = sc->sc_ah;
1547	int i;
1548
1549	for (i = 0; i < sc->sc_keymax; i++)
1550		ath_hal_keyreset(ah, i);
1551	ieee80211_crypto_reload_keys(ic);
1552}
1553
1554/*
1555 * Fetch the current chainmask configuration based on the current
1556 * operating channel and options.
1557 */
1558static void
1559ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1560{
1561
1562	/*
1563	 * Set TX chainmask to the currently configured chainmask;
1564	 * the TX chainmask depends upon the current operating mode.
1565	 */
1566	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1567	if (IEEE80211_IS_CHAN_HT(chan)) {
1568		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1569	} else {
1570		sc->sc_cur_txchainmask = 1;
1571	}
1572
1573	DPRINTF(sc, ATH_DEBUG_RESET,
1574	    "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1575	    __func__,
1576	    sc->sc_cur_txchainmask,
1577	    sc->sc_cur_rxchainmask);
1578}
1579
1580void
1581ath_resume(struct ath_softc *sc)
1582{
1583	struct ifnet *ifp = sc->sc_ifp;
1584	struct ieee80211com *ic = ifp->if_l2com;
1585	struct ath_hal *ah = sc->sc_ah;
1586	HAL_STATUS status;
1587
1588	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1589		__func__, ifp->if_flags);
1590
1591	/* Re-enable PCIe, re-enable the PCIe bus */
1592	ath_hal_enablepcie(ah, 0, 0);
1593
1594	/*
1595	 * Must reset the chip before we reload the
1596	 * keycache as we were powered down on suspend.
1597	 */
1598	ath_update_chainmasks(sc,
1599	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1600	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1601	    sc->sc_cur_rxchainmask);
1602	ath_hal_reset(ah, sc->sc_opmode,
1603	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1604	    AH_FALSE, &status);
1605	ath_reset_keycache(sc);
1606
1607	/* Let DFS at it in case it's a DFS channel */
1608	ath_dfs_radar_enable(sc, ic->ic_curchan);
1609
1610	/* Let spectral at in case spectral is enabled */
1611	ath_spectral_enable(sc, ic->ic_curchan);
1612
1613	/*
1614	 * Let bluetooth coexistence at in case it's needed for this channel
1615	 */
1616	ath_btcoex_enable(sc, ic->ic_curchan);
1617
1618	/*
1619	 * If we're doing TDMA, enforce the TXOP limitation for chips that
1620	 * support it.
1621	 */
1622	if (sc->sc_hasenforcetxop && sc->sc_tdma)
1623		ath_hal_setenforcetxop(sc->sc_ah, 1);
1624	else
1625		ath_hal_setenforcetxop(sc->sc_ah, 0);
1626
1627	/* Restore the LED configuration */
1628	ath_led_config(sc);
1629	ath_hal_setledstate(ah, HAL_LED_INIT);
1630
1631	if (sc->sc_resume_up)
1632		ieee80211_resume_all(ic);
1633
1634	/* XXX beacons ? */
1635}
1636
1637void
1638ath_shutdown(struct ath_softc *sc)
1639{
1640	struct ifnet *ifp = sc->sc_ifp;
1641
1642	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1643		__func__, ifp->if_flags);
1644
1645	ath_stop(ifp);
1646	/* NB: no point powering down chip as we're about to reboot */
1647}
1648
1649/*
1650 * Interrupt handler.  Most of the actual processing is deferred.
1651 */
1652void
1653ath_intr(void *arg)
1654{
1655	struct ath_softc *sc = arg;
1656	struct ifnet *ifp = sc->sc_ifp;
1657	struct ath_hal *ah = sc->sc_ah;
1658	HAL_INT status = 0;
1659	uint32_t txqs;
1660
1661	/*
1662	 * If we're inside a reset path, just print a warning and
1663	 * clear the ISR. The reset routine will finish it for us.
1664	 */
1665	ATH_PCU_LOCK(sc);
1666	if (sc->sc_inreset_cnt) {
1667		HAL_INT status;
1668		ath_hal_getisr(ah, &status);	/* clear ISR */
1669		ath_hal_intrset(ah, 0);		/* disable further intr's */
1670		DPRINTF(sc, ATH_DEBUG_ANY,
1671		    "%s: in reset, ignoring: status=0x%x\n",
1672		    __func__, status);
1673		ATH_PCU_UNLOCK(sc);
1674		return;
1675	}
1676
1677	if (sc->sc_invalid) {
1678		/*
1679		 * The hardware is not ready/present, don't touch anything.
1680		 * Note this can happen early on if the IRQ is shared.
1681		 */
1682		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1683		ATH_PCU_UNLOCK(sc);
1684		return;
1685	}
1686	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1687		ATH_PCU_UNLOCK(sc);
1688		return;
1689	}
1690
1691	if ((ifp->if_flags & IFF_UP) == 0 ||
1692	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1693		HAL_INT status;
1694
1695		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1696			__func__, ifp->if_flags);
1697		ath_hal_getisr(ah, &status);	/* clear ISR */
1698		ath_hal_intrset(ah, 0);		/* disable further intr's */
1699		ATH_PCU_UNLOCK(sc);
1700		return;
1701	}
1702
1703	/*
1704	 * Figure out the reason(s) for the interrupt.  Note
1705	 * that the hal returns a pseudo-ISR that may include
1706	 * bits we haven't explicitly enabled so we mask the
1707	 * value to insure we only process bits we requested.
1708	 */
1709	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1710	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1711	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
1712#ifdef	ATH_DEBUG_ALQ
1713	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
1714	    ah->ah_syncstate);
1715#endif	/* ATH_DEBUG_ALQ */
1716#ifdef	ATH_KTR_INTR_DEBUG
1717	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
1718	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1719	    ah->ah_intrstate[0],
1720	    ah->ah_intrstate[1],
1721	    ah->ah_intrstate[2],
1722	    ah->ah_intrstate[3],
1723	    ah->ah_intrstate[6]);
1724#endif
1725
1726	/* Squirrel away SYNC interrupt debugging */
1727	if (ah->ah_syncstate != 0) {
1728		int i;
1729		for (i = 0; i < 32; i++)
1730			if (ah->ah_syncstate & (i << i))
1731				sc->sc_intr_stats.sync_intr[i]++;
1732	}
1733
1734	status &= sc->sc_imask;			/* discard unasked for bits */
1735
1736	/* Short-circuit un-handled interrupts */
1737	if (status == 0x0) {
1738		ATH_PCU_UNLOCK(sc);
1739		return;
1740	}
1741
1742	/*
1743	 * Take a note that we're inside the interrupt handler, so
1744	 * the reset routines know to wait.
1745	 */
1746	sc->sc_intr_cnt++;
1747	ATH_PCU_UNLOCK(sc);
1748
1749	/*
1750	 * Handle the interrupt. We won't run concurrent with the reset
1751	 * or channel change routines as they'll wait for sc_intr_cnt
1752	 * to be 0 before continuing.
1753	 */
1754	if (status & HAL_INT_FATAL) {
1755		sc->sc_stats.ast_hardware++;
1756		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1757		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1758	} else {
1759		if (status & HAL_INT_SWBA) {
1760			/*
1761			 * Software beacon alert--time to send a beacon.
1762			 * Handle beacon transmission directly; deferring
1763			 * this is too slow to meet timing constraints
1764			 * under load.
1765			 */
1766#ifdef IEEE80211_SUPPORT_TDMA
1767			if (sc->sc_tdma) {
1768				if (sc->sc_tdmaswba == 0) {
1769					struct ieee80211com *ic = ifp->if_l2com;
1770					struct ieee80211vap *vap =
1771					    TAILQ_FIRST(&ic->ic_vaps);
1772					ath_tdma_beacon_send(sc, vap);
1773					sc->sc_tdmaswba =
1774					    vap->iv_tdma->tdma_bintval;
1775				} else
1776					sc->sc_tdmaswba--;
1777			} else
1778#endif
1779			{
1780				ath_beacon_proc(sc, 0);
1781#ifdef IEEE80211_SUPPORT_SUPERG
1782				/*
1783				 * Schedule the rx taskq in case there's no
1784				 * traffic so any frames held on the staging
1785				 * queue are aged and potentially flushed.
1786				 */
1787				sc->sc_rx.recv_sched(sc, 1);
1788#endif
1789			}
1790		}
1791		if (status & HAL_INT_RXEOL) {
1792			int imask;
1793			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
1794			ATH_PCU_LOCK(sc);
1795			/*
1796			 * NB: the hardware should re-read the link when
1797			 *     RXE bit is written, but it doesn't work at
1798			 *     least on older hardware revs.
1799			 */
1800			sc->sc_stats.ast_rxeol++;
1801			/*
1802			 * Disable RXEOL/RXORN - prevent an interrupt
1803			 * storm until the PCU logic can be reset.
1804			 * In case the interface is reset some other
1805			 * way before "sc_kickpcu" is called, don't
1806			 * modify sc_imask - that way if it is reset
1807			 * by a call to ath_reset() somehow, the
1808			 * interrupt mask will be correctly reprogrammed.
1809			 */
1810			imask = sc->sc_imask;
1811			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1812			ath_hal_intrset(ah, imask);
1813			/*
1814			 * Only blank sc_rxlink if we've not yet kicked
1815			 * the PCU.
1816			 *
1817			 * This isn't entirely correct - the correct solution
1818			 * would be to have a PCU lock and engage that for
1819			 * the duration of the PCU fiddling; which would include
1820			 * running the RX process. Otherwise we could end up
1821			 * messing up the RX descriptor chain and making the
1822			 * RX desc list much shorter.
1823			 */
1824			if (! sc->sc_kickpcu)
1825				sc->sc_rxlink = NULL;
1826			sc->sc_kickpcu = 1;
1827			ATH_PCU_UNLOCK(sc);
1828			/*
1829			 * Enqueue an RX proc, to handled whatever
1830			 * is in the RX queue.
1831			 * This will then kick the PCU.
1832			 */
1833			sc->sc_rx.recv_sched(sc, 1);
1834		}
1835		if (status & HAL_INT_TXURN) {
1836			sc->sc_stats.ast_txurn++;
1837			/* bump tx trigger level */
1838			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1839		}
1840		/*
1841		 * Handle both the legacy and RX EDMA interrupt bits.
1842		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
1843		 */
1844		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
1845			sc->sc_stats.ast_rx_intr++;
1846			sc->sc_rx.recv_sched(sc, 1);
1847		}
1848		if (status & HAL_INT_TX) {
1849			sc->sc_stats.ast_tx_intr++;
1850			/*
1851			 * Grab all the currently set bits in the HAL txq bitmap
1852			 * and blank them. This is the only place we should be
1853			 * doing this.
1854			 */
1855			if (! sc->sc_isedma) {
1856				ATH_PCU_LOCK(sc);
1857				txqs = 0xffffffff;
1858				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1859				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
1860				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
1861				    txqs,
1862				    sc->sc_txq_active,
1863				    sc->sc_txq_active | txqs);
1864				sc->sc_txq_active |= txqs;
1865				ATH_PCU_UNLOCK(sc);
1866			}
1867			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1868		}
1869		if (status & HAL_INT_BMISS) {
1870			sc->sc_stats.ast_bmiss++;
1871			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1872		}
1873		if (status & HAL_INT_GTT)
1874			sc->sc_stats.ast_tx_timeout++;
1875		if (status & HAL_INT_CST)
1876			sc->sc_stats.ast_tx_cst++;
1877		if (status & HAL_INT_MIB) {
1878			sc->sc_stats.ast_mib++;
1879			ATH_PCU_LOCK(sc);
1880			/*
1881			 * Disable interrupts until we service the MIB
1882			 * interrupt; otherwise it will continue to fire.
1883			 */
1884			ath_hal_intrset(ah, 0);
1885			/*
1886			 * Let the hal handle the event.  We assume it will
1887			 * clear whatever condition caused the interrupt.
1888			 */
1889			ath_hal_mibevent(ah, &sc->sc_halstats);
1890			/*
1891			 * Don't reset the interrupt if we've just
1892			 * kicked the PCU, or we may get a nested
1893			 * RXEOL before the rxproc has had a chance
1894			 * to run.
1895			 */
1896			if (sc->sc_kickpcu == 0)
1897				ath_hal_intrset(ah, sc->sc_imask);
1898			ATH_PCU_UNLOCK(sc);
1899		}
1900		if (status & HAL_INT_RXORN) {
1901			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1902			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
1903			sc->sc_stats.ast_rxorn++;
1904		}
1905	}
1906	ATH_PCU_LOCK(sc);
1907	sc->sc_intr_cnt--;
1908	ATH_PCU_UNLOCK(sc);
1909}
1910
1911static void
1912ath_fatal_proc(void *arg, int pending)
1913{
1914	struct ath_softc *sc = arg;
1915	struct ifnet *ifp = sc->sc_ifp;
1916	u_int32_t *state;
1917	u_int32_t len;
1918	void *sp;
1919
1920	if_printf(ifp, "hardware error; resetting\n");
1921	/*
1922	 * Fatal errors are unrecoverable.  Typically these
1923	 * are caused by DMA errors.  Collect h/w state from
1924	 * the hal so we can diagnose what's going on.
1925	 */
1926	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1927		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1928		state = sp;
1929		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1930		    state[0], state[1] , state[2], state[3],
1931		    state[4], state[5]);
1932	}
1933	ath_reset(ifp, ATH_RESET_NOLOSS);
1934}
1935
1936static void
1937ath_bmiss_vap(struct ieee80211vap *vap)
1938{
1939	/*
1940	 * Workaround phantom bmiss interrupts by sanity-checking
1941	 * the time of our last rx'd frame.  If it is within the
1942	 * beacon miss interval then ignore the interrupt.  If it's
1943	 * truly a bmiss we'll get another interrupt soon and that'll
1944	 * be dispatched up for processing.  Note this applies only
1945	 * for h/w beacon miss events.
1946	 */
1947	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1948		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1949		struct ath_softc *sc = ifp->if_softc;
1950		u_int64_t lastrx = sc->sc_lastrx;
1951		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1952		/* XXX should take a locked ref to iv_bss */
1953		u_int bmisstimeout =
1954			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1955
1956		DPRINTF(sc, ATH_DEBUG_BEACON,
1957		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1958		    __func__, (unsigned long long) tsf,
1959		    (unsigned long long)(tsf - lastrx),
1960		    (unsigned long long) lastrx, bmisstimeout);
1961
1962		if (tsf - lastrx <= bmisstimeout) {
1963			sc->sc_stats.ast_bmiss_phantom++;
1964			return;
1965		}
1966	}
1967	ATH_VAP(vap)->av_bmiss(vap);
1968}
1969
1970int
1971ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1972{
1973	uint32_t rsize;
1974	void *sp;
1975
1976	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1977		return 0;
1978	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1979	*hangs = *(uint32_t *)sp;
1980	return 1;
1981}
1982
1983static void
1984ath_bmiss_proc(void *arg, int pending)
1985{
1986	struct ath_softc *sc = arg;
1987	struct ifnet *ifp = sc->sc_ifp;
1988	uint32_t hangs;
1989
1990	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1991
1992	/*
1993	 * Do a reset upon any becaon miss event.
1994	 *
1995	 * It may be a non-recognised RX clear hang which needs a reset
1996	 * to clear.
1997	 */
1998	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1999		ath_reset(ifp, ATH_RESET_NOLOSS);
2000		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
2001	} else {
2002		ath_reset(ifp, ATH_RESET_NOLOSS);
2003		ieee80211_beacon_miss(ifp->if_l2com);
2004	}
2005}
2006
2007/*
2008 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
2009 * calcs together with WME.  If necessary disable the crypto
2010 * hardware and mark the 802.11 state so keys will be setup
2011 * with the MIC work done in software.
2012 */
2013static void
2014ath_settkipmic(struct ath_softc *sc)
2015{
2016	struct ifnet *ifp = sc->sc_ifp;
2017	struct ieee80211com *ic = ifp->if_l2com;
2018
2019	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2020		if (ic->ic_flags & IEEE80211_F_WME) {
2021			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
2022			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2023		} else {
2024			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
2025			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2026		}
2027	}
2028}
2029
2030static void
2031ath_init(void *arg)
2032{
2033	struct ath_softc *sc = (struct ath_softc *) arg;
2034	struct ifnet *ifp = sc->sc_ifp;
2035	struct ieee80211com *ic = ifp->if_l2com;
2036	struct ath_hal *ah = sc->sc_ah;
2037	HAL_STATUS status;
2038
2039	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
2040		__func__, ifp->if_flags);
2041
2042	ATH_LOCK(sc);
2043	/*
2044	 * Stop anything previously setup.  This is safe
2045	 * whether this is the first time through or not.
2046	 */
2047	ath_stop_locked(ifp);
2048
2049	/*
2050	 * The basic interface to setting the hardware in a good
2051	 * state is ``reset''.  On return the hardware is known to
2052	 * be powered up and with interrupts disabled.  This must
2053	 * be followed by initialization of the appropriate bits
2054	 * and then setup of the interrupt mask.
2055	 */
2056	ath_settkipmic(sc);
2057	ath_update_chainmasks(sc, ic->ic_curchan);
2058	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2059	    sc->sc_cur_rxchainmask);
2060	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
2061		if_printf(ifp, "unable to reset hardware; hal status %u\n",
2062			status);
2063		ATH_UNLOCK(sc);
2064		return;
2065	}
2066	ath_chan_change(sc, ic->ic_curchan);
2067
2068	/* Let DFS at it in case it's a DFS channel */
2069	ath_dfs_radar_enable(sc, ic->ic_curchan);
2070
2071	/* Let spectral at in case spectral is enabled */
2072	ath_spectral_enable(sc, ic->ic_curchan);
2073
2074	/*
2075	 * Let bluetooth coexistence at in case it's needed for this channel
2076	 */
2077	ath_btcoex_enable(sc, ic->ic_curchan);
2078
2079	/*
2080	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2081	 * support it.
2082	 */
2083	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2084		ath_hal_setenforcetxop(sc->sc_ah, 1);
2085	else
2086		ath_hal_setenforcetxop(sc->sc_ah, 0);
2087
2088	/*
2089	 * Likewise this is set during reset so update
2090	 * state cached in the driver.
2091	 */
2092	sc->sc_diversity = ath_hal_getdiversity(ah);
2093	sc->sc_lastlongcal = 0;
2094	sc->sc_resetcal = 1;
2095	sc->sc_lastcalreset = 0;
2096	sc->sc_lastani = 0;
2097	sc->sc_lastshortcal = 0;
2098	sc->sc_doresetcal = AH_FALSE;
2099	/*
2100	 * Beacon timers were cleared here; give ath_newstate()
2101	 * a hint that the beacon timers should be poked when
2102	 * things transition to the RUN state.
2103	 */
2104	sc->sc_beacons = 0;
2105
2106	/*
2107	 * Setup the hardware after reset: the key cache
2108	 * is filled as needed and the receive engine is
2109	 * set going.  Frame transmit is handled entirely
2110	 * in the frame output path; there's nothing to do
2111	 * here except setup the interrupt mask.
2112	 */
2113	if (ath_startrecv(sc) != 0) {
2114		if_printf(ifp, "unable to start recv logic\n");
2115		ATH_UNLOCK(sc);
2116		return;
2117	}
2118
2119	/*
2120	 * Enable interrupts.
2121	 */
2122	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2123		  | HAL_INT_RXEOL | HAL_INT_RXORN
2124		  | HAL_INT_TXURN
2125		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2126
2127	/*
2128	 * Enable RX EDMA bits.  Note these overlap with
2129	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2130	 */
2131	if (sc->sc_isedma)
2132		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2133
2134	/*
2135	 * Enable MIB interrupts when there are hardware phy counters.
2136	 * Note we only do this (at the moment) for station mode.
2137	 */
2138	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2139		sc->sc_imask |= HAL_INT_MIB;
2140
2141	/* Enable global TX timeout and carrier sense timeout if available */
2142	if (ath_hal_gtxto_supported(ah))
2143		sc->sc_imask |= HAL_INT_GTT;
2144
2145	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2146		__func__, sc->sc_imask);
2147
2148	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2149	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2150	ath_hal_intrset(ah, sc->sc_imask);
2151
2152	ATH_UNLOCK(sc);
2153
2154#ifdef ATH_TX99_DIAG
2155	if (sc->sc_tx99 != NULL)
2156		sc->sc_tx99->start(sc->sc_tx99);
2157	else
2158#endif
2159	ieee80211_start_all(ic);		/* start all vap's */
2160}
2161
2162static void
2163ath_stop_locked(struct ifnet *ifp)
2164{
2165	struct ath_softc *sc = ifp->if_softc;
2166	struct ath_hal *ah = sc->sc_ah;
2167
2168	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2169		__func__, sc->sc_invalid, ifp->if_flags);
2170
2171	ATH_LOCK_ASSERT(sc);
2172	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2173		/*
2174		 * Shutdown the hardware and driver:
2175		 *    reset 802.11 state machine
2176		 *    turn off timers
2177		 *    disable interrupts
2178		 *    turn off the radio
2179		 *    clear transmit machinery
2180		 *    clear receive machinery
2181		 *    drain and release tx queues
2182		 *    reclaim beacon resources
2183		 *    power down hardware
2184		 *
2185		 * Note that some of this work is not possible if the
2186		 * hardware is gone (invalid).
2187		 */
2188#ifdef ATH_TX99_DIAG
2189		if (sc->sc_tx99 != NULL)
2190			sc->sc_tx99->stop(sc->sc_tx99);
2191#endif
2192		callout_stop(&sc->sc_wd_ch);
2193		sc->sc_wd_timer = 0;
2194		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2195		if (!sc->sc_invalid) {
2196			if (sc->sc_softled) {
2197				callout_stop(&sc->sc_ledtimer);
2198				ath_hal_gpioset(ah, sc->sc_ledpin,
2199					!sc->sc_ledon);
2200				sc->sc_blinking = 0;
2201			}
2202			ath_hal_intrset(ah, 0);
2203		}
2204		ath_draintxq(sc, ATH_RESET_DEFAULT);
2205		if (!sc->sc_invalid) {
2206			ath_stoprecv(sc, 1);
2207			ath_hal_phydisable(ah);
2208		} else
2209			sc->sc_rxlink = NULL;
2210		ath_beacon_free(sc);	/* XXX not needed */
2211	}
2212}
2213
2214#define	MAX_TXRX_ITERATIONS	1000
2215static void
2216ath_txrx_stop_locked(struct ath_softc *sc)
2217{
2218	int i = MAX_TXRX_ITERATIONS;
2219
2220	ATH_UNLOCK_ASSERT(sc);
2221	ATH_PCU_LOCK_ASSERT(sc);
2222
2223	/*
2224	 * Sleep until all the pending operations have completed.
2225	 *
2226	 * The caller must ensure that reset has been incremented
2227	 * or the pending operations may continue being queued.
2228	 */
2229	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2230	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2231		if (i <= 0)
2232			break;
2233		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
2234		i--;
2235	}
2236
2237	if (i <= 0)
2238		device_printf(sc->sc_dev,
2239		    "%s: didn't finish after %d iterations\n",
2240		    __func__, MAX_TXRX_ITERATIONS);
2241}
2242#undef	MAX_TXRX_ITERATIONS
2243
2244#if 0
2245static void
2246ath_txrx_stop(struct ath_softc *sc)
2247{
2248	ATH_UNLOCK_ASSERT(sc);
2249	ATH_PCU_UNLOCK_ASSERT(sc);
2250
2251	ATH_PCU_LOCK(sc);
2252	ath_txrx_stop_locked(sc);
2253	ATH_PCU_UNLOCK(sc);
2254}
2255#endif
2256
2257static void
2258ath_txrx_start(struct ath_softc *sc)
2259{
2260
2261	taskqueue_unblock(sc->sc_tq);
2262}
2263
2264/*
2265 * Grab the reset lock, and wait around until noone else
2266 * is trying to do anything with it.
2267 *
2268 * This is totally horrible but we can't hold this lock for
2269 * long enough to do TX/RX or we end up with net80211/ip stack
2270 * LORs and eventual deadlock.
2271 *
2272 * "dowait" signals whether to spin, waiting for the reset
2273 * lock count to reach 0. This should (for now) only be used
2274 * during the reset path, as the rest of the code may not
2275 * be locking-reentrant enough to behave correctly.
2276 *
2277 * Another, cleaner way should be found to serialise all of
2278 * these operations.
2279 */
2280#define	MAX_RESET_ITERATIONS	10
2281static int
2282ath_reset_grablock(struct ath_softc *sc, int dowait)
2283{
2284	int w = 0;
2285	int i = MAX_RESET_ITERATIONS;
2286
2287	ATH_PCU_LOCK_ASSERT(sc);
2288	do {
2289		if (sc->sc_inreset_cnt == 0) {
2290			w = 1;
2291			break;
2292		}
2293		if (dowait == 0) {
2294			w = 0;
2295			break;
2296		}
2297		ATH_PCU_UNLOCK(sc);
2298		pause("ath_reset_grablock", 1);
2299		i--;
2300		ATH_PCU_LOCK(sc);
2301	} while (i > 0);
2302
2303	/*
2304	 * We always increment the refcounter, regardless
2305	 * of whether we succeeded to get it in an exclusive
2306	 * way.
2307	 */
2308	sc->sc_inreset_cnt++;
2309
2310	if (i <= 0)
2311		device_printf(sc->sc_dev,
2312		    "%s: didn't finish after %d iterations\n",
2313		    __func__, MAX_RESET_ITERATIONS);
2314
2315	if (w == 0)
2316		device_printf(sc->sc_dev,
2317		    "%s: warning, recursive reset path!\n",
2318		    __func__);
2319
2320	return w;
2321}
2322#undef MAX_RESET_ITERATIONS
2323
2324/*
2325 * XXX TODO: write ath_reset_releaselock
2326 */
2327
2328static void
2329ath_stop(struct ifnet *ifp)
2330{
2331	struct ath_softc *sc = ifp->if_softc;
2332
2333	ATH_LOCK(sc);
2334	ath_stop_locked(ifp);
2335	ATH_UNLOCK(sc);
2336}
2337
2338/*
2339 * Reset the hardware w/o losing operational state.  This is
2340 * basically a more efficient way of doing ath_stop, ath_init,
2341 * followed by state transitions to the current 802.11
2342 * operational state.  Used to recover from various errors and
2343 * to reset or reload hardware state.
2344 */
2345int
2346ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2347{
2348	struct ath_softc *sc = ifp->if_softc;
2349	struct ieee80211com *ic = ifp->if_l2com;
2350	struct ath_hal *ah = sc->sc_ah;
2351	HAL_STATUS status;
2352	int i;
2353
2354	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2355
2356	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2357	ATH_PCU_UNLOCK_ASSERT(sc);
2358	ATH_UNLOCK_ASSERT(sc);
2359
2360	/* Try to (stop any further TX/RX from occuring */
2361	taskqueue_block(sc->sc_tq);
2362
2363	ATH_PCU_LOCK(sc);
2364
2365	/*
2366	 * Grab the reset lock before TX/RX is stopped.
2367	 *
2368	 * This is needed to ensure that when the TX/RX actually does finish,
2369	 * no further TX/RX/reset runs in parallel with this.
2370	 */
2371	if (ath_reset_grablock(sc, 1) == 0) {
2372		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2373		    __func__);
2374	}
2375
2376	/* disable interrupts */
2377	ath_hal_intrset(ah, 0);
2378
2379	/*
2380	 * Now, ensure that any in progress TX/RX completes before we
2381	 * continue.
2382	 */
2383	ath_txrx_stop_locked(sc);
2384
2385	ATH_PCU_UNLOCK(sc);
2386
2387	/*
2388	 * Should now wait for pending TX/RX to complete
2389	 * and block future ones from occuring. This needs to be
2390	 * done before the TX queue is drained.
2391	 */
2392	ath_draintxq(sc, reset_type);	/* stop xmit side */
2393
2394	/*
2395	 * Regardless of whether we're doing a no-loss flush or
2396	 * not, stop the PCU and handle what's in the RX queue.
2397	 * That way frames aren't dropped which shouldn't be.
2398	 */
2399	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2400	ath_rx_flush(sc);
2401
2402	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2403	/* NB: indicate channel change so we do a full reset */
2404	ath_update_chainmasks(sc, ic->ic_curchan);
2405	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2406	    sc->sc_cur_rxchainmask);
2407	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2408		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2409			__func__, status);
2410	sc->sc_diversity = ath_hal_getdiversity(ah);
2411
2412	/* Let DFS at it in case it's a DFS channel */
2413	ath_dfs_radar_enable(sc, ic->ic_curchan);
2414
2415	/* Let spectral at in case spectral is enabled */
2416	ath_spectral_enable(sc, ic->ic_curchan);
2417
2418	/*
2419	 * Let bluetooth coexistence at in case it's needed for this channel
2420	 */
2421	ath_btcoex_enable(sc, ic->ic_curchan);
2422
2423	/*
2424	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2425	 * support it.
2426	 */
2427	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2428		ath_hal_setenforcetxop(sc->sc_ah, 1);
2429	else
2430		ath_hal_setenforcetxop(sc->sc_ah, 0);
2431
2432	if (ath_startrecv(sc) != 0)	/* restart recv */
2433		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2434	/*
2435	 * We may be doing a reset in response to an ioctl
2436	 * that changes the channel so update any state that
2437	 * might change as a result.
2438	 */
2439	ath_chan_change(sc, ic->ic_curchan);
2440	if (sc->sc_beacons) {		/* restart beacons */
2441#ifdef IEEE80211_SUPPORT_TDMA
2442		if (sc->sc_tdma)
2443			ath_tdma_config(sc, NULL);
2444		else
2445#endif
2446			ath_beacon_config(sc, NULL);
2447	}
2448
2449	/*
2450	 * Release the reset lock and re-enable interrupts here.
2451	 * If an interrupt was being processed in ath_intr(),
2452	 * it would disable interrupts at this point. So we have
2453	 * to atomically enable interrupts and decrement the
2454	 * reset counter - this way ath_intr() doesn't end up
2455	 * disabling interrupts without a corresponding enable
2456	 * in the rest or channel change path.
2457	 */
2458	ATH_PCU_LOCK(sc);
2459	sc->sc_inreset_cnt--;
2460	/* XXX only do this if sc_inreset_cnt == 0? */
2461	ath_hal_intrset(ah, sc->sc_imask);
2462	ATH_PCU_UNLOCK(sc);
2463
2464	/*
2465	 * TX and RX can be started here. If it were started with
2466	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2467	 * Thus if this is a nested call through the reset or
2468	 * channel change code, TX completion will occur but
2469	 * RX completion and ath_start / ath_tx_start will not
2470	 * run.
2471	 */
2472
2473	/* Restart TX/RX as needed */
2474	ath_txrx_start(sc);
2475
2476	/* Restart TX completion and pending TX */
2477	if (reset_type == ATH_RESET_NOLOSS) {
2478		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2479			if (ATH_TXQ_SETUP(sc, i)) {
2480				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2481				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2482				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2483
2484				ATH_TX_LOCK(sc);
2485				ath_txq_sched(sc, &sc->sc_txq[i]);
2486				ATH_TX_UNLOCK(sc);
2487			}
2488		}
2489	}
2490
2491	/*
2492	 * This may have been set during an ath_start() call which
2493	 * set this once it detected a concurrent TX was going on.
2494	 * So, clear it.
2495	 */
2496	IF_LOCK(&ifp->if_snd);
2497	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2498	IF_UNLOCK(&ifp->if_snd);
2499
2500	/* Handle any frames in the TX queue */
2501	/*
2502	 * XXX should this be done by the caller, rather than
2503	 * ath_reset() ?
2504	 */
2505	ath_tx_kick(sc);		/* restart xmit */
2506	return 0;
2507}
2508
2509static int
2510ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2511{
2512	struct ieee80211com *ic = vap->iv_ic;
2513	struct ifnet *ifp = ic->ic_ifp;
2514	struct ath_softc *sc = ifp->if_softc;
2515	struct ath_hal *ah = sc->sc_ah;
2516
2517	switch (cmd) {
2518	case IEEE80211_IOC_TXPOWER:
2519		/*
2520		 * If per-packet TPC is enabled, then we have nothing
2521		 * to do; otherwise we need to force the global limit.
2522		 * All this can happen directly; no need to reset.
2523		 */
2524		if (!ath_hal_gettpc(ah))
2525			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2526		return 0;
2527	}
2528	/* XXX? Full or NOLOSS? */
2529	return ath_reset(ifp, ATH_RESET_FULL);
2530}
2531
2532struct ath_buf *
2533_ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2534{
2535	struct ath_buf *bf;
2536
2537	ATH_TXBUF_LOCK_ASSERT(sc);
2538
2539	if (btype == ATH_BUFTYPE_MGMT)
2540		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2541	else
2542		bf = TAILQ_FIRST(&sc->sc_txbuf);
2543
2544	if (bf == NULL) {
2545		sc->sc_stats.ast_tx_getnobuf++;
2546	} else {
2547		if (bf->bf_flags & ATH_BUF_BUSY) {
2548			sc->sc_stats.ast_tx_getbusybuf++;
2549			bf = NULL;
2550		}
2551	}
2552
2553	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2554		if (btype == ATH_BUFTYPE_MGMT)
2555			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2556		else {
2557			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2558			sc->sc_txbuf_cnt--;
2559
2560			/*
2561			 * This shuldn't happen; however just to be
2562			 * safe print a warning and fudge the txbuf
2563			 * count.
2564			 */
2565			if (sc->sc_txbuf_cnt < 0) {
2566				device_printf(sc->sc_dev,
2567				    "%s: sc_txbuf_cnt < 0?\n",
2568				    __func__);
2569				sc->sc_txbuf_cnt = 0;
2570			}
2571		}
2572	} else
2573		bf = NULL;
2574
2575	if (bf == NULL) {
2576		/* XXX should check which list, mgmt or otherwise */
2577		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2578		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2579			"out of xmit buffers" : "xmit buffer busy");
2580		return NULL;
2581	}
2582
2583	/* XXX TODO: should do this at buffer list initialisation */
2584	/* XXX (then, ensure the buffer has the right flag set) */
2585	bf->bf_flags = 0;
2586	if (btype == ATH_BUFTYPE_MGMT)
2587		bf->bf_flags |= ATH_BUF_MGMT;
2588	else
2589		bf->bf_flags &= (~ATH_BUF_MGMT);
2590
2591	/* Valid bf here; clear some basic fields */
2592	bf->bf_next = NULL;	/* XXX just to be sure */
2593	bf->bf_last = NULL;	/* XXX again, just to be sure */
2594	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2595	bzero(&bf->bf_state, sizeof(bf->bf_state));
2596
2597	/*
2598	 * Track the descriptor ID only if doing EDMA
2599	 */
2600	if (sc->sc_isedma) {
2601		bf->bf_descid = sc->sc_txbuf_descid;
2602		sc->sc_txbuf_descid++;
2603	}
2604
2605	return bf;
2606}
2607
2608/*
2609 * When retrying a software frame, buffers marked ATH_BUF_BUSY
2610 * can't be thrown back on the queue as they could still be
2611 * in use by the hardware.
2612 *
2613 * This duplicates the buffer, or returns NULL.
2614 *
2615 * The descriptor is also copied but the link pointers and
2616 * the DMA segments aren't copied; this frame should thus
2617 * be again passed through the descriptor setup/chain routines
2618 * so the link is correct.
2619 *
2620 * The caller must free the buffer using ath_freebuf().
2621 */
2622struct ath_buf *
2623ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
2624{
2625	struct ath_buf *tbf;
2626
2627	tbf = ath_getbuf(sc,
2628	    (bf->bf_flags & ATH_BUF_MGMT) ?
2629	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2630	if (tbf == NULL)
2631		return NULL;	/* XXX failure? Why? */
2632
2633	/* Copy basics */
2634	tbf->bf_next = NULL;
2635	tbf->bf_nseg = bf->bf_nseg;
2636	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
2637	tbf->bf_status = bf->bf_status;
2638	tbf->bf_m = bf->bf_m;
2639	tbf->bf_node = bf->bf_node;
2640	/* will be setup by the chain/setup function */
2641	tbf->bf_lastds = NULL;
2642	/* for now, last == self */
2643	tbf->bf_last = tbf;
2644	tbf->bf_comp = bf->bf_comp;
2645
2646	/* NOTE: DMA segments will be setup by the setup/chain functions */
2647
2648	/* The caller has to re-init the descriptor + links */
2649
2650	/*
2651	 * Free the DMA mapping here, before we NULL the mbuf.
2652	 * We must only call bus_dmamap_unload() once per mbuf chain
2653	 * or behaviour is undefined.
2654	 */
2655	if (bf->bf_m != NULL) {
2656		/*
2657		 * XXX is this POSTWRITE call required?
2658		 */
2659		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2660		    BUS_DMASYNC_POSTWRITE);
2661		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2662	}
2663
2664	bf->bf_m = NULL;
2665	bf->bf_node = NULL;
2666
2667	/* Copy state */
2668	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2669
2670	return tbf;
2671}
2672
2673struct ath_buf *
2674ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
2675{
2676	struct ath_buf *bf;
2677
2678	ATH_TXBUF_LOCK(sc);
2679	bf = _ath_getbuf_locked(sc, btype);
2680	/*
2681	 * If a mgmt buffer was requested but we're out of those,
2682	 * try requesting a normal one.
2683	 */
2684	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
2685		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
2686	ATH_TXBUF_UNLOCK(sc);
2687	if (bf == NULL) {
2688		struct ifnet *ifp = sc->sc_ifp;
2689
2690		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2691		sc->sc_stats.ast_tx_qstop++;
2692		IF_LOCK(&ifp->if_snd);
2693		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2694		IF_UNLOCK(&ifp->if_snd);
2695	}
2696	return bf;
2697}
2698
2699static void
2700ath_qflush(struct ifnet *ifp)
2701{
2702
2703	/* XXX TODO */
2704}
2705
2706/*
2707 * Transmit a single frame.
2708 *
2709 * net80211 will free the node reference if the transmit
2710 * fails, so don't free the node reference here.
2711 */
2712static int
2713ath_transmit(struct ifnet *ifp, struct mbuf *m)
2714{
2715	struct ieee80211com *ic = ifp->if_l2com;
2716	struct ath_softc *sc = ic->ic_ifp->if_softc;
2717	struct ieee80211_node *ni;
2718	struct mbuf *next;
2719	struct ath_buf *bf;
2720	ath_bufhead frags;
2721	int retval = 0;
2722
2723	/*
2724	 * Tell the reset path that we're currently transmitting.
2725	 */
2726	ATH_PCU_LOCK(sc);
2727	if (sc->sc_inreset_cnt > 0) {
2728		device_printf(sc->sc_dev,
2729		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2730		ATH_PCU_UNLOCK(sc);
2731		IF_LOCK(&ifp->if_snd);
2732		sc->sc_stats.ast_tx_qstop++;
2733		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2734		IF_UNLOCK(&ifp->if_snd);
2735		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
2736		return (ENOBUFS);	/* XXX should be EINVAL or? */
2737	}
2738	sc->sc_txstart_cnt++;
2739	ATH_PCU_UNLOCK(sc);
2740
2741	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
2742	/*
2743	 * Grab the TX lock - it's ok to do this here; we haven't
2744	 * yet started transmitting.
2745	 */
2746	ATH_TX_LOCK(sc);
2747
2748	/*
2749	 * Node reference, if there's one.
2750	 */
2751	ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2752
2753	/*
2754	 * Enforce how deep a node queue can get.
2755	 *
2756	 * XXX it would be nicer if we kept an mbuf queue per
2757	 * node and only whacked them into ath_bufs when we
2758	 * are ready to schedule some traffic from them.
2759	 * .. that may come later.
2760	 *
2761	 * XXX we should also track the per-node hardware queue
2762	 * depth so it is easy to limit the _SUM_ of the swq and
2763	 * hwq frames.  Since we only schedule two HWQ frames
2764	 * at a time, this should be OK for now.
2765	 */
2766	if ((!(m->m_flags & M_EAPOL)) &&
2767	    (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
2768		sc->sc_stats.ast_tx_nodeq_overflow++;
2769		m_freem(m);
2770		m = NULL;
2771		retval = ENOBUFS;
2772		goto finish;
2773	}
2774
2775	/*
2776	 * Check how many TX buffers are available.
2777	 *
2778	 * If this is for non-EAPOL traffic, just leave some
2779	 * space free in order for buffer cloning and raw
2780	 * frame transmission to occur.
2781	 *
2782	 * If it's for EAPOL traffic, ignore this for now.
2783	 * Management traffic will be sent via the raw transmit
2784	 * method which bypasses this check.
2785	 *
2786	 * This is needed to ensure that EAPOL frames during
2787	 * (re) keying have a chance to go out.
2788	 *
2789	 * See kern/138379 for more information.
2790	 */
2791	if ((!(m->m_flags & M_EAPOL)) &&
2792	    (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
2793		sc->sc_stats.ast_tx_nobuf++;
2794		m_freem(m);
2795		m = NULL;
2796		retval = ENOBUFS;
2797		goto finish;
2798	}
2799
2800	/*
2801	 * Grab a TX buffer and associated resources.
2802	 *
2803	 * If it's an EAPOL frame, allocate a MGMT ath_buf.
2804	 * That way even with temporary buffer exhaustion due to
2805	 * the data path doesn't leave us without the ability
2806	 * to transmit management frames.
2807	 *
2808	 * Otherwise allocate a normal buffer.
2809	 */
2810	if (m->m_flags & M_EAPOL)
2811		bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
2812	else
2813		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
2814
2815	if (bf == NULL) {
2816		/*
2817		 * If we failed to allocate a buffer, fail.
2818		 *
2819		 * We shouldn't fail normally, due to the check
2820		 * above.
2821		 */
2822		sc->sc_stats.ast_tx_nobuf++;
2823		IF_LOCK(&ifp->if_snd);
2824		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2825		IF_UNLOCK(&ifp->if_snd);
2826		m_freem(m);
2827		m = NULL;
2828		retval = ENOBUFS;
2829		goto finish;
2830	}
2831
2832	/*
2833	 * At this point we have a buffer; so we need to free it
2834	 * if we hit any error conditions.
2835	 */
2836
2837	/*
2838	 * Check for fragmentation.  If this frame
2839	 * has been broken up verify we have enough
2840	 * buffers to send all the fragments so all
2841	 * go out or none...
2842	 */
2843	TAILQ_INIT(&frags);
2844	if ((m->m_flags & M_FRAG) &&
2845	    !ath_txfrag_setup(sc, &frags, m, ni)) {
2846		DPRINTF(sc, ATH_DEBUG_XMIT,
2847		    "%s: out of txfrag buffers\n", __func__);
2848		sc->sc_stats.ast_tx_nofrag++;
2849		ifp->if_oerrors++;
2850		ath_freetx(m);
2851		goto bad;
2852	}
2853
2854	/*
2855	 * At this point if we have any TX fragments, then we will
2856	 * have bumped the node reference once for each of those.
2857	 */
2858
2859	/*
2860	 * XXX Is there anything actually _enforcing_ that the
2861	 * fragments are being transmitted in one hit, rather than
2862	 * being interleaved with other transmissions on that
2863	 * hardware queue?
2864	 *
2865	 * The ATH TX output lock is the only thing serialising this
2866	 * right now.
2867	 */
2868
2869	/*
2870	 * Calculate the "next fragment" length field in ath_buf
2871	 * in order to let the transmit path know enough about
2872	 * what to next write to the hardware.
2873	 */
2874	if (m->m_flags & M_FRAG) {
2875		struct ath_buf *fbf = bf;
2876		struct ath_buf *n_fbf = NULL;
2877		struct mbuf *fm = m->m_nextpkt;
2878
2879		/*
2880		 * We need to walk the list of fragments and set
2881		 * the next size to the following buffer.
2882		 * However, the first buffer isn't in the frag
2883		 * list, so we have to do some gymnastics here.
2884		 */
2885		TAILQ_FOREACH(n_fbf, &frags, bf_list) {
2886			fbf->bf_nextfraglen = fm->m_pkthdr.len;
2887			fbf = n_fbf;
2888			fm = fm->m_nextpkt;
2889		}
2890	}
2891
2892	/*
2893	 * Bump the ifp output counter.
2894	 *
2895	 * XXX should use atomics?
2896	 */
2897	ifp->if_opackets++;
2898nextfrag:
2899	/*
2900	 * Pass the frame to the h/w for transmission.
2901	 * Fragmented frames have each frag chained together
2902	 * with m_nextpkt.  We know there are sufficient ath_buf's
2903	 * to send all the frags because of work done by
2904	 * ath_txfrag_setup.  We leave m_nextpkt set while
2905	 * calling ath_tx_start so it can use it to extend the
2906	 * the tx duration to cover the subsequent frag and
2907	 * so it can reclaim all the mbufs in case of an error;
2908	 * ath_tx_start clears m_nextpkt once it commits to
2909	 * handing the frame to the hardware.
2910	 *
2911	 * Note: if this fails, then the mbufs are freed but
2912	 * not the node reference.
2913	 */
2914	next = m->m_nextpkt;
2915	if (ath_tx_start(sc, ni, bf, m)) {
2916bad:
2917		ifp->if_oerrors++;
2918reclaim:
2919		bf->bf_m = NULL;
2920		bf->bf_node = NULL;
2921		ATH_TXBUF_LOCK(sc);
2922		ath_returnbuf_head(sc, bf);
2923		/*
2924		 * Free the rest of the node references and
2925		 * buffers for the fragment list.
2926		 */
2927		ath_txfrag_cleanup(sc, &frags, ni);
2928		ATH_TXBUF_UNLOCK(sc);
2929		retval = ENOBUFS;
2930		goto finish;
2931	}
2932
2933	/*
2934	 * Check here if the node is in power save state.
2935	 */
2936	ath_tx_update_tim(sc, ni, 1);
2937
2938	if (next != NULL) {
2939		/*
2940		 * Beware of state changing between frags.
2941		 * XXX check sta power-save state?
2942		 */
2943		if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2944			DPRINTF(sc, ATH_DEBUG_XMIT,
2945			    "%s: flush fragmented packet, state %s\n",
2946			    __func__,
2947			    ieee80211_state_name[ni->ni_vap->iv_state]);
2948			/* XXX dmamap */
2949			ath_freetx(next);
2950			goto reclaim;
2951		}
2952		m = next;
2953		bf = TAILQ_FIRST(&frags);
2954		KASSERT(bf != NULL, ("no buf for txfrag"));
2955		TAILQ_REMOVE(&frags, bf, bf_list);
2956		goto nextfrag;
2957	}
2958
2959	/*
2960	 * Bump watchdog timer.
2961	 */
2962	sc->sc_wd_timer = 5;
2963
2964finish:
2965	ATH_TX_UNLOCK(sc);
2966
2967	/*
2968	 * Finished transmitting!
2969	 */
2970	ATH_PCU_LOCK(sc);
2971	sc->sc_txstart_cnt--;
2972	ATH_PCU_UNLOCK(sc);
2973
2974	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
2975
2976	return (retval);
2977}
2978
2979static int
2980ath_media_change(struct ifnet *ifp)
2981{
2982	int error = ieee80211_media_change(ifp);
2983	/* NB: only the fixed rate can change and that doesn't need a reset */
2984	return (error == ENETRESET ? 0 : error);
2985}
2986
2987/*
2988 * Block/unblock tx+rx processing while a key change is done.
2989 * We assume the caller serializes key management operations
2990 * so we only need to worry about synchronization with other
2991 * uses that originate in the driver.
2992 */
2993static void
2994ath_key_update_begin(struct ieee80211vap *vap)
2995{
2996	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2997	struct ath_softc *sc = ifp->if_softc;
2998
2999	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3000	taskqueue_block(sc->sc_tq);
3001	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
3002}
3003
3004static void
3005ath_key_update_end(struct ieee80211vap *vap)
3006{
3007	struct ifnet *ifp = vap->iv_ic->ic_ifp;
3008	struct ath_softc *sc = ifp->if_softc;
3009
3010	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
3011	IF_UNLOCK(&ifp->if_snd);
3012	taskqueue_unblock(sc->sc_tq);
3013}
3014
3015static void
3016ath_update_promisc(struct ifnet *ifp)
3017{
3018	struct ath_softc *sc = ifp->if_softc;
3019	u_int32_t rfilt;
3020
3021	/* configure rx filter */
3022	rfilt = ath_calcrxfilter(sc);
3023	ath_hal_setrxfilter(sc->sc_ah, rfilt);
3024
3025	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3026}
3027
3028static void
3029ath_update_mcast(struct ifnet *ifp)
3030{
3031	struct ath_softc *sc = ifp->if_softc;
3032	u_int32_t mfilt[2];
3033
3034	/* calculate and install multicast filter */
3035	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3036		struct ifmultiaddr *ifma;
3037		/*
3038		 * Merge multicast addresses to form the hardware filter.
3039		 */
3040		mfilt[0] = mfilt[1] = 0;
3041		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
3042		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3043			caddr_t dl;
3044			u_int32_t val;
3045			u_int8_t pos;
3046
3047			/* calculate XOR of eight 6bit values */
3048			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
3049			val = LE_READ_4(dl + 0);
3050			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3051			val = LE_READ_4(dl + 3);
3052			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3053			pos &= 0x3f;
3054			mfilt[pos / 32] |= (1 << (pos % 32));
3055		}
3056		if_maddr_runlock(ifp);
3057	} else
3058		mfilt[0] = mfilt[1] = ~0;
3059	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3060	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3061		__func__, mfilt[0], mfilt[1]);
3062}
3063
3064void
3065ath_mode_init(struct ath_softc *sc)
3066{
3067	struct ifnet *ifp = sc->sc_ifp;
3068	struct ath_hal *ah = sc->sc_ah;
3069	u_int32_t rfilt;
3070
3071	/* configure rx filter */
3072	rfilt = ath_calcrxfilter(sc);
3073	ath_hal_setrxfilter(ah, rfilt);
3074
3075	/* configure operational mode */
3076	ath_hal_setopmode(ah);
3077
3078	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
3079	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
3080	    __func__,
3081	    ah,
3082	    ifp,
3083	    (ifp == NULL) ? NULL : ifp->if_addr);
3084
3085	/* handle any link-level address change */
3086	ath_hal_setmac(ah, IF_LLADDR(ifp));
3087
3088	/* calculate and install multicast filter */
3089	ath_update_mcast(ifp);
3090}
3091
3092/*
3093 * Set the slot time based on the current setting.
3094 */
3095void
3096ath_setslottime(struct ath_softc *sc)
3097{
3098	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3099	struct ath_hal *ah = sc->sc_ah;
3100	u_int usec;
3101
3102	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3103		usec = 13;
3104	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3105		usec = 21;
3106	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3107		/* honor short/long slot time only in 11g */
3108		/* XXX shouldn't honor on pure g or turbo g channel */
3109		if (ic->ic_flags & IEEE80211_F_SHSLOT)
3110			usec = HAL_SLOT_TIME_9;
3111		else
3112			usec = HAL_SLOT_TIME_20;
3113	} else
3114		usec = HAL_SLOT_TIME_9;
3115
3116	DPRINTF(sc, ATH_DEBUG_RESET,
3117	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3118	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3119	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3120
3121	ath_hal_setslottime(ah, usec);
3122	sc->sc_updateslot = OK;
3123}
3124
3125/*
3126 * Callback from the 802.11 layer to update the
3127 * slot time based on the current setting.
3128 */
3129static void
3130ath_updateslot(struct ifnet *ifp)
3131{
3132	struct ath_softc *sc = ifp->if_softc;
3133	struct ieee80211com *ic = ifp->if_l2com;
3134
3135	/*
3136	 * When not coordinating the BSS, change the hardware
3137	 * immediately.  For other operation we defer the change
3138	 * until beacon updates have propagated to the stations.
3139	 */
3140	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3141	    ic->ic_opmode == IEEE80211_M_MBSS)
3142		sc->sc_updateslot = UPDATE;
3143	else
3144		ath_setslottime(sc);
3145}
3146
3147/*
3148 * Append the contents of src to dst; both queues
3149 * are assumed to be locked.
3150 */
3151void
3152ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3153{
3154
3155	ATH_TXQ_LOCK_ASSERT(src);
3156	ATH_TXQ_LOCK_ASSERT(dst);
3157
3158	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3159	dst->axq_link = src->axq_link;
3160	src->axq_link = NULL;
3161	dst->axq_depth += src->axq_depth;
3162	dst->axq_aggr_depth += src->axq_aggr_depth;
3163	src->axq_depth = 0;
3164	src->axq_aggr_depth = 0;
3165}
3166
3167/*
3168 * Reset the hardware, with no loss.
3169 *
3170 * This can't be used for a general case reset.
3171 */
3172static void
3173ath_reset_proc(void *arg, int pending)
3174{
3175	struct ath_softc *sc = arg;
3176	struct ifnet *ifp = sc->sc_ifp;
3177
3178#if 0
3179	if_printf(ifp, "%s: resetting\n", __func__);
3180#endif
3181	ath_reset(ifp, ATH_RESET_NOLOSS);
3182}
3183
3184/*
3185 * Reset the hardware after detecting beacons have stopped.
3186 */
3187static void
3188ath_bstuck_proc(void *arg, int pending)
3189{
3190	struct ath_softc *sc = arg;
3191	struct ifnet *ifp = sc->sc_ifp;
3192	uint32_t hangs = 0;
3193
3194	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3195		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3196
3197#ifdef	ATH_DEBUG_ALQ
3198	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
3199		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3200#endif
3201
3202	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3203		sc->sc_bmisscount);
3204	sc->sc_stats.ast_bstuck++;
3205	/*
3206	 * This assumes that there's no simultaneous channel mode change
3207	 * occuring.
3208	 */
3209	ath_reset(ifp, ATH_RESET_NOLOSS);
3210}
3211
3212static void
3213ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3214{
3215	bus_addr_t *paddr = (bus_addr_t*) arg;
3216	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3217	*paddr = segs->ds_addr;
3218}
3219
3220/*
3221 * Allocate the descriptors and appropriate DMA tag/setup.
3222 *
3223 * For some situations (eg EDMA TX completion), there isn't a requirement
3224 * for the ath_buf entries to be allocated.
3225 */
3226int
3227ath_descdma_alloc_desc(struct ath_softc *sc,
3228	struct ath_descdma *dd, ath_bufhead *head,
3229	const char *name, int ds_size, int ndesc)
3230{
3231#define	DS2PHYS(_dd, _ds) \
3232	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3233#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3234	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3235	struct ifnet *ifp = sc->sc_ifp;
3236	int error;
3237
3238	dd->dd_descsize = ds_size;
3239
3240	DPRINTF(sc, ATH_DEBUG_RESET,
3241	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
3242	    __func__, name, ndesc, dd->dd_descsize);
3243
3244	dd->dd_name = name;
3245	dd->dd_desc_len = dd->dd_descsize * ndesc;
3246
3247	/*
3248	 * Merlin work-around:
3249	 * Descriptors that cross the 4KB boundary can't be used.
3250	 * Assume one skipped descriptor per 4KB page.
3251	 */
3252	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3253		int numpages = dd->dd_desc_len / 4096;
3254		dd->dd_desc_len += ds_size * numpages;
3255	}
3256
3257	/*
3258	 * Setup DMA descriptor area.
3259	 *
3260	 * BUS_DMA_ALLOCNOW is not used; we never use bounce
3261	 * buffers for the descriptors themselves.
3262	 */
3263	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3264		       PAGE_SIZE, 0,		/* alignment, bounds */
3265		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3266		       BUS_SPACE_MAXADDR,	/* highaddr */
3267		       NULL, NULL,		/* filter, filterarg */
3268		       dd->dd_desc_len,		/* maxsize */
3269		       1,			/* nsegments */
3270		       dd->dd_desc_len,		/* maxsegsize */
3271		       0,			/* flags */
3272		       NULL,			/* lockfunc */
3273		       NULL,			/* lockarg */
3274		       &dd->dd_dmat);
3275	if (error != 0) {
3276		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3277		return error;
3278	}
3279
3280	/* allocate descriptors */
3281	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3282				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3283				 &dd->dd_dmamap);
3284	if (error != 0) {
3285		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3286			"error %u\n", ndesc, dd->dd_name, error);
3287		goto fail1;
3288	}
3289
3290	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3291				dd->dd_desc, dd->dd_desc_len,
3292				ath_load_cb, &dd->dd_desc_paddr,
3293				BUS_DMA_NOWAIT);
3294	if (error != 0) {
3295		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3296			dd->dd_name, error);
3297		goto fail2;
3298	}
3299
3300	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3301	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
3302	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
3303	    /*XXX*/ (u_long) dd->dd_desc_len);
3304
3305	return (0);
3306
3307fail2:
3308	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3309fail1:
3310	bus_dma_tag_destroy(dd->dd_dmat);
3311	memset(dd, 0, sizeof(*dd));
3312	return error;
3313#undef DS2PHYS
3314#undef ATH_DESC_4KB_BOUND_CHECK
3315}
3316
3317int
3318ath_descdma_setup(struct ath_softc *sc,
3319	struct ath_descdma *dd, ath_bufhead *head,
3320	const char *name, int ds_size, int nbuf, int ndesc)
3321{
3322#define	DS2PHYS(_dd, _ds) \
3323	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3324#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3325	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3326	struct ifnet *ifp = sc->sc_ifp;
3327	uint8_t *ds;
3328	struct ath_buf *bf;
3329	int i, bsize, error;
3330
3331	/* Allocate descriptors */
3332	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3333	    nbuf * ndesc);
3334
3335	/* Assume any errors during allocation were dealt with */
3336	if (error != 0) {
3337		return (error);
3338	}
3339
3340	ds = (uint8_t *) dd->dd_desc;
3341
3342	/* allocate rx buffers */
3343	bsize = sizeof(struct ath_buf) * nbuf;
3344	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3345	if (bf == NULL) {
3346		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3347			dd->dd_name, bsize);
3348		goto fail3;
3349	}
3350	dd->dd_bufptr = bf;
3351
3352	TAILQ_INIT(head);
3353	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3354		bf->bf_desc = (struct ath_desc *) ds;
3355		bf->bf_daddr = DS2PHYS(dd, ds);
3356		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3357			/*
3358			 * Merlin WAR: Skip descriptor addresses which
3359			 * cause 4KB boundary crossing along any point
3360			 * in the descriptor.
3361			 */
3362			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3363			     dd->dd_descsize)) {
3364				/* Start at the next page */
3365				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3366				bf->bf_desc = (struct ath_desc *) ds;
3367				bf->bf_daddr = DS2PHYS(dd, ds);
3368			}
3369		}
3370		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3371				&bf->bf_dmamap);
3372		if (error != 0) {
3373			if_printf(ifp, "unable to create dmamap for %s "
3374				"buffer %u, error %u\n", dd->dd_name, i, error);
3375			ath_descdma_cleanup(sc, dd, head);
3376			return error;
3377		}
3378		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3379		TAILQ_INSERT_TAIL(head, bf, bf_list);
3380	}
3381
3382	/*
3383	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3384	 * allocation otherwise weird stuff will occur and crash your
3385	 * machine.
3386	 */
3387	return 0;
3388	/* XXX this should likely just call ath_descdma_cleanup() */
3389fail3:
3390	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3391	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3392	bus_dma_tag_destroy(dd->dd_dmat);
3393	memset(dd, 0, sizeof(*dd));
3394	return error;
3395#undef DS2PHYS
3396#undef ATH_DESC_4KB_BOUND_CHECK
3397}
3398
3399/*
3400 * Allocate ath_buf entries but no descriptor contents.
3401 *
3402 * This is for RX EDMA where the descriptors are the header part of
3403 * the RX buffer.
3404 */
3405int
3406ath_descdma_setup_rx_edma(struct ath_softc *sc,
3407	struct ath_descdma *dd, ath_bufhead *head,
3408	const char *name, int nbuf, int rx_status_len)
3409{
3410	struct ifnet *ifp = sc->sc_ifp;
3411	struct ath_buf *bf;
3412	int i, bsize, error;
3413
3414	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3415	    __func__, name, nbuf);
3416
3417	dd->dd_name = name;
3418	/*
3419	 * This is (mostly) purely for show.  We're not allocating any actual
3420	 * descriptors here as EDMA RX has the descriptor be part
3421	 * of the RX buffer.
3422	 *
3423	 * However, dd_desc_len is used by ath_descdma_free() to determine
3424	 * whether we have already freed this DMA mapping.
3425	 */
3426	dd->dd_desc_len = rx_status_len * nbuf;
3427	dd->dd_descsize = rx_status_len;
3428
3429	/* allocate rx buffers */
3430	bsize = sizeof(struct ath_buf) * nbuf;
3431	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3432	if (bf == NULL) {
3433		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3434			dd->dd_name, bsize);
3435		error = ENOMEM;
3436		goto fail3;
3437	}
3438	dd->dd_bufptr = bf;
3439
3440	TAILQ_INIT(head);
3441	for (i = 0; i < nbuf; i++, bf++) {
3442		bf->bf_desc = NULL;
3443		bf->bf_daddr = 0;
3444		bf->bf_lastds = NULL;	/* Just an initial value */
3445
3446		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3447				&bf->bf_dmamap);
3448		if (error != 0) {
3449			if_printf(ifp, "unable to create dmamap for %s "
3450				"buffer %u, error %u\n", dd->dd_name, i, error);
3451			ath_descdma_cleanup(sc, dd, head);
3452			return error;
3453		}
3454		TAILQ_INSERT_TAIL(head, bf, bf_list);
3455	}
3456	return 0;
3457fail3:
3458	memset(dd, 0, sizeof(*dd));
3459	return error;
3460}
3461
3462void
3463ath_descdma_cleanup(struct ath_softc *sc,
3464	struct ath_descdma *dd, ath_bufhead *head)
3465{
3466	struct ath_buf *bf;
3467	struct ieee80211_node *ni;
3468	int do_warning = 0;
3469
3470	if (dd->dd_dmamap != 0) {
3471		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3472		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3473		bus_dma_tag_destroy(dd->dd_dmat);
3474	}
3475
3476	if (head != NULL) {
3477		TAILQ_FOREACH(bf, head, bf_list) {
3478			if (bf->bf_m) {
3479				/*
3480				 * XXX warn if there's buffers here.
3481				 * XXX it should have been freed by the
3482				 * owner!
3483				 */
3484
3485				if (do_warning == 0) {
3486					do_warning = 1;
3487					device_printf(sc->sc_dev,
3488					    "%s: %s: mbuf should've been"
3489					    " unmapped/freed!\n",
3490					    __func__,
3491					    dd->dd_name);
3492				}
3493				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3494				    BUS_DMASYNC_POSTREAD);
3495				bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3496				m_freem(bf->bf_m);
3497				bf->bf_m = NULL;
3498			}
3499			if (bf->bf_dmamap != NULL) {
3500				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3501				bf->bf_dmamap = NULL;
3502			}
3503			ni = bf->bf_node;
3504			bf->bf_node = NULL;
3505			if (ni != NULL) {
3506				/*
3507				 * Reclaim node reference.
3508				 */
3509				ieee80211_free_node(ni);
3510			}
3511		}
3512	}
3513
3514	if (head != NULL)
3515		TAILQ_INIT(head);
3516
3517	if (dd->dd_bufptr != NULL)
3518		free(dd->dd_bufptr, M_ATHDEV);
3519	memset(dd, 0, sizeof(*dd));
3520}
3521
3522static int
3523ath_desc_alloc(struct ath_softc *sc)
3524{
3525	int error;
3526
3527	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3528		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
3529	if (error != 0) {
3530		return error;
3531	}
3532	sc->sc_txbuf_cnt = ath_txbuf;
3533
3534	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3535		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3536		    ATH_TXDESC);
3537	if (error != 0) {
3538		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3539		return error;
3540	}
3541
3542	/*
3543	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3544	 * flag doesn't have to be set in ath_getbuf_locked().
3545	 */
3546
3547	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3548			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3549	if (error != 0) {
3550		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3551		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3552		    &sc->sc_txbuf_mgmt);
3553		return error;
3554	}
3555	return 0;
3556}
3557
3558static void
3559ath_desc_free(struct ath_softc *sc)
3560{
3561
3562	if (sc->sc_bdma.dd_desc_len != 0)
3563		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3564	if (sc->sc_txdma.dd_desc_len != 0)
3565		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3566	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3567		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3568		    &sc->sc_txbuf_mgmt);
3569}
3570
3571static struct ieee80211_node *
3572ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3573{
3574	struct ieee80211com *ic = vap->iv_ic;
3575	struct ath_softc *sc = ic->ic_ifp->if_softc;
3576	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3577	struct ath_node *an;
3578
3579	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3580	if (an == NULL) {
3581		/* XXX stat+msg */
3582		return NULL;
3583	}
3584	ath_rate_node_init(sc, an);
3585
3586	/* Setup the mutex - there's no associd yet so set the name to NULL */
3587	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3588	    device_get_nameunit(sc->sc_dev), an);
3589	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3590
3591	/* XXX setup ath_tid */
3592	ath_tx_tid_init(sc, an);
3593
3594	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an);
3595	return &an->an_node;
3596}
3597
3598static void
3599ath_node_cleanup(struct ieee80211_node *ni)
3600{
3601	struct ieee80211com *ic = ni->ni_ic;
3602	struct ath_softc *sc = ic->ic_ifp->if_softc;
3603
3604	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3605	    ni->ni_macaddr, ":", ATH_NODE(ni));
3606
3607	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3608	ath_tx_node_flush(sc, ATH_NODE(ni));
3609	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3610	sc->sc_node_cleanup(ni);
3611}
3612
3613static void
3614ath_node_free(struct ieee80211_node *ni)
3615{
3616	struct ieee80211com *ic = ni->ni_ic;
3617	struct ath_softc *sc = ic->ic_ifp->if_softc;
3618
3619	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3620	    ni->ni_macaddr, ":", ATH_NODE(ni));
3621	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3622	sc->sc_node_free(ni);
3623}
3624
3625static void
3626ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3627{
3628	struct ieee80211com *ic = ni->ni_ic;
3629	struct ath_softc *sc = ic->ic_ifp->if_softc;
3630	struct ath_hal *ah = sc->sc_ah;
3631
3632	*rssi = ic->ic_node_getrssi(ni);
3633	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3634		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3635	else
3636		*noise = -95;		/* nominally correct */
3637}
3638
3639/*
3640 * Set the default antenna.
3641 */
3642void
3643ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3644{
3645	struct ath_hal *ah = sc->sc_ah;
3646
3647	/* XXX block beacon interrupts */
3648	ath_hal_setdefantenna(ah, antenna);
3649	if (sc->sc_defant != antenna)
3650		sc->sc_stats.ast_ant_defswitch++;
3651	sc->sc_defant = antenna;
3652	sc->sc_rxotherant = 0;
3653}
3654
3655static void
3656ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3657{
3658	txq->axq_qnum = qnum;
3659	txq->axq_ac = 0;
3660	txq->axq_depth = 0;
3661	txq->axq_aggr_depth = 0;
3662	txq->axq_intrcnt = 0;
3663	txq->axq_link = NULL;
3664	txq->axq_softc = sc;
3665	TAILQ_INIT(&txq->axq_q);
3666	TAILQ_INIT(&txq->axq_tidq);
3667	TAILQ_INIT(&txq->fifo.axq_q);
3668	ATH_TXQ_LOCK_INIT(sc, txq);
3669}
3670
3671/*
3672 * Setup a h/w transmit queue.
3673 */
3674static struct ath_txq *
3675ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3676{
3677#define	N(a)	(sizeof(a)/sizeof(a[0]))
3678	struct ath_hal *ah = sc->sc_ah;
3679	HAL_TXQ_INFO qi;
3680	int qnum;
3681
3682	memset(&qi, 0, sizeof(qi));
3683	qi.tqi_subtype = subtype;
3684	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3685	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3686	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3687	/*
3688	 * Enable interrupts only for EOL and DESC conditions.
3689	 * We mark tx descriptors to receive a DESC interrupt
3690	 * when a tx queue gets deep; otherwise waiting for the
3691	 * EOL to reap descriptors.  Note that this is done to
3692	 * reduce interrupt load and this only defers reaping
3693	 * descriptors, never transmitting frames.  Aside from
3694	 * reducing interrupts this also permits more concurrency.
3695	 * The only potential downside is if the tx queue backs
3696	 * up in which case the top half of the kernel may backup
3697	 * due to a lack of tx descriptors.
3698	 */
3699	if (sc->sc_isedma)
3700		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
3701		    HAL_TXQ_TXOKINT_ENABLE;
3702	else
3703		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
3704		    HAL_TXQ_TXDESCINT_ENABLE;
3705
3706	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3707	if (qnum == -1) {
3708		/*
3709		 * NB: don't print a message, this happens
3710		 * normally on parts with too few tx queues
3711		 */
3712		return NULL;
3713	}
3714	if (qnum >= N(sc->sc_txq)) {
3715		device_printf(sc->sc_dev,
3716			"hal qnum %u out of range, max %zu!\n",
3717			qnum, N(sc->sc_txq));
3718		ath_hal_releasetxqueue(ah, qnum);
3719		return NULL;
3720	}
3721	if (!ATH_TXQ_SETUP(sc, qnum)) {
3722		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3723		sc->sc_txqsetup |= 1<<qnum;
3724	}
3725	return &sc->sc_txq[qnum];
3726#undef N
3727}
3728
3729/*
3730 * Setup a hardware data transmit queue for the specified
3731 * access control.  The hal may not support all requested
3732 * queues in which case it will return a reference to a
3733 * previously setup queue.  We record the mapping from ac's
3734 * to h/w queues for use by ath_tx_start and also track
3735 * the set of h/w queues being used to optimize work in the
3736 * transmit interrupt handler and related routines.
3737 */
3738static int
3739ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3740{
3741#define	N(a)	(sizeof(a)/sizeof(a[0]))
3742	struct ath_txq *txq;
3743
3744	if (ac >= N(sc->sc_ac2q)) {
3745		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3746			ac, N(sc->sc_ac2q));
3747		return 0;
3748	}
3749	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3750	if (txq != NULL) {
3751		txq->axq_ac = ac;
3752		sc->sc_ac2q[ac] = txq;
3753		return 1;
3754	} else
3755		return 0;
3756#undef N
3757}
3758
3759/*
3760 * Update WME parameters for a transmit queue.
3761 */
3762static int
3763ath_txq_update(struct ath_softc *sc, int ac)
3764{
3765#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3766#define	ATH_TXOP_TO_US(v)		(v<<5)
3767	struct ifnet *ifp = sc->sc_ifp;
3768	struct ieee80211com *ic = ifp->if_l2com;
3769	struct ath_txq *txq = sc->sc_ac2q[ac];
3770	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3771	struct ath_hal *ah = sc->sc_ah;
3772	HAL_TXQ_INFO qi;
3773
3774	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3775#ifdef IEEE80211_SUPPORT_TDMA
3776	if (sc->sc_tdma) {
3777		/*
3778		 * AIFS is zero so there's no pre-transmit wait.  The
3779		 * burst time defines the slot duration and is configured
3780		 * through net80211.  The QCU is setup to not do post-xmit
3781		 * back off, lockout all lower-priority QCU's, and fire
3782		 * off the DMA beacon alert timer which is setup based
3783		 * on the slot configuration.
3784		 */
3785		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3786			      | HAL_TXQ_TXERRINT_ENABLE
3787			      | HAL_TXQ_TXURNINT_ENABLE
3788			      | HAL_TXQ_TXEOLINT_ENABLE
3789			      | HAL_TXQ_DBA_GATED
3790			      | HAL_TXQ_BACKOFF_DISABLE
3791			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3792			      ;
3793		qi.tqi_aifs = 0;
3794		/* XXX +dbaprep? */
3795		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3796		qi.tqi_burstTime = qi.tqi_readyTime;
3797	} else {
3798#endif
3799		/*
3800		 * XXX shouldn't this just use the default flags
3801		 * used in the previous queue setup?
3802		 */
3803		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3804			      | HAL_TXQ_TXERRINT_ENABLE
3805			      | HAL_TXQ_TXDESCINT_ENABLE
3806			      | HAL_TXQ_TXURNINT_ENABLE
3807			      | HAL_TXQ_TXEOLINT_ENABLE
3808			      ;
3809		qi.tqi_aifs = wmep->wmep_aifsn;
3810		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3811		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3812		qi.tqi_readyTime = 0;
3813		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3814#ifdef IEEE80211_SUPPORT_TDMA
3815	}
3816#endif
3817
3818	DPRINTF(sc, ATH_DEBUG_RESET,
3819	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3820	    __func__, txq->axq_qnum, qi.tqi_qflags,
3821	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3822
3823	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3824		if_printf(ifp, "unable to update hardware queue "
3825			"parameters for %s traffic!\n",
3826			ieee80211_wme_acnames[ac]);
3827		return 0;
3828	} else {
3829		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3830		return 1;
3831	}
3832#undef ATH_TXOP_TO_US
3833#undef ATH_EXPONENT_TO_VALUE
3834}
3835
3836/*
3837 * Callback from the 802.11 layer to update WME parameters.
3838 */
3839int
3840ath_wme_update(struct ieee80211com *ic)
3841{
3842	struct ath_softc *sc = ic->ic_ifp->if_softc;
3843
3844	return !ath_txq_update(sc, WME_AC_BE) ||
3845	    !ath_txq_update(sc, WME_AC_BK) ||
3846	    !ath_txq_update(sc, WME_AC_VI) ||
3847	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3848}
3849
3850/*
3851 * Reclaim resources for a setup queue.
3852 */
3853static void
3854ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3855{
3856
3857	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3858	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3859	ATH_TXQ_LOCK_DESTROY(txq);
3860}
3861
3862/*
3863 * Reclaim all tx queue resources.
3864 */
3865static void
3866ath_tx_cleanup(struct ath_softc *sc)
3867{
3868	int i;
3869
3870	ATH_TXBUF_LOCK_DESTROY(sc);
3871	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3872		if (ATH_TXQ_SETUP(sc, i))
3873			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3874}
3875
3876/*
3877 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3878 * using the current rates in sc_rixmap.
3879 */
3880int
3881ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3882{
3883	int rix = sc->sc_rixmap[rate];
3884	/* NB: return lowest rix for invalid rate */
3885	return (rix == 0xff ? 0 : rix);
3886}
3887
3888static void
3889ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3890    struct ath_buf *bf)
3891{
3892	struct ieee80211_node *ni = bf->bf_node;
3893	struct ifnet *ifp = sc->sc_ifp;
3894	struct ieee80211com *ic = ifp->if_l2com;
3895	int sr, lr, pri;
3896
3897	if (ts->ts_status == 0) {
3898		u_int8_t txant = ts->ts_antenna;
3899		sc->sc_stats.ast_ant_tx[txant]++;
3900		sc->sc_ant_tx[txant]++;
3901		if (ts->ts_finaltsi != 0)
3902			sc->sc_stats.ast_tx_altrate++;
3903		pri = M_WME_GETAC(bf->bf_m);
3904		if (pri >= WME_AC_VO)
3905			ic->ic_wme.wme_hipri_traffic++;
3906		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3907			ni->ni_inact = ni->ni_inact_reload;
3908	} else {
3909		if (ts->ts_status & HAL_TXERR_XRETRY)
3910			sc->sc_stats.ast_tx_xretries++;
3911		if (ts->ts_status & HAL_TXERR_FIFO)
3912			sc->sc_stats.ast_tx_fifoerr++;
3913		if (ts->ts_status & HAL_TXERR_FILT)
3914			sc->sc_stats.ast_tx_filtered++;
3915		if (ts->ts_status & HAL_TXERR_XTXOP)
3916			sc->sc_stats.ast_tx_xtxop++;
3917		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3918			sc->sc_stats.ast_tx_timerexpired++;
3919
3920		if (bf->bf_m->m_flags & M_FF)
3921			sc->sc_stats.ast_ff_txerr++;
3922	}
3923	/* XXX when is this valid? */
3924	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
3925		sc->sc_stats.ast_tx_desccfgerr++;
3926	/*
3927	 * This can be valid for successful frame transmission!
3928	 * If there's a TX FIFO underrun during aggregate transmission,
3929	 * the MAC will pad the rest of the aggregate with delimiters.
3930	 * If a BA is returned, the frame is marked as "OK" and it's up
3931	 * to the TX completion code to notice which frames weren't
3932	 * successfully transmitted.
3933	 */
3934	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
3935		sc->sc_stats.ast_tx_data_underrun++;
3936	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
3937		sc->sc_stats.ast_tx_delim_underrun++;
3938
3939	sr = ts->ts_shortretry;
3940	lr = ts->ts_longretry;
3941	sc->sc_stats.ast_tx_shortretry += sr;
3942	sc->sc_stats.ast_tx_longretry += lr;
3943
3944}
3945
3946/*
3947 * The default completion. If fail is 1, this means
3948 * "please don't retry the frame, and just return -1 status
3949 * to the net80211 stack.
3950 */
3951void
3952ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3953{
3954	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3955	int st;
3956
3957	if (fail == 1)
3958		st = -1;
3959	else
3960		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
3961		    ts->ts_status : HAL_TXERR_XRETRY;
3962
3963#if 0
3964	if (bf->bf_state.bfs_dobaw)
3965		device_printf(sc->sc_dev,
3966		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
3967		    __func__,
3968		    bf,
3969		    SEQNO(bf->bf_state.bfs_seqno));
3970#endif
3971	if (bf->bf_next != NULL)
3972		device_printf(sc->sc_dev,
3973		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
3974		    __func__,
3975		    bf,
3976		    SEQNO(bf->bf_state.bfs_seqno));
3977
3978	/*
3979	 * Check if the node software queue is empty; if so
3980	 * then clear the TIM.
3981	 *
3982	 * This needs to be done before the buffer is freed as
3983	 * otherwise the node reference will have been released
3984	 * and the node may not actually exist any longer.
3985	 *
3986	 * XXX I don't like this belonging here, but it's cleaner
3987	 * to do it here right now then all the other places
3988	 * where ath_tx_default_comp() is called.
3989	 *
3990	 * XXX TODO: during drain, ensure that the callback is
3991	 * being called so we get a chance to update the TIM.
3992	 */
3993	if (bf->bf_node) {
3994		ATH_TX_LOCK(sc);
3995		ath_tx_update_tim(sc, bf->bf_node, 0);
3996		ATH_TX_UNLOCK(sc);
3997	}
3998
3999	/*
4000	 * Do any tx complete callback.  Note this must
4001	 * be done before releasing the node reference.
4002	 * This will free the mbuf, release the net80211
4003	 * node and recycle the ath_buf.
4004	 */
4005	ath_tx_freebuf(sc, bf, st);
4006}
4007
4008/*
4009 * Update rate control with the given completion status.
4010 */
4011void
4012ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4013    struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4014    int nframes, int nbad)
4015{
4016	struct ath_node *an;
4017
4018	/* Only for unicast frames */
4019	if (ni == NULL)
4020		return;
4021
4022	an = ATH_NODE(ni);
4023	ATH_NODE_UNLOCK_ASSERT(an);
4024
4025	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4026		ATH_NODE_LOCK(an);
4027		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4028		ATH_NODE_UNLOCK(an);
4029	}
4030}
4031
4032/*
4033 * Process the completion of the given buffer.
4034 *
4035 * This calls the rate control update and then the buffer completion.
4036 * This will either free the buffer or requeue it.  In any case, the
4037 * bf pointer should be treated as invalid after this function is called.
4038 */
4039void
4040ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
4041    struct ath_tx_status *ts, struct ath_buf *bf)
4042{
4043	struct ieee80211_node *ni = bf->bf_node;
4044	struct ath_node *an = NULL;
4045
4046	ATH_TX_UNLOCK_ASSERT(sc);
4047	ATH_TXQ_UNLOCK_ASSERT(txq);
4048
4049	/* If unicast frame, update general statistics */
4050	if (ni != NULL) {
4051		an = ATH_NODE(ni);
4052		/* update statistics */
4053		ath_tx_update_stats(sc, ts, bf);
4054	}
4055
4056	/*
4057	 * Call the completion handler.
4058	 * The completion handler is responsible for
4059	 * calling the rate control code.
4060	 *
4061	 * Frames with no completion handler get the
4062	 * rate control code called here.
4063	 */
4064	if (bf->bf_comp == NULL) {
4065		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4066		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4067			/*
4068			 * XXX assume this isn't an aggregate
4069			 * frame.
4070			 */
4071			ath_tx_update_ratectrl(sc, ni,
4072			     bf->bf_state.bfs_rc, ts,
4073			    bf->bf_state.bfs_pktlen, 1,
4074			    (ts->ts_status == 0 ? 0 : 1));
4075		}
4076		ath_tx_default_comp(sc, bf, 0);
4077	} else
4078		bf->bf_comp(sc, bf, 0);
4079}
4080
4081
4082
4083/*
4084 * Process completed xmit descriptors from the specified queue.
4085 * Kick the packet scheduler if needed. This can occur from this
4086 * particular task.
4087 */
4088static int
4089ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4090{
4091	struct ath_hal *ah = sc->sc_ah;
4092	struct ath_buf *bf;
4093	struct ath_desc *ds;
4094	struct ath_tx_status *ts;
4095	struct ieee80211_node *ni;
4096#ifdef	IEEE80211_SUPPORT_SUPERG
4097	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4098#endif	/* IEEE80211_SUPPORT_SUPERG */
4099	int nacked;
4100	HAL_STATUS status;
4101
4102	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4103		__func__, txq->axq_qnum,
4104		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4105		txq->axq_link);
4106
4107	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4108	    "ath_tx_processq: txq=%u head %p link %p depth %p",
4109	    txq->axq_qnum,
4110	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4111	    txq->axq_link,
4112	    txq->axq_depth);
4113
4114	nacked = 0;
4115	for (;;) {
4116		ATH_TXQ_LOCK(txq);
4117		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4118		bf = TAILQ_FIRST(&txq->axq_q);
4119		if (bf == NULL) {
4120			ATH_TXQ_UNLOCK(txq);
4121			break;
4122		}
4123		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4124		ts = &bf->bf_status.ds_txstat;
4125
4126		status = ath_hal_txprocdesc(ah, ds, ts);
4127#ifdef ATH_DEBUG
4128		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4129			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4130			    status == HAL_OK);
4131		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4132			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4133			    status == HAL_OK);
4134#endif
4135#ifdef	ATH_DEBUG_ALQ
4136		if (if_ath_alq_checkdebug(&sc->sc_alq,
4137		    ATH_ALQ_EDMA_TXSTATUS)) {
4138			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
4139			sc->sc_tx_statuslen,
4140			(char *) ds);
4141		}
4142#endif
4143
4144		if (status == HAL_EINPROGRESS) {
4145			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4146			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4147			    txq->axq_qnum, bf, ds);
4148			ATH_TXQ_UNLOCK(txq);
4149			break;
4150		}
4151		ATH_TXQ_REMOVE(txq, bf, bf_list);
4152
4153		/*
4154		 * Sanity check.
4155		 */
4156		if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4157			device_printf(sc->sc_dev,
4158			    "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4159			    __func__,
4160			    txq->axq_qnum,
4161			    bf,
4162			    bf->bf_state.bfs_tx_queue);
4163		}
4164		if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4165			device_printf(sc->sc_dev,
4166			    "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4167			    __func__,
4168			    txq->axq_qnum,
4169			    bf->bf_last,
4170			    bf->bf_last->bf_state.bfs_tx_queue);
4171		}
4172
4173#if 0
4174		if (txq->axq_depth > 0) {
4175			/*
4176			 * More frames follow.  Mark the buffer busy
4177			 * so it's not re-used while the hardware may
4178			 * still re-read the link field in the descriptor.
4179			 *
4180			 * Use the last buffer in an aggregate as that
4181			 * is where the hardware may be - intermediate
4182			 * descriptors won't be "busy".
4183			 */
4184			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4185		} else
4186			txq->axq_link = NULL;
4187#else
4188		bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4189#endif
4190		if (bf->bf_state.bfs_aggr)
4191			txq->axq_aggr_depth--;
4192
4193		ni = bf->bf_node;
4194
4195		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4196		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4197		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
4198		/*
4199		 * If unicast frame was ack'd update RSSI,
4200		 * including the last rx time used to
4201		 * workaround phantom bmiss interrupts.
4202		 */
4203		if (ni != NULL && ts->ts_status == 0 &&
4204		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4205			nacked++;
4206			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4207			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4208				ts->ts_rssi);
4209		}
4210		ATH_TXQ_UNLOCK(txq);
4211
4212		/*
4213		 * Update statistics and call completion
4214		 */
4215		ath_tx_process_buf_completion(sc, txq, ts, bf);
4216
4217		/* XXX at this point, bf and ni may be totally invalid */
4218	}
4219#ifdef IEEE80211_SUPPORT_SUPERG
4220	/*
4221	 * Flush fast-frame staging queue when traffic slows.
4222	 */
4223	if (txq->axq_depth <= 1)
4224		ieee80211_ff_flush(ic, txq->axq_ac);
4225#endif
4226
4227	/* Kick the software TXQ scheduler */
4228	if (dosched) {
4229		ATH_TX_LOCK(sc);
4230		ath_txq_sched(sc, txq);
4231		ATH_TX_UNLOCK(sc);
4232	}
4233
4234	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4235	    "ath_tx_processq: txq=%u: done",
4236	    txq->axq_qnum);
4237
4238	return nacked;
4239}
4240
4241#define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4242
4243/*
4244 * Deferred processing of transmit interrupt; special-cased
4245 * for a single hardware transmit queue (e.g. 5210 and 5211).
4246 */
4247static void
4248ath_tx_proc_q0(void *arg, int npending)
4249{
4250	struct ath_softc *sc = arg;
4251	struct ifnet *ifp = sc->sc_ifp;
4252	uint32_t txqs;
4253
4254	ATH_PCU_LOCK(sc);
4255	sc->sc_txproc_cnt++;
4256	txqs = sc->sc_txq_active;
4257	sc->sc_txq_active &= ~txqs;
4258	ATH_PCU_UNLOCK(sc);
4259
4260	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4261	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4262
4263	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4264		/* XXX why is lastrx updated in tx code? */
4265		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4266	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4267		ath_tx_processq(sc, sc->sc_cabq, 1);
4268	IF_LOCK(&ifp->if_snd);
4269	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4270	IF_UNLOCK(&ifp->if_snd);
4271	sc->sc_wd_timer = 0;
4272
4273	if (sc->sc_softled)
4274		ath_led_event(sc, sc->sc_txrix);
4275
4276	ATH_PCU_LOCK(sc);
4277	sc->sc_txproc_cnt--;
4278	ATH_PCU_UNLOCK(sc);
4279
4280	ath_tx_kick(sc);
4281}
4282
4283/*
4284 * Deferred processing of transmit interrupt; special-cased
4285 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4286 */
4287static void
4288ath_tx_proc_q0123(void *arg, int npending)
4289{
4290	struct ath_softc *sc = arg;
4291	struct ifnet *ifp = sc->sc_ifp;
4292	int nacked;
4293	uint32_t txqs;
4294
4295	ATH_PCU_LOCK(sc);
4296	sc->sc_txproc_cnt++;
4297	txqs = sc->sc_txq_active;
4298	sc->sc_txq_active &= ~txqs;
4299	ATH_PCU_UNLOCK(sc);
4300
4301	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4302	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4303
4304	/*
4305	 * Process each active queue.
4306	 */
4307	nacked = 0;
4308	if (TXQACTIVE(txqs, 0))
4309		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4310	if (TXQACTIVE(txqs, 1))
4311		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4312	if (TXQACTIVE(txqs, 2))
4313		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4314	if (TXQACTIVE(txqs, 3))
4315		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4316	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4317		ath_tx_processq(sc, sc->sc_cabq, 1);
4318	if (nacked)
4319		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4320
4321	IF_LOCK(&ifp->if_snd);
4322	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4323	IF_UNLOCK(&ifp->if_snd);
4324	sc->sc_wd_timer = 0;
4325
4326	if (sc->sc_softled)
4327		ath_led_event(sc, sc->sc_txrix);
4328
4329	ATH_PCU_LOCK(sc);
4330	sc->sc_txproc_cnt--;
4331	ATH_PCU_UNLOCK(sc);
4332
4333	ath_tx_kick(sc);
4334}
4335
4336/*
4337 * Deferred processing of transmit interrupt.
4338 */
4339static void
4340ath_tx_proc(void *arg, int npending)
4341{
4342	struct ath_softc *sc = arg;
4343	struct ifnet *ifp = sc->sc_ifp;
4344	int i, nacked;
4345	uint32_t txqs;
4346
4347	ATH_PCU_LOCK(sc);
4348	sc->sc_txproc_cnt++;
4349	txqs = sc->sc_txq_active;
4350	sc->sc_txq_active &= ~txqs;
4351	ATH_PCU_UNLOCK(sc);
4352
4353	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4354
4355	/*
4356	 * Process each active queue.
4357	 */
4358	nacked = 0;
4359	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4360		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4361			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4362	if (nacked)
4363		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4364
4365	/* XXX check this inside of IF_LOCK? */
4366	IF_LOCK(&ifp->if_snd);
4367	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4368	IF_UNLOCK(&ifp->if_snd);
4369	sc->sc_wd_timer = 0;
4370
4371	if (sc->sc_softled)
4372		ath_led_event(sc, sc->sc_txrix);
4373
4374	ATH_PCU_LOCK(sc);
4375	sc->sc_txproc_cnt--;
4376	ATH_PCU_UNLOCK(sc);
4377
4378	ath_tx_kick(sc);
4379}
4380#undef	TXQACTIVE
4381
4382/*
4383 * Deferred processing of TXQ rescheduling.
4384 */
4385static void
4386ath_txq_sched_tasklet(void *arg, int npending)
4387{
4388	struct ath_softc *sc = arg;
4389	int i;
4390
4391	/* XXX is skipping ok? */
4392	ATH_PCU_LOCK(sc);
4393#if 0
4394	if (sc->sc_inreset_cnt > 0) {
4395		device_printf(sc->sc_dev,
4396		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4397		ATH_PCU_UNLOCK(sc);
4398		return;
4399	}
4400#endif
4401	sc->sc_txproc_cnt++;
4402	ATH_PCU_UNLOCK(sc);
4403
4404	ATH_TX_LOCK(sc);
4405	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4406		if (ATH_TXQ_SETUP(sc, i)) {
4407			ath_txq_sched(sc, &sc->sc_txq[i]);
4408		}
4409	}
4410	ATH_TX_UNLOCK(sc);
4411
4412	ATH_PCU_LOCK(sc);
4413	sc->sc_txproc_cnt--;
4414	ATH_PCU_UNLOCK(sc);
4415}
4416
4417void
4418ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4419{
4420
4421	ATH_TXBUF_LOCK_ASSERT(sc);
4422
4423	if (bf->bf_flags & ATH_BUF_MGMT)
4424		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4425	else {
4426		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4427		sc->sc_txbuf_cnt++;
4428		if (sc->sc_txbuf_cnt > ath_txbuf) {
4429			device_printf(sc->sc_dev,
4430			    "%s: sc_txbuf_cnt > %d?\n",
4431			    __func__,
4432			    ath_txbuf);
4433			sc->sc_txbuf_cnt = ath_txbuf;
4434		}
4435	}
4436}
4437
4438void
4439ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4440{
4441
4442	ATH_TXBUF_LOCK_ASSERT(sc);
4443
4444	if (bf->bf_flags & ATH_BUF_MGMT)
4445		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4446	else {
4447		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4448		sc->sc_txbuf_cnt++;
4449		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4450			device_printf(sc->sc_dev,
4451			    "%s: sc_txbuf_cnt > %d?\n",
4452			    __func__,
4453			    ATH_TXBUF);
4454			sc->sc_txbuf_cnt = ATH_TXBUF;
4455		}
4456	}
4457}
4458
4459/*
4460 * Free the holding buffer if it exists
4461 */
4462void
4463ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
4464{
4465	ATH_TXBUF_UNLOCK_ASSERT(sc);
4466	ATH_TXQ_LOCK_ASSERT(txq);
4467
4468	if (txq->axq_holdingbf == NULL)
4469		return;
4470
4471	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
4472
4473	ATH_TXBUF_LOCK(sc);
4474	ath_returnbuf_tail(sc, txq->axq_holdingbf);
4475	ATH_TXBUF_UNLOCK(sc);
4476
4477	txq->axq_holdingbf = NULL;
4478}
4479
4480/*
4481 * Add this buffer to the holding queue, freeing the previous
4482 * one if it exists.
4483 */
4484static void
4485ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
4486{
4487	struct ath_txq *txq;
4488
4489	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4490
4491	ATH_TXBUF_UNLOCK_ASSERT(sc);
4492	ATH_TXQ_LOCK_ASSERT(txq);
4493
4494	/* XXX assert ATH_BUF_BUSY is set */
4495
4496	/* XXX assert the tx queue is under the max number */
4497	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
4498		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
4499		    __func__,
4500		    bf,
4501		    bf->bf_state.bfs_tx_queue);
4502		bf->bf_flags &= ~ATH_BUF_BUSY;
4503		ath_returnbuf_tail(sc, bf);
4504		return;
4505	}
4506	ath_txq_freeholdingbuf(sc, txq);
4507	txq->axq_holdingbf = bf;
4508}
4509
4510/*
4511 * Return a buffer to the pool and update the 'busy' flag on the
4512 * previous 'tail' entry.
4513 *
4514 * This _must_ only be called when the buffer is involved in a completed
4515 * TX. The logic is that if it was part of an active TX, the previous
4516 * buffer on the list is now not involved in a halted TX DMA queue, waiting
4517 * for restart (eg for TDMA.)
4518 *
4519 * The caller must free the mbuf and recycle the node reference.
4520 *
4521 * XXX This method of handling busy / holding buffers is insanely stupid.
4522 * It requires bf_state.bfs_tx_queue to be correctly assigned.  It would
4523 * be much nicer if buffers in the processq() methods would instead be
4524 * always completed there (pushed onto a txq or ath_bufhead) so we knew
4525 * exactly what hardware queue they came from in the first place.
4526 */
4527void
4528ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4529{
4530	struct ath_txq *txq;
4531
4532	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4533
4534	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4535	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4536
4537	/*
4538	 * If this buffer is busy, push it onto the holding queue.
4539	 */
4540	if (bf->bf_flags & ATH_BUF_BUSY) {
4541		ATH_TXQ_LOCK(txq);
4542		ath_txq_addholdingbuf(sc, bf);
4543		ATH_TXQ_UNLOCK(txq);
4544		return;
4545	}
4546
4547	/*
4548	 * Not a busy buffer, so free normally
4549	 */
4550	ATH_TXBUF_LOCK(sc);
4551	ath_returnbuf_tail(sc, bf);
4552	ATH_TXBUF_UNLOCK(sc);
4553}
4554
4555/*
4556 * This is currently used by ath_tx_draintxq() and
4557 * ath_tx_tid_free_pkts().
4558 *
4559 * It recycles a single ath_buf.
4560 */
4561void
4562ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4563{
4564	struct ieee80211_node *ni = bf->bf_node;
4565	struct mbuf *m0 = bf->bf_m;
4566
4567	/*
4568	 * Make sure that we only sync/unload if there's an mbuf.
4569	 * If not (eg we cloned a buffer), the unload will have already
4570	 * occured.
4571	 */
4572	if (bf->bf_m != NULL) {
4573		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4574		    BUS_DMASYNC_POSTWRITE);
4575		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4576	}
4577
4578	bf->bf_node = NULL;
4579	bf->bf_m = NULL;
4580
4581	/* Free the buffer, it's not needed any longer */
4582	ath_freebuf(sc, bf);
4583
4584	/* Pass the buffer back to net80211 - completing it */
4585	ieee80211_tx_complete(ni, m0, status);
4586}
4587
4588static struct ath_buf *
4589ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
4590{
4591	struct ath_buf *bf;
4592
4593	ATH_TXQ_LOCK_ASSERT(txq);
4594
4595	/*
4596	 * Drain the FIFO queue first, then if it's
4597	 * empty, move to the normal frame queue.
4598	 */
4599	bf = TAILQ_FIRST(&txq->fifo.axq_q);
4600	if (bf != NULL) {
4601		/*
4602		 * Is it the last buffer in this set?
4603		 * Decrement the FIFO counter.
4604		 */
4605		if (bf->bf_flags & ATH_BUF_FIFOEND) {
4606			if (txq->axq_fifo_depth == 0) {
4607				device_printf(sc->sc_dev,
4608				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
4609				    __func__,
4610				    txq->axq_qnum,
4611				    txq->fifo.axq_depth);
4612			} else
4613				txq->axq_fifo_depth--;
4614		}
4615		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
4616		return (bf);
4617	}
4618
4619	/*
4620	 * Debugging!
4621	 */
4622	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
4623		device_printf(sc->sc_dev,
4624		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
4625		    __func__,
4626		    txq->axq_qnum,
4627		    txq->axq_fifo_depth,
4628		    txq->fifo.axq_depth);
4629	}
4630
4631	/*
4632	 * Now drain the pending queue.
4633	 */
4634	bf = TAILQ_FIRST(&txq->axq_q);
4635	if (bf == NULL) {
4636		txq->axq_link = NULL;
4637		return (NULL);
4638	}
4639	ATH_TXQ_REMOVE(txq, bf, bf_list);
4640	return (bf);
4641}
4642
4643void
4644ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4645{
4646#ifdef ATH_DEBUG
4647	struct ath_hal *ah = sc->sc_ah;
4648#endif
4649	struct ath_buf *bf;
4650	u_int ix;
4651
4652	/*
4653	 * NB: this assumes output has been stopped and
4654	 *     we do not need to block ath_tx_proc
4655	 */
4656	for (ix = 0;; ix++) {
4657		ATH_TXQ_LOCK(txq);
4658		bf = ath_tx_draintxq_get_one(sc, txq);
4659		if (bf == NULL) {
4660			ATH_TXQ_UNLOCK(txq);
4661			break;
4662		}
4663		if (bf->bf_state.bfs_aggr)
4664			txq->axq_aggr_depth--;
4665#ifdef ATH_DEBUG
4666		if (sc->sc_debug & ATH_DEBUG_RESET) {
4667			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4668			int status = 0;
4669
4670			/*
4671			 * EDMA operation has a TX completion FIFO
4672			 * separate from the TX descriptor, so this
4673			 * method of checking the "completion" status
4674			 * is wrong.
4675			 */
4676			if (! sc->sc_isedma) {
4677				status = (ath_hal_txprocdesc(ah,
4678				    bf->bf_lastds,
4679				    &bf->bf_status.ds_txstat) == HAL_OK);
4680			}
4681			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
4682			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4683			    bf->bf_m->m_len, 0, -1);
4684		}
4685#endif /* ATH_DEBUG */
4686		/*
4687		 * Since we're now doing magic in the completion
4688		 * functions, we -must- call it for aggregation
4689		 * destinations or BAW tracking will get upset.
4690		 */
4691		/*
4692		 * Clear ATH_BUF_BUSY; the completion handler
4693		 * will free the buffer.
4694		 */
4695		ATH_TXQ_UNLOCK(txq);
4696		bf->bf_flags &= ~ATH_BUF_BUSY;
4697		if (bf->bf_comp)
4698			bf->bf_comp(sc, bf, 1);
4699		else
4700			ath_tx_default_comp(sc, bf, 1);
4701	}
4702
4703	/*
4704	 * Free the holding buffer if it exists
4705	 */
4706	ATH_TXQ_LOCK(txq);
4707	ath_txq_freeholdingbuf(sc, txq);
4708	ATH_TXQ_UNLOCK(txq);
4709
4710	/*
4711	 * Drain software queued frames which are on
4712	 * active TIDs.
4713	 */
4714	ath_tx_txq_drain(sc, txq);
4715}
4716
4717static void
4718ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4719{
4720	struct ath_hal *ah = sc->sc_ah;
4721
4722	ATH_TXQ_LOCK_ASSERT(txq);
4723
4724	DPRINTF(sc, ATH_DEBUG_RESET,
4725	    "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
4726	    "link %p, holdingbf=%p\n",
4727	    __func__,
4728	    txq->axq_qnum,
4729	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4730	    (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
4731	    (int) ath_hal_numtxpending(ah, txq->axq_qnum),
4732	    txq->axq_flags,
4733	    txq->axq_link,
4734	    txq->axq_holdingbf);
4735
4736	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4737	/* We've stopped TX DMA, so mark this as stopped. */
4738	txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
4739
4740#ifdef	ATH_DEBUG
4741	if ((sc->sc_debug & ATH_DEBUG_RESET)
4742	    && (txq->axq_holdingbf != NULL)) {
4743		ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
4744	}
4745#endif
4746}
4747
4748int
4749ath_stoptxdma(struct ath_softc *sc)
4750{
4751	struct ath_hal *ah = sc->sc_ah;
4752	int i;
4753
4754	/* XXX return value */
4755	if (sc->sc_invalid)
4756		return 0;
4757
4758	if (!sc->sc_invalid) {
4759		/* don't touch the hardware if marked invalid */
4760		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4761		    __func__, sc->sc_bhalq,
4762		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4763		    NULL);
4764
4765		/* stop the beacon queue */
4766		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4767
4768		/* Stop the data queues */
4769		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4770			if (ATH_TXQ_SETUP(sc, i)) {
4771				ATH_TXQ_LOCK(&sc->sc_txq[i]);
4772				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4773				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
4774			}
4775		}
4776	}
4777
4778	return 1;
4779}
4780
4781#ifdef	ATH_DEBUG
4782void
4783ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
4784{
4785	struct ath_hal *ah = sc->sc_ah;
4786	struct ath_buf *bf;
4787	int i = 0;
4788
4789	if (! (sc->sc_debug & ATH_DEBUG_RESET))
4790		return;
4791
4792	device_printf(sc->sc_dev, "%s: Q%d: begin\n",
4793	    __func__, txq->axq_qnum);
4794	TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
4795		ath_printtxbuf(sc, bf, txq->axq_qnum, i,
4796			ath_hal_txprocdesc(ah, bf->bf_lastds,
4797			    &bf->bf_status.ds_txstat) == HAL_OK);
4798		i++;
4799	}
4800	device_printf(sc->sc_dev, "%s: Q%d: end\n",
4801	    __func__, txq->axq_qnum);
4802}
4803#endif /* ATH_DEBUG */
4804
4805/*
4806 * Drain the transmit queues and reclaim resources.
4807 */
4808void
4809ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
4810{
4811	struct ath_hal *ah = sc->sc_ah;
4812	struct ifnet *ifp = sc->sc_ifp;
4813	int i;
4814	struct ath_buf *bf_last;
4815
4816	(void) ath_stoptxdma(sc);
4817
4818	/*
4819	 * Dump the queue contents
4820	 */
4821	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4822		/*
4823		 * XXX TODO: should we just handle the completed TX frames
4824		 * here, whether or not the reset is a full one or not?
4825		 */
4826		if (ATH_TXQ_SETUP(sc, i)) {
4827#ifdef	ATH_DEBUG
4828			if (sc->sc_debug & ATH_DEBUG_RESET)
4829				ath_tx_dump(sc, &sc->sc_txq[i]);
4830#endif	/* ATH_DEBUG */
4831			if (reset_type == ATH_RESET_NOLOSS) {
4832				ath_tx_processq(sc, &sc->sc_txq[i], 0);
4833				ATH_TXQ_LOCK(&sc->sc_txq[i]);
4834				/*
4835				 * Free the holding buffer; DMA is now
4836				 * stopped.
4837				 */
4838				ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
4839				/*
4840				 * Setup the link pointer to be the
4841				 * _last_ buffer/descriptor in the list.
4842				 * If there's nothing in the list, set it
4843				 * to NULL.
4844				 */
4845				bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
4846				    axq_q_s);
4847				if (bf_last != NULL) {
4848					ath_hal_gettxdesclinkptr(ah,
4849					    bf_last->bf_lastds,
4850					    &sc->sc_txq[i].axq_link);
4851				} else {
4852					sc->sc_txq[i].axq_link = NULL;
4853				}
4854				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
4855			} else
4856				ath_tx_draintxq(sc, &sc->sc_txq[i]);
4857		}
4858	}
4859#ifdef ATH_DEBUG
4860	if (sc->sc_debug & ATH_DEBUG_RESET) {
4861		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
4862		if (bf != NULL && bf->bf_m != NULL) {
4863			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4864				ath_hal_txprocdesc(ah, bf->bf_lastds,
4865				    &bf->bf_status.ds_txstat) == HAL_OK);
4866			ieee80211_dump_pkt(ifp->if_l2com,
4867			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4868			    0, -1);
4869		}
4870	}
4871#endif /* ATH_DEBUG */
4872	IF_LOCK(&ifp->if_snd);
4873	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4874	IF_UNLOCK(&ifp->if_snd);
4875	sc->sc_wd_timer = 0;
4876}
4877
4878/*
4879 * Update internal state after a channel change.
4880 */
4881static void
4882ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4883{
4884	enum ieee80211_phymode mode;
4885
4886	/*
4887	 * Change channels and update the h/w rate map
4888	 * if we're switching; e.g. 11a to 11b/g.
4889	 */
4890	mode = ieee80211_chan2mode(chan);
4891	if (mode != sc->sc_curmode)
4892		ath_setcurmode(sc, mode);
4893	sc->sc_curchan = chan;
4894}
4895
4896/*
4897 * Set/change channels.  If the channel is really being changed,
4898 * it's done by resetting the chip.  To accomplish this we must
4899 * first cleanup any pending DMA, then restart stuff after a la
4900 * ath_init.
4901 */
4902static int
4903ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4904{
4905	struct ifnet *ifp = sc->sc_ifp;
4906	struct ieee80211com *ic = ifp->if_l2com;
4907	struct ath_hal *ah = sc->sc_ah;
4908	int ret = 0;
4909
4910	/* Treat this as an interface reset */
4911	ATH_PCU_UNLOCK_ASSERT(sc);
4912	ATH_UNLOCK_ASSERT(sc);
4913
4914	/* (Try to) stop TX/RX from occuring */
4915	taskqueue_block(sc->sc_tq);
4916
4917	ATH_PCU_LOCK(sc);
4918
4919	/* Stop new RX/TX/interrupt completion */
4920	if (ath_reset_grablock(sc, 1) == 0) {
4921		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
4922		    __func__);
4923	}
4924
4925	ath_hal_intrset(ah, 0);
4926
4927	/* Stop pending RX/TX completion */
4928	ath_txrx_stop_locked(sc);
4929
4930	ATH_PCU_UNLOCK(sc);
4931
4932	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4933	    __func__, ieee80211_chan2ieee(ic, chan),
4934	    chan->ic_freq, chan->ic_flags);
4935	if (chan != sc->sc_curchan) {
4936		HAL_STATUS status;
4937		/*
4938		 * To switch channels clear any pending DMA operations;
4939		 * wait long enough for the RX fifo to drain, reset the
4940		 * hardware at the new frequency, and then re-enable
4941		 * the relevant bits of the h/w.
4942		 */
4943#if 0
4944		ath_hal_intrset(ah, 0);		/* disable interrupts */
4945#endif
4946		ath_stoprecv(sc, 1);		/* turn off frame recv */
4947		/*
4948		 * First, handle completed TX/RX frames.
4949		 */
4950		ath_rx_flush(sc);
4951		ath_draintxq(sc, ATH_RESET_NOLOSS);
4952		/*
4953		 * Next, flush the non-scheduled frames.
4954		 */
4955		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
4956
4957		ath_update_chainmasks(sc, chan);
4958		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
4959		    sc->sc_cur_rxchainmask);
4960		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4961			if_printf(ifp, "%s: unable to reset "
4962			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4963			    __func__, ieee80211_chan2ieee(ic, chan),
4964			    chan->ic_freq, chan->ic_flags, status);
4965			ret = EIO;
4966			goto finish;
4967		}
4968		sc->sc_diversity = ath_hal_getdiversity(ah);
4969
4970		/* Let DFS at it in case it's a DFS channel */
4971		ath_dfs_radar_enable(sc, chan);
4972
4973		/* Let spectral at in case spectral is enabled */
4974		ath_spectral_enable(sc, chan);
4975
4976		/*
4977		 * Let bluetooth coexistence at in case it's needed for this
4978		 * channel
4979		 */
4980		ath_btcoex_enable(sc, ic->ic_curchan);
4981
4982		/*
4983		 * If we're doing TDMA, enforce the TXOP limitation for chips
4984		 * that support it.
4985		 */
4986		if (sc->sc_hasenforcetxop && sc->sc_tdma)
4987			ath_hal_setenforcetxop(sc->sc_ah, 1);
4988		else
4989			ath_hal_setenforcetxop(sc->sc_ah, 0);
4990
4991		/*
4992		 * Re-enable rx framework.
4993		 */
4994		if (ath_startrecv(sc) != 0) {
4995			if_printf(ifp, "%s: unable to restart recv logic\n",
4996			    __func__);
4997			ret = EIO;
4998			goto finish;
4999		}
5000
5001		/*
5002		 * Change channels and update the h/w rate map
5003		 * if we're switching; e.g. 11a to 11b/g.
5004		 */
5005		ath_chan_change(sc, chan);
5006
5007		/*
5008		 * Reset clears the beacon timers; reset them
5009		 * here if needed.
5010		 */
5011		if (sc->sc_beacons) {		/* restart beacons */
5012#ifdef IEEE80211_SUPPORT_TDMA
5013			if (sc->sc_tdma)
5014				ath_tdma_config(sc, NULL);
5015			else
5016#endif
5017			ath_beacon_config(sc, NULL);
5018		}
5019
5020		/*
5021		 * Re-enable interrupts.
5022		 */
5023#if 0
5024		ath_hal_intrset(ah, sc->sc_imask);
5025#endif
5026	}
5027
5028finish:
5029	ATH_PCU_LOCK(sc);
5030	sc->sc_inreset_cnt--;
5031	/* XXX only do this if sc_inreset_cnt == 0? */
5032	ath_hal_intrset(ah, sc->sc_imask);
5033	ATH_PCU_UNLOCK(sc);
5034
5035	IF_LOCK(&ifp->if_snd);
5036	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5037	IF_UNLOCK(&ifp->if_snd);
5038	ath_txrx_start(sc);
5039	/* XXX ath_start? */
5040
5041	return ret;
5042}
5043
5044/*
5045 * Periodically recalibrate the PHY to account
5046 * for temperature/environment changes.
5047 */
5048static void
5049ath_calibrate(void *arg)
5050{
5051	struct ath_softc *sc = arg;
5052	struct ath_hal *ah = sc->sc_ah;
5053	struct ifnet *ifp = sc->sc_ifp;
5054	struct ieee80211com *ic = ifp->if_l2com;
5055	HAL_BOOL longCal, isCalDone = AH_TRUE;
5056	HAL_BOOL aniCal, shortCal = AH_FALSE;
5057	int nextcal;
5058
5059	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5060		goto restart;
5061	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5062	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5063	if (sc->sc_doresetcal)
5064		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5065
5066	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5067	if (aniCal) {
5068		sc->sc_stats.ast_ani_cal++;
5069		sc->sc_lastani = ticks;
5070		ath_hal_ani_poll(ah, sc->sc_curchan);
5071	}
5072
5073	if (longCal) {
5074		sc->sc_stats.ast_per_cal++;
5075		sc->sc_lastlongcal = ticks;
5076		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5077			/*
5078			 * Rfgain is out of bounds, reset the chip
5079			 * to load new gain values.
5080			 */
5081			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5082				"%s: rfgain change\n", __func__);
5083			sc->sc_stats.ast_per_rfgain++;
5084			sc->sc_resetcal = 0;
5085			sc->sc_doresetcal = AH_TRUE;
5086			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5087			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5088			return;
5089		}
5090		/*
5091		 * If this long cal is after an idle period, then
5092		 * reset the data collection state so we start fresh.
5093		 */
5094		if (sc->sc_resetcal) {
5095			(void) ath_hal_calreset(ah, sc->sc_curchan);
5096			sc->sc_lastcalreset = ticks;
5097			sc->sc_lastshortcal = ticks;
5098			sc->sc_resetcal = 0;
5099			sc->sc_doresetcal = AH_TRUE;
5100		}
5101	}
5102
5103	/* Only call if we're doing a short/long cal, not for ANI calibration */
5104	if (shortCal || longCal) {
5105		isCalDone = AH_FALSE;
5106		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5107			if (longCal) {
5108				/*
5109				 * Calibrate noise floor data again in case of change.
5110				 */
5111				ath_hal_process_noisefloor(ah);
5112			}
5113		} else {
5114			DPRINTF(sc, ATH_DEBUG_ANY,
5115				"%s: calibration of channel %u failed\n",
5116				__func__, sc->sc_curchan->ic_freq);
5117			sc->sc_stats.ast_per_calfail++;
5118		}
5119		if (shortCal)
5120			sc->sc_lastshortcal = ticks;
5121	}
5122	if (!isCalDone) {
5123restart:
5124		/*
5125		 * Use a shorter interval to potentially collect multiple
5126		 * data samples required to complete calibration.  Once
5127		 * we're told the work is done we drop back to a longer
5128		 * interval between requests.  We're more aggressive doing
5129		 * work when operating as an AP to improve operation right
5130		 * after startup.
5131		 */
5132		sc->sc_lastshortcal = ticks;
5133		nextcal = ath_shortcalinterval*hz/1000;
5134		if (sc->sc_opmode != HAL_M_HOSTAP)
5135			nextcal *= 10;
5136		sc->sc_doresetcal = AH_TRUE;
5137	} else {
5138		/* nextcal should be the shortest time for next event */
5139		nextcal = ath_longcalinterval*hz;
5140		if (sc->sc_lastcalreset == 0)
5141			sc->sc_lastcalreset = sc->sc_lastlongcal;
5142		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5143			sc->sc_resetcal = 1;	/* setup reset next trip */
5144		sc->sc_doresetcal = AH_FALSE;
5145	}
5146	/* ANI calibration may occur more often than short/long/resetcal */
5147	if (ath_anicalinterval > 0)
5148		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5149
5150	if (nextcal != 0) {
5151		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5152		    __func__, nextcal, isCalDone ? "" : "!");
5153		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5154	} else {
5155		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5156		    __func__);
5157		/* NB: don't rearm timer */
5158	}
5159}
5160
5161static void
5162ath_scan_start(struct ieee80211com *ic)
5163{
5164	struct ifnet *ifp = ic->ic_ifp;
5165	struct ath_softc *sc = ifp->if_softc;
5166	struct ath_hal *ah = sc->sc_ah;
5167	u_int32_t rfilt;
5168
5169	/* XXX calibration timer? */
5170
5171	ATH_LOCK(sc);
5172	sc->sc_scanning = 1;
5173	sc->sc_syncbeacon = 0;
5174	rfilt = ath_calcrxfilter(sc);
5175	ATH_UNLOCK(sc);
5176
5177	ATH_PCU_LOCK(sc);
5178	ath_hal_setrxfilter(ah, rfilt);
5179	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5180	ATH_PCU_UNLOCK(sc);
5181
5182	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5183		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5184}
5185
5186static void
5187ath_scan_end(struct ieee80211com *ic)
5188{
5189	struct ifnet *ifp = ic->ic_ifp;
5190	struct ath_softc *sc = ifp->if_softc;
5191	struct ath_hal *ah = sc->sc_ah;
5192	u_int32_t rfilt;
5193
5194	ATH_LOCK(sc);
5195	sc->sc_scanning = 0;
5196	rfilt = ath_calcrxfilter(sc);
5197	ATH_UNLOCK(sc);
5198
5199	ATH_PCU_LOCK(sc);
5200	ath_hal_setrxfilter(ah, rfilt);
5201	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5202
5203	ath_hal_process_noisefloor(ah);
5204	ATH_PCU_UNLOCK(sc);
5205
5206	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5207		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5208		 sc->sc_curaid);
5209}
5210
5211#ifdef	ATH_ENABLE_11N
5212/*
5213 * For now, just do a channel change.
5214 *
5215 * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5216 * control state and resetting the hardware without dropping frames out
5217 * of the queue.
5218 *
5219 * The unfortunate trouble here is making absolutely sure that the
5220 * channel width change has propagated enough so the hardware
5221 * absolutely isn't handed bogus frames for it's current operating
5222 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5223 * does occur in parallel, we need to make certain we've blocked
5224 * any further ongoing TX (and RX, that can cause raw TX)
5225 * before we do this.
5226 */
5227static void
5228ath_update_chw(struct ieee80211com *ic)
5229{
5230	struct ifnet *ifp = ic->ic_ifp;
5231	struct ath_softc *sc = ifp->if_softc;
5232
5233	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5234	ath_set_channel(ic);
5235}
5236#endif	/* ATH_ENABLE_11N */
5237
5238static void
5239ath_set_channel(struct ieee80211com *ic)
5240{
5241	struct ifnet *ifp = ic->ic_ifp;
5242	struct ath_softc *sc = ifp->if_softc;
5243
5244	(void) ath_chan_set(sc, ic->ic_curchan);
5245	/*
5246	 * If we are returning to our bss channel then mark state
5247	 * so the next recv'd beacon's tsf will be used to sync the
5248	 * beacon timers.  Note that since we only hear beacons in
5249	 * sta/ibss mode this has no effect in other operating modes.
5250	 */
5251	ATH_LOCK(sc);
5252	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5253		sc->sc_syncbeacon = 1;
5254	ATH_UNLOCK(sc);
5255}
5256
5257/*
5258 * Walk the vap list and check if there any vap's in RUN state.
5259 */
5260static int
5261ath_isanyrunningvaps(struct ieee80211vap *this)
5262{
5263	struct ieee80211com *ic = this->iv_ic;
5264	struct ieee80211vap *vap;
5265
5266	IEEE80211_LOCK_ASSERT(ic);
5267
5268	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5269		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5270			return 1;
5271	}
5272	return 0;
5273}
5274
5275static int
5276ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5277{
5278	struct ieee80211com *ic = vap->iv_ic;
5279	struct ath_softc *sc = ic->ic_ifp->if_softc;
5280	struct ath_vap *avp = ATH_VAP(vap);
5281	struct ath_hal *ah = sc->sc_ah;
5282	struct ieee80211_node *ni = NULL;
5283	int i, error, stamode;
5284	u_int32_t rfilt;
5285	int csa_run_transition = 0;
5286
5287	static const HAL_LED_STATE leds[] = {
5288	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5289	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5290	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5291	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5292	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5293	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5294	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5295	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5296	};
5297
5298	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5299		ieee80211_state_name[vap->iv_state],
5300		ieee80211_state_name[nstate]);
5301
5302	/*
5303	 * net80211 _should_ have the comlock asserted at this point.
5304	 * There are some comments around the calls to vap->iv_newstate
5305	 * which indicate that it (newstate) may end up dropping the
5306	 * lock.  This and the subsequent lock assert check after newstate
5307	 * are an attempt to catch these and figure out how/why.
5308	 */
5309	IEEE80211_LOCK_ASSERT(ic);
5310
5311	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5312		csa_run_transition = 1;
5313
5314	callout_drain(&sc->sc_cal_ch);
5315	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5316
5317	if (nstate == IEEE80211_S_SCAN) {
5318		/*
5319		 * Scanning: turn off beacon miss and don't beacon.
5320		 * Mark beacon state so when we reach RUN state we'll
5321		 * [re]setup beacons.  Unblock the task q thread so
5322		 * deferred interrupt processing is done.
5323		 */
5324		ath_hal_intrset(ah,
5325		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5326		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5327		sc->sc_beacons = 0;
5328		taskqueue_unblock(sc->sc_tq);
5329	}
5330
5331	ni = ieee80211_ref_node(vap->iv_bss);
5332	rfilt = ath_calcrxfilter(sc);
5333	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5334		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5335		   vap->iv_opmode == IEEE80211_M_IBSS);
5336	if (stamode && nstate == IEEE80211_S_RUN) {
5337		sc->sc_curaid = ni->ni_associd;
5338		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5339		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5340	}
5341	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5342	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5343	ath_hal_setrxfilter(ah, rfilt);
5344
5345	/* XXX is this to restore keycache on resume? */
5346	if (vap->iv_opmode != IEEE80211_M_STA &&
5347	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5348		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5349			if (ath_hal_keyisvalid(ah, i))
5350				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5351	}
5352
5353	/*
5354	 * Invoke the parent method to do net80211 work.
5355	 */
5356	error = avp->av_newstate(vap, nstate, arg);
5357	if (error != 0)
5358		goto bad;
5359
5360	/*
5361	 * See above: ensure av_newstate() doesn't drop the lock
5362	 * on us.
5363	 */
5364	IEEE80211_LOCK_ASSERT(ic);
5365
5366	if (nstate == IEEE80211_S_RUN) {
5367		/* NB: collect bss node again, it may have changed */
5368		ieee80211_free_node(ni);
5369		ni = ieee80211_ref_node(vap->iv_bss);
5370
5371		DPRINTF(sc, ATH_DEBUG_STATE,
5372		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5373		    "capinfo 0x%04x chan %d\n", __func__,
5374		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5375		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5376
5377		switch (vap->iv_opmode) {
5378#ifdef IEEE80211_SUPPORT_TDMA
5379		case IEEE80211_M_AHDEMO:
5380			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5381				break;
5382			/* fall thru... */
5383#endif
5384		case IEEE80211_M_HOSTAP:
5385		case IEEE80211_M_IBSS:
5386		case IEEE80211_M_MBSS:
5387			/*
5388			 * Allocate and setup the beacon frame.
5389			 *
5390			 * Stop any previous beacon DMA.  This may be
5391			 * necessary, for example, when an ibss merge
5392			 * causes reconfiguration; there will be a state
5393			 * transition from RUN->RUN that means we may
5394			 * be called with beacon transmission active.
5395			 */
5396			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5397
5398			error = ath_beacon_alloc(sc, ni);
5399			if (error != 0)
5400				goto bad;
5401			/*
5402			 * If joining an adhoc network defer beacon timer
5403			 * configuration to the next beacon frame so we
5404			 * have a current TSF to use.  Otherwise we're
5405			 * starting an ibss/bss so there's no need to delay;
5406			 * if this is the first vap moving to RUN state, then
5407			 * beacon state needs to be [re]configured.
5408			 */
5409			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5410			    ni->ni_tstamp.tsf != 0) {
5411				sc->sc_syncbeacon = 1;
5412			} else if (!sc->sc_beacons) {
5413#ifdef IEEE80211_SUPPORT_TDMA
5414				if (vap->iv_caps & IEEE80211_C_TDMA)
5415					ath_tdma_config(sc, vap);
5416				else
5417#endif
5418					ath_beacon_config(sc, vap);
5419				sc->sc_beacons = 1;
5420			}
5421			break;
5422		case IEEE80211_M_STA:
5423			/*
5424			 * Defer beacon timer configuration to the next
5425			 * beacon frame so we have a current TSF to use
5426			 * (any TSF collected when scanning is likely old).
5427			 * However if it's due to a CSA -> RUN transition,
5428			 * force a beacon update so we pick up a lack of
5429			 * beacons from an AP in CAC and thus force a
5430			 * scan.
5431			 *
5432			 * And, there's also corner cases here where
5433			 * after a scan, the AP may have disappeared.
5434			 * In that case, we may not receive an actual
5435			 * beacon to update the beacon timer and thus we
5436			 * won't get notified of the missing beacons.
5437			 */
5438			sc->sc_syncbeacon = 1;
5439#if 0
5440			if (csa_run_transition)
5441#endif
5442				ath_beacon_config(sc, vap);
5443
5444			/*
5445			 * PR: kern/175227
5446			 *
5447			 * Reconfigure beacons during reset; as otherwise
5448			 * we won't get the beacon timers reprogrammed
5449			 * after a reset and thus we won't pick up a
5450			 * beacon miss interrupt.
5451			 *
5452			 * Hopefully we'll see a beacon before the BMISS
5453			 * timer fires (too often), leading to a STA
5454			 * disassociation.
5455			 */
5456			sc->sc_beacons = 1;
5457			break;
5458		case IEEE80211_M_MONITOR:
5459			/*
5460			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5461			 * transitions so we must re-enable interrupts here to
5462			 * handle the case of a single monitor mode vap.
5463			 */
5464			ath_hal_intrset(ah, sc->sc_imask);
5465			break;
5466		case IEEE80211_M_WDS:
5467			break;
5468		default:
5469			break;
5470		}
5471		/*
5472		 * Let the hal process statistics collected during a
5473		 * scan so it can provide calibrated noise floor data.
5474		 */
5475		ath_hal_process_noisefloor(ah);
5476		/*
5477		 * Reset rssi stats; maybe not the best place...
5478		 */
5479		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5480		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5481		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5482		/*
5483		 * Finally, start any timers and the task q thread
5484		 * (in case we didn't go through SCAN state).
5485		 */
5486		if (ath_longcalinterval != 0) {
5487			/* start periodic recalibration timer */
5488			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5489		} else {
5490			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5491			    "%s: calibration disabled\n", __func__);
5492		}
5493		taskqueue_unblock(sc->sc_tq);
5494	} else if (nstate == IEEE80211_S_INIT) {
5495		/*
5496		 * If there are no vaps left in RUN state then
5497		 * shutdown host/driver operation:
5498		 * o disable interrupts
5499		 * o disable the task queue thread
5500		 * o mark beacon processing as stopped
5501		 */
5502		if (!ath_isanyrunningvaps(vap)) {
5503			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5504			/* disable interrupts  */
5505			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5506			taskqueue_block(sc->sc_tq);
5507			sc->sc_beacons = 0;
5508		}
5509#ifdef IEEE80211_SUPPORT_TDMA
5510		ath_hal_setcca(ah, AH_TRUE);
5511#endif
5512	}
5513bad:
5514	ieee80211_free_node(ni);
5515	return error;
5516}
5517
5518/*
5519 * Allocate a key cache slot to the station so we can
5520 * setup a mapping from key index to node. The key cache
5521 * slot is needed for managing antenna state and for
5522 * compression when stations do not use crypto.  We do
5523 * it uniliaterally here; if crypto is employed this slot
5524 * will be reassigned.
5525 */
5526static void
5527ath_setup_stationkey(struct ieee80211_node *ni)
5528{
5529	struct ieee80211vap *vap = ni->ni_vap;
5530	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5531	ieee80211_keyix keyix, rxkeyix;
5532
5533	/* XXX should take a locked ref to vap->iv_bss */
5534	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5535		/*
5536		 * Key cache is full; we'll fall back to doing
5537		 * the more expensive lookup in software.  Note
5538		 * this also means no h/w compression.
5539		 */
5540		/* XXX msg+statistic */
5541	} else {
5542		/* XXX locking? */
5543		ni->ni_ucastkey.wk_keyix = keyix;
5544		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5545		/* NB: must mark device key to get called back on delete */
5546		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5547		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5548		/* NB: this will create a pass-thru key entry */
5549		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
5550	}
5551}
5552
5553/*
5554 * Setup driver-specific state for a newly associated node.
5555 * Note that we're called also on a re-associate, the isnew
5556 * param tells us if this is the first time or not.
5557 */
5558static void
5559ath_newassoc(struct ieee80211_node *ni, int isnew)
5560{
5561	struct ath_node *an = ATH_NODE(ni);
5562	struct ieee80211vap *vap = ni->ni_vap;
5563	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5564	const struct ieee80211_txparam *tp = ni->ni_txparms;
5565
5566	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5567	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5568
5569	ath_rate_newassoc(sc, an, isnew);
5570
5571	if (isnew &&
5572	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5573	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5574		ath_setup_stationkey(ni);
5575
5576	/*
5577	 * If we're reassociating, make sure that any paused queues
5578	 * get unpaused.
5579	 *
5580	 * Now, we may hvae frames in the hardware queue for this node.
5581	 * So if we are reassociating and there are frames in the queue,
5582	 * we need to go through the cleanup path to ensure that they're
5583	 * marked as non-aggregate.
5584	 */
5585	if (! isnew) {
5586		DPRINTF(sc, ATH_DEBUG_NODE,
5587		    "%s: %6D: reassoc; is_powersave=%d\n",
5588		    __func__,
5589		    ni->ni_macaddr,
5590		    ":",
5591		    an->an_is_powersave);
5592
5593		/* XXX for now, we can't hold the lock across assoc */
5594		ath_tx_node_reassoc(sc, an);
5595
5596		/* XXX for now, we can't hold the lock across wakeup */
5597		if (an->an_is_powersave)
5598			ath_tx_node_wakeup(sc, an);
5599	}
5600}
5601
5602static int
5603ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5604	int nchans, struct ieee80211_channel chans[])
5605{
5606	struct ath_softc *sc = ic->ic_ifp->if_softc;
5607	struct ath_hal *ah = sc->sc_ah;
5608	HAL_STATUS status;
5609
5610	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5611	    "%s: rd %u cc %u location %c%s\n",
5612	    __func__, reg->regdomain, reg->country, reg->location,
5613	    reg->ecm ? " ecm" : "");
5614
5615	status = ath_hal_set_channels(ah, chans, nchans,
5616	    reg->country, reg->regdomain);
5617	if (status != HAL_OK) {
5618		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5619		    __func__, status);
5620		return EINVAL;		/* XXX */
5621	}
5622
5623	return 0;
5624}
5625
5626static void
5627ath_getradiocaps(struct ieee80211com *ic,
5628	int maxchans, int *nchans, struct ieee80211_channel chans[])
5629{
5630	struct ath_softc *sc = ic->ic_ifp->if_softc;
5631	struct ath_hal *ah = sc->sc_ah;
5632
5633	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5634	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5635
5636	/* XXX check return */
5637	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5638	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5639
5640}
5641
5642static int
5643ath_getchannels(struct ath_softc *sc)
5644{
5645	struct ifnet *ifp = sc->sc_ifp;
5646	struct ieee80211com *ic = ifp->if_l2com;
5647	struct ath_hal *ah = sc->sc_ah;
5648	HAL_STATUS status;
5649
5650	/*
5651	 * Collect channel set based on EEPROM contents.
5652	 */
5653	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5654	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5655	if (status != HAL_OK) {
5656		if_printf(ifp, "%s: unable to collect channel list from hal, "
5657		    "status %d\n", __func__, status);
5658		return EINVAL;
5659	}
5660	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5661	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5662	/* XXX map Atheros sku's to net80211 SKU's */
5663	/* XXX net80211 types too small */
5664	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5665	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5666	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5667	ic->ic_regdomain.isocc[1] = ' ';
5668
5669	ic->ic_regdomain.ecm = 1;
5670	ic->ic_regdomain.location = 'I';
5671
5672	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5673	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5674	    __func__, sc->sc_eerd, sc->sc_eecc,
5675	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5676	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5677	return 0;
5678}
5679
5680static int
5681ath_rate_setup(struct ath_softc *sc, u_int mode)
5682{
5683	struct ath_hal *ah = sc->sc_ah;
5684	const HAL_RATE_TABLE *rt;
5685
5686	switch (mode) {
5687	case IEEE80211_MODE_11A:
5688		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5689		break;
5690	case IEEE80211_MODE_HALF:
5691		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5692		break;
5693	case IEEE80211_MODE_QUARTER:
5694		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5695		break;
5696	case IEEE80211_MODE_11B:
5697		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5698		break;
5699	case IEEE80211_MODE_11G:
5700		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5701		break;
5702	case IEEE80211_MODE_TURBO_A:
5703		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5704		break;
5705	case IEEE80211_MODE_TURBO_G:
5706		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5707		break;
5708	case IEEE80211_MODE_STURBO_A:
5709		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5710		break;
5711	case IEEE80211_MODE_11NA:
5712		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5713		break;
5714	case IEEE80211_MODE_11NG:
5715		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5716		break;
5717	default:
5718		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5719			__func__, mode);
5720		return 0;
5721	}
5722	sc->sc_rates[mode] = rt;
5723	return (rt != NULL);
5724}
5725
5726static void
5727ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5728{
5729#define	N(a)	(sizeof(a)/sizeof(a[0]))
5730	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5731	static const struct {
5732		u_int		rate;		/* tx/rx 802.11 rate */
5733		u_int16_t	timeOn;		/* LED on time (ms) */
5734		u_int16_t	timeOff;	/* LED off time (ms) */
5735	} blinkrates[] = {
5736		{ 108,  40,  10 },
5737		{  96,  44,  11 },
5738		{  72,  50,  13 },
5739		{  48,  57,  14 },
5740		{  36,  67,  16 },
5741		{  24,  80,  20 },
5742		{  22, 100,  25 },
5743		{  18, 133,  34 },
5744		{  12, 160,  40 },
5745		{  10, 200,  50 },
5746		{   6, 240,  58 },
5747		{   4, 267,  66 },
5748		{   2, 400, 100 },
5749		{   0, 500, 130 },
5750		/* XXX half/quarter rates */
5751	};
5752	const HAL_RATE_TABLE *rt;
5753	int i, j;
5754
5755	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5756	rt = sc->sc_rates[mode];
5757	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5758	for (i = 0; i < rt->rateCount; i++) {
5759		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5760		if (rt->info[i].phy != IEEE80211_T_HT)
5761			sc->sc_rixmap[ieeerate] = i;
5762		else
5763			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5764	}
5765	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5766	for (i = 0; i < N(sc->sc_hwmap); i++) {
5767		if (i >= rt->rateCount) {
5768			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5769			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5770			continue;
5771		}
5772		sc->sc_hwmap[i].ieeerate =
5773			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5774		if (rt->info[i].phy == IEEE80211_T_HT)
5775			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5776		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5777		if (rt->info[i].shortPreamble ||
5778		    rt->info[i].phy == IEEE80211_T_OFDM)
5779			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5780		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5781		for (j = 0; j < N(blinkrates)-1; j++)
5782			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5783				break;
5784		/* NB: this uses the last entry if the rate isn't found */
5785		/* XXX beware of overlow */
5786		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5787		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5788	}
5789	sc->sc_currates = rt;
5790	sc->sc_curmode = mode;
5791	/*
5792	 * All protection frames are transmited at 2Mb/s for
5793	 * 11g, otherwise at 1Mb/s.
5794	 */
5795	if (mode == IEEE80211_MODE_11G)
5796		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5797	else
5798		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5799	/* NB: caller is responsible for resetting rate control state */
5800#undef N
5801}
5802
5803static void
5804ath_watchdog(void *arg)
5805{
5806	struct ath_softc *sc = arg;
5807	int do_reset = 0;
5808
5809	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5810		struct ifnet *ifp = sc->sc_ifp;
5811		uint32_t hangs;
5812
5813		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5814		    hangs != 0) {
5815			if_printf(ifp, "%s hang detected (0x%x)\n",
5816			    hangs & 0xff ? "bb" : "mac", hangs);
5817		} else
5818			if_printf(ifp, "device timeout\n");
5819		do_reset = 1;
5820		ifp->if_oerrors++;
5821		sc->sc_stats.ast_watchdog++;
5822	}
5823
5824	/*
5825	 * We can't hold the lock across the ath_reset() call.
5826	 *
5827	 * And since this routine can't hold a lock and sleep,
5828	 * do the reset deferred.
5829	 */
5830	if (do_reset) {
5831		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5832	}
5833
5834	callout_schedule(&sc->sc_wd_ch, hz);
5835}
5836
5837/*
5838 * Fetch the rate control statistics for the given node.
5839 */
5840static int
5841ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
5842{
5843	struct ath_node *an;
5844	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5845	struct ieee80211_node *ni;
5846	int error = 0;
5847
5848	/* Perform a lookup on the given node */
5849	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
5850	if (ni == NULL) {
5851		error = EINVAL;
5852		goto bad;
5853	}
5854
5855	/* Lock the ath_node */
5856	an = ATH_NODE(ni);
5857	ATH_NODE_LOCK(an);
5858
5859	/* Fetch the rate control stats for this node */
5860	error = ath_rate_fetch_node_stats(sc, an, rs);
5861
5862	/* No matter what happens here, just drop through */
5863
5864	/* Unlock the ath_node */
5865	ATH_NODE_UNLOCK(an);
5866
5867	/* Unref the node */
5868	ieee80211_node_decref(ni);
5869
5870bad:
5871	return (error);
5872}
5873
5874#ifdef ATH_DIAGAPI
5875/*
5876 * Diagnostic interface to the HAL.  This is used by various
5877 * tools to do things like retrieve register contents for
5878 * debugging.  The mechanism is intentionally opaque so that
5879 * it can change frequently w/o concern for compatiblity.
5880 */
5881static int
5882ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5883{
5884	struct ath_hal *ah = sc->sc_ah;
5885	u_int id = ad->ad_id & ATH_DIAG_ID;
5886	void *indata = NULL;
5887	void *outdata = NULL;
5888	u_int32_t insize = ad->ad_in_size;
5889	u_int32_t outsize = ad->ad_out_size;
5890	int error = 0;
5891
5892	if (ad->ad_id & ATH_DIAG_IN) {
5893		/*
5894		 * Copy in data.
5895		 */
5896		indata = malloc(insize, M_TEMP, M_NOWAIT);
5897		if (indata == NULL) {
5898			error = ENOMEM;
5899			goto bad;
5900		}
5901		error = copyin(ad->ad_in_data, indata, insize);
5902		if (error)
5903			goto bad;
5904	}
5905	if (ad->ad_id & ATH_DIAG_DYN) {
5906		/*
5907		 * Allocate a buffer for the results (otherwise the HAL
5908		 * returns a pointer to a buffer where we can read the
5909		 * results).  Note that we depend on the HAL leaving this
5910		 * pointer for us to use below in reclaiming the buffer;
5911		 * may want to be more defensive.
5912		 */
5913		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5914		if (outdata == NULL) {
5915			error = ENOMEM;
5916			goto bad;
5917		}
5918	}
5919	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5920		if (outsize < ad->ad_out_size)
5921			ad->ad_out_size = outsize;
5922		if (outdata != NULL)
5923			error = copyout(outdata, ad->ad_out_data,
5924					ad->ad_out_size);
5925	} else {
5926		error = EINVAL;
5927	}
5928bad:
5929	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5930		free(indata, M_TEMP);
5931	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5932		free(outdata, M_TEMP);
5933	return error;
5934}
5935#endif /* ATH_DIAGAPI */
5936
5937static int
5938ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5939{
5940#define	IS_RUNNING(ifp) \
5941	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5942	struct ath_softc *sc = ifp->if_softc;
5943	struct ieee80211com *ic = ifp->if_l2com;
5944	struct ifreq *ifr = (struct ifreq *)data;
5945	const HAL_RATE_TABLE *rt;
5946	int error = 0;
5947
5948	switch (cmd) {
5949	case SIOCSIFFLAGS:
5950		ATH_LOCK(sc);
5951		if (IS_RUNNING(ifp)) {
5952			/*
5953			 * To avoid rescanning another access point,
5954			 * do not call ath_init() here.  Instead,
5955			 * only reflect promisc mode settings.
5956			 */
5957			ath_mode_init(sc);
5958		} else if (ifp->if_flags & IFF_UP) {
5959			/*
5960			 * Beware of being called during attach/detach
5961			 * to reset promiscuous mode.  In that case we
5962			 * will still be marked UP but not RUNNING.
5963			 * However trying to re-init the interface
5964			 * is the wrong thing to do as we've already
5965			 * torn down much of our state.  There's
5966			 * probably a better way to deal with this.
5967			 */
5968			if (!sc->sc_invalid)
5969				ath_init(sc);	/* XXX lose error */
5970		} else {
5971			ath_stop_locked(ifp);
5972#ifdef notyet
5973			/* XXX must wakeup in places like ath_vap_delete */
5974			if (!sc->sc_invalid)
5975				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5976#endif
5977		}
5978		ATH_UNLOCK(sc);
5979		break;
5980	case SIOCGIFMEDIA:
5981	case SIOCSIFMEDIA:
5982		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5983		break;
5984	case SIOCGATHSTATS:
5985		/* NB: embed these numbers to get a consistent view */
5986		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5987		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5988		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5989		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5990#ifdef IEEE80211_SUPPORT_TDMA
5991		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
5992		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
5993#endif
5994		rt = sc->sc_currates;
5995		sc->sc_stats.ast_tx_rate =
5996		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
5997		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
5998			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
5999		return copyout(&sc->sc_stats,
6000		    ifr->ifr_data, sizeof (sc->sc_stats));
6001	case SIOCGATHAGSTATS:
6002		return copyout(&sc->sc_aggr_stats,
6003		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
6004	case SIOCZATHSTATS:
6005		error = priv_check(curthread, PRIV_DRIVER);
6006		if (error == 0) {
6007			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6008			memset(&sc->sc_aggr_stats, 0,
6009			    sizeof(sc->sc_aggr_stats));
6010			memset(&sc->sc_intr_stats, 0,
6011			    sizeof(sc->sc_intr_stats));
6012		}
6013		break;
6014#ifdef ATH_DIAGAPI
6015	case SIOCGATHDIAG:
6016		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6017		break;
6018	case SIOCGATHPHYERR:
6019		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
6020		break;
6021#endif
6022	case SIOCGATHSPECTRAL:
6023		error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
6024		break;
6025	case SIOCGATHNODERATESTATS:
6026		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
6027		break;
6028	case SIOCGIFADDR:
6029		error = ether_ioctl(ifp, cmd, data);
6030		break;
6031	default:
6032		error = EINVAL;
6033		break;
6034	}
6035	return error;
6036#undef IS_RUNNING
6037}
6038
6039/*
6040 * Announce various information on device/driver attach.
6041 */
6042static void
6043ath_announce(struct ath_softc *sc)
6044{
6045	struct ifnet *ifp = sc->sc_ifp;
6046	struct ath_hal *ah = sc->sc_ah;
6047
6048	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6049		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6050		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6051	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6052		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6053	if (bootverbose) {
6054		int i;
6055		for (i = 0; i <= WME_AC_VO; i++) {
6056			struct ath_txq *txq = sc->sc_ac2q[i];
6057			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6058				txq->axq_qnum, ieee80211_wme_acnames[i]);
6059		}
6060		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6061			sc->sc_cabq->axq_qnum);
6062		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6063	}
6064	if (ath_rxbuf != ATH_RXBUF)
6065		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6066	if (ath_txbuf != ATH_TXBUF)
6067		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6068	if (sc->sc_mcastkey && bootverbose)
6069		if_printf(ifp, "using multicast key search\n");
6070}
6071
6072static void
6073ath_dfs_tasklet(void *p, int npending)
6074{
6075	struct ath_softc *sc = (struct ath_softc *) p;
6076	struct ifnet *ifp = sc->sc_ifp;
6077	struct ieee80211com *ic = ifp->if_l2com;
6078
6079	/*
6080	 * If previous processing has found a radar event,
6081	 * signal this to the net80211 layer to begin DFS
6082	 * processing.
6083	 */
6084	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6085		/* DFS event found, initiate channel change */
6086		/*
6087		 * XXX doesn't currently tell us whether the event
6088		 * XXX was found in the primary or extension
6089		 * XXX channel!
6090		 */
6091		IEEE80211_LOCK(ic);
6092		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6093		IEEE80211_UNLOCK(ic);
6094	}
6095}
6096
6097/*
6098 * Enable/disable power save.  This must be called with
6099 * no TX driver locks currently held, so it should only
6100 * be called from the RX path (which doesn't hold any
6101 * TX driver locks.)
6102 */
6103static void
6104ath_node_powersave(struct ieee80211_node *ni, int enable)
6105{
6106#ifdef	ATH_SW_PSQ
6107	struct ath_node *an = ATH_NODE(ni);
6108	struct ieee80211com *ic = ni->ni_ic;
6109	struct ath_softc *sc = ic->ic_ifp->if_softc;
6110	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6111
6112	/* XXX and no TXQ locks should be held here */
6113
6114	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n",
6115	    __func__,
6116	    ni->ni_macaddr,
6117	    ":",
6118	    !! enable);
6119
6120	/* Suspend or resume software queue handling */
6121	if (enable)
6122		ath_tx_node_sleep(sc, an);
6123	else
6124		ath_tx_node_wakeup(sc, an);
6125
6126	/* Update net80211 state */
6127	avp->av_node_ps(ni, enable);
6128#else
6129	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6130
6131	/* Update net80211 state */
6132	avp->av_node_ps(ni, enable);
6133#endif/* ATH_SW_PSQ */
6134}
6135
6136/*
6137 * Notification from net80211 that the powersave queue state has
6138 * changed.
6139 *
6140 * Since the software queue also may have some frames:
6141 *
6142 * + if the node software queue has frames and the TID state
6143 *   is 0, we set the TIM;
6144 * + if the node and the stack are both empty, we clear the TIM bit.
6145 * + If the stack tries to set the bit, always set it.
6146 * + If the stack tries to clear the bit, only clear it if the
6147 *   software queue in question is also cleared.
6148 *
6149 * TODO: this is called during node teardown; so let's ensure this
6150 * is all correctly handled and that the TIM bit is cleared.
6151 * It may be that the node flush is called _AFTER_ the net80211
6152 * stack clears the TIM.
6153 *
6154 * Here is the racy part.  Since it's possible >1 concurrent,
6155 * overlapping TXes will appear complete with a TX completion in
6156 * another thread, it's possible that the concurrent TIM calls will
6157 * clash.  We can't hold the node lock here because setting the
6158 * TIM grabs the net80211 comlock and this may cause a LOR.
6159 * The solution is either to totally serialise _everything_ at
6160 * this point (ie, all TX, completion and any reset/flush go into
6161 * one taskqueue) or a new "ath TIM lock" needs to be created that
6162 * just wraps the driver state change and this call to avp->av_set_tim().
6163 *
6164 * The same race exists in the net80211 power save queue handling
6165 * as well.  Since multiple transmitting threads may queue frames
6166 * into the driver, as well as ps-poll and the driver transmitting
6167 * frames (and thus clearing the psq), it's quite possible that
6168 * a packet entering the PSQ and a ps-poll being handled will
6169 * race, causing the TIM to be cleared and not re-set.
6170 */
6171static int
6172ath_node_set_tim(struct ieee80211_node *ni, int enable)
6173{
6174#ifdef	ATH_SW_PSQ
6175	struct ieee80211com *ic = ni->ni_ic;
6176	struct ath_softc *sc = ic->ic_ifp->if_softc;
6177	struct ath_node *an = ATH_NODE(ni);
6178	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6179	int changed = 0;
6180
6181	ATH_TX_LOCK(sc);
6182	an->an_stack_psq = enable;
6183
6184	/*
6185	 * This will get called for all operating modes,
6186	 * even if avp->av_set_tim is unset.
6187	 * It's currently set for hostap/ibss modes; but
6188	 * the same infrastructure is used for both STA
6189	 * and AP/IBSS node power save.
6190	 */
6191	if (avp->av_set_tim == NULL) {
6192		ATH_TX_UNLOCK(sc);
6193		return (0);
6194	}
6195
6196	/*
6197	 * If setting the bit, always set it here.
6198	 * If clearing the bit, only clear it if the
6199	 * software queue is also empty.
6200	 *
6201	 * If the node has left power save, just clear the TIM
6202	 * bit regardless of the state of the power save queue.
6203	 *
6204	 * XXX TODO: although atomics are used, it's quite possible
6205	 * that a race will occur between this and setting/clearing
6206	 * in another thread.  TX completion will occur always in
6207	 * one thread, however setting/clearing the TIM bit can come
6208	 * from a variety of different process contexts!
6209	 */
6210	if (enable && an->an_tim_set == 1) {
6211		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6212		    "%s: %6D: enable=%d, tim_set=1, ignoring\n",
6213		    __func__,
6214		    ni->ni_macaddr,
6215		    ":",
6216		    enable);
6217		ATH_TX_UNLOCK(sc);
6218	} else if (enable) {
6219		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6220		    "%s: %6D: enable=%d, enabling TIM\n",
6221		    __func__,
6222		    ni->ni_macaddr,
6223		    ":",
6224		    enable);
6225		an->an_tim_set = 1;
6226		ATH_TX_UNLOCK(sc);
6227		changed = avp->av_set_tim(ni, enable);
6228	} else if (an->an_swq_depth == 0) {
6229		/* disable */
6230		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6231		    "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n",
6232		    __func__,
6233		    ni->ni_macaddr,
6234		    ":",
6235		    enable);
6236		an->an_tim_set = 0;
6237		ATH_TX_UNLOCK(sc);
6238		changed = avp->av_set_tim(ni, enable);
6239	} else if (! an->an_is_powersave) {
6240		/*
6241		 * disable regardless; the node isn't in powersave now
6242		 */
6243		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6244		    "%s: %6D: enable=%d, an_pwrsave=0, disabling\n",
6245		    __func__,
6246		    ni->ni_macaddr,
6247		    ":",
6248		    enable);
6249		an->an_tim_set = 0;
6250		ATH_TX_UNLOCK(sc);
6251		changed = avp->av_set_tim(ni, enable);
6252	} else {
6253		/*
6254		 * psq disable, node is currently in powersave, node
6255		 * software queue isn't empty, so don't clear the TIM bit
6256		 * for now.
6257		 */
6258		ATH_TX_UNLOCK(sc);
6259		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6260		    "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n",
6261		    __func__,
6262		    ni->ni_macaddr,
6263		    ":",
6264		    enable);
6265		changed = 0;
6266	}
6267
6268	return (changed);
6269#else
6270	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6271
6272	/*
6273	 * Some operating modes don't set av_set_tim(), so don't
6274	 * update it here.
6275	 */
6276	if (avp->av_set_tim == NULL)
6277		return (0);
6278
6279	return (avp->av_set_tim(ni, enable));
6280#endif /* ATH_SW_PSQ */
6281}
6282
6283/*
6284 * Set or update the TIM from the software queue.
6285 *
6286 * Check the software queue depth before attempting to do lock
6287 * anything; that avoids trying to obtain the lock.  Then,
6288 * re-check afterwards to ensure nothing has changed in the
6289 * meantime.
6290 *
6291 * set:   This is designed to be called from the TX path, after
6292 *        a frame has been queued; to see if the swq > 0.
6293 *
6294 * clear: This is designed to be called from the buffer completion point
6295 *        (right now it's ath_tx_default_comp()) where the state of
6296 *        a software queue has changed.
6297 *
6298 * It makes sense to place it at buffer free / completion rather
6299 * than after each software queue operation, as there's no real
6300 * point in churning the TIM bit as the last frames in the software
6301 * queue are transmitted.  If they fail and we retry them, we'd
6302 * just be setting the TIM bit again anyway.
6303 */
6304void
6305ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
6306     int enable)
6307{
6308#ifdef	ATH_SW_PSQ
6309	struct ath_node *an;
6310	struct ath_vap *avp;
6311
6312	/* Don't do this for broadcast/etc frames */
6313	if (ni == NULL)
6314		return;
6315
6316	an = ATH_NODE(ni);
6317	avp = ATH_VAP(ni->ni_vap);
6318
6319	/*
6320	 * And for operating modes without the TIM handler set, let's
6321	 * just skip those.
6322	 */
6323	if (avp->av_set_tim == NULL)
6324		return;
6325
6326	ATH_TX_LOCK_ASSERT(sc);
6327
6328	if (enable) {
6329		if (an->an_is_powersave &&
6330		    an->an_tim_set == 0 &&
6331		    an->an_swq_depth != 0) {
6332			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6333			    "%s: %6D: swq_depth>0, tim_set=0, set!\n",
6334			    __func__,
6335			    ni->ni_macaddr,
6336			    ":");
6337			an->an_tim_set = 1;
6338			(void) avp->av_set_tim(ni, 1);
6339		}
6340	} else {
6341		/*
6342		 * Don't bother grabbing the lock unless the queue is empty.
6343		 */
6344		if (&an->an_swq_depth != 0)
6345			return;
6346
6347		if (an->an_is_powersave &&
6348		    an->an_stack_psq == 0 &&
6349		    an->an_tim_set == 1 &&
6350		    an->an_swq_depth == 0) {
6351			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6352			    "%s: %6D: swq_depth=0, tim_set=1, psq_set=0,"
6353			    " clear!\n",
6354			    __func__,
6355			    ni->ni_macaddr,
6356			    ":");
6357			an->an_tim_set = 0;
6358			(void) avp->av_set_tim(ni, 0);
6359		}
6360	}
6361#else
6362	return;
6363#endif	/* ATH_SW_PSQ */
6364}
6365
6366/*
6367 * Received a ps-poll frame from net80211.
6368 *
6369 * Here we get a chance to serve out a software-queued frame ourselves
6370 * before we punt it to net80211 to transmit us one itself - either
6371 * because there's traffic in the net80211 psq, or a NULL frame to
6372 * indicate there's nothing else.
6373 */
6374static void
6375ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
6376{
6377#ifdef	ATH_SW_PSQ
6378	struct ath_node *an;
6379	struct ath_vap *avp;
6380	struct ieee80211com *ic = ni->ni_ic;
6381	struct ath_softc *sc = ic->ic_ifp->if_softc;
6382	int tid;
6383
6384	/* Just paranoia */
6385	if (ni == NULL)
6386		return;
6387
6388	/*
6389	 * Unassociated (temporary node) station.
6390	 */
6391	if (ni->ni_associd == 0)
6392		return;
6393
6394	/*
6395	 * We do have an active node, so let's begin looking into it.
6396	 */
6397	an = ATH_NODE(ni);
6398	avp = ATH_VAP(ni->ni_vap);
6399
6400	/*
6401	 * For now, we just call the original ps-poll method.
6402	 * Once we're ready to flip this on:
6403	 *
6404	 * + Set leak to 1, as no matter what we're going to have
6405	 *   to send a frame;
6406	 * + Check the software queue and if there's something in it,
6407	 *   schedule the highest TID thas has traffic from this node.
6408	 *   Then make sure we schedule the software scheduler to
6409	 *   run so it picks up said frame.
6410	 *
6411	 * That way whatever happens, we'll at least send _a_ frame
6412	 * to the given node.
6413	 *
6414	 * Again, yes, it's crappy QoS if the node has multiple
6415	 * TIDs worth of traffic - but let's get it working first
6416	 * before we optimise it.
6417	 *
6418	 * Also yes, there's definitely latency here - we're not
6419	 * direct dispatching to the hardware in this path (and
6420	 * we're likely being called from the packet receive path,
6421	 * so going back into TX may be a little hairy!) but again
6422	 * I'd like to get this working first before optimising
6423	 * turn-around time.
6424	 */
6425
6426	ATH_TX_LOCK(sc);
6427
6428	/*
6429	 * Legacy - we're called and the node isn't asleep.
6430	 * Immediately punt.
6431	 */
6432	if (! an->an_is_powersave) {
6433		device_printf(sc->sc_dev,
6434		    "%s: %6D: not in powersave?\n",
6435		    __func__,
6436		    ni->ni_macaddr,
6437		    ":");
6438		ATH_TX_UNLOCK(sc);
6439		avp->av_recv_pspoll(ni, m);
6440		return;
6441	}
6442
6443	/*
6444	 * We're in powersave.
6445	 *
6446	 * Leak a frame.
6447	 */
6448	an->an_leak_count = 1;
6449
6450	/*
6451	 * Now, if there's no frames in the node, just punt to
6452	 * recv_pspoll.
6453	 *
6454	 * Don't bother checking if the TIM bit is set, we really
6455	 * only care if there are any frames here!
6456	 */
6457	if (an->an_swq_depth == 0) {
6458		ATH_TX_UNLOCK(sc);
6459		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6460		    "%s: %6D: SWQ empty; punting to net80211\n",
6461		    __func__,
6462		    ni->ni_macaddr,
6463		    ":");
6464		avp->av_recv_pspoll(ni, m);
6465		return;
6466	}
6467
6468	/*
6469	 * Ok, let's schedule the highest TID that has traffic
6470	 * and then schedule something.
6471	 */
6472	for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
6473		struct ath_tid *atid = &an->an_tid[tid];
6474		/*
6475		 * No frames? Skip.
6476		 */
6477		if (atid->axq_depth == 0)
6478			continue;
6479		ath_tx_tid_sched(sc, atid);
6480		/*
6481		 * XXX we could do a direct call to the TXQ
6482		 * scheduler code here to optimise latency
6483		 * at the expense of a REALLY deep callstack.
6484		 */
6485		ATH_TX_UNLOCK(sc);
6486		taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
6487		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6488		    "%s: %6D: leaking frame to TID %d\n",
6489		    __func__,
6490		    ni->ni_macaddr,
6491		    ":",
6492		    tid);
6493		return;
6494	}
6495
6496	ATH_TX_UNLOCK(sc);
6497
6498	/*
6499	 * XXX nothing in the TIDs at this point? Eek.
6500	 */
6501	device_printf(sc->sc_dev, "%s: %6D: TIDs empty, but ath_node showed traffic?!\n",
6502	    __func__,
6503	    ni->ni_macaddr,
6504	    ":");
6505	avp->av_recv_pspoll(ni, m);
6506#else
6507	avp->av_recv_pspoll(ni, m);
6508#endif	/* ATH_SW_PSQ */
6509}
6510
6511MODULE_VERSION(if_ath, 1);
6512MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
6513#if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
6514MODULE_DEPEND(if_ath, alq, 1, 1, 1);
6515#endif
6516