if_ath.c revision 237527
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 237527 2012-06-24 08:28:06Z adrian $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42/*
43 * This is needed for register operations which are performed
44 * by the driver - eg, calls to ath_hal_gettsf32().
45 *
46 * It's also required for any AH_DEBUG checks in here, eg the
47 * module dependencies.
48 */
49#include "opt_ah.h"
50#include "opt_wlan.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/sysctl.h>
55#include <sys/mbuf.h>
56#include <sys/malloc.h>
57#include <sys/lock.h>
58#include <sys/mutex.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/sockio.h>
62#include <sys/errno.h>
63#include <sys/callout.h>
64#include <sys/bus.h>
65#include <sys/endian.h>
66#include <sys/kthread.h>
67#include <sys/taskqueue.h>
68#include <sys/priv.h>
69#include <sys/module.h>
70#include <sys/ktr.h>
71#include <sys/smp.h>	/* for mp_ncpus */
72
73#include <machine/bus.h>
74
75#include <net/if.h>
76#include <net/if_dl.h>
77#include <net/if_media.h>
78#include <net/if_types.h>
79#include <net/if_arp.h>
80#include <net/ethernet.h>
81#include <net/if_llc.h>
82
83#include <net80211/ieee80211_var.h>
84#include <net80211/ieee80211_regdomain.h>
85#ifdef IEEE80211_SUPPORT_SUPERG
86#include <net80211/ieee80211_superg.h>
87#endif
88#ifdef IEEE80211_SUPPORT_TDMA
89#include <net80211/ieee80211_tdma.h>
90#endif
91
92#include <net/bpf.h>
93
94#ifdef INET
95#include <netinet/in.h>
96#include <netinet/if_ether.h>
97#endif
98
99#include <dev/ath/if_athvar.h>
100#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101#include <dev/ath/ath_hal/ah_diagcodes.h>
102
103#include <dev/ath/if_ath_debug.h>
104#include <dev/ath/if_ath_misc.h>
105#include <dev/ath/if_ath_tsf.h>
106#include <dev/ath/if_ath_tx.h>
107#include <dev/ath/if_ath_sysctl.h>
108#include <dev/ath/if_ath_led.h>
109#include <dev/ath/if_ath_keycache.h>
110#include <dev/ath/if_ath_rx.h>
111#include <dev/ath/if_ath_beacon.h>
112#include <dev/ath/if_athdfs.h>
113
114#ifdef ATH_TX99_DIAG
115#include <dev/ath/ath_tx99/ath_tx99.h>
116#endif
117
118#define	ATH_KTR_INTR	KTR_SPARE4
119#define	ATH_KTR_ERR	KTR_SPARE3
120
121/*
122 * ATH_BCBUF determines the number of vap's that can transmit
123 * beacons and also (currently) the number of vap's that can
124 * have unique mac addresses/bssid.  When staggering beacons
125 * 4 is probably a good max as otherwise the beacons become
126 * very closely spaced and there is limited time for cab q traffic
127 * to go out.  You can burst beacons instead but that is not good
128 * for stations in power save and at some point you really want
129 * another radio (and channel).
130 *
131 * The limit on the number of mac addresses is tied to our use of
132 * the U/L bit and tracking addresses in a byte; it would be
133 * worthwhile to allow more for applications like proxy sta.
134 */
135CTASSERT(ATH_BCBUF <= 8);
136
137static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
138		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
139		    const uint8_t [IEEE80211_ADDR_LEN],
140		    const uint8_t [IEEE80211_ADDR_LEN]);
141static void	ath_vap_delete(struct ieee80211vap *);
142static void	ath_init(void *);
143static void	ath_stop_locked(struct ifnet *);
144static void	ath_stop(struct ifnet *);
145static int	ath_reset_vap(struct ieee80211vap *, u_long);
146static int	ath_media_change(struct ifnet *);
147static void	ath_watchdog(void *);
148static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
149static void	ath_fatal_proc(void *, int);
150static void	ath_bmiss_vap(struct ieee80211vap *);
151static void	ath_bmiss_proc(void *, int);
152static void	ath_key_update_begin(struct ieee80211vap *);
153static void	ath_key_update_end(struct ieee80211vap *);
154static void	ath_update_mcast(struct ifnet *);
155static void	ath_update_promisc(struct ifnet *);
156static void	ath_updateslot(struct ifnet *);
157static void	ath_bstuck_proc(void *, int);
158static void	ath_reset_proc(void *, int);
159static void	ath_descdma_cleanup(struct ath_softc *sc,
160			struct ath_descdma *, ath_bufhead *);
161static int	ath_desc_alloc(struct ath_softc *);
162static void	ath_desc_free(struct ath_softc *);
163static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
164			const uint8_t [IEEE80211_ADDR_LEN]);
165static void	ath_node_cleanup(struct ieee80211_node *);
166static void	ath_node_free(struct ieee80211_node *);
167static void	ath_node_getsignal(const struct ieee80211_node *,
168			int8_t *, int8_t *);
169static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
170static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
171static int	ath_tx_setup(struct ath_softc *, int, int);
172static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
173static void	ath_tx_cleanup(struct ath_softc *);
174static void	ath_tx_proc_q0(void *, int);
175static void	ath_tx_proc_q0123(void *, int);
176static void	ath_tx_proc(void *, int);
177static void	ath_txq_sched_tasklet(void *, int);
178static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
179static void	ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type);
180static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
181static void	ath_scan_start(struct ieee80211com *);
182static void	ath_scan_end(struct ieee80211com *);
183static void	ath_set_channel(struct ieee80211com *);
184#ifdef	ATH_ENABLE_11N
185static void	ath_update_chw(struct ieee80211com *);
186#endif	/* ATH_ENABLE_11N */
187static void	ath_calibrate(void *);
188static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
189static void	ath_setup_stationkey(struct ieee80211_node *);
190static void	ath_newassoc(struct ieee80211_node *, int);
191static int	ath_setregdomain(struct ieee80211com *,
192		    struct ieee80211_regdomain *, int,
193		    struct ieee80211_channel []);
194static void	ath_getradiocaps(struct ieee80211com *, int, int *,
195		    struct ieee80211_channel []);
196static int	ath_getchannels(struct ath_softc *);
197
198static int	ath_rate_setup(struct ath_softc *, u_int mode);
199static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
200
201static void	ath_announce(struct ath_softc *);
202
203static void	ath_dfs_tasklet(void *, int);
204
205#ifdef IEEE80211_SUPPORT_TDMA
206#include <dev/ath/if_ath_tdma.h>
207#endif
208
209#if 0
210#define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
211#define	TDMA_LPF_LEN		6
212#define	TDMA_DUMMY_MARKER	0x127
213#define	TDMA_EP_MUL(x, mul)	((x) * (mul))
214#define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
215#define	TDMA_LPF(x, y, len) \
216    ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
217#define	TDMA_SAMPLE(x, y) do {					\
218	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
219} while (0)
220#define	TDMA_EP_RND(x,mul) \
221	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
222#define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
223#endif /* IEEE80211_SUPPORT_TDMA */
224
225SYSCTL_DECL(_hw_ath);
226
227/* XXX validate sysctl values */
228static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
229SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
230	    0, "long chip calibration interval (secs)");
231static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
232SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
233	    0, "short chip calibration interval (msecs)");
234static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
235SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
236	    0, "reset chip calibration results (secs)");
237static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
238SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
239	    0, "ANI calibration (msecs)");
240
241static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
242SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
243	    0, "rx buffers allocated");
244TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
245static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
246SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
247	    0, "tx buffers allocated");
248TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
249static	int ath_txbuf_mgmt = ATH_MGMT_TXBUF;	/* # mgmt tx buffers to allocate */
250SYSCTL_INT(_hw_ath, OID_AUTO, txbuf_mgmt, CTLFLAG_RW, &ath_txbuf_mgmt,
251	    0, "tx (mgmt) buffers allocated");
252TUNABLE_INT("hw.ath.txbuf_mgmt", &ath_txbuf_mgmt);
253
254int ath_bstuck_threshold = 4;		/* max missed beacons */
255SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
256	    0, "max missed beacon xmits before chip reset");
257
258MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
259
260#define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
261#define	HAL_MODE_HT40 \
262	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
263	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
264int
265ath_attach(u_int16_t devid, struct ath_softc *sc)
266{
267	struct ifnet *ifp;
268	struct ieee80211com *ic;
269	struct ath_hal *ah = NULL;
270	HAL_STATUS status;
271	int error = 0, i;
272	u_int wmodes;
273	uint8_t macaddr[IEEE80211_ADDR_LEN];
274	int rx_chainmask, tx_chainmask;
275
276	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
277
278	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
279	if (ifp == NULL) {
280		device_printf(sc->sc_dev, "can not if_alloc()\n");
281		error = ENOSPC;
282		goto bad;
283	}
284	ic = ifp->if_l2com;
285
286	/* set these up early for if_printf use */
287	if_initname(ifp, device_get_name(sc->sc_dev),
288		device_get_unit(sc->sc_dev));
289
290	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
291	    sc->sc_eepromdata, &status);
292	if (ah == NULL) {
293		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
294			status);
295		error = ENXIO;
296		goto bad;
297	}
298	sc->sc_ah = ah;
299	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
300#ifdef	ATH_DEBUG
301	sc->sc_debug = ath_debug;
302#endif
303
304	/*
305	 * Check if the MAC has multi-rate retry support.
306	 * We do this by trying to setup a fake extended
307	 * descriptor.  MAC's that don't have support will
308	 * return false w/o doing anything.  MAC's that do
309	 * support it will return true w/o doing anything.
310	 */
311	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
312
313	/*
314	 * Check if the device has hardware counters for PHY
315	 * errors.  If so we need to enable the MIB interrupt
316	 * so we can act on stat triggers.
317	 */
318	if (ath_hal_hwphycounters(ah))
319		sc->sc_needmib = 1;
320
321	/*
322	 * Get the hardware key cache size.
323	 */
324	sc->sc_keymax = ath_hal_keycachesize(ah);
325	if (sc->sc_keymax > ATH_KEYMAX) {
326		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
327			ATH_KEYMAX, sc->sc_keymax);
328		sc->sc_keymax = ATH_KEYMAX;
329	}
330	/*
331	 * Reset the key cache since some parts do not
332	 * reset the contents on initial power up.
333	 */
334	for (i = 0; i < sc->sc_keymax; i++)
335		ath_hal_keyreset(ah, i);
336
337	/*
338	 * Collect the default channel list.
339	 */
340	error = ath_getchannels(sc);
341	if (error != 0)
342		goto bad;
343
344	/*
345	 * Setup rate tables for all potential media types.
346	 */
347	ath_rate_setup(sc, IEEE80211_MODE_11A);
348	ath_rate_setup(sc, IEEE80211_MODE_11B);
349	ath_rate_setup(sc, IEEE80211_MODE_11G);
350	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
351	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
352	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
353	ath_rate_setup(sc, IEEE80211_MODE_11NA);
354	ath_rate_setup(sc, IEEE80211_MODE_11NG);
355	ath_rate_setup(sc, IEEE80211_MODE_HALF);
356	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
357
358	/* NB: setup here so ath_rate_update is happy */
359	ath_setcurmode(sc, IEEE80211_MODE_11A);
360
361	/*
362	 * Allocate tx+rx descriptors and populate the lists.
363	 */
364	error = ath_desc_alloc(sc);
365	if (error != 0) {
366		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
367		goto bad;
368	}
369	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
370	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
371
372	ATH_TXBUF_LOCK_INIT(sc);
373
374	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
375		taskqueue_thread_enqueue, &sc->sc_tq);
376	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
377		"%s taskq", ifp->if_xname);
378
379	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc);
380	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
381	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
382	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
383	TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc);
384	TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc);
385
386	/*
387	 * Allocate hardware transmit queues: one queue for
388	 * beacon frames and one data queue for each QoS
389	 * priority.  Note that the hal handles resetting
390	 * these queues at the needed time.
391	 *
392	 * XXX PS-Poll
393	 */
394	sc->sc_bhalq = ath_beaconq_setup(ah);
395	if (sc->sc_bhalq == (u_int) -1) {
396		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
397		error = EIO;
398		goto bad2;
399	}
400	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
401	if (sc->sc_cabq == NULL) {
402		if_printf(ifp, "unable to setup CAB xmit queue!\n");
403		error = EIO;
404		goto bad2;
405	}
406	/* NB: insure BK queue is the lowest priority h/w queue */
407	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
408		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
409			ieee80211_wme_acnames[WME_AC_BK]);
410		error = EIO;
411		goto bad2;
412	}
413	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
414	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
415	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
416		/*
417		 * Not enough hardware tx queues to properly do WME;
418		 * just punt and assign them all to the same h/w queue.
419		 * We could do a better job of this if, for example,
420		 * we allocate queues when we switch from station to
421		 * AP mode.
422		 */
423		if (sc->sc_ac2q[WME_AC_VI] != NULL)
424			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
425		if (sc->sc_ac2q[WME_AC_BE] != NULL)
426			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
427		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
428		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
429		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
430	}
431
432	/*
433	 * Special case certain configurations.  Note the
434	 * CAB queue is handled by these specially so don't
435	 * include them when checking the txq setup mask.
436	 */
437	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
438	case 0x01:
439		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
440		break;
441	case 0x0f:
442		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
443		break;
444	default:
445		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
446		break;
447	}
448
449	/*
450	 * Setup rate control.  Some rate control modules
451	 * call back to change the anntena state so expose
452	 * the necessary entry points.
453	 * XXX maybe belongs in struct ath_ratectrl?
454	 */
455	sc->sc_setdefantenna = ath_setdefantenna;
456	sc->sc_rc = ath_rate_attach(sc);
457	if (sc->sc_rc == NULL) {
458		error = EIO;
459		goto bad2;
460	}
461
462	/* Attach DFS module */
463	if (! ath_dfs_attach(sc)) {
464		device_printf(sc->sc_dev,
465		    "%s: unable to attach DFS\n", __func__);
466		error = EIO;
467		goto bad2;
468	}
469
470	/* Start DFS processing tasklet */
471	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
472
473	/* Configure LED state */
474	sc->sc_blinking = 0;
475	sc->sc_ledstate = 1;
476	sc->sc_ledon = 0;			/* low true */
477	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
478	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
479
480	/*
481	 * Don't setup hardware-based blinking.
482	 *
483	 * Although some NICs may have this configured in the
484	 * default reset register values, the user may wish
485	 * to alter which pins have which function.
486	 *
487	 * The reference driver attaches the MAC network LED to GPIO1 and
488	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
489	 * NIC has these reversed.
490	 */
491	sc->sc_hardled = (1 == 0);
492	sc->sc_led_net_pin = -1;
493	sc->sc_led_pwr_pin = -1;
494	/*
495	 * Auto-enable soft led processing for IBM cards and for
496	 * 5211 minipci cards.  Users can also manually enable/disable
497	 * support with a sysctl.
498	 */
499	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
500	ath_led_config(sc);
501	ath_hal_setledstate(ah, HAL_LED_INIT);
502
503	ifp->if_softc = sc;
504	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
505	ifp->if_start = ath_start;
506	ifp->if_ioctl = ath_ioctl;
507	ifp->if_init = ath_init;
508	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
509	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
510	IFQ_SET_READY(&ifp->if_snd);
511
512	ic->ic_ifp = ifp;
513	/* XXX not right but it's not used anywhere important */
514	ic->ic_phytype = IEEE80211_T_OFDM;
515	ic->ic_opmode = IEEE80211_M_STA;
516	ic->ic_caps =
517		  IEEE80211_C_STA		/* station mode */
518		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
519		| IEEE80211_C_HOSTAP		/* hostap mode */
520		| IEEE80211_C_MONITOR		/* monitor mode */
521		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
522		| IEEE80211_C_WDS		/* 4-address traffic works */
523		| IEEE80211_C_MBSS		/* mesh point link mode */
524		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
525		| IEEE80211_C_SHSLOT		/* short slot time supported */
526		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
527#ifndef	ATH_ENABLE_11N
528		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
529#endif
530		| IEEE80211_C_TXFRAG		/* handle tx frags */
531#ifdef	ATH_ENABLE_DFS
532		| IEEE80211_C_DFS		/* Enable radar detection */
533#endif
534		;
535	/*
536	 * Query the hal to figure out h/w crypto support.
537	 */
538	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
539		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
540	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
541		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
542	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
543		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
544	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
545		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
546	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
547		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
548		/*
549		 * Check if h/w does the MIC and/or whether the
550		 * separate key cache entries are required to
551		 * handle both tx+rx MIC keys.
552		 */
553		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
554			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
555		/*
556		 * If the h/w supports storing tx+rx MIC keys
557		 * in one cache slot automatically enable use.
558		 */
559		if (ath_hal_hastkipsplit(ah) ||
560		    !ath_hal_settkipsplit(ah, AH_FALSE))
561			sc->sc_splitmic = 1;
562		/*
563		 * If the h/w can do TKIP MIC together with WME then
564		 * we use it; otherwise we force the MIC to be done
565		 * in software by the net80211 layer.
566		 */
567		if (ath_hal_haswmetkipmic(ah))
568			sc->sc_wmetkipmic = 1;
569	}
570	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
571	/*
572	 * Check for multicast key search support.
573	 */
574	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
575	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
576		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
577	}
578	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
579	/*
580	 * Mark key cache slots associated with global keys
581	 * as in use.  If we knew TKIP was not to be used we
582	 * could leave the +32, +64, and +32+64 slots free.
583	 */
584	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
585		setbit(sc->sc_keymap, i);
586		setbit(sc->sc_keymap, i+64);
587		if (sc->sc_splitmic) {
588			setbit(sc->sc_keymap, i+32);
589			setbit(sc->sc_keymap, i+32+64);
590		}
591	}
592	/*
593	 * TPC support can be done either with a global cap or
594	 * per-packet support.  The latter is not available on
595	 * all parts.  We're a bit pedantic here as all parts
596	 * support a global cap.
597	 */
598	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
599		ic->ic_caps |= IEEE80211_C_TXPMGT;
600
601	/*
602	 * Mark WME capability only if we have sufficient
603	 * hardware queues to do proper priority scheduling.
604	 */
605	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
606		ic->ic_caps |= IEEE80211_C_WME;
607	/*
608	 * Check for misc other capabilities.
609	 */
610	if (ath_hal_hasbursting(ah))
611		ic->ic_caps |= IEEE80211_C_BURST;
612	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
613	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
614	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
615	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
616	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
617	if (ath_hal_hasfastframes(ah))
618		ic->ic_caps |= IEEE80211_C_FF;
619	wmodes = ath_hal_getwirelessmodes(ah);
620	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
621		ic->ic_caps |= IEEE80211_C_TURBOP;
622#ifdef IEEE80211_SUPPORT_TDMA
623	if (ath_hal_macversion(ah) > 0x78) {
624		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
625		ic->ic_tdma_update = ath_tdma_update;
626	}
627#endif
628
629	/*
630	 * TODO: enforce that at least this many frames are available
631	 * in the txbuf list before allowing data frames (raw or
632	 * otherwise) to be transmitted.
633	 */
634	sc->sc_txq_data_minfree = 10;
635	/*
636	 * Leave this as default to maintain legacy behaviour.
637	 * Shortening the cabq/mcastq may end up causing some
638	 * undesirable behaviour.
639	 */
640	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
641
642	/*
643	 * Allow the TX and RX chainmasks to be overridden by
644	 * environment variables and/or device.hints.
645	 *
646	 * This must be done early - before the hardware is
647	 * calibrated or before the 802.11n stream calculation
648	 * is done.
649	 */
650	if (resource_int_value(device_get_name(sc->sc_dev),
651	    device_get_unit(sc->sc_dev), "rx_chainmask",
652	    &rx_chainmask) == 0) {
653		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
654		    rx_chainmask);
655		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
656	}
657	if (resource_int_value(device_get_name(sc->sc_dev),
658	    device_get_unit(sc->sc_dev), "tx_chainmask",
659	    &tx_chainmask) == 0) {
660		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
661		    tx_chainmask);
662		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
663	}
664
665#ifdef	ATH_ENABLE_11N
666	/*
667	 * Query HT capabilities
668	 */
669	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
670	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
671		int rxs, txs;
672
673		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
674		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
675			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
676			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
677			    | IEEE80211_HTCAP_MAXAMSDU_3839
678			    				/* max A-MSDU length */
679			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
680			;
681
682		/*
683		 * Enable short-GI for HT20 only if the hardware
684		 * advertises support.
685		 * Notably, anything earlier than the AR9287 doesn't.
686		 */
687		if ((ath_hal_getcapability(ah,
688		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
689		    (wmodes & HAL_MODE_HT20)) {
690			device_printf(sc->sc_dev,
691			    "[HT] enabling short-GI in 20MHz mode\n");
692			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
693		}
694
695		if (wmodes & HAL_MODE_HT40)
696			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
697			    |  IEEE80211_HTCAP_SHORTGI40;
698
699		/*
700		 * TX/RX streams need to be taken into account when
701		 * negotiating which MCS rates it'll receive and
702		 * what MCS rates are available for TX.
703		 */
704		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
705		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
706
707		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
708		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
709
710		ic->ic_txstream = txs;
711		ic->ic_rxstream = rxs;
712
713		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
714		    &sc->sc_rts_aggr_limit);
715		if (sc->sc_rts_aggr_limit != (64 * 1024))
716			device_printf(sc->sc_dev,
717			    "[HT] RTS aggregates limited to %d KiB\n",
718			    sc->sc_rts_aggr_limit / 1024);
719
720		device_printf(sc->sc_dev,
721		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
722	}
723#endif
724
725	/*
726	 * Initial aggregation settings.
727	 */
728	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
729	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
730	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
731
732	/*
733	 * Check if the hardware requires PCI register serialisation.
734	 * Some of the Owl based MACs require this.
735	 */
736	if (mp_ncpus > 1 &&
737	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
738	     0, NULL) == HAL_OK) {
739		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
740		device_printf(sc->sc_dev,
741		    "Enabling register serialisation\n");
742	}
743
744	/*
745	 * Indicate we need the 802.11 header padded to a
746	 * 32-bit boundary for 4-address and QoS frames.
747	 */
748	ic->ic_flags |= IEEE80211_F_DATAPAD;
749
750	/*
751	 * Query the hal about antenna support.
752	 */
753	sc->sc_defant = ath_hal_getdefantenna(ah);
754
755	/*
756	 * Not all chips have the VEOL support we want to
757	 * use with IBSS beacons; check here for it.
758	 */
759	sc->sc_hasveol = ath_hal_hasveol(ah);
760
761	/* get mac address from hardware */
762	ath_hal_getmac(ah, macaddr);
763	if (sc->sc_hasbmask)
764		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
765
766	/* NB: used to size node table key mapping array */
767	ic->ic_max_keyix = sc->sc_keymax;
768	/* call MI attach routine. */
769	ieee80211_ifattach(ic, macaddr);
770	ic->ic_setregdomain = ath_setregdomain;
771	ic->ic_getradiocaps = ath_getradiocaps;
772	sc->sc_opmode = HAL_M_STA;
773
774	/* override default methods */
775	ic->ic_newassoc = ath_newassoc;
776	ic->ic_updateslot = ath_updateslot;
777	ic->ic_wme.wme_update = ath_wme_update;
778	ic->ic_vap_create = ath_vap_create;
779	ic->ic_vap_delete = ath_vap_delete;
780	ic->ic_raw_xmit = ath_raw_xmit;
781	ic->ic_update_mcast = ath_update_mcast;
782	ic->ic_update_promisc = ath_update_promisc;
783	ic->ic_node_alloc = ath_node_alloc;
784	sc->sc_node_free = ic->ic_node_free;
785	ic->ic_node_free = ath_node_free;
786	sc->sc_node_cleanup = ic->ic_node_cleanup;
787	ic->ic_node_cleanup = ath_node_cleanup;
788	ic->ic_node_getsignal = ath_node_getsignal;
789	ic->ic_scan_start = ath_scan_start;
790	ic->ic_scan_end = ath_scan_end;
791	ic->ic_set_channel = ath_set_channel;
792#ifdef	ATH_ENABLE_11N
793	/* 802.11n specific - but just override anyway */
794	sc->sc_addba_request = ic->ic_addba_request;
795	sc->sc_addba_response = ic->ic_addba_response;
796	sc->sc_addba_stop = ic->ic_addba_stop;
797	sc->sc_bar_response = ic->ic_bar_response;
798	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
799
800	ic->ic_addba_request = ath_addba_request;
801	ic->ic_addba_response = ath_addba_response;
802	ic->ic_addba_response_timeout = ath_addba_response_timeout;
803	ic->ic_addba_stop = ath_addba_stop;
804	ic->ic_bar_response = ath_bar_response;
805
806	ic->ic_update_chw = ath_update_chw;
807#endif	/* ATH_ENABLE_11N */
808
809#ifdef	ATH_ENABLE_RADIOTAP_VENDOR_EXT
810	/*
811	 * There's one vendor bitmap entry in the RX radiotap
812	 * header; make sure that's taken into account.
813	 */
814	ieee80211_radiotap_attachv(ic,
815	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th), 0,
816		ATH_TX_RADIOTAP_PRESENT,
817	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th), 1,
818		ATH_RX_RADIOTAP_PRESENT);
819#else
820	/*
821	 * No vendor bitmap/extensions are present.
822	 */
823	ieee80211_radiotap_attach(ic,
824	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
825		ATH_TX_RADIOTAP_PRESENT,
826	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
827		ATH_RX_RADIOTAP_PRESENT);
828#endif	/* ATH_ENABLE_RADIOTAP_VENDOR_EXT */
829
830	/*
831	 * Setup dynamic sysctl's now that country code and
832	 * regdomain are available from the hal.
833	 */
834	ath_sysctlattach(sc);
835	ath_sysctl_stats_attach(sc);
836	ath_sysctl_hal_attach(sc);
837
838	if (bootverbose)
839		ieee80211_announce(ic);
840	ath_announce(sc);
841	return 0;
842bad2:
843	ath_tx_cleanup(sc);
844	ath_desc_free(sc);
845bad:
846	if (ah)
847		ath_hal_detach(ah);
848	if (ifp != NULL)
849		if_free(ifp);
850	sc->sc_invalid = 1;
851	return error;
852}
853
854int
855ath_detach(struct ath_softc *sc)
856{
857	struct ifnet *ifp = sc->sc_ifp;
858
859	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
860		__func__, ifp->if_flags);
861
862	/*
863	 * NB: the order of these is important:
864	 * o stop the chip so no more interrupts will fire
865	 * o call the 802.11 layer before detaching the hal to
866	 *   insure callbacks into the driver to delete global
867	 *   key cache entries can be handled
868	 * o free the taskqueue which drains any pending tasks
869	 * o reclaim the tx queue data structures after calling
870	 *   the 802.11 layer as we'll get called back to reclaim
871	 *   node state and potentially want to use them
872	 * o to cleanup the tx queues the hal is called, so detach
873	 *   it last
874	 * Other than that, it's straightforward...
875	 */
876	ath_stop(ifp);
877	ieee80211_ifdetach(ifp->if_l2com);
878	taskqueue_free(sc->sc_tq);
879#ifdef ATH_TX99_DIAG
880	if (sc->sc_tx99 != NULL)
881		sc->sc_tx99->detach(sc->sc_tx99);
882#endif
883	ath_rate_detach(sc->sc_rc);
884
885	ath_dfs_detach(sc);
886	ath_desc_free(sc);
887	ath_tx_cleanup(sc);
888	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
889	if_free(ifp);
890
891	return 0;
892}
893
894/*
895 * MAC address handling for multiple BSS on the same radio.
896 * The first vap uses the MAC address from the EEPROM.  For
897 * subsequent vap's we set the U/L bit (bit 1) in the MAC
898 * address and use the next six bits as an index.
899 */
900static void
901assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
902{
903	int i;
904
905	if (clone && sc->sc_hasbmask) {
906		/* NB: we only do this if h/w supports multiple bssid */
907		for (i = 0; i < 8; i++)
908			if ((sc->sc_bssidmask & (1<<i)) == 0)
909				break;
910		if (i != 0)
911			mac[0] |= (i << 2)|0x2;
912	} else
913		i = 0;
914	sc->sc_bssidmask |= 1<<i;
915	sc->sc_hwbssidmask[0] &= ~mac[0];
916	if (i == 0)
917		sc->sc_nbssid0++;
918}
919
920static void
921reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
922{
923	int i = mac[0] >> 2;
924	uint8_t mask;
925
926	if (i != 0 || --sc->sc_nbssid0 == 0) {
927		sc->sc_bssidmask &= ~(1<<i);
928		/* recalculate bssid mask from remaining addresses */
929		mask = 0xff;
930		for (i = 1; i < 8; i++)
931			if (sc->sc_bssidmask & (1<<i))
932				mask &= ~((i<<2)|0x2);
933		sc->sc_hwbssidmask[0] |= mask;
934	}
935}
936
937/*
938 * Assign a beacon xmit slot.  We try to space out
939 * assignments so when beacons are staggered the
940 * traffic coming out of the cab q has maximal time
941 * to go out before the next beacon is scheduled.
942 */
943static int
944assign_bslot(struct ath_softc *sc)
945{
946	u_int slot, free;
947
948	free = 0;
949	for (slot = 0; slot < ATH_BCBUF; slot++)
950		if (sc->sc_bslot[slot] == NULL) {
951			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
952			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
953				return slot;
954			free = slot;
955			/* NB: keep looking for a double slot */
956		}
957	return free;
958}
959
960static struct ieee80211vap *
961ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
962    enum ieee80211_opmode opmode, int flags,
963    const uint8_t bssid[IEEE80211_ADDR_LEN],
964    const uint8_t mac0[IEEE80211_ADDR_LEN])
965{
966	struct ath_softc *sc = ic->ic_ifp->if_softc;
967	struct ath_vap *avp;
968	struct ieee80211vap *vap;
969	uint8_t mac[IEEE80211_ADDR_LEN];
970	int needbeacon, error;
971	enum ieee80211_opmode ic_opmode;
972
973	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
974	    M_80211_VAP, M_WAITOK | M_ZERO);
975	needbeacon = 0;
976	IEEE80211_ADDR_COPY(mac, mac0);
977
978	ATH_LOCK(sc);
979	ic_opmode = opmode;		/* default to opmode of new vap */
980	switch (opmode) {
981	case IEEE80211_M_STA:
982		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
983			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
984			goto bad;
985		}
986		if (sc->sc_nvaps) {
987			/*
988			 * With multiple vaps we must fall back
989			 * to s/w beacon miss handling.
990			 */
991			flags |= IEEE80211_CLONE_NOBEACONS;
992		}
993		if (flags & IEEE80211_CLONE_NOBEACONS) {
994			/*
995			 * Station mode w/o beacons are implemented w/ AP mode.
996			 */
997			ic_opmode = IEEE80211_M_HOSTAP;
998		}
999		break;
1000	case IEEE80211_M_IBSS:
1001		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
1002			device_printf(sc->sc_dev,
1003			    "only 1 ibss vap supported\n");
1004			goto bad;
1005		}
1006		needbeacon = 1;
1007		break;
1008	case IEEE80211_M_AHDEMO:
1009#ifdef IEEE80211_SUPPORT_TDMA
1010		if (flags & IEEE80211_CLONE_TDMA) {
1011			if (sc->sc_nvaps != 0) {
1012				device_printf(sc->sc_dev,
1013				    "only 1 tdma vap supported\n");
1014				goto bad;
1015			}
1016			needbeacon = 1;
1017			flags |= IEEE80211_CLONE_NOBEACONS;
1018		}
1019		/* fall thru... */
1020#endif
1021	case IEEE80211_M_MONITOR:
1022		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1023			/*
1024			 * Adopt existing mode.  Adding a monitor or ahdemo
1025			 * vap to an existing configuration is of dubious
1026			 * value but should be ok.
1027			 */
1028			/* XXX not right for monitor mode */
1029			ic_opmode = ic->ic_opmode;
1030		}
1031		break;
1032	case IEEE80211_M_HOSTAP:
1033	case IEEE80211_M_MBSS:
1034		needbeacon = 1;
1035		break;
1036	case IEEE80211_M_WDS:
1037		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1038			device_printf(sc->sc_dev,
1039			    "wds not supported in sta mode\n");
1040			goto bad;
1041		}
1042		/*
1043		 * Silently remove any request for a unique
1044		 * bssid; WDS vap's always share the local
1045		 * mac address.
1046		 */
1047		flags &= ~IEEE80211_CLONE_BSSID;
1048		if (sc->sc_nvaps == 0)
1049			ic_opmode = IEEE80211_M_HOSTAP;
1050		else
1051			ic_opmode = ic->ic_opmode;
1052		break;
1053	default:
1054		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1055		goto bad;
1056	}
1057	/*
1058	 * Check that a beacon buffer is available; the code below assumes it.
1059	 */
1060	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1061		device_printf(sc->sc_dev, "no beacon buffer available\n");
1062		goto bad;
1063	}
1064
1065	/* STA, AHDEMO? */
1066	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1067		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1068		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1069	}
1070
1071	vap = &avp->av_vap;
1072	/* XXX can't hold mutex across if_alloc */
1073	ATH_UNLOCK(sc);
1074	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1075	    bssid, mac);
1076	ATH_LOCK(sc);
1077	if (error != 0) {
1078		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1079		    __func__, error);
1080		goto bad2;
1081	}
1082
1083	/* h/w crypto support */
1084	vap->iv_key_alloc = ath_key_alloc;
1085	vap->iv_key_delete = ath_key_delete;
1086	vap->iv_key_set = ath_key_set;
1087	vap->iv_key_update_begin = ath_key_update_begin;
1088	vap->iv_key_update_end = ath_key_update_end;
1089
1090	/* override various methods */
1091	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1092	vap->iv_recv_mgmt = ath_recv_mgmt;
1093	vap->iv_reset = ath_reset_vap;
1094	vap->iv_update_beacon = ath_beacon_update;
1095	avp->av_newstate = vap->iv_newstate;
1096	vap->iv_newstate = ath_newstate;
1097	avp->av_bmiss = vap->iv_bmiss;
1098	vap->iv_bmiss = ath_bmiss_vap;
1099
1100	/* Set default parameters */
1101
1102	/*
1103	 * Anything earlier than some AR9300 series MACs don't
1104	 * support a smaller MPDU density.
1105	 */
1106	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1107	/*
1108	 * All NICs can handle the maximum size, however
1109	 * AR5416 based MACs can only TX aggregates w/ RTS
1110	 * protection when the total aggregate size is <= 8k.
1111	 * However, for now that's enforced by the TX path.
1112	 */
1113	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1114
1115	avp->av_bslot = -1;
1116	if (needbeacon) {
1117		/*
1118		 * Allocate beacon state and setup the q for buffered
1119		 * multicast frames.  We know a beacon buffer is
1120		 * available because we checked above.
1121		 */
1122		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1123		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1124		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1125			/*
1126			 * Assign the vap to a beacon xmit slot.  As above
1127			 * this cannot fail to find a free one.
1128			 */
1129			avp->av_bslot = assign_bslot(sc);
1130			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1131			    ("beacon slot %u not empty", avp->av_bslot));
1132			sc->sc_bslot[avp->av_bslot] = vap;
1133			sc->sc_nbcnvaps++;
1134		}
1135		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1136			/*
1137			 * Multple vaps are to transmit beacons and we
1138			 * have h/w support for TSF adjusting; enable
1139			 * use of staggered beacons.
1140			 */
1141			sc->sc_stagbeacons = 1;
1142		}
1143		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1144	}
1145
1146	ic->ic_opmode = ic_opmode;
1147	if (opmode != IEEE80211_M_WDS) {
1148		sc->sc_nvaps++;
1149		if (opmode == IEEE80211_M_STA)
1150			sc->sc_nstavaps++;
1151		if (opmode == IEEE80211_M_MBSS)
1152			sc->sc_nmeshvaps++;
1153	}
1154	switch (ic_opmode) {
1155	case IEEE80211_M_IBSS:
1156		sc->sc_opmode = HAL_M_IBSS;
1157		break;
1158	case IEEE80211_M_STA:
1159		sc->sc_opmode = HAL_M_STA;
1160		break;
1161	case IEEE80211_M_AHDEMO:
1162#ifdef IEEE80211_SUPPORT_TDMA
1163		if (vap->iv_caps & IEEE80211_C_TDMA) {
1164			sc->sc_tdma = 1;
1165			/* NB: disable tsf adjust */
1166			sc->sc_stagbeacons = 0;
1167		}
1168		/*
1169		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1170		 * just ap mode.
1171		 */
1172		/* fall thru... */
1173#endif
1174	case IEEE80211_M_HOSTAP:
1175	case IEEE80211_M_MBSS:
1176		sc->sc_opmode = HAL_M_HOSTAP;
1177		break;
1178	case IEEE80211_M_MONITOR:
1179		sc->sc_opmode = HAL_M_MONITOR;
1180		break;
1181	default:
1182		/* XXX should not happen */
1183		break;
1184	}
1185	if (sc->sc_hastsfadd) {
1186		/*
1187		 * Configure whether or not TSF adjust should be done.
1188		 */
1189		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1190	}
1191	if (flags & IEEE80211_CLONE_NOBEACONS) {
1192		/*
1193		 * Enable s/w beacon miss handling.
1194		 */
1195		sc->sc_swbmiss = 1;
1196	}
1197	ATH_UNLOCK(sc);
1198
1199	/* complete setup */
1200	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1201	return vap;
1202bad2:
1203	reclaim_address(sc, mac);
1204	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1205bad:
1206	free(avp, M_80211_VAP);
1207	ATH_UNLOCK(sc);
1208	return NULL;
1209}
1210
1211static void
1212ath_vap_delete(struct ieee80211vap *vap)
1213{
1214	struct ieee80211com *ic = vap->iv_ic;
1215	struct ifnet *ifp = ic->ic_ifp;
1216	struct ath_softc *sc = ifp->if_softc;
1217	struct ath_hal *ah = sc->sc_ah;
1218	struct ath_vap *avp = ATH_VAP(vap);
1219
1220	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1221	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1222		/*
1223		 * Quiesce the hardware while we remove the vap.  In
1224		 * particular we need to reclaim all references to
1225		 * the vap state by any frames pending on the tx queues.
1226		 */
1227		ath_hal_intrset(ah, 0);		/* disable interrupts */
1228		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1229		/* XXX Do all frames from all vaps/nodes need draining here? */
1230		ath_stoprecv(sc, 1);		/* stop recv side */
1231	}
1232
1233	ieee80211_vap_detach(vap);
1234
1235	/*
1236	 * XXX Danger Will Robinson! Danger!
1237	 *
1238	 * Because ieee80211_vap_detach() can queue a frame (the station
1239	 * diassociate message?) after we've drained the TXQ and
1240	 * flushed the software TXQ, we will end up with a frame queued
1241	 * to a node whose vap is about to be freed.
1242	 *
1243	 * To work around this, flush the hardware/software again.
1244	 * This may be racy - the ath task may be running and the packet
1245	 * may be being scheduled between sw->hw txq. Tsk.
1246	 *
1247	 * TODO: figure out why a new node gets allocated somewhere around
1248	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1249	 * call!)
1250	 */
1251
1252	ath_draintxq(sc, ATH_RESET_DEFAULT);
1253
1254	ATH_LOCK(sc);
1255	/*
1256	 * Reclaim beacon state.  Note this must be done before
1257	 * the vap instance is reclaimed as we may have a reference
1258	 * to it in the buffer for the beacon frame.
1259	 */
1260	if (avp->av_bcbuf != NULL) {
1261		if (avp->av_bslot != -1) {
1262			sc->sc_bslot[avp->av_bslot] = NULL;
1263			sc->sc_nbcnvaps--;
1264		}
1265		ath_beacon_return(sc, avp->av_bcbuf);
1266		avp->av_bcbuf = NULL;
1267		if (sc->sc_nbcnvaps == 0) {
1268			sc->sc_stagbeacons = 0;
1269			if (sc->sc_hastsfadd)
1270				ath_hal_settsfadjust(sc->sc_ah, 0);
1271		}
1272		/*
1273		 * Reclaim any pending mcast frames for the vap.
1274		 */
1275		ath_tx_draintxq(sc, &avp->av_mcastq);
1276		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1277	}
1278	/*
1279	 * Update bookkeeping.
1280	 */
1281	if (vap->iv_opmode == IEEE80211_M_STA) {
1282		sc->sc_nstavaps--;
1283		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1284			sc->sc_swbmiss = 0;
1285	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1286	    vap->iv_opmode == IEEE80211_M_MBSS) {
1287		reclaim_address(sc, vap->iv_myaddr);
1288		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1289		if (vap->iv_opmode == IEEE80211_M_MBSS)
1290			sc->sc_nmeshvaps--;
1291	}
1292	if (vap->iv_opmode != IEEE80211_M_WDS)
1293		sc->sc_nvaps--;
1294#ifdef IEEE80211_SUPPORT_TDMA
1295	/* TDMA operation ceases when the last vap is destroyed */
1296	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1297		sc->sc_tdma = 0;
1298		sc->sc_swbmiss = 0;
1299	}
1300#endif
1301	free(avp, M_80211_VAP);
1302
1303	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1304		/*
1305		 * Restart rx+tx machines if still running (RUNNING will
1306		 * be reset if we just destroyed the last vap).
1307		 */
1308		if (ath_startrecv(sc) != 0)
1309			if_printf(ifp, "%s: unable to restart recv logic\n",
1310			    __func__);
1311		if (sc->sc_beacons) {		/* restart beacons */
1312#ifdef IEEE80211_SUPPORT_TDMA
1313			if (sc->sc_tdma)
1314				ath_tdma_config(sc, NULL);
1315			else
1316#endif
1317				ath_beacon_config(sc, NULL);
1318		}
1319		ath_hal_intrset(ah, sc->sc_imask);
1320	}
1321	ATH_UNLOCK(sc);
1322}
1323
1324void
1325ath_suspend(struct ath_softc *sc)
1326{
1327	struct ifnet *ifp = sc->sc_ifp;
1328	struct ieee80211com *ic = ifp->if_l2com;
1329
1330	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1331		__func__, ifp->if_flags);
1332
1333	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1334
1335	ieee80211_suspend_all(ic);
1336	/*
1337	 * NB: don't worry about putting the chip in low power
1338	 * mode; pci will power off our socket on suspend and
1339	 * CardBus detaches the device.
1340	 */
1341
1342	/*
1343	 * XXX ensure none of the taskqueues are running
1344	 * XXX ensure sc_invalid is 1
1345	 * XXX ensure the calibration callout is disabled
1346	 */
1347
1348	/* Disable the PCIe PHY, complete with workarounds */
1349	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1350}
1351
1352/*
1353 * Reset the key cache since some parts do not reset the
1354 * contents on resume.  First we clear all entries, then
1355 * re-load keys that the 802.11 layer assumes are setup
1356 * in h/w.
1357 */
1358static void
1359ath_reset_keycache(struct ath_softc *sc)
1360{
1361	struct ifnet *ifp = sc->sc_ifp;
1362	struct ieee80211com *ic = ifp->if_l2com;
1363	struct ath_hal *ah = sc->sc_ah;
1364	int i;
1365
1366	for (i = 0; i < sc->sc_keymax; i++)
1367		ath_hal_keyreset(ah, i);
1368	ieee80211_crypto_reload_keys(ic);
1369}
1370
1371void
1372ath_resume(struct ath_softc *sc)
1373{
1374	struct ifnet *ifp = sc->sc_ifp;
1375	struct ieee80211com *ic = ifp->if_l2com;
1376	struct ath_hal *ah = sc->sc_ah;
1377	HAL_STATUS status;
1378
1379	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1380		__func__, ifp->if_flags);
1381
1382	/* Re-enable PCIe, re-enable the PCIe bus */
1383	ath_hal_enablepcie(ah, 0, 0);
1384
1385	/*
1386	 * Must reset the chip before we reload the
1387	 * keycache as we were powered down on suspend.
1388	 */
1389	ath_hal_reset(ah, sc->sc_opmode,
1390	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1391	    AH_FALSE, &status);
1392	ath_reset_keycache(sc);
1393
1394	/* Let DFS at it in case it's a DFS channel */
1395	ath_dfs_radar_enable(sc, ic->ic_curchan);
1396
1397	/* Restore the LED configuration */
1398	ath_led_config(sc);
1399	ath_hal_setledstate(ah, HAL_LED_INIT);
1400
1401	if (sc->sc_resume_up)
1402		ieee80211_resume_all(ic);
1403
1404	/* XXX beacons ? */
1405}
1406
1407void
1408ath_shutdown(struct ath_softc *sc)
1409{
1410	struct ifnet *ifp = sc->sc_ifp;
1411
1412	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1413		__func__, ifp->if_flags);
1414
1415	ath_stop(ifp);
1416	/* NB: no point powering down chip as we're about to reboot */
1417}
1418
1419/*
1420 * Interrupt handler.  Most of the actual processing is deferred.
1421 */
1422void
1423ath_intr(void *arg)
1424{
1425	struct ath_softc *sc = arg;
1426	struct ifnet *ifp = sc->sc_ifp;
1427	struct ath_hal *ah = sc->sc_ah;
1428	HAL_INT status = 0;
1429	uint32_t txqs;
1430
1431	/*
1432	 * If we're inside a reset path, just print a warning and
1433	 * clear the ISR. The reset routine will finish it for us.
1434	 */
1435	ATH_PCU_LOCK(sc);
1436	if (sc->sc_inreset_cnt) {
1437		HAL_INT status;
1438		ath_hal_getisr(ah, &status);	/* clear ISR */
1439		ath_hal_intrset(ah, 0);		/* disable further intr's */
1440		DPRINTF(sc, ATH_DEBUG_ANY,
1441		    "%s: in reset, ignoring: status=0x%x\n",
1442		    __func__, status);
1443		ATH_PCU_UNLOCK(sc);
1444		return;
1445	}
1446
1447	if (sc->sc_invalid) {
1448		/*
1449		 * The hardware is not ready/present, don't touch anything.
1450		 * Note this can happen early on if the IRQ is shared.
1451		 */
1452		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1453		ATH_PCU_UNLOCK(sc);
1454		return;
1455	}
1456	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1457		ATH_PCU_UNLOCK(sc);
1458		return;
1459	}
1460
1461	if ((ifp->if_flags & IFF_UP) == 0 ||
1462	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1463		HAL_INT status;
1464
1465		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1466			__func__, ifp->if_flags);
1467		ath_hal_getisr(ah, &status);	/* clear ISR */
1468		ath_hal_intrset(ah, 0);		/* disable further intr's */
1469		ATH_PCU_UNLOCK(sc);
1470		return;
1471	}
1472
1473	/*
1474	 * Figure out the reason(s) for the interrupt.  Note
1475	 * that the hal returns a pseudo-ISR that may include
1476	 * bits we haven't explicitly enabled so we mask the
1477	 * value to insure we only process bits we requested.
1478	 */
1479	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1480	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1481	CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status);
1482#ifdef	ATH_KTR_INTR_DEBUG
1483	CTR5(ATH_KTR_INTR,
1484	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1485	    ah->ah_intrstate[0],
1486	    ah->ah_intrstate[1],
1487	    ah->ah_intrstate[2],
1488	    ah->ah_intrstate[3],
1489	    ah->ah_intrstate[6]);
1490#endif
1491
1492	/* Squirrel away SYNC interrupt debugging */
1493	if (ah->ah_syncstate != 0) {
1494		int i;
1495		for (i = 0; i < 32; i++)
1496			if (ah->ah_syncstate & (i << i))
1497				sc->sc_intr_stats.sync_intr[i]++;
1498	}
1499
1500	status &= sc->sc_imask;			/* discard unasked for bits */
1501
1502	/* Short-circuit un-handled interrupts */
1503	if (status == 0x0) {
1504		ATH_PCU_UNLOCK(sc);
1505		return;
1506	}
1507
1508	/*
1509	 * Take a note that we're inside the interrupt handler, so
1510	 * the reset routines know to wait.
1511	 */
1512	sc->sc_intr_cnt++;
1513	ATH_PCU_UNLOCK(sc);
1514
1515	/*
1516	 * Handle the interrupt. We won't run concurrent with the reset
1517	 * or channel change routines as they'll wait for sc_intr_cnt
1518	 * to be 0 before continuing.
1519	 */
1520	if (status & HAL_INT_FATAL) {
1521		sc->sc_stats.ast_hardware++;
1522		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1523		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1524	} else {
1525		if (status & HAL_INT_SWBA) {
1526			/*
1527			 * Software beacon alert--time to send a beacon.
1528			 * Handle beacon transmission directly; deferring
1529			 * this is too slow to meet timing constraints
1530			 * under load.
1531			 */
1532#ifdef IEEE80211_SUPPORT_TDMA
1533			if (sc->sc_tdma) {
1534				if (sc->sc_tdmaswba == 0) {
1535					struct ieee80211com *ic = ifp->if_l2com;
1536					struct ieee80211vap *vap =
1537					    TAILQ_FIRST(&ic->ic_vaps);
1538					ath_tdma_beacon_send(sc, vap);
1539					sc->sc_tdmaswba =
1540					    vap->iv_tdma->tdma_bintval;
1541				} else
1542					sc->sc_tdmaswba--;
1543			} else
1544#endif
1545			{
1546				ath_beacon_proc(sc, 0);
1547#ifdef IEEE80211_SUPPORT_SUPERG
1548				/*
1549				 * Schedule the rx taskq in case there's no
1550				 * traffic so any frames held on the staging
1551				 * queue are aged and potentially flushed.
1552				 */
1553				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1554#endif
1555			}
1556		}
1557		if (status & HAL_INT_RXEOL) {
1558			int imask;
1559			CTR0(ATH_KTR_ERR, "ath_intr: RXEOL");
1560			ATH_PCU_LOCK(sc);
1561			/*
1562			 * NB: the hardware should re-read the link when
1563			 *     RXE bit is written, but it doesn't work at
1564			 *     least on older hardware revs.
1565			 */
1566			sc->sc_stats.ast_rxeol++;
1567			/*
1568			 * Disable RXEOL/RXORN - prevent an interrupt
1569			 * storm until the PCU logic can be reset.
1570			 * In case the interface is reset some other
1571			 * way before "sc_kickpcu" is called, don't
1572			 * modify sc_imask - that way if it is reset
1573			 * by a call to ath_reset() somehow, the
1574			 * interrupt mask will be correctly reprogrammed.
1575			 */
1576			imask = sc->sc_imask;
1577			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1578			ath_hal_intrset(ah, imask);
1579			/*
1580			 * Only blank sc_rxlink if we've not yet kicked
1581			 * the PCU.
1582			 *
1583			 * This isn't entirely correct - the correct solution
1584			 * would be to have a PCU lock and engage that for
1585			 * the duration of the PCU fiddling; which would include
1586			 * running the RX process. Otherwise we could end up
1587			 * messing up the RX descriptor chain and making the
1588			 * RX desc list much shorter.
1589			 */
1590			if (! sc->sc_kickpcu)
1591				sc->sc_rxlink = NULL;
1592			sc->sc_kickpcu = 1;
1593			/*
1594			 * Enqueue an RX proc, to handled whatever
1595			 * is in the RX queue.
1596			 * This will then kick the PCU.
1597			 */
1598			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1599			ATH_PCU_UNLOCK(sc);
1600		}
1601		if (status & HAL_INT_TXURN) {
1602			sc->sc_stats.ast_txurn++;
1603			/* bump tx trigger level */
1604			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1605		}
1606		if (status & HAL_INT_RX) {
1607			sc->sc_stats.ast_rx_intr++;
1608			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1609		}
1610		if (status & HAL_INT_TX) {
1611			sc->sc_stats.ast_tx_intr++;
1612			/*
1613			 * Grab all the currently set bits in the HAL txq bitmap
1614			 * and blank them. This is the only place we should be
1615			 * doing this.
1616			 */
1617			ATH_PCU_LOCK(sc);
1618			txqs = 0xffffffff;
1619			ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1620			sc->sc_txq_active |= txqs;
1621			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1622			ATH_PCU_UNLOCK(sc);
1623		}
1624		if (status & HAL_INT_BMISS) {
1625			sc->sc_stats.ast_bmiss++;
1626			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1627		}
1628		if (status & HAL_INT_GTT)
1629			sc->sc_stats.ast_tx_timeout++;
1630		if (status & HAL_INT_CST)
1631			sc->sc_stats.ast_tx_cst++;
1632		if (status & HAL_INT_MIB) {
1633			sc->sc_stats.ast_mib++;
1634			ATH_PCU_LOCK(sc);
1635			/*
1636			 * Disable interrupts until we service the MIB
1637			 * interrupt; otherwise it will continue to fire.
1638			 */
1639			ath_hal_intrset(ah, 0);
1640			/*
1641			 * Let the hal handle the event.  We assume it will
1642			 * clear whatever condition caused the interrupt.
1643			 */
1644			ath_hal_mibevent(ah, &sc->sc_halstats);
1645			/*
1646			 * Don't reset the interrupt if we've just
1647			 * kicked the PCU, or we may get a nested
1648			 * RXEOL before the rxproc has had a chance
1649			 * to run.
1650			 */
1651			if (sc->sc_kickpcu == 0)
1652				ath_hal_intrset(ah, sc->sc_imask);
1653			ATH_PCU_UNLOCK(sc);
1654		}
1655		if (status & HAL_INT_RXORN) {
1656			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1657			CTR0(ATH_KTR_ERR, "ath_intr: RXORN");
1658			sc->sc_stats.ast_rxorn++;
1659		}
1660	}
1661	ATH_PCU_LOCK(sc);
1662	sc->sc_intr_cnt--;
1663	ATH_PCU_UNLOCK(sc);
1664}
1665
1666static void
1667ath_fatal_proc(void *arg, int pending)
1668{
1669	struct ath_softc *sc = arg;
1670	struct ifnet *ifp = sc->sc_ifp;
1671	u_int32_t *state;
1672	u_int32_t len;
1673	void *sp;
1674
1675	if_printf(ifp, "hardware error; resetting\n");
1676	/*
1677	 * Fatal errors are unrecoverable.  Typically these
1678	 * are caused by DMA errors.  Collect h/w state from
1679	 * the hal so we can diagnose what's going on.
1680	 */
1681	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1682		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1683		state = sp;
1684		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1685		    state[0], state[1] , state[2], state[3],
1686		    state[4], state[5]);
1687	}
1688	ath_reset(ifp, ATH_RESET_NOLOSS);
1689}
1690
1691static void
1692ath_bmiss_vap(struct ieee80211vap *vap)
1693{
1694	/*
1695	 * Workaround phantom bmiss interrupts by sanity-checking
1696	 * the time of our last rx'd frame.  If it is within the
1697	 * beacon miss interval then ignore the interrupt.  If it's
1698	 * truly a bmiss we'll get another interrupt soon and that'll
1699	 * be dispatched up for processing.  Note this applies only
1700	 * for h/w beacon miss events.
1701	 */
1702	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1703		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1704		struct ath_softc *sc = ifp->if_softc;
1705		u_int64_t lastrx = sc->sc_lastrx;
1706		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1707		/* XXX should take a locked ref to iv_bss */
1708		u_int bmisstimeout =
1709			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1710
1711		DPRINTF(sc, ATH_DEBUG_BEACON,
1712		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1713		    __func__, (unsigned long long) tsf,
1714		    (unsigned long long)(tsf - lastrx),
1715		    (unsigned long long) lastrx, bmisstimeout);
1716
1717		if (tsf - lastrx <= bmisstimeout) {
1718			sc->sc_stats.ast_bmiss_phantom++;
1719			return;
1720		}
1721	}
1722	ATH_VAP(vap)->av_bmiss(vap);
1723}
1724
1725static int
1726ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1727{
1728	uint32_t rsize;
1729	void *sp;
1730
1731	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1732		return 0;
1733	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1734	*hangs = *(uint32_t *)sp;
1735	return 1;
1736}
1737
1738static void
1739ath_bmiss_proc(void *arg, int pending)
1740{
1741	struct ath_softc *sc = arg;
1742	struct ifnet *ifp = sc->sc_ifp;
1743	uint32_t hangs;
1744
1745	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1746
1747	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1748		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1749		ath_reset(ifp, ATH_RESET_NOLOSS);
1750	} else
1751		ieee80211_beacon_miss(ifp->if_l2com);
1752}
1753
1754/*
1755 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1756 * calcs together with WME.  If necessary disable the crypto
1757 * hardware and mark the 802.11 state so keys will be setup
1758 * with the MIC work done in software.
1759 */
1760static void
1761ath_settkipmic(struct ath_softc *sc)
1762{
1763	struct ifnet *ifp = sc->sc_ifp;
1764	struct ieee80211com *ic = ifp->if_l2com;
1765
1766	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1767		if (ic->ic_flags & IEEE80211_F_WME) {
1768			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1769			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1770		} else {
1771			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1772			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1773		}
1774	}
1775}
1776
1777static void
1778ath_init(void *arg)
1779{
1780	struct ath_softc *sc = (struct ath_softc *) arg;
1781	struct ifnet *ifp = sc->sc_ifp;
1782	struct ieee80211com *ic = ifp->if_l2com;
1783	struct ath_hal *ah = sc->sc_ah;
1784	HAL_STATUS status;
1785
1786	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1787		__func__, ifp->if_flags);
1788
1789	ATH_LOCK(sc);
1790	/*
1791	 * Stop anything previously setup.  This is safe
1792	 * whether this is the first time through or not.
1793	 */
1794	ath_stop_locked(ifp);
1795
1796	/*
1797	 * The basic interface to setting the hardware in a good
1798	 * state is ``reset''.  On return the hardware is known to
1799	 * be powered up and with interrupts disabled.  This must
1800	 * be followed by initialization of the appropriate bits
1801	 * and then setup of the interrupt mask.
1802	 */
1803	ath_settkipmic(sc);
1804	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1805		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1806			status);
1807		ATH_UNLOCK(sc);
1808		return;
1809	}
1810	ath_chan_change(sc, ic->ic_curchan);
1811
1812	/* Let DFS at it in case it's a DFS channel */
1813	ath_dfs_radar_enable(sc, ic->ic_curchan);
1814
1815	/*
1816	 * Likewise this is set during reset so update
1817	 * state cached in the driver.
1818	 */
1819	sc->sc_diversity = ath_hal_getdiversity(ah);
1820	sc->sc_lastlongcal = 0;
1821	sc->sc_resetcal = 1;
1822	sc->sc_lastcalreset = 0;
1823	sc->sc_lastani = 0;
1824	sc->sc_lastshortcal = 0;
1825	sc->sc_doresetcal = AH_FALSE;
1826	/*
1827	 * Beacon timers were cleared here; give ath_newstate()
1828	 * a hint that the beacon timers should be poked when
1829	 * things transition to the RUN state.
1830	 */
1831	sc->sc_beacons = 0;
1832
1833	/*
1834	 * Setup the hardware after reset: the key cache
1835	 * is filled as needed and the receive engine is
1836	 * set going.  Frame transmit is handled entirely
1837	 * in the frame output path; there's nothing to do
1838	 * here except setup the interrupt mask.
1839	 */
1840	if (ath_startrecv(sc) != 0) {
1841		if_printf(ifp, "unable to start recv logic\n");
1842		ATH_UNLOCK(sc);
1843		return;
1844	}
1845
1846	/*
1847	 * Enable interrupts.
1848	 */
1849	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1850		  | HAL_INT_RXEOL | HAL_INT_RXORN
1851		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1852	/*
1853	 * Enable MIB interrupts when there are hardware phy counters.
1854	 * Note we only do this (at the moment) for station mode.
1855	 */
1856	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1857		sc->sc_imask |= HAL_INT_MIB;
1858
1859	/* Enable global TX timeout and carrier sense timeout if available */
1860	if (ath_hal_gtxto_supported(ah))
1861		sc->sc_imask |= HAL_INT_GTT;
1862
1863	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1864		__func__, sc->sc_imask);
1865
1866	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1867	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1868	ath_hal_intrset(ah, sc->sc_imask);
1869
1870	ATH_UNLOCK(sc);
1871
1872#ifdef ATH_TX99_DIAG
1873	if (sc->sc_tx99 != NULL)
1874		sc->sc_tx99->start(sc->sc_tx99);
1875	else
1876#endif
1877	ieee80211_start_all(ic);		/* start all vap's */
1878}
1879
1880static void
1881ath_stop_locked(struct ifnet *ifp)
1882{
1883	struct ath_softc *sc = ifp->if_softc;
1884	struct ath_hal *ah = sc->sc_ah;
1885
1886	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1887		__func__, sc->sc_invalid, ifp->if_flags);
1888
1889	ATH_LOCK_ASSERT(sc);
1890	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1891		/*
1892		 * Shutdown the hardware and driver:
1893		 *    reset 802.11 state machine
1894		 *    turn off timers
1895		 *    disable interrupts
1896		 *    turn off the radio
1897		 *    clear transmit machinery
1898		 *    clear receive machinery
1899		 *    drain and release tx queues
1900		 *    reclaim beacon resources
1901		 *    power down hardware
1902		 *
1903		 * Note that some of this work is not possible if the
1904		 * hardware is gone (invalid).
1905		 */
1906#ifdef ATH_TX99_DIAG
1907		if (sc->sc_tx99 != NULL)
1908			sc->sc_tx99->stop(sc->sc_tx99);
1909#endif
1910		callout_stop(&sc->sc_wd_ch);
1911		sc->sc_wd_timer = 0;
1912		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1913		if (!sc->sc_invalid) {
1914			if (sc->sc_softled) {
1915				callout_stop(&sc->sc_ledtimer);
1916				ath_hal_gpioset(ah, sc->sc_ledpin,
1917					!sc->sc_ledon);
1918				sc->sc_blinking = 0;
1919			}
1920			ath_hal_intrset(ah, 0);
1921		}
1922		ath_draintxq(sc, ATH_RESET_DEFAULT);
1923		if (!sc->sc_invalid) {
1924			ath_stoprecv(sc, 1);
1925			ath_hal_phydisable(ah);
1926		} else
1927			sc->sc_rxlink = NULL;
1928		ath_beacon_free(sc);	/* XXX not needed */
1929	}
1930}
1931
1932#define	MAX_TXRX_ITERATIONS	1000
1933static void
1934ath_txrx_stop_locked(struct ath_softc *sc)
1935{
1936	int i = MAX_TXRX_ITERATIONS;
1937
1938	ATH_UNLOCK_ASSERT(sc);
1939	ATH_PCU_LOCK_ASSERT(sc);
1940
1941	/*
1942	 * Sleep until all the pending operations have completed.
1943	 *
1944	 * The caller must ensure that reset has been incremented
1945	 * or the pending operations may continue being queued.
1946	 */
1947	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
1948	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
1949		if (i <= 0)
1950			break;
1951		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
1952		i--;
1953	}
1954
1955	if (i <= 0)
1956		device_printf(sc->sc_dev,
1957		    "%s: didn't finish after %d iterations\n",
1958		    __func__, MAX_TXRX_ITERATIONS);
1959}
1960#undef	MAX_TXRX_ITERATIONS
1961
1962#if 0
1963static void
1964ath_txrx_stop(struct ath_softc *sc)
1965{
1966	ATH_UNLOCK_ASSERT(sc);
1967	ATH_PCU_UNLOCK_ASSERT(sc);
1968
1969	ATH_PCU_LOCK(sc);
1970	ath_txrx_stop_locked(sc);
1971	ATH_PCU_UNLOCK(sc);
1972}
1973#endif
1974
1975static void
1976ath_txrx_start(struct ath_softc *sc)
1977{
1978
1979	taskqueue_unblock(sc->sc_tq);
1980}
1981
1982/*
1983 * Grab the reset lock, and wait around until noone else
1984 * is trying to do anything with it.
1985 *
1986 * This is totally horrible but we can't hold this lock for
1987 * long enough to do TX/RX or we end up with net80211/ip stack
1988 * LORs and eventual deadlock.
1989 *
1990 * "dowait" signals whether to spin, waiting for the reset
1991 * lock count to reach 0. This should (for now) only be used
1992 * during the reset path, as the rest of the code may not
1993 * be locking-reentrant enough to behave correctly.
1994 *
1995 * Another, cleaner way should be found to serialise all of
1996 * these operations.
1997 */
1998#define	MAX_RESET_ITERATIONS	10
1999static int
2000ath_reset_grablock(struct ath_softc *sc, int dowait)
2001{
2002	int w = 0;
2003	int i = MAX_RESET_ITERATIONS;
2004
2005	ATH_PCU_LOCK_ASSERT(sc);
2006	do {
2007		if (sc->sc_inreset_cnt == 0) {
2008			w = 1;
2009			break;
2010		}
2011		if (dowait == 0) {
2012			w = 0;
2013			break;
2014		}
2015		ATH_PCU_UNLOCK(sc);
2016		pause("ath_reset_grablock", 1);
2017		i--;
2018		ATH_PCU_LOCK(sc);
2019	} while (i > 0);
2020
2021	/*
2022	 * We always increment the refcounter, regardless
2023	 * of whether we succeeded to get it in an exclusive
2024	 * way.
2025	 */
2026	sc->sc_inreset_cnt++;
2027
2028	if (i <= 0)
2029		device_printf(sc->sc_dev,
2030		    "%s: didn't finish after %d iterations\n",
2031		    __func__, MAX_RESET_ITERATIONS);
2032
2033	if (w == 0)
2034		device_printf(sc->sc_dev,
2035		    "%s: warning, recursive reset path!\n",
2036		    __func__);
2037
2038	return w;
2039}
2040#undef MAX_RESET_ITERATIONS
2041
2042/*
2043 * XXX TODO: write ath_reset_releaselock
2044 */
2045
2046static void
2047ath_stop(struct ifnet *ifp)
2048{
2049	struct ath_softc *sc = ifp->if_softc;
2050
2051	ATH_LOCK(sc);
2052	ath_stop_locked(ifp);
2053	ATH_UNLOCK(sc);
2054}
2055
2056/*
2057 * Reset the hardware w/o losing operational state.  This is
2058 * basically a more efficient way of doing ath_stop, ath_init,
2059 * followed by state transitions to the current 802.11
2060 * operational state.  Used to recover from various errors and
2061 * to reset or reload hardware state.
2062 */
2063int
2064ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2065{
2066	struct ath_softc *sc = ifp->if_softc;
2067	struct ieee80211com *ic = ifp->if_l2com;
2068	struct ath_hal *ah = sc->sc_ah;
2069	HAL_STATUS status;
2070	int i;
2071
2072	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2073
2074	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2075	ATH_PCU_UNLOCK_ASSERT(sc);
2076	ATH_UNLOCK_ASSERT(sc);
2077
2078	/* Try to (stop any further TX/RX from occuring */
2079	taskqueue_block(sc->sc_tq);
2080
2081	ATH_PCU_LOCK(sc);
2082	ath_hal_intrset(ah, 0);		/* disable interrupts */
2083	ath_txrx_stop_locked(sc);	/* Ensure TX/RX is stopped */
2084	if (ath_reset_grablock(sc, 1) == 0) {
2085		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2086		    __func__);
2087	}
2088	ATH_PCU_UNLOCK(sc);
2089
2090	/*
2091	 * Should now wait for pending TX/RX to complete
2092	 * and block future ones from occuring. This needs to be
2093	 * done before the TX queue is drained.
2094	 */
2095	ath_draintxq(sc, reset_type);	/* stop xmit side */
2096
2097	/*
2098	 * Regardless of whether we're doing a no-loss flush or
2099	 * not, stop the PCU and handle what's in the RX queue.
2100	 * That way frames aren't dropped which shouldn't be.
2101	 */
2102	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2103	ath_rx_proc(sc, 0);
2104
2105	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2106	/* NB: indicate channel change so we do a full reset */
2107	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2108		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2109			__func__, status);
2110	sc->sc_diversity = ath_hal_getdiversity(ah);
2111
2112	/* Let DFS at it in case it's a DFS channel */
2113	ath_dfs_radar_enable(sc, ic->ic_curchan);
2114
2115	if (ath_startrecv(sc) != 0)	/* restart recv */
2116		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2117	/*
2118	 * We may be doing a reset in response to an ioctl
2119	 * that changes the channel so update any state that
2120	 * might change as a result.
2121	 */
2122	ath_chan_change(sc, ic->ic_curchan);
2123	if (sc->sc_beacons) {		/* restart beacons */
2124#ifdef IEEE80211_SUPPORT_TDMA
2125		if (sc->sc_tdma)
2126			ath_tdma_config(sc, NULL);
2127		else
2128#endif
2129			ath_beacon_config(sc, NULL);
2130	}
2131
2132	/*
2133	 * Release the reset lock and re-enable interrupts here.
2134	 * If an interrupt was being processed in ath_intr(),
2135	 * it would disable interrupts at this point. So we have
2136	 * to atomically enable interrupts and decrement the
2137	 * reset counter - this way ath_intr() doesn't end up
2138	 * disabling interrupts without a corresponding enable
2139	 * in the rest or channel change path.
2140	 */
2141	ATH_PCU_LOCK(sc);
2142	sc->sc_inreset_cnt--;
2143	/* XXX only do this if sc_inreset_cnt == 0? */
2144	ath_hal_intrset(ah, sc->sc_imask);
2145	ATH_PCU_UNLOCK(sc);
2146
2147	/*
2148	 * TX and RX can be started here. If it were started with
2149	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2150	 * Thus if this is a nested call through the reset or
2151	 * channel change code, TX completion will occur but
2152	 * RX completion and ath_start / ath_tx_start will not
2153	 * run.
2154	 */
2155
2156	/* Restart TX/RX as needed */
2157	ath_txrx_start(sc);
2158
2159	/* XXX Restart TX completion and pending TX */
2160	if (reset_type == ATH_RESET_NOLOSS) {
2161		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2162			if (ATH_TXQ_SETUP(sc, i)) {
2163				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2164				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2165				ath_txq_sched(sc, &sc->sc_txq[i]);
2166				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2167			}
2168		}
2169	}
2170
2171	/*
2172	 * This may have been set during an ath_start() call which
2173	 * set this once it detected a concurrent TX was going on.
2174	 * So, clear it.
2175	 */
2176	IF_LOCK(&ifp->if_snd);
2177	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2178	IF_UNLOCK(&ifp->if_snd);
2179
2180	/* Handle any frames in the TX queue */
2181	/*
2182	 * XXX should this be done by the caller, rather than
2183	 * ath_reset() ?
2184	 */
2185	ath_start(ifp);			/* restart xmit */
2186	return 0;
2187}
2188
2189static int
2190ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2191{
2192	struct ieee80211com *ic = vap->iv_ic;
2193	struct ifnet *ifp = ic->ic_ifp;
2194	struct ath_softc *sc = ifp->if_softc;
2195	struct ath_hal *ah = sc->sc_ah;
2196
2197	switch (cmd) {
2198	case IEEE80211_IOC_TXPOWER:
2199		/*
2200		 * If per-packet TPC is enabled, then we have nothing
2201		 * to do; otherwise we need to force the global limit.
2202		 * All this can happen directly; no need to reset.
2203		 */
2204		if (!ath_hal_gettpc(ah))
2205			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2206		return 0;
2207	}
2208	/* XXX? Full or NOLOSS? */
2209	return ath_reset(ifp, ATH_RESET_FULL);
2210}
2211
2212struct ath_buf *
2213_ath_getbuf_locked(struct ath_softc *sc, ath_buf_type_t btype)
2214{
2215	struct ath_buf *bf;
2216
2217	ATH_TXBUF_LOCK_ASSERT(sc);
2218
2219	if (btype == ATH_BUFTYPE_MGMT)
2220		bf = TAILQ_FIRST(&sc->sc_txbuf_mgmt);
2221	else
2222		bf = TAILQ_FIRST(&sc->sc_txbuf);
2223
2224	if (bf == NULL) {
2225		sc->sc_stats.ast_tx_getnobuf++;
2226	} else {
2227		if (bf->bf_flags & ATH_BUF_BUSY) {
2228			sc->sc_stats.ast_tx_getbusybuf++;
2229			bf = NULL;
2230		}
2231	}
2232
2233	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0) {
2234		if (btype == ATH_BUFTYPE_MGMT)
2235			TAILQ_REMOVE(&sc->sc_txbuf_mgmt, bf, bf_list);
2236		else {
2237			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2238			sc->sc_txbuf_cnt--;
2239
2240			/*
2241			 * This shuldn't happen; however just to be
2242			 * safe print a warning and fudge the txbuf
2243			 * count.
2244			 */
2245			if (sc->sc_txbuf_cnt < 0) {
2246				device_printf(sc->sc_dev,
2247				    "%s: sc_txbuf_cnt < 0?\n",
2248				    __func__);
2249				sc->sc_txbuf_cnt = 0;
2250			}
2251		}
2252	} else
2253		bf = NULL;
2254
2255	if (bf == NULL) {
2256		/* XXX should check which list, mgmt or otherwise */
2257		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2258		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2259			"out of xmit buffers" : "xmit buffer busy");
2260		return NULL;
2261	}
2262
2263	/* XXX TODO: should do this at buffer list initialisation */
2264	/* XXX (then, ensure the buffer has the right flag set) */
2265	if (btype == ATH_BUFTYPE_MGMT)
2266		bf->bf_flags |= ATH_BUF_MGMT;
2267	else
2268		bf->bf_flags &= (~ATH_BUF_MGMT);
2269
2270	/* Valid bf here; clear some basic fields */
2271	bf->bf_next = NULL;	/* XXX just to be sure */
2272	bf->bf_last = NULL;	/* XXX again, just to be sure */
2273	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2274	bzero(&bf->bf_state, sizeof(bf->bf_state));
2275
2276	return bf;
2277}
2278
2279/*
2280 * When retrying a software frame, buffers marked ATH_BUF_BUSY
2281 * can't be thrown back on the queue as they could still be
2282 * in use by the hardware.
2283 *
2284 * This duplicates the buffer, or returns NULL.
2285 *
2286 * The descriptor is also copied but the link pointers and
2287 * the DMA segments aren't copied; this frame should thus
2288 * be again passed through the descriptor setup/chain routines
2289 * so the link is correct.
2290 *
2291 * The caller must free the buffer using ath_freebuf().
2292 *
2293 * XXX TODO: this call shouldn't fail as it'll cause packet loss
2294 * XXX in the TX pathway when retries are needed.
2295 * XXX Figure out how to keep some buffers free, or factor the
2296 * XXX number of busy buffers into the xmit path (ath_start())
2297 * XXX so we don't over-commit.
2298 */
2299struct ath_buf *
2300ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
2301{
2302	struct ath_buf *tbf;
2303
2304	tbf = ath_getbuf(sc,
2305	    (bf->bf_flags & ATH_BUF_MGMT) ?
2306	     ATH_BUFTYPE_MGMT : ATH_BUFTYPE_NORMAL);
2307	if (tbf == NULL)
2308		return NULL;	/* XXX failure? Why? */
2309
2310	/* Copy basics */
2311	tbf->bf_next = NULL;
2312	tbf->bf_nseg = bf->bf_nseg;
2313	tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
2314	tbf->bf_status = bf->bf_status;
2315	tbf->bf_m = bf->bf_m;
2316	tbf->bf_node = bf->bf_node;
2317	/* will be setup by the chain/setup function */
2318	tbf->bf_lastds = NULL;
2319	/* for now, last == self */
2320	tbf->bf_last = tbf;
2321	tbf->bf_comp = bf->bf_comp;
2322
2323	/* NOTE: DMA segments will be setup by the setup/chain functions */
2324
2325	/* The caller has to re-init the descriptor + links */
2326
2327	/* Copy state */
2328	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2329
2330	return tbf;
2331}
2332
2333struct ath_buf *
2334ath_getbuf(struct ath_softc *sc, ath_buf_type_t btype)
2335{
2336	struct ath_buf *bf;
2337
2338	ATH_TXBUF_LOCK(sc);
2339	bf = _ath_getbuf_locked(sc, btype);
2340	/*
2341	 * If a mgmt buffer was requested but we're out of those,
2342	 * try requesting a normal one.
2343	 */
2344	if (bf == NULL && btype == ATH_BUFTYPE_MGMT)
2345		bf = _ath_getbuf_locked(sc, ATH_BUFTYPE_NORMAL);
2346	ATH_TXBUF_UNLOCK(sc);
2347	if (bf == NULL) {
2348		struct ifnet *ifp = sc->sc_ifp;
2349
2350		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2351		sc->sc_stats.ast_tx_qstop++;
2352		IF_LOCK(&ifp->if_snd);
2353		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2354		IF_UNLOCK(&ifp->if_snd);
2355	}
2356	return bf;
2357}
2358
2359void
2360ath_start(struct ifnet *ifp)
2361{
2362	struct ath_softc *sc = ifp->if_softc;
2363	struct ieee80211_node *ni;
2364	struct ath_buf *bf;
2365	struct mbuf *m, *next;
2366	ath_bufhead frags;
2367
2368	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2369		return;
2370
2371	/* XXX is it ok to hold the ATH_LOCK here? */
2372	ATH_PCU_LOCK(sc);
2373	if (sc->sc_inreset_cnt > 0) {
2374		device_printf(sc->sc_dev,
2375		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2376		ATH_PCU_UNLOCK(sc);
2377		IF_LOCK(&ifp->if_snd);
2378		sc->sc_stats.ast_tx_qstop++;
2379		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2380		IF_UNLOCK(&ifp->if_snd);
2381		return;
2382	}
2383	sc->sc_txstart_cnt++;
2384	ATH_PCU_UNLOCK(sc);
2385
2386	for (;;) {
2387		ATH_TXBUF_LOCK(sc);
2388		if (sc->sc_txbuf_cnt <= sc->sc_txq_data_minfree) {
2389			/* XXX increment counter? */
2390			ATH_TXBUF_UNLOCK(sc);
2391			IF_LOCK(&ifp->if_snd);
2392			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2393			IF_UNLOCK(&ifp->if_snd);
2394			break;
2395		}
2396		ATH_TXBUF_UNLOCK(sc);
2397
2398		/*
2399		 * Grab a TX buffer and associated resources.
2400		 */
2401		bf = ath_getbuf(sc, ATH_BUFTYPE_NORMAL);
2402		if (bf == NULL)
2403			break;
2404
2405		IFQ_DEQUEUE(&ifp->if_snd, m);
2406		if (m == NULL) {
2407			ATH_TXBUF_LOCK(sc);
2408			ath_returnbuf_head(sc, bf);
2409			ATH_TXBUF_UNLOCK(sc);
2410			break;
2411		}
2412		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2413		/*
2414		 * Check for fragmentation.  If this frame
2415		 * has been broken up verify we have enough
2416		 * buffers to send all the fragments so all
2417		 * go out or none...
2418		 */
2419		TAILQ_INIT(&frags);
2420		if ((m->m_flags & M_FRAG) &&
2421		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2422			DPRINTF(sc, ATH_DEBUG_XMIT,
2423			    "%s: out of txfrag buffers\n", __func__);
2424			sc->sc_stats.ast_tx_nofrag++;
2425			ifp->if_oerrors++;
2426			ath_freetx(m);
2427			goto bad;
2428		}
2429		ifp->if_opackets++;
2430	nextfrag:
2431		/*
2432		 * Pass the frame to the h/w for transmission.
2433		 * Fragmented frames have each frag chained together
2434		 * with m_nextpkt.  We know there are sufficient ath_buf's
2435		 * to send all the frags because of work done by
2436		 * ath_txfrag_setup.  We leave m_nextpkt set while
2437		 * calling ath_tx_start so it can use it to extend the
2438		 * the tx duration to cover the subsequent frag and
2439		 * so it can reclaim all the mbufs in case of an error;
2440		 * ath_tx_start clears m_nextpkt once it commits to
2441		 * handing the frame to the hardware.
2442		 */
2443		next = m->m_nextpkt;
2444		if (ath_tx_start(sc, ni, bf, m)) {
2445	bad:
2446			ifp->if_oerrors++;
2447	reclaim:
2448			bf->bf_m = NULL;
2449			bf->bf_node = NULL;
2450			ATH_TXBUF_LOCK(sc);
2451			ath_returnbuf_head(sc, bf);
2452			ath_txfrag_cleanup(sc, &frags, ni);
2453			ATH_TXBUF_UNLOCK(sc);
2454			if (ni != NULL)
2455				ieee80211_free_node(ni);
2456			continue;
2457		}
2458		if (next != NULL) {
2459			/*
2460			 * Beware of state changing between frags.
2461			 * XXX check sta power-save state?
2462			 */
2463			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2464				DPRINTF(sc, ATH_DEBUG_XMIT,
2465				    "%s: flush fragmented packet, state %s\n",
2466				    __func__,
2467				    ieee80211_state_name[ni->ni_vap->iv_state]);
2468				ath_freetx(next);
2469				goto reclaim;
2470			}
2471			m = next;
2472			bf = TAILQ_FIRST(&frags);
2473			KASSERT(bf != NULL, ("no buf for txfrag"));
2474			TAILQ_REMOVE(&frags, bf, bf_list);
2475			goto nextfrag;
2476		}
2477
2478		sc->sc_wd_timer = 5;
2479	}
2480
2481	ATH_PCU_LOCK(sc);
2482	sc->sc_txstart_cnt--;
2483	ATH_PCU_UNLOCK(sc);
2484}
2485
2486static int
2487ath_media_change(struct ifnet *ifp)
2488{
2489	int error = ieee80211_media_change(ifp);
2490	/* NB: only the fixed rate can change and that doesn't need a reset */
2491	return (error == ENETRESET ? 0 : error);
2492}
2493
2494/*
2495 * Block/unblock tx+rx processing while a key change is done.
2496 * We assume the caller serializes key management operations
2497 * so we only need to worry about synchronization with other
2498 * uses that originate in the driver.
2499 */
2500static void
2501ath_key_update_begin(struct ieee80211vap *vap)
2502{
2503	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2504	struct ath_softc *sc = ifp->if_softc;
2505
2506	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2507	taskqueue_block(sc->sc_tq);
2508	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2509}
2510
2511static void
2512ath_key_update_end(struct ieee80211vap *vap)
2513{
2514	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2515	struct ath_softc *sc = ifp->if_softc;
2516
2517	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2518	IF_UNLOCK(&ifp->if_snd);
2519	taskqueue_unblock(sc->sc_tq);
2520}
2521
2522static void
2523ath_update_promisc(struct ifnet *ifp)
2524{
2525	struct ath_softc *sc = ifp->if_softc;
2526	u_int32_t rfilt;
2527
2528	/* configure rx filter */
2529	rfilt = ath_calcrxfilter(sc);
2530	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2531
2532	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2533}
2534
2535static void
2536ath_update_mcast(struct ifnet *ifp)
2537{
2538	struct ath_softc *sc = ifp->if_softc;
2539	u_int32_t mfilt[2];
2540
2541	/* calculate and install multicast filter */
2542	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2543		struct ifmultiaddr *ifma;
2544		/*
2545		 * Merge multicast addresses to form the hardware filter.
2546		 */
2547		mfilt[0] = mfilt[1] = 0;
2548		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2549		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2550			caddr_t dl;
2551			u_int32_t val;
2552			u_int8_t pos;
2553
2554			/* calculate XOR of eight 6bit values */
2555			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2556			val = LE_READ_4(dl + 0);
2557			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2558			val = LE_READ_4(dl + 3);
2559			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2560			pos &= 0x3f;
2561			mfilt[pos / 32] |= (1 << (pos % 32));
2562		}
2563		if_maddr_runlock(ifp);
2564	} else
2565		mfilt[0] = mfilt[1] = ~0;
2566	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2567	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2568		__func__, mfilt[0], mfilt[1]);
2569}
2570
2571void
2572ath_mode_init(struct ath_softc *sc)
2573{
2574	struct ifnet *ifp = sc->sc_ifp;
2575	struct ath_hal *ah = sc->sc_ah;
2576	u_int32_t rfilt;
2577
2578	/* configure rx filter */
2579	rfilt = ath_calcrxfilter(sc);
2580	ath_hal_setrxfilter(ah, rfilt);
2581
2582	/* configure operational mode */
2583	ath_hal_setopmode(ah);
2584
2585	/* handle any link-level address change */
2586	ath_hal_setmac(ah, IF_LLADDR(ifp));
2587
2588	/* calculate and install multicast filter */
2589	ath_update_mcast(ifp);
2590}
2591
2592/*
2593 * Set the slot time based on the current setting.
2594 */
2595void
2596ath_setslottime(struct ath_softc *sc)
2597{
2598	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2599	struct ath_hal *ah = sc->sc_ah;
2600	u_int usec;
2601
2602	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2603		usec = 13;
2604	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2605		usec = 21;
2606	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2607		/* honor short/long slot time only in 11g */
2608		/* XXX shouldn't honor on pure g or turbo g channel */
2609		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2610			usec = HAL_SLOT_TIME_9;
2611		else
2612			usec = HAL_SLOT_TIME_20;
2613	} else
2614		usec = HAL_SLOT_TIME_9;
2615
2616	DPRINTF(sc, ATH_DEBUG_RESET,
2617	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2618	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2619	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2620
2621	ath_hal_setslottime(ah, usec);
2622	sc->sc_updateslot = OK;
2623}
2624
2625/*
2626 * Callback from the 802.11 layer to update the
2627 * slot time based on the current setting.
2628 */
2629static void
2630ath_updateslot(struct ifnet *ifp)
2631{
2632	struct ath_softc *sc = ifp->if_softc;
2633	struct ieee80211com *ic = ifp->if_l2com;
2634
2635	/*
2636	 * When not coordinating the BSS, change the hardware
2637	 * immediately.  For other operation we defer the change
2638	 * until beacon updates have propagated to the stations.
2639	 */
2640	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2641	    ic->ic_opmode == IEEE80211_M_MBSS)
2642		sc->sc_updateslot = UPDATE;
2643	else
2644		ath_setslottime(sc);
2645}
2646
2647/*
2648 * Append the contents of src to dst; both queues
2649 * are assumed to be locked.
2650 */
2651void
2652ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2653{
2654
2655	ATH_TXQ_LOCK_ASSERT(dst);
2656	ATH_TXQ_LOCK_ASSERT(src);
2657
2658	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2659	dst->axq_link = src->axq_link;
2660	src->axq_link = NULL;
2661	dst->axq_depth += src->axq_depth;
2662	dst->axq_aggr_depth += src->axq_aggr_depth;
2663	src->axq_depth = 0;
2664	src->axq_aggr_depth = 0;
2665}
2666
2667/*
2668 * Reset the hardware, with no loss.
2669 *
2670 * This can't be used for a general case reset.
2671 */
2672static void
2673ath_reset_proc(void *arg, int pending)
2674{
2675	struct ath_softc *sc = arg;
2676	struct ifnet *ifp = sc->sc_ifp;
2677
2678#if 0
2679	if_printf(ifp, "%s: resetting\n", __func__);
2680#endif
2681	ath_reset(ifp, ATH_RESET_NOLOSS);
2682}
2683
2684/*
2685 * Reset the hardware after detecting beacons have stopped.
2686 */
2687static void
2688ath_bstuck_proc(void *arg, int pending)
2689{
2690	struct ath_softc *sc = arg;
2691	struct ifnet *ifp = sc->sc_ifp;
2692	uint32_t hangs = 0;
2693
2694	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
2695		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
2696
2697	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2698		sc->sc_bmisscount);
2699	sc->sc_stats.ast_bstuck++;
2700	/*
2701	 * This assumes that there's no simultaneous channel mode change
2702	 * occuring.
2703	 */
2704	ath_reset(ifp, ATH_RESET_NOLOSS);
2705}
2706
2707static void
2708ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2709{
2710	bus_addr_t *paddr = (bus_addr_t*) arg;
2711	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2712	*paddr = segs->ds_addr;
2713}
2714
2715static int
2716ath_descdma_setup(struct ath_softc *sc,
2717	struct ath_descdma *dd, ath_bufhead *head,
2718	const char *name, int nbuf, int ndesc)
2719{
2720#define	DS2PHYS(_dd, _ds) \
2721	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2722#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
2723	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
2724	struct ifnet *ifp = sc->sc_ifp;
2725	uint8_t *ds;
2726	struct ath_buf *bf;
2727	int i, bsize, error;
2728	int desc_len;
2729
2730	desc_len = sizeof(struct ath_desc);
2731
2732	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2733	    __func__, name, nbuf, ndesc);
2734
2735	dd->dd_name = name;
2736	dd->dd_desc_len = desc_len * nbuf * ndesc;
2737
2738	/*
2739	 * Merlin work-around:
2740	 * Descriptors that cross the 4KB boundary can't be used.
2741	 * Assume one skipped descriptor per 4KB page.
2742	 */
2743	if (! ath_hal_split4ktrans(sc->sc_ah)) {
2744		int numdescpage = 4096 / (desc_len * ndesc);
2745		dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096;
2746	}
2747
2748	/*
2749	 * Setup DMA descriptor area.
2750	 */
2751	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2752		       PAGE_SIZE, 0,		/* alignment, bounds */
2753		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2754		       BUS_SPACE_MAXADDR,	/* highaddr */
2755		       NULL, NULL,		/* filter, filterarg */
2756		       dd->dd_desc_len,		/* maxsize */
2757		       1,			/* nsegments */
2758		       dd->dd_desc_len,		/* maxsegsize */
2759		       BUS_DMA_ALLOCNOW,	/* flags */
2760		       NULL,			/* lockfunc */
2761		       NULL,			/* lockarg */
2762		       &dd->dd_dmat);
2763	if (error != 0) {
2764		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2765		return error;
2766	}
2767
2768	/* allocate descriptors */
2769	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2770	if (error != 0) {
2771		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2772			"error %u\n", dd->dd_name, error);
2773		goto fail0;
2774	}
2775
2776	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2777				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2778				 &dd->dd_dmamap);
2779	if (error != 0) {
2780		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2781			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2782		goto fail1;
2783	}
2784
2785	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2786				dd->dd_desc, dd->dd_desc_len,
2787				ath_load_cb, &dd->dd_desc_paddr,
2788				BUS_DMA_NOWAIT);
2789	if (error != 0) {
2790		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2791			dd->dd_name, error);
2792		goto fail2;
2793	}
2794
2795	ds = (uint8_t *) dd->dd_desc;
2796	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2797	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2798	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2799
2800	/* allocate rx buffers */
2801	bsize = sizeof(struct ath_buf) * nbuf;
2802	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2803	if (bf == NULL) {
2804		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2805			dd->dd_name, bsize);
2806		goto fail3;
2807	}
2808	dd->dd_bufptr = bf;
2809
2810	TAILQ_INIT(head);
2811	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) {
2812		bf->bf_desc = (struct ath_desc *) ds;
2813		bf->bf_daddr = DS2PHYS(dd, ds);
2814		if (! ath_hal_split4ktrans(sc->sc_ah)) {
2815			/*
2816			 * Merlin WAR: Skip descriptor addresses which
2817			 * cause 4KB boundary crossing along any point
2818			 * in the descriptor.
2819			 */
2820			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
2821			     desc_len * ndesc)) {
2822				/* Start at the next page */
2823				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
2824				bf->bf_desc = (struct ath_desc *) ds;
2825				bf->bf_daddr = DS2PHYS(dd, ds);
2826			}
2827		}
2828		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2829				&bf->bf_dmamap);
2830		if (error != 0) {
2831			if_printf(ifp, "unable to create dmamap for %s "
2832				"buffer %u, error %u\n", dd->dd_name, i, error);
2833			ath_descdma_cleanup(sc, dd, head);
2834			return error;
2835		}
2836		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
2837		TAILQ_INSERT_TAIL(head, bf, bf_list);
2838	}
2839	return 0;
2840fail3:
2841	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2842fail2:
2843	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2844fail1:
2845	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2846fail0:
2847	bus_dma_tag_destroy(dd->dd_dmat);
2848	memset(dd, 0, sizeof(*dd));
2849	return error;
2850#undef DS2PHYS
2851#undef ATH_DESC_4KB_BOUND_CHECK
2852}
2853
2854static void
2855ath_descdma_cleanup(struct ath_softc *sc,
2856	struct ath_descdma *dd, ath_bufhead *head)
2857{
2858	struct ath_buf *bf;
2859	struct ieee80211_node *ni;
2860
2861	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2862	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2863	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2864	bus_dma_tag_destroy(dd->dd_dmat);
2865
2866	TAILQ_FOREACH(bf, head, bf_list) {
2867		if (bf->bf_m) {
2868			m_freem(bf->bf_m);
2869			bf->bf_m = NULL;
2870		}
2871		if (bf->bf_dmamap != NULL) {
2872			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2873			bf->bf_dmamap = NULL;
2874		}
2875		ni = bf->bf_node;
2876		bf->bf_node = NULL;
2877		if (ni != NULL) {
2878			/*
2879			 * Reclaim node reference.
2880			 */
2881			ieee80211_free_node(ni);
2882		}
2883	}
2884
2885	TAILQ_INIT(head);
2886	free(dd->dd_bufptr, M_ATHDEV);
2887	memset(dd, 0, sizeof(*dd));
2888}
2889
2890static int
2891ath_desc_alloc(struct ath_softc *sc)
2892{
2893	int error;
2894
2895	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2896			"rx", ath_rxbuf, 1);
2897	if (error != 0)
2898		return error;
2899
2900	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2901			"tx", ath_txbuf, ATH_TXDESC);
2902	if (error != 0) {
2903		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2904		return error;
2905	}
2906	sc->sc_txbuf_cnt = ath_txbuf;
2907
2908	error = ath_descdma_setup(sc, &sc->sc_txdma_mgmt, &sc->sc_txbuf_mgmt,
2909			"tx_mgmt", ath_txbuf_mgmt, ATH_TXDESC);
2910	if (error != 0) {
2911		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2912		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2913		return error;
2914	}
2915
2916	/*
2917	 * XXX mark txbuf_mgmt frames with ATH_BUF_MGMT, so the
2918	 * flag doesn't have to be set in ath_getbuf_locked().
2919	 */
2920
2921	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2922			"beacon", ATH_BCBUF, 1);
2923	if (error != 0) {
2924		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2925		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2926		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
2927		    &sc->sc_txbuf_mgmt);
2928		return error;
2929	}
2930	return 0;
2931}
2932
2933static void
2934ath_desc_free(struct ath_softc *sc)
2935{
2936
2937	if (sc->sc_bdma.dd_desc_len != 0)
2938		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2939	if (sc->sc_txdma.dd_desc_len != 0)
2940		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2941	if (sc->sc_rxdma.dd_desc_len != 0)
2942		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2943	if (sc->sc_txdma_mgmt.dd_desc_len != 0)
2944		ath_descdma_cleanup(sc, &sc->sc_txdma_mgmt,
2945		    &sc->sc_txbuf_mgmt);
2946}
2947
2948static struct ieee80211_node *
2949ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2950{
2951	struct ieee80211com *ic = vap->iv_ic;
2952	struct ath_softc *sc = ic->ic_ifp->if_softc;
2953	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2954	struct ath_node *an;
2955
2956	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2957	if (an == NULL) {
2958		/* XXX stat+msg */
2959		return NULL;
2960	}
2961	ath_rate_node_init(sc, an);
2962
2963	/* Setup the mutex - there's no associd yet so set the name to NULL */
2964	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
2965	    device_get_nameunit(sc->sc_dev), an);
2966	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
2967
2968	/* XXX setup ath_tid */
2969	ath_tx_tid_init(sc, an);
2970
2971	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2972	return &an->an_node;
2973}
2974
2975static void
2976ath_node_cleanup(struct ieee80211_node *ni)
2977{
2978	struct ieee80211com *ic = ni->ni_ic;
2979	struct ath_softc *sc = ic->ic_ifp->if_softc;
2980
2981	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
2982	ath_tx_node_flush(sc, ATH_NODE(ni));
2983	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2984	sc->sc_node_cleanup(ni);
2985}
2986
2987static void
2988ath_node_free(struct ieee80211_node *ni)
2989{
2990	struct ieee80211com *ic = ni->ni_ic;
2991	struct ath_softc *sc = ic->ic_ifp->if_softc;
2992
2993	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2994	mtx_destroy(&ATH_NODE(ni)->an_mtx);
2995	sc->sc_node_free(ni);
2996}
2997
2998static void
2999ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3000{
3001	struct ieee80211com *ic = ni->ni_ic;
3002	struct ath_softc *sc = ic->ic_ifp->if_softc;
3003	struct ath_hal *ah = sc->sc_ah;
3004
3005	*rssi = ic->ic_node_getrssi(ni);
3006	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3007		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3008	else
3009		*noise = -95;		/* nominally correct */
3010}
3011
3012/*
3013 * Set the default antenna.
3014 */
3015void
3016ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3017{
3018	struct ath_hal *ah = sc->sc_ah;
3019
3020	/* XXX block beacon interrupts */
3021	ath_hal_setdefantenna(ah, antenna);
3022	if (sc->sc_defant != antenna)
3023		sc->sc_stats.ast_ant_defswitch++;
3024	sc->sc_defant = antenna;
3025	sc->sc_rxotherant = 0;
3026}
3027
3028static void
3029ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3030{
3031	txq->axq_qnum = qnum;
3032	txq->axq_ac = 0;
3033	txq->axq_depth = 0;
3034	txq->axq_aggr_depth = 0;
3035	txq->axq_intrcnt = 0;
3036	txq->axq_link = NULL;
3037	txq->axq_softc = sc;
3038	TAILQ_INIT(&txq->axq_q);
3039	TAILQ_INIT(&txq->axq_tidq);
3040	ATH_TXQ_LOCK_INIT(sc, txq);
3041}
3042
3043/*
3044 * Setup a h/w transmit queue.
3045 */
3046static struct ath_txq *
3047ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3048{
3049#define	N(a)	(sizeof(a)/sizeof(a[0]))
3050	struct ath_hal *ah = sc->sc_ah;
3051	HAL_TXQ_INFO qi;
3052	int qnum;
3053
3054	memset(&qi, 0, sizeof(qi));
3055	qi.tqi_subtype = subtype;
3056	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3057	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3058	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3059	/*
3060	 * Enable interrupts only for EOL and DESC conditions.
3061	 * We mark tx descriptors to receive a DESC interrupt
3062	 * when a tx queue gets deep; otherwise waiting for the
3063	 * EOL to reap descriptors.  Note that this is done to
3064	 * reduce interrupt load and this only defers reaping
3065	 * descriptors, never transmitting frames.  Aside from
3066	 * reducing interrupts this also permits more concurrency.
3067	 * The only potential downside is if the tx queue backs
3068	 * up in which case the top half of the kernel may backup
3069	 * due to a lack of tx descriptors.
3070	 */
3071	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3072	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3073	if (qnum == -1) {
3074		/*
3075		 * NB: don't print a message, this happens
3076		 * normally on parts with too few tx queues
3077		 */
3078		return NULL;
3079	}
3080	if (qnum >= N(sc->sc_txq)) {
3081		device_printf(sc->sc_dev,
3082			"hal qnum %u out of range, max %zu!\n",
3083			qnum, N(sc->sc_txq));
3084		ath_hal_releasetxqueue(ah, qnum);
3085		return NULL;
3086	}
3087	if (!ATH_TXQ_SETUP(sc, qnum)) {
3088		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3089		sc->sc_txqsetup |= 1<<qnum;
3090	}
3091	return &sc->sc_txq[qnum];
3092#undef N
3093}
3094
3095/*
3096 * Setup a hardware data transmit queue for the specified
3097 * access control.  The hal may not support all requested
3098 * queues in which case it will return a reference to a
3099 * previously setup queue.  We record the mapping from ac's
3100 * to h/w queues for use by ath_tx_start and also track
3101 * the set of h/w queues being used to optimize work in the
3102 * transmit interrupt handler and related routines.
3103 */
3104static int
3105ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3106{
3107#define	N(a)	(sizeof(a)/sizeof(a[0]))
3108	struct ath_txq *txq;
3109
3110	if (ac >= N(sc->sc_ac2q)) {
3111		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3112			ac, N(sc->sc_ac2q));
3113		return 0;
3114	}
3115	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3116	if (txq != NULL) {
3117		txq->axq_ac = ac;
3118		sc->sc_ac2q[ac] = txq;
3119		return 1;
3120	} else
3121		return 0;
3122#undef N
3123}
3124
3125/*
3126 * Update WME parameters for a transmit queue.
3127 */
3128static int
3129ath_txq_update(struct ath_softc *sc, int ac)
3130{
3131#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3132#define	ATH_TXOP_TO_US(v)		(v<<5)
3133	struct ifnet *ifp = sc->sc_ifp;
3134	struct ieee80211com *ic = ifp->if_l2com;
3135	struct ath_txq *txq = sc->sc_ac2q[ac];
3136	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3137	struct ath_hal *ah = sc->sc_ah;
3138	HAL_TXQ_INFO qi;
3139
3140	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3141#ifdef IEEE80211_SUPPORT_TDMA
3142	if (sc->sc_tdma) {
3143		/*
3144		 * AIFS is zero so there's no pre-transmit wait.  The
3145		 * burst time defines the slot duration and is configured
3146		 * through net80211.  The QCU is setup to not do post-xmit
3147		 * back off, lockout all lower-priority QCU's, and fire
3148		 * off the DMA beacon alert timer which is setup based
3149		 * on the slot configuration.
3150		 */
3151		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3152			      | HAL_TXQ_TXERRINT_ENABLE
3153			      | HAL_TXQ_TXURNINT_ENABLE
3154			      | HAL_TXQ_TXEOLINT_ENABLE
3155			      | HAL_TXQ_DBA_GATED
3156			      | HAL_TXQ_BACKOFF_DISABLE
3157			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3158			      ;
3159		qi.tqi_aifs = 0;
3160		/* XXX +dbaprep? */
3161		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3162		qi.tqi_burstTime = qi.tqi_readyTime;
3163	} else {
3164#endif
3165		/*
3166		 * XXX shouldn't this just use the default flags
3167		 * used in the previous queue setup?
3168		 */
3169		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3170			      | HAL_TXQ_TXERRINT_ENABLE
3171			      | HAL_TXQ_TXDESCINT_ENABLE
3172			      | HAL_TXQ_TXURNINT_ENABLE
3173			      | HAL_TXQ_TXEOLINT_ENABLE
3174			      ;
3175		qi.tqi_aifs = wmep->wmep_aifsn;
3176		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3177		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3178		qi.tqi_readyTime = 0;
3179		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3180#ifdef IEEE80211_SUPPORT_TDMA
3181	}
3182#endif
3183
3184	DPRINTF(sc, ATH_DEBUG_RESET,
3185	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3186	    __func__, txq->axq_qnum, qi.tqi_qflags,
3187	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3188
3189	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3190		if_printf(ifp, "unable to update hardware queue "
3191			"parameters for %s traffic!\n",
3192			ieee80211_wme_acnames[ac]);
3193		return 0;
3194	} else {
3195		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3196		return 1;
3197	}
3198#undef ATH_TXOP_TO_US
3199#undef ATH_EXPONENT_TO_VALUE
3200}
3201
3202/*
3203 * Callback from the 802.11 layer to update WME parameters.
3204 */
3205int
3206ath_wme_update(struct ieee80211com *ic)
3207{
3208	struct ath_softc *sc = ic->ic_ifp->if_softc;
3209
3210	return !ath_txq_update(sc, WME_AC_BE) ||
3211	    !ath_txq_update(sc, WME_AC_BK) ||
3212	    !ath_txq_update(sc, WME_AC_VI) ||
3213	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3214}
3215
3216/*
3217 * Reclaim resources for a setup queue.
3218 */
3219static void
3220ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3221{
3222
3223	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3224	ATH_TXQ_LOCK_DESTROY(txq);
3225	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3226}
3227
3228/*
3229 * Reclaim all tx queue resources.
3230 */
3231static void
3232ath_tx_cleanup(struct ath_softc *sc)
3233{
3234	int i;
3235
3236	ATH_TXBUF_LOCK_DESTROY(sc);
3237	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3238		if (ATH_TXQ_SETUP(sc, i))
3239			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3240}
3241
3242/*
3243 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3244 * using the current rates in sc_rixmap.
3245 */
3246int
3247ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3248{
3249	int rix = sc->sc_rixmap[rate];
3250	/* NB: return lowest rix for invalid rate */
3251	return (rix == 0xff ? 0 : rix);
3252}
3253
3254static void
3255ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3256    struct ath_buf *bf)
3257{
3258	struct ieee80211_node *ni = bf->bf_node;
3259	struct ifnet *ifp = sc->sc_ifp;
3260	struct ieee80211com *ic = ifp->if_l2com;
3261	int sr, lr, pri;
3262
3263	if (ts->ts_status == 0) {
3264		u_int8_t txant = ts->ts_antenna;
3265		sc->sc_stats.ast_ant_tx[txant]++;
3266		sc->sc_ant_tx[txant]++;
3267		if (ts->ts_finaltsi != 0)
3268			sc->sc_stats.ast_tx_altrate++;
3269		pri = M_WME_GETAC(bf->bf_m);
3270		if (pri >= WME_AC_VO)
3271			ic->ic_wme.wme_hipri_traffic++;
3272		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3273			ni->ni_inact = ni->ni_inact_reload;
3274	} else {
3275		if (ts->ts_status & HAL_TXERR_XRETRY)
3276			sc->sc_stats.ast_tx_xretries++;
3277		if (ts->ts_status & HAL_TXERR_FIFO)
3278			sc->sc_stats.ast_tx_fifoerr++;
3279		if (ts->ts_status & HAL_TXERR_FILT)
3280			sc->sc_stats.ast_tx_filtered++;
3281		if (ts->ts_status & HAL_TXERR_XTXOP)
3282			sc->sc_stats.ast_tx_xtxop++;
3283		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3284			sc->sc_stats.ast_tx_timerexpired++;
3285
3286		if (ts->ts_status & HAL_TX_DATA_UNDERRUN)
3287			sc->sc_stats.ast_tx_data_underrun++;
3288		if (ts->ts_status & HAL_TX_DELIM_UNDERRUN)
3289			sc->sc_stats.ast_tx_delim_underrun++;
3290
3291		if (bf->bf_m->m_flags & M_FF)
3292			sc->sc_stats.ast_ff_txerr++;
3293	}
3294	/* XXX when is this valid? */
3295	if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
3296		sc->sc_stats.ast_tx_desccfgerr++;
3297
3298	sr = ts->ts_shortretry;
3299	lr = ts->ts_longretry;
3300	sc->sc_stats.ast_tx_shortretry += sr;
3301	sc->sc_stats.ast_tx_longretry += lr;
3302
3303}
3304
3305/*
3306 * The default completion. If fail is 1, this means
3307 * "please don't retry the frame, and just return -1 status
3308 * to the net80211 stack.
3309 */
3310void
3311ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3312{
3313	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3314	int st;
3315
3316	if (fail == 1)
3317		st = -1;
3318	else
3319		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
3320		    ts->ts_status : HAL_TXERR_XRETRY;
3321
3322	if (bf->bf_state.bfs_dobaw)
3323		device_printf(sc->sc_dev,
3324		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
3325		    __func__,
3326		    bf,
3327		    SEQNO(bf->bf_state.bfs_seqno));
3328	if (bf->bf_next != NULL)
3329		device_printf(sc->sc_dev,
3330		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
3331		    __func__,
3332		    bf,
3333		    SEQNO(bf->bf_state.bfs_seqno));
3334
3335	/*
3336	 * Do any tx complete callback.  Note this must
3337	 * be done before releasing the node reference.
3338	 * This will free the mbuf, release the net80211
3339	 * node and recycle the ath_buf.
3340	 */
3341	ath_tx_freebuf(sc, bf, st);
3342}
3343
3344/*
3345 * Update rate control with the given completion status.
3346 */
3347void
3348ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
3349    struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
3350    int nframes, int nbad)
3351{
3352	struct ath_node *an;
3353
3354	/* Only for unicast frames */
3355	if (ni == NULL)
3356		return;
3357
3358	an = ATH_NODE(ni);
3359
3360	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
3361		ATH_NODE_LOCK(an);
3362		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
3363		ATH_NODE_UNLOCK(an);
3364	}
3365}
3366
3367/*
3368 * Update the busy status of the last frame on the free list.
3369 * When doing TDMA, the busy flag tracks whether the hardware
3370 * currently points to this buffer or not, and thus gated DMA
3371 * may restart by re-reading the last descriptor in this
3372 * buffer.
3373 *
3374 * This should be called in the completion function once one
3375 * of the buffers has been used.
3376 */
3377static void
3378ath_tx_update_busy(struct ath_softc *sc)
3379{
3380	struct ath_buf *last;
3381
3382	/*
3383	 * Since the last frame may still be marked
3384	 * as ATH_BUF_BUSY, unmark it here before
3385	 * finishing the frame processing.
3386	 * Since we've completed a frame (aggregate
3387	 * or otherwise), the hardware has moved on
3388	 * and is no longer referencing the previous
3389	 * descriptor.
3390	 */
3391	ATH_TXBUF_LOCK_ASSERT(sc);
3392	last = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
3393	if (last != NULL)
3394		last->bf_flags &= ~ATH_BUF_BUSY;
3395	last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
3396	if (last != NULL)
3397		last->bf_flags &= ~ATH_BUF_BUSY;
3398}
3399
3400/*
3401 * Process completed xmit descriptors from the specified queue.
3402 * Kick the packet scheduler if needed. This can occur from this
3403 * particular task.
3404 */
3405static int
3406ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
3407{
3408	struct ath_hal *ah = sc->sc_ah;
3409	struct ath_buf *bf;
3410	struct ath_desc *ds;
3411	struct ath_tx_status *ts;
3412	struct ieee80211_node *ni;
3413	struct ath_node *an;
3414#ifdef	IEEE80211_SUPPORT_SUPERG
3415	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3416#endif	/* IEEE80211_SUPPORT_SUPERG */
3417	int nacked;
3418	HAL_STATUS status;
3419
3420	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3421		__func__, txq->axq_qnum,
3422		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3423		txq->axq_link);
3424	nacked = 0;
3425	for (;;) {
3426		ATH_TXQ_LOCK(txq);
3427		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3428		bf = TAILQ_FIRST(&txq->axq_q);
3429		if (bf == NULL) {
3430			ATH_TXQ_UNLOCK(txq);
3431			break;
3432		}
3433		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
3434		ts = &bf->bf_status.ds_txstat;
3435		status = ath_hal_txprocdesc(ah, ds, ts);
3436#ifdef ATH_DEBUG
3437		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3438			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3439			    status == HAL_OK);
3440		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) {
3441			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3442			    status == HAL_OK);
3443		}
3444#endif
3445		if (status == HAL_EINPROGRESS) {
3446			ATH_TXQ_UNLOCK(txq);
3447			break;
3448		}
3449		ATH_TXQ_REMOVE(txq, bf, bf_list);
3450#ifdef IEEE80211_SUPPORT_TDMA
3451		if (txq->axq_depth > 0) {
3452			/*
3453			 * More frames follow.  Mark the buffer busy
3454			 * so it's not re-used while the hardware may
3455			 * still re-read the link field in the descriptor.
3456			 *
3457			 * Use the last buffer in an aggregate as that
3458			 * is where the hardware may be - intermediate
3459			 * descriptors won't be "busy".
3460			 */
3461			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
3462		} else
3463#else
3464		if (txq->axq_depth == 0)
3465#endif
3466			txq->axq_link = NULL;
3467		if (bf->bf_state.bfs_aggr)
3468			txq->axq_aggr_depth--;
3469
3470		ni = bf->bf_node;
3471		/*
3472		 * If unicast frame was ack'd update RSSI,
3473		 * including the last rx time used to
3474		 * workaround phantom bmiss interrupts.
3475		 */
3476		if (ni != NULL && ts->ts_status == 0 &&
3477		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
3478			nacked++;
3479			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
3480			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3481				ts->ts_rssi);
3482		}
3483		ATH_TXQ_UNLOCK(txq);
3484
3485		/* If unicast frame, update general statistics */
3486		if (ni != NULL) {
3487			an = ATH_NODE(ni);
3488			/* update statistics */
3489			ath_tx_update_stats(sc, ts, bf);
3490		}
3491
3492		/*
3493		 * Call the completion handler.
3494		 * The completion handler is responsible for
3495		 * calling the rate control code.
3496		 *
3497		 * Frames with no completion handler get the
3498		 * rate control code called here.
3499		 */
3500		if (bf->bf_comp == NULL) {
3501			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
3502			    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
3503				/*
3504				 * XXX assume this isn't an aggregate
3505				 * frame.
3506				 */
3507				ath_tx_update_ratectrl(sc, ni,
3508				     bf->bf_state.bfs_rc, ts,
3509				    bf->bf_state.bfs_pktlen, 1,
3510				    (ts->ts_status == 0 ? 0 : 1));
3511			}
3512			ath_tx_default_comp(sc, bf, 0);
3513		} else
3514			bf->bf_comp(sc, bf, 0);
3515	}
3516#ifdef IEEE80211_SUPPORT_SUPERG
3517	/*
3518	 * Flush fast-frame staging queue when traffic slows.
3519	 */
3520	if (txq->axq_depth <= 1)
3521		ieee80211_ff_flush(ic, txq->axq_ac);
3522#endif
3523
3524	/* Kick the TXQ scheduler */
3525	if (dosched) {
3526		ATH_TXQ_LOCK(txq);
3527		ath_txq_sched(sc, txq);
3528		ATH_TXQ_UNLOCK(txq);
3529	}
3530
3531	return nacked;
3532}
3533
3534#define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
3535
3536/*
3537 * Deferred processing of transmit interrupt; special-cased
3538 * for a single hardware transmit queue (e.g. 5210 and 5211).
3539 */
3540static void
3541ath_tx_proc_q0(void *arg, int npending)
3542{
3543	struct ath_softc *sc = arg;
3544	struct ifnet *ifp = sc->sc_ifp;
3545	uint32_t txqs;
3546
3547	ATH_PCU_LOCK(sc);
3548	sc->sc_txproc_cnt++;
3549	txqs = sc->sc_txq_active;
3550	sc->sc_txq_active &= ~txqs;
3551	ATH_PCU_UNLOCK(sc);
3552
3553	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
3554		/* XXX why is lastrx updated in tx code? */
3555		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3556	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3557		ath_tx_processq(sc, sc->sc_cabq, 1);
3558	IF_LOCK(&ifp->if_snd);
3559	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3560	IF_UNLOCK(&ifp->if_snd);
3561	sc->sc_wd_timer = 0;
3562
3563	if (sc->sc_softled)
3564		ath_led_event(sc, sc->sc_txrix);
3565
3566	ATH_PCU_LOCK(sc);
3567	sc->sc_txproc_cnt--;
3568	ATH_PCU_UNLOCK(sc);
3569
3570	ath_tx_kick(sc);
3571}
3572
3573/*
3574 * Deferred processing of transmit interrupt; special-cased
3575 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3576 */
3577static void
3578ath_tx_proc_q0123(void *arg, int npending)
3579{
3580	struct ath_softc *sc = arg;
3581	struct ifnet *ifp = sc->sc_ifp;
3582	int nacked;
3583	uint32_t txqs;
3584
3585	ATH_PCU_LOCK(sc);
3586	sc->sc_txproc_cnt++;
3587	txqs = sc->sc_txq_active;
3588	sc->sc_txq_active &= ~txqs;
3589	ATH_PCU_UNLOCK(sc);
3590
3591	/*
3592	 * Process each active queue.
3593	 */
3594	nacked = 0;
3595	if (TXQACTIVE(txqs, 0))
3596		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
3597	if (TXQACTIVE(txqs, 1))
3598		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
3599	if (TXQACTIVE(txqs, 2))
3600		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
3601	if (TXQACTIVE(txqs, 3))
3602		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
3603	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3604		ath_tx_processq(sc, sc->sc_cabq, 1);
3605	if (nacked)
3606		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3607
3608	IF_LOCK(&ifp->if_snd);
3609	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3610	IF_UNLOCK(&ifp->if_snd);
3611	sc->sc_wd_timer = 0;
3612
3613	if (sc->sc_softled)
3614		ath_led_event(sc, sc->sc_txrix);
3615
3616	ATH_PCU_LOCK(sc);
3617	sc->sc_txproc_cnt--;
3618	ATH_PCU_UNLOCK(sc);
3619
3620	ath_tx_kick(sc);
3621}
3622
3623/*
3624 * Deferred processing of transmit interrupt.
3625 */
3626static void
3627ath_tx_proc(void *arg, int npending)
3628{
3629	struct ath_softc *sc = arg;
3630	struct ifnet *ifp = sc->sc_ifp;
3631	int i, nacked;
3632	uint32_t txqs;
3633
3634	ATH_PCU_LOCK(sc);
3635	sc->sc_txproc_cnt++;
3636	txqs = sc->sc_txq_active;
3637	sc->sc_txq_active &= ~txqs;
3638	ATH_PCU_UNLOCK(sc);
3639
3640	/*
3641	 * Process each active queue.
3642	 */
3643	nacked = 0;
3644	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3645		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
3646			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
3647	if (nacked)
3648		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3649
3650	/* XXX check this inside of IF_LOCK? */
3651	IF_LOCK(&ifp->if_snd);
3652	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3653	IF_UNLOCK(&ifp->if_snd);
3654	sc->sc_wd_timer = 0;
3655
3656	if (sc->sc_softled)
3657		ath_led_event(sc, sc->sc_txrix);
3658
3659	ATH_PCU_LOCK(sc);
3660	sc->sc_txproc_cnt--;
3661	ATH_PCU_UNLOCK(sc);
3662
3663	ath_tx_kick(sc);
3664}
3665#undef	TXQACTIVE
3666
3667/*
3668 * Deferred processing of TXQ rescheduling.
3669 */
3670static void
3671ath_txq_sched_tasklet(void *arg, int npending)
3672{
3673	struct ath_softc *sc = arg;
3674	int i;
3675
3676	/* XXX is skipping ok? */
3677	ATH_PCU_LOCK(sc);
3678#if 0
3679	if (sc->sc_inreset_cnt > 0) {
3680		device_printf(sc->sc_dev,
3681		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
3682		ATH_PCU_UNLOCK(sc);
3683		return;
3684	}
3685#endif
3686	sc->sc_txproc_cnt++;
3687	ATH_PCU_UNLOCK(sc);
3688
3689	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
3690		if (ATH_TXQ_SETUP(sc, i)) {
3691			ATH_TXQ_LOCK(&sc->sc_txq[i]);
3692			ath_txq_sched(sc, &sc->sc_txq[i]);
3693			ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
3694		}
3695	}
3696
3697	ATH_PCU_LOCK(sc);
3698	sc->sc_txproc_cnt--;
3699	ATH_PCU_UNLOCK(sc);
3700}
3701
3702void
3703ath_returnbuf_tail(struct ath_softc *sc, struct ath_buf *bf)
3704{
3705
3706	ATH_TXBUF_LOCK_ASSERT(sc);
3707
3708	if (bf->bf_flags & ATH_BUF_MGMT)
3709		TAILQ_INSERT_TAIL(&sc->sc_txbuf_mgmt, bf, bf_list);
3710	else {
3711		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3712		sc->sc_txbuf_cnt++;
3713		if (sc->sc_txbuf_cnt > ath_txbuf) {
3714			device_printf(sc->sc_dev,
3715			    "%s: sc_txbuf_cnt > %d?\n",
3716			    __func__,
3717			    ath_txbuf);
3718			sc->sc_txbuf_cnt = ath_txbuf;
3719		}
3720	}
3721}
3722
3723void
3724ath_returnbuf_head(struct ath_softc *sc, struct ath_buf *bf)
3725{
3726
3727	ATH_TXBUF_LOCK_ASSERT(sc);
3728
3729	if (bf->bf_flags & ATH_BUF_MGMT)
3730		TAILQ_INSERT_HEAD(&sc->sc_txbuf_mgmt, bf, bf_list);
3731	else {
3732		TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
3733		sc->sc_txbuf_cnt++;
3734		if (sc->sc_txbuf_cnt > ATH_TXBUF) {
3735			device_printf(sc->sc_dev,
3736			    "%s: sc_txbuf_cnt > %d?\n",
3737			    __func__,
3738			    ATH_TXBUF);
3739			sc->sc_txbuf_cnt = ATH_TXBUF;
3740		}
3741	}
3742}
3743
3744/*
3745 * Return a buffer to the pool and update the 'busy' flag on the
3746 * previous 'tail' entry.
3747 *
3748 * This _must_ only be called when the buffer is involved in a completed
3749 * TX. The logic is that if it was part of an active TX, the previous
3750 * buffer on the list is now not involved in a halted TX DMA queue, waiting
3751 * for restart (eg for TDMA.)
3752 *
3753 * The caller must free the mbuf and recycle the node reference.
3754 */
3755void
3756ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
3757{
3758	bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3759	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
3760
3761	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
3762	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
3763
3764	ATH_TXBUF_LOCK(sc);
3765	ath_tx_update_busy(sc);
3766	ath_returnbuf_tail(sc, bf);
3767	ATH_TXBUF_UNLOCK(sc);
3768}
3769
3770/*
3771 * This is currently used by ath_tx_draintxq() and
3772 * ath_tx_tid_free_pkts().
3773 *
3774 * It recycles a single ath_buf.
3775 */
3776void
3777ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
3778{
3779	struct ieee80211_node *ni = bf->bf_node;
3780	struct mbuf *m0 = bf->bf_m;
3781
3782	bf->bf_node = NULL;
3783	bf->bf_m = NULL;
3784
3785	/* Free the buffer, it's not needed any longer */
3786	ath_freebuf(sc, bf);
3787
3788	if (ni != NULL) {
3789		/*
3790		 * Do any callback and reclaim the node reference.
3791		 */
3792		if (m0->m_flags & M_TXCB)
3793			ieee80211_process_callback(ni, m0, status);
3794		ieee80211_free_node(ni);
3795	}
3796	m_freem(m0);
3797
3798	/*
3799	 * XXX the buffer used to be freed -after-, but the DMA map was
3800	 * freed where ath_freebuf() now is. I've no idea what this
3801	 * will do.
3802	 */
3803}
3804
3805void
3806ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3807{
3808#ifdef ATH_DEBUG
3809	struct ath_hal *ah = sc->sc_ah;
3810#endif
3811	struct ath_buf *bf;
3812	u_int ix;
3813
3814	/*
3815	 * NB: this assumes output has been stopped and
3816	 *     we do not need to block ath_tx_proc
3817	 */
3818	ATH_TXBUF_LOCK(sc);
3819	bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
3820	if (bf != NULL)
3821		bf->bf_flags &= ~ATH_BUF_BUSY;
3822	bf = TAILQ_LAST(&sc->sc_txbuf_mgmt, ath_bufhead_s);
3823	if (bf != NULL)
3824		bf->bf_flags &= ~ATH_BUF_BUSY;
3825	ATH_TXBUF_UNLOCK(sc);
3826
3827	for (ix = 0;; ix++) {
3828		ATH_TXQ_LOCK(txq);
3829		bf = TAILQ_FIRST(&txq->axq_q);
3830		if (bf == NULL) {
3831			txq->axq_link = NULL;
3832			ATH_TXQ_UNLOCK(txq);
3833			break;
3834		}
3835		ATH_TXQ_REMOVE(txq, bf, bf_list);
3836		if (bf->bf_state.bfs_aggr)
3837			txq->axq_aggr_depth--;
3838#ifdef ATH_DEBUG
3839		if (sc->sc_debug & ATH_DEBUG_RESET) {
3840			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3841
3842			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
3843				ath_hal_txprocdesc(ah, bf->bf_lastds,
3844				    &bf->bf_status.ds_txstat) == HAL_OK);
3845			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
3846			    bf->bf_m->m_len, 0, -1);
3847		}
3848#endif /* ATH_DEBUG */
3849		/*
3850		 * Since we're now doing magic in the completion
3851		 * functions, we -must- call it for aggregation
3852		 * destinations or BAW tracking will get upset.
3853		 */
3854		/*
3855		 * Clear ATH_BUF_BUSY; the completion handler
3856		 * will free the buffer.
3857		 */
3858		ATH_TXQ_UNLOCK(txq);
3859		bf->bf_flags &= ~ATH_BUF_BUSY;
3860		if (bf->bf_comp)
3861			bf->bf_comp(sc, bf, 1);
3862		else
3863			ath_tx_default_comp(sc, bf, 1);
3864	}
3865
3866	/*
3867	 * Drain software queued frames which are on
3868	 * active TIDs.
3869	 */
3870	ath_tx_txq_drain(sc, txq);
3871}
3872
3873static void
3874ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3875{
3876	struct ath_hal *ah = sc->sc_ah;
3877
3878	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3879	    __func__, txq->axq_qnum,
3880	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3881	    txq->axq_link);
3882	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3883}
3884
3885static int
3886ath_stoptxdma(struct ath_softc *sc)
3887{
3888	struct ath_hal *ah = sc->sc_ah;
3889	int i;
3890
3891	/* XXX return value */
3892	if (sc->sc_invalid)
3893		return 0;
3894
3895	if (!sc->sc_invalid) {
3896		/* don't touch the hardware if marked invalid */
3897		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3898		    __func__, sc->sc_bhalq,
3899		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
3900		    NULL);
3901		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3902		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3903			if (ATH_TXQ_SETUP(sc, i))
3904				ath_tx_stopdma(sc, &sc->sc_txq[i]);
3905	}
3906
3907	return 1;
3908}
3909
3910/*
3911 * Drain the transmit queues and reclaim resources.
3912 */
3913static void
3914ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
3915{
3916#ifdef	ATH_DEBUG
3917	struct ath_hal *ah = sc->sc_ah;
3918#endif
3919	struct ifnet *ifp = sc->sc_ifp;
3920	int i;
3921
3922	(void) ath_stoptxdma(sc);
3923
3924	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
3925		/*
3926		 * XXX TODO: should we just handle the completed TX frames
3927		 * here, whether or not the reset is a full one or not?
3928		 */
3929		if (ATH_TXQ_SETUP(sc, i)) {
3930			if (reset_type == ATH_RESET_NOLOSS)
3931				ath_tx_processq(sc, &sc->sc_txq[i], 0);
3932			else
3933				ath_tx_draintxq(sc, &sc->sc_txq[i]);
3934		}
3935	}
3936#ifdef ATH_DEBUG
3937	if (sc->sc_debug & ATH_DEBUG_RESET) {
3938		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
3939		if (bf != NULL && bf->bf_m != NULL) {
3940			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
3941				ath_hal_txprocdesc(ah, bf->bf_lastds,
3942				    &bf->bf_status.ds_txstat) == HAL_OK);
3943			ieee80211_dump_pkt(ifp->if_l2com,
3944			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
3945			    0, -1);
3946		}
3947	}
3948#endif /* ATH_DEBUG */
3949	IF_LOCK(&ifp->if_snd);
3950	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3951	IF_UNLOCK(&ifp->if_snd);
3952	sc->sc_wd_timer = 0;
3953}
3954
3955/*
3956 * Update internal state after a channel change.
3957 */
3958static void
3959ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3960{
3961	enum ieee80211_phymode mode;
3962
3963	/*
3964	 * Change channels and update the h/w rate map
3965	 * if we're switching; e.g. 11a to 11b/g.
3966	 */
3967	mode = ieee80211_chan2mode(chan);
3968	if (mode != sc->sc_curmode)
3969		ath_setcurmode(sc, mode);
3970	sc->sc_curchan = chan;
3971}
3972
3973/*
3974 * Set/change channels.  If the channel is really being changed,
3975 * it's done by resetting the chip.  To accomplish this we must
3976 * first cleanup any pending DMA, then restart stuff after a la
3977 * ath_init.
3978 */
3979static int
3980ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3981{
3982	struct ifnet *ifp = sc->sc_ifp;
3983	struct ieee80211com *ic = ifp->if_l2com;
3984	struct ath_hal *ah = sc->sc_ah;
3985	int ret = 0;
3986
3987	/* Treat this as an interface reset */
3988	ATH_PCU_UNLOCK_ASSERT(sc);
3989	ATH_UNLOCK_ASSERT(sc);
3990
3991	/* (Try to) stop TX/RX from occuring */
3992	taskqueue_block(sc->sc_tq);
3993
3994	ATH_PCU_LOCK(sc);
3995	ath_hal_intrset(ah, 0);		/* Stop new RX/TX completion */
3996	ath_txrx_stop_locked(sc);	/* Stop pending RX/TX completion */
3997	if (ath_reset_grablock(sc, 1) == 0) {
3998		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
3999		    __func__);
4000	}
4001	ATH_PCU_UNLOCK(sc);
4002
4003	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4004	    __func__, ieee80211_chan2ieee(ic, chan),
4005	    chan->ic_freq, chan->ic_flags);
4006	if (chan != sc->sc_curchan) {
4007		HAL_STATUS status;
4008		/*
4009		 * To switch channels clear any pending DMA operations;
4010		 * wait long enough for the RX fifo to drain, reset the
4011		 * hardware at the new frequency, and then re-enable
4012		 * the relevant bits of the h/w.
4013		 */
4014#if 0
4015		ath_hal_intrset(ah, 0);		/* disable interrupts */
4016#endif
4017		ath_stoprecv(sc, 1);		/* turn off frame recv */
4018		/*
4019		 * First, handle completed TX/RX frames.
4020		 */
4021		ath_rx_proc(sc, 0);
4022		ath_draintxq(sc, ATH_RESET_NOLOSS);
4023		/*
4024		 * Next, flush the non-scheduled frames.
4025		 */
4026		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
4027
4028		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4029			if_printf(ifp, "%s: unable to reset "
4030			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4031			    __func__, ieee80211_chan2ieee(ic, chan),
4032			    chan->ic_freq, chan->ic_flags, status);
4033			ret = EIO;
4034			goto finish;
4035		}
4036		sc->sc_diversity = ath_hal_getdiversity(ah);
4037
4038		/* Let DFS at it in case it's a DFS channel */
4039		ath_dfs_radar_enable(sc, chan);
4040
4041		/*
4042		 * Re-enable rx framework.
4043		 */
4044		if (ath_startrecv(sc) != 0) {
4045			if_printf(ifp, "%s: unable to restart recv logic\n",
4046			    __func__);
4047			ret = EIO;
4048			goto finish;
4049		}
4050
4051		/*
4052		 * Change channels and update the h/w rate map
4053		 * if we're switching; e.g. 11a to 11b/g.
4054		 */
4055		ath_chan_change(sc, chan);
4056
4057		/*
4058		 * Reset clears the beacon timers; reset them
4059		 * here if needed.
4060		 */
4061		if (sc->sc_beacons) {		/* restart beacons */
4062#ifdef IEEE80211_SUPPORT_TDMA
4063			if (sc->sc_tdma)
4064				ath_tdma_config(sc, NULL);
4065			else
4066#endif
4067			ath_beacon_config(sc, NULL);
4068		}
4069
4070		/*
4071		 * Re-enable interrupts.
4072		 */
4073#if 0
4074		ath_hal_intrset(ah, sc->sc_imask);
4075#endif
4076	}
4077
4078finish:
4079	ATH_PCU_LOCK(sc);
4080	sc->sc_inreset_cnt--;
4081	/* XXX only do this if sc_inreset_cnt == 0? */
4082	ath_hal_intrset(ah, sc->sc_imask);
4083	ATH_PCU_UNLOCK(sc);
4084
4085	IF_LOCK(&ifp->if_snd);
4086	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4087	IF_UNLOCK(&ifp->if_snd);
4088	ath_txrx_start(sc);
4089	/* XXX ath_start? */
4090
4091	return ret;
4092}
4093
4094/*
4095 * Periodically recalibrate the PHY to account
4096 * for temperature/environment changes.
4097 */
4098static void
4099ath_calibrate(void *arg)
4100{
4101	struct ath_softc *sc = arg;
4102	struct ath_hal *ah = sc->sc_ah;
4103	struct ifnet *ifp = sc->sc_ifp;
4104	struct ieee80211com *ic = ifp->if_l2com;
4105	HAL_BOOL longCal, isCalDone;
4106	HAL_BOOL aniCal, shortCal = AH_FALSE;
4107	int nextcal;
4108
4109	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4110		goto restart;
4111	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4112	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4113	if (sc->sc_doresetcal)
4114		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4115
4116	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4117	if (aniCal) {
4118		sc->sc_stats.ast_ani_cal++;
4119		sc->sc_lastani = ticks;
4120		ath_hal_ani_poll(ah, sc->sc_curchan);
4121	}
4122
4123	if (longCal) {
4124		sc->sc_stats.ast_per_cal++;
4125		sc->sc_lastlongcal = ticks;
4126		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4127			/*
4128			 * Rfgain is out of bounds, reset the chip
4129			 * to load new gain values.
4130			 */
4131			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4132				"%s: rfgain change\n", __func__);
4133			sc->sc_stats.ast_per_rfgain++;
4134			sc->sc_resetcal = 0;
4135			sc->sc_doresetcal = AH_TRUE;
4136			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4137			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4138			return;
4139		}
4140		/*
4141		 * If this long cal is after an idle period, then
4142		 * reset the data collection state so we start fresh.
4143		 */
4144		if (sc->sc_resetcal) {
4145			(void) ath_hal_calreset(ah, sc->sc_curchan);
4146			sc->sc_lastcalreset = ticks;
4147			sc->sc_lastshortcal = ticks;
4148			sc->sc_resetcal = 0;
4149			sc->sc_doresetcal = AH_TRUE;
4150		}
4151	}
4152
4153	/* Only call if we're doing a short/long cal, not for ANI calibration */
4154	if (shortCal || longCal) {
4155		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4156			if (longCal) {
4157				/*
4158				 * Calibrate noise floor data again in case of change.
4159				 */
4160				ath_hal_process_noisefloor(ah);
4161			}
4162		} else {
4163			DPRINTF(sc, ATH_DEBUG_ANY,
4164				"%s: calibration of channel %u failed\n",
4165				__func__, sc->sc_curchan->ic_freq);
4166			sc->sc_stats.ast_per_calfail++;
4167		}
4168		if (shortCal)
4169			sc->sc_lastshortcal = ticks;
4170	}
4171	if (!isCalDone) {
4172restart:
4173		/*
4174		 * Use a shorter interval to potentially collect multiple
4175		 * data samples required to complete calibration.  Once
4176		 * we're told the work is done we drop back to a longer
4177		 * interval between requests.  We're more aggressive doing
4178		 * work when operating as an AP to improve operation right
4179		 * after startup.
4180		 */
4181		sc->sc_lastshortcal = ticks;
4182		nextcal = ath_shortcalinterval*hz/1000;
4183		if (sc->sc_opmode != HAL_M_HOSTAP)
4184			nextcal *= 10;
4185		sc->sc_doresetcal = AH_TRUE;
4186	} else {
4187		/* nextcal should be the shortest time for next event */
4188		nextcal = ath_longcalinterval*hz;
4189		if (sc->sc_lastcalreset == 0)
4190			sc->sc_lastcalreset = sc->sc_lastlongcal;
4191		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4192			sc->sc_resetcal = 1;	/* setup reset next trip */
4193		sc->sc_doresetcal = AH_FALSE;
4194	}
4195	/* ANI calibration may occur more often than short/long/resetcal */
4196	if (ath_anicalinterval > 0)
4197		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4198
4199	if (nextcal != 0) {
4200		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4201		    __func__, nextcal, isCalDone ? "" : "!");
4202		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4203	} else {
4204		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4205		    __func__);
4206		/* NB: don't rearm timer */
4207	}
4208}
4209
4210static void
4211ath_scan_start(struct ieee80211com *ic)
4212{
4213	struct ifnet *ifp = ic->ic_ifp;
4214	struct ath_softc *sc = ifp->if_softc;
4215	struct ath_hal *ah = sc->sc_ah;
4216	u_int32_t rfilt;
4217
4218	/* XXX calibration timer? */
4219
4220	ATH_LOCK(sc);
4221	sc->sc_scanning = 1;
4222	sc->sc_syncbeacon = 0;
4223	rfilt = ath_calcrxfilter(sc);
4224	ATH_UNLOCK(sc);
4225
4226	ATH_PCU_LOCK(sc);
4227	ath_hal_setrxfilter(ah, rfilt);
4228	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4229	ATH_PCU_UNLOCK(sc);
4230
4231	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4232		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4233}
4234
4235static void
4236ath_scan_end(struct ieee80211com *ic)
4237{
4238	struct ifnet *ifp = ic->ic_ifp;
4239	struct ath_softc *sc = ifp->if_softc;
4240	struct ath_hal *ah = sc->sc_ah;
4241	u_int32_t rfilt;
4242
4243	ATH_LOCK(sc);
4244	sc->sc_scanning = 0;
4245	rfilt = ath_calcrxfilter(sc);
4246	ATH_UNLOCK(sc);
4247
4248	ATH_PCU_LOCK(sc);
4249	ath_hal_setrxfilter(ah, rfilt);
4250	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4251
4252	ath_hal_process_noisefloor(ah);
4253	ATH_PCU_UNLOCK(sc);
4254
4255	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4256		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4257		 sc->sc_curaid);
4258}
4259
4260#ifdef	ATH_ENABLE_11N
4261/*
4262 * For now, just do a channel change.
4263 *
4264 * Later, we'll go through the hard slog of suspending tx/rx, changing rate
4265 * control state and resetting the hardware without dropping frames out
4266 * of the queue.
4267 *
4268 * The unfortunate trouble here is making absolutely sure that the
4269 * channel width change has propagated enough so the hardware
4270 * absolutely isn't handed bogus frames for it's current operating
4271 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
4272 * does occur in parallel, we need to make certain we've blocked
4273 * any further ongoing TX (and RX, that can cause raw TX)
4274 * before we do this.
4275 */
4276static void
4277ath_update_chw(struct ieee80211com *ic)
4278{
4279	struct ifnet *ifp = ic->ic_ifp;
4280	struct ath_softc *sc = ifp->if_softc;
4281
4282	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
4283	ath_set_channel(ic);
4284}
4285#endif	/* ATH_ENABLE_11N */
4286
4287static void
4288ath_set_channel(struct ieee80211com *ic)
4289{
4290	struct ifnet *ifp = ic->ic_ifp;
4291	struct ath_softc *sc = ifp->if_softc;
4292
4293	(void) ath_chan_set(sc, ic->ic_curchan);
4294	/*
4295	 * If we are returning to our bss channel then mark state
4296	 * so the next recv'd beacon's tsf will be used to sync the
4297	 * beacon timers.  Note that since we only hear beacons in
4298	 * sta/ibss mode this has no effect in other operating modes.
4299	 */
4300	ATH_LOCK(sc);
4301	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4302		sc->sc_syncbeacon = 1;
4303	ATH_UNLOCK(sc);
4304}
4305
4306/*
4307 * Walk the vap list and check if there any vap's in RUN state.
4308 */
4309static int
4310ath_isanyrunningvaps(struct ieee80211vap *this)
4311{
4312	struct ieee80211com *ic = this->iv_ic;
4313	struct ieee80211vap *vap;
4314
4315	IEEE80211_LOCK_ASSERT(ic);
4316
4317	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4318		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4319			return 1;
4320	}
4321	return 0;
4322}
4323
4324static int
4325ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4326{
4327	struct ieee80211com *ic = vap->iv_ic;
4328	struct ath_softc *sc = ic->ic_ifp->if_softc;
4329	struct ath_vap *avp = ATH_VAP(vap);
4330	struct ath_hal *ah = sc->sc_ah;
4331	struct ieee80211_node *ni = NULL;
4332	int i, error, stamode;
4333	u_int32_t rfilt;
4334	int csa_run_transition = 0;
4335	static const HAL_LED_STATE leds[] = {
4336	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4337	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4338	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4339	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4340	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4341	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4342	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4343	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4344	};
4345
4346	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4347		ieee80211_state_name[vap->iv_state],
4348		ieee80211_state_name[nstate]);
4349
4350	/*
4351	 * net80211 _should_ have the comlock asserted at this point.
4352	 * There are some comments around the calls to vap->iv_newstate
4353	 * which indicate that it (newstate) may end up dropping the
4354	 * lock.  This and the subsequent lock assert check after newstate
4355	 * are an attempt to catch these and figure out how/why.
4356	 */
4357	IEEE80211_LOCK_ASSERT(ic);
4358
4359	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
4360		csa_run_transition = 1;
4361
4362	callout_drain(&sc->sc_cal_ch);
4363	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4364
4365	if (nstate == IEEE80211_S_SCAN) {
4366		/*
4367		 * Scanning: turn off beacon miss and don't beacon.
4368		 * Mark beacon state so when we reach RUN state we'll
4369		 * [re]setup beacons.  Unblock the task q thread so
4370		 * deferred interrupt processing is done.
4371		 */
4372		ath_hal_intrset(ah,
4373		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4374		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4375		sc->sc_beacons = 0;
4376		taskqueue_unblock(sc->sc_tq);
4377	}
4378
4379	ni = ieee80211_ref_node(vap->iv_bss);
4380	rfilt = ath_calcrxfilter(sc);
4381	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4382		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4383		   vap->iv_opmode == IEEE80211_M_IBSS);
4384	if (stamode && nstate == IEEE80211_S_RUN) {
4385		sc->sc_curaid = ni->ni_associd;
4386		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
4387		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4388	}
4389	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4390	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
4391	ath_hal_setrxfilter(ah, rfilt);
4392
4393	/* XXX is this to restore keycache on resume? */
4394	if (vap->iv_opmode != IEEE80211_M_STA &&
4395	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
4396		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4397			if (ath_hal_keyisvalid(ah, i))
4398				ath_hal_keysetmac(ah, i, ni->ni_bssid);
4399	}
4400
4401	/*
4402	 * Invoke the parent method to do net80211 work.
4403	 */
4404	error = avp->av_newstate(vap, nstate, arg);
4405	if (error != 0)
4406		goto bad;
4407
4408	/*
4409	 * See above: ensure av_newstate() doesn't drop the lock
4410	 * on us.
4411	 */
4412	IEEE80211_LOCK_ASSERT(ic);
4413
4414	if (nstate == IEEE80211_S_RUN) {
4415		/* NB: collect bss node again, it may have changed */
4416		ieee80211_free_node(ni);
4417		ni = ieee80211_ref_node(vap->iv_bss);
4418
4419		DPRINTF(sc, ATH_DEBUG_STATE,
4420		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4421		    "capinfo 0x%04x chan %d\n", __func__,
4422		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
4423		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
4424
4425		switch (vap->iv_opmode) {
4426#ifdef IEEE80211_SUPPORT_TDMA
4427		case IEEE80211_M_AHDEMO:
4428			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
4429				break;
4430			/* fall thru... */
4431#endif
4432		case IEEE80211_M_HOSTAP:
4433		case IEEE80211_M_IBSS:
4434		case IEEE80211_M_MBSS:
4435			/*
4436			 * Allocate and setup the beacon frame.
4437			 *
4438			 * Stop any previous beacon DMA.  This may be
4439			 * necessary, for example, when an ibss merge
4440			 * causes reconfiguration; there will be a state
4441			 * transition from RUN->RUN that means we may
4442			 * be called with beacon transmission active.
4443			 */
4444			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4445
4446			error = ath_beacon_alloc(sc, ni);
4447			if (error != 0)
4448				goto bad;
4449			/*
4450			 * If joining an adhoc network defer beacon timer
4451			 * configuration to the next beacon frame so we
4452			 * have a current TSF to use.  Otherwise we're
4453			 * starting an ibss/bss so there's no need to delay;
4454			 * if this is the first vap moving to RUN state, then
4455			 * beacon state needs to be [re]configured.
4456			 */
4457			if (vap->iv_opmode == IEEE80211_M_IBSS &&
4458			    ni->ni_tstamp.tsf != 0) {
4459				sc->sc_syncbeacon = 1;
4460			} else if (!sc->sc_beacons) {
4461#ifdef IEEE80211_SUPPORT_TDMA
4462				if (vap->iv_caps & IEEE80211_C_TDMA)
4463					ath_tdma_config(sc, vap);
4464				else
4465#endif
4466					ath_beacon_config(sc, vap);
4467				sc->sc_beacons = 1;
4468			}
4469			break;
4470		case IEEE80211_M_STA:
4471			/*
4472			 * Defer beacon timer configuration to the next
4473			 * beacon frame so we have a current TSF to use
4474			 * (any TSF collected when scanning is likely old).
4475			 * However if it's due to a CSA -> RUN transition,
4476			 * force a beacon update so we pick up a lack of
4477			 * beacons from an AP in CAC and thus force a
4478			 * scan.
4479			 */
4480			sc->sc_syncbeacon = 1;
4481			if (csa_run_transition)
4482				ath_beacon_config(sc, vap);
4483			break;
4484		case IEEE80211_M_MONITOR:
4485			/*
4486			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
4487			 * transitions so we must re-enable interrupts here to
4488			 * handle the case of a single monitor mode vap.
4489			 */
4490			ath_hal_intrset(ah, sc->sc_imask);
4491			break;
4492		case IEEE80211_M_WDS:
4493			break;
4494		default:
4495			break;
4496		}
4497		/*
4498		 * Let the hal process statistics collected during a
4499		 * scan so it can provide calibrated noise floor data.
4500		 */
4501		ath_hal_process_noisefloor(ah);
4502		/*
4503		 * Reset rssi stats; maybe not the best place...
4504		 */
4505		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4506		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4507		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4508		/*
4509		 * Finally, start any timers and the task q thread
4510		 * (in case we didn't go through SCAN state).
4511		 */
4512		if (ath_longcalinterval != 0) {
4513			/* start periodic recalibration timer */
4514			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4515		} else {
4516			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4517			    "%s: calibration disabled\n", __func__);
4518		}
4519		taskqueue_unblock(sc->sc_tq);
4520	} else if (nstate == IEEE80211_S_INIT) {
4521		/*
4522		 * If there are no vaps left in RUN state then
4523		 * shutdown host/driver operation:
4524		 * o disable interrupts
4525		 * o disable the task queue thread
4526		 * o mark beacon processing as stopped
4527		 */
4528		if (!ath_isanyrunningvaps(vap)) {
4529			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4530			/* disable interrupts  */
4531			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4532			taskqueue_block(sc->sc_tq);
4533			sc->sc_beacons = 0;
4534		}
4535#ifdef IEEE80211_SUPPORT_TDMA
4536		ath_hal_setcca(ah, AH_TRUE);
4537#endif
4538	}
4539bad:
4540	ieee80211_free_node(ni);
4541	return error;
4542}
4543
4544/*
4545 * Allocate a key cache slot to the station so we can
4546 * setup a mapping from key index to node. The key cache
4547 * slot is needed for managing antenna state and for
4548 * compression when stations do not use crypto.  We do
4549 * it uniliaterally here; if crypto is employed this slot
4550 * will be reassigned.
4551 */
4552static void
4553ath_setup_stationkey(struct ieee80211_node *ni)
4554{
4555	struct ieee80211vap *vap = ni->ni_vap;
4556	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4557	ieee80211_keyix keyix, rxkeyix;
4558
4559	/* XXX should take a locked ref to vap->iv_bss */
4560	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4561		/*
4562		 * Key cache is full; we'll fall back to doing
4563		 * the more expensive lookup in software.  Note
4564		 * this also means no h/w compression.
4565		 */
4566		/* XXX msg+statistic */
4567	} else {
4568		/* XXX locking? */
4569		ni->ni_ucastkey.wk_keyix = keyix;
4570		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4571		/* NB: must mark device key to get called back on delete */
4572		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
4573		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
4574		/* NB: this will create a pass-thru key entry */
4575		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
4576	}
4577}
4578
4579/*
4580 * Setup driver-specific state for a newly associated node.
4581 * Note that we're called also on a re-associate, the isnew
4582 * param tells us if this is the first time or not.
4583 */
4584static void
4585ath_newassoc(struct ieee80211_node *ni, int isnew)
4586{
4587	struct ath_node *an = ATH_NODE(ni);
4588	struct ieee80211vap *vap = ni->ni_vap;
4589	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4590	const struct ieee80211_txparam *tp = ni->ni_txparms;
4591
4592	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
4593	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
4594
4595	ath_rate_newassoc(sc, an, isnew);
4596	if (isnew &&
4597	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
4598	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4599		ath_setup_stationkey(ni);
4600}
4601
4602static int
4603ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
4604	int nchans, struct ieee80211_channel chans[])
4605{
4606	struct ath_softc *sc = ic->ic_ifp->if_softc;
4607	struct ath_hal *ah = sc->sc_ah;
4608	HAL_STATUS status;
4609
4610	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4611	    "%s: rd %u cc %u location %c%s\n",
4612	    __func__, reg->regdomain, reg->country, reg->location,
4613	    reg->ecm ? " ecm" : "");
4614
4615	status = ath_hal_set_channels(ah, chans, nchans,
4616	    reg->country, reg->regdomain);
4617	if (status != HAL_OK) {
4618		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
4619		    __func__, status);
4620		return EINVAL;		/* XXX */
4621	}
4622
4623	return 0;
4624}
4625
4626static void
4627ath_getradiocaps(struct ieee80211com *ic,
4628	int maxchans, int *nchans, struct ieee80211_channel chans[])
4629{
4630	struct ath_softc *sc = ic->ic_ifp->if_softc;
4631	struct ath_hal *ah = sc->sc_ah;
4632
4633	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
4634	    __func__, SKU_DEBUG, CTRY_DEFAULT);
4635
4636	/* XXX check return */
4637	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
4638	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
4639
4640}
4641
4642static int
4643ath_getchannels(struct ath_softc *sc)
4644{
4645	struct ifnet *ifp = sc->sc_ifp;
4646	struct ieee80211com *ic = ifp->if_l2com;
4647	struct ath_hal *ah = sc->sc_ah;
4648	HAL_STATUS status;
4649
4650	/*
4651	 * Collect channel set based on EEPROM contents.
4652	 */
4653	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
4654	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
4655	if (status != HAL_OK) {
4656		if_printf(ifp, "%s: unable to collect channel list from hal, "
4657		    "status %d\n", __func__, status);
4658		return EINVAL;
4659	}
4660	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
4661	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
4662	/* XXX map Atheros sku's to net80211 SKU's */
4663	/* XXX net80211 types too small */
4664	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
4665	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
4666	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
4667	ic->ic_regdomain.isocc[1] = ' ';
4668
4669	ic->ic_regdomain.ecm = 1;
4670	ic->ic_regdomain.location = 'I';
4671
4672	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4673	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
4674	    __func__, sc->sc_eerd, sc->sc_eecc,
4675	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
4676	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
4677	return 0;
4678}
4679
4680static int
4681ath_rate_setup(struct ath_softc *sc, u_int mode)
4682{
4683	struct ath_hal *ah = sc->sc_ah;
4684	const HAL_RATE_TABLE *rt;
4685
4686	switch (mode) {
4687	case IEEE80211_MODE_11A:
4688		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4689		break;
4690	case IEEE80211_MODE_HALF:
4691		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
4692		break;
4693	case IEEE80211_MODE_QUARTER:
4694		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
4695		break;
4696	case IEEE80211_MODE_11B:
4697		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4698		break;
4699	case IEEE80211_MODE_11G:
4700		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4701		break;
4702	case IEEE80211_MODE_TURBO_A:
4703		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
4704		break;
4705	case IEEE80211_MODE_TURBO_G:
4706		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4707		break;
4708	case IEEE80211_MODE_STURBO_A:
4709		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4710		break;
4711	case IEEE80211_MODE_11NA:
4712		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
4713		break;
4714	case IEEE80211_MODE_11NG:
4715		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
4716		break;
4717	default:
4718		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4719			__func__, mode);
4720		return 0;
4721	}
4722	sc->sc_rates[mode] = rt;
4723	return (rt != NULL);
4724}
4725
4726static void
4727ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4728{
4729#define	N(a)	(sizeof(a)/sizeof(a[0]))
4730	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4731	static const struct {
4732		u_int		rate;		/* tx/rx 802.11 rate */
4733		u_int16_t	timeOn;		/* LED on time (ms) */
4734		u_int16_t	timeOff;	/* LED off time (ms) */
4735	} blinkrates[] = {
4736		{ 108,  40,  10 },
4737		{  96,  44,  11 },
4738		{  72,  50,  13 },
4739		{  48,  57,  14 },
4740		{  36,  67,  16 },
4741		{  24,  80,  20 },
4742		{  22, 100,  25 },
4743		{  18, 133,  34 },
4744		{  12, 160,  40 },
4745		{  10, 200,  50 },
4746		{   6, 240,  58 },
4747		{   4, 267,  66 },
4748		{   2, 400, 100 },
4749		{   0, 500, 130 },
4750		/* XXX half/quarter rates */
4751	};
4752	const HAL_RATE_TABLE *rt;
4753	int i, j;
4754
4755	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4756	rt = sc->sc_rates[mode];
4757	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4758	for (i = 0; i < rt->rateCount; i++) {
4759		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
4760		if (rt->info[i].phy != IEEE80211_T_HT)
4761			sc->sc_rixmap[ieeerate] = i;
4762		else
4763			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
4764	}
4765	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4766	for (i = 0; i < N(sc->sc_hwmap); i++) {
4767		if (i >= rt->rateCount) {
4768			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4769			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4770			continue;
4771		}
4772		sc->sc_hwmap[i].ieeerate =
4773			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
4774		if (rt->info[i].phy == IEEE80211_T_HT)
4775			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
4776		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4777		if (rt->info[i].shortPreamble ||
4778		    rt->info[i].phy == IEEE80211_T_OFDM)
4779			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4780		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
4781		for (j = 0; j < N(blinkrates)-1; j++)
4782			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4783				break;
4784		/* NB: this uses the last entry if the rate isn't found */
4785		/* XXX beware of overlow */
4786		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4787		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4788	}
4789	sc->sc_currates = rt;
4790	sc->sc_curmode = mode;
4791	/*
4792	 * All protection frames are transmited at 2Mb/s for
4793	 * 11g, otherwise at 1Mb/s.
4794	 */
4795	if (mode == IEEE80211_MODE_11G)
4796		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
4797	else
4798		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
4799	/* NB: caller is responsible for resetting rate control state */
4800#undef N
4801}
4802
4803static void
4804ath_watchdog(void *arg)
4805{
4806	struct ath_softc *sc = arg;
4807	int do_reset = 0;
4808
4809	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
4810		struct ifnet *ifp = sc->sc_ifp;
4811		uint32_t hangs;
4812
4813		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
4814		    hangs != 0) {
4815			if_printf(ifp, "%s hang detected (0x%x)\n",
4816			    hangs & 0xff ? "bb" : "mac", hangs);
4817		} else
4818			if_printf(ifp, "device timeout\n");
4819		do_reset = 1;
4820		ifp->if_oerrors++;
4821		sc->sc_stats.ast_watchdog++;
4822	}
4823
4824	/*
4825	 * We can't hold the lock across the ath_reset() call.
4826	 *
4827	 * And since this routine can't hold a lock and sleep,
4828	 * do the reset deferred.
4829	 */
4830	if (do_reset) {
4831		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4832	}
4833
4834	callout_schedule(&sc->sc_wd_ch, hz);
4835}
4836
4837#ifdef ATH_DIAGAPI
4838/*
4839 * Diagnostic interface to the HAL.  This is used by various
4840 * tools to do things like retrieve register contents for
4841 * debugging.  The mechanism is intentionally opaque so that
4842 * it can change frequently w/o concern for compatiblity.
4843 */
4844static int
4845ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4846{
4847	struct ath_hal *ah = sc->sc_ah;
4848	u_int id = ad->ad_id & ATH_DIAG_ID;
4849	void *indata = NULL;
4850	void *outdata = NULL;
4851	u_int32_t insize = ad->ad_in_size;
4852	u_int32_t outsize = ad->ad_out_size;
4853	int error = 0;
4854
4855	if (ad->ad_id & ATH_DIAG_IN) {
4856		/*
4857		 * Copy in data.
4858		 */
4859		indata = malloc(insize, M_TEMP, M_NOWAIT);
4860		if (indata == NULL) {
4861			error = ENOMEM;
4862			goto bad;
4863		}
4864		error = copyin(ad->ad_in_data, indata, insize);
4865		if (error)
4866			goto bad;
4867	}
4868	if (ad->ad_id & ATH_DIAG_DYN) {
4869		/*
4870		 * Allocate a buffer for the results (otherwise the HAL
4871		 * returns a pointer to a buffer where we can read the
4872		 * results).  Note that we depend on the HAL leaving this
4873		 * pointer for us to use below in reclaiming the buffer;
4874		 * may want to be more defensive.
4875		 */
4876		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4877		if (outdata == NULL) {
4878			error = ENOMEM;
4879			goto bad;
4880		}
4881	}
4882	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4883		if (outsize < ad->ad_out_size)
4884			ad->ad_out_size = outsize;
4885		if (outdata != NULL)
4886			error = copyout(outdata, ad->ad_out_data,
4887					ad->ad_out_size);
4888	} else {
4889		error = EINVAL;
4890	}
4891bad:
4892	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4893		free(indata, M_TEMP);
4894	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4895		free(outdata, M_TEMP);
4896	return error;
4897}
4898#endif /* ATH_DIAGAPI */
4899
4900static int
4901ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4902{
4903#define	IS_RUNNING(ifp) \
4904	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
4905	struct ath_softc *sc = ifp->if_softc;
4906	struct ieee80211com *ic = ifp->if_l2com;
4907	struct ifreq *ifr = (struct ifreq *)data;
4908	const HAL_RATE_TABLE *rt;
4909	int error = 0;
4910
4911	switch (cmd) {
4912	case SIOCSIFFLAGS:
4913		ATH_LOCK(sc);
4914		if (IS_RUNNING(ifp)) {
4915			/*
4916			 * To avoid rescanning another access point,
4917			 * do not call ath_init() here.  Instead,
4918			 * only reflect promisc mode settings.
4919			 */
4920			ath_mode_init(sc);
4921		} else if (ifp->if_flags & IFF_UP) {
4922			/*
4923			 * Beware of being called during attach/detach
4924			 * to reset promiscuous mode.  In that case we
4925			 * will still be marked UP but not RUNNING.
4926			 * However trying to re-init the interface
4927			 * is the wrong thing to do as we've already
4928			 * torn down much of our state.  There's
4929			 * probably a better way to deal with this.
4930			 */
4931			if (!sc->sc_invalid)
4932				ath_init(sc);	/* XXX lose error */
4933		} else {
4934			ath_stop_locked(ifp);
4935#ifdef notyet
4936			/* XXX must wakeup in places like ath_vap_delete */
4937			if (!sc->sc_invalid)
4938				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
4939#endif
4940		}
4941		ATH_UNLOCK(sc);
4942		break;
4943	case SIOCGIFMEDIA:
4944	case SIOCSIFMEDIA:
4945		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
4946		break;
4947	case SIOCGATHSTATS:
4948		/* NB: embed these numbers to get a consistent view */
4949		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4950		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4951		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
4952		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
4953#ifdef IEEE80211_SUPPORT_TDMA
4954		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
4955		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
4956#endif
4957		rt = sc->sc_currates;
4958		sc->sc_stats.ast_tx_rate =
4959		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
4960		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
4961			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
4962		return copyout(&sc->sc_stats,
4963		    ifr->ifr_data, sizeof (sc->sc_stats));
4964	case SIOCGATHAGSTATS:
4965		return copyout(&sc->sc_aggr_stats,
4966		    ifr->ifr_data, sizeof (sc->sc_aggr_stats));
4967	case SIOCZATHSTATS:
4968		error = priv_check(curthread, PRIV_DRIVER);
4969		if (error == 0) {
4970			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
4971			memset(&sc->sc_aggr_stats, 0,
4972			    sizeof(sc->sc_aggr_stats));
4973			memset(&sc->sc_intr_stats, 0,
4974			    sizeof(sc->sc_intr_stats));
4975		}
4976		break;
4977#ifdef ATH_DIAGAPI
4978	case SIOCGATHDIAG:
4979		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4980		break;
4981	case SIOCGATHPHYERR:
4982		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
4983		break;
4984#endif
4985	case SIOCGIFADDR:
4986		error = ether_ioctl(ifp, cmd, data);
4987		break;
4988	default:
4989		error = EINVAL;
4990		break;
4991	}
4992	return error;
4993#undef IS_RUNNING
4994}
4995
4996/*
4997 * Announce various information on device/driver attach.
4998 */
4999static void
5000ath_announce(struct ath_softc *sc)
5001{
5002	struct ifnet *ifp = sc->sc_ifp;
5003	struct ath_hal *ah = sc->sc_ah;
5004
5005	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
5006		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
5007		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5008	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
5009		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
5010	if (bootverbose) {
5011		int i;
5012		for (i = 0; i <= WME_AC_VO; i++) {
5013			struct ath_txq *txq = sc->sc_ac2q[i];
5014			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5015				txq->axq_qnum, ieee80211_wme_acnames[i]);
5016		}
5017		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5018			sc->sc_cabq->axq_qnum);
5019		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5020	}
5021	if (ath_rxbuf != ATH_RXBUF)
5022		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5023	if (ath_txbuf != ATH_TXBUF)
5024		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5025	if (sc->sc_mcastkey && bootverbose)
5026		if_printf(ifp, "using multicast key search\n");
5027}
5028
5029static void
5030ath_dfs_tasklet(void *p, int npending)
5031{
5032	struct ath_softc *sc = (struct ath_softc *) p;
5033	struct ifnet *ifp = sc->sc_ifp;
5034	struct ieee80211com *ic = ifp->if_l2com;
5035
5036	/*
5037	 * If previous processing has found a radar event,
5038	 * signal this to the net80211 layer to begin DFS
5039	 * processing.
5040	 */
5041	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
5042		/* DFS event found, initiate channel change */
5043		/*
5044		 * XXX doesn't currently tell us whether the event
5045		 * XXX was found in the primary or extension
5046		 * XXX channel!
5047		 */
5048		IEEE80211_LOCK(ic);
5049		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
5050		IEEE80211_UNLOCK(ic);
5051	}
5052}
5053
5054MODULE_VERSION(if_ath, 1);
5055MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
5056#if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
5057MODULE_DEPEND(if_ath, alq, 1, 1, 1);
5058#endif
5059