if_ath.c revision 248671
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 248671 2013-03-24 00:03:12Z adrian $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42/*
43 * This is needed for register operations which are performed
44 * by the driver - eg, calls to ath_hal_gettsf32().
45 *
46 * It's also required for any AH_DEBUG checks in here, eg the
47 * module dependencies.
48 */
49#include "opt_ah.h"
50#include "opt_wlan.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/sysctl.h>
55#include <sys/mbuf.h>
56#include <sys/malloc.h>
57#include <sys/lock.h>
58#include <sys/mutex.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/sockio.h>
62#include <sys/errno.h>
63#include <sys/callout.h>
64#include <sys/bus.h>
65#include <sys/endian.h>
66#include <sys/kthread.h>
67#include <sys/taskqueue.h>
68#include <sys/priv.h>
69#include <sys/module.h>
70#include <sys/ktr.h>
71#include <sys/smp.h>	/* for mp_ncpus */
72
73#include <machine/bus.h>
74
75#include <net/if.h>
76#include <net/if_dl.h>
77#include <net/if_media.h>
78#include <net/if_types.h>
79#include <net/if_arp.h>
80#include <net/ethernet.h>
81#include <net/if_llc.h>
82
83#include <net80211/ieee80211_var.h>
84#include <net80211/ieee80211_regdomain.h>
85#ifdef IEEE80211_SUPPORT_SUPERG
86#include <net80211/ieee80211_superg.h>
87#endif
88#ifdef IEEE80211_SUPPORT_TDMA
89#include <net80211/ieee80211_tdma.h>
90#endif
91
92#include <net/bpf.h>
93
94#ifdef INET
95#include <netinet/in.h>
96#include <netinet/if_ether.h>
97#endif
98
99#include <dev/ath/if_athvar.h>
100#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101#include <dev/ath/ath_hal/ah_diagcodes.h>
102
103#include <dev/ath/if_ath_debug.h>
104#include <dev/ath/if_ath_misc.h>
105#include <dev/ath/if_ath_tsf.h>
106#include <dev/ath/if_ath_tx.h>
107#include <dev/ath/if_ath_sysctl.h>
108#include <dev/ath/if_ath_led.h>
109#include <dev/ath/if_ath_keycache.h>
110#include <dev/ath/if_ath_rx.h>
111#include <dev/ath/if_ath_rx_edma.h>
112#include <dev/ath/if_ath_tx_edma.h>
113#include <dev/ath/if_ath_beacon.h>
114#include <dev/ath/if_ath_spectral.h>
115#include <dev/ath/if_athdfs.h>
116
117#ifdef ATH_TX99_DIAG
118#include <dev/ath/ath_tx99/ath_tx99.h>
119#endif
120
121#ifdef	ATH_DEBUG_ALQ
122#include <dev/ath/if_ath_alq.h>
123#endif
124
125/*
126 * Only enable this if you're working on PS-POLL support.
127 */
128#undef	ATH_SW_PSQ
129
130/*
131 * ATH_BCBUF determines the number of vap's that can transmit
132 * beacons and also (currently) the number of vap's that can
133 * have unique mac addresses/bssid.  When staggering beacons
134 * 4 is probably a good max as otherwise the beacons become
135 * very closely spaced and there is limited time for cab q traffic
136 * to go out.  You can burst beacons instead but that is not good
137 * for stations in power save and at some point you really want
138 * another radio (and channel).
139 *
140 * The limit on the number of mac addresses is tied to our use of
141 * the U/L bit and tracking addresses in a byte; it would be
142 * worthwhile to allow more for applications like proxy sta.
143 */
144CTASSERT(ATH_BCBUF <= 8);
145
146static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
147		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
148		    const uint8_t [IEEE80211_ADDR_LEN],
149		    const uint8_t [IEEE80211_ADDR_LEN]);
150static void	ath_vap_delete(struct ieee80211vap *);
151static void	ath_init(void *);
152static void	ath_stop_locked(struct ifnet *);
153static void	ath_stop(struct ifnet *);
154static int	ath_reset_vap(struct ieee80211vap *, u_long);
155static void	ath_start_queue(struct ifnet *ifp);
156static int	ath_media_change(struct ifnet *);
157static void	ath_watchdog(void *);
158static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
159static void	ath_fatal_proc(void *, int);
160static void	ath_bmiss_vap(struct ieee80211vap *);
161static void	ath_bmiss_proc(void *, int);
162static void	ath_key_update_begin(struct ieee80211vap *);
163static void	ath_key_update_end(struct ieee80211vap *);
164static void	ath_update_mcast(struct ifnet *);
165static void	ath_update_promisc(struct ifnet *);
166static void	ath_updateslot(struct ifnet *);
167static void	ath_bstuck_proc(void *, int);
168static void	ath_reset_proc(void *, int);
169static int	ath_desc_alloc(struct ath_softc *);
170static void	ath_desc_free(struct ath_softc *);
171static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
172			const uint8_t [IEEE80211_ADDR_LEN]);
173static void	ath_node_cleanup(struct ieee80211_node *);
174static void	ath_node_free(struct ieee80211_node *);
175static void	ath_node_getsignal(const struct ieee80211_node *,
176			int8_t *, int8_t *);
177static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
178static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
179static int	ath_tx_setup(struct ath_softc *, int, int);
180static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
181static void	ath_tx_cleanup(struct ath_softc *);
182static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
183		    int dosched);
184static void	ath_tx_proc_q0(void *, int);
185static void	ath_tx_proc_q0123(void *, int);
186static void	ath_tx_proc(void *, int);
187static void	ath_txq_sched_tasklet(void *, int);
188static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
189static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
190static void	ath_scan_start(struct ieee80211com *);
191static void	ath_scan_end(struct ieee80211com *);
192static void	ath_set_channel(struct ieee80211com *);
193#ifdef	ATH_ENABLE_11N
194static void	ath_update_chw(struct ieee80211com *);
195#endif	/* ATH_ENABLE_11N */
196static void	ath_calibrate(void *);
197static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
198static void	ath_setup_stationkey(struct ieee80211_node *);
199static void	ath_newassoc(struct ieee80211_node *, int);
200static int	ath_setregdomain(struct ieee80211com *,
201		    struct ieee80211_regdomain *, int,
202		    struct ieee80211_channel []);
203static void	ath_getradiocaps(struct ieee80211com *, int, int *,
204		    struct ieee80211_channel []);
205static int	ath_getchannels(struct ath_softc *);
206
207static int	ath_rate_setup(struct ath_softc *, u_int mode);
208static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
209
210static void	ath_announce(struct ath_softc *);
211
212static void	ath_dfs_tasklet(void *, int);
213static void	ath_node_powersave(struct ieee80211_node *, int);
214static int	ath_node_set_tim(struct ieee80211_node *, int);
215
216#ifdef IEEE80211_SUPPORT_TDMA
217#include <dev/ath/if_ath_tdma.h>
218#endif
219
220SYSCTL_DECL(_hw_ath);
221
222/* XXX validate sysctl values */
223static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
224SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
225	    0, "long chip calibration interval (secs)");
226static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
227SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
228	    0, "short chip calibration interval (msecs)");
229static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
230SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
231	    0, "reset chip calibration results (secs)");
232static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
233SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
234	    0, "ANI calibration (msecs)");
235
236int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
237SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
238	    0, "rx buffers allocated");
239TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
240int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
241SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
242	    0, "tx buffers allocated");
243TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
244int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
245SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
246	    0, "tx (mgmt) buffers allocated");
247TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
248
249int ath_bstuck_threshold = 4;		/* max missed beacons */
250SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
251	    0, "max missed beacon xmits before chip reset");
252
253MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
254
255void
256ath_legacy_attach_comp_func(struct ath_softc *sc)
257{
258
259	/*
260	 * Special case certain configurations.  Note the
261	 * CAB queue is handled by these specially so don't
262	 * include them when checking the txq setup mask.
263	 */
264	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
265	case 0x01:
266		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
267		break;
268	case 0x0f:
269		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
270		break;
271	default:
272		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
273		break;
274	}
275}
276
277#define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
278#define	HAL_MODE_HT40 \
279	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
280	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
281int
282ath_attach(u_int16_t devid, struct ath_softc *sc)
283{
284	struct ifnet *ifp;
285	struct ieee80211com *ic;
286	struct ath_hal *ah = NULL;
287	HAL_STATUS status;
288	int error = 0, i;
289	u_int wmodes;
290	uint8_t macaddr[IEEE80211_ADDR_LEN];
291	int rx_chainmask, tx_chainmask;
292
293	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
294
295	CURVNET_SET(vnet0);
296	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
297	if (ifp == NULL) {
298		device_printf(sc->sc_dev, "can not if_alloc()\n");
299		error = ENOSPC;
300		CURVNET_RESTORE();
301		goto bad;
302	}
303	ic = ifp->if_l2com;
304
305	/* set these up early for if_printf use */
306	if_initname(ifp, device_get_name(sc->sc_dev),
307		device_get_unit(sc->sc_dev));
308	CURVNET_RESTORE();
309
310	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
311	    sc->sc_eepromdata, &status);
312	if (ah == NULL) {
313		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
314			status);
315		error = ENXIO;
316		goto bad;
317	}
318	sc->sc_ah = ah;
319	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
320#ifdef	ATH_DEBUG
321	sc->sc_debug = ath_debug;
322#endif
323
324	/*
325	 * Setup the DMA/EDMA functions based on the current
326	 * hardware support.
327	 *
328	 * This is required before the descriptors are allocated.
329	 */
330	if (ath_hal_hasedma(sc->sc_ah)) {
331		sc->sc_isedma = 1;
332		ath_recv_setup_edma(sc);
333		ath_xmit_setup_edma(sc);
334	} else {
335		ath_recv_setup_legacy(sc);
336		ath_xmit_setup_legacy(sc);
337	}
338
339	/*
340	 * Check if the MAC has multi-rate retry support.
341	 * We do this by trying to setup a fake extended
342	 * descriptor.  MAC's that don't have support will
343	 * return false w/o doing anything.  MAC's that do
344	 * support it will return true w/o doing anything.
345	 */
346	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
347
348	/*
349	 * Check if the device has hardware counters for PHY
350	 * errors.  If so we need to enable the MIB interrupt
351	 * so we can act on stat triggers.
352	 */
353	if (ath_hal_hwphycounters(ah))
354		sc->sc_needmib = 1;
355
356	/*
357	 * Get the hardware key cache size.
358	 */
359	sc->sc_keymax = ath_hal_keycachesize(ah);
360	if (sc->sc_keymax > ATH_KEYMAX) {
361		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
362			ATH_KEYMAX, sc->sc_keymax);
363		sc->sc_keymax = ATH_KEYMAX;
364	}
365	/*
366	 * Reset the key cache since some parts do not
367	 * reset the contents on initial power up.
368	 */
369	for (i = 0; i < sc->sc_keymax; i++)
370		ath_hal_keyreset(ah, i);
371
372	/*
373	 * Collect the default channel list.
374	 */
375	error = ath_getchannels(sc);
376	if (error != 0)
377		goto bad;
378
379	/*
380	 * Setup rate tables for all potential media types.
381	 */
382	ath_rate_setup(sc, IEEE80211_MODE_11A);
383	ath_rate_setup(sc, IEEE80211_MODE_11B);
384	ath_rate_setup(sc, IEEE80211_MODE_11G);
385	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
386	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
387	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
388	ath_rate_setup(sc, IEEE80211_MODE_11NA);
389	ath_rate_setup(sc, IEEE80211_MODE_11NG);
390	ath_rate_setup(sc, IEEE80211_MODE_HALF);
391	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
392
393	/* NB: setup here so ath_rate_update is happy */
394	ath_setcurmode(sc, IEEE80211_MODE_11A);
395
396	/*
397	 * Allocate TX descriptors and populate the lists.
398	 */
399	error = ath_desc_alloc(sc);
400	if (error != 0) {
401		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
402		    error);
403		goto bad;
404	}
405	error = ath_txdma_setup(sc);
406	if (error != 0) {
407		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
408		    error);
409		goto bad;
410	}
411
412	/*
413	 * Allocate RX descriptors and populate the lists.
414	 */
415	error = ath_rxdma_setup(sc);
416	if (error != 0) {
417		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
418		    error);
419		goto bad;
420	}
421
422	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
423	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
424
425	ATH_TXBUF_LOCK_INIT(sc);
426
427	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
428		taskqueue_thread_enqueue, &sc->sc_tq);
429	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
430		"%s taskq", ifp->if_xname);
431
432	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
433	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
434	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
435	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
436	TASK_INIT(&sc->sc_txqtask, 0, ath_txq_sched_tasklet, sc);
437	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
438
439	/* XXX make this a higher priority taskqueue? */
440	TASK_INIT(&sc->sc_txpkttask, 0, ath_start_task, sc);
441
442	/*
443	 * Allocate hardware transmit queues: one queue for
444	 * beacon frames and one data queue for each QoS
445	 * priority.  Note that the hal handles resetting
446	 * these queues at the needed time.
447	 *
448	 * XXX PS-Poll
449	 */
450	sc->sc_bhalq = ath_beaconq_setup(sc);
451	if (sc->sc_bhalq == (u_int) -1) {
452		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
453		error = EIO;
454		goto bad2;
455	}
456	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
457	if (sc->sc_cabq == NULL) {
458		if_printf(ifp, "unable to setup CAB xmit queue!\n");
459		error = EIO;
460		goto bad2;
461	}
462	/* NB: insure BK queue is the lowest priority h/w queue */
463	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
464		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
465			ieee80211_wme_acnames[WME_AC_BK]);
466		error = EIO;
467		goto bad2;
468	}
469	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
470	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
471	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
472		/*
473		 * Not enough hardware tx queues to properly do WME;
474		 * just punt and assign them all to the same h/w queue.
475		 * We could do a better job of this if, for example,
476		 * we allocate queues when we switch from station to
477		 * AP mode.
478		 */
479		if (sc->sc_ac2q[WME_AC_VI] != NULL)
480			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
481		if (sc->sc_ac2q[WME_AC_BE] != NULL)
482			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
483		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
484		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
485		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
486	}
487
488	/*
489	 * Attach the TX completion function.
490	 *
491	 * The non-EDMA chips may have some special case optimisations;
492	 * this method gives everyone a chance to attach cleanly.
493	 */
494	sc->sc_tx.xmit_attach_comp_func(sc);
495
496	/*
497	 * Setup rate control.  Some rate control modules
498	 * call back to change the anntena state so expose
499	 * the necessary entry points.
500	 * XXX maybe belongs in struct ath_ratectrl?
501	 */
502	sc->sc_setdefantenna = ath_setdefantenna;
503	sc->sc_rc = ath_rate_attach(sc);
504	if (sc->sc_rc == NULL) {
505		error = EIO;
506		goto bad2;
507	}
508
509	/* Attach DFS module */
510	if (! ath_dfs_attach(sc)) {
511		device_printf(sc->sc_dev,
512		    "%s: unable to attach DFS\n", __func__);
513		error = EIO;
514		goto bad2;
515	}
516
517	/* Attach spectral module */
518	if (ath_spectral_attach(sc) < 0) {
519		device_printf(sc->sc_dev,
520		    "%s: unable to attach spectral\n", __func__);
521		error = EIO;
522		goto bad2;
523	}
524
525	/* Start DFS processing tasklet */
526	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
527
528	/* Configure LED state */
529	sc->sc_blinking = 0;
530	sc->sc_ledstate = 1;
531	sc->sc_ledon = 0;			/* low true */
532	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
533	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
534
535	/*
536	 * Don't setup hardware-based blinking.
537	 *
538	 * Although some NICs may have this configured in the
539	 * default reset register values, the user may wish
540	 * to alter which pins have which function.
541	 *
542	 * The reference driver attaches the MAC network LED to GPIO1 and
543	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
544	 * NIC has these reversed.
545	 */
546	sc->sc_hardled = (1 == 0);
547	sc->sc_led_net_pin = -1;
548	sc->sc_led_pwr_pin = -1;
549	/*
550	 * Auto-enable soft led processing for IBM cards and for
551	 * 5211 minipci cards.  Users can also manually enable/disable
552	 * support with a sysctl.
553	 */
554	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
555	ath_led_config(sc);
556	ath_hal_setledstate(ah, HAL_LED_INIT);
557
558	ifp->if_softc = sc;
559	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
560	ifp->if_start = ath_start_queue;
561	ifp->if_ioctl = ath_ioctl;
562	ifp->if_init = ath_init;
563	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
564	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
565	IFQ_SET_READY(&ifp->if_snd);
566
567	ic->ic_ifp = ifp;
568	/* XXX not right but it's not used anywhere important */
569	ic->ic_phytype = IEEE80211_T_OFDM;
570	ic->ic_opmode = IEEE80211_M_STA;
571	ic->ic_caps =
572		  IEEE80211_C_STA		/* station mode */
573		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
574		| IEEE80211_C_HOSTAP		/* hostap mode */
575		| IEEE80211_C_MONITOR		/* monitor mode */
576		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
577		| IEEE80211_C_WDS		/* 4-address traffic works */
578		| IEEE80211_C_MBSS		/* mesh point link mode */
579		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
580		| IEEE80211_C_SHSLOT		/* short slot time supported */
581		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
582#ifndef	ATH_ENABLE_11N
583		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
584#endif
585		| IEEE80211_C_TXFRAG		/* handle tx frags */
586#ifdef	ATH_ENABLE_DFS
587		| IEEE80211_C_DFS		/* Enable radar detection */
588#endif
589		;
590	/*
591	 * Query the hal to figure out h/w crypto support.
592	 */
593	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
594		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
595	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
596		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
597	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
598		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
599	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
600		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
601	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
602		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
603		/*
604		 * Check if h/w does the MIC and/or whether the
605		 * separate key cache entries are required to
606		 * handle both tx+rx MIC keys.
607		 */
608		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
609			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
610		/*
611		 * If the h/w supports storing tx+rx MIC keys
612		 * in one cache slot automatically enable use.
613		 */
614		if (ath_hal_hastkipsplit(ah) ||
615		    !ath_hal_settkipsplit(ah, AH_FALSE))
616			sc->sc_splitmic = 1;
617		/*
618		 * If the h/w can do TKIP MIC together with WME then
619		 * we use it; otherwise we force the MIC to be done
620		 * in software by the net80211 layer.
621		 */
622		if (ath_hal_haswmetkipmic(ah))
623			sc->sc_wmetkipmic = 1;
624	}
625	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
626	/*
627	 * Check for multicast key search support.
628	 */
629	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
630	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
631		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
632	}
633	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
634	/*
635	 * Mark key cache slots associated with global keys
636	 * as in use.  If we knew TKIP was not to be used we
637	 * could leave the +32, +64, and +32+64 slots free.
638	 */
639	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
640		setbit(sc->sc_keymap, i);
641		setbit(sc->sc_keymap, i+64);
642		if (sc->sc_splitmic) {
643			setbit(sc->sc_keymap, i+32);
644			setbit(sc->sc_keymap, i+32+64);
645		}
646	}
647	/*
648	 * TPC support can be done either with a global cap or
649	 * per-packet support.  The latter is not available on
650	 * all parts.  We're a bit pedantic here as all parts
651	 * support a global cap.
652	 */
653	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
654		ic->ic_caps |= IEEE80211_C_TXPMGT;
655
656	/*
657	 * Mark WME capability only if we have sufficient
658	 * hardware queues to do proper priority scheduling.
659	 */
660	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
661		ic->ic_caps |= IEEE80211_C_WME;
662	/*
663	 * Check for misc other capabilities.
664	 */
665	if (ath_hal_hasbursting(ah))
666		ic->ic_caps |= IEEE80211_C_BURST;
667	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
668	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
669	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
670	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
671	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
672	if (ath_hal_hasfastframes(ah))
673		ic->ic_caps |= IEEE80211_C_FF;
674	wmodes = ath_hal_getwirelessmodes(ah);
675	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
676		ic->ic_caps |= IEEE80211_C_TURBOP;
677#ifdef IEEE80211_SUPPORT_TDMA
678	if (ath_hal_macversion(ah) > 0x78) {
679		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
680		ic->ic_tdma_update = ath_tdma_update;
681	}
682#endif
683
684	/*
685	 * TODO: enforce that at least this many frames are available
686	 * in the txbuf list before allowing data frames (raw or
687	 * otherwise) to be transmitted.
688	 */
689	sc->sc_txq_data_minfree = 10;
690	/*
691	 * Leave this as default to maintain legacy behaviour.
692	 * Shortening the cabq/mcastq may end up causing some
693	 * undesirable behaviour.
694	 */
695	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
696
697	/* Enable CABQ by default */
698	sc->sc_cabq_enable = 1;
699
700	/*
701	 * Allow the TX and RX chainmasks to be overridden by
702	 * environment variables and/or device.hints.
703	 *
704	 * This must be done early - before the hardware is
705	 * calibrated or before the 802.11n stream calculation
706	 * is done.
707	 */
708	if (resource_int_value(device_get_name(sc->sc_dev),
709	    device_get_unit(sc->sc_dev), "rx_chainmask",
710	    &rx_chainmask) == 0) {
711		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
712		    rx_chainmask);
713		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
714	}
715	if (resource_int_value(device_get_name(sc->sc_dev),
716	    device_get_unit(sc->sc_dev), "tx_chainmask",
717	    &tx_chainmask) == 0) {
718		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
719		    tx_chainmask);
720		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
721	}
722
723	/*
724	 * Disable MRR with protected frames by default.
725	 * Only 802.11n series NICs can handle this.
726	 */
727	sc->sc_mrrprot = 0;	/* XXX should be a capability */
728
729	/*
730	 * Query the enterprise mode information the HAL.
731	 */
732	if (ath_hal_getcapability(ah, HAL_CAP_ENTERPRISE_MODE, 0,
733	    &sc->sc_ent_cfg) == HAL_OK)
734		sc->sc_use_ent = 1;
735
736#ifdef	ATH_ENABLE_11N
737	/*
738	 * Query HT capabilities
739	 */
740	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
741	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
742		int rxs, txs;
743
744		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
745
746		sc->sc_mrrprot = 1;	/* XXX should be a capability */
747
748		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
749			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
750			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
751			    | IEEE80211_HTCAP_MAXAMSDU_3839
752			    				/* max A-MSDU length */
753			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
754			;
755
756		/*
757		 * Enable short-GI for HT20 only if the hardware
758		 * advertises support.
759		 * Notably, anything earlier than the AR9287 doesn't.
760		 */
761		if ((ath_hal_getcapability(ah,
762		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
763		    (wmodes & HAL_MODE_HT20)) {
764			device_printf(sc->sc_dev,
765			    "[HT] enabling short-GI in 20MHz mode\n");
766			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
767		}
768
769		if (wmodes & HAL_MODE_HT40)
770			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
771			    |  IEEE80211_HTCAP_SHORTGI40;
772
773		/*
774		 * TX/RX streams need to be taken into account when
775		 * negotiating which MCS rates it'll receive and
776		 * what MCS rates are available for TX.
777		 */
778		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
779		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
780
781		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
782		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
783
784		ic->ic_txstream = txs;
785		ic->ic_rxstream = rxs;
786
787		/*
788		 * Setup TX and RX STBC based on what the HAL allows and
789		 * the currently configured chainmask set.
790		 * Ie - don't enable STBC TX if only one chain is enabled.
791		 * STBC RX is fine on a single RX chain; it just won't
792		 * provide any real benefit.
793		 */
794		if (ath_hal_getcapability(ah, HAL_CAP_RX_STBC, 0,
795		    NULL) == HAL_OK) {
796			sc->sc_rx_stbc = 1;
797			device_printf(sc->sc_dev,
798			    "[HT] 1 stream STBC receive enabled\n");
799			ic->ic_htcaps |= IEEE80211_HTCAP_RXSTBC_1STREAM;
800		}
801		if (txs > 1 && ath_hal_getcapability(ah, HAL_CAP_TX_STBC, 0,
802		    NULL) == HAL_OK) {
803			sc->sc_tx_stbc = 1;
804			device_printf(sc->sc_dev,
805			    "[HT] 1 stream STBC transmit enabled\n");
806			ic->ic_htcaps |= IEEE80211_HTCAP_TXSTBC;
807		}
808
809		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
810		    &sc->sc_rts_aggr_limit);
811		if (sc->sc_rts_aggr_limit != (64 * 1024))
812			device_printf(sc->sc_dev,
813			    "[HT] RTS aggregates limited to %d KiB\n",
814			    sc->sc_rts_aggr_limit / 1024);
815
816		device_printf(sc->sc_dev,
817		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
818	}
819#endif
820
821	/*
822	 * Initial aggregation settings.
823	 */
824	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
825	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
826	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
827	sc->sc_aggr_limit = ATH_AGGR_MAXSIZE;
828	sc->sc_delim_min_pad = 0;
829
830	/*
831	 * Check if the hardware requires PCI register serialisation.
832	 * Some of the Owl based MACs require this.
833	 */
834	if (mp_ncpus > 1 &&
835	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
836	     0, NULL) == HAL_OK) {
837		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
838		device_printf(sc->sc_dev,
839		    "Enabling register serialisation\n");
840	}
841
842	/*
843	 * Initialise the deferred completed RX buffer list.
844	 */
845	TAILQ_INIT(&sc->sc_rx_rxlist);
846
847	/*
848	 * Indicate we need the 802.11 header padded to a
849	 * 32-bit boundary for 4-address and QoS frames.
850	 */
851	ic->ic_flags |= IEEE80211_F_DATAPAD;
852
853	/*
854	 * Query the hal about antenna support.
855	 */
856	sc->sc_defant = ath_hal_getdefantenna(ah);
857
858	/*
859	 * Not all chips have the VEOL support we want to
860	 * use with IBSS beacons; check here for it.
861	 */
862	sc->sc_hasveol = ath_hal_hasveol(ah);
863
864	/* get mac address from hardware */
865	ath_hal_getmac(ah, macaddr);
866	if (sc->sc_hasbmask)
867		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
868
869	/* NB: used to size node table key mapping array */
870	ic->ic_max_keyix = sc->sc_keymax;
871	/* call MI attach routine. */
872	ieee80211_ifattach(ic, macaddr);
873	ic->ic_setregdomain = ath_setregdomain;
874	ic->ic_getradiocaps = ath_getradiocaps;
875	sc->sc_opmode = HAL_M_STA;
876
877	/* override default methods */
878	ic->ic_newassoc = ath_newassoc;
879	ic->ic_updateslot = ath_updateslot;
880	ic->ic_wme.wme_update = ath_wme_update;
881	ic->ic_vap_create = ath_vap_create;
882	ic->ic_vap_delete = ath_vap_delete;
883	ic->ic_raw_xmit = ath_raw_xmit;
884	ic->ic_update_mcast = ath_update_mcast;
885	ic->ic_update_promisc = ath_update_promisc;
886	ic->ic_node_alloc = ath_node_alloc;
887	sc->sc_node_free = ic->ic_node_free;
888	ic->ic_node_free = ath_node_free;
889	sc->sc_node_cleanup = ic->ic_node_cleanup;
890	ic->ic_node_cleanup = ath_node_cleanup;
891	ic->ic_node_getsignal = ath_node_getsignal;
892	ic->ic_scan_start = ath_scan_start;
893	ic->ic_scan_end = ath_scan_end;
894	ic->ic_set_channel = ath_set_channel;
895#ifdef	ATH_ENABLE_11N
896	/* 802.11n specific - but just override anyway */
897	sc->sc_addba_request = ic->ic_addba_request;
898	sc->sc_addba_response = ic->ic_addba_response;
899	sc->sc_addba_stop = ic->ic_addba_stop;
900	sc->sc_bar_response = ic->ic_bar_response;
901	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
902
903	ic->ic_addba_request = ath_addba_request;
904	ic->ic_addba_response = ath_addba_response;
905	ic->ic_addba_response_timeout = ath_addba_response_timeout;
906	ic->ic_addba_stop = ath_addba_stop;
907	ic->ic_bar_response = ath_bar_response;
908
909	ic->ic_update_chw = ath_update_chw;
910#endif	/* ATH_ENABLE_11N */
911
912#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
913	/*
914	 * There's one vendor bitmap entry in the RX radiotap
915	 * header; make sure that's taken into account.
916	 */
917	ieee80211_radiotap_attachv(ic,
918	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
919		ATH_TX_RADIOTAP_PRESENT,
920	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
921		ATH_RX_RADIOTAP_PRESENT);
922#else
923	/*
924	 * No vendor bitmap/extensions are present.
925	 */
926	ieee80211_radiotap_attach(ic,
927	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
928		ATH_TX_RADIOTAP_PRESENT,
929	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
930		ATH_RX_RADIOTAP_PRESENT);
931#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
932
933	/*
934	 * Setup the ALQ logging if required
935	 */
936#ifdef	ATH_DEBUG_ALQ
937	if_ath_alq_init(&sc->sc_alq, device_get_nameunit(sc->sc_dev));
938	if_ath_alq_setcfg(&sc->sc_alq,
939	    sc->sc_ah->ah_macVersion,
940	    sc->sc_ah->ah_macRev,
941	    sc->sc_ah->ah_phyRev,
942	    sc->sc_ah->ah_magic);
943#endif
944
945	/*
946	 * Setup dynamic sysctl's now that country code and
947	 * regdomain are available from the hal.
948	 */
949	ath_sysctlattach(sc);
950	ath_sysctl_stats_attach(sc);
951	ath_sysctl_hal_attach(sc);
952
953	if (bootverbose)
954		ieee80211_announce(ic);
955	ath_announce(sc);
956	return 0;
957bad2:
958	ath_tx_cleanup(sc);
959	ath_desc_free(sc);
960	ath_txdma_teardown(sc);
961	ath_rxdma_teardown(sc);
962bad:
963	if (ah)
964		ath_hal_detach(ah);
965
966	/*
967	 * To work around scoping issues with CURVNET_SET/CURVNET_RESTORE..
968	 */
969	if (ifp != NULL && ifp->if_vnet) {
970		CURVNET_SET(ifp->if_vnet);
971		if_free(ifp);
972		CURVNET_RESTORE();
973	} else if (ifp != NULL)
974		if_free(ifp);
975	sc->sc_invalid = 1;
976	return error;
977}
978
979int
980ath_detach(struct ath_softc *sc)
981{
982	struct ifnet *ifp = sc->sc_ifp;
983
984	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
985		__func__, ifp->if_flags);
986
987	/*
988	 * NB: the order of these is important:
989	 * o stop the chip so no more interrupts will fire
990	 * o call the 802.11 layer before detaching the hal to
991	 *   insure callbacks into the driver to delete global
992	 *   key cache entries can be handled
993	 * o free the taskqueue which drains any pending tasks
994	 * o reclaim the tx queue data structures after calling
995	 *   the 802.11 layer as we'll get called back to reclaim
996	 *   node state and potentially want to use them
997	 * o to cleanup the tx queues the hal is called, so detach
998	 *   it last
999	 * Other than that, it's straightforward...
1000	 */
1001	ath_stop(ifp);
1002	ieee80211_ifdetach(ifp->if_l2com);
1003	taskqueue_free(sc->sc_tq);
1004#ifdef ATH_TX99_DIAG
1005	if (sc->sc_tx99 != NULL)
1006		sc->sc_tx99->detach(sc->sc_tx99);
1007#endif
1008	ath_rate_detach(sc->sc_rc);
1009#ifdef	ATH_DEBUG_ALQ
1010	if_ath_alq_tidyup(&sc->sc_alq);
1011#endif
1012	ath_spectral_detach(sc);
1013	ath_dfs_detach(sc);
1014	ath_desc_free(sc);
1015	ath_txdma_teardown(sc);
1016	ath_rxdma_teardown(sc);
1017	ath_tx_cleanup(sc);
1018	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
1019
1020	CURVNET_SET(ifp->if_vnet);
1021	if_free(ifp);
1022	CURVNET_RESTORE();
1023
1024	return 0;
1025}
1026
1027/*
1028 * MAC address handling for multiple BSS on the same radio.
1029 * The first vap uses the MAC address from the EEPROM.  For
1030 * subsequent vap's we set the U/L bit (bit 1) in the MAC
1031 * address and use the next six bits as an index.
1032 */
1033static void
1034assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
1035{
1036	int i;
1037
1038	if (clone && sc->sc_hasbmask) {
1039		/* NB: we only do this if h/w supports multiple bssid */
1040		for (i = 0; i < 8; i++)
1041			if ((sc->sc_bssidmask & (1<<i)) == 0)
1042				break;
1043		if (i != 0)
1044			mac[0] |= (i << 2)|0x2;
1045	} else
1046		i = 0;
1047	sc->sc_bssidmask |= 1<<i;
1048	sc->sc_hwbssidmask[0] &= ~mac[0];
1049	if (i == 0)
1050		sc->sc_nbssid0++;
1051}
1052
1053static void
1054reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
1055{
1056	int i = mac[0] >> 2;
1057	uint8_t mask;
1058
1059	if (i != 0 || --sc->sc_nbssid0 == 0) {
1060		sc->sc_bssidmask &= ~(1<<i);
1061		/* recalculate bssid mask from remaining addresses */
1062		mask = 0xff;
1063		for (i = 1; i < 8; i++)
1064			if (sc->sc_bssidmask & (1<<i))
1065				mask &= ~((i<<2)|0x2);
1066		sc->sc_hwbssidmask[0] |= mask;
1067	}
1068}
1069
1070/*
1071 * Assign a beacon xmit slot.  We try to space out
1072 * assignments so when beacons are staggered the
1073 * traffic coming out of the cab q has maximal time
1074 * to go out before the next beacon is scheduled.
1075 */
1076static int
1077assign_bslot(struct ath_softc *sc)
1078{
1079	u_int slot, free;
1080
1081	free = 0;
1082	for (slot = 0; slot < ATH_BCBUF; slot++)
1083		if (sc->sc_bslot[slot] == NULL) {
1084			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1085			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1086				return slot;
1087			free = slot;
1088			/* NB: keep looking for a double slot */
1089		}
1090	return free;
1091}
1092
1093static struct ieee80211vap *
1094ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1095    enum ieee80211_opmode opmode, int flags,
1096    const uint8_t bssid[IEEE80211_ADDR_LEN],
1097    const uint8_t mac0[IEEE80211_ADDR_LEN])
1098{
1099	struct ath_softc *sc = ic->ic_ifp->if_softc;
1100	struct ath_vap *avp;
1101	struct ieee80211vap *vap;
1102	uint8_t mac[IEEE80211_ADDR_LEN];
1103	int needbeacon, error;
1104	enum ieee80211_opmode ic_opmode;
1105
1106	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1107	    M_80211_VAP, M_WAITOK | M_ZERO);
1108	needbeacon = 0;
1109	IEEE80211_ADDR_COPY(mac, mac0);
1110
1111	ATH_LOCK(sc);
1112	ic_opmode = opmode;		/* default to opmode of new vap */
1113	switch (opmode) {
1114	case IEEE80211_M_STA:
1115		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1116			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1117			goto bad;
1118		}
1119		if (sc->sc_nvaps) {
1120			/*
1121			 * With multiple vaps we must fall back
1122			 * to s/w beacon miss handling.
1123			 */
1124			flags |= IEEE80211_CLONE_NOBEACONS;
1125		}
1126		if (flags & IEEE80211_CLONE_NOBEACONS) {
1127			/*
1128			 * Station mode w/o beacons are implemented w/ AP mode.
1129			 */
1130			ic_opmode = IEEE80211_M_HOSTAP;
1131		}
1132		break;
1133	case IEEE80211_M_IBSS:
1134		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1135			device_printf(sc->sc_dev,
1136			    "only 1 ibss vap supported\n");
1137			goto bad;
1138		}
1139		needbeacon = 1;
1140		break;
1141	case IEEE80211_M_AHDEMO:
1142#ifdef IEEE80211_SUPPORT_TDMA
1143		if (flags & IEEE80211_CLONE_TDMA) {
1144			if (sc->sc_nvaps != 0) {
1145				device_printf(sc->sc_dev,
1146				    "only 1 tdma vap supported\n");
1147				goto bad;
1148			}
1149			needbeacon = 1;
1150			flags |= IEEE80211_CLONE_NOBEACONS;
1151		}
1152		/* fall thru... */
1153#endif
1154	case IEEE80211_M_MONITOR:
1155		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1156			/*
1157			 * Adopt existing mode.  Adding a monitor or ahdemo
1158			 * vap to an existing configuration is of dubious
1159			 * value but should be ok.
1160			 */
1161			/* XXX not right for monitor mode */
1162			ic_opmode = ic->ic_opmode;
1163		}
1164		break;
1165	case IEEE80211_M_HOSTAP:
1166	case IEEE80211_M_MBSS:
1167		needbeacon = 1;
1168		break;
1169	case IEEE80211_M_WDS:
1170		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1171			device_printf(sc->sc_dev,
1172			    "wds not supported in sta mode\n");
1173			goto bad;
1174		}
1175		/*
1176		 * Silently remove any request for a unique
1177		 * bssid; WDS vap's always share the local
1178		 * mac address.
1179		 */
1180		flags &= ~IEEE80211_CLONE_BSSID;
1181		if (sc->sc_nvaps == 0)
1182			ic_opmode = IEEE80211_M_HOSTAP;
1183		else
1184			ic_opmode = ic->ic_opmode;
1185		break;
1186	default:
1187		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1188		goto bad;
1189	}
1190	/*
1191	 * Check that a beacon buffer is available; the code below assumes it.
1192	 */
1193	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1194		device_printf(sc->sc_dev, "no beacon buffer available\n");
1195		goto bad;
1196	}
1197
1198	/* STA, AHDEMO? */
1199	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1200		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1201		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1202	}
1203
1204	vap = &avp->av_vap;
1205	/* XXX can't hold mutex across if_alloc */
1206	ATH_UNLOCK(sc);
1207	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1208	    bssid, mac);
1209	ATH_LOCK(sc);
1210	if (error != 0) {
1211		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1212		    __func__, error);
1213		goto bad2;
1214	}
1215
1216	/* h/w crypto support */
1217	vap->iv_key_alloc = ath_key_alloc;
1218	vap->iv_key_delete = ath_key_delete;
1219	vap->iv_key_set = ath_key_set;
1220	vap->iv_key_update_begin = ath_key_update_begin;
1221	vap->iv_key_update_end = ath_key_update_end;
1222
1223	/* override various methods */
1224	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1225	vap->iv_recv_mgmt = ath_recv_mgmt;
1226	vap->iv_reset = ath_reset_vap;
1227	vap->iv_update_beacon = ath_beacon_update;
1228	avp->av_newstate = vap->iv_newstate;
1229	vap->iv_newstate = ath_newstate;
1230	avp->av_bmiss = vap->iv_bmiss;
1231	vap->iv_bmiss = ath_bmiss_vap;
1232
1233	avp->av_node_ps = vap->iv_node_ps;
1234	vap->iv_node_ps = ath_node_powersave;
1235
1236	avp->av_set_tim = vap->iv_set_tim;
1237	vap->iv_set_tim = ath_node_set_tim;
1238
1239	/* Set default parameters */
1240
1241	/*
1242	 * Anything earlier than some AR9300 series MACs don't
1243	 * support a smaller MPDU density.
1244	 */
1245	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1246	/*
1247	 * All NICs can handle the maximum size, however
1248	 * AR5416 based MACs can only TX aggregates w/ RTS
1249	 * protection when the total aggregate size is <= 8k.
1250	 * However, for now that's enforced by the TX path.
1251	 */
1252	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1253
1254	avp->av_bslot = -1;
1255	if (needbeacon) {
1256		/*
1257		 * Allocate beacon state and setup the q for buffered
1258		 * multicast frames.  We know a beacon buffer is
1259		 * available because we checked above.
1260		 */
1261		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1262		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1263		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1264			/*
1265			 * Assign the vap to a beacon xmit slot.  As above
1266			 * this cannot fail to find a free one.
1267			 */
1268			avp->av_bslot = assign_bslot(sc);
1269			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1270			    ("beacon slot %u not empty", avp->av_bslot));
1271			sc->sc_bslot[avp->av_bslot] = vap;
1272			sc->sc_nbcnvaps++;
1273		}
1274		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1275			/*
1276			 * Multple vaps are to transmit beacons and we
1277			 * have h/w support for TSF adjusting; enable
1278			 * use of staggered beacons.
1279			 */
1280			sc->sc_stagbeacons = 1;
1281		}
1282		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1283	}
1284
1285	ic->ic_opmode = ic_opmode;
1286	if (opmode != IEEE80211_M_WDS) {
1287		sc->sc_nvaps++;
1288		if (opmode == IEEE80211_M_STA)
1289			sc->sc_nstavaps++;
1290		if (opmode == IEEE80211_M_MBSS)
1291			sc->sc_nmeshvaps++;
1292	}
1293	switch (ic_opmode) {
1294	case IEEE80211_M_IBSS:
1295		sc->sc_opmode = HAL_M_IBSS;
1296		break;
1297	case IEEE80211_M_STA:
1298		sc->sc_opmode = HAL_M_STA;
1299		break;
1300	case IEEE80211_M_AHDEMO:
1301#ifdef IEEE80211_SUPPORT_TDMA
1302		if (vap->iv_caps & IEEE80211_C_TDMA) {
1303			sc->sc_tdma = 1;
1304			/* NB: disable tsf adjust */
1305			sc->sc_stagbeacons = 0;
1306		}
1307		/*
1308		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1309		 * just ap mode.
1310		 */
1311		/* fall thru... */
1312#endif
1313	case IEEE80211_M_HOSTAP:
1314	case IEEE80211_M_MBSS:
1315		sc->sc_opmode = HAL_M_HOSTAP;
1316		break;
1317	case IEEE80211_M_MONITOR:
1318		sc->sc_opmode = HAL_M_MONITOR;
1319		break;
1320	default:
1321		/* XXX should not happen */
1322		break;
1323	}
1324	if (sc->sc_hastsfadd) {
1325		/*
1326		 * Configure whether or not TSF adjust should be done.
1327		 */
1328		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1329	}
1330	if (flags & IEEE80211_CLONE_NOBEACONS) {
1331		/*
1332		 * Enable s/w beacon miss handling.
1333		 */
1334		sc->sc_swbmiss = 1;
1335	}
1336	ATH_UNLOCK(sc);
1337
1338	/* complete setup */
1339	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1340	return vap;
1341bad2:
1342	reclaim_address(sc, mac);
1343	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1344bad:
1345	free(avp, M_80211_VAP);
1346	ATH_UNLOCK(sc);
1347	return NULL;
1348}
1349
1350static void
1351ath_vap_delete(struct ieee80211vap *vap)
1352{
1353	struct ieee80211com *ic = vap->iv_ic;
1354	struct ifnet *ifp = ic->ic_ifp;
1355	struct ath_softc *sc = ifp->if_softc;
1356	struct ath_hal *ah = sc->sc_ah;
1357	struct ath_vap *avp = ATH_VAP(vap);
1358
1359	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1360	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1361		/*
1362		 * Quiesce the hardware while we remove the vap.  In
1363		 * particular we need to reclaim all references to
1364		 * the vap state by any frames pending on the tx queues.
1365		 */
1366		ath_hal_intrset(ah, 0);		/* disable interrupts */
1367		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1368		/* XXX Do all frames from all vaps/nodes need draining here? */
1369		ath_stoprecv(sc, 1);		/* stop recv side */
1370	}
1371
1372	ieee80211_vap_detach(vap);
1373
1374	/*
1375	 * XXX Danger Will Robinson! Danger!
1376	 *
1377	 * Because ieee80211_vap_detach() can queue a frame (the station
1378	 * diassociate message?) after we've drained the TXQ and
1379	 * flushed the software TXQ, we will end up with a frame queued
1380	 * to a node whose vap is about to be freed.
1381	 *
1382	 * To work around this, flush the hardware/software again.
1383	 * This may be racy - the ath task may be running and the packet
1384	 * may be being scheduled between sw->hw txq. Tsk.
1385	 *
1386	 * TODO: figure out why a new node gets allocated somewhere around
1387	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1388	 * call!)
1389	 */
1390
1391	ath_draintxq(sc, ATH_RESET_DEFAULT);
1392
1393	ATH_LOCK(sc);
1394	/*
1395	 * Reclaim beacon state.  Note this must be done before
1396	 * the vap instance is reclaimed as we may have a reference
1397	 * to it in the buffer for the beacon frame.
1398	 */
1399	if (avp->av_bcbuf != NULL) {
1400		if (avp->av_bslot != -1) {
1401			sc->sc_bslot[avp->av_bslot] = NULL;
1402			sc->sc_nbcnvaps--;
1403		}
1404		ath_beacon_return(sc, avp->av_bcbuf);
1405		avp->av_bcbuf = NULL;
1406		if (sc->sc_nbcnvaps == 0) {
1407			sc->sc_stagbeacons = 0;
1408			if (sc->sc_hastsfadd)
1409				ath_hal_settsfadjust(sc->sc_ah, 0);
1410		}
1411		/*
1412		 * Reclaim any pending mcast frames for the vap.
1413		 */
1414		ath_tx_draintxq(sc, &avp->av_mcastq);
1415	}
1416	/*
1417	 * Update bookkeeping.
1418	 */
1419	if (vap->iv_opmode == IEEE80211_M_STA) {
1420		sc->sc_nstavaps--;
1421		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1422			sc->sc_swbmiss = 0;
1423	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1424	    vap->iv_opmode == IEEE80211_M_MBSS) {
1425		reclaim_address(sc, vap->iv_myaddr);
1426		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1427		if (vap->iv_opmode == IEEE80211_M_MBSS)
1428			sc->sc_nmeshvaps--;
1429	}
1430	if (vap->iv_opmode != IEEE80211_M_WDS)
1431		sc->sc_nvaps--;
1432#ifdef IEEE80211_SUPPORT_TDMA
1433	/* TDMA operation ceases when the last vap is destroyed */
1434	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1435		sc->sc_tdma = 0;
1436		sc->sc_swbmiss = 0;
1437	}
1438#endif
1439	free(avp, M_80211_VAP);
1440
1441	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1442		/*
1443		 * Restart rx+tx machines if still running (RUNNING will
1444		 * be reset if we just destroyed the last vap).
1445		 */
1446		if (ath_startrecv(sc) != 0)
1447			if_printf(ifp, "%s: unable to restart recv logic\n",
1448			    __func__);
1449		if (sc->sc_beacons) {		/* restart beacons */
1450#ifdef IEEE80211_SUPPORT_TDMA
1451			if (sc->sc_tdma)
1452				ath_tdma_config(sc, NULL);
1453			else
1454#endif
1455				ath_beacon_config(sc, NULL);
1456		}
1457		ath_hal_intrset(ah, sc->sc_imask);
1458	}
1459	ATH_UNLOCK(sc);
1460}
1461
1462void
1463ath_suspend(struct ath_softc *sc)
1464{
1465	struct ifnet *ifp = sc->sc_ifp;
1466	struct ieee80211com *ic = ifp->if_l2com;
1467
1468	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1469		__func__, ifp->if_flags);
1470
1471	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1472
1473	ieee80211_suspend_all(ic);
1474	/*
1475	 * NB: don't worry about putting the chip in low power
1476	 * mode; pci will power off our socket on suspend and
1477	 * CardBus detaches the device.
1478	 */
1479
1480	/*
1481	 * XXX ensure none of the taskqueues are running
1482	 * XXX ensure sc_invalid is 1
1483	 * XXX ensure the calibration callout is disabled
1484	 */
1485
1486	/* Disable the PCIe PHY, complete with workarounds */
1487	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1488}
1489
1490/*
1491 * Reset the key cache since some parts do not reset the
1492 * contents on resume.  First we clear all entries, then
1493 * re-load keys that the 802.11 layer assumes are setup
1494 * in h/w.
1495 */
1496static void
1497ath_reset_keycache(struct ath_softc *sc)
1498{
1499	struct ifnet *ifp = sc->sc_ifp;
1500	struct ieee80211com *ic = ifp->if_l2com;
1501	struct ath_hal *ah = sc->sc_ah;
1502	int i;
1503
1504	for (i = 0; i < sc->sc_keymax; i++)
1505		ath_hal_keyreset(ah, i);
1506	ieee80211_crypto_reload_keys(ic);
1507}
1508
1509/*
1510 * Fetch the current chainmask configuration based on the current
1511 * operating channel and options.
1512 */
1513static void
1514ath_update_chainmasks(struct ath_softc *sc, struct ieee80211_channel *chan)
1515{
1516
1517	/*
1518	 * Set TX chainmask to the currently configured chainmask;
1519	 * the TX chainmask depends upon the current operating mode.
1520	 */
1521	sc->sc_cur_rxchainmask = sc->sc_rxchainmask;
1522	if (IEEE80211_IS_CHAN_HT(chan)) {
1523		sc->sc_cur_txchainmask = sc->sc_txchainmask;
1524	} else {
1525		sc->sc_cur_txchainmask = 1;
1526	}
1527}
1528
1529void
1530ath_resume(struct ath_softc *sc)
1531{
1532	struct ifnet *ifp = sc->sc_ifp;
1533	struct ieee80211com *ic = ifp->if_l2com;
1534	struct ath_hal *ah = sc->sc_ah;
1535	HAL_STATUS status;
1536
1537	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1538		__func__, ifp->if_flags);
1539
1540	/* Re-enable PCIe, re-enable the PCIe bus */
1541	ath_hal_enablepcie(ah, 0, 0);
1542
1543	/*
1544	 * Must reset the chip before we reload the
1545	 * keycache as we were powered down on suspend.
1546	 */
1547	ath_update_chainmasks(sc,
1548	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan);
1549	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1550	    sc->sc_cur_rxchainmask);
1551	ath_hal_reset(ah, sc->sc_opmode,
1552	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1553	    AH_FALSE, &status);
1554	ath_reset_keycache(sc);
1555
1556	/* Let DFS at it in case it's a DFS channel */
1557	ath_dfs_radar_enable(sc, ic->ic_curchan);
1558
1559	/* Let spectral at in case spectral is enabled */
1560	ath_spectral_enable(sc, ic->ic_curchan);
1561
1562	/* Restore the LED configuration */
1563	ath_led_config(sc);
1564	ath_hal_setledstate(ah, HAL_LED_INIT);
1565
1566	if (sc->sc_resume_up)
1567		ieee80211_resume_all(ic);
1568
1569	/* XXX beacons ? */
1570}
1571
1572void
1573ath_shutdown(struct ath_softc *sc)
1574{
1575	struct ifnet *ifp = sc->sc_ifp;
1576
1577	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1578		__func__, ifp->if_flags);
1579
1580	ath_stop(ifp);
1581	/* NB: no point powering down chip as we're about to reboot */
1582}
1583
1584/*
1585 * Interrupt handler.  Most of the actual processing is deferred.
1586 */
1587void
1588ath_intr(void *arg)
1589{
1590	struct ath_softc *sc = arg;
1591	struct ifnet *ifp = sc->sc_ifp;
1592	struct ath_hal *ah = sc->sc_ah;
1593	HAL_INT status = 0;
1594	uint32_t txqs;
1595
1596	/*
1597	 * If we're inside a reset path, just print a warning and
1598	 * clear the ISR. The reset routine will finish it for us.
1599	 */
1600	ATH_PCU_LOCK(sc);
1601	if (sc->sc_inreset_cnt) {
1602		HAL_INT status;
1603		ath_hal_getisr(ah, &status);	/* clear ISR */
1604		ath_hal_intrset(ah, 0);		/* disable further intr's */
1605		DPRINTF(sc, ATH_DEBUG_ANY,
1606		    "%s: in reset, ignoring: status=0x%x\n",
1607		    __func__, status);
1608		ATH_PCU_UNLOCK(sc);
1609		return;
1610	}
1611
1612	if (sc->sc_invalid) {
1613		/*
1614		 * The hardware is not ready/present, don't touch anything.
1615		 * Note this can happen early on if the IRQ is shared.
1616		 */
1617		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1618		ATH_PCU_UNLOCK(sc);
1619		return;
1620	}
1621	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1622		ATH_PCU_UNLOCK(sc);
1623		return;
1624	}
1625
1626	if ((ifp->if_flags & IFF_UP) == 0 ||
1627	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1628		HAL_INT status;
1629
1630		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1631			__func__, ifp->if_flags);
1632		ath_hal_getisr(ah, &status);	/* clear ISR */
1633		ath_hal_intrset(ah, 0);		/* disable further intr's */
1634		ATH_PCU_UNLOCK(sc);
1635		return;
1636	}
1637
1638	/*
1639	 * Figure out the reason(s) for the interrupt.  Note
1640	 * that the hal returns a pseudo-ISR that may include
1641	 * bits we haven't explicitly enabled so we mask the
1642	 * value to insure we only process bits we requested.
1643	 */
1644	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1645	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1646	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 1, "ath_intr: mask=0x%.8x", status);
1647#ifdef	ATH_DEBUG_ALQ
1648	if_ath_alq_post_intr(&sc->sc_alq, status, ah->ah_intrstate,
1649	    ah->ah_syncstate);
1650#endif	/* ATH_DEBUG_ALQ */
1651#ifdef	ATH_KTR_INTR_DEBUG
1652	ATH_KTR(sc, ATH_KTR_INTERRUPTS, 5,
1653	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1654	    ah->ah_intrstate[0],
1655	    ah->ah_intrstate[1],
1656	    ah->ah_intrstate[2],
1657	    ah->ah_intrstate[3],
1658	    ah->ah_intrstate[6]);
1659#endif
1660
1661	/* Squirrel away SYNC interrupt debugging */
1662	if (ah->ah_syncstate != 0) {
1663		int i;
1664		for (i = 0; i < 32; i++)
1665			if (ah->ah_syncstate & (i << i))
1666				sc->sc_intr_stats.sync_intr[i]++;
1667	}
1668
1669	status &= sc->sc_imask;			/* discard unasked for bits */
1670
1671	/* Short-circuit un-handled interrupts */
1672	if (status == 0x0) {
1673		ATH_PCU_UNLOCK(sc);
1674		return;
1675	}
1676
1677	/*
1678	 * Take a note that we're inside the interrupt handler, so
1679	 * the reset routines know to wait.
1680	 */
1681	sc->sc_intr_cnt++;
1682	ATH_PCU_UNLOCK(sc);
1683
1684	/*
1685	 * Handle the interrupt. We won't run concurrent with the reset
1686	 * or channel change routines as they'll wait for sc_intr_cnt
1687	 * to be 0 before continuing.
1688	 */
1689	if (status & HAL_INT_FATAL) {
1690		sc->sc_stats.ast_hardware++;
1691		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1692		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1693	} else {
1694		if (status & HAL_INT_SWBA) {
1695			/*
1696			 * Software beacon alert--time to send a beacon.
1697			 * Handle beacon transmission directly; deferring
1698			 * this is too slow to meet timing constraints
1699			 * under load.
1700			 */
1701#ifdef IEEE80211_SUPPORT_TDMA
1702			if (sc->sc_tdma) {
1703				if (sc->sc_tdmaswba == 0) {
1704					struct ieee80211com *ic = ifp->if_l2com;
1705					struct ieee80211vap *vap =
1706					    TAILQ_FIRST(&ic->ic_vaps);
1707					ath_tdma_beacon_send(sc, vap);
1708					sc->sc_tdmaswba =
1709					    vap->iv_tdma->tdma_bintval;
1710				} else
1711					sc->sc_tdmaswba--;
1712			} else
1713#endif
1714			{
1715				ath_beacon_proc(sc, 0);
1716#ifdef IEEE80211_SUPPORT_SUPERG
1717				/*
1718				 * Schedule the rx taskq in case there's no
1719				 * traffic so any frames held on the staging
1720				 * queue are aged and potentially flushed.
1721				 */
1722				sc->sc_rx.recv_sched(sc, 1);
1723#endif
1724			}
1725		}
1726		if (status & HAL_INT_RXEOL) {
1727			int imask;
1728			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXEOL");
1729			ATH_PCU_LOCK(sc);
1730			/*
1731			 * NB: the hardware should re-read the link when
1732			 *     RXE bit is written, but it doesn't work at
1733			 *     least on older hardware revs.
1734			 */
1735			sc->sc_stats.ast_rxeol++;
1736			/*
1737			 * Disable RXEOL/RXORN - prevent an interrupt
1738			 * storm until the PCU logic can be reset.
1739			 * In case the interface is reset some other
1740			 * way before "sc_kickpcu" is called, don't
1741			 * modify sc_imask - that way if it is reset
1742			 * by a call to ath_reset() somehow, the
1743			 * interrupt mask will be correctly reprogrammed.
1744			 */
1745			imask = sc->sc_imask;
1746			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1747			ath_hal_intrset(ah, imask);
1748			/*
1749			 * Only blank sc_rxlink if we've not yet kicked
1750			 * the PCU.
1751			 *
1752			 * This isn't entirely correct - the correct solution
1753			 * would be to have a PCU lock and engage that for
1754			 * the duration of the PCU fiddling; which would include
1755			 * running the RX process. Otherwise we could end up
1756			 * messing up the RX descriptor chain and making the
1757			 * RX desc list much shorter.
1758			 */
1759			if (! sc->sc_kickpcu)
1760				sc->sc_rxlink = NULL;
1761			sc->sc_kickpcu = 1;
1762			ATH_PCU_UNLOCK(sc);
1763			/*
1764			 * Enqueue an RX proc, to handled whatever
1765			 * is in the RX queue.
1766			 * This will then kick the PCU.
1767			 */
1768			sc->sc_rx.recv_sched(sc, 1);
1769		}
1770		if (status & HAL_INT_TXURN) {
1771			sc->sc_stats.ast_txurn++;
1772			/* bump tx trigger level */
1773			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1774		}
1775		/*
1776		 * Handle both the legacy and RX EDMA interrupt bits.
1777		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
1778		 */
1779		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
1780			sc->sc_stats.ast_rx_intr++;
1781			sc->sc_rx.recv_sched(sc, 1);
1782		}
1783		if (status & HAL_INT_TX) {
1784			sc->sc_stats.ast_tx_intr++;
1785			/*
1786			 * Grab all the currently set bits in the HAL txq bitmap
1787			 * and blank them. This is the only place we should be
1788			 * doing this.
1789			 */
1790			if (! sc->sc_isedma) {
1791				ATH_PCU_LOCK(sc);
1792				txqs = 0xffffffff;
1793				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1794				ATH_KTR(sc, ATH_KTR_INTERRUPTS, 3,
1795				    "ath_intr: TX; txqs=0x%08x, txq_active was 0x%08x, now 0x%08x",
1796				    txqs,
1797				    sc->sc_txq_active,
1798				    sc->sc_txq_active | txqs);
1799				sc->sc_txq_active |= txqs;
1800				ATH_PCU_UNLOCK(sc);
1801			}
1802			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1803		}
1804		if (status & HAL_INT_BMISS) {
1805			sc->sc_stats.ast_bmiss++;
1806			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1807		}
1808		if (status & HAL_INT_GTT)
1809			sc->sc_stats.ast_tx_timeout++;
1810		if (status & HAL_INT_CST)
1811			sc->sc_stats.ast_tx_cst++;
1812		if (status & HAL_INT_MIB) {
1813			sc->sc_stats.ast_mib++;
1814			ATH_PCU_LOCK(sc);
1815			/*
1816			 * Disable interrupts until we service the MIB
1817			 * interrupt; otherwise it will continue to fire.
1818			 */
1819			ath_hal_intrset(ah, 0);
1820			/*
1821			 * Let the hal handle the event.  We assume it will
1822			 * clear whatever condition caused the interrupt.
1823			 */
1824			ath_hal_mibevent(ah, &sc->sc_halstats);
1825			/*
1826			 * Don't reset the interrupt if we've just
1827			 * kicked the PCU, or we may get a nested
1828			 * RXEOL before the rxproc has had a chance
1829			 * to run.
1830			 */
1831			if (sc->sc_kickpcu == 0)
1832				ath_hal_intrset(ah, sc->sc_imask);
1833			ATH_PCU_UNLOCK(sc);
1834		}
1835		if (status & HAL_INT_RXORN) {
1836			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1837			ATH_KTR(sc, ATH_KTR_ERROR, 0, "ath_intr: RXORN");
1838			sc->sc_stats.ast_rxorn++;
1839		}
1840	}
1841	ATH_PCU_LOCK(sc);
1842	sc->sc_intr_cnt--;
1843	ATH_PCU_UNLOCK(sc);
1844}
1845
1846static void
1847ath_fatal_proc(void *arg, int pending)
1848{
1849	struct ath_softc *sc = arg;
1850	struct ifnet *ifp = sc->sc_ifp;
1851	u_int32_t *state;
1852	u_int32_t len;
1853	void *sp;
1854
1855	if_printf(ifp, "hardware error; resetting\n");
1856	/*
1857	 * Fatal errors are unrecoverable.  Typically these
1858	 * are caused by DMA errors.  Collect h/w state from
1859	 * the hal so we can diagnose what's going on.
1860	 */
1861	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1862		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1863		state = sp;
1864		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1865		    state[0], state[1] , state[2], state[3],
1866		    state[4], state[5]);
1867	}
1868	ath_reset(ifp, ATH_RESET_NOLOSS);
1869}
1870
1871static void
1872ath_bmiss_vap(struct ieee80211vap *vap)
1873{
1874	/*
1875	 * Workaround phantom bmiss interrupts by sanity-checking
1876	 * the time of our last rx'd frame.  If it is within the
1877	 * beacon miss interval then ignore the interrupt.  If it's
1878	 * truly a bmiss we'll get another interrupt soon and that'll
1879	 * be dispatched up for processing.  Note this applies only
1880	 * for h/w beacon miss events.
1881	 */
1882	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1883		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1884		struct ath_softc *sc = ifp->if_softc;
1885		u_int64_t lastrx = sc->sc_lastrx;
1886		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1887		/* XXX should take a locked ref to iv_bss */
1888		u_int bmisstimeout =
1889			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1890
1891		DPRINTF(sc, ATH_DEBUG_BEACON,
1892		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1893		    __func__, (unsigned long long) tsf,
1894		    (unsigned long long)(tsf - lastrx),
1895		    (unsigned long long) lastrx, bmisstimeout);
1896
1897		if (tsf - lastrx <= bmisstimeout) {
1898			sc->sc_stats.ast_bmiss_phantom++;
1899			return;
1900		}
1901	}
1902	ATH_VAP(vap)->av_bmiss(vap);
1903}
1904
1905int
1906ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1907{
1908	uint32_t rsize;
1909	void *sp;
1910
1911	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1912		return 0;
1913	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1914	*hangs = *(uint32_t *)sp;
1915	return 1;
1916}
1917
1918static void
1919ath_bmiss_proc(void *arg, int pending)
1920{
1921	struct ath_softc *sc = arg;
1922	struct ifnet *ifp = sc->sc_ifp;
1923	uint32_t hangs;
1924
1925	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1926
1927	/*
1928	 * Do a reset upon any becaon miss event.
1929	 *
1930	 * It may be a non-recognised RX clear hang which needs a reset
1931	 * to clear.
1932	 */
1933	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1934		ath_reset(ifp, ATH_RESET_NOLOSS);
1935		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1936	} else {
1937		ath_reset(ifp, ATH_RESET_NOLOSS);
1938		ieee80211_beacon_miss(ifp->if_l2com);
1939	}
1940}
1941
1942/*
1943 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1944 * calcs together with WME.  If necessary disable the crypto
1945 * hardware and mark the 802.11 state so keys will be setup
1946 * with the MIC work done in software.
1947 */
1948static void
1949ath_settkipmic(struct ath_softc *sc)
1950{
1951	struct ifnet *ifp = sc->sc_ifp;
1952	struct ieee80211com *ic = ifp->if_l2com;
1953
1954	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1955		if (ic->ic_flags & IEEE80211_F_WME) {
1956			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1957			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1958		} else {
1959			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1960			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1961		}
1962	}
1963}
1964
1965static void
1966ath_init(void *arg)
1967{
1968	struct ath_softc *sc = (struct ath_softc *) arg;
1969	struct ifnet *ifp = sc->sc_ifp;
1970	struct ieee80211com *ic = ifp->if_l2com;
1971	struct ath_hal *ah = sc->sc_ah;
1972	HAL_STATUS status;
1973
1974	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1975		__func__, ifp->if_flags);
1976
1977	ATH_LOCK(sc);
1978	/*
1979	 * Stop anything previously setup.  This is safe
1980	 * whether this is the first time through or not.
1981	 */
1982	ath_stop_locked(ifp);
1983
1984	/*
1985	 * The basic interface to setting the hardware in a good
1986	 * state is ``reset''.  On return the hardware is known to
1987	 * be powered up and with interrupts disabled.  This must
1988	 * be followed by initialization of the appropriate bits
1989	 * and then setup of the interrupt mask.
1990	 */
1991	ath_settkipmic(sc);
1992	ath_update_chainmasks(sc, ic->ic_curchan);
1993	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
1994	    sc->sc_cur_rxchainmask);
1995	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1996		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1997			status);
1998		ATH_UNLOCK(sc);
1999		return;
2000	}
2001	ath_chan_change(sc, ic->ic_curchan);
2002
2003	/* Let DFS at it in case it's a DFS channel */
2004	ath_dfs_radar_enable(sc, ic->ic_curchan);
2005
2006	/* Let spectral at in case spectral is enabled */
2007	ath_spectral_enable(sc, ic->ic_curchan);
2008
2009	/*
2010	 * Likewise this is set during reset so update
2011	 * state cached in the driver.
2012	 */
2013	sc->sc_diversity = ath_hal_getdiversity(ah);
2014	sc->sc_lastlongcal = 0;
2015	sc->sc_resetcal = 1;
2016	sc->sc_lastcalreset = 0;
2017	sc->sc_lastani = 0;
2018	sc->sc_lastshortcal = 0;
2019	sc->sc_doresetcal = AH_FALSE;
2020	/*
2021	 * Beacon timers were cleared here; give ath_newstate()
2022	 * a hint that the beacon timers should be poked when
2023	 * things transition to the RUN state.
2024	 */
2025	sc->sc_beacons = 0;
2026
2027	/*
2028	 * Setup the hardware after reset: the key cache
2029	 * is filled as needed and the receive engine is
2030	 * set going.  Frame transmit is handled entirely
2031	 * in the frame output path; there's nothing to do
2032	 * here except setup the interrupt mask.
2033	 */
2034	if (ath_startrecv(sc) != 0) {
2035		if_printf(ifp, "unable to start recv logic\n");
2036		ATH_UNLOCK(sc);
2037		return;
2038	}
2039
2040	/*
2041	 * Enable interrupts.
2042	 */
2043	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
2044		  | HAL_INT_RXEOL | HAL_INT_RXORN
2045		  | HAL_INT_TXURN
2046		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
2047
2048	/*
2049	 * Enable RX EDMA bits.  Note these overlap with
2050	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
2051	 */
2052	if (sc->sc_isedma)
2053		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
2054
2055	/*
2056	 * Enable MIB interrupts when there are hardware phy counters.
2057	 * Note we only do this (at the moment) for station mode.
2058	 */
2059	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
2060		sc->sc_imask |= HAL_INT_MIB;
2061
2062	/* Enable global TX timeout and carrier sense timeout if available */
2063	if (ath_hal_gtxto_supported(ah))
2064		sc->sc_imask |= HAL_INT_GTT;
2065
2066	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
2067		__func__, sc->sc_imask);
2068
2069	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2070	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
2071	ath_hal_intrset(ah, sc->sc_imask);
2072
2073	ATH_UNLOCK(sc);
2074
2075#ifdef ATH_TX99_DIAG
2076	if (sc->sc_tx99 != NULL)
2077		sc->sc_tx99->start(sc->sc_tx99);
2078	else
2079#endif
2080	ieee80211_start_all(ic);		/* start all vap's */
2081}
2082
2083static void
2084ath_stop_locked(struct ifnet *ifp)
2085{
2086	struct ath_softc *sc = ifp->if_softc;
2087	struct ath_hal *ah = sc->sc_ah;
2088
2089	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
2090		__func__, sc->sc_invalid, ifp->if_flags);
2091
2092	ATH_LOCK_ASSERT(sc);
2093	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
2094		/*
2095		 * Shutdown the hardware and driver:
2096		 *    reset 802.11 state machine
2097		 *    turn off timers
2098		 *    disable interrupts
2099		 *    turn off the radio
2100		 *    clear transmit machinery
2101		 *    clear receive machinery
2102		 *    drain and release tx queues
2103		 *    reclaim beacon resources
2104		 *    power down hardware
2105		 *
2106		 * Note that some of this work is not possible if the
2107		 * hardware is gone (invalid).
2108		 */
2109#ifdef ATH_TX99_DIAG
2110		if (sc->sc_tx99 != NULL)
2111			sc->sc_tx99->stop(sc->sc_tx99);
2112#endif
2113		callout_stop(&sc->sc_wd_ch);
2114		sc->sc_wd_timer = 0;
2115		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2116		if (!sc->sc_invalid) {
2117			if (sc->sc_softled) {
2118				callout_stop(&sc->sc_ledtimer);
2119				ath_hal_gpioset(ah, sc->sc_ledpin,
2120					!sc->sc_ledon);
2121				sc->sc_blinking = 0;
2122			}
2123			ath_hal_intrset(ah, 0);
2124		}
2125		ath_draintxq(sc, ATH_RESET_DEFAULT);
2126		if (!sc->sc_invalid) {
2127			ath_stoprecv(sc, 1);
2128			ath_hal_phydisable(ah);
2129		} else
2130			sc->sc_rxlink = NULL;
2131		ath_beacon_free(sc);	/* XXX not needed */
2132	}
2133}
2134
2135#define	MAX_TXRX_ITERATIONS	1000
2136static void
2137ath_txrx_stop_locked(struct ath_softc *sc)
2138{
2139	int i = MAX_TXRX_ITERATIONS;
2140
2141	ATH_UNLOCK_ASSERT(sc);
2142	ATH_PCU_LOCK_ASSERT(sc);
2143
2144	/*
2145	 * Sleep until all the pending operations have completed.
2146	 *
2147	 * The caller must ensure that reset has been incremented
2148	 * or the pending operations may continue being queued.
2149	 */
2150	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2151	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2152		if (i <= 0)
2153			break;
2154		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
2155		i--;
2156	}
2157
2158	if (i <= 0)
2159		device_printf(sc->sc_dev,
2160		    "%s: didn't finish after %d iterations\n",
2161		    __func__, MAX_TXRX_ITERATIONS);
2162}
2163#undef	MAX_TXRX_ITERATIONS
2164
2165#if 0
2166static void
2167ath_txrx_stop(struct ath_softc *sc)
2168{
2169	ATH_UNLOCK_ASSERT(sc);
2170	ATH_PCU_UNLOCK_ASSERT(sc);
2171
2172	ATH_PCU_LOCK(sc);
2173	ath_txrx_stop_locked(sc);
2174	ATH_PCU_UNLOCK(sc);
2175}
2176#endif
2177
2178static void
2179ath_txrx_start(struct ath_softc *sc)
2180{
2181
2182	taskqueue_unblock(sc->sc_tq);
2183}
2184
2185/*
2186 * Grab the reset lock, and wait around until noone else
2187 * is trying to do anything with it.
2188 *
2189 * This is totally horrible but we can't hold this lock for
2190 * long enough to do TX/RX or we end up with net80211/ip stack
2191 * LORs and eventual deadlock.
2192 *
2193 * "dowait" signals whether to spin, waiting for the reset
2194 * lock count to reach 0. This should (for now) only be used
2195 * during the reset path, as the rest of the code may not
2196 * be locking-reentrant enough to behave correctly.
2197 *
2198 * Another, cleaner way should be found to serialise all of
2199 * these operations.
2200 */
2201#define	MAX_RESET_ITERATIONS	10
2202static int
2203ath_reset_grablock(struct ath_softc *sc, int dowait)
2204{
2205	int w = 0;
2206	int i = MAX_RESET_ITERATIONS;
2207
2208	ATH_PCU_LOCK_ASSERT(sc);
2209	do {
2210		if (sc->sc_inreset_cnt == 0) {
2211			w = 1;
2212			break;
2213		}
2214		if (dowait == 0) {
2215			w = 0;
2216			break;
2217		}
2218		ATH_PCU_UNLOCK(sc);
2219		pause("ath_reset_grablock", 1);
2220		i--;
2221		ATH_PCU_LOCK(sc);
2222	} while (i > 0);
2223
2224	/*
2225	 * We always increment the refcounter, regardless
2226	 * of whether we succeeded to get it in an exclusive
2227	 * way.
2228	 */
2229	sc->sc_inreset_cnt++;
2230
2231	if (i <= 0)
2232		device_printf(sc->sc_dev,
2233		    "%s: didn't finish after %d iterations\n",
2234		    __func__, MAX_RESET_ITERATIONS);
2235
2236	if (w == 0)
2237		device_printf(sc->sc_dev,
2238		    "%s: warning, recursive reset path!\n",
2239		    __func__);
2240
2241	return w;
2242}
2243#undef MAX_RESET_ITERATIONS
2244
2245/*
2246 * XXX TODO: write ath_reset_releaselock
2247 */
2248
2249static void
2250ath_stop(struct ifnet *ifp)
2251{
2252	struct ath_softc *sc = ifp->if_softc;
2253
2254	ATH_LOCK(sc);
2255	ath_stop_locked(ifp);
2256	ATH_UNLOCK(sc);
2257}
2258
2259/*
2260 * Reset the hardware w/o losing operational state.  This is
2261 * basically a more efficient way of doing ath_stop, ath_init,
2262 * followed by state transitions to the current 802.11
2263 * operational state.  Used to recover from various errors and
2264 * to reset or reload hardware state.
2265 */
2266int
2267ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2268{
2269	struct ath_softc *sc = ifp->if_softc;
2270	struct ieee80211com *ic = ifp->if_l2com;
2271	struct ath_hal *ah = sc->sc_ah;
2272	HAL_STATUS status;
2273	int i;
2274
2275	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2276
2277	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2278	ATH_PCU_UNLOCK_ASSERT(sc);
2279	ATH_UNLOCK_ASSERT(sc);
2280
2281	/* Try to (stop any further TX/RX from occuring */
2282	taskqueue_block(sc->sc_tq);
2283
2284	ATH_PCU_LOCK(sc);
2285	ath_hal_intrset(ah, 0);		/* disable interrupts */
2286	ath_txrx_stop_locked(sc);	/* Ensure TX/RX is stopped */
2287	if (ath_reset_grablock(sc, 1) == 0) {
2288		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2289		    __func__);
2290	}
2291	ATH_PCU_UNLOCK(sc);
2292
2293	/*
2294	 * Should now wait for pending TX/RX to complete
2295	 * and block future ones from occuring. This needs to be
2296	 * done before the TX queue is drained.
2297	 */
2298	ath_draintxq(sc, reset_type);	/* stop xmit side */
2299
2300	/*
2301	 * Regardless of whether we're doing a no-loss flush or
2302	 * not, stop the PCU and handle what's in the RX queue.
2303	 * That way frames aren't dropped which shouldn't be.
2304	 */
2305	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2306	ath_rx_flush(sc);
2307
2308	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2309	/* NB: indicate channel change so we do a full reset */
2310	ath_update_chainmasks(sc, ic->ic_curchan);
2311	ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
2312	    sc->sc_cur_rxchainmask);
2313	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2314		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2315			__func__, status);
2316	sc->sc_diversity = ath_hal_getdiversity(ah);
2317
2318	/* Let DFS at it in case it's a DFS channel */
2319	ath_dfs_radar_enable(sc, ic->ic_curchan);
2320
2321	/* Let spectral at in case spectral is enabled */
2322	ath_spectral_enable(sc, ic->ic_curchan);
2323
2324	if (ath_startrecv(sc) != 0)	/* restart recv */
2325		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2326	/*
2327	 * We may be doing a reset in response to an ioctl
2328	 * that changes the channel so update any state that
2329	 * might change as a result.
2330	 */
2331	ath_chan_change(sc, ic->ic_curchan);
2332	if (sc->sc_beacons) {		/* restart beacons */
2333#ifdef IEEE80211_SUPPORT_TDMA
2334		if (sc->sc_tdma)
2335			ath_tdma_config(sc, NULL);
2336		else
2337#endif
2338			ath_beacon_config(sc, NULL);
2339	}
2340
2341	/*
2342	 * Release the reset lock and re-enable interrupts here.
2343	 * If an interrupt was being processed in ath_intr(),
2344	 * it would disable interrupts at this point. So we have
2345	 * to atomically enable interrupts and decrement the
2346	 * reset counter - this way ath_intr() doesn't end up
2347	 * disabling interrupts without a corresponding enable
2348	 * in the rest or channel change path.
2349	 */
2350	ATH_PCU_LOCK(sc);
2351	sc->sc_inreset_cnt--;
2352	/* XXX only do this if sc_inreset_cnt == 0? */
2353	ath_hal_intrset(ah, sc->sc_imask);
2354	ATH_PCU_UNLOCK(sc);
2355
2356	/*
2357	 * TX and RX can be started here. If it were started with
2358	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2359	 * Thus if this is a nested call through the reset or
2360	 * channel change code, TX completion will occur but
2361	 * RX completion and ath_start / ath_tx_start will not
2362	 * run.
2363	 */
2364
2365	/* Restart TX/RX as needed */
2366	ath_txrx_start(sc);
2367
2368	/* Restart TX completion and pending TX */
2369	if (reset_type == ATH_RESET_NOLOSS) {
2370		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2371			if (ATH_TXQ_SETUP(sc, i)) {
2372				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2373				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2374				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2375
2376				ATH_TX_LOCK(sc);
2377				ath_txq_sched(sc, &sc->sc_txq[i]);
2378				ATH_TX_UNLOCK(sc);
2379			}
2380		}
2381	}
2382
2383	/*
2384	 * This may have been set during an ath_start() call which
2385	 * set this once it detected a concurrent TX was going on.
2386	 * So, clear it.
2387	 */
2388	IF_LOCK(&ifp->if_snd);
2389	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2390	IF_UNLOCK(&ifp->if_snd);
2391
2392	/* Handle any frames in the TX queue */
2393	/*
2394	 * XXX should this be done by the caller, rather than
2395	 * ath_reset() ?
2396	 */
2397	ath_tx_kick(sc);		/* restart xmit */
2398	return 0;
2399}
2400
2401static int
2402ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2403{
2404	struct ieee80211com *ic = vap->iv_ic;
2405	struct ifnet *ifp = ic->ic_ifp;
2406	struct ath_softc *sc = ifp->if_softc;
2407	struct ath_hal *ah = sc->sc_ah;
2408
2409	switch (cmd) {
2410	case IEEE80211_IOC_TXPOWER:
2411		/*
2412		 * If per-packet TPC is enabled, then we have nothing
2413		 * to do; otherwise we need to force the global limit.
2414		 * All this can happen directly; no need to reset.
2415		 */
2416		if (!ath_hal_gettpc(ah))
2417			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2418		return 0;
2419	}
2420	/* XXX? Full or NOLOSS? */
2421	return ath_reset(ifp, ATH_RESET_FULL);
2422}
2423
2424struct ath_buf *
2425_ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2426{
2427	struct ath_buf *bf;
2428
2429	ATH_TXBUF_LOCK_ASSERT(sc);
2430
2431	if (btype == ATH_BUFTYPE_MGMT)
2432		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2433	else
2434		bf = TAILQ_FIRST(&sc->sc_txbuf);
2435
2436	if (bf == NULL) {
2437		sc->sc_stats.ast_tx_getnobuf++;
2438	} else {
2439		if (bf->bf_flags & ATH_BUF_BUSY) {
2440			sc->sc_stats.ast_tx_getbusybuf++;
2441			bf = NULL;
2442		}
2443	}
2444
2445	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2446		if (btype == ATH_BUFTYPE_MGMT)
2447			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2448		else {
2449			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2450			sc->sc_txbuf_cnt--;
2451
2452			/*
2453			 * This shuldn't happen; however just to be
2454			 * safe print a warning and fudge the txbuf
2455			 * count.
2456			 */
2457			if (sc->sc_txbuf_cnt < 0) {
2458				device_printf(sc->sc_dev,
2459				    "%s: sc_txbuf_cnt < 0?\n",
2460				    __func__);
2461				sc->sc_txbuf_cnt = 0;
2462			}
2463		}
2464	} else
2465		bf = NULL;
2466
2467	if (bf == NULL) {
2468		/* XXX should check which list, mgmt or otherwise */
2469		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2470		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2471			"out of xmit buffers" : "xmit buffer busy");
2472		return NULL;
2473	}
2474
2475	/* XXX TODO: should do this at buffer list initialisation */
2476	/* XXX (then, ensure the buffer has the right flag set) */
2477	if (btype == ATH_BUFTYPE_MGMT)
2478		bf->bf_flags |= ATH_BUF_MGMT;
2479	else
2480		bf->bf_flags &= (~ATH_BUF_MGMT);
2481
2482	/* Valid bf here; clear some basic fields */
2483	bf->bf_next = NULL;	/* XXX just to be sure */
2484	bf->bf_last = NULL;	/* XXX again, just to be sure */
2485	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2486	bzero(&bf->bf_state, sizeof(bf->bf_state));
2487
2488	/*
2489	 * Track the descriptor ID only if doing EDMA
2490	 */
2491	if (sc->sc_isedma) {
2492		bf->bf_descid = sc->sc_txbuf_descid;
2493		sc->sc_txbuf_descid++;
2494	}
2495
2496	return bf;
2497}
2498
2499/*
2500 * When retrying a software frame, buffers marked ATH_BUF_BUSY
2501 * can't be thrown back on the queue as they could still be
2502 * in use by the hardware.
2503 *
2504 * This duplicates the buffer, or returns NULL.
2505 *
2506 * The descriptor is also copied but the link pointers and
2507 * the DMA segments aren't copied; this frame should thus
2508 * be again passed through the descriptor setup/chain routines
2509 * so the link is correct.
2510 *
2511 * The caller must free the buffer using ath_freebuf().
2512 *
2513 * XXX TODO: this call shouldn't fail as it'll cause packet loss
2514 * XXX in the TX pathway when retries are needed.
2515 * XXX Figure out how to keep some buffers free, or factor the
2516 * XXX number of busy buffers into the xmit path (ath_start())
2517 * XXX so we don't over-commit.
2518 */
2519struct ath_buf *
2520ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
2521{
2522	struct ath_buf *tbf;
2523
2524	tbf = ath_getbuf(sc,
2525	    (bf->bf_flags & ATH_BUF_MGMT) ?
2526	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2527	if (tbf == NULL)
2528		return NULL;	/* XXX failure? Why? */
2529
2530	/* Copy basics */
2531	tbf->bf_next = NULL;
2532	tbf->bf_nseg = bf->bf_nseg;
2533	tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
2534	tbf->bf_status = bf->bf_status;
2535	tbf->bf_m = bf->bf_m;
2536	/*
2537	 * XXX Copy the node reference, the caller is responsible
2538	 * for deleting the node reference before it frees its
2539	 * buffer.
2540	 *
2541	 * XXX It's done like this so we don't call the net80211
2542	 * code whilst having active TX queue locks held.
2543	 */
2544	tbf->bf_node = bf->bf_node;
2545	/* will be setup by the chain/setup function */
2546	tbf->bf_lastds = NULL;
2547	/* for now, last == self */
2548	tbf->bf_last = tbf;
2549	tbf->bf_comp = bf->bf_comp;
2550
2551	/* NOTE: DMA segments will be setup by the setup/chain functions */
2552
2553	/* The caller has to re-init the descriptor + links */
2554
2555	/* Copy state */
2556	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2557
2558	return tbf;
2559}
2560
2561struct ath_buf *
2562ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
2563{
2564	struct ath_buf *bf;
2565
2566	ATH_TXBUF_LOCK(sc);
2567	bf = _ath_getbuf_locked(sc, btype);
2568	/*
2569	 * If a mgmt buffer was requested but we're out of those,
2570	 * try requesting a normal one.
2571	 */
2572	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
2573		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
2574	ATH_TXBUF_UNLOCK(sc);
2575	if (bf == NULL) {
2576		struct ifnet *ifp = sc->sc_ifp;
2577
2578		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2579		sc->sc_stats.ast_tx_qstop++;
2580		IF_LOCK(&ifp->if_snd);
2581		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2582		IF_UNLOCK(&ifp->if_snd);
2583	}
2584	return bf;
2585}
2586
2587static void
2588ath_start_queue(struct ifnet *ifp)
2589{
2590	struct ath_softc *sc = ifp->if_softc;
2591
2592	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: start");
2593	ath_tx_kick(sc);
2594	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_queue: finished");
2595}
2596
2597void
2598ath_start_task(void *arg, int npending)
2599{
2600	struct ath_softc *sc = (struct ath_softc *) arg;
2601	struct ifnet *ifp = sc->sc_ifp;
2602
2603	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: start");
2604
2605	/* XXX is it ok to hold the ATH_LOCK here? */
2606	ATH_PCU_LOCK(sc);
2607	if (sc->sc_inreset_cnt > 0) {
2608		device_printf(sc->sc_dev,
2609		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2610		ATH_PCU_UNLOCK(sc);
2611		IF_LOCK(&ifp->if_snd);
2612		sc->sc_stats.ast_tx_qstop++;
2613		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2614		IF_UNLOCK(&ifp->if_snd);
2615		ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: OACTIVE, finish");
2616		return;
2617	}
2618	sc->sc_txstart_cnt++;
2619	ATH_PCU_UNLOCK(sc);
2620
2621	ATH_TX_LOCK(sc);
2622	ath_start(sc->sc_ifp);
2623	ATH_TX_UNLOCK(sc);
2624
2625	ATH_PCU_LOCK(sc);
2626	sc->sc_txstart_cnt--;
2627	ATH_PCU_UNLOCK(sc);
2628	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start_task: finished");
2629}
2630
2631void
2632ath_start(struct ifnet *ifp)
2633{
2634	struct ath_softc *sc = ifp->if_softc;
2635	struct ieee80211_node *ni;
2636	struct ath_buf *bf;
2637	struct mbuf *m, *next;
2638	ath_bufhead frags;
2639	int npkts = 0;
2640
2641	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2642		return;
2643
2644	ATH_TX_LOCK_ASSERT(sc);
2645
2646	ATH_KTR(sc, ATH_KTR_TX, 0, "ath_start: called");
2647
2648	for (;;) {
2649		ATH_TXBUF_LOCK(sc);
2650		if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) {
2651			/* XXX increment counter? */
2652			ATH_TXBUF_UNLOCK(sc);
2653			IF_LOCK(&ifp->if_snd);
2654			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2655			IF_UNLOCK(&ifp->if_snd);
2656			break;
2657		}
2658		ATH_TXBUF_UNLOCK(sc);
2659
2660		/*
2661		 * Grab a TX buffer and associated resources.
2662		 */
2663		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
2664		if (bf == NULL)
2665			break;
2666
2667		IFQ_DEQUEUE(&ifp->if_snd, m);
2668		if (m == NULL) {
2669			ATH_TXBUF_LOCK(sc);
2670			ath_returnbuf_head(sc, bf);
2671			ATH_TXBUF_UNLOCK(sc);
2672			break;
2673		}
2674		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2675		npkts ++;
2676		/*
2677		 * Check for fragmentation.  If this frame
2678		 * has been broken up verify we have enough
2679		 * buffers to send all the fragments so all
2680		 * go out or none...
2681		 */
2682		TAILQ_INIT(&frags);
2683		if ((m->m_flags & M_FRAG) &&
2684		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2685			DPRINTF(sc, ATH_DEBUG_XMIT,
2686			    "%s: out of txfrag buffers\n", __func__);
2687			sc->sc_stats.ast_tx_nofrag++;
2688			ifp->if_oerrors++;
2689			ath_freetx(m);
2690			goto bad;
2691		}
2692		ifp->if_opackets++;
2693	nextfrag:
2694		/*
2695		 * Pass the frame to the h/w for transmission.
2696		 * Fragmented frames have each frag chained together
2697		 * with m_nextpkt.  We know there are sufficient ath_buf's
2698		 * to send all the frags because of work done by
2699		 * ath_txfrag_setup.  We leave m_nextpkt set while
2700		 * calling ath_tx_start so it can use it to extend the
2701		 * the tx duration to cover the subsequent frag and
2702		 * so it can reclaim all the mbufs in case of an error;
2703		 * ath_tx_start clears m_nextpkt once it commits to
2704		 * handing the frame to the hardware.
2705		 */
2706		next = m->m_nextpkt;
2707		if (ath_tx_start(sc, ni, bf, m)) {
2708	bad:
2709			ifp->if_oerrors++;
2710	reclaim:
2711			bf->bf_m = NULL;
2712			bf->bf_node = NULL;
2713			ATH_TXBUF_LOCK(sc);
2714			ath_returnbuf_head(sc, bf);
2715			ath_txfrag_cleanup(sc, &frags, ni);
2716			ATH_TXBUF_UNLOCK(sc);
2717			/*
2718			 * XXX todo, free the node outside of
2719			 * the TX lock context!
2720			 */
2721			if (ni != NULL)
2722				ieee80211_free_node(ni);
2723			continue;
2724		}
2725
2726		/*
2727		 * Check here if the node is in power save state.
2728		 */
2729		ath_tx_update_tim(sc, ni, 1);
2730
2731		if (next != NULL) {
2732			/*
2733			 * Beware of state changing between frags.
2734			 * XXX check sta power-save state?
2735			 */
2736			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2737				DPRINTF(sc, ATH_DEBUG_XMIT,
2738				    "%s: flush fragmented packet, state %s\n",
2739				    __func__,
2740				    ieee80211_state_name[ni->ni_vap->iv_state]);
2741				ath_freetx(next);
2742				goto reclaim;
2743			}
2744			m = next;
2745			bf = TAILQ_FIRST(&frags);
2746			KASSERT(bf != NULL, ("no buf for txfrag"));
2747			TAILQ_REMOVE(&frags, bf, bf_list);
2748			goto nextfrag;
2749		}
2750
2751		sc->sc_wd_timer = 5;
2752	}
2753	ATH_KTR(sc, ATH_KTR_TX, 1, "ath_start: finished; npkts=%d", npkts);
2754}
2755static int
2756ath_media_change(struct ifnet *ifp)
2757{
2758	int error = ieee80211_media_change(ifp);
2759	/* NB: only the fixed rate can change and that doesn't need a reset */
2760	return (error == ENETRESET ? 0 : error);
2761}
2762
2763/*
2764 * Block/unblock tx+rx processing while a key change is done.
2765 * We assume the caller serializes key management operations
2766 * so we only need to worry about synchronization with other
2767 * uses that originate in the driver.
2768 */
2769static void
2770ath_key_update_begin(struct ieee80211vap *vap)
2771{
2772	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2773	struct ath_softc *sc = ifp->if_softc;
2774
2775	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2776	taskqueue_block(sc->sc_tq);
2777	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2778}
2779
2780static void
2781ath_key_update_end(struct ieee80211vap *vap)
2782{
2783	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2784	struct ath_softc *sc = ifp->if_softc;
2785
2786	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2787	IF_UNLOCK(&ifp->if_snd);
2788	taskqueue_unblock(sc->sc_tq);
2789}
2790
2791static void
2792ath_update_promisc(struct ifnet *ifp)
2793{
2794	struct ath_softc *sc = ifp->if_softc;
2795	u_int32_t rfilt;
2796
2797	/* configure rx filter */
2798	rfilt = ath_calcrxfilter(sc);
2799	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2800
2801	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2802}
2803
2804static void
2805ath_update_mcast(struct ifnet *ifp)
2806{
2807	struct ath_softc *sc = ifp->if_softc;
2808	u_int32_t mfilt[2];
2809
2810	/* calculate and install multicast filter */
2811	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2812		struct ifmultiaddr *ifma;
2813		/*
2814		 * Merge multicast addresses to form the hardware filter.
2815		 */
2816		mfilt[0] = mfilt[1] = 0;
2817		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2818		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2819			caddr_t dl;
2820			u_int32_t val;
2821			u_int8_t pos;
2822
2823			/* calculate XOR of eight 6bit values */
2824			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2825			val = LE_READ_4(dl + 0);
2826			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2827			val = LE_READ_4(dl + 3);
2828			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2829			pos &= 0x3f;
2830			mfilt[pos / 32] |= (1 << (pos % 32));
2831		}
2832		if_maddr_runlock(ifp);
2833	} else
2834		mfilt[0] = mfilt[1] = ~0;
2835	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2836	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2837		__func__, mfilt[0], mfilt[1]);
2838}
2839
2840void
2841ath_mode_init(struct ath_softc *sc)
2842{
2843	struct ifnet *ifp = sc->sc_ifp;
2844	struct ath_hal *ah = sc->sc_ah;
2845	u_int32_t rfilt;
2846
2847	/* configure rx filter */
2848	rfilt = ath_calcrxfilter(sc);
2849	ath_hal_setrxfilter(ah, rfilt);
2850
2851	/* configure operational mode */
2852	ath_hal_setopmode(ah);
2853
2854	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
2855	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
2856	    __func__,
2857	    ah,
2858	    ifp,
2859	    (ifp == NULL) ? NULL : ifp->if_addr);
2860
2861	/* handle any link-level address change */
2862	ath_hal_setmac(ah, IF_LLADDR(ifp));
2863
2864	/* calculate and install multicast filter */
2865	ath_update_mcast(ifp);
2866}
2867
2868/*
2869 * Set the slot time based on the current setting.
2870 */
2871void
2872ath_setslottime(struct ath_softc *sc)
2873{
2874	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2875	struct ath_hal *ah = sc->sc_ah;
2876	u_int usec;
2877
2878	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2879		usec = 13;
2880	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2881		usec = 21;
2882	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2883		/* honor short/long slot time only in 11g */
2884		/* XXX shouldn't honor on pure g or turbo g channel */
2885		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2886			usec = HAL_SLOT_TIME_9;
2887		else
2888			usec = HAL_SLOT_TIME_20;
2889	} else
2890		usec = HAL_SLOT_TIME_9;
2891
2892	DPRINTF(sc, ATH_DEBUG_RESET,
2893	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2894	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2895	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2896
2897	ath_hal_setslottime(ah, usec);
2898	sc->sc_updateslot = OK;
2899}
2900
2901/*
2902 * Callback from the 802.11 layer to update the
2903 * slot time based on the current setting.
2904 */
2905static void
2906ath_updateslot(struct ifnet *ifp)
2907{
2908	struct ath_softc *sc = ifp->if_softc;
2909	struct ieee80211com *ic = ifp->if_l2com;
2910
2911	/*
2912	 * When not coordinating the BSS, change the hardware
2913	 * immediately.  For other operation we defer the change
2914	 * until beacon updates have propagated to the stations.
2915	 */
2916	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2917	    ic->ic_opmode == IEEE80211_M_MBSS)
2918		sc->sc_updateslot = UPDATE;
2919	else
2920		ath_setslottime(sc);
2921}
2922
2923/*
2924 * Append the contents of src to dst; both queues
2925 * are assumed to be locked.
2926 */
2927void
2928ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2929{
2930
2931	ATH_TXQ_LOCK_ASSERT(src);
2932	ATH_TXQ_LOCK_ASSERT(dst);
2933
2934	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2935	dst->axq_link = src->axq_link;
2936	src->axq_link = NULL;
2937	dst->axq_depth += src->axq_depth;
2938	dst->axq_aggr_depth += src->axq_aggr_depth;
2939	src->axq_depth = 0;
2940	src->axq_aggr_depth = 0;
2941}
2942
2943/*
2944 * Reset the hardware, with no loss.
2945 *
2946 * This can't be used for a general case reset.
2947 */
2948static void
2949ath_reset_proc(void *arg, int pending)
2950{
2951	struct ath_softc *sc = arg;
2952	struct ifnet *ifp = sc->sc_ifp;
2953
2954#if 0
2955	if_printf(ifp, "%s: resetting\n", __func__);
2956#endif
2957	ath_reset(ifp, ATH_RESET_NOLOSS);
2958}
2959
2960/*
2961 * Reset the hardware after detecting beacons have stopped.
2962 */
2963static void
2964ath_bstuck_proc(void *arg, int pending)
2965{
2966	struct ath_softc *sc = arg;
2967	struct ifnet *ifp = sc->sc_ifp;
2968	uint32_t hangs = 0;
2969
2970	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
2971		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
2972
2973	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2974		sc->sc_bmisscount);
2975	sc->sc_stats.ast_bstuck++;
2976	/*
2977	 * This assumes that there's no simultaneous channel mode change
2978	 * occuring.
2979	 */
2980	ath_reset(ifp, ATH_RESET_NOLOSS);
2981}
2982
2983static void
2984ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2985{
2986	bus_addr_t *paddr = (bus_addr_t*) arg;
2987	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2988	*paddr = segs->ds_addr;
2989}
2990
2991/*
2992 * Allocate the descriptors and appropriate DMA tag/setup.
2993 *
2994 * For some situations (eg EDMA TX completion), there isn't a requirement
2995 * for the ath_buf entries to be allocated.
2996 */
2997int
2998ath_descdma_alloc_desc(struct ath_softc *sc,
2999	struct ath_descdma *dd, ath_bufhead *head,
3000	const char *name, int ds_size, int ndesc)
3001{
3002#define	DS2PHYS(_dd, _ds) \
3003	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3004#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3005	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3006	struct ifnet *ifp = sc->sc_ifp;
3007	int error;
3008
3009	dd->dd_descsize = ds_size;
3010
3011	DPRINTF(sc, ATH_DEBUG_RESET,
3012	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
3013	    __func__, name, ndesc, dd->dd_descsize);
3014
3015	dd->dd_name = name;
3016	dd->dd_desc_len = dd->dd_descsize * ndesc;
3017
3018	/*
3019	 * Merlin work-around:
3020	 * Descriptors that cross the 4KB boundary can't be used.
3021	 * Assume one skipped descriptor per 4KB page.
3022	 */
3023	if (! ath_hal_split4ktrans(sc->sc_ah)) {
3024		int numpages = dd->dd_desc_len / 4096;
3025		dd->dd_desc_len += ds_size * numpages;
3026	}
3027
3028	/*
3029	 * Setup DMA descriptor area.
3030	 */
3031	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3032		       PAGE_SIZE, 0,		/* alignment, bounds */
3033		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3034		       BUS_SPACE_MAXADDR,	/* highaddr */
3035		       NULL, NULL,		/* filter, filterarg */
3036		       dd->dd_desc_len,		/* maxsize */
3037		       1,			/* nsegments */
3038		       dd->dd_desc_len,		/* maxsegsize */
3039		       BUS_DMA_ALLOCNOW,	/* flags */
3040		       NULL,			/* lockfunc */
3041		       NULL,			/* lockarg */
3042		       &dd->dd_dmat);
3043	if (error != 0) {
3044		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3045		return error;
3046	}
3047
3048	/* allocate descriptors */
3049	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3050				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3051				 &dd->dd_dmamap);
3052	if (error != 0) {
3053		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3054			"error %u\n", ndesc, dd->dd_name, error);
3055		goto fail1;
3056	}
3057
3058	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3059				dd->dd_desc, dd->dd_desc_len,
3060				ath_load_cb, &dd->dd_desc_paddr,
3061				BUS_DMA_NOWAIT);
3062	if (error != 0) {
3063		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3064			dd->dd_name, error);
3065		goto fail2;
3066	}
3067
3068	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3069	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
3070	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
3071	    /*XXX*/ (u_long) dd->dd_desc_len);
3072
3073	return (0);
3074
3075fail2:
3076	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3077fail1:
3078	bus_dma_tag_destroy(dd->dd_dmat);
3079	memset(dd, 0, sizeof(*dd));
3080	return error;
3081#undef DS2PHYS
3082#undef ATH_DESC_4KB_BOUND_CHECK
3083}
3084
3085int
3086ath_descdma_setup(struct ath_softc *sc,
3087	struct ath_descdma *dd, ath_bufhead *head,
3088	const char *name, int ds_size, int nbuf, int ndesc)
3089{
3090#define	DS2PHYS(_dd, _ds) \
3091	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3092#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
3093	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
3094	struct ifnet *ifp = sc->sc_ifp;
3095	uint8_t *ds;
3096	struct ath_buf *bf;
3097	int i, bsize, error;
3098
3099	/* Allocate descriptors */
3100	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
3101	    nbuf * ndesc);
3102
3103	/* Assume any errors during allocation were dealt with */
3104	if (error != 0) {
3105		return (error);
3106	}
3107
3108	ds = (uint8_t *) dd->dd_desc;
3109
3110	/* allocate rx buffers */
3111	bsize = sizeof(struct ath_buf) * nbuf;
3112	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3113	if (bf == NULL) {
3114		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3115			dd->dd_name, bsize);
3116		goto fail3;
3117	}
3118	dd->dd_bufptr = bf;
3119
3120	TAILQ_INIT(head);
3121	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
3122		bf->bf_desc = (struct ath_desc *) ds;
3123		bf->bf_daddr = DS2PHYS(dd, ds);
3124		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3125			/*
3126			 * Merlin WAR: Skip descriptor addresses which
3127			 * cause 4KB boundary crossing along any point
3128			 * in the descriptor.
3129			 */
3130			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3131			     dd->dd_descsize)) {
3132				/* Start at the next page */
3133				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3134				bf->bf_desc = (struct ath_desc *) ds;
3135				bf->bf_daddr = DS2PHYS(dd, ds);
3136			}
3137		}
3138		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3139				&bf->bf_dmamap);
3140		if (error != 0) {
3141			if_printf(ifp, "unable to create dmamap for %s "
3142				"buffer %u, error %u\n", dd->dd_name, i, error);
3143			ath_descdma_cleanup(sc, dd, head);
3144			return error;
3145		}
3146		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
3147		TAILQ_INSERT_TAIL(head, bf, bf_list);
3148	}
3149
3150	/*
3151	 * XXX TODO: ensure that ds doesn't overflow the descriptor
3152	 * allocation otherwise weird stuff will occur and crash your
3153	 * machine.
3154	 */
3155	return 0;
3156	/* XXX this should likely just call ath_descdma_cleanup() */
3157fail3:
3158	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3159	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3160	bus_dma_tag_destroy(dd->dd_dmat);
3161	memset(dd, 0, sizeof(*dd));
3162	return error;
3163#undef DS2PHYS
3164#undef ATH_DESC_4KB_BOUND_CHECK
3165}
3166
3167/*
3168 * Allocate ath_buf entries but no descriptor contents.
3169 *
3170 * This is for RX EDMA where the descriptors are the header part of
3171 * the RX buffer.
3172 */
3173int
3174ath_descdma_setup_rx_edma(struct ath_softc *sc,
3175	struct ath_descdma *dd, ath_bufhead *head,
3176	const char *name, int nbuf, int rx_status_len)
3177{
3178	struct ifnet *ifp = sc->sc_ifp;
3179	struct ath_buf *bf;
3180	int i, bsize, error;
3181
3182	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3183	    __func__, name, nbuf);
3184
3185	dd->dd_name = name;
3186	/*
3187	 * This is (mostly) purely for show.  We're not allocating any actual
3188	 * descriptors here as EDMA RX has the descriptor be part
3189	 * of the RX buffer.
3190	 *
3191	 * However, dd_desc_len is used by ath_descdma_free() to determine
3192	 * whether we have already freed this DMA mapping.
3193	 */
3194	dd->dd_desc_len = rx_status_len * nbuf;
3195	dd->dd_descsize = rx_status_len;
3196
3197	/* allocate rx buffers */
3198	bsize = sizeof(struct ath_buf) * nbuf;
3199	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3200	if (bf == NULL) {
3201		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3202			dd->dd_name, bsize);
3203		error = ENOMEM;
3204		goto fail3;
3205	}
3206	dd->dd_bufptr = bf;
3207
3208	TAILQ_INIT(head);
3209	for (i = 0; i < nbuf; i++, bf++) {
3210		bf->bf_desc = NULL;
3211		bf->bf_daddr = 0;
3212		bf->bf_lastds = NULL;	/* Just an initial value */
3213
3214		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3215				&bf->bf_dmamap);
3216		if (error != 0) {
3217			if_printf(ifp, "unable to create dmamap for %s "
3218				"buffer %u, error %u\n", dd->dd_name, i, error);
3219			ath_descdma_cleanup(sc, dd, head);
3220			return error;
3221		}
3222		TAILQ_INSERT_TAIL(head, bf, bf_list);
3223	}
3224	return 0;
3225fail3:
3226	memset(dd, 0, sizeof(*dd));
3227	return error;
3228}
3229
3230void
3231ath_descdma_cleanup(struct ath_softc *sc,
3232	struct ath_descdma *dd, ath_bufhead *head)
3233{
3234	struct ath_buf *bf;
3235	struct ieee80211_node *ni;
3236
3237	if (dd->dd_dmamap != 0) {
3238		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3239		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3240		bus_dma_tag_destroy(dd->dd_dmat);
3241	}
3242
3243	if (head != NULL) {
3244		TAILQ_FOREACH(bf, head, bf_list) {
3245			if (bf->bf_m) {
3246				m_freem(bf->bf_m);
3247				bf->bf_m = NULL;
3248			}
3249			if (bf->bf_dmamap != NULL) {
3250				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3251				bf->bf_dmamap = NULL;
3252			}
3253			ni = bf->bf_node;
3254			bf->bf_node = NULL;
3255			if (ni != NULL) {
3256				/*
3257				 * Reclaim node reference.
3258				 */
3259				ieee80211_free_node(ni);
3260			}
3261		}
3262	}
3263
3264	if (head != NULL)
3265		TAILQ_INIT(head);
3266
3267	if (dd->dd_bufptr != NULL)
3268		free(dd->dd_bufptr, M_ATHDEV);
3269	memset(dd, 0, sizeof(*dd));
3270}
3271
3272static int
3273ath_desc_alloc(struct ath_softc *sc)
3274{
3275	int error;
3276
3277	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3278		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC);
3279	if (error != 0) {
3280		return error;
3281	}
3282	sc->sc_txbuf_cnt = ath_txbuf;
3283
3284	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3285		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3286		    ATH_TXDESC);
3287	if (error != 0) {
3288		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3289		return error;
3290	}
3291
3292	/*
3293	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3294	 * flag doesn't have to be set in ath_getbuf_locked().
3295	 */
3296
3297	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3298			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3299	if (error != 0) {
3300		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3301		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3302		    &sc->sc_txbuf_mgmt);
3303		return error;
3304	}
3305	return 0;
3306}
3307
3308static void
3309ath_desc_free(struct ath_softc *sc)
3310{
3311
3312	if (sc->sc_bdma.dd_desc_len != 0)
3313		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3314	if (sc->sc_txdma.dd_desc_len != 0)
3315		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3316	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3317		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3318		    &sc->sc_txbuf_mgmt);
3319}
3320
3321static struct ieee80211_node *
3322ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3323{
3324	struct ieee80211com *ic = vap->iv_ic;
3325	struct ath_softc *sc = ic->ic_ifp->if_softc;
3326	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3327	struct ath_node *an;
3328
3329	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3330	if (an == NULL) {
3331		/* XXX stat+msg */
3332		return NULL;
3333	}
3334	ath_rate_node_init(sc, an);
3335
3336	/* Setup the mutex - there's no associd yet so set the name to NULL */
3337	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3338	    device_get_nameunit(sc->sc_dev), an);
3339	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3340
3341	/* XXX setup ath_tid */
3342	ath_tx_tid_init(sc, an);
3343
3344	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3345	return &an->an_node;
3346}
3347
3348static void
3349ath_node_cleanup(struct ieee80211_node *ni)
3350{
3351	struct ieee80211com *ic = ni->ni_ic;
3352	struct ath_softc *sc = ic->ic_ifp->if_softc;
3353
3354	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3355	ath_tx_node_flush(sc, ATH_NODE(ni));
3356	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3357	sc->sc_node_cleanup(ni);
3358}
3359
3360static void
3361ath_node_free(struct ieee80211_node *ni)
3362{
3363	struct ieee80211com *ic = ni->ni_ic;
3364	struct ath_softc *sc = ic->ic_ifp->if_softc;
3365
3366	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3367	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3368	sc->sc_node_free(ni);
3369}
3370
3371static void
3372ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3373{
3374	struct ieee80211com *ic = ni->ni_ic;
3375	struct ath_softc *sc = ic->ic_ifp->if_softc;
3376	struct ath_hal *ah = sc->sc_ah;
3377
3378	*rssi = ic->ic_node_getrssi(ni);
3379	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3380		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3381	else
3382		*noise = -95;		/* nominally correct */
3383}
3384
3385/*
3386 * Set the default antenna.
3387 */
3388void
3389ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3390{
3391	struct ath_hal *ah = sc->sc_ah;
3392
3393	/* XXX block beacon interrupts */
3394	ath_hal_setdefantenna(ah, antenna);
3395	if (sc->sc_defant != antenna)
3396		sc->sc_stats.ast_ant_defswitch++;
3397	sc->sc_defant = antenna;
3398	sc->sc_rxotherant = 0;
3399}
3400
3401static void
3402ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3403{
3404	txq->axq_qnum = qnum;
3405	txq->axq_ac = 0;
3406	txq->axq_depth = 0;
3407	txq->axq_aggr_depth = 0;
3408	txq->axq_intrcnt = 0;
3409	txq->axq_link = NULL;
3410	txq->axq_softc = sc;
3411	TAILQ_INIT(&txq->axq_q);
3412	TAILQ_INIT(&txq->axq_tidq);
3413	ATH_TXQ_LOCK_INIT(sc, txq);
3414}
3415
3416/*
3417 * Setup a h/w transmit queue.
3418 */
3419static struct ath_txq *
3420ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3421{
3422#define	N(a)	(sizeof(a)/sizeof(a[0]))
3423	struct ath_hal *ah = sc->sc_ah;
3424	HAL_TXQ_INFO qi;
3425	int qnum;
3426
3427	memset(&qi, 0, sizeof(qi));
3428	qi.tqi_subtype = subtype;
3429	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3430	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3431	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3432	/*
3433	 * Enable interrupts only for EOL and DESC conditions.
3434	 * We mark tx descriptors to receive a DESC interrupt
3435	 * when a tx queue gets deep; otherwise waiting for the
3436	 * EOL to reap descriptors.  Note that this is done to
3437	 * reduce interrupt load and this only defers reaping
3438	 * descriptors, never transmitting frames.  Aside from
3439	 * reducing interrupts this also permits more concurrency.
3440	 * The only potential downside is if the tx queue backs
3441	 * up in which case the top half of the kernel may backup
3442	 * due to a lack of tx descriptors.
3443	 */
3444	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3445	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3446	if (qnum == -1) {
3447		/*
3448		 * NB: don't print a message, this happens
3449		 * normally on parts with too few tx queues
3450		 */
3451		return NULL;
3452	}
3453	if (qnum >= N(sc->sc_txq)) {
3454		device_printf(sc->sc_dev,
3455			"hal qnum %u out of range, max %zu!\n",
3456			qnum, N(sc->sc_txq));
3457		ath_hal_releasetxqueue(ah, qnum);
3458		return NULL;
3459	}
3460	if (!ATH_TXQ_SETUP(sc, qnum)) {
3461		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3462		sc->sc_txqsetup |= 1<<qnum;
3463	}
3464	return &sc->sc_txq[qnum];
3465#undef N
3466}
3467
3468/*
3469 * Setup a hardware data transmit queue for the specified
3470 * access control.  The hal may not support all requested
3471 * queues in which case it will return a reference to a
3472 * previously setup queue.  We record the mapping from ac's
3473 * to h/w queues for use by ath_tx_start and also track
3474 * the set of h/w queues being used to optimize work in the
3475 * transmit interrupt handler and related routines.
3476 */
3477static int
3478ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3479{
3480#define	N(a)	(sizeof(a)/sizeof(a[0]))
3481	struct ath_txq *txq;
3482
3483	if (ac >= N(sc->sc_ac2q)) {
3484		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3485			ac, N(sc->sc_ac2q));
3486		return 0;
3487	}
3488	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3489	if (txq != NULL) {
3490		txq->axq_ac = ac;
3491		sc->sc_ac2q[ac] = txq;
3492		return 1;
3493	} else
3494		return 0;
3495#undef N
3496}
3497
3498/*
3499 * Update WME parameters for a transmit queue.
3500 */
3501static int
3502ath_txq_update(struct ath_softc *sc, int ac)
3503{
3504#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3505#define	ATH_TXOP_TO_US(v)		(v<<5)
3506	struct ifnet *ifp = sc->sc_ifp;
3507	struct ieee80211com *ic = ifp->if_l2com;
3508	struct ath_txq *txq = sc->sc_ac2q[ac];
3509	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3510	struct ath_hal *ah = sc->sc_ah;
3511	HAL_TXQ_INFO qi;
3512
3513	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3514#ifdef IEEE80211_SUPPORT_TDMA
3515	if (sc->sc_tdma) {
3516		/*
3517		 * AIFS is zero so there's no pre-transmit wait.  The
3518		 * burst time defines the slot duration and is configured
3519		 * through net80211.  The QCU is setup to not do post-xmit
3520		 * back off, lockout all lower-priority QCU's, and fire
3521		 * off the DMA beacon alert timer which is setup based
3522		 * on the slot configuration.
3523		 */
3524		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3525			      | HAL_TXQ_TXERRINT_ENABLE
3526			      | HAL_TXQ_TXURNINT_ENABLE
3527			      | HAL_TXQ_TXEOLINT_ENABLE
3528			      | HAL_TXQ_DBA_GATED
3529			      | HAL_TXQ_BACKOFF_DISABLE
3530			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3531			      ;
3532		qi.tqi_aifs = 0;
3533		/* XXX +dbaprep? */
3534		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3535		qi.tqi_burstTime = qi.tqi_readyTime;
3536	} else {
3537#endif
3538		/*
3539		 * XXX shouldn't this just use the default flags
3540		 * used in the previous queue setup?
3541		 */
3542		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3543			      | HAL_TXQ_TXERRINT_ENABLE
3544			      | HAL_TXQ_TXDESCINT_ENABLE
3545			      | HAL_TXQ_TXURNINT_ENABLE
3546			      | HAL_TXQ_TXEOLINT_ENABLE
3547			      ;
3548		qi.tqi_aifs = wmep->wmep_aifsn;
3549		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3550		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3551		qi.tqi_readyTime = 0;
3552		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3553#ifdef IEEE80211_SUPPORT_TDMA
3554	}
3555#endif
3556
3557	DPRINTF(sc, ATH_DEBUG_RESET,
3558	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3559	    __func__, txq->axq_qnum, qi.tqi_qflags,
3560	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3561
3562	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3563		if_printf(ifp, "unable to update hardware queue "
3564			"parameters for %s traffic!\n",
3565			ieee80211_wme_acnames[ac]);
3566		return 0;
3567	} else {
3568		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3569		return 1;
3570	}
3571#undef ATH_TXOP_TO_US
3572#undef ATH_EXPONENT_TO_VALUE
3573}
3574
3575/*
3576 * Callback from the 802.11 layer to update WME parameters.
3577 */
3578int
3579ath_wme_update(struct ieee80211com *ic)
3580{
3581	struct ath_softc *sc = ic->ic_ifp->if_softc;
3582
3583	return !ath_txq_update(sc, WME_AC_BE) ||
3584	    !ath_txq_update(sc, WME_AC_BK) ||
3585	    !ath_txq_update(sc, WME_AC_VI) ||
3586	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3587}
3588
3589/*
3590 * Reclaim resources for a setup queue.
3591 */
3592static void
3593ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3594{
3595
3596	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3597	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3598	ATH_TXQ_LOCK_DESTROY(txq);
3599}
3600
3601/*
3602 * Reclaim all tx queue resources.
3603 */
3604static void
3605ath_tx_cleanup(struct ath_softc *sc)
3606{
3607	int i;
3608
3609	ATH_TXBUF_LOCK_DESTROY(sc);
3610	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3611		if (ATH_TXQ_SETUP(sc, i))
3612			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3613}
3614
3615/*
3616 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3617 * using the current rates in sc_rixmap.
3618 */
3619int
3620ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3621{
3622	int rix = sc->sc_rixmap[rate];
3623	/* NB: return lowest rix for invalid rate */
3624	return (rix == 0xff ? 0 : rix);
3625}
3626
3627static void
3628ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3629    struct ath_buf *bf)
3630{
3631	struct ieee80211_node *ni = bf->bf_node;
3632	struct ifnet *ifp = sc->sc_ifp;
3633	struct ieee80211com *ic = ifp->if_l2com;
3634	int sr, lr, pri;
3635
3636	if (ts->ts_status == 0) {
3637		u_int8_t txant = ts->ts_antenna;
3638		sc->sc_stats.ast_ant_tx[txant]++;
3639		sc->sc_ant_tx[txant]++;
3640		if (ts->ts_finaltsi != 0)
3641			sc->sc_stats.ast_tx_altrate++;
3642		pri = M_WME_GETAC(bf->bf_m);
3643		if (pri >= WME_AC_VO)
3644			ic->ic_wme.wme_hipri_traffic++;
3645		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3646			ni->ni_inact = ni->ni_inact_reload;
3647	} else {
3648		if (ts->ts_status & HAL_TXERR_XRETRY)
3649			sc->sc_stats.ast_tx_xretries++;
3650		if (ts->ts_status & HAL_TXERR_FIFO)
3651			sc->sc_stats.ast_tx_fifoerr++;
3652		if (ts->ts_status & HAL_TXERR_FILT)
3653			sc->sc_stats.ast_tx_filtered++;
3654		if (ts->ts_status & HAL_TXERR_XTXOP)
3655			sc->sc_stats.ast_tx_xtxop++;
3656		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3657			sc->sc_stats.ast_tx_timerexpired++;
3658
3659		if (bf->bf_m->m_flags & M_FF)
3660			sc->sc_stats.ast_ff_txerr++;
3661	}
3662	/* XXX when is this valid? */
3663	if (ts->ts_flags & HAL_TX_DESC_CFG_ERR)
3664		sc->sc_stats.ast_tx_desccfgerr++;
3665	/*
3666	 * This can be valid for successful frame transmission!
3667	 * If there's a TX FIFO underrun during aggregate transmission,
3668	 * the MAC will pad the rest of the aggregate with delimiters.
3669	 * If a BA is returned, the frame is marked as "OK" and it's up
3670	 * to the TX completion code to notice which frames weren't
3671	 * successfully transmitted.
3672	 */
3673	if (ts->ts_flags & HAL_TX_DATA_UNDERRUN)
3674		sc->sc_stats.ast_tx_data_underrun++;
3675	if (ts->ts_flags & HAL_TX_DELIM_UNDERRUN)
3676		sc->sc_stats.ast_tx_delim_underrun++;
3677
3678	sr = ts->ts_shortretry;
3679	lr = ts->ts_longretry;
3680	sc->sc_stats.ast_tx_shortretry += sr;
3681	sc->sc_stats.ast_tx_longretry += lr;
3682
3683}
3684
3685/*
3686 * The default completion. If fail is 1, this means
3687 * "please don't retry the frame, and just return -1 status
3688 * to the net80211 stack.
3689 */
3690void
3691ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3692{
3693	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3694	int st;
3695
3696	if (fail == 1)
3697		st = -1;
3698	else
3699		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
3700		    ts->ts_status : HAL_TXERR_XRETRY;
3701
3702#if 0
3703	if (bf->bf_state.bfs_dobaw)
3704		device_printf(sc->sc_dev,
3705		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
3706		    __func__,
3707		    bf,
3708		    SEQNO(bf->bf_state.bfs_seqno));
3709#endif
3710	if (bf->bf_next != NULL)
3711		device_printf(sc->sc_dev,
3712		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
3713		    __func__,
3714		    bf,
3715		    SEQNO(bf->bf_state.bfs_seqno));
3716
3717	/*
3718	 * Check if the node software queue is empty; if so
3719	 * then clear the TIM.
3720	 *
3721	 * This needs to be done before the buffer is freed as
3722	 * otherwise the node reference will have been released
3723	 * and the node may not actually exist any longer.
3724	 *
3725	 * XXX I don't like this belonging here, but it's cleaner
3726	 * to do it here right now then all the other places
3727	 * where ath_tx_default_comp() is called.
3728	 *
3729	 * XXX TODO: during drain, ensure that the callback is
3730	 * being called so we get a chance to update the TIM.
3731	 */
3732	if (bf->bf_node)
3733		ath_tx_update_tim(sc, bf->bf_node, 0);
3734
3735	/*
3736	 * Do any tx complete callback.  Note this must
3737	 * be done before releasing the node reference.
3738	 * This will free the mbuf, release the net80211
3739	 * node and recycle the ath_buf.
3740	 */
3741	ath_tx_freebuf(sc, bf, st);
3742}
3743
3744/*
3745 * Update rate control with the given completion status.
3746 */
3747void
3748ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
3749    struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
3750    int nframes, int nbad)
3751{
3752	struct ath_node *an;
3753
3754	/* Only for unicast frames */
3755	if (ni == NULL)
3756		return;
3757
3758	an = ATH_NODE(ni);
3759	ATH_NODE_UNLOCK_ASSERT(an);
3760
3761	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
3762		ATH_NODE_LOCK(an);
3763		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
3764		ATH_NODE_UNLOCK(an);
3765	}
3766}
3767
3768/*
3769 * Process the completion of the given buffer.
3770 *
3771 * This calls the rate control update and then the buffer completion.
3772 * This will either free the buffer or requeue it.  In any case, the
3773 * bf pointer should be treated as invalid after this function is called.
3774 */
3775void
3776ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
3777    struct ath_tx_status *ts, struct ath_buf *bf)
3778{
3779	struct ieee80211_node *ni = bf->bf_node;
3780	struct ath_node *an = NULL;
3781
3782	ATH_TX_UNLOCK_ASSERT(sc);
3783
3784	/* If unicast frame, update general statistics */
3785	if (ni != NULL) {
3786		an = ATH_NODE(ni);
3787		/* update statistics */
3788		ath_tx_update_stats(sc, ts, bf);
3789	}
3790
3791	/*
3792	 * Call the completion handler.
3793	 * The completion handler is responsible for
3794	 * calling the rate control code.
3795	 *
3796	 * Frames with no completion handler get the
3797	 * rate control code called here.
3798	 */
3799	if (bf->bf_comp == NULL) {
3800		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
3801		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
3802			/*
3803			 * XXX assume this isn't an aggregate
3804			 * frame.
3805			 */
3806			ath_tx_update_ratectrl(sc, ni,
3807			     bf->bf_state.bfs_rc, ts,
3808			    bf->bf_state.bfs_pktlen, 1,
3809			    (ts->ts_status == 0 ? 0 : 1));
3810		}
3811		ath_tx_default_comp(sc, bf, 0);
3812	} else
3813		bf->bf_comp(sc, bf, 0);
3814}
3815
3816
3817
3818/*
3819 * Process completed xmit descriptors from the specified queue.
3820 * Kick the packet scheduler if needed. This can occur from this
3821 * particular task.
3822 */
3823static int
3824ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
3825{
3826	struct ath_hal *ah = sc->sc_ah;
3827	struct ath_buf *bf;
3828	struct ath_desc *ds;
3829	struct ath_tx_status *ts;
3830	struct ieee80211_node *ni;
3831#ifdef	IEEE80211_SUPPORT_SUPERG
3832	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3833#endif	/* IEEE80211_SUPPORT_SUPERG */
3834	int nacked;
3835	HAL_STATUS status;
3836
3837	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3838		__func__, txq->axq_qnum,
3839		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3840		txq->axq_link);
3841
3842	ATH_KTR(sc, ATH_KTR_TXCOMP, 4,
3843	    "ath_tx_processq: txq=%u head %p link %p depth %p",
3844	    txq->axq_qnum,
3845	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3846	    txq->axq_link,
3847	    txq->axq_depth);
3848
3849	nacked = 0;
3850	for (;;) {
3851		ATH_TXQ_LOCK(txq);
3852		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3853		bf = TAILQ_FIRST(&txq->axq_q);
3854		if (bf == NULL) {
3855			ATH_TXQ_UNLOCK(txq);
3856			break;
3857		}
3858		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
3859		ts = &bf->bf_status.ds_txstat;
3860
3861		status = ath_hal_txprocdesc(ah, ds, ts);
3862#ifdef ATH_DEBUG
3863		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3864			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3865			    status == HAL_OK);
3866		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0))
3867			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3868			    status == HAL_OK);
3869#endif
3870#ifdef	ATH_DEBUG_ALQ
3871		if (if_ath_alq_checkdebug(&sc->sc_alq,
3872		    ATH_ALQ_EDMA_TXSTATUS)) {
3873			if_ath_alq_post(&sc->sc_alq, ATH_ALQ_EDMA_TXSTATUS,
3874			sc->sc_tx_statuslen,
3875			(char *) ds);
3876		}
3877#endif
3878
3879		if (status == HAL_EINPROGRESS) {
3880			ATH_KTR(sc, ATH_KTR_TXCOMP, 3,
3881			    "ath_tx_processq: txq=%u, bf=%p ds=%p, HAL_EINPROGRESS",
3882			    txq->axq_qnum, bf, ds);
3883			ATH_TXQ_UNLOCK(txq);
3884			break;
3885		}
3886		ATH_TXQ_REMOVE(txq, bf, bf_list);
3887		if (txq->axq_depth > 0) {
3888			/*
3889			 * More frames follow.  Mark the buffer busy
3890			 * so it's not re-used while the hardware may
3891			 * still re-read the link field in the descriptor.
3892			 *
3893			 * Use the last buffer in an aggregate as that
3894			 * is where the hardware may be - intermediate
3895			 * descriptors won't be "busy".
3896			 */
3897			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
3898		} else
3899			txq->axq_link = NULL;
3900		if (bf->bf_state.bfs_aggr)
3901			txq->axq_aggr_depth--;
3902
3903		ni = bf->bf_node;
3904
3905		ATH_KTR(sc, ATH_KTR_TXCOMP, 5,
3906		    "ath_tx_processq: txq=%u, bf=%p, ds=%p, ni=%p, ts_status=0x%08x",
3907		    txq->axq_qnum, bf, ds, ni, ts->ts_status);
3908		/*
3909		 * If unicast frame was ack'd update RSSI,
3910		 * including the last rx time used to
3911		 * workaround phantom bmiss interrupts.
3912		 */
3913		if (ni != NULL && ts->ts_status == 0 &&
3914		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
3915			nacked++;
3916			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
3917			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3918				ts->ts_rssi);
3919		}
3920		ATH_TXQ_UNLOCK(txq);
3921
3922		/*
3923		 * Update statistics and call completion
3924		 */
3925		ath_tx_process_buf_completion(sc, txq, ts, bf);
3926
3927		/* XXX at this point, bf and ni may be totally invalid */
3928	}
3929#ifdef IEEE80211_SUPPORT_SUPERG
3930	/*
3931	 * Flush fast-frame staging queue when traffic slows.
3932	 */
3933	if (txq->axq_depth <= 1)
3934		ieee80211_ff_flush(ic, txq->axq_ac);
3935#endif
3936
3937	/* Kick the software TXQ scheduler */
3938	if (dosched) {
3939		ATH_TX_LOCK(sc);
3940		ath_txq_sched(sc, txq);
3941		ATH_TX_UNLOCK(sc);
3942	}
3943
3944	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3945	    "ath_tx_processq: txq=%u: done",
3946	    txq->axq_qnum);
3947
3948	return nacked;
3949}
3950
3951#define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
3952
3953/*
3954 * Deferred processing of transmit interrupt; special-cased
3955 * for a single hardware transmit queue (e.g. 5210 and 5211).
3956 */
3957static void
3958ath_tx_proc_q0(void *arg, int npending)
3959{
3960	struct ath_softc *sc = arg;
3961	struct ifnet *ifp = sc->sc_ifp;
3962	uint32_t txqs;
3963
3964	ATH_PCU_LOCK(sc);
3965	sc->sc_txproc_cnt++;
3966	txqs = sc->sc_txq_active;
3967	sc->sc_txq_active &= ~txqs;
3968	ATH_PCU_UNLOCK(sc);
3969
3970	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
3971	    "ath_tx_proc_q0: txqs=0x%08x", txqs);
3972
3973	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
3974		/* XXX why is lastrx updated in tx code? */
3975		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3976	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3977		ath_tx_processq(sc, sc->sc_cabq, 1);
3978	IF_LOCK(&ifp->if_snd);
3979	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3980	IF_UNLOCK(&ifp->if_snd);
3981	sc->sc_wd_timer = 0;
3982
3983	if (sc->sc_softled)
3984		ath_led_event(sc, sc->sc_txrix);
3985
3986	ATH_PCU_LOCK(sc);
3987	sc->sc_txproc_cnt--;
3988	ATH_PCU_UNLOCK(sc);
3989
3990	ath_tx_kick(sc);
3991}
3992
3993/*
3994 * Deferred processing of transmit interrupt; special-cased
3995 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3996 */
3997static void
3998ath_tx_proc_q0123(void *arg, int npending)
3999{
4000	struct ath_softc *sc = arg;
4001	struct ifnet *ifp = sc->sc_ifp;
4002	int nacked;
4003	uint32_t txqs;
4004
4005	ATH_PCU_LOCK(sc);
4006	sc->sc_txproc_cnt++;
4007	txqs = sc->sc_txq_active;
4008	sc->sc_txq_active &= ~txqs;
4009	ATH_PCU_UNLOCK(sc);
4010
4011	ATH_KTR(sc, ATH_KTR_TXCOMP, 1,
4012	    "ath_tx_proc_q0123: txqs=0x%08x", txqs);
4013
4014	/*
4015	 * Process each active queue.
4016	 */
4017	nacked = 0;
4018	if (TXQACTIVE(txqs, 0))
4019		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
4020	if (TXQACTIVE(txqs, 1))
4021		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
4022	if (TXQACTIVE(txqs, 2))
4023		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
4024	if (TXQACTIVE(txqs, 3))
4025		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
4026	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
4027		ath_tx_processq(sc, sc->sc_cabq, 1);
4028	if (nacked)
4029		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4030
4031	IF_LOCK(&ifp->if_snd);
4032	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4033	IF_UNLOCK(&ifp->if_snd);
4034	sc->sc_wd_timer = 0;
4035
4036	if (sc->sc_softled)
4037		ath_led_event(sc, sc->sc_txrix);
4038
4039	ATH_PCU_LOCK(sc);
4040	sc->sc_txproc_cnt--;
4041	ATH_PCU_UNLOCK(sc);
4042
4043	ath_tx_kick(sc);
4044}
4045
4046/*
4047 * Deferred processing of transmit interrupt.
4048 */
4049static void
4050ath_tx_proc(void *arg, int npending)
4051{
4052	struct ath_softc *sc = arg;
4053	struct ifnet *ifp = sc->sc_ifp;
4054	int i, nacked;
4055	uint32_t txqs;
4056
4057	ATH_PCU_LOCK(sc);
4058	sc->sc_txproc_cnt++;
4059	txqs = sc->sc_txq_active;
4060	sc->sc_txq_active &= ~txqs;
4061	ATH_PCU_UNLOCK(sc);
4062
4063	ATH_KTR(sc, ATH_KTR_TXCOMP, 1, "ath_tx_proc: txqs=0x%08x", txqs);
4064
4065	/*
4066	 * Process each active queue.
4067	 */
4068	nacked = 0;
4069	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4070		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
4071			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
4072	if (nacked)
4073		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4074
4075	/* XXX check this inside of IF_LOCK? */
4076	IF_LOCK(&ifp->if_snd);
4077	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4078	IF_UNLOCK(&ifp->if_snd);
4079	sc->sc_wd_timer = 0;
4080
4081	if (sc->sc_softled)
4082		ath_led_event(sc, sc->sc_txrix);
4083
4084	ATH_PCU_LOCK(sc);
4085	sc->sc_txproc_cnt--;
4086	ATH_PCU_UNLOCK(sc);
4087
4088	ath_tx_kick(sc);
4089}
4090#undef	TXQACTIVE
4091
4092/*
4093 * Deferred processing of TXQ rescheduling.
4094 */
4095static void
4096ath_txq_sched_tasklet(void *arg, int npending)
4097{
4098	struct ath_softc *sc = arg;
4099	int i;
4100
4101	/* XXX is skipping ok? */
4102	ATH_PCU_LOCK(sc);
4103#if 0
4104	if (sc->sc_inreset_cnt > 0) {
4105		device_printf(sc->sc_dev,
4106		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
4107		ATH_PCU_UNLOCK(sc);
4108		return;
4109	}
4110#endif
4111	sc->sc_txproc_cnt++;
4112	ATH_PCU_UNLOCK(sc);
4113
4114	ATH_TX_LOCK(sc);
4115	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4116		if (ATH_TXQ_SETUP(sc, i)) {
4117			ath_txq_sched(sc, &sc->sc_txq[i]);
4118		}
4119	}
4120	ATH_TX_UNLOCK(sc);
4121
4122	ATH_PCU_LOCK(sc);
4123	sc->sc_txproc_cnt--;
4124	ATH_PCU_UNLOCK(sc);
4125}
4126
4127void
4128ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
4129{
4130
4131	ATH_TXBUF_LOCK_ASSERT(sc);
4132
4133	if (bf->bf_flags & ATH_BUF_MGMT)
4134		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
4135	else {
4136		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4137		sc->sc_txbuf_cnt++;
4138		if (sc->sc_txbuf_cnt > ath_txbuf) {
4139			device_printf(sc->sc_dev,
4140			    "%s: sc_txbuf_cnt > %d?\n",
4141			    __func__,
4142			    ath_txbuf);
4143			sc->sc_txbuf_cnt = ath_txbuf;
4144		}
4145	}
4146}
4147
4148void
4149ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
4150{
4151
4152	ATH_TXBUF_LOCK_ASSERT(sc);
4153
4154	if (bf->bf_flags & ATH_BUF_MGMT)
4155		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
4156	else {
4157		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
4158		sc->sc_txbuf_cnt++;
4159		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
4160			device_printf(sc->sc_dev,
4161			    "%s: sc_txbuf_cnt > %d?\n",
4162			    __func__,
4163			    ATH_TXBUF);
4164			sc->sc_txbuf_cnt = ATH_TXBUF;
4165		}
4166	}
4167}
4168
4169/*
4170 * Free the holding buffer if it exists
4171 */
4172static void
4173ath_txq_freeholdingbuf(struct ath_softc *sc, struct ath_txq *txq)
4174{
4175	ATH_TXBUF_LOCK_ASSERT(sc);
4176
4177	if (txq->axq_holdingbf == NULL)
4178		return;
4179
4180	txq->axq_holdingbf->bf_flags &= ~ATH_BUF_BUSY;
4181	ath_returnbuf_tail(sc, txq->axq_holdingbf);
4182	txq->axq_holdingbf = NULL;
4183}
4184
4185/*
4186 * Add this buffer to the holding queue, freeing the previous
4187 * one if it exists.
4188 */
4189static void
4190ath_txq_addholdingbuf(struct ath_softc *sc, struct ath_buf *bf)
4191{
4192	struct ath_txq *txq;
4193
4194	ATH_TXBUF_LOCK_ASSERT(sc);
4195
4196	/* XXX assert ATH_BUF_BUSY is set */
4197
4198	/* XXX assert the tx queue is under the max number */
4199	if (bf->bf_state.bfs_tx_queue > HAL_NUM_TX_QUEUES) {
4200		device_printf(sc->sc_dev, "%s: bf=%p: invalid tx queue (%d)\n",
4201		    __func__,
4202		    bf,
4203		    bf->bf_state.bfs_tx_queue);
4204		bf->bf_flags &= ~ATH_BUF_BUSY;
4205		ath_returnbuf_tail(sc, bf);
4206		return;
4207	}
4208	txq = &sc->sc_txq[bf->bf_state.bfs_tx_queue];
4209	ath_txq_freeholdingbuf(sc, txq);
4210	txq->axq_holdingbf = bf;
4211}
4212
4213/*
4214 * Return a buffer to the pool and update the 'busy' flag on the
4215 * previous 'tail' entry.
4216 *
4217 * This _must_ only be called when the buffer is involved in a completed
4218 * TX. The logic is that if it was part of an active TX, the previous
4219 * buffer on the list is now not involved in a halted TX DMA queue, waiting
4220 * for restart (eg for TDMA.)
4221 *
4222 * The caller must free the mbuf and recycle the node reference.
4223 */
4224void
4225ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
4226{
4227	bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4228	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
4229
4230	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
4231	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
4232
4233	/*
4234	 * If this buffer is busy, push it onto the holding queue
4235	 */
4236	if (bf->bf_flags & ATH_BUF_BUSY) {
4237		ATH_TXBUF_LOCK(sc);
4238		ath_txq_addholdingbuf(sc, bf);
4239		ATH_TXBUF_UNLOCK(sc);
4240		return;
4241	}
4242
4243	/*
4244	 * Not a busy buffer, so free normally
4245	 */
4246	ATH_TXBUF_LOCK(sc);
4247	ath_returnbuf_tail(sc, bf);
4248	ATH_TXBUF_UNLOCK(sc);
4249}
4250
4251/*
4252 * This is currently used by ath_tx_draintxq() and
4253 * ath_tx_tid_free_pkts().
4254 *
4255 * It recycles a single ath_buf.
4256 */
4257void
4258ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
4259{
4260	struct ieee80211_node *ni = bf->bf_node;
4261	struct mbuf *m0 = bf->bf_m;
4262
4263	bf->bf_node = NULL;
4264	bf->bf_m = NULL;
4265
4266	/* Free the buffer, it's not needed any longer */
4267	ath_freebuf(sc, bf);
4268
4269	if (ni != NULL) {
4270		/*
4271		 * Do any callback and reclaim the node reference.
4272		 */
4273		if (m0->m_flags & M_TXCB)
4274			ieee80211_process_callback(ni, m0, status);
4275		ieee80211_free_node(ni);
4276	}
4277	m_freem(m0);
4278
4279	/*
4280	 * XXX the buffer used to be freed -after-, but the DMA map was
4281	 * freed where ath_freebuf() now is. I've no idea what this
4282	 * will do.
4283	 */
4284}
4285
4286void
4287ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4288{
4289#ifdef ATH_DEBUG
4290	struct ath_hal *ah = sc->sc_ah;
4291#endif
4292	struct ath_buf *bf;
4293	u_int ix;
4294
4295	/*
4296	 * NB: this assumes output has been stopped and
4297	 *     we do not need to block ath_tx_proc
4298	 */
4299	for (ix = 0;; ix++) {
4300		ATH_TXQ_LOCK(txq);
4301		bf = TAILQ_FIRST(&txq->axq_q);
4302		if (bf == NULL) {
4303			txq->axq_link = NULL;
4304			/*
4305			 * There's currently no flag that indicates
4306			 * a buffer is on the FIFO.  So until that
4307			 * occurs, just clear the FIFO counter here.
4308			 *
4309			 * Yes, this means that if something in parallel
4310			 * is pushing things onto this TXQ and pushing
4311			 * _that_ into the hardware, things will get
4312			 * very fruity very quickly.
4313			 */
4314			txq->axq_fifo_depth = 0;
4315			ATH_TXQ_UNLOCK(txq);
4316			break;
4317		}
4318		ATH_TXQ_REMOVE(txq, bf, bf_list);
4319		if (bf->bf_state.bfs_aggr)
4320			txq->axq_aggr_depth--;
4321#ifdef ATH_DEBUG
4322		if (sc->sc_debug & ATH_DEBUG_RESET) {
4323			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4324			int status = 0;
4325
4326			/*
4327			 * EDMA operation has a TX completion FIFO
4328			 * separate from the TX descriptor, so this
4329			 * method of checking the "completion" status
4330			 * is wrong.
4331			 */
4332			if (! sc->sc_isedma) {
4333				status = (ath_hal_txprocdesc(ah,
4334				    bf->bf_lastds,
4335				    &bf->bf_status.ds_txstat) == HAL_OK);
4336			}
4337			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
4338			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4339			    bf->bf_m->m_len, 0, -1);
4340		}
4341#endif /* ATH_DEBUG */
4342		/*
4343		 * Since we're now doing magic in the completion
4344		 * functions, we -must- call it for aggregation
4345		 * destinations or BAW tracking will get upset.
4346		 */
4347		/*
4348		 * Clear ATH_BUF_BUSY; the completion handler
4349		 * will free the buffer.
4350		 */
4351		ATH_TXQ_UNLOCK(txq);
4352		bf->bf_flags &= ~ATH_BUF_BUSY;
4353		if (bf->bf_comp)
4354			bf->bf_comp(sc, bf, 1);
4355		else
4356			ath_tx_default_comp(sc, bf, 1);
4357	}
4358
4359	/*
4360	 * Free the holding buffer if it exists
4361	 */
4362	ATH_TXBUF_LOCK(sc);
4363	ath_txq_freeholdingbuf(sc, txq);
4364	ATH_TXBUF_UNLOCK(sc);
4365
4366	/*
4367	 * Drain software queued frames which are on
4368	 * active TIDs.
4369	 */
4370	ath_tx_txq_drain(sc, txq);
4371}
4372
4373static void
4374ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4375{
4376	struct ath_hal *ah = sc->sc_ah;
4377
4378	DPRINTF(sc, ATH_DEBUG_RESET,
4379	    "%s: tx queue [%u] %p, flags 0x%08x, link %p\n",
4380	    __func__,
4381	    txq->axq_qnum,
4382	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4383	    txq->axq_flags,
4384	    txq->axq_link);
4385	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4386}
4387
4388int
4389ath_stoptxdma(struct ath_softc *sc)
4390{
4391	struct ath_hal *ah = sc->sc_ah;
4392	int i;
4393
4394	/* XXX return value */
4395	if (sc->sc_invalid)
4396		return 0;
4397
4398	if (!sc->sc_invalid) {
4399		/* don't touch the hardware if marked invalid */
4400		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4401		    __func__, sc->sc_bhalq,
4402		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4403		    NULL);
4404		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4405		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4406			if (ATH_TXQ_SETUP(sc, i))
4407				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4408	}
4409
4410	return 1;
4411}
4412
4413/*
4414 * Drain the transmit queues and reclaim resources.
4415 */
4416void
4417ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
4418{
4419#ifdef	ATH_DEBUG
4420	struct ath_hal *ah = sc->sc_ah;
4421#endif
4422	struct ifnet *ifp = sc->sc_ifp;
4423	int i;
4424
4425	(void) ath_stoptxdma(sc);
4426
4427	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4428		/*
4429		 * XXX TODO: should we just handle the completed TX frames
4430		 * here, whether or not the reset is a full one or not?
4431		 */
4432		if (ATH_TXQ_SETUP(sc, i)) {
4433			if (reset_type == ATH_RESET_NOLOSS)
4434				ath_tx_processq(sc, &sc->sc_txq[i], 0);
4435			else
4436				ath_tx_draintxq(sc, &sc->sc_txq[i]);
4437		}
4438	}
4439#ifdef ATH_DEBUG
4440	if (sc->sc_debug & ATH_DEBUG_RESET) {
4441		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
4442		if (bf != NULL && bf->bf_m != NULL) {
4443			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4444				ath_hal_txprocdesc(ah, bf->bf_lastds,
4445				    &bf->bf_status.ds_txstat) == HAL_OK);
4446			ieee80211_dump_pkt(ifp->if_l2com,
4447			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4448			    0, -1);
4449		}
4450	}
4451#endif /* ATH_DEBUG */
4452	IF_LOCK(&ifp->if_snd);
4453	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4454	IF_UNLOCK(&ifp->if_snd);
4455	sc->sc_wd_timer = 0;
4456}
4457
4458/*
4459 * Update internal state after a channel change.
4460 */
4461static void
4462ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4463{
4464	enum ieee80211_phymode mode;
4465
4466	/*
4467	 * Change channels and update the h/w rate map
4468	 * if we're switching; e.g. 11a to 11b/g.
4469	 */
4470	mode = ieee80211_chan2mode(chan);
4471	if (mode != sc->sc_curmode)
4472		ath_setcurmode(sc, mode);
4473	sc->sc_curchan = chan;
4474}
4475
4476/*
4477 * Set/change channels.  If the channel is really being changed,
4478 * it's done by resetting the chip.  To accomplish this we must
4479 * first cleanup any pending DMA, then restart stuff after a la
4480 * ath_init.
4481 */
4482static int
4483ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4484{
4485	struct ifnet *ifp = sc->sc_ifp;
4486	struct ieee80211com *ic = ifp->if_l2com;
4487	struct ath_hal *ah = sc->sc_ah;
4488	int ret = 0;
4489
4490	/* Treat this as an interface reset */
4491	ATH_PCU_UNLOCK_ASSERT(sc);
4492	ATH_UNLOCK_ASSERT(sc);
4493
4494	/* (Try to) stop TX/RX from occuring */
4495	taskqueue_block(sc->sc_tq);
4496
4497	ATH_PCU_LOCK(sc);
4498	ath_hal_intrset(ah, 0);		/* Stop new RX/TX completion */
4499	ath_txrx_stop_locked(sc);	/* Stop pending RX/TX completion */
4500	if (ath_reset_grablock(sc, 1) == 0) {
4501		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
4502		    __func__);
4503	}
4504	ATH_PCU_UNLOCK(sc);
4505
4506	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4507	    __func__, ieee80211_chan2ieee(ic, chan),
4508	    chan->ic_freq, chan->ic_flags);
4509	if (chan != sc->sc_curchan) {
4510		HAL_STATUS status;
4511		/*
4512		 * To switch channels clear any pending DMA operations;
4513		 * wait long enough for the RX fifo to drain, reset the
4514		 * hardware at the new frequency, and then re-enable
4515		 * the relevant bits of the h/w.
4516		 */
4517#if 0
4518		ath_hal_intrset(ah, 0);		/* disable interrupts */
4519#endif
4520		ath_stoprecv(sc, 1);		/* turn off frame recv */
4521		/*
4522		 * First, handle completed TX/RX frames.
4523		 */
4524		ath_rx_flush(sc);
4525		ath_draintxq(sc, ATH_RESET_NOLOSS);
4526		/*
4527		 * Next, flush the non-scheduled frames.
4528		 */
4529		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
4530
4531		ath_update_chainmasks(sc, chan);
4532		ath_hal_setchainmasks(sc->sc_ah, sc->sc_cur_txchainmask,
4533		    sc->sc_cur_rxchainmask);
4534		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4535			if_printf(ifp, "%s: unable to reset "
4536			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4537			    __func__, ieee80211_chan2ieee(ic, chan),
4538			    chan->ic_freq, chan->ic_flags, status);
4539			ret = EIO;
4540			goto finish;
4541		}
4542		sc->sc_diversity = ath_hal_getdiversity(ah);
4543
4544		/* Let DFS at it in case it's a DFS channel */
4545		ath_dfs_radar_enable(sc, chan);
4546
4547		/* Let spectral at in case spectral is enabled */
4548		ath_spectral_enable(sc, chan);
4549
4550		/*
4551		 * Re-enable rx framework.
4552		 */
4553		if (ath_startrecv(sc) != 0) {
4554			if_printf(ifp, "%s: unable to restart recv logic\n",
4555			    __func__);
4556			ret = EIO;
4557			goto finish;
4558		}
4559
4560		/*
4561		 * Change channels and update the h/w rate map
4562		 * if we're switching; e.g. 11a to 11b/g.
4563		 */
4564		ath_chan_change(sc, chan);
4565
4566		/*
4567		 * Reset clears the beacon timers; reset them
4568		 * here if needed.
4569		 */
4570		if (sc->sc_beacons) {		/* restart beacons */
4571#ifdef IEEE80211_SUPPORT_TDMA
4572			if (sc->sc_tdma)
4573				ath_tdma_config(sc, NULL);
4574			else
4575#endif
4576			ath_beacon_config(sc, NULL);
4577		}
4578
4579		/*
4580		 * Re-enable interrupts.
4581		 */
4582#if 0
4583		ath_hal_intrset(ah, sc->sc_imask);
4584#endif
4585	}
4586
4587finish:
4588	ATH_PCU_LOCK(sc);
4589	sc->sc_inreset_cnt--;
4590	/* XXX only do this if sc_inreset_cnt == 0? */
4591	ath_hal_intrset(ah, sc->sc_imask);
4592	ATH_PCU_UNLOCK(sc);
4593
4594	IF_LOCK(&ifp->if_snd);
4595	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4596	IF_UNLOCK(&ifp->if_snd);
4597	ath_txrx_start(sc);
4598	/* XXX ath_start? */
4599
4600	return ret;
4601}
4602
4603/*
4604 * Periodically recalibrate the PHY to account
4605 * for temperature/environment changes.
4606 */
4607static void
4608ath_calibrate(void *arg)
4609{
4610	struct ath_softc *sc = arg;
4611	struct ath_hal *ah = sc->sc_ah;
4612	struct ifnet *ifp = sc->sc_ifp;
4613	struct ieee80211com *ic = ifp->if_l2com;
4614	HAL_BOOL longCal, isCalDone = AH_TRUE;
4615	HAL_BOOL aniCal, shortCal = AH_FALSE;
4616	int nextcal;
4617
4618	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4619		goto restart;
4620	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4621	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4622	if (sc->sc_doresetcal)
4623		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4624
4625	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4626	if (aniCal) {
4627		sc->sc_stats.ast_ani_cal++;
4628		sc->sc_lastani = ticks;
4629		ath_hal_ani_poll(ah, sc->sc_curchan);
4630	}
4631
4632	if (longCal) {
4633		sc->sc_stats.ast_per_cal++;
4634		sc->sc_lastlongcal = ticks;
4635		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4636			/*
4637			 * Rfgain is out of bounds, reset the chip
4638			 * to load new gain values.
4639			 */
4640			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4641				"%s: rfgain change\n", __func__);
4642			sc->sc_stats.ast_per_rfgain++;
4643			sc->sc_resetcal = 0;
4644			sc->sc_doresetcal = AH_TRUE;
4645			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4646			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4647			return;
4648		}
4649		/*
4650		 * If this long cal is after an idle period, then
4651		 * reset the data collection state so we start fresh.
4652		 */
4653		if (sc->sc_resetcal) {
4654			(void) ath_hal_calreset(ah, sc->sc_curchan);
4655			sc->sc_lastcalreset = ticks;
4656			sc->sc_lastshortcal = ticks;
4657			sc->sc_resetcal = 0;
4658			sc->sc_doresetcal = AH_TRUE;
4659		}
4660	}
4661
4662	/* Only call if we're doing a short/long cal, not for ANI calibration */
4663	if (shortCal || longCal) {
4664		isCalDone = AH_FALSE;
4665		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4666			if (longCal) {
4667				/*
4668				 * Calibrate noise floor data again in case of change.
4669				 */
4670				ath_hal_process_noisefloor(ah);
4671			}
4672		} else {
4673			DPRINTF(sc, ATH_DEBUG_ANY,
4674				"%s: calibration of channel %u failed\n",
4675				__func__, sc->sc_curchan->ic_freq);
4676			sc->sc_stats.ast_per_calfail++;
4677		}
4678		if (shortCal)
4679			sc->sc_lastshortcal = ticks;
4680	}
4681	if (!isCalDone) {
4682restart:
4683		/*
4684		 * Use a shorter interval to potentially collect multiple
4685		 * data samples required to complete calibration.  Once
4686		 * we're told the work is done we drop back to a longer
4687		 * interval between requests.  We're more aggressive doing
4688		 * work when operating as an AP to improve operation right
4689		 * after startup.
4690		 */
4691		sc->sc_lastshortcal = ticks;
4692		nextcal = ath_shortcalinterval*hz/1000;
4693		if (sc->sc_opmode != HAL_M_HOSTAP)
4694			nextcal *= 10;
4695		sc->sc_doresetcal = AH_TRUE;
4696	} else {
4697		/* nextcal should be the shortest time for next event */
4698		nextcal = ath_longcalinterval*hz;
4699		if (sc->sc_lastcalreset == 0)
4700			sc->sc_lastcalreset = sc->sc_lastlongcal;
4701		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4702			sc->sc_resetcal = 1;	/* setup reset next trip */
4703		sc->sc_doresetcal = AH_FALSE;
4704	}
4705	/* ANI calibration may occur more often than short/long/resetcal */
4706	if (ath_anicalinterval > 0)
4707		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4708
4709	if (nextcal != 0) {
4710		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4711		    __func__, nextcal, isCalDone ? "" : "!");
4712		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4713	} else {
4714		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4715		    __func__);
4716		/* NB: don't rearm timer */
4717	}
4718}
4719
4720static void
4721ath_scan_start(struct ieee80211com *ic)
4722{
4723	struct ifnet *ifp = ic->ic_ifp;
4724	struct ath_softc *sc = ifp->if_softc;
4725	struct ath_hal *ah = sc->sc_ah;
4726	u_int32_t rfilt;
4727
4728	/* XXX calibration timer? */
4729
4730	ATH_LOCK(sc);
4731	sc->sc_scanning = 1;
4732	sc->sc_syncbeacon = 0;
4733	rfilt = ath_calcrxfilter(sc);
4734	ATH_UNLOCK(sc);
4735
4736	ATH_PCU_LOCK(sc);
4737	ath_hal_setrxfilter(ah, rfilt);
4738	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4739	ATH_PCU_UNLOCK(sc);
4740
4741	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4742		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4743}
4744
4745static void
4746ath_scan_end(struct ieee80211com *ic)
4747{
4748	struct ifnet *ifp = ic->ic_ifp;
4749	struct ath_softc *sc = ifp->if_softc;
4750	struct ath_hal *ah = sc->sc_ah;
4751	u_int32_t rfilt;
4752
4753	ATH_LOCK(sc);
4754	sc->sc_scanning = 0;
4755	rfilt = ath_calcrxfilter(sc);
4756	ATH_UNLOCK(sc);
4757
4758	ATH_PCU_LOCK(sc);
4759	ath_hal_setrxfilter(ah, rfilt);
4760	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4761
4762	ath_hal_process_noisefloor(ah);
4763	ATH_PCU_UNLOCK(sc);
4764
4765	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4766		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4767		 sc->sc_curaid);
4768}
4769
4770#ifdef	ATH_ENABLE_11N
4771/*
4772 * For now, just do a channel change.
4773 *
4774 * Later, we'll go through the hard slog of suspending tx/rx, changing rate
4775 * control state and resetting the hardware without dropping frames out
4776 * of the queue.
4777 *
4778 * The unfortunate trouble here is making absolutely sure that the
4779 * channel width change has propagated enough so the hardware
4780 * absolutely isn't handed bogus frames for it's current operating
4781 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
4782 * does occur in parallel, we need to make certain we've blocked
4783 * any further ongoing TX (and RX, that can cause raw TX)
4784 * before we do this.
4785 */
4786static void
4787ath_update_chw(struct ieee80211com *ic)
4788{
4789	struct ifnet *ifp = ic->ic_ifp;
4790	struct ath_softc *sc = ifp->if_softc;
4791
4792	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
4793	ath_set_channel(ic);
4794}
4795#endif	/* ATH_ENABLE_11N */
4796
4797static void
4798ath_set_channel(struct ieee80211com *ic)
4799{
4800	struct ifnet *ifp = ic->ic_ifp;
4801	struct ath_softc *sc = ifp->if_softc;
4802
4803	(void) ath_chan_set(sc, ic->ic_curchan);
4804	/*
4805	 * If we are returning to our bss channel then mark state
4806	 * so the next recv'd beacon's tsf will be used to sync the
4807	 * beacon timers.  Note that since we only hear beacons in
4808	 * sta/ibss mode this has no effect in other operating modes.
4809	 */
4810	ATH_LOCK(sc);
4811	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4812		sc->sc_syncbeacon = 1;
4813	ATH_UNLOCK(sc);
4814}
4815
4816/*
4817 * Walk the vap list and check if there any vap's in RUN state.
4818 */
4819static int
4820ath_isanyrunningvaps(struct ieee80211vap *this)
4821{
4822	struct ieee80211com *ic = this->iv_ic;
4823	struct ieee80211vap *vap;
4824
4825	IEEE80211_LOCK_ASSERT(ic);
4826
4827	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4828		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4829			return 1;
4830	}
4831	return 0;
4832}
4833
4834static int
4835ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4836{
4837	struct ieee80211com *ic = vap->iv_ic;
4838	struct ath_softc *sc = ic->ic_ifp->if_softc;
4839	struct ath_vap *avp = ATH_VAP(vap);
4840	struct ath_hal *ah = sc->sc_ah;
4841	struct ieee80211_node *ni = NULL;
4842	int i, error, stamode;
4843	u_int32_t rfilt;
4844	int csa_run_transition = 0;
4845
4846	static const HAL_LED_STATE leds[] = {
4847	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4848	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4849	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4850	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4851	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4852	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4853	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4854	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4855	};
4856
4857	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4858		ieee80211_state_name[vap->iv_state],
4859		ieee80211_state_name[nstate]);
4860
4861	/*
4862	 * net80211 _should_ have the comlock asserted at this point.
4863	 * There are some comments around the calls to vap->iv_newstate
4864	 * which indicate that it (newstate) may end up dropping the
4865	 * lock.  This and the subsequent lock assert check after newstate
4866	 * are an attempt to catch these and figure out how/why.
4867	 */
4868	IEEE80211_LOCK_ASSERT(ic);
4869
4870	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
4871		csa_run_transition = 1;
4872
4873	callout_drain(&sc->sc_cal_ch);
4874	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4875
4876	if (nstate == IEEE80211_S_SCAN) {
4877		/*
4878		 * Scanning: turn off beacon miss and don't beacon.
4879		 * Mark beacon state so when we reach RUN state we'll
4880		 * [re]setup beacons.  Unblock the task q thread so
4881		 * deferred interrupt processing is done.
4882		 */
4883		ath_hal_intrset(ah,
4884		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4885		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4886		sc->sc_beacons = 0;
4887		taskqueue_unblock(sc->sc_tq);
4888	}
4889
4890	ni = ieee80211_ref_node(vap->iv_bss);
4891	rfilt = ath_calcrxfilter(sc);
4892	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4893		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4894		   vap->iv_opmode == IEEE80211_M_IBSS);
4895	if (stamode && nstate == IEEE80211_S_RUN) {
4896		sc->sc_curaid = ni->ni_associd;
4897		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
4898		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4899	}
4900	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4901	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
4902	ath_hal_setrxfilter(ah, rfilt);
4903
4904	/* XXX is this to restore keycache on resume? */
4905	if (vap->iv_opmode != IEEE80211_M_STA &&
4906	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
4907		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4908			if (ath_hal_keyisvalid(ah, i))
4909				ath_hal_keysetmac(ah, i, ni->ni_bssid);
4910	}
4911
4912	/*
4913	 * Invoke the parent method to do net80211 work.
4914	 */
4915	error = avp->av_newstate(vap, nstate, arg);
4916	if (error != 0)
4917		goto bad;
4918
4919	/*
4920	 * See above: ensure av_newstate() doesn't drop the lock
4921	 * on us.
4922	 */
4923	IEEE80211_LOCK_ASSERT(ic);
4924
4925	if (nstate == IEEE80211_S_RUN) {
4926		/* NB: collect bss node again, it may have changed */
4927		ieee80211_free_node(ni);
4928		ni = ieee80211_ref_node(vap->iv_bss);
4929
4930		DPRINTF(sc, ATH_DEBUG_STATE,
4931		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4932		    "capinfo 0x%04x chan %d\n", __func__,
4933		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
4934		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
4935
4936		switch (vap->iv_opmode) {
4937#ifdef IEEE80211_SUPPORT_TDMA
4938		case IEEE80211_M_AHDEMO:
4939			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
4940				break;
4941			/* fall thru... */
4942#endif
4943		case IEEE80211_M_HOSTAP:
4944		case IEEE80211_M_IBSS:
4945		case IEEE80211_M_MBSS:
4946			/*
4947			 * Allocate and setup the beacon frame.
4948			 *
4949			 * Stop any previous beacon DMA.  This may be
4950			 * necessary, for example, when an ibss merge
4951			 * causes reconfiguration; there will be a state
4952			 * transition from RUN->RUN that means we may
4953			 * be called with beacon transmission active.
4954			 */
4955			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4956
4957			error = ath_beacon_alloc(sc, ni);
4958			if (error != 0)
4959				goto bad;
4960			/*
4961			 * If joining an adhoc network defer beacon timer
4962			 * configuration to the next beacon frame so we
4963			 * have a current TSF to use.  Otherwise we're
4964			 * starting an ibss/bss so there's no need to delay;
4965			 * if this is the first vap moving to RUN state, then
4966			 * beacon state needs to be [re]configured.
4967			 */
4968			if (vap->iv_opmode == IEEE80211_M_IBSS &&
4969			    ni->ni_tstamp.tsf != 0) {
4970				sc->sc_syncbeacon = 1;
4971			} else if (!sc->sc_beacons) {
4972#ifdef IEEE80211_SUPPORT_TDMA
4973				if (vap->iv_caps & IEEE80211_C_TDMA)
4974					ath_tdma_config(sc, vap);
4975				else
4976#endif
4977					ath_beacon_config(sc, vap);
4978				sc->sc_beacons = 1;
4979			}
4980			break;
4981		case IEEE80211_M_STA:
4982			/*
4983			 * Defer beacon timer configuration to the next
4984			 * beacon frame so we have a current TSF to use
4985			 * (any TSF collected when scanning is likely old).
4986			 * However if it's due to a CSA -> RUN transition,
4987			 * force a beacon update so we pick up a lack of
4988			 * beacons from an AP in CAC and thus force a
4989			 * scan.
4990			 *
4991			 * And, there's also corner cases here where
4992			 * after a scan, the AP may have disappeared.
4993			 * In that case, we may not receive an actual
4994			 * beacon to update the beacon timer and thus we
4995			 * won't get notified of the missing beacons.
4996			 */
4997			sc->sc_syncbeacon = 1;
4998#if 0
4999			if (csa_run_transition)
5000#endif
5001				ath_beacon_config(sc, vap);
5002
5003			/*
5004			 * PR: kern/175227
5005			 *
5006			 * Reconfigure beacons during reset; as otherwise
5007			 * we won't get the beacon timers reprogrammed
5008			 * after a reset and thus we won't pick up a
5009			 * beacon miss interrupt.
5010			 *
5011			 * Hopefully we'll see a beacon before the BMISS
5012			 * timer fires (too often), leading to a STA
5013			 * disassociation.
5014			 */
5015			sc->sc_beacons = 1;
5016			break;
5017		case IEEE80211_M_MONITOR:
5018			/*
5019			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5020			 * transitions so we must re-enable interrupts here to
5021			 * handle the case of a single monitor mode vap.
5022			 */
5023			ath_hal_intrset(ah, sc->sc_imask);
5024			break;
5025		case IEEE80211_M_WDS:
5026			break;
5027		default:
5028			break;
5029		}
5030		/*
5031		 * Let the hal process statistics collected during a
5032		 * scan so it can provide calibrated noise floor data.
5033		 */
5034		ath_hal_process_noisefloor(ah);
5035		/*
5036		 * Reset rssi stats; maybe not the best place...
5037		 */
5038		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5039		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5040		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5041		/*
5042		 * Finally, start any timers and the task q thread
5043		 * (in case we didn't go through SCAN state).
5044		 */
5045		if (ath_longcalinterval != 0) {
5046			/* start periodic recalibration timer */
5047			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5048		} else {
5049			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5050			    "%s: calibration disabled\n", __func__);
5051		}
5052		taskqueue_unblock(sc->sc_tq);
5053	} else if (nstate == IEEE80211_S_INIT) {
5054		/*
5055		 * If there are no vaps left in RUN state then
5056		 * shutdown host/driver operation:
5057		 * o disable interrupts
5058		 * o disable the task queue thread
5059		 * o mark beacon processing as stopped
5060		 */
5061		if (!ath_isanyrunningvaps(vap)) {
5062			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5063			/* disable interrupts  */
5064			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5065			taskqueue_block(sc->sc_tq);
5066			sc->sc_beacons = 0;
5067		}
5068#ifdef IEEE80211_SUPPORT_TDMA
5069		ath_hal_setcca(ah, AH_TRUE);
5070#endif
5071	}
5072bad:
5073	ieee80211_free_node(ni);
5074	return error;
5075}
5076
5077/*
5078 * Allocate a key cache slot to the station so we can
5079 * setup a mapping from key index to node. The key cache
5080 * slot is needed for managing antenna state and for
5081 * compression when stations do not use crypto.  We do
5082 * it uniliaterally here; if crypto is employed this slot
5083 * will be reassigned.
5084 */
5085static void
5086ath_setup_stationkey(struct ieee80211_node *ni)
5087{
5088	struct ieee80211vap *vap = ni->ni_vap;
5089	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5090	ieee80211_keyix keyix, rxkeyix;
5091
5092	/* XXX should take a locked ref to vap->iv_bss */
5093	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5094		/*
5095		 * Key cache is full; we'll fall back to doing
5096		 * the more expensive lookup in software.  Note
5097		 * this also means no h/w compression.
5098		 */
5099		/* XXX msg+statistic */
5100	} else {
5101		/* XXX locking? */
5102		ni->ni_ucastkey.wk_keyix = keyix;
5103		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5104		/* NB: must mark device key to get called back on delete */
5105		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5106		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5107		/* NB: this will create a pass-thru key entry */
5108		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
5109	}
5110}
5111
5112/*
5113 * Setup driver-specific state for a newly associated node.
5114 * Note that we're called also on a re-associate, the isnew
5115 * param tells us if this is the first time or not.
5116 */
5117static void
5118ath_newassoc(struct ieee80211_node *ni, int isnew)
5119{
5120	struct ath_node *an = ATH_NODE(ni);
5121	struct ieee80211vap *vap = ni->ni_vap;
5122	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5123	const struct ieee80211_txparam *tp = ni->ni_txparms;
5124
5125	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5126	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5127
5128	ath_rate_newassoc(sc, an, isnew);
5129	if (isnew &&
5130	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5131	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5132		ath_setup_stationkey(ni);
5133}
5134
5135static int
5136ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5137	int nchans, struct ieee80211_channel chans[])
5138{
5139	struct ath_softc *sc = ic->ic_ifp->if_softc;
5140	struct ath_hal *ah = sc->sc_ah;
5141	HAL_STATUS status;
5142
5143	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5144	    "%s: rd %u cc %u location %c%s\n",
5145	    __func__, reg->regdomain, reg->country, reg->location,
5146	    reg->ecm ? " ecm" : "");
5147
5148	status = ath_hal_set_channels(ah, chans, nchans,
5149	    reg->country, reg->regdomain);
5150	if (status != HAL_OK) {
5151		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5152		    __func__, status);
5153		return EINVAL;		/* XXX */
5154	}
5155
5156	return 0;
5157}
5158
5159static void
5160ath_getradiocaps(struct ieee80211com *ic,
5161	int maxchans, int *nchans, struct ieee80211_channel chans[])
5162{
5163	struct ath_softc *sc = ic->ic_ifp->if_softc;
5164	struct ath_hal *ah = sc->sc_ah;
5165
5166	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5167	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5168
5169	/* XXX check return */
5170	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5171	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5172
5173}
5174
5175static int
5176ath_getchannels(struct ath_softc *sc)
5177{
5178	struct ifnet *ifp = sc->sc_ifp;
5179	struct ieee80211com *ic = ifp->if_l2com;
5180	struct ath_hal *ah = sc->sc_ah;
5181	HAL_STATUS status;
5182
5183	/*
5184	 * Collect channel set based on EEPROM contents.
5185	 */
5186	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5187	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5188	if (status != HAL_OK) {
5189		if_printf(ifp, "%s: unable to collect channel list from hal, "
5190		    "status %d\n", __func__, status);
5191		return EINVAL;
5192	}
5193	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5194	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5195	/* XXX map Atheros sku's to net80211 SKU's */
5196	/* XXX net80211 types too small */
5197	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5198	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5199	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5200	ic->ic_regdomain.isocc[1] = ' ';
5201
5202	ic->ic_regdomain.ecm = 1;
5203	ic->ic_regdomain.location = 'I';
5204
5205	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5206	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5207	    __func__, sc->sc_eerd, sc->sc_eecc,
5208	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5209	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5210	return 0;
5211}
5212
5213static int
5214ath_rate_setup(struct ath_softc *sc, u_int mode)
5215{
5216	struct ath_hal *ah = sc->sc_ah;
5217	const HAL_RATE_TABLE *rt;
5218
5219	switch (mode) {
5220	case IEEE80211_MODE_11A:
5221		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5222		break;
5223	case IEEE80211_MODE_HALF:
5224		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5225		break;
5226	case IEEE80211_MODE_QUARTER:
5227		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5228		break;
5229	case IEEE80211_MODE_11B:
5230		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5231		break;
5232	case IEEE80211_MODE_11G:
5233		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5234		break;
5235	case IEEE80211_MODE_TURBO_A:
5236		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5237		break;
5238	case IEEE80211_MODE_TURBO_G:
5239		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5240		break;
5241	case IEEE80211_MODE_STURBO_A:
5242		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5243		break;
5244	case IEEE80211_MODE_11NA:
5245		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5246		break;
5247	case IEEE80211_MODE_11NG:
5248		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5249		break;
5250	default:
5251		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5252			__func__, mode);
5253		return 0;
5254	}
5255	sc->sc_rates[mode] = rt;
5256	return (rt != NULL);
5257}
5258
5259static void
5260ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5261{
5262#define	N(a)	(sizeof(a)/sizeof(a[0]))
5263	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5264	static const struct {
5265		u_int		rate;		/* tx/rx 802.11 rate */
5266		u_int16_t	timeOn;		/* LED on time (ms) */
5267		u_int16_t	timeOff;	/* LED off time (ms) */
5268	} blinkrates[] = {
5269		{ 108,  40,  10 },
5270		{  96,  44,  11 },
5271		{  72,  50,  13 },
5272		{  48,  57,  14 },
5273		{  36,  67,  16 },
5274		{  24,  80,  20 },
5275		{  22, 100,  25 },
5276		{  18, 133,  34 },
5277		{  12, 160,  40 },
5278		{  10, 200,  50 },
5279		{   6, 240,  58 },
5280		{   4, 267,  66 },
5281		{   2, 400, 100 },
5282		{   0, 500, 130 },
5283		/* XXX half/quarter rates */
5284	};
5285	const HAL_RATE_TABLE *rt;
5286	int i, j;
5287
5288	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5289	rt = sc->sc_rates[mode];
5290	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5291	for (i = 0; i < rt->rateCount; i++) {
5292		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5293		if (rt->info[i].phy != IEEE80211_T_HT)
5294			sc->sc_rixmap[ieeerate] = i;
5295		else
5296			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5297	}
5298	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5299	for (i = 0; i < N(sc->sc_hwmap); i++) {
5300		if (i >= rt->rateCount) {
5301			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5302			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5303			continue;
5304		}
5305		sc->sc_hwmap[i].ieeerate =
5306			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5307		if (rt->info[i].phy == IEEE80211_T_HT)
5308			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5309		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5310		if (rt->info[i].shortPreamble ||
5311		    rt->info[i].phy == IEEE80211_T_OFDM)
5312			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5313		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5314		for (j = 0; j < N(blinkrates)-1; j++)
5315			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5316				break;
5317		/* NB: this uses the last entry if the rate isn't found */
5318		/* XXX beware of overlow */
5319		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5320		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5321	}
5322	sc->sc_currates = rt;
5323	sc->sc_curmode = mode;
5324	/*
5325	 * All protection frames are transmited at 2Mb/s for
5326	 * 11g, otherwise at 1Mb/s.
5327	 */
5328	if (mode == IEEE80211_MODE_11G)
5329		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5330	else
5331		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5332	/* NB: caller is responsible for resetting rate control state */
5333#undef N
5334}
5335
5336static void
5337ath_watchdog(void *arg)
5338{
5339	struct ath_softc *sc = arg;
5340	int do_reset = 0;
5341
5342	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5343		struct ifnet *ifp = sc->sc_ifp;
5344		uint32_t hangs;
5345
5346		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5347		    hangs != 0) {
5348			if_printf(ifp, "%s hang detected (0x%x)\n",
5349			    hangs & 0xff ? "bb" : "mac", hangs);
5350		} else
5351			if_printf(ifp, "device timeout\n");
5352		do_reset = 1;
5353		ifp->if_oerrors++;
5354		sc->sc_stats.ast_watchdog++;
5355	}
5356
5357	/*
5358	 * We can't hold the lock across the ath_reset() call.
5359	 *
5360	 * And since this routine can't hold a lock and sleep,
5361	 * do the reset deferred.
5362	 */
5363	if (do_reset) {
5364		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5365	}
5366
5367	callout_schedule(&sc->sc_wd_ch, hz);
5368}
5369
5370/*
5371 * Fetch the rate control statistics for the given node.
5372 */
5373static int
5374ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
5375{
5376	struct ath_node *an;
5377	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5378	struct ieee80211_node *ni;
5379	int error = 0;
5380
5381	/* Perform a lookup on the given node */
5382	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
5383	if (ni == NULL) {
5384		error = EINVAL;
5385		goto bad;
5386	}
5387
5388	/* Lock the ath_node */
5389	an = ATH_NODE(ni);
5390	ATH_NODE_LOCK(an);
5391
5392	/* Fetch the rate control stats for this node */
5393	error = ath_rate_fetch_node_stats(sc, an, rs);
5394
5395	/* No matter what happens here, just drop through */
5396
5397	/* Unlock the ath_node */
5398	ATH_NODE_UNLOCK(an);
5399
5400	/* Unref the node */
5401	ieee80211_node_decref(ni);
5402
5403bad:
5404	return (error);
5405}
5406
5407#ifdef ATH_DIAGAPI
5408/*
5409 * Diagnostic interface to the HAL.  This is used by various
5410 * tools to do things like retrieve register contents for
5411 * debugging.  The mechanism is intentionally opaque so that
5412 * it can change frequently w/o concern for compatiblity.
5413 */
5414static int
5415ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5416{
5417	struct ath_hal *ah = sc->sc_ah;
5418	u_int id = ad->ad_id & ATH_DIAG_ID;
5419	void *indata = NULL;
5420	void *outdata = NULL;
5421	u_int32_t insize = ad->ad_in_size;
5422	u_int32_t outsize = ad->ad_out_size;
5423	int error = 0;
5424
5425	if (ad->ad_id & ATH_DIAG_IN) {
5426		/*
5427		 * Copy in data.
5428		 */
5429		indata = malloc(insize, M_TEMP, M_NOWAIT);
5430		if (indata == NULL) {
5431			error = ENOMEM;
5432			goto bad;
5433		}
5434		error = copyin(ad->ad_in_data, indata, insize);
5435		if (error)
5436			goto bad;
5437	}
5438	if (ad->ad_id & ATH_DIAG_DYN) {
5439		/*
5440		 * Allocate a buffer for the results (otherwise the HAL
5441		 * returns a pointer to a buffer where we can read the
5442		 * results).  Note that we depend on the HAL leaving this
5443		 * pointer for us to use below in reclaiming the buffer;
5444		 * may want to be more defensive.
5445		 */
5446		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5447		if (outdata == NULL) {
5448			error = ENOMEM;
5449			goto bad;
5450		}
5451	}
5452	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5453		if (outsize < ad->ad_out_size)
5454			ad->ad_out_size = outsize;
5455		if (outdata != NULL)
5456			error = copyout(outdata, ad->ad_out_data,
5457					ad->ad_out_size);
5458	} else {
5459		error = EINVAL;
5460	}
5461bad:
5462	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5463		free(indata, M_TEMP);
5464	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5465		free(outdata, M_TEMP);
5466	return error;
5467}
5468#endif /* ATH_DIAGAPI */
5469
5470static int
5471ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5472{
5473#define	IS_RUNNING(ifp) \
5474	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5475	struct ath_softc *sc = ifp->if_softc;
5476	struct ieee80211com *ic = ifp->if_l2com;
5477	struct ifreq *ifr = (struct ifreq *)data;
5478	const HAL_RATE_TABLE *rt;
5479	int error = 0;
5480
5481	switch (cmd) {
5482	case SIOCSIFFLAGS:
5483		ATH_LOCK(sc);
5484		if (IS_RUNNING(ifp)) {
5485			/*
5486			 * To avoid rescanning another access point,
5487			 * do not call ath_init() here.  Instead,
5488			 * only reflect promisc mode settings.
5489			 */
5490			ath_mode_init(sc);
5491		} else if (ifp->if_flags & IFF_UP) {
5492			/*
5493			 * Beware of being called during attach/detach
5494			 * to reset promiscuous mode.  In that case we
5495			 * will still be marked UP but not RUNNING.
5496			 * However trying to re-init the interface
5497			 * is the wrong thing to do as we've already
5498			 * torn down much of our state.  There's
5499			 * probably a better way to deal with this.
5500			 */
5501			if (!sc->sc_invalid)
5502				ath_init(sc);	/* XXX lose error */
5503		} else {
5504			ath_stop_locked(ifp);
5505#ifdef notyet
5506			/* XXX must wakeup in places like ath_vap_delete */
5507			if (!sc->sc_invalid)
5508				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5509#endif
5510		}
5511		ATH_UNLOCK(sc);
5512		break;
5513	case SIOCGIFMEDIA:
5514	case SIOCSIFMEDIA:
5515		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5516		break;
5517	case SIOCGATHSTATS:
5518		/* NB: embed these numbers to get a consistent view */
5519		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5520		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5521		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5522		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5523#ifdef IEEE80211_SUPPORT_TDMA
5524		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
5525		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
5526#endif
5527		rt = sc->sc_currates;
5528		sc->sc_stats.ast_tx_rate =
5529		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
5530		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
5531			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
5532		return copyout(&sc->sc_stats,
5533		    ifr->ifr_data, sizeof (sc->sc_stats));
5534	case SIOCGATHAGSTATS:
5535		return copyout(&sc->sc_aggr_stats,
5536		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
5537	case SIOCZATHSTATS:
5538		error = priv_check(curthread, PRIV_DRIVER);
5539		if (error == 0) {
5540			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
5541			memset(&sc->sc_aggr_stats, 0,
5542			    sizeof(sc->sc_aggr_stats));
5543			memset(&sc->sc_intr_stats, 0,
5544			    sizeof(sc->sc_intr_stats));
5545		}
5546		break;
5547#ifdef ATH_DIAGAPI
5548	case SIOCGATHDIAG:
5549		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5550		break;
5551	case SIOCGATHPHYERR:
5552		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
5553		break;
5554#endif
5555	case SIOCGATHSPECTRAL:
5556		error = ath_ioctl_spectral(sc,(struct ath_diag*) ifr);
5557		break;
5558	case SIOCGATHNODERATESTATS:
5559		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
5560		break;
5561	case SIOCGIFADDR:
5562		error = ether_ioctl(ifp, cmd, data);
5563		break;
5564	default:
5565		error = EINVAL;
5566		break;
5567	}
5568	return error;
5569#undef IS_RUNNING
5570}
5571
5572/*
5573 * Announce various information on device/driver attach.
5574 */
5575static void
5576ath_announce(struct ath_softc *sc)
5577{
5578	struct ifnet *ifp = sc->sc_ifp;
5579	struct ath_hal *ah = sc->sc_ah;
5580
5581	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
5582		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
5583		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5584	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
5585		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
5586	if (bootverbose) {
5587		int i;
5588		for (i = 0; i <= WME_AC_VO; i++) {
5589			struct ath_txq *txq = sc->sc_ac2q[i];
5590			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5591				txq->axq_qnum, ieee80211_wme_acnames[i]);
5592		}
5593		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5594			sc->sc_cabq->axq_qnum);
5595		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5596	}
5597	if (ath_rxbuf != ATH_RXBUF)
5598		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5599	if (ath_txbuf != ATH_TXBUF)
5600		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5601	if (sc->sc_mcastkey && bootverbose)
5602		if_printf(ifp, "using multicast key search\n");
5603}
5604
5605static void
5606ath_dfs_tasklet(void *p, int npending)
5607{
5608	struct ath_softc *sc = (struct ath_softc *) p;
5609	struct ifnet *ifp = sc->sc_ifp;
5610	struct ieee80211com *ic = ifp->if_l2com;
5611
5612	/*
5613	 * If previous processing has found a radar event,
5614	 * signal this to the net80211 layer to begin DFS
5615	 * processing.
5616	 */
5617	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
5618		/* DFS event found, initiate channel change */
5619		/*
5620		 * XXX doesn't currently tell us whether the event
5621		 * XXX was found in the primary or extension
5622		 * XXX channel!
5623		 */
5624		IEEE80211_LOCK(ic);
5625		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
5626		IEEE80211_UNLOCK(ic);
5627	}
5628}
5629
5630/*
5631 * Enable/disable power save.  This must be called with
5632 * no TX driver locks currently held, so it should only
5633 * be called from the RX path (which doesn't hold any
5634 * TX driver locks.)
5635 */
5636static void
5637ath_node_powersave(struct ieee80211_node *ni, int enable)
5638{
5639#ifdef	ATH_SW_PSQ
5640	struct ath_node *an = ATH_NODE(ni);
5641	struct ieee80211com *ic = ni->ni_ic;
5642	struct ath_softc *sc = ic->ic_ifp->if_softc;
5643	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5644
5645	ATH_NODE_UNLOCK_ASSERT(an);
5646	/* XXX and no TXQ locks should be held here */
5647
5648	DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE, "%s: ni=%p, enable=%d\n",
5649	    __func__, ni, enable);
5650
5651	/* Suspend or resume software queue handling */
5652	if (enable)
5653		ath_tx_node_sleep(sc, an);
5654	else
5655		ath_tx_node_wakeup(sc, an);
5656
5657	/* Update net80211 state */
5658	avp->av_node_ps(ni, enable);
5659#else
5660	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5661
5662	/* Update net80211 state */
5663	avp->av_node_ps(ni, enable);
5664#endif/* ATH_SW_PSQ */
5665}
5666
5667/*
5668 * Notification from net80211 that the powersave queue state has
5669 * changed.
5670 *
5671 * Since the software queue also may have some frames:
5672 *
5673 * + if the node software queue has frames and the TID state
5674 *   is 0, we set the TIM;
5675 * + if the node and the stack are both empty, we clear the TIM bit.
5676 * + If the stack tries to set the bit, always set it.
5677 * + If the stack tries to clear the bit, only clear it if the
5678 *   software queue in question is also cleared.
5679 *
5680 * TODO: this is called during node teardown; so let's ensure this
5681 * is all correctly handled and that the TIM bit is cleared.
5682 * It may be that the node flush is called _AFTER_ the net80211
5683 * stack clears the TIM.
5684 *
5685 * Here is the racy part.  Since it's possible >1 concurrent,
5686 * overlapping TXes will appear complete with a TX completion in
5687 * another thread, it's possible that the concurrent TIM calls will
5688 * clash.  We can't hold the node lock here because setting the
5689 * TIM grabs the net80211 comlock and this may cause a LOR.
5690 * The solution is either to totally serialise _everything_ at
5691 * this point (ie, all TX, completion and any reset/flush go into
5692 * one taskqueue) or a new "ath TIM lock" needs to be created that
5693 * just wraps the driver state change and this call to avp->av_set_tim().
5694 *
5695 * The same race exists in the net80211 power save queue handling
5696 * as well.  Since multiple transmitting threads may queue frames
5697 * into the driver, as well as ps-poll and the driver transmitting
5698 * frames (and thus clearing the psq), it's quite possible that
5699 * a packet entering the PSQ and a ps-poll being handled will
5700 * race, causing the TIM to be cleared and not re-set.
5701 */
5702static int
5703ath_node_set_tim(struct ieee80211_node *ni, int enable)
5704{
5705#ifdef	ATH_SW_PSQ
5706	struct ieee80211com *ic = ni->ni_ic;
5707	struct ath_softc *sc = ic->ic_ifp->if_softc;
5708	struct ath_node *an = ATH_NODE(ni);
5709	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5710	int changed = 0;
5711
5712	ATH_NODE_UNLOCK_ASSERT(an);
5713
5714	/*
5715	 * For now, just track and then update the TIM.
5716	 */
5717	ATH_NODE_LOCK(an);
5718	an->an_stack_psq = enable;
5719
5720	/*
5721	 * This will get called for all operating modes,
5722	 * even if avp->av_set_tim is unset.
5723	 * It's currently set for hostap/ibss modes; but
5724	 * the same infrastructure is used for both STA
5725	 * and AP/IBSS node power save.
5726	 */
5727	if (avp->av_set_tim == NULL) {
5728		ATH_NODE_UNLOCK(an);
5729		return (0);
5730	}
5731
5732	/*
5733	 * If setting the bit, always set it here.
5734	 * If clearing the bit, only clear it if the
5735	 * software queue is also empty.
5736	 *
5737	 * If the node has left power save, just clear the TIM
5738	 * bit regardless of the state of the power save queue.
5739	 *
5740	 * XXX TODO: although atomics are used, it's quite possible
5741	 * that a race will occur between this and setting/clearing
5742	 * in another thread.  TX completion will occur always in
5743	 * one thread, however setting/clearing the TIM bit can come
5744	 * from a variety of different process contexts!
5745	 */
5746	if (enable && an->an_tim_set == 1) {
5747		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5748		    "%s: an=%p, enable=%d, tim_set=1, ignoring\n",
5749		    __func__, an, enable);
5750		ATH_NODE_UNLOCK(an);
5751	} else if (enable) {
5752		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5753		    "%s: an=%p, enable=%d, enabling TIM\n",
5754		    __func__, an, enable);
5755		an->an_tim_set = 1;
5756		ATH_NODE_UNLOCK(an);
5757		changed = avp->av_set_tim(ni, enable);
5758	} else if (atomic_load_acq_int(&an->an_swq_depth) == 0) {
5759		/* disable */
5760		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5761		    "%s: an=%p, enable=%d, an_swq_depth == 0, disabling\n",
5762		    __func__, an, enable);
5763		an->an_tim_set = 0;
5764		ATH_NODE_UNLOCK(an);
5765		changed = avp->av_set_tim(ni, enable);
5766	} else if (! an->an_is_powersave) {
5767		/*
5768		 * disable regardless; the node isn't in powersave now
5769		 */
5770		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5771		    "%s: an=%p, enable=%d, an_pwrsave=0, disabling\n",
5772		    __func__, an, enable);
5773		an->an_tim_set = 0;
5774		ATH_NODE_UNLOCK(an);
5775		changed = avp->av_set_tim(ni, enable);
5776	} else {
5777		/*
5778		 * psq disable, node is currently in powersave, node
5779		 * software queue isn't empty, so don't clear the TIM bit
5780		 * for now.
5781		 */
5782		ATH_NODE_UNLOCK(an);
5783		DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5784		    "%s: enable=%d, an_swq_depth > 0, ignoring\n",
5785		    __func__, enable);
5786		changed = 0;
5787	}
5788
5789	return (changed);
5790#else
5791	struct ath_vap *avp = ATH_VAP(ni->ni_vap);
5792
5793	/*
5794	 * Some operating modes don't set av_set_tim(), so don't
5795	 * update it here.
5796	 */
5797	if (avp->av_set_tim == NULL)
5798		return (0);
5799
5800	return (avp->av_set_tim(ni, enable));
5801#endif /* ATH_SW_PSQ */
5802}
5803
5804/*
5805 * Set or update the TIM from the software queue.
5806 *
5807 * Check the software queue depth before attempting to do lock
5808 * anything; that avoids trying to obtain the lock.  Then,
5809 * re-check afterwards to ensure nothing has changed in the
5810 * meantime.
5811 *
5812 * set:   This is designed to be called from the TX path, after
5813 *        a frame has been queued; to see if the swq > 0.
5814 *
5815 * clear: This is designed to be called from the buffer completion point
5816 *        (right now it's ath_tx_default_comp()) where the state of
5817 *        a software queue has changed.
5818 *
5819 * It makes sense to place it at buffer free / completion rather
5820 * than after each software queue operation, as there's no real
5821 * point in churning the TIM bit as the last frames in the software
5822 * queue are transmitted.  If they fail and we retry them, we'd
5823 * just be setting the TIM bit again anyway.
5824 */
5825void
5826ath_tx_update_tim(struct ath_softc *sc, struct ieee80211_node *ni,
5827     int enable)
5828{
5829#ifdef	ATH_SW_PSQ
5830	struct ath_node *an;
5831	struct ath_vap *avp;
5832
5833	/* Don't do this for broadcast/etc frames */
5834	if (ni == NULL)
5835		return;
5836
5837	an = ATH_NODE(ni);
5838	avp = ATH_VAP(ni->ni_vap);
5839
5840	/*
5841	 * And for operating modes without the TIM handler set, let's
5842	 * just skip those.
5843	 */
5844	if (avp->av_set_tim == NULL)
5845		return;
5846
5847	ATH_NODE_UNLOCK_ASSERT(an);
5848
5849	if (enable) {
5850		/*
5851		 * Don't bother grabbing the lock unless the queue is not
5852		 * empty.
5853		 */
5854		if (atomic_load_acq_int(&an->an_swq_depth) == 0)
5855			return;
5856
5857		ATH_NODE_LOCK(an);
5858		if (an->an_is_powersave &&
5859		    an->an_tim_set == 0 &&
5860		    atomic_load_acq_int(&an->an_swq_depth) != 0) {
5861			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5862			    "%s: an=%p, swq_depth>0, tim_set=0, set!\n",
5863			    __func__, an);
5864			an->an_tim_set = 1;
5865			ATH_NODE_UNLOCK(an);
5866			(void) avp->av_set_tim(ni, 1);
5867		} else {
5868			ATH_NODE_UNLOCK(an);
5869		}
5870	} else {
5871		/*
5872		 * Don't bother grabbing the lock unless the queue is empty.
5873		 */
5874		if (atomic_load_acq_int(&an->an_swq_depth) != 0)
5875			return;
5876
5877		ATH_NODE_LOCK(an);
5878		if (an->an_is_powersave &&
5879		    an->an_stack_psq == 0 &&
5880		    an->an_tim_set == 1 &&
5881		    atomic_load_acq_int(&an->an_swq_depth) == 0) {
5882			DPRINTF(sc, ATH_DEBUG_NODE_PWRSAVE,
5883			    "%s: an=%p, swq_depth=0, tim_set=1, psq_set=0,"
5884			    " clear!\n",
5885			    __func__, an);
5886			an->an_tim_set = 0;
5887			ATH_NODE_UNLOCK(an);
5888			(void) avp->av_set_tim(ni, 0);
5889		} else {
5890			ATH_NODE_UNLOCK(an);
5891		}
5892	}
5893#else
5894	return;
5895#endif	/* ATH_SW_PSQ */
5896}
5897
5898MODULE_VERSION(if_ath, 1);
5899MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
5900#if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
5901MODULE_DEPEND(if_ath, alq, 1, 1, 1);
5902#endif
5903