if_ath.c revision 239282
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 239282 2012-08-15 06:48:34Z adrian $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42/*
43 * This is needed for register operations which are performed
44 * by the driver - eg, calls to ath_hal_gettsf32().
45 *
46 * It's also required for any AH_DEBUG checks in here, eg the
47 * module dependencies.
48 */
49#include "opt_ah.h"
50#include "opt_wlan.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/sysctl.h>
55#include <sys/mbuf.h>
56#include <sys/malloc.h>
57#include <sys/lock.h>
58#include <sys/mutex.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/sockio.h>
62#include <sys/errno.h>
63#include <sys/callout.h>
64#include <sys/bus.h>
65#include <sys/endian.h>
66#include <sys/kthread.h>
67#include <sys/taskqueue.h>
68#include <sys/priv.h>
69#include <sys/module.h>
70#include <sys/ktr.h>
71#include <sys/smp.h>	/* for mp_ncpus */
72
73#include <machine/bus.h>
74
75#include <net/if.h>
76#include <net/if_dl.h>
77#include <net/if_media.h>
78#include <net/if_types.h>
79#include <net/if_arp.h>
80#include <net/ethernet.h>
81#include <net/if_llc.h>
82
83#include <net80211/ieee80211_var.h>
84#include <net80211/ieee80211_regdomain.h>
85#ifdef IEEE80211_SUPPORT_SUPERG
86#include <net80211/ieee80211_superg.h>
87#endif
88#ifdef IEEE80211_SUPPORT_TDMA
89#include <net80211/ieee80211_tdma.h>
90#endif
91
92#include <net/bpf.h>
93
94#ifdef INET
95#include <netinet/in.h>
96#include <netinet/if_ether.h>
97#endif
98
99#include <dev/ath/if_athvar.h>
100#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101#include <dev/ath/ath_hal/ah_diagcodes.h>
102
103#include <dev/ath/if_ath_debug.h>
104#include <dev/ath/if_ath_misc.h>
105#include <dev/ath/if_ath_tsf.h>
106#include <dev/ath/if_ath_tx.h>
107#include <dev/ath/if_ath_sysctl.h>
108#include <dev/ath/if_ath_led.h>
109#include <dev/ath/if_ath_keycache.h>
110#include <dev/ath/if_ath_rx.h>
111#include <dev/ath/if_ath_rx_edma.h>
112#include <dev/ath/if_ath_tx_edma.h>
113#include <dev/ath/if_ath_beacon.h>
114#include <dev/ath/if_athdfs.h>
115
116#ifdef ATH_TX99_DIAG
117#include <dev/ath/ath_tx99/ath_tx99.h>
118#endif
119
120/*
121 * ATH_BCBUF determines the number of vap's that can transmit
122 * beacons and also (currently) the number of vap's that can
123 * have unique mac addresses/bssid.  When staggering beacons
124 * 4 is probably a good max as otherwise the beacons become
125 * very closely spaced and there is limited time for cab q traffic
126 * to go out.  You can burst beacons instead but that is not good
127 * for stations in power save and at some point you really want
128 * another radio (and channel).
129 *
130 * The limit on the number of mac addresses is tied to our use of
131 * the U/L bit and tracking addresses in a byte; it would be
132 * worthwhile to allow more for applications like proxy sta.
133 */
134CTASSERT(ATH_BCBUF <= 8);
135
136static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
137		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
138		    const uint8_t [IEEE80211_ADDR_LEN],
139		    const uint8_t [IEEE80211_ADDR_LEN]);
140static void	ath_vap_delete(struct ieee80211vap *);
141static void	ath_init(void *);
142static void	ath_stop_locked(struct ifnet *);
143static void	ath_stop(struct ifnet *);
144static int	ath_reset_vap(struct ieee80211vap *, u_long);
145static int	ath_media_change(struct ifnet *);
146static void	ath_watchdog(void *);
147static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
148static void	ath_fatal_proc(void *, int);
149static void	ath_bmiss_vap(struct ieee80211vap *);
150static void	ath_bmiss_proc(void *, int);
151static void	ath_key_update_begin(struct ieee80211vap *);
152static void	ath_key_update_end(struct ieee80211vap *);
153static void	ath_update_mcast(struct ifnet *);
154static void	ath_update_promisc(struct ifnet *);
155static void	ath_updateslot(struct ifnet *);
156static void	ath_bstuck_proc(void *, int);
157static void	ath_reset_proc(void *, int);
158static int	ath_desc_alloc(struct ath_softc *);
159static void	ath_desc_free(struct ath_softc *);
160static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
161			const uint8_t [IEEE80211_ADDR_LEN]);
162static void	ath_node_cleanup(struct ieee80211_node *);
163static void	ath_node_free(struct ieee80211_node *);
164static void	ath_node_getsignal(const struct ieee80211_node *,
165			int8_t *, int8_t *);
166static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
167static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
168static int	ath_tx_setup(struct ath_softc *, int, int);
169static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
170static void	ath_tx_cleanup(struct ath_softc *);
171static int	ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq,
172		    int dosched);
173static void	ath_tx_proc_q0(void *, int);
174static void	ath_tx_proc_q0123(void *, int);
175static void	ath_tx_proc(void *, int);
176static void	ath_txq_sched_tasklet(void *, int);
177static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
178static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
179static void	ath_scan_start(struct ieee80211com *);
180static void	ath_scan_end(struct ieee80211com *);
181static void	ath_set_channel(struct ieee80211com *);
182#ifdef	ATH_ENABLE_11N
183static void	ath_update_chw(struct ieee80211com *);
184#endif	/* ATH_ENABLE_11N */
185static void	ath_calibrate(void *);
186static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
187static void	ath_setup_stationkey(struct ieee80211_node *);
188static void	ath_newassoc(struct ieee80211_node *, int);
189static int	ath_setregdomain(struct ieee80211com *,
190		    struct ieee80211_regdomain *, int,
191		    struct ieee80211_channel []);
192static void	ath_getradiocaps(struct ieee80211com *, int, int *,
193		    struct ieee80211_channel []);
194static int	ath_getchannels(struct ath_softc *);
195
196static int	ath_rate_setup(struct ath_softc *, u_int mode);
197static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
198
199static void	ath_announce(struct ath_softc *);
200
201static void	ath_dfs_tasklet(void *, int);
202
203#ifdef IEEE80211_SUPPORT_TDMA
204#include <dev/ath/if_ath_tdma.h>
205#endif
206
207#if 0
208#define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
209#define	TDMA_LPF_LEN		6
210#define	TDMA_DUMMY_MARKER	0x127
211#define	TDMA_EP_MUL(x, mul)	((x) * (mul))
212#define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
213#define	TDMA_LPF(x, y, len) \
214    ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
215#define	TDMA_SAMPLE(x, y) do {					\
216	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
217} while (0)
218#define	TDMA_EP_RND(x,mul) \
219	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
220#define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
221#endif /* IEEE80211_SUPPORT_TDMA */
222
223SYSCTL_DECL(_hw_ath);
224
225/* XXX validate sysctl values */
226static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
227SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
228	    0, "long chip calibration interval (secs)");
229static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
230SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
231	    0, "short chip calibration interval (msecs)");
232static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
233SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
234	    0, "reset chip calibration results (secs)");
235static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
236SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
237	    0, "ANI calibration (msecs)");
238
239int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
240SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
241	    0, "rx buffers allocated");
242TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
243int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
244SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
245	    0, "tx buffers allocated");
246TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
247int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
248SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
249	    0, "tx (mgmt) buffers allocated");
250TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
251
252int ath_bstuck_threshold = 4;		/* max missed beacons */
253SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
254	    0, "max missed beacon xmits before chip reset");
255
256MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
257
258void
259ath_legacy_attach_comp_func(struct ath_softc *sc)
260{
261
262	/*
263	 * Special case certain configurations.  Note the
264	 * CAB queue is handled by these specially so don't
265	 * include them when checking the txq setup mask.
266	 */
267	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
268	case 0x01:
269		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
270		break;
271	case 0x0f:
272		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
273		break;
274	default:
275		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
276		break;
277	}
278}
279
280#define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
281#define	HAL_MODE_HT40 \
282	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
283	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
284int
285ath_attach(u_int16_t devid, struct ath_softc *sc)
286{
287	struct ifnet *ifp;
288	struct ieee80211com *ic;
289	struct ath_hal *ah = NULL;
290	HAL_STATUS status;
291	int error = 0, i;
292	u_int wmodes;
293	uint8_t macaddr[IEEE80211_ADDR_LEN];
294	int rx_chainmask, tx_chainmask;
295
296	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
297
298	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
299	if (ifp == NULL) {
300		device_printf(sc->sc_dev, "can not if_alloc()\n");
301		error = ENOSPC;
302		goto bad;
303	}
304	ic = ifp->if_l2com;
305
306	/* set these up early for if_printf use */
307	if_initname(ifp, device_get_name(sc->sc_dev),
308		device_get_unit(sc->sc_dev));
309
310	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
311	    sc->sc_eepromdata, &status);
312	if (ah == NULL) {
313		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
314			status);
315		error = ENXIO;
316		goto bad;
317	}
318	sc->sc_ah = ah;
319	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
320#ifdef	ATH_DEBUG
321	sc->sc_debug = ath_debug;
322#endif
323
324	/*
325	 * Setup the DMA/EDMA functions based on the current
326	 * hardware support.
327	 *
328	 * This is required before the descriptors are allocated.
329	 */
330	if (ath_hal_hasedma(sc->sc_ah)) {
331		sc->sc_isedma = 1;
332		ath_recv_setup_edma(sc);
333		ath_xmit_setup_edma(sc);
334	} else {
335		ath_recv_setup_legacy(sc);
336		ath_xmit_setup_legacy(sc);
337	}
338
339	/*
340	 * Check if the MAC has multi-rate retry support.
341	 * We do this by trying to setup a fake extended
342	 * descriptor.  MAC's that don't have support will
343	 * return false w/o doing anything.  MAC's that do
344	 * support it will return true w/o doing anything.
345	 */
346	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
347
348	/*
349	 * Check if the device has hardware counters for PHY
350	 * errors.  If so we need to enable the MIB interrupt
351	 * so we can act on stat triggers.
352	 */
353	if (ath_hal_hwphycounters(ah))
354		sc->sc_needmib = 1;
355
356	/*
357	 * Get the hardware key cache size.
358	 */
359	sc->sc_keymax = ath_hal_keycachesize(ah);
360	if (sc->sc_keymax > ATH_KEYMAX) {
361		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
362			ATH_KEYMAX, sc->sc_keymax);
363		sc->sc_keymax = ATH_KEYMAX;
364	}
365	/*
366	 * Reset the key cache since some parts do not
367	 * reset the contents on initial power up.
368	 */
369	for (i = 0; i < sc->sc_keymax; i++)
370		ath_hal_keyreset(ah, i);
371
372	/*
373	 * Collect the default channel list.
374	 */
375	error = ath_getchannels(sc);
376	if (error != 0)
377		goto bad;
378
379	/*
380	 * Setup rate tables for all potential media types.
381	 */
382	ath_rate_setup(sc, IEEE80211_MODE_11A);
383	ath_rate_setup(sc, IEEE80211_MODE_11B);
384	ath_rate_setup(sc, IEEE80211_MODE_11G);
385	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
386	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
387	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
388	ath_rate_setup(sc, IEEE80211_MODE_11NA);
389	ath_rate_setup(sc, IEEE80211_MODE_11NG);
390	ath_rate_setup(sc, IEEE80211_MODE_HALF);
391	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
392
393	/* NB: setup here so ath_rate_update is happy */
394	ath_setcurmode(sc, IEEE80211_MODE_11A);
395
396	/*
397	 * Allocate TX descriptors and populate the lists.
398	 */
399	error = ath_desc_alloc(sc);
400	if (error != 0) {
401		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
402		    error);
403		goto bad;
404	}
405	error = ath_txdma_setup(sc);
406	if (error != 0) {
407		if_printf(ifp, "failed to allocate TX descriptors: %d\n",
408		    error);
409		goto bad;
410	}
411
412	/*
413	 * Allocate RX descriptors and populate the lists.
414	 */
415	error = ath_rxdma_setup(sc);
416	if (error != 0) {
417		if_printf(ifp, "failed to allocate RX descriptors: %d\n",
418		    error);
419		goto bad;
420	}
421
422	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
423	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
424
425	ATH_TXBUF_LOCK_INIT(sc);
426
427	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
428		taskqueue_thread_enqueue, &sc->sc_tq);
429	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
430		"%s taskq", ifp->if_xname);
431
432	TASK_INIT(&sc->sc_rxtask, 0, sc->sc_rx.recv_tasklet, sc);
433	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
434	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
435	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
436	TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc);
437	TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc);
438
439	/*
440	 * Allocate hardware transmit queues: one queue for
441	 * beacon frames and one data queue for each QoS
442	 * priority.  Note that the hal handles resetting
443	 * these queues at the needed time.
444	 *
445	 * XXX PS-Poll
446	 */
447	sc->sc_bhalq = ath_beaconq_setup(sc);
448	if (sc->sc_bhalq == (u_int) -1) {
449		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
450		error = EIO;
451		goto bad2;
452	}
453	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
454	if (sc->sc_cabq == NULL) {
455		if_printf(ifp, "unable to setup CAB xmit queue!\n");
456		error = EIO;
457		goto bad2;
458	}
459	/* NB: insure BK queue is the lowest priority h/w queue */
460	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
461		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
462			ieee80211_wme_acnames[WME_AC_BK]);
463		error = EIO;
464		goto bad2;
465	}
466	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
467	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
468	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
469		/*
470		 * Not enough hardware tx queues to properly do WME;
471		 * just punt and assign them all to the same h/w queue.
472		 * We could do a better job of this if, for example,
473		 * we allocate queues when we switch from station to
474		 * AP mode.
475		 */
476		if (sc->sc_ac2q[WME_AC_VI] != NULL)
477			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
478		if (sc->sc_ac2q[WME_AC_BE] != NULL)
479			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
480		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
481		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
482		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
483	}
484
485	/*
486	 * Attach the TX completion function.
487	 *
488	 * The non-EDMA chips may have some special case optimisations;
489	 * this method gives everyone a chance to attach cleanly.
490	 */
491	sc->sc_tx.xmit_attach_comp_func(sc);
492
493	/*
494	 * Setup rate control.  Some rate control modules
495	 * call back to change the anntena state so expose
496	 * the necessary entry points.
497	 * XXX maybe belongs in struct ath_ratectrl?
498	 */
499	sc->sc_setdefantenna = ath_setdefantenna;
500	sc->sc_rc = ath_rate_attach(sc);
501	if (sc->sc_rc == NULL) {
502		error = EIO;
503		goto bad2;
504	}
505
506	/* Attach DFS module */
507	if (! ath_dfs_attach(sc)) {
508		device_printf(sc->sc_dev,
509		    "%s: unable to attach DFS\n", __func__);
510		error = EIO;
511		goto bad2;
512	}
513
514	/* Start DFS processing tasklet */
515	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
516
517	/* Configure LED state */
518	sc->sc_blinking = 0;
519	sc->sc_ledstate = 1;
520	sc->sc_ledon = 0;			/* low true */
521	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
522	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
523
524	/*
525	 * Don't setup hardware-based blinking.
526	 *
527	 * Although some NICs may have this configured in the
528	 * default reset register values, the user may wish
529	 * to alter which pins have which function.
530	 *
531	 * The reference driver attaches the MAC network LED to GPIO1 and
532	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
533	 * NIC has these reversed.
534	 */
535	sc->sc_hardled = (1 == 0);
536	sc->sc_led_net_pin = -1;
537	sc->sc_led_pwr_pin = -1;
538	/*
539	 * Auto-enable soft led processing for IBM cards and for
540	 * 5211 minipci cards.  Users can also manually enable/disable
541	 * support with a sysctl.
542	 */
543	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
544	ath_led_config(sc);
545	ath_hal_setledstate(ah, HAL_LED_INIT);
546
547	ifp->if_softc = sc;
548	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
549	ifp->if_start = ath_start;
550	ifp->if_ioctl = ath_ioctl;
551	ifp->if_init = ath_init;
552	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
553	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
554	IFQ_SET_READY(&ifp->if_snd);
555
556	ic->ic_ifp = ifp;
557	/* XXX not right but it's not used anywhere important */
558	ic->ic_phytype = IEEE80211_T_OFDM;
559	ic->ic_opmode = IEEE80211_M_STA;
560	ic->ic_caps =
561		  IEEE80211_C_STA		/* station mode */
562		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
563		| IEEE80211_C_HOSTAP		/* hostap mode */
564		| IEEE80211_C_MONITOR		/* monitor mode */
565		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
566		| IEEE80211_C_WDS		/* 4-address traffic works */
567		| IEEE80211_C_MBSS		/* mesh point link mode */
568		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
569		| IEEE80211_C_SHSLOT		/* short slot time supported */
570		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
571#ifndef	ATH_ENABLE_11N
572		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
573#endif
574		| IEEE80211_C_TXFRAG		/* handle tx frags */
575#ifdef	ATH_ENABLE_DFS
576		| IEEE80211_C_DFS		/* Enable radar detection */
577#endif
578		;
579	/*
580	 * Query the hal to figure out h/w crypto support.
581	 */
582	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
583		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
584	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
585		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
586	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
587		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
588	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
589		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
590	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
591		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
592		/*
593		 * Check if h/w does the MIC and/or whether the
594		 * separate key cache entries are required to
595		 * handle both tx+rx MIC keys.
596		 */
597		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
598			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
599		/*
600		 * If the h/w supports storing tx+rx MIC keys
601		 * in one cache slot automatically enable use.
602		 */
603		if (ath_hal_hastkipsplit(ah) ||
604		    !ath_hal_settkipsplit(ah, AH_FALSE))
605			sc->sc_splitmic = 1;
606		/*
607		 * If the h/w can do TKIP MIC together with WME then
608		 * we use it; otherwise we force the MIC to be done
609		 * in software by the net80211 layer.
610		 */
611		if (ath_hal_haswmetkipmic(ah))
612			sc->sc_wmetkipmic = 1;
613	}
614	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
615	/*
616	 * Check for multicast key search support.
617	 */
618	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
619	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
620		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
621	}
622	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
623	/*
624	 * Mark key cache slots associated with global keys
625	 * as in use.  If we knew TKIP was not to be used we
626	 * could leave the +32, +64, and +32+64 slots free.
627	 */
628	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
629		setbit(sc->sc_keymap, i);
630		setbit(sc->sc_keymap, i+64);
631		if (sc->sc_splitmic) {
632			setbit(sc->sc_keymap, i+32);
633			setbit(sc->sc_keymap, i+32+64);
634		}
635	}
636	/*
637	 * TPC support can be done either with a global cap or
638	 * per-packet support.  The latter is not available on
639	 * all parts.  We're a bit pedantic here as all parts
640	 * support a global cap.
641	 */
642	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
643		ic->ic_caps |= IEEE80211_C_TXPMGT;
644
645	/*
646	 * Mark WME capability only if we have sufficient
647	 * hardware queues to do proper priority scheduling.
648	 */
649	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
650		ic->ic_caps |= IEEE80211_C_WME;
651	/*
652	 * Check for misc other capabilities.
653	 */
654	if (ath_hal_hasbursting(ah))
655		ic->ic_caps |= IEEE80211_C_BURST;
656	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
657	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
658	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
659	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
660	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
661	if (ath_hal_hasfastframes(ah))
662		ic->ic_caps |= IEEE80211_C_FF;
663	wmodes = ath_hal_getwirelessmodes(ah);
664	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
665		ic->ic_caps |= IEEE80211_C_TURBOP;
666#ifdef IEEE80211_SUPPORT_TDMA
667	if (ath_hal_macversion(ah) > 0x78) {
668		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
669		ic->ic_tdma_update = ath_tdma_update;
670	}
671#endif
672
673	/*
674	 * TODO: enforce that at least this many frames are available
675	 * in the txbuf list before allowing data frames (raw or
676	 * otherwise) to be transmitted.
677	 */
678	sc->sc_txq_data_minfree = 10;
679	/*
680	 * Leave this as default to maintain legacy behaviour.
681	 * Shortening the cabq/mcastq may end up causing some
682	 * undesirable behaviour.
683	 */
684	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
685
686	/*
687	 * Allow the TX and RX chainmasks to be overridden by
688	 * environment variables and/or device.hints.
689	 *
690	 * This must be done early - before the hardware is
691	 * calibrated or before the 802.11n stream calculation
692	 * is done.
693	 */
694	if (resource_int_value(device_get_name(sc->sc_dev),
695	    device_get_unit(sc->sc_dev), "rx_chainmask",
696	    &rx_chainmask) == 0) {
697		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
698		    rx_chainmask);
699		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
700	}
701	if (resource_int_value(device_get_name(sc->sc_dev),
702	    device_get_unit(sc->sc_dev), "tx_chainmask",
703	    &tx_chainmask) == 0) {
704		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
705		    tx_chainmask);
706		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
707	}
708
709	/*
710	 * Disable MRR with protected frames by default.
711	 * Only 802.11n series NICs can handle this.
712	 */
713	sc->sc_mrrprot = 0;	/* XXX should be a capability */
714
715#ifdef	ATH_ENABLE_11N
716	/*
717	 * Query HT capabilities
718	 */
719	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
720	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
721		int rxs, txs;
722
723		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
724
725		sc->sc_mrrprot = 1;	/* XXX should be a capability */
726
727		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
728			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
729			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
730			    | IEEE80211_HTCAP_MAXAMSDU_3839
731			    				/* max A-MSDU length */
732			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
733			;
734
735		/*
736		 * Enable short-GI for HT20 only if the hardware
737		 * advertises support.
738		 * Notably, anything earlier than the AR9287 doesn't.
739		 */
740		if ((ath_hal_getcapability(ah,
741		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
742		    (wmodes & HAL_MODE_HT20)) {
743			device_printf(sc->sc_dev,
744			    "[HT] enabling short-GI in 20MHz mode\n");
745			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
746		}
747
748		if (wmodes & HAL_MODE_HT40)
749			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
750			    |  IEEE80211_HTCAP_SHORTGI40;
751
752		/*
753		 * TX/RX streams need to be taken into account when
754		 * negotiating which MCS rates it'll receive and
755		 * what MCS rates are available for TX.
756		 */
757		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
758		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
759
760		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
761		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
762
763		ic->ic_txstream = txs;
764		ic->ic_rxstream = rxs;
765
766		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
767		    &sc->sc_rts_aggr_limit);
768		if (sc->sc_rts_aggr_limit != (64 * 1024))
769			device_printf(sc->sc_dev,
770			    "[HT] RTS aggregates limited to %d KiB\n",
771			    sc->sc_rts_aggr_limit / 1024);
772
773		device_printf(sc->sc_dev,
774		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
775	}
776#endif
777
778	/*
779	 * Initial aggregation settings.
780	 */
781	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
782	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
783	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
784
785	/*
786	 * Check if the hardware requires PCI register serialisation.
787	 * Some of the Owl based MACs require this.
788	 */
789	if (mp_ncpus > 1 &&
790	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
791	     0, NULL) == HAL_OK) {
792		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
793		device_printf(sc->sc_dev,
794		    "Enabling register serialisation\n");
795	}
796
797	/*
798	 * Indicate we need the 802.11 header padded to a
799	 * 32-bit boundary for 4-address and QoS frames.
800	 */
801	ic->ic_flags |= IEEE80211_F_DATAPAD;
802
803	/*
804	 * Query the hal about antenna support.
805	 */
806	sc->sc_defant = ath_hal_getdefantenna(ah);
807
808	/*
809	 * Not all chips have the VEOL support we want to
810	 * use with IBSS beacons; check here for it.
811	 */
812	sc->sc_hasveol = ath_hal_hasveol(ah);
813
814	/* get mac address from hardware */
815	ath_hal_getmac(ah, macaddr);
816	if (sc->sc_hasbmask)
817		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
818
819	/* NB: used to size node table key mapping array */
820	ic->ic_max_keyix = sc->sc_keymax;
821	/* call MI attach routine. */
822	ieee80211_ifattach(ic, macaddr);
823	ic->ic_setregdomain = ath_setregdomain;
824	ic->ic_getradiocaps = ath_getradiocaps;
825	sc->sc_opmode = HAL_M_STA;
826
827	/* override default methods */
828	ic->ic_newassoc = ath_newassoc;
829	ic->ic_updateslot = ath_updateslot;
830	ic->ic_wme.wme_update = ath_wme_update;
831	ic->ic_vap_create = ath_vap_create;
832	ic->ic_vap_delete = ath_vap_delete;
833	ic->ic_raw_xmit = ath_raw_xmit;
834	ic->ic_update_mcast = ath_update_mcast;
835	ic->ic_update_promisc = ath_update_promisc;
836	ic->ic_node_alloc = ath_node_alloc;
837	sc->sc_node_free = ic->ic_node_free;
838	ic->ic_node_free = ath_node_free;
839	sc->sc_node_cleanup = ic->ic_node_cleanup;
840	ic->ic_node_cleanup = ath_node_cleanup;
841	ic->ic_node_getsignal = ath_node_getsignal;
842	ic->ic_scan_start = ath_scan_start;
843	ic->ic_scan_end = ath_scan_end;
844	ic->ic_set_channel = ath_set_channel;
845#ifdef	ATH_ENABLE_11N
846	/* 802.11n specific - but just override anyway */
847	sc->sc_addba_request = ic->ic_addba_request;
848	sc->sc_addba_response = ic->ic_addba_response;
849	sc->sc_addba_stop = ic->ic_addba_stop;
850	sc->sc_bar_response = ic->ic_bar_response;
851	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
852
853	ic->ic_addba_request = ath_addba_request;
854	ic->ic_addba_response = ath_addba_response;
855	ic->ic_addba_response_timeout = ath_addba_response_timeout;
856	ic->ic_addba_stop = ath_addba_stop;
857	ic->ic_bar_response = ath_bar_response;
858
859	ic->ic_update_chw = ath_update_chw;
860#endif	/* ATH_ENABLE_11N */
861
862#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
863	/*
864	 * There's one vendor bitmap entry in the RX radiotap
865	 * header; make sure that's taken into account.
866	 */
867	ieee80211_radiotap_attachv(ic,
868	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
869		ATH_TX_RADIOTAP_PRESENT,
870	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
871		ATH_RX_RADIOTAP_PRESENT);
872#else
873	/*
874	 * No vendor bitmap/extensions are present.
875	 */
876	ieee80211_radiotap_attach(ic,
877	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
878		ATH_TX_RADIOTAP_PRESENT,
879	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
880		ATH_RX_RADIOTAP_PRESENT);
881#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
882
883	/*
884	 * Setup dynamic sysctl's now that country code and
885	 * regdomain are available from the hal.
886	 */
887	ath_sysctlattach(sc);
888	ath_sysctl_stats_attach(sc);
889	ath_sysctl_hal_attach(sc);
890
891	if (bootverbose)
892		ieee80211_announce(ic);
893	ath_announce(sc);
894	return 0;
895bad2:
896	ath_tx_cleanup(sc);
897	ath_desc_free(sc);
898	ath_txdma_teardown(sc);
899	ath_rxdma_teardown(sc);
900bad:
901	if (ah)
902		ath_hal_detach(ah);
903	if (ifp != NULL)
904		if_free(ifp);
905	sc->sc_invalid = 1;
906	return error;
907}
908
909int
910ath_detach(struct ath_softc *sc)
911{
912	struct ifnet *ifp = sc->sc_ifp;
913
914	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
915		__func__, ifp->if_flags);
916
917	/*
918	 * NB: the order of these is important:
919	 * o stop the chip so no more interrupts will fire
920	 * o call the 802.11 layer before detaching the hal to
921	 *   insure callbacks into the driver to delete global
922	 *   key cache entries can be handled
923	 * o free the taskqueue which drains any pending tasks
924	 * o reclaim the tx queue data structures after calling
925	 *   the 802.11 layer as we'll get called back to reclaim
926	 *   node state and potentially want to use them
927	 * o to cleanup the tx queues the hal is called, so detach
928	 *   it last
929	 * Other than that, it's straightforward...
930	 */
931	ath_stop(ifp);
932	ieee80211_ifdetach(ifp->if_l2com);
933	taskqueue_free(sc->sc_tq);
934#ifdef ATH_TX99_DIAG
935	if (sc->sc_tx99 != NULL)
936		sc->sc_tx99->detach(sc->sc_tx99);
937#endif
938	ath_rate_detach(sc->sc_rc);
939
940	ath_dfs_detach(sc);
941	ath_desc_free(sc);
942	ath_txdma_teardown(sc);
943	ath_rxdma_teardown(sc);
944	ath_tx_cleanup(sc);
945	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
946	if_free(ifp);
947
948	return 0;
949}
950
951/*
952 * MAC address handling for multiple BSS on the same radio.
953 * The first vap uses the MAC address from the EEPROM.  For
954 * subsequent vap's we set the U/L bit (bit 1) in the MAC
955 * address and use the next six bits as an index.
956 */
957static void
958assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
959{
960	int i;
961
962	if (clone && sc->sc_hasbmask) {
963		/* NB: we only do this if h/w supports multiple bssid */
964		for (i = 0; i < 8; i++)
965			if ((sc->sc_bssidmask & (1<<i)) == 0)
966				break;
967		if (i != 0)
968			mac[0] |= (i << 2)|0x2;
969	} else
970		i = 0;
971	sc->sc_bssidmask |= 1<<i;
972	sc->sc_hwbssidmask[0] &= ~mac[0];
973	if (i == 0)
974		sc->sc_nbssid0++;
975}
976
977static void
978reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
979{
980	int i = mac[0] >> 2;
981	uint8_t mask;
982
983	if (i != 0 || --sc->sc_nbssid0 == 0) {
984		sc->sc_bssidmask &= ~(1<<i);
985		/* recalculate bssid mask from remaining addresses */
986		mask = 0xff;
987		for (i = 1; i < 8; i++)
988			if (sc->sc_bssidmask & (1<<i))
989				mask &= ~((i<<2)|0x2);
990		sc->sc_hwbssidmask[0] |= mask;
991	}
992}
993
994/*
995 * Assign a beacon xmit slot.  We try to space out
996 * assignments so when beacons are staggered the
997 * traffic coming out of the cab q has maximal time
998 * to go out before the next beacon is scheduled.
999 */
1000static int
1001assign_bslot(struct ath_softc *sc)
1002{
1003	u_int slot, free;
1004
1005	free = 0;
1006	for (slot = 0; slot < ATH_BCBUF; slot++)
1007		if (sc->sc_bslot[slot] == NULL) {
1008			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
1009			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
1010				return slot;
1011			free = slot;
1012			/* NB: keep looking for a double slot */
1013		}
1014	return free;
1015}
1016
1017static struct ieee80211vap *
1018ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
1019    enum ieee80211_opmode opmode, int flags,
1020    const uint8_t bssid[IEEE80211_ADDR_LEN],
1021    const uint8_t mac0[IEEE80211_ADDR_LEN])
1022{
1023	struct ath_softc *sc = ic->ic_ifp->if_softc;
1024	struct ath_vap *avp;
1025	struct ieee80211vap *vap;
1026	uint8_t mac[IEEE80211_ADDR_LEN];
1027	int needbeacon, error;
1028	enum ieee80211_opmode ic_opmode;
1029
1030	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
1031	    M_80211_VAP, M_WAITOK | M_ZERO);
1032	needbeacon = 0;
1033	IEEE80211_ADDR_COPY(mac, mac0);
1034
1035	ATH_LOCK(sc);
1036	ic_opmode = opmode;		/* default to opmode of new vap */
1037	switch (opmode) {
1038	case IEEE80211_M_STA:
1039		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
1040			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
1041			goto bad;
1042		}
1043		if (sc->sc_nvaps) {
1044			/*
1045			 * With multiple vaps we must fall back
1046			 * to s/w beacon miss handling.
1047			 */
1048			flags |= IEEE80211_CLONE_NOBEACONS;
1049		}
1050		if (flags & IEEE80211_CLONE_NOBEACONS) {
1051			/*
1052			 * Station mode w/o beacons are implemented w/ AP mode.
1053			 */
1054			ic_opmode = IEEE80211_M_HOSTAP;
1055		}
1056		break;
1057	case IEEE80211_M_IBSS:
1058		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1059			device_printf(sc->sc_dev,
1060			    "only 1 ibss vap supported\n");
1061			goto bad;
1062		}
1063		needbeacon = 1;
1064		break;
1065	case IEEE80211_M_AHDEMO:
1066#ifdef IEEE80211_SUPPORT_TDMA
1067		if (flags & IEEE80211_CLONE_TDMA) {
1068			if (sc->sc_nvaps != 0) {
1069				device_printf(sc->sc_dev,
1070				    "only 1 tdma vap supported\n");
1071				goto bad;
1072			}
1073			needbeacon = 1;
1074			flags |= IEEE80211_CLONE_NOBEACONS;
1075		}
1076		/* fall thru... */
1077#endif
1078	case IEEE80211_M_MONITOR:
1079		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1080			/*
1081			 * Adopt existing mode.  Adding a monitor or ahdemo
1082			 * vap to an existing configuration is of dubious
1083			 * value but should be ok.
1084			 */
1085			/* XXX not right for monitor mode */
1086			ic_opmode = ic->ic_opmode;
1087		}
1088		break;
1089	case IEEE80211_M_HOSTAP:
1090	case IEEE80211_M_MBSS:
1091		needbeacon = 1;
1092		break;
1093	case IEEE80211_M_WDS:
1094		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1095			device_printf(sc->sc_dev,
1096			    "wds not supported in sta mode\n");
1097			goto bad;
1098		}
1099		/*
1100		 * Silently remove any request for a unique
1101		 * bssid; WDS vap's always share the local
1102		 * mac address.
1103		 */
1104		flags &= ~IEEE80211_CLONE_BSSID;
1105		if (sc->sc_nvaps == 0)
1106			ic_opmode = IEEE80211_M_HOSTAP;
1107		else
1108			ic_opmode = ic->ic_opmode;
1109		break;
1110	default:
1111		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1112		goto bad;
1113	}
1114	/*
1115	 * Check that a beacon buffer is available; the code below assumes it.
1116	 */
1117	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1118		device_printf(sc->sc_dev, "no beacon buffer available\n");
1119		goto bad;
1120	}
1121
1122	/* STA, AHDEMO? */
1123	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1124		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1125		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1126	}
1127
1128	vap = &avp->av_vap;
1129	/* XXX can't hold mutex across if_alloc */
1130	ATH_UNLOCK(sc);
1131	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1132	    bssid, mac);
1133	ATH_LOCK(sc);
1134	if (error != 0) {
1135		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1136		    __func__, error);
1137		goto bad2;
1138	}
1139
1140	/* h/w crypto support */
1141	vap->iv_key_alloc = ath_key_alloc;
1142	vap->iv_key_delete = ath_key_delete;
1143	vap->iv_key_set = ath_key_set;
1144	vap->iv_key_update_begin = ath_key_update_begin;
1145	vap->iv_key_update_end = ath_key_update_end;
1146
1147	/* override various methods */
1148	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1149	vap->iv_recv_mgmt = ath_recv_mgmt;
1150	vap->iv_reset = ath_reset_vap;
1151	vap->iv_update_beacon = ath_beacon_update;
1152	avp->av_newstate = vap->iv_newstate;
1153	vap->iv_newstate = ath_newstate;
1154	avp->av_bmiss = vap->iv_bmiss;
1155	vap->iv_bmiss = ath_bmiss_vap;
1156
1157	/* Set default parameters */
1158
1159	/*
1160	 * Anything earlier than some AR9300 series MACs don't
1161	 * support a smaller MPDU density.
1162	 */
1163	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1164	/*
1165	 * All NICs can handle the maximum size, however
1166	 * AR5416 based MACs can only TX aggregates w/ RTS
1167	 * protection when the total aggregate size is <= 8k.
1168	 * However, for now that's enforced by the TX path.
1169	 */
1170	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1171
1172	avp->av_bslot = -1;
1173	if (needbeacon) {
1174		/*
1175		 * Allocate beacon state and setup the q for buffered
1176		 * multicast frames.  We know a beacon buffer is
1177		 * available because we checked above.
1178		 */
1179		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1180		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1181		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1182			/*
1183			 * Assign the vap to a beacon xmit slot.  As above
1184			 * this cannot fail to find a free one.
1185			 */
1186			avp->av_bslot = assign_bslot(sc);
1187			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1188			    ("beacon slot %u not empty", avp->av_bslot));
1189			sc->sc_bslot[avp->av_bslot] = vap;
1190			sc->sc_nbcnvaps++;
1191		}
1192		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1193			/*
1194			 * Multple vaps are to transmit beacons and we
1195			 * have h/w support for TSF adjusting; enable
1196			 * use of staggered beacons.
1197			 */
1198			sc->sc_stagbeacons = 1;
1199		}
1200		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1201	}
1202
1203	ic->ic_opmode = ic_opmode;
1204	if (opmode != IEEE80211_M_WDS) {
1205		sc->sc_nvaps++;
1206		if (opmode == IEEE80211_M_STA)
1207			sc->sc_nstavaps++;
1208		if (opmode == IEEE80211_M_MBSS)
1209			sc->sc_nmeshvaps++;
1210	}
1211	switch (ic_opmode) {
1212	case IEEE80211_M_IBSS:
1213		sc->sc_opmode = HAL_M_IBSS;
1214		break;
1215	case IEEE80211_M_STA:
1216		sc->sc_opmode = HAL_M_STA;
1217		break;
1218	case IEEE80211_M_AHDEMO:
1219#ifdef IEEE80211_SUPPORT_TDMA
1220		if (vap->iv_caps & IEEE80211_C_TDMA) {
1221			sc->sc_tdma = 1;
1222			/* NB: disable tsf adjust */
1223			sc->sc_stagbeacons = 0;
1224		}
1225		/*
1226		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1227		 * just ap mode.
1228		 */
1229		/* fall thru... */
1230#endif
1231	case IEEE80211_M_HOSTAP:
1232	case IEEE80211_M_MBSS:
1233		sc->sc_opmode = HAL_M_HOSTAP;
1234		break;
1235	case IEEE80211_M_MONITOR:
1236		sc->sc_opmode = HAL_M_MONITOR;
1237		break;
1238	default:
1239		/* XXX should not happen */
1240		break;
1241	}
1242	if (sc->sc_hastsfadd) {
1243		/*
1244		 * Configure whether or not TSF adjust should be done.
1245		 */
1246		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1247	}
1248	if (flags & IEEE80211_CLONE_NOBEACONS) {
1249		/*
1250		 * Enable s/w beacon miss handling.
1251		 */
1252		sc->sc_swbmiss = 1;
1253	}
1254	ATH_UNLOCK(sc);
1255
1256	/* complete setup */
1257	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1258	return vap;
1259bad2:
1260	reclaim_address(sc, mac);
1261	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1262bad:
1263	free(avp, M_80211_VAP);
1264	ATH_UNLOCK(sc);
1265	return NULL;
1266}
1267
1268static void
1269ath_vap_delete(struct ieee80211vap *vap)
1270{
1271	struct ieee80211com *ic = vap->iv_ic;
1272	struct ifnet *ifp = ic->ic_ifp;
1273	struct ath_softc *sc = ifp->if_softc;
1274	struct ath_hal *ah = sc->sc_ah;
1275	struct ath_vap *avp = ATH_VAP(vap);
1276
1277	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1278	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1279		/*
1280		 * Quiesce the hardware while we remove the vap.  In
1281		 * particular we need to reclaim all references to
1282		 * the vap state by any frames pending on the tx queues.
1283		 */
1284		ath_hal_intrset(ah, 0);		/* disable interrupts */
1285		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1286		/* XXX Do all frames from all vaps/nodes need draining here? */
1287		ath_stoprecv(sc, 1);		/* stop recv side */
1288	}
1289
1290	ieee80211_vap_detach(vap);
1291
1292	/*
1293	 * XXX Danger Will Robinson! Danger!
1294	 *
1295	 * Because ieee80211_vap_detach() can queue a frame (the station
1296	 * diassociate message?) after we've drained the TXQ and
1297	 * flushed the software TXQ, we will end up with a frame queued
1298	 * to a node whose vap is about to be freed.
1299	 *
1300	 * To work around this, flush the hardware/software again.
1301	 * This may be racy - the ath task may be running and the packet
1302	 * may be being scheduled between sw->hw txq. Tsk.
1303	 *
1304	 * TODO: figure out why a new node gets allocated somewhere around
1305	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1306	 * call!)
1307	 */
1308
1309	ath_draintxq(sc, ATH_RESET_DEFAULT);
1310
1311	ATH_LOCK(sc);
1312	/*
1313	 * Reclaim beacon state.  Note this must be done before
1314	 * the vap instance is reclaimed as we may have a reference
1315	 * to it in the buffer for the beacon frame.
1316	 */
1317	if (avp->av_bcbuf != NULL) {
1318		if (avp->av_bslot != -1) {
1319			sc->sc_bslot[avp->av_bslot] = NULL;
1320			sc->sc_nbcnvaps--;
1321		}
1322		ath_beacon_return(sc, avp->av_bcbuf);
1323		avp->av_bcbuf = NULL;
1324		if (sc->sc_nbcnvaps == 0) {
1325			sc->sc_stagbeacons = 0;
1326			if (sc->sc_hastsfadd)
1327				ath_hal_settsfadjust(sc->sc_ah, 0);
1328		}
1329		/*
1330		 * Reclaim any pending mcast frames for the vap.
1331		 */
1332		ath_tx_draintxq(sc, &avp->av_mcastq);
1333		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1334	}
1335	/*
1336	 * Update bookkeeping.
1337	 */
1338	if (vap->iv_opmode == IEEE80211_M_STA) {
1339		sc->sc_nstavaps--;
1340		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1341			sc->sc_swbmiss = 0;
1342	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1343	    vap->iv_opmode == IEEE80211_M_MBSS) {
1344		reclaim_address(sc, vap->iv_myaddr);
1345		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1346		if (vap->iv_opmode == IEEE80211_M_MBSS)
1347			sc->sc_nmeshvaps--;
1348	}
1349	if (vap->iv_opmode != IEEE80211_M_WDS)
1350		sc->sc_nvaps--;
1351#ifdef IEEE80211_SUPPORT_TDMA
1352	/* TDMA operation ceases when the last vap is destroyed */
1353	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1354		sc->sc_tdma = 0;
1355		sc->sc_swbmiss = 0;
1356	}
1357#endif
1358	free(avp, M_80211_VAP);
1359
1360	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1361		/*
1362		 * Restart rx+tx machines if still running (RUNNING will
1363		 * be reset if we just destroyed the last vap).
1364		 */
1365		if (ath_startrecv(sc) != 0)
1366			if_printf(ifp, "%s: unable to restart recv logic\n",
1367			    __func__);
1368		if (sc->sc_beacons) {		/* restart beacons */
1369#ifdef IEEE80211_SUPPORT_TDMA
1370			if (sc->sc_tdma)
1371				ath_tdma_config(sc, NULL);
1372			else
1373#endif
1374				ath_beacon_config(sc, NULL);
1375		}
1376		ath_hal_intrset(ah, sc->sc_imask);
1377	}
1378	ATH_UNLOCK(sc);
1379}
1380
1381void
1382ath_suspend(struct ath_softc *sc)
1383{
1384	struct ifnet *ifp = sc->sc_ifp;
1385	struct ieee80211com *ic = ifp->if_l2com;
1386
1387	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1388		__func__, ifp->if_flags);
1389
1390	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1391
1392	ieee80211_suspend_all(ic);
1393	/*
1394	 * NB: don't worry about putting the chip in low power
1395	 * mode; pci will power off our socket on suspend and
1396	 * CardBus detaches the device.
1397	 */
1398
1399	/*
1400	 * XXX ensure none of the taskqueues are running
1401	 * XXX ensure sc_invalid is 1
1402	 * XXX ensure the calibration callout is disabled
1403	 */
1404
1405	/* Disable the PCIe PHY, complete with workarounds */
1406	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1407}
1408
1409/*
1410 * Reset the key cache since some parts do not reset the
1411 * contents on resume.  First we clear all entries, then
1412 * re-load keys that the 802.11 layer assumes are setup
1413 * in h/w.
1414 */
1415static void
1416ath_reset_keycache(struct ath_softc *sc)
1417{
1418	struct ifnet *ifp = sc->sc_ifp;
1419	struct ieee80211com *ic = ifp->if_l2com;
1420	struct ath_hal *ah = sc->sc_ah;
1421	int i;
1422
1423	for (i = 0; i < sc->sc_keymax; i++)
1424		ath_hal_keyreset(ah, i);
1425	ieee80211_crypto_reload_keys(ic);
1426}
1427
1428void
1429ath_resume(struct ath_softc *sc)
1430{
1431	struct ifnet *ifp = sc->sc_ifp;
1432	struct ieee80211com *ic = ifp->if_l2com;
1433	struct ath_hal *ah = sc->sc_ah;
1434	HAL_STATUS status;
1435
1436	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1437		__func__, ifp->if_flags);
1438
1439	/* Re-enable PCIe, re-enable the PCIe bus */
1440	ath_hal_enablepcie(ah, 0, 0);
1441
1442	/*
1443	 * Must reset the chip before we reload the
1444	 * keycache as we were powered down on suspend.
1445	 */
1446	ath_hal_reset(ah, sc->sc_opmode,
1447	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1448	    AH_FALSE, &status);
1449	ath_reset_keycache(sc);
1450
1451	/* Let DFS at it in case it's a DFS channel */
1452	ath_dfs_radar_enable(sc, ic->ic_curchan);
1453
1454	/* Restore the LED configuration */
1455	ath_led_config(sc);
1456	ath_hal_setledstate(ah, HAL_LED_INIT);
1457
1458	if (sc->sc_resume_up)
1459		ieee80211_resume_all(ic);
1460
1461	/* XXX beacons ? */
1462}
1463
1464void
1465ath_shutdown(struct ath_softc *sc)
1466{
1467	struct ifnet *ifp = sc->sc_ifp;
1468
1469	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1470		__func__, ifp->if_flags);
1471
1472	ath_stop(ifp);
1473	/* NB: no point powering down chip as we're about to reboot */
1474}
1475
1476/*
1477 * Interrupt handler.  Most of the actual processing is deferred.
1478 */
1479void
1480ath_intr(void *arg)
1481{
1482	struct ath_softc *sc = arg;
1483	struct ifnet *ifp = sc->sc_ifp;
1484	struct ath_hal *ah = sc->sc_ah;
1485	HAL_INT status = 0;
1486	uint32_t txqs;
1487
1488	/*
1489	 * If we're inside a reset path, just print a warning and
1490	 * clear the ISR. The reset routine will finish it for us.
1491	 */
1492	ATH_PCU_LOCK(sc);
1493	if (sc->sc_inreset_cnt) {
1494		HAL_INT status;
1495		ath_hal_getisr(ah, &status);	/* clear ISR */
1496		ath_hal_intrset(ah, 0);		/* disable further intr's */
1497		DPRINTF(sc, ATH_DEBUG_ANY,
1498		    "%s: in reset, ignoring: status=0x%x\n",
1499		    __func__, status);
1500		ATH_PCU_UNLOCK(sc);
1501		return;
1502	}
1503
1504	if (sc->sc_invalid) {
1505		/*
1506		 * The hardware is not ready/present, don't touch anything.
1507		 * Note this can happen early on if the IRQ is shared.
1508		 */
1509		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1510		ATH_PCU_UNLOCK(sc);
1511		return;
1512	}
1513	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1514		ATH_PCU_UNLOCK(sc);
1515		return;
1516	}
1517
1518	if ((ifp->if_flags & IFF_UP) == 0 ||
1519	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1520		HAL_INT status;
1521
1522		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1523			__func__, ifp->if_flags);
1524		ath_hal_getisr(ah, &status);	/* clear ISR */
1525		ath_hal_intrset(ah, 0);		/* disable further intr's */
1526		ATH_PCU_UNLOCK(sc);
1527		return;
1528	}
1529
1530	/*
1531	 * Figure out the reason(s) for the interrupt.  Note
1532	 * that the hal returns a pseudo-ISR that may include
1533	 * bits we haven't explicitly enabled so we mask the
1534	 * value to insure we only process bits we requested.
1535	 */
1536	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1537	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1538	CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status);
1539#ifdef	ATH_KTR_INTR_DEBUG
1540	CTR5(ATH_KTR_INTR,
1541	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1542	    ah->ah_intrstate[0],
1543	    ah->ah_intrstate[1],
1544	    ah->ah_intrstate[2],
1545	    ah->ah_intrstate[3],
1546	    ah->ah_intrstate[6]);
1547#endif
1548
1549	/* Squirrel away SYNC interrupt debugging */
1550	if (ah->ah_syncstate != 0) {
1551		int i;
1552		for (i = 0; i < 32; i++)
1553			if (ah->ah_syncstate & (i << i))
1554				sc->sc_intr_stats.sync_intr[i]++;
1555	}
1556
1557	status &= sc->sc_imask;			/* discard unasked for bits */
1558
1559	/* Short-circuit un-handled interrupts */
1560	if (status == 0x0) {
1561		ATH_PCU_UNLOCK(sc);
1562		return;
1563	}
1564
1565	/*
1566	 * Take a note that we're inside the interrupt handler, so
1567	 * the reset routines know to wait.
1568	 */
1569	sc->sc_intr_cnt++;
1570	ATH_PCU_UNLOCK(sc);
1571
1572	/*
1573	 * Handle the interrupt. We won't run concurrent with the reset
1574	 * or channel change routines as they'll wait for sc_intr_cnt
1575	 * to be 0 before continuing.
1576	 */
1577	if (status & HAL_INT_FATAL) {
1578		sc->sc_stats.ast_hardware++;
1579		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1580		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1581	} else {
1582		if (status & HAL_INT_SWBA) {
1583			/*
1584			 * Software beacon alert--time to send a beacon.
1585			 * Handle beacon transmission directly; deferring
1586			 * this is too slow to meet timing constraints
1587			 * under load.
1588			 */
1589#ifdef IEEE80211_SUPPORT_TDMA
1590			if (sc->sc_tdma) {
1591				if (sc->sc_tdmaswba == 0) {
1592					struct ieee80211com *ic = ifp->if_l2com;
1593					struct ieee80211vap *vap =
1594					    TAILQ_FIRST(&ic->ic_vaps);
1595					ath_tdma_beacon_send(sc, vap);
1596					sc->sc_tdmaswba =
1597					    vap->iv_tdma->tdma_bintval;
1598				} else
1599					sc->sc_tdmaswba--;
1600			} else
1601#endif
1602			{
1603				ath_beacon_proc(sc, 0);
1604#ifdef IEEE80211_SUPPORT_SUPERG
1605				/*
1606				 * Schedule the rx taskq in case there's no
1607				 * traffic so any frames held on the staging
1608				 * queue are aged and potentially flushed.
1609				 */
1610				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1611#endif
1612			}
1613		}
1614		if (status & HAL_INT_RXEOL) {
1615			int imask;
1616			CTR0(ATH_KTR_ERR, "ath_intr: RXEOL");
1617			ATH_PCU_LOCK(sc);
1618			/*
1619			 * NB: the hardware should re-read the link when
1620			 *     RXE bit is written, but it doesn't work at
1621			 *     least on older hardware revs.
1622			 */
1623			sc->sc_stats.ast_rxeol++;
1624			/*
1625			 * Disable RXEOL/RXORN - prevent an interrupt
1626			 * storm until the PCU logic can be reset.
1627			 * In case the interface is reset some other
1628			 * way before "sc_kickpcu" is called, don't
1629			 * modify sc_imask - that way if it is reset
1630			 * by a call to ath_reset() somehow, the
1631			 * interrupt mask will be correctly reprogrammed.
1632			 */
1633			imask = sc->sc_imask;
1634			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1635			ath_hal_intrset(ah, imask);
1636			/*
1637			 * Only blank sc_rxlink if we've not yet kicked
1638			 * the PCU.
1639			 *
1640			 * This isn't entirely correct - the correct solution
1641			 * would be to have a PCU lock and engage that for
1642			 * the duration of the PCU fiddling; which would include
1643			 * running the RX process. Otherwise we could end up
1644			 * messing up the RX descriptor chain and making the
1645			 * RX desc list much shorter.
1646			 */
1647			if (! sc->sc_kickpcu)
1648				sc->sc_rxlink = NULL;
1649			sc->sc_kickpcu = 1;
1650			/*
1651			 * Enqueue an RX proc, to handled whatever
1652			 * is in the RX queue.
1653			 * This will then kick the PCU.
1654			 */
1655			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1656			ATH_PCU_UNLOCK(sc);
1657		}
1658		if (status & HAL_INT_TXURN) {
1659			sc->sc_stats.ast_txurn++;
1660			/* bump tx trigger level */
1661			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1662		}
1663		/*
1664		 * Handle both the legacy and RX EDMA interrupt bits.
1665		 * Note that HAL_INT_RXLP is also HAL_INT_RXDESC.
1666		 */
1667		if (status & (HAL_INT_RX | HAL_INT_RXHP | HAL_INT_RXLP)) {
1668			sc->sc_stats.ast_rx_intr++;
1669			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1670		}
1671		if (status & HAL_INT_TX) {
1672			sc->sc_stats.ast_tx_intr++;
1673			/*
1674			 * Grab all the currently set bits in the HAL txq bitmap
1675			 * and blank them. This is the only place we should be
1676			 * doing this.
1677			 */
1678			if (! sc->sc_isedma) {
1679				ATH_PCU_LOCK(sc);
1680				txqs = 0xffffffff;
1681				ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1682				sc->sc_txq_active |= txqs;
1683				ATH_PCU_UNLOCK(sc);
1684			}
1685			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1686		}
1687		if (status & HAL_INT_BMISS) {
1688			sc->sc_stats.ast_bmiss++;
1689			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1690		}
1691		if (status & HAL_INT_GTT)
1692			sc->sc_stats.ast_tx_timeout++;
1693		if (status & HAL_INT_CST)
1694			sc->sc_stats.ast_tx_cst++;
1695		if (status & HAL_INT_MIB) {
1696			sc->sc_stats.ast_mib++;
1697			ATH_PCU_LOCK(sc);
1698			/*
1699			 * Disable interrupts until we service the MIB
1700			 * interrupt; otherwise it will continue to fire.
1701			 */
1702			ath_hal_intrset(ah, 0);
1703			/*
1704			 * Let the hal handle the event.  We assume it will
1705			 * clear whatever condition caused the interrupt.
1706			 */
1707			ath_hal_mibevent(ah, &sc->sc_halstats);
1708			/*
1709			 * Don't reset the interrupt if we've just
1710			 * kicked the PCU, or we may get a nested
1711			 * RXEOL before the rxproc has had a chance
1712			 * to run.
1713			 */
1714			if (sc->sc_kickpcu == 0)
1715				ath_hal_intrset(ah, sc->sc_imask);
1716			ATH_PCU_UNLOCK(sc);
1717		}
1718		if (status & HAL_INT_RXORN) {
1719			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1720			CTR0(ATH_KTR_ERR, "ath_intr: RXORN");
1721			sc->sc_stats.ast_rxorn++;
1722		}
1723	}
1724	ATH_PCU_LOCK(sc);
1725	sc->sc_intr_cnt--;
1726	ATH_PCU_UNLOCK(sc);
1727}
1728
1729static void
1730ath_fatal_proc(void *arg, int pending)
1731{
1732	struct ath_softc *sc = arg;
1733	struct ifnet *ifp = sc->sc_ifp;
1734	u_int32_t *state;
1735	u_int32_t len;
1736	void *sp;
1737
1738	if_printf(ifp, "hardware error; resetting\n");
1739	/*
1740	 * Fatal errors are unrecoverable.  Typically these
1741	 * are caused by DMA errors.  Collect h/w state from
1742	 * the hal so we can diagnose what's going on.
1743	 */
1744	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1745		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1746		state = sp;
1747		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1748		    state[0], state[1] , state[2], state[3],
1749		    state[4], state[5]);
1750	}
1751	ath_reset(ifp, ATH_RESET_NOLOSS);
1752}
1753
1754static void
1755ath_bmiss_vap(struct ieee80211vap *vap)
1756{
1757	/*
1758	 * Workaround phantom bmiss interrupts by sanity-checking
1759	 * the time of our last rx'd frame.  If it is within the
1760	 * beacon miss interval then ignore the interrupt.  If it's
1761	 * truly a bmiss we'll get another interrupt soon and that'll
1762	 * be dispatched up for processing.  Note this applies only
1763	 * for h/w beacon miss events.
1764	 */
1765	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1766		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1767		struct ath_softc *sc = ifp->if_softc;
1768		u_int64_t lastrx = sc->sc_lastrx;
1769		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1770		/* XXX should take a locked ref to iv_bss */
1771		u_int bmisstimeout =
1772			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1773
1774		DPRINTF(sc, ATH_DEBUG_BEACON,
1775		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1776		    __func__, (unsigned long long) tsf,
1777		    (unsigned long long)(tsf - lastrx),
1778		    (unsigned long long) lastrx, bmisstimeout);
1779
1780		if (tsf - lastrx <= bmisstimeout) {
1781			sc->sc_stats.ast_bmiss_phantom++;
1782			return;
1783		}
1784	}
1785	ATH_VAP(vap)->av_bmiss(vap);
1786}
1787
1788static int
1789ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1790{
1791	uint32_t rsize;
1792	void *sp;
1793
1794	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1795		return 0;
1796	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1797	*hangs = *(uint32_t *)sp;
1798	return 1;
1799}
1800
1801static void
1802ath_bmiss_proc(void *arg, int pending)
1803{
1804	struct ath_softc *sc = arg;
1805	struct ifnet *ifp = sc->sc_ifp;
1806	uint32_t hangs;
1807
1808	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1809
1810	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1811		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1812		ath_reset(ifp, ATH_RESET_NOLOSS);
1813	} else
1814		ieee80211_beacon_miss(ifp->if_l2com);
1815}
1816
1817/*
1818 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1819 * calcs together with WME.  If necessary disable the crypto
1820 * hardware and mark the 802.11 state so keys will be setup
1821 * with the MIC work done in software.
1822 */
1823static void
1824ath_settkipmic(struct ath_softc *sc)
1825{
1826	struct ifnet *ifp = sc->sc_ifp;
1827	struct ieee80211com *ic = ifp->if_l2com;
1828
1829	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1830		if (ic->ic_flags & IEEE80211_F_WME) {
1831			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1832			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1833		} else {
1834			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1835			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1836		}
1837	}
1838}
1839
1840static void
1841ath_init(void *arg)
1842{
1843	struct ath_softc *sc = (struct ath_softc *) arg;
1844	struct ifnet *ifp = sc->sc_ifp;
1845	struct ieee80211com *ic = ifp->if_l2com;
1846	struct ath_hal *ah = sc->sc_ah;
1847	HAL_STATUS status;
1848
1849	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1850		__func__, ifp->if_flags);
1851
1852	ATH_LOCK(sc);
1853	/*
1854	 * Stop anything previously setup.  This is safe
1855	 * whether this is the first time through or not.
1856	 */
1857	ath_stop_locked(ifp);
1858
1859	/*
1860	 * The basic interface to setting the hardware in a good
1861	 * state is ``reset''.  On return the hardware is known to
1862	 * be powered up and with interrupts disabled.  This must
1863	 * be followed by initialization of the appropriate bits
1864	 * and then setup of the interrupt mask.
1865	 */
1866	ath_settkipmic(sc);
1867	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1868		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1869			status);
1870		ATH_UNLOCK(sc);
1871		return;
1872	}
1873	ath_chan_change(sc, ic->ic_curchan);
1874
1875	/* Let DFS at it in case it's a DFS channel */
1876	ath_dfs_radar_enable(sc, ic->ic_curchan);
1877
1878	/*
1879	 * Likewise this is set during reset so update
1880	 * state cached in the driver.
1881	 */
1882	sc->sc_diversity = ath_hal_getdiversity(ah);
1883	sc->sc_lastlongcal = 0;
1884	sc->sc_resetcal = 1;
1885	sc->sc_lastcalreset = 0;
1886	sc->sc_lastani = 0;
1887	sc->sc_lastshortcal = 0;
1888	sc->sc_doresetcal = AH_FALSE;
1889	/*
1890	 * Beacon timers were cleared here; give ath_newstate()
1891	 * a hint that the beacon timers should be poked when
1892	 * things transition to the RUN state.
1893	 */
1894	sc->sc_beacons = 0;
1895
1896	/*
1897	 * Setup the hardware after reset: the key cache
1898	 * is filled as needed and the receive engine is
1899	 * set going.  Frame transmit is handled entirely
1900	 * in the frame output path; there's nothing to do
1901	 * here except setup the interrupt mask.
1902	 */
1903	if (ath_startrecv(sc) != 0) {
1904		if_printf(ifp, "unable to start recv logic\n");
1905		ATH_UNLOCK(sc);
1906		return;
1907	}
1908
1909	/*
1910	 * Enable interrupts.
1911	 */
1912	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1913		  | HAL_INT_RXEOL | HAL_INT_RXORN
1914		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1915
1916	/*
1917	 * Enable RX EDMA bits.  Note these overlap with
1918	 * HAL_INT_RX and HAL_INT_RXDESC respectively.
1919	 */
1920	if (sc->sc_isedma)
1921		sc->sc_imask |= (HAL_INT_RXHP | HAL_INT_RXLP);
1922
1923	/*
1924	 * Enable MIB interrupts when there are hardware phy counters.
1925	 * Note we only do this (at the moment) for station mode.
1926	 */
1927	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1928		sc->sc_imask |= HAL_INT_MIB;
1929
1930	/* Enable global TX timeout and carrier sense timeout if available */
1931	if (ath_hal_gtxto_supported(ah))
1932		sc->sc_imask |= HAL_INT_GTT;
1933
1934	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1935		__func__, sc->sc_imask);
1936
1937	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1938	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1939	ath_hal_intrset(ah, sc->sc_imask);
1940
1941	ATH_UNLOCK(sc);
1942
1943#ifdef ATH_TX99_DIAG
1944	if (sc->sc_tx99 != NULL)
1945		sc->sc_tx99->start(sc->sc_tx99);
1946	else
1947#endif
1948	ieee80211_start_all(ic);		/* start all vap's */
1949}
1950
1951static void
1952ath_stop_locked(struct ifnet *ifp)
1953{
1954	struct ath_softc *sc = ifp->if_softc;
1955	struct ath_hal *ah = sc->sc_ah;
1956
1957	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1958		__func__, sc->sc_invalid, ifp->if_flags);
1959
1960	ATH_LOCK_ASSERT(sc);
1961	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1962		/*
1963		 * Shutdown the hardware and driver:
1964		 *    reset 802.11 state machine
1965		 *    turn off timers
1966		 *    disable interrupts
1967		 *    turn off the radio
1968		 *    clear transmit machinery
1969		 *    clear receive machinery
1970		 *    drain and release tx queues
1971		 *    reclaim beacon resources
1972		 *    power down hardware
1973		 *
1974		 * Note that some of this work is not possible if the
1975		 * hardware is gone (invalid).
1976		 */
1977#ifdef ATH_TX99_DIAG
1978		if (sc->sc_tx99 != NULL)
1979			sc->sc_tx99->stop(sc->sc_tx99);
1980#endif
1981		callout_stop(&sc->sc_wd_ch);
1982		sc->sc_wd_timer = 0;
1983		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1984		if (!sc->sc_invalid) {
1985			if (sc->sc_softled) {
1986				callout_stop(&sc->sc_ledtimer);
1987				ath_hal_gpioset(ah, sc->sc_ledpin,
1988					!sc->sc_ledon);
1989				sc->sc_blinking = 0;
1990			}
1991			ath_hal_intrset(ah, 0);
1992		}
1993		ath_draintxq(sc, ATH_RESET_DEFAULT);
1994		if (!sc->sc_invalid) {
1995			ath_stoprecv(sc, 1);
1996			ath_hal_phydisable(ah);
1997		} else
1998			sc->sc_rxlink = NULL;
1999		ath_beacon_free(sc);	/* XXX not needed */
2000	}
2001}
2002
2003#define	MAX_TXRX_ITERATIONS	1000
2004static void
2005ath_txrx_stop_locked(struct ath_softc *sc)
2006{
2007	int i = MAX_TXRX_ITERATIONS;
2008
2009	ATH_UNLOCK_ASSERT(sc);
2010	ATH_PCU_LOCK_ASSERT(sc);
2011
2012	/*
2013	 * Sleep until all the pending operations have completed.
2014	 *
2015	 * The caller must ensure that reset has been incremented
2016	 * or the pending operations may continue being queued.
2017	 */
2018	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
2019	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
2020		if (i <= 0)
2021			break;
2022		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
2023		i--;
2024	}
2025
2026	if (i <= 0)
2027		device_printf(sc->sc_dev,
2028		    "%s: didn't finish after %d iterations\n",
2029		    __func__, MAX_TXRX_ITERATIONS);
2030}
2031#undef	MAX_TXRX_ITERATIONS
2032
2033#if 0
2034static void
2035ath_txrx_stop(struct ath_softc *sc)
2036{
2037	ATH_UNLOCK_ASSERT(sc);
2038	ATH_PCU_UNLOCK_ASSERT(sc);
2039
2040	ATH_PCU_LOCK(sc);
2041	ath_txrx_stop_locked(sc);
2042	ATH_PCU_UNLOCK(sc);
2043}
2044#endif
2045
2046static void
2047ath_txrx_start(struct ath_softc *sc)
2048{
2049
2050	taskqueue_unblock(sc->sc_tq);
2051}
2052
2053/*
2054 * Grab the reset lock, and wait around until noone else
2055 * is trying to do anything with it.
2056 *
2057 * This is totally horrible but we can't hold this lock for
2058 * long enough to do TX/RX or we end up with net80211/ip stack
2059 * LORs and eventual deadlock.
2060 *
2061 * "dowait" signals whether to spin, waiting for the reset
2062 * lock count to reach 0. This should (for now) only be used
2063 * during the reset path, as the rest of the code may not
2064 * be locking-reentrant enough to behave correctly.
2065 *
2066 * Another, cleaner way should be found to serialise all of
2067 * these operations.
2068 */
2069#define	MAX_RESET_ITERATIONS	10
2070static int
2071ath_reset_grablock(struct ath_softc *sc, int dowait)
2072{
2073	int w = 0;
2074	int i = MAX_RESET_ITERATIONS;
2075
2076	ATH_PCU_LOCK_ASSERT(sc);
2077	do {
2078		if (sc->sc_inreset_cnt == 0) {
2079			w = 1;
2080			break;
2081		}
2082		if (dowait == 0) {
2083			w = 0;
2084			break;
2085		}
2086		ATH_PCU_UNLOCK(sc);
2087		pause("ath_reset_grablock", 1);
2088		i--;
2089		ATH_PCU_LOCK(sc);
2090	} while (i > 0);
2091
2092	/*
2093	 * We always increment the refcounter, regardless
2094	 * of whether we succeeded to get it in an exclusive
2095	 * way.
2096	 */
2097	sc->sc_inreset_cnt++;
2098
2099	if (i <= 0)
2100		device_printf(sc->sc_dev,
2101		    "%s: didn't finish after %d iterations\n",
2102		    __func__, MAX_RESET_ITERATIONS);
2103
2104	if (w == 0)
2105		device_printf(sc->sc_dev,
2106		    "%s: warning, recursive reset path!\n",
2107		    __func__);
2108
2109	return w;
2110}
2111#undef MAX_RESET_ITERATIONS
2112
2113/*
2114 * XXX TODO: write ath_reset_releaselock
2115 */
2116
2117static void
2118ath_stop(struct ifnet *ifp)
2119{
2120	struct ath_softc *sc = ifp->if_softc;
2121
2122	ATH_LOCK(sc);
2123	ath_stop_locked(ifp);
2124	ATH_UNLOCK(sc);
2125}
2126
2127/*
2128 * Reset the hardware w/o losing operational state.  This is
2129 * basically a more efficient way of doing ath_stop, ath_init,
2130 * followed by state transitions to the current 802.11
2131 * operational state.  Used to recover from various errors and
2132 * to reset or reload hardware state.
2133 */
2134int
2135ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2136{
2137	struct ath_softc *sc = ifp->if_softc;
2138	struct ieee80211com *ic = ifp->if_l2com;
2139	struct ath_hal *ah = sc->sc_ah;
2140	HAL_STATUS status;
2141	int i;
2142
2143	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2144
2145	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2146	ATH_PCU_UNLOCK_ASSERT(sc);
2147	ATH_UNLOCK_ASSERT(sc);
2148
2149	/* Try to (stop any further TX/RX from occuring */
2150	taskqueue_block(sc->sc_tq);
2151
2152	ATH_PCU_LOCK(sc);
2153	ath_hal_intrset(ah, 0);		/* disable interrupts */
2154	ath_txrx_stop_locked(sc);	/* Ensure TX/RX is stopped */
2155	if (ath_reset_grablock(sc, 1) == 0) {
2156		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2157		    __func__);
2158	}
2159	ATH_PCU_UNLOCK(sc);
2160
2161	/*
2162	 * Should now wait for pending TX/RX to complete
2163	 * and block future ones from occuring. This needs to be
2164	 * done before the TX queue is drained.
2165	 */
2166	ath_draintxq(sc, reset_type);	/* stop xmit side */
2167
2168	/*
2169	 * Regardless of whether we're doing a no-loss flush or
2170	 * not, stop the PCU and handle what's in the RX queue.
2171	 * That way frames aren't dropped which shouldn't be.
2172	 */
2173	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2174	ath_rx_flush(sc);
2175
2176	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2177	/* NB: indicate channel change so we do a full reset */
2178	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2179		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2180			__func__, status);
2181	sc->sc_diversity = ath_hal_getdiversity(ah);
2182
2183	/* Let DFS at it in case it's a DFS channel */
2184	ath_dfs_radar_enable(sc, ic->ic_curchan);
2185
2186	if (ath_startrecv(sc) != 0)	/* restart recv */
2187		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2188	/*
2189	 * We may be doing a reset in response to an ioctl
2190	 * that changes the channel so update any state that
2191	 * might change as a result.
2192	 */
2193	ath_chan_change(sc, ic->ic_curchan);
2194	if (sc->sc_beacons) {		/* restart beacons */
2195#ifdef IEEE80211_SUPPORT_TDMA
2196		if (sc->sc_tdma)
2197			ath_tdma_config(sc, NULL);
2198		else
2199#endif
2200			ath_beacon_config(sc, NULL);
2201	}
2202
2203	/*
2204	 * Release the reset lock and re-enable interrupts here.
2205	 * If an interrupt was being processed in ath_intr(),
2206	 * it would disable interrupts at this point. So we have
2207	 * to atomically enable interrupts and decrement the
2208	 * reset counter - this way ath_intr() doesn't end up
2209	 * disabling interrupts without a corresponding enable
2210	 * in the rest or channel change path.
2211	 */
2212	ATH_PCU_LOCK(sc);
2213	sc->sc_inreset_cnt--;
2214	/* XXX only do this if sc_inreset_cnt == 0? */
2215	ath_hal_intrset(ah, sc->sc_imask);
2216	ATH_PCU_UNLOCK(sc);
2217
2218	/*
2219	 * TX and RX can be started here. If it were started with
2220	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2221	 * Thus if this is a nested call through the reset or
2222	 * channel change code, TX completion will occur but
2223	 * RX completion and ath_start / ath_tx_start will not
2224	 * run.
2225	 */
2226
2227	/* Restart TX/RX as needed */
2228	ath_txrx_start(sc);
2229
2230	/* XXX Restart TX completion and pending TX */
2231	if (reset_type == ATH_RESET_NOLOSS) {
2232		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2233			if (ATH_TXQ_SETUP(sc, i)) {
2234				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2235				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2236				ath_txq_sched(sc, &sc->sc_txq[i]);
2237				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2238			}
2239		}
2240	}
2241
2242	/*
2243	 * This may have been set during an ath_start() call which
2244	 * set this once it detected a concurrent TX was going on.
2245	 * So, clear it.
2246	 */
2247	IF_LOCK(&ifp->if_snd);
2248	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2249	IF_UNLOCK(&ifp->if_snd);
2250
2251	/* Handle any frames in the TX queue */
2252	/*
2253	 * XXX should this be done by the caller, rather than
2254	 * ath_reset() ?
2255	 */
2256	ath_start(ifp);			/* restart xmit */
2257	return 0;
2258}
2259
2260static int
2261ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2262{
2263	struct ieee80211com *ic = vap->iv_ic;
2264	struct ifnet *ifp = ic->ic_ifp;
2265	struct ath_softc *sc = ifp->if_softc;
2266	struct ath_hal *ah = sc->sc_ah;
2267
2268	switch (cmd) {
2269	case IEEE80211_IOC_TXPOWER:
2270		/*
2271		 * If per-packet TPC is enabled, then we have nothing
2272		 * to do; otherwise we need to force the global limit.
2273		 * All this can happen directly; no need to reset.
2274		 */
2275		if (!ath_hal_gettpc(ah))
2276			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2277		return 0;
2278	}
2279	/* XXX? Full or NOLOSS? */
2280	return ath_reset(ifp, ATH_RESET_FULL);
2281}
2282
2283struct ath_buf *
2284_ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2285{
2286	struct ath_buf *bf;
2287
2288	ATH_TXBUF_LOCK_ASSERT(sc);
2289
2290	if (btype == ATH_BUFTYPE_MGMT)
2291		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2292	else
2293		bf = TAILQ_FIRST(&sc->sc_txbuf);
2294
2295	if (bf == NULL) {
2296		sc->sc_stats.ast_tx_getnobuf++;
2297	} else {
2298		if (bf->bf_flags & ATH_BUF_BUSY) {
2299			sc->sc_stats.ast_tx_getbusybuf++;
2300			bf = NULL;
2301		}
2302	}
2303
2304	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2305		if (btype == ATH_BUFTYPE_MGMT)
2306			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2307		else {
2308			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2309			sc->sc_txbuf_cnt--;
2310
2311			/*
2312			 * This shuldn't happen; however just to be
2313			 * safe print a warning and fudge the txbuf
2314			 * count.
2315			 */
2316			if (sc->sc_txbuf_cnt < 0) {
2317				device_printf(sc->sc_dev,
2318				    "%s: sc_txbuf_cnt < 0?\n",
2319				    __func__);
2320				sc->sc_txbuf_cnt = 0;
2321			}
2322		}
2323	} else
2324		bf = NULL;
2325
2326	if (bf == NULL) {
2327		/* XXX should check which list, mgmt or otherwise */
2328		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2329		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2330			"out of xmit buffers" : "xmit buffer busy");
2331		return NULL;
2332	}
2333
2334	/* XXX TODO: should do this at buffer list initialisation */
2335	/* XXX (then, ensure the buffer has the right flag set) */
2336	if (btype == ATH_BUFTYPE_MGMT)
2337		bf->bf_flags |= ATH_BUF_MGMT;
2338	else
2339		bf->bf_flags &= (~ATH_BUF_MGMT);
2340
2341	/* Valid bf here; clear some basic fields */
2342	bf->bf_next = NULL;	/* XXX just to be sure */
2343	bf->bf_last = NULL;	/* XXX again, just to be sure */
2344	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2345	bzero(&bf->bf_state, sizeof(bf->bf_state));
2346
2347	/*
2348	 * Track the descriptor ID only if doing EDMA
2349	 */
2350	if (sc->sc_isedma) {
2351		bf->bf_descid = sc->sc_txbuf_descid;
2352		sc->sc_txbuf_descid++;
2353	}
2354
2355	return bf;
2356}
2357
2358/*
2359 * When retrying a software frame, buffers marked ATH_BUF_BUSY
2360 * can't be thrown back on the queue as they could still be
2361 * in use by the hardware.
2362 *
2363 * This duplicates the buffer, or returns NULL.
2364 *
2365 * The descriptor is also copied but the link pointers and
2366 * the DMA segments aren't copied; this frame should thus
2367 * be again passed through the descriptor setup/chain routines
2368 * so the link is correct.
2369 *
2370 * The caller must free the buffer using ath_freebuf().
2371 *
2372 * XXX TODO: this call shouldn't fail as it'll cause packet loss
2373 * XXX in the TX pathway when retries are needed.
2374 * XXX Figure out how to keep some buffers free, or factor the
2375 * XXX number of busy buffers into the xmit path (ath_start())
2376 * XXX so we don't over-commit.
2377 */
2378struct ath_buf *
2379ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
2380{
2381	struct ath_buf *tbf;
2382
2383	tbf = ath_getbuf(sc,
2384	    (bf->bf_flags & ATH_BUF_MGMT) ?
2385	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2386	if (tbf == NULL)
2387		return NULL;	/* XXX failure? Why? */
2388
2389	/* Copy basics */
2390	tbf->bf_next = NULL;
2391	tbf->bf_nseg = bf->bf_nseg;
2392	tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
2393	tbf->bf_status = bf->bf_status;
2394	tbf->bf_m = bf->bf_m;
2395	tbf->bf_node = bf->bf_node;
2396	/* will be setup by the chain/setup function */
2397	tbf->bf_lastds = NULL;
2398	/* for now, last == self */
2399	tbf->bf_last = tbf;
2400	tbf->bf_comp = bf->bf_comp;
2401
2402	/* NOTE: DMA segments will be setup by the setup/chain functions */
2403
2404	/* The caller has to re-init the descriptor + links */
2405
2406	/* Copy state */
2407	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2408
2409	return tbf;
2410}
2411
2412struct ath_buf *
2413ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
2414{
2415	struct ath_buf *bf;
2416
2417	ATH_TXBUF_LOCK(sc);
2418	bf = _ath_getbuf_locked(sc, btype);
2419	/*
2420	 * If a mgmt buffer was requested but we're out of those,
2421	 * try requesting a normal one.
2422	 */
2423	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
2424		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
2425	ATH_TXBUF_UNLOCK(sc);
2426	if (bf == NULL) {
2427		struct ifnet *ifp = sc->sc_ifp;
2428
2429		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2430		sc->sc_stats.ast_tx_qstop++;
2431		IF_LOCK(&ifp->if_snd);
2432		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2433		IF_UNLOCK(&ifp->if_snd);
2434	}
2435	return bf;
2436}
2437
2438void
2439ath_start(struct ifnet *ifp)
2440{
2441	struct ath_softc *sc = ifp->if_softc;
2442	struct ieee80211_node *ni;
2443	struct ath_buf *bf;
2444	struct mbuf *m, *next;
2445	ath_bufhead frags;
2446
2447	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2448		return;
2449
2450	/* XXX is it ok to hold the ATH_LOCK here? */
2451	ATH_PCU_LOCK(sc);
2452	if (sc->sc_inreset_cnt > 0) {
2453		device_printf(sc->sc_dev,
2454		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2455		ATH_PCU_UNLOCK(sc);
2456		IF_LOCK(&ifp->if_snd);
2457		sc->sc_stats.ast_tx_qstop++;
2458		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2459		IF_UNLOCK(&ifp->if_snd);
2460		return;
2461	}
2462	sc->sc_txstart_cnt++;
2463	ATH_PCU_UNLOCK(sc);
2464
2465	for (;;) {
2466		ATH_TXBUF_LOCK(sc);
2467		if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) {
2468			/* XXX increment counter? */
2469			ATH_TXBUF_UNLOCK(sc);
2470			IF_LOCK(&ifp->if_snd);
2471			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2472			IF_UNLOCK(&ifp->if_snd);
2473			break;
2474		}
2475		ATH_TXBUF_UNLOCK(sc);
2476
2477		/*
2478		 * Grab a TX buffer and associated resources.
2479		 */
2480		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
2481		if (bf == NULL)
2482			break;
2483
2484		IFQ_DEQUEUE(&ifp->if_snd, m);
2485		if (m == NULL) {
2486			ATH_TXBUF_LOCK(sc);
2487			ath_returnbuf_head(sc, bf);
2488			ATH_TXBUF_UNLOCK(sc);
2489			break;
2490		}
2491		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2492		/*
2493		 * Check for fragmentation.  If this frame
2494		 * has been broken up verify we have enough
2495		 * buffers to send all the fragments so all
2496		 * go out or none...
2497		 */
2498		TAILQ_INIT(&frags);
2499		if ((m->m_flags & M_FRAG) &&
2500		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2501			DPRINTF(sc, ATH_DEBUG_XMIT,
2502			    "%s: out of txfrag buffers\n", __func__);
2503			sc->sc_stats.ast_tx_nofrag++;
2504			ifp->if_oerrors++;
2505			ath_freetx(m);
2506			goto bad;
2507		}
2508		ifp->if_opackets++;
2509	nextfrag:
2510		/*
2511		 * Pass the frame to the h/w for transmission.
2512		 * Fragmented frames have each frag chained together
2513		 * with m_nextpkt.  We know there are sufficient ath_buf's
2514		 * to send all the frags because of work done by
2515		 * ath_txfrag_setup.  We leave m_nextpkt set while
2516		 * calling ath_tx_start so it can use it to extend the
2517		 * the tx duration to cover the subsequent frag and
2518		 * so it can reclaim all the mbufs in case of an error;
2519		 * ath_tx_start clears m_nextpkt once it commits to
2520		 * handing the frame to the hardware.
2521		 */
2522		next = m->m_nextpkt;
2523		if (ath_tx_start(sc, ni, bf, m)) {
2524	bad:
2525			ifp->if_oerrors++;
2526	reclaim:
2527			bf->bf_m = NULL;
2528			bf->bf_node = NULL;
2529			ATH_TXBUF_LOCK(sc);
2530			ath_returnbuf_head(sc, bf);
2531			ath_txfrag_cleanup(sc, &frags, ni);
2532			ATH_TXBUF_UNLOCK(sc);
2533			if (ni != NULL)
2534				ieee80211_free_node(ni);
2535			continue;
2536		}
2537		if (next != NULL) {
2538			/*
2539			 * Beware of state changing between frags.
2540			 * XXX check sta power-save state?
2541			 */
2542			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2543				DPRINTF(sc, ATH_DEBUG_XMIT,
2544				    "%s: flush fragmented packet, state %s\n",
2545				    __func__,
2546				    ieee80211_state_name[ni->ni_vap->iv_state]);
2547				ath_freetx(next);
2548				goto reclaim;
2549			}
2550			m = next;
2551			bf = TAILQ_FIRST(&frags);
2552			KASSERT(bf != NULL, ("no buf for txfrag"));
2553			TAILQ_REMOVE(&frags, bf, bf_list);
2554			goto nextfrag;
2555		}
2556
2557		sc->sc_wd_timer = 5;
2558	}
2559
2560	ATH_PCU_LOCK(sc);
2561	sc->sc_txstart_cnt--;
2562	ATH_PCU_UNLOCK(sc);
2563}
2564
2565static int
2566ath_media_change(struct ifnet *ifp)
2567{
2568	int error = ieee80211_media_change(ifp);
2569	/* NB: only the fixed rate can change and that doesn't need a reset */
2570	return (error == ENETRESET ? 0 : error);
2571}
2572
2573/*
2574 * Block/unblock tx+rx processing while a key change is done.
2575 * We assume the caller serializes key management operations
2576 * so we only need to worry about synchronization with other
2577 * uses that originate in the driver.
2578 */
2579static void
2580ath_key_update_begin(struct ieee80211vap *vap)
2581{
2582	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2583	struct ath_softc *sc = ifp->if_softc;
2584
2585	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2586	taskqueue_block(sc->sc_tq);
2587	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2588}
2589
2590static void
2591ath_key_update_end(struct ieee80211vap *vap)
2592{
2593	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2594	struct ath_softc *sc = ifp->if_softc;
2595
2596	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2597	IF_UNLOCK(&ifp->if_snd);
2598	taskqueue_unblock(sc->sc_tq);
2599}
2600
2601static void
2602ath_update_promisc(struct ifnet *ifp)
2603{
2604	struct ath_softc *sc = ifp->if_softc;
2605	u_int32_t rfilt;
2606
2607	/* configure rx filter */
2608	rfilt = ath_calcrxfilter(sc);
2609	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2610
2611	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2612}
2613
2614static void
2615ath_update_mcast(struct ifnet *ifp)
2616{
2617	struct ath_softc *sc = ifp->if_softc;
2618	u_int32_t mfilt[2];
2619
2620	/* calculate and install multicast filter */
2621	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2622		struct ifmultiaddr *ifma;
2623		/*
2624		 * Merge multicast addresses to form the hardware filter.
2625		 */
2626		mfilt[0] = mfilt[1] = 0;
2627		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2628		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2629			caddr_t dl;
2630			u_int32_t val;
2631			u_int8_t pos;
2632
2633			/* calculate XOR of eight 6bit values */
2634			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2635			val = LE_READ_4(dl + 0);
2636			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2637			val = LE_READ_4(dl + 3);
2638			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2639			pos &= 0x3f;
2640			mfilt[pos / 32] |= (1 << (pos % 32));
2641		}
2642		if_maddr_runlock(ifp);
2643	} else
2644		mfilt[0] = mfilt[1] = ~0;
2645	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2646	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2647		__func__, mfilt[0], mfilt[1]);
2648}
2649
2650void
2651ath_mode_init(struct ath_softc *sc)
2652{
2653	struct ifnet *ifp = sc->sc_ifp;
2654	struct ath_hal *ah = sc->sc_ah;
2655	u_int32_t rfilt;
2656
2657	/* configure rx filter */
2658	rfilt = ath_calcrxfilter(sc);
2659	ath_hal_setrxfilter(ah, rfilt);
2660
2661	/* configure operational mode */
2662	ath_hal_setopmode(ah);
2663
2664	DPRINTF(sc, ATH_DEBUG_STATE | ATH_DEBUG_MODE,
2665	    "%s: ah=%p, ifp=%p, if_addr=%p\n",
2666	    __func__,
2667	    ah,
2668	    ifp,
2669	    (ifp == NULL) ? NULL : ifp->if_addr);
2670
2671	/* handle any link-level address change */
2672	ath_hal_setmac(ah, IF_LLADDR(ifp));
2673
2674	/* calculate and install multicast filter */
2675	ath_update_mcast(ifp);
2676}
2677
2678/*
2679 * Set the slot time based on the current setting.
2680 */
2681void
2682ath_setslottime(struct ath_softc *sc)
2683{
2684	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2685	struct ath_hal *ah = sc->sc_ah;
2686	u_int usec;
2687
2688	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2689		usec = 13;
2690	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2691		usec = 21;
2692	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2693		/* honor short/long slot time only in 11g */
2694		/* XXX shouldn't honor on pure g or turbo g channel */
2695		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2696			usec = HAL_SLOT_TIME_9;
2697		else
2698			usec = HAL_SLOT_TIME_20;
2699	} else
2700		usec = HAL_SLOT_TIME_9;
2701
2702	DPRINTF(sc, ATH_DEBUG_RESET,
2703	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2704	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2705	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2706
2707	ath_hal_setslottime(ah, usec);
2708	sc->sc_updateslot = OK;
2709}
2710
2711/*
2712 * Callback from the 802.11 layer to update the
2713 * slot time based on the current setting.
2714 */
2715static void
2716ath_updateslot(struct ifnet *ifp)
2717{
2718	struct ath_softc *sc = ifp->if_softc;
2719	struct ieee80211com *ic = ifp->if_l2com;
2720
2721	/*
2722	 * When not coordinating the BSS, change the hardware
2723	 * immediately.  For other operation we defer the change
2724	 * until beacon updates have propagated to the stations.
2725	 */
2726	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2727	    ic->ic_opmode == IEEE80211_M_MBSS)
2728		sc->sc_updateslot = UPDATE;
2729	else
2730		ath_setslottime(sc);
2731}
2732
2733/*
2734 * Append the contents of src to dst; both queues
2735 * are assumed to be locked.
2736 */
2737void
2738ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2739{
2740
2741	ATH_TXQ_LOCK_ASSERT(dst);
2742	ATH_TXQ_LOCK_ASSERT(src);
2743
2744	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2745	dst->axq_link = src->axq_link;
2746	src->axq_link = NULL;
2747	dst->axq_depth += src->axq_depth;
2748	dst->axq_aggr_depth += src->axq_aggr_depth;
2749	src->axq_depth = 0;
2750	src->axq_aggr_depth = 0;
2751}
2752
2753/*
2754 * Reset the hardware, with no loss.
2755 *
2756 * This can't be used for a general case reset.
2757 */
2758static void
2759ath_reset_proc(void *arg, int pending)
2760{
2761	struct ath_softc *sc = arg;
2762	struct ifnet *ifp = sc->sc_ifp;
2763
2764#if 0
2765	if_printf(ifp, "%s: resetting\n", __func__);
2766#endif
2767	ath_reset(ifp, ATH_RESET_NOLOSS);
2768}
2769
2770/*
2771 * Reset the hardware after detecting beacons have stopped.
2772 */
2773static void
2774ath_bstuck_proc(void *arg, int pending)
2775{
2776	struct ath_softc *sc = arg;
2777	struct ifnet *ifp = sc->sc_ifp;
2778	uint32_t hangs = 0;
2779
2780	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
2781		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
2782
2783	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2784		sc->sc_bmisscount);
2785	sc->sc_stats.ast_bstuck++;
2786	/*
2787	 * This assumes that there's no simultaneous channel mode change
2788	 * occuring.
2789	 */
2790	ath_reset(ifp, ATH_RESET_NOLOSS);
2791}
2792
2793static void
2794ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2795{
2796	bus_addr_t *paddr = (bus_addr_t*) arg;
2797	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2798	*paddr = segs->ds_addr;
2799}
2800
2801/*
2802 * Allocate the descriptors and appropriate DMA tag/setup.
2803 *
2804 * For some situations (eg EDMA TX completion), there isn't a requirement
2805 * for the ath_buf entries to be allocated.
2806 */
2807int
2808ath_descdma_alloc_desc(struct ath_softc *sc,
2809	struct ath_descdma *dd, ath_bufhead *head,
2810	const char *name, int ds_size, int ndesc)
2811{
2812#define	DS2PHYS(_dd, _ds) \
2813	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2814#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
2815	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
2816	struct ifnet *ifp = sc->sc_ifp;
2817	int error;
2818
2819	dd->dd_descsize = ds_size;
2820
2821	DPRINTF(sc, ATH_DEBUG_RESET,
2822	    "%s: %s DMA: %u desc, %d bytes per descriptor\n",
2823	    __func__, name, ndesc, dd->dd_descsize);
2824
2825	dd->dd_name = name;
2826	dd->dd_desc_len = dd->dd_descsize * ndesc;
2827
2828	/*
2829	 * Merlin work-around:
2830	 * Descriptors that cross the 4KB boundary can't be used.
2831	 * Assume one skipped descriptor per 4KB page.
2832	 */
2833	if (! ath_hal_split4ktrans(sc->sc_ah)) {
2834		int numpages = dd->dd_desc_len / 4096;
2835		dd->dd_desc_len += ds_size * numpages;
2836	}
2837
2838	/*
2839	 * Setup DMA descriptor area.
2840	 */
2841	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2842		       PAGE_SIZE, 0,		/* alignment, bounds */
2843		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2844		       BUS_SPACE_MAXADDR,	/* highaddr */
2845		       NULL, NULL,		/* filter, filterarg */
2846		       dd->dd_desc_len,		/* maxsize */
2847		       1,			/* nsegments */
2848		       dd->dd_desc_len,		/* maxsegsize */
2849		       BUS_DMA_ALLOCNOW,	/* flags */
2850		       NULL,			/* lockfunc */
2851		       NULL,			/* lockarg */
2852		       &dd->dd_dmat);
2853	if (error != 0) {
2854		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2855		return error;
2856	}
2857
2858	/* allocate descriptors */
2859	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2860	if (error != 0) {
2861		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2862			"error %u\n", dd->dd_name, error);
2863		goto fail0;
2864	}
2865
2866	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2867				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2868				 &dd->dd_dmamap);
2869	if (error != 0) {
2870		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2871			"error %u\n", ndesc, dd->dd_name, error);
2872		goto fail1;
2873	}
2874
2875	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2876				dd->dd_desc, dd->dd_desc_len,
2877				ath_load_cb, &dd->dd_desc_paddr,
2878				BUS_DMA_NOWAIT);
2879	if (error != 0) {
2880		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2881			dd->dd_name, error);
2882		goto fail2;
2883	}
2884
2885	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2886	    __func__, dd->dd_name, (uint8_t *) dd->dd_desc,
2887	    (u_long) dd->dd_desc_len, (caddr_t) dd->dd_desc_paddr,
2888	    /*XXX*/ (u_long) dd->dd_desc_len);
2889
2890	return (0);
2891
2892fail2:
2893	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2894fail1:
2895	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2896fail0:
2897	bus_dma_tag_destroy(dd->dd_dmat);
2898	memset(dd, 0, sizeof(*dd));
2899	return error;
2900#undef DS2PHYS
2901#undef ATH_DESC_4KB_BOUND_CHECK
2902}
2903
2904int
2905ath_descdma_setup(struct ath_softc *sc,
2906	struct ath_descdma *dd, ath_bufhead *head,
2907	const char *name, int ds_size, int nbuf, int ndesc)
2908{
2909#define	DS2PHYS(_dd, _ds) \
2910	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2911#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
2912	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
2913	struct ifnet *ifp = sc->sc_ifp;
2914	uint8_t *ds;
2915	struct ath_buf *bf;
2916	int i, bsize, error;
2917
2918	/* Allocate descriptors */
2919	error = ath_descdma_alloc_desc(sc, dd, head, name, ds_size,
2920	    nbuf * ndesc);
2921
2922	/* Assume any errors during allocation were dealt with */
2923	if (error != 0) {
2924		return (error);
2925	}
2926
2927	ds = (uint8_t *) dd->dd_desc;
2928
2929	/* allocate rx buffers */
2930	bsize = sizeof(struct ath_buf) * nbuf;
2931	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2932	if (bf == NULL) {
2933		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2934			dd->dd_name, bsize);
2935		goto fail3;
2936	}
2937	dd->dd_bufptr = bf;
2938
2939	TAILQ_INIT(head);
2940	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * dd->dd_descsize)) {
2941		bf->bf_desc = (struct ath_desc *) ds;
2942		bf->bf_daddr = DS2PHYS(dd, ds);
2943		if (! ath_hal_split4ktrans(sc->sc_ah)) {
2944			/*
2945			 * Merlin WAR: Skip descriptor addresses which
2946			 * cause 4KB boundary crossing along any point
2947			 * in the descriptor.
2948			 */
2949			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
2950			     dd->dd_descsize)) {
2951				/* Start at the next page */
2952				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
2953				bf->bf_desc = (struct ath_desc *) ds;
2954				bf->bf_daddr = DS2PHYS(dd, ds);
2955			}
2956		}
2957		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2958				&bf->bf_dmamap);
2959		if (error != 0) {
2960			if_printf(ifp, "unable to create dmamap for %s "
2961				"buffer %u, error %u\n", dd->dd_name, i, error);
2962			ath_descdma_cleanup(sc, dd, head);
2963			return error;
2964		}
2965		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
2966		TAILQ_INSERT_TAIL(head, bf, bf_list);
2967	}
2968
2969	/*
2970	 * XXX TODO: ensure that ds doesn't overflow the descriptor
2971	 * allocation otherwise weird stuff will occur and crash your
2972	 * machine.
2973	 */
2974	return 0;
2975	/* XXX this should likely just call ath_descdma_cleanup() */
2976fail3:
2977	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2978	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2979	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2980	bus_dma_tag_destroy(dd->dd_dmat);
2981	memset(dd, 0, sizeof(*dd));
2982	return error;
2983#undef DS2PHYS
2984#undef ATH_DESC_4KB_BOUND_CHECK
2985}
2986
2987/*
2988 * Allocate ath_buf entries but no descriptor contents.
2989 *
2990 * This is for RX EDMA where the descriptors are the header part of
2991 * the RX buffer.
2992 */
2993int
2994ath_descdma_setup_rx_edma(struct ath_softc *sc,
2995	struct ath_descdma *dd, ath_bufhead *head,
2996	const char *name, int nbuf, int rx_status_len)
2997{
2998	struct ifnet *ifp = sc->sc_ifp;
2999	struct ath_buf *bf;
3000	int i, bsize, error;
3001
3002	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers\n",
3003	    __func__, name, nbuf);
3004
3005	dd->dd_name = name;
3006	/*
3007	 * This is (mostly) purely for show.  We're not allocating any actual
3008	 * descriptors here as EDMA RX has the descriptor be part
3009	 * of the RX buffer.
3010	 *
3011	 * However, dd_desc_len is used by ath_descdma_free() to determine
3012	 * whether we have already freed this DMA mapping.
3013	 */
3014	dd->dd_desc_len = rx_status_len * nbuf;
3015	dd->dd_descsize = rx_status_len;
3016
3017	/* allocate rx buffers */
3018	bsize = sizeof(struct ath_buf) * nbuf;
3019	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3020	if (bf == NULL) {
3021		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3022			dd->dd_name, bsize);
3023		error = ENOMEM;
3024		goto fail3;
3025	}
3026	dd->dd_bufptr = bf;
3027
3028	TAILQ_INIT(head);
3029	for (i = 0; i < nbuf; i++, bf++) {
3030		bf->bf_desc = NULL;
3031		bf->bf_daddr = 0;
3032		bf->bf_lastds = NULL;	/* Just an initial value */
3033
3034		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3035				&bf->bf_dmamap);
3036		if (error != 0) {
3037			if_printf(ifp, "unable to create dmamap for %s "
3038				"buffer %u, error %u\n", dd->dd_name, i, error);
3039			ath_descdma_cleanup(sc, dd, head);
3040			return error;
3041		}
3042		TAILQ_INSERT_TAIL(head, bf, bf_list);
3043	}
3044	return 0;
3045fail3:
3046	memset(dd, 0, sizeof(*dd));
3047	return error;
3048}
3049
3050void
3051ath_descdma_cleanup(struct ath_softc *sc,
3052	struct ath_descdma *dd, ath_bufhead *head)
3053{
3054	struct ath_buf *bf;
3055	struct ieee80211_node *ni;
3056
3057	if (dd->dd_dmamap != 0) {
3058		bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3059		bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3060		bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3061		bus_dma_tag_destroy(dd->dd_dmat);
3062	}
3063
3064	if (head != NULL) {
3065		TAILQ_FOREACH(bf, head, bf_list) {
3066			if (bf->bf_m) {
3067				m_freem(bf->bf_m);
3068				bf->bf_m = NULL;
3069			}
3070			if (bf->bf_dmamap != NULL) {
3071				bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3072				bf->bf_dmamap = NULL;
3073			}
3074			ni = bf->bf_node;
3075			bf->bf_node = NULL;
3076			if (ni != NULL) {
3077				/*
3078				 * Reclaim node reference.
3079				 */
3080				ieee80211_free_node(ni);
3081			}
3082		}
3083	}
3084
3085	if (head != NULL)
3086		TAILQ_INIT(head);
3087
3088	if (dd->dd_bufptr != NULL)
3089		free(dd->dd_bufptr, M_ATHDEV);
3090	memset(dd, 0, sizeof(*dd));
3091}
3092
3093static int
3094ath_desc_alloc(struct ath_softc *sc)
3095{
3096	int error;
3097
3098	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3099		    "tx", sc->sc_tx_desclen, ath_txbuf, ATH_TXDESC);
3100	if (error != 0) {
3101		return error;
3102	}
3103	sc->sc_txbuf_cnt = ath_txbuf;
3104
3105	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
3106		    "tx_mgmt", sc->sc_tx_desclen, ath_txbuf_mgmt,
3107		    ATH_TXDESC);
3108	if (error != 0) {
3109		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3110		return error;
3111	}
3112
3113	/*
3114	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
3115	 * flag doesn't have to be set in ath_getbuf_locked().
3116	 */
3117
3118	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3119			"beacon", sc->sc_tx_desclen, ATH_BCBUF, 1);
3120	if (error != 0) {
3121		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3122		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3123		    &sc->sc_txbuf_mgmt);
3124		return error;
3125	}
3126	return 0;
3127}
3128
3129static void
3130ath_desc_free(struct ath_softc *sc)
3131{
3132
3133	if (sc->sc_bdma.dd_desc_len != 0)
3134		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3135	if (sc->sc_txdma.dd_desc_len != 0)
3136		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3137	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
3138		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
3139		    &sc->sc_txbuf_mgmt);
3140}
3141
3142static struct ieee80211_node *
3143ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3144{
3145	struct ieee80211com *ic = vap->iv_ic;
3146	struct ath_softc *sc = ic->ic_ifp->if_softc;
3147	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3148	struct ath_node *an;
3149
3150	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3151	if (an == NULL) {
3152		/* XXX stat+msg */
3153		return NULL;
3154	}
3155	ath_rate_node_init(sc, an);
3156
3157	/* Setup the mutex - there's no associd yet so set the name to NULL */
3158	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
3159	    device_get_nameunit(sc->sc_dev), an);
3160	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
3161
3162	/* XXX setup ath_tid */
3163	ath_tx_tid_init(sc, an);
3164
3165	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3166	return &an->an_node;
3167}
3168
3169static void
3170ath_node_cleanup(struct ieee80211_node *ni)
3171{
3172	struct ieee80211com *ic = ni->ni_ic;
3173	struct ath_softc *sc = ic->ic_ifp->if_softc;
3174
3175	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
3176	ath_tx_node_flush(sc, ATH_NODE(ni));
3177	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3178	sc->sc_node_cleanup(ni);
3179}
3180
3181static void
3182ath_node_free(struct ieee80211_node *ni)
3183{
3184	struct ieee80211com *ic = ni->ni_ic;
3185	struct ath_softc *sc = ic->ic_ifp->if_softc;
3186
3187	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3188	mtx_destroy(&ATH_NODE(ni)->an_mtx);
3189	sc->sc_node_free(ni);
3190}
3191
3192static void
3193ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3194{
3195	struct ieee80211com *ic = ni->ni_ic;
3196	struct ath_softc *sc = ic->ic_ifp->if_softc;
3197	struct ath_hal *ah = sc->sc_ah;
3198
3199	*rssi = ic->ic_node_getrssi(ni);
3200	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3201		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3202	else
3203		*noise = -95;		/* nominally correct */
3204}
3205
3206/*
3207 * Set the default antenna.
3208 */
3209void
3210ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3211{
3212	struct ath_hal *ah = sc->sc_ah;
3213
3214	/* XXX block beacon interrupts */
3215	ath_hal_setdefantenna(ah, antenna);
3216	if (sc->sc_defant != antenna)
3217		sc->sc_stats.ast_ant_defswitch++;
3218	sc->sc_defant = antenna;
3219	sc->sc_rxotherant = 0;
3220}
3221
3222static void
3223ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3224{
3225	txq->axq_qnum = qnum;
3226	txq->axq_ac = 0;
3227	txq->axq_depth = 0;
3228	txq->axq_aggr_depth = 0;
3229	txq->axq_intrcnt = 0;
3230	txq->axq_link = NULL;
3231	txq->axq_softc = sc;
3232	TAILQ_INIT(&txq->axq_q);
3233	TAILQ_INIT(&txq->axq_tidq);
3234	ATH_TXQ_LOCK_INIT(sc, txq);
3235}
3236
3237/*
3238 * Setup a h/w transmit queue.
3239 */
3240static struct ath_txq *
3241ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3242{
3243#define	N(a)	(sizeof(a)/sizeof(a[0]))
3244	struct ath_hal *ah = sc->sc_ah;
3245	HAL_TXQ_INFO qi;
3246	int qnum;
3247
3248	memset(&qi, 0, sizeof(qi));
3249	qi.tqi_subtype = subtype;
3250	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3251	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3252	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3253	/*
3254	 * Enable interrupts only for EOL and DESC conditions.
3255	 * We mark tx descriptors to receive a DESC interrupt
3256	 * when a tx queue gets deep; otherwise waiting for the
3257	 * EOL to reap descriptors.  Note that this is done to
3258	 * reduce interrupt load and this only defers reaping
3259	 * descriptors, never transmitting frames.  Aside from
3260	 * reducing interrupts this also permits more concurrency.
3261	 * The only potential downside is if the tx queue backs
3262	 * up in which case the top half of the kernel may backup
3263	 * due to a lack of tx descriptors.
3264	 */
3265	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3266	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3267	if (qnum == -1) {
3268		/*
3269		 * NB: don't print a message, this happens
3270		 * normally on parts with too few tx queues
3271		 */
3272		return NULL;
3273	}
3274	if (qnum >= N(sc->sc_txq)) {
3275		device_printf(sc->sc_dev,
3276			"hal qnum %u out of range, max %zu!\n",
3277			qnum, N(sc->sc_txq));
3278		ath_hal_releasetxqueue(ah, qnum);
3279		return NULL;
3280	}
3281	if (!ATH_TXQ_SETUP(sc, qnum)) {
3282		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3283		sc->sc_txqsetup |= 1<<qnum;
3284	}
3285	return &sc->sc_txq[qnum];
3286#undef N
3287}
3288
3289/*
3290 * Setup a hardware data transmit queue for the specified
3291 * access control.  The hal may not support all requested
3292 * queues in which case it will return a reference to a
3293 * previously setup queue.  We record the mapping from ac's
3294 * to h/w queues for use by ath_tx_start and also track
3295 * the set of h/w queues being used to optimize work in the
3296 * transmit interrupt handler and related routines.
3297 */
3298static int
3299ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3300{
3301#define	N(a)	(sizeof(a)/sizeof(a[0]))
3302	struct ath_txq *txq;
3303
3304	if (ac >= N(sc->sc_ac2q)) {
3305		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3306			ac, N(sc->sc_ac2q));
3307		return 0;
3308	}
3309	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3310	if (txq != NULL) {
3311		txq->axq_ac = ac;
3312		sc->sc_ac2q[ac] = txq;
3313		return 1;
3314	} else
3315		return 0;
3316#undef N
3317}
3318
3319/*
3320 * Update WME parameters for a transmit queue.
3321 */
3322static int
3323ath_txq_update(struct ath_softc *sc, int ac)
3324{
3325#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3326#define	ATH_TXOP_TO_US(v)		(v<<5)
3327	struct ifnet *ifp = sc->sc_ifp;
3328	struct ieee80211com *ic = ifp->if_l2com;
3329	struct ath_txq *txq = sc->sc_ac2q[ac];
3330	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3331	struct ath_hal *ah = sc->sc_ah;
3332	HAL_TXQ_INFO qi;
3333
3334	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3335#ifdef IEEE80211_SUPPORT_TDMA
3336	if (sc->sc_tdma) {
3337		/*
3338		 * AIFS is zero so there's no pre-transmit wait.  The
3339		 * burst time defines the slot duration and is configured
3340		 * through net80211.  The QCU is setup to not do post-xmit
3341		 * back off, lockout all lower-priority QCU's, and fire
3342		 * off the DMA beacon alert timer which is setup based
3343		 * on the slot configuration.
3344		 */
3345		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3346			      | HAL_TXQ_TXERRINT_ENABLE
3347			      | HAL_TXQ_TXURNINT_ENABLE
3348			      | HAL_TXQ_TXEOLINT_ENABLE
3349			      | HAL_TXQ_DBA_GATED
3350			      | HAL_TXQ_BACKOFF_DISABLE
3351			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3352			      ;
3353		qi.tqi_aifs = 0;
3354		/* XXX +dbaprep? */
3355		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3356		qi.tqi_burstTime = qi.tqi_readyTime;
3357	} else {
3358#endif
3359		/*
3360		 * XXX shouldn't this just use the default flags
3361		 * used in the previous queue setup?
3362		 */
3363		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3364			      | HAL_TXQ_TXERRINT_ENABLE
3365			      | HAL_TXQ_TXDESCINT_ENABLE
3366			      | HAL_TXQ_TXURNINT_ENABLE
3367			      | HAL_TXQ_TXEOLINT_ENABLE
3368			      ;
3369		qi.tqi_aifs = wmep->wmep_aifsn;
3370		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3371		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3372		qi.tqi_readyTime = 0;
3373		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3374#ifdef IEEE80211_SUPPORT_TDMA
3375	}
3376#endif
3377
3378	DPRINTF(sc, ATH_DEBUG_RESET,
3379	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3380	    __func__, txq->axq_qnum, qi.tqi_qflags,
3381	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3382
3383	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3384		if_printf(ifp, "unable to update hardware queue "
3385			"parameters for %s traffic!\n",
3386			ieee80211_wme_acnames[ac]);
3387		return 0;
3388	} else {
3389		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3390		return 1;
3391	}
3392#undef ATH_TXOP_TO_US
3393#undef ATH_EXPONENT_TO_VALUE
3394}
3395
3396/*
3397 * Callback from the 802.11 layer to update WME parameters.
3398 */
3399int
3400ath_wme_update(struct ieee80211com *ic)
3401{
3402	struct ath_softc *sc = ic->ic_ifp->if_softc;
3403
3404	return !ath_txq_update(sc, WME_AC_BE) ||
3405	    !ath_txq_update(sc, WME_AC_BK) ||
3406	    !ath_txq_update(sc, WME_AC_VI) ||
3407	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3408}
3409
3410/*
3411 * Reclaim resources for a setup queue.
3412 */
3413static void
3414ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3415{
3416
3417	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3418	ATH_TXQ_LOCK_DESTROY(txq);
3419	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3420}
3421
3422/*
3423 * Reclaim all tx queue resources.
3424 */
3425static void
3426ath_tx_cleanup(struct ath_softc *sc)
3427{
3428	int i;
3429
3430	ATH_TXBUF_LOCK_DESTROY(sc);
3431	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3432		if (ATH_TXQ_SETUP(sc, i))
3433			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3434}
3435
3436/*
3437 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3438 * using the current rates in sc_rixmap.
3439 */
3440int
3441ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3442{
3443	int rix = sc->sc_rixmap[rate];
3444	/* NB: return lowest rix for invalid rate */
3445	return (rix == 0xff ? 0 : rix);
3446}
3447
3448static void
3449ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3450    struct ath_buf *bf)
3451{
3452	struct ieee80211_node *ni = bf->bf_node;
3453	struct ifnet *ifp = sc->sc_ifp;
3454	struct ieee80211com *ic = ifp->if_l2com;
3455	int sr, lr, pri;
3456
3457	if (ts->ts_status == 0) {
3458		u_int8_t txant = ts->ts_antenna;
3459		sc->sc_stats.ast_ant_tx[txant]++;
3460		sc->sc_ant_tx[txant]++;
3461		if (ts->ts_finaltsi != 0)
3462			sc->sc_stats.ast_tx_altrate++;
3463		pri = M_WME_GETAC(bf->bf_m);
3464		if (pri >= WME_AC_VO)
3465			ic->ic_wme.wme_hipri_traffic++;
3466		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3467			ni->ni_inact = ni->ni_inact_reload;
3468	} else {
3469		if (ts->ts_status & HAL_TXERR_XRETRY)
3470			sc->sc_stats.ast_tx_xretries++;
3471		if (ts->ts_status & HAL_TXERR_FIFO)
3472			sc->sc_stats.ast_tx_fifoerr++;
3473		if (ts->ts_status & HAL_TXERR_FILT)
3474			sc->sc_stats.ast_tx_filtered++;
3475		if (ts->ts_status & HAL_TXERR_XTXOP)
3476			sc->sc_stats.ast_tx_xtxop++;
3477		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3478			sc->sc_stats.ast_tx_timerexpired++;
3479
3480		if (ts->ts_status & HAL_TX_DATA_UNDERRUN)
3481			sc->sc_stats.ast_tx_data_underrun++;
3482		if (ts->ts_status & HAL_TX_DELIM_UNDERRUN)
3483			sc->sc_stats.ast_tx_delim_underrun++;
3484
3485		if (bf->bf_m->m_flags & M_FF)
3486			sc->sc_stats.ast_ff_txerr++;
3487	}
3488	/* XXX when is this valid? */
3489	if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
3490		sc->sc_stats.ast_tx_desccfgerr++;
3491
3492	sr = ts->ts_shortretry;
3493	lr = ts->ts_longretry;
3494	sc->sc_stats.ast_tx_shortretry += sr;
3495	sc->sc_stats.ast_tx_longretry += lr;
3496
3497}
3498
3499/*
3500 * The default completion. If fail is 1, this means
3501 * "please don't retry the frame, and just return -1 status
3502 * to the net80211 stack.
3503 */
3504void
3505ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3506{
3507	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3508	int st;
3509
3510	if (fail == 1)
3511		st = -1;
3512	else
3513		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
3514		    ts->ts_status : HAL_TXERR_XRETRY;
3515
3516	if (bf->bf_state.bfs_dobaw)
3517		device_printf(sc->sc_dev,
3518		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
3519		    __func__,
3520		    bf,
3521		    SEQNO(bf->bf_state.bfs_seqno));
3522	if (bf->bf_next != NULL)
3523		device_printf(sc->sc_dev,
3524		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
3525		    __func__,
3526		    bf,
3527		    SEQNO(bf->bf_state.bfs_seqno));
3528
3529	/*
3530	 * Do any tx complete callback.  Note this must
3531	 * be done before releasing the node reference.
3532	 * This will free the mbuf, release the net80211
3533	 * node and recycle the ath_buf.
3534	 */
3535	ath_tx_freebuf(sc, bf, st);
3536}
3537
3538/*
3539 * Update rate control with the given completion status.
3540 */
3541void
3542ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
3543    struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
3544    int nframes, int nbad)
3545{
3546	struct ath_node *an;
3547
3548	/* Only for unicast frames */
3549	if (ni == NULL)
3550		return;
3551
3552	an = ATH_NODE(ni);
3553
3554	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
3555		ATH_NODE_LOCK(an);
3556		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
3557		ATH_NODE_UNLOCK(an);
3558	}
3559}
3560
3561/*
3562 * Update the busy status of the last frame on the free list.
3563 * When doing TDMA, the busy flag tracks whether the hardware
3564 * currently points to this buffer or not, and thus gated DMA
3565 * may restart by re-reading the last descriptor in this
3566 * buffer.
3567 *
3568 * This should be called in the completion function once one
3569 * of the buffers has been used.
3570 */
3571static void
3572ath_tx_update_busy(struct ath_softc *sc)
3573{
3574	struct ath_buf *last;
3575
3576	/*
3577	 * Since the last frame may still be marked
3578	 * as ATH_BUF_BUSY, unmark it here before
3579	 * finishing the frame processing.
3580	 * Since we've completed a frame (aggregate
3581	 * or otherwise), the hardware has moved on
3582	 * and is no longer referencing the previous
3583	 * descriptor.
3584	 */
3585	ATH_TXBUF_LOCK_ASSERT(sc);
3586	last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
3587	if (last != NULL)
3588		last->bf_flags &= ~ATH_BUF_BUSY;
3589	last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
3590	if (last != NULL)
3591		last->bf_flags &= ~ATH_BUF_BUSY;
3592}
3593
3594/*
3595 * Process the completion of the given buffer.
3596 *
3597 * This calls the rate control update and then the buffer completion.
3598 * This will either free the buffer or requeue it.  In any case, the
3599 * bf pointer should be treated as invalid after this function is called.
3600 */
3601void
3602ath_tx_process_buf_completion(struct ath_softc *sc, struct ath_txq *txq,
3603    struct ath_tx_status *ts, struct ath_buf *bf)
3604{
3605	struct ieee80211_node *ni = bf->bf_node;
3606	struct ath_node *an = NULL;
3607
3608	ATH_TXQ_UNLOCK_ASSERT(txq);
3609
3610	/* If unicast frame, update general statistics */
3611	if (ni != NULL) {
3612		an = ATH_NODE(ni);
3613		/* update statistics */
3614		ath_tx_update_stats(sc, ts, bf);
3615	}
3616
3617	/*
3618	 * Call the completion handler.
3619	 * The completion handler is responsible for
3620	 * calling the rate control code.
3621	 *
3622	 * Frames with no completion handler get the
3623	 * rate control code called here.
3624	 */
3625	if (bf->bf_comp == NULL) {
3626		if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
3627		    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
3628			/*
3629			 * XXX assume this isn't an aggregate
3630			 * frame.
3631			 */
3632			ath_tx_update_ratectrl(sc, ni,
3633			     bf->bf_state.bfs_rc, ts,
3634			    bf->bf_state.bfs_pktlen, 1,
3635			    (ts->ts_status == 0 ? 0 : 1));
3636		}
3637		ath_tx_default_comp(sc, bf, 0);
3638	} else
3639		bf->bf_comp(sc, bf, 0);
3640}
3641
3642
3643
3644/*
3645 * Process completed xmit descriptors from the specified queue.
3646 * Kick the packet scheduler if needed. This can occur from this
3647 * particular task.
3648 */
3649static int
3650ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
3651{
3652	struct ath_hal *ah = sc->sc_ah;
3653	struct ath_buf *bf;
3654	struct ath_desc *ds;
3655	struct ath_tx_status *ts;
3656	struct ieee80211_node *ni;
3657#ifdef	IEEE80211_SUPPORT_SUPERG
3658	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3659#endif	/* IEEE80211_SUPPORT_SUPERG */
3660	int nacked;
3661	HAL_STATUS status;
3662
3663	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3664		__func__, txq->axq_qnum,
3665		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3666		txq->axq_link);
3667	nacked = 0;
3668	for (;;) {
3669		ATH_TXQ_LOCK(txq);
3670		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3671		bf = TAILQ_FIRST(&txq->axq_q);
3672		if (bf == NULL) {
3673			ATH_TXQ_UNLOCK(txq);
3674			break;
3675		}
3676		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
3677		ts = &bf->bf_status.ds_txstat;
3678		status = ath_hal_txprocdesc(ah, ds, ts);
3679#ifdef ATH_DEBUG
3680		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3681			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3682			    status == HAL_OK);
3683		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) {
3684			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3685			    status == HAL_OK);
3686		}
3687#endif
3688		if (status == HAL_EINPROGRESS) {
3689			ATH_TXQ_UNLOCK(txq);
3690			break;
3691		}
3692		ATH_TXQ_REMOVE(txq, bf, bf_list);
3693#ifdef IEEE80211_SUPPORT_TDMA
3694		if (txq->axq_depth > 0) {
3695			/*
3696			 * More frames follow.  Mark the buffer busy
3697			 * so it's not re-used while the hardware may
3698			 * still re-read the link field in the descriptor.
3699			 *
3700			 * Use the last buffer in an aggregate as that
3701			 * is where the hardware may be - intermediate
3702			 * descriptors won't be "busy".
3703			 */
3704			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
3705		} else
3706#else
3707		if (txq->axq_depth == 0)
3708#endif
3709			txq->axq_link = NULL;
3710		if (bf->bf_state.bfs_aggr)
3711			txq->axq_aggr_depth--;
3712
3713		ni = bf->bf_node;
3714		/*
3715		 * If unicast frame was ack'd update RSSI,
3716		 * including the last rx time used to
3717		 * workaround phantom bmiss interrupts.
3718		 */
3719		if (ni != NULL && ts->ts_status == 0 &&
3720		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
3721			nacked++;
3722			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
3723			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3724				ts->ts_rssi);
3725		}
3726		ATH_TXQ_UNLOCK(txq);
3727
3728		/*
3729		 * Update statistics and call completion
3730		 */
3731		ath_tx_process_buf_completion(sc, txq, ts, bf);
3732
3733
3734	}
3735#ifdef IEEE80211_SUPPORT_SUPERG
3736	/*
3737	 * Flush fast-frame staging queue when traffic slows.
3738	 */
3739	if (txq->axq_depth <= 1)
3740		ieee80211_ff_flush(ic, txq->axq_ac);
3741#endif
3742
3743	/* Kick the TXQ scheduler */
3744	if (dosched) {
3745		ATH_TXQ_LOCK(txq);
3746		ath_txq_sched(sc, txq);
3747		ATH_TXQ_UNLOCK(txq);
3748	}
3749
3750	return nacked;
3751}
3752
3753#define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
3754
3755/*
3756 * Deferred processing of transmit interrupt; special-cased
3757 * for a single hardware transmit queue (e.g. 5210 and 5211).
3758 */
3759static void
3760ath_tx_proc_q0(void *arg, int npending)
3761{
3762	struct ath_softc *sc = arg;
3763	struct ifnet *ifp = sc->sc_ifp;
3764	uint32_t txqs;
3765
3766	ATH_PCU_LOCK(sc);
3767	sc->sc_txproc_cnt++;
3768	txqs = sc->sc_txq_active;
3769	sc->sc_txq_active &= ~txqs;
3770	ATH_PCU_UNLOCK(sc);
3771
3772	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
3773		/* XXX why is lastrx updated in tx code? */
3774		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3775	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3776		ath_tx_processq(sc, sc->sc_cabq, 1);
3777	IF_LOCK(&ifp->if_snd);
3778	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3779	IF_UNLOCK(&ifp->if_snd);
3780	sc->sc_wd_timer = 0;
3781
3782	if (sc->sc_softled)
3783		ath_led_event(sc, sc->sc_txrix);
3784
3785	ATH_PCU_LOCK(sc);
3786	sc->sc_txproc_cnt--;
3787	ATH_PCU_UNLOCK(sc);
3788
3789	ath_tx_kick(sc);
3790}
3791
3792/*
3793 * Deferred processing of transmit interrupt; special-cased
3794 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3795 */
3796static void
3797ath_tx_proc_q0123(void *arg, int npending)
3798{
3799	struct ath_softc *sc = arg;
3800	struct ifnet *ifp = sc->sc_ifp;
3801	int nacked;
3802	uint32_t txqs;
3803
3804	ATH_PCU_LOCK(sc);
3805	sc->sc_txproc_cnt++;
3806	txqs = sc->sc_txq_active;
3807	sc->sc_txq_active &= ~txqs;
3808	ATH_PCU_UNLOCK(sc);
3809
3810	/*
3811	 * Process each active queue.
3812	 */
3813	nacked = 0;
3814	if (TXQACTIVE(txqs, 0))
3815		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
3816	if (TXQACTIVE(txqs, 1))
3817		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
3818	if (TXQACTIVE(txqs, 2))
3819		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
3820	if (TXQACTIVE(txqs, 3))
3821		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
3822	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3823		ath_tx_processq(sc, sc->sc_cabq, 1);
3824	if (nacked)
3825		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3826
3827	IF_LOCK(&ifp->if_snd);
3828	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3829	IF_UNLOCK(&ifp->if_snd);
3830	sc->sc_wd_timer = 0;
3831
3832	if (sc->sc_softled)
3833		ath_led_event(sc, sc->sc_txrix);
3834
3835	ATH_PCU_LOCK(sc);
3836	sc->sc_txproc_cnt--;
3837	ATH_PCU_UNLOCK(sc);
3838
3839	ath_tx_kick(sc);
3840}
3841
3842/*
3843 * Deferred processing of transmit interrupt.
3844 */
3845static void
3846ath_tx_proc(void *arg, int npending)
3847{
3848	struct ath_softc *sc = arg;
3849	struct ifnet *ifp = sc->sc_ifp;
3850	int i, nacked;
3851	uint32_t txqs;
3852
3853	ATH_PCU_LOCK(sc);
3854	sc->sc_txproc_cnt++;
3855	txqs = sc->sc_txq_active;
3856	sc->sc_txq_active &= ~txqs;
3857	ATH_PCU_UNLOCK(sc);
3858
3859	/*
3860	 * Process each active queue.
3861	 */
3862	nacked = 0;
3863	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3864		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
3865			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
3866	if (nacked)
3867		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3868
3869	/* XXX check this inside of IF_LOCK? */
3870	IF_LOCK(&ifp->if_snd);
3871	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3872	IF_UNLOCK(&ifp->if_snd);
3873	sc->sc_wd_timer = 0;
3874
3875	if (sc->sc_softled)
3876		ath_led_event(sc, sc->sc_txrix);
3877
3878	ATH_PCU_LOCK(sc);
3879	sc->sc_txproc_cnt--;
3880	ATH_PCU_UNLOCK(sc);
3881
3882	ath_tx_kick(sc);
3883}
3884#undef	TXQACTIVE
3885
3886/*
3887 * Deferred processing of TXQ rescheduling.
3888 */
3889static void
3890ath_txq_sched_tasklet(void *arg, int npending)
3891{
3892	struct ath_softc *sc = arg;
3893	int i;
3894
3895	/* XXX is skipping ok? */
3896	ATH_PCU_LOCK(sc);
3897#if 0
3898	if (sc->sc_inreset_cnt > 0) {
3899		device_printf(sc->sc_dev,
3900		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
3901		ATH_PCU_UNLOCK(sc);
3902		return;
3903	}
3904#endif
3905	sc->sc_txproc_cnt++;
3906	ATH_PCU_UNLOCK(sc);
3907
3908	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
3909		if (ATH_TXQ_SETUP(sc, i)) {
3910			ATH_TXQ_LOCK(&sc->sc_txq[i]);
3911			ath_txq_sched(sc, &sc->sc_txq[i]);
3912			ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
3913		}
3914	}
3915
3916	ATH_PCU_LOCK(sc);
3917	sc->sc_txproc_cnt--;
3918	ATH_PCU_UNLOCK(sc);
3919}
3920
3921void
3922ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
3923{
3924
3925	ATH_TXBUF_LOCK_ASSERT(sc);
3926
3927	if (bf->bf_flags & ATH_BUF_MGMT)
3928		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
3929	else {
3930		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3931		sc->sc_txbuf_cnt++;
3932		if (sc->sc_txbuf_cnt > ath_txbuf) {
3933			device_printf(sc->sc_dev,
3934			    "%s: sc_txbuf_cnt > %d?\n",
3935			    __func__,
3936			    ath_txbuf);
3937			sc->sc_txbuf_cnt = ath_txbuf;
3938		}
3939	}
3940}
3941
3942void
3943ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
3944{
3945
3946	ATH_TXBUF_LOCK_ASSERT(sc);
3947
3948	if (bf->bf_flags & ATH_BUF_MGMT)
3949		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
3950	else {
3951		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
3952		sc->sc_txbuf_cnt++;
3953		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
3954			device_printf(sc->sc_dev,
3955			    "%s: sc_txbuf_cnt > %d?\n",
3956			    __func__,
3957			    ATH_TXBUF);
3958			sc->sc_txbuf_cnt = ATH_TXBUF;
3959		}
3960	}
3961}
3962
3963/*
3964 * Return a buffer to the pool and update the 'busy' flag on the
3965 * previous 'tail' entry.
3966 *
3967 * This _must_ only be called when the buffer is involved in a completed
3968 * TX. The logic is that if it was part of an active TX, the previous
3969 * buffer on the list is now not involved in a halted TX DMA queue, waiting
3970 * for restart (eg for TDMA.)
3971 *
3972 * The caller must free the mbuf and recycle the node reference.
3973 */
3974void
3975ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
3976{
3977	bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3978	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
3979
3980	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
3981	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
3982
3983	ATH_TXBUF_LOCK(sc);
3984	ath_tx_update_busy(sc);
3985	ath_returnbuf_tail(sc, bf);
3986	ATH_TXBUF_UNLOCK(sc);
3987}
3988
3989/*
3990 * This is currently used by ath_tx_draintxq() and
3991 * ath_tx_tid_free_pkts().
3992 *
3993 * It recycles a single ath_buf.
3994 */
3995void
3996ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
3997{
3998	struct ieee80211_node *ni = bf->bf_node;
3999	struct mbuf *m0 = bf->bf_m;
4000
4001	bf->bf_node = NULL;
4002	bf->bf_m = NULL;
4003
4004	/* Free the buffer, it's not needed any longer */
4005	ath_freebuf(sc, bf);
4006
4007	if (ni != NULL) {
4008		/*
4009		 * Do any callback and reclaim the node reference.
4010		 */
4011		if (m0->m_flags & M_TXCB)
4012			ieee80211_process_callback(ni, m0, status);
4013		ieee80211_free_node(ni);
4014	}
4015	m_freem(m0);
4016
4017	/*
4018	 * XXX the buffer used to be freed -after-, but the DMA map was
4019	 * freed where ath_freebuf() now is. I've no idea what this
4020	 * will do.
4021	 */
4022}
4023
4024void
4025ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4026{
4027#ifdef ATH_DEBUG
4028	struct ath_hal *ah = sc->sc_ah;
4029#endif
4030	struct ath_buf *bf;
4031	u_int ix;
4032
4033	/*
4034	 * NB: this assumes output has been stopped and
4035	 *     we do not need to block ath_tx_proc
4036	 */
4037	ATH_TXBUF_LOCK(sc);
4038	bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
4039	if (bf != NULL)
4040		bf->bf_flags &= ~ATH_BUF_BUSY;
4041	bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
4042	if (bf != NULL)
4043		bf->bf_flags &= ~ATH_BUF_BUSY;
4044	ATH_TXBUF_UNLOCK(sc);
4045
4046	for (ix = 0;; ix++) {
4047		ATH_TXQ_LOCK(txq);
4048		bf = TAILQ_FIRST(&txq->axq_q);
4049		if (bf == NULL) {
4050			txq->axq_link = NULL;
4051			/*
4052			 * There's currently no flag that indicates
4053			 * a buffer is on the FIFO.  So until that
4054			 * occurs, just clear the FIFO counter here.
4055			 *
4056			 * Yes, this means that if something in parallel
4057			 * is pushing things onto this TXQ and pushing
4058			 * _that_ into the hardware, things will get
4059			 * very fruity very quickly.
4060			 */
4061			txq->axq_fifo_depth = 0;
4062			ATH_TXQ_UNLOCK(txq);
4063			break;
4064		}
4065		ATH_TXQ_REMOVE(txq, bf, bf_list);
4066		if (bf->bf_state.bfs_aggr)
4067			txq->axq_aggr_depth--;
4068#ifdef ATH_DEBUG
4069		if (sc->sc_debug & ATH_DEBUG_RESET) {
4070			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4071			int status = 0;
4072
4073			/*
4074			 * EDMA operation has a TX completion FIFO
4075			 * separate from the TX descriptor, so this
4076			 * method of checking the "completion" status
4077			 * is wrong.
4078			 */
4079			if (! sc->sc_isedma) {
4080				status = (ath_hal_txprocdesc(ah,
4081				    bf->bf_lastds,
4082				    &bf->bf_status.ds_txstat) == HAL_OK);
4083			}
4084			ath_printtxbuf(sc, bf, txq->axq_qnum, ix, status);
4085			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4086			    bf->bf_m->m_len, 0, -1);
4087		}
4088#endif /* ATH_DEBUG */
4089		/*
4090		 * Since we're now doing magic in the completion
4091		 * functions, we -must- call it for aggregation
4092		 * destinations or BAW tracking will get upset.
4093		 */
4094		/*
4095		 * Clear ATH_BUF_BUSY; the completion handler
4096		 * will free the buffer.
4097		 */
4098		ATH_TXQ_UNLOCK(txq);
4099		bf->bf_flags &= ~ATH_BUF_BUSY;
4100		if (bf->bf_comp)
4101			bf->bf_comp(sc, bf, 1);
4102		else
4103			ath_tx_default_comp(sc, bf, 1);
4104	}
4105
4106	/*
4107	 * Drain software queued frames which are on
4108	 * active TIDs.
4109	 */
4110	ath_tx_txq_drain(sc, txq);
4111}
4112
4113static void
4114ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4115{
4116	struct ath_hal *ah = sc->sc_ah;
4117
4118	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4119	    __func__, txq->axq_qnum,
4120	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4121	    txq->axq_link);
4122	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4123}
4124
4125int
4126ath_stoptxdma(struct ath_softc *sc)
4127{
4128	struct ath_hal *ah = sc->sc_ah;
4129	int i;
4130
4131	/* XXX return value */
4132	if (sc->sc_invalid)
4133		return 0;
4134
4135	if (!sc->sc_invalid) {
4136		/* don't touch the hardware if marked invalid */
4137		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4138		    __func__, sc->sc_bhalq,
4139		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4140		    NULL);
4141		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4142		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4143			if (ATH_TXQ_SETUP(sc, i))
4144				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4145	}
4146
4147	return 1;
4148}
4149
4150/*
4151 * Drain the transmit queues and reclaim resources.
4152 */
4153void
4154ath_legacy_tx_drain(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
4155{
4156#ifdef	ATH_DEBUG
4157	struct ath_hal *ah = sc->sc_ah;
4158#endif
4159	struct ifnet *ifp = sc->sc_ifp;
4160	int i;
4161
4162	(void) ath_stoptxdma(sc);
4163
4164	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
4165		/*
4166		 * XXX TODO: should we just handle the completed TX frames
4167		 * here, whether or not the reset is a full one or not?
4168		 */
4169		if (ATH_TXQ_SETUP(sc, i)) {
4170			if (reset_type == ATH_RESET_NOLOSS)
4171				ath_tx_processq(sc, &sc->sc_txq[i], 0);
4172			else
4173				ath_tx_draintxq(sc, &sc->sc_txq[i]);
4174		}
4175	}
4176#ifdef ATH_DEBUG
4177	if (sc->sc_debug & ATH_DEBUG_RESET) {
4178		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
4179		if (bf != NULL && bf->bf_m != NULL) {
4180			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4181				ath_hal_txprocdesc(ah, bf->bf_lastds,
4182				    &bf->bf_status.ds_txstat) == HAL_OK);
4183			ieee80211_dump_pkt(ifp->if_l2com,
4184			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4185			    0, -1);
4186		}
4187	}
4188#endif /* ATH_DEBUG */
4189	IF_LOCK(&ifp->if_snd);
4190	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4191	IF_UNLOCK(&ifp->if_snd);
4192	sc->sc_wd_timer = 0;
4193}
4194
4195/*
4196 * Update internal state after a channel change.
4197 */
4198static void
4199ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4200{
4201	enum ieee80211_phymode mode;
4202
4203	/*
4204	 * Change channels and update the h/w rate map
4205	 * if we're switching; e.g. 11a to 11b/g.
4206	 */
4207	mode = ieee80211_chan2mode(chan);
4208	if (mode != sc->sc_curmode)
4209		ath_setcurmode(sc, mode);
4210	sc->sc_curchan = chan;
4211}
4212
4213/*
4214 * Set/change channels.  If the channel is really being changed,
4215 * it's done by resetting the chip.  To accomplish this we must
4216 * first cleanup any pending DMA, then restart stuff after a la
4217 * ath_init.
4218 */
4219static int
4220ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4221{
4222	struct ifnet *ifp = sc->sc_ifp;
4223	struct ieee80211com *ic = ifp->if_l2com;
4224	struct ath_hal *ah = sc->sc_ah;
4225	int ret = 0;
4226
4227	/* Treat this as an interface reset */
4228	ATH_PCU_UNLOCK_ASSERT(sc);
4229	ATH_UNLOCK_ASSERT(sc);
4230
4231	/* (Try to) stop TX/RX from occuring */
4232	taskqueue_block(sc->sc_tq);
4233
4234	ATH_PCU_LOCK(sc);
4235	ath_hal_intrset(ah, 0);		/* Stop new RX/TX completion */
4236	ath_txrx_stop_locked(sc);	/* Stop pending RX/TX completion */
4237	if (ath_reset_grablock(sc, 1) == 0) {
4238		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
4239		    __func__);
4240	}
4241	ATH_PCU_UNLOCK(sc);
4242
4243	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4244	    __func__, ieee80211_chan2ieee(ic, chan),
4245	    chan->ic_freq, chan->ic_flags);
4246	if (chan != sc->sc_curchan) {
4247		HAL_STATUS status;
4248		/*
4249		 * To switch channels clear any pending DMA operations;
4250		 * wait long enough for the RX fifo to drain, reset the
4251		 * hardware at the new frequency, and then re-enable
4252		 * the relevant bits of the h/w.
4253		 */
4254#if 0
4255		ath_hal_intrset(ah, 0);		/* disable interrupts */
4256#endif
4257		ath_stoprecv(sc, 1);		/* turn off frame recv */
4258		/*
4259		 * First, handle completed TX/RX frames.
4260		 */
4261		ath_rx_flush(sc);
4262		ath_draintxq(sc, ATH_RESET_NOLOSS);
4263		/*
4264		 * Next, flush the non-scheduled frames.
4265		 */
4266		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
4267
4268		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4269			if_printf(ifp, "%s: unable to reset "
4270			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4271			    __func__, ieee80211_chan2ieee(ic, chan),
4272			    chan->ic_freq, chan->ic_flags, status);
4273			ret = EIO;
4274			goto finish;
4275		}
4276		sc->sc_diversity = ath_hal_getdiversity(ah);
4277
4278		/* Let DFS at it in case it's a DFS channel */
4279		ath_dfs_radar_enable(sc, chan);
4280
4281		/*
4282		 * Re-enable rx framework.
4283		 */
4284		if (ath_startrecv(sc) != 0) {
4285			if_printf(ifp, "%s: unable to restart recv logic\n",
4286			    __func__);
4287			ret = EIO;
4288			goto finish;
4289		}
4290
4291		/*
4292		 * Change channels and update the h/w rate map
4293		 * if we're switching; e.g. 11a to 11b/g.
4294		 */
4295		ath_chan_change(sc, chan);
4296
4297		/*
4298		 * Reset clears the beacon timers; reset them
4299		 * here if needed.
4300		 */
4301		if (sc->sc_beacons) {		/* restart beacons */
4302#ifdef IEEE80211_SUPPORT_TDMA
4303			if (sc->sc_tdma)
4304				ath_tdma_config(sc, NULL);
4305			else
4306#endif
4307			ath_beacon_config(sc, NULL);
4308		}
4309
4310		/*
4311		 * Re-enable interrupts.
4312		 */
4313#if 0
4314		ath_hal_intrset(ah, sc->sc_imask);
4315#endif
4316	}
4317
4318finish:
4319	ATH_PCU_LOCK(sc);
4320	sc->sc_inreset_cnt--;
4321	/* XXX only do this if sc_inreset_cnt == 0? */
4322	ath_hal_intrset(ah, sc->sc_imask);
4323	ATH_PCU_UNLOCK(sc);
4324
4325	IF_LOCK(&ifp->if_snd);
4326	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4327	IF_UNLOCK(&ifp->if_snd);
4328	ath_txrx_start(sc);
4329	/* XXX ath_start? */
4330
4331	return ret;
4332}
4333
4334/*
4335 * Periodically recalibrate the PHY to account
4336 * for temperature/environment changes.
4337 */
4338static void
4339ath_calibrate(void *arg)
4340{
4341	struct ath_softc *sc = arg;
4342	struct ath_hal *ah = sc->sc_ah;
4343	struct ifnet *ifp = sc->sc_ifp;
4344	struct ieee80211com *ic = ifp->if_l2com;
4345	HAL_BOOL longCal, isCalDone;
4346	HAL_BOOL aniCal, shortCal = AH_FALSE;
4347	int nextcal;
4348
4349	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4350		goto restart;
4351	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4352	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4353	if (sc->sc_doresetcal)
4354		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4355
4356	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4357	if (aniCal) {
4358		sc->sc_stats.ast_ani_cal++;
4359		sc->sc_lastani = ticks;
4360		ath_hal_ani_poll(ah, sc->sc_curchan);
4361	}
4362
4363	if (longCal) {
4364		sc->sc_stats.ast_per_cal++;
4365		sc->sc_lastlongcal = ticks;
4366		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4367			/*
4368			 * Rfgain is out of bounds, reset the chip
4369			 * to load new gain values.
4370			 */
4371			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4372				"%s: rfgain change\n", __func__);
4373			sc->sc_stats.ast_per_rfgain++;
4374			sc->sc_resetcal = 0;
4375			sc->sc_doresetcal = AH_TRUE;
4376			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4377			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4378			return;
4379		}
4380		/*
4381		 * If this long cal is after an idle period, then
4382		 * reset the data collection state so we start fresh.
4383		 */
4384		if (sc->sc_resetcal) {
4385			(void) ath_hal_calreset(ah, sc->sc_curchan);
4386			sc->sc_lastcalreset = ticks;
4387			sc->sc_lastshortcal = ticks;
4388			sc->sc_resetcal = 0;
4389			sc->sc_doresetcal = AH_TRUE;
4390		}
4391	}
4392
4393	/* Only call if we're doing a short/long cal, not for ANI calibration */
4394	if (shortCal || longCal) {
4395		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4396			if (longCal) {
4397				/*
4398				 * Calibrate noise floor data again in case of change.
4399				 */
4400				ath_hal_process_noisefloor(ah);
4401			}
4402		} else {
4403			DPRINTF(sc, ATH_DEBUG_ANY,
4404				"%s: calibration of channel %u failed\n",
4405				__func__, sc->sc_curchan->ic_freq);
4406			sc->sc_stats.ast_per_calfail++;
4407		}
4408		if (shortCal)
4409			sc->sc_lastshortcal = ticks;
4410	}
4411	if (!isCalDone) {
4412restart:
4413		/*
4414		 * Use a shorter interval to potentially collect multiple
4415		 * data samples required to complete calibration.  Once
4416		 * we're told the work is done we drop back to a longer
4417		 * interval between requests.  We're more aggressive doing
4418		 * work when operating as an AP to improve operation right
4419		 * after startup.
4420		 */
4421		sc->sc_lastshortcal = ticks;
4422		nextcal = ath_shortcalinterval*hz/1000;
4423		if (sc->sc_opmode != HAL_M_HOSTAP)
4424			nextcal *= 10;
4425		sc->sc_doresetcal = AH_TRUE;
4426	} else {
4427		/* nextcal should be the shortest time for next event */
4428		nextcal = ath_longcalinterval*hz;
4429		if (sc->sc_lastcalreset == 0)
4430			sc->sc_lastcalreset = sc->sc_lastlongcal;
4431		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4432			sc->sc_resetcal = 1;	/* setup reset next trip */
4433		sc->sc_doresetcal = AH_FALSE;
4434	}
4435	/* ANI calibration may occur more often than short/long/resetcal */
4436	if (ath_anicalinterval > 0)
4437		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4438
4439	if (nextcal != 0) {
4440		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4441		    __func__, nextcal, isCalDone ? "" : "!");
4442		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4443	} else {
4444		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4445		    __func__);
4446		/* NB: don't rearm timer */
4447	}
4448}
4449
4450static void
4451ath_scan_start(struct ieee80211com *ic)
4452{
4453	struct ifnet *ifp = ic->ic_ifp;
4454	struct ath_softc *sc = ifp->if_softc;
4455	struct ath_hal *ah = sc->sc_ah;
4456	u_int32_t rfilt;
4457
4458	/* XXX calibration timer? */
4459
4460	ATH_LOCK(sc);
4461	sc->sc_scanning = 1;
4462	sc->sc_syncbeacon = 0;
4463	rfilt = ath_calcrxfilter(sc);
4464	ATH_UNLOCK(sc);
4465
4466	ATH_PCU_LOCK(sc);
4467	ath_hal_setrxfilter(ah, rfilt);
4468	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4469	ATH_PCU_UNLOCK(sc);
4470
4471	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4472		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4473}
4474
4475static void
4476ath_scan_end(struct ieee80211com *ic)
4477{
4478	struct ifnet *ifp = ic->ic_ifp;
4479	struct ath_softc *sc = ifp->if_softc;
4480	struct ath_hal *ah = sc->sc_ah;
4481	u_int32_t rfilt;
4482
4483	ATH_LOCK(sc);
4484	sc->sc_scanning = 0;
4485	rfilt = ath_calcrxfilter(sc);
4486	ATH_UNLOCK(sc);
4487
4488	ATH_PCU_LOCK(sc);
4489	ath_hal_setrxfilter(ah, rfilt);
4490	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4491
4492	ath_hal_process_noisefloor(ah);
4493	ATH_PCU_UNLOCK(sc);
4494
4495	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4496		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4497		 sc->sc_curaid);
4498}
4499
4500#ifdef	ATH_ENABLE_11N
4501/*
4502 * For now, just do a channel change.
4503 *
4504 * Later, we'll go through the hard slog of suspending tx/rx, changing rate
4505 * control state and resetting the hardware without dropping frames out
4506 * of the queue.
4507 *
4508 * The unfortunate trouble here is making absolutely sure that the
4509 * channel width change has propagated enough so the hardware
4510 * absolutely isn't handed bogus frames for it's current operating
4511 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
4512 * does occur in parallel, we need to make certain we've blocked
4513 * any further ongoing TX (and RX, that can cause raw TX)
4514 * before we do this.
4515 */
4516static void
4517ath_update_chw(struct ieee80211com *ic)
4518{
4519	struct ifnet *ifp = ic->ic_ifp;
4520	struct ath_softc *sc = ifp->if_softc;
4521
4522	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
4523	ath_set_channel(ic);
4524}
4525#endif	/* ATH_ENABLE_11N */
4526
4527static void
4528ath_set_channel(struct ieee80211com *ic)
4529{
4530	struct ifnet *ifp = ic->ic_ifp;
4531	struct ath_softc *sc = ifp->if_softc;
4532
4533	(void) ath_chan_set(sc, ic->ic_curchan);
4534	/*
4535	 * If we are returning to our bss channel then mark state
4536	 * so the next recv'd beacon's tsf will be used to sync the
4537	 * beacon timers.  Note that since we only hear beacons in
4538	 * sta/ibss mode this has no effect in other operating modes.
4539	 */
4540	ATH_LOCK(sc);
4541	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4542		sc->sc_syncbeacon = 1;
4543	ATH_UNLOCK(sc);
4544}
4545
4546/*
4547 * Walk the vap list and check if there any vap's in RUN state.
4548 */
4549static int
4550ath_isanyrunningvaps(struct ieee80211vap *this)
4551{
4552	struct ieee80211com *ic = this->iv_ic;
4553	struct ieee80211vap *vap;
4554
4555	IEEE80211_LOCK_ASSERT(ic);
4556
4557	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4558		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4559			return 1;
4560	}
4561	return 0;
4562}
4563
4564static int
4565ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4566{
4567	struct ieee80211com *ic = vap->iv_ic;
4568	struct ath_softc *sc = ic->ic_ifp->if_softc;
4569	struct ath_vap *avp = ATH_VAP(vap);
4570	struct ath_hal *ah = sc->sc_ah;
4571	struct ieee80211_node *ni = NULL;
4572	int i, error, stamode;
4573	u_int32_t rfilt;
4574	int csa_run_transition = 0;
4575	static const HAL_LED_STATE leds[] = {
4576	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4577	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4578	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4579	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4580	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4581	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4582	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4583	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4584	};
4585
4586	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4587		ieee80211_state_name[vap->iv_state],
4588		ieee80211_state_name[nstate]);
4589
4590	/*
4591	 * net80211 _should_ have the comlock asserted at this point.
4592	 * There are some comments around the calls to vap->iv_newstate
4593	 * which indicate that it (newstate) may end up dropping the
4594	 * lock.  This and the subsequent lock assert check after newstate
4595	 * are an attempt to catch these and figure out how/why.
4596	 */
4597	IEEE80211_LOCK_ASSERT(ic);
4598
4599	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
4600		csa_run_transition = 1;
4601
4602	callout_drain(&sc->sc_cal_ch);
4603	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4604
4605	if (nstate == IEEE80211_S_SCAN) {
4606		/*
4607		 * Scanning: turn off beacon miss and don't beacon.
4608		 * Mark beacon state so when we reach RUN state we'll
4609		 * [re]setup beacons.  Unblock the task q thread so
4610		 * deferred interrupt processing is done.
4611		 */
4612		ath_hal_intrset(ah,
4613		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4614		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4615		sc->sc_beacons = 0;
4616		taskqueue_unblock(sc->sc_tq);
4617	}
4618
4619	ni = ieee80211_ref_node(vap->iv_bss);
4620	rfilt = ath_calcrxfilter(sc);
4621	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4622		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4623		   vap->iv_opmode == IEEE80211_M_IBSS);
4624	if (stamode && nstate == IEEE80211_S_RUN) {
4625		sc->sc_curaid = ni->ni_associd;
4626		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
4627		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4628	}
4629	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4630	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
4631	ath_hal_setrxfilter(ah, rfilt);
4632
4633	/* XXX is this to restore keycache on resume? */
4634	if (vap->iv_opmode != IEEE80211_M_STA &&
4635	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
4636		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4637			if (ath_hal_keyisvalid(ah, i))
4638				ath_hal_keysetmac(ah, i, ni->ni_bssid);
4639	}
4640
4641	/*
4642	 * Invoke the parent method to do net80211 work.
4643	 */
4644	error = avp->av_newstate(vap, nstate, arg);
4645	if (error != 0)
4646		goto bad;
4647
4648	/*
4649	 * See above: ensure av_newstate() doesn't drop the lock
4650	 * on us.
4651	 */
4652	IEEE80211_LOCK_ASSERT(ic);
4653
4654	if (nstate == IEEE80211_S_RUN) {
4655		/* NB: collect bss node again, it may have changed */
4656		ieee80211_free_node(ni);
4657		ni = ieee80211_ref_node(vap->iv_bss);
4658
4659		DPRINTF(sc, ATH_DEBUG_STATE,
4660		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4661		    "capinfo 0x%04x chan %d\n", __func__,
4662		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
4663		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
4664
4665		switch (vap->iv_opmode) {
4666#ifdef IEEE80211_SUPPORT_TDMA
4667		case IEEE80211_M_AHDEMO:
4668			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
4669				break;
4670			/* fall thru... */
4671#endif
4672		case IEEE80211_M_HOSTAP:
4673		case IEEE80211_M_IBSS:
4674		case IEEE80211_M_MBSS:
4675			/*
4676			 * Allocate and setup the beacon frame.
4677			 *
4678			 * Stop any previous beacon DMA.  This may be
4679			 * necessary, for example, when an ibss merge
4680			 * causes reconfiguration; there will be a state
4681			 * transition from RUN->RUN that means we may
4682			 * be called with beacon transmission active.
4683			 */
4684			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4685
4686			error = ath_beacon_alloc(sc, ni);
4687			if (error != 0)
4688				goto bad;
4689			/*
4690			 * If joining an adhoc network defer beacon timer
4691			 * configuration to the next beacon frame so we
4692			 * have a current TSF to use.  Otherwise we're
4693			 * starting an ibss/bss so there's no need to delay;
4694			 * if this is the first vap moving to RUN state, then
4695			 * beacon state needs to be [re]configured.
4696			 */
4697			if (vap->iv_opmode == IEEE80211_M_IBSS &&
4698			    ni->ni_tstamp.tsf != 0) {
4699				sc->sc_syncbeacon = 1;
4700			} else if (!sc->sc_beacons) {
4701#ifdef IEEE80211_SUPPORT_TDMA
4702				if (vap->iv_caps & IEEE80211_C_TDMA)
4703					ath_tdma_config(sc, vap);
4704				else
4705#endif
4706					ath_beacon_config(sc, vap);
4707				sc->sc_beacons = 1;
4708			}
4709			break;
4710		case IEEE80211_M_STA:
4711			/*
4712			 * Defer beacon timer configuration to the next
4713			 * beacon frame so we have a current TSF to use
4714			 * (any TSF collected when scanning is likely old).
4715			 * However if it's due to a CSA -> RUN transition,
4716			 * force a beacon update so we pick up a lack of
4717			 * beacons from an AP in CAC and thus force a
4718			 * scan.
4719			 */
4720			sc->sc_syncbeacon = 1;
4721			if (csa_run_transition)
4722				ath_beacon_config(sc, vap);
4723			break;
4724		case IEEE80211_M_MONITOR:
4725			/*
4726			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
4727			 * transitions so we must re-enable interrupts here to
4728			 * handle the case of a single monitor mode vap.
4729			 */
4730			ath_hal_intrset(ah, sc->sc_imask);
4731			break;
4732		case IEEE80211_M_WDS:
4733			break;
4734		default:
4735			break;
4736		}
4737		/*
4738		 * Let the hal process statistics collected during a
4739		 * scan so it can provide calibrated noise floor data.
4740		 */
4741		ath_hal_process_noisefloor(ah);
4742		/*
4743		 * Reset rssi stats; maybe not the best place...
4744		 */
4745		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4746		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4747		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4748		/*
4749		 * Finally, start any timers and the task q thread
4750		 * (in case we didn't go through SCAN state).
4751		 */
4752		if (ath_longcalinterval != 0) {
4753			/* start periodic recalibration timer */
4754			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4755		} else {
4756			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4757			    "%s: calibration disabled\n", __func__);
4758		}
4759		taskqueue_unblock(sc->sc_tq);
4760	} else if (nstate == IEEE80211_S_INIT) {
4761		/*
4762		 * If there are no vaps left in RUN state then
4763		 * shutdown host/driver operation:
4764		 * o disable interrupts
4765		 * o disable the task queue thread
4766		 * o mark beacon processing as stopped
4767		 */
4768		if (!ath_isanyrunningvaps(vap)) {
4769			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4770			/* disable interrupts  */
4771			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4772			taskqueue_block(sc->sc_tq);
4773			sc->sc_beacons = 0;
4774		}
4775#ifdef IEEE80211_SUPPORT_TDMA
4776		ath_hal_setcca(ah, AH_TRUE);
4777#endif
4778	}
4779bad:
4780	ieee80211_free_node(ni);
4781	return error;
4782}
4783
4784/*
4785 * Allocate a key cache slot to the station so we can
4786 * setup a mapping from key index to node. The key cache
4787 * slot is needed for managing antenna state and for
4788 * compression when stations do not use crypto.  We do
4789 * it uniliaterally here; if crypto is employed this slot
4790 * will be reassigned.
4791 */
4792static void
4793ath_setup_stationkey(struct ieee80211_node *ni)
4794{
4795	struct ieee80211vap *vap = ni->ni_vap;
4796	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4797	ieee80211_keyix keyix, rxkeyix;
4798
4799	/* XXX should take a locked ref to vap->iv_bss */
4800	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4801		/*
4802		 * Key cache is full; we'll fall back to doing
4803		 * the more expensive lookup in software.  Note
4804		 * this also means no h/w compression.
4805		 */
4806		/* XXX msg+statistic */
4807	} else {
4808		/* XXX locking? */
4809		ni->ni_ucastkey.wk_keyix = keyix;
4810		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4811		/* NB: must mark device key to get called back on delete */
4812		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
4813		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
4814		/* NB: this will create a pass-thru key entry */
4815		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
4816	}
4817}
4818
4819/*
4820 * Setup driver-specific state for a newly associated node.
4821 * Note that we're called also on a re-associate, the isnew
4822 * param tells us if this is the first time or not.
4823 */
4824static void
4825ath_newassoc(struct ieee80211_node *ni, int isnew)
4826{
4827	struct ath_node *an = ATH_NODE(ni);
4828	struct ieee80211vap *vap = ni->ni_vap;
4829	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4830	const struct ieee80211_txparam *tp = ni->ni_txparms;
4831
4832	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
4833	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
4834
4835	ath_rate_newassoc(sc, an, isnew);
4836	if (isnew &&
4837	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
4838	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4839		ath_setup_stationkey(ni);
4840}
4841
4842static int
4843ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
4844	int nchans, struct ieee80211_channel chans[])
4845{
4846	struct ath_softc *sc = ic->ic_ifp->if_softc;
4847	struct ath_hal *ah = sc->sc_ah;
4848	HAL_STATUS status;
4849
4850	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4851	    "%s: rd %u cc %u location %c%s\n",
4852	    __func__, reg->regdomain, reg->country, reg->location,
4853	    reg->ecm ? " ecm" : "");
4854
4855	status = ath_hal_set_channels(ah, chans, nchans,
4856	    reg->country, reg->regdomain);
4857	if (status != HAL_OK) {
4858		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
4859		    __func__, status);
4860		return EINVAL;		/* XXX */
4861	}
4862
4863	return 0;
4864}
4865
4866static void
4867ath_getradiocaps(struct ieee80211com *ic,
4868	int maxchans, int *nchans, struct ieee80211_channel chans[])
4869{
4870	struct ath_softc *sc = ic->ic_ifp->if_softc;
4871	struct ath_hal *ah = sc->sc_ah;
4872
4873	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
4874	    __func__, SKU_DEBUG, CTRY_DEFAULT);
4875
4876	/* XXX check return */
4877	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
4878	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
4879
4880}
4881
4882static int
4883ath_getchannels(struct ath_softc *sc)
4884{
4885	struct ifnet *ifp = sc->sc_ifp;
4886	struct ieee80211com *ic = ifp->if_l2com;
4887	struct ath_hal *ah = sc->sc_ah;
4888	HAL_STATUS status;
4889
4890	/*
4891	 * Collect channel set based on EEPROM contents.
4892	 */
4893	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
4894	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
4895	if (status != HAL_OK) {
4896		if_printf(ifp, "%s: unable to collect channel list from hal, "
4897		    "status %d\n", __func__, status);
4898		return EINVAL;
4899	}
4900	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
4901	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
4902	/* XXX map Atheros sku's to net80211 SKU's */
4903	/* XXX net80211 types too small */
4904	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
4905	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
4906	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
4907	ic->ic_regdomain.isocc[1] = ' ';
4908
4909	ic->ic_regdomain.ecm = 1;
4910	ic->ic_regdomain.location = 'I';
4911
4912	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4913	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
4914	    __func__, sc->sc_eerd, sc->sc_eecc,
4915	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
4916	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
4917	return 0;
4918}
4919
4920static int
4921ath_rate_setup(struct ath_softc *sc, u_int mode)
4922{
4923	struct ath_hal *ah = sc->sc_ah;
4924	const HAL_RATE_TABLE *rt;
4925
4926	switch (mode) {
4927	case IEEE80211_MODE_11A:
4928		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4929		break;
4930	case IEEE80211_MODE_HALF:
4931		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
4932		break;
4933	case IEEE80211_MODE_QUARTER:
4934		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
4935		break;
4936	case IEEE80211_MODE_11B:
4937		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4938		break;
4939	case IEEE80211_MODE_11G:
4940		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4941		break;
4942	case IEEE80211_MODE_TURBO_A:
4943		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
4944		break;
4945	case IEEE80211_MODE_TURBO_G:
4946		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4947		break;
4948	case IEEE80211_MODE_STURBO_A:
4949		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4950		break;
4951	case IEEE80211_MODE_11NA:
4952		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
4953		break;
4954	case IEEE80211_MODE_11NG:
4955		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
4956		break;
4957	default:
4958		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4959			__func__, mode);
4960		return 0;
4961	}
4962	sc->sc_rates[mode] = rt;
4963	return (rt != NULL);
4964}
4965
4966static void
4967ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4968{
4969#define	N(a)	(sizeof(a)/sizeof(a[0]))
4970	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4971	static const struct {
4972		u_int		rate;		/* tx/rx 802.11 rate */
4973		u_int16_t	timeOn;		/* LED on time (ms) */
4974		u_int16_t	timeOff;	/* LED off time (ms) */
4975	} blinkrates[] = {
4976		{ 108,  40,  10 },
4977		{  96,  44,  11 },
4978		{  72,  50,  13 },
4979		{  48,  57,  14 },
4980		{  36,  67,  16 },
4981		{  24,  80,  20 },
4982		{  22, 100,  25 },
4983		{  18, 133,  34 },
4984		{  12, 160,  40 },
4985		{  10, 200,  50 },
4986		{   6, 240,  58 },
4987		{   4, 267,  66 },
4988		{   2, 400, 100 },
4989		{   0, 500, 130 },
4990		/* XXX half/quarter rates */
4991	};
4992	const HAL_RATE_TABLE *rt;
4993	int i, j;
4994
4995	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4996	rt = sc->sc_rates[mode];
4997	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4998	for (i = 0; i < rt->rateCount; i++) {
4999		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5000		if (rt->info[i].phy != IEEE80211_T_HT)
5001			sc->sc_rixmap[ieeerate] = i;
5002		else
5003			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5004	}
5005	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5006	for (i = 0; i < N(sc->sc_hwmap); i++) {
5007		if (i >= rt->rateCount) {
5008			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5009			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5010			continue;
5011		}
5012		sc->sc_hwmap[i].ieeerate =
5013			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5014		if (rt->info[i].phy == IEEE80211_T_HT)
5015			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5016		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5017		if (rt->info[i].shortPreamble ||
5018		    rt->info[i].phy == IEEE80211_T_OFDM)
5019			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5020		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5021		for (j = 0; j < N(blinkrates)-1; j++)
5022			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5023				break;
5024		/* NB: this uses the last entry if the rate isn't found */
5025		/* XXX beware of overlow */
5026		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5027		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5028	}
5029	sc->sc_currates = rt;
5030	sc->sc_curmode = mode;
5031	/*
5032	 * All protection frames are transmited at 2Mb/s for
5033	 * 11g, otherwise at 1Mb/s.
5034	 */
5035	if (mode == IEEE80211_MODE_11G)
5036		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5037	else
5038		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5039	/* NB: caller is responsible for resetting rate control state */
5040#undef N
5041}
5042
5043static void
5044ath_watchdog(void *arg)
5045{
5046	struct ath_softc *sc = arg;
5047	int do_reset = 0;
5048
5049	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5050		struct ifnet *ifp = sc->sc_ifp;
5051		uint32_t hangs;
5052
5053		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5054		    hangs != 0) {
5055			if_printf(ifp, "%s hang detected (0x%x)\n",
5056			    hangs & 0xff ? "bb" : "mac", hangs);
5057		} else
5058			if_printf(ifp, "device timeout\n");
5059		do_reset = 1;
5060		ifp->if_oerrors++;
5061		sc->sc_stats.ast_watchdog++;
5062	}
5063
5064	/*
5065	 * We can't hold the lock across the ath_reset() call.
5066	 *
5067	 * And since this routine can't hold a lock and sleep,
5068	 * do the reset deferred.
5069	 */
5070	if (do_reset) {
5071		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
5072	}
5073
5074	callout_schedule(&sc->sc_wd_ch, hz);
5075}
5076
5077/*
5078 * Fetch the rate control statistics for the given node.
5079 */
5080static int
5081ath_ioctl_ratestats(struct ath_softc *sc, struct ath_rateioctl *rs)
5082{
5083	struct ath_node *an;
5084	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5085	struct ieee80211_node *ni;
5086	int error = 0;
5087
5088	/* Perform a lookup on the given node */
5089	ni = ieee80211_find_node(&ic->ic_sta, rs->is_u.macaddr);
5090	if (ni == NULL) {
5091		error = EINVAL;
5092		goto bad;
5093	}
5094
5095	/* Lock the ath_node */
5096	an = ATH_NODE(ni);
5097	ATH_NODE_LOCK(an);
5098
5099	/* Fetch the rate control stats for this node */
5100	error = ath_rate_fetch_node_stats(sc, an, rs);
5101
5102	/* No matter what happens here, just drop through */
5103
5104	/* Unlock the ath_node */
5105	ATH_NODE_UNLOCK(an);
5106
5107	/* Unref the node */
5108	ieee80211_node_decref(ni);
5109
5110bad:
5111	return (error);
5112}
5113
5114#ifdef ATH_DIAGAPI
5115/*
5116 * Diagnostic interface to the HAL.  This is used by various
5117 * tools to do things like retrieve register contents for
5118 * debugging.  The mechanism is intentionally opaque so that
5119 * it can change frequently w/o concern for compatiblity.
5120 */
5121static int
5122ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5123{
5124	struct ath_hal *ah = sc->sc_ah;
5125	u_int id = ad->ad_id & ATH_DIAG_ID;
5126	void *indata = NULL;
5127	void *outdata = NULL;
5128	u_int32_t insize = ad->ad_in_size;
5129	u_int32_t outsize = ad->ad_out_size;
5130	int error = 0;
5131
5132	if (ad->ad_id & ATH_DIAG_IN) {
5133		/*
5134		 * Copy in data.
5135		 */
5136		indata = malloc(insize, M_TEMP, M_NOWAIT);
5137		if (indata == NULL) {
5138			error = ENOMEM;
5139			goto bad;
5140		}
5141		error = copyin(ad->ad_in_data, indata, insize);
5142		if (error)
5143			goto bad;
5144	}
5145	if (ad->ad_id & ATH_DIAG_DYN) {
5146		/*
5147		 * Allocate a buffer for the results (otherwise the HAL
5148		 * returns a pointer to a buffer where we can read the
5149		 * results).  Note that we depend on the HAL leaving this
5150		 * pointer for us to use below in reclaiming the buffer;
5151		 * may want to be more defensive.
5152		 */
5153		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5154		if (outdata == NULL) {
5155			error = ENOMEM;
5156			goto bad;
5157		}
5158	}
5159	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5160		if (outsize < ad->ad_out_size)
5161			ad->ad_out_size = outsize;
5162		if (outdata != NULL)
5163			error = copyout(outdata, ad->ad_out_data,
5164					ad->ad_out_size);
5165	} else {
5166		error = EINVAL;
5167	}
5168bad:
5169	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5170		free(indata, M_TEMP);
5171	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5172		free(outdata, M_TEMP);
5173	return error;
5174}
5175#endif /* ATH_DIAGAPI */
5176
5177static int
5178ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5179{
5180#define	IS_RUNNING(ifp) \
5181	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5182	struct ath_softc *sc = ifp->if_softc;
5183	struct ieee80211com *ic = ifp->if_l2com;
5184	struct ifreq *ifr = (struct ifreq *)data;
5185	const HAL_RATE_TABLE *rt;
5186	int error = 0;
5187
5188	switch (cmd) {
5189	case SIOCSIFFLAGS:
5190		ATH_LOCK(sc);
5191		if (IS_RUNNING(ifp)) {
5192			/*
5193			 * To avoid rescanning another access point,
5194			 * do not call ath_init() here.  Instead,
5195			 * only reflect promisc mode settings.
5196			 */
5197			ath_mode_init(sc);
5198		} else if (ifp->if_flags & IFF_UP) {
5199			/*
5200			 * Beware of being called during attach/detach
5201			 * to reset promiscuous mode.  In that case we
5202			 * will still be marked UP but not RUNNING.
5203			 * However trying to re-init the interface
5204			 * is the wrong thing to do as we've already
5205			 * torn down much of our state.  There's
5206			 * probably a better way to deal with this.
5207			 */
5208			if (!sc->sc_invalid)
5209				ath_init(sc);	/* XXX lose error */
5210		} else {
5211			ath_stop_locked(ifp);
5212#ifdef notyet
5213			/* XXX must wakeup in places like ath_vap_delete */
5214			if (!sc->sc_invalid)
5215				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5216#endif
5217		}
5218		ATH_UNLOCK(sc);
5219		break;
5220	case SIOCGIFMEDIA:
5221	case SIOCSIFMEDIA:
5222		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5223		break;
5224	case SIOCGATHSTATS:
5225		/* NB: embed these numbers to get a consistent view */
5226		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5227		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5228		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5229		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5230#ifdef IEEE80211_SUPPORT_TDMA
5231		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
5232		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
5233#endif
5234		rt = sc->sc_currates;
5235		sc->sc_stats.ast_tx_rate =
5236		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
5237		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
5238			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
5239		return copyout(&sc->sc_stats,
5240		    ifr->ifr_data, sizeof (sc->sc_stats));
5241	case SIOCGATHAGSTATS:
5242		return copyout(&sc->sc_aggr_stats,
5243		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
5244	case SIOCZATHSTATS:
5245		error = priv_check(curthread, PRIV_DRIVER);
5246		if (error == 0) {
5247			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
5248			memset(&sc->sc_aggr_stats, 0,
5249			    sizeof(sc->sc_aggr_stats));
5250			memset(&sc->sc_intr_stats, 0,
5251			    sizeof(sc->sc_intr_stats));
5252		}
5253		break;
5254#ifdef ATH_DIAGAPI
5255	case SIOCGATHDIAG:
5256		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5257		break;
5258	case SIOCGATHPHYERR:
5259		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
5260		break;
5261#endif
5262	case SIOCGATHNODERATESTATS:
5263		error = ath_ioctl_ratestats(sc, (struct ath_rateioctl *) ifr);
5264		break;
5265	case SIOCGIFADDR:
5266		error = ether_ioctl(ifp, cmd, data);
5267		break;
5268	default:
5269		error = EINVAL;
5270		break;
5271	}
5272	return error;
5273#undef IS_RUNNING
5274}
5275
5276/*
5277 * Announce various information on device/driver attach.
5278 */
5279static void
5280ath_announce(struct ath_softc *sc)
5281{
5282	struct ifnet *ifp = sc->sc_ifp;
5283	struct ath_hal *ah = sc->sc_ah;
5284
5285	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
5286		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
5287		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5288	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
5289		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
5290	if (bootverbose) {
5291		int i;
5292		for (i = 0; i <= WME_AC_VO; i++) {
5293			struct ath_txq *txq = sc->sc_ac2q[i];
5294			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5295				txq->axq_qnum, ieee80211_wme_acnames[i]);
5296		}
5297		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5298			sc->sc_cabq->axq_qnum);
5299		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5300	}
5301	if (ath_rxbuf != ATH_RXBUF)
5302		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5303	if (ath_txbuf != ATH_TXBUF)
5304		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5305	if (sc->sc_mcastkey && bootverbose)
5306		if_printf(ifp, "using multicast key search\n");
5307}
5308
5309static void
5310ath_dfs_tasklet(void *p, int npending)
5311{
5312	struct ath_softc *sc = (struct ath_softc *) p;
5313	struct ifnet *ifp = sc->sc_ifp;
5314	struct ieee80211com *ic = ifp->if_l2com;
5315
5316	/*
5317	 * If previous processing has found a radar event,
5318	 * signal this to the net80211 layer to begin DFS
5319	 * processing.
5320	 */
5321	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
5322		/* DFS event found, initiate channel change */
5323		/*
5324		 * XXX doesn't currently tell us whether the event
5325		 * XXX was found in the primary or extension
5326		 * XXX channel!
5327		 */
5328		IEEE80211_LOCK(ic);
5329		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
5330		IEEE80211_UNLOCK(ic);
5331	}
5332}
5333
5334MODULE_VERSION(if_ath, 1);
5335MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
5336#if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
5337MODULE_DEPEND(if_ath, alq, 1, 1, 1);
5338#endif
5339