if_ath.c revision 250606
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 250606 2013-05-13 18:56:04Z adrian $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42/*
43 * This is needed for register operations which are performed
44 * by the driver - eg, calls to ath_hal_gettsf32().
45 *
46 * It's also required for any AH_DEBUG checks in here, eg the
47 * module dependencies.
48 */
49#include "opt_ah.h"
50#include "opt_wlan.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/sysctl.h>
55#include <sys/mbuf.h>
56#include <sys/malloc.h>
57#include <sys/lock.h>
58#include <sys/mutex.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/sockio.h>
62#include <sys/errno.h>
63#include <sys/callout.h>
64#include <sys/bus.h>
65#include <sys/endian.h>
66#include <sys/kthread.h>
67#include <sys/taskqueue.h>
68#include <sys/priv.h>
69#include <sys/module.h>
70#include <sys/ktr.h>
71#include <sys/smp.h>	/* for mp_ncpus */
72
73#include <machine/bus.h>
74
75#include <net/if.h>
76#include <net/if_dl.h>
77#include <net/if_media.h>
78#include <net/if_types.h>
79#include <net/if_arp.h>
80#include <net/ethernet.h>
81#include <net/if_llc.h>
82
83#include <net80211/ieee80211_var.h>
84#include <net80211/ieee80211_regdomain.h>
85#ifdef IEEE80211_SUPPORT_SUPERG
86#include <net80211/ieee80211_superg.h>
87#endif
88#ifdef IEEE80211_SUPPORT_TDMA
89#include <net80211/ieee80211_tdma.h>
90#endif
91
92#include <net/bpf.h>
93
94#ifdef INET
95#include <netinet/in.h>
96#include <netinet/if_ether.h>
97#endif
98
99#include <dev/ath/if_athvar.h>
100#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101#include <dev/ath/ath_hal/ah_diagcodes.h>
102
103#include <dev/ath/if_ath_debug.h>
104#include <dev/ath/if_ath_misc.h>
105#include <dev/ath/if_ath_tsf.h>
106#include <dev/ath/if_ath_tx.h>
107#include <dev/ath/if_ath_sysctl.h>
108#include <dev/ath/if_ath_led.h>
109#include <dev/ath/if_ath_keycache.h>
110#include <dev/ath/if_ath_rx.h>
111#include <dev/ath/if_ath_rx_edma.h>
112#include <dev/ath/if_ath_tx_edma.h>
113#include <dev/ath/if_ath_beacon.h>
114#include <dev/ath/if_ath_spectral.h>
115#include <dev/ath/if_athdfs.h>
116
117#ifdef ATH_TX99_DIAG
118#include <dev/ath/ath_tx99/ath_tx99.h>
119#endif
120
121#ifdef	ATH_DEBUG_ALQ
122#include <dev/ath/if_ath_alq.h>
123#endif
124
125/*
126 * Only enable this if you're working on PS-POLL support.
127 */
128#undef	ATH_SW_PSQ
129
130/*
131 * ATH_BCBUF determines the number of vap's that can transmit
132 * beacons and also (currently) the number of vap's that can
133 * have unique mac addresses/bssid.  When staggering beacons
134 * 4 is probably a good max as otherwise the beacons become
135 * very closely spaced and there is limited time for cab q traffic
136 * to go out.  You can burst beacons instead but that is not good
137 * for stations in power save and at some point you really want
138 * another radio (and channel).
139 *
140 * The limit on the number of mac addresses is tied to our use of
141 * the U/L bit and tracking addresses in a byte; it would be
142 * worthwhile to allow more for applications like proxy sta.
143 */
144CTASSERT(ATH_BCBUF <= 8);
145
146static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
147		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
148		    const uint8_t [IEEE80211_ADDR_LEN],
149		    const uint8_t [IEEE80211_ADDR_LEN]);
150static void	ath_vap_delete(struct ieee80211vap *);
151static void	ath_init(void *);
152static void	ath_stop_locked(struct ifnet *);
153static void	ath_stop(struct ifnet *);
154static int	ath_reset_vap(struct ieee80211vap *, u_long);
155static void	ath_start_queue(struct ifnet *ifp);
156static int	ath_media_change(struct ifnet *);
157static void	ath_watchdog(void *);
158static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
159static void	ath_fatal_proc(void *, int);
160static void	ath_bmiss_vap(struct ieee80211vap *);
161static void	ath_bmiss_proc(void *, int);
162static void	ath_key_update_begin(struct ieee80211vap *);
163static void	ath_key_update_end(struct ieee80211vap *);
164static void	ath_update_mcast(struct ifnet *);
165static void	ath_update_promisc(struct ifnet *);
166static void	ath_updateslot(struct ifnet *);
167static void	ath_bstuck_proc(void *, int);
168static void	ath_reset_proc(void *, int);
169static int	ath_desc_alloc(struct ath_softc *);
170static void	ath_desc_free(struct ath_softc *);
171static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
172			const uint8_t [IEEE80211_ADDR_LEN]);
173static void	ath_node_cleanup(struct ieee80211_node *);
174static void	ath_node_free(struct ieee80211_node *);
175static void	ath_node_getsignal(const struct ieee80211_node *,
176			int8_t *, int8_t *);
177static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
178static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
179static int	ath_tx_setup(struct ath_softc *, int, int);
180static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
181static void	ath_tx_cleanup(struct ath_softc *);
182static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
183		    int dosched);
184static void	ath_tx_proc_q0(void *, int);
185static void	ath_tx_proc_q0123(void *, int);
186static void	ath_tx_proc(void *, int);
187static void	ath_txq_sched_tasklet(void *, int);
188static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
189static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
190static void	ath_scan_start(struct ieee80211com *);
191static void	ath_scan_end(struct ieee80211com *);
192static void	ath_set_channel(struct ieee80211com *);
193#ifdef	ATH_ENABLE_11N
194static void	ath_update_chw(struct ieee80211com *);
195#endif	/* ATH_ENABLE_11N */
196static void	ath_calibrate(void *);
197static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198static void	ath_setup_stationkey(struct ieee80211_node *);
199static void	ath_newassoc(struct ieee80211_node *, int);
200static int	ath_setregdomain(struct ieee80211com *,
201		    struct ieee80211_regdomain *, int,
202		    struct ieee80211_channel []);
203static void	ath_getradiocaps(struct ieee80211com *, int, int *,
204		    struct ieee80211_channel []);
205static int	ath_getchannels(struct ath_softc *);
206
207static int	ath_rate_setup(struct ath_softc *, u_int mode);
208static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
209
210static void	ath_announce(struct ath_softc *);
211
212static void	ath_dfs_tasklet(void *, int);
213static void	ath_node_powersave(struct ieee80211_node *, int);
214static int	ath_node_set_tim(struct ieee80211_node *, int);
215
216#ifdef IEEE80211_SUPPORT_TDMA
217#include <dev/ath/if_ath_tdma.h>
218#endif
219
220SYSCTL_DECL(_hw_ath);
221
222/* XXX validate sysctl values */
223static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
224SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
225	    0, "long chip calibration interval (secs)");
226static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
227SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
228	    0, "short chip calibration interval (msecs)");
229static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
230SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
231	    0, "reset chip calibration results (secs)");
232static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
233SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
234	    0, "ANI calibration (msecs)");
235
236int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
237SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
238	    0, "rx buffers allocated");
239TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
240int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
241SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
242	    0, "tx buffers allocated");
243TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
244int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
245SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
246	    0, "tx (mgmt) buffers allocated");
247TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
248
249int ath_bstuck_threshold = 4;		/* max missed beacons */
250SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
251	    0, "max missed beacon xmits before chip reset");
252
253MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
254
255void
256ath_legacy_attach_comp_func(struct ath_softc *sc)
257{
258
259	/*
260	 * Special case certain configurations.  Note the
261	 * CAB queue is handled by these specially so don't
262	 * include them when checking the txq setup mask.
263	 */
264	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
265	case 0x01:
266		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
267		break;
268	case 0x0f:
269		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
270		break;
271	default:
272		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
273		break;
274	}
275}
276
277#define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
278#define	HAL_MODE_HT40 \
279	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
280	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
281int
282ath_attach(u_int16_t devid, struct ath_softc *sc)
283{
284	struct ifnet *ifp;
285	struct ieee80211com *ic;
286	struct ath_hal *ah = NULL;
287	HAL_STATUS status;
288	int error = 0, i;
289	u_int wmodes;
290	uint8_t macaddr[IEEE80211_ADDR_LEN];
291	int rx_chainmask, tx_chainmask;
292
293	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
294
295	CURVNET_SET(vnet0);
296	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
297	if (ifp == NULL) {
298		device_printf(sc->sc_dev, "can not if_alloc()\n");
299		error = ENOSPC;
300		CURVNET_RESTORE();
301		goto bad;
302	}
303	ic = ifp->if_l2com;
304
305	/* set these up early for if_printf use */
306	if_initname(ifp, device_get_name(sc->sc_dev),
307		device_get_unit(sc->sc_dev));
308	CURVNET_RESTORE();
309
310	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
311	    sc->sc_eepromdata, &status);
312	if (ah == NULL) {
313		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
314			status);
315		error = ENXIO;
316		goto bad;
317	}
318	sc->sc_ah = ah;
319	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
320#ifdef	ATH_DEBUG
321	sc->sc_debug = ath_debug;
322#endif
323
324	/*
325	 * Setup the DMA/EDMA functions based on the current
326	 * hardware support.
327	 *
328	 * This is required before the descriptors are allocated.
329	 */
330	if (ath_hal_hasedma(sc->sc_ah)) {
331		sc->sc_isedma = 1;
332		ath_recv_setup_edma(sc);
333		ath_xmit_setup_edma(sc);
334	} else {
335		ath_recv_setup_legacy(sc);
336		ath_xmit_setup_legacy(sc);
337	}
338
339	/*
340	 * Check if the MAC has multi-rate retry support.
341	 * We do this by trying to setup a fake extended
342	 * descriptor.  MAC's that don't have support will
343	 * return false w/o doing anything.  MAC's that do
344	 * support it will return true w/o doing anything.
345	 */
346	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
347
348	/*
349	 * Check if the device has hardware counters for PHY
350	 * errors.  If so we need to enable the MIB interrupt
351	 * so we can act on stat triggers.
352	 */
353	if (ath_hal_hwphycounters(ah))
354		sc->sc_needmib = 1;
355
356	/*
357	 * Get the hardware key cache size.
358	 */
359	sc->sc_keymax = ath_hal_keycachesize(ah);
360	if (sc->sc_keymax > ATH_KEYMAX) {
361		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
362			ATH_KEYMAX, sc->sc_keymax);
363		sc->sc_keymax = ATH_KEYMAX;
364	}
365	/*
366	 * Reset the key cache since some parts do not
367	 * reset the contents on initial power up.
368	 */
369	for (i = 0; i < sc->sc_keymax; i++)
370		ath_hal_keyreset(ah, i);
371
372	/*
373	 * Collect the default channel list.
374	 */
375	error = ath_getchannels(sc);
376	if (error != 0)
377		goto bad;
378
379	/*
380	 * Setup rate tables for all potential media types.
381	 */
382	ath_rate_setup(sc, IEEE80211_MODE_11A);
383	ath_rate_setup(sc, IEEE80211_MODE_11B);
384	ath_rate_setup(sc, IEEE80211_MODE_11G);
385	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
386	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
387	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
388	ath_rate_setup(sc, IEEE80211_MODE_11NA);
389	ath_rate_setup(sc, IEEE80211_MODE_11NG);
390	ath_rate_setup(sc, IEEE80211_MODE_HALF);
391	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
392
393	/* NB: setup here so ath_rate_update is happy */
394	ath_setcurmode(sc, IEEE80211_MODE_11A);
395
396	/*
397	 * Allocate TX descriptors and populate the lists.
398	 */
399	error = ath_desc_alloc(sc);
400	if (error != 0) {
401		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
402		    error);
403		goto bad;
404	}
405	error = ath_txdma_setup(sc);
406	if (error != 0) {
407		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
408		    error);
409		goto bad;
410	}
411
412	/*
413	 * Allocate RX descriptors and populate the lists.
414	 */
415	error = ath_rxdma_setup(sc);
416	if (error != 0) {
417		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
418		    error);
419		goto bad;
420	}
421
422	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
423	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
424
425	ATH_TXBUF_LOCK_INIT(sc);
426
427	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
428		taskqueue_thread_enqueue, &sc->sc_tq);
429	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
430		"%s taskq", ifp->if_xname);
431
432	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
433	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
434	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
435	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
436	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
437	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
438
439	/* XXX make this a higher priority taskqueue? */
440	TASK_INIT(&sc->sc_txpkttask, 0, ath_start_task, sc);
441
442	/*
443	 * Allocate hardware transmit queues: one queue for
444	 * beacon frames and one data queue for each QoS
445	 * priority.  Note that the hal handles resetting
446	 * these queues at the needed time.
447	 *
448	 * XXX PS-Poll
449	 */
450	sc->sc_bhalq = ath_beaconq_setup(sc);
451	if (sc->sc_bhalq == (u_int) -1) {
452		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
453		error = EIO;
454		goto bad2;
455	}
456	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
457	if (sc->sc_cabq == NULL) {
458		if_printf(ifp, "unable to setup CAB xmit queue!\n");
459		error = EIO;
460		goto bad2;
461	}
462	/* NB: insure BK queue is the lowest priority h/w queue */
463	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
464		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
465			ieee80211_wme_acnames[WME_AC_BK]);
466		error = EIO;
467		goto bad2;
468	}
469	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
470	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
471	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
472		/*
473		 * Not enough hardware tx queues to properly do WME;
474		 * just punt and assign them all to the same h/w queue.
475		 * We could do a better job of this if, for example,
476		 * we allocate queues when we switch from station to
477		 * AP mode.
478		 */
479		if (sc->sc_ac2q[WME_AC_VI] != NULL)
480			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
481		if (sc->sc_ac2q[WME_AC_BE] != NULL)
482			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
483		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
484		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
485		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
486	}
487
488	/*
489	 * Attach the TX completion function.
490	 *
491	 * The non-EDMA chips may have some special case optimisations;
492	 * this method gives everyone a chance to attach cleanly.
493	 */
494	sc->sc_tx.xmit_attach_comp_func(sc);
495
496	/*
497	 * Setup rate control.  Some rate control modules
498	 * call back to change the anntena state so expose
499	 * the necessary entry points.
500	 * XXX maybe belongs in struct ath_ratectrl?
501	 */
502	sc->sc_setdefantenna = ath_setdefantenna;
503	sc->sc_rc = ath_rate_attach(sc);
504	if (sc->sc_rc == NULL) {
505		error = EIO;
506		goto bad2;
507	}
508
509	/* Attach DFS module */
510	if (! ath_dfs_attach(sc)) {
511		device_printf(sc->sc_dev,
512		    "%s: unable to attach DFS\n", __func__);
513		error = EIO;
514		goto bad2;
515	}
516
517	/* Attach spectral module */
518	if (ath_spectral_attach(sc) < 0) {
519		device_printf(sc->sc_dev,
520		    "%s: unable to attach spectral\n", __func__);
521		error = EIO;
522		goto bad2;
523	}
524
525	/* Start DFS processing tasklet */
526	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
527
528	/* Configure LED state */
529	sc->sc_blinking = 0;
530	sc->sc_ledstate = 1;
531	sc->sc_ledon = 0;			/* low true */
532	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
533	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
534
535	/*
536	 * Don't setup hardware-based blinking.
537	 *
538	 * Although some NICs may have this configured in the
539	 * default reset register values, the user may wish
540	 * to alter which pins have which function.
541	 *
542	 * The reference driver attaches the MAC network LED to GPIO1 and
543	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
544	 * NIC has these reversed.
545	 */
546	sc->sc_hardled = (1 == 0);
547	sc->sc_led_net_pin = -1;
548	sc->sc_led_pwr_pin = -1;
549	/*
550	 * Auto-enable soft led processing for IBM cards and for
551	 * 5211 minipci cards.  Users can also manually enable/disable
552	 * support with a sysctl.
553	 */
554	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
555	ath_led_config(sc);
556	ath_hal_setledstate(ah, HAL_LED_INIT);
557
558	ifp->if_softc = sc;
559	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
560	ifp->if_start = ath_start_queue;
561	ifp->if_ioctl = ath_ioctl;
562	ifp->if_init = ath_init;
563	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
564	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
565	IFQ_SET_READY(&ifp->if_snd);
566
567	ic->ic_ifp = ifp;
568	/* XXX not right but it's not used anywhere important */
569	ic->ic_phytype = IEEE80211_T_OFDM;
570	ic->ic_opmode = IEEE80211_M_STA;
571	ic->ic_caps =
572		  IEEE80211_C_STA		/* station mode */
573		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
574		| IEEE80211_C_HOSTAP		/* hostap mode */
575		| IEEE80211_C_MONITOR		/* monitor mode */
576		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
577		| IEEE80211_C_WDS		/* 4-address traffic works */
578		| IEEE80211_C_MBSS		/* mesh point link mode */
579		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
580		| IEEE80211_C_SHSLOT		/* short slot time supported */
581		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
582#ifndef	ATH_ENABLE_11N
583		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
584#endif
585		| IEEE80211_C_TXFRAG		/* handle tx frags */
586#ifdef	ATH_ENABLE_DFS
587		| IEEE80211_C_DFS		/* Enable radar detection */
588#endif
589		;
590	/*
591	 * Query the hal to figure out h/w crypto support.
592	 */
593	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
594		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
595	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
596		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
597	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
598		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
599	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
600		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
601	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
602		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
603		/*
604		 * Check if h/w does the MIC and/or whether the
605		 * separate key cache entries are required to
606		 * handle both tx+rx MIC keys.
607		 */
608		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
609			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
610		/*
611		 * If the h/w supports storing tx+rx MIC keys
612		 * in one cache slot automatically enable use.
613		 */
614		if (ath_hal_hastkipsplit(ah) ||
615		    !ath_hal_settkipsplit(ah, AH_FALSE))
616			sc->sc_splitmic = 1;
617		/*
618		 * If the h/w can do TKIP MIC together with WME then
619		 * we use it; otherwise we force the MIC to be done
620		 * in software by the net80211 layer.
621		 */
622		if (ath_hal_haswmetkipmic(ah))
623			sc->sc_wmetkipmic = 1;
624	}
625	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
626	/*
627	 * Check for multicast key search support.
628	 */
629	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
630	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
631		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
632	}
633	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
634	/*
635	 * Mark key cache slots associated with global keys
636	 * as in use.  If we knew TKIP was not to be used we
637	 * could leave the +32, +64, and +32+64 slots free.
638	 */
639	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
640		setbit(sc->sc_keymap, i);
641		setbit(sc->sc_keymap, i+64);
642		if (sc->sc_splitmic) {
643			setbit(sc->sc_keymap, i+32);
644			setbit(sc->sc_keymap, i+32+64);
645		}
646	}
647	/*
648	 * TPC support can be done either with a global cap or
649	 * per-packet support.  The latter is not available on
650	 * all parts.  We're a bit pedantic here as all parts
651	 * support a global cap.
652	 */
653	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
654		ic->ic_caps |= IEEE80211_C_TXPMGT;
655
656	/*
657	 * Mark WME capability only if we have sufficient
658	 * hardware queues to do proper priority scheduling.
659	 */
660	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
661		ic->ic_caps |= IEEE80211_C_WME;
662	/*
663	 * Check for misc other capabilities.
664	 */
665	if (ath_hal_hasbursting(ah))
666		ic->ic_caps |= IEEE80211_C_BURST;
667	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
668	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
669	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
670	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
671	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
672	if (ath_hal_hasfastframes(ah))
673		ic->ic_caps |= IEEE80211_C_FF;
674	wmodes = ath_hal_getwirelessmodes(ah);
675	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
676		ic->ic_caps |= IEEE80211_C_TURBOP;
677#ifdef IEEE80211_SUPPORT_TDMA
678	if (ath_hal_macversion(ah) > 0x78) {
679		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
680		ic->ic_tdma_update = ath_tdma_update;
681	}
682#endif
683
684	/*
685	 * TODO: enforce that at least this many frames are available
686	 * in the txbuf list before allowing data frames (raw or
687	 * otherwise) to be transmitted.
688	 */
689	sc->sc_txq_data_minfree = 10;
690	/*
691	 * Leave this as default to maintain legacy behaviour.
692	 * Shortening the cabq/mcastq may end up causing some
693	 * undesirable behaviour.
694	 */
695	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
696
697	/*
698	 * Default the maximum queue depth for a given node
699	 * to 1/4'th the TX buffers, or 64, whichever
700	 * is larger.
701	 */
702	sc->sc_txq_node_maxdepth = MAX(64, ath_txbuf / 4);
703
704	/* Enable CABQ by default */
705	sc->sc_cabq_enable = 1;
706
707	/*
708	 * Allow the TX and RX chainmasks to be overridden by
709	 * environment variables and/or device.hints.
710	 *
711	 * This must be done early - before the hardware is
712	 * calibrated or before the 802.11n stream calculation
713	 * is done.
714	 */
715	if (resource_int_value(device_get_name(sc->sc_dev),
716	    device_get_unit(sc->sc_dev), "rx_chainmask",
717	    &rx_chainmask) == 0) {
718		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
719		    rx_chainmask);
720		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
721	}
722	if (resource_int_value(device_get_name(sc->sc_dev),
723	    device_get_unit(sc->sc_dev), "tx_chainmask",
724	    &tx_chainmask) == 0) {
725		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
726		    tx_chainmask);
727		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
728	}
729
730	/*
731	 * Query the TX/RX chainmask configuration.
732	 *
733	 * This is only relevant for 11n devices.
734	 */
735	ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
736	ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
737
738	/*
739	 * Disable MRR with protected frames by default.
740	 * Only 802.11n series NICs can handle this.
741	 */
742	sc->sc_mrrprot = 0;	/* XXX should be a capability */
743
744	/*
745	 * Query the enterprise mode information the HAL.
746	 */
747	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
748	    &sc->sc_ent_cfg) == HAL_OK)
749		sc->sc_use_ent = 1;
750
751#ifdef	ATH_ENABLE_11N
752	/*
753	 * Query HT capabilities
754	 */
755	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
756	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
757		uint32_t rxs, txs;
758
759		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
760
761		sc->sc_mrrprot = 1;	/* XXX should be a capability */
762
763		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
764			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
765			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
766			    | IEEE80211_HTCAP_MAXAMSDU_3839
767			    				/* max A-MSDU length */
768			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
769			;
770
771		/*
772		 * Enable short-GI for HT20 only if the hardware
773		 * advertises support.
774		 * Notably, anything earlier than the AR9287 doesn't.
775		 */
776		if ((ath_hal_getcapability(ah,
777		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
778		    (wmodes & HAL_MODE_HT20)) {
779			device_printf(sc->sc_dev,
780			    "[HT] enabling short-GI in 20MHz mode\n");
781			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
782		}
783
784		if (wmodes & HAL_MODE_HT40)
785			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
786			    |  IEEE80211_HTCAP_SHORTGI40;
787
788		/*
789		 * TX/RX streams need to be taken into account when
790		 * negotiating which MCS rates it'll receive and
791		 * what MCS rates are available for TX.
792		 */
793		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
794		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
795		ic->ic_txstream = txs;
796		ic->ic_rxstream = rxs;
797
798		/*
799		 * Setup TX and RX STBC based on what the HAL allows and
800		 * the currently configured chainmask set.
801		 * Ie - don't enable STBC TX if only one chain is enabled.
802		 * STBC RX is fine on a single RX chain; it just won't
803		 * provide any real benefit.
804		 */
805		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
806		    NULL) == HAL_OK) {
807			sc->sc_rx_stbc = 1;
808			device_printf(sc->sc_dev,
809			    "[HT] 1 stream STBC receive enabled\n");
810			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
811		}
812		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
813		    NULL) == HAL_OK) {
814			sc->sc_tx_stbc = 1;
815			device_printf(sc->sc_dev,
816			    "[HT] 1 stream STBC transmit enabled\n");
817			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
818		}
819
820		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
821		    &sc->sc_rts_aggr_limit);
822		if (sc->sc_rts_aggr_limit != (64 * 1024))
823			device_printf(sc->sc_dev,
824			    "[HT] RTS aggregates limited to %d KiB\n",
825			    sc->sc_rts_aggr_limit / 1024);
826
827		device_printf(sc->sc_dev,
828		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
829	}
830#endif
831
832	/*
833	 * Initial aggregation settings.
834	 */
835	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
836	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
837	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
838	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
839	sc->sc_delim_min_pad = 0;
840
841	/*
842	 * Check if the hardware requires PCI register serialisation.
843	 * Some of the Owl based MACs require this.
844	 */
845	if (mp_ncpus > 1 &&
846	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
847	     0, NULL) == HAL_OK) {
848		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
849		device_printf(sc->sc_dev,
850		    "Enabling register serialisation\n");
851	}
852
853	/*
854	 * Initialise the deferred completed RX buffer list.
855	 */
856	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_HP]);
857	TAILQ_INIT(&sc->sc_rx_rxlist[HAL_RX_QUEUE_LP]);
858
859	/*
860	 * Indicate we need the 802.11 header padded to a
861	 * 32-bit boundary for 4-address and QoS frames.
862	 */
863	ic->ic_flags |= IEEE80211_F_DATAPAD;
864
865	/*
866	 * Query the hal about antenna support.
867	 */
868	sc->sc_defant = ath_hal_getdefantenna(ah);
869
870	/*
871	 * Not all chips have the VEOL support we want to
872	 * use with IBSS beacons; check here for it.
873	 */
874	sc->sc_hasveol = ath_hal_hasveol(ah);
875
876	/* get mac address from hardware */
877	ath_hal_getmac(ah, macaddr);
878	if (sc->sc_hasbmask)
879		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
880
881	/* NB: used to size node table key mapping array */
882	ic->ic_max_keyix = sc->sc_keymax;
883	/* call MI attach routine. */
884	ieee80211_ifattach(ic, macaddr);
885	ic->ic_setregdomain = ath_setregdomain;
886	ic->ic_getradiocaps = ath_getradiocaps;
887	sc->sc_opmode = HAL_M_STA;
888
889	/* override default methods */
890	ic->ic_newassoc = ath_newassoc;
891	ic->ic_updateslot = ath_updateslot;
892	ic->ic_wme.wme_update = ath_wme_update;
893	ic->ic_vap_create = ath_vap_create;
894	ic->ic_vap_delete = ath_vap_delete;
895	ic->ic_raw_xmit = ath_raw_xmit;
896	ic->ic_update_mcast = ath_update_mcast;
897	ic->ic_update_promisc = ath_update_promisc;
898	ic->ic_node_alloc = ath_node_alloc;
899	sc->sc_node_free = ic->ic_node_free;
900	ic->ic_node_free = ath_node_free;
901	sc->sc_node_cleanup = ic->ic_node_cleanup;
902	ic->ic_node_cleanup = ath_node_cleanup;
903	ic->ic_node_getsignal = ath_node_getsignal;
904	ic->ic_scan_start = ath_scan_start;
905	ic->ic_scan_end = ath_scan_end;
906	ic->ic_set_channel = ath_set_channel;
907#ifdef	ATH_ENABLE_11N
908	/* 802.11n specific - but just override anyway */
909	sc->sc_addba_request = ic->ic_addba_request;
910	sc->sc_addba_response = ic->ic_addba_response;
911	sc->sc_addba_stop = ic->ic_addba_stop;
912	sc->sc_bar_response = ic->ic_bar_response;
913	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
914
915	ic->ic_addba_request = ath_addba_request;
916	ic->ic_addba_response = ath_addba_response;
917	ic->ic_addba_response_timeout = ath_addba_response_timeout;
918	ic->ic_addba_stop = ath_addba_stop;
919	ic->ic_bar_response = ath_bar_response;
920
921	ic->ic_update_chw = ath_update_chw;
922#endif	/* ATH_ENABLE_11N */
923
924#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
925	/*
926	 * There's one vendor bitmap entry in the RX radiotap
927	 * header; make sure that's taken into account.
928	 */
929	ieee80211_radiotap_attachv(ic,
930	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
931		ATH_TX_RADIOTAP_PRESENT,
932	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
933		ATH_RX_RADIOTAP_PRESENT);
934#else
935	/*
936	 * No vendor bitmap/extensions are present.
937	 */
938	ieee80211_radiotap_attach(ic,
939	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
940		ATH_TX_RADIOTAP_PRESENT,
941	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
942		ATH_RX_RADIOTAP_PRESENT);
943#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
944
945	/*
946	 * Setup the ALQ logging if required
947	 */
948#ifdef	ATH_DEBUG_ALQ
949	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
950	if_ath_alq_setcfg(&sc->sc_alq,
951	    sc->sc_ah->ah_macVersion,
952	    sc->sc_ah->ah_macRev,
953	    sc->sc_ah->ah_phyRev,
954	    sc->sc_ah->ah_magic);
955#endif
956
957	/*
958	 * Setup dynamic sysctl's now that country code and
959	 * regdomain are available from the hal.
960	 */
961	ath_sysctlattach(sc);
962	ath_sysctl_stats_attach(sc);
963	ath_sysctl_hal_attach(sc);
964
965	if (bootverbose)
966		ieee80211_announce(ic);
967	ath_announce(sc);
968	return 0;
969bad2:
970	ath_tx_cleanup(sc);
971	ath_desc_free(sc);
972	ath_txdma_teardown(sc);
973	ath_rxdma_teardown(sc);
974bad:
975	if (ah)
976		ath_hal_detach(ah);
977
978	/*
979	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
980	 */
981	if (ifp != NULL && ifp->if_vnet) {
982		CURVNET_SET(ifp->if_vnet);
983		if_free(ifp);
984		CURVNET_RESTORE();
985	} else if (ifp != NULL)
986		if_free(ifp);
987	sc->sc_invalid = 1;
988	return error;
989}
990
991int
992ath_detach(struct ath_softc *sc)
993{
994	struct ifnet *ifp = sc->sc_ifp;
995
996	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
997		__func__, ifp->if_flags);
998
999	/*
1000	 * NB: the order of these is important:
1001	 * o stop the chip so no more interrupts will fire
1002	 * o call the 802.11 layer before detaching the hal to
1003	 *   insure callbacks into the driver to delete global
1004	 *   key cache entries can be handled
1005	 * o free the taskqueue which drains any pending tasks
1006	 * o reclaim the tx queue data structures after calling
1007	 *   the 802.11 layer as we'll get called back to reclaim
1008	 *   node state and potentially want to use them
1009	 * o to cleanup the tx queues the hal is called, so detach
1010	 *   it last
1011	 * Other than that, it's straightforward...
1012	 */
1013	ath_stop(ifp);
1014	ieee80211_ifdetach(ifp->if_l2com);
1015	taskqueue_free(sc->sc_tq);
1016#ifdef ATH_TX99_DIAG
1017	if (sc->sc_tx99 != NULL)
1018		sc->sc_tx99->detach(sc->sc_tx99);
1019#endif
1020	ath_rate_detach(sc->sc_rc);
1021#ifdef	ATH_DEBUG_ALQ
1022	if_ath_alq_tidyup(&sc->sc_alq);
1023#endif
1024	ath_spectral_detach(sc);
1025	ath_dfs_detach(sc);
1026	ath_desc_free(sc);
1027	ath_txdma_teardown(sc);
1028	ath_rxdma_teardown(sc);
1029	ath_tx_cleanup(sc);
1030	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1031
1032	CURVNET_SET(ifp->if_vnet);
1033	if_free(ifp);
1034	CURVNET_RESTORE();
1035
1036	return 0;
1037}
1038
1039/*
1040 * MAC address handling for multiple BSS on the same radio.
1041 * The first vap uses the MAC address from the EEPROM.  For
1042 * subsequent vap's we set the U/L bit (bit 1) in the MAC
1043 * address and use the next six bits as an index.
1044 */
1045static void
1046assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1047{
1048	int i;
1049
1050	if (clone && sc->sc_hasbmask) {
1051		/* NB: we only do this if h/w supports multiple bssid */
1052		for (i = 0; i < 8; i++)
1053			if ((sc->sc_bssidmask & (1<<i)) == 0)
1054				break;
1055		if (i != 0)
1056			mac[0] |= (i << 2)|0x2;
1057	} else
1058		i = 0;
1059	sc->sc_bssidmask |= 1<<i;
1060	sc->sc_hwbssidmask[0] &= ~mac[0];
1061	if (i == 0)
1062		sc->sc_nbssid0++;
1063}
1064
1065static void
1066reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1067{
1068	int i = mac[0] >> 2;
1069	uint8_t mask;
1070
1071	if (i != 0 || --sc->sc_nbssid0 == 0) {
1072		sc->sc_bssidmask &= ~(1<<i);
1073		/* recalculate bssid mask from remaining addresses */
1074		mask = 0xff;
1075		for (i = 1; i < 8; i++)
1076			if (sc->sc_bssidmask & (1<<i))
1077				mask &= ~((i<<2)|0x2);
1078		sc->sc_hwbssidmask[0] |= mask;
1079	}
1080}
1081
1082/*
1083 * Assign a beacon xmit slot.  We try to space out
1084 * assignments so when beacons are staggered the
1085 * traffic coming out of the cab q has maximal time
1086 * to go out before the next beacon is scheduled.
1087 */
1088static int
1089assign_bslot(struct ath_softc *sc)
1090{
1091	u_int slot, free;
1092
1093	free = 0;
1094	for (slot = 0; slot < ATH_BCBUF; slot++)
1095		if (sc->sc_bslot[slot] == NULL) {
1096			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1097			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1098				return slot;
1099			free = slot;
1100			/* NB: keep looking for a double slot */
1101		}
1102	return free;
1103}
1104
1105static struct ieee80211vap *
1106ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1107    enum ieee80211_opmode opmode, int flags,
1108    const uint8_t bssid[IEEE80211_ADDR_LEN],
1109    const uint8_t mac0[IEEE80211_ADDR_LEN])
1110{
1111	struct ath_softc *sc = ic->ic_ifp->if_softc;
1112	struct ath_vap *avp;
1113	struct ieee80211vap *vap;
1114	uint8_t mac[IEEE80211_ADDR_LEN];
1115	int needbeacon, error;
1116	enum ieee80211_opmode ic_opmode;
1117
1118	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1119	    M_80211_VAP, M_WAITOK | M_ZERO);
1120	needbeacon = 0;
1121	IEEE80211_ADDR_COPY(mac, mac0);
1122
1123	ATH_LOCK(sc);
1124	ic_opmode = opmode;		/* default to opmode of new vap */
1125	switch (opmode) {
1126	case IEEE80211_M_STA:
1127		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1128			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1129			goto bad;
1130		}
1131		if (sc->sc_nvaps) {
1132			/*
1133			 * With multiple vaps we must fall back
1134			 * to s/w beacon miss handling.
1135			 */
1136			flags |= IEEE80211_CLONE_NOBEACONS;
1137		}
1138		if (flags & IEEE80211_CLONE_NOBEACONS) {
1139			/*
1140			 * Station mode w/o beacons are implemented w/ AP mode.
1141			 */
1142			ic_opmode = IEEE80211_M_HOSTAP;
1143		}
1144		break;
1145	case IEEE80211_M_IBSS:
1146		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1147			device_printf(sc->sc_dev,
1148			    "only 1 ibss vap supported\n");
1149			goto bad;
1150		}
1151		needbeacon = 1;
1152		break;
1153	case IEEE80211_M_AHDEMO:
1154#ifdef IEEE80211_SUPPORT_TDMA
1155		if (flags & IEEE80211_CLONE_TDMA) {
1156			if (sc->sc_nvaps != 0) {
1157				device_printf(sc->sc_dev,
1158				    "only 1 tdma vap supported\n");
1159				goto bad;
1160			}
1161			needbeacon = 1;
1162			flags |= IEEE80211_CLONE_NOBEACONS;
1163		}
1164		/* fall thru... */
1165#endif
1166	case IEEE80211_M_MONITOR:
1167		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1168			/*
1169			 * Adopt existing mode.  Adding a monitor or ahdemo
1170			 * vap to an existing configuration is of dubious
1171			 * value but should be ok.
1172			 */
1173			/* XXX not right for monitor mode */
1174			ic_opmode = ic->ic_opmode;
1175		}
1176		break;
1177	case IEEE80211_M_HOSTAP:
1178	case IEEE80211_M_MBSS:
1179		needbeacon = 1;
1180		break;
1181	case IEEE80211_M_WDS:
1182		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1183			device_printf(sc->sc_dev,
1184			    "wds not supported in sta mode\n");
1185			goto bad;
1186		}
1187		/*
1188		 * Silently remove any request for a unique
1189		 * bssid; WDS vap's always share the local
1190		 * mac address.
1191		 */
1192		flags &= ~IEEE80211_CLONE_BSSID;
1193		if (sc->sc_nvaps == 0)
1194			ic_opmode = IEEE80211_M_HOSTAP;
1195		else
1196			ic_opmode = ic->ic_opmode;
1197		break;
1198	default:
1199		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1200		goto bad;
1201	}
1202	/*
1203	 * Check that a beacon buffer is available; the code below assumes it.
1204	 */
1205	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1206		device_printf(sc->sc_dev, "no beacon buffer available\n");
1207		goto bad;
1208	}
1209
1210	/* STA, AHDEMO? */
1211	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1212		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1213		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1214	}
1215
1216	vap = &avp->av_vap;
1217	/* XXX can't hold mutex across if_alloc */
1218	ATH_UNLOCK(sc);
1219	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1220	    bssid, mac);
1221	ATH_LOCK(sc);
1222	if (error != 0) {
1223		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1224		    __func__, error);
1225		goto bad2;
1226	}
1227
1228	/* h/w crypto support */
1229	vap->iv_key_alloc = ath_key_alloc;
1230	vap->iv_key_delete = ath_key_delete;
1231	vap->iv_key_set = ath_key_set;
1232	vap->iv_key_update_begin = ath_key_update_begin;
1233	vap->iv_key_update_end = ath_key_update_end;
1234
1235	/* override various methods */
1236	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1237	vap->iv_recv_mgmt = ath_recv_mgmt;
1238	vap->iv_reset = ath_reset_vap;
1239	vap->iv_update_beacon = ath_beacon_update;
1240	avp->av_newstate = vap->iv_newstate;
1241	vap->iv_newstate = ath_newstate;
1242	avp->av_bmiss = vap->iv_bmiss;
1243	vap->iv_bmiss = ath_bmiss_vap;
1244
1245	avp->av_node_ps = vap->iv_node_ps;
1246	vap->iv_node_ps = ath_node_powersave;
1247
1248	avp->av_set_tim = vap->iv_set_tim;
1249	vap->iv_set_tim = ath_node_set_tim;
1250
1251	/* Set default parameters */
1252
1253	/*
1254	 * Anything earlier than some AR9300 series MACs don't
1255	 * support a smaller MPDU density.
1256	 */
1257	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1258	/*
1259	 * All NICs can handle the maximum size, however
1260	 * AR5416 based MACs can only TX aggregates w/ RTS
1261	 * protection when the total aggregate size is <= 8k.
1262	 * However, for now that's enforced by the TX path.
1263	 */
1264	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1265
1266	avp->av_bslot = -1;
1267	if (needbeacon) {
1268		/*
1269		 * Allocate beacon state and setup the q for buffered
1270		 * multicast frames.  We know a beacon buffer is
1271		 * available because we checked above.
1272		 */
1273		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1274		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1275		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1276			/*
1277			 * Assign the vap to a beacon xmit slot.  As above
1278			 * this cannot fail to find a free one.
1279			 */
1280			avp->av_bslot = assign_bslot(sc);
1281			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1282			    ("beacon slot %u not empty", avp->av_bslot));
1283			sc->sc_bslot[avp->av_bslot] = vap;
1284			sc->sc_nbcnvaps++;
1285		}
1286		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1287			/*
1288			 * Multple vaps are to transmit beacons and we
1289			 * have h/w support for TSF adjusting; enable
1290			 * use of staggered beacons.
1291			 */
1292			sc->sc_stagbeacons = 1;
1293		}
1294		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1295	}
1296
1297	ic->ic_opmode = ic_opmode;
1298	if (opmode != IEEE80211_M_WDS) {
1299		sc->sc_nvaps++;
1300		if (opmode == IEEE80211_M_STA)
1301			sc->sc_nstavaps++;
1302		if (opmode == IEEE80211_M_MBSS)
1303			sc->sc_nmeshvaps++;
1304	}
1305	switch (ic_opmode) {
1306	case IEEE80211_M_IBSS:
1307		sc->sc_opmode = HAL_M_IBSS;
1308		break;
1309	case IEEE80211_M_STA:
1310		sc->sc_opmode = HAL_M_STA;
1311		break;
1312	case IEEE80211_M_AHDEMO:
1313#ifdef IEEE80211_SUPPORT_TDMA
1314		if (vap->iv_caps & IEEE80211_C_TDMA) {
1315			sc->sc_tdma = 1;
1316			/* NB: disable tsf adjust */
1317			sc->sc_stagbeacons = 0;
1318		}
1319		/*
1320		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1321		 * just ap mode.
1322		 */
1323		/* fall thru... */
1324#endif
1325	case IEEE80211_M_HOSTAP:
1326	case IEEE80211_M_MBSS:
1327		sc->sc_opmode = HAL_M_HOSTAP;
1328		break;
1329	case IEEE80211_M_MONITOR:
1330		sc->sc_opmode = HAL_M_MONITOR;
1331		break;
1332	default:
1333		/* XXX should not happen */
1334		break;
1335	}
1336	if (sc->sc_hastsfadd) {
1337		/*
1338		 * Configure whether or not TSF adjust should be done.
1339		 */
1340		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1341	}
1342	if (flags & IEEE80211_CLONE_NOBEACONS) {
1343		/*
1344		 * Enable s/w beacon miss handling.
1345		 */
1346		sc->sc_swbmiss = 1;
1347	}
1348	ATH_UNLOCK(sc);
1349
1350	/* complete setup */
1351	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1352	return vap;
1353bad2:
1354	reclaim_address(sc, mac);
1355	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1356bad:
1357	free(avp, M_80211_VAP);
1358	ATH_UNLOCK(sc);
1359	return NULL;
1360}
1361
1362static void
1363ath_vap_delete(struct ieee80211vap *vap)
1364{
1365	struct ieee80211com *ic = vap->iv_ic;
1366	struct ifnet *ifp = ic->ic_ifp;
1367	struct ath_softc *sc = ifp->if_softc;
1368	struct ath_hal *ah = sc->sc_ah;
1369	struct ath_vap *avp = ATH_VAP(vap);
1370
1371	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1372	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1373		/*
1374		 * Quiesce the hardware while we remove the vap.  In
1375		 * particular we need to reclaim all references to
1376		 * the vap state by any frames pending on the tx queues.
1377		 */
1378		ath_hal_intrset(ah, 0);		/* disable interrupts */
1379		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1380		/* XXX Do all frames from all vaps/nodes need draining here? */
1381		ath_stoprecv(sc, 1);		/* stop recv side */
1382	}
1383
1384	ieee80211_vap_detach(vap);
1385
1386	/*
1387	 * XXX Danger Will Robinson! Danger!
1388	 *
1389	 * Because ieee80211_vap_detach() can queue a frame (the station
1390	 * diassociate message?) after we've drained the TXQ and
1391	 * flushed the software TXQ, we will end up with a frame queued
1392	 * to a node whose vap is about to be freed.
1393	 *
1394	 * To work around this, flush the hardware/software again.
1395	 * This may be racy - the ath task may be running and the packet
1396	 * may be being scheduled between sw->hw txq. Tsk.
1397	 *
1398	 * TODO: figure out why a new node gets allocated somewhere around
1399	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1400	 * call!)
1401	 */
1402
1403	ath_draintxq(sc, ATH_RESET_DEFAULT);
1404
1405	ATH_LOCK(sc);
1406	/*
1407	 * Reclaim beacon state.  Note this must be done before
1408	 * the vap instance is reclaimed as we may have a reference
1409	 * to it in the buffer for the beacon frame.
1410	 */
1411	if (avp->av_bcbuf != NULL) {
1412		if (avp->av_bslot != -1) {
1413			sc->sc_bslot[avp->av_bslot] = NULL;
1414			sc->sc_nbcnvaps--;
1415		}
1416		ath_beacon_return(sc, avp->av_bcbuf);
1417		avp->av_bcbuf = NULL;
1418		if (sc->sc_nbcnvaps == 0) {
1419			sc->sc_stagbeacons = 0;
1420			if (sc->sc_hastsfadd)
1421				ath_hal_settsfadjust(sc->sc_ah, 0);
1422		}
1423		/*
1424		 * Reclaim any pending mcast frames for the vap.
1425		 */
1426		ath_tx_draintxq(sc, &avp->av_mcastq);
1427	}
1428	/*
1429	 * Update bookkeeping.
1430	 */
1431	if (vap->iv_opmode == IEEE80211_M_STA) {
1432		sc->sc_nstavaps--;
1433		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1434			sc->sc_swbmiss = 0;
1435	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1436	    vap->iv_opmode == IEEE80211_M_MBSS) {
1437		reclaim_address(sc, vap->iv_myaddr);
1438		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1439		if (vap->iv_opmode == IEEE80211_M_MBSS)
1440			sc->sc_nmeshvaps--;
1441	}
1442	if (vap->iv_opmode != IEEE80211_M_WDS)
1443		sc->sc_nvaps--;
1444#ifdef IEEE80211_SUPPORT_TDMA
1445	/* TDMA operation ceases when the last vap is destroyed */
1446	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1447		sc->sc_tdma = 0;
1448		sc->sc_swbmiss = 0;
1449	}
1450#endif
1451	free(avp, M_80211_VAP);
1452
1453	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1454		/*
1455		 * Restart rx+tx machines if still running (RUNNING will
1456		 * be reset if we just destroyed the last vap).
1457		 */
1458		if (ath_startrecv(sc) != 0)
1459			if_printf(ifp, "%s: unable to restart recv logic\n",
1460			    __func__);
1461		if (sc->sc_beacons) {		/* restart beacons */
1462#ifdef IEEE80211_SUPPORT_TDMA
1463			if (sc->sc_tdma)
1464				ath_tdma_config(sc, NULL);
1465			else
1466#endif
1467				ath_beacon_config(sc, NULL);
1468		}
1469		ath_hal_intrset(ah, sc->sc_imask);
1470	}
1471	ATH_UNLOCK(sc);
1472}
1473
1474void
1475ath_suspend(struct ath_softc *sc)
1476{
1477	struct ifnet *ifp = sc->sc_ifp;
1478	struct ieee80211com *ic = ifp->if_l2com;
1479
1480	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1481		__func__, ifp->if_flags);
1482
1483	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1484
1485	ieee80211_suspend_all(ic);
1486	/*
1487	 * NB: don't worry about putting the chip in low power
1488	 * mode; pci will power off our socket on suspend and
1489	 * CardBus detaches the device.
1490	 */
1491
1492	/*
1493	 * XXX ensure none of the taskqueues are running
1494	 * XXX ensure sc_invalid is 1
1495	 * XXX ensure the calibration callout is disabled
1496	 */
1497
1498	/* Disable the PCIe PHY, complete with workarounds */
1499	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1500}
1501
1502/*
1503 * Reset the key cache since some parts do not reset the
1504 * contents on resume.  First we clear all entries, then
1505 * re-load keys that the 802.11 layer assumes are setup
1506 * in h/w.
1507 */
1508static void
1509ath_reset_keycache(struct ath_softc *sc)
1510{
1511	struct ifnet *ifp = sc->sc_ifp;
1512	struct ieee80211com *ic = ifp->if_l2com;
1513	struct ath_hal *ah = sc->sc_ah;
1514	int i;
1515
1516	for (i = 0; i < sc->sc_keymax; i++)
1517		ath_hal_keyreset(ah, i);
1518	ieee80211_crypto_reload_keys(ic);
1519}
1520
1521/*
1522 * Fetch the current chainmask configuration based on the current
1523 * operating channel and options.
1524 */
1525static void
1526ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1527{
1528
1529	/*
1530	 * Set TX chainmask to the currently configured chainmask;
1531	 * the TX chainmask depends upon the current operating mode.
1532	 */
1533	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1534	if (IEEE80211_IS_CHAN_HT(chan)) {
1535		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1536	} else {
1537		sc->sc_cur_txchainmask = 1;
1538	}
1539
1540	DPRINTF(sc, ATH_DEBUG_RESET,
1541	    "%s: TX chainmask is now 0x%x, RX is now 0x%x\n",
1542	    __func__,
1543	    sc->sc_cur_txchainmask,
1544	    sc->sc_cur_rxchainmask);
1545}
1546
1547void
1548ath_resume(struct ath_softc *sc)
1549{
1550	struct ifnet *ifp = sc->sc_ifp;
1551	struct ieee80211com *ic = ifp->if_l2com;
1552	struct ath_hal *ah = sc->sc_ah;
1553	HAL_STATUS status;
1554
1555	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1556		__func__, ifp->if_flags);
1557
1558	/* Re-enable PCIe, re-enable the PCIe bus */
1559	ath_hal_enablepcie(ah, 0, 0);
1560
1561	/*
1562	 * Must reset the chip before we reload the
1563	 * keycache as we were powered down on suspend.
1564	 */
1565	ath_update_chainmasks(sc,
1566	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1567	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1568	    sc->sc_cur_rxchainmask);
1569	ath_hal_reset(ah, sc->sc_opmode,
1570	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1571	    AH_FALSE, &status);
1572	ath_reset_keycache(sc);
1573
1574	/* Let DFS at it in case it's a DFS channel */
1575	ath_dfs_radar_enable(sc, ic->ic_curchan);
1576
1577	/* Let spectral at in case spectral is enabled */
1578	ath_spectral_enable(sc, ic->ic_curchan);
1579
1580	/* Restore the LED configuration */
1581	ath_led_config(sc);
1582	ath_hal_setledstate(ah, HAL_LED_INIT);
1583
1584	if (sc->sc_resume_up)
1585		ieee80211_resume_all(ic);
1586
1587	/* XXX beacons ? */
1588}
1589
1590void
1591ath_shutdown(struct ath_softc *sc)
1592{
1593	struct ifnet *ifp = sc->sc_ifp;
1594
1595	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1596		__func__, ifp->if_flags);
1597
1598	ath_stop(ifp);
1599	/* NB: no point powering down chip as we're about to reboot */
1600}
1601
1602/*
1603 * Interrupt handler.  Most of the actual processing is deferred.
1604 */
1605void
1606ath_intr(void *arg)
1607{
1608	struct ath_softc *sc = arg;
1609	struct ifnet *ifp = sc->sc_ifp;
1610	struct ath_hal *ah = sc->sc_ah;
1611	HAL_INT status = 0;
1612	uint32_t txqs;
1613
1614	/*
1615	 * If we're inside a reset path, just print a warning and
1616	 * clear the ISR. The reset routine will finish it for us.
1617	 */
1618	ATH_PCU_LOCK(sc);
1619	if (sc->sc_inreset_cnt) {
1620		HAL_INT status;
1621		ath_hal_getisr(ah, &status);	/* clear ISR */
1622		ath_hal_intrset(ah, 0);		/* disable further intr's */
1623		DPRINTF(sc, ATH_DEBUG_ANY,
1624		    "%s: in reset, ignoring: status=0x%x\n",
1625		    __func__, status);
1626		ATH_PCU_UNLOCK(sc);
1627		return;
1628	}
1629
1630	if (sc->sc_invalid) {
1631		/*
1632		 * The hardware is not ready/present, don't touch anything.
1633		 * Note this can happen early on if the IRQ is shared.
1634		 */
1635		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1636		ATH_PCU_UNLOCK(sc);
1637		return;
1638	}
1639	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1640		ATH_PCU_UNLOCK(sc);
1641		return;
1642	}
1643
1644	if ((ifp->if_flags & IFF_UP) == 0 ||
1645	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1646		HAL_INT status;
1647
1648		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1649			__func__, ifp->if_flags);
1650		ath_hal_getisr(ah, &status);	/* clear ISR */
1651		ath_hal_intrset(ah, 0);		/* disable further intr's */
1652		ATH_PCU_UNLOCK(sc);
1653		return;
1654	}
1655
1656	/*
1657	 * Figure out the reason(s) for the interrupt.  Note
1658	 * that the hal returns a pseudo-ISR that may include
1659	 * bits we haven't explicitly enabled so we mask the
1660	 * value to insure we only process bits we requested.
1661	 */
1662	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1663	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1664	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
1665#ifdef	ATH_DEBUG_ALQ
1666	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
1667	    ah->ah_syncstate);
1668#endif	/* ATH_DEBUG_ALQ */
1669#ifdef	ATH_KTR_INTR_DEBUG
1670	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
1671	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1672	    ah->ah_intrstate[0],
1673	    ah->ah_intrstate[1],
1674	    ah->ah_intrstate[2],
1675	    ah->ah_intrstate[3],
1676	    ah->ah_intrstate[6]);
1677#endif
1678
1679	/* Squirrel away SYNC interrupt debugging */
1680	if (ah->ah_syncstate != 0) {
1681		int i;
1682		for (i = 0; i < 32; i++)
1683			if (ah->ah_syncstate & (i << i))
1684				sc->sc_intr_stats.sync_intr[i]++;
1685	}
1686
1687	status &= sc->sc_imask;			/* discard unasked for bits */
1688
1689	/* Short-circuit un-handled interrupts */
1690	if (status == 0x0) {
1691		ATH_PCU_UNLOCK(sc);
1692		return;
1693	}
1694
1695	/*
1696	 * Take a note that we're inside the interrupt handler, so
1697	 * the reset routines know to wait.
1698	 */
1699	sc->sc_intr_cnt++;
1700	ATH_PCU_UNLOCK(sc);
1701
1702	/*
1703	 * Handle the interrupt. We won't run concurrent with the reset
1704	 * or channel change routines as they'll wait for sc_intr_cnt
1705	 * to be 0 before continuing.
1706	 */
1707	if (status & HAL_INT_FATAL) {
1708		sc->sc_stats.ast_hardware++;
1709		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1710		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1711	} else {
1712		if (status & HAL_INT_SWBA) {
1713			/*
1714			 * Software beacon alert--time to send a beacon.
1715			 * Handle beacon transmission directly; deferring
1716			 * this is too slow to meet timing constraints
1717			 * under load.
1718			 */
1719#ifdef IEEE80211_SUPPORT_TDMA
1720			if (sc->sc_tdma) {
1721				if (sc->sc_tdmaswba == 0) {
1722					struct ieee80211com *ic = ifp->if_l2com;
1723					struct ieee80211vap *vap =
1724					    TAILQ_FIRST(&ic->ic_vaps);
1725					ath_tdma_beacon_send(sc, vap);
1726					sc->sc_tdmaswba =
1727					    vap->iv_tdma->tdma_bintval;
1728				} else
1729					sc->sc_tdmaswba--;
1730			} else
1731#endif
1732			{
1733				ath_beacon_proc(sc, 0);
1734#ifdef IEEE80211_SUPPORT_SUPERG
1735				/*
1736				 * Schedule the rx taskq in case there's no
1737				 * traffic so any frames held on the staging
1738				 * queue are aged and potentially flushed.
1739				 */
1740				sc->sc_rx.recv_sched(sc, 1);
1741#endif
1742			}
1743		}
1744		if (status & HAL_INT_RXEOL) {
1745			int imask;
1746			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
1747			ATH_PCU_LOCK(sc);
1748			/*
1749			 * NB: the hardware should re-read the link when
1750			 *     RXE bit is written, but it doesn't work at
1751			 *     least on older hardware revs.
1752			 */
1753			sc->sc_stats.ast_rxeol++;
1754			/*
1755			 * Disable RXEOL/RXORN - prevent an interrupt
1756			 * storm until the PCU logic can be reset.
1757			 * In case the interface is reset some other
1758			 * way before "sc_kickpcu" is called, don't
1759			 * modify sc_imask - that way if it is reset
1760			 * by a call to ath_reset() somehow, the
1761			 * interrupt mask will be correctly reprogrammed.
1762			 */
1763			imask = sc->sc_imask;
1764			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1765			ath_hal_intrset(ah, imask);
1766			/*
1767			 * Only blank sc_rxlink if we've not yet kicked
1768			 * the PCU.
1769			 *
1770			 * This isn't entirely correct - the correct solution
1771			 * would be to have a PCU lock and engage that for
1772			 * the duration of the PCU fiddling; which would include
1773			 * running the RX process. Otherwise we could end up
1774			 * messing up the RX descriptor chain and making the
1775			 * RX desc list much shorter.
1776			 */
1777			if (! sc->sc_kickpcu)
1778				sc->sc_rxlink = NULL;
1779			sc->sc_kickpcu = 1;
1780			ATH_PCU_UNLOCK(sc);
1781			/*
1782			 * Enqueue an RX proc, to handled whatever
1783			 * is in the RX queue.
1784			 * This will then kick the PCU.
1785			 */
1786			sc->sc_rx.recv_sched(sc, 1);
1787		}
1788		if (status & HAL_INT_TXURN) {
1789			sc->sc_stats.ast_txurn++;
1790			/* bump tx trigger level */
1791			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1792		}
1793		/*
1794		 * Handle both the legacy and RX EDMA interrupt bits.
1795		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
1796		 */
1797		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
1798			sc->sc_stats.ast_rx_intr++;
1799			sc->sc_rx.recv_sched(sc, 1);
1800		}
1801		if (status & HAL_INT_TX) {
1802			sc->sc_stats.ast_tx_intr++;
1803			/*
1804			 * Grab all the currently set bits in the HAL txq bitmap
1805			 * and blank them. This is the only place we should be
1806			 * doing this.
1807			 */
1808			if (! sc->sc_isedma) {
1809				ATH_PCU_LOCK(sc);
1810				txqs = 0xffffffff;
1811				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1812				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
1813				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
1814				    txqs,
1815				    sc->sc_txq_active,
1816				    sc->sc_txq_active | txqs);
1817				sc->sc_txq_active |= txqs;
1818				ATH_PCU_UNLOCK(sc);
1819			}
1820			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1821		}
1822		if (status & HAL_INT_BMISS) {
1823			sc->sc_stats.ast_bmiss++;
1824			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1825		}
1826		if (status & HAL_INT_GTT)
1827			sc->sc_stats.ast_tx_timeout++;
1828		if (status & HAL_INT_CST)
1829			sc->sc_stats.ast_tx_cst++;
1830		if (status & HAL_INT_MIB) {
1831			sc->sc_stats.ast_mib++;
1832			ATH_PCU_LOCK(sc);
1833			/*
1834			 * Disable interrupts until we service the MIB
1835			 * interrupt; otherwise it will continue to fire.
1836			 */
1837			ath_hal_intrset(ah, 0);
1838			/*
1839			 * Let the hal handle the event.  We assume it will
1840			 * clear whatever condition caused the interrupt.
1841			 */
1842			ath_hal_mibevent(ah, &sc->sc_halstats);
1843			/*
1844			 * Don't reset the interrupt if we've just
1845			 * kicked the PCU, or we may get a nested
1846			 * RXEOL before the rxproc has had a chance
1847			 * to run.
1848			 */
1849			if (sc->sc_kickpcu == 0)
1850				ath_hal_intrset(ah, sc->sc_imask);
1851			ATH_PCU_UNLOCK(sc);
1852		}
1853		if (status & HAL_INT_RXORN) {
1854			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1855			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
1856			sc->sc_stats.ast_rxorn++;
1857		}
1858	}
1859	ATH_PCU_LOCK(sc);
1860	sc->sc_intr_cnt--;
1861	ATH_PCU_UNLOCK(sc);
1862}
1863
1864static void
1865ath_fatal_proc(void *arg, int pending)
1866{
1867	struct ath_softc *sc = arg;
1868	struct ifnet *ifp = sc->sc_ifp;
1869	u_int32_t *state;
1870	u_int32_t len;
1871	void *sp;
1872
1873	if_printf(ifp, "hardware error; resetting\n");
1874	/*
1875	 * Fatal errors are unrecoverable.  Typically these
1876	 * are caused by DMA errors.  Collect h/w state from
1877	 * the hal so we can diagnose what's going on.
1878	 */
1879	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1880		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1881		state = sp;
1882		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1883		    state[0], state[1] , state[2], state[3],
1884		    state[4], state[5]);
1885	}
1886	ath_reset(ifp, ATH_RESET_NOLOSS);
1887}
1888
1889static void
1890ath_bmiss_vap(struct ieee80211vap *vap)
1891{
1892	/*
1893	 * Workaround phantom bmiss interrupts by sanity-checking
1894	 * the time of our last rx'd frame.  If it is within the
1895	 * beacon miss interval then ignore the interrupt.  If it's
1896	 * truly a bmiss we'll get another interrupt soon and that'll
1897	 * be dispatched up for processing.  Note this applies only
1898	 * for h/w beacon miss events.
1899	 */
1900	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1901		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1902		struct ath_softc *sc = ifp->if_softc;
1903		u_int64_t lastrx = sc->sc_lastrx;
1904		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1905		/* XXX should take a locked ref to iv_bss */
1906		u_int bmisstimeout =
1907			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1908
1909		DPRINTF(sc, ATH_DEBUG_BEACON,
1910		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1911		    __func__, (unsigned long long) tsf,
1912		    (unsigned long long)(tsf - lastrx),
1913		    (unsigned long long) lastrx, bmisstimeout);
1914
1915		if (tsf - lastrx <= bmisstimeout) {
1916			sc->sc_stats.ast_bmiss_phantom++;
1917			return;
1918		}
1919	}
1920	ATH_VAP(vap)->av_bmiss(vap);
1921}
1922
1923int
1924ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1925{
1926	uint32_t rsize;
1927	void *sp;
1928
1929	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1930		return 0;
1931	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1932	*hangs = *(uint32_t *)sp;
1933	return 1;
1934}
1935
1936static void
1937ath_bmiss_proc(void *arg, int pending)
1938{
1939	struct ath_softc *sc = arg;
1940	struct ifnet *ifp = sc->sc_ifp;
1941	uint32_t hangs;
1942
1943	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1944
1945	/*
1946	 * Do a reset upon any becaon miss event.
1947	 *
1948	 * It may be a non-recognised RX clear hang which needs a reset
1949	 * to clear.
1950	 */
1951	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1952		ath_reset(ifp, ATH_RESET_NOLOSS);
1953		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1954	} else {
1955		ath_reset(ifp, ATH_RESET_NOLOSS);
1956		ieee80211_beacon_miss(ifp->if_l2com);
1957	}
1958}
1959
1960/*
1961 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1962 * calcs together with WME.  If necessary disable the crypto
1963 * hardware and mark the 802.11 state so keys will be setup
1964 * with the MIC work done in software.
1965 */
1966static void
1967ath_settkipmic(struct ath_softc *sc)
1968{
1969	struct ifnet *ifp = sc->sc_ifp;
1970	struct ieee80211com *ic = ifp->if_l2com;
1971
1972	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1973		if (ic->ic_flags & IEEE80211_F_WME) {
1974			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1975			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1976		} else {
1977			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1978			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1979		}
1980	}
1981}
1982
1983static void
1984ath_init(void *arg)
1985{
1986	struct ath_softc *sc = (struct ath_softc *) arg;
1987	struct ifnet *ifp = sc->sc_ifp;
1988	struct ieee80211com *ic = ifp->if_l2com;
1989	struct ath_hal *ah = sc->sc_ah;
1990	HAL_STATUS status;
1991
1992	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1993		__func__, ifp->if_flags);
1994
1995	ATH_LOCK(sc);
1996	/*
1997	 * Stop anything previously setup.  This is safe
1998	 * whether this is the first time through or not.
1999	 */
2000	ath_stop_locked(ifp);
2001
2002	/*
2003	 * The basic interface to setting the hardware in a good
2004	 * state is ``reset''.  On return the hardware is known to
2005	 * be powered up and with interrupts disabled.  This must
2006	 * be followed by initialization of the appropriate bits
2007	 * and then setup of the interrupt mask.
2008	 */
2009	ath_settkipmic(sc);
2010	ath_update_chainmasks(sc, ic->ic_curchan);
2011	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2012	    sc->sc_cur_rxchainmask);
2013	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
2014		if_printf(ifp, "unable to reset hardware; hal status %u\n",
2015			status);
2016		ATH_UNLOCK(sc);
2017		return;
2018	}
2019	ath_chan_change(sc, ic->ic_curchan);
2020
2021	/* Let DFS at it in case it's a DFS channel */
2022	ath_dfs_radar_enable(sc, ic->ic_curchan);
2023
2024	/* Let spectral at in case spectral is enabled */
2025	ath_spectral_enable(sc, ic->ic_curchan);
2026
2027	/*
2028	 * Likewise this is set during reset so update
2029	 * state cached in the driver.
2030	 */
2031	sc->sc_diversity = ath_hal_getdiversity(ah);
2032	sc->sc_lastlongcal = 0;
2033	sc->sc_resetcal = 1;
2034	sc->sc_lastcalreset = 0;
2035	sc->sc_lastani = 0;
2036	sc->sc_lastshortcal = 0;
2037	sc->sc_doresetcal = AH_FALSE;
2038	/*
2039	 * Beacon timers were cleared here; give ath_newstate()
2040	 * a hint that the beacon timers should be poked when
2041	 * things transition to the RUN state.
2042	 */
2043	sc->sc_beacons = 0;
2044
2045	/*
2046	 * Setup the hardware after reset: the key cache
2047	 * is filled as needed and the receive engine is
2048	 * set going.  Frame transmit is handled entirely
2049	 * in the frame output path; there's nothing to do
2050	 * here except setup the interrupt mask.
2051	 */
2052	if (ath_startrecv(sc) != 0) {
2053		if_printf(ifp, "unable to start recv logic\n");
2054		ATH_UNLOCK(sc);
2055		return;
2056	}
2057
2058	/*
2059	 * Enable interrupts.
2060	 */
2061	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2062		  | HAL_INT_RXEOL | HAL_INT_RXORN
2063		  | HAL_INT_TXURN
2064		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2065
2066	/*
2067	 * Enable RX EDMA bits.  Note these overlap with
2068	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2069	 */
2070	if (sc->sc_isedma)
2071		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2072
2073	/*
2074	 * Enable MIB interrupts when there are hardware phy counters.
2075	 * Note we only do this (at the moment) for station mode.
2076	 */
2077	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2078		sc->sc_imask |= HAL_INT_MIB;
2079
2080	/* Enable global TX timeout and carrier sense timeout if available */
2081	if (ath_hal_gtxto_supported(ah))
2082		sc->sc_imask |= HAL_INT_GTT;
2083
2084	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2085		__func__, sc->sc_imask);
2086
2087	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2088	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2089	ath_hal_intrset(ah, sc->sc_imask);
2090
2091	ATH_UNLOCK(sc);
2092
2093#ifdef ATH_TX99_DIAG
2094	if (sc->sc_tx99 != NULL)
2095		sc->sc_tx99->start(sc->sc_tx99);
2096	else
2097#endif
2098	ieee80211_start_all(ic);		/* start all vap's */
2099}
2100
2101static void
2102ath_stop_locked(struct ifnet *ifp)
2103{
2104	struct ath_softc *sc = ifp->if_softc;
2105	struct ath_hal *ah = sc->sc_ah;
2106
2107	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2108		__func__, sc->sc_invalid, ifp->if_flags);
2109
2110	ATH_LOCK_ASSERT(sc);
2111	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2112		/*
2113		 * Shutdown the hardware and driver:
2114		 *    reset 802.11 state machine
2115		 *    turn off timers
2116		 *    disable interrupts
2117		 *    turn off the radio
2118		 *    clear transmit machinery
2119		 *    clear receive machinery
2120		 *    drain and release tx queues
2121		 *    reclaim beacon resources
2122		 *    power down hardware
2123		 *
2124		 * Note that some of this work is not possible if the
2125		 * hardware is gone (invalid).
2126		 */
2127#ifdef ATH_TX99_DIAG
2128		if (sc->sc_tx99 != NULL)
2129			sc->sc_tx99->stop(sc->sc_tx99);
2130#endif
2131		callout_stop(&sc->sc_wd_ch);
2132		sc->sc_wd_timer = 0;
2133		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2134		if (!sc->sc_invalid) {
2135			if (sc->sc_softled) {
2136				callout_stop(&sc->sc_ledtimer);
2137				ath_hal_gpioset(ah, sc->sc_ledpin,
2138					!sc->sc_ledon);
2139				sc->sc_blinking = 0;
2140			}
2141			ath_hal_intrset(ah, 0);
2142		}
2143		ath_draintxq(sc, ATH_RESET_DEFAULT);
2144		if (!sc->sc_invalid) {
2145			ath_stoprecv(sc, 1);
2146			ath_hal_phydisable(ah);
2147		} else
2148			sc->sc_rxlink = NULL;
2149		ath_beacon_free(sc);	/* XXX not needed */
2150	}
2151}
2152
2153#define	MAX_TXRX_ITERATIONS	1000
2154static void
2155ath_txrx_stop_locked(struct ath_softc *sc)
2156{
2157	int i = MAX_TXRX_ITERATIONS;
2158
2159	ATH_UNLOCK_ASSERT(sc);
2160	ATH_PCU_LOCK_ASSERT(sc);
2161
2162	/*
2163	 * Sleep until all the pending operations have completed.
2164	 *
2165	 * The caller must ensure that reset has been incremented
2166	 * or the pending operations may continue being queued.
2167	 */
2168	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2169	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2170		if (i <= 0)
2171			break;
2172		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
2173		i--;
2174	}
2175
2176	if (i <= 0)
2177		device_printf(sc->sc_dev,
2178		    "%s: didn't finish after %d iterations\n",
2179		    __func__, MAX_TXRX_ITERATIONS);
2180}
2181#undef	MAX_TXRX_ITERATIONS
2182
2183#if 0
2184static void
2185ath_txrx_stop(struct ath_softc *sc)
2186{
2187	ATH_UNLOCK_ASSERT(sc);
2188	ATH_PCU_UNLOCK_ASSERT(sc);
2189
2190	ATH_PCU_LOCK(sc);
2191	ath_txrx_stop_locked(sc);
2192	ATH_PCU_UNLOCK(sc);
2193}
2194#endif
2195
2196static void
2197ath_txrx_start(struct ath_softc *sc)
2198{
2199
2200	taskqueue_unblock(sc->sc_tq);
2201}
2202
2203/*
2204 * Grab the reset lock, and wait around until noone else
2205 * is trying to do anything with it.
2206 *
2207 * This is totally horrible but we can't hold this lock for
2208 * long enough to do TX/RX or we end up with net80211/ip stack
2209 * LORs and eventual deadlock.
2210 *
2211 * "dowait" signals whether to spin, waiting for the reset
2212 * lock count to reach 0. This should (for now) only be used
2213 * during the reset path, as the rest of the code may not
2214 * be locking-reentrant enough to behave correctly.
2215 *
2216 * Another, cleaner way should be found to serialise all of
2217 * these operations.
2218 */
2219#define	MAX_RESET_ITERATIONS	10
2220static int
2221ath_reset_grablock(struct ath_softc *sc, int dowait)
2222{
2223	int w = 0;
2224	int i = MAX_RESET_ITERATIONS;
2225
2226	ATH_PCU_LOCK_ASSERT(sc);
2227	do {
2228		if (sc->sc_inreset_cnt == 0) {
2229			w = 1;
2230			break;
2231		}
2232		if (dowait == 0) {
2233			w = 0;
2234			break;
2235		}
2236		ATH_PCU_UNLOCK(sc);
2237		pause("ath_reset_grablock", 1);
2238		i--;
2239		ATH_PCU_LOCK(sc);
2240	} while (i > 0);
2241
2242	/*
2243	 * We always increment the refcounter, regardless
2244	 * of whether we succeeded to get it in an exclusive
2245	 * way.
2246	 */
2247	sc->sc_inreset_cnt++;
2248
2249	if (i <= 0)
2250		device_printf(sc->sc_dev,
2251		    "%s: didn't finish after %d iterations\n",
2252		    __func__, MAX_RESET_ITERATIONS);
2253
2254	if (w == 0)
2255		device_printf(sc->sc_dev,
2256		    "%s: warning, recursive reset path!\n",
2257		    __func__);
2258
2259	return w;
2260}
2261#undef MAX_RESET_ITERATIONS
2262
2263/*
2264 * XXX TODO: write ath_reset_releaselock
2265 */
2266
2267static void
2268ath_stop(struct ifnet *ifp)
2269{
2270	struct ath_softc *sc = ifp->if_softc;
2271
2272	ATH_LOCK(sc);
2273	ath_stop_locked(ifp);
2274	ATH_UNLOCK(sc);
2275}
2276
2277/*
2278 * Reset the hardware w/o losing operational state.  This is
2279 * basically a more efficient way of doing ath_stop, ath_init,
2280 * followed by state transitions to the current 802.11
2281 * operational state.  Used to recover from various errors and
2282 * to reset or reload hardware state.
2283 */
2284int
2285ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2286{
2287	struct ath_softc *sc = ifp->if_softc;
2288	struct ieee80211com *ic = ifp->if_l2com;
2289	struct ath_hal *ah = sc->sc_ah;
2290	HAL_STATUS status;
2291	int i;
2292
2293	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2294
2295	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2296	ATH_PCU_UNLOCK_ASSERT(sc);
2297	ATH_UNLOCK_ASSERT(sc);
2298
2299	/* Try to (stop any further TX/RX from occuring */
2300	taskqueue_block(sc->sc_tq);
2301
2302	ATH_PCU_LOCK(sc);
2303	ath_hal_intrset(ah, 0);		/* disable interrupts */
2304	ath_txrx_stop_locked(sc);	/* Ensure TX/RX is stopped */
2305	if (ath_reset_grablock(sc, 1) == 0) {
2306		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2307		    __func__);
2308	}
2309	ATH_PCU_UNLOCK(sc);
2310
2311	/*
2312	 * Should now wait for pending TX/RX to complete
2313	 * and block future ones from occuring. This needs to be
2314	 * done before the TX queue is drained.
2315	 */
2316	ath_draintxq(sc, reset_type);	/* stop xmit side */
2317
2318	/*
2319	 * Regardless of whether we're doing a no-loss flush or
2320	 * not, stop the PCU and handle what's in the RX queue.
2321	 * That way frames aren't dropped which shouldn't be.
2322	 */
2323	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2324	ath_rx_flush(sc);
2325
2326	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2327	/* NB: indicate channel change so we do a full reset */
2328	ath_update_chainmasks(sc, ic->ic_curchan);
2329	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2330	    sc->sc_cur_rxchainmask);
2331	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2332		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2333			__func__, status);
2334	sc->sc_diversity = ath_hal_getdiversity(ah);
2335
2336	/* Let DFS at it in case it's a DFS channel */
2337	ath_dfs_radar_enable(sc, ic->ic_curchan);
2338
2339	/* Let spectral at in case spectral is enabled */
2340	ath_spectral_enable(sc, ic->ic_curchan);
2341
2342	if (ath_startrecv(sc) != 0)	/* restart recv */
2343		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2344	/*
2345	 * We may be doing a reset in response to an ioctl
2346	 * that changes the channel so update any state that
2347	 * might change as a result.
2348	 */
2349	ath_chan_change(sc, ic->ic_curchan);
2350	if (sc->sc_beacons) {		/* restart beacons */
2351#ifdef IEEE80211_SUPPORT_TDMA
2352		if (sc->sc_tdma)
2353			ath_tdma_config(sc, NULL);
2354		else
2355#endif
2356			ath_beacon_config(sc, NULL);
2357	}
2358
2359	/*
2360	 * Release the reset lock and re-enable interrupts here.
2361	 * If an interrupt was being processed in ath_intr(),
2362	 * it would disable interrupts at this point. So we have
2363	 * to atomically enable interrupts and decrement the
2364	 * reset counter - this way ath_intr() doesn't end up
2365	 * disabling interrupts without a corresponding enable
2366	 * in the rest or channel change path.
2367	 */
2368	ATH_PCU_LOCK(sc);
2369	sc->sc_inreset_cnt--;
2370	/* XXX only do this if sc_inreset_cnt == 0? */
2371	ath_hal_intrset(ah, sc->sc_imask);
2372	ATH_PCU_UNLOCK(sc);
2373
2374	/*
2375	 * TX and RX can be started here. If it were started with
2376	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2377	 * Thus if this is a nested call through the reset or
2378	 * channel change code, TX completion will occur but
2379	 * RX completion and ath_start / ath_tx_start will not
2380	 * run.
2381	 */
2382
2383	/* Restart TX/RX as needed */
2384	ath_txrx_start(sc);
2385
2386	/* Restart TX completion and pending TX */
2387	if (reset_type == ATH_RESET_NOLOSS) {
2388		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2389			if (ATH_TXQ_SETUP(sc, i)) {
2390				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2391				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2392				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2393
2394				ATH_TX_LOCK(sc);
2395				ath_txq_sched(sc, &sc->sc_txq[i]);
2396				ATH_TX_UNLOCK(sc);
2397			}
2398		}
2399	}
2400
2401	/*
2402	 * This may have been set during an ath_start() call which
2403	 * set this once it detected a concurrent TX was going on.
2404	 * So, clear it.
2405	 */
2406	IF_LOCK(&ifp->if_snd);
2407	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2408	IF_UNLOCK(&ifp->if_snd);
2409
2410	/* Handle any frames in the TX queue */
2411	/*
2412	 * XXX should this be done by the caller, rather than
2413	 * ath_reset() ?
2414	 */
2415	ath_tx_kick(sc);		/* restart xmit */
2416	return 0;
2417}
2418
2419static int
2420ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2421{
2422	struct ieee80211com *ic = vap->iv_ic;
2423	struct ifnet *ifp = ic->ic_ifp;
2424	struct ath_softc *sc = ifp->if_softc;
2425	struct ath_hal *ah = sc->sc_ah;
2426
2427	switch (cmd) {
2428	case IEEE80211_IOC_TXPOWER:
2429		/*
2430		 * If per-packet TPC is enabled, then we have nothing
2431		 * to do; otherwise we need to force the global limit.
2432		 * All this can happen directly; no need to reset.
2433		 */
2434		if (!ath_hal_gettpc(ah))
2435			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2436		return 0;
2437	}
2438	/* XXX? Full or NOLOSS? */
2439	return ath_reset(ifp, ATH_RESET_FULL);
2440}
2441
2442struct ath_buf *
2443_ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2444{
2445	struct ath_buf *bf;
2446
2447	ATH_TXBUF_LOCK_ASSERT(sc);
2448
2449	if (btype == ATH_BUFTYPE_MGMT)
2450		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2451	else
2452		bf = TAILQ_FIRST(&sc->sc_txbuf);
2453
2454	if (bf == NULL) {
2455		sc->sc_stats.ast_tx_getnobuf++;
2456	} else {
2457		if (bf->bf_flags & ATH_BUF_BUSY) {
2458			sc->sc_stats.ast_tx_getbusybuf++;
2459			bf = NULL;
2460		}
2461	}
2462
2463	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2464		if (btype == ATH_BUFTYPE_MGMT)
2465			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2466		else {
2467			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2468			sc->sc_txbuf_cnt--;
2469
2470			/*
2471			 * This shuldn't happen; however just to be
2472			 * safe print a warning and fudge the txbuf
2473			 * count.
2474			 */
2475			if (sc->sc_txbuf_cnt < 0) {
2476				device_printf(sc->sc_dev,
2477				    "%s: sc_txbuf_cnt < 0?\n",
2478				    __func__);
2479				sc->sc_txbuf_cnt = 0;
2480			}
2481		}
2482	} else
2483		bf = NULL;
2484
2485	if (bf == NULL) {
2486		/* XXX should check which list, mgmt or otherwise */
2487		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2488		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2489			"out of xmit buffers" : "xmit buffer busy");
2490		return NULL;
2491	}
2492
2493	/* XXX TODO: should do this at buffer list initialisation */
2494	/* XXX (then, ensure the buffer has the right flag set) */
2495	bf->bf_flags = 0;
2496	if (btype == ATH_BUFTYPE_MGMT)
2497		bf->bf_flags |= ATH_BUF_MGMT;
2498	else
2499		bf->bf_flags &= (~ATH_BUF_MGMT);
2500
2501	/* Valid bf here; clear some basic fields */
2502	bf->bf_next = NULL;	/* XXX just to be sure */
2503	bf->bf_last = NULL;	/* XXX again, just to be sure */
2504	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2505	bzero(&bf->bf_state, sizeof(bf->bf_state));
2506
2507	/*
2508	 * Track the descriptor ID only if doing EDMA
2509	 */
2510	if (sc->sc_isedma) {
2511		bf->bf_descid = sc->sc_txbuf_descid;
2512		sc->sc_txbuf_descid++;
2513	}
2514
2515	return bf;
2516}
2517
2518/*
2519 * When retrying a software frame, buffers marked ATH_BUF_BUSY
2520 * can't be thrown back on the queue as they could still be
2521 * in use by the hardware.
2522 *
2523 * This duplicates the buffer, or returns NULL.
2524 *
2525 * The descriptor is also copied but the link pointers and
2526 * the DMA segments aren't copied; this frame should thus
2527 * be again passed through the descriptor setup/chain routines
2528 * so the link is correct.
2529 *
2530 * The caller must free the buffer using ath_freebuf().
2531 */
2532struct ath_buf *
2533ath_buf_clone(struct ath_softc *sc, struct ath_buf *bf)
2534{
2535	struct ath_buf *tbf;
2536
2537	tbf = ath_getbuf(sc,
2538	    (bf->bf_flags & ATH_BUF_MGMT) ?
2539	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2540	if (tbf == NULL)
2541		return NULL;	/* XXX failure? Why? */
2542
2543	/* Copy basics */
2544	tbf->bf_next = NULL;
2545	tbf->bf_nseg = bf->bf_nseg;
2546	tbf->bf_flags = bf->bf_flags & ATH_BUF_FLAGS_CLONE;
2547	tbf->bf_status = bf->bf_status;
2548	tbf->bf_m = bf->bf_m;
2549	tbf->bf_node = bf->bf_node;
2550	/* will be setup by the chain/setup function */
2551	tbf->bf_lastds = NULL;
2552	/* for now, last == self */
2553	tbf->bf_last = tbf;
2554	tbf->bf_comp = bf->bf_comp;
2555
2556	/* NOTE: DMA segments will be setup by the setup/chain functions */
2557
2558	/* The caller has to re-init the descriptor + links */
2559
2560	/*
2561	 * Free the DMA mapping here, before we NULL the mbuf.
2562	 * We must only call bus_dmamap_unload() once per mbuf chain
2563	 * or behaviour is undefined.
2564	 */
2565	if (bf->bf_m != NULL) {
2566		/*
2567		 * XXX is this POSTWRITE call required?
2568		 */
2569		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2570		    BUS_DMASYNC_POSTWRITE);
2571		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2572	}
2573
2574	bf->bf_m = NULL;
2575	bf->bf_node = NULL;
2576
2577	/* Copy state */
2578	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2579
2580	return tbf;
2581}
2582
2583struct ath_buf *
2584ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
2585{
2586	struct ath_buf *bf;
2587
2588	ATH_TXBUF_LOCK(sc);
2589	bf = _ath_getbuf_locked(sc, btype);
2590	/*
2591	 * If a mgmt buffer was requested but we're out of those,
2592	 * try requesting a normal one.
2593	 */
2594	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
2595		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
2596	ATH_TXBUF_UNLOCK(sc);
2597	if (bf == NULL) {
2598		struct ifnet *ifp = sc->sc_ifp;
2599
2600		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2601		sc->sc_stats.ast_tx_qstop++;
2602		IF_LOCK(&ifp->if_snd);
2603		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2604		IF_UNLOCK(&ifp->if_snd);
2605	}
2606	return bf;
2607}
2608
2609static void
2610ath_start_queue(struct ifnet *ifp)
2611{
2612	struct ath_softc *sc = ifp->if_softc;
2613
2614	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start");
2615	ath_tx_kick(sc);
2616	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished");
2617}
2618
2619void
2620ath_start_task(void *arg, int npending)
2621{
2622	struct ath_softc *sc = (struct ath_softc *) arg;
2623	struct ifnet *ifp = sc->sc_ifp;
2624
2625	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start");
2626
2627	/* XXX is it ok to hold the ATH_LOCK here? */
2628	ATH_PCU_LOCK(sc);
2629	if (sc->sc_inreset_cnt > 0) {
2630		device_printf(sc->sc_dev,
2631		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2632		ATH_PCU_UNLOCK(sc);
2633		IF_LOCK(&ifp->if_snd);
2634		sc->sc_stats.ast_tx_qstop++;
2635		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2636		IF_UNLOCK(&ifp->if_snd);
2637		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
2638		return;
2639	}
2640	sc->sc_txstart_cnt++;
2641	ATH_PCU_UNLOCK(sc);
2642
2643	ATH_TX_LOCK(sc);
2644	ath_start(sc->sc_ifp);
2645	ATH_TX_UNLOCK(sc);
2646
2647	ATH_PCU_LOCK(sc);
2648	sc->sc_txstart_cnt--;
2649	ATH_PCU_UNLOCK(sc);
2650	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished");
2651}
2652
2653void
2654ath_start(struct ifnet *ifp)
2655{
2656	struct ath_softc *sc = ifp->if_softc;
2657	struct ieee80211_node *ni;
2658	struct ath_buf *bf;
2659	struct mbuf *m, *next;
2660	ath_bufhead frags;
2661	int npkts = 0;
2662
2663	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2664		return;
2665
2666	ATH_TX_LOCK_ASSERT(sc);
2667
2668	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called");
2669
2670	for (;;) {
2671		/*
2672		 * Grab the frame that we're going to try and transmit.
2673		 */
2674		IFQ_DEQUEUE(&ifp->if_snd, m);
2675		if (m == NULL)
2676			break;
2677		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2678
2679		/*
2680		 * Enforce how deep a node queue can get.
2681		 *
2682		 * XXX it would be nicer if we kept an mbuf queue per
2683		 * node and only whacked them into ath_bufs when we
2684		 * are ready to schedule some traffic from them.
2685		 * .. that may come later.
2686		 *
2687		 * XXX we should also track the per-node hardware queue
2688		 * depth so it is easy to limit the _SUM_ of the swq and
2689		 * hwq frames.  Since we only schedule two HWQ frames
2690		 * at a time, this should be OK for now.
2691		 */
2692		if ((!(m->m_flags & M_EAPOL)) &&
2693		    (ATH_NODE(ni)->an_swq_depth > sc->sc_txq_node_maxdepth)) {
2694			sc->sc_stats.ast_tx_nodeq_overflow++;
2695			if (ni != NULL)
2696				ieee80211_free_node(ni);
2697			m_freem(m);
2698			m = NULL;
2699			continue;
2700		}
2701
2702		/*
2703		 * Check how many TX buffers are available.
2704		 *
2705		 * If this is for non-EAPOL traffic, just leave some
2706		 * space free in order for buffer cloning and raw
2707		 * frame transmission to occur.
2708		 *
2709		 * If it's for EAPOL traffic, ignore this for now.
2710		 * Management traffic will be sent via the raw transmit
2711		 * method which bypasses this check.
2712		 *
2713		 * This is needed to ensure that EAPOL frames during
2714		 * (re) keying have a chance to go out.
2715		 *
2716		 * See kern/138379 for more information.
2717		 */
2718		if ((!(m->m_flags & M_EAPOL)) &&
2719		    (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree)) {
2720			sc->sc_stats.ast_tx_nobuf++;
2721			IF_LOCK(&ifp->if_snd);
2722			_IF_PREPEND(&ifp->if_snd, m);
2723			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2724			IF_UNLOCK(&ifp->if_snd);
2725			m = NULL;
2726			break;
2727		}
2728
2729		/*
2730		 * Grab a TX buffer and associated resources.
2731		 *
2732		 * If it's an EAPOL frame, allocate a MGMT ath_buf.
2733		 * That way even with temporary buffer exhaustion due to
2734		 * the data path doesn't leave us without the ability
2735		 * to transmit management frames.
2736		 *
2737		 * Otherwise allocate a normal buffer.
2738		 */
2739		if (m->m_flags & M_EAPOL)
2740			bf = ath_getbuf(sc, ATH_BUFTYPE_MGMT);
2741		else
2742			bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
2743
2744		if (bf == NULL) {
2745			/*
2746			 * If we failed to allocate a buffer, prepend it
2747			 * and continue.
2748			 *
2749			 * We shouldn't fail normally, due to the check
2750			 * above.
2751			 */
2752			sc->sc_stats.ast_tx_nobuf++;
2753			IF_LOCK(&ifp->if_snd);
2754			_IF_PREPEND(&ifp->if_snd, m);
2755			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2756			IF_UNLOCK(&ifp->if_snd);
2757			m = NULL;
2758			break;
2759		}
2760
2761		npkts ++;
2762
2763		/*
2764		 * Check for fragmentation.  If this frame
2765		 * has been broken up verify we have enough
2766		 * buffers to send all the fragments so all
2767		 * go out or none...
2768		 */
2769		TAILQ_INIT(&frags);
2770		if ((m->m_flags & M_FRAG) &&
2771		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2772			DPRINTF(sc, ATH_DEBUG_XMIT,
2773			    "%s: out of txfrag buffers\n", __func__);
2774			sc->sc_stats.ast_tx_nofrag++;
2775			ifp->if_oerrors++;
2776			ath_freetx(m);
2777			goto bad;
2778		}
2779		ifp->if_opackets++;
2780	nextfrag:
2781		/*
2782		 * Pass the frame to the h/w for transmission.
2783		 * Fragmented frames have each frag chained together
2784		 * with m_nextpkt.  We know there are sufficient ath_buf's
2785		 * to send all the frags because of work done by
2786		 * ath_txfrag_setup.  We leave m_nextpkt set while
2787		 * calling ath_tx_start so it can use it to extend the
2788		 * the tx duration to cover the subsequent frag and
2789		 * so it can reclaim all the mbufs in case of an error;
2790		 * ath_tx_start clears m_nextpkt once it commits to
2791		 * handing the frame to the hardware.
2792		 */
2793		next = m->m_nextpkt;
2794		if (ath_tx_start(sc, ni, bf, m)) {
2795	bad:
2796			ifp->if_oerrors++;
2797	reclaim:
2798			bf->bf_m = NULL;
2799			bf->bf_node = NULL;
2800			ATH_TXBUF_LOCK(sc);
2801			ath_returnbuf_head(sc, bf);
2802			ath_txfrag_cleanup(sc, &frags, ni);
2803			ATH_TXBUF_UNLOCK(sc);
2804			/*
2805			 * XXX todo, free the node outside of
2806			 * the TX lock context!
2807			 */
2808			if (ni != NULL)
2809				ieee80211_free_node(ni);
2810			continue;
2811		}
2812
2813		/*
2814		 * Check here if the node is in power save state.
2815		 */
2816		ath_tx_update_tim(sc, ni, 1);
2817
2818		if (next != NULL) {
2819			/*
2820			 * Beware of state changing between frags.
2821			 * XXX check sta power-save state?
2822			 */
2823			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2824				DPRINTF(sc, ATH_DEBUG_XMIT,
2825				    "%s: flush fragmented packet, state %s\n",
2826				    __func__,
2827				    ieee80211_state_name[ni->ni_vap->iv_state]);
2828				/* XXX dmamap */
2829				ath_freetx(next);
2830				goto reclaim;
2831			}
2832			m = next;
2833			bf = TAILQ_FIRST(&frags);
2834			KASSERT(bf != NULL, ("no buf for txfrag"));
2835			TAILQ_REMOVE(&frags, bf, bf_list);
2836			goto nextfrag;
2837		}
2838
2839		sc->sc_wd_timer = 5;
2840	}
2841	ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts);
2842}
2843static int
2844ath_media_change(struct ifnet *ifp)
2845{
2846	int error = ieee80211_media_change(ifp);
2847	/* NB: only the fixed rate can change and that doesn't need a reset */
2848	return (error == ENETRESET ? 0 : error);
2849}
2850
2851/*
2852 * Block/unblock tx+rx processing while a key change is done.
2853 * We assume the caller serializes key management operations
2854 * so we only need to worry about synchronization with other
2855 * uses that originate in the driver.
2856 */
2857static void
2858ath_key_update_begin(struct ieee80211vap *vap)
2859{
2860	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2861	struct ath_softc *sc = ifp->if_softc;
2862
2863	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2864	taskqueue_block(sc->sc_tq);
2865	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2866}
2867
2868static void
2869ath_key_update_end(struct ieee80211vap *vap)
2870{
2871	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2872	struct ath_softc *sc = ifp->if_softc;
2873
2874	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2875	IF_UNLOCK(&ifp->if_snd);
2876	taskqueue_unblock(sc->sc_tq);
2877}
2878
2879static void
2880ath_update_promisc(struct ifnet *ifp)
2881{
2882	struct ath_softc *sc = ifp->if_softc;
2883	u_int32_t rfilt;
2884
2885	/* configure rx filter */
2886	rfilt = ath_calcrxfilter(sc);
2887	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2888
2889	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2890}
2891
2892static void
2893ath_update_mcast(struct ifnet *ifp)
2894{
2895	struct ath_softc *sc = ifp->if_softc;
2896	u_int32_t mfilt[2];
2897
2898	/* calculate and install multicast filter */
2899	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2900		struct ifmultiaddr *ifma;
2901		/*
2902		 * Merge multicast addresses to form the hardware filter.
2903		 */
2904		mfilt[0] = mfilt[1] = 0;
2905		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2906		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2907			caddr_t dl;
2908			u_int32_t val;
2909			u_int8_t pos;
2910
2911			/* calculate XOR of eight 6bit values */
2912			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2913			val = LE_READ_4(dl + 0);
2914			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2915			val = LE_READ_4(dl + 3);
2916			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2917			pos &= 0x3f;
2918			mfilt[pos / 32] |= (1 << (pos % 32));
2919		}
2920		if_maddr_runlock(ifp);
2921	} else
2922		mfilt[0] = mfilt[1] = ~0;
2923	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2924	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2925		__func__, mfilt[0], mfilt[1]);
2926}
2927
2928void
2929ath_mode_init(struct ath_softc *sc)
2930{
2931	struct ifnet *ifp = sc->sc_ifp;
2932	struct ath_hal *ah = sc->sc_ah;
2933	u_int32_t rfilt;
2934
2935	/* configure rx filter */
2936	rfilt = ath_calcrxfilter(sc);
2937	ath_hal_setrxfilter(ah, rfilt);
2938
2939	/* configure operational mode */
2940	ath_hal_setopmode(ah);
2941
2942	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
2943	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
2944	    __func__,
2945	    ah,
2946	    ifp,
2947	    (ifp == NULL) ? NULL : ifp->if_addr);
2948
2949	/* handle any link-level address change */
2950	ath_hal_setmac(ah, IF_LLADDR(ifp));
2951
2952	/* calculate and install multicast filter */
2953	ath_update_mcast(ifp);
2954}
2955
2956/*
2957 * Set the slot time based on the current setting.
2958 */
2959void
2960ath_setslottime(struct ath_softc *sc)
2961{
2962	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2963	struct ath_hal *ah = sc->sc_ah;
2964	u_int usec;
2965
2966	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2967		usec = 13;
2968	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2969		usec = 21;
2970	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2971		/* honor short/long slot time only in 11g */
2972		/* XXX shouldn't honor on pure g or turbo g channel */
2973		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2974			usec = HAL_SLOT_TIME_9;
2975		else
2976			usec = HAL_SLOT_TIME_20;
2977	} else
2978		usec = HAL_SLOT_TIME_9;
2979
2980	DPRINTF(sc, ATH_DEBUG_RESET,
2981	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2982	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2983	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2984
2985	ath_hal_setslottime(ah, usec);
2986	sc->sc_updateslot = OK;
2987}
2988
2989/*
2990 * Callback from the 802.11 layer to update the
2991 * slot time based on the current setting.
2992 */
2993static void
2994ath_updateslot(struct ifnet *ifp)
2995{
2996	struct ath_softc *sc = ifp->if_softc;
2997	struct ieee80211com *ic = ifp->if_l2com;
2998
2999	/*
3000	 * When not coordinating the BSS, change the hardware
3001	 * immediately.  For other operation we defer the change
3002	 * until beacon updates have propagated to the stations.
3003	 */
3004	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3005	    ic->ic_opmode == IEEE80211_M_MBSS)
3006		sc->sc_updateslot = UPDATE;
3007	else
3008		ath_setslottime(sc);
3009}
3010
3011/*
3012 * Append the contents of src to dst; both queues
3013 * are assumed to be locked.
3014 */
3015void
3016ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3017{
3018
3019	ATH_TXQ_LOCK_ASSERT(src);
3020	ATH_TXQ_LOCK_ASSERT(dst);
3021
3022	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
3023	dst->axq_link = src->axq_link;
3024	src->axq_link = NULL;
3025	dst->axq_depth += src->axq_depth;
3026	dst->axq_aggr_depth += src->axq_aggr_depth;
3027	src->axq_depth = 0;
3028	src->axq_aggr_depth = 0;
3029}
3030
3031/*
3032 * Reset the hardware, with no loss.
3033 *
3034 * This can't be used for a general case reset.
3035 */
3036static void
3037ath_reset_proc(void *arg, int pending)
3038{
3039	struct ath_softc *sc = arg;
3040	struct ifnet *ifp = sc->sc_ifp;
3041
3042#if 0
3043	if_printf(ifp, "%s: resetting\n", __func__);
3044#endif
3045	ath_reset(ifp, ATH_RESET_NOLOSS);
3046}
3047
3048/*
3049 * Reset the hardware after detecting beacons have stopped.
3050 */
3051static void
3052ath_bstuck_proc(void *arg, int pending)
3053{
3054	struct ath_softc *sc = arg;
3055	struct ifnet *ifp = sc->sc_ifp;
3056	uint32_t hangs = 0;
3057
3058	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
3059		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
3060
3061	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3062		sc->sc_bmisscount);
3063	sc->sc_stats.ast_bstuck++;
3064	/*
3065	 * This assumes that there's no simultaneous channel mode change
3066	 * occuring.
3067	 */
3068	ath_reset(ifp, ATH_RESET_NOLOSS);
3069}
3070
3071static void
3072ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3073{
3074	bus_addr_t *paddr = (bus_addr_t*) arg;
3075	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3076	*paddr = segs->ds_addr;
3077}
3078
3079/*
3080 * Allocate the descriptors and appropriate DMA tag/setup.
3081 *
3082 * For some situations (eg EDMA TX completion), there isn't a requirement
3083 * for the ath_buf entries to be allocated.
3084 */
3085int
3086ath_descdma_alloc_desc(struct ath_softc *sc,
3087	struct ath_descdma *dd, ath_bufhead *head,
3088	const char *name, int ds_size, int ndesc)
3089{
3090#define	DS2PHYS(_dd, _ds) \
3091	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3092#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3093	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3094	struct ifnet *ifp = sc->sc_ifp;
3095	int error;
3096
3097	dd->dd_descsize = ds_size;
3098
3099	DPRINTF(sc, ATH_DEBUG_RESET,
3100	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
3101	    __func__, name, ndesc, dd->dd_descsize);
3102
3103	dd->dd_name = name;
3104	dd->dd_desc_len = dd->dd_descsize * ndesc;
3105
3106	/*
3107	 * Merlin work-around:
3108	 * Descriptors that cross the 4KB boundary can't be used.
3109	 * Assume one skipped descriptor per 4KB page.
3110	 */
3111	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3112		int numpages = dd->dd_desc_len / 4096;
3113		dd->dd_desc_len += ds_size * numpages;
3114	}
3115
3116	/*
3117	 * Setup DMA descriptor area.
3118	 *
3119	 * BUS_DMA_ALLOCNOW is not used; we never use bounce
3120	 * buffers for the descriptors themselves.
3121	 */
3122	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3123		       PAGE_SIZE, 0,		/* alignment, bounds */
3124		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3125		       BUS_SPACE_MAXADDR,	/* highaddr */
3126		       NULL, NULL,		/* filter, filterarg */
3127		       dd->dd_desc_len,		/* maxsize */
3128		       1,			/* nsegments */
3129		       dd->dd_desc_len,		/* maxsegsize */
3130		       0,			/* flags */
3131		       NULL,			/* lockfunc */
3132		       NULL,			/* lockarg */
3133		       &dd->dd_dmat);
3134	if (error != 0) {
3135		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3136		return error;
3137	}
3138
3139	/* allocate descriptors */
3140	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3141				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3142				 &dd->dd_dmamap);
3143	if (error != 0) {
3144		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3145			"error %u\n", ndesc, dd->dd_name, error);
3146		goto fail1;
3147	}
3148
3149	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3150				dd->dd_desc, dd->dd_desc_len,
3151				ath_load_cb, &dd->dd_desc_paddr,
3152				BUS_DMA_NOWAIT);
3153	if (error != 0) {
3154		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3155			dd->dd_name, error);
3156		goto fail2;
3157	}
3158
3159	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3160	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
3161	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
3162	    /*XXX*/ (u_long) dd->dd_desc_len);
3163
3164	return (0);
3165
3166fail2:
3167	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3168fail1:
3169	bus_dma_tag_destroy(dd->dd_dmat);
3170	memset(dd, 0, sizeof(*dd));
3171	return error;
3172#undef DS2PHYS
3173#undef ATH_DESC_4KB_BOUND_CHECK
3174}
3175
3176int
3177ath_descdma_setup(struct ath_softc *sc,
3178	struct ath_descdma *dd, ath_bufhead *head,
3179	const char *name, int ds_size, int nbuf, int ndesc)
3180{
3181#define	DS2PHYS(_dd, _ds) \
3182	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3183#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3184	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3185	struct ifnet *ifp = sc->sc_ifp;
3186	uint8_t *ds;
3187	struct ath_buf *bf;
3188	int i, bsize, error;
3189
3190	/* Allocate descriptors */
3191	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3192	    nbuf * ndesc);
3193
3194	/* Assume any errors during allocation were dealt with */
3195	if (error != 0) {
3196		return (error);
3197	}
3198
3199	ds = (uint8_t *) dd->dd_desc;
3200
3201	/* allocate rx buffers */
3202	bsize = sizeof(struct ath_buf) * nbuf;
3203	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3204	if (bf == NULL) {
3205		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3206			dd->dd_name, bsize);
3207		goto fail3;
3208	}
3209	dd->dd_bufptr = bf;
3210
3211	TAILQ_INIT(head);
3212	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3213		bf->bf_desc = (struct ath_desc *) ds;
3214		bf->bf_daddr = DS2PHYS(dd, ds);
3215		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3216			/*
3217			 * Merlin WAR: Skip descriptor addresses which
3218			 * cause 4KB boundary crossing along any point
3219			 * in the descriptor.
3220			 */
3221			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3222			     dd->dd_descsize)) {
3223				/* Start at the next page */
3224				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3225				bf->bf_desc = (struct ath_desc *) ds;
3226				bf->bf_daddr = DS2PHYS(dd, ds);
3227			}
3228		}
3229		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3230				&bf->bf_dmamap);
3231		if (error != 0) {
3232			if_printf(ifp, "unable to create dmamap for %s "
3233				"buffer %u, error %u\n", dd->dd_name, i, error);
3234			ath_descdma_cleanup(sc, dd, head);
3235			return error;
3236		}
3237		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3238		TAILQ_INSERT_TAIL(head, bf, bf_list);
3239	}
3240
3241	/*
3242	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3243	 * allocation otherwise weird stuff will occur and crash your
3244	 * machine.
3245	 */
3246	return 0;
3247	/* XXX this should likely just call ath_descdma_cleanup() */
3248fail3:
3249	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3250	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3251	bus_dma_tag_destroy(dd->dd_dmat);
3252	memset(dd, 0, sizeof(*dd));
3253	return error;
3254#undef DS2PHYS
3255#undef ATH_DESC_4KB_BOUND_CHECK
3256}
3257
3258/*
3259 * Allocate ath_buf entries but no descriptor contents.
3260 *
3261 * This is for RX EDMA where the descriptors are the header part of
3262 * the RX buffer.
3263 */
3264int
3265ath_descdma_setup_rx_edma(struct ath_softc *sc,
3266	struct ath_descdma *dd, ath_bufhead *head,
3267	const char *name, int nbuf, int rx_status_len)
3268{
3269	struct ifnet *ifp = sc->sc_ifp;
3270	struct ath_buf *bf;
3271	int i, bsize, error;
3272
3273	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3274	    __func__, name, nbuf);
3275
3276	dd->dd_name = name;
3277	/*
3278	 * This is (mostly) purely for show.  We're not allocating any actual
3279	 * descriptors here as EDMA RX has the descriptor be part
3280	 * of the RX buffer.
3281	 *
3282	 * However, dd_desc_len is used by ath_descdma_free() to determine
3283	 * whether we have already freed this DMA mapping.
3284	 */
3285	dd->dd_desc_len = rx_status_len * nbuf;
3286	dd->dd_descsize = rx_status_len;
3287
3288	/* allocate rx buffers */
3289	bsize = sizeof(struct ath_buf) * nbuf;
3290	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3291	if (bf == NULL) {
3292		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3293			dd->dd_name, bsize);
3294		error = ENOMEM;
3295		goto fail3;
3296	}
3297	dd->dd_bufptr = bf;
3298
3299	TAILQ_INIT(head);
3300	for (i = 0; i < nbuf; i++, bf++) {
3301		bf->bf_desc = NULL;
3302		bf->bf_daddr = 0;
3303		bf->bf_lastds = NULL;	/* Just an initial value */
3304
3305		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3306				&bf->bf_dmamap);
3307		if (error != 0) {
3308			if_printf(ifp, "unable to create dmamap for %s "
3309				"buffer %u, error %u\n", dd->dd_name, i, error);
3310			ath_descdma_cleanup(sc, dd, head);
3311			return error;
3312		}
3313		TAILQ_INSERT_TAIL(head, bf, bf_list);
3314	}
3315	return 0;
3316fail3:
3317	memset(dd, 0, sizeof(*dd));
3318	return error;
3319}
3320
3321void
3322ath_descdma_cleanup(struct ath_softc *sc,
3323	struct ath_descdma *dd, ath_bufhead *head)
3324{
3325	struct ath_buf *bf;
3326	struct ieee80211_node *ni;
3327	int do_warning = 0;
3328
3329	if (dd->dd_dmamap != 0) {
3330		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3331		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3332		bus_dma_tag_destroy(dd->dd_dmat);
3333	}
3334
3335	if (head != NULL) {
3336		TAILQ_FOREACH(bf, head, bf_list) {
3337			if (bf->bf_m) {
3338				/*
3339				 * XXX warn if there's buffers here.
3340				 * XXX it should have been freed by the
3341				 * owner!
3342				 */
3343
3344				if (do_warning == 0) {
3345					do_warning = 1;
3346					device_printf(sc->sc_dev,
3347					    "%s: %s: mbuf should've been"
3348					    " unmapped/freed!\n",
3349					    __func__,
3350					    dd->dd_name);
3351				}
3352				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3353				    BUS_DMASYNC_POSTREAD);
3354				bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3355				m_freem(bf->bf_m);
3356				bf->bf_m = NULL;
3357			}
3358			if (bf->bf_dmamap != NULL) {
3359				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3360				bf->bf_dmamap = NULL;
3361			}
3362			ni = bf->bf_node;
3363			bf->bf_node = NULL;
3364			if (ni != NULL) {
3365				/*
3366				 * Reclaim node reference.
3367				 */
3368				ieee80211_free_node(ni);
3369			}
3370		}
3371	}
3372
3373	if (head != NULL)
3374		TAILQ_INIT(head);
3375
3376	if (dd->dd_bufptr != NULL)
3377		free(dd->dd_bufptr, M_ATHDEV);
3378	memset(dd, 0, sizeof(*dd));
3379}
3380
3381static int
3382ath_desc_alloc(struct ath_softc *sc)
3383{
3384	int error;
3385
3386	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3387		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_MAX_SCATTER);
3388	if (error != 0) {
3389		return error;
3390	}
3391	sc->sc_txbuf_cnt = ath_txbuf;
3392
3393	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3394		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3395		    ATH_TXDESC);
3396	if (error != 0) {
3397		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3398		return error;
3399	}
3400
3401	/*
3402	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3403	 * flag doesn't have to be set in ath_getbuf_locked().
3404	 */
3405
3406	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3407			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3408	if (error != 0) {
3409		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3410		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3411		    &sc->sc_txbuf_mgmt);
3412		return error;
3413	}
3414	return 0;
3415}
3416
3417static void
3418ath_desc_free(struct ath_softc *sc)
3419{
3420
3421	if (sc->sc_bdma.dd_desc_len != 0)
3422		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3423	if (sc->sc_txdma.dd_desc_len != 0)
3424		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3425	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3426		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3427		    &sc->sc_txbuf_mgmt);
3428}
3429
3430static struct ieee80211_node *
3431ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3432{
3433	struct ieee80211com *ic = vap->iv_ic;
3434	struct ath_softc *sc = ic->ic_ifp->if_softc;
3435	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3436	struct ath_node *an;
3437
3438	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3439	if (an == NULL) {
3440		/* XXX stat+msg */
3441		return NULL;
3442	}
3443	ath_rate_node_init(sc, an);
3444
3445	/* Setup the mutex - there's no associd yet so set the name to NULL */
3446	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3447	    device_get_nameunit(sc->sc_dev), an);
3448	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3449
3450	/* XXX setup ath_tid */
3451	ath_tx_tid_init(sc, an);
3452
3453	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3454	return &an->an_node;
3455}
3456
3457static void
3458ath_node_cleanup(struct ieee80211_node *ni)
3459{
3460	struct ieee80211com *ic = ni->ni_ic;
3461	struct ath_softc *sc = ic->ic_ifp->if_softc;
3462
3463	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3464	ath_tx_node_flush(sc, ATH_NODE(ni));
3465	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3466	sc->sc_node_cleanup(ni);
3467}
3468
3469static void
3470ath_node_free(struct ieee80211_node *ni)
3471{
3472	struct ieee80211com *ic = ni->ni_ic;
3473	struct ath_softc *sc = ic->ic_ifp->if_softc;
3474
3475	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3476	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3477	sc->sc_node_free(ni);
3478}
3479
3480static void
3481ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3482{
3483	struct ieee80211com *ic = ni->ni_ic;
3484	struct ath_softc *sc = ic->ic_ifp->if_softc;
3485	struct ath_hal *ah = sc->sc_ah;
3486
3487	*rssi = ic->ic_node_getrssi(ni);
3488	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3489		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3490	else
3491		*noise = -95;		/* nominally correct */
3492}
3493
3494/*
3495 * Set the default antenna.
3496 */
3497void
3498ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3499{
3500	struct ath_hal *ah = sc->sc_ah;
3501
3502	/* XXX block beacon interrupts */
3503	ath_hal_setdefantenna(ah, antenna);
3504	if (sc->sc_defant != antenna)
3505		sc->sc_stats.ast_ant_defswitch++;
3506	sc->sc_defant = antenna;
3507	sc->sc_rxotherant = 0;
3508}
3509
3510static void
3511ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3512{
3513	txq->axq_qnum = qnum;
3514	txq->axq_ac = 0;
3515	txq->axq_depth = 0;
3516	txq->axq_aggr_depth = 0;
3517	txq->axq_intrcnt = 0;
3518	txq->axq_link = NULL;
3519	txq->axq_softc = sc;
3520	TAILQ_INIT(&txq->axq_q);
3521	TAILQ_INIT(&txq->axq_tidq);
3522	TAILQ_INIT(&txq->fifo.axq_q);
3523	ATH_TXQ_LOCK_INIT(sc, txq);
3524}
3525
3526/*
3527 * Setup a h/w transmit queue.
3528 */
3529static struct ath_txq *
3530ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3531{
3532#define	N(a)	(sizeof(a)/sizeof(a[0]))
3533	struct ath_hal *ah = sc->sc_ah;
3534	HAL_TXQ_INFO qi;
3535	int qnum;
3536
3537	memset(&qi, 0, sizeof(qi));
3538	qi.tqi_subtype = subtype;
3539	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3540	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3541	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3542	/*
3543	 * Enable interrupts only for EOL and DESC conditions.
3544	 * We mark tx descriptors to receive a DESC interrupt
3545	 * when a tx queue gets deep; otherwise waiting for the
3546	 * EOL to reap descriptors.  Note that this is done to
3547	 * reduce interrupt load and this only defers reaping
3548	 * descriptors, never transmitting frames.  Aside from
3549	 * reducing interrupts this also permits more concurrency.
3550	 * The only potential downside is if the tx queue backs
3551	 * up in which case the top half of the kernel may backup
3552	 * due to a lack of tx descriptors.
3553	 */
3554	if (sc->sc_isedma)
3555		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
3556		    HAL_TXQ_TXOKINT_ENABLE;
3557	else
3558		qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE |
3559		    HAL_TXQ_TXDESCINT_ENABLE;
3560
3561	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3562	if (qnum == -1) {
3563		/*
3564		 * NB: don't print a message, this happens
3565		 * normally on parts with too few tx queues
3566		 */
3567		return NULL;
3568	}
3569	if (qnum >= N(sc->sc_txq)) {
3570		device_printf(sc->sc_dev,
3571			"hal qnum %u out of range, max %zu!\n",
3572			qnum, N(sc->sc_txq));
3573		ath_hal_releasetxqueue(ah, qnum);
3574		return NULL;
3575	}
3576	if (!ATH_TXQ_SETUP(sc, qnum)) {
3577		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3578		sc->sc_txqsetup |= 1<<qnum;
3579	}
3580	return &sc->sc_txq[qnum];
3581#undef N
3582}
3583
3584/*
3585 * Setup a hardware data transmit queue for the specified
3586 * access control.  The hal may not support all requested
3587 * queues in which case it will return a reference to a
3588 * previously setup queue.  We record the mapping from ac's
3589 * to h/w queues for use by ath_tx_start and also track
3590 * the set of h/w queues being used to optimize work in the
3591 * transmit interrupt handler and related routines.
3592 */
3593static int
3594ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3595{
3596#define	N(a)	(sizeof(a)/sizeof(a[0]))
3597	struct ath_txq *txq;
3598
3599	if (ac >= N(sc->sc_ac2q)) {
3600		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3601			ac, N(sc->sc_ac2q));
3602		return 0;
3603	}
3604	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3605	if (txq != NULL) {
3606		txq->axq_ac = ac;
3607		sc->sc_ac2q[ac] = txq;
3608		return 1;
3609	} else
3610		return 0;
3611#undef N
3612}
3613
3614/*
3615 * Update WME parameters for a transmit queue.
3616 */
3617static int
3618ath_txq_update(struct ath_softc *sc, int ac)
3619{
3620#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3621#define	ATH_TXOP_TO_US(v)		(v<<5)
3622	struct ifnet *ifp = sc->sc_ifp;
3623	struct ieee80211com *ic = ifp->if_l2com;
3624	struct ath_txq *txq = sc->sc_ac2q[ac];
3625	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3626	struct ath_hal *ah = sc->sc_ah;
3627	HAL_TXQ_INFO qi;
3628
3629	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3630#ifdef IEEE80211_SUPPORT_TDMA
3631	if (sc->sc_tdma) {
3632		/*
3633		 * AIFS is zero so there's no pre-transmit wait.  The
3634		 * burst time defines the slot duration and is configured
3635		 * through net80211.  The QCU is setup to not do post-xmit
3636		 * back off, lockout all lower-priority QCU's, and fire
3637		 * off the DMA beacon alert timer which is setup based
3638		 * on the slot configuration.
3639		 */
3640		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3641			      | HAL_TXQ_TXERRINT_ENABLE
3642			      | HAL_TXQ_TXURNINT_ENABLE
3643			      | HAL_TXQ_TXEOLINT_ENABLE
3644			      | HAL_TXQ_DBA_GATED
3645			      | HAL_TXQ_BACKOFF_DISABLE
3646			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3647			      ;
3648		qi.tqi_aifs = 0;
3649		/* XXX +dbaprep? */
3650		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3651		qi.tqi_burstTime = qi.tqi_readyTime;
3652	} else {
3653#endif
3654		/*
3655		 * XXX shouldn't this just use the default flags
3656		 * used in the previous queue setup?
3657		 */
3658		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3659			      | HAL_TXQ_TXERRINT_ENABLE
3660			      | HAL_TXQ_TXDESCINT_ENABLE
3661			      | HAL_TXQ_TXURNINT_ENABLE
3662			      | HAL_TXQ_TXEOLINT_ENABLE
3663			      ;
3664		qi.tqi_aifs = wmep->wmep_aifsn;
3665		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3666		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3667		qi.tqi_readyTime = 0;
3668		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3669#ifdef IEEE80211_SUPPORT_TDMA
3670	}
3671#endif
3672
3673	DPRINTF(sc, ATH_DEBUG_RESET,
3674	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3675	    __func__, txq->axq_qnum, qi.tqi_qflags,
3676	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3677
3678	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3679		if_printf(ifp, "unable to update hardware queue "
3680			"parameters for %s traffic!\n",
3681			ieee80211_wme_acnames[ac]);
3682		return 0;
3683	} else {
3684		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3685		return 1;
3686	}
3687#undef ATH_TXOP_TO_US
3688#undef ATH_EXPONENT_TO_VALUE
3689}
3690
3691/*
3692 * Callback from the 802.11 layer to update WME parameters.
3693 */
3694int
3695ath_wme_update(struct ieee80211com *ic)
3696{
3697	struct ath_softc *sc = ic->ic_ifp->if_softc;
3698
3699	return !ath_txq_update(sc, WME_AC_BE) ||
3700	    !ath_txq_update(sc, WME_AC_BK) ||
3701	    !ath_txq_update(sc, WME_AC_VI) ||
3702	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3703}
3704
3705/*
3706 * Reclaim resources for a setup queue.
3707 */
3708static void
3709ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3710{
3711
3712	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3713	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3714	ATH_TXQ_LOCK_DESTROY(txq);
3715}
3716
3717/*
3718 * Reclaim all tx queue resources.
3719 */
3720static void
3721ath_tx_cleanup(struct ath_softc *sc)
3722{
3723	int i;
3724
3725	ATH_TXBUF_LOCK_DESTROY(sc);
3726	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3727		if (ATH_TXQ_SETUP(sc, i))
3728			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3729}
3730
3731/*
3732 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3733 * using the current rates in sc_rixmap.
3734 */
3735int
3736ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3737{
3738	int rix = sc->sc_rixmap[rate];
3739	/* NB: return lowest rix for invalid rate */
3740	return (rix == 0xff ? 0 : rix);
3741}
3742
3743static void
3744ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3745    struct ath_buf *bf)
3746{
3747	struct ieee80211_node *ni = bf->bf_node;
3748	struct ifnet *ifp = sc->sc_ifp;
3749	struct ieee80211com *ic = ifp->if_l2com;
3750	int sr, lr, pri;
3751
3752	if (ts->ts_status == 0) {
3753		u_int8_t txant = ts->ts_antenna;
3754		sc->sc_stats.ast_ant_tx[txant]++;
3755		sc->sc_ant_tx[txant]++;
3756		if (ts->ts_finaltsi != 0)
3757			sc->sc_stats.ast_tx_altrate++;
3758		pri = M_WME_GETAC(bf->bf_m);
3759		if (pri >= WME_AC_VO)
3760			ic->ic_wme.wme_hipri_traffic++;
3761		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3762			ni->ni_inact = ni->ni_inact_reload;
3763	} else {
3764		if (ts->ts_status & HAL_TXERR_XRETRY)
3765			sc->sc_stats.ast_tx_xretries++;
3766		if (ts->ts_status & HAL_TXERR_FIFO)
3767			sc->sc_stats.ast_tx_fifoerr++;
3768		if (ts->ts_status & HAL_TXERR_FILT)
3769			sc->sc_stats.ast_tx_filtered++;
3770		if (ts->ts_status & HAL_TXERR_XTXOP)
3771			sc->sc_stats.ast_tx_xtxop++;
3772		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3773			sc->sc_stats.ast_tx_timerexpired++;
3774
3775		if (bf->bf_m->m_flags & M_FF)
3776			sc->sc_stats.ast_ff_txerr++;
3777	}
3778	/* XXX when is this valid? */
3779	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
3780		sc->sc_stats.ast_tx_desccfgerr++;
3781	/*
3782	 * This can be valid for successful frame transmission!
3783	 * If there's a TX FIFO underrun during aggregate transmission,
3784	 * the MAC will pad the rest of the aggregate with delimiters.
3785	 * If a BA is returned, the frame is marked as "OK" and it's up
3786	 * to the TX completion code to notice which frames weren't
3787	 * successfully transmitted.
3788	 */
3789	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
3790		sc->sc_stats.ast_tx_data_underrun++;
3791	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
3792		sc->sc_stats.ast_tx_delim_underrun++;
3793
3794	sr = ts->ts_shortretry;
3795	lr = ts->ts_longretry;
3796	sc->sc_stats.ast_tx_shortretry += sr;
3797	sc->sc_stats.ast_tx_longretry += lr;
3798
3799}
3800
3801/*
3802 * The default completion. If fail is 1, this means
3803 * "please don't retry the frame, and just return -1 status
3804 * to the net80211 stack.
3805 */
3806void
3807ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3808{
3809	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3810	int st;
3811
3812	if (fail == 1)
3813		st = -1;
3814	else
3815		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
3816		    ts->ts_status : HAL_TXERR_XRETRY;
3817
3818#if 0
3819	if (bf->bf_state.bfs_dobaw)
3820		device_printf(sc->sc_dev,
3821		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
3822		    __func__,
3823		    bf,
3824		    SEQNO(bf->bf_state.bfs_seqno));
3825#endif
3826	if (bf->bf_next != NULL)
3827		device_printf(sc->sc_dev,
3828		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
3829		    __func__,
3830		    bf,
3831		    SEQNO(bf->bf_state.bfs_seqno));
3832
3833	/*
3834	 * Check if the node software queue is empty; if so
3835	 * then clear the TIM.
3836	 *
3837	 * This needs to be done before the buffer is freed as
3838	 * otherwise the node reference will have been released
3839	 * and the node may not actually exist any longer.
3840	 *
3841	 * XXX I don't like this belonging here, but it's cleaner
3842	 * to do it here right now then all the other places
3843	 * where ath_tx_default_comp() is called.
3844	 *
3845	 * XXX TODO: during drain, ensure that the callback is
3846	 * being called so we get a chance to update the TIM.
3847	 */
3848	if (bf->bf_node) {
3849		ATH_TX_LOCK(sc);
3850		ath_tx_update_tim(sc, bf->bf_node, 0);
3851		ATH_TX_UNLOCK(sc);
3852	}
3853
3854	/*
3855	 * Do any tx complete callback.  Note this must
3856	 * be done before releasing the node reference.
3857	 * This will free the mbuf, release the net80211
3858	 * node and recycle the ath_buf.
3859	 */
3860	ath_tx_freebuf(sc, bf, st);
3861}
3862
3863/*
3864 * Update rate control with the given completion status.
3865 */
3866void
3867ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
3868    struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
3869    int nframes, int nbad)
3870{
3871	struct ath_node *an;
3872
3873	/* Only for unicast frames */
3874	if (ni == NULL)
3875		return;
3876
3877	an = ATH_NODE(ni);
3878	ATH_NODE_UNLOCK_ASSERT(an);
3879
3880	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
3881		ATH_NODE_LOCK(an);
3882		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
3883		ATH_NODE_UNLOCK(an);
3884	}
3885}
3886
3887/*
3888 * Process the completion of the given buffer.
3889 *
3890 * This calls the rate control update and then the buffer completion.
3891 * This will either free the buffer or requeue it.  In any case, the
3892 * bf pointer should be treated as invalid after this function is called.
3893 */
3894void
3895ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
3896    struct ath_tx_status *ts, struct ath_buf *bf)
3897{
3898	struct ieee80211_node *ni = bf->bf_node;
3899	struct ath_node *an = NULL;
3900
3901	ATH_TX_UNLOCK_ASSERT(sc);
3902	ATH_TXQ_UNLOCK_ASSERT(txq);
3903
3904	/* If unicast frame, update general statistics */
3905	if (ni != NULL) {
3906		an = ATH_NODE(ni);
3907		/* update statistics */
3908		ath_tx_update_stats(sc, ts, bf);
3909	}
3910
3911	/*
3912	 * Call the completion handler.
3913	 * The completion handler is responsible for
3914	 * calling the rate control code.
3915	 *
3916	 * Frames with no completion handler get the
3917	 * rate control code called here.
3918	 */
3919	if (bf->bf_comp == NULL) {
3920		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
3921		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
3922			/*
3923			 * XXX assume this isn't an aggregate
3924			 * frame.
3925			 */
3926			ath_tx_update_ratectrl(sc, ni,
3927			     bf->bf_state.bfs_rc, ts,
3928			    bf->bf_state.bfs_pktlen, 1,
3929			    (ts->ts_status == 0 ? 0 : 1));
3930		}
3931		ath_tx_default_comp(sc, bf, 0);
3932	} else
3933		bf->bf_comp(sc, bf, 0);
3934}
3935
3936
3937
3938/*
3939 * Process completed xmit descriptors from the specified queue.
3940 * Kick the packet scheduler if needed. This can occur from this
3941 * particular task.
3942 */
3943static int
3944ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
3945{
3946	struct ath_hal *ah = sc->sc_ah;
3947	struct ath_buf *bf;
3948	struct ath_desc *ds;
3949	struct ath_tx_status *ts;
3950	struct ieee80211_node *ni;
3951#ifdef	IEEE80211_SUPPORT_SUPERG
3952	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3953#endif	/* IEEE80211_SUPPORT_SUPERG */
3954	int nacked;
3955	HAL_STATUS status;
3956
3957	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3958		__func__, txq->axq_qnum,
3959		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3960		txq->axq_link);
3961
3962	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
3963	    "ath_tx_processq: txq=%u head %p link %p depth %p",
3964	    txq->axq_qnum,
3965	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3966	    txq->axq_link,
3967	    txq->axq_depth);
3968
3969	nacked = 0;
3970	for (;;) {
3971		ATH_TXQ_LOCK(txq);
3972		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3973		bf = TAILQ_FIRST(&txq->axq_q);
3974		if (bf == NULL) {
3975			ATH_TXQ_UNLOCK(txq);
3976			break;
3977		}
3978		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
3979		ts = &bf->bf_status.ds_txstat;
3980
3981		status = ath_hal_txprocdesc(ah, ds, ts);
3982#ifdef ATH_DEBUG
3983		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3984			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3985			    status == HAL_OK);
3986		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
3987			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3988			    status == HAL_OK);
3989#endif
3990#ifdef	ATH_DEBUG_ALQ
3991		if (if_ath_alq_checkdebug(&sc->sc_alq,
3992		    ATH_ALQ_EDMA_TXSTATUS)) {
3993			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
3994			sc->sc_tx_statuslen,
3995			(char *) ds);
3996		}
3997#endif
3998
3999		if (status == HAL_EINPROGRESS) {
4000			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
4001			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
4002			    txq->axq_qnum, bf, ds);
4003			ATH_TXQ_UNLOCK(txq);
4004			break;
4005		}
4006		ATH_TXQ_REMOVE(txq, bf, bf_list);
4007
4008		/*
4009		 * Sanity check.
4010		 */
4011		if (txq->axq_qnum != bf->bf_state.bfs_tx_queue) {
4012			device_printf(sc->sc_dev,
4013			    "%s: TXQ=%d: bf=%p, bfs_tx_queue=%d\n",
4014			    __func__,
4015			    txq->axq_qnum,
4016			    bf,
4017			    bf->bf_state.bfs_tx_queue);
4018		}
4019		if (txq->axq_qnum != bf->bf_last->bf_state.bfs_tx_queue) {
4020			device_printf(sc->sc_dev,
4021			    "%s: TXQ=%d: bf_last=%p, bfs_tx_queue=%d\n",
4022			    __func__,
4023			    txq->axq_qnum,
4024			    bf->bf_last,
4025			    bf->bf_last->bf_state.bfs_tx_queue);
4026		}
4027
4028#if 0
4029		if (txq->axq_depth > 0) {
4030			/*
4031			 * More frames follow.  Mark the buffer busy
4032			 * so it's not re-used while the hardware may
4033			 * still re-read the link field in the descriptor.
4034			 *
4035			 * Use the last buffer in an aggregate as that
4036			 * is where the hardware may be - intermediate
4037			 * descriptors won't be "busy".
4038			 */
4039			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4040		} else
4041			txq->axq_link = NULL;
4042#else
4043		bf->bf_last->bf_flags |= ATH_BUF_BUSY;
4044#endif
4045		if (bf->bf_state.bfs_aggr)
4046			txq->axq_aggr_depth--;
4047
4048		ni = bf->bf_node;
4049
4050		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
4051		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
4052		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
4053		/*
4054		 * If unicast frame was ack'd update RSSI,
4055		 * including the last rx time used to
4056		 * workaround phantom bmiss interrupts.
4057		 */
4058		if (ni != NULL && ts->ts_status == 0 &&
4059		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
4060			nacked++;
4061			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4062			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4063				ts->ts_rssi);
4064		}
4065		ATH_TXQ_UNLOCK(txq);
4066
4067		/*
4068		 * Update statistics and call completion
4069		 */
4070		ath_tx_process_buf_completion(sc, txq, ts, bf);
4071
4072		/* XXX at this point, bf and ni may be totally invalid */
4073	}
4074#ifdef IEEE80211_SUPPORT_SUPERG
4075	/*
4076	 * Flush fast-frame staging queue when traffic slows.
4077	 */
4078	if (txq->axq_depth <= 1)
4079		ieee80211_ff_flush(ic, txq->axq_ac);
4080#endif
4081
4082	/* Kick the software TXQ scheduler */
4083	if (dosched) {
4084		ATH_TX_LOCK(sc);
4085		ath_txq_sched(sc, txq);
4086		ATH_TX_UNLOCK(sc);
4087	}
4088
4089	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4090	    "ath_tx_processq: txq=%u: done",
4091	    txq->axq_qnum);
4092
4093	return nacked;
4094}
4095
4096#define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
4097
4098/*
4099 * Deferred processing of transmit interrupt; special-cased
4100 * for a single hardware transmit queue (e.g. 5210 and 5211).
4101 */
4102static void
4103ath_tx_proc_q0(void *arg, int npending)
4104{
4105	struct ath_softc *sc = arg;
4106	struct ifnet *ifp = sc->sc_ifp;
4107	uint32_t txqs;
4108
4109	ATH_PCU_LOCK(sc);
4110	sc->sc_txproc_cnt++;
4111	txqs = sc->sc_txq_active;
4112	sc->sc_txq_active &= ~txqs;
4113	ATH_PCU_UNLOCK(sc);
4114
4115	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4116	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
4117
4118	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
4119		/* XXX why is lastrx updated in tx code? */
4120		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4121	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4122		ath_tx_processq(sc, sc->sc_cabq, 1);
4123	IF_LOCK(&ifp->if_snd);
4124	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4125	IF_UNLOCK(&ifp->if_snd);
4126	sc->sc_wd_timer = 0;
4127
4128	if (sc->sc_softled)
4129		ath_led_event(sc, sc->sc_txrix);
4130
4131	ATH_PCU_LOCK(sc);
4132	sc->sc_txproc_cnt--;
4133	ATH_PCU_UNLOCK(sc);
4134
4135	ath_tx_kick(sc);
4136}
4137
4138/*
4139 * Deferred processing of transmit interrupt; special-cased
4140 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4141 */
4142static void
4143ath_tx_proc_q0123(void *arg, int npending)
4144{
4145	struct ath_softc *sc = arg;
4146	struct ifnet *ifp = sc->sc_ifp;
4147	int nacked;
4148	uint32_t txqs;
4149
4150	ATH_PCU_LOCK(sc);
4151	sc->sc_txproc_cnt++;
4152	txqs = sc->sc_txq_active;
4153	sc->sc_txq_active &= ~txqs;
4154	ATH_PCU_UNLOCK(sc);
4155
4156	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4157	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4158
4159	/*
4160	 * Process each active queue.
4161	 */
4162	nacked = 0;
4163	if (TXQACTIVE(txqs, 0))
4164		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4165	if (TXQACTIVE(txqs, 1))
4166		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4167	if (TXQACTIVE(txqs, 2))
4168		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4169	if (TXQACTIVE(txqs, 3))
4170		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4171	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4172		ath_tx_processq(sc, sc->sc_cabq, 1);
4173	if (nacked)
4174		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4175
4176	IF_LOCK(&ifp->if_snd);
4177	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4178	IF_UNLOCK(&ifp->if_snd);
4179	sc->sc_wd_timer = 0;
4180
4181	if (sc->sc_softled)
4182		ath_led_event(sc, sc->sc_txrix);
4183
4184	ATH_PCU_LOCK(sc);
4185	sc->sc_txproc_cnt--;
4186	ATH_PCU_UNLOCK(sc);
4187
4188	ath_tx_kick(sc);
4189}
4190
4191/*
4192 * Deferred processing of transmit interrupt.
4193 */
4194static void
4195ath_tx_proc(void *arg, int npending)
4196{
4197	struct ath_softc *sc = arg;
4198	struct ifnet *ifp = sc->sc_ifp;
4199	int i, nacked;
4200	uint32_t txqs;
4201
4202	ATH_PCU_LOCK(sc);
4203	sc->sc_txproc_cnt++;
4204	txqs = sc->sc_txq_active;
4205	sc->sc_txq_active &= ~txqs;
4206	ATH_PCU_UNLOCK(sc);
4207
4208	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4209
4210	/*
4211	 * Process each active queue.
4212	 */
4213	nacked = 0;
4214	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4215		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4216			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4217	if (nacked)
4218		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4219
4220	/* XXX check this inside of IF_LOCK? */
4221	IF_LOCK(&ifp->if_snd);
4222	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4223	IF_UNLOCK(&ifp->if_snd);
4224	sc->sc_wd_timer = 0;
4225
4226	if (sc->sc_softled)
4227		ath_led_event(sc, sc->sc_txrix);
4228
4229	ATH_PCU_LOCK(sc);
4230	sc->sc_txproc_cnt--;
4231	ATH_PCU_UNLOCK(sc);
4232
4233	ath_tx_kick(sc);
4234}
4235#undef	TXQACTIVE
4236
4237/*
4238 * Deferred processing of TXQ rescheduling.
4239 */
4240static void
4241ath_txq_sched_tasklet(void *arg, int npending)
4242{
4243	struct ath_softc *sc = arg;
4244	int i;
4245
4246	/* XXX is skipping ok? */
4247	ATH_PCU_LOCK(sc);
4248#if 0
4249	if (sc->sc_inreset_cnt > 0) {
4250		device_printf(sc->sc_dev,
4251		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4252		ATH_PCU_UNLOCK(sc);
4253		return;
4254	}
4255#endif
4256	sc->sc_txproc_cnt++;
4257	ATH_PCU_UNLOCK(sc);
4258
4259	ATH_TX_LOCK(sc);
4260	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4261		if (ATH_TXQ_SETUP(sc, i)) {
4262			ath_txq_sched(sc, &sc->sc_txq[i]);
4263		}
4264	}
4265	ATH_TX_UNLOCK(sc);
4266
4267	ATH_PCU_LOCK(sc);
4268	sc->sc_txproc_cnt--;
4269	ATH_PCU_UNLOCK(sc);
4270}
4271
4272void
4273ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4274{
4275
4276	ATH_TXBUF_LOCK_ASSERT(sc);
4277
4278	if (bf->bf_flags & ATH_BUF_MGMT)
4279		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4280	else {
4281		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4282		sc->sc_txbuf_cnt++;
4283		if (sc->sc_txbuf_cnt > ath_txbuf) {
4284			device_printf(sc->sc_dev,
4285			    "%s: sc_txbuf_cnt > %d?\n",
4286			    __func__,
4287			    ath_txbuf);
4288			sc->sc_txbuf_cnt = ath_txbuf;
4289		}
4290	}
4291}
4292
4293void
4294ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4295{
4296
4297	ATH_TXBUF_LOCK_ASSERT(sc);
4298
4299	if (bf->bf_flags & ATH_BUF_MGMT)
4300		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4301	else {
4302		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4303		sc->sc_txbuf_cnt++;
4304		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4305			device_printf(sc->sc_dev,
4306			    "%s: sc_txbuf_cnt > %d?\n",
4307			    __func__,
4308			    ATH_TXBUF);
4309			sc->sc_txbuf_cnt = ATH_TXBUF;
4310		}
4311	}
4312}
4313
4314/*
4315 * Free the holding buffer if it exists
4316 */
4317void
4318ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
4319{
4320	ATH_TXBUF_UNLOCK_ASSERT(sc);
4321	ATH_TXQ_LOCK_ASSERT(txq);
4322
4323	if (txq->axq_holdingbf == NULL)
4324		return;
4325
4326	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
4327
4328	ATH_TXBUF_LOCK(sc);
4329	ath_returnbuf_tail(sc, txq->axq_holdingbf);
4330	ATH_TXBUF_UNLOCK(sc);
4331
4332	txq->axq_holdingbf = NULL;
4333}
4334
4335/*
4336 * Add this buffer to the holding queue, freeing the previous
4337 * one if it exists.
4338 */
4339static void
4340ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
4341{
4342	struct ath_txq *txq;
4343
4344	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4345
4346	ATH_TXBUF_UNLOCK_ASSERT(sc);
4347	ATH_TXQ_LOCK_ASSERT(txq);
4348
4349	/* XXX assert ATH_BUF_BUSY is set */
4350
4351	/* XXX assert the tx queue is under the max number */
4352	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
4353		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
4354		    __func__,
4355		    bf,
4356		    bf->bf_state.bfs_tx_queue);
4357		bf->bf_flags &= ~ATH_BUF_BUSY;
4358		ath_returnbuf_tail(sc, bf);
4359		return;
4360	}
4361	ath_txq_freeholdingbuf(sc, txq);
4362	txq->axq_holdingbf = bf;
4363}
4364
4365/*
4366 * Return a buffer to the pool and update the 'busy' flag on the
4367 * previous 'tail' entry.
4368 *
4369 * This _must_ only be called when the buffer is involved in a completed
4370 * TX. The logic is that if it was part of an active TX, the previous
4371 * buffer on the list is now not involved in a halted TX DMA queue, waiting
4372 * for restart (eg for TDMA.)
4373 *
4374 * The caller must free the mbuf and recycle the node reference.
4375 *
4376 * XXX This method of handling busy / holding buffers is insanely stupid.
4377 * It requires bf_state.bfs_tx_queue to be correctly assigned.  It would
4378 * be much nicer if buffers in the processq() methods would instead be
4379 * always completed there (pushed onto a txq or ath_bufhead) so we knew
4380 * exactly what hardware queue they came from in the first place.
4381 */
4382void
4383ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4384{
4385	struct ath_txq *txq;
4386
4387	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4388
4389	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4390	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4391
4392	/*
4393	 * If this buffer is busy, push it onto the holding queue.
4394	 */
4395	if (bf->bf_flags & ATH_BUF_BUSY) {
4396		ATH_TXQ_LOCK(txq);
4397		ath_txq_addholdingbuf(sc, bf);
4398		ATH_TXQ_UNLOCK(txq);
4399		return;
4400	}
4401
4402	/*
4403	 * Not a busy buffer, so free normally
4404	 */
4405	ATH_TXBUF_LOCK(sc);
4406	ath_returnbuf_tail(sc, bf);
4407	ATH_TXBUF_UNLOCK(sc);
4408}
4409
4410/*
4411 * This is currently used by ath_tx_draintxq() and
4412 * ath_tx_tid_free_pkts().
4413 *
4414 * It recycles a single ath_buf.
4415 */
4416void
4417ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4418{
4419	struct ieee80211_node *ni = bf->bf_node;
4420	struct mbuf *m0 = bf->bf_m;
4421
4422	/*
4423	 * Make sure that we only sync/unload if there's an mbuf.
4424	 * If not (eg we cloned a buffer), the unload will have already
4425	 * occured.
4426	 */
4427	if (bf->bf_m != NULL) {
4428		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4429		    BUS_DMASYNC_POSTWRITE);
4430		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4431	}
4432
4433	bf->bf_node = NULL;
4434	bf->bf_m = NULL;
4435
4436	/* Free the buffer, it's not needed any longer */
4437	ath_freebuf(sc, bf);
4438
4439	if (ni != NULL) {
4440		/*
4441		 * Do any callback and reclaim the node reference.
4442		 */
4443		if (m0->m_flags & M_TXCB)
4444			ieee80211_process_callback(ni, m0, status);
4445		ieee80211_free_node(ni);
4446	}
4447
4448	/* Finally, we don't need this mbuf any longer */
4449	m_freem(m0);
4450}
4451
4452static struct ath_buf *
4453ath_tx_draintxq_get_one(struct ath_softc *sc, struct ath_txq *txq)
4454{
4455	struct ath_buf *bf;
4456
4457	ATH_TXQ_LOCK_ASSERT(txq);
4458
4459	/*
4460	 * Drain the FIFO queue first, then if it's
4461	 * empty, move to the normal frame queue.
4462	 */
4463	bf = TAILQ_FIRST(&txq->fifo.axq_q);
4464	if (bf != NULL) {
4465		/*
4466		 * Is it the last buffer in this set?
4467		 * Decrement the FIFO counter.
4468		 */
4469		if (bf->bf_flags & ATH_BUF_FIFOEND) {
4470			if (txq->axq_fifo_depth == 0) {
4471				device_printf(sc->sc_dev,
4472				    "%s: Q%d: fifo_depth=0, fifo.axq_depth=%d?\n",
4473				    __func__,
4474				    txq->axq_qnum,
4475				    txq->fifo.axq_depth);
4476			} else
4477				txq->axq_fifo_depth--;
4478		}
4479		ATH_TXQ_REMOVE(&txq->fifo, bf, bf_list);
4480		return (bf);
4481	}
4482
4483	/*
4484	 * Debugging!
4485	 */
4486	if (txq->axq_fifo_depth != 0 || txq->fifo.axq_depth != 0) {
4487		device_printf(sc->sc_dev,
4488		    "%s: Q%d: fifo_depth=%d, fifo.axq_depth=%d\n",
4489		    __func__,
4490		    txq->axq_qnum,
4491		    txq->axq_fifo_depth,
4492		    txq->fifo.axq_depth);
4493	}
4494
4495	/*
4496	 * Now drain the pending queue.
4497	 */
4498	bf = TAILQ_FIRST(&txq->axq_q);
4499	if (bf == NULL) {
4500		txq->axq_link = NULL;
4501		return (NULL);
4502	}
4503	ATH_TXQ_REMOVE(txq, bf, bf_list);
4504	return (bf);
4505}
4506
4507void
4508ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4509{
4510#ifdef ATH_DEBUG
4511	struct ath_hal *ah = sc->sc_ah;
4512#endif
4513	struct ath_buf *bf;
4514	u_int ix;
4515
4516	/*
4517	 * NB: this assumes output has been stopped and
4518	 *     we do not need to block ath_tx_proc
4519	 */
4520	for (ix = 0;; ix++) {
4521		ATH_TXQ_LOCK(txq);
4522		bf = ath_tx_draintxq_get_one(sc, txq);
4523		if (bf == NULL) {
4524			ATH_TXQ_UNLOCK(txq);
4525			break;
4526		}
4527		if (bf->bf_state.bfs_aggr)
4528			txq->axq_aggr_depth--;
4529#ifdef ATH_DEBUG
4530		if (sc->sc_debug & ATH_DEBUG_RESET) {
4531			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4532			int status = 0;
4533
4534			/*
4535			 * EDMA operation has a TX completion FIFO
4536			 * separate from the TX descriptor, so this
4537			 * method of checking the "completion" status
4538			 * is wrong.
4539			 */
4540			if (! sc->sc_isedma) {
4541				status = (ath_hal_txprocdesc(ah,
4542				    bf->bf_lastds,
4543				    &bf->bf_status.ds_txstat) == HAL_OK);
4544			}
4545			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
4546			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4547			    bf->bf_m->m_len, 0, -1);
4548		}
4549#endif /* ATH_DEBUG */
4550		/*
4551		 * Since we're now doing magic in the completion
4552		 * functions, we -must- call it for aggregation
4553		 * destinations or BAW tracking will get upset.
4554		 */
4555		/*
4556		 * Clear ATH_BUF_BUSY; the completion handler
4557		 * will free the buffer.
4558		 */
4559		ATH_TXQ_UNLOCK(txq);
4560		bf->bf_flags &= ~ATH_BUF_BUSY;
4561		if (bf->bf_comp)
4562			bf->bf_comp(sc, bf, 1);
4563		else
4564			ath_tx_default_comp(sc, bf, 1);
4565	}
4566
4567	/*
4568	 * Free the holding buffer if it exists
4569	 */
4570	ATH_TXQ_LOCK(txq);
4571	ath_txq_freeholdingbuf(sc, txq);
4572	ATH_TXQ_UNLOCK(txq);
4573
4574	/*
4575	 * Drain software queued frames which are on
4576	 * active TIDs.
4577	 */
4578	ath_tx_txq_drain(sc, txq);
4579}
4580
4581static void
4582ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4583{
4584	struct ath_hal *ah = sc->sc_ah;
4585
4586	DPRINTF(sc, ATH_DEBUG_RESET,
4587	    "%s: tx queue [%u] %p, active=%d, hwpending=%d, flags 0x%08x, link %p\n",
4588	    __func__,
4589	    txq->axq_qnum,
4590	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4591	    (int) (!! ath_hal_txqenabled(ah, txq->axq_qnum)),
4592	    (int) ath_hal_numtxpending(ah, txq->axq_qnum),
4593	    txq->axq_flags,
4594	    txq->axq_link);
4595	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4596}
4597
4598int
4599ath_stoptxdma(struct ath_softc *sc)
4600{
4601	struct ath_hal *ah = sc->sc_ah;
4602	int i;
4603
4604	/* XXX return value */
4605	if (sc->sc_invalid)
4606		return 0;
4607
4608	if (!sc->sc_invalid) {
4609		/* don't touch the hardware if marked invalid */
4610		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4611		    __func__, sc->sc_bhalq,
4612		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4613		    NULL);
4614		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4615		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4616			if (ATH_TXQ_SETUP(sc, i))
4617				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4618	}
4619
4620	return 1;
4621}
4622
4623#ifdef	ATH_DEBUG
4624static void
4625ath_tx_dump(struct ath_softc *sc, struct ath_txq *txq)
4626{
4627	struct ath_hal *ah = sc->sc_ah;
4628	struct ath_buf *bf;
4629	int i = 0;
4630
4631	if (! (sc->sc_debug & ATH_DEBUG_RESET))
4632		return;
4633
4634	device_printf(sc->sc_dev, "%s: Q%d: begin\n",
4635	    __func__, txq->axq_qnum);
4636	TAILQ_FOREACH(bf, &txq->axq_q, bf_list) {
4637		ath_printtxbuf(sc, bf, txq->axq_qnum, i,
4638			ath_hal_txprocdesc(ah, bf->bf_lastds,
4639			    &bf->bf_status.ds_txstat) == HAL_OK);
4640		i++;
4641	}
4642	device_printf(sc->sc_dev, "%s: Q%d: end\n",
4643	    __func__, txq->axq_qnum);
4644}
4645#endif /* ATH_DEBUG */
4646
4647/*
4648 * Drain the transmit queues and reclaim resources.
4649 */
4650void
4651ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
4652{
4653#ifdef	ATH_DEBUG
4654	struct ath_hal *ah = sc->sc_ah;
4655#endif
4656	struct ifnet *ifp = sc->sc_ifp;
4657	int i;
4658
4659	(void) ath_stoptxdma(sc);
4660
4661	/*
4662	 * Dump the queue contents
4663	 */
4664	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4665		/*
4666		 * XXX TODO: should we just handle the completed TX frames
4667		 * here, whether or not the reset is a full one or not?
4668		 */
4669		if (ATH_TXQ_SETUP(sc, i)) {
4670#ifdef	ATH_DEBUG
4671			if (sc->sc_debug & ATH_DEBUG_RESET)
4672				ath_tx_dump(sc, &sc->sc_txq[i]);
4673#endif	/* ATH_DEBUG */
4674			if (reset_type == ATH_RESET_NOLOSS) {
4675				ath_tx_processq(sc, &sc->sc_txq[i], 0);
4676				ATH_TXQ_LOCK(&sc->sc_txq[i]);
4677				/*
4678				 * Free the holding buffer; DMA is now
4679				 * stopped.
4680				 */
4681				ath_txq_freeholdingbuf(sc, &sc->sc_txq[i]);
4682				/*
4683				 * Reset the link pointer to NULL; there's
4684				 * no frames to chain DMA to.
4685				 */
4686				sc->sc_txq[i].axq_link = NULL;
4687				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
4688			} else
4689				ath_tx_draintxq(sc, &sc->sc_txq[i]);
4690		}
4691	}
4692#ifdef ATH_DEBUG
4693	if (sc->sc_debug & ATH_DEBUG_RESET) {
4694		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
4695		if (bf != NULL && bf->bf_m != NULL) {
4696			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4697				ath_hal_txprocdesc(ah, bf->bf_lastds,
4698				    &bf->bf_status.ds_txstat) == HAL_OK);
4699			ieee80211_dump_pkt(ifp->if_l2com,
4700			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4701			    0, -1);
4702		}
4703	}
4704#endif /* ATH_DEBUG */
4705	IF_LOCK(&ifp->if_snd);
4706	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4707	IF_UNLOCK(&ifp->if_snd);
4708	sc->sc_wd_timer = 0;
4709}
4710
4711/*
4712 * Update internal state after a channel change.
4713 */
4714static void
4715ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4716{
4717	enum ieee80211_phymode mode;
4718
4719	/*
4720	 * Change channels and update the h/w rate map
4721	 * if we're switching; e.g. 11a to 11b/g.
4722	 */
4723	mode = ieee80211_chan2mode(chan);
4724	if (mode != sc->sc_curmode)
4725		ath_setcurmode(sc, mode);
4726	sc->sc_curchan = chan;
4727}
4728
4729/*
4730 * Set/change channels.  If the channel is really being changed,
4731 * it's done by resetting the chip.  To accomplish this we must
4732 * first cleanup any pending DMA, then restart stuff after a la
4733 * ath_init.
4734 */
4735static int
4736ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4737{
4738	struct ifnet *ifp = sc->sc_ifp;
4739	struct ieee80211com *ic = ifp->if_l2com;
4740	struct ath_hal *ah = sc->sc_ah;
4741	int ret = 0;
4742
4743	/* Treat this as an interface reset */
4744	ATH_PCU_UNLOCK_ASSERT(sc);
4745	ATH_UNLOCK_ASSERT(sc);
4746
4747	/* (Try to) stop TX/RX from occuring */
4748	taskqueue_block(sc->sc_tq);
4749
4750	ATH_PCU_LOCK(sc);
4751	ath_hal_intrset(ah, 0);		/* Stop new RX/TX completion */
4752	ath_txrx_stop_locked(sc);	/* Stop pending RX/TX completion */
4753	if (ath_reset_grablock(sc, 1) == 0) {
4754		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
4755		    __func__);
4756	}
4757	ATH_PCU_UNLOCK(sc);
4758
4759	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4760	    __func__, ieee80211_chan2ieee(ic, chan),
4761	    chan->ic_freq, chan->ic_flags);
4762	if (chan != sc->sc_curchan) {
4763		HAL_STATUS status;
4764		/*
4765		 * To switch channels clear any pending DMA operations;
4766		 * wait long enough for the RX fifo to drain, reset the
4767		 * hardware at the new frequency, and then re-enable
4768		 * the relevant bits of the h/w.
4769		 */
4770#if 0
4771		ath_hal_intrset(ah, 0);		/* disable interrupts */
4772#endif
4773		ath_stoprecv(sc, 1);		/* turn off frame recv */
4774		/*
4775		 * First, handle completed TX/RX frames.
4776		 */
4777		ath_rx_flush(sc);
4778		ath_draintxq(sc, ATH_RESET_NOLOSS);
4779		/*
4780		 * Next, flush the non-scheduled frames.
4781		 */
4782		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
4783
4784		ath_update_chainmasks(sc, chan);
4785		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
4786		    sc->sc_cur_rxchainmask);
4787		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4788			if_printf(ifp, "%s: unable to reset "
4789			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4790			    __func__, ieee80211_chan2ieee(ic, chan),
4791			    chan->ic_freq, chan->ic_flags, status);
4792			ret = EIO;
4793			goto finish;
4794		}
4795		sc->sc_diversity = ath_hal_getdiversity(ah);
4796
4797		/* Let DFS at it in case it's a DFS channel */
4798		ath_dfs_radar_enable(sc, chan);
4799
4800		/* Let spectral at in case spectral is enabled */
4801		ath_spectral_enable(sc, chan);
4802
4803		/*
4804		 * Re-enable rx framework.
4805		 */
4806		if (ath_startrecv(sc) != 0) {
4807			if_printf(ifp, "%s: unable to restart recv logic\n",
4808			    __func__);
4809			ret = EIO;
4810			goto finish;
4811		}
4812
4813		/*
4814		 * Change channels and update the h/w rate map
4815		 * if we're switching; e.g. 11a to 11b/g.
4816		 */
4817		ath_chan_change(sc, chan);
4818
4819		/*
4820		 * Reset clears the beacon timers; reset them
4821		 * here if needed.
4822		 */
4823		if (sc->sc_beacons) {		/* restart beacons */
4824#ifdef IEEE80211_SUPPORT_TDMA
4825			if (sc->sc_tdma)
4826				ath_tdma_config(sc, NULL);
4827			else
4828#endif
4829			ath_beacon_config(sc, NULL);
4830		}
4831
4832		/*
4833		 * Re-enable interrupts.
4834		 */
4835#if 0
4836		ath_hal_intrset(ah, sc->sc_imask);
4837#endif
4838	}
4839
4840finish:
4841	ATH_PCU_LOCK(sc);
4842	sc->sc_inreset_cnt--;
4843	/* XXX only do this if sc_inreset_cnt == 0? */
4844	ath_hal_intrset(ah, sc->sc_imask);
4845	ATH_PCU_UNLOCK(sc);
4846
4847	IF_LOCK(&ifp->if_snd);
4848	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4849	IF_UNLOCK(&ifp->if_snd);
4850	ath_txrx_start(sc);
4851	/* XXX ath_start? */
4852
4853	return ret;
4854}
4855
4856/*
4857 * Periodically recalibrate the PHY to account
4858 * for temperature/environment changes.
4859 */
4860static void
4861ath_calibrate(void *arg)
4862{
4863	struct ath_softc *sc = arg;
4864	struct ath_hal *ah = sc->sc_ah;
4865	struct ifnet *ifp = sc->sc_ifp;
4866	struct ieee80211com *ic = ifp->if_l2com;
4867	HAL_BOOL longCal, isCalDone = AH_TRUE;
4868	HAL_BOOL aniCal, shortCal = AH_FALSE;
4869	int nextcal;
4870
4871	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4872		goto restart;
4873	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4874	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4875	if (sc->sc_doresetcal)
4876		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4877
4878	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4879	if (aniCal) {
4880		sc->sc_stats.ast_ani_cal++;
4881		sc->sc_lastani = ticks;
4882		ath_hal_ani_poll(ah, sc->sc_curchan);
4883	}
4884
4885	if (longCal) {
4886		sc->sc_stats.ast_per_cal++;
4887		sc->sc_lastlongcal = ticks;
4888		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4889			/*
4890			 * Rfgain is out of bounds, reset the chip
4891			 * to load new gain values.
4892			 */
4893			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4894				"%s: rfgain change\n", __func__);
4895			sc->sc_stats.ast_per_rfgain++;
4896			sc->sc_resetcal = 0;
4897			sc->sc_doresetcal = AH_TRUE;
4898			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4899			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4900			return;
4901		}
4902		/*
4903		 * If this long cal is after an idle period, then
4904		 * reset the data collection state so we start fresh.
4905		 */
4906		if (sc->sc_resetcal) {
4907			(void) ath_hal_calreset(ah, sc->sc_curchan);
4908			sc->sc_lastcalreset = ticks;
4909			sc->sc_lastshortcal = ticks;
4910			sc->sc_resetcal = 0;
4911			sc->sc_doresetcal = AH_TRUE;
4912		}
4913	}
4914
4915	/* Only call if we're doing a short/long cal, not for ANI calibration */
4916	if (shortCal || longCal) {
4917		isCalDone = AH_FALSE;
4918		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4919			if (longCal) {
4920				/*
4921				 * Calibrate noise floor data again in case of change.
4922				 */
4923				ath_hal_process_noisefloor(ah);
4924			}
4925		} else {
4926			DPRINTF(sc, ATH_DEBUG_ANY,
4927				"%s: calibration of channel %u failed\n",
4928				__func__, sc->sc_curchan->ic_freq);
4929			sc->sc_stats.ast_per_calfail++;
4930		}
4931		if (shortCal)
4932			sc->sc_lastshortcal = ticks;
4933	}
4934	if (!isCalDone) {
4935restart:
4936		/*
4937		 * Use a shorter interval to potentially collect multiple
4938		 * data samples required to complete calibration.  Once
4939		 * we're told the work is done we drop back to a longer
4940		 * interval between requests.  We're more aggressive doing
4941		 * work when operating as an AP to improve operation right
4942		 * after startup.
4943		 */
4944		sc->sc_lastshortcal = ticks;
4945		nextcal = ath_shortcalinterval*hz/1000;
4946		if (sc->sc_opmode != HAL_M_HOSTAP)
4947			nextcal *= 10;
4948		sc->sc_doresetcal = AH_TRUE;
4949	} else {
4950		/* nextcal should be the shortest time for next event */
4951		nextcal = ath_longcalinterval*hz;
4952		if (sc->sc_lastcalreset == 0)
4953			sc->sc_lastcalreset = sc->sc_lastlongcal;
4954		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4955			sc->sc_resetcal = 1;	/* setup reset next trip */
4956		sc->sc_doresetcal = AH_FALSE;
4957	}
4958	/* ANI calibration may occur more often than short/long/resetcal */
4959	if (ath_anicalinterval > 0)
4960		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4961
4962	if (nextcal != 0) {
4963		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4964		    __func__, nextcal, isCalDone ? "" : "!");
4965		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4966	} else {
4967		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4968		    __func__);
4969		/* NB: don't rearm timer */
4970	}
4971}
4972
4973static void
4974ath_scan_start(struct ieee80211com *ic)
4975{
4976	struct ifnet *ifp = ic->ic_ifp;
4977	struct ath_softc *sc = ifp->if_softc;
4978	struct ath_hal *ah = sc->sc_ah;
4979	u_int32_t rfilt;
4980
4981	/* XXX calibration timer? */
4982
4983	ATH_LOCK(sc);
4984	sc->sc_scanning = 1;
4985	sc->sc_syncbeacon = 0;
4986	rfilt = ath_calcrxfilter(sc);
4987	ATH_UNLOCK(sc);
4988
4989	ATH_PCU_LOCK(sc);
4990	ath_hal_setrxfilter(ah, rfilt);
4991	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4992	ATH_PCU_UNLOCK(sc);
4993
4994	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4995		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4996}
4997
4998static void
4999ath_scan_end(struct ieee80211com *ic)
5000{
5001	struct ifnet *ifp = ic->ic_ifp;
5002	struct ath_softc *sc = ifp->if_softc;
5003	struct ath_hal *ah = sc->sc_ah;
5004	u_int32_t rfilt;
5005
5006	ATH_LOCK(sc);
5007	sc->sc_scanning = 0;
5008	rfilt = ath_calcrxfilter(sc);
5009	ATH_UNLOCK(sc);
5010
5011	ATH_PCU_LOCK(sc);
5012	ath_hal_setrxfilter(ah, rfilt);
5013	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5014
5015	ath_hal_process_noisefloor(ah);
5016	ATH_PCU_UNLOCK(sc);
5017
5018	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5019		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5020		 sc->sc_curaid);
5021}
5022
5023#ifdef	ATH_ENABLE_11N
5024/*
5025 * For now, just do a channel change.
5026 *
5027 * Later, we'll go through the hard slog of suspending tx/rx, changing rate
5028 * control state and resetting the hardware without dropping frames out
5029 * of the queue.
5030 *
5031 * The unfortunate trouble here is making absolutely sure that the
5032 * channel width change has propagated enough so the hardware
5033 * absolutely isn't handed bogus frames for it's current operating
5034 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
5035 * does occur in parallel, we need to make certain we've blocked
5036 * any further ongoing TX (and RX, that can cause raw TX)
5037 * before we do this.
5038 */
5039static void
5040ath_update_chw(struct ieee80211com *ic)
5041{
5042	struct ifnet *ifp = ic->ic_ifp;
5043	struct ath_softc *sc = ifp->if_softc;
5044
5045	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
5046	ath_set_channel(ic);
5047}
5048#endif	/* ATH_ENABLE_11N */
5049
5050static void
5051ath_set_channel(struct ieee80211com *ic)
5052{
5053	struct ifnet *ifp = ic->ic_ifp;
5054	struct ath_softc *sc = ifp->if_softc;
5055
5056	(void) ath_chan_set(sc, ic->ic_curchan);
5057	/*
5058	 * If we are returning to our bss channel then mark state
5059	 * so the next recv'd beacon's tsf will be used to sync the
5060	 * beacon timers.  Note that since we only hear beacons in
5061	 * sta/ibss mode this has no effect in other operating modes.
5062	 */
5063	ATH_LOCK(sc);
5064	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5065		sc->sc_syncbeacon = 1;
5066	ATH_UNLOCK(sc);
5067}
5068
5069/*
5070 * Walk the vap list and check if there any vap's in RUN state.
5071 */
5072static int
5073ath_isanyrunningvaps(struct ieee80211vap *this)
5074{
5075	struct ieee80211com *ic = this->iv_ic;
5076	struct ieee80211vap *vap;
5077
5078	IEEE80211_LOCK_ASSERT(ic);
5079
5080	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5081		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5082			return 1;
5083	}
5084	return 0;
5085}
5086
5087static int
5088ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5089{
5090	struct ieee80211com *ic = vap->iv_ic;
5091	struct ath_softc *sc = ic->ic_ifp->if_softc;
5092	struct ath_vap *avp = ATH_VAP(vap);
5093	struct ath_hal *ah = sc->sc_ah;
5094	struct ieee80211_node *ni = NULL;
5095	int i, error, stamode;
5096	u_int32_t rfilt;
5097	int csa_run_transition = 0;
5098
5099	static const HAL_LED_STATE leds[] = {
5100	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5101	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5102	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5103	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5104	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5105	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5106	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5107	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5108	};
5109
5110	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5111		ieee80211_state_name[vap->iv_state],
5112		ieee80211_state_name[nstate]);
5113
5114	/*
5115	 * net80211 _should_ have the comlock asserted at this point.
5116	 * There are some comments around the calls to vap->iv_newstate
5117	 * which indicate that it (newstate) may end up dropping the
5118	 * lock.  This and the subsequent lock assert check after newstate
5119	 * are an attempt to catch these and figure out how/why.
5120	 */
5121	IEEE80211_LOCK_ASSERT(ic);
5122
5123	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
5124		csa_run_transition = 1;
5125
5126	callout_drain(&sc->sc_cal_ch);
5127	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5128
5129	if (nstate == IEEE80211_S_SCAN) {
5130		/*
5131		 * Scanning: turn off beacon miss and don't beacon.
5132		 * Mark beacon state so when we reach RUN state we'll
5133		 * [re]setup beacons.  Unblock the task q thread so
5134		 * deferred interrupt processing is done.
5135		 */
5136		ath_hal_intrset(ah,
5137		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5138		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5139		sc->sc_beacons = 0;
5140		taskqueue_unblock(sc->sc_tq);
5141	}
5142
5143	ni = ieee80211_ref_node(vap->iv_bss);
5144	rfilt = ath_calcrxfilter(sc);
5145	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5146		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5147		   vap->iv_opmode == IEEE80211_M_IBSS);
5148	if (stamode && nstate == IEEE80211_S_RUN) {
5149		sc->sc_curaid = ni->ni_associd;
5150		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5151		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5152	}
5153	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5154	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5155	ath_hal_setrxfilter(ah, rfilt);
5156
5157	/* XXX is this to restore keycache on resume? */
5158	if (vap->iv_opmode != IEEE80211_M_STA &&
5159	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5160		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5161			if (ath_hal_keyisvalid(ah, i))
5162				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5163	}
5164
5165	/*
5166	 * Invoke the parent method to do net80211 work.
5167	 */
5168	error = avp->av_newstate(vap, nstate, arg);
5169	if (error != 0)
5170		goto bad;
5171
5172	/*
5173	 * See above: ensure av_newstate() doesn't drop the lock
5174	 * on us.
5175	 */
5176	IEEE80211_LOCK_ASSERT(ic);
5177
5178	if (nstate == IEEE80211_S_RUN) {
5179		/* NB: collect bss node again, it may have changed */
5180		ieee80211_free_node(ni);
5181		ni = ieee80211_ref_node(vap->iv_bss);
5182
5183		DPRINTF(sc, ATH_DEBUG_STATE,
5184		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5185		    "capinfo 0x%04x chan %d\n", __func__,
5186		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5187		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5188
5189		switch (vap->iv_opmode) {
5190#ifdef IEEE80211_SUPPORT_TDMA
5191		case IEEE80211_M_AHDEMO:
5192			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5193				break;
5194			/* fall thru... */
5195#endif
5196		case IEEE80211_M_HOSTAP:
5197		case IEEE80211_M_IBSS:
5198		case IEEE80211_M_MBSS:
5199			/*
5200			 * Allocate and setup the beacon frame.
5201			 *
5202			 * Stop any previous beacon DMA.  This may be
5203			 * necessary, for example, when an ibss merge
5204			 * causes reconfiguration; there will be a state
5205			 * transition from RUN->RUN that means we may
5206			 * be called with beacon transmission active.
5207			 */
5208			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5209
5210			error = ath_beacon_alloc(sc, ni);
5211			if (error != 0)
5212				goto bad;
5213			/*
5214			 * If joining an adhoc network defer beacon timer
5215			 * configuration to the next beacon frame so we
5216			 * have a current TSF to use.  Otherwise we're
5217			 * starting an ibss/bss so there's no need to delay;
5218			 * if this is the first vap moving to RUN state, then
5219			 * beacon state needs to be [re]configured.
5220			 */
5221			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5222			    ni->ni_tstamp.tsf != 0) {
5223				sc->sc_syncbeacon = 1;
5224			} else if (!sc->sc_beacons) {
5225#ifdef IEEE80211_SUPPORT_TDMA
5226				if (vap->iv_caps & IEEE80211_C_TDMA)
5227					ath_tdma_config(sc, vap);
5228				else
5229#endif
5230					ath_beacon_config(sc, vap);
5231				sc->sc_beacons = 1;
5232			}
5233			break;
5234		case IEEE80211_M_STA:
5235			/*
5236			 * Defer beacon timer configuration to the next
5237			 * beacon frame so we have a current TSF to use
5238			 * (any TSF collected when scanning is likely old).
5239			 * However if it's due to a CSA -> RUN transition,
5240			 * force a beacon update so we pick up a lack of
5241			 * beacons from an AP in CAC and thus force a
5242			 * scan.
5243			 *
5244			 * And, there's also corner cases here where
5245			 * after a scan, the AP may have disappeared.
5246			 * In that case, we may not receive an actual
5247			 * beacon to update the beacon timer and thus we
5248			 * won't get notified of the missing beacons.
5249			 */
5250			sc->sc_syncbeacon = 1;
5251#if 0
5252			if (csa_run_transition)
5253#endif
5254				ath_beacon_config(sc, vap);
5255
5256			/*
5257			 * PR: kern/175227
5258			 *
5259			 * Reconfigure beacons during reset; as otherwise
5260			 * we won't get the beacon timers reprogrammed
5261			 * after a reset and thus we won't pick up a
5262			 * beacon miss interrupt.
5263			 *
5264			 * Hopefully we'll see a beacon before the BMISS
5265			 * timer fires (too often), leading to a STA
5266			 * disassociation.
5267			 */
5268			sc->sc_beacons = 1;
5269			break;
5270		case IEEE80211_M_MONITOR:
5271			/*
5272			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5273			 * transitions so we must re-enable interrupts here to
5274			 * handle the case of a single monitor mode vap.
5275			 */
5276			ath_hal_intrset(ah, sc->sc_imask);
5277			break;
5278		case IEEE80211_M_WDS:
5279			break;
5280		default:
5281			break;
5282		}
5283		/*
5284		 * Let the hal process statistics collected during a
5285		 * scan so it can provide calibrated noise floor data.
5286		 */
5287		ath_hal_process_noisefloor(ah);
5288		/*
5289		 * Reset rssi stats; maybe not the best place...
5290		 */
5291		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5292		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5293		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5294		/*
5295		 * Finally, start any timers and the task q thread
5296		 * (in case we didn't go through SCAN state).
5297		 */
5298		if (ath_longcalinterval != 0) {
5299			/* start periodic recalibration timer */
5300			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5301		} else {
5302			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5303			    "%s: calibration disabled\n", __func__);
5304		}
5305		taskqueue_unblock(sc->sc_tq);
5306	} else if (nstate == IEEE80211_S_INIT) {
5307		/*
5308		 * If there are no vaps left in RUN state then
5309		 * shutdown host/driver operation:
5310		 * o disable interrupts
5311		 * o disable the task queue thread
5312		 * o mark beacon processing as stopped
5313		 */
5314		if (!ath_isanyrunningvaps(vap)) {
5315			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5316			/* disable interrupts  */
5317			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5318			taskqueue_block(sc->sc_tq);
5319			sc->sc_beacons = 0;
5320		}
5321#ifdef IEEE80211_SUPPORT_TDMA
5322		ath_hal_setcca(ah, AH_TRUE);
5323#endif
5324	}
5325bad:
5326	ieee80211_free_node(ni);
5327	return error;
5328}
5329
5330/*
5331 * Allocate a key cache slot to the station so we can
5332 * setup a mapping from key index to node. The key cache
5333 * slot is needed for managing antenna state and for
5334 * compression when stations do not use crypto.  We do
5335 * it uniliaterally here; if crypto is employed this slot
5336 * will be reassigned.
5337 */
5338static void
5339ath_setup_stationkey(struct ieee80211_node *ni)
5340{
5341	struct ieee80211vap *vap = ni->ni_vap;
5342	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5343	ieee80211_keyix keyix, rxkeyix;
5344
5345	/* XXX should take a locked ref to vap->iv_bss */
5346	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5347		/*
5348		 * Key cache is full; we'll fall back to doing
5349		 * the more expensive lookup in software.  Note
5350		 * this also means no h/w compression.
5351		 */
5352		/* XXX msg+statistic */
5353	} else {
5354		/* XXX locking? */
5355		ni->ni_ucastkey.wk_keyix = keyix;
5356		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5357		/* NB: must mark device key to get called back on delete */
5358		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5359		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5360		/* NB: this will create a pass-thru key entry */
5361		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
5362	}
5363}
5364
5365/*
5366 * Setup driver-specific state for a newly associated node.
5367 * Note that we're called also on a re-associate, the isnew
5368 * param tells us if this is the first time or not.
5369 */
5370static void
5371ath_newassoc(struct ieee80211_node *ni, int isnew)
5372{
5373	struct ath_node *an = ATH_NODE(ni);
5374	struct ieee80211vap *vap = ni->ni_vap;
5375	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5376	const struct ieee80211_txparam *tp = ni->ni_txparms;
5377
5378	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5379	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5380
5381	ath_rate_newassoc(sc, an, isnew);
5382	if (isnew &&
5383	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5384	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5385		ath_setup_stationkey(ni);
5386
5387	/*
5388	 * If we're reassociating, make sure that any paused queues
5389	 * get unpaused.
5390	 *
5391	 * Now, we may hvae frames in the hardware queue for this node.
5392	 * So if we are reassociating and there are frames in the queue,
5393	 * we need to go through the cleanup path to ensure that they're
5394	 * marked as non-aggregate.
5395	 */
5396	if (! isnew) {
5397		device_printf(sc->sc_dev,
5398		    "%s: %6D: reassoc; is_powersave=%d\n",
5399		    __func__,
5400		    ni->ni_macaddr,
5401		    ":",
5402		    an->an_is_powersave);
5403
5404		/* XXX for now, we can't hold the lock across assoc */
5405		ath_tx_node_reassoc(sc, an);
5406
5407		/* XXX for now, we can't hold the lock across wakeup */
5408		if (an->an_is_powersave)
5409			ath_tx_node_wakeup(sc, an);
5410	}
5411}
5412
5413static int
5414ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5415	int nchans, struct ieee80211_channel chans[])
5416{
5417	struct ath_softc *sc = ic->ic_ifp->if_softc;
5418	struct ath_hal *ah = sc->sc_ah;
5419	HAL_STATUS status;
5420
5421	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5422	    "%s: rd %u cc %u location %c%s\n",
5423	    __func__, reg->regdomain, reg->country, reg->location,
5424	    reg->ecm ? " ecm" : "");
5425
5426	status = ath_hal_set_channels(ah, chans, nchans,
5427	    reg->country, reg->regdomain);
5428	if (status != HAL_OK) {
5429		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5430		    __func__, status);
5431		return EINVAL;		/* XXX */
5432	}
5433
5434	return 0;
5435}
5436
5437static void
5438ath_getradiocaps(struct ieee80211com *ic,
5439	int maxchans, int *nchans, struct ieee80211_channel chans[])
5440{
5441	struct ath_softc *sc = ic->ic_ifp->if_softc;
5442	struct ath_hal *ah = sc->sc_ah;
5443
5444	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5445	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5446
5447	/* XXX check return */
5448	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5449	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5450
5451}
5452
5453static int
5454ath_getchannels(struct ath_softc *sc)
5455{
5456	struct ifnet *ifp = sc->sc_ifp;
5457	struct ieee80211com *ic = ifp->if_l2com;
5458	struct ath_hal *ah = sc->sc_ah;
5459	HAL_STATUS status;
5460
5461	/*
5462	 * Collect channel set based on EEPROM contents.
5463	 */
5464	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5465	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5466	if (status != HAL_OK) {
5467		if_printf(ifp, "%s: unable to collect channel list from hal, "
5468		    "status %d\n", __func__, status);
5469		return EINVAL;
5470	}
5471	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5472	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5473	/* XXX map Atheros sku's to net80211 SKU's */
5474	/* XXX net80211 types too small */
5475	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5476	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5477	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5478	ic->ic_regdomain.isocc[1] = ' ';
5479
5480	ic->ic_regdomain.ecm = 1;
5481	ic->ic_regdomain.location = 'I';
5482
5483	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5484	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5485	    __func__, sc->sc_eerd, sc->sc_eecc,
5486	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5487	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5488	return 0;
5489}
5490
5491static int
5492ath_rate_setup(struct ath_softc *sc, u_int mode)
5493{
5494	struct ath_hal *ah = sc->sc_ah;
5495	const HAL_RATE_TABLE *rt;
5496
5497	switch (mode) {
5498	case IEEE80211_MODE_11A:
5499		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5500		break;
5501	case IEEE80211_MODE_HALF:
5502		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5503		break;
5504	case IEEE80211_MODE_QUARTER:
5505		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5506		break;
5507	case IEEE80211_MODE_11B:
5508		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5509		break;
5510	case IEEE80211_MODE_11G:
5511		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5512		break;
5513	case IEEE80211_MODE_TURBO_A:
5514		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5515		break;
5516	case IEEE80211_MODE_TURBO_G:
5517		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5518		break;
5519	case IEEE80211_MODE_STURBO_A:
5520		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5521		break;
5522	case IEEE80211_MODE_11NA:
5523		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5524		break;
5525	case IEEE80211_MODE_11NG:
5526		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5527		break;
5528	default:
5529		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5530			__func__, mode);
5531		return 0;
5532	}
5533	sc->sc_rates[mode] = rt;
5534	return (rt != NULL);
5535}
5536
5537static void
5538ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5539{
5540#define	N(a)	(sizeof(a)/sizeof(a[0]))
5541	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5542	static const struct {
5543		u_int		rate;		/* tx/rx 802.11 rate */
5544		u_int16_t	timeOn;		/* LED on time (ms) */
5545		u_int16_t	timeOff;	/* LED off time (ms) */
5546	} blinkrates[] = {
5547		{ 108,  40,  10 },
5548		{  96,  44,  11 },
5549		{  72,  50,  13 },
5550		{  48,  57,  14 },
5551		{  36,  67,  16 },
5552		{  24,  80,  20 },
5553		{  22, 100,  25 },
5554		{  18, 133,  34 },
5555		{  12, 160,  40 },
5556		{  10, 200,  50 },
5557		{   6, 240,  58 },
5558		{   4, 267,  66 },
5559		{   2, 400, 100 },
5560		{   0, 500, 130 },
5561		/* XXX half/quarter rates */
5562	};
5563	const HAL_RATE_TABLE *rt;
5564	int i, j;
5565
5566	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5567	rt = sc->sc_rates[mode];
5568	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5569	for (i = 0; i < rt->rateCount; i++) {
5570		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5571		if (rt->info[i].phy != IEEE80211_T_HT)
5572			sc->sc_rixmap[ieeerate] = i;
5573		else
5574			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5575	}
5576	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5577	for (i = 0; i < N(sc->sc_hwmap); i++) {
5578		if (i >= rt->rateCount) {
5579			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5580			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5581			continue;
5582		}
5583		sc->sc_hwmap[i].ieeerate =
5584			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5585		if (rt->info[i].phy == IEEE80211_T_HT)
5586			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5587		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5588		if (rt->info[i].shortPreamble ||
5589		    rt->info[i].phy == IEEE80211_T_OFDM)
5590			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5591		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5592		for (j = 0; j < N(blinkrates)-1; j++)
5593			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5594				break;
5595		/* NB: this uses the last entry if the rate isn't found */
5596		/* XXX beware of overlow */
5597		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5598		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5599	}
5600	sc->sc_currates = rt;
5601	sc->sc_curmode = mode;
5602	/*
5603	 * All protection frames are transmited at 2Mb/s for
5604	 * 11g, otherwise at 1Mb/s.
5605	 */
5606	if (mode == IEEE80211_MODE_11G)
5607		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5608	else
5609		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5610	/* NB: caller is responsible for resetting rate control state */
5611#undef N
5612}
5613
5614static void
5615ath_watchdog(void *arg)
5616{
5617	struct ath_softc *sc = arg;
5618	int do_reset = 0;
5619
5620	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5621		struct ifnet *ifp = sc->sc_ifp;
5622		uint32_t hangs;
5623
5624		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5625		    hangs != 0) {
5626			if_printf(ifp, "%s hang detected (0x%x)\n",
5627			    hangs & 0xff ? "bb" : "mac", hangs);
5628		} else
5629			if_printf(ifp, "device timeout\n");
5630		do_reset = 1;
5631		ifp->if_oerrors++;
5632		sc->sc_stats.ast_watchdog++;
5633	}
5634
5635	/*
5636	 * We can't hold the lock across the ath_reset() call.
5637	 *
5638	 * And since this routine can't hold a lock and sleep,
5639	 * do the reset deferred.
5640	 */
5641	if (do_reset) {
5642		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5643	}
5644
5645	callout_schedule(&sc->sc_wd_ch, hz);
5646}
5647
5648/*
5649 * Fetch the rate control statistics for the given node.
5650 */
5651static int
5652ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
5653{
5654	struct ath_node *an;
5655	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5656	struct ieee80211_node *ni;
5657	int error = 0;
5658
5659	/* Perform a lookup on the given node */
5660	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
5661	if (ni == NULL) {
5662		error = EINVAL;
5663		goto bad;
5664	}
5665
5666	/* Lock the ath_node */
5667	an = ATH_NODE(ni);
5668	ATH_NODE_LOCK(an);
5669
5670	/* Fetch the rate control stats for this node */
5671	error = ath_rate_fetch_node_stats(sc, an, rs);
5672
5673	/* No matter what happens here, just drop through */
5674
5675	/* Unlock the ath_node */
5676	ATH_NODE_UNLOCK(an);
5677
5678	/* Unref the node */
5679	ieee80211_node_decref(ni);
5680
5681bad:
5682	return (error);
5683}
5684
5685#ifdef ATH_DIAGAPI
5686/*
5687 * Diagnostic interface to the HAL.  This is used by various
5688 * tools to do things like retrieve register contents for
5689 * debugging.  The mechanism is intentionally opaque so that
5690 * it can change frequently w/o concern for compatiblity.
5691 */
5692static int
5693ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5694{
5695	struct ath_hal *ah = sc->sc_ah;
5696	u_int id = ad->ad_id & ATH_DIAG_ID;
5697	void *indata = NULL;
5698	void *outdata = NULL;
5699	u_int32_t insize = ad->ad_in_size;
5700	u_int32_t outsize = ad->ad_out_size;
5701	int error = 0;
5702
5703	if (ad->ad_id & ATH_DIAG_IN) {
5704		/*
5705		 * Copy in data.
5706		 */
5707		indata = malloc(insize, M_TEMP, M_NOWAIT);
5708		if (indata == NULL) {
5709			error = ENOMEM;
5710			goto bad;
5711		}
5712		error = copyin(ad->ad_in_data, indata, insize);
5713		if (error)
5714			goto bad;
5715	}
5716	if (ad->ad_id & ATH_DIAG_DYN) {
5717		/*
5718		 * Allocate a buffer for the results (otherwise the HAL
5719		 * returns a pointer to a buffer where we can read the
5720		 * results).  Note that we depend on the HAL leaving this
5721		 * pointer for us to use below in reclaiming the buffer;
5722		 * may want to be more defensive.
5723		 */
5724		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5725		if (outdata == NULL) {
5726			error = ENOMEM;
5727			goto bad;
5728		}
5729	}
5730	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5731		if (outsize < ad->ad_out_size)
5732			ad->ad_out_size = outsize;
5733		if (outdata != NULL)
5734			error = copyout(outdata, ad->ad_out_data,
5735					ad->ad_out_size);
5736	} else {
5737		error = EINVAL;
5738	}
5739bad:
5740	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5741		free(indata, M_TEMP);
5742	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5743		free(outdata, M_TEMP);
5744	return error;
5745}
5746#endif /* ATH_DIAGAPI */
5747
5748static int
5749ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5750{
5751#define	IS_RUNNING(ifp) \
5752	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5753	struct ath_softc *sc = ifp->if_softc;
5754	struct ieee80211com *ic = ifp->if_l2com;
5755	struct ifreq *ifr = (struct ifreq *)data;
5756	const HAL_RATE_TABLE *rt;
5757	int error = 0;
5758
5759	switch (cmd) {
5760	case SIOCSIFFLAGS:
5761		ATH_LOCK(sc);
5762		if (IS_RUNNING(ifp)) {
5763			/*
5764			 * To avoid rescanning another access point,
5765			 * do not call ath_init() here.  Instead,
5766			 * only reflect promisc mode settings.
5767			 */
5768			ath_mode_init(sc);
5769		} else if (ifp->if_flags & IFF_UP) {
5770			/*
5771			 * Beware of being called during attach/detach
5772			 * to reset promiscuous mode.  In that case we
5773			 * will still be marked UP but not RUNNING.
5774			 * However trying to re-init the interface
5775			 * is the wrong thing to do as we've already
5776			 * torn down much of our state.  There's
5777			 * probably a better way to deal with this.
5778			 */
5779			if (!sc->sc_invalid)
5780				ath_init(sc);	/* XXX lose error */
5781		} else {
5782			ath_stop_locked(ifp);
5783#ifdef notyet
5784			/* XXX must wakeup in places like ath_vap_delete */
5785			if (!sc->sc_invalid)
5786				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5787#endif
5788		}
5789		ATH_UNLOCK(sc);
5790		break;
5791	case SIOCGIFMEDIA:
5792	case SIOCSIFMEDIA:
5793		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5794		break;
5795	case SIOCGATHSTATS:
5796		/* NB: embed these numbers to get a consistent view */
5797		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5798		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5799		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5800		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5801#ifdef IEEE80211_SUPPORT_TDMA
5802		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
5803		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
5804#endif
5805		rt = sc->sc_currates;
5806		sc->sc_stats.ast_tx_rate =
5807		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
5808		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
5809			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
5810		return copyout(&sc->sc_stats,
5811		    ifr->ifr_data, sizeof (sc->sc_stats));
5812	case SIOCGATHAGSTATS:
5813		return copyout(&sc->sc_aggr_stats,
5814		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
5815	case SIOCZATHSTATS:
5816		error = priv_check(curthread, PRIV_DRIVER);
5817		if (error == 0) {
5818			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
5819			memset(&sc->sc_aggr_stats, 0,
5820			    sizeof(sc->sc_aggr_stats));
5821			memset(&sc->sc_intr_stats, 0,
5822			    sizeof(sc->sc_intr_stats));
5823		}
5824		break;
5825#ifdef ATH_DIAGAPI
5826	case SIOCGATHDIAG:
5827		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5828		break;
5829	case SIOCGATHPHYERR:
5830		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
5831		break;
5832#endif
5833	case SIOCGATHSPECTRAL:
5834		error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
5835		break;
5836	case SIOCGATHNODERATESTATS:
5837		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
5838		break;
5839	case SIOCGIFADDR:
5840		error = ether_ioctl(ifp, cmd, data);
5841		break;
5842	default:
5843		error = EINVAL;
5844		break;
5845	}
5846	return error;
5847#undef IS_RUNNING
5848}
5849
5850/*
5851 * Announce various information on device/driver attach.
5852 */
5853static void
5854ath_announce(struct ath_softc *sc)
5855{
5856	struct ifnet *ifp = sc->sc_ifp;
5857	struct ath_hal *ah = sc->sc_ah;
5858
5859	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
5860		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
5861		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5862	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
5863		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
5864	if (bootverbose) {
5865		int i;
5866		for (i = 0; i <= WME_AC_VO; i++) {
5867			struct ath_txq *txq = sc->sc_ac2q[i];
5868			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5869				txq->axq_qnum, ieee80211_wme_acnames[i]);
5870		}
5871		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5872			sc->sc_cabq->axq_qnum);
5873		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5874	}
5875	if (ath_rxbuf != ATH_RXBUF)
5876		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5877	if (ath_txbuf != ATH_TXBUF)
5878		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5879	if (sc->sc_mcastkey && bootverbose)
5880		if_printf(ifp, "using multicast key search\n");
5881}
5882
5883static void
5884ath_dfs_tasklet(void *p, int npending)
5885{
5886	struct ath_softc *sc = (struct ath_softc *) p;
5887	struct ifnet *ifp = sc->sc_ifp;
5888	struct ieee80211com *ic = ifp->if_l2com;
5889
5890	/*
5891	 * If previous processing has found a radar event,
5892	 * signal this to the net80211 layer to begin DFS
5893	 * processing.
5894	 */
5895	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
5896		/* DFS event found, initiate channel change */
5897		/*
5898		 * XXX doesn't currently tell us whether the event
5899		 * XXX was found in the primary or extension
5900		 * XXX channel!
5901		 */
5902		IEEE80211_LOCK(ic);
5903		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
5904		IEEE80211_UNLOCK(ic);
5905	}
5906}
5907
5908/*
5909 * Enable/disable power save.  This must be called with
5910 * no TX driver locks currently held, so it should only
5911 * be called from the RX path (which doesn't hold any
5912 * TX driver locks.)
5913 */
5914static void
5915ath_node_powersave(struct ieee80211_node *ni, int enable)
5916{
5917#ifdef	ATH_SW_PSQ
5918	struct ath_node *an = ATH_NODE(ni);
5919	struct ieee80211com *ic = ni->ni_ic;
5920	struct ath_softc *sc = ic->ic_ifp->if_softc;
5921	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5922
5923	ATH_NODE_UNLOCK_ASSERT(an);
5924	/* XXX and no TXQ locks should be held here */
5925
5926	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n",
5927	    __func__, ni, enable);
5928
5929	/* Suspend or resume software queue handling */
5930	if (enable)
5931		ath_tx_node_sleep(sc, an);
5932	else
5933		ath_tx_node_wakeup(sc, an);
5934
5935	/* Update net80211 state */
5936	avp->av_node_ps(ni, enable);
5937#else
5938	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5939
5940	/* Update net80211 state */
5941	avp->av_node_ps(ni, enable);
5942#endif/* ATH_SW_PSQ */
5943}
5944
5945/*
5946 * Notification from net80211 that the powersave queue state has
5947 * changed.
5948 *
5949 * Since the software queue also may have some frames:
5950 *
5951 * + if the node software queue has frames and the TID state
5952 *   is 0, we set the TIM;
5953 * + if the node and the stack are both empty, we clear the TIM bit.
5954 * + If the stack tries to set the bit, always set it.
5955 * + If the stack tries to clear the bit, only clear it if the
5956 *   software queue in question is also cleared.
5957 *
5958 * TODO: this is called during node teardown; so let's ensure this
5959 * is all correctly handled and that the TIM bit is cleared.
5960 * It may be that the node flush is called _AFTER_ the net80211
5961 * stack clears the TIM.
5962 *
5963 * Here is the racy part.  Since it's possible >1 concurrent,
5964 * overlapping TXes will appear complete with a TX completion in
5965 * another thread, it's possible that the concurrent TIM calls will
5966 * clash.  We can't hold the node lock here because setting the
5967 * TIM grabs the net80211 comlock and this may cause a LOR.
5968 * The solution is either to totally serialise _everything_ at
5969 * this point (ie, all TX, completion and any reset/flush go into
5970 * one taskqueue) or a new "ath TIM lock" needs to be created that
5971 * just wraps the driver state change and this call to avp->av_set_tim().
5972 *
5973 * The same race exists in the net80211 power save queue handling
5974 * as well.  Since multiple transmitting threads may queue frames
5975 * into the driver, as well as ps-poll and the driver transmitting
5976 * frames (and thus clearing the psq), it's quite possible that
5977 * a packet entering the PSQ and a ps-poll being handled will
5978 * race, causing the TIM to be cleared and not re-set.
5979 */
5980static int
5981ath_node_set_tim(struct ieee80211_node *ni, int enable)
5982{
5983#ifdef	ATH_SW_PSQ
5984	struct ieee80211com *ic = ni->ni_ic;
5985	struct ath_softc *sc = ic->ic_ifp->if_softc;
5986	struct ath_node *an = ATH_NODE(ni);
5987	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5988	int changed = 0;
5989
5990	ATH_TX_LOCK(sc);
5991	an->an_stack_psq = enable;
5992
5993	/*
5994	 * This will get called for all operating modes,
5995	 * even if avp->av_set_tim is unset.
5996	 * It's currently set for hostap/ibss modes; but
5997	 * the same infrastructure is used for both STA
5998	 * and AP/IBSS node power save.
5999	 */
6000	if (avp->av_set_tim == NULL) {
6001		ATH_TX_UNLOCK(sc);
6002		return (0);
6003	}
6004
6005	/*
6006	 * If setting the bit, always set it here.
6007	 * If clearing the bit, only clear it if the
6008	 * software queue is also empty.
6009	 *
6010	 * If the node has left power save, just clear the TIM
6011	 * bit regardless of the state of the power save queue.
6012	 *
6013	 * XXX TODO: although atomics are used, it's quite possible
6014	 * that a race will occur between this and setting/clearing
6015	 * in another thread.  TX completion will occur always in
6016	 * one thread, however setting/clearing the TIM bit can come
6017	 * from a variety of different process contexts!
6018	 */
6019	if (enable && an->an_tim_set == 1) {
6020		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6021		    "%s: an=%p, enable=%d, tim_set=1, ignoring\n",
6022		    __func__, an, enable);
6023		ATH_TX_UNLOCK(sc);
6024	} else if (enable) {
6025		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6026		    "%s: an=%p, enable=%d, enabling TIM\n",
6027		    __func__, an, enable);
6028		an->an_tim_set = 1;
6029		ATH_TX_UNLOCK(sc);
6030		changed = avp->av_set_tim(ni, enable);
6031	} else if (atomic_load_acq_int(&an->an_swq_depth) == 0) {
6032		/* disable */
6033		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6034		    "%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n",
6035		    __func__, an, enable);
6036		an->an_tim_set = 0;
6037		ATH_TX_UNLOCK(sc);
6038		changed = avp->av_set_tim(ni, enable);
6039	} else if (! an->an_is_powersave) {
6040		/*
6041		 * disable regardless; the node isn't in powersave now
6042		 */
6043		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6044		    "%s: an=%p, enable=%d, an_pwrsave=0, disabling\n",
6045		    __func__, an, enable);
6046		an->an_tim_set = 0;
6047		ATH_TX_UNLOCK(sc);
6048		changed = avp->av_set_tim(ni, enable);
6049	} else {
6050		/*
6051		 * psq disable, node is currently in powersave, node
6052		 * software queue isn't empty, so don't clear the TIM bit
6053		 * for now.
6054		 */
6055		ATH_TX_UNLOCK(sc);
6056		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6057		    "%s: enable=%d, an_swq_depth > 0, ignoring\n",
6058		    __func__, enable);
6059		changed = 0;
6060	}
6061
6062	return (changed);
6063#else
6064	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
6065
6066	/*
6067	 * Some operating modes don't set av_set_tim(), so don't
6068	 * update it here.
6069	 */
6070	if (avp->av_set_tim == NULL)
6071		return (0);
6072
6073	return (avp->av_set_tim(ni, enable));
6074#endif /* ATH_SW_PSQ */
6075}
6076
6077/*
6078 * Set or update the TIM from the software queue.
6079 *
6080 * Check the software queue depth before attempting to do lock
6081 * anything; that avoids trying to obtain the lock.  Then,
6082 * re-check afterwards to ensure nothing has changed in the
6083 * meantime.
6084 *
6085 * set:   This is designed to be called from the TX path, after
6086 *        a frame has been queued; to see if the swq > 0.
6087 *
6088 * clear: This is designed to be called from the buffer completion point
6089 *        (right now it's ath_tx_default_comp()) where the state of
6090 *        a software queue has changed.
6091 *
6092 * It makes sense to place it at buffer free / completion rather
6093 * than after each software queue operation, as there's no real
6094 * point in churning the TIM bit as the last frames in the software
6095 * queue are transmitted.  If they fail and we retry them, we'd
6096 * just be setting the TIM bit again anyway.
6097 */
6098void
6099ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
6100     int enable)
6101{
6102#ifdef	ATH_SW_PSQ
6103	struct ath_node *an;
6104	struct ath_vap *avp;
6105
6106	/* Don't do this for broadcast/etc frames */
6107	if (ni == NULL)
6108		return;
6109
6110	an = ATH_NODE(ni);
6111	avp = ATH_VAP(ni->ni_vap);
6112
6113	/*
6114	 * And for operating modes without the TIM handler set, let's
6115	 * just skip those.
6116	 */
6117	if (avp->av_set_tim == NULL)
6118		return;
6119
6120	ATH_TX_LOCK_ASSERT(sc);
6121
6122	if (enable) {
6123		/*
6124		 * Don't bother grabbing the lock unless the queue is not
6125		 * empty.
6126		 */
6127		if (atomic_load_acq_int(&an->an_swq_depth) == 0)
6128			return;
6129
6130		if (an->an_is_powersave &&
6131		    an->an_tim_set == 0 &&
6132		    atomic_load_acq_int(&an->an_swq_depth) != 0) {
6133			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6134			    "%s: an=%p, swq_depth>0, tim_set=0, set!\n",
6135			    __func__, an);
6136			an->an_tim_set = 1;
6137			(void) avp->av_set_tim(ni, 1);
6138		}
6139	} else {
6140		/*
6141		 * Don't bother grabbing the lock unless the queue is empty.
6142		 */
6143		if (atomic_load_acq_int(&an->an_swq_depth) != 0)
6144			return;
6145
6146		if (an->an_is_powersave &&
6147		    an->an_stack_psq == 0 &&
6148		    an->an_tim_set == 1 &&
6149		    atomic_load_acq_int(&an->an_swq_depth) == 0) {
6150			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
6151			    "%s: an=%p, swq_depth=0, tim_set=1, psq_set=0,"
6152			    " clear!\n",
6153			    __func__, an);
6154			an->an_tim_set = 0;
6155			(void) avp->av_set_tim(ni, 0);
6156		}
6157	}
6158#else
6159	return;
6160#endif	/* ATH_SW_PSQ */
6161}
6162
6163MODULE_VERSION(if_ath, 1);
6164MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
6165#if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
6166MODULE_DEPEND(if_ath, alq, 1, 1, 1);
6167#endif
6168