if_ath.c revision 236599
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 236599 2012-06-05 06:03:55Z adrian $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42/*
43 * This is needed for register operations which are performed
44 * by the driver - eg, calls to ath_hal_gettsf32().
45 *
46 * It's also required for any AH_DEBUG checks in here, eg the
47 * module dependencies.
48 */
49#include "opt_ah.h"
50#include "opt_wlan.h"
51
52#include <sys/param.h>
53#include <sys/systm.h>
54#include <sys/sysctl.h>
55#include <sys/mbuf.h>
56#include <sys/malloc.h>
57#include <sys/lock.h>
58#include <sys/mutex.h>
59#include <sys/kernel.h>
60#include <sys/socket.h>
61#include <sys/sockio.h>
62#include <sys/errno.h>
63#include <sys/callout.h>
64#include <sys/bus.h>
65#include <sys/endian.h>
66#include <sys/kthread.h>
67#include <sys/taskqueue.h>
68#include <sys/priv.h>
69#include <sys/module.h>
70#include <sys/ktr.h>
71#include <sys/smp.h>	/* for mp_ncpus */
72
73#include <machine/bus.h>
74
75#include <net/if.h>
76#include <net/if_dl.h>
77#include <net/if_media.h>
78#include <net/if_types.h>
79#include <net/if_arp.h>
80#include <net/ethernet.h>
81#include <net/if_llc.h>
82
83#include <net80211/ieee80211_var.h>
84#include <net80211/ieee80211_regdomain.h>
85#ifdef IEEE80211_SUPPORT_SUPERG
86#include <net80211/ieee80211_superg.h>
87#endif
88#ifdef IEEE80211_SUPPORT_TDMA
89#include <net80211/ieee80211_tdma.h>
90#endif
91
92#include <net/bpf.h>
93
94#ifdef INET
95#include <netinet/in.h>
96#include <netinet/if_ether.h>
97#endif
98
99#include <dev/ath/if_athvar.h>
100#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
101#include <dev/ath/ath_hal/ah_diagcodes.h>
102
103#include <dev/ath/if_ath_debug.h>
104#include <dev/ath/if_ath_misc.h>
105#include <dev/ath/if_ath_tsf.h>
106#include <dev/ath/if_ath_tx.h>
107#include <dev/ath/if_ath_sysctl.h>
108#include <dev/ath/if_ath_led.h>
109#include <dev/ath/if_ath_keycache.h>
110#include <dev/ath/if_ath_rx.h>
111#include <dev/ath/if_ath_beacon.h>
112#include <dev/ath/if_athdfs.h>
113
114#ifdef ATH_TX99_DIAG
115#include <dev/ath/ath_tx99/ath_tx99.h>
116#endif
117
118#define	ATH_KTR_INTR	KTR_SPARE4
119#define	ATH_KTR_ERR	KTR_SPARE3
120
121/*
122 * ATH_BCBUF determines the number of vap's that can transmit
123 * beacons and also (currently) the number of vap's that can
124 * have unique mac addresses/bssid.  When staggering beacons
125 * 4 is probably a good max as otherwise the beacons become
126 * very closely spaced and there is limited time for cab q traffic
127 * to go out.  You can burst beacons instead but that is not good
128 * for stations in power save and at some point you really want
129 * another radio (and channel).
130 *
131 * The limit on the number of mac addresses is tied to our use of
132 * the U/L bit and tracking addresses in a byte; it would be
133 * worthwhile to allow more for applications like proxy sta.
134 */
135CTASSERT(ATH_BCBUF <= 8);
136
137static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
138		    const char [IFNAMSIZ], int, enum ieee80211_opmode, int,
139		    const uint8_t [IEEE80211_ADDR_LEN],
140		    const uint8_t [IEEE80211_ADDR_LEN]);
141static void	ath_vap_delete(struct ieee80211vap *);
142static void	ath_init(void *);
143static void	ath_stop_locked(struct ifnet *);
144static void	ath_stop(struct ifnet *);
145static int	ath_reset_vap(struct ieee80211vap *, u_long);
146static int	ath_media_change(struct ifnet *);
147static void	ath_watchdog(void *);
148static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
149static void	ath_fatal_proc(void *, int);
150static void	ath_bmiss_vap(struct ieee80211vap *);
151static void	ath_bmiss_proc(void *, int);
152static void	ath_key_update_begin(struct ieee80211vap *);
153static void	ath_key_update_end(struct ieee80211vap *);
154static void	ath_update_mcast(struct ifnet *);
155static void	ath_update_promisc(struct ifnet *);
156static void	ath_updateslot(struct ifnet *);
157static void	ath_bstuck_proc(void *, int);
158static void	ath_reset_proc(void *, int);
159static void	ath_descdma_cleanup(struct ath_softc *sc,
160			struct ath_descdma *, ath_bufhead *);
161static int	ath_desc_alloc(struct ath_softc *);
162static void	ath_desc_free(struct ath_softc *);
163static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
164			const uint8_t [IEEE80211_ADDR_LEN]);
165static void	ath_node_cleanup(struct ieee80211_node *);
166static void	ath_node_free(struct ieee80211_node *);
167static void	ath_node_getsignal(const struct ieee80211_node *,
168			int8_t *, int8_t *);
169static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
170static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
171static int	ath_tx_setup(struct ath_softc *, int, int);
172static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
173static void	ath_tx_cleanup(struct ath_softc *);
174static void	ath_tx_proc_q0(void *, int);
175static void	ath_tx_proc_q0123(void *, int);
176static void	ath_tx_proc(void *, int);
177static void	ath_txq_sched_tasklet(void *, int);
178static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
179static void	ath_draintxq(struct ath_softc *, ATH_RESET_TYPE reset_type);
180static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
181static void	ath_scan_start(struct ieee80211com *);
182static void	ath_scan_end(struct ieee80211com *);
183static void	ath_set_channel(struct ieee80211com *);
184#ifdef	ATH_ENABLE_11N
185static void	ath_update_chw(struct ieee80211com *);
186#endif	/* ATH_ENABLE_11N */
187static void	ath_calibrate(void *);
188static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
189static void	ath_setup_stationkey(struct ieee80211_node *);
190static void	ath_newassoc(struct ieee80211_node *, int);
191static int	ath_setregdomain(struct ieee80211com *,
192		    struct ieee80211_regdomain *, int,
193		    struct ieee80211_channel []);
194static void	ath_getradiocaps(struct ieee80211com *, int, int *,
195		    struct ieee80211_channel []);
196static int	ath_getchannels(struct ath_softc *);
197
198static int	ath_rate_setup(struct ath_softc *, u_int mode);
199static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
200
201static void	ath_announce(struct ath_softc *);
202
203static void	ath_dfs_tasklet(void *, int);
204
205#ifdef IEEE80211_SUPPORT_TDMA
206#include <dev/ath/if_ath_tdma.h>
207#endif
208
209#if 0
210#define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
211#define	TDMA_LPF_LEN		6
212#define	TDMA_DUMMY_MARKER	0x127
213#define	TDMA_EP_MUL(x, mul)	((x) * (mul))
214#define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
215#define	TDMA_LPF(x, y, len) \
216    ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
217#define	TDMA_SAMPLE(x, y) do {					\
218	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
219} while (0)
220#define	TDMA_EP_RND(x,mul) \
221	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
222#define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
223#endif /* IEEE80211_SUPPORT_TDMA */
224
225SYSCTL_DECL(_hw_ath);
226
227/* XXX validate sysctl values */
228static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
229SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
230	    0, "long chip calibration interval (secs)");
231static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
232SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
233	    0, "short chip calibration interval (msecs)");
234static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
235SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
236	    0, "reset chip calibration results (secs)");
237static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
238SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
239	    0, "ANI calibration (msecs)");
240
241static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
242SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
243	    0, "rx buffers allocated");
244TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
245static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
246SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
247	    0, "tx buffers allocated");
248TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
249
250int ath_bstuck_threshold = 4;		/* max missed beacons */
251SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
252	    0, "max missed beacon xmits before chip reset");
253
254MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
255
256#define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
257#define	HAL_MODE_HT40 \
258	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
259	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
260int
261ath_attach(u_int16_t devid, struct ath_softc *sc)
262{
263	struct ifnet *ifp;
264	struct ieee80211com *ic;
265	struct ath_hal *ah = NULL;
266	HAL_STATUS status;
267	int error = 0, i;
268	u_int wmodes;
269	uint8_t macaddr[IEEE80211_ADDR_LEN];
270	int rx_chainmask, tx_chainmask;
271
272	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
273
274	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
275	if (ifp == NULL) {
276		device_printf(sc->sc_dev, "can not if_alloc()\n");
277		error = ENOSPC;
278		goto bad;
279	}
280	ic = ifp->if_l2com;
281
282	/* set these up early for if_printf use */
283	if_initname(ifp, device_get_name(sc->sc_dev),
284		device_get_unit(sc->sc_dev));
285
286	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh,
287	    sc->sc_eepromdata, &status);
288	if (ah == NULL) {
289		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
290			status);
291		error = ENXIO;
292		goto bad;
293	}
294	sc->sc_ah = ah;
295	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
296#ifdef	ATH_DEBUG
297	sc->sc_debug = ath_debug;
298#endif
299
300	/*
301	 * Check if the MAC has multi-rate retry support.
302	 * We do this by trying to setup a fake extended
303	 * descriptor.  MAC's that don't have support will
304	 * return false w/o doing anything.  MAC's that do
305	 * support it will return true w/o doing anything.
306	 */
307	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
308
309	/*
310	 * Check if the device has hardware counters for PHY
311	 * errors.  If so we need to enable the MIB interrupt
312	 * so we can act on stat triggers.
313	 */
314	if (ath_hal_hwphycounters(ah))
315		sc->sc_needmib = 1;
316
317	/*
318	 * Get the hardware key cache size.
319	 */
320	sc->sc_keymax = ath_hal_keycachesize(ah);
321	if (sc->sc_keymax > ATH_KEYMAX) {
322		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
323			ATH_KEYMAX, sc->sc_keymax);
324		sc->sc_keymax = ATH_KEYMAX;
325	}
326	/*
327	 * Reset the key cache since some parts do not
328	 * reset the contents on initial power up.
329	 */
330	for (i = 0; i < sc->sc_keymax; i++)
331		ath_hal_keyreset(ah, i);
332
333	/*
334	 * Collect the default channel list.
335	 */
336	error = ath_getchannels(sc);
337	if (error != 0)
338		goto bad;
339
340	/*
341	 * Setup rate tables for all potential media types.
342	 */
343	ath_rate_setup(sc, IEEE80211_MODE_11A);
344	ath_rate_setup(sc, IEEE80211_MODE_11B);
345	ath_rate_setup(sc, IEEE80211_MODE_11G);
346	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
347	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
348	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
349	ath_rate_setup(sc, IEEE80211_MODE_11NA);
350	ath_rate_setup(sc, IEEE80211_MODE_11NG);
351	ath_rate_setup(sc, IEEE80211_MODE_HALF);
352	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
353
354	/* NB: setup here so ath_rate_update is happy */
355	ath_setcurmode(sc, IEEE80211_MODE_11A);
356
357	/*
358	 * Allocate tx+rx descriptors and populate the lists.
359	 */
360	error = ath_desc_alloc(sc);
361	if (error != 0) {
362		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
363		goto bad;
364	}
365	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
366	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
367
368	ATH_TXBUF_LOCK_INIT(sc);
369
370	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
371		taskqueue_thread_enqueue, &sc->sc_tq);
372	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
373		"%s taskq", ifp->if_xname);
374
375	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_tasklet, sc);
376	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
377	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
378	TASK_INIT(&sc->sc_resettask,0, ath_reset_proc, sc);
379	TASK_INIT(&sc->sc_txqtask,0, ath_txq_sched_tasklet, sc);
380	TASK_INIT(&sc->sc_fataltask,0, ath_fatal_proc, sc);
381
382	/*
383	 * Allocate hardware transmit queues: one queue for
384	 * beacon frames and one data queue for each QoS
385	 * priority.  Note that the hal handles resetting
386	 * these queues at the needed time.
387	 *
388	 * XXX PS-Poll
389	 */
390	sc->sc_bhalq = ath_beaconq_setup(ah);
391	if (sc->sc_bhalq == (u_int) -1) {
392		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
393		error = EIO;
394		goto bad2;
395	}
396	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
397	if (sc->sc_cabq == NULL) {
398		if_printf(ifp, "unable to setup CAB xmit queue!\n");
399		error = EIO;
400		goto bad2;
401	}
402	/* NB: insure BK queue is the lowest priority h/w queue */
403	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
404		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
405			ieee80211_wme_acnames[WME_AC_BK]);
406		error = EIO;
407		goto bad2;
408	}
409	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
410	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
411	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
412		/*
413		 * Not enough hardware tx queues to properly do WME;
414		 * just punt and assign them all to the same h/w queue.
415		 * We could do a better job of this if, for example,
416		 * we allocate queues when we switch from station to
417		 * AP mode.
418		 */
419		if (sc->sc_ac2q[WME_AC_VI] != NULL)
420			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
421		if (sc->sc_ac2q[WME_AC_BE] != NULL)
422			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
423		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
424		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
425		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
426	}
427
428	/*
429	 * Special case certain configurations.  Note the
430	 * CAB queue is handled by these specially so don't
431	 * include them when checking the txq setup mask.
432	 */
433	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
434	case 0x01:
435		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
436		break;
437	case 0x0f:
438		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
439		break;
440	default:
441		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
442		break;
443	}
444
445	/*
446	 * Setup rate control.  Some rate control modules
447	 * call back to change the anntena state so expose
448	 * the necessary entry points.
449	 * XXX maybe belongs in struct ath_ratectrl?
450	 */
451	sc->sc_setdefantenna = ath_setdefantenna;
452	sc->sc_rc = ath_rate_attach(sc);
453	if (sc->sc_rc == NULL) {
454		error = EIO;
455		goto bad2;
456	}
457
458	/* Attach DFS module */
459	if (! ath_dfs_attach(sc)) {
460		device_printf(sc->sc_dev,
461		    "%s: unable to attach DFS\n", __func__);
462		error = EIO;
463		goto bad2;
464	}
465
466	/* Start DFS processing tasklet */
467	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
468
469	/* Configure LED state */
470	sc->sc_blinking = 0;
471	sc->sc_ledstate = 1;
472	sc->sc_ledon = 0;			/* low true */
473	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
474	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
475
476	/*
477	 * Don't setup hardware-based blinking.
478	 *
479	 * Although some NICs may have this configured in the
480	 * default reset register values, the user may wish
481	 * to alter which pins have which function.
482	 *
483	 * The reference driver attaches the MAC network LED to GPIO1 and
484	 * the MAC power LED to GPIO2.  However, the DWA-552 cardbus
485	 * NIC has these reversed.
486	 */
487	sc->sc_hardled = (1 == 0);
488	sc->sc_led_net_pin = -1;
489	sc->sc_led_pwr_pin = -1;
490	/*
491	 * Auto-enable soft led processing for IBM cards and for
492	 * 5211 minipci cards.  Users can also manually enable/disable
493	 * support with a sysctl.
494	 */
495	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
496	ath_led_config(sc);
497	ath_hal_setledstate(ah, HAL_LED_INIT);
498
499	ifp->if_softc = sc;
500	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
501	ifp->if_start = ath_start;
502	ifp->if_ioctl = ath_ioctl;
503	ifp->if_init = ath_init;
504	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
505	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
506	IFQ_SET_READY(&ifp->if_snd);
507
508	ic->ic_ifp = ifp;
509	/* XXX not right but it's not used anywhere important */
510	ic->ic_phytype = IEEE80211_T_OFDM;
511	ic->ic_opmode = IEEE80211_M_STA;
512	ic->ic_caps =
513		  IEEE80211_C_STA		/* station mode */
514		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
515		| IEEE80211_C_HOSTAP		/* hostap mode */
516		| IEEE80211_C_MONITOR		/* monitor mode */
517		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
518		| IEEE80211_C_WDS		/* 4-address traffic works */
519		| IEEE80211_C_MBSS		/* mesh point link mode */
520		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
521		| IEEE80211_C_SHSLOT		/* short slot time supported */
522		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
523		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
524		| IEEE80211_C_TXFRAG		/* handle tx frags */
525#ifdef	ATH_ENABLE_DFS
526		| IEEE80211_C_DFS		/* Enable radar detection */
527#endif
528		;
529	/*
530	 * Query the hal to figure out h/w crypto support.
531	 */
532	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
533		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
534	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
535		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
536	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
537		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
538	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
539		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
540	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
541		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
542		/*
543		 * Check if h/w does the MIC and/or whether the
544		 * separate key cache entries are required to
545		 * handle both tx+rx MIC keys.
546		 */
547		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
548			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
549		/*
550		 * If the h/w supports storing tx+rx MIC keys
551		 * in one cache slot automatically enable use.
552		 */
553		if (ath_hal_hastkipsplit(ah) ||
554		    !ath_hal_settkipsplit(ah, AH_FALSE))
555			sc->sc_splitmic = 1;
556		/*
557		 * If the h/w can do TKIP MIC together with WME then
558		 * we use it; otherwise we force the MIC to be done
559		 * in software by the net80211 layer.
560		 */
561		if (ath_hal_haswmetkipmic(ah))
562			sc->sc_wmetkipmic = 1;
563	}
564	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
565	/*
566	 * Check for multicast key search support.
567	 */
568	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
569	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
570		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
571	}
572	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
573	/*
574	 * Mark key cache slots associated with global keys
575	 * as in use.  If we knew TKIP was not to be used we
576	 * could leave the +32, +64, and +32+64 slots free.
577	 */
578	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
579		setbit(sc->sc_keymap, i);
580		setbit(sc->sc_keymap, i+64);
581		if (sc->sc_splitmic) {
582			setbit(sc->sc_keymap, i+32);
583			setbit(sc->sc_keymap, i+32+64);
584		}
585	}
586	/*
587	 * TPC support can be done either with a global cap or
588	 * per-packet support.  The latter is not available on
589	 * all parts.  We're a bit pedantic here as all parts
590	 * support a global cap.
591	 */
592	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
593		ic->ic_caps |= IEEE80211_C_TXPMGT;
594
595	/*
596	 * Mark WME capability only if we have sufficient
597	 * hardware queues to do proper priority scheduling.
598	 */
599	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
600		ic->ic_caps |= IEEE80211_C_WME;
601	/*
602	 * Check for misc other capabilities.
603	 */
604	if (ath_hal_hasbursting(ah))
605		ic->ic_caps |= IEEE80211_C_BURST;
606	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
607	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
608	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
609	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
610	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
611	if (ath_hal_hasfastframes(ah))
612		ic->ic_caps |= IEEE80211_C_FF;
613	wmodes = ath_hal_getwirelessmodes(ah);
614	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
615		ic->ic_caps |= IEEE80211_C_TURBOP;
616#ifdef IEEE80211_SUPPORT_TDMA
617	if (ath_hal_macversion(ah) > 0x78) {
618		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
619		ic->ic_tdma_update = ath_tdma_update;
620	}
621#endif
622
623	/*
624	 * TODO: enforce that at least this many frames are available
625	 * in the txbuf list before allowing data frames (raw or
626	 * otherwise) to be transmitted.
627	 */
628	sc->sc_txq_data_minfree = 10;
629	/*
630	 * Leave this as default to maintain legacy behaviour.
631	 * Shortening the cabq/mcastq may end up causing some
632	 * undesirable behaviour.
633	 */
634	sc->sc_txq_mcastq_maxdepth = ath_txbuf;
635
636	/*
637	 * Allow the TX and RX chainmasks to be overridden by
638	 * environment variables and/or device.hints.
639	 *
640	 * This must be done early - before the hardware is
641	 * calibrated or before the 802.11n stream calculation
642	 * is done.
643	 */
644	if (resource_int_value(device_get_name(sc->sc_dev),
645	    device_get_unit(sc->sc_dev), "rx_chainmask",
646	    &rx_chainmask) == 0) {
647		device_printf(sc->sc_dev, "Setting RX chainmask to 0x%x\n",
648		    rx_chainmask);
649		(void) ath_hal_setrxchainmask(sc->sc_ah, rx_chainmask);
650	}
651	if (resource_int_value(device_get_name(sc->sc_dev),
652	    device_get_unit(sc->sc_dev), "tx_chainmask",
653	    &tx_chainmask) == 0) {
654		device_printf(sc->sc_dev, "Setting TX chainmask to 0x%x\n",
655		    tx_chainmask);
656		(void) ath_hal_settxchainmask(sc->sc_ah, tx_chainmask);
657	}
658
659	/*
660	 * The if_ath 11n support is completely not ready for normal use.
661	 * Enabling this option will likely break everything and everything.
662	 * Don't think of doing that unless you know what you're doing.
663	 */
664
665#ifdef	ATH_ENABLE_11N
666	/*
667	 * Query HT capabilities
668	 */
669	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
670	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
671		int rxs, txs;
672
673		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
674		ic->ic_htcaps = IEEE80211_HTC_HT	/* HT operation */
675			    | IEEE80211_HTC_AMPDU	/* A-MPDU tx/rx */
676			    | IEEE80211_HTC_AMSDU	/* A-MSDU tx/rx */
677			    | IEEE80211_HTCAP_MAXAMSDU_3839
678			    				/* max A-MSDU length */
679			    | IEEE80211_HTCAP_SMPS_OFF;	/* SM power save off */
680			;
681
682		/*
683		 * Enable short-GI for HT20 only if the hardware
684		 * advertises support.
685		 * Notably, anything earlier than the AR9287 doesn't.
686		 */
687		if ((ath_hal_getcapability(ah,
688		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
689		    (wmodes & HAL_MODE_HT20)) {
690			device_printf(sc->sc_dev,
691			    "[HT] enabling short-GI in 20MHz mode\n");
692			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
693		}
694
695		if (wmodes & HAL_MODE_HT40)
696			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
697			    |  IEEE80211_HTCAP_SHORTGI40;
698
699		/*
700		 * TX/RX streams need to be taken into account when
701		 * negotiating which MCS rates it'll receive and
702		 * what MCS rates are available for TX.
703		 */
704		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &txs);
705		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &rxs);
706
707		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
708		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
709
710		ic->ic_txstream = txs;
711		ic->ic_rxstream = rxs;
712
713		(void) ath_hal_getcapability(ah, HAL_CAP_RTS_AGGR_LIMIT, 1,
714		    &sc->sc_rts_aggr_limit);
715		if (sc->sc_rts_aggr_limit != (64 * 1024))
716			device_printf(sc->sc_dev,
717			    "[HT] RTS aggregates limited to %d KiB\n",
718			    sc->sc_rts_aggr_limit / 1024);
719
720		device_printf(sc->sc_dev,
721		    "[HT] %d RX streams; %d TX streams\n", rxs, txs);
722	}
723#endif
724
725	/*
726	 * Check if the hardware requires PCI register serialisation.
727	 * Some of the Owl based MACs require this.
728	 */
729	if (mp_ncpus > 1 &&
730	    ath_hal_getcapability(ah, HAL_CAP_SERIALISE_WAR,
731	     0, NULL) == HAL_OK) {
732		sc->sc_ah->ah_config.ah_serialise_reg_war = 1;
733		device_printf(sc->sc_dev,
734		    "Enabling register serialisation\n");
735	}
736
737	/*
738	 * Indicate we need the 802.11 header padded to a
739	 * 32-bit boundary for 4-address and QoS frames.
740	 */
741	ic->ic_flags |= IEEE80211_F_DATAPAD;
742
743	/*
744	 * Query the hal about antenna support.
745	 */
746	sc->sc_defant = ath_hal_getdefantenna(ah);
747
748	/*
749	 * Not all chips have the VEOL support we want to
750	 * use with IBSS beacons; check here for it.
751	 */
752	sc->sc_hasveol = ath_hal_hasveol(ah);
753
754	/* get mac address from hardware */
755	ath_hal_getmac(ah, macaddr);
756	if (sc->sc_hasbmask)
757		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
758
759	/* NB: used to size node table key mapping array */
760	ic->ic_max_keyix = sc->sc_keymax;
761	/* call MI attach routine. */
762	ieee80211_ifattach(ic, macaddr);
763	ic->ic_setregdomain = ath_setregdomain;
764	ic->ic_getradiocaps = ath_getradiocaps;
765	sc->sc_opmode = HAL_M_STA;
766
767	/* override default methods */
768	ic->ic_newassoc = ath_newassoc;
769	ic->ic_updateslot = ath_updateslot;
770	ic->ic_wme.wme_update = ath_wme_update;
771	ic->ic_vap_create = ath_vap_create;
772	ic->ic_vap_delete = ath_vap_delete;
773	ic->ic_raw_xmit = ath_raw_xmit;
774	ic->ic_update_mcast = ath_update_mcast;
775	ic->ic_update_promisc = ath_update_promisc;
776	ic->ic_node_alloc = ath_node_alloc;
777	sc->sc_node_free = ic->ic_node_free;
778	ic->ic_node_free = ath_node_free;
779	sc->sc_node_cleanup = ic->ic_node_cleanup;
780	ic->ic_node_cleanup = ath_node_cleanup;
781	ic->ic_node_getsignal = ath_node_getsignal;
782	ic->ic_scan_start = ath_scan_start;
783	ic->ic_scan_end = ath_scan_end;
784	ic->ic_set_channel = ath_set_channel;
785#ifdef	ATH_ENABLE_11N
786	/* 802.11n specific - but just override anyway */
787	sc->sc_addba_request = ic->ic_addba_request;
788	sc->sc_addba_response = ic->ic_addba_response;
789	sc->sc_addba_stop = ic->ic_addba_stop;
790	sc->sc_bar_response = ic->ic_bar_response;
791	sc->sc_addba_response_timeout = ic->ic_addba_response_timeout;
792
793	ic->ic_addba_request = ath_addba_request;
794	ic->ic_addba_response = ath_addba_response;
795	ic->ic_addba_response_timeout = ath_addba_response_timeout;
796	ic->ic_addba_stop = ath_addba_stop;
797	ic->ic_bar_response = ath_bar_response;
798
799	ic->ic_update_chw = ath_update_chw;
800#endif	/* ATH_ENABLE_11N */
801
802	ieee80211_radiotap_attach(ic,
803	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
804		ATH_TX_RADIOTAP_PRESENT,
805	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
806		ATH_RX_RADIOTAP_PRESENT);
807
808	/*
809	 * Setup dynamic sysctl's now that country code and
810	 * regdomain are available from the hal.
811	 */
812	ath_sysctlattach(sc);
813	ath_sysctl_stats_attach(sc);
814	ath_sysctl_hal_attach(sc);
815
816	if (bootverbose)
817		ieee80211_announce(ic);
818	ath_announce(sc);
819	return 0;
820bad2:
821	ath_tx_cleanup(sc);
822	ath_desc_free(sc);
823bad:
824	if (ah)
825		ath_hal_detach(ah);
826	if (ifp != NULL)
827		if_free(ifp);
828	sc->sc_invalid = 1;
829	return error;
830}
831
832int
833ath_detach(struct ath_softc *sc)
834{
835	struct ifnet *ifp = sc->sc_ifp;
836
837	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
838		__func__, ifp->if_flags);
839
840	/*
841	 * NB: the order of these is important:
842	 * o stop the chip so no more interrupts will fire
843	 * o call the 802.11 layer before detaching the hal to
844	 *   insure callbacks into the driver to delete global
845	 *   key cache entries can be handled
846	 * o free the taskqueue which drains any pending tasks
847	 * o reclaim the tx queue data structures after calling
848	 *   the 802.11 layer as we'll get called back to reclaim
849	 *   node state and potentially want to use them
850	 * o to cleanup the tx queues the hal is called, so detach
851	 *   it last
852	 * Other than that, it's straightforward...
853	 */
854	ath_stop(ifp);
855	ieee80211_ifdetach(ifp->if_l2com);
856	taskqueue_free(sc->sc_tq);
857#ifdef ATH_TX99_DIAG
858	if (sc->sc_tx99 != NULL)
859		sc->sc_tx99->detach(sc->sc_tx99);
860#endif
861	ath_rate_detach(sc->sc_rc);
862
863	ath_dfs_detach(sc);
864	ath_desc_free(sc);
865	ath_tx_cleanup(sc);
866	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
867	if_free(ifp);
868
869	return 0;
870}
871
872/*
873 * MAC address handling for multiple BSS on the same radio.
874 * The first vap uses the MAC address from the EEPROM.  For
875 * subsequent vap's we set the U/L bit (bit 1) in the MAC
876 * address and use the next six bits as an index.
877 */
878static void
879assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
880{
881	int i;
882
883	if (clone && sc->sc_hasbmask) {
884		/* NB: we only do this if h/w supports multiple bssid */
885		for (i = 0; i < 8; i++)
886			if ((sc->sc_bssidmask & (1<<i)) == 0)
887				break;
888		if (i != 0)
889			mac[0] |= (i << 2)|0x2;
890	} else
891		i = 0;
892	sc->sc_bssidmask |= 1<<i;
893	sc->sc_hwbssidmask[0] &= ~mac[0];
894	if (i == 0)
895		sc->sc_nbssid0++;
896}
897
898static void
899reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
900{
901	int i = mac[0] >> 2;
902	uint8_t mask;
903
904	if (i != 0 || --sc->sc_nbssid0 == 0) {
905		sc->sc_bssidmask &= ~(1<<i);
906		/* recalculate bssid mask from remaining addresses */
907		mask = 0xff;
908		for (i = 1; i < 8; i++)
909			if (sc->sc_bssidmask & (1<<i))
910				mask &= ~((i<<2)|0x2);
911		sc->sc_hwbssidmask[0] |= mask;
912	}
913}
914
915/*
916 * Assign a beacon xmit slot.  We try to space out
917 * assignments so when beacons are staggered the
918 * traffic coming out of the cab q has maximal time
919 * to go out before the next beacon is scheduled.
920 */
921static int
922assign_bslot(struct ath_softc *sc)
923{
924	u_int slot, free;
925
926	free = 0;
927	for (slot = 0; slot < ATH_BCBUF; slot++)
928		if (sc->sc_bslot[slot] == NULL) {
929			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
930			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
931				return slot;
932			free = slot;
933			/* NB: keep looking for a double slot */
934		}
935	return free;
936}
937
938static struct ieee80211vap *
939ath_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
940    enum ieee80211_opmode opmode, int flags,
941    const uint8_t bssid[IEEE80211_ADDR_LEN],
942    const uint8_t mac0[IEEE80211_ADDR_LEN])
943{
944	struct ath_softc *sc = ic->ic_ifp->if_softc;
945	struct ath_vap *avp;
946	struct ieee80211vap *vap;
947	uint8_t mac[IEEE80211_ADDR_LEN];
948	int needbeacon, error;
949	enum ieee80211_opmode ic_opmode;
950
951	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
952	    M_80211_VAP, M_WAITOK | M_ZERO);
953	needbeacon = 0;
954	IEEE80211_ADDR_COPY(mac, mac0);
955
956	ATH_LOCK(sc);
957	ic_opmode = opmode;		/* default to opmode of new vap */
958	switch (opmode) {
959	case IEEE80211_M_STA:
960		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
961			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
962			goto bad;
963		}
964		if (sc->sc_nvaps) {
965			/*
966			 * With multiple vaps we must fall back
967			 * to s/w beacon miss handling.
968			 */
969			flags |= IEEE80211_CLONE_NOBEACONS;
970		}
971		if (flags & IEEE80211_CLONE_NOBEACONS) {
972			/*
973			 * Station mode w/o beacons are implemented w/ AP mode.
974			 */
975			ic_opmode = IEEE80211_M_HOSTAP;
976		}
977		break;
978	case IEEE80211_M_IBSS:
979		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
980			device_printf(sc->sc_dev,
981			    "only 1 ibss vap supported\n");
982			goto bad;
983		}
984		needbeacon = 1;
985		break;
986	case IEEE80211_M_AHDEMO:
987#ifdef IEEE80211_SUPPORT_TDMA
988		if (flags & IEEE80211_CLONE_TDMA) {
989			if (sc->sc_nvaps != 0) {
990				device_printf(sc->sc_dev,
991				    "only 1 tdma vap supported\n");
992				goto bad;
993			}
994			needbeacon = 1;
995			flags |= IEEE80211_CLONE_NOBEACONS;
996		}
997		/* fall thru... */
998#endif
999	case IEEE80211_M_MONITOR:
1000		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
1001			/*
1002			 * Adopt existing mode.  Adding a monitor or ahdemo
1003			 * vap to an existing configuration is of dubious
1004			 * value but should be ok.
1005			 */
1006			/* XXX not right for monitor mode */
1007			ic_opmode = ic->ic_opmode;
1008		}
1009		break;
1010	case IEEE80211_M_HOSTAP:
1011	case IEEE80211_M_MBSS:
1012		needbeacon = 1;
1013		break;
1014	case IEEE80211_M_WDS:
1015		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
1016			device_printf(sc->sc_dev,
1017			    "wds not supported in sta mode\n");
1018			goto bad;
1019		}
1020		/*
1021		 * Silently remove any request for a unique
1022		 * bssid; WDS vap's always share the local
1023		 * mac address.
1024		 */
1025		flags &= ~IEEE80211_CLONE_BSSID;
1026		if (sc->sc_nvaps == 0)
1027			ic_opmode = IEEE80211_M_HOSTAP;
1028		else
1029			ic_opmode = ic->ic_opmode;
1030		break;
1031	default:
1032		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
1033		goto bad;
1034	}
1035	/*
1036	 * Check that a beacon buffer is available; the code below assumes it.
1037	 */
1038	if (needbeacon & TAILQ_EMPTY(&sc->sc_bbuf)) {
1039		device_printf(sc->sc_dev, "no beacon buffer available\n");
1040		goto bad;
1041	}
1042
1043	/* STA, AHDEMO? */
1044	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
1045		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
1046		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1047	}
1048
1049	vap = &avp->av_vap;
1050	/* XXX can't hold mutex across if_alloc */
1051	ATH_UNLOCK(sc);
1052	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
1053	    bssid, mac);
1054	ATH_LOCK(sc);
1055	if (error != 0) {
1056		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
1057		    __func__, error);
1058		goto bad2;
1059	}
1060
1061	/* h/w crypto support */
1062	vap->iv_key_alloc = ath_key_alloc;
1063	vap->iv_key_delete = ath_key_delete;
1064	vap->iv_key_set = ath_key_set;
1065	vap->iv_key_update_begin = ath_key_update_begin;
1066	vap->iv_key_update_end = ath_key_update_end;
1067
1068	/* override various methods */
1069	avp->av_recv_mgmt = vap->iv_recv_mgmt;
1070	vap->iv_recv_mgmt = ath_recv_mgmt;
1071	vap->iv_reset = ath_reset_vap;
1072	vap->iv_update_beacon = ath_beacon_update;
1073	avp->av_newstate = vap->iv_newstate;
1074	vap->iv_newstate = ath_newstate;
1075	avp->av_bmiss = vap->iv_bmiss;
1076	vap->iv_bmiss = ath_bmiss_vap;
1077
1078	/* Set default parameters */
1079
1080	/*
1081	 * Anything earlier than some AR9300 series MACs don't
1082	 * support a smaller MPDU density.
1083	 */
1084	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1085	/*
1086	 * All NICs can handle the maximum size, however
1087	 * AR5416 based MACs can only TX aggregates w/ RTS
1088	 * protection when the total aggregate size is <= 8k.
1089	 * However, for now that's enforced by the TX path.
1090	 */
1091	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1092
1093	avp->av_bslot = -1;
1094	if (needbeacon) {
1095		/*
1096		 * Allocate beacon state and setup the q for buffered
1097		 * multicast frames.  We know a beacon buffer is
1098		 * available because we checked above.
1099		 */
1100		avp->av_bcbuf = TAILQ_FIRST(&sc->sc_bbuf);
1101		TAILQ_REMOVE(&sc->sc_bbuf, avp->av_bcbuf, bf_list);
1102		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1103			/*
1104			 * Assign the vap to a beacon xmit slot.  As above
1105			 * this cannot fail to find a free one.
1106			 */
1107			avp->av_bslot = assign_bslot(sc);
1108			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1109			    ("beacon slot %u not empty", avp->av_bslot));
1110			sc->sc_bslot[avp->av_bslot] = vap;
1111			sc->sc_nbcnvaps++;
1112		}
1113		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1114			/*
1115			 * Multple vaps are to transmit beacons and we
1116			 * have h/w support for TSF adjusting; enable
1117			 * use of staggered beacons.
1118			 */
1119			sc->sc_stagbeacons = 1;
1120		}
1121		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1122	}
1123
1124	ic->ic_opmode = ic_opmode;
1125	if (opmode != IEEE80211_M_WDS) {
1126		sc->sc_nvaps++;
1127		if (opmode == IEEE80211_M_STA)
1128			sc->sc_nstavaps++;
1129		if (opmode == IEEE80211_M_MBSS)
1130			sc->sc_nmeshvaps++;
1131	}
1132	switch (ic_opmode) {
1133	case IEEE80211_M_IBSS:
1134		sc->sc_opmode = HAL_M_IBSS;
1135		break;
1136	case IEEE80211_M_STA:
1137		sc->sc_opmode = HAL_M_STA;
1138		break;
1139	case IEEE80211_M_AHDEMO:
1140#ifdef IEEE80211_SUPPORT_TDMA
1141		if (vap->iv_caps & IEEE80211_C_TDMA) {
1142			sc->sc_tdma = 1;
1143			/* NB: disable tsf adjust */
1144			sc->sc_stagbeacons = 0;
1145		}
1146		/*
1147		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1148		 * just ap mode.
1149		 */
1150		/* fall thru... */
1151#endif
1152	case IEEE80211_M_HOSTAP:
1153	case IEEE80211_M_MBSS:
1154		sc->sc_opmode = HAL_M_HOSTAP;
1155		break;
1156	case IEEE80211_M_MONITOR:
1157		sc->sc_opmode = HAL_M_MONITOR;
1158		break;
1159	default:
1160		/* XXX should not happen */
1161		break;
1162	}
1163	if (sc->sc_hastsfadd) {
1164		/*
1165		 * Configure whether or not TSF adjust should be done.
1166		 */
1167		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1168	}
1169	if (flags & IEEE80211_CLONE_NOBEACONS) {
1170		/*
1171		 * Enable s/w beacon miss handling.
1172		 */
1173		sc->sc_swbmiss = 1;
1174	}
1175	ATH_UNLOCK(sc);
1176
1177	/* complete setup */
1178	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1179	return vap;
1180bad2:
1181	reclaim_address(sc, mac);
1182	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1183bad:
1184	free(avp, M_80211_VAP);
1185	ATH_UNLOCK(sc);
1186	return NULL;
1187}
1188
1189static void
1190ath_vap_delete(struct ieee80211vap *vap)
1191{
1192	struct ieee80211com *ic = vap->iv_ic;
1193	struct ifnet *ifp = ic->ic_ifp;
1194	struct ath_softc *sc = ifp->if_softc;
1195	struct ath_hal *ah = sc->sc_ah;
1196	struct ath_vap *avp = ATH_VAP(vap);
1197
1198	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
1199	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1200		/*
1201		 * Quiesce the hardware while we remove the vap.  In
1202		 * particular we need to reclaim all references to
1203		 * the vap state by any frames pending on the tx queues.
1204		 */
1205		ath_hal_intrset(ah, 0);		/* disable interrupts */
1206		ath_draintxq(sc, ATH_RESET_DEFAULT);		/* stop hw xmit side */
1207		/* XXX Do all frames from all vaps/nodes need draining here? */
1208		ath_stoprecv(sc, 1);		/* stop recv side */
1209	}
1210
1211	ieee80211_vap_detach(vap);
1212
1213	/*
1214	 * XXX Danger Will Robinson! Danger!
1215	 *
1216	 * Because ieee80211_vap_detach() can queue a frame (the station
1217	 * diassociate message?) after we've drained the TXQ and
1218	 * flushed the software TXQ, we will end up with a frame queued
1219	 * to a node whose vap is about to be freed.
1220	 *
1221	 * To work around this, flush the hardware/software again.
1222	 * This may be racy - the ath task may be running and the packet
1223	 * may be being scheduled between sw->hw txq. Tsk.
1224	 *
1225	 * TODO: figure out why a new node gets allocated somewhere around
1226	 * here (after the ath_tx_swq() call; and after an ath_stop_locked()
1227	 * call!)
1228	 */
1229
1230	ath_draintxq(sc, ATH_RESET_DEFAULT);
1231
1232	ATH_LOCK(sc);
1233	/*
1234	 * Reclaim beacon state.  Note this must be done before
1235	 * the vap instance is reclaimed as we may have a reference
1236	 * to it in the buffer for the beacon frame.
1237	 */
1238	if (avp->av_bcbuf != NULL) {
1239		if (avp->av_bslot != -1) {
1240			sc->sc_bslot[avp->av_bslot] = NULL;
1241			sc->sc_nbcnvaps--;
1242		}
1243		ath_beacon_return(sc, avp->av_bcbuf);
1244		avp->av_bcbuf = NULL;
1245		if (sc->sc_nbcnvaps == 0) {
1246			sc->sc_stagbeacons = 0;
1247			if (sc->sc_hastsfadd)
1248				ath_hal_settsfadjust(sc->sc_ah, 0);
1249		}
1250		/*
1251		 * Reclaim any pending mcast frames for the vap.
1252		 */
1253		ath_tx_draintxq(sc, &avp->av_mcastq);
1254		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1255	}
1256	/*
1257	 * Update bookkeeping.
1258	 */
1259	if (vap->iv_opmode == IEEE80211_M_STA) {
1260		sc->sc_nstavaps--;
1261		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1262			sc->sc_swbmiss = 0;
1263	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1264	    vap->iv_opmode == IEEE80211_M_MBSS) {
1265		reclaim_address(sc, vap->iv_myaddr);
1266		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1267		if (vap->iv_opmode == IEEE80211_M_MBSS)
1268			sc->sc_nmeshvaps--;
1269	}
1270	if (vap->iv_opmode != IEEE80211_M_WDS)
1271		sc->sc_nvaps--;
1272#ifdef IEEE80211_SUPPORT_TDMA
1273	/* TDMA operation ceases when the last vap is destroyed */
1274	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1275		sc->sc_tdma = 0;
1276		sc->sc_swbmiss = 0;
1277	}
1278#endif
1279	free(avp, M_80211_VAP);
1280
1281	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1282		/*
1283		 * Restart rx+tx machines if still running (RUNNING will
1284		 * be reset if we just destroyed the last vap).
1285		 */
1286		if (ath_startrecv(sc) != 0)
1287			if_printf(ifp, "%s: unable to restart recv logic\n",
1288			    __func__);
1289		if (sc->sc_beacons) {		/* restart beacons */
1290#ifdef IEEE80211_SUPPORT_TDMA
1291			if (sc->sc_tdma)
1292				ath_tdma_config(sc, NULL);
1293			else
1294#endif
1295				ath_beacon_config(sc, NULL);
1296		}
1297		ath_hal_intrset(ah, sc->sc_imask);
1298	}
1299	ATH_UNLOCK(sc);
1300}
1301
1302void
1303ath_suspend(struct ath_softc *sc)
1304{
1305	struct ifnet *ifp = sc->sc_ifp;
1306	struct ieee80211com *ic = ifp->if_l2com;
1307
1308	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1309		__func__, ifp->if_flags);
1310
1311	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1312	if (ic->ic_opmode == IEEE80211_M_STA)
1313		ath_stop(ifp);
1314	else
1315		ieee80211_suspend_all(ic);
1316	/*
1317	 * NB: don't worry about putting the chip in low power
1318	 * mode; pci will power off our socket on suspend and
1319	 * CardBus detaches the device.
1320	 */
1321
1322	/*
1323	 * XXX ensure none of the taskqueues are running
1324	 * XXX ensure sc_invalid is 1
1325	 * XXX ensure the calibration callout is disabled
1326	 */
1327
1328	/* Disable the PCIe PHY, complete with workarounds */
1329	ath_hal_enablepcie(sc->sc_ah, 1, 1);
1330}
1331
1332/*
1333 * Reset the key cache since some parts do not reset the
1334 * contents on resume.  First we clear all entries, then
1335 * re-load keys that the 802.11 layer assumes are setup
1336 * in h/w.
1337 */
1338static void
1339ath_reset_keycache(struct ath_softc *sc)
1340{
1341	struct ifnet *ifp = sc->sc_ifp;
1342	struct ieee80211com *ic = ifp->if_l2com;
1343	struct ath_hal *ah = sc->sc_ah;
1344	int i;
1345
1346	for (i = 0; i < sc->sc_keymax; i++)
1347		ath_hal_keyreset(ah, i);
1348	ieee80211_crypto_reload_keys(ic);
1349}
1350
1351void
1352ath_resume(struct ath_softc *sc)
1353{
1354	struct ifnet *ifp = sc->sc_ifp;
1355	struct ieee80211com *ic = ifp->if_l2com;
1356	struct ath_hal *ah = sc->sc_ah;
1357	HAL_STATUS status;
1358
1359	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1360		__func__, ifp->if_flags);
1361
1362	/* Re-enable PCIe, re-enable the PCIe bus */
1363	ath_hal_enablepcie(ah, 0, 0);
1364
1365	/*
1366	 * Must reset the chip before we reload the
1367	 * keycache as we were powered down on suspend.
1368	 */
1369	ath_hal_reset(ah, sc->sc_opmode,
1370	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1371	    AH_FALSE, &status);
1372	ath_reset_keycache(sc);
1373
1374	/* Let DFS at it in case it's a DFS channel */
1375	ath_dfs_radar_enable(sc, ic->ic_curchan);
1376
1377	/* Restore the LED configuration */
1378	ath_led_config(sc);
1379	ath_hal_setledstate(ah, HAL_LED_INIT);
1380
1381	if (sc->sc_resume_up) {
1382		if (ic->ic_opmode == IEEE80211_M_STA) {
1383			ath_init(sc);
1384			ath_hal_setledstate(ah, HAL_LED_RUN);
1385			/*
1386			 * Program the beacon registers using the last rx'd
1387			 * beacon frame and enable sync on the next beacon
1388			 * we see.  This should handle the case where we
1389			 * wakeup and find the same AP and also the case where
1390			 * we wakeup and need to roam.  For the latter we
1391			 * should get bmiss events that trigger a roam.
1392			 */
1393			ath_beacon_config(sc, NULL);
1394			sc->sc_syncbeacon = 1;
1395		} else
1396			ieee80211_resume_all(ic);
1397	}
1398
1399	/* XXX beacons ? */
1400}
1401
1402void
1403ath_shutdown(struct ath_softc *sc)
1404{
1405	struct ifnet *ifp = sc->sc_ifp;
1406
1407	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1408		__func__, ifp->if_flags);
1409
1410	ath_stop(ifp);
1411	/* NB: no point powering down chip as we're about to reboot */
1412}
1413
1414/*
1415 * Interrupt handler.  Most of the actual processing is deferred.
1416 */
1417void
1418ath_intr(void *arg)
1419{
1420	struct ath_softc *sc = arg;
1421	struct ifnet *ifp = sc->sc_ifp;
1422	struct ath_hal *ah = sc->sc_ah;
1423	HAL_INT status = 0;
1424	uint32_t txqs;
1425
1426	/*
1427	 * If we're inside a reset path, just print a warning and
1428	 * clear the ISR. The reset routine will finish it for us.
1429	 */
1430	ATH_PCU_LOCK(sc);
1431	if (sc->sc_inreset_cnt) {
1432		HAL_INT status;
1433		ath_hal_getisr(ah, &status);	/* clear ISR */
1434		ath_hal_intrset(ah, 0);		/* disable further intr's */
1435		DPRINTF(sc, ATH_DEBUG_ANY,
1436		    "%s: in reset, ignoring: status=0x%x\n",
1437		    __func__, status);
1438		ATH_PCU_UNLOCK(sc);
1439		return;
1440	}
1441
1442	if (sc->sc_invalid) {
1443		/*
1444		 * The hardware is not ready/present, don't touch anything.
1445		 * Note this can happen early on if the IRQ is shared.
1446		 */
1447		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1448		ATH_PCU_UNLOCK(sc);
1449		return;
1450	}
1451	if (!ath_hal_intrpend(ah)) {		/* shared irq, not for us */
1452		ATH_PCU_UNLOCK(sc);
1453		return;
1454	}
1455
1456	if ((ifp->if_flags & IFF_UP) == 0 ||
1457	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1458		HAL_INT status;
1459
1460		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1461			__func__, ifp->if_flags);
1462		ath_hal_getisr(ah, &status);	/* clear ISR */
1463		ath_hal_intrset(ah, 0);		/* disable further intr's */
1464		ATH_PCU_UNLOCK(sc);
1465		return;
1466	}
1467
1468	/*
1469	 * Figure out the reason(s) for the interrupt.  Note
1470	 * that the hal returns a pseudo-ISR that may include
1471	 * bits we haven't explicitly enabled so we mask the
1472	 * value to insure we only process bits we requested.
1473	 */
1474	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1475	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1476	CTR1(ATH_KTR_INTR, "ath_intr: mask=0x%.8x", status);
1477#ifdef	ATH_KTR_INTR_DEBUG
1478	CTR5(ATH_KTR_INTR,
1479	    "ath_intr: ISR=0x%.8x, ISR_S0=0x%.8x, ISR_S1=0x%.8x, ISR_S2=0x%.8x, ISR_S5=0x%.8x",
1480	    ah->ah_intrstate[0],
1481	    ah->ah_intrstate[1],
1482	    ah->ah_intrstate[2],
1483	    ah->ah_intrstate[3],
1484	    ah->ah_intrstate[6]);
1485#endif
1486
1487	/* Squirrel away SYNC interrupt debugging */
1488	if (ah->ah_syncstate != 0) {
1489		int i;
1490		for (i = 0; i < 32; i++)
1491			if (ah->ah_syncstate & (i << i))
1492				sc->sc_intr_stats.sync_intr[i]++;
1493	}
1494
1495	status &= sc->sc_imask;			/* discard unasked for bits */
1496
1497	/* Short-circuit un-handled interrupts */
1498	if (status == 0x0) {
1499		ATH_PCU_UNLOCK(sc);
1500		return;
1501	}
1502
1503	/*
1504	 * Take a note that we're inside the interrupt handler, so
1505	 * the reset routines know to wait.
1506	 */
1507	sc->sc_intr_cnt++;
1508	ATH_PCU_UNLOCK(sc);
1509
1510	/*
1511	 * Handle the interrupt. We won't run concurrent with the reset
1512	 * or channel change routines as they'll wait for sc_intr_cnt
1513	 * to be 0 before continuing.
1514	 */
1515	if (status & HAL_INT_FATAL) {
1516		sc->sc_stats.ast_hardware++;
1517		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1518		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
1519	} else {
1520		if (status & HAL_INT_SWBA) {
1521			/*
1522			 * Software beacon alert--time to send a beacon.
1523			 * Handle beacon transmission directly; deferring
1524			 * this is too slow to meet timing constraints
1525			 * under load.
1526			 */
1527#ifdef IEEE80211_SUPPORT_TDMA
1528			if (sc->sc_tdma) {
1529				if (sc->sc_tdmaswba == 0) {
1530					struct ieee80211com *ic = ifp->if_l2com;
1531					struct ieee80211vap *vap =
1532					    TAILQ_FIRST(&ic->ic_vaps);
1533					ath_tdma_beacon_send(sc, vap);
1534					sc->sc_tdmaswba =
1535					    vap->iv_tdma->tdma_bintval;
1536				} else
1537					sc->sc_tdmaswba--;
1538			} else
1539#endif
1540			{
1541				ath_beacon_proc(sc, 0);
1542#ifdef IEEE80211_SUPPORT_SUPERG
1543				/*
1544				 * Schedule the rx taskq in case there's no
1545				 * traffic so any frames held on the staging
1546				 * queue are aged and potentially flushed.
1547				 */
1548				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1549#endif
1550			}
1551		}
1552		if (status & HAL_INT_RXEOL) {
1553			int imask;
1554			CTR0(ATH_KTR_ERR, "ath_intr: RXEOL");
1555			ATH_PCU_LOCK(sc);
1556			/*
1557			 * NB: the hardware should re-read the link when
1558			 *     RXE bit is written, but it doesn't work at
1559			 *     least on older hardware revs.
1560			 */
1561			sc->sc_stats.ast_rxeol++;
1562			/*
1563			 * Disable RXEOL/RXORN - prevent an interrupt
1564			 * storm until the PCU logic can be reset.
1565			 * In case the interface is reset some other
1566			 * way before "sc_kickpcu" is called, don't
1567			 * modify sc_imask - that way if it is reset
1568			 * by a call to ath_reset() somehow, the
1569			 * interrupt mask will be correctly reprogrammed.
1570			 */
1571			imask = sc->sc_imask;
1572			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1573			ath_hal_intrset(ah, imask);
1574			/*
1575			 * Only blank sc_rxlink if we've not yet kicked
1576			 * the PCU.
1577			 *
1578			 * This isn't entirely correct - the correct solution
1579			 * would be to have a PCU lock and engage that for
1580			 * the duration of the PCU fiddling; which would include
1581			 * running the RX process. Otherwise we could end up
1582			 * messing up the RX descriptor chain and making the
1583			 * RX desc list much shorter.
1584			 */
1585			if (! sc->sc_kickpcu)
1586				sc->sc_rxlink = NULL;
1587			sc->sc_kickpcu = 1;
1588			/*
1589			 * Enqueue an RX proc, to handled whatever
1590			 * is in the RX queue.
1591			 * This will then kick the PCU.
1592			 */
1593			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1594			ATH_PCU_UNLOCK(sc);
1595		}
1596		if (status & HAL_INT_TXURN) {
1597			sc->sc_stats.ast_txurn++;
1598			/* bump tx trigger level */
1599			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1600		}
1601		if (status & HAL_INT_RX) {
1602			sc->sc_stats.ast_rx_intr++;
1603			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1604		}
1605		if (status & HAL_INT_TX) {
1606			sc->sc_stats.ast_tx_intr++;
1607			/*
1608			 * Grab all the currently set bits in the HAL txq bitmap
1609			 * and blank them. This is the only place we should be
1610			 * doing this.
1611			 */
1612			ATH_PCU_LOCK(sc);
1613			txqs = 0xffffffff;
1614			ath_hal_gettxintrtxqs(sc->sc_ah, &txqs);
1615			sc->sc_txq_active |= txqs;
1616			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1617			ATH_PCU_UNLOCK(sc);
1618		}
1619		if (status & HAL_INT_BMISS) {
1620			sc->sc_stats.ast_bmiss++;
1621			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1622		}
1623		if (status & HAL_INT_GTT)
1624			sc->sc_stats.ast_tx_timeout++;
1625		if (status & HAL_INT_CST)
1626			sc->sc_stats.ast_tx_cst++;
1627		if (status & HAL_INT_MIB) {
1628			sc->sc_stats.ast_mib++;
1629			ATH_PCU_LOCK(sc);
1630			/*
1631			 * Disable interrupts until we service the MIB
1632			 * interrupt; otherwise it will continue to fire.
1633			 */
1634			ath_hal_intrset(ah, 0);
1635			/*
1636			 * Let the hal handle the event.  We assume it will
1637			 * clear whatever condition caused the interrupt.
1638			 */
1639			ath_hal_mibevent(ah, &sc->sc_halstats);
1640			/*
1641			 * Don't reset the interrupt if we've just
1642			 * kicked the PCU, or we may get a nested
1643			 * RXEOL before the rxproc has had a chance
1644			 * to run.
1645			 */
1646			if (sc->sc_kickpcu == 0)
1647				ath_hal_intrset(ah, sc->sc_imask);
1648			ATH_PCU_UNLOCK(sc);
1649		}
1650		if (status & HAL_INT_RXORN) {
1651			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1652			CTR0(ATH_KTR_ERR, "ath_intr: RXORN");
1653			sc->sc_stats.ast_rxorn++;
1654		}
1655	}
1656	ATH_PCU_LOCK(sc);
1657	sc->sc_intr_cnt--;
1658	ATH_PCU_UNLOCK(sc);
1659}
1660
1661static void
1662ath_fatal_proc(void *arg, int pending)
1663{
1664	struct ath_softc *sc = arg;
1665	struct ifnet *ifp = sc->sc_ifp;
1666	u_int32_t *state;
1667	u_int32_t len;
1668	void *sp;
1669
1670	if_printf(ifp, "hardware error; resetting\n");
1671	/*
1672	 * Fatal errors are unrecoverable.  Typically these
1673	 * are caused by DMA errors.  Collect h/w state from
1674	 * the hal so we can diagnose what's going on.
1675	 */
1676	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1677		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1678		state = sp;
1679		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1680		    state[0], state[1] , state[2], state[3],
1681		    state[4], state[5]);
1682	}
1683	ath_reset(ifp, ATH_RESET_NOLOSS);
1684}
1685
1686static void
1687ath_bmiss_vap(struct ieee80211vap *vap)
1688{
1689	/*
1690	 * Workaround phantom bmiss interrupts by sanity-checking
1691	 * the time of our last rx'd frame.  If it is within the
1692	 * beacon miss interval then ignore the interrupt.  If it's
1693	 * truly a bmiss we'll get another interrupt soon and that'll
1694	 * be dispatched up for processing.  Note this applies only
1695	 * for h/w beacon miss events.
1696	 */
1697	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1698		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1699		struct ath_softc *sc = ifp->if_softc;
1700		u_int64_t lastrx = sc->sc_lastrx;
1701		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1702		/* XXX should take a locked ref to iv_bss */
1703		u_int bmisstimeout =
1704			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1705
1706		DPRINTF(sc, ATH_DEBUG_BEACON,
1707		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1708		    __func__, (unsigned long long) tsf,
1709		    (unsigned long long)(tsf - lastrx),
1710		    (unsigned long long) lastrx, bmisstimeout);
1711
1712		if (tsf - lastrx <= bmisstimeout) {
1713			sc->sc_stats.ast_bmiss_phantom++;
1714			return;
1715		}
1716	}
1717	ATH_VAP(vap)->av_bmiss(vap);
1718}
1719
1720static int
1721ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1722{
1723	uint32_t rsize;
1724	void *sp;
1725
1726	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1727		return 0;
1728	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1729	*hangs = *(uint32_t *)sp;
1730	return 1;
1731}
1732
1733static void
1734ath_bmiss_proc(void *arg, int pending)
1735{
1736	struct ath_softc *sc = arg;
1737	struct ifnet *ifp = sc->sc_ifp;
1738	uint32_t hangs;
1739
1740	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1741
1742	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1743		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1744		ath_reset(ifp, ATH_RESET_NOLOSS);
1745	} else
1746		ieee80211_beacon_miss(ifp->if_l2com);
1747}
1748
1749/*
1750 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1751 * calcs together with WME.  If necessary disable the crypto
1752 * hardware and mark the 802.11 state so keys will be setup
1753 * with the MIC work done in software.
1754 */
1755static void
1756ath_settkipmic(struct ath_softc *sc)
1757{
1758	struct ifnet *ifp = sc->sc_ifp;
1759	struct ieee80211com *ic = ifp->if_l2com;
1760
1761	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1762		if (ic->ic_flags & IEEE80211_F_WME) {
1763			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1764			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1765		} else {
1766			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1767			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1768		}
1769	}
1770}
1771
1772static void
1773ath_init(void *arg)
1774{
1775	struct ath_softc *sc = (struct ath_softc *) arg;
1776	struct ifnet *ifp = sc->sc_ifp;
1777	struct ieee80211com *ic = ifp->if_l2com;
1778	struct ath_hal *ah = sc->sc_ah;
1779	HAL_STATUS status;
1780
1781	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1782		__func__, ifp->if_flags);
1783
1784	ATH_LOCK(sc);
1785	/*
1786	 * Stop anything previously setup.  This is safe
1787	 * whether this is the first time through or not.
1788	 */
1789	ath_stop_locked(ifp);
1790
1791	/*
1792	 * The basic interface to setting the hardware in a good
1793	 * state is ``reset''.  On return the hardware is known to
1794	 * be powered up and with interrupts disabled.  This must
1795	 * be followed by initialization of the appropriate bits
1796	 * and then setup of the interrupt mask.
1797	 */
1798	ath_settkipmic(sc);
1799	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1800		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1801			status);
1802		ATH_UNLOCK(sc);
1803		return;
1804	}
1805	ath_chan_change(sc, ic->ic_curchan);
1806
1807	/* Let DFS at it in case it's a DFS channel */
1808	ath_dfs_radar_enable(sc, ic->ic_curchan);
1809
1810	/*
1811	 * Likewise this is set during reset so update
1812	 * state cached in the driver.
1813	 */
1814	sc->sc_diversity = ath_hal_getdiversity(ah);
1815	sc->sc_lastlongcal = 0;
1816	sc->sc_resetcal = 1;
1817	sc->sc_lastcalreset = 0;
1818	sc->sc_lastani = 0;
1819	sc->sc_lastshortcal = 0;
1820	sc->sc_doresetcal = AH_FALSE;
1821	/*
1822	 * Beacon timers were cleared here; give ath_newstate()
1823	 * a hint that the beacon timers should be poked when
1824	 * things transition to the RUN state.
1825	 */
1826	sc->sc_beacons = 0;
1827
1828	/*
1829	 * Initial aggregation settings.
1830	 */
1831	sc->sc_hwq_limit = ATH_AGGR_MIN_QDEPTH;
1832	sc->sc_tid_hwq_lo = ATH_AGGR_SCHED_LOW;
1833	sc->sc_tid_hwq_hi = ATH_AGGR_SCHED_HIGH;
1834
1835	/*
1836	 * Setup the hardware after reset: the key cache
1837	 * is filled as needed and the receive engine is
1838	 * set going.  Frame transmit is handled entirely
1839	 * in the frame output path; there's nothing to do
1840	 * here except setup the interrupt mask.
1841	 */
1842	if (ath_startrecv(sc) != 0) {
1843		if_printf(ifp, "unable to start recv logic\n");
1844		ATH_UNLOCK(sc);
1845		return;
1846	}
1847
1848	/*
1849	 * Enable interrupts.
1850	 */
1851	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1852		  | HAL_INT_RXEOL | HAL_INT_RXORN
1853		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1854	/*
1855	 * Enable MIB interrupts when there are hardware phy counters.
1856	 * Note we only do this (at the moment) for station mode.
1857	 */
1858	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1859		sc->sc_imask |= HAL_INT_MIB;
1860
1861	/* Enable global TX timeout and carrier sense timeout if available */
1862	if (ath_hal_gtxto_supported(ah))
1863		sc->sc_imask |= HAL_INT_GTT;
1864
1865	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1866		__func__, sc->sc_imask);
1867
1868	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1869	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1870	ath_hal_intrset(ah, sc->sc_imask);
1871
1872	ATH_UNLOCK(sc);
1873
1874#ifdef ATH_TX99_DIAG
1875	if (sc->sc_tx99 != NULL)
1876		sc->sc_tx99->start(sc->sc_tx99);
1877	else
1878#endif
1879	ieee80211_start_all(ic);		/* start all vap's */
1880}
1881
1882static void
1883ath_stop_locked(struct ifnet *ifp)
1884{
1885	struct ath_softc *sc = ifp->if_softc;
1886	struct ath_hal *ah = sc->sc_ah;
1887
1888	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1889		__func__, sc->sc_invalid, ifp->if_flags);
1890
1891	ATH_LOCK_ASSERT(sc);
1892	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1893		/*
1894		 * Shutdown the hardware and driver:
1895		 *    reset 802.11 state machine
1896		 *    turn off timers
1897		 *    disable interrupts
1898		 *    turn off the radio
1899		 *    clear transmit machinery
1900		 *    clear receive machinery
1901		 *    drain and release tx queues
1902		 *    reclaim beacon resources
1903		 *    power down hardware
1904		 *
1905		 * Note that some of this work is not possible if the
1906		 * hardware is gone (invalid).
1907		 */
1908#ifdef ATH_TX99_DIAG
1909		if (sc->sc_tx99 != NULL)
1910			sc->sc_tx99->stop(sc->sc_tx99);
1911#endif
1912		callout_stop(&sc->sc_wd_ch);
1913		sc->sc_wd_timer = 0;
1914		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1915		if (!sc->sc_invalid) {
1916			if (sc->sc_softled) {
1917				callout_stop(&sc->sc_ledtimer);
1918				ath_hal_gpioset(ah, sc->sc_ledpin,
1919					!sc->sc_ledon);
1920				sc->sc_blinking = 0;
1921			}
1922			ath_hal_intrset(ah, 0);
1923		}
1924		ath_draintxq(sc, ATH_RESET_DEFAULT);
1925		if (!sc->sc_invalid) {
1926			ath_stoprecv(sc, 1);
1927			ath_hal_phydisable(ah);
1928		} else
1929			sc->sc_rxlink = NULL;
1930		ath_beacon_free(sc);	/* XXX not needed */
1931	}
1932}
1933
1934#define	MAX_TXRX_ITERATIONS	1000
1935static void
1936ath_txrx_stop_locked(struct ath_softc *sc)
1937{
1938	int i = MAX_TXRX_ITERATIONS;
1939
1940	ATH_UNLOCK_ASSERT(sc);
1941	ATH_PCU_LOCK_ASSERT(sc);
1942
1943	/*
1944	 * Sleep until all the pending operations have completed.
1945	 *
1946	 * The caller must ensure that reset has been incremented
1947	 * or the pending operations may continue being queued.
1948	 */
1949	while (sc->sc_rxproc_cnt || sc->sc_txproc_cnt ||
1950	    sc->sc_txstart_cnt || sc->sc_intr_cnt) {
1951		if (i <= 0)
1952			break;
1953		msleep(sc, &sc->sc_pcu_mtx, 0, "ath_txrx_stop", 1);
1954		i--;
1955	}
1956
1957	if (i <= 0)
1958		device_printf(sc->sc_dev,
1959		    "%s: didn't finish after %d iterations\n",
1960		    __func__, MAX_TXRX_ITERATIONS);
1961}
1962#undef	MAX_TXRX_ITERATIONS
1963
1964#if 0
1965static void
1966ath_txrx_stop(struct ath_softc *sc)
1967{
1968	ATH_UNLOCK_ASSERT(sc);
1969	ATH_PCU_UNLOCK_ASSERT(sc);
1970
1971	ATH_PCU_LOCK(sc);
1972	ath_txrx_stop_locked(sc);
1973	ATH_PCU_UNLOCK(sc);
1974}
1975#endif
1976
1977static void
1978ath_txrx_start(struct ath_softc *sc)
1979{
1980
1981	taskqueue_unblock(sc->sc_tq);
1982}
1983
1984/*
1985 * Grab the reset lock, and wait around until noone else
1986 * is trying to do anything with it.
1987 *
1988 * This is totally horrible but we can't hold this lock for
1989 * long enough to do TX/RX or we end up with net80211/ip stack
1990 * LORs and eventual deadlock.
1991 *
1992 * "dowait" signals whether to spin, waiting for the reset
1993 * lock count to reach 0. This should (for now) only be used
1994 * during the reset path, as the rest of the code may not
1995 * be locking-reentrant enough to behave correctly.
1996 *
1997 * Another, cleaner way should be found to serialise all of
1998 * these operations.
1999 */
2000#define	MAX_RESET_ITERATIONS	10
2001static int
2002ath_reset_grablock(struct ath_softc *sc, int dowait)
2003{
2004	int w = 0;
2005	int i = MAX_RESET_ITERATIONS;
2006
2007	ATH_PCU_LOCK_ASSERT(sc);
2008	do {
2009		if (sc->sc_inreset_cnt == 0) {
2010			w = 1;
2011			break;
2012		}
2013		if (dowait == 0) {
2014			w = 0;
2015			break;
2016		}
2017		ATH_PCU_UNLOCK(sc);
2018		pause("ath_reset_grablock", 1);
2019		i--;
2020		ATH_PCU_LOCK(sc);
2021	} while (i > 0);
2022
2023	/*
2024	 * We always increment the refcounter, regardless
2025	 * of whether we succeeded to get it in an exclusive
2026	 * way.
2027	 */
2028	sc->sc_inreset_cnt++;
2029
2030	if (i <= 0)
2031		device_printf(sc->sc_dev,
2032		    "%s: didn't finish after %d iterations\n",
2033		    __func__, MAX_RESET_ITERATIONS);
2034
2035	if (w == 0)
2036		device_printf(sc->sc_dev,
2037		    "%s: warning, recursive reset path!\n",
2038		    __func__);
2039
2040	return w;
2041}
2042#undef MAX_RESET_ITERATIONS
2043
2044/*
2045 * XXX TODO: write ath_reset_releaselock
2046 */
2047
2048static void
2049ath_stop(struct ifnet *ifp)
2050{
2051	struct ath_softc *sc = ifp->if_softc;
2052
2053	ATH_LOCK(sc);
2054	ath_stop_locked(ifp);
2055	ATH_UNLOCK(sc);
2056}
2057
2058/*
2059 * Reset the hardware w/o losing operational state.  This is
2060 * basically a more efficient way of doing ath_stop, ath_init,
2061 * followed by state transitions to the current 802.11
2062 * operational state.  Used to recover from various errors and
2063 * to reset or reload hardware state.
2064 */
2065int
2066ath_reset(struct ifnet *ifp, ATH_RESET_TYPE reset_type)
2067{
2068	struct ath_softc *sc = ifp->if_softc;
2069	struct ieee80211com *ic = ifp->if_l2com;
2070	struct ath_hal *ah = sc->sc_ah;
2071	HAL_STATUS status;
2072	int i;
2073
2074	DPRINTF(sc, ATH_DEBUG_RESET, "%s: called\n", __func__);
2075
2076	/* Ensure ATH_LOCK isn't held; ath_rx_proc can't be locked */
2077	ATH_PCU_UNLOCK_ASSERT(sc);
2078	ATH_UNLOCK_ASSERT(sc);
2079
2080	/* Try to (stop any further TX/RX from occuring */
2081	taskqueue_block(sc->sc_tq);
2082
2083	ATH_PCU_LOCK(sc);
2084	ath_hal_intrset(ah, 0);		/* disable interrupts */
2085	ath_txrx_stop_locked(sc);	/* Ensure TX/RX is stopped */
2086	if (ath_reset_grablock(sc, 1) == 0) {
2087		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
2088		    __func__);
2089	}
2090	ATH_PCU_UNLOCK(sc);
2091
2092	/*
2093	 * Should now wait for pending TX/RX to complete
2094	 * and block future ones from occuring. This needs to be
2095	 * done before the TX queue is drained.
2096	 */
2097	ath_draintxq(sc, reset_type);	/* stop xmit side */
2098
2099	/*
2100	 * Regardless of whether we're doing a no-loss flush or
2101	 * not, stop the PCU and handle what's in the RX queue.
2102	 * That way frames aren't dropped which shouldn't be.
2103	 */
2104	ath_stoprecv(sc, (reset_type != ATH_RESET_NOLOSS));
2105	ath_rx_proc(sc, 0);
2106
2107	ath_settkipmic(sc);		/* configure TKIP MIC handling */
2108	/* NB: indicate channel change so we do a full reset */
2109	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
2110		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
2111			__func__, status);
2112	sc->sc_diversity = ath_hal_getdiversity(ah);
2113
2114	/* Let DFS at it in case it's a DFS channel */
2115	ath_dfs_radar_enable(sc, ic->ic_curchan);
2116
2117	if (ath_startrecv(sc) != 0)	/* restart recv */
2118		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
2119	/*
2120	 * We may be doing a reset in response to an ioctl
2121	 * that changes the channel so update any state that
2122	 * might change as a result.
2123	 */
2124	ath_chan_change(sc, ic->ic_curchan);
2125	if (sc->sc_beacons) {		/* restart beacons */
2126#ifdef IEEE80211_SUPPORT_TDMA
2127		if (sc->sc_tdma)
2128			ath_tdma_config(sc, NULL);
2129		else
2130#endif
2131			ath_beacon_config(sc, NULL);
2132	}
2133
2134	/*
2135	 * Release the reset lock and re-enable interrupts here.
2136	 * If an interrupt was being processed in ath_intr(),
2137	 * it would disable interrupts at this point. So we have
2138	 * to atomically enable interrupts and decrement the
2139	 * reset counter - this way ath_intr() doesn't end up
2140	 * disabling interrupts without a corresponding enable
2141	 * in the rest or channel change path.
2142	 */
2143	ATH_PCU_LOCK(sc);
2144	sc->sc_inreset_cnt--;
2145	/* XXX only do this if sc_inreset_cnt == 0? */
2146	ath_hal_intrset(ah, sc->sc_imask);
2147	ATH_PCU_UNLOCK(sc);
2148
2149	/*
2150	 * TX and RX can be started here. If it were started with
2151	 * sc_inreset_cnt > 0, the TX and RX path would abort.
2152	 * Thus if this is a nested call through the reset or
2153	 * channel change code, TX completion will occur but
2154	 * RX completion and ath_start / ath_tx_start will not
2155	 * run.
2156	 */
2157
2158	/* Restart TX/RX as needed */
2159	ath_txrx_start(sc);
2160
2161	/* XXX Restart TX completion and pending TX */
2162	if (reset_type == ATH_RESET_NOLOSS) {
2163		for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
2164			if (ATH_TXQ_SETUP(sc, i)) {
2165				ATH_TXQ_LOCK(&sc->sc_txq[i]);
2166				ath_txq_restart_dma(sc, &sc->sc_txq[i]);
2167				ath_txq_sched(sc, &sc->sc_txq[i]);
2168				ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
2169			}
2170		}
2171	}
2172
2173	/*
2174	 * This may have been set during an ath_start() call which
2175	 * set this once it detected a concurrent TX was going on.
2176	 * So, clear it.
2177	 */
2178	IF_LOCK(&ifp->if_snd);
2179	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2180	IF_UNLOCK(&ifp->if_snd);
2181
2182	/* Handle any frames in the TX queue */
2183	/*
2184	 * XXX should this be done by the caller, rather than
2185	 * ath_reset() ?
2186	 */
2187	ath_start(ifp);			/* restart xmit */
2188	return 0;
2189}
2190
2191static int
2192ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
2193{
2194	struct ieee80211com *ic = vap->iv_ic;
2195	struct ifnet *ifp = ic->ic_ifp;
2196	struct ath_softc *sc = ifp->if_softc;
2197	struct ath_hal *ah = sc->sc_ah;
2198
2199	switch (cmd) {
2200	case IEEE80211_IOC_TXPOWER:
2201		/*
2202		 * If per-packet TPC is enabled, then we have nothing
2203		 * to do; otherwise we need to force the global limit.
2204		 * All this can happen directly; no need to reset.
2205		 */
2206		if (!ath_hal_gettpc(ah))
2207			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
2208		return 0;
2209	}
2210	/* XXX? Full or NOLOSS? */
2211	return ath_reset(ifp, ATH_RESET_FULL);
2212}
2213
2214struct ath_buf *
2215_ath_getbuf_locked(struct ath_softc *sc)
2216{
2217	struct ath_buf *bf;
2218
2219	ATH_TXBUF_LOCK_ASSERT(sc);
2220
2221	bf = TAILQ_FIRST(&sc->sc_txbuf);
2222	if (bf == NULL) {
2223		sc->sc_stats.ast_tx_getnobuf++;
2224	} else {
2225		if (bf->bf_flags & ATH_BUF_BUSY) {
2226			sc->sc_stats.ast_tx_getbusybuf++;
2227			bf = NULL;
2228		}
2229	}
2230
2231	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
2232		TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
2233	else
2234		bf = NULL;
2235
2236	if (bf == NULL) {
2237		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2238		    TAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2239			"out of xmit buffers" : "xmit buffer busy");
2240		return NULL;
2241	}
2242
2243	/* Valid bf here; clear some basic fields */
2244	bf->bf_next = NULL;	/* XXX just to be sure */
2245	bf->bf_last = NULL;	/* XXX again, just to be sure */
2246	bf->bf_comp = NULL;	/* XXX again, just to be sure */
2247	bzero(&bf->bf_state, sizeof(bf->bf_state));
2248
2249	return bf;
2250}
2251
2252/*
2253 * When retrying a software frame, buffers marked ATH_BUF_BUSY
2254 * can't be thrown back on the queue as they could still be
2255 * in use by the hardware.
2256 *
2257 * This duplicates the buffer, or returns NULL.
2258 *
2259 * The descriptor is also copied but the link pointers and
2260 * the DMA segments aren't copied; this frame should thus
2261 * be again passed through the descriptor setup/chain routines
2262 * so the link is correct.
2263 *
2264 * The caller must free the buffer using ath_freebuf().
2265 *
2266 * XXX TODO: this call shouldn't fail as it'll cause packet loss
2267 * XXX in the TX pathway when retries are needed.
2268 * XXX Figure out how to keep some buffers free, or factor the
2269 * XXX number of busy buffers into the xmit path (ath_start())
2270 * XXX so we don't over-commit.
2271 */
2272struct ath_buf *
2273ath_buf_clone(struct ath_softc *sc, const struct ath_buf *bf)
2274{
2275	struct ath_buf *tbf;
2276
2277	tbf = ath_getbuf(sc);
2278	if (tbf == NULL)
2279		return NULL;	/* XXX failure? Why? */
2280
2281	/* Copy basics */
2282	tbf->bf_next = NULL;
2283	tbf->bf_nseg = bf->bf_nseg;
2284	tbf->bf_flags = bf->bf_flags & ~ATH_BUF_BUSY;
2285	tbf->bf_status = bf->bf_status;
2286	tbf->bf_m = bf->bf_m;
2287	tbf->bf_node = bf->bf_node;
2288	/* will be setup by the chain/setup function */
2289	tbf->bf_lastds = NULL;
2290	/* for now, last == self */
2291	tbf->bf_last = tbf;
2292	tbf->bf_comp = bf->bf_comp;
2293
2294	/* NOTE: DMA segments will be setup by the setup/chain functions */
2295
2296	/* The caller has to re-init the descriptor + links */
2297
2298	/* Copy state */
2299	memcpy(&tbf->bf_state, &bf->bf_state, sizeof(bf->bf_state));
2300
2301	return tbf;
2302}
2303
2304struct ath_buf *
2305ath_getbuf(struct ath_softc *sc)
2306{
2307	struct ath_buf *bf;
2308
2309	ATH_TXBUF_LOCK(sc);
2310	bf = _ath_getbuf_locked(sc);
2311	ATH_TXBUF_UNLOCK(sc);
2312	if (bf == NULL) {
2313		struct ifnet *ifp = sc->sc_ifp;
2314
2315		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2316		sc->sc_stats.ast_tx_qstop++;
2317		IF_LOCK(&ifp->if_snd);
2318		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2319		IF_UNLOCK(&ifp->if_snd);
2320	}
2321	return bf;
2322}
2323
2324void
2325ath_start(struct ifnet *ifp)
2326{
2327	struct ath_softc *sc = ifp->if_softc;
2328	struct ieee80211_node *ni;
2329	struct ath_buf *bf;
2330	struct mbuf *m, *next;
2331	ath_bufhead frags;
2332
2333	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2334		return;
2335
2336	/* XXX is it ok to hold the ATH_LOCK here? */
2337	ATH_PCU_LOCK(sc);
2338	if (sc->sc_inreset_cnt > 0) {
2339		device_printf(sc->sc_dev,
2340		    "%s: sc_inreset_cnt > 0; bailing\n", __func__);
2341		ATH_PCU_UNLOCK(sc);
2342		IF_LOCK(&ifp->if_snd);
2343		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2344		IF_UNLOCK(&ifp->if_snd);
2345		return;
2346	}
2347	sc->sc_txstart_cnt++;
2348	ATH_PCU_UNLOCK(sc);
2349
2350	for (;;) {
2351		/*
2352		 * Grab a TX buffer and associated resources.
2353		 */
2354		bf = ath_getbuf(sc);
2355		if (bf == NULL)
2356			break;
2357
2358		IFQ_DEQUEUE(&ifp->if_snd, m);
2359		if (m == NULL) {
2360			ATH_TXBUF_LOCK(sc);
2361			TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2362			ATH_TXBUF_UNLOCK(sc);
2363			break;
2364		}
2365		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2366		/*
2367		 * Check for fragmentation.  If this frame
2368		 * has been broken up verify we have enough
2369		 * buffers to send all the fragments so all
2370		 * go out or none...
2371		 */
2372		TAILQ_INIT(&frags);
2373		if ((m->m_flags & M_FRAG) &&
2374		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2375			DPRINTF(sc, ATH_DEBUG_XMIT,
2376			    "%s: out of txfrag buffers\n", __func__);
2377			sc->sc_stats.ast_tx_nofrag++;
2378			ifp->if_oerrors++;
2379			ath_freetx(m);
2380			goto bad;
2381		}
2382		ifp->if_opackets++;
2383	nextfrag:
2384		/*
2385		 * Pass the frame to the h/w for transmission.
2386		 * Fragmented frames have each frag chained together
2387		 * with m_nextpkt.  We know there are sufficient ath_buf's
2388		 * to send all the frags because of work done by
2389		 * ath_txfrag_setup.  We leave m_nextpkt set while
2390		 * calling ath_tx_start so it can use it to extend the
2391		 * the tx duration to cover the subsequent frag and
2392		 * so it can reclaim all the mbufs in case of an error;
2393		 * ath_tx_start clears m_nextpkt once it commits to
2394		 * handing the frame to the hardware.
2395		 */
2396		next = m->m_nextpkt;
2397		if (ath_tx_start(sc, ni, bf, m)) {
2398	bad:
2399			ifp->if_oerrors++;
2400	reclaim:
2401			bf->bf_m = NULL;
2402			bf->bf_node = NULL;
2403			ATH_TXBUF_LOCK(sc);
2404			TAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2405			ath_txfrag_cleanup(sc, &frags, ni);
2406			ATH_TXBUF_UNLOCK(sc);
2407			if (ni != NULL)
2408				ieee80211_free_node(ni);
2409			continue;
2410		}
2411		if (next != NULL) {
2412			/*
2413			 * Beware of state changing between frags.
2414			 * XXX check sta power-save state?
2415			 */
2416			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2417				DPRINTF(sc, ATH_DEBUG_XMIT,
2418				    "%s: flush fragmented packet, state %s\n",
2419				    __func__,
2420				    ieee80211_state_name[ni->ni_vap->iv_state]);
2421				ath_freetx(next);
2422				goto reclaim;
2423			}
2424			m = next;
2425			bf = TAILQ_FIRST(&frags);
2426			KASSERT(bf != NULL, ("no buf for txfrag"));
2427			TAILQ_REMOVE(&frags, bf, bf_list);
2428			goto nextfrag;
2429		}
2430
2431		sc->sc_wd_timer = 5;
2432	}
2433
2434	ATH_PCU_LOCK(sc);
2435	sc->sc_txstart_cnt--;
2436	ATH_PCU_UNLOCK(sc);
2437}
2438
2439static int
2440ath_media_change(struct ifnet *ifp)
2441{
2442	int error = ieee80211_media_change(ifp);
2443	/* NB: only the fixed rate can change and that doesn't need a reset */
2444	return (error == ENETRESET ? 0 : error);
2445}
2446
2447/*
2448 * Block/unblock tx+rx processing while a key change is done.
2449 * We assume the caller serializes key management operations
2450 * so we only need to worry about synchronization with other
2451 * uses that originate in the driver.
2452 */
2453static void
2454ath_key_update_begin(struct ieee80211vap *vap)
2455{
2456	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2457	struct ath_softc *sc = ifp->if_softc;
2458
2459	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2460	taskqueue_block(sc->sc_tq);
2461	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2462}
2463
2464static void
2465ath_key_update_end(struct ieee80211vap *vap)
2466{
2467	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2468	struct ath_softc *sc = ifp->if_softc;
2469
2470	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2471	IF_UNLOCK(&ifp->if_snd);
2472	taskqueue_unblock(sc->sc_tq);
2473}
2474
2475static void
2476ath_update_promisc(struct ifnet *ifp)
2477{
2478	struct ath_softc *sc = ifp->if_softc;
2479	u_int32_t rfilt;
2480
2481	/* configure rx filter */
2482	rfilt = ath_calcrxfilter(sc);
2483	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2484
2485	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2486}
2487
2488static void
2489ath_update_mcast(struct ifnet *ifp)
2490{
2491	struct ath_softc *sc = ifp->if_softc;
2492	u_int32_t mfilt[2];
2493
2494	/* calculate and install multicast filter */
2495	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2496		struct ifmultiaddr *ifma;
2497		/*
2498		 * Merge multicast addresses to form the hardware filter.
2499		 */
2500		mfilt[0] = mfilt[1] = 0;
2501		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2502		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2503			caddr_t dl;
2504			u_int32_t val;
2505			u_int8_t pos;
2506
2507			/* calculate XOR of eight 6bit values */
2508			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2509			val = LE_READ_4(dl + 0);
2510			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2511			val = LE_READ_4(dl + 3);
2512			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2513			pos &= 0x3f;
2514			mfilt[pos / 32] |= (1 << (pos % 32));
2515		}
2516		if_maddr_runlock(ifp);
2517	} else
2518		mfilt[0] = mfilt[1] = ~0;
2519	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2520	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2521		__func__, mfilt[0], mfilt[1]);
2522}
2523
2524void
2525ath_mode_init(struct ath_softc *sc)
2526{
2527	struct ifnet *ifp = sc->sc_ifp;
2528	struct ath_hal *ah = sc->sc_ah;
2529	u_int32_t rfilt;
2530
2531	/* configure rx filter */
2532	rfilt = ath_calcrxfilter(sc);
2533	ath_hal_setrxfilter(ah, rfilt);
2534
2535	/* configure operational mode */
2536	ath_hal_setopmode(ah);
2537
2538	/* handle any link-level address change */
2539	ath_hal_setmac(ah, IF_LLADDR(ifp));
2540
2541	/* calculate and install multicast filter */
2542	ath_update_mcast(ifp);
2543}
2544
2545/*
2546 * Set the slot time based on the current setting.
2547 */
2548void
2549ath_setslottime(struct ath_softc *sc)
2550{
2551	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2552	struct ath_hal *ah = sc->sc_ah;
2553	u_int usec;
2554
2555	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2556		usec = 13;
2557	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2558		usec = 21;
2559	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2560		/* honor short/long slot time only in 11g */
2561		/* XXX shouldn't honor on pure g or turbo g channel */
2562		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2563			usec = HAL_SLOT_TIME_9;
2564		else
2565			usec = HAL_SLOT_TIME_20;
2566	} else
2567		usec = HAL_SLOT_TIME_9;
2568
2569	DPRINTF(sc, ATH_DEBUG_RESET,
2570	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2571	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2572	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2573
2574	ath_hal_setslottime(ah, usec);
2575	sc->sc_updateslot = OK;
2576}
2577
2578/*
2579 * Callback from the 802.11 layer to update the
2580 * slot time based on the current setting.
2581 */
2582static void
2583ath_updateslot(struct ifnet *ifp)
2584{
2585	struct ath_softc *sc = ifp->if_softc;
2586	struct ieee80211com *ic = ifp->if_l2com;
2587
2588	/*
2589	 * When not coordinating the BSS, change the hardware
2590	 * immediately.  For other operation we defer the change
2591	 * until beacon updates have propagated to the stations.
2592	 */
2593	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2594	    ic->ic_opmode == IEEE80211_M_MBSS)
2595		sc->sc_updateslot = UPDATE;
2596	else
2597		ath_setslottime(sc);
2598}
2599
2600/*
2601 * Append the contents of src to dst; both queues
2602 * are assumed to be locked.
2603 */
2604void
2605ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2606{
2607
2608	ATH_TXQ_LOCK_ASSERT(dst);
2609	ATH_TXQ_LOCK_ASSERT(src);
2610
2611	TAILQ_CONCAT(&dst->axq_q, &src->axq_q, bf_list);
2612	dst->axq_link = src->axq_link;
2613	src->axq_link = NULL;
2614	dst->axq_depth += src->axq_depth;
2615	dst->axq_aggr_depth += src->axq_aggr_depth;
2616	src->axq_depth = 0;
2617	src->axq_aggr_depth = 0;
2618}
2619
2620/*
2621 * Reset the hardware, with no loss.
2622 *
2623 * This can't be used for a general case reset.
2624 */
2625static void
2626ath_reset_proc(void *arg, int pending)
2627{
2628	struct ath_softc *sc = arg;
2629	struct ifnet *ifp = sc->sc_ifp;
2630
2631#if 0
2632	if_printf(ifp, "%s: resetting\n", __func__);
2633#endif
2634	ath_reset(ifp, ATH_RESET_NOLOSS);
2635}
2636
2637/*
2638 * Reset the hardware after detecting beacons have stopped.
2639 */
2640static void
2641ath_bstuck_proc(void *arg, int pending)
2642{
2643	struct ath_softc *sc = arg;
2644	struct ifnet *ifp = sc->sc_ifp;
2645	uint32_t hangs = 0;
2646
2647	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0)
2648		if_printf(ifp, "bb hang detected (0x%x)\n", hangs);
2649
2650	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2651		sc->sc_bmisscount);
2652	sc->sc_stats.ast_bstuck++;
2653	/*
2654	 * This assumes that there's no simultaneous channel mode change
2655	 * occuring.
2656	 */
2657	ath_reset(ifp, ATH_RESET_NOLOSS);
2658}
2659
2660static void
2661ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2662{
2663	bus_addr_t *paddr = (bus_addr_t*) arg;
2664	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2665	*paddr = segs->ds_addr;
2666}
2667
2668static int
2669ath_descdma_setup(struct ath_softc *sc,
2670	struct ath_descdma *dd, ath_bufhead *head,
2671	const char *name, int nbuf, int ndesc)
2672{
2673#define	DS2PHYS(_dd, _ds) \
2674	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2675#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
2676	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
2677	struct ifnet *ifp = sc->sc_ifp;
2678	uint8_t *ds;
2679	struct ath_buf *bf;
2680	int i, bsize, error;
2681	int desc_len;
2682
2683	desc_len = sizeof(struct ath_desc);
2684
2685	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2686	    __func__, name, nbuf, ndesc);
2687
2688	dd->dd_name = name;
2689	dd->dd_desc_len = desc_len * nbuf * ndesc;
2690
2691	/*
2692	 * Merlin work-around:
2693	 * Descriptors that cross the 4KB boundary can't be used.
2694	 * Assume one skipped descriptor per 4KB page.
2695	 */
2696	if (! ath_hal_split4ktrans(sc->sc_ah)) {
2697		int numdescpage = 4096 / (desc_len * ndesc);
2698		dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096;
2699	}
2700
2701	/*
2702	 * Setup DMA descriptor area.
2703	 */
2704	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2705		       PAGE_SIZE, 0,		/* alignment, bounds */
2706		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2707		       BUS_SPACE_MAXADDR,	/* highaddr */
2708		       NULL, NULL,		/* filter, filterarg */
2709		       dd->dd_desc_len,		/* maxsize */
2710		       1,			/* nsegments */
2711		       dd->dd_desc_len,		/* maxsegsize */
2712		       BUS_DMA_ALLOCNOW,	/* flags */
2713		       NULL,			/* lockfunc */
2714		       NULL,			/* lockarg */
2715		       &dd->dd_dmat);
2716	if (error != 0) {
2717		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2718		return error;
2719	}
2720
2721	/* allocate descriptors */
2722	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2723	if (error != 0) {
2724		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2725			"error %u\n", dd->dd_name, error);
2726		goto fail0;
2727	}
2728
2729	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2730				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2731				 &dd->dd_dmamap);
2732	if (error != 0) {
2733		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2734			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2735		goto fail1;
2736	}
2737
2738	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2739				dd->dd_desc, dd->dd_desc_len,
2740				ath_load_cb, &dd->dd_desc_paddr,
2741				BUS_DMA_NOWAIT);
2742	if (error != 0) {
2743		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2744			dd->dd_name, error);
2745		goto fail2;
2746	}
2747
2748	ds = (uint8_t *) dd->dd_desc;
2749	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2750	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2751	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2752
2753	/* allocate rx buffers */
2754	bsize = sizeof(struct ath_buf) * nbuf;
2755	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2756	if (bf == NULL) {
2757		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2758			dd->dd_name, bsize);
2759		goto fail3;
2760	}
2761	dd->dd_bufptr = bf;
2762
2763	TAILQ_INIT(head);
2764	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) {
2765		bf->bf_desc = (struct ath_desc *) ds;
2766		bf->bf_daddr = DS2PHYS(dd, ds);
2767		if (! ath_hal_split4ktrans(sc->sc_ah)) {
2768			/*
2769			 * Merlin WAR: Skip descriptor addresses which
2770			 * cause 4KB boundary crossing along any point
2771			 * in the descriptor.
2772			 */
2773			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
2774			     desc_len * ndesc)) {
2775				/* Start at the next page */
2776				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
2777				bf->bf_desc = (struct ath_desc *) ds;
2778				bf->bf_daddr = DS2PHYS(dd, ds);
2779			}
2780		}
2781		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2782				&bf->bf_dmamap);
2783		if (error != 0) {
2784			if_printf(ifp, "unable to create dmamap for %s "
2785				"buffer %u, error %u\n", dd->dd_name, i, error);
2786			ath_descdma_cleanup(sc, dd, head);
2787			return error;
2788		}
2789		bf->bf_lastds = bf->bf_desc;	/* Just an initial value */
2790		TAILQ_INSERT_TAIL(head, bf, bf_list);
2791	}
2792	return 0;
2793fail3:
2794	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2795fail2:
2796	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2797fail1:
2798	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2799fail0:
2800	bus_dma_tag_destroy(dd->dd_dmat);
2801	memset(dd, 0, sizeof(*dd));
2802	return error;
2803#undef DS2PHYS
2804#undef ATH_DESC_4KB_BOUND_CHECK
2805}
2806
2807static void
2808ath_descdma_cleanup(struct ath_softc *sc,
2809	struct ath_descdma *dd, ath_bufhead *head)
2810{
2811	struct ath_buf *bf;
2812	struct ieee80211_node *ni;
2813
2814	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2815	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2816	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2817	bus_dma_tag_destroy(dd->dd_dmat);
2818
2819	TAILQ_FOREACH(bf, head, bf_list) {
2820		if (bf->bf_m) {
2821			m_freem(bf->bf_m);
2822			bf->bf_m = NULL;
2823		}
2824		if (bf->bf_dmamap != NULL) {
2825			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2826			bf->bf_dmamap = NULL;
2827		}
2828		ni = bf->bf_node;
2829		bf->bf_node = NULL;
2830		if (ni != NULL) {
2831			/*
2832			 * Reclaim node reference.
2833			 */
2834			ieee80211_free_node(ni);
2835		}
2836	}
2837
2838	TAILQ_INIT(head);
2839	free(dd->dd_bufptr, M_ATHDEV);
2840	memset(dd, 0, sizeof(*dd));
2841}
2842
2843static int
2844ath_desc_alloc(struct ath_softc *sc)
2845{
2846	int error;
2847
2848	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2849			"rx", ath_rxbuf, 1);
2850	if (error != 0)
2851		return error;
2852
2853	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2854			"tx", ath_txbuf, ATH_TXDESC);
2855	if (error != 0) {
2856		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2857		return error;
2858	}
2859
2860	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2861			"beacon", ATH_BCBUF, 1);
2862	if (error != 0) {
2863		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2864		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2865		return error;
2866	}
2867	return 0;
2868}
2869
2870static void
2871ath_desc_free(struct ath_softc *sc)
2872{
2873
2874	if (sc->sc_bdma.dd_desc_len != 0)
2875		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2876	if (sc->sc_txdma.dd_desc_len != 0)
2877		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2878	if (sc->sc_rxdma.dd_desc_len != 0)
2879		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2880}
2881
2882static struct ieee80211_node *
2883ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
2884{
2885	struct ieee80211com *ic = vap->iv_ic;
2886	struct ath_softc *sc = ic->ic_ifp->if_softc;
2887	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2888	struct ath_node *an;
2889
2890	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2891	if (an == NULL) {
2892		/* XXX stat+msg */
2893		return NULL;
2894	}
2895	ath_rate_node_init(sc, an);
2896
2897	/* Setup the mutex - there's no associd yet so set the name to NULL */
2898	snprintf(an->an_name, sizeof(an->an_name), "%s: node %p",
2899	    device_get_nameunit(sc->sc_dev), an);
2900	mtx_init(&an->an_mtx, an->an_name, NULL, MTX_DEF);
2901
2902	/* XXX setup ath_tid */
2903	ath_tx_tid_init(sc, an);
2904
2905	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2906	return &an->an_node;
2907}
2908
2909static void
2910ath_node_cleanup(struct ieee80211_node *ni)
2911{
2912	struct ieee80211com *ic = ni->ni_ic;
2913	struct ath_softc *sc = ic->ic_ifp->if_softc;
2914
2915	/* Cleanup ath_tid, free unused bufs, unlink bufs in TXQ */
2916	ath_tx_node_flush(sc, ATH_NODE(ni));
2917	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2918	sc->sc_node_cleanup(ni);
2919}
2920
2921static void
2922ath_node_free(struct ieee80211_node *ni)
2923{
2924	struct ieee80211com *ic = ni->ni_ic;
2925	struct ath_softc *sc = ic->ic_ifp->if_softc;
2926
2927	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2928	mtx_destroy(&ATH_NODE(ni)->an_mtx);
2929	sc->sc_node_free(ni);
2930}
2931
2932static void
2933ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
2934{
2935	struct ieee80211com *ic = ni->ni_ic;
2936	struct ath_softc *sc = ic->ic_ifp->if_softc;
2937	struct ath_hal *ah = sc->sc_ah;
2938
2939	*rssi = ic->ic_node_getrssi(ni);
2940	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
2941		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
2942	else
2943		*noise = -95;		/* nominally correct */
2944}
2945
2946/*
2947 * Set the default antenna.
2948 */
2949void
2950ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2951{
2952	struct ath_hal *ah = sc->sc_ah;
2953
2954	/* XXX block beacon interrupts */
2955	ath_hal_setdefantenna(ah, antenna);
2956	if (sc->sc_defant != antenna)
2957		sc->sc_stats.ast_ant_defswitch++;
2958	sc->sc_defant = antenna;
2959	sc->sc_rxotherant = 0;
2960}
2961
2962static void
2963ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
2964{
2965	txq->axq_qnum = qnum;
2966	txq->axq_ac = 0;
2967	txq->axq_depth = 0;
2968	txq->axq_aggr_depth = 0;
2969	txq->axq_intrcnt = 0;
2970	txq->axq_link = NULL;
2971	txq->axq_softc = sc;
2972	TAILQ_INIT(&txq->axq_q);
2973	TAILQ_INIT(&txq->axq_tidq);
2974	ATH_TXQ_LOCK_INIT(sc, txq);
2975}
2976
2977/*
2978 * Setup a h/w transmit queue.
2979 */
2980static struct ath_txq *
2981ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2982{
2983#define	N(a)	(sizeof(a)/sizeof(a[0]))
2984	struct ath_hal *ah = sc->sc_ah;
2985	HAL_TXQ_INFO qi;
2986	int qnum;
2987
2988	memset(&qi, 0, sizeof(qi));
2989	qi.tqi_subtype = subtype;
2990	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2991	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2992	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2993	/*
2994	 * Enable interrupts only for EOL and DESC conditions.
2995	 * We mark tx descriptors to receive a DESC interrupt
2996	 * when a tx queue gets deep; otherwise waiting for the
2997	 * EOL to reap descriptors.  Note that this is done to
2998	 * reduce interrupt load and this only defers reaping
2999	 * descriptors, never transmitting frames.  Aside from
3000	 * reducing interrupts this also permits more concurrency.
3001	 * The only potential downside is if the tx queue backs
3002	 * up in which case the top half of the kernel may backup
3003	 * due to a lack of tx descriptors.
3004	 */
3005	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3006	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3007	if (qnum == -1) {
3008		/*
3009		 * NB: don't print a message, this happens
3010		 * normally on parts with too few tx queues
3011		 */
3012		return NULL;
3013	}
3014	if (qnum >= N(sc->sc_txq)) {
3015		device_printf(sc->sc_dev,
3016			"hal qnum %u out of range, max %zu!\n",
3017			qnum, N(sc->sc_txq));
3018		ath_hal_releasetxqueue(ah, qnum);
3019		return NULL;
3020	}
3021	if (!ATH_TXQ_SETUP(sc, qnum)) {
3022		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3023		sc->sc_txqsetup |= 1<<qnum;
3024	}
3025	return &sc->sc_txq[qnum];
3026#undef N
3027}
3028
3029/*
3030 * Setup a hardware data transmit queue for the specified
3031 * access control.  The hal may not support all requested
3032 * queues in which case it will return a reference to a
3033 * previously setup queue.  We record the mapping from ac's
3034 * to h/w queues for use by ath_tx_start and also track
3035 * the set of h/w queues being used to optimize work in the
3036 * transmit interrupt handler and related routines.
3037 */
3038static int
3039ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3040{
3041#define	N(a)	(sizeof(a)/sizeof(a[0]))
3042	struct ath_txq *txq;
3043
3044	if (ac >= N(sc->sc_ac2q)) {
3045		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3046			ac, N(sc->sc_ac2q));
3047		return 0;
3048	}
3049	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3050	if (txq != NULL) {
3051		txq->axq_ac = ac;
3052		sc->sc_ac2q[ac] = txq;
3053		return 1;
3054	} else
3055		return 0;
3056#undef N
3057}
3058
3059/*
3060 * Update WME parameters for a transmit queue.
3061 */
3062static int
3063ath_txq_update(struct ath_softc *sc, int ac)
3064{
3065#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3066#define	ATH_TXOP_TO_US(v)		(v<<5)
3067	struct ifnet *ifp = sc->sc_ifp;
3068	struct ieee80211com *ic = ifp->if_l2com;
3069	struct ath_txq *txq = sc->sc_ac2q[ac];
3070	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3071	struct ath_hal *ah = sc->sc_ah;
3072	HAL_TXQ_INFO qi;
3073
3074	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3075#ifdef IEEE80211_SUPPORT_TDMA
3076	if (sc->sc_tdma) {
3077		/*
3078		 * AIFS is zero so there's no pre-transmit wait.  The
3079		 * burst time defines the slot duration and is configured
3080		 * through net80211.  The QCU is setup to not do post-xmit
3081		 * back off, lockout all lower-priority QCU's, and fire
3082		 * off the DMA beacon alert timer which is setup based
3083		 * on the slot configuration.
3084		 */
3085		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3086			      | HAL_TXQ_TXERRINT_ENABLE
3087			      | HAL_TXQ_TXURNINT_ENABLE
3088			      | HAL_TXQ_TXEOLINT_ENABLE
3089			      | HAL_TXQ_DBA_GATED
3090			      | HAL_TXQ_BACKOFF_DISABLE
3091			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3092			      ;
3093		qi.tqi_aifs = 0;
3094		/* XXX +dbaprep? */
3095		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3096		qi.tqi_burstTime = qi.tqi_readyTime;
3097	} else {
3098#endif
3099		/*
3100		 * XXX shouldn't this just use the default flags
3101		 * used in the previous queue setup?
3102		 */
3103		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3104			      | HAL_TXQ_TXERRINT_ENABLE
3105			      | HAL_TXQ_TXDESCINT_ENABLE
3106			      | HAL_TXQ_TXURNINT_ENABLE
3107			      | HAL_TXQ_TXEOLINT_ENABLE
3108			      ;
3109		qi.tqi_aifs = wmep->wmep_aifsn;
3110		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3111		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3112		qi.tqi_readyTime = 0;
3113		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3114#ifdef IEEE80211_SUPPORT_TDMA
3115	}
3116#endif
3117
3118	DPRINTF(sc, ATH_DEBUG_RESET,
3119	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3120	    __func__, txq->axq_qnum, qi.tqi_qflags,
3121	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3122
3123	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3124		if_printf(ifp, "unable to update hardware queue "
3125			"parameters for %s traffic!\n",
3126			ieee80211_wme_acnames[ac]);
3127		return 0;
3128	} else {
3129		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3130		return 1;
3131	}
3132#undef ATH_TXOP_TO_US
3133#undef ATH_EXPONENT_TO_VALUE
3134}
3135
3136/*
3137 * Callback from the 802.11 layer to update WME parameters.
3138 */
3139int
3140ath_wme_update(struct ieee80211com *ic)
3141{
3142	struct ath_softc *sc = ic->ic_ifp->if_softc;
3143
3144	return !ath_txq_update(sc, WME_AC_BE) ||
3145	    !ath_txq_update(sc, WME_AC_BK) ||
3146	    !ath_txq_update(sc, WME_AC_VI) ||
3147	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3148}
3149
3150/*
3151 * Reclaim resources for a setup queue.
3152 */
3153static void
3154ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3155{
3156
3157	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3158	ATH_TXQ_LOCK_DESTROY(txq);
3159	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3160}
3161
3162/*
3163 * Reclaim all tx queue resources.
3164 */
3165static void
3166ath_tx_cleanup(struct ath_softc *sc)
3167{
3168	int i;
3169
3170	ATH_TXBUF_LOCK_DESTROY(sc);
3171	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3172		if (ATH_TXQ_SETUP(sc, i))
3173			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3174}
3175
3176/*
3177 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3178 * using the current rates in sc_rixmap.
3179 */
3180int
3181ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3182{
3183	int rix = sc->sc_rixmap[rate];
3184	/* NB: return lowest rix for invalid rate */
3185	return (rix == 0xff ? 0 : rix);
3186}
3187
3188static void
3189ath_tx_update_stats(struct ath_softc *sc, struct ath_tx_status *ts,
3190    struct ath_buf *bf)
3191{
3192	struct ieee80211_node *ni = bf->bf_node;
3193	struct ifnet *ifp = sc->sc_ifp;
3194	struct ieee80211com *ic = ifp->if_l2com;
3195	int sr, lr, pri;
3196
3197	if (ts->ts_status == 0) {
3198		u_int8_t txant = ts->ts_antenna;
3199		sc->sc_stats.ast_ant_tx[txant]++;
3200		sc->sc_ant_tx[txant]++;
3201		if (ts->ts_finaltsi != 0)
3202			sc->sc_stats.ast_tx_altrate++;
3203		pri = M_WME_GETAC(bf->bf_m);
3204		if (pri >= WME_AC_VO)
3205			ic->ic_wme.wme_hipri_traffic++;
3206		if ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)
3207			ni->ni_inact = ni->ni_inact_reload;
3208	} else {
3209		if (ts->ts_status & HAL_TXERR_XRETRY)
3210			sc->sc_stats.ast_tx_xretries++;
3211		if (ts->ts_status & HAL_TXERR_FIFO)
3212			sc->sc_stats.ast_tx_fifoerr++;
3213		if (ts->ts_status & HAL_TXERR_FILT)
3214			sc->sc_stats.ast_tx_filtered++;
3215		if (ts->ts_status & HAL_TXERR_XTXOP)
3216			sc->sc_stats.ast_tx_xtxop++;
3217		if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
3218			sc->sc_stats.ast_tx_timerexpired++;
3219
3220		if (ts->ts_status & HAL_TX_DATA_UNDERRUN)
3221			sc->sc_stats.ast_tx_data_underrun++;
3222		if (ts->ts_status & HAL_TX_DELIM_UNDERRUN)
3223			sc->sc_stats.ast_tx_delim_underrun++;
3224
3225		if (bf->bf_m->m_flags & M_FF)
3226			sc->sc_stats.ast_ff_txerr++;
3227	}
3228	/* XXX when is this valid? */
3229	if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
3230		sc->sc_stats.ast_tx_desccfgerr++;
3231
3232	sr = ts->ts_shortretry;
3233	lr = ts->ts_longretry;
3234	sc->sc_stats.ast_tx_shortretry += sr;
3235	sc->sc_stats.ast_tx_longretry += lr;
3236
3237}
3238
3239/*
3240 * The default completion. If fail is 1, this means
3241 * "please don't retry the frame, and just return -1 status
3242 * to the net80211 stack.
3243 */
3244void
3245ath_tx_default_comp(struct ath_softc *sc, struct ath_buf *bf, int fail)
3246{
3247	struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
3248	int st;
3249
3250	if (fail == 1)
3251		st = -1;
3252	else
3253		st = ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) ?
3254		    ts->ts_status : HAL_TXERR_XRETRY;
3255
3256	if (bf->bf_state.bfs_dobaw)
3257		device_printf(sc->sc_dev,
3258		    "%s: bf %p: seqno %d: dobaw should've been cleared!\n",
3259		    __func__,
3260		    bf,
3261		    SEQNO(bf->bf_state.bfs_seqno));
3262	if (bf->bf_next != NULL)
3263		device_printf(sc->sc_dev,
3264		    "%s: bf %p: seqno %d: bf_next not NULL!\n",
3265		    __func__,
3266		    bf,
3267		    SEQNO(bf->bf_state.bfs_seqno));
3268
3269	/*
3270	 * Do any tx complete callback.  Note this must
3271	 * be done before releasing the node reference.
3272	 * This will free the mbuf, release the net80211
3273	 * node and recycle the ath_buf.
3274	 */
3275	ath_tx_freebuf(sc, bf, st);
3276}
3277
3278/*
3279 * Update rate control with the given completion status.
3280 */
3281void
3282ath_tx_update_ratectrl(struct ath_softc *sc, struct ieee80211_node *ni,
3283    struct ath_rc_series *rc, struct ath_tx_status *ts, int frmlen,
3284    int nframes, int nbad)
3285{
3286	struct ath_node *an;
3287
3288	/* Only for unicast frames */
3289	if (ni == NULL)
3290		return;
3291
3292	an = ATH_NODE(ni);
3293
3294	if ((ts->ts_status & HAL_TXERR_FILT) == 0) {
3295		ATH_NODE_LOCK(an);
3296		ath_rate_tx_complete(sc, an, rc, ts, frmlen, nframes, nbad);
3297		ATH_NODE_UNLOCK(an);
3298	}
3299}
3300
3301/*
3302 * Update the busy status of the last frame on the free list.
3303 * When doing TDMA, the busy flag tracks whether the hardware
3304 * currently points to this buffer or not, and thus gated DMA
3305 * may restart by re-reading the last descriptor in this
3306 * buffer.
3307 *
3308 * This should be called in the completion function once one
3309 * of the buffers has been used.
3310 */
3311static void
3312ath_tx_update_busy(struct ath_softc *sc)
3313{
3314	struct ath_buf *last;
3315
3316	/*
3317	 * Since the last frame may still be marked
3318	 * as ATH_BUF_BUSY, unmark it here before
3319	 * finishing the frame processing.
3320	 * Since we've completed a frame (aggregate
3321	 * or otherwise), the hardware has moved on
3322	 * and is no longer referencing the previous
3323	 * descriptor.
3324	 */
3325	ATH_TXBUF_LOCK_ASSERT(sc);
3326	last = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
3327	if (last != NULL)
3328		last->bf_flags &= ~ATH_BUF_BUSY;
3329}
3330
3331
3332/*
3333 * Process completed xmit descriptors from the specified queue.
3334 * Kick the packet scheduler if needed. This can occur from this
3335 * particular task.
3336 */
3337static int
3338ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq, int dosched)
3339{
3340	struct ath_hal *ah = sc->sc_ah;
3341	struct ath_buf *bf;
3342	struct ath_desc *ds;
3343	struct ath_tx_status *ts;
3344	struct ieee80211_node *ni;
3345	struct ath_node *an;
3346#ifdef	IEEE80211_SUPPORT_SUPERG
3347	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3348#endif	/* IEEE80211_SUPPORT_SUPERG */
3349	int nacked;
3350	HAL_STATUS status;
3351
3352	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3353		__func__, txq->axq_qnum,
3354		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3355		txq->axq_link);
3356	nacked = 0;
3357	for (;;) {
3358		ATH_TXQ_LOCK(txq);
3359		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3360		bf = TAILQ_FIRST(&txq->axq_q);
3361		if (bf == NULL) {
3362			ATH_TXQ_UNLOCK(txq);
3363			break;
3364		}
3365		ds = bf->bf_lastds;	/* XXX must be setup correctly! */
3366		ts = &bf->bf_status.ds_txstat;
3367		status = ath_hal_txprocdesc(ah, ds, ts);
3368#ifdef ATH_DEBUG
3369		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3370			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3371			    status == HAL_OK);
3372		else if ((sc->sc_debug & ATH_DEBUG_RESET) && (dosched == 0)) {
3373			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3374			    status == HAL_OK);
3375		}
3376#endif
3377		if (status == HAL_EINPROGRESS) {
3378			ATH_TXQ_UNLOCK(txq);
3379			break;
3380		}
3381		ATH_TXQ_REMOVE(txq, bf, bf_list);
3382#ifdef IEEE80211_SUPPORT_TDMA
3383		if (txq->axq_depth > 0) {
3384			/*
3385			 * More frames follow.  Mark the buffer busy
3386			 * so it's not re-used while the hardware may
3387			 * still re-read the link field in the descriptor.
3388			 *
3389			 * Use the last buffer in an aggregate as that
3390			 * is where the hardware may be - intermediate
3391			 * descriptors won't be "busy".
3392			 */
3393			bf->bf_last->bf_flags |= ATH_BUF_BUSY;
3394		} else
3395#else
3396		if (txq->axq_depth == 0)
3397#endif
3398			txq->axq_link = NULL;
3399		if (bf->bf_state.bfs_aggr)
3400			txq->axq_aggr_depth--;
3401
3402		ni = bf->bf_node;
3403		/*
3404		 * If unicast frame was ack'd update RSSI,
3405		 * including the last rx time used to
3406		 * workaround phantom bmiss interrupts.
3407		 */
3408		if (ni != NULL && ts->ts_status == 0 &&
3409		    ((bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0)) {
3410			nacked++;
3411			sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
3412			ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3413				ts->ts_rssi);
3414		}
3415		ATH_TXQ_UNLOCK(txq);
3416
3417		/* If unicast frame, update general statistics */
3418		if (ni != NULL) {
3419			an = ATH_NODE(ni);
3420			/* update statistics */
3421			ath_tx_update_stats(sc, ts, bf);
3422		}
3423
3424		/*
3425		 * Call the completion handler.
3426		 * The completion handler is responsible for
3427		 * calling the rate control code.
3428		 *
3429		 * Frames with no completion handler get the
3430		 * rate control code called here.
3431		 */
3432		if (bf->bf_comp == NULL) {
3433			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
3434			    (bf->bf_state.bfs_txflags & HAL_TXDESC_NOACK) == 0) {
3435				/*
3436				 * XXX assume this isn't an aggregate
3437				 * frame.
3438				 */
3439				ath_tx_update_ratectrl(sc, ni,
3440				     bf->bf_state.bfs_rc, ts,
3441				    bf->bf_state.bfs_pktlen, 1,
3442				    (ts->ts_status == 0 ? 0 : 1));
3443			}
3444			ath_tx_default_comp(sc, bf, 0);
3445		} else
3446			bf->bf_comp(sc, bf, 0);
3447	}
3448#ifdef IEEE80211_SUPPORT_SUPERG
3449	/*
3450	 * Flush fast-frame staging queue when traffic slows.
3451	 */
3452	if (txq->axq_depth <= 1)
3453		ieee80211_ff_flush(ic, txq->axq_ac);
3454#endif
3455
3456	/* Kick the TXQ scheduler */
3457	if (dosched) {
3458		ATH_TXQ_LOCK(txq);
3459		ath_txq_sched(sc, txq);
3460		ATH_TXQ_UNLOCK(txq);
3461	}
3462
3463	return nacked;
3464}
3465
3466#define	TXQACTIVE(t, q)		( (t) & (1 << (q)))
3467
3468/*
3469 * Deferred processing of transmit interrupt; special-cased
3470 * for a single hardware transmit queue (e.g. 5210 and 5211).
3471 */
3472static void
3473ath_tx_proc_q0(void *arg, int npending)
3474{
3475	struct ath_softc *sc = arg;
3476	struct ifnet *ifp = sc->sc_ifp;
3477	uint32_t txqs;
3478
3479	ATH_PCU_LOCK(sc);
3480	sc->sc_txproc_cnt++;
3481	txqs = sc->sc_txq_active;
3482	sc->sc_txq_active &= ~txqs;
3483	ATH_PCU_UNLOCK(sc);
3484
3485	if (TXQACTIVE(txqs, 0) && ath_tx_processq(sc, &sc->sc_txq[0], 1))
3486		/* XXX why is lastrx updated in tx code? */
3487		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3488	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3489		ath_tx_processq(sc, sc->sc_cabq, 1);
3490	IF_LOCK(&ifp->if_snd);
3491	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3492	IF_UNLOCK(&ifp->if_snd);
3493	sc->sc_wd_timer = 0;
3494
3495	if (sc->sc_softled)
3496		ath_led_event(sc, sc->sc_txrix);
3497
3498	ATH_PCU_LOCK(sc);
3499	sc->sc_txproc_cnt--;
3500	ATH_PCU_UNLOCK(sc);
3501
3502	ath_tx_kick(sc);
3503}
3504
3505/*
3506 * Deferred processing of transmit interrupt; special-cased
3507 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3508 */
3509static void
3510ath_tx_proc_q0123(void *arg, int npending)
3511{
3512	struct ath_softc *sc = arg;
3513	struct ifnet *ifp = sc->sc_ifp;
3514	int nacked;
3515	uint32_t txqs;
3516
3517	ATH_PCU_LOCK(sc);
3518	sc->sc_txproc_cnt++;
3519	txqs = sc->sc_txq_active;
3520	sc->sc_txq_active &= ~txqs;
3521	ATH_PCU_UNLOCK(sc);
3522
3523	/*
3524	 * Process each active queue.
3525	 */
3526	nacked = 0;
3527	if (TXQACTIVE(txqs, 0))
3528		nacked += ath_tx_processq(sc, &sc->sc_txq[0], 1);
3529	if (TXQACTIVE(txqs, 1))
3530		nacked += ath_tx_processq(sc, &sc->sc_txq[1], 1);
3531	if (TXQACTIVE(txqs, 2))
3532		nacked += ath_tx_processq(sc, &sc->sc_txq[2], 1);
3533	if (TXQACTIVE(txqs, 3))
3534		nacked += ath_tx_processq(sc, &sc->sc_txq[3], 1);
3535	if (TXQACTIVE(txqs, sc->sc_cabq->axq_qnum))
3536		ath_tx_processq(sc, sc->sc_cabq, 1);
3537	if (nacked)
3538		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3539
3540	IF_LOCK(&ifp->if_snd);
3541	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3542	IF_UNLOCK(&ifp->if_snd);
3543	sc->sc_wd_timer = 0;
3544
3545	if (sc->sc_softled)
3546		ath_led_event(sc, sc->sc_txrix);
3547
3548	ATH_PCU_LOCK(sc);
3549	sc->sc_txproc_cnt--;
3550	ATH_PCU_UNLOCK(sc);
3551
3552	ath_tx_kick(sc);
3553}
3554
3555/*
3556 * Deferred processing of transmit interrupt.
3557 */
3558static void
3559ath_tx_proc(void *arg, int npending)
3560{
3561	struct ath_softc *sc = arg;
3562	struct ifnet *ifp = sc->sc_ifp;
3563	int i, nacked;
3564	uint32_t txqs;
3565
3566	ATH_PCU_LOCK(sc);
3567	sc->sc_txproc_cnt++;
3568	txqs = sc->sc_txq_active;
3569	sc->sc_txq_active &= ~txqs;
3570	ATH_PCU_UNLOCK(sc);
3571
3572	/*
3573	 * Process each active queue.
3574	 */
3575	nacked = 0;
3576	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3577		if (ATH_TXQ_SETUP(sc, i) && TXQACTIVE(txqs, i))
3578			nacked += ath_tx_processq(sc, &sc->sc_txq[i], 1);
3579	if (nacked)
3580		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3581
3582	/* XXX check this inside of IF_LOCK? */
3583	IF_LOCK(&ifp->if_snd);
3584	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3585	IF_UNLOCK(&ifp->if_snd);
3586	sc->sc_wd_timer = 0;
3587
3588	if (sc->sc_softled)
3589		ath_led_event(sc, sc->sc_txrix);
3590
3591	ATH_PCU_LOCK(sc);
3592	sc->sc_txproc_cnt--;
3593	ATH_PCU_UNLOCK(sc);
3594
3595	ath_tx_kick(sc);
3596}
3597#undef	TXQACTIVE
3598
3599/*
3600 * Deferred processing of TXQ rescheduling.
3601 */
3602static void
3603ath_txq_sched_tasklet(void *arg, int npending)
3604{
3605	struct ath_softc *sc = arg;
3606	int i;
3607
3608	/* XXX is skipping ok? */
3609	ATH_PCU_LOCK(sc);
3610#if 0
3611	if (sc->sc_inreset_cnt > 0) {
3612		device_printf(sc->sc_dev,
3613		    "%s: sc_inreset_cnt > 0; skipping\n", __func__);
3614		ATH_PCU_UNLOCK(sc);
3615		return;
3616	}
3617#endif
3618	sc->sc_txproc_cnt++;
3619	ATH_PCU_UNLOCK(sc);
3620
3621	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
3622		if (ATH_TXQ_SETUP(sc, i)) {
3623			ATH_TXQ_LOCK(&sc->sc_txq[i]);
3624			ath_txq_sched(sc, &sc->sc_txq[i]);
3625			ATH_TXQ_UNLOCK(&sc->sc_txq[i]);
3626		}
3627	}
3628
3629	ATH_PCU_LOCK(sc);
3630	sc->sc_txproc_cnt--;
3631	ATH_PCU_UNLOCK(sc);
3632}
3633
3634/*
3635 * Return a buffer to the pool and update the 'busy' flag on the
3636 * previous 'tail' entry.
3637 *
3638 * This _must_ only be called when the buffer is involved in a completed
3639 * TX. The logic is that if it was part of an active TX, the previous
3640 * buffer on the list is now not involved in a halted TX DMA queue, waiting
3641 * for restart (eg for TDMA.)
3642 *
3643 * The caller must free the mbuf and recycle the node reference.
3644 */
3645void
3646ath_freebuf(struct ath_softc *sc, struct ath_buf *bf)
3647{
3648	bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3649	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_POSTWRITE);
3650
3651	KASSERT((bf->bf_node == NULL), ("%s: bf->bf_node != NULL\n", __func__));
3652	KASSERT((bf->bf_m == NULL), ("%s: bf->bf_m != NULL\n", __func__));
3653
3654	ATH_TXBUF_LOCK(sc);
3655	ath_tx_update_busy(sc);
3656	TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3657	ATH_TXBUF_UNLOCK(sc);
3658}
3659
3660/*
3661 * This is currently used by ath_tx_draintxq() and
3662 * ath_tx_tid_free_pkts().
3663 *
3664 * It recycles a single ath_buf.
3665 */
3666void
3667ath_tx_freebuf(struct ath_softc *sc, struct ath_buf *bf, int status)
3668{
3669	struct ieee80211_node *ni = bf->bf_node;
3670	struct mbuf *m0 = bf->bf_m;
3671
3672	bf->bf_node = NULL;
3673	bf->bf_m = NULL;
3674
3675	/* Free the buffer, it's not needed any longer */
3676	ath_freebuf(sc, bf);
3677
3678	if (ni != NULL) {
3679		/*
3680		 * Do any callback and reclaim the node reference.
3681		 */
3682		if (m0->m_flags & M_TXCB)
3683			ieee80211_process_callback(ni, m0, status);
3684		ieee80211_free_node(ni);
3685	}
3686	m_freem(m0);
3687
3688	/*
3689	 * XXX the buffer used to be freed -after-, but the DMA map was
3690	 * freed where ath_freebuf() now is. I've no idea what this
3691	 * will do.
3692	 */
3693}
3694
3695void
3696ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3697{
3698#ifdef ATH_DEBUG
3699	struct ath_hal *ah = sc->sc_ah;
3700#endif
3701	struct ath_buf *bf;
3702	u_int ix;
3703
3704	/*
3705	 * NB: this assumes output has been stopped and
3706	 *     we do not need to block ath_tx_proc
3707	 */
3708	ATH_TXBUF_LOCK(sc);
3709	bf = TAILQ_LAST(&sc->sc_txbuf, ath_bufhead_s);
3710	if (bf != NULL)
3711		bf->bf_flags &= ~ATH_BUF_BUSY;
3712	ATH_TXBUF_UNLOCK(sc);
3713
3714	for (ix = 0;; ix++) {
3715		ATH_TXQ_LOCK(txq);
3716		bf = TAILQ_FIRST(&txq->axq_q);
3717		if (bf == NULL) {
3718			txq->axq_link = NULL;
3719			ATH_TXQ_UNLOCK(txq);
3720			break;
3721		}
3722		ATH_TXQ_REMOVE(txq, bf, bf_list);
3723		if (bf->bf_state.bfs_aggr)
3724			txq->axq_aggr_depth--;
3725#ifdef ATH_DEBUG
3726		if (sc->sc_debug & ATH_DEBUG_RESET) {
3727			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3728
3729			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
3730				ath_hal_txprocdesc(ah, bf->bf_lastds,
3731				    &bf->bf_status.ds_txstat) == HAL_OK);
3732			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
3733			    bf->bf_m->m_len, 0, -1);
3734		}
3735#endif /* ATH_DEBUG */
3736		/*
3737		 * Since we're now doing magic in the completion
3738		 * functions, we -must- call it for aggregation
3739		 * destinations or BAW tracking will get upset.
3740		 */
3741		/*
3742		 * Clear ATH_BUF_BUSY; the completion handler
3743		 * will free the buffer.
3744		 */
3745		ATH_TXQ_UNLOCK(txq);
3746		bf->bf_flags &= ~ATH_BUF_BUSY;
3747		if (bf->bf_comp)
3748			bf->bf_comp(sc, bf, 1);
3749		else
3750			ath_tx_default_comp(sc, bf, 1);
3751	}
3752
3753	/*
3754	 * Drain software queued frames which are on
3755	 * active TIDs.
3756	 */
3757	ath_tx_txq_drain(sc, txq);
3758}
3759
3760static void
3761ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3762{
3763	struct ath_hal *ah = sc->sc_ah;
3764
3765	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3766	    __func__, txq->axq_qnum,
3767	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3768	    txq->axq_link);
3769	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3770}
3771
3772static int
3773ath_stoptxdma(struct ath_softc *sc)
3774{
3775	struct ath_hal *ah = sc->sc_ah;
3776	int i;
3777
3778	/* XXX return value */
3779	if (sc->sc_invalid)
3780		return 0;
3781
3782	if (!sc->sc_invalid) {
3783		/* don't touch the hardware if marked invalid */
3784		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3785		    __func__, sc->sc_bhalq,
3786		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
3787		    NULL);
3788		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3789		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3790			if (ATH_TXQ_SETUP(sc, i))
3791				ath_tx_stopdma(sc, &sc->sc_txq[i]);
3792	}
3793
3794	return 1;
3795}
3796
3797/*
3798 * Drain the transmit queues and reclaim resources.
3799 */
3800static void
3801ath_draintxq(struct ath_softc *sc, ATH_RESET_TYPE reset_type)
3802{
3803#ifdef	ATH_DEBUG
3804	struct ath_hal *ah = sc->sc_ah;
3805#endif
3806	struct ifnet *ifp = sc->sc_ifp;
3807	int i;
3808
3809	(void) ath_stoptxdma(sc);
3810
3811	for (i = 0; i < HAL_NUM_TX_QUEUES; i++) {
3812		/*
3813		 * XXX TODO: should we just handle the completed TX frames
3814		 * here, whether or not the reset is a full one or not?
3815		 */
3816		if (ATH_TXQ_SETUP(sc, i)) {
3817			if (reset_type == ATH_RESET_NOLOSS)
3818				ath_tx_processq(sc, &sc->sc_txq[i], 0);
3819			else
3820				ath_tx_draintxq(sc, &sc->sc_txq[i]);
3821		}
3822	}
3823#ifdef ATH_DEBUG
3824	if (sc->sc_debug & ATH_DEBUG_RESET) {
3825		struct ath_buf *bf = TAILQ_FIRST(&sc->sc_bbuf);
3826		if (bf != NULL && bf->bf_m != NULL) {
3827			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
3828				ath_hal_txprocdesc(ah, bf->bf_lastds,
3829				    &bf->bf_status.ds_txstat) == HAL_OK);
3830			ieee80211_dump_pkt(ifp->if_l2com,
3831			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
3832			    0, -1);
3833		}
3834	}
3835#endif /* ATH_DEBUG */
3836	IF_LOCK(&ifp->if_snd);
3837	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3838	IF_UNLOCK(&ifp->if_snd);
3839	sc->sc_wd_timer = 0;
3840}
3841
3842/*
3843 * Update internal state after a channel change.
3844 */
3845static void
3846ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3847{
3848	enum ieee80211_phymode mode;
3849
3850	/*
3851	 * Change channels and update the h/w rate map
3852	 * if we're switching; e.g. 11a to 11b/g.
3853	 */
3854	mode = ieee80211_chan2mode(chan);
3855	if (mode != sc->sc_curmode)
3856		ath_setcurmode(sc, mode);
3857	sc->sc_curchan = chan;
3858}
3859
3860/*
3861 * Set/change channels.  If the channel is really being changed,
3862 * it's done by resetting the chip.  To accomplish this we must
3863 * first cleanup any pending DMA, then restart stuff after a la
3864 * ath_init.
3865 */
3866static int
3867ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3868{
3869	struct ifnet *ifp = sc->sc_ifp;
3870	struct ieee80211com *ic = ifp->if_l2com;
3871	struct ath_hal *ah = sc->sc_ah;
3872	int ret = 0;
3873
3874	/* Treat this as an interface reset */
3875	ATH_PCU_UNLOCK_ASSERT(sc);
3876	ATH_UNLOCK_ASSERT(sc);
3877
3878	/* (Try to) stop TX/RX from occuring */
3879	taskqueue_block(sc->sc_tq);
3880
3881	ATH_PCU_LOCK(sc);
3882	ath_hal_intrset(ah, 0);		/* Stop new RX/TX completion */
3883	ath_txrx_stop_locked(sc);	/* Stop pending RX/TX completion */
3884	if (ath_reset_grablock(sc, 1) == 0) {
3885		device_printf(sc->sc_dev, "%s: concurrent reset! Danger!\n",
3886		    __func__);
3887	}
3888	ATH_PCU_UNLOCK(sc);
3889
3890	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
3891	    __func__, ieee80211_chan2ieee(ic, chan),
3892	    chan->ic_freq, chan->ic_flags);
3893	if (chan != sc->sc_curchan) {
3894		HAL_STATUS status;
3895		/*
3896		 * To switch channels clear any pending DMA operations;
3897		 * wait long enough for the RX fifo to drain, reset the
3898		 * hardware at the new frequency, and then re-enable
3899		 * the relevant bits of the h/w.
3900		 */
3901#if 0
3902		ath_hal_intrset(ah, 0);		/* disable interrupts */
3903#endif
3904		ath_stoprecv(sc, 1);		/* turn off frame recv */
3905		/*
3906		 * First, handle completed TX/RX frames.
3907		 */
3908		ath_rx_proc(sc, 0);
3909		ath_draintxq(sc, ATH_RESET_NOLOSS);
3910		/*
3911		 * Next, flush the non-scheduled frames.
3912		 */
3913		ath_draintxq(sc, ATH_RESET_FULL);	/* clear pending tx frames */
3914
3915		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
3916			if_printf(ifp, "%s: unable to reset "
3917			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
3918			    __func__, ieee80211_chan2ieee(ic, chan),
3919			    chan->ic_freq, chan->ic_flags, status);
3920			ret = EIO;
3921			goto finish;
3922		}
3923		sc->sc_diversity = ath_hal_getdiversity(ah);
3924
3925		/* Let DFS at it in case it's a DFS channel */
3926		ath_dfs_radar_enable(sc, chan);
3927
3928		/*
3929		 * Re-enable rx framework.
3930		 */
3931		if (ath_startrecv(sc) != 0) {
3932			if_printf(ifp, "%s: unable to restart recv logic\n",
3933			    __func__);
3934			ret = EIO;
3935			goto finish;
3936		}
3937
3938		/*
3939		 * Change channels and update the h/w rate map
3940		 * if we're switching; e.g. 11a to 11b/g.
3941		 */
3942		ath_chan_change(sc, chan);
3943
3944		/*
3945		 * Reset clears the beacon timers; reset them
3946		 * here if needed.
3947		 */
3948		if (sc->sc_beacons) {		/* restart beacons */
3949#ifdef IEEE80211_SUPPORT_TDMA
3950			if (sc->sc_tdma)
3951				ath_tdma_config(sc, NULL);
3952			else
3953#endif
3954			ath_beacon_config(sc, NULL);
3955		}
3956
3957		/*
3958		 * Re-enable interrupts.
3959		 */
3960#if 0
3961		ath_hal_intrset(ah, sc->sc_imask);
3962#endif
3963	}
3964
3965finish:
3966	ATH_PCU_LOCK(sc);
3967	sc->sc_inreset_cnt--;
3968	/* XXX only do this if sc_inreset_cnt == 0? */
3969	ath_hal_intrset(ah, sc->sc_imask);
3970	ATH_PCU_UNLOCK(sc);
3971
3972	IF_LOCK(&ifp->if_snd);
3973	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3974	IF_UNLOCK(&ifp->if_snd);
3975	ath_txrx_start(sc);
3976	/* XXX ath_start? */
3977
3978	return ret;
3979}
3980
3981/*
3982 * Periodically recalibrate the PHY to account
3983 * for temperature/environment changes.
3984 */
3985static void
3986ath_calibrate(void *arg)
3987{
3988	struct ath_softc *sc = arg;
3989	struct ath_hal *ah = sc->sc_ah;
3990	struct ifnet *ifp = sc->sc_ifp;
3991	struct ieee80211com *ic = ifp->if_l2com;
3992	HAL_BOOL longCal, isCalDone;
3993	HAL_BOOL aniCal, shortCal = AH_FALSE;
3994	int nextcal;
3995
3996	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
3997		goto restart;
3998	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
3999	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4000	if (sc->sc_doresetcal)
4001		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4002
4003	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4004	if (aniCal) {
4005		sc->sc_stats.ast_ani_cal++;
4006		sc->sc_lastani = ticks;
4007		ath_hal_ani_poll(ah, sc->sc_curchan);
4008	}
4009
4010	if (longCal) {
4011		sc->sc_stats.ast_per_cal++;
4012		sc->sc_lastlongcal = ticks;
4013		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4014			/*
4015			 * Rfgain is out of bounds, reset the chip
4016			 * to load new gain values.
4017			 */
4018			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4019				"%s: rfgain change\n", __func__);
4020			sc->sc_stats.ast_per_rfgain++;
4021			sc->sc_resetcal = 0;
4022			sc->sc_doresetcal = AH_TRUE;
4023			taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4024			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4025			return;
4026		}
4027		/*
4028		 * If this long cal is after an idle period, then
4029		 * reset the data collection state so we start fresh.
4030		 */
4031		if (sc->sc_resetcal) {
4032			(void) ath_hal_calreset(ah, sc->sc_curchan);
4033			sc->sc_lastcalreset = ticks;
4034			sc->sc_lastshortcal = ticks;
4035			sc->sc_resetcal = 0;
4036			sc->sc_doresetcal = AH_TRUE;
4037		}
4038	}
4039
4040	/* Only call if we're doing a short/long cal, not for ANI calibration */
4041	if (shortCal || longCal) {
4042		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4043			if (longCal) {
4044				/*
4045				 * Calibrate noise floor data again in case of change.
4046				 */
4047				ath_hal_process_noisefloor(ah);
4048			}
4049		} else {
4050			DPRINTF(sc, ATH_DEBUG_ANY,
4051				"%s: calibration of channel %u failed\n",
4052				__func__, sc->sc_curchan->ic_freq);
4053			sc->sc_stats.ast_per_calfail++;
4054		}
4055		if (shortCal)
4056			sc->sc_lastshortcal = ticks;
4057	}
4058	if (!isCalDone) {
4059restart:
4060		/*
4061		 * Use a shorter interval to potentially collect multiple
4062		 * data samples required to complete calibration.  Once
4063		 * we're told the work is done we drop back to a longer
4064		 * interval between requests.  We're more aggressive doing
4065		 * work when operating as an AP to improve operation right
4066		 * after startup.
4067		 */
4068		sc->sc_lastshortcal = ticks;
4069		nextcal = ath_shortcalinterval*hz/1000;
4070		if (sc->sc_opmode != HAL_M_HOSTAP)
4071			nextcal *= 10;
4072		sc->sc_doresetcal = AH_TRUE;
4073	} else {
4074		/* nextcal should be the shortest time for next event */
4075		nextcal = ath_longcalinterval*hz;
4076		if (sc->sc_lastcalreset == 0)
4077			sc->sc_lastcalreset = sc->sc_lastlongcal;
4078		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4079			sc->sc_resetcal = 1;	/* setup reset next trip */
4080		sc->sc_doresetcal = AH_FALSE;
4081	}
4082	/* ANI calibration may occur more often than short/long/resetcal */
4083	if (ath_anicalinterval > 0)
4084		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4085
4086	if (nextcal != 0) {
4087		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4088		    __func__, nextcal, isCalDone ? "" : "!");
4089		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4090	} else {
4091		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4092		    __func__);
4093		/* NB: don't rearm timer */
4094	}
4095}
4096
4097static void
4098ath_scan_start(struct ieee80211com *ic)
4099{
4100	struct ifnet *ifp = ic->ic_ifp;
4101	struct ath_softc *sc = ifp->if_softc;
4102	struct ath_hal *ah = sc->sc_ah;
4103	u_int32_t rfilt;
4104
4105	/* XXX calibration timer? */
4106
4107	ATH_LOCK(sc);
4108	sc->sc_scanning = 1;
4109	sc->sc_syncbeacon = 0;
4110	rfilt = ath_calcrxfilter(sc);
4111	ATH_UNLOCK(sc);
4112
4113	ATH_PCU_LOCK(sc);
4114	ath_hal_setrxfilter(ah, rfilt);
4115	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4116	ATH_PCU_UNLOCK(sc);
4117
4118	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4119		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4120}
4121
4122static void
4123ath_scan_end(struct ieee80211com *ic)
4124{
4125	struct ifnet *ifp = ic->ic_ifp;
4126	struct ath_softc *sc = ifp->if_softc;
4127	struct ath_hal *ah = sc->sc_ah;
4128	u_int32_t rfilt;
4129
4130	ATH_LOCK(sc);
4131	sc->sc_scanning = 0;
4132	rfilt = ath_calcrxfilter(sc);
4133	ATH_UNLOCK(sc);
4134
4135	ATH_PCU_LOCK(sc);
4136	ath_hal_setrxfilter(ah, rfilt);
4137	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4138
4139	ath_hal_process_noisefloor(ah);
4140	ATH_PCU_UNLOCK(sc);
4141
4142	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4143		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4144		 sc->sc_curaid);
4145}
4146
4147#ifdef	ATH_ENABLE_11N
4148/*
4149 * For now, just do a channel change.
4150 *
4151 * Later, we'll go through the hard slog of suspending tx/rx, changing rate
4152 * control state and resetting the hardware without dropping frames out
4153 * of the queue.
4154 *
4155 * The unfortunate trouble here is making absolutely sure that the
4156 * channel width change has propagated enough so the hardware
4157 * absolutely isn't handed bogus frames for it's current operating
4158 * mode. (Eg, 40MHz frames in 20MHz mode.) Since TX and RX can and
4159 * does occur in parallel, we need to make certain we've blocked
4160 * any further ongoing TX (and RX, that can cause raw TX)
4161 * before we do this.
4162 */
4163static void
4164ath_update_chw(struct ieee80211com *ic)
4165{
4166	struct ifnet *ifp = ic->ic_ifp;
4167	struct ath_softc *sc = ifp->if_softc;
4168
4169	DPRINTF(sc, ATH_DEBUG_STATE, "%s: called\n", __func__);
4170	ath_set_channel(ic);
4171}
4172#endif	/* ATH_ENABLE_11N */
4173
4174static void
4175ath_set_channel(struct ieee80211com *ic)
4176{
4177	struct ifnet *ifp = ic->ic_ifp;
4178	struct ath_softc *sc = ifp->if_softc;
4179
4180	(void) ath_chan_set(sc, ic->ic_curchan);
4181	/*
4182	 * If we are returning to our bss channel then mark state
4183	 * so the next recv'd beacon's tsf will be used to sync the
4184	 * beacon timers.  Note that since we only hear beacons in
4185	 * sta/ibss mode this has no effect in other operating modes.
4186	 */
4187	ATH_LOCK(sc);
4188	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4189		sc->sc_syncbeacon = 1;
4190	ATH_UNLOCK(sc);
4191}
4192
4193/*
4194 * Walk the vap list and check if there any vap's in RUN state.
4195 */
4196static int
4197ath_isanyrunningvaps(struct ieee80211vap *this)
4198{
4199	struct ieee80211com *ic = this->iv_ic;
4200	struct ieee80211vap *vap;
4201
4202	IEEE80211_LOCK_ASSERT(ic);
4203
4204	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4205		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4206			return 1;
4207	}
4208	return 0;
4209}
4210
4211static int
4212ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4213{
4214	struct ieee80211com *ic = vap->iv_ic;
4215	struct ath_softc *sc = ic->ic_ifp->if_softc;
4216	struct ath_vap *avp = ATH_VAP(vap);
4217	struct ath_hal *ah = sc->sc_ah;
4218	struct ieee80211_node *ni = NULL;
4219	int i, error, stamode;
4220	u_int32_t rfilt;
4221	int csa_run_transition = 0;
4222	static const HAL_LED_STATE leds[] = {
4223	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4224	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4225	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4226	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4227	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4228	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4229	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4230	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4231	};
4232
4233	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4234		ieee80211_state_name[vap->iv_state],
4235		ieee80211_state_name[nstate]);
4236
4237	/*
4238	 * net80211 _should_ have the comlock asserted at this point.
4239	 * There are some comments around the calls to vap->iv_newstate
4240	 * which indicate that it (newstate) may end up dropping the
4241	 * lock.  This and the subsequent lock assert check after newstate
4242	 * are an attempt to catch these and figure out how/why.
4243	 */
4244	IEEE80211_LOCK_ASSERT(ic);
4245
4246	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
4247		csa_run_transition = 1;
4248
4249	callout_drain(&sc->sc_cal_ch);
4250	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4251
4252	if (nstate == IEEE80211_S_SCAN) {
4253		/*
4254		 * Scanning: turn off beacon miss and don't beacon.
4255		 * Mark beacon state so when we reach RUN state we'll
4256		 * [re]setup beacons.  Unblock the task q thread so
4257		 * deferred interrupt processing is done.
4258		 */
4259		ath_hal_intrset(ah,
4260		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4261		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4262		sc->sc_beacons = 0;
4263		taskqueue_unblock(sc->sc_tq);
4264	}
4265
4266	ni = ieee80211_ref_node(vap->iv_bss);
4267	rfilt = ath_calcrxfilter(sc);
4268	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4269		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4270		   vap->iv_opmode == IEEE80211_M_IBSS);
4271	if (stamode && nstate == IEEE80211_S_RUN) {
4272		sc->sc_curaid = ni->ni_associd;
4273		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
4274		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4275	}
4276	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4277	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
4278	ath_hal_setrxfilter(ah, rfilt);
4279
4280	/* XXX is this to restore keycache on resume? */
4281	if (vap->iv_opmode != IEEE80211_M_STA &&
4282	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
4283		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4284			if (ath_hal_keyisvalid(ah, i))
4285				ath_hal_keysetmac(ah, i, ni->ni_bssid);
4286	}
4287
4288	/*
4289	 * Invoke the parent method to do net80211 work.
4290	 */
4291	error = avp->av_newstate(vap, nstate, arg);
4292	if (error != 0)
4293		goto bad;
4294
4295	/*
4296	 * See above: ensure av_newstate() doesn't drop the lock
4297	 * on us.
4298	 */
4299	IEEE80211_LOCK_ASSERT(ic);
4300
4301	if (nstate == IEEE80211_S_RUN) {
4302		/* NB: collect bss node again, it may have changed */
4303		ieee80211_free_node(ni);
4304		ni = ieee80211_ref_node(vap->iv_bss);
4305
4306		DPRINTF(sc, ATH_DEBUG_STATE,
4307		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4308		    "capinfo 0x%04x chan %d\n", __func__,
4309		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
4310		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
4311
4312		switch (vap->iv_opmode) {
4313#ifdef IEEE80211_SUPPORT_TDMA
4314		case IEEE80211_M_AHDEMO:
4315			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
4316				break;
4317			/* fall thru... */
4318#endif
4319		case IEEE80211_M_HOSTAP:
4320		case IEEE80211_M_IBSS:
4321		case IEEE80211_M_MBSS:
4322			/*
4323			 * Allocate and setup the beacon frame.
4324			 *
4325			 * Stop any previous beacon DMA.  This may be
4326			 * necessary, for example, when an ibss merge
4327			 * causes reconfiguration; there will be a state
4328			 * transition from RUN->RUN that means we may
4329			 * be called with beacon transmission active.
4330			 */
4331			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4332
4333			error = ath_beacon_alloc(sc, ni);
4334			if (error != 0)
4335				goto bad;
4336			/*
4337			 * If joining an adhoc network defer beacon timer
4338			 * configuration to the next beacon frame so we
4339			 * have a current TSF to use.  Otherwise we're
4340			 * starting an ibss/bss so there's no need to delay;
4341			 * if this is the first vap moving to RUN state, then
4342			 * beacon state needs to be [re]configured.
4343			 */
4344			if (vap->iv_opmode == IEEE80211_M_IBSS &&
4345			    ni->ni_tstamp.tsf != 0) {
4346				sc->sc_syncbeacon = 1;
4347			} else if (!sc->sc_beacons) {
4348#ifdef IEEE80211_SUPPORT_TDMA
4349				if (vap->iv_caps & IEEE80211_C_TDMA)
4350					ath_tdma_config(sc, vap);
4351				else
4352#endif
4353					ath_beacon_config(sc, vap);
4354				sc->sc_beacons = 1;
4355			}
4356			break;
4357		case IEEE80211_M_STA:
4358			/*
4359			 * Defer beacon timer configuration to the next
4360			 * beacon frame so we have a current TSF to use
4361			 * (any TSF collected when scanning is likely old).
4362			 * However if it's due to a CSA -> RUN transition,
4363			 * force a beacon update so we pick up a lack of
4364			 * beacons from an AP in CAC and thus force a
4365			 * scan.
4366			 */
4367			sc->sc_syncbeacon = 1;
4368			if (csa_run_transition)
4369				ath_beacon_config(sc, vap);
4370			break;
4371		case IEEE80211_M_MONITOR:
4372			/*
4373			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
4374			 * transitions so we must re-enable interrupts here to
4375			 * handle the case of a single monitor mode vap.
4376			 */
4377			ath_hal_intrset(ah, sc->sc_imask);
4378			break;
4379		case IEEE80211_M_WDS:
4380			break;
4381		default:
4382			break;
4383		}
4384		/*
4385		 * Let the hal process statistics collected during a
4386		 * scan so it can provide calibrated noise floor data.
4387		 */
4388		ath_hal_process_noisefloor(ah);
4389		/*
4390		 * Reset rssi stats; maybe not the best place...
4391		 */
4392		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4393		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4394		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4395		/*
4396		 * Finally, start any timers and the task q thread
4397		 * (in case we didn't go through SCAN state).
4398		 */
4399		if (ath_longcalinterval != 0) {
4400			/* start periodic recalibration timer */
4401			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4402		} else {
4403			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4404			    "%s: calibration disabled\n", __func__);
4405		}
4406		taskqueue_unblock(sc->sc_tq);
4407	} else if (nstate == IEEE80211_S_INIT) {
4408		/*
4409		 * If there are no vaps left in RUN state then
4410		 * shutdown host/driver operation:
4411		 * o disable interrupts
4412		 * o disable the task queue thread
4413		 * o mark beacon processing as stopped
4414		 */
4415		if (!ath_isanyrunningvaps(vap)) {
4416			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4417			/* disable interrupts  */
4418			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4419			taskqueue_block(sc->sc_tq);
4420			sc->sc_beacons = 0;
4421		}
4422#ifdef IEEE80211_SUPPORT_TDMA
4423		ath_hal_setcca(ah, AH_TRUE);
4424#endif
4425	}
4426bad:
4427	ieee80211_free_node(ni);
4428	return error;
4429}
4430
4431/*
4432 * Allocate a key cache slot to the station so we can
4433 * setup a mapping from key index to node. The key cache
4434 * slot is needed for managing antenna state and for
4435 * compression when stations do not use crypto.  We do
4436 * it uniliaterally here; if crypto is employed this slot
4437 * will be reassigned.
4438 */
4439static void
4440ath_setup_stationkey(struct ieee80211_node *ni)
4441{
4442	struct ieee80211vap *vap = ni->ni_vap;
4443	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4444	ieee80211_keyix keyix, rxkeyix;
4445
4446	/* XXX should take a locked ref to vap->iv_bss */
4447	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4448		/*
4449		 * Key cache is full; we'll fall back to doing
4450		 * the more expensive lookup in software.  Note
4451		 * this also means no h/w compression.
4452		 */
4453		/* XXX msg+statistic */
4454	} else {
4455		/* XXX locking? */
4456		ni->ni_ucastkey.wk_keyix = keyix;
4457		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4458		/* NB: must mark device key to get called back on delete */
4459		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
4460		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
4461		/* NB: this will create a pass-thru key entry */
4462		ath_keyset(sc, vap, &ni->ni_ucastkey, vap->iv_bss);
4463	}
4464}
4465
4466/*
4467 * Setup driver-specific state for a newly associated node.
4468 * Note that we're called also on a re-associate, the isnew
4469 * param tells us if this is the first time or not.
4470 */
4471static void
4472ath_newassoc(struct ieee80211_node *ni, int isnew)
4473{
4474	struct ath_node *an = ATH_NODE(ni);
4475	struct ieee80211vap *vap = ni->ni_vap;
4476	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4477	const struct ieee80211_txparam *tp = ni->ni_txparms;
4478
4479	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
4480	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
4481
4482	ath_rate_newassoc(sc, an, isnew);
4483	if (isnew &&
4484	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
4485	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4486		ath_setup_stationkey(ni);
4487}
4488
4489static int
4490ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
4491	int nchans, struct ieee80211_channel chans[])
4492{
4493	struct ath_softc *sc = ic->ic_ifp->if_softc;
4494	struct ath_hal *ah = sc->sc_ah;
4495	HAL_STATUS status;
4496
4497	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4498	    "%s: rd %u cc %u location %c%s\n",
4499	    __func__, reg->regdomain, reg->country, reg->location,
4500	    reg->ecm ? " ecm" : "");
4501
4502	status = ath_hal_set_channels(ah, chans, nchans,
4503	    reg->country, reg->regdomain);
4504	if (status != HAL_OK) {
4505		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
4506		    __func__, status);
4507		return EINVAL;		/* XXX */
4508	}
4509
4510	return 0;
4511}
4512
4513static void
4514ath_getradiocaps(struct ieee80211com *ic,
4515	int maxchans, int *nchans, struct ieee80211_channel chans[])
4516{
4517	struct ath_softc *sc = ic->ic_ifp->if_softc;
4518	struct ath_hal *ah = sc->sc_ah;
4519
4520	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
4521	    __func__, SKU_DEBUG, CTRY_DEFAULT);
4522
4523	/* XXX check return */
4524	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
4525	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
4526
4527}
4528
4529static int
4530ath_getchannels(struct ath_softc *sc)
4531{
4532	struct ifnet *ifp = sc->sc_ifp;
4533	struct ieee80211com *ic = ifp->if_l2com;
4534	struct ath_hal *ah = sc->sc_ah;
4535	HAL_STATUS status;
4536
4537	/*
4538	 * Collect channel set based on EEPROM contents.
4539	 */
4540	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
4541	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
4542	if (status != HAL_OK) {
4543		if_printf(ifp, "%s: unable to collect channel list from hal, "
4544		    "status %d\n", __func__, status);
4545		return EINVAL;
4546	}
4547	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
4548	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
4549	/* XXX map Atheros sku's to net80211 SKU's */
4550	/* XXX net80211 types too small */
4551	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
4552	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
4553	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
4554	ic->ic_regdomain.isocc[1] = ' ';
4555
4556	ic->ic_regdomain.ecm = 1;
4557	ic->ic_regdomain.location = 'I';
4558
4559	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4560	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
4561	    __func__, sc->sc_eerd, sc->sc_eecc,
4562	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
4563	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
4564	return 0;
4565}
4566
4567static int
4568ath_rate_setup(struct ath_softc *sc, u_int mode)
4569{
4570	struct ath_hal *ah = sc->sc_ah;
4571	const HAL_RATE_TABLE *rt;
4572
4573	switch (mode) {
4574	case IEEE80211_MODE_11A:
4575		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4576		break;
4577	case IEEE80211_MODE_HALF:
4578		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
4579		break;
4580	case IEEE80211_MODE_QUARTER:
4581		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
4582		break;
4583	case IEEE80211_MODE_11B:
4584		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4585		break;
4586	case IEEE80211_MODE_11G:
4587		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4588		break;
4589	case IEEE80211_MODE_TURBO_A:
4590		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
4591		break;
4592	case IEEE80211_MODE_TURBO_G:
4593		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4594		break;
4595	case IEEE80211_MODE_STURBO_A:
4596		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4597		break;
4598	case IEEE80211_MODE_11NA:
4599		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
4600		break;
4601	case IEEE80211_MODE_11NG:
4602		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
4603		break;
4604	default:
4605		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4606			__func__, mode);
4607		return 0;
4608	}
4609	sc->sc_rates[mode] = rt;
4610	return (rt != NULL);
4611}
4612
4613static void
4614ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4615{
4616#define	N(a)	(sizeof(a)/sizeof(a[0]))
4617	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4618	static const struct {
4619		u_int		rate;		/* tx/rx 802.11 rate */
4620		u_int16_t	timeOn;		/* LED on time (ms) */
4621		u_int16_t	timeOff;	/* LED off time (ms) */
4622	} blinkrates[] = {
4623		{ 108,  40,  10 },
4624		{  96,  44,  11 },
4625		{  72,  50,  13 },
4626		{  48,  57,  14 },
4627		{  36,  67,  16 },
4628		{  24,  80,  20 },
4629		{  22, 100,  25 },
4630		{  18, 133,  34 },
4631		{  12, 160,  40 },
4632		{  10, 200,  50 },
4633		{   6, 240,  58 },
4634		{   4, 267,  66 },
4635		{   2, 400, 100 },
4636		{   0, 500, 130 },
4637		/* XXX half/quarter rates */
4638	};
4639	const HAL_RATE_TABLE *rt;
4640	int i, j;
4641
4642	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4643	rt = sc->sc_rates[mode];
4644	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4645	for (i = 0; i < rt->rateCount; i++) {
4646		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
4647		if (rt->info[i].phy != IEEE80211_T_HT)
4648			sc->sc_rixmap[ieeerate] = i;
4649		else
4650			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
4651	}
4652	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4653	for (i = 0; i < N(sc->sc_hwmap); i++) {
4654		if (i >= rt->rateCount) {
4655			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4656			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4657			continue;
4658		}
4659		sc->sc_hwmap[i].ieeerate =
4660			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
4661		if (rt->info[i].phy == IEEE80211_T_HT)
4662			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
4663		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4664		if (rt->info[i].shortPreamble ||
4665		    rt->info[i].phy == IEEE80211_T_OFDM)
4666			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4667		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
4668		for (j = 0; j < N(blinkrates)-1; j++)
4669			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4670				break;
4671		/* NB: this uses the last entry if the rate isn't found */
4672		/* XXX beware of overlow */
4673		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4674		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4675	}
4676	sc->sc_currates = rt;
4677	sc->sc_curmode = mode;
4678	/*
4679	 * All protection frames are transmited at 2Mb/s for
4680	 * 11g, otherwise at 1Mb/s.
4681	 */
4682	if (mode == IEEE80211_MODE_11G)
4683		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
4684	else
4685		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
4686	/* NB: caller is responsible for resetting rate control state */
4687#undef N
4688}
4689
4690static void
4691ath_watchdog(void *arg)
4692{
4693	struct ath_softc *sc = arg;
4694	int do_reset = 0;
4695
4696	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
4697		struct ifnet *ifp = sc->sc_ifp;
4698		uint32_t hangs;
4699
4700		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
4701		    hangs != 0) {
4702			if_printf(ifp, "%s hang detected (0x%x)\n",
4703			    hangs & 0xff ? "bb" : "mac", hangs);
4704		} else
4705			if_printf(ifp, "device timeout\n");
4706		do_reset = 1;
4707		ifp->if_oerrors++;
4708		sc->sc_stats.ast_watchdog++;
4709	}
4710
4711	/*
4712	 * We can't hold the lock across the ath_reset() call.
4713	 *
4714	 * And since this routine can't hold a lock and sleep,
4715	 * do the reset deferred.
4716	 */
4717	if (do_reset) {
4718		taskqueue_enqueue(sc->sc_tq, &sc->sc_resettask);
4719	}
4720
4721	callout_schedule(&sc->sc_wd_ch, hz);
4722}
4723
4724#ifdef ATH_DIAGAPI
4725/*
4726 * Diagnostic interface to the HAL.  This is used by various
4727 * tools to do things like retrieve register contents for
4728 * debugging.  The mechanism is intentionally opaque so that
4729 * it can change frequently w/o concern for compatiblity.
4730 */
4731static int
4732ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4733{
4734	struct ath_hal *ah = sc->sc_ah;
4735	u_int id = ad->ad_id & ATH_DIAG_ID;
4736	void *indata = NULL;
4737	void *outdata = NULL;
4738	u_int32_t insize = ad->ad_in_size;
4739	u_int32_t outsize = ad->ad_out_size;
4740	int error = 0;
4741
4742	if (ad->ad_id & ATH_DIAG_IN) {
4743		/*
4744		 * Copy in data.
4745		 */
4746		indata = malloc(insize, M_TEMP, M_NOWAIT);
4747		if (indata == NULL) {
4748			error = ENOMEM;
4749			goto bad;
4750		}
4751		error = copyin(ad->ad_in_data, indata, insize);
4752		if (error)
4753			goto bad;
4754	}
4755	if (ad->ad_id & ATH_DIAG_DYN) {
4756		/*
4757		 * Allocate a buffer for the results (otherwise the HAL
4758		 * returns a pointer to a buffer where we can read the
4759		 * results).  Note that we depend on the HAL leaving this
4760		 * pointer for us to use below in reclaiming the buffer;
4761		 * may want to be more defensive.
4762		 */
4763		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4764		if (outdata == NULL) {
4765			error = ENOMEM;
4766			goto bad;
4767		}
4768	}
4769	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4770		if (outsize < ad->ad_out_size)
4771			ad->ad_out_size = outsize;
4772		if (outdata != NULL)
4773			error = copyout(outdata, ad->ad_out_data,
4774					ad->ad_out_size);
4775	} else {
4776		error = EINVAL;
4777	}
4778bad:
4779	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4780		free(indata, M_TEMP);
4781	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4782		free(outdata, M_TEMP);
4783	return error;
4784}
4785#endif /* ATH_DIAGAPI */
4786
4787static int
4788ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4789{
4790#define	IS_RUNNING(ifp) \
4791	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
4792	struct ath_softc *sc = ifp->if_softc;
4793	struct ieee80211com *ic = ifp->if_l2com;
4794	struct ifreq *ifr = (struct ifreq *)data;
4795	const HAL_RATE_TABLE *rt;
4796	int error = 0;
4797
4798	switch (cmd) {
4799	case SIOCSIFFLAGS:
4800		ATH_LOCK(sc);
4801		if (IS_RUNNING(ifp)) {
4802			/*
4803			 * To avoid rescanning another access point,
4804			 * do not call ath_init() here.  Instead,
4805			 * only reflect promisc mode settings.
4806			 */
4807			ath_mode_init(sc);
4808		} else if (ifp->if_flags & IFF_UP) {
4809			/*
4810			 * Beware of being called during attach/detach
4811			 * to reset promiscuous mode.  In that case we
4812			 * will still be marked UP but not RUNNING.
4813			 * However trying to re-init the interface
4814			 * is the wrong thing to do as we've already
4815			 * torn down much of our state.  There's
4816			 * probably a better way to deal with this.
4817			 */
4818			if (!sc->sc_invalid)
4819				ath_init(sc);	/* XXX lose error */
4820		} else {
4821			ath_stop_locked(ifp);
4822#ifdef notyet
4823			/* XXX must wakeup in places like ath_vap_delete */
4824			if (!sc->sc_invalid)
4825				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
4826#endif
4827		}
4828		ATH_UNLOCK(sc);
4829		break;
4830	case SIOCGIFMEDIA:
4831	case SIOCSIFMEDIA:
4832		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
4833		break;
4834	case SIOCGATHSTATS:
4835		/* NB: embed these numbers to get a consistent view */
4836		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4837		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4838		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
4839		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
4840#ifdef IEEE80211_SUPPORT_TDMA
4841		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
4842		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
4843#endif
4844		rt = sc->sc_currates;
4845		sc->sc_stats.ast_tx_rate =
4846		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
4847		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
4848			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
4849		return copyout(&sc->sc_stats,
4850		    ifr->ifr_data, sizeof (sc->sc_stats));
4851	case SIOCZATHSTATS:
4852		error = priv_check(curthread, PRIV_DRIVER);
4853		if (error == 0) {
4854			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
4855			memset(&sc->sc_aggr_stats, 0,
4856			    sizeof(sc->sc_aggr_stats));
4857			memset(&sc->sc_intr_stats, 0,
4858			    sizeof(sc->sc_intr_stats));
4859		}
4860		break;
4861#ifdef ATH_DIAGAPI
4862	case SIOCGATHDIAG:
4863		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4864		break;
4865	case SIOCGATHPHYERR:
4866		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
4867		break;
4868#endif
4869	case SIOCGIFADDR:
4870		error = ether_ioctl(ifp, cmd, data);
4871		break;
4872	default:
4873		error = EINVAL;
4874		break;
4875	}
4876	return error;
4877#undef IS_RUNNING
4878}
4879
4880/*
4881 * Announce various information on device/driver attach.
4882 */
4883static void
4884ath_announce(struct ath_softc *sc)
4885{
4886	struct ifnet *ifp = sc->sc_ifp;
4887	struct ath_hal *ah = sc->sc_ah;
4888
4889	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
4890		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
4891		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4892	if_printf(ifp, "2GHz radio: 0x%.4x; 5GHz radio: 0x%.4x\n",
4893		ah->ah_analog2GhzRev, ah->ah_analog5GhzRev);
4894	if (bootverbose) {
4895		int i;
4896		for (i = 0; i <= WME_AC_VO; i++) {
4897			struct ath_txq *txq = sc->sc_ac2q[i];
4898			if_printf(ifp, "Use hw queue %u for %s traffic\n",
4899				txq->axq_qnum, ieee80211_wme_acnames[i]);
4900		}
4901		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4902			sc->sc_cabq->axq_qnum);
4903		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4904	}
4905	if (ath_rxbuf != ATH_RXBUF)
4906		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
4907	if (ath_txbuf != ATH_TXBUF)
4908		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
4909	if (sc->sc_mcastkey && bootverbose)
4910		if_printf(ifp, "using multicast key search\n");
4911}
4912
4913static void
4914ath_dfs_tasklet(void *p, int npending)
4915{
4916	struct ath_softc *sc = (struct ath_softc *) p;
4917	struct ifnet *ifp = sc->sc_ifp;
4918	struct ieee80211com *ic = ifp->if_l2com;
4919
4920	/*
4921	 * If previous processing has found a radar event,
4922	 * signal this to the net80211 layer to begin DFS
4923	 * processing.
4924	 */
4925	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
4926		/* DFS event found, initiate channel change */
4927		/*
4928		 * XXX doesn't currently tell us whether the event
4929		 * XXX was found in the primary or extension
4930		 * XXX channel!
4931		 */
4932		IEEE80211_LOCK(ic);
4933		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
4934		IEEE80211_UNLOCK(ic);
4935	}
4936}
4937
4938MODULE_VERSION(if_ath, 1);
4939MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
4940#if	defined(IEEE80211_ALQ) || defined(AH_DEBUG_ALQ)
4941MODULE_DEPEND(if_ath, alq, 1, 1, 1);
4942#endif
4943