if_ath.c revision 251487
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 251487 2013-06-07 09:02:02Z adrian $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42/*
43 * This is needed for register operations which are performed
44 * by the driver - eg, calls to ath_hal_gettsf32().
45 *
46 * It's also required for any AH_DEBUG checks in here, eg the
47 * module dependencies.
48 */
49#include "opt_ah.h"
50#include "opt_wlan.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/sysctl.h>
55#include <sys/mbuf.h>
56#include <sys/malloc.h>
57#include <sys/lock.h>
58#include <sys/mutex.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/sockio.h>
62#include <sys/errno.h>
63#include <sys/callout.h>
64#include <sys/bus.h>
65#include <sys/endian.h>
66#include <sys/kthread.h>
67#include <sys/taskqueue.h>
68#include <sys/priv.h>
69#include <sys/module.h>
70#include <sys/ktr.h>
71#include <sys/smp.h>	/* for mp_ncpus */
72
73#include <machine/bus.h>
74
75#include <net/if.h>
76#include <net/if_dl.h>
77#include <net/if_media.h>
78#include <net/if_types.h>
79#include <net/if_arp.h>
80#include <net/ethernet.h>
81#include <net/if_llc.h>
82
83#include <net80211/ieee80211_var.h>
84#include <net80211/ieee80211_regdomain.h>
85#ifdef IEEE80211_SUPPORT_SUPERG
86#include <net80211/ieee80211_superg.h>
87#endif
88#ifdef IEEE80211_SUPPORT_TDMA
89#include <net80211/ieee80211_tdma.h>
90#endif
91
92#include <net/bpf.h>
93
94#ifdef INET
95#include <netinet/in.h>
96#include <netinet/if_ether.h>
97#endif
98
99#include <dev/ath/if_athvar.h>
100#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101#include <dev/ath/ath_hal/ah_diagcodes.h>
102
103#include <dev/ath/if_ath_debug.h>
104#include <dev/ath/if_ath_misc.h>
105#include <dev/ath/if_ath_tsf.h>
106#include <dev/ath/if_ath_tx.h>
107#include <dev/ath/if_ath_sysctl.h>
108#include <dev/ath/if_ath_led.h>
109#include <dev/ath/if_ath_keycache.h>
110#include <dev/ath/if_ath_rx.h>
111#include <dev/ath/if_ath_rx_edma.h>
112#include <dev/ath/if_ath_tx_edma.h>
113#include <dev/ath/if_ath_beacon.h>
114#include <dev/ath/if_ath_btcoex.h>
115#include <dev/ath/if_ath_spectral.h>
116#include <dev/ath/if_athdfs.h>
117
118#ifdef ATH_TX99_DIAG
119#include <dev/ath/ath_tx99/ath_tx99.h>
120#endif
121
122#ifdef	ATH_DEBUG_ALQ
123#include <dev/ath/if_ath_alq.h>
124#endif
125
126/*
127 * Only enable this if you're working on PS-POLL support.
128 */
129#define	ATH_SW_PSQ
130
131/*
132 * ATH_BCBUF determines the number of vap's that can transmit
133 * beacons and also (currently) the number of vap's that can
134 * have unique mac addresses/bssid.  When staggering beacons
135 * 4 is probably a good max as otherwise the beacons become
136 * very closely spaced and there is limited time for cab q traffic
137 * to go out.  You can burst beacons instead but that is not good
138 * for stations in power save and at some point you really want
139 * another radio (and channel).
140 *
141 * The limit on the number of mac addresses is tied to our use of
142 * the U/L bit and tracking addresses in a byte; it would be
143 * worthwhile to allow more for applications like proxy sta.
144 */
145CTASSERT(ATH_BCBUF <= 8);
146
147static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
148		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
149		    const uint8_t [IEEE80211_ADDR_LEN],
150		    const uint8_t [IEEE80211_ADDR_LEN]);
151static void	ath_vap_delete(struct ieee80211vap *);
152static void	ath_init(void *);
153static void	ath_stop_locked(struct ifnet *);
154static void	ath_stop(struct ifnet *);
155static int	ath_reset_vap(struct ieee80211vap *, u_long);
156static int	ath_transmit(struct ifnet *ifp, struct mbuf *m);
157static void	ath_qflush(struct ifnet *ifp);
158static int	ath_media_change(struct ifnet *);
159static void	ath_watchdog(void *);
160static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
161static void	ath_fatal_proc(void *, int);
162static void	ath_bmiss_vap(struct ieee80211vap *);
163static void	ath_bmiss_proc(void *, int);
164static void	ath_key_update_begin(struct ieee80211vap *);
165static void	ath_key_update_end(struct ieee80211vap *);
166static void	ath_update_mcast(struct ifnet *);
167static void	ath_update_promisc(struct ifnet *);
168static void	ath_updateslot(struct ifnet *);
169static void	ath_bstuck_proc(void *, int);
170static void	ath_reset_proc(void *, int);
171static int	ath_desc_alloc(struct ath_softc *);
172static void	ath_desc_free(struct ath_softc *);
173static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
174			const uint8_t [IEEE80211_ADDR_LEN]);
175static void	ath_node_cleanup(struct ieee80211_node *);
176static void	ath_node_free(struct ieee80211_node *);
177static void	ath_node_getsignal(const struct ieee80211_node *,
178			int8_t *, int8_t *);
179static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
180static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
181static int	ath_tx_setup(struct ath_softc *, int, int);
182static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
183static void	ath_tx_cleanup(struct ath_softc *);
184static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
185		    int dosched);
186static void	ath_tx_proc_q0(void *, int);
187static void	ath_tx_proc_q0123(void *, int);
188static void	ath_tx_proc(void *, int);
189static void	ath_txq_sched_tasklet(void *, int);
190static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
191static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
192static void	ath_scan_start(struct ieee80211com *);
193static void	ath_scan_end(struct ieee80211com *);
194static void	ath_set_channel(struct ieee80211com *);
195#ifdef	ATH_ENABLE_11N
196static void	ath_update_chw(struct ieee80211com *);
197#endif	/* ATH_ENABLE_11N */
198static void	ath_calibrate(void *);
199static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
200static void	ath_setup_stationkey(struct ieee80211_node *);
201static void	ath_newassoc(struct ieee80211_node *, int);
202static int	ath_setregdomain(struct ieee80211com *,
203		    struct ieee80211_regdomain *, int,
204		    struct ieee80211_channel []);
205static void	ath_getradiocaps(struct ieee80211com *, int, int *,
206		    struct ieee80211_channel []);
207static int	ath_getchannels(struct ath_softc *);
208
209static int	ath_rate_setup(struct ath_softc *, u_int mode);
210static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
211
212static void	ath_announce(struct ath_softc *);
213
214static void	ath_dfs_tasklet(void *, int);
215static void	ath_node_powersave(struct ieee80211_node *, int);
216static int	ath_node_set_tim(struct ieee80211_node *, int);
217static void	ath_node_recv_pspoll(struct ieee80211_node *, struct mbuf *);
218
219#ifdef IEEE80211_SUPPORT_TDMA
220#include <dev/ath/if_ath_tdma.h>
221#endif
222
223SYSCTL_DECL(_hw_ath);
224
225/* XXX validate sysctl values */
226static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
227SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
228	    0, "long chip calibration interval (secs)");
229static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
230SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
231	    0, "short chip calibration interval (msecs)");
232static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
233SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
234	    0, "reset chip calibration results (secs)");
235static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
236SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
237	    0, "ANI calibration (msecs)");
238
239int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
240SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
241	    0, "rx buffers allocated");
242TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
243int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
244SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
245	    0, "tx buffers allocated");
246TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
247int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
248SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
249	    0, "tx (mgmt) buffers allocated");
250TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
251
252int ath_bstuck_threshold = 4;		/* max missed beacons */
253SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
254	    0, "max missed beacon xmits before chip reset");
255
256MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
257
258void
259ath_legacy_attach_comp_func(struct ath_softc *sc)
260{
261
262	/*
263	 * Special case certain configurations.  Note the
264	 * CAB queue is handled by these specially so don't
265	 * include them when checking the txq setup mask.
266	 */
267	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
268	case 0x01:
269		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
270		break;
271	case 0x0f:
272		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
273		break;
274	default:
275		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
276		break;
277	}
278}
279
280#define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
281#define	HAL_MODE_HT40 \
282	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
283	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
284int
285ath_attach(u_int16_t devid, struct ath_softc *sc)
286{
287	struct ifnet *ifp;
288	struct ieee80211com *ic;
289	struct ath_hal *ah = NULL;
290	HAL_STATUS status;
291	int error = 0, i;
292	u_int wmodes;
293	uint8_t macaddr[IEEE80211_ADDR_LEN];
294	int rx_chainmask, tx_chainmask;
295
296	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
297
298	CURVNET_SET(vnet0);
299	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
300	if (ifp == NULL) {
301		device_printf(sc->sc_dev, "can not if_alloc()\n");
302		error = ENOSPC;
303		CURVNET_RESTORE();
304		goto bad;
305	}
306	ic = ifp->if_l2com;
307
308	/* set these up early for if_printf use */
309	if_initname(ifp, device_get_name(sc->sc_dev),
310		device_get_unit(sc->sc_dev));
311	CURVNET_RESTORE();
312
313	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
314	    sc->sc_eepromdata, &status);
315	if (ah == NULL) {
316		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
317			status);
318		error = ENXIO;
319		goto bad;
320	}
321	sc->sc_ah = ah;
322	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
323#ifdef	ATH_DEBUG
324	sc->sc_debug = ath_debug;
325#endif
326
327	/*
328	 * Setup the DMA/EDMA functions based on the current
329	 * hardware support.
330	 *
331	 * This is required before the descriptors are allocated.
332	 */
333	if (ath_hal_hasedma(sc->sc_ah)) {
334		sc->sc_isedma = 1;
335		ath_recv_setup_edma(sc);
336		ath_xmit_setup_edma(sc);
337	} else {
338		ath_recv_setup_legacy(sc);
339		ath_xmit_setup_legacy(sc);
340	}
341
342	/*
343	 * Check if the MAC has multi-rate retry support.
344	 * We do this by trying to setup a fake extended
345	 * descriptor.  MAC's that don't have support will
346	 * return false w/o doing anything.  MAC's that do
347	 * support it will return true w/o doing anything.
348	 */
349	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
350
351	/*
352	 * Check if the device has hardware counters for PHY
353	 * errors.  If so we need to enable the MIB interrupt
354	 * so we can act on stat triggers.
355	 */
356	if (ath_hal_hwphycounters(ah))
357		sc->sc_needmib = 1;
358
359	/*
360	 * Get the hardware key cache size.
361	 */
362	sc->sc_keymax = ath_hal_keycachesize(ah);
363	if (sc->sc_keymax > ATH_KEYMAX) {
364		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
365			ATH_KEYMAX, sc->sc_keymax);
366		sc->sc_keymax = ATH_KEYMAX;
367	}
368	/*
369	 * Reset the key cache since some parts do not
370	 * reset the contents on initial power up.
371	 */
372	for (i = 0; i < sc->sc_keymax; i++)
373		ath_hal_keyreset(ah, i);
374
375	/*
376	 * Collect the default channel list.
377	 */
378	error = ath_getchannels(sc);
379	if (error != 0)
380		goto bad;
381
382	/*
383	 * Setup rate tables for all potential media types.
384	 */
385	ath_rate_setup(sc, IEEE80211_MODE_11A);
386	ath_rate_setup(sc, IEEE80211_MODE_11B);
387	ath_rate_setup(sc, IEEE80211_MODE_11G);
388	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
389	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
390	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
391	ath_rate_setup(sc, IEEE80211_MODE_11NA);
392	ath_rate_setup(sc, IEEE80211_MODE_11NG);
393	ath_rate_setup(sc, IEEE80211_MODE_HALF);
394	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
395
396	/* NB: setup here so ath_rate_update is happy */
397	ath_setcurmode(sc, IEEE80211_MODE_11A);
398
399	/*
400	 * Allocate TX descriptors and populate the lists.
401	 */
402	error = ath_desc_alloc(sc);
403	if (error != 0) {
404		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
405		    error);
406		goto bad;
407	}
408	error = ath_txdma_setup(sc);
409	if (error != 0) {
410		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
411		    error);
412		goto bad;
413	}
414
415	/*
416	 * Allocate RX descriptors and populate the lists.
417	 */
418	error = ath_rxdma_setup(sc);
419	if (error != 0) {
420		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
421		    error);
422		goto bad;
423	}
424
425	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
426	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
427
428	ATH_TXBUF_LOCK_INIT(sc);
429
430	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
431		taskqueue_thread_enqueue, &sc->sc_tq);
432	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
433		"%s taskq", ifp->if_xname);
434
435	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
436	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
437	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
438	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
439	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
440	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
441
442	/*
443	 * Allocate hardware transmit queues: one queue for
444	 * beacon frames and one data queue for each QoS
445	 * priority.  Note that the hal handles resetting
446	 * these queues at the needed time.
447	 *
448	 * XXX PS-Poll
449	 */
450	sc->sc_bhalq = ath_beaconq_setup(sc);
451	if (sc->sc_bhalq == (u_int) -1) {
452		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
453		error = EIO;
454		goto bad2;
455	}
456	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
457	if (sc->sc_cabq == NULL) {
458		if_printf(ifp, "unable to setup CAB xmit queue!\n");
459		error = EIO;
460		goto bad2;
461	}
462	/* NB: insure BK queue is the lowest priority h/w queue */
463	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
464		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
465			ieee80211_wme_acnames[WME_AC_BK]);
466		error = EIO;
467		goto bad2;
468	}
469	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
470	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
471	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
472		/*
473		 * Not enough hardware tx queues to properly do WME;
474		 * just punt and assign them all to the same h/w queue.
475		 * We could do a better job of this if, for example,
476		 * we allocate queues when we switch from station to
477		 * AP mode.
478		 */
479		if (sc->sc_ac2q[WME_AC_VI] != NULL)
480			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
481		if (sc->sc_ac2q[WME_AC_BE] != NULL)
482			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
483		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
484		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
485		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
486	}
487
488	/*
489	 * Attach the TX completion function.
490	 *
491	 * The non-EDMA chips may have some special case optimisations;
492	 * this method gives everyone a chance to attach cleanly.
493	 */
494	sc->sc_tx.xmit_attach_comp_func(sc);
495
496	/*
497	 * Setup rate control.  Some rate control modules
498	 * call back to change the anntena state so expose
499	 * the necessary entry points.
500	 * XXX maybe belongs in struct ath_ratectrl?
501	 */
502	sc->sc_setdefantenna = ath_setdefantenna;
503	sc->sc_rc = ath_rate_attach(sc);
504	if (sc->sc_rc == NULL) {
505		error = EIO;
506		goto bad2;
507	}
508
509	/* Attach DFS module */
510	if (! ath_dfs_attach(sc)) {
511		device_printf(sc->sc_dev,
512		    "%s: unable to attach DFS\n", __func__);
513		error = EIO;
514		goto bad2;
515	}
516
517	/* Attach spectral module */
518	if (ath_spectral_attach(sc) < 0) {
519		device_printf(sc->sc_dev,
520		    "%s: unable to attach spectral\n", __func__);
521		error = EIO;
522		goto bad2;
523	}
524
525	/* Attach bluetooth coexistence module */
526	if (ath_btcoex_attach(sc) < 0) {
527		device_printf(sc->sc_dev,
528		    "%s: unable to attach bluetooth coexistence\n", __func__);
529		error = EIO;
530		goto bad2;
531	}
532
533	/* Start DFS processing tasklet */
534	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
535
536	/* Configure LED state */
537	sc->sc_blinking = 0;
538	sc->sc_ledstate = 1;
539	sc->sc_ledon = 0;			/* low true */
540	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
541	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
542
543	/*
544	 * Don't setup hardware-based blinking.
545	 *
546	 * Although some NICs may have this configured in the
547	 * default reset register values, the user may wish
548	 * to alter which pins have which function.
549	 *
550	 * The reference driver attaches the MAC network LED to GPIO1 and
551	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
552	 * NIC has these reversed.
553	 */
554	sc->sc_hardled = (1 == 0);
555	sc->sc_led_net_pin = -1;
556	sc->sc_led_pwr_pin = -1;
557	/*
558	 * Auto-enable soft led processing for IBM cards and for
559	 * 5211 minipci cards.  Users can also manually enable/disable
560	 * support with a sysctl.
561	 */
562	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
563	ath_led_config(sc);
564	ath_hal_setledstate(ah, HAL_LED_INIT);
565
566	ifp->if_softc = sc;
567	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
568	ifp->if_transmit = ath_transmit;
569	ifp->if_qflush = ath_qflush;
570	ifp->if_ioctl = ath_ioctl;
571	ifp->if_init = ath_init;
572	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
573	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
574	IFQ_SET_READY(&ifp->if_snd);
575
576	ic->ic_ifp = ifp;
577	/* XXX not right but it's not used anywhere important */
578	ic->ic_phytype = IEEE80211_T_OFDM;
579	ic->ic_opmode = IEEE80211_M_STA;
580	ic->ic_caps =
581		  IEEE80211_C_STA		/* station mode */
582		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
583		| IEEE80211_C_HOSTAP		/* hostap mode */
584		| IEEE80211_C_MONITOR		/* monitor mode */
585		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
586		| IEEE80211_C_WDS		/* 4-address traffic works */
587		| IEEE80211_C_MBSS		/* mesh point link mode */
588		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
589		| IEEE80211_C_SHSLOT		/* short slot time supported */
590		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
591#ifndef	ATH_ENABLE_11N
592		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
593#endif
594		| IEEE80211_C_TXFRAG		/* handle tx frags */
595#ifdef	ATH_ENABLE_DFS
596		| IEEE80211_C_DFS		/* Enable radar detection */
597#endif
598		;
599	/*
600	 * Query the hal to figure out h/w crypto support.
601	 */
602	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
603		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
604	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
605		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
606	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
607		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
608	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
609		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
610	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
611		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
612		/*
613		 * Check if h/w does the MIC and/or whether the
614		 * separate key cache entries are required to
615		 * handle both tx+rx MIC keys.
616		 */
617		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
618			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
619		/*
620		 * If the h/w supports storing tx+rx MIC keys
621		 * in one cache slot automatically enable use.
622		 */
623		if (ath_hal_hastkipsplit(ah) ||
624		    !ath_hal_settkipsplit(ah, AH_FALSE))
625			sc->sc_splitmic = 1;
626		/*
627		 * If the h/w can do TKIP MIC together with WME then
628		 * we use it; otherwise we force the MIC to be done
629		 * in software by the net80211 layer.
630		 */
631		if (ath_hal_haswmetkipmic(ah))
632			sc->sc_wmetkipmic = 1;
633	}
634	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
635	/*
636	 * Check for multicast key search support.
637	 */
638	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
639	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
640		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
641	}
642	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
643	/*
644	 * Mark key cache slots associated with global keys
645	 * as in use.  If we knew TKIP was not to be used we
646	 * could leave the +32, +64, and +32+64 slots free.
647	 */
648	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
649		setbit(sc->sc_keymap, i);
650		setbit(sc->sc_keymap, i+64);
651		if (sc->sc_splitmic) {
652			setbit(sc->sc_keymap, i+32);
653			setbit(sc->sc_keymap, i+32+64);
654		}
655	}
656	/*
657	 * TPC support can be done either with a global cap or
658	 * per-packet support.  The latter is not available on
659	 * all parts.  We're a bit pedantic here as all parts
660	 * support a global cap.
661	 */
662	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
663		ic->ic_caps |= IEEE80211_C_TXPMGT;
664
665	/*
666	 * Mark WME capability only if we have sufficient
667	 * hardware queues to do proper priority scheduling.
668	 */
669	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
670		ic->ic_caps |= IEEE80211_C_WME;
671	/*
672	 * Check for misc other capabilities.
673	 */
674	if (ath_hal_hasbursting(ah))
675		ic->ic_caps |= IEEE80211_C_BURST;
676	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
677	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
678	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
679	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
680	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
681	sc->sc_hasenforcetxop = ath_hal_hasenforcetxop(ah);
682	sc->sc_rx_lnamixer = ath_hal_hasrxlnamixer(ah);
683	if (ath_hal_hasfastframes(ah))
684		ic->ic_caps |= IEEE80211_C_FF;
685	wmodes = ath_hal_getwirelessmodes(ah);
686	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
687		ic->ic_caps |= IEEE80211_C_TURBOP;
688#ifdef IEEE80211_SUPPORT_TDMA
689	if (ath_hal_macversion(ah) > 0x78) {
690		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
691		ic->ic_tdma_update = ath_tdma_update;
692	}
693#endif
694
695	/*
696	 * TODO: enforce that at least this many frames are available
697	 * in the txbuf list before allowing data frames (raw or
698	 * otherwise) to be transmitted.
699	 */
700	sc->sc_txq_data_minfree = 10;
701	/*
702	 * Leave this as default to maintain legacy behaviour.
703	 * Shortening the cabq/mcastq may end up causing some
704	 * undesirable behaviour.
705	 */
706	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
707
708	/*
709	 * How deep can the node software TX queue get whilst it's asleep.
710	 */
711	sc->sc_txq_node_psq_maxdepth = 16;
712
713	/*
714	 * Default the maximum queue depth for a given node
715	 * to 1/4'th the TX buffers, or 64, whichever
716	 * is larger.
717	 */
718	sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4);
719
720	/* Enable CABQ by default */
721	sc->sc_cabq_enable = 1;
722
723	/*
724	 * Allow the TX and RX chainmasks to be overridden by
725	 * environment variables and/or device.hints.
726	 *
727	 * This must be done early - before the hardware is
728	 * calibrated or before the 802.11n stream calculation
729	 * is done.
730	 */
731	if (resource_int_value(device_get_name(sc->sc_dev),
732	    device_get_unit(sc->sc_dev), "rx_chainmask",
733	    &rx_chainmask) == 0) {
734		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
735		    rx_chainmask);
736		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
737	}
738	if (resource_int_value(device_get_name(sc->sc_dev),
739	    device_get_unit(sc->sc_dev), "tx_chainmask",
740	    &tx_chainmask) == 0) {
741		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
742		    tx_chainmask);
743		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
744	}
745
746	/*
747	 * Query the TX/RX chainmask configuration.
748	 *
749	 * This is only relevant for 11n devices.
750	 */
751	ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
752	ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
753
754	/*
755	 * Disable MRR with protected frames by default.
756	 * Only 802.11n series NICs can handle this.
757	 */
758	sc->sc_mrrprot = 0;	/* XXX should be a capability */
759
760	/*
761	 * Query the enterprise mode information the HAL.
762	 */
763	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
764	    &sc->sc_ent_cfg) == HAL_OK)
765		sc->sc_use_ent = 1;
766
767#ifdef	ATH_ENABLE_11N
768	/*
769	 * Query HT capabilities
770	 */
771	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
772	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
773		uint32_t rxs, txs;
774
775		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
776
777		sc->sc_mrrprot = 1;	/* XXX should be a capability */
778
779		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
780			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
781			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
782			    | IEEE80211_HTCAP_MAXAMSDU_3839
783			    				/* max A-MSDU length */
784			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
785			;
786
787		/*
788		 * Enable short-GI for HT20 only if the hardware
789		 * advertises support.
790		 * Notably, anything earlier than the AR9287 doesn't.
791		 */
792		if ((ath_hal_getcapability(ah,
793		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
794		    (wmodes & HAL_MODE_HT20)) {
795			device_printf(sc->sc_dev,
796			    "[HT] enabling short-GI in 20MHz mode\n");
797			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
798		}
799
800		if (wmodes & HAL_MODE_HT40)
801			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
802			    |  IEEE80211_HTCAP_SHORTGI40;
803
804		/*
805		 * TX/RX streams need to be taken into account when
806		 * negotiating which MCS rates it'll receive and
807		 * what MCS rates are available for TX.
808		 */
809		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
810		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
811		ic->ic_txstream = txs;
812		ic->ic_rxstream = rxs;
813
814		/*
815		 * Setup TX and RX STBC based on what the HAL allows and
816		 * the currently configured chainmask set.
817		 * Ie - don't enable STBC TX if only one chain is enabled.
818		 * STBC RX is fine on a single RX chain; it just won't
819		 * provide any real benefit.
820		 */
821		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
822		    NULL) == HAL_OK) {
823			sc->sc_rx_stbc = 1;
824			device_printf(sc->sc_dev,
825			    "[HT] 1 stream STBC receive enabled\n");
826			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
827		}
828		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
829		    NULL) == HAL_OK) {
830			sc->sc_tx_stbc = 1;
831			device_printf(sc->sc_dev,
832			    "[HT] 1 stream STBC transmit enabled\n");
833			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
834		}
835
836		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
837		    &sc->sc_rts_aggr_limit);
838		if (sc->sc_rts_aggr_limit != (64 * 1024))
839			device_printf(sc->sc_dev,
840			    "[HT] RTS aggregates limited to %d KiB\n",
841			    sc->sc_rts_aggr_limit / 1024);
842
843		device_printf(sc->sc_dev,
844		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
845	}
846#endif
847
848	/*
849	 * Initial aggregation settings.
850	 */
851	sc->sc_hwq_limit_aggr = ATH_AGGR_MIN_QDEPTH;
852	sc->sc_hwq_limit_nonaggr = ATH_NONAGGR_MIN_QDEPTH;
853	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
854	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
855	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
856	sc->sc_delim_min_pad = 0;
857
858	/*
859	 * Check if the hardware requires PCI register serialisation.
860	 * Some of the Owl based MACs require this.
861	 */
862	if (mp_ncpus > 1 &&
863	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
864	     0, NULL) == HAL_OK) {
865		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
866		device_printf(sc->sc_dev,
867		    "Enabling register serialisation\n");
868	}
869
870	/*
871	 * Initialise the deferred completed RX buffer list.
872	 */
873	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
874	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
875
876	/*
877	 * Indicate we need the 802.11 header padded to a
878	 * 32-bit boundary for 4-address and QoS frames.
879	 */
880	ic->ic_flags |= IEEE80211_F_DATAPAD;
881
882	/*
883	 * Query the hal about antenna support.
884	 */
885	sc->sc_defant = ath_hal_getdefantenna(ah);
886
887	/*
888	 * Not all chips have the VEOL support we want to
889	 * use with IBSS beacons; check here for it.
890	 */
891	sc->sc_hasveol = ath_hal_hasveol(ah);
892
893	/* get mac address from hardware */
894	ath_hal_getmac(ah, macaddr);
895	if (sc->sc_hasbmask)
896		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
897
898	/* NB: used to size node table key mapping array */
899	ic->ic_max_keyix = sc->sc_keymax;
900	/* call MI attach routine. */
901	ieee80211_ifattach(ic, macaddr);
902	ic->ic_setregdomain = ath_setregdomain;
903	ic->ic_getradiocaps = ath_getradiocaps;
904	sc->sc_opmode = HAL_M_STA;
905
906	/* override default methods */
907	ic->ic_newassoc = ath_newassoc;
908	ic->ic_updateslot = ath_updateslot;
909	ic->ic_wme.wme_update = ath_wme_update;
910	ic->ic_vap_create = ath_vap_create;
911	ic->ic_vap_delete = ath_vap_delete;
912	ic->ic_raw_xmit = ath_raw_xmit;
913	ic->ic_update_mcast = ath_update_mcast;
914	ic->ic_update_promisc = ath_update_promisc;
915	ic->ic_node_alloc = ath_node_alloc;
916	sc->sc_node_free = ic->ic_node_free;
917	ic->ic_node_free = ath_node_free;
918	sc->sc_node_cleanup = ic->ic_node_cleanup;
919	ic->ic_node_cleanup = ath_node_cleanup;
920	ic->ic_node_getsignal = ath_node_getsignal;
921	ic->ic_scan_start = ath_scan_start;
922	ic->ic_scan_end = ath_scan_end;
923	ic->ic_set_channel = ath_set_channel;
924#ifdef	ATH_ENABLE_11N
925	/* 802.11n specific - but just override anyway */
926	sc->sc_addba_request = ic->ic_addba_request;
927	sc->sc_addba_response = ic->ic_addba_response;
928	sc->sc_addba_stop = ic->ic_addba_stop;
929	sc->sc_bar_response = ic->ic_bar_response;
930	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
931
932	ic->ic_addba_request = ath_addba_request;
933	ic->ic_addba_response = ath_addba_response;
934	ic->ic_addba_response_timeout = ath_addba_response_timeout;
935	ic->ic_addba_stop = ath_addba_stop;
936	ic->ic_bar_response = ath_bar_response;
937
938	ic->ic_update_chw = ath_update_chw;
939#endif	/* ATH_ENABLE_11N */
940
941#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
942	/*
943	 * There's one vendor bitmap entry in the RX radiotap
944	 * header; make sure that's taken into account.
945	 */
946	ieee80211_radiotap_attachv(ic,
947	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
948		ATH_TX_RADIOTAP_PRESENT,
949	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
950		ATH_RX_RADIOTAP_PRESENT);
951#else
952	/*
953	 * No vendor bitmap/extensions are present.
954	 */
955	ieee80211_radiotap_attach(ic,
956	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
957		ATH_TX_RADIOTAP_PRESENT,
958	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
959		ATH_RX_RADIOTAP_PRESENT);
960#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
961
962	/*
963	 * Setup the ALQ logging if required
964	 */
965#ifdef	ATH_DEBUG_ALQ
966	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
967	if_ath_alq_setcfg(&sc->sc_alq,
968	    sc->sc_ah->ah_macVersion,
969	    sc->sc_ah->ah_macRev,
970	    sc->sc_ah->ah_phyRev,
971	    sc->sc_ah->ah_magic);
972#endif
973
974	/*
975	 * Setup dynamic sysctl's now that country code and
976	 * regdomain are available from the hal.
977	 */
978	ath_sysctlattach(sc);
979	ath_sysctl_stats_attach(sc);
980	ath_sysctl_hal_attach(sc);
981
982	if (bootverbose)
983		ieee80211_announce(ic);
984	ath_announce(sc);
985	return 0;
986bad2:
987	ath_tx_cleanup(sc);
988	ath_desc_free(sc);
989	ath_txdma_teardown(sc);
990	ath_rxdma_teardown(sc);
991bad:
992	if (ah)
993		ath_hal_detach(ah);
994
995	/*
996	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
997	 */
998	if (ifp != NULL && ifp->if_vnet) {
999		CURVNET_SET(ifp->if_vnet);
1000		if_free(ifp);
1001		CURVNET_RESTORE();
1002	} else if (ifp != NULL)
1003		if_free(ifp);
1004	sc->sc_invalid = 1;
1005	return error;
1006}
1007
1008int
1009ath_detach(struct ath_softc *sc)
1010{
1011	struct ifnet *ifp = sc->sc_ifp;
1012
1013	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1014		__func__, ifp->if_flags);
1015
1016	/*
1017	 * NB: the order of these is important:
1018	 * o stop the chip so no more interrupts will fire
1019	 * o call the 802.11 layer before detaching the hal to
1020	 *   insure callbacks into the driver to delete global
1021	 *   key cache entries can be handled
1022	 * o free the taskqueue which drains any pending tasks
1023	 * o reclaim the tx queue data structures after calling
1024	 *   the 802.11 layer as we'll get called back to reclaim
1025	 *   node state and potentially want to use them
1026	 * o to cleanup the tx queues the hal is called, so detach
1027	 *   it last
1028	 * Other than that, it's straightforward...
1029	 */
1030	ath_stop(ifp);
1031	ieee80211_ifdetach(ifp->if_l2com);
1032	taskqueue_free(sc->sc_tq);
1033#ifdef ATH_TX99_DIAG
1034	if (sc->sc_tx99 != NULL)
1035		sc->sc_tx99->detach(sc->sc_tx99);
1036#endif
1037	ath_rate_detach(sc->sc_rc);
1038#ifdef	ATH_DEBUG_ALQ
1039	if_ath_alq_tidyup(&sc->sc_alq);
1040#endif
1041	ath_btcoex_detach(sc);
1042	ath_spectral_detach(sc);
1043	ath_dfs_detach(sc);
1044	ath_desc_free(sc);
1045	ath_txdma_teardown(sc);
1046	ath_rxdma_teardown(sc);
1047	ath_tx_cleanup(sc);
1048	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1049
1050	CURVNET_SET(ifp->if_vnet);
1051	if_free(ifp);
1052	CURVNET_RESTORE();
1053
1054	return 0;
1055}
1056
1057/*
1058 * MAC address handling for multiple BSS on the same radio.
1059 * The first vap uses the MAC address from the EEPROM.  For
1060 * subsequent vap's we set the U/L bit (bit 1) in the MAC
1061 * address and use the next six bits as an index.
1062 */
1063static void
1064assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1065{
1066	int i;
1067
1068	if (clone && sc->sc_hasbmask) {
1069		/* NB: we only do this if h/w supports multiple bssid */
1070		for (i = 0; i < 8; i++)
1071			if ((sc->sc_bssidmask & (1<<i)) == 0)
1072				break;
1073		if (i != 0)
1074			mac[0] |= (i << 2)|0x2;
1075	} else
1076		i = 0;
1077	sc->sc_bssidmask |= 1<<i;
1078	sc->sc_hwbssidmask[0] &= ~mac[0];
1079	if (i == 0)
1080		sc->sc_nbssid0++;
1081}
1082
1083static void
1084reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1085{
1086	int i = mac[0] >> 2;
1087	uint8_t mask;
1088
1089	if (i != 0 || --sc->sc_nbssid0 == 0) {
1090		sc->sc_bssidmask &= ~(1<<i);
1091		/* recalculate bssid mask from remaining addresses */
1092		mask = 0xff;
1093		for (i = 1; i < 8; i++)
1094			if (sc->sc_bssidmask & (1<<i))
1095				mask &= ~((i<<2)|0x2);
1096		sc->sc_hwbssidmask[0] |= mask;
1097	}
1098}
1099
1100/*
1101 * Assign a beacon xmit slot.  We try to space out
1102 * assignments so when beacons are staggered the
1103 * traffic coming out of the cab q has maximal time
1104 * to go out before the next beacon is scheduled.
1105 */
1106static int
1107assign_bslot(struct ath_softc *sc)
1108{
1109	u_int slot, free;
1110
1111	free = 0;
1112	for (slot = 0; slot < ATH_BCBUF; slot++)
1113		if (sc->sc_bslot[slot] == NULL) {
1114			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1115			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1116				return slot;
1117			free = slot;
1118			/* NB: keep looking for a double slot */
1119		}
1120	return free;
1121}
1122
1123static struct ieee80211vap *
1124ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1125    enum ieee80211_opmode opmode, int flags,
1126    const uint8_t bssid[IEEE80211_ADDR_LEN],
1127    const uint8_t mac0[IEEE80211_ADDR_LEN])
1128{
1129	struct ath_softc *sc = ic->ic_ifp->if_softc;
1130	struct ath_vap *avp;
1131	struct ieee80211vap *vap;
1132	uint8_t mac[IEEE80211_ADDR_LEN];
1133	int needbeacon, error;
1134	enum ieee80211_opmode ic_opmode;
1135
1136	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1137	    M_80211_VAP, M_WAITOK | M_ZERO);
1138	needbeacon = 0;
1139	IEEE80211_ADDR_COPY(mac, mac0);
1140
1141	ATH_LOCK(sc);
1142	ic_opmode = opmode;		/* default to opmode of new vap */
1143	switch (opmode) {
1144	case IEEE80211_M_STA:
1145		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1146			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1147			goto bad;
1148		}
1149		if (sc->sc_nvaps) {
1150			/*
1151			 * With multiple vaps we must fall back
1152			 * to s/w beacon miss handling.
1153			 */
1154			flags |= IEEE80211_CLONE_NOBEACONS;
1155		}
1156		if (flags & IEEE80211_CLONE_NOBEACONS) {
1157			/*
1158			 * Station mode w/o beacons are implemented w/ AP mode.
1159			 */
1160			ic_opmode = IEEE80211_M_HOSTAP;
1161		}
1162		break;
1163	case IEEE80211_M_IBSS:
1164		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1165			device_printf(sc->sc_dev,
1166			    "only 1 ibss vap supported\n");
1167			goto bad;
1168		}
1169		needbeacon = 1;
1170		break;
1171	case IEEE80211_M_AHDEMO:
1172#ifdef IEEE80211_SUPPORT_TDMA
1173		if (flags & IEEE80211_CLONE_TDMA) {
1174			if (sc->sc_nvaps != 0) {
1175				device_printf(sc->sc_dev,
1176				    "only 1 tdma vap supported\n");
1177				goto bad;
1178			}
1179			needbeacon = 1;
1180			flags |= IEEE80211_CLONE_NOBEACONS;
1181		}
1182		/* fall thru... */
1183#endif
1184	case IEEE80211_M_MONITOR:
1185		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1186			/*
1187			 * Adopt existing mode.  Adding a monitor or ahdemo
1188			 * vap to an existing configuration is of dubious
1189			 * value but should be ok.
1190			 */
1191			/* XXX not right for monitor mode */
1192			ic_opmode = ic->ic_opmode;
1193		}
1194		break;
1195	case IEEE80211_M_HOSTAP:
1196	case IEEE80211_M_MBSS:
1197		needbeacon = 1;
1198		break;
1199	case IEEE80211_M_WDS:
1200		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1201			device_printf(sc->sc_dev,
1202			    "wds not supported in sta mode\n");
1203			goto bad;
1204		}
1205		/*
1206		 * Silently remove any request for a unique
1207		 * bssid; WDS vap's always share the local
1208		 * mac address.
1209		 */
1210		flags &= ~IEEE80211_CLONE_BSSID;
1211		if (sc->sc_nvaps == 0)
1212			ic_opmode = IEEE80211_M_HOSTAP;
1213		else
1214			ic_opmode = ic->ic_opmode;
1215		break;
1216	default:
1217		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1218		goto bad;
1219	}
1220	/*
1221	 * Check that a beacon buffer is available; the code below assumes it.
1222	 */
1223	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1224		device_printf(sc->sc_dev, "no beacon buffer available\n");
1225		goto bad;
1226	}
1227
1228	/* STA, AHDEMO? */
1229	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1230		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1231		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1232	}
1233
1234	vap = &avp->av_vap;
1235	/* XXX can't hold mutex across if_alloc */
1236	ATH_UNLOCK(sc);
1237	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1238	    bssid, mac);
1239	ATH_LOCK(sc);
1240	if (error != 0) {
1241		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1242		    __func__, error);
1243		goto bad2;
1244	}
1245
1246	/* h/w crypto support */
1247	vap->iv_key_alloc = ath_key_alloc;
1248	vap->iv_key_delete = ath_key_delete;
1249	vap->iv_key_set = ath_key_set;
1250	vap->iv_key_update_begin = ath_key_update_begin;
1251	vap->iv_key_update_end = ath_key_update_end;
1252
1253	/* override various methods */
1254	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1255	vap->iv_recv_mgmt = ath_recv_mgmt;
1256	vap->iv_reset = ath_reset_vap;
1257	vap->iv_update_beacon = ath_beacon_update;
1258	avp->av_newstate = vap->iv_newstate;
1259	vap->iv_newstate = ath_newstate;
1260	avp->av_bmiss = vap->iv_bmiss;
1261	vap->iv_bmiss = ath_bmiss_vap;
1262
1263	avp->av_node_ps = vap->iv_node_ps;
1264	vap->iv_node_ps = ath_node_powersave;
1265
1266	avp->av_set_tim = vap->iv_set_tim;
1267	vap->iv_set_tim = ath_node_set_tim;
1268
1269	avp->av_recv_pspoll = vap->iv_recv_pspoll;
1270	vap->iv_recv_pspoll = ath_node_recv_pspoll;
1271
1272	/* Set default parameters */
1273
1274	/*
1275	 * Anything earlier than some AR9300 series MACs don't
1276	 * support a smaller MPDU density.
1277	 */
1278	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1279	/*
1280	 * All NICs can handle the maximum size, however
1281	 * AR5416 based MACs can only TX aggregates w/ RTS
1282	 * protection when the total aggregate size is <= 8k.
1283	 * However, for now that's enforced by the TX path.
1284	 */
1285	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1286
1287	avp->av_bslot = -1;
1288	if (needbeacon) {
1289		/*
1290		 * Allocate beacon state and setup the q for buffered
1291		 * multicast frames.  We know a beacon buffer is
1292		 * available because we checked above.
1293		 */
1294		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1295		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1296		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1297			/*
1298			 * Assign the vap to a beacon xmit slot.  As above
1299			 * this cannot fail to find a free one.
1300			 */
1301			avp->av_bslot = assign_bslot(sc);
1302			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1303			    ("beacon slot %u not empty", avp->av_bslot));
1304			sc->sc_bslot[avp->av_bslot] = vap;
1305			sc->sc_nbcnvaps++;
1306		}
1307		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1308			/*
1309			 * Multple vaps are to transmit beacons and we
1310			 * have h/w support for TSF adjusting; enable
1311			 * use of staggered beacons.
1312			 */
1313			sc->sc_stagbeacons = 1;
1314		}
1315		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1316	}
1317
1318	ic->ic_opmode = ic_opmode;
1319	if (opmode != IEEE80211_M_WDS) {
1320		sc->sc_nvaps++;
1321		if (opmode == IEEE80211_M_STA)
1322			sc->sc_nstavaps++;
1323		if (opmode == IEEE80211_M_MBSS)
1324			sc->sc_nmeshvaps++;
1325	}
1326	switch (ic_opmode) {
1327	case IEEE80211_M_IBSS:
1328		sc->sc_opmode = HAL_M_IBSS;
1329		break;
1330	case IEEE80211_M_STA:
1331		sc->sc_opmode = HAL_M_STA;
1332		break;
1333	case IEEE80211_M_AHDEMO:
1334#ifdef IEEE80211_SUPPORT_TDMA
1335		if (vap->iv_caps & IEEE80211_C_TDMA) {
1336			sc->sc_tdma = 1;
1337			/* NB: disable tsf adjust */
1338			sc->sc_stagbeacons = 0;
1339		}
1340		/*
1341		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1342		 * just ap mode.
1343		 */
1344		/* fall thru... */
1345#endif
1346	case IEEE80211_M_HOSTAP:
1347	case IEEE80211_M_MBSS:
1348		sc->sc_opmode = HAL_M_HOSTAP;
1349		break;
1350	case IEEE80211_M_MONITOR:
1351		sc->sc_opmode = HAL_M_MONITOR;
1352		break;
1353	default:
1354		/* XXX should not happen */
1355		break;
1356	}
1357	if (sc->sc_hastsfadd) {
1358		/*
1359		 * Configure whether or not TSF adjust should be done.
1360		 */
1361		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1362	}
1363	if (flags & IEEE80211_CLONE_NOBEACONS) {
1364		/*
1365		 * Enable s/w beacon miss handling.
1366		 */
1367		sc->sc_swbmiss = 1;
1368	}
1369	ATH_UNLOCK(sc);
1370
1371	/* complete setup */
1372	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1373	return vap;
1374bad2:
1375	reclaim_address(sc, mac);
1376	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1377bad:
1378	free(avp, M_80211_VAP);
1379	ATH_UNLOCK(sc);
1380	return NULL;
1381}
1382
1383static void
1384ath_vap_delete(struct ieee80211vap *vap)
1385{
1386	struct ieee80211com *ic = vap->iv_ic;
1387	struct ifnet *ifp = ic->ic_ifp;
1388	struct ath_softc *sc = ifp->if_softc;
1389	struct ath_hal *ah = sc->sc_ah;
1390	struct ath_vap *avp = ATH_VAP(vap);
1391
1392	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1393	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1394		/*
1395		 * Quiesce the hardware while we remove the vap.  In
1396		 * particular we need to reclaim all references to
1397		 * the vap state by any frames pending on the tx queues.
1398		 */
1399		ath_hal_intrset(ah, 0);		/* disable interrupts */
1400		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1401		/* XXX Do all frames from all vaps/nodes need draining here? */
1402		ath_stoprecv(sc, 1);		/* stop recv side */
1403	}
1404
1405	ieee80211_vap_detach(vap);
1406
1407	/*
1408	 * XXX Danger Will Robinson! Danger!
1409	 *
1410	 * Because ieee80211_vap_detach() can queue a frame (the station
1411	 * diassociate message?) after we've drained the TXQ and
1412	 * flushed the software TXQ, we will end up with a frame queued
1413	 * to a node whose vap is about to be freed.
1414	 *
1415	 * To work around this, flush the hardware/software again.
1416	 * This may be racy - the ath task may be running and the packet
1417	 * may be being scheduled between sw->hw txq. Tsk.
1418	 *
1419	 * TODO: figure out why a new node gets allocated somewhere around
1420	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1421	 * call!)
1422	 */
1423
1424	ath_draintxq(sc, ATH_RESET_DEFAULT);
1425
1426	ATH_LOCK(sc);
1427	/*
1428	 * Reclaim beacon state.  Note this must be done before
1429	 * the vap instance is reclaimed as we may have a reference
1430	 * to it in the buffer for the beacon frame.
1431	 */
1432	if (avp->av_bcbuf != NULL) {
1433		if (avp->av_bslot != -1) {
1434			sc->sc_bslot[avp->av_bslot] = NULL;
1435			sc->sc_nbcnvaps--;
1436		}
1437		ath_beacon_return(sc, avp->av_bcbuf);
1438		avp->av_bcbuf = NULL;
1439		if (sc->sc_nbcnvaps == 0) {
1440			sc->sc_stagbeacons = 0;
1441			if (sc->sc_hastsfadd)
1442				ath_hal_settsfadjust(sc->sc_ah, 0);
1443		}
1444		/*
1445		 * Reclaim any pending mcast frames for the vap.
1446		 */
1447		ath_tx_draintxq(sc, &avp->av_mcastq);
1448	}
1449	/*
1450	 * Update bookkeeping.
1451	 */
1452	if (vap->iv_opmode == IEEE80211_M_STA) {
1453		sc->sc_nstavaps--;
1454		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1455			sc->sc_swbmiss = 0;
1456	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1457	    vap->iv_opmode == IEEE80211_M_MBSS) {
1458		reclaim_address(sc, vap->iv_myaddr);
1459		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1460		if (vap->iv_opmode == IEEE80211_M_MBSS)
1461			sc->sc_nmeshvaps--;
1462	}
1463	if (vap->iv_opmode != IEEE80211_M_WDS)
1464		sc->sc_nvaps--;
1465#ifdef IEEE80211_SUPPORT_TDMA
1466	/* TDMA operation ceases when the last vap is destroyed */
1467	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1468		sc->sc_tdma = 0;
1469		sc->sc_swbmiss = 0;
1470	}
1471#endif
1472	free(avp, M_80211_VAP);
1473
1474	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1475		/*
1476		 * Restart rx+tx machines if still running (RUNNING will
1477		 * be reset if we just destroyed the last vap).
1478		 */
1479		if (ath_startrecv(sc) != 0)
1480			if_printf(ifp, "%s: unable to restart recv logic\n",
1481			    __func__);
1482		if (sc->sc_beacons) {		/* restart beacons */
1483#ifdef IEEE80211_SUPPORT_TDMA
1484			if (sc->sc_tdma)
1485				ath_tdma_config(sc, NULL);
1486			else
1487#endif
1488				ath_beacon_config(sc, NULL);
1489		}
1490		ath_hal_intrset(ah, sc->sc_imask);
1491	}
1492	ATH_UNLOCK(sc);
1493}
1494
1495void
1496ath_suspend(struct ath_softc *sc)
1497{
1498	struct ifnet *ifp = sc->sc_ifp;
1499	struct ieee80211com *ic = ifp->if_l2com;
1500
1501	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1502		__func__, ifp->if_flags);
1503
1504	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1505
1506	ieee80211_suspend_all(ic);
1507	/*
1508	 * NB: don't worry about putting the chip in low power
1509	 * mode; pci will power off our socket on suspend and
1510	 * CardBus detaches the device.
1511	 */
1512
1513	/*
1514	 * XXX ensure none of the taskqueues are running
1515	 * XXX ensure sc_invalid is 1
1516	 * XXX ensure the calibration callout is disabled
1517	 */
1518
1519	/* Disable the PCIe PHY, complete with workarounds */
1520	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1521}
1522
1523/*
1524 * Reset the key cache since some parts do not reset the
1525 * contents on resume.  First we clear all entries, then
1526 * re-load keys that the 802.11 layer assumes are setup
1527 * in h/w.
1528 */
1529static void
1530ath_reset_keycache(struct ath_softc *sc)
1531{
1532	struct ifnet *ifp = sc->sc_ifp;
1533	struct ieee80211com *ic = ifp->if_l2com;
1534	struct ath_hal *ah = sc->sc_ah;
1535	int i;
1536
1537	for (i = 0; i < sc->sc_keymax; i++)
1538		ath_hal_keyreset(ah, i);
1539	ieee80211_crypto_reload_keys(ic);
1540}
1541
1542/*
1543 * Fetch the current chainmask configuration based on the current
1544 * operating channel and options.
1545 */
1546static void
1547ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1548{
1549
1550	/*
1551	 * Set TX chainmask to the currently configured chainmask;
1552	 * the TX chainmask depends upon the current operating mode.
1553	 */
1554	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1555	if (IEEE80211_IS_CHAN_HT(chan)) {
1556		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1557	} else {
1558		sc->sc_cur_txchainmask = 1;
1559	}
1560
1561	DPRINTF(sc, ATH_DEBUG_RESET,
1562	    "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1563	    __func__,
1564	    sc->sc_cur_txchainmask,
1565	    sc->sc_cur_rxchainmask);
1566}
1567
1568void
1569ath_resume(struct ath_softc *sc)
1570{
1571	struct ifnet *ifp = sc->sc_ifp;
1572	struct ieee80211com *ic = ifp->if_l2com;
1573	struct ath_hal *ah = sc->sc_ah;
1574	HAL_STATUS status;
1575
1576	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1577		__func__, ifp->if_flags);
1578
1579	/* Re-enable PCIe, re-enable the PCIe bus */
1580	ath_hal_enablepcie(ah, 0, 0);
1581
1582	/*
1583	 * Must reset the chip before we reload the
1584	 * keycache as we were powered down on suspend.
1585	 */
1586	ath_update_chainmasks(sc,
1587	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1588	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1589	    sc->sc_cur_rxchainmask);
1590	ath_hal_reset(ah, sc->sc_opmode,
1591	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1592	    AH_FALSE, &status);
1593	ath_reset_keycache(sc);
1594
1595	/* Let DFS at it in case it's a DFS channel */
1596	ath_dfs_radar_enable(sc, ic->ic_curchan);
1597
1598	/* Let spectral at in case spectral is enabled */
1599	ath_spectral_enable(sc, ic->ic_curchan);
1600
1601	/*
1602	 * Let bluetooth coexistence at in case it's needed for this channel
1603	 */
1604	ath_btcoex_enable(sc, ic->ic_curchan);
1605
1606	/*
1607	 * If we're doing TDMA, enforce the TXOP limitation for chips that
1608	 * support it.
1609	 */
1610	if (sc->sc_hasenforcetxop && sc->sc_tdma)
1611		ath_hal_setenforcetxop(sc->sc_ah, 1);
1612	else
1613		ath_hal_setenforcetxop(sc->sc_ah, 0);
1614
1615	/* Restore the LED configuration */
1616	ath_led_config(sc);
1617	ath_hal_setledstate(ah, HAL_LED_INIT);
1618
1619	if (sc->sc_resume_up)
1620		ieee80211_resume_all(ic);
1621
1622	/* XXX beacons ? */
1623}
1624
1625void
1626ath_shutdown(struct ath_softc *sc)
1627{
1628	struct ifnet *ifp = sc->sc_ifp;
1629
1630	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1631		__func__, ifp->if_flags);
1632
1633	ath_stop(ifp);
1634	/* NB: no point powering down chip as we're about to reboot */
1635}
1636
1637/*
1638 * Interrupt handler.  Most of the actual processing is deferred.
1639 */
1640void
1641ath_intr(void *arg)
1642{
1643	struct ath_softc *sc = arg;
1644	struct ifnet *ifp = sc->sc_ifp;
1645	struct ath_hal *ah = sc->sc_ah;
1646	HAL_INT status = 0;
1647	uint32_t txqs;
1648
1649	/*
1650	 * If we're inside a reset path, just print a warning and
1651	 * clear the ISR. The reset routine will finish it for us.
1652	 */
1653	ATH_PCU_LOCK(sc);
1654	if (sc->sc_inreset_cnt) {
1655		HAL_INT status;
1656		ath_hal_getisr(ah, &status);	/* clear ISR */
1657		ath_hal_intrset(ah, 0);		/* disable further intr's */
1658		DPRINTF(sc, ATH_DEBUG_ANY,
1659		    "%s: in reset, ignoring: status=0x%x\n",
1660		    __func__, status);
1661		ATH_PCU_UNLOCK(sc);
1662		return;
1663	}
1664
1665	if (sc->sc_invalid) {
1666		/*
1667		 * The hardware is not ready/present, don't touch anything.
1668		 * Note this can happen early on if the IRQ is shared.
1669		 */
1670		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1671		ATH_PCU_UNLOCK(sc);
1672		return;
1673	}
1674	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1675		ATH_PCU_UNLOCK(sc);
1676		return;
1677	}
1678
1679	if ((ifp->if_flags & IFF_UP) == 0 ||
1680	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1681		HAL_INT status;
1682
1683		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1684			__func__, ifp->if_flags);
1685		ath_hal_getisr(ah, &status);	/* clear ISR */
1686		ath_hal_intrset(ah, 0);		/* disable further intr's */
1687		ATH_PCU_UNLOCK(sc);
1688		return;
1689	}
1690
1691	/*
1692	 * Figure out the reason(s) for the interrupt.  Note
1693	 * that the hal returns a pseudo-ISR that may include
1694	 * bits we haven't explicitly enabled so we mask the
1695	 * value to insure we only process bits we requested.
1696	 */
1697	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1698	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1699	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
1700#ifdef	ATH_DEBUG_ALQ
1701	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
1702	    ah->ah_syncstate);
1703#endif	/* ATH_DEBUG_ALQ */
1704#ifdef	ATH_KTR_INTR_DEBUG
1705	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
1706	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1707	    ah->ah_intrstate[0],
1708	    ah->ah_intrstate[1],
1709	    ah->ah_intrstate[2],
1710	    ah->ah_intrstate[3],
1711	    ah->ah_intrstate[6]);
1712#endif
1713
1714	/* Squirrel away SYNC interrupt debugging */
1715	if (ah->ah_syncstate != 0) {
1716		int i;
1717		for (i = 0; i < 32; i++)
1718			if (ah->ah_syncstate & (i << i))
1719				sc->sc_intr_stats.sync_intr[i]++;
1720	}
1721
1722	status &= sc->sc_imask;			/* discard unasked for bits */
1723
1724	/* Short-circuit un-handled interrupts */
1725	if (status == 0x0) {
1726		ATH_PCU_UNLOCK(sc);
1727		return;
1728	}
1729
1730	/*
1731	 * Take a note that we're inside the interrupt handler, so
1732	 * the reset routines know to wait.
1733	 */
1734	sc->sc_intr_cnt++;
1735	ATH_PCU_UNLOCK(sc);
1736
1737	/*
1738	 * Handle the interrupt. We won't run concurrent with the reset
1739	 * or channel change routines as they'll wait for sc_intr_cnt
1740	 * to be 0 before continuing.
1741	 */
1742	if (status & HAL_INT_FATAL) {
1743		sc->sc_stats.ast_hardware++;
1744		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1745		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1746	} else {
1747		if (status & HAL_INT_SWBA) {
1748			/*
1749			 * Software beacon alert--time to send a beacon.
1750			 * Handle beacon transmission directly; deferring
1751			 * this is too slow to meet timing constraints
1752			 * under load.
1753			 */
1754#ifdef IEEE80211_SUPPORT_TDMA
1755			if (sc->sc_tdma) {
1756				if (sc->sc_tdmaswba == 0) {
1757					struct ieee80211com *ic = ifp->if_l2com;
1758					struct ieee80211vap *vap =
1759					    TAILQ_FIRST(&ic->ic_vaps);
1760					ath_tdma_beacon_send(sc, vap);
1761					sc->sc_tdmaswba =
1762					    vap->iv_tdma->tdma_bintval;
1763				} else
1764					sc->sc_tdmaswba--;
1765			} else
1766#endif
1767			{
1768				ath_beacon_proc(sc, 0);
1769#ifdef IEEE80211_SUPPORT_SUPERG
1770				/*
1771				 * Schedule the rx taskq in case there's no
1772				 * traffic so any frames held on the staging
1773				 * queue are aged and potentially flushed.
1774				 */
1775				sc->sc_rx.recv_sched(sc, 1);
1776#endif
1777			}
1778		}
1779		if (status & HAL_INT_RXEOL) {
1780			int imask;
1781			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
1782			ATH_PCU_LOCK(sc);
1783			/*
1784			 * NB: the hardware should re-read the link when
1785			 *     RXE bit is written, but it doesn't work at
1786			 *     least on older hardware revs.
1787			 */
1788			sc->sc_stats.ast_rxeol++;
1789			/*
1790			 * Disable RXEOL/RXORN - prevent an interrupt
1791			 * storm until the PCU logic can be reset.
1792			 * In case the interface is reset some other
1793			 * way before "sc_kickpcu" is called, don't
1794			 * modify sc_imask - that way if it is reset
1795			 * by a call to ath_reset() somehow, the
1796			 * interrupt mask will be correctly reprogrammed.
1797			 */
1798			imask = sc->sc_imask;
1799			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1800			ath_hal_intrset(ah, imask);
1801			/*
1802			 * Only blank sc_rxlink if we've not yet kicked
1803			 * the PCU.
1804			 *
1805			 * This isn't entirely correct - the correct solution
1806			 * would be to have a PCU lock and engage that for
1807			 * the duration of the PCU fiddling; which would include
1808			 * running the RX process. Otherwise we could end up
1809			 * messing up the RX descriptor chain and making the
1810			 * RX desc list much shorter.
1811			 */
1812			if (! sc->sc_kickpcu)
1813				sc->sc_rxlink = NULL;
1814			sc->sc_kickpcu = 1;
1815			ATH_PCU_UNLOCK(sc);
1816			/*
1817			 * Enqueue an RX proc, to handled whatever
1818			 * is in the RX queue.
1819			 * This will then kick the PCU.
1820			 */
1821			sc->sc_rx.recv_sched(sc, 1);
1822		}
1823		if (status & HAL_INT_TXURN) {
1824			sc->sc_stats.ast_txurn++;
1825			/* bump tx trigger level */
1826			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1827		}
1828		/*
1829		 * Handle both the legacy and RX EDMA interrupt bits.
1830		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
1831		 */
1832		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
1833			sc->sc_stats.ast_rx_intr++;
1834			sc->sc_rx.recv_sched(sc, 1);
1835		}
1836		if (status & HAL_INT_TX) {
1837			sc->sc_stats.ast_tx_intr++;
1838			/*
1839			 * Grab all the currently set bits in the HAL txq bitmap
1840			 * and blank them. This is the only place we should be
1841			 * doing this.
1842			 */
1843			if (! sc->sc_isedma) {
1844				ATH_PCU_LOCK(sc);
1845				txqs = 0xffffffff;
1846				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1847				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
1848				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
1849				    txqs,
1850				    sc->sc_txq_active,
1851				    sc->sc_txq_active | txqs);
1852				sc->sc_txq_active |= txqs;
1853				ATH_PCU_UNLOCK(sc);
1854			}
1855			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1856		}
1857		if (status & HAL_INT_BMISS) {
1858			sc->sc_stats.ast_bmiss++;
1859			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1860		}
1861		if (status & HAL_INT_GTT)
1862			sc->sc_stats.ast_tx_timeout++;
1863		if (status & HAL_INT_CST)
1864			sc->sc_stats.ast_tx_cst++;
1865		if (status & HAL_INT_MIB) {
1866			sc->sc_stats.ast_mib++;
1867			ATH_PCU_LOCK(sc);
1868			/*
1869			 * Disable interrupts until we service the MIB
1870			 * interrupt; otherwise it will continue to fire.
1871			 */
1872			ath_hal_intrset(ah, 0);
1873			/*
1874			 * Let the hal handle the event.  We assume it will
1875			 * clear whatever condition caused the interrupt.
1876			 */
1877			ath_hal_mibevent(ah, &sc->sc_halstats);
1878			/*
1879			 * Don't reset the interrupt if we've just
1880			 * kicked the PCU, or we may get a nested
1881			 * RXEOL before the rxproc has had a chance
1882			 * to run.
1883			 */
1884			if (sc->sc_kickpcu == 0)
1885				ath_hal_intrset(ah, sc->sc_imask);
1886			ATH_PCU_UNLOCK(sc);
1887		}
1888		if (status & HAL_INT_RXORN) {
1889			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1890			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
1891			sc->sc_stats.ast_rxorn++;
1892		}
1893	}
1894	ATH_PCU_LOCK(sc);
1895	sc->sc_intr_cnt--;
1896	ATH_PCU_UNLOCK(sc);
1897}
1898
1899static void
1900ath_fatal_proc(void *arg, int pending)
1901{
1902	struct ath_softc *sc = arg;
1903	struct ifnet *ifp = sc->sc_ifp;
1904	u_int32_t *state;
1905	u_int32_t len;
1906	void *sp;
1907
1908	if_printf(ifp, "hardware error; resetting\n");
1909	/*
1910	 * Fatal errors are unrecoverable.  Typically these
1911	 * are caused by DMA errors.  Collect h/w state from
1912	 * the hal so we can diagnose what's going on.
1913	 */
1914	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1915		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1916		state = sp;
1917		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1918		    state[0], state[1] , state[2], state[3],
1919		    state[4], state[5]);
1920	}
1921	ath_reset(ifp, ATH_RESET_NOLOSS);
1922}
1923
1924static void
1925ath_bmiss_vap(struct ieee80211vap *vap)
1926{
1927	/*
1928	 * Workaround phantom bmiss interrupts by sanity-checking
1929	 * the time of our last rx'd frame.  If it is within the
1930	 * beacon miss interval then ignore the interrupt.  If it's
1931	 * truly a bmiss we'll get another interrupt soon and that'll
1932	 * be dispatched up for processing.  Note this applies only
1933	 * for h/w beacon miss events.
1934	 */
1935	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1936		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1937		struct ath_softc *sc = ifp->if_softc;
1938		u_int64_t lastrx = sc->sc_lastrx;
1939		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1940		/* XXX should take a locked ref to iv_bss */
1941		u_int bmisstimeout =
1942			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1943
1944		DPRINTF(sc, ATH_DEBUG_BEACON,
1945		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1946		    __func__, (unsigned long long) tsf,
1947		    (unsigned long long)(tsf - lastrx),
1948		    (unsigned long long) lastrx, bmisstimeout);
1949
1950		if (tsf - lastrx <= bmisstimeout) {
1951			sc->sc_stats.ast_bmiss_phantom++;
1952			return;
1953		}
1954	}
1955	ATH_VAP(vap)->av_bmiss(vap);
1956}
1957
1958int
1959ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1960{
1961	uint32_t rsize;
1962	void *sp;
1963
1964	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1965		return 0;
1966	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1967	*hangs = *(uint32_t *)sp;
1968	return 1;
1969}
1970
1971static void
1972ath_bmiss_proc(void *arg, int pending)
1973{
1974	struct ath_softc *sc = arg;
1975	struct ifnet *ifp = sc->sc_ifp;
1976	uint32_t hangs;
1977
1978	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1979
1980	/*
1981	 * Do a reset upon any becaon miss event.
1982	 *
1983	 * It may be a non-recognised RX clear hang which needs a reset
1984	 * to clear.
1985	 */
1986	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1987		ath_reset(ifp, ATH_RESET_NOLOSS);
1988		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1989	} else {
1990		ath_reset(ifp, ATH_RESET_NOLOSS);
1991		ieee80211_beacon_miss(ifp->if_l2com);
1992	}
1993}
1994
1995/*
1996 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1997 * calcs together with WME.  If necessary disable the crypto
1998 * hardware and mark the 802.11 state so keys will be setup
1999 * with the MIC work done in software.
2000 */
2001static void
2002ath_settkipmic(struct ath_softc *sc)
2003{
2004	struct ifnet *ifp = sc->sc_ifp;
2005	struct ieee80211com *ic = ifp->if_l2com;
2006
2007	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
2008		if (ic->ic_flags & IEEE80211_F_WME) {
2009			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
2010			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
2011		} else {
2012			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
2013			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
2014		}
2015	}
2016}
2017
2018static void
2019ath_init(void *arg)
2020{
2021	struct ath_softc *sc = (struct ath_softc *) arg;
2022	struct ifnet *ifp = sc->sc_ifp;
2023	struct ieee80211com *ic = ifp->if_l2com;
2024	struct ath_hal *ah = sc->sc_ah;
2025	HAL_STATUS status;
2026
2027	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
2028		__func__, ifp->if_flags);
2029
2030	ATH_LOCK(sc);
2031	/*
2032	 * Stop anything previously setup.  This is safe
2033	 * whether this is the first time through or not.
2034	 */
2035	ath_stop_locked(ifp);
2036
2037	/*
2038	 * The basic interface to setting the hardware in a good
2039	 * state is ``reset''.  On return the hardware is known to
2040	 * be powered up and with interrupts disabled.  This must
2041	 * be followed by initialization of the appropriate bits
2042	 * and then setup of the interrupt mask.
2043	 */
2044	ath_settkipmic(sc);
2045	ath_update_chainmasks(sc, ic->ic_curchan);
2046	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2047	    sc->sc_cur_rxchainmask);
2048	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
2049		if_printf(ifp, "unable to reset hardware; hal status %u\n",
2050			status);
2051		ATH_UNLOCK(sc);
2052		return;
2053	}
2054	ath_chan_change(sc, ic->ic_curchan);
2055
2056	/* Let DFS at it in case it's a DFS channel */
2057	ath_dfs_radar_enable(sc, ic->ic_curchan);
2058
2059	/* Let spectral at in case spectral is enabled */
2060	ath_spectral_enable(sc, ic->ic_curchan);
2061
2062	/*
2063	 * Let bluetooth coexistence at in case it's needed for this channel
2064	 */
2065	ath_btcoex_enable(sc, ic->ic_curchan);
2066
2067	/*
2068	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2069	 * support it.
2070	 */
2071	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2072		ath_hal_setenforcetxop(sc->sc_ah, 1);
2073	else
2074		ath_hal_setenforcetxop(sc->sc_ah, 0);
2075
2076	/*
2077	 * Likewise this is set during reset so update
2078	 * state cached in the driver.
2079	 */
2080	sc->sc_diversity = ath_hal_getdiversity(ah);
2081	sc->sc_lastlongcal = 0;
2082	sc->sc_resetcal = 1;
2083	sc->sc_lastcalreset = 0;
2084	sc->sc_lastani = 0;
2085	sc->sc_lastshortcal = 0;
2086	sc->sc_doresetcal = AH_FALSE;
2087	/*
2088	 * Beacon timers were cleared here; give ath_newstate()
2089	 * a hint that the beacon timers should be poked when
2090	 * things transition to the RUN state.
2091	 */
2092	sc->sc_beacons = 0;
2093
2094	/*
2095	 * Setup the hardware after reset: the key cache
2096	 * is filled as needed and the receive engine is
2097	 * set going.  Frame transmit is handled entirely
2098	 * in the frame output path; there's nothing to do
2099	 * here except setup the interrupt mask.
2100	 */
2101	if (ath_startrecv(sc) != 0) {
2102		if_printf(ifp, "unable to start recv logic\n");
2103		ATH_UNLOCK(sc);
2104		return;
2105	}
2106
2107	/*
2108	 * Enable interrupts.
2109	 */
2110	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2111		  | HAL_INT_RXEOL | HAL_INT_RXORN
2112		  | HAL_INT_TXURN
2113		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2114
2115	/*
2116	 * Enable RX EDMA bits.  Note these overlap with
2117	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2118	 */
2119	if (sc->sc_isedma)
2120		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2121
2122	/*
2123	 * Enable MIB interrupts when there are hardware phy counters.
2124	 * Note we only do this (at the moment) for station mode.
2125	 */
2126	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2127		sc->sc_imask |= HAL_INT_MIB;
2128
2129	/* Enable global TX timeout and carrier sense timeout if available */
2130	if (ath_hal_gtxto_supported(ah))
2131		sc->sc_imask |= HAL_INT_GTT;
2132
2133	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2134		__func__, sc->sc_imask);
2135
2136	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2137	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2138	ath_hal_intrset(ah, sc->sc_imask);
2139
2140	ATH_UNLOCK(sc);
2141
2142#ifdef ATH_TX99_DIAG
2143	if (sc->sc_tx99 != NULL)
2144		sc->sc_tx99->start(sc->sc_tx99);
2145	else
2146#endif
2147	ieee80211_start_all(ic);		/* start all vap's */
2148}
2149
2150static void
2151ath_stop_locked(struct ifnet *ifp)
2152{
2153	struct ath_softc *sc = ifp->if_softc;
2154	struct ath_hal *ah = sc->sc_ah;
2155
2156	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2157		__func__, sc->sc_invalid, ifp->if_flags);
2158
2159	ATH_LOCK_ASSERT(sc);
2160	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2161		/*
2162		 * Shutdown the hardware and driver:
2163		 *    reset 802.11 state machine
2164		 *    turn off timers
2165		 *    disable interrupts
2166		 *    turn off the radio
2167		 *    clear transmit machinery
2168		 *    clear receive machinery
2169		 *    drain and release tx queues
2170		 *    reclaim beacon resources
2171		 *    power down hardware
2172		 *
2173		 * Note that some of this work is not possible if the
2174		 * hardware is gone (invalid).
2175		 */
2176#ifdef ATH_TX99_DIAG
2177		if (sc->sc_tx99 != NULL)
2178			sc->sc_tx99->stop(sc->sc_tx99);
2179#endif
2180		callout_stop(&sc->sc_wd_ch);
2181		sc->sc_wd_timer = 0;
2182		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2183		if (!sc->sc_invalid) {
2184			if (sc->sc_softled) {
2185				callout_stop(&sc->sc_ledtimer);
2186				ath_hal_gpioset(ah, sc->sc_ledpin,
2187					!sc->sc_ledon);
2188				sc->sc_blinking = 0;
2189			}
2190			ath_hal_intrset(ah, 0);
2191		}
2192		ath_draintxq(sc, ATH_RESET_DEFAULT);
2193		if (!sc->sc_invalid) {
2194			ath_stoprecv(sc, 1);
2195			ath_hal_phydisable(ah);
2196		} else
2197			sc->sc_rxlink = NULL;
2198		ath_beacon_free(sc);	/* XXX not needed */
2199	}
2200}
2201
2202#define	MAX_TXRX_ITERATIONS	1000
2203static void
2204ath_txrx_stop_locked(struct ath_softc *sc)
2205{
2206	int i = MAX_TXRX_ITERATIONS;
2207
2208	ATH_UNLOCK_ASSERT(sc);
2209	ATH_PCU_LOCK_ASSERT(sc);
2210
2211	/*
2212	 * Sleep until all the pending operations have completed.
2213	 *
2214	 * The caller must ensure that reset has been incremented
2215	 * or the pending operations may continue being queued.
2216	 */
2217	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2218	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2219		if (i <= 0)
2220			break;
2221		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
2222		i--;
2223	}
2224
2225	if (i <= 0)
2226		device_printf(sc->sc_dev,
2227		    "%s: didn't finish after %d iterations\n",
2228		    __func__, MAX_TXRX_ITERATIONS);
2229}
2230#undef	MAX_TXRX_ITERATIONS
2231
2232#if 0
2233static void
2234ath_txrx_stop(struct ath_softc *sc)
2235{
2236	ATH_UNLOCK_ASSERT(sc);
2237	ATH_PCU_UNLOCK_ASSERT(sc);
2238
2239	ATH_PCU_LOCK(sc);
2240	ath_txrx_stop_locked(sc);
2241	ATH_PCU_UNLOCK(sc);
2242}
2243#endif
2244
2245static void
2246ath_txrx_start(struct ath_softc *sc)
2247{
2248
2249	taskqueue_unblock(sc->sc_tq);
2250}
2251
2252/*
2253 * Grab the reset lock, and wait around until noone else
2254 * is trying to do anything with it.
2255 *
2256 * This is totally horrible but we can't hold this lock for
2257 * long enough to do TX/RX or we end up with net80211/ip stack
2258 * LORs and eventual deadlock.
2259 *
2260 * "dowait" signals whether to spin, waiting for the reset
2261 * lock count to reach 0. This should (for now) only be used
2262 * during the reset path, as the rest of the code may not
2263 * be locking-reentrant enough to behave correctly.
2264 *
2265 * Another, cleaner way should be found to serialise all of
2266 * these operations.
2267 */
2268#define	MAX_RESET_ITERATIONS	10
2269static int
2270ath_reset_grablock(struct ath_softc *sc, int dowait)
2271{
2272	int w = 0;
2273	int i = MAX_RESET_ITERATIONS;
2274
2275	ATH_PCU_LOCK_ASSERT(sc);
2276	do {
2277		if (sc->sc_inreset_cnt == 0) {
2278			w = 1;
2279			break;
2280		}
2281		if (dowait == 0) {
2282			w = 0;
2283			break;
2284		}
2285		ATH_PCU_UNLOCK(sc);
2286		pause("ath_reset_grablock", 1);
2287		i--;
2288		ATH_PCU_LOCK(sc);
2289	} while (i > 0);
2290
2291	/*
2292	 * We always increment the refcounter, regardless
2293	 * of whether we succeeded to get it in an exclusive
2294	 * way.
2295	 */
2296	sc->sc_inreset_cnt++;
2297
2298	if (i <= 0)
2299		device_printf(sc->sc_dev,
2300		    "%s: didn't finish after %d iterations\n",
2301		    __func__, MAX_RESET_ITERATIONS);
2302
2303	if (w == 0)
2304		device_printf(sc->sc_dev,
2305		    "%s: warning, recursive reset path!\n",
2306		    __func__);
2307
2308	return w;
2309}
2310#undef MAX_RESET_ITERATIONS
2311
2312/*
2313 * XXX TODO: write ath_reset_releaselock
2314 */
2315
2316static void
2317ath_stop(struct ifnet *ifp)
2318{
2319	struct ath_softc *sc = ifp->if_softc;
2320
2321	ATH_LOCK(sc);
2322	ath_stop_locked(ifp);
2323	ATH_UNLOCK(sc);
2324}
2325
2326/*
2327 * Reset the hardware w/o losing operational state.  This is
2328 * basically a more efficient way of doing ath_stop, ath_init,
2329 * followed by state transitions to the current 802.11
2330 * operational state.  Used to recover from various errors and
2331 * to reset or reload hardware state.
2332 */
2333int
2334ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2335{
2336	struct ath_softc *sc = ifp->if_softc;
2337	struct ieee80211com *ic = ifp->if_l2com;
2338	struct ath_hal *ah = sc->sc_ah;
2339	HAL_STATUS status;
2340	int i;
2341
2342	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2343
2344	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2345	ATH_PCU_UNLOCK_ASSERT(sc);
2346	ATH_UNLOCK_ASSERT(sc);
2347
2348	/* Try to (stop any further TX/RX from occuring */
2349	taskqueue_block(sc->sc_tq);
2350
2351	ATH_PCU_LOCK(sc);
2352
2353	/*
2354	 * Grab the reset lock before TX/RX is stopped.
2355	 *
2356	 * This is needed to ensure that when the TX/RX actually does finish,
2357	 * no further TX/RX/reset runs in parallel with this.
2358	 */
2359	if (ath_reset_grablock(sc, 1) == 0) {
2360		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2361		    __func__);
2362	}
2363
2364	/* disable interrupts */
2365	ath_hal_intrset(ah, 0);
2366
2367	/*
2368	 * Now, ensure that any in progress TX/RX completes before we
2369	 * continue.
2370	 */
2371	ath_txrx_stop_locked(sc);
2372
2373	ATH_PCU_UNLOCK(sc);
2374
2375	/*
2376	 * Should now wait for pending TX/RX to complete
2377	 * and block future ones from occuring. This needs to be
2378	 * done before the TX queue is drained.
2379	 */
2380	ath_draintxq(sc, reset_type);	/* stop xmit side */
2381
2382	/*
2383	 * Regardless of whether we're doing a no-loss flush or
2384	 * not, stop the PCU and handle what's in the RX queue.
2385	 * That way frames aren't dropped which shouldn't be.
2386	 */
2387	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2388	ath_rx_flush(sc);
2389
2390	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2391	/* NB: indicate channel change so we do a full reset */
2392	ath_update_chainmasks(sc, ic->ic_curchan);
2393	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2394	    sc->sc_cur_rxchainmask);
2395	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2396		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2397			__func__, status);
2398	sc->sc_diversity = ath_hal_getdiversity(ah);
2399
2400	/* Let DFS at it in case it's a DFS channel */
2401	ath_dfs_radar_enable(sc, ic->ic_curchan);
2402
2403	/* Let spectral at in case spectral is enabled */
2404	ath_spectral_enable(sc, ic->ic_curchan);
2405
2406	/*
2407	 * Let bluetooth coexistence at in case it's needed for this channel
2408	 */
2409	ath_btcoex_enable(sc, ic->ic_curchan);
2410
2411	/*
2412	 * If we're doing TDMA, enforce the TXOP limitation for chips that
2413	 * support it.
2414	 */
2415	if (sc->sc_hasenforcetxop && sc->sc_tdma)
2416		ath_hal_setenforcetxop(sc->sc_ah, 1);
2417	else
2418		ath_hal_setenforcetxop(sc->sc_ah, 0);
2419
2420	if (ath_startrecv(sc) != 0)	/* restart recv */
2421		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2422	/*
2423	 * We may be doing a reset in response to an ioctl
2424	 * that changes the channel so update any state that
2425	 * might change as a result.
2426	 */
2427	ath_chan_change(sc, ic->ic_curchan);
2428	if (sc->sc_beacons) {		/* restart beacons */
2429#ifdef IEEE80211_SUPPORT_TDMA
2430		if (sc->sc_tdma)
2431			ath_tdma_config(sc, NULL);
2432		else
2433#endif
2434			ath_beacon_config(sc, NULL);
2435	}
2436
2437	/*
2438	 * Release the reset lock and re-enable interrupts here.
2439	 * If an interrupt was being processed in ath_intr(),
2440	 * it would disable interrupts at this point. So we have
2441	 * to atomically enable interrupts and decrement the
2442	 * reset counter - this way ath_intr() doesn't end up
2443	 * disabling interrupts without a corresponding enable
2444	 * in the rest or channel change path.
2445	 */
2446	ATH_PCU_LOCK(sc);
2447	sc->sc_inreset_cnt--;
2448	/* XXX only do this if sc_inreset_cnt == 0? */
2449	ath_hal_intrset(ah, sc->sc_imask);
2450	ATH_PCU_UNLOCK(sc);
2451
2452	/*
2453	 * TX and RX can be started here. If it were started with
2454	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2455	 * Thus if this is a nested call through the reset or
2456	 * channel change code, TX completion will occur but
2457	 * RX completion and ath_start / ath_tx_start will not
2458	 * run.
2459	 */
2460
2461	/* Restart TX/RX as needed */
2462	ath_txrx_start(sc);
2463
2464	/* Restart TX completion and pending TX */
2465	if (reset_type == ATH_RESET_NOLOSS) {
2466		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2467			if (ATH_TXQ_SETUP(sc, i)) {
2468				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2469				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2470				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2471
2472				ATH_TX_LOCK(sc);
2473				ath_txq_sched(sc, &sc->sc_txq[i]);
2474				ATH_TX_UNLOCK(sc);
2475			}
2476		}
2477	}
2478
2479	/*
2480	 * This may have been set during an ath_start() call which
2481	 * set this once it detected a concurrent TX was going on.
2482	 * So, clear it.
2483	 */
2484	IF_LOCK(&ifp->if_snd);
2485	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2486	IF_UNLOCK(&ifp->if_snd);
2487
2488	/* Handle any frames in the TX queue */
2489	/*
2490	 * XXX should this be done by the caller, rather than
2491	 * ath_reset() ?
2492	 */
2493	ath_tx_kick(sc);		/* restart xmit */
2494	return 0;
2495}
2496
2497static int
2498ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2499{
2500	struct ieee80211com *ic = vap->iv_ic;
2501	struct ifnet *ifp = ic->ic_ifp;
2502	struct ath_softc *sc = ifp->if_softc;
2503	struct ath_hal *ah = sc->sc_ah;
2504
2505	switch (cmd) {
2506	case IEEE80211_IOC_TXPOWER:
2507		/*
2508		 * If per-packet TPC is enabled, then we have nothing
2509		 * to do; otherwise we need to force the global limit.
2510		 * All this can happen directly; no need to reset.
2511		 */
2512		if (!ath_hal_gettpc(ah))
2513			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2514		return 0;
2515	}
2516	/* XXX? Full or NOLOSS? */
2517	return ath_reset(ifp, ATH_RESET_FULL);
2518}
2519
2520struct ath_buf *
2521_ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2522{
2523	struct ath_buf *bf;
2524
2525	ATH_TXBUF_LOCK_ASSERT(sc);
2526
2527	if (btype == ATH_BUFTYPE_MGMT)
2528		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2529	else
2530		bf = TAILQ_FIRST(&sc->sc_txbuf);
2531
2532	if (bf == NULL) {
2533		sc->sc_stats.ast_tx_getnobuf++;
2534	} else {
2535		if (bf->bf_flags & ATH_BUF_BUSY) {
2536			sc->sc_stats.ast_tx_getbusybuf++;
2537			bf = NULL;
2538		}
2539	}
2540
2541	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2542		if (btype == ATH_BUFTYPE_MGMT)
2543			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2544		else {
2545			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2546			sc->sc_txbuf_cnt--;
2547
2548			/*
2549			 * This shuldn't happen; however just to be
2550			 * safe print a warning and fudge the txbuf
2551			 * count.
2552			 */
2553			if (sc->sc_txbuf_cnt < 0) {
2554				device_printf(sc->sc_dev,
2555				    "%s: sc_txbuf_cnt < 0?\n",
2556				    __func__);
2557				sc->sc_txbuf_cnt = 0;
2558			}
2559		}
2560	} else
2561		bf = NULL;
2562
2563	if (bf == NULL) {
2564		/* XXX should check which list, mgmt or otherwise */
2565		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2566		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2567			"out of xmit buffers" : "xmit buffer busy");
2568		return NULL;
2569	}
2570
2571	/* XXX TODO: should do this at buffer list initialisation */
2572	/* XXX (then, ensure the buffer has the right flag set) */
2573	bf->bf_flags = 0;
2574	if (btype == ATH_BUFTYPE_MGMT)
2575		bf->bf_flags |= ATH_BUF_MGMT;
2576	else
2577		bf->bf_flags &= (~ATH_BUF_MGMT);
2578
2579	/* Valid bf here; clear some basic fields */
2580	bf->bf_next = NULL;	/* XXX just to be sure */
2581	bf->bf_last = NULL;	/* XXX again, just to be sure */
2582	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2583	bzero(&bf->bf_state, sizeof(bf->bf_state));
2584
2585	/*
2586	 * Track the descriptor ID only if doing EDMA
2587	 */
2588	if (sc->sc_isedma) {
2589		bf->bf_descid = sc->sc_txbuf_descid;
2590		sc->sc_txbuf_descid++;
2591	}
2592
2593	return bf;
2594}
2595
2596/*
2597 * When retrying a software frame, buffers marked ATH_BUF_BUSY
2598 * can't be thrown back on the queue as they could still be
2599 * in use by the hardware.
2600 *
2601 * This duplicates the buffer, or returns NULL.
2602 *
2603 * The descriptor is also copied but the link pointers and
2604 * the DMA segments aren't copied; this frame should thus
2605 * be again passed through the descriptor setup/chain routines
2606 * so the link is correct.
2607 *
2608 * The caller must free the buffer using ath_freebuf().
2609 */
2610struct ath_buf *
2611ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
2612{
2613	struct ath_buf *tbf;
2614
2615	tbf = ath_getbuf(sc,
2616	    (bf->bf_flags & ATH_BUF_MGMT) ?
2617	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2618	if (tbf == NULL)
2619		return NULL;	/* XXX failure? Why? */
2620
2621	/* Copy basics */
2622	tbf->bf_next = NULL;
2623	tbf->bf_nseg = bf->bf_nseg;
2624	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
2625	tbf->bf_status = bf->bf_status;
2626	tbf->bf_m = bf->bf_m;
2627	tbf->bf_node = bf->bf_node;
2628	/* will be setup by the chain/setup function */
2629	tbf->bf_lastds = NULL;
2630	/* for now, last == self */
2631	tbf->bf_last = tbf;
2632	tbf->bf_comp = bf->bf_comp;
2633
2634	/* NOTE: DMA segments will be setup by the setup/chain functions */
2635
2636	/* The caller has to re-init the descriptor + links */
2637
2638	/*
2639	 * Free the DMA mapping here, before we NULL the mbuf.
2640	 * We must only call bus_dmamap_unload() once per mbuf chain
2641	 * or behaviour is undefined.
2642	 */
2643	if (bf->bf_m != NULL) {
2644		/*
2645		 * XXX is this POSTWRITE call required?
2646		 */
2647		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2648		    BUS_DMASYNC_POSTWRITE);
2649		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2650	}
2651
2652	bf->bf_m = NULL;
2653	bf->bf_node = NULL;
2654
2655	/* Copy state */
2656	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2657
2658	return tbf;
2659}
2660
2661struct ath_buf *
2662ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
2663{
2664	struct ath_buf *bf;
2665
2666	ATH_TXBUF_LOCK(sc);
2667	bf = _ath_getbuf_locked(sc, btype);
2668	/*
2669	 * If a mgmt buffer was requested but we're out of those,
2670	 * try requesting a normal one.
2671	 */
2672	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
2673		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
2674	ATH_TXBUF_UNLOCK(sc);
2675	if (bf == NULL) {
2676		struct ifnet *ifp = sc->sc_ifp;
2677
2678		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2679		sc->sc_stats.ast_tx_qstop++;
2680		IF_LOCK(&ifp->if_snd);
2681		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2682		IF_UNLOCK(&ifp->if_snd);
2683	}
2684	return bf;
2685}
2686
2687static void
2688ath_qflush(struct ifnet *ifp)
2689{
2690
2691	/* XXX TODO */
2692}
2693
2694/*
2695 * Transmit a single frame.
2696 *
2697 * net80211 will free the node reference if the transmit
2698 * fails, so don't free the node reference here.
2699 */
2700static int
2701ath_transmit(struct ifnet *ifp, struct mbuf *m)
2702{
2703	struct ieee80211com *ic = ifp->if_l2com;
2704	struct ath_softc *sc = ic->ic_ifp->if_softc;
2705	struct ieee80211_node *ni;
2706	struct mbuf *next;
2707	struct ath_buf *bf;
2708	ath_bufhead frags;
2709	int retval = 0;
2710
2711	/*
2712	 * Tell the reset path that we're currently transmitting.
2713	 */
2714	ATH_PCU_LOCK(sc);
2715	if (sc->sc_inreset_cnt > 0) {
2716		device_printf(sc->sc_dev,
2717		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2718		ATH_PCU_UNLOCK(sc);
2719		IF_LOCK(&ifp->if_snd);
2720		sc->sc_stats.ast_tx_qstop++;
2721		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2722		IF_UNLOCK(&ifp->if_snd);
2723		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
2724		return (ENOBUFS);	/* XXX should be EINVAL or? */
2725	}
2726	sc->sc_txstart_cnt++;
2727	ATH_PCU_UNLOCK(sc);
2728
2729	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: start");
2730	/*
2731	 * Grab the TX lock - it's ok to do this here; we haven't
2732	 * yet started transmitting.
2733	 */
2734	ATH_TX_LOCK(sc);
2735
2736	/*
2737	 * Node reference, if there's one.
2738	 */
2739	ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2740
2741	/*
2742	 * Enforce how deep a node queue can get.
2743	 *
2744	 * XXX it would be nicer if we kept an mbuf queue per
2745	 * node and only whacked them into ath_bufs when we
2746	 * are ready to schedule some traffic from them.
2747	 * .. that may come later.
2748	 *
2749	 * XXX we should also track the per-node hardware queue
2750	 * depth so it is easy to limit the _SUM_ of the swq and
2751	 * hwq frames.  Since we only schedule two HWQ frames
2752	 * at a time, this should be OK for now.
2753	 */
2754	if ((!(m->m_flags & M_EAPOL)) &&
2755	    (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
2756		sc->sc_stats.ast_tx_nodeq_overflow++;
2757		m_freem(m);
2758		m = NULL;
2759		retval = ENOBUFS;
2760		goto finish;
2761	}
2762
2763	/*
2764	 * Check how many TX buffers are available.
2765	 *
2766	 * If this is for non-EAPOL traffic, just leave some
2767	 * space free in order for buffer cloning and raw
2768	 * frame transmission to occur.
2769	 *
2770	 * If it's for EAPOL traffic, ignore this for now.
2771	 * Management traffic will be sent via the raw transmit
2772	 * method which bypasses this check.
2773	 *
2774	 * This is needed to ensure that EAPOL frames during
2775	 * (re) keying have a chance to go out.
2776	 *
2777	 * See kern/138379 for more information.
2778	 */
2779	if ((!(m->m_flags & M_EAPOL)) &&
2780	    (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
2781		sc->sc_stats.ast_tx_nobuf++;
2782		m_freem(m);
2783		m = NULL;
2784		retval = ENOBUFS;
2785		goto finish;
2786	}
2787
2788	/*
2789	 * Grab a TX buffer and associated resources.
2790	 *
2791	 * If it's an EAPOL frame, allocate a MGMT ath_buf.
2792	 * That way even with temporary buffer exhaustion due to
2793	 * the data path doesn't leave us without the ability
2794	 * to transmit management frames.
2795	 *
2796	 * Otherwise allocate a normal buffer.
2797	 */
2798	if (m->m_flags & M_EAPOL)
2799		bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
2800	else
2801		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
2802
2803	if (bf == NULL) {
2804		/*
2805		 * If we failed to allocate a buffer, fail.
2806		 *
2807		 * We shouldn't fail normally, due to the check
2808		 * above.
2809		 */
2810		sc->sc_stats.ast_tx_nobuf++;
2811		IF_LOCK(&ifp->if_snd);
2812		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2813		IF_UNLOCK(&ifp->if_snd);
2814		m_freem(m);
2815		m = NULL;
2816		retval = ENOBUFS;
2817		goto finish;
2818	}
2819
2820	/*
2821	 * At this point we have a buffer; so we need to free it
2822	 * if we hit any error conditions.
2823	 */
2824
2825	/*
2826	 * Check for fragmentation.  If this frame
2827	 * has been broken up verify we have enough
2828	 * buffers to send all the fragments so all
2829	 * go out or none...
2830	 */
2831	TAILQ_INIT(&frags);
2832	if ((m->m_flags & M_FRAG) &&
2833	    !ath_txfrag_setup(sc, &frags, m, ni)) {
2834		DPRINTF(sc, ATH_DEBUG_XMIT,
2835		    "%s: out of txfrag buffers\n", __func__);
2836		sc->sc_stats.ast_tx_nofrag++;
2837		ifp->if_oerrors++;
2838		ath_freetx(m);
2839		goto bad;
2840	}
2841
2842	/*
2843	 * At this point if we have any TX fragments, then we will
2844	 * have bumped the node reference once for each of those.
2845	 */
2846
2847	/*
2848	 * XXX Is there anything actually _enforcing_ that the
2849	 * fragments are being transmitted in one hit, rather than
2850	 * being interleaved with other transmissions on that
2851	 * hardware queue?
2852	 *
2853	 * The ATH TX output lock is the only thing serialising this
2854	 * right now.
2855	 */
2856
2857	/*
2858	 * Calculate the "next fragment" length field in ath_buf
2859	 * in order to let the transmit path know enough about
2860	 * what to next write to the hardware.
2861	 */
2862	if (m->m_flags & M_FRAG) {
2863		struct ath_buf *fbf = bf;
2864		struct ath_buf *n_fbf = NULL;
2865		struct mbuf *fm = m->m_nextpkt;
2866
2867		/*
2868		 * We need to walk the list of fragments and set
2869		 * the next size to the following buffer.
2870		 * However, the first buffer isn't in the frag
2871		 * list, so we have to do some gymnastics here.
2872		 */
2873		TAILQ_FOREACH(n_fbf, &frags, bf_list) {
2874			fbf->bf_nextfraglen = fm->m_pkthdr.len;
2875			fbf = n_fbf;
2876			fm = fm->m_nextpkt;
2877		}
2878	}
2879
2880	/*
2881	 * Bump the ifp output counter.
2882	 *
2883	 * XXX should use atomics?
2884	 */
2885	ifp->if_opackets++;
2886nextfrag:
2887	/*
2888	 * Pass the frame to the h/w for transmission.
2889	 * Fragmented frames have each frag chained together
2890	 * with m_nextpkt.  We know there are sufficient ath_buf's
2891	 * to send all the frags because of work done by
2892	 * ath_txfrag_setup.  We leave m_nextpkt set while
2893	 * calling ath_tx_start so it can use it to extend the
2894	 * the tx duration to cover the subsequent frag and
2895	 * so it can reclaim all the mbufs in case of an error;
2896	 * ath_tx_start clears m_nextpkt once it commits to
2897	 * handing the frame to the hardware.
2898	 *
2899	 * Note: if this fails, then the mbufs are freed but
2900	 * not the node reference.
2901	 */
2902	next = m->m_nextpkt;
2903	if (ath_tx_start(sc, ni, bf, m)) {
2904bad:
2905		ifp->if_oerrors++;
2906reclaim:
2907		bf->bf_m = NULL;
2908		bf->bf_node = NULL;
2909		ATH_TXBUF_LOCK(sc);
2910		ath_returnbuf_head(sc, bf);
2911		/*
2912		 * Free the rest of the node references and
2913		 * buffers for the fragment list.
2914		 */
2915		ath_txfrag_cleanup(sc, &frags, ni);
2916		ATH_TXBUF_UNLOCK(sc);
2917		retval = ENOBUFS;
2918		goto finish;
2919	}
2920
2921	/*
2922	 * Check here if the node is in power save state.
2923	 */
2924	ath_tx_update_tim(sc, ni, 1);
2925
2926	if (next != NULL) {
2927		/*
2928		 * Beware of state changing between frags.
2929		 * XXX check sta power-save state?
2930		 */
2931		if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2932			DPRINTF(sc, ATH_DEBUG_XMIT,
2933			    "%s: flush fragmented packet, state %s\n",
2934			    __func__,
2935			    ieee80211_state_name[ni->ni_vap->iv_state]);
2936			/* XXX dmamap */
2937			ath_freetx(next);
2938			goto reclaim;
2939		}
2940		m = next;
2941		bf = TAILQ_FIRST(&frags);
2942		KASSERT(bf != NULL, ("no buf for txfrag"));
2943		TAILQ_REMOVE(&frags, bf, bf_list);
2944		goto nextfrag;
2945	}
2946
2947	/*
2948	 * Bump watchdog timer.
2949	 */
2950	sc->sc_wd_timer = 5;
2951
2952finish:
2953	ATH_TX_UNLOCK(sc);
2954
2955	/*
2956	 * Finished transmitting!
2957	 */
2958	ATH_PCU_LOCK(sc);
2959	sc->sc_txstart_cnt--;
2960	ATH_PCU_UNLOCK(sc);
2961
2962	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_transmit: finished");
2963
2964	return (retval);
2965}
2966
2967static int
2968ath_media_change(struct ifnet *ifp)
2969{
2970	int error = ieee80211_media_change(ifp);
2971	/* NB: only the fixed rate can change and that doesn't need a reset */
2972	return (error == ENETRESET ? 0 : error);
2973}
2974
2975/*
2976 * Block/unblock tx+rx processing while a key change is done.
2977 * We assume the caller serializes key management operations
2978 * so we only need to worry about synchronization with other
2979 * uses that originate in the driver.
2980 */
2981static void
2982ath_key_update_begin(struct ieee80211vap *vap)
2983{
2984	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2985	struct ath_softc *sc = ifp->if_softc;
2986
2987	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2988	taskqueue_block(sc->sc_tq);
2989	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2990}
2991
2992static void
2993ath_key_update_end(struct ieee80211vap *vap)
2994{
2995	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2996	struct ath_softc *sc = ifp->if_softc;
2997
2998	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2999	IF_UNLOCK(&ifp->if_snd);
3000	taskqueue_unblock(sc->sc_tq);
3001}
3002
3003static void
3004ath_update_promisc(struct ifnet *ifp)
3005{
3006	struct ath_softc *sc = ifp->if_softc;
3007	u_int32_t rfilt;
3008
3009	/* configure rx filter */
3010	rfilt = ath_calcrxfilter(sc);
3011	ath_hal_setrxfilter(sc->sc_ah, rfilt);
3012
3013	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
3014}
3015
3016static void
3017ath_update_mcast(struct ifnet *ifp)
3018{
3019	struct ath_softc *sc = ifp->if_softc;
3020	u_int32_t mfilt[2];
3021
3022	/* calculate and install multicast filter */
3023	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
3024		struct ifmultiaddr *ifma;
3025		/*
3026		 * Merge multicast addresses to form the hardware filter.
3027		 */
3028		mfilt[0] = mfilt[1] = 0;
3029		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
3030		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
3031			caddr_t dl;
3032			u_int32_t val;
3033			u_int8_t pos;
3034
3035			/* calculate XOR of eight 6bit values */
3036			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
3037			val = LE_READ_4(dl + 0);
3038			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3039			val = LE_READ_4(dl + 3);
3040			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
3041			pos &= 0x3f;
3042			mfilt[pos / 32] |= (1 << (pos % 32));
3043		}
3044		if_maddr_runlock(ifp);
3045	} else
3046		mfilt[0] = mfilt[1] = ~0;
3047	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
3048	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
3049		__func__, mfilt[0], mfilt[1]);
3050}
3051
3052void
3053ath_mode_init(struct ath_softc *sc)
3054{
3055	struct ifnet *ifp = sc->sc_ifp;
3056	struct ath_hal *ah = sc->sc_ah;
3057	u_int32_t rfilt;
3058
3059	/* configure rx filter */
3060	rfilt = ath_calcrxfilter(sc);
3061	ath_hal_setrxfilter(ah, rfilt);
3062
3063	/* configure operational mode */
3064	ath_hal_setopmode(ah);
3065
3066	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
3067	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
3068	    __func__,
3069	    ah,
3070	    ifp,
3071	    (ifp == NULL) ? NULL : ifp->if_addr);
3072
3073	/* handle any link-level address change */
3074	ath_hal_setmac(ah, IF_LLADDR(ifp));
3075
3076	/* calculate and install multicast filter */
3077	ath_update_mcast(ifp);
3078}
3079
3080/*
3081 * Set the slot time based on the current setting.
3082 */
3083void
3084ath_setslottime(struct ath_softc *sc)
3085{
3086	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3087	struct ath_hal *ah = sc->sc_ah;
3088	u_int usec;
3089
3090	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
3091		usec = 13;
3092	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
3093		usec = 21;
3094	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
3095		/* honor short/long slot time only in 11g */
3096		/* XXX shouldn't honor on pure g or turbo g channel */
3097		if (ic->ic_flags & IEEE80211_F_SHSLOT)
3098			usec = HAL_SLOT_TIME_9;
3099		else
3100			usec = HAL_SLOT_TIME_20;
3101	} else
3102		usec = HAL_SLOT_TIME_9;
3103
3104	DPRINTF(sc, ATH_DEBUG_RESET,
3105	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
3106	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
3107	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
3108
3109	ath_hal_setslottime(ah, usec);
3110	sc->sc_updateslot = OK;
3111}
3112
3113/*
3114 * Callback from the 802.11 layer to update the
3115 * slot time based on the current setting.
3116 */
3117static void
3118ath_updateslot(struct ifnet *ifp)
3119{
3120	struct ath_softc *sc = ifp->if_softc;
3121	struct ieee80211com *ic = ifp->if_l2com;
3122
3123	/*
3124	 * When not coordinating the BSS, change the hardware
3125	 * immediately.  For other operation we defer the change
3126	 * until beacon updates have propagated to the stations.
3127	 */
3128	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3129	    ic->ic_opmode == IEEE80211_M_MBSS)
3130		sc->sc_updateslot = UPDATE;
3131	else
3132		ath_setslottime(sc);
3133}
3134
3135/*
3136 * Append the contents of src to dst; both queues
3137 * are assumed to be locked.
3138 */
3139void
3140ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3141{
3142
3143	ATH_TXQ_LOCK_ASSERT(src);
3144	ATH_TXQ_LOCK_ASSERT(dst);
3145
3146	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3147	dst->axq_link = src->axq_link;
3148	src->axq_link = NULL;
3149	dst->axq_depth += src->axq_depth;
3150	dst->axq_aggr_depth += src->axq_aggr_depth;
3151	src->axq_depth = 0;
3152	src->axq_aggr_depth = 0;
3153}
3154
3155/*
3156 * Reset the hardware, with no loss.
3157 *
3158 * This can't be used for a general case reset.
3159 */
3160static void
3161ath_reset_proc(void *arg, int pending)
3162{
3163	struct ath_softc *sc = arg;
3164	struct ifnet *ifp = sc->sc_ifp;
3165
3166#if 0
3167	if_printf(ifp, "%s: resetting\n", __func__);
3168#endif
3169	ath_reset(ifp, ATH_RESET_NOLOSS);
3170}
3171
3172/*
3173 * Reset the hardware after detecting beacons have stopped.
3174 */
3175static void
3176ath_bstuck_proc(void *arg, int pending)
3177{
3178	struct ath_softc *sc = arg;
3179	struct ifnet *ifp = sc->sc_ifp;
3180	uint32_t hangs = 0;
3181
3182	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3183		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3184
3185#ifdef	ATH_DEBUG_ALQ
3186	if (if_ath_alq_checkdebug(&sc->sc_alq, ATH_ALQ_STUCK_BEACON))
3187		if_ath_alq_post(&sc->sc_alq, ATH_ALQ_STUCK_BEACON, 0, NULL);
3188#endif
3189
3190	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3191		sc->sc_bmisscount);
3192	sc->sc_stats.ast_bstuck++;
3193	/*
3194	 * This assumes that there's no simultaneous channel mode change
3195	 * occuring.
3196	 */
3197	ath_reset(ifp, ATH_RESET_NOLOSS);
3198}
3199
3200static void
3201ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3202{
3203	bus_addr_t *paddr = (bus_addr_t*) arg;
3204	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3205	*paddr = segs->ds_addr;
3206}
3207
3208/*
3209 * Allocate the descriptors and appropriate DMA tag/setup.
3210 *
3211 * For some situations (eg EDMA TX completion), there isn't a requirement
3212 * for the ath_buf entries to be allocated.
3213 */
3214int
3215ath_descdma_alloc_desc(struct ath_softc *sc,
3216	struct ath_descdma *dd, ath_bufhead *head,
3217	const char *name, int ds_size, int ndesc)
3218{
3219#define	DS2PHYS(_dd, _ds) \
3220	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3221#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3222	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3223	struct ifnet *ifp = sc->sc_ifp;
3224	int error;
3225
3226	dd->dd_descsize = ds_size;
3227
3228	DPRINTF(sc, ATH_DEBUG_RESET,
3229	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
3230	    __func__, name, ndesc, dd->dd_descsize);
3231
3232	dd->dd_name = name;
3233	dd->dd_desc_len = dd->dd_descsize * ndesc;
3234
3235	/*
3236	 * Merlin work-around:
3237	 * Descriptors that cross the 4KB boundary can't be used.
3238	 * Assume one skipped descriptor per 4KB page.
3239	 */
3240	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3241		int numpages = dd->dd_desc_len / 4096;
3242		dd->dd_desc_len += ds_size * numpages;
3243	}
3244
3245	/*
3246	 * Setup DMA descriptor area.
3247	 *
3248	 * BUS_DMA_ALLOCNOW is not used; we never use bounce
3249	 * buffers for the descriptors themselves.
3250	 */
3251	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3252		       PAGE_SIZE, 0,		/* alignment, bounds */
3253		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3254		       BUS_SPACE_MAXADDR,	/* highaddr */
3255		       NULL, NULL,		/* filter, filterarg */
3256		       dd->dd_desc_len,		/* maxsize */
3257		       1,			/* nsegments */
3258		       dd->dd_desc_len,		/* maxsegsize */
3259		       0,			/* flags */
3260		       NULL,			/* lockfunc */
3261		       NULL,			/* lockarg */
3262		       &dd->dd_dmat);
3263	if (error != 0) {
3264		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3265		return error;
3266	}
3267
3268	/* allocate descriptors */
3269	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3270				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3271				 &dd->dd_dmamap);
3272	if (error != 0) {
3273		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3274			"error %u\n", ndesc, dd->dd_name, error);
3275		goto fail1;
3276	}
3277
3278	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3279				dd->dd_desc, dd->dd_desc_len,
3280				ath_load_cb, &dd->dd_desc_paddr,
3281				BUS_DMA_NOWAIT);
3282	if (error != 0) {
3283		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3284			dd->dd_name, error);
3285		goto fail2;
3286	}
3287
3288	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3289	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
3290	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
3291	    /*XXX*/ (u_long) dd->dd_desc_len);
3292
3293	return (0);
3294
3295fail2:
3296	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3297fail1:
3298	bus_dma_tag_destroy(dd->dd_dmat);
3299	memset(dd, 0, sizeof(*dd));
3300	return error;
3301#undef DS2PHYS
3302#undef ATH_DESC_4KB_BOUND_CHECK
3303}
3304
3305int
3306ath_descdma_setup(struct ath_softc *sc,
3307	struct ath_descdma *dd, ath_bufhead *head,
3308	const char *name, int ds_size, int nbuf, int ndesc)
3309{
3310#define	DS2PHYS(_dd, _ds) \
3311	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3312#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3313	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3314	struct ifnet *ifp = sc->sc_ifp;
3315	uint8_t *ds;
3316	struct ath_buf *bf;
3317	int i, bsize, error;
3318
3319	/* Allocate descriptors */
3320	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3321	    nbuf * ndesc);
3322
3323	/* Assume any errors during allocation were dealt with */
3324	if (error != 0) {
3325		return (error);
3326	}
3327
3328	ds = (uint8_t *) dd->dd_desc;
3329
3330	/* allocate rx buffers */
3331	bsize = sizeof(struct ath_buf) * nbuf;
3332	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3333	if (bf == NULL) {
3334		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3335			dd->dd_name, bsize);
3336		goto fail3;
3337	}
3338	dd->dd_bufptr = bf;
3339
3340	TAILQ_INIT(head);
3341	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3342		bf->bf_desc = (struct ath_desc *) ds;
3343		bf->bf_daddr = DS2PHYS(dd, ds);
3344		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3345			/*
3346			 * Merlin WAR: Skip descriptor addresses which
3347			 * cause 4KB boundary crossing along any point
3348			 * in the descriptor.
3349			 */
3350			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3351			     dd->dd_descsize)) {
3352				/* Start at the next page */
3353				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3354				bf->bf_desc = (struct ath_desc *) ds;
3355				bf->bf_daddr = DS2PHYS(dd, ds);
3356			}
3357		}
3358		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3359				&bf->bf_dmamap);
3360		if (error != 0) {
3361			if_printf(ifp, "unable to create dmamap for %s "
3362				"buffer %u, error %u\n", dd->dd_name, i, error);
3363			ath_descdma_cleanup(sc, dd, head);
3364			return error;
3365		}
3366		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3367		TAILQ_INSERT_TAIL(head, bf, bf_list);
3368	}
3369
3370	/*
3371	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3372	 * allocation otherwise weird stuff will occur and crash your
3373	 * machine.
3374	 */
3375	return 0;
3376	/* XXX this should likely just call ath_descdma_cleanup() */
3377fail3:
3378	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3379	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3380	bus_dma_tag_destroy(dd->dd_dmat);
3381	memset(dd, 0, sizeof(*dd));
3382	return error;
3383#undef DS2PHYS
3384#undef ATH_DESC_4KB_BOUND_CHECK
3385}
3386
3387/*
3388 * Allocate ath_buf entries but no descriptor contents.
3389 *
3390 * This is for RX EDMA where the descriptors are the header part of
3391 * the RX buffer.
3392 */
3393int
3394ath_descdma_setup_rx_edma(struct ath_softc *sc,
3395	struct ath_descdma *dd, ath_bufhead *head,
3396	const char *name, int nbuf, int rx_status_len)
3397{
3398	struct ifnet *ifp = sc->sc_ifp;
3399	struct ath_buf *bf;
3400	int i, bsize, error;
3401
3402	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3403	    __func__, name, nbuf);
3404
3405	dd->dd_name = name;
3406	/*
3407	 * This is (mostly) purely for show.  We're not allocating any actual
3408	 * descriptors here as EDMA RX has the descriptor be part
3409	 * of the RX buffer.
3410	 *
3411	 * However, dd_desc_len is used by ath_descdma_free() to determine
3412	 * whether we have already freed this DMA mapping.
3413	 */
3414	dd->dd_desc_len = rx_status_len * nbuf;
3415	dd->dd_descsize = rx_status_len;
3416
3417	/* allocate rx buffers */
3418	bsize = sizeof(struct ath_buf) * nbuf;
3419	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3420	if (bf == NULL) {
3421		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3422			dd->dd_name, bsize);
3423		error = ENOMEM;
3424		goto fail3;
3425	}
3426	dd->dd_bufptr = bf;
3427
3428	TAILQ_INIT(head);
3429	for (i = 0; i < nbuf; i++, bf++) {
3430		bf->bf_desc = NULL;
3431		bf->bf_daddr = 0;
3432		bf->bf_lastds = NULL;	/* Just an initial value */
3433
3434		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3435				&bf->bf_dmamap);
3436		if (error != 0) {
3437			if_printf(ifp, "unable to create dmamap for %s "
3438				"buffer %u, error %u\n", dd->dd_name, i, error);
3439			ath_descdma_cleanup(sc, dd, head);
3440			return error;
3441		}
3442		TAILQ_INSERT_TAIL(head, bf, bf_list);
3443	}
3444	return 0;
3445fail3:
3446	memset(dd, 0, sizeof(*dd));
3447	return error;
3448}
3449
3450void
3451ath_descdma_cleanup(struct ath_softc *sc,
3452	struct ath_descdma *dd, ath_bufhead *head)
3453{
3454	struct ath_buf *bf;
3455	struct ieee80211_node *ni;
3456	int do_warning = 0;
3457
3458	if (dd->dd_dmamap != 0) {
3459		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3460		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3461		bus_dma_tag_destroy(dd->dd_dmat);
3462	}
3463
3464	if (head != NULL) {
3465		TAILQ_FOREACH(bf, head, bf_list) {
3466			if (bf->bf_m) {
3467				/*
3468				 * XXX warn if there's buffers here.
3469				 * XXX it should have been freed by the
3470				 * owner!
3471				 */
3472
3473				if (do_warning == 0) {
3474					do_warning = 1;
3475					device_printf(sc->sc_dev,
3476					    "%s: %s: mbuf should've been"
3477					    " unmapped/freed!\n",
3478					    __func__,
3479					    dd->dd_name);
3480				}
3481				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3482				    BUS_DMASYNC_POSTREAD);
3483				bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3484				m_freem(bf->bf_m);
3485				bf->bf_m = NULL;
3486			}
3487			if (bf->bf_dmamap != NULL) {
3488				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3489				bf->bf_dmamap = NULL;
3490			}
3491			ni = bf->bf_node;
3492			bf->bf_node = NULL;
3493			if (ni != NULL) {
3494				/*
3495				 * Reclaim node reference.
3496				 */
3497				ieee80211_free_node(ni);
3498			}
3499		}
3500	}
3501
3502	if (head != NULL)
3503		TAILQ_INIT(head);
3504
3505	if (dd->dd_bufptr != NULL)
3506		free(dd->dd_bufptr, M_ATHDEV);
3507	memset(dd, 0, sizeof(*dd));
3508}
3509
3510static int
3511ath_desc_alloc(struct ath_softc *sc)
3512{
3513	int error;
3514
3515	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3516		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
3517	if (error != 0) {
3518		return error;
3519	}
3520	sc->sc_txbuf_cnt = ath_txbuf;
3521
3522	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3523		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3524		    ATH_TXDESC);
3525	if (error != 0) {
3526		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3527		return error;
3528	}
3529
3530	/*
3531	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3532	 * flag doesn't have to be set in ath_getbuf_locked().
3533	 */
3534
3535	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3536			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3537	if (error != 0) {
3538		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3539		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3540		    &sc->sc_txbuf_mgmt);
3541		return error;
3542	}
3543	return 0;
3544}
3545
3546static void
3547ath_desc_free(struct ath_softc *sc)
3548{
3549
3550	if (sc->sc_bdma.dd_desc_len != 0)
3551		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3552	if (sc->sc_txdma.dd_desc_len != 0)
3553		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3554	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3555		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3556		    &sc->sc_txbuf_mgmt);
3557}
3558
3559static struct ieee80211_node *
3560ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3561{
3562	struct ieee80211com *ic = vap->iv_ic;
3563	struct ath_softc *sc = ic->ic_ifp->if_softc;
3564	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3565	struct ath_node *an;
3566
3567	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3568	if (an == NULL) {
3569		/* XXX stat+msg */
3570		return NULL;
3571	}
3572	ath_rate_node_init(sc, an);
3573
3574	/* Setup the mutex - there's no associd yet so set the name to NULL */
3575	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3576	    device_get_nameunit(sc->sc_dev), an);
3577	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3578
3579	/* XXX setup ath_tid */
3580	ath_tx_tid_init(sc, an);
3581
3582	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__, mac, ":", an);
3583	return &an->an_node;
3584}
3585
3586static void
3587ath_node_cleanup(struct ieee80211_node *ni)
3588{
3589	struct ieee80211com *ic = ni->ni_ic;
3590	struct ath_softc *sc = ic->ic_ifp->if_softc;
3591
3592	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3593	    ni->ni_macaddr, ":", ATH_NODE(ni));
3594
3595	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3596	ath_tx_node_flush(sc, ATH_NODE(ni));
3597	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3598	sc->sc_node_cleanup(ni);
3599}
3600
3601static void
3602ath_node_free(struct ieee80211_node *ni)
3603{
3604	struct ieee80211com *ic = ni->ni_ic;
3605	struct ath_softc *sc = ic->ic_ifp->if_softc;
3606
3607	DPRINTF(sc, ATH_DEBUG_NODE, "%s: %6D: an %p\n", __func__,
3608	    ni->ni_macaddr, ":", ATH_NODE(ni));
3609	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3610	sc->sc_node_free(ni);
3611}
3612
3613static void
3614ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3615{
3616	struct ieee80211com *ic = ni->ni_ic;
3617	struct ath_softc *sc = ic->ic_ifp->if_softc;
3618	struct ath_hal *ah = sc->sc_ah;
3619
3620	*rssi = ic->ic_node_getrssi(ni);
3621	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3622		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3623	else
3624		*noise = -95;		/* nominally correct */
3625}
3626
3627/*
3628 * Set the default antenna.
3629 */
3630void
3631ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3632{
3633	struct ath_hal *ah = sc->sc_ah;
3634
3635	/* XXX block beacon interrupts */
3636	ath_hal_setdefantenna(ah, antenna);
3637	if (sc->sc_defant != antenna)
3638		sc->sc_stats.ast_ant_defswitch++;
3639	sc->sc_defant = antenna;
3640	sc->sc_rxotherant = 0;
3641}
3642
3643static void
3644ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3645{
3646	txq->axq_qnum = qnum;
3647	txq->axq_ac = 0;
3648	txq->axq_depth = 0;
3649	txq->axq_aggr_depth = 0;
3650	txq->axq_intrcnt = 0;
3651	txq->axq_link = NULL;
3652	txq->axq_softc = sc;
3653	TAILQ_INIT(&txq->axq_q);
3654	TAILQ_INIT(&txq->axq_tidq);
3655	TAILQ_INIT(&txq->fifo.axq_q);
3656	ATH_TXQ_LOCK_INIT(sc, txq);
3657}
3658
3659/*
3660 * Setup a h/w transmit queue.
3661 */
3662static struct ath_txq *
3663ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3664{
3665#define	N(a)	(sizeof(a)/sizeof(a[0]))
3666	struct ath_hal *ah = sc->sc_ah;
3667	HAL_TXQ_INFO qi;
3668	int qnum;
3669
3670	memset(&qi, 0, sizeof(qi));
3671	qi.tqi_subtype = subtype;
3672	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3673	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3674	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3675	/*
3676	 * Enable interrupts only for EOL and DESC conditions.
3677	 * We mark tx descriptors to receive a DESC interrupt
3678	 * when a tx queue gets deep; otherwise waiting for the
3679	 * EOL to reap descriptors.  Note that this is done to
3680	 * reduce interrupt load and this only defers reaping
3681	 * descriptors, never transmitting frames.  Aside from
3682	 * reducing interrupts this also permits more concurrency.
3683	 * The only potential downside is if the tx queue backs
3684	 * up in which case the top half of the kernel may backup
3685	 * due to a lack of tx descriptors.
3686	 */
3687	if (sc->sc_isedma)
3688		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
3689		    HAL_TXQ_TXOKINT_ENABLE;
3690	else
3691		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
3692		    HAL_TXQ_TXDESCINT_ENABLE;
3693
3694	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3695	if (qnum == -1) {
3696		/*
3697		 * NB: don't print a message, this happens
3698		 * normally on parts with too few tx queues
3699		 */
3700		return NULL;
3701	}
3702	if (qnum >= N(sc->sc_txq)) {
3703		device_printf(sc->sc_dev,
3704			"hal qnum %u out of range, max %zu!\n",
3705			qnum, N(sc->sc_txq));
3706		ath_hal_releasetxqueue(ah, qnum);
3707		return NULL;
3708	}
3709	if (!ATH_TXQ_SETUP(sc, qnum)) {
3710		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3711		sc->sc_txqsetup |= 1<<qnum;
3712	}
3713	return &sc->sc_txq[qnum];
3714#undef N
3715}
3716
3717/*
3718 * Setup a hardware data transmit queue for the specified
3719 * access control.  The hal may not support all requested
3720 * queues in which case it will return a reference to a
3721 * previously setup queue.  We record the mapping from ac's
3722 * to h/w queues for use by ath_tx_start and also track
3723 * the set of h/w queues being used to optimize work in the
3724 * transmit interrupt handler and related routines.
3725 */
3726static int
3727ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3728{
3729#define	N(a)	(sizeof(a)/sizeof(a[0]))
3730	struct ath_txq *txq;
3731
3732	if (ac >= N(sc->sc_ac2q)) {
3733		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3734			ac, N(sc->sc_ac2q));
3735		return 0;
3736	}
3737	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3738	if (txq != NULL) {
3739		txq->axq_ac = ac;
3740		sc->sc_ac2q[ac] = txq;
3741		return 1;
3742	} else
3743		return 0;
3744#undef N
3745}
3746
3747/*
3748 * Update WME parameters for a transmit queue.
3749 */
3750static int
3751ath_txq_update(struct ath_softc *sc, int ac)
3752{
3753#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3754#define	ATH_TXOP_TO_US(v)		(v<<5)
3755	struct ifnet *ifp = sc->sc_ifp;
3756	struct ieee80211com *ic = ifp->if_l2com;
3757	struct ath_txq *txq = sc->sc_ac2q[ac];
3758	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3759	struct ath_hal *ah = sc->sc_ah;
3760	HAL_TXQ_INFO qi;
3761
3762	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3763#ifdef IEEE80211_SUPPORT_TDMA
3764	if (sc->sc_tdma) {
3765		/*
3766		 * AIFS is zero so there's no pre-transmit wait.  The
3767		 * burst time defines the slot duration and is configured
3768		 * through net80211.  The QCU is setup to not do post-xmit
3769		 * back off, lockout all lower-priority QCU's, and fire
3770		 * off the DMA beacon alert timer which is setup based
3771		 * on the slot configuration.
3772		 */
3773		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3774			      | HAL_TXQ_TXERRINT_ENABLE
3775			      | HAL_TXQ_TXURNINT_ENABLE
3776			      | HAL_TXQ_TXEOLINT_ENABLE
3777			      | HAL_TXQ_DBA_GATED
3778			      | HAL_TXQ_BACKOFF_DISABLE
3779			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3780			      ;
3781		qi.tqi_aifs = 0;
3782		/* XXX +dbaprep? */
3783		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3784		qi.tqi_burstTime = qi.tqi_readyTime;
3785	} else {
3786#endif
3787		/*
3788		 * XXX shouldn't this just use the default flags
3789		 * used in the previous queue setup?
3790		 */
3791		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3792			      | HAL_TXQ_TXERRINT_ENABLE
3793			      | HAL_TXQ_TXDESCINT_ENABLE
3794			      | HAL_TXQ_TXURNINT_ENABLE
3795			      | HAL_TXQ_TXEOLINT_ENABLE
3796			      ;
3797		qi.tqi_aifs = wmep->wmep_aifsn;
3798		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3799		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3800		qi.tqi_readyTime = 0;
3801		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3802#ifdef IEEE80211_SUPPORT_TDMA
3803	}
3804#endif
3805
3806	DPRINTF(sc, ATH_DEBUG_RESET,
3807	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3808	    __func__, txq->axq_qnum, qi.tqi_qflags,
3809	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3810
3811	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3812		if_printf(ifp, "unable to update hardware queue "
3813			"parameters for %s traffic!\n",
3814			ieee80211_wme_acnames[ac]);
3815		return 0;
3816	} else {
3817		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3818		return 1;
3819	}
3820#undef ATH_TXOP_TO_US
3821#undef ATH_EXPONENT_TO_VALUE
3822}
3823
3824/*
3825 * Callback from the 802.11 layer to update WME parameters.
3826 */
3827int
3828ath_wme_update(struct ieee80211com *ic)
3829{
3830	struct ath_softc *sc = ic->ic_ifp->if_softc;
3831
3832	return !ath_txq_update(sc, WME_AC_BE) ||
3833	    !ath_txq_update(sc, WME_AC_BK) ||
3834	    !ath_txq_update(sc, WME_AC_VI) ||
3835	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3836}
3837
3838/*
3839 * Reclaim resources for a setup queue.
3840 */
3841static void
3842ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3843{
3844
3845	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3846	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3847	ATH_TXQ_LOCK_DESTROY(txq);
3848}
3849
3850/*
3851 * Reclaim all tx queue resources.
3852 */
3853static void
3854ath_tx_cleanup(struct ath_softc *sc)
3855{
3856	int i;
3857
3858	ATH_TXBUF_LOCK_DESTROY(sc);
3859	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3860		if (ATH_TXQ_SETUP(sc, i))
3861			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3862}
3863
3864/*
3865 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3866 * using the current rates in sc_rixmap.
3867 */
3868int
3869ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3870{
3871	int rix = sc->sc_rixmap[rate];
3872	/* NB: return lowest rix for invalid rate */
3873	return (rix == 0xff ? 0 : rix);
3874}
3875
3876static void
3877ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3878    struct ath_buf *bf)
3879{
3880	struct ieee80211_node *ni = bf->bf_node;
3881	struct ifnet *ifp = sc->sc_ifp;
3882	struct ieee80211com *ic = ifp->if_l2com;
3883	int sr, lr, pri;
3884
3885	if (ts->ts_status == 0) {
3886		u_int8_t txant = ts->ts_antenna;
3887		sc->sc_stats.ast_ant_tx[txant]++;
3888		sc->sc_ant_tx[txant]++;
3889		if (ts->ts_finaltsi != 0)
3890			sc->sc_stats.ast_tx_altrate++;
3891		pri = M_WME_GETAC(bf->bf_m);
3892		if (pri >= WME_AC_VO)
3893			ic->ic_wme.wme_hipri_traffic++;
3894		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3895			ni->ni_inact = ni->ni_inact_reload;
3896	} else {
3897		if (ts->ts_status & HAL_TXERR_XRETRY)
3898			sc->sc_stats.ast_tx_xretries++;
3899		if (ts->ts_status & HAL_TXERR_FIFO)
3900			sc->sc_stats.ast_tx_fifoerr++;
3901		if (ts->ts_status & HAL_TXERR_FILT)
3902			sc->sc_stats.ast_tx_filtered++;
3903		if (ts->ts_status & HAL_TXERR_XTXOP)
3904			sc->sc_stats.ast_tx_xtxop++;
3905		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3906			sc->sc_stats.ast_tx_timerexpired++;
3907
3908		if (bf->bf_m->m_flags & M_FF)
3909			sc->sc_stats.ast_ff_txerr++;
3910	}
3911	/* XXX when is this valid? */
3912	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
3913		sc->sc_stats.ast_tx_desccfgerr++;
3914	/*
3915	 * This can be valid for successful frame transmission!
3916	 * If there's a TX FIFO underrun during aggregate transmission,
3917	 * the MAC will pad the rest of the aggregate with delimiters.
3918	 * If a BA is returned, the frame is marked as "OK" and it's up
3919	 * to the TX completion code to notice which frames weren't
3920	 * successfully transmitted.
3921	 */
3922	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
3923		sc->sc_stats.ast_tx_data_underrun++;
3924	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
3925		sc->sc_stats.ast_tx_delim_underrun++;
3926
3927	sr = ts->ts_shortretry;
3928	lr = ts->ts_longretry;
3929	sc->sc_stats.ast_tx_shortretry += sr;
3930	sc->sc_stats.ast_tx_longretry += lr;
3931
3932}
3933
3934/*
3935 * The default completion. If fail is 1, this means
3936 * "please don't retry the frame, and just return -1 status
3937 * to the net80211 stack.
3938 */
3939void
3940ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3941{
3942	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3943	int st;
3944
3945	if (fail == 1)
3946		st = -1;
3947	else
3948		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
3949		    ts->ts_status : HAL_TXERR_XRETRY;
3950
3951#if 0
3952	if (bf->bf_state.bfs_dobaw)
3953		device_printf(sc->sc_dev,
3954		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
3955		    __func__,
3956		    bf,
3957		    SEQNO(bf->bf_state.bfs_seqno));
3958#endif
3959	if (bf->bf_next != NULL)
3960		device_printf(sc->sc_dev,
3961		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
3962		    __func__,
3963		    bf,
3964		    SEQNO(bf->bf_state.bfs_seqno));
3965
3966	/*
3967	 * Check if the node software queue is empty; if so
3968	 * then clear the TIM.
3969	 *
3970	 * This needs to be done before the buffer is freed as
3971	 * otherwise the node reference will have been released
3972	 * and the node may not actually exist any longer.
3973	 *
3974	 * XXX I don't like this belonging here, but it's cleaner
3975	 * to do it here right now then all the other places
3976	 * where ath_tx_default_comp() is called.
3977	 *
3978	 * XXX TODO: during drain, ensure that the callback is
3979	 * being called so we get a chance to update the TIM.
3980	 */
3981	if (bf->bf_node) {
3982		ATH_TX_LOCK(sc);
3983		ath_tx_update_tim(sc, bf->bf_node, 0);
3984		ATH_TX_UNLOCK(sc);
3985	}
3986
3987	/*
3988	 * Do any tx complete callback.  Note this must
3989	 * be done before releasing the node reference.
3990	 * This will free the mbuf, release the net80211
3991	 * node and recycle the ath_buf.
3992	 */
3993	ath_tx_freebuf(sc, bf, st);
3994}
3995
3996/*
3997 * Update rate control with the given completion status.
3998 */
3999void
4000ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
4001    struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
4002    int nframes, int nbad)
4003{
4004	struct ath_node *an;
4005
4006	/* Only for unicast frames */
4007	if (ni == NULL)
4008		return;
4009
4010	an = ATH_NODE(ni);
4011	ATH_NODE_UNLOCK_ASSERT(an);
4012
4013	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
4014		ATH_NODE_LOCK(an);
4015		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
4016		ATH_NODE_UNLOCK(an);
4017	}
4018}
4019
4020/*
4021 * Process the completion of the given buffer.
4022 *
4023 * This calls the rate control update and then the buffer completion.
4024 * This will either free the buffer or requeue it.  In any case, the
4025 * bf pointer should be treated as invalid after this function is called.
4026 */
4027void
4028ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
4029    struct ath_tx_status *ts, struct ath_buf *bf)
4030{
4031	struct ieee80211_node *ni = bf->bf_node;
4032	struct ath_node *an = NULL;
4033
4034	ATH_TX_UNLOCK_ASSERT(sc);
4035	ATH_TXQ_UNLOCK_ASSERT(txq);
4036
4037	/* If unicast frame, update general statistics */
4038	if (ni != NULL) {
4039		an = ATH_NODE(ni);
4040		/* update statistics */
4041		ath_tx_update_stats(sc, ts, bf);
4042	}
4043
4044	/*
4045	 * Call the completion handler.
4046	 * The completion handler is responsible for
4047	 * calling the rate control code.
4048	 *
4049	 * Frames with no completion handler get the
4050	 * rate control code called here.
4051	 */
4052	if (bf->bf_comp == NULL) {
4053		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4054		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
4055			/*
4056			 * XXX assume this isn't an aggregate
4057			 * frame.
4058			 */
4059			ath_tx_update_ratectrl(sc, ni,
4060			     bf->bf_state.bfs_rc, ts,
4061			    bf->bf_state.bfs_pktlen, 1,
4062			    (ts->ts_status == 0 ? 0 : 1));
4063		}
4064		ath_tx_default_comp(sc, bf, 0);
4065	} else
4066		bf->bf_comp(sc, bf, 0);
4067}
4068
4069
4070
4071/*
4072 * Process completed xmit descriptors from the specified queue.
4073 * Kick the packet scheduler if needed. This can occur from this
4074 * particular task.
4075 */
4076static int
4077ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
4078{
4079	struct ath_hal *ah = sc->sc_ah;
4080	struct ath_buf *bf;
4081	struct ath_desc *ds;
4082	struct ath_tx_status *ts;
4083	struct ieee80211_node *ni;
4084#ifdef	IEEE80211_SUPPORT_SUPERG
4085	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4086#endif	/* IEEE80211_SUPPORT_SUPERG */
4087	int nacked;
4088	HAL_STATUS status;
4089
4090	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4091		__func__, txq->axq_qnum,
4092		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4093		txq->axq_link);
4094
4095	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
4096	    "ath_tx_processq: txq=%u head %p link %p depth %p",
4097	    txq->axq_qnum,
4098	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4099	    txq->axq_link,
4100	    txq->axq_depth);
4101
4102	nacked = 0;
4103	for (;;) {
4104		ATH_TXQ_LOCK(txq);
4105		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4106		bf = TAILQ_FIRST(&txq->axq_q);
4107		if (bf == NULL) {
4108			ATH_TXQ_UNLOCK(txq);
4109			break;
4110		}
4111		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
4112		ts = &bf->bf_status.ds_txstat;
4113
4114		status = ath_hal_txprocdesc(ah, ds, ts);
4115#ifdef ATH_DEBUG
4116		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4117			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4118			    status == HAL_OK);
4119		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
4120			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4121			    status == HAL_OK);
4122#endif
4123#ifdef	ATH_DEBUG_ALQ
4124		if (if_ath_alq_checkdebug(&sc->sc_alq,
4125		    ATH_ALQ_EDMA_TXSTATUS)) {
4126			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
4127			sc->sc_tx_statuslen,
4128			(char *) ds);
4129		}
4130#endif
4131
4132		if (status == HAL_EINPROGRESS) {
4133			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4134			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4135			    txq->axq_qnum, bf, ds);
4136			ATH_TXQ_UNLOCK(txq);
4137			break;
4138		}
4139		ATH_TXQ_REMOVE(txq, bf, bf_list);
4140
4141		/*
4142		 * Sanity check.
4143		 */
4144		if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4145			device_printf(sc->sc_dev,
4146			    "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4147			    __func__,
4148			    txq->axq_qnum,
4149			    bf,
4150			    bf->bf_state.bfs_tx_queue);
4151		}
4152		if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4153			device_printf(sc->sc_dev,
4154			    "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4155			    __func__,
4156			    txq->axq_qnum,
4157			    bf->bf_last,
4158			    bf->bf_last->bf_state.bfs_tx_queue);
4159		}
4160
4161#if 0
4162		if (txq->axq_depth > 0) {
4163			/*
4164			 * More frames follow.  Mark the buffer busy
4165			 * so it's not re-used while the hardware may
4166			 * still re-read the link field in the descriptor.
4167			 *
4168			 * Use the last buffer in an aggregate as that
4169			 * is where the hardware may be - intermediate
4170			 * descriptors won't be "busy".
4171			 */
4172			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4173		} else
4174			txq->axq_link = NULL;
4175#else
4176		bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4177#endif
4178		if (bf->bf_state.bfs_aggr)
4179			txq->axq_aggr_depth--;
4180
4181		ni = bf->bf_node;
4182
4183		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4184		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4185		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
4186		/*
4187		 * If unicast frame was ack'd update RSSI,
4188		 * including the last rx time used to
4189		 * workaround phantom bmiss interrupts.
4190		 */
4191		if (ni != NULL && ts->ts_status == 0 &&
4192		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4193			nacked++;
4194			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4195			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4196				ts->ts_rssi);
4197		}
4198		ATH_TXQ_UNLOCK(txq);
4199
4200		/*
4201		 * Update statistics and call completion
4202		 */
4203		ath_tx_process_buf_completion(sc, txq, ts, bf);
4204
4205		/* XXX at this point, bf and ni may be totally invalid */
4206	}
4207#ifdef IEEE80211_SUPPORT_SUPERG
4208	/*
4209	 * Flush fast-frame staging queue when traffic slows.
4210	 */
4211	if (txq->axq_depth <= 1)
4212		ieee80211_ff_flush(ic, txq->axq_ac);
4213#endif
4214
4215	/* Kick the software TXQ scheduler */
4216	if (dosched) {
4217		ATH_TX_LOCK(sc);
4218		ath_txq_sched(sc, txq);
4219		ATH_TX_UNLOCK(sc);
4220	}
4221
4222	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4223	    "ath_tx_processq: txq=%u: done",
4224	    txq->axq_qnum);
4225
4226	return nacked;
4227}
4228
4229#define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4230
4231/*
4232 * Deferred processing of transmit interrupt; special-cased
4233 * for a single hardware transmit queue (e.g. 5210 and 5211).
4234 */
4235static void
4236ath_tx_proc_q0(void *arg, int npending)
4237{
4238	struct ath_softc *sc = arg;
4239	struct ifnet *ifp = sc->sc_ifp;
4240	uint32_t txqs;
4241
4242	ATH_PCU_LOCK(sc);
4243	sc->sc_txproc_cnt++;
4244	txqs = sc->sc_txq_active;
4245	sc->sc_txq_active &= ~txqs;
4246	ATH_PCU_UNLOCK(sc);
4247
4248	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4249	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4250
4251	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4252		/* XXX why is lastrx updated in tx code? */
4253		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4254	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4255		ath_tx_processq(sc, sc->sc_cabq, 1);
4256	IF_LOCK(&ifp->if_snd);
4257	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4258	IF_UNLOCK(&ifp->if_snd);
4259	sc->sc_wd_timer = 0;
4260
4261	if (sc->sc_softled)
4262		ath_led_event(sc, sc->sc_txrix);
4263
4264	ATH_PCU_LOCK(sc);
4265	sc->sc_txproc_cnt--;
4266	ATH_PCU_UNLOCK(sc);
4267
4268	ath_tx_kick(sc);
4269}
4270
4271/*
4272 * Deferred processing of transmit interrupt; special-cased
4273 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4274 */
4275static void
4276ath_tx_proc_q0123(void *arg, int npending)
4277{
4278	struct ath_softc *sc = arg;
4279	struct ifnet *ifp = sc->sc_ifp;
4280	int nacked;
4281	uint32_t txqs;
4282
4283	ATH_PCU_LOCK(sc);
4284	sc->sc_txproc_cnt++;
4285	txqs = sc->sc_txq_active;
4286	sc->sc_txq_active &= ~txqs;
4287	ATH_PCU_UNLOCK(sc);
4288
4289	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4290	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4291
4292	/*
4293	 * Process each active queue.
4294	 */
4295	nacked = 0;
4296	if (TXQACTIVE(txqs, 0))
4297		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4298	if (TXQACTIVE(txqs, 1))
4299		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4300	if (TXQACTIVE(txqs, 2))
4301		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4302	if (TXQACTIVE(txqs, 3))
4303		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4304	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4305		ath_tx_processq(sc, sc->sc_cabq, 1);
4306	if (nacked)
4307		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4308
4309	IF_LOCK(&ifp->if_snd);
4310	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4311	IF_UNLOCK(&ifp->if_snd);
4312	sc->sc_wd_timer = 0;
4313
4314	if (sc->sc_softled)
4315		ath_led_event(sc, sc->sc_txrix);
4316
4317	ATH_PCU_LOCK(sc);
4318	sc->sc_txproc_cnt--;
4319	ATH_PCU_UNLOCK(sc);
4320
4321	ath_tx_kick(sc);
4322}
4323
4324/*
4325 * Deferred processing of transmit interrupt.
4326 */
4327static void
4328ath_tx_proc(void *arg, int npending)
4329{
4330	struct ath_softc *sc = arg;
4331	struct ifnet *ifp = sc->sc_ifp;
4332	int i, nacked;
4333	uint32_t txqs;
4334
4335	ATH_PCU_LOCK(sc);
4336	sc->sc_txproc_cnt++;
4337	txqs = sc->sc_txq_active;
4338	sc->sc_txq_active &= ~txqs;
4339	ATH_PCU_UNLOCK(sc);
4340
4341	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4342
4343	/*
4344	 * Process each active queue.
4345	 */
4346	nacked = 0;
4347	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4348		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4349			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4350	if (nacked)
4351		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4352
4353	/* XXX check this inside of IF_LOCK? */
4354	IF_LOCK(&ifp->if_snd);
4355	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4356	IF_UNLOCK(&ifp->if_snd);
4357	sc->sc_wd_timer = 0;
4358
4359	if (sc->sc_softled)
4360		ath_led_event(sc, sc->sc_txrix);
4361
4362	ATH_PCU_LOCK(sc);
4363	sc->sc_txproc_cnt--;
4364	ATH_PCU_UNLOCK(sc);
4365
4366	ath_tx_kick(sc);
4367}
4368#undef	TXQACTIVE
4369
4370/*
4371 * Deferred processing of TXQ rescheduling.
4372 */
4373static void
4374ath_txq_sched_tasklet(void *arg, int npending)
4375{
4376	struct ath_softc *sc = arg;
4377	int i;
4378
4379	/* XXX is skipping ok? */
4380	ATH_PCU_LOCK(sc);
4381#if 0
4382	if (sc->sc_inreset_cnt > 0) {
4383		device_printf(sc->sc_dev,
4384		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4385		ATH_PCU_UNLOCK(sc);
4386		return;
4387	}
4388#endif
4389	sc->sc_txproc_cnt++;
4390	ATH_PCU_UNLOCK(sc);
4391
4392	ATH_TX_LOCK(sc);
4393	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4394		if (ATH_TXQ_SETUP(sc, i)) {
4395			ath_txq_sched(sc, &sc->sc_txq[i]);
4396		}
4397	}
4398	ATH_TX_UNLOCK(sc);
4399
4400	ATH_PCU_LOCK(sc);
4401	sc->sc_txproc_cnt--;
4402	ATH_PCU_UNLOCK(sc);
4403}
4404
4405void
4406ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4407{
4408
4409	ATH_TXBUF_LOCK_ASSERT(sc);
4410
4411	if (bf->bf_flags & ATH_BUF_MGMT)
4412		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4413	else {
4414		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4415		sc->sc_txbuf_cnt++;
4416		if (sc->sc_txbuf_cnt > ath_txbuf) {
4417			device_printf(sc->sc_dev,
4418			    "%s: sc_txbuf_cnt > %d?\n",
4419			    __func__,
4420			    ath_txbuf);
4421			sc->sc_txbuf_cnt = ath_txbuf;
4422		}
4423	}
4424}
4425
4426void
4427ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4428{
4429
4430	ATH_TXBUF_LOCK_ASSERT(sc);
4431
4432	if (bf->bf_flags & ATH_BUF_MGMT)
4433		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4434	else {
4435		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4436		sc->sc_txbuf_cnt++;
4437		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4438			device_printf(sc->sc_dev,
4439			    "%s: sc_txbuf_cnt > %d?\n",
4440			    __func__,
4441			    ATH_TXBUF);
4442			sc->sc_txbuf_cnt = ATH_TXBUF;
4443		}
4444	}
4445}
4446
4447/*
4448 * Free the holding buffer if it exists
4449 */
4450void
4451ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
4452{
4453	ATH_TXBUF_UNLOCK_ASSERT(sc);
4454	ATH_TXQ_LOCK_ASSERT(txq);
4455
4456	if (txq->axq_holdingbf == NULL)
4457		return;
4458
4459	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
4460
4461	ATH_TXBUF_LOCK(sc);
4462	ath_returnbuf_tail(sc, txq->axq_holdingbf);
4463	ATH_TXBUF_UNLOCK(sc);
4464
4465	txq->axq_holdingbf = NULL;
4466}
4467
4468/*
4469 * Add this buffer to the holding queue, freeing the previous
4470 * one if it exists.
4471 */
4472static void
4473ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
4474{
4475	struct ath_txq *txq;
4476
4477	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4478
4479	ATH_TXBUF_UNLOCK_ASSERT(sc);
4480	ATH_TXQ_LOCK_ASSERT(txq);
4481
4482	/* XXX assert ATH_BUF_BUSY is set */
4483
4484	/* XXX assert the tx queue is under the max number */
4485	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
4486		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
4487		    __func__,
4488		    bf,
4489		    bf->bf_state.bfs_tx_queue);
4490		bf->bf_flags &= ~ATH_BUF_BUSY;
4491		ath_returnbuf_tail(sc, bf);
4492		return;
4493	}
4494	ath_txq_freeholdingbuf(sc, txq);
4495	txq->axq_holdingbf = bf;
4496}
4497
4498/*
4499 * Return a buffer to the pool and update the 'busy' flag on the
4500 * previous 'tail' entry.
4501 *
4502 * This _must_ only be called when the buffer is involved in a completed
4503 * TX. The logic is that if it was part of an active TX, the previous
4504 * buffer on the list is now not involved in a halted TX DMA queue, waiting
4505 * for restart (eg for TDMA.)
4506 *
4507 * The caller must free the mbuf and recycle the node reference.
4508 *
4509 * XXX This method of handling busy / holding buffers is insanely stupid.
4510 * It requires bf_state.bfs_tx_queue to be correctly assigned.  It would
4511 * be much nicer if buffers in the processq() methods would instead be
4512 * always completed there (pushed onto a txq or ath_bufhead) so we knew
4513 * exactly what hardware queue they came from in the first place.
4514 */
4515void
4516ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4517{
4518	struct ath_txq *txq;
4519
4520	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4521
4522	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4523	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4524
4525	/*
4526	 * If this buffer is busy, push it onto the holding queue.
4527	 */
4528	if (bf->bf_flags & ATH_BUF_BUSY) {
4529		ATH_TXQ_LOCK(txq);
4530		ath_txq_addholdingbuf(sc, bf);
4531		ATH_TXQ_UNLOCK(txq);
4532		return;
4533	}
4534
4535	/*
4536	 * Not a busy buffer, so free normally
4537	 */
4538	ATH_TXBUF_LOCK(sc);
4539	ath_returnbuf_tail(sc, bf);
4540	ATH_TXBUF_UNLOCK(sc);
4541}
4542
4543/*
4544 * This is currently used by ath_tx_draintxq() and
4545 * ath_tx_tid_free_pkts().
4546 *
4547 * It recycles a single ath_buf.
4548 */
4549void
4550ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4551{
4552	struct ieee80211_node *ni = bf->bf_node;
4553	struct mbuf *m0 = bf->bf_m;
4554
4555	/*
4556	 * Make sure that we only sync/unload if there's an mbuf.
4557	 * If not (eg we cloned a buffer), the unload will have already
4558	 * occured.
4559	 */
4560	if (bf->bf_m != NULL) {
4561		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4562		    BUS_DMASYNC_POSTWRITE);
4563		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4564	}
4565
4566	bf->bf_node = NULL;
4567	bf->bf_m = NULL;
4568
4569	/* Free the buffer, it's not needed any longer */
4570	ath_freebuf(sc, bf);
4571
4572	if (ni != NULL) {
4573		/*
4574		 * Do any callback and reclaim the node reference.
4575		 */
4576		if (m0->m_flags & M_TXCB)
4577			ieee80211_process_callback(ni, m0, status);
4578		ieee80211_free_node(ni);
4579	}
4580
4581	/* Finally, we don't need this mbuf any longer */
4582	m_freem(m0);
4583}
4584
4585static struct ath_buf *
4586ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
4587{
4588	struct ath_buf *bf;
4589
4590	ATH_TXQ_LOCK_ASSERT(txq);
4591
4592	/*
4593	 * Drain the FIFO queue first, then if it's
4594	 * empty, move to the normal frame queue.
4595	 */
4596	bf = TAILQ_FIRST(&txq->fifo.axq_q);
4597	if (bf != NULL) {
4598		/*
4599		 * Is it the last buffer in this set?
4600		 * Decrement the FIFO counter.
4601		 */
4602		if (bf->bf_flags & ATH_BUF_FIFOEND) {
4603			if (txq->axq_fifo_depth == 0) {
4604				device_printf(sc->sc_dev,
4605				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
4606				    __func__,
4607				    txq->axq_qnum,
4608				    txq->fifo.axq_depth);
4609			} else
4610				txq->axq_fifo_depth--;
4611		}
4612		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
4613		return (bf);
4614	}
4615
4616	/*
4617	 * Debugging!
4618	 */
4619	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
4620		device_printf(sc->sc_dev,
4621		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
4622		    __func__,
4623		    txq->axq_qnum,
4624		    txq->axq_fifo_depth,
4625		    txq->fifo.axq_depth);
4626	}
4627
4628	/*
4629	 * Now drain the pending queue.
4630	 */
4631	bf = TAILQ_FIRST(&txq->axq_q);
4632	if (bf == NULL) {
4633		txq->axq_link = NULL;
4634		return (NULL);
4635	}
4636	ATH_TXQ_REMOVE(txq, bf, bf_list);
4637	return (bf);
4638}
4639
4640void
4641ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4642{
4643#ifdef ATH_DEBUG
4644	struct ath_hal *ah = sc->sc_ah;
4645#endif
4646	struct ath_buf *bf;
4647	u_int ix;
4648
4649	/*
4650	 * NB: this assumes output has been stopped and
4651	 *     we do not need to block ath_tx_proc
4652	 */
4653	for (ix = 0;; ix++) {
4654		ATH_TXQ_LOCK(txq);
4655		bf = ath_tx_draintxq_get_one(sc, txq);
4656		if (bf == NULL) {
4657			ATH_TXQ_UNLOCK(txq);
4658			break;
4659		}
4660		if (bf->bf_state.bfs_aggr)
4661			txq->axq_aggr_depth--;
4662#ifdef ATH_DEBUG
4663		if (sc->sc_debug & ATH_DEBUG_RESET) {
4664			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4665			int status = 0;
4666
4667			/*
4668			 * EDMA operation has a TX completion FIFO
4669			 * separate from the TX descriptor, so this
4670			 * method of checking the "completion" status
4671			 * is wrong.
4672			 */
4673			if (! sc->sc_isedma) {
4674				status = (ath_hal_txprocdesc(ah,
4675				    bf->bf_lastds,
4676				    &bf->bf_status.ds_txstat) == HAL_OK);
4677			}
4678			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
4679			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4680			    bf->bf_m->m_len, 0, -1);
4681		}
4682#endif /* ATH_DEBUG */
4683		/*
4684		 * Since we're now doing magic in the completion
4685		 * functions, we -must- call it for aggregation
4686		 * destinations or BAW tracking will get upset.
4687		 */
4688		/*
4689		 * Clear ATH_BUF_BUSY; the completion handler
4690		 * will free the buffer.
4691		 */
4692		ATH_TXQ_UNLOCK(txq);
4693		bf->bf_flags &= ~ATH_BUF_BUSY;
4694		if (bf->bf_comp)
4695			bf->bf_comp(sc, bf, 1);
4696		else
4697			ath_tx_default_comp(sc, bf, 1);
4698	}
4699
4700	/*
4701	 * Free the holding buffer if it exists
4702	 */
4703	ATH_TXQ_LOCK(txq);
4704	ath_txq_freeholdingbuf(sc, txq);
4705	ATH_TXQ_UNLOCK(txq);
4706
4707	/*
4708	 * Drain software queued frames which are on
4709	 * active TIDs.
4710	 */
4711	ath_tx_txq_drain(sc, txq);
4712}
4713
4714static void
4715ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4716{
4717	struct ath_hal *ah = sc->sc_ah;
4718
4719	ATH_TXQ_LOCK_ASSERT(txq);
4720
4721	DPRINTF(sc, ATH_DEBUG_RESET,
4722	    "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, "
4723	    "link %p, holdingbf=%p\n",
4724	    __func__,
4725	    txq->axq_qnum,
4726	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4727	    (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
4728	    (int) ath_hal_numtxpending(ah, txq->axq_qnum),
4729	    txq->axq_flags,
4730	    txq->axq_link,
4731	    txq->axq_holdingbf);
4732
4733	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4734	/* We've stopped TX DMA, so mark this as stopped. */
4735	txq->axq_flags &= ~ATH_TXQ_PUTRUNNING;
4736
4737#ifdef	ATH_DEBUG
4738	if ((sc->sc_debug & ATH_DEBUG_RESET)
4739	    && (txq->axq_holdingbf != NULL)) {
4740		ath_printtxbuf(sc, txq->axq_holdingbf, txq->axq_qnum, 0, 0);
4741	}
4742#endif
4743}
4744
4745int
4746ath_stoptxdma(struct ath_softc *sc)
4747{
4748	struct ath_hal *ah = sc->sc_ah;
4749	int i;
4750
4751	/* XXX return value */
4752	if (sc->sc_invalid)
4753		return 0;
4754
4755	if (!sc->sc_invalid) {
4756		/* don't touch the hardware if marked invalid */
4757		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4758		    __func__, sc->sc_bhalq,
4759		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4760		    NULL);
4761
4762		/* stop the beacon queue */
4763		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4764
4765		/* Stop the data queues */
4766		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4767			if (ATH_TXQ_SETUP(sc, i)) {
4768				ATH_TXQ_LOCK(&sc->sc_txq[i]);
4769				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4770				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
4771			}
4772		}
4773	}
4774
4775	return 1;
4776}
4777
4778#ifdef	ATH_DEBUG
4779void
4780ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
4781{
4782	struct ath_hal *ah = sc->sc_ah;
4783	struct ath_buf *bf;
4784	int i = 0;
4785
4786	if (! (sc->sc_debug & ATH_DEBUG_RESET))
4787		return;
4788
4789	device_printf(sc->sc_dev, "%s: Q%d: begin\n",
4790	    __func__, txq->axq_qnum);
4791	TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
4792		ath_printtxbuf(sc, bf, txq->axq_qnum, i,
4793			ath_hal_txprocdesc(ah, bf->bf_lastds,
4794			    &bf->bf_status.ds_txstat) == HAL_OK);
4795		i++;
4796	}
4797	device_printf(sc->sc_dev, "%s: Q%d: end\n",
4798	    __func__, txq->axq_qnum);
4799}
4800#endif /* ATH_DEBUG */
4801
4802/*
4803 * Drain the transmit queues and reclaim resources.
4804 */
4805void
4806ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
4807{
4808	struct ath_hal *ah = sc->sc_ah;
4809	struct ifnet *ifp = sc->sc_ifp;
4810	int i;
4811	struct ath_buf *bf_last;
4812
4813	(void) ath_stoptxdma(sc);
4814
4815	/*
4816	 * Dump the queue contents
4817	 */
4818	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4819		/*
4820		 * XXX TODO: should we just handle the completed TX frames
4821		 * here, whether or not the reset is a full one or not?
4822		 */
4823		if (ATH_TXQ_SETUP(sc, i)) {
4824#ifdef	ATH_DEBUG
4825			if (sc->sc_debug & ATH_DEBUG_RESET)
4826				ath_tx_dump(sc, &sc->sc_txq[i]);
4827#endif	/* ATH_DEBUG */
4828			if (reset_type == ATH_RESET_NOLOSS) {
4829				ath_tx_processq(sc, &sc->sc_txq[i], 0);
4830				ATH_TXQ_LOCK(&sc->sc_txq[i]);
4831				/*
4832				 * Free the holding buffer; DMA is now
4833				 * stopped.
4834				 */
4835				ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
4836				/*
4837				 * Setup the link pointer to be the
4838				 * _last_ buffer/descriptor in the list.
4839				 * If there's nothing in the list, set it
4840				 * to NULL.
4841				 */
4842				bf_last = ATH_TXQ_LAST(&sc->sc_txq[i],
4843				    axq_q_s);
4844				if (bf_last != NULL) {
4845					ath_hal_gettxdesclinkptr(ah,
4846					    bf_last->bf_lastds,
4847					    &sc->sc_txq[i].axq_link);
4848				} else {
4849					sc->sc_txq[i].axq_link = NULL;
4850				}
4851				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
4852			} else
4853				ath_tx_draintxq(sc, &sc->sc_txq[i]);
4854		}
4855	}
4856#ifdef ATH_DEBUG
4857	if (sc->sc_debug & ATH_DEBUG_RESET) {
4858		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
4859		if (bf != NULL && bf->bf_m != NULL) {
4860			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4861				ath_hal_txprocdesc(ah, bf->bf_lastds,
4862				    &bf->bf_status.ds_txstat) == HAL_OK);
4863			ieee80211_dump_pkt(ifp->if_l2com,
4864			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4865			    0, -1);
4866		}
4867	}
4868#endif /* ATH_DEBUG */
4869	IF_LOCK(&ifp->if_snd);
4870	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4871	IF_UNLOCK(&ifp->if_snd);
4872	sc->sc_wd_timer = 0;
4873}
4874
4875/*
4876 * Update internal state after a channel change.
4877 */
4878static void
4879ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4880{
4881	enum ieee80211_phymode mode;
4882
4883	/*
4884	 * Change channels and update the h/w rate map
4885	 * if we're switching; e.g. 11a to 11b/g.
4886	 */
4887	mode = ieee80211_chan2mode(chan);
4888	if (mode != sc->sc_curmode)
4889		ath_setcurmode(sc, mode);
4890	sc->sc_curchan = chan;
4891}
4892
4893/*
4894 * Set/change channels.  If the channel is really being changed,
4895 * it's done by resetting the chip.  To accomplish this we must
4896 * first cleanup any pending DMA, then restart stuff after a la
4897 * ath_init.
4898 */
4899static int
4900ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4901{
4902	struct ifnet *ifp = sc->sc_ifp;
4903	struct ieee80211com *ic = ifp->if_l2com;
4904	struct ath_hal *ah = sc->sc_ah;
4905	int ret = 0;
4906
4907	/* Treat this as an interface reset */
4908	ATH_PCU_UNLOCK_ASSERT(sc);
4909	ATH_UNLOCK_ASSERT(sc);
4910
4911	/* (Try to) stop TX/RX from occuring */
4912	taskqueue_block(sc->sc_tq);
4913
4914	ATH_PCU_LOCK(sc);
4915
4916	/* Stop new RX/TX/interrupt completion */
4917	if (ath_reset_grablock(sc, 1) == 0) {
4918		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
4919		    __func__);
4920	}
4921
4922	ath_hal_intrset(ah, 0);
4923
4924	/* Stop pending RX/TX completion */
4925	ath_txrx_stop_locked(sc);
4926
4927	ATH_PCU_UNLOCK(sc);
4928
4929	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4930	    __func__, ieee80211_chan2ieee(ic, chan),
4931	    chan->ic_freq, chan->ic_flags);
4932	if (chan != sc->sc_curchan) {
4933		HAL_STATUS status;
4934		/*
4935		 * To switch channels clear any pending DMA operations;
4936		 * wait long enough for the RX fifo to drain, reset the
4937		 * hardware at the new frequency, and then re-enable
4938		 * the relevant bits of the h/w.
4939		 */
4940#if 0
4941		ath_hal_intrset(ah, 0);		/* disable interrupts */
4942#endif
4943		ath_stoprecv(sc, 1);		/* turn off frame recv */
4944		/*
4945		 * First, handle completed TX/RX frames.
4946		 */
4947		ath_rx_flush(sc);
4948		ath_draintxq(sc, ATH_RESET_NOLOSS);
4949		/*
4950		 * Next, flush the non-scheduled frames.
4951		 */
4952		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
4953
4954		ath_update_chainmasks(sc, chan);
4955		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
4956		    sc->sc_cur_rxchainmask);
4957		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4958			if_printf(ifp, "%s: unable to reset "
4959			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4960			    __func__, ieee80211_chan2ieee(ic, chan),
4961			    chan->ic_freq, chan->ic_flags, status);
4962			ret = EIO;
4963			goto finish;
4964		}
4965		sc->sc_diversity = ath_hal_getdiversity(ah);
4966
4967		/* Let DFS at it in case it's a DFS channel */
4968		ath_dfs_radar_enable(sc, chan);
4969
4970		/* Let spectral at in case spectral is enabled */
4971		ath_spectral_enable(sc, chan);
4972
4973		/*
4974		 * Let bluetooth coexistence at in case it's needed for this
4975		 * channel
4976		 */
4977		ath_btcoex_enable(sc, ic->ic_curchan);
4978
4979		/*
4980		 * If we're doing TDMA, enforce the TXOP limitation for chips
4981		 * that support it.
4982		 */
4983		if (sc->sc_hasenforcetxop && sc->sc_tdma)
4984			ath_hal_setenforcetxop(sc->sc_ah, 1);
4985		else
4986			ath_hal_setenforcetxop(sc->sc_ah, 0);
4987
4988		/*
4989		 * Re-enable rx framework.
4990		 */
4991		if (ath_startrecv(sc) != 0) {
4992			if_printf(ifp, "%s: unable to restart recv logic\n",
4993			    __func__);
4994			ret = EIO;
4995			goto finish;
4996		}
4997
4998		/*
4999		 * Change channels and update the h/w rate map
5000		 * if we're switching; e.g. 11a to 11b/g.
5001		 */
5002		ath_chan_change(sc, chan);
5003
5004		/*
5005		 * Reset clears the beacon timers; reset them
5006		 * here if needed.
5007		 */
5008		if (sc->sc_beacons) {		/* restart beacons */
5009#ifdef IEEE80211_SUPPORT_TDMA
5010			if (sc->sc_tdma)
5011				ath_tdma_config(sc, NULL);
5012			else
5013#endif
5014			ath_beacon_config(sc, NULL);
5015		}
5016
5017		/*
5018		 * Re-enable interrupts.
5019		 */
5020#if 0
5021		ath_hal_intrset(ah, sc->sc_imask);
5022#endif
5023	}
5024
5025finish:
5026	ATH_PCU_LOCK(sc);
5027	sc->sc_inreset_cnt--;
5028	/* XXX only do this if sc_inreset_cnt == 0? */
5029	ath_hal_intrset(ah, sc->sc_imask);
5030	ATH_PCU_UNLOCK(sc);
5031
5032	IF_LOCK(&ifp->if_snd);
5033	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5034	IF_UNLOCK(&ifp->if_snd);
5035	ath_txrx_start(sc);
5036	/* XXX ath_start? */
5037
5038	return ret;
5039}
5040
5041/*
5042 * Periodically recalibrate the PHY to account
5043 * for temperature/environment changes.
5044 */
5045static void
5046ath_calibrate(void *arg)
5047{
5048	struct ath_softc *sc = arg;
5049	struct ath_hal *ah = sc->sc_ah;
5050	struct ifnet *ifp = sc->sc_ifp;
5051	struct ieee80211com *ic = ifp->if_l2com;
5052	HAL_BOOL longCal, isCalDone = AH_TRUE;
5053	HAL_BOOL aniCal, shortCal = AH_FALSE;
5054	int nextcal;
5055
5056	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5057		goto restart;
5058	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5059	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
5060	if (sc->sc_doresetcal)
5061		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
5062
5063	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
5064	if (aniCal) {
5065		sc->sc_stats.ast_ani_cal++;
5066		sc->sc_lastani = ticks;
5067		ath_hal_ani_poll(ah, sc->sc_curchan);
5068	}
5069
5070	if (longCal) {
5071		sc->sc_stats.ast_per_cal++;
5072		sc->sc_lastlongcal = ticks;
5073		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5074			/*
5075			 * Rfgain is out of bounds, reset the chip
5076			 * to load new gain values.
5077			 */
5078			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5079				"%s: rfgain change\n", __func__);
5080			sc->sc_stats.ast_per_rfgain++;
5081			sc->sc_resetcal = 0;
5082			sc->sc_doresetcal = AH_TRUE;
5083			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5084			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5085			return;
5086		}
5087		/*
5088		 * If this long cal is after an idle period, then
5089		 * reset the data collection state so we start fresh.
5090		 */
5091		if (sc->sc_resetcal) {
5092			(void) ath_hal_calreset(ah, sc->sc_curchan);
5093			sc->sc_lastcalreset = ticks;
5094			sc->sc_lastshortcal = ticks;
5095			sc->sc_resetcal = 0;
5096			sc->sc_doresetcal = AH_TRUE;
5097		}
5098	}
5099
5100	/* Only call if we're doing a short/long cal, not for ANI calibration */
5101	if (shortCal || longCal) {
5102		isCalDone = AH_FALSE;
5103		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5104			if (longCal) {
5105				/*
5106				 * Calibrate noise floor data again in case of change.
5107				 */
5108				ath_hal_process_noisefloor(ah);
5109			}
5110		} else {
5111			DPRINTF(sc, ATH_DEBUG_ANY,
5112				"%s: calibration of channel %u failed\n",
5113				__func__, sc->sc_curchan->ic_freq);
5114			sc->sc_stats.ast_per_calfail++;
5115		}
5116		if (shortCal)
5117			sc->sc_lastshortcal = ticks;
5118	}
5119	if (!isCalDone) {
5120restart:
5121		/*
5122		 * Use a shorter interval to potentially collect multiple
5123		 * data samples required to complete calibration.  Once
5124		 * we're told the work is done we drop back to a longer
5125		 * interval between requests.  We're more aggressive doing
5126		 * work when operating as an AP to improve operation right
5127		 * after startup.
5128		 */
5129		sc->sc_lastshortcal = ticks;
5130		nextcal = ath_shortcalinterval*hz/1000;
5131		if (sc->sc_opmode != HAL_M_HOSTAP)
5132			nextcal *= 10;
5133		sc->sc_doresetcal = AH_TRUE;
5134	} else {
5135		/* nextcal should be the shortest time for next event */
5136		nextcal = ath_longcalinterval*hz;
5137		if (sc->sc_lastcalreset == 0)
5138			sc->sc_lastcalreset = sc->sc_lastlongcal;
5139		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5140			sc->sc_resetcal = 1;	/* setup reset next trip */
5141		sc->sc_doresetcal = AH_FALSE;
5142	}
5143	/* ANI calibration may occur more often than short/long/resetcal */
5144	if (ath_anicalinterval > 0)
5145		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
5146
5147	if (nextcal != 0) {
5148		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5149		    __func__, nextcal, isCalDone ? "" : "!");
5150		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5151	} else {
5152		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5153		    __func__);
5154		/* NB: don't rearm timer */
5155	}
5156}
5157
5158static void
5159ath_scan_start(struct ieee80211com *ic)
5160{
5161	struct ifnet *ifp = ic->ic_ifp;
5162	struct ath_softc *sc = ifp->if_softc;
5163	struct ath_hal *ah = sc->sc_ah;
5164	u_int32_t rfilt;
5165
5166	/* XXX calibration timer? */
5167
5168	ATH_LOCK(sc);
5169	sc->sc_scanning = 1;
5170	sc->sc_syncbeacon = 0;
5171	rfilt = ath_calcrxfilter(sc);
5172	ATH_UNLOCK(sc);
5173
5174	ATH_PCU_LOCK(sc);
5175	ath_hal_setrxfilter(ah, rfilt);
5176	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5177	ATH_PCU_UNLOCK(sc);
5178
5179	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5180		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5181}
5182
5183static void
5184ath_scan_end(struct ieee80211com *ic)
5185{
5186	struct ifnet *ifp = ic->ic_ifp;
5187	struct ath_softc *sc = ifp->if_softc;
5188	struct ath_hal *ah = sc->sc_ah;
5189	u_int32_t rfilt;
5190
5191	ATH_LOCK(sc);
5192	sc->sc_scanning = 0;
5193	rfilt = ath_calcrxfilter(sc);
5194	ATH_UNLOCK(sc);
5195
5196	ATH_PCU_LOCK(sc);
5197	ath_hal_setrxfilter(ah, rfilt);
5198	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5199
5200	ath_hal_process_noisefloor(ah);
5201	ATH_PCU_UNLOCK(sc);
5202
5203	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5204		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5205		 sc->sc_curaid);
5206}
5207
5208#ifdef	ATH_ENABLE_11N
5209/*
5210 * For now, just do a channel change.
5211 *
5212 * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5213 * control state and resetting the hardware without dropping frames out
5214 * of the queue.
5215 *
5216 * The unfortunate trouble here is making absolutely sure that the
5217 * channel width change has propagated enough so the hardware
5218 * absolutely isn't handed bogus frames for it's current operating
5219 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5220 * does occur in parallel, we need to make certain we've blocked
5221 * any further ongoing TX (and RX, that can cause raw TX)
5222 * before we do this.
5223 */
5224static void
5225ath_update_chw(struct ieee80211com *ic)
5226{
5227	struct ifnet *ifp = ic->ic_ifp;
5228	struct ath_softc *sc = ifp->if_softc;
5229
5230	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5231	ath_set_channel(ic);
5232}
5233#endif	/* ATH_ENABLE_11N */
5234
5235static void
5236ath_set_channel(struct ieee80211com *ic)
5237{
5238	struct ifnet *ifp = ic->ic_ifp;
5239	struct ath_softc *sc = ifp->if_softc;
5240
5241	(void) ath_chan_set(sc, ic->ic_curchan);
5242	/*
5243	 * If we are returning to our bss channel then mark state
5244	 * so the next recv'd beacon's tsf will be used to sync the
5245	 * beacon timers.  Note that since we only hear beacons in
5246	 * sta/ibss mode this has no effect in other operating modes.
5247	 */
5248	ATH_LOCK(sc);
5249	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5250		sc->sc_syncbeacon = 1;
5251	ATH_UNLOCK(sc);
5252}
5253
5254/*
5255 * Walk the vap list and check if there any vap's in RUN state.
5256 */
5257static int
5258ath_isanyrunningvaps(struct ieee80211vap *this)
5259{
5260	struct ieee80211com *ic = this->iv_ic;
5261	struct ieee80211vap *vap;
5262
5263	IEEE80211_LOCK_ASSERT(ic);
5264
5265	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5266		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5267			return 1;
5268	}
5269	return 0;
5270}
5271
5272static int
5273ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5274{
5275	struct ieee80211com *ic = vap->iv_ic;
5276	struct ath_softc *sc = ic->ic_ifp->if_softc;
5277	struct ath_vap *avp = ATH_VAP(vap);
5278	struct ath_hal *ah = sc->sc_ah;
5279	struct ieee80211_node *ni = NULL;
5280	int i, error, stamode;
5281	u_int32_t rfilt;
5282	int csa_run_transition = 0;
5283
5284	static const HAL_LED_STATE leds[] = {
5285	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5286	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5287	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5288	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5289	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5290	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5291	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5292	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5293	};
5294
5295	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5296		ieee80211_state_name[vap->iv_state],
5297		ieee80211_state_name[nstate]);
5298
5299	/*
5300	 * net80211 _should_ have the comlock asserted at this point.
5301	 * There are some comments around the calls to vap->iv_newstate
5302	 * which indicate that it (newstate) may end up dropping the
5303	 * lock.  This and the subsequent lock assert check after newstate
5304	 * are an attempt to catch these and figure out how/why.
5305	 */
5306	IEEE80211_LOCK_ASSERT(ic);
5307
5308	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5309		csa_run_transition = 1;
5310
5311	callout_drain(&sc->sc_cal_ch);
5312	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5313
5314	if (nstate == IEEE80211_S_SCAN) {
5315		/*
5316		 * Scanning: turn off beacon miss and don't beacon.
5317		 * Mark beacon state so when we reach RUN state we'll
5318		 * [re]setup beacons.  Unblock the task q thread so
5319		 * deferred interrupt processing is done.
5320		 */
5321		ath_hal_intrset(ah,
5322		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5323		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5324		sc->sc_beacons = 0;
5325		taskqueue_unblock(sc->sc_tq);
5326	}
5327
5328	ni = ieee80211_ref_node(vap->iv_bss);
5329	rfilt = ath_calcrxfilter(sc);
5330	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5331		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5332		   vap->iv_opmode == IEEE80211_M_IBSS);
5333	if (stamode && nstate == IEEE80211_S_RUN) {
5334		sc->sc_curaid = ni->ni_associd;
5335		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5336		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5337	}
5338	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5339	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5340	ath_hal_setrxfilter(ah, rfilt);
5341
5342	/* XXX is this to restore keycache on resume? */
5343	if (vap->iv_opmode != IEEE80211_M_STA &&
5344	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5345		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5346			if (ath_hal_keyisvalid(ah, i))
5347				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5348	}
5349
5350	/*
5351	 * Invoke the parent method to do net80211 work.
5352	 */
5353	error = avp->av_newstate(vap, nstate, arg);
5354	if (error != 0)
5355		goto bad;
5356
5357	/*
5358	 * See above: ensure av_newstate() doesn't drop the lock
5359	 * on us.
5360	 */
5361	IEEE80211_LOCK_ASSERT(ic);
5362
5363	if (nstate == IEEE80211_S_RUN) {
5364		/* NB: collect bss node again, it may have changed */
5365		ieee80211_free_node(ni);
5366		ni = ieee80211_ref_node(vap->iv_bss);
5367
5368		DPRINTF(sc, ATH_DEBUG_STATE,
5369		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5370		    "capinfo 0x%04x chan %d\n", __func__,
5371		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5372		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5373
5374		switch (vap->iv_opmode) {
5375#ifdef IEEE80211_SUPPORT_TDMA
5376		case IEEE80211_M_AHDEMO:
5377			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5378				break;
5379			/* fall thru... */
5380#endif
5381		case IEEE80211_M_HOSTAP:
5382		case IEEE80211_M_IBSS:
5383		case IEEE80211_M_MBSS:
5384			/*
5385			 * Allocate and setup the beacon frame.
5386			 *
5387			 * Stop any previous beacon DMA.  This may be
5388			 * necessary, for example, when an ibss merge
5389			 * causes reconfiguration; there will be a state
5390			 * transition from RUN->RUN that means we may
5391			 * be called with beacon transmission active.
5392			 */
5393			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5394
5395			error = ath_beacon_alloc(sc, ni);
5396			if (error != 0)
5397				goto bad;
5398			/*
5399			 * If joining an adhoc network defer beacon timer
5400			 * configuration to the next beacon frame so we
5401			 * have a current TSF to use.  Otherwise we're
5402			 * starting an ibss/bss so there's no need to delay;
5403			 * if this is the first vap moving to RUN state, then
5404			 * beacon state needs to be [re]configured.
5405			 */
5406			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5407			    ni->ni_tstamp.tsf != 0) {
5408				sc->sc_syncbeacon = 1;
5409			} else if (!sc->sc_beacons) {
5410#ifdef IEEE80211_SUPPORT_TDMA
5411				if (vap->iv_caps & IEEE80211_C_TDMA)
5412					ath_tdma_config(sc, vap);
5413				else
5414#endif
5415					ath_beacon_config(sc, vap);
5416				sc->sc_beacons = 1;
5417			}
5418			break;
5419		case IEEE80211_M_STA:
5420			/*
5421			 * Defer beacon timer configuration to the next
5422			 * beacon frame so we have a current TSF to use
5423			 * (any TSF collected when scanning is likely old).
5424			 * However if it's due to a CSA -> RUN transition,
5425			 * force a beacon update so we pick up a lack of
5426			 * beacons from an AP in CAC and thus force a
5427			 * scan.
5428			 *
5429			 * And, there's also corner cases here where
5430			 * after a scan, the AP may have disappeared.
5431			 * In that case, we may not receive an actual
5432			 * beacon to update the beacon timer and thus we
5433			 * won't get notified of the missing beacons.
5434			 */
5435			sc->sc_syncbeacon = 1;
5436#if 0
5437			if (csa_run_transition)
5438#endif
5439				ath_beacon_config(sc, vap);
5440
5441			/*
5442			 * PR: kern/175227
5443			 *
5444			 * Reconfigure beacons during reset; as otherwise
5445			 * we won't get the beacon timers reprogrammed
5446			 * after a reset and thus we won't pick up a
5447			 * beacon miss interrupt.
5448			 *
5449			 * Hopefully we'll see a beacon before the BMISS
5450			 * timer fires (too often), leading to a STA
5451			 * disassociation.
5452			 */
5453			sc->sc_beacons = 1;
5454			break;
5455		case IEEE80211_M_MONITOR:
5456			/*
5457			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5458			 * transitions so we must re-enable interrupts here to
5459			 * handle the case of a single monitor mode vap.
5460			 */
5461			ath_hal_intrset(ah, sc->sc_imask);
5462			break;
5463		case IEEE80211_M_WDS:
5464			break;
5465		default:
5466			break;
5467		}
5468		/*
5469		 * Let the hal process statistics collected during a
5470		 * scan so it can provide calibrated noise floor data.
5471		 */
5472		ath_hal_process_noisefloor(ah);
5473		/*
5474		 * Reset rssi stats; maybe not the best place...
5475		 */
5476		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5477		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5478		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5479		/*
5480		 * Finally, start any timers and the task q thread
5481		 * (in case we didn't go through SCAN state).
5482		 */
5483		if (ath_longcalinterval != 0) {
5484			/* start periodic recalibration timer */
5485			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5486		} else {
5487			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5488			    "%s: calibration disabled\n", __func__);
5489		}
5490		taskqueue_unblock(sc->sc_tq);
5491	} else if (nstate == IEEE80211_S_INIT) {
5492		/*
5493		 * If there are no vaps left in RUN state then
5494		 * shutdown host/driver operation:
5495		 * o disable interrupts
5496		 * o disable the task queue thread
5497		 * o mark beacon processing as stopped
5498		 */
5499		if (!ath_isanyrunningvaps(vap)) {
5500			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5501			/* disable interrupts  */
5502			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5503			taskqueue_block(sc->sc_tq);
5504			sc->sc_beacons = 0;
5505		}
5506#ifdef IEEE80211_SUPPORT_TDMA
5507		ath_hal_setcca(ah, AH_TRUE);
5508#endif
5509	}
5510bad:
5511	ieee80211_free_node(ni);
5512	return error;
5513}
5514
5515/*
5516 * Allocate a key cache slot to the station so we can
5517 * setup a mapping from key index to node. The key cache
5518 * slot is needed for managing antenna state and for
5519 * compression when stations do not use crypto.  We do
5520 * it uniliaterally here; if crypto is employed this slot
5521 * will be reassigned.
5522 */
5523static void
5524ath_setup_stationkey(struct ieee80211_node *ni)
5525{
5526	struct ieee80211vap *vap = ni->ni_vap;
5527	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5528	ieee80211_keyix keyix, rxkeyix;
5529
5530	/* XXX should take a locked ref to vap->iv_bss */
5531	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5532		/*
5533		 * Key cache is full; we'll fall back to doing
5534		 * the more expensive lookup in software.  Note
5535		 * this also means no h/w compression.
5536		 */
5537		/* XXX msg+statistic */
5538	} else {
5539		/* XXX locking? */
5540		ni->ni_ucastkey.wk_keyix = keyix;
5541		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5542		/* NB: must mark device key to get called back on delete */
5543		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5544		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5545		/* NB: this will create a pass-thru key entry */
5546		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
5547	}
5548}
5549
5550/*
5551 * Setup driver-specific state for a newly associated node.
5552 * Note that we're called also on a re-associate, the isnew
5553 * param tells us if this is the first time or not.
5554 */
5555static void
5556ath_newassoc(struct ieee80211_node *ni, int isnew)
5557{
5558	struct ath_node *an = ATH_NODE(ni);
5559	struct ieee80211vap *vap = ni->ni_vap;
5560	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5561	const struct ieee80211_txparam *tp = ni->ni_txparms;
5562
5563	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5564	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5565
5566	ath_rate_newassoc(sc, an, isnew);
5567
5568	if (isnew &&
5569	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5570	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5571		ath_setup_stationkey(ni);
5572
5573	/*
5574	 * If we're reassociating, make sure that any paused queues
5575	 * get unpaused.
5576	 *
5577	 * Now, we may hvae frames in the hardware queue for this node.
5578	 * So if we are reassociating and there are frames in the queue,
5579	 * we need to go through the cleanup path to ensure that they're
5580	 * marked as non-aggregate.
5581	 */
5582	if (! isnew) {
5583		DPRINTF(sc, ATH_DEBUG_NODE,
5584		    "%s: %6D: reassoc; is_powersave=%d\n",
5585		    __func__,
5586		    ni->ni_macaddr,
5587		    ":",
5588		    an->an_is_powersave);
5589
5590		/* XXX for now, we can't hold the lock across assoc */
5591		ath_tx_node_reassoc(sc, an);
5592
5593		/* XXX for now, we can't hold the lock across wakeup */
5594		if (an->an_is_powersave)
5595			ath_tx_node_wakeup(sc, an);
5596	}
5597}
5598
5599static int
5600ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5601	int nchans, struct ieee80211_channel chans[])
5602{
5603	struct ath_softc *sc = ic->ic_ifp->if_softc;
5604	struct ath_hal *ah = sc->sc_ah;
5605	HAL_STATUS status;
5606
5607	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5608	    "%s: rd %u cc %u location %c%s\n",
5609	    __func__, reg->regdomain, reg->country, reg->location,
5610	    reg->ecm ? " ecm" : "");
5611
5612	status = ath_hal_set_channels(ah, chans, nchans,
5613	    reg->country, reg->regdomain);
5614	if (status != HAL_OK) {
5615		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5616		    __func__, status);
5617		return EINVAL;		/* XXX */
5618	}
5619
5620	return 0;
5621}
5622
5623static void
5624ath_getradiocaps(struct ieee80211com *ic,
5625	int maxchans, int *nchans, struct ieee80211_channel chans[])
5626{
5627	struct ath_softc *sc = ic->ic_ifp->if_softc;
5628	struct ath_hal *ah = sc->sc_ah;
5629
5630	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5631	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5632
5633	/* XXX check return */
5634	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5635	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5636
5637}
5638
5639static int
5640ath_getchannels(struct ath_softc *sc)
5641{
5642	struct ifnet *ifp = sc->sc_ifp;
5643	struct ieee80211com *ic = ifp->if_l2com;
5644	struct ath_hal *ah = sc->sc_ah;
5645	HAL_STATUS status;
5646
5647	/*
5648	 * Collect channel set based on EEPROM contents.
5649	 */
5650	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5651	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5652	if (status != HAL_OK) {
5653		if_printf(ifp, "%s: unable to collect channel list from hal, "
5654		    "status %d\n", __func__, status);
5655		return EINVAL;
5656	}
5657	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5658	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5659	/* XXX map Atheros sku's to net80211 SKU's */
5660	/* XXX net80211 types too small */
5661	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5662	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5663	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5664	ic->ic_regdomain.isocc[1] = ' ';
5665
5666	ic->ic_regdomain.ecm = 1;
5667	ic->ic_regdomain.location = 'I';
5668
5669	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5670	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5671	    __func__, sc->sc_eerd, sc->sc_eecc,
5672	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5673	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5674	return 0;
5675}
5676
5677static int
5678ath_rate_setup(struct ath_softc *sc, u_int mode)
5679{
5680	struct ath_hal *ah = sc->sc_ah;
5681	const HAL_RATE_TABLE *rt;
5682
5683	switch (mode) {
5684	case IEEE80211_MODE_11A:
5685		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5686		break;
5687	case IEEE80211_MODE_HALF:
5688		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5689		break;
5690	case IEEE80211_MODE_QUARTER:
5691		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5692		break;
5693	case IEEE80211_MODE_11B:
5694		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5695		break;
5696	case IEEE80211_MODE_11G:
5697		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5698		break;
5699	case IEEE80211_MODE_TURBO_A:
5700		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5701		break;
5702	case IEEE80211_MODE_TURBO_G:
5703		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5704		break;
5705	case IEEE80211_MODE_STURBO_A:
5706		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5707		break;
5708	case IEEE80211_MODE_11NA:
5709		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5710		break;
5711	case IEEE80211_MODE_11NG:
5712		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5713		break;
5714	default:
5715		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5716			__func__, mode);
5717		return 0;
5718	}
5719	sc->sc_rates[mode] = rt;
5720	return (rt != NULL);
5721}
5722
5723static void
5724ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5725{
5726#define	N(a)	(sizeof(a)/sizeof(a[0]))
5727	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5728	static const struct {
5729		u_int		rate;		/* tx/rx 802.11 rate */
5730		u_int16_t	timeOn;		/* LED on time (ms) */
5731		u_int16_t	timeOff;	/* LED off time (ms) */
5732	} blinkrates[] = {
5733		{ 108,  40,  10 },
5734		{  96,  44,  11 },
5735		{  72,  50,  13 },
5736		{  48,  57,  14 },
5737		{  36,  67,  16 },
5738		{  24,  80,  20 },
5739		{  22, 100,  25 },
5740		{  18, 133,  34 },
5741		{  12, 160,  40 },
5742		{  10, 200,  50 },
5743		{   6, 240,  58 },
5744		{   4, 267,  66 },
5745		{   2, 400, 100 },
5746		{   0, 500, 130 },
5747		/* XXX half/quarter rates */
5748	};
5749	const HAL_RATE_TABLE *rt;
5750	int i, j;
5751
5752	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5753	rt = sc->sc_rates[mode];
5754	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5755	for (i = 0; i < rt->rateCount; i++) {
5756		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5757		if (rt->info[i].phy != IEEE80211_T_HT)
5758			sc->sc_rixmap[ieeerate] = i;
5759		else
5760			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5761	}
5762	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5763	for (i = 0; i < N(sc->sc_hwmap); i++) {
5764		if (i >= rt->rateCount) {
5765			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5766			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5767			continue;
5768		}
5769		sc->sc_hwmap[i].ieeerate =
5770			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5771		if (rt->info[i].phy == IEEE80211_T_HT)
5772			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5773		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5774		if (rt->info[i].shortPreamble ||
5775		    rt->info[i].phy == IEEE80211_T_OFDM)
5776			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5777		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5778		for (j = 0; j < N(blinkrates)-1; j++)
5779			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5780				break;
5781		/* NB: this uses the last entry if the rate isn't found */
5782		/* XXX beware of overlow */
5783		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5784		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5785	}
5786	sc->sc_currates = rt;
5787	sc->sc_curmode = mode;
5788	/*
5789	 * All protection frames are transmited at 2Mb/s for
5790	 * 11g, otherwise at 1Mb/s.
5791	 */
5792	if (mode == IEEE80211_MODE_11G)
5793		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5794	else
5795		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5796	/* NB: caller is responsible for resetting rate control state */
5797#undef N
5798}
5799
5800static void
5801ath_watchdog(void *arg)
5802{
5803	struct ath_softc *sc = arg;
5804	int do_reset = 0;
5805
5806	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5807		struct ifnet *ifp = sc->sc_ifp;
5808		uint32_t hangs;
5809
5810		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5811		    hangs != 0) {
5812			if_printf(ifp, "%s hang detected (0x%x)\n",
5813			    hangs & 0xff ? "bb" : "mac", hangs);
5814		} else
5815			if_printf(ifp, "device timeout\n");
5816		do_reset = 1;
5817		ifp->if_oerrors++;
5818		sc->sc_stats.ast_watchdog++;
5819	}
5820
5821	/*
5822	 * We can't hold the lock across the ath_reset() call.
5823	 *
5824	 * And since this routine can't hold a lock and sleep,
5825	 * do the reset deferred.
5826	 */
5827	if (do_reset) {
5828		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5829	}
5830
5831	callout_schedule(&sc->sc_wd_ch, hz);
5832}
5833
5834/*
5835 * Fetch the rate control statistics for the given node.
5836 */
5837static int
5838ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
5839{
5840	struct ath_node *an;
5841	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5842	struct ieee80211_node *ni;
5843	int error = 0;
5844
5845	/* Perform a lookup on the given node */
5846	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
5847	if (ni == NULL) {
5848		error = EINVAL;
5849		goto bad;
5850	}
5851
5852	/* Lock the ath_node */
5853	an = ATH_NODE(ni);
5854	ATH_NODE_LOCK(an);
5855
5856	/* Fetch the rate control stats for this node */
5857	error = ath_rate_fetch_node_stats(sc, an, rs);
5858
5859	/* No matter what happens here, just drop through */
5860
5861	/* Unlock the ath_node */
5862	ATH_NODE_UNLOCK(an);
5863
5864	/* Unref the node */
5865	ieee80211_node_decref(ni);
5866
5867bad:
5868	return (error);
5869}
5870
5871#ifdef ATH_DIAGAPI
5872/*
5873 * Diagnostic interface to the HAL.  This is used by various
5874 * tools to do things like retrieve register contents for
5875 * debugging.  The mechanism is intentionally opaque so that
5876 * it can change frequently w/o concern for compatiblity.
5877 */
5878static int
5879ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5880{
5881	struct ath_hal *ah = sc->sc_ah;
5882	u_int id = ad->ad_id & ATH_DIAG_ID;
5883	void *indata = NULL;
5884	void *outdata = NULL;
5885	u_int32_t insize = ad->ad_in_size;
5886	u_int32_t outsize = ad->ad_out_size;
5887	int error = 0;
5888
5889	if (ad->ad_id & ATH_DIAG_IN) {
5890		/*
5891		 * Copy in data.
5892		 */
5893		indata = malloc(insize, M_TEMP, M_NOWAIT);
5894		if (indata == NULL) {
5895			error = ENOMEM;
5896			goto bad;
5897		}
5898		error = copyin(ad->ad_in_data, indata, insize);
5899		if (error)
5900			goto bad;
5901	}
5902	if (ad->ad_id & ATH_DIAG_DYN) {
5903		/*
5904		 * Allocate a buffer for the results (otherwise the HAL
5905		 * returns a pointer to a buffer where we can read the
5906		 * results).  Note that we depend on the HAL leaving this
5907		 * pointer for us to use below in reclaiming the buffer;
5908		 * may want to be more defensive.
5909		 */
5910		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5911		if (outdata == NULL) {
5912			error = ENOMEM;
5913			goto bad;
5914		}
5915	}
5916	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5917		if (outsize < ad->ad_out_size)
5918			ad->ad_out_size = outsize;
5919		if (outdata != NULL)
5920			error = copyout(outdata, ad->ad_out_data,
5921					ad->ad_out_size);
5922	} else {
5923		error = EINVAL;
5924	}
5925bad:
5926	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5927		free(indata, M_TEMP);
5928	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5929		free(outdata, M_TEMP);
5930	return error;
5931}
5932#endif /* ATH_DIAGAPI */
5933
5934static int
5935ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5936{
5937#define	IS_RUNNING(ifp) \
5938	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5939	struct ath_softc *sc = ifp->if_softc;
5940	struct ieee80211com *ic = ifp->if_l2com;
5941	struct ifreq *ifr = (struct ifreq *)data;
5942	const HAL_RATE_TABLE *rt;
5943	int error = 0;
5944
5945	switch (cmd) {
5946	case SIOCSIFFLAGS:
5947		ATH_LOCK(sc);
5948		if (IS_RUNNING(ifp)) {
5949			/*
5950			 * To avoid rescanning another access point,
5951			 * do not call ath_init() here.  Instead,
5952			 * only reflect promisc mode settings.
5953			 */
5954			ath_mode_init(sc);
5955		} else if (ifp->if_flags & IFF_UP) {
5956			/*
5957			 * Beware of being called during attach/detach
5958			 * to reset promiscuous mode.  In that case we
5959			 * will still be marked UP but not RUNNING.
5960			 * However trying to re-init the interface
5961			 * is the wrong thing to do as we've already
5962			 * torn down much of our state.  There's
5963			 * probably a better way to deal with this.
5964			 */
5965			if (!sc->sc_invalid)
5966				ath_init(sc);	/* XXX lose error */
5967		} else {
5968			ath_stop_locked(ifp);
5969#ifdef notyet
5970			/* XXX must wakeup in places like ath_vap_delete */
5971			if (!sc->sc_invalid)
5972				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5973#endif
5974		}
5975		ATH_UNLOCK(sc);
5976		break;
5977	case SIOCGIFMEDIA:
5978	case SIOCSIFMEDIA:
5979		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5980		break;
5981	case SIOCGATHSTATS:
5982		/* NB: embed these numbers to get a consistent view */
5983		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5984		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5985		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5986		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5987#ifdef IEEE80211_SUPPORT_TDMA
5988		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
5989		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
5990#endif
5991		rt = sc->sc_currates;
5992		sc->sc_stats.ast_tx_rate =
5993		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
5994		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
5995			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
5996		return copyout(&sc->sc_stats,
5997		    ifr->ifr_data, sizeof (sc->sc_stats));
5998	case SIOCGATHAGSTATS:
5999		return copyout(&sc->sc_aggr_stats,
6000		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
6001	case SIOCZATHSTATS:
6002		error = priv_check(curthread, PRIV_DRIVER);
6003		if (error == 0) {
6004			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6005			memset(&sc->sc_aggr_stats, 0,
6006			    sizeof(sc->sc_aggr_stats));
6007			memset(&sc->sc_intr_stats, 0,
6008			    sizeof(sc->sc_intr_stats));
6009		}
6010		break;
6011#ifdef ATH_DIAGAPI
6012	case SIOCGATHDIAG:
6013		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6014		break;
6015	case SIOCGATHPHYERR:
6016		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
6017		break;
6018#endif
6019	case SIOCGATHSPECTRAL:
6020		error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
6021		break;
6022	case SIOCGATHNODERATESTATS:
6023		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
6024		break;
6025	case SIOCGIFADDR:
6026		error = ether_ioctl(ifp, cmd, data);
6027		break;
6028	default:
6029		error = EINVAL;
6030		break;
6031	}
6032	return error;
6033#undef IS_RUNNING
6034}
6035
6036/*
6037 * Announce various information on device/driver attach.
6038 */
6039static void
6040ath_announce(struct ath_softc *sc)
6041{
6042	struct ifnet *ifp = sc->sc_ifp;
6043	struct ath_hal *ah = sc->sc_ah;
6044
6045	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6046		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6047		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6048	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
6049		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
6050	if (bootverbose) {
6051		int i;
6052		for (i = 0; i <= WME_AC_VO; i++) {
6053			struct ath_txq *txq = sc->sc_ac2q[i];
6054			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6055				txq->axq_qnum, ieee80211_wme_acnames[i]);
6056		}
6057		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6058			sc->sc_cabq->axq_qnum);
6059		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6060	}
6061	if (ath_rxbuf != ATH_RXBUF)
6062		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6063	if (ath_txbuf != ATH_TXBUF)
6064		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6065	if (sc->sc_mcastkey && bootverbose)
6066		if_printf(ifp, "using multicast key search\n");
6067}
6068
6069static void
6070ath_dfs_tasklet(void *p, int npending)
6071{
6072	struct ath_softc *sc = (struct ath_softc *) p;
6073	struct ifnet *ifp = sc->sc_ifp;
6074	struct ieee80211com *ic = ifp->if_l2com;
6075
6076	/*
6077	 * If previous processing has found a radar event,
6078	 * signal this to the net80211 layer to begin DFS
6079	 * processing.
6080	 */
6081	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
6082		/* DFS event found, initiate channel change */
6083		/*
6084		 * XXX doesn't currently tell us whether the event
6085		 * XXX was found in the primary or extension
6086		 * XXX channel!
6087		 */
6088		IEEE80211_LOCK(ic);
6089		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
6090		IEEE80211_UNLOCK(ic);
6091	}
6092}
6093
6094/*
6095 * Enable/disable power save.  This must be called with
6096 * no TX driver locks currently held, so it should only
6097 * be called from the RX path (which doesn't hold any
6098 * TX driver locks.)
6099 */
6100static void
6101ath_node_powersave(struct ieee80211_node *ni, int enable)
6102{
6103#ifdef	ATH_SW_PSQ
6104	struct ath_node *an = ATH_NODE(ni);
6105	struct ieee80211com *ic = ni->ni_ic;
6106	struct ath_softc *sc = ic->ic_ifp->if_softc;
6107	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6108
6109	/* XXX and no TXQ locks should be held here */
6110
6111	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: %6D: enable=%d\n",
6112	    __func__,
6113	    ni->ni_macaddr,
6114	    ":",
6115	    !! enable);
6116
6117	/* Suspend or resume software queue handling */
6118	if (enable)
6119		ath_tx_node_sleep(sc, an);
6120	else
6121		ath_tx_node_wakeup(sc, an);
6122
6123	/* Update net80211 state */
6124	avp->av_node_ps(ni, enable);
6125#else
6126	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6127
6128	/* Update net80211 state */
6129	avp->av_node_ps(ni, enable);
6130#endif/* ATH_SW_PSQ */
6131}
6132
6133/*
6134 * Notification from net80211 that the powersave queue state has
6135 * changed.
6136 *
6137 * Since the software queue also may have some frames:
6138 *
6139 * + if the node software queue has frames and the TID state
6140 *   is 0, we set the TIM;
6141 * + if the node and the stack are both empty, we clear the TIM bit.
6142 * + If the stack tries to set the bit, always set it.
6143 * + If the stack tries to clear the bit, only clear it if the
6144 *   software queue in question is also cleared.
6145 *
6146 * TODO: this is called during node teardown; so let's ensure this
6147 * is all correctly handled and that the TIM bit is cleared.
6148 * It may be that the node flush is called _AFTER_ the net80211
6149 * stack clears the TIM.
6150 *
6151 * Here is the racy part.  Since it's possible >1 concurrent,
6152 * overlapping TXes will appear complete with a TX completion in
6153 * another thread, it's possible that the concurrent TIM calls will
6154 * clash.  We can't hold the node lock here because setting the
6155 * TIM grabs the net80211 comlock and this may cause a LOR.
6156 * The solution is either to totally serialise _everything_ at
6157 * this point (ie, all TX, completion and any reset/flush go into
6158 * one taskqueue) or a new "ath TIM lock" needs to be created that
6159 * just wraps the driver state change and this call to avp->av_set_tim().
6160 *
6161 * The same race exists in the net80211 power save queue handling
6162 * as well.  Since multiple transmitting threads may queue frames
6163 * into the driver, as well as ps-poll and the driver transmitting
6164 * frames (and thus clearing the psq), it's quite possible that
6165 * a packet entering the PSQ and a ps-poll being handled will
6166 * race, causing the TIM to be cleared and not re-set.
6167 */
6168static int
6169ath_node_set_tim(struct ieee80211_node *ni, int enable)
6170{
6171#ifdef	ATH_SW_PSQ
6172	struct ieee80211com *ic = ni->ni_ic;
6173	struct ath_softc *sc = ic->ic_ifp->if_softc;
6174	struct ath_node *an = ATH_NODE(ni);
6175	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6176	int changed = 0;
6177
6178	ATH_TX_LOCK(sc);
6179	an->an_stack_psq = enable;
6180
6181	/*
6182	 * This will get called for all operating modes,
6183	 * even if avp->av_set_tim is unset.
6184	 * It's currently set for hostap/ibss modes; but
6185	 * the same infrastructure is used for both STA
6186	 * and AP/IBSS node power save.
6187	 */
6188	if (avp->av_set_tim == NULL) {
6189		ATH_TX_UNLOCK(sc);
6190		return (0);
6191	}
6192
6193	/*
6194	 * If setting the bit, always set it here.
6195	 * If clearing the bit, only clear it if the
6196	 * software queue is also empty.
6197	 *
6198	 * If the node has left power save, just clear the TIM
6199	 * bit regardless of the state of the power save queue.
6200	 *
6201	 * XXX TODO: although atomics are used, it's quite possible
6202	 * that a race will occur between this and setting/clearing
6203	 * in another thread.  TX completion will occur always in
6204	 * one thread, however setting/clearing the TIM bit can come
6205	 * from a variety of different process contexts!
6206	 */
6207	if (enable && an->an_tim_set == 1) {
6208		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6209		    "%s: %6D: enable=%d, tim_set=1, ignoring\n",
6210		    __func__,
6211		    ni->ni_macaddr,
6212		    ":",
6213		    enable);
6214		ATH_TX_UNLOCK(sc);
6215	} else if (enable) {
6216		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6217		    "%s: %6D: enable=%d, enabling TIM\n",
6218		    __func__,
6219		    ni->ni_macaddr,
6220		    ":",
6221		    enable);
6222		an->an_tim_set = 1;
6223		ATH_TX_UNLOCK(sc);
6224		changed = avp->av_set_tim(ni, enable);
6225	} else if (an->an_swq_depth == 0) {
6226		/* disable */
6227		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6228		    "%s: %6D: enable=%d, an_swq_depth == 0, disabling\n",
6229		    __func__,
6230		    ni->ni_macaddr,
6231		    ":",
6232		    enable);
6233		an->an_tim_set = 0;
6234		ATH_TX_UNLOCK(sc);
6235		changed = avp->av_set_tim(ni, enable);
6236	} else if (! an->an_is_powersave) {
6237		/*
6238		 * disable regardless; the node isn't in powersave now
6239		 */
6240		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6241		    "%s: %6D: enable=%d, an_pwrsave=0, disabling\n",
6242		    __func__,
6243		    ni->ni_macaddr,
6244		    ":",
6245		    enable);
6246		an->an_tim_set = 0;
6247		ATH_TX_UNLOCK(sc);
6248		changed = avp->av_set_tim(ni, enable);
6249	} else {
6250		/*
6251		 * psq disable, node is currently in powersave, node
6252		 * software queue isn't empty, so don't clear the TIM bit
6253		 * for now.
6254		 */
6255		ATH_TX_UNLOCK(sc);
6256		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6257		    "%s: %6D: enable=%d, an_swq_depth > 0, ignoring\n",
6258		    __func__,
6259		    ni->ni_macaddr,
6260		    ":",
6261		    enable);
6262		changed = 0;
6263	}
6264
6265	return (changed);
6266#else
6267	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6268
6269	/*
6270	 * Some operating modes don't set av_set_tim(), so don't
6271	 * update it here.
6272	 */
6273	if (avp->av_set_tim == NULL)
6274		return (0);
6275
6276	return (avp->av_set_tim(ni, enable));
6277#endif /* ATH_SW_PSQ */
6278}
6279
6280/*
6281 * Set or update the TIM from the software queue.
6282 *
6283 * Check the software queue depth before attempting to do lock
6284 * anything; that avoids trying to obtain the lock.  Then,
6285 * re-check afterwards to ensure nothing has changed in the
6286 * meantime.
6287 *
6288 * set:   This is designed to be called from the TX path, after
6289 *        a frame has been queued; to see if the swq > 0.
6290 *
6291 * clear: This is designed to be called from the buffer completion point
6292 *        (right now it's ath_tx_default_comp()) where the state of
6293 *        a software queue has changed.
6294 *
6295 * It makes sense to place it at buffer free / completion rather
6296 * than after each software queue operation, as there's no real
6297 * point in churning the TIM bit as the last frames in the software
6298 * queue are transmitted.  If they fail and we retry them, we'd
6299 * just be setting the TIM bit again anyway.
6300 */
6301void
6302ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
6303     int enable)
6304{
6305#ifdef	ATH_SW_PSQ
6306	struct ath_node *an;
6307	struct ath_vap *avp;
6308
6309	/* Don't do this for broadcast/etc frames */
6310	if (ni == NULL)
6311		return;
6312
6313	an = ATH_NODE(ni);
6314	avp = ATH_VAP(ni->ni_vap);
6315
6316	/*
6317	 * And for operating modes without the TIM handler set, let's
6318	 * just skip those.
6319	 */
6320	if (avp->av_set_tim == NULL)
6321		return;
6322
6323	ATH_TX_LOCK_ASSERT(sc);
6324
6325	if (enable) {
6326		if (an->an_is_powersave &&
6327		    an->an_tim_set == 0 &&
6328		    an->an_swq_depth != 0) {
6329			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6330			    "%s: %6D: swq_depth>0, tim_set=0, set!\n",
6331			    __func__,
6332			    ni->ni_macaddr,
6333			    ":");
6334			an->an_tim_set = 1;
6335			(void) avp->av_set_tim(ni, 1);
6336		}
6337	} else {
6338		/*
6339		 * Don't bother grabbing the lock unless the queue is empty.
6340		 */
6341		if (&an->an_swq_depth != 0)
6342			return;
6343
6344		if (an->an_is_powersave &&
6345		    an->an_stack_psq == 0 &&
6346		    an->an_tim_set == 1 &&
6347		    an->an_swq_depth == 0) {
6348			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6349			    "%s: %6D: swq_depth=0, tim_set=1, psq_set=0,"
6350			    " clear!\n",
6351			    __func__,
6352			    ni->ni_macaddr,
6353			    ":");
6354			an->an_tim_set = 0;
6355			(void) avp->av_set_tim(ni, 0);
6356		}
6357	}
6358#else
6359	return;
6360#endif	/* ATH_SW_PSQ */
6361}
6362
6363/*
6364 * Received a ps-poll frame from net80211.
6365 *
6366 * Here we get a chance to serve out a software-queued frame ourselves
6367 * before we punt it to net80211 to transmit us one itself - either
6368 * because there's traffic in the net80211 psq, or a NULL frame to
6369 * indicate there's nothing else.
6370 */
6371static void
6372ath_node_recv_pspoll(struct ieee80211_node *ni, struct mbuf *m)
6373{
6374#ifdef	ATH_SW_PSQ
6375	struct ath_node *an;
6376	struct ath_vap *avp;
6377	struct ieee80211com *ic = ni->ni_ic;
6378	struct ath_softc *sc = ic->ic_ifp->if_softc;
6379	int tid;
6380
6381	/* Just paranoia */
6382	if (ni == NULL)
6383		return;
6384
6385	/*
6386	 * Unassociated (temporary node) station.
6387	 */
6388	if (ni->ni_associd == 0)
6389		return;
6390
6391	/*
6392	 * We do have an active node, so let's begin looking into it.
6393	 */
6394	an = ATH_NODE(ni);
6395	avp = ATH_VAP(ni->ni_vap);
6396
6397	/*
6398	 * For now, we just call the original ps-poll method.
6399	 * Once we're ready to flip this on:
6400	 *
6401	 * + Set leak to 1, as no matter what we're going to have
6402	 *   to send a frame;
6403	 * + Check the software queue and if there's something in it,
6404	 *   schedule the highest TID thas has traffic from this node.
6405	 *   Then make sure we schedule the software scheduler to
6406	 *   run so it picks up said frame.
6407	 *
6408	 * That way whatever happens, we'll at least send _a_ frame
6409	 * to the given node.
6410	 *
6411	 * Again, yes, it's crappy QoS if the node has multiple
6412	 * TIDs worth of traffic - but let's get it working first
6413	 * before we optimise it.
6414	 *
6415	 * Also yes, there's definitely latency here - we're not
6416	 * direct dispatching to the hardware in this path (and
6417	 * we're likely being called from the packet receive path,
6418	 * so going back into TX may be a little hairy!) but again
6419	 * I'd like to get this working first before optimising
6420	 * turn-around time.
6421	 */
6422
6423	ATH_TX_LOCK(sc);
6424
6425	/*
6426	 * Legacy - we're called and the node isn't asleep.
6427	 * Immediately punt.
6428	 */
6429	if (! an->an_is_powersave) {
6430		device_printf(sc->sc_dev,
6431		    "%s: %6D: not in powersave?\n",
6432		    __func__,
6433		    ni->ni_macaddr,
6434		    ":");
6435		ATH_TX_UNLOCK(sc);
6436		avp->av_recv_pspoll(ni, m);
6437		return;
6438	}
6439
6440	/*
6441	 * We're in powersave.
6442	 *
6443	 * Leak a frame.
6444	 */
6445	an->an_leak_count = 1;
6446
6447	/*
6448	 * Now, if there's no frames in the node, just punt to
6449	 * recv_pspoll.
6450	 *
6451	 * Don't bother checking if the TIM bit is set, we really
6452	 * only care if there are any frames here!
6453	 */
6454	if (an->an_swq_depth == 0) {
6455		ATH_TX_UNLOCK(sc);
6456		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6457		    "%s: %6D: SWQ empty; punting to net80211\n",
6458		    __func__,
6459		    ni->ni_macaddr,
6460		    ":");
6461		avp->av_recv_pspoll(ni, m);
6462		return;
6463	}
6464
6465	/*
6466	 * Ok, let's schedule the highest TID that has traffic
6467	 * and then schedule something.
6468	 */
6469	for (tid = IEEE80211_TID_SIZE - 1; tid >= 0; tid--) {
6470		struct ath_tid *atid = &an->an_tid[tid];
6471		/*
6472		 * No frames? Skip.
6473		 */
6474		if (atid->axq_depth == 0)
6475			continue;
6476		ath_tx_tid_sched(sc, atid);
6477		/*
6478		 * XXX we could do a direct call to the TXQ
6479		 * scheduler code here to optimise latency
6480		 * at the expense of a REALLY deep callstack.
6481		 */
6482		ATH_TX_UNLOCK(sc);
6483		taskqueue_enqueue(sc->sc_tq, &sc->sc_txqtask);
6484		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6485		    "%s: %6D: leaking frame to TID %d\n",
6486		    __func__,
6487		    ni->ni_macaddr,
6488		    ":",
6489		    tid);
6490		return;
6491	}
6492
6493	ATH_TX_UNLOCK(sc);
6494
6495	/*
6496	 * XXX nothing in the TIDs at this point? Eek.
6497	 */
6498	device_printf(sc->sc_dev, "%s: %6D: TIDs empty, but ath_node showed traffic?!\n",
6499	    __func__,
6500	    ni->ni_macaddr,
6501	    ":");
6502	avp->av_recv_pspoll(ni, m);
6503#else
6504	avp->av_recv_pspoll(ni, m);
6505#endif	/* ATH_SW_PSQ */
6506}
6507
6508MODULE_VERSION(if_ath, 1);
6509MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
6510#if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
6511MODULE_DEPEND(if_ath, alq, 1, 1, 1);
6512#endif
6513