if_ath.c revision 226884
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 226884 2011-10-28 15:44:09Z adrian $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42/*
43 * This is needed for register operations which are performed
44 * by the driver - eg, calls to ath_hal_gettsf32().
45 */
46#include "opt_ah.h"
47#include "opt_wlan.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/sysctl.h>
52#include <sys/mbuf.h>
53#include <sys/malloc.h>
54#include <sys/lock.h>
55#include <sys/mutex.h>
56#include <sys/kernel.h>
57#include <sys/socket.h>
58#include <sys/sockio.h>
59#include <sys/errno.h>
60#include <sys/callout.h>
61#include <sys/bus.h>
62#include <sys/endian.h>
63#include <sys/kthread.h>
64#include <sys/taskqueue.h>
65#include <sys/priv.h>
66#include <sys/module.h>
67
68#include <machine/bus.h>
69
70#include <net/if.h>
71#include <net/if_dl.h>
72#include <net/if_media.h>
73#include <net/if_types.h>
74#include <net/if_arp.h>
75#include <net/ethernet.h>
76#include <net/if_llc.h>
77
78#include <net80211/ieee80211_var.h>
79#include <net80211/ieee80211_regdomain.h>
80#ifdef IEEE80211_SUPPORT_SUPERG
81#include <net80211/ieee80211_superg.h>
82#endif
83#ifdef IEEE80211_SUPPORT_TDMA
84#include <net80211/ieee80211_tdma.h>
85#endif
86
87#include <net/bpf.h>
88
89#ifdef INET
90#include <netinet/in.h>
91#include <netinet/if_ether.h>
92#endif
93
94#include <dev/ath/if_athvar.h>
95#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
96#include <dev/ath/ath_hal/ah_diagcodes.h>
97
98#include <dev/ath/if_ath_debug.h>
99#include <dev/ath/if_ath_misc.h>
100#include <dev/ath/if_ath_tx.h>
101#include <dev/ath/if_ath_sysctl.h>
102#include <dev/ath/if_ath_keycache.h>
103#include <dev/ath/if_athdfs.h>
104
105#ifdef ATH_TX99_DIAG
106#include <dev/ath/ath_tx99/ath_tx99.h>
107#endif
108
109
110/*
111 * ATH_BCBUF determines the number of vap's that can transmit
112 * beacons and also (currently) the number of vap's that can
113 * have unique mac addresses/bssid.  When staggering beacons
114 * 4 is probably a good max as otherwise the beacons become
115 * very closely spaced and there is limited time for cab q traffic
116 * to go out.  You can burst beacons instead but that is not good
117 * for stations in power save and at some point you really want
118 * another radio (and channel).
119 *
120 * The limit on the number of mac addresses is tied to our use of
121 * the U/L bit and tracking addresses in a byte; it would be
122 * worthwhile to allow more for applications like proxy sta.
123 */
124CTASSERT(ATH_BCBUF <= 8);
125
126static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
127		    const char name[IFNAMSIZ], int unit, int opmode,
128		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
129		    const uint8_t mac[IEEE80211_ADDR_LEN]);
130static void	ath_vap_delete(struct ieee80211vap *);
131static void	ath_init(void *);
132static void	ath_stop_locked(struct ifnet *);
133static void	ath_stop(struct ifnet *);
134static void	ath_start(struct ifnet *);
135static int	ath_reset_vap(struct ieee80211vap *, u_long);
136static int	ath_media_change(struct ifnet *);
137static void	ath_watchdog(void *);
138static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
139static void	ath_fatal_proc(void *, int);
140static void	ath_bmiss_vap(struct ieee80211vap *);
141static void	ath_bmiss_proc(void *, int);
142static void	ath_key_update_begin(struct ieee80211vap *);
143static void	ath_key_update_end(struct ieee80211vap *);
144static void	ath_update_mcast(struct ifnet *);
145static void	ath_update_promisc(struct ifnet *);
146static void	ath_mode_init(struct ath_softc *);
147static void	ath_setslottime(struct ath_softc *);
148static void	ath_updateslot(struct ifnet *);
149static int	ath_beaconq_setup(struct ath_hal *);
150static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
151static void	ath_beacon_update(struct ieee80211vap *, int item);
152static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
153static void	ath_beacon_proc(void *, int);
154static struct ath_buf *ath_beacon_generate(struct ath_softc *,
155			struct ieee80211vap *);
156static void	ath_bstuck_proc(void *, int);
157static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
158static void	ath_beacon_free(struct ath_softc *);
159static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
160static void	ath_descdma_cleanup(struct ath_softc *sc,
161			struct ath_descdma *, ath_bufhead *);
162static int	ath_desc_alloc(struct ath_softc *);
163static void	ath_desc_free(struct ath_softc *);
164static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
165			const uint8_t [IEEE80211_ADDR_LEN]);
166static void	ath_node_free(struct ieee80211_node *);
167static void	ath_node_getsignal(const struct ieee80211_node *,
168			int8_t *, int8_t *);
169static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
170static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
171			int subtype, int rssi, int nf);
172static void	ath_setdefantenna(struct ath_softc *, u_int);
173static void	ath_rx_proc(void *, int);
174static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
175static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
176static int	ath_tx_setup(struct ath_softc *, int, int);
177static int	ath_wme_update(struct ieee80211com *);
178static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
179static void	ath_tx_cleanup(struct ath_softc *);
180static void	ath_tx_proc_q0(void *, int);
181static void	ath_tx_proc_q0123(void *, int);
182static void	ath_tx_proc(void *, int);
183static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
184static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
185static void	ath_draintxq(struct ath_softc *);
186static void	ath_stoprecv(struct ath_softc *);
187static int	ath_startrecv(struct ath_softc *);
188static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
189static void	ath_scan_start(struct ieee80211com *);
190static void	ath_scan_end(struct ieee80211com *);
191static void	ath_set_channel(struct ieee80211com *);
192static void	ath_calibrate(void *);
193static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
194static void	ath_setup_stationkey(struct ieee80211_node *);
195static void	ath_newassoc(struct ieee80211_node *, int);
196static int	ath_setregdomain(struct ieee80211com *,
197		    struct ieee80211_regdomain *, int,
198		    struct ieee80211_channel []);
199static void	ath_getradiocaps(struct ieee80211com *, int, int *,
200		    struct ieee80211_channel []);
201static int	ath_getchannels(struct ath_softc *);
202static void	ath_led_event(struct ath_softc *, int);
203
204static int	ath_rate_setup(struct ath_softc *, u_int mode);
205static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
206
207static void	ath_announce(struct ath_softc *);
208
209static void	ath_dfs_tasklet(void *, int);
210
211#ifdef IEEE80211_SUPPORT_TDMA
212static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
213		    u_int32_t bintval);
214static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
215		    const struct ieee80211_tdma_state *tdma);
216static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
217static void	ath_tdma_update(struct ieee80211_node *ni,
218		    const struct ieee80211_tdma_param *tdma, int);
219static void	ath_tdma_beacon_send(struct ath_softc *sc,
220		    struct ieee80211vap *vap);
221
222#define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
223#define	TDMA_LPF_LEN		6
224#define	TDMA_DUMMY_MARKER	0x127
225#define	TDMA_EP_MUL(x, mul)	((x) * (mul))
226#define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
227#define	TDMA_LPF(x, y, len) \
228    ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
229#define	TDMA_SAMPLE(x, y) do {					\
230	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
231} while (0)
232#define	TDMA_EP_RND(x,mul) \
233	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
234#define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
235#endif /* IEEE80211_SUPPORT_TDMA */
236
237SYSCTL_DECL(_hw_ath);
238
239/* XXX validate sysctl values */
240static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
241SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
242	    0, "long chip calibration interval (secs)");
243static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
244SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
245	    0, "short chip calibration interval (msecs)");
246static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
247SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
248	    0, "reset chip calibration results (secs)");
249static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
250SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
251	    0, "ANI calibration (msecs)");
252
253static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
254SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
255	    0, "rx buffers allocated");
256TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
257static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
258SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
259	    0, "tx buffers allocated");
260TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
261
262static	int ath_bstuck_threshold = 4;		/* max missed beacons */
263SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
264	    0, "max missed beacon xmits before chip reset");
265
266MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
267
268#define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
269#define	HAL_MODE_HT40 \
270	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
271	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
272int
273ath_attach(u_int16_t devid, struct ath_softc *sc)
274{
275	struct ifnet *ifp;
276	struct ieee80211com *ic;
277	struct ath_hal *ah = NULL;
278	HAL_STATUS status;
279	int error = 0, i;
280	u_int wmodes;
281	uint8_t macaddr[IEEE80211_ADDR_LEN];
282
283	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
284
285	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
286	if (ifp == NULL) {
287		device_printf(sc->sc_dev, "can not if_alloc()\n");
288		error = ENOSPC;
289		goto bad;
290	}
291	ic = ifp->if_l2com;
292
293	/* set these up early for if_printf use */
294	if_initname(ifp, device_get_name(sc->sc_dev),
295		device_get_unit(sc->sc_dev));
296
297	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, sc->sc_eepromdata, &status);
298	if (ah == NULL) {
299		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
300			status);
301		error = ENXIO;
302		goto bad;
303	}
304	sc->sc_ah = ah;
305	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
306#ifdef	ATH_DEBUG
307	sc->sc_debug = ath_debug;
308#endif
309
310	/*
311	 * Check if the MAC has multi-rate retry support.
312	 * We do this by trying to setup a fake extended
313	 * descriptor.  MAC's that don't have support will
314	 * return false w/o doing anything.  MAC's that do
315	 * support it will return true w/o doing anything.
316	 */
317	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
318
319	/*
320	 * Check if the device has hardware counters for PHY
321	 * errors.  If so we need to enable the MIB interrupt
322	 * so we can act on stat triggers.
323	 */
324	if (ath_hal_hwphycounters(ah))
325		sc->sc_needmib = 1;
326
327	/*
328	 * Get the hardware key cache size.
329	 */
330	sc->sc_keymax = ath_hal_keycachesize(ah);
331	if (sc->sc_keymax > ATH_KEYMAX) {
332		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
333			ATH_KEYMAX, sc->sc_keymax);
334		sc->sc_keymax = ATH_KEYMAX;
335	}
336	/*
337	 * Reset the key cache since some parts do not
338	 * reset the contents on initial power up.
339	 */
340	for (i = 0; i < sc->sc_keymax; i++)
341		ath_hal_keyreset(ah, i);
342
343	/*
344	 * Collect the default channel list.
345	 */
346	error = ath_getchannels(sc);
347	if (error != 0)
348		goto bad;
349
350	/*
351	 * Setup rate tables for all potential media types.
352	 */
353	ath_rate_setup(sc, IEEE80211_MODE_11A);
354	ath_rate_setup(sc, IEEE80211_MODE_11B);
355	ath_rate_setup(sc, IEEE80211_MODE_11G);
356	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
357	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
358	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
359	ath_rate_setup(sc, IEEE80211_MODE_11NA);
360	ath_rate_setup(sc, IEEE80211_MODE_11NG);
361	ath_rate_setup(sc, IEEE80211_MODE_HALF);
362	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
363
364	/* NB: setup here so ath_rate_update is happy */
365	ath_setcurmode(sc, IEEE80211_MODE_11A);
366
367	/*
368	 * Allocate tx+rx descriptors and populate the lists.
369	 */
370	error = ath_desc_alloc(sc);
371	if (error != 0) {
372		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
373		goto bad;
374	}
375	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
376	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
377
378	ATH_TXBUF_LOCK_INIT(sc);
379
380	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
381		taskqueue_thread_enqueue, &sc->sc_tq);
382	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
383		"%s taskq", ifp->if_xname);
384
385	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
386	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
387	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
388
389	/*
390	 * Allocate hardware transmit queues: one queue for
391	 * beacon frames and one data queue for each QoS
392	 * priority.  Note that the hal handles resetting
393	 * these queues at the needed time.
394	 *
395	 * XXX PS-Poll
396	 */
397	sc->sc_bhalq = ath_beaconq_setup(ah);
398	if (sc->sc_bhalq == (u_int) -1) {
399		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
400		error = EIO;
401		goto bad2;
402	}
403	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
404	if (sc->sc_cabq == NULL) {
405		if_printf(ifp, "unable to setup CAB xmit queue!\n");
406		error = EIO;
407		goto bad2;
408	}
409	/* NB: insure BK queue is the lowest priority h/w queue */
410	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
411		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
412			ieee80211_wme_acnames[WME_AC_BK]);
413		error = EIO;
414		goto bad2;
415	}
416	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
417	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
418	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
419		/*
420		 * Not enough hardware tx queues to properly do WME;
421		 * just punt and assign them all to the same h/w queue.
422		 * We could do a better job of this if, for example,
423		 * we allocate queues when we switch from station to
424		 * AP mode.
425		 */
426		if (sc->sc_ac2q[WME_AC_VI] != NULL)
427			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
428		if (sc->sc_ac2q[WME_AC_BE] != NULL)
429			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
430		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
431		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
432		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
433	}
434
435	/*
436	 * Special case certain configurations.  Note the
437	 * CAB queue is handled by these specially so don't
438	 * include them when checking the txq setup mask.
439	 */
440	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
441	case 0x01:
442		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
443		break;
444	case 0x0f:
445		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
446		break;
447	default:
448		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
449		break;
450	}
451
452	/*
453	 * Setup rate control.  Some rate control modules
454	 * call back to change the anntena state so expose
455	 * the necessary entry points.
456	 * XXX maybe belongs in struct ath_ratectrl?
457	 */
458	sc->sc_setdefantenna = ath_setdefantenna;
459	sc->sc_rc = ath_rate_attach(sc);
460	if (sc->sc_rc == NULL) {
461		error = EIO;
462		goto bad2;
463	}
464
465	/* Attach DFS module */
466	if (! ath_dfs_attach(sc)) {
467		device_printf(sc->sc_dev, "%s: unable to attach DFS\n", __func__);
468		error = EIO;
469		goto bad2;
470	}
471
472	/* Start DFS processing tasklet */
473	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
474
475	sc->sc_blinking = 0;
476	sc->sc_ledstate = 1;
477	sc->sc_ledon = 0;			/* low true */
478	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
479	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
480	/*
481	 * Auto-enable soft led processing for IBM cards and for
482	 * 5211 minipci cards.  Users can also manually enable/disable
483	 * support with a sysctl.
484	 */
485	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
486	if (sc->sc_softled) {
487		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
488		    HAL_GPIO_MUX_MAC_NETWORK_LED);
489		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
490	}
491
492	ifp->if_softc = sc;
493	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
494	ifp->if_start = ath_start;
495	ifp->if_ioctl = ath_ioctl;
496	ifp->if_init = ath_init;
497	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
498	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
499	IFQ_SET_READY(&ifp->if_snd);
500
501	ic->ic_ifp = ifp;
502	/* XXX not right but it's not used anywhere important */
503	ic->ic_phytype = IEEE80211_T_OFDM;
504	ic->ic_opmode = IEEE80211_M_STA;
505	ic->ic_caps =
506		  IEEE80211_C_STA		/* station mode */
507		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
508		| IEEE80211_C_HOSTAP		/* hostap mode */
509		| IEEE80211_C_MONITOR		/* monitor mode */
510		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
511		| IEEE80211_C_WDS		/* 4-address traffic works */
512		| IEEE80211_C_MBSS		/* mesh point link mode */
513		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
514		| IEEE80211_C_SHSLOT		/* short slot time supported */
515		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
516		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
517		| IEEE80211_C_TXFRAG		/* handle tx frags */
518#ifdef	ATH_ENABLE_DFS
519		| IEEE80211_C_DFS		/* Enable DFS radar detection */
520#endif
521		;
522	/*
523	 * Query the hal to figure out h/w crypto support.
524	 */
525	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
526		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
527	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
528		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
529	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
530		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
531	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
532		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
533	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
534		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
535		/*
536		 * Check if h/w does the MIC and/or whether the
537		 * separate key cache entries are required to
538		 * handle both tx+rx MIC keys.
539		 */
540		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
541			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
542		/*
543		 * If the h/w supports storing tx+rx MIC keys
544		 * in one cache slot automatically enable use.
545		 */
546		if (ath_hal_hastkipsplit(ah) ||
547		    !ath_hal_settkipsplit(ah, AH_FALSE))
548			sc->sc_splitmic = 1;
549		/*
550		 * If the h/w can do TKIP MIC together with WME then
551		 * we use it; otherwise we force the MIC to be done
552		 * in software by the net80211 layer.
553		 */
554		if (ath_hal_haswmetkipmic(ah))
555			sc->sc_wmetkipmic = 1;
556	}
557	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
558	/*
559	 * Check for multicast key search support.
560	 */
561	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
562	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
563		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
564	}
565	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
566	/*
567	 * Mark key cache slots associated with global keys
568	 * as in use.  If we knew TKIP was not to be used we
569	 * could leave the +32, +64, and +32+64 slots free.
570	 */
571	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
572		setbit(sc->sc_keymap, i);
573		setbit(sc->sc_keymap, i+64);
574		if (sc->sc_splitmic) {
575			setbit(sc->sc_keymap, i+32);
576			setbit(sc->sc_keymap, i+32+64);
577		}
578	}
579	/*
580	 * TPC support can be done either with a global cap or
581	 * per-packet support.  The latter is not available on
582	 * all parts.  We're a bit pedantic here as all parts
583	 * support a global cap.
584	 */
585	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
586		ic->ic_caps |= IEEE80211_C_TXPMGT;
587
588	/*
589	 * Mark WME capability only if we have sufficient
590	 * hardware queues to do proper priority scheduling.
591	 */
592	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
593		ic->ic_caps |= IEEE80211_C_WME;
594	/*
595	 * Check for misc other capabilities.
596	 */
597	if (ath_hal_hasbursting(ah))
598		ic->ic_caps |= IEEE80211_C_BURST;
599	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
600	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
601	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
602	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
603	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
604	if (ath_hal_hasfastframes(ah))
605		ic->ic_caps |= IEEE80211_C_FF;
606	wmodes = ath_hal_getwirelessmodes(ah);
607	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
608		ic->ic_caps |= IEEE80211_C_TURBOP;
609#ifdef IEEE80211_SUPPORT_TDMA
610	if (ath_hal_macversion(ah) > 0x78) {
611		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
612		ic->ic_tdma_update = ath_tdma_update;
613	}
614#endif
615
616	/*
617	 * The if_ath 11n support is completely not ready for normal use.
618	 * Enabling this option will likely break everything and everything.
619	 * Don't think of doing that unless you know what you're doing.
620	 */
621
622#ifdef	ATH_ENABLE_11N
623	/*
624	 * Query HT capabilities
625	 */
626	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
627	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
628		int rxs, txs;
629
630		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
631		ic->ic_htcaps = IEEE80211_HTC_HT		/* HT operation */
632			    | IEEE80211_HTC_AMPDU		/* A-MPDU tx/rx */
633			    | IEEE80211_HTC_AMSDU		/* A-MSDU tx/rx */
634			    | IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
635			    | IEEE80211_HTCAP_SMPS_OFF;		/* SM power save off */
636			;
637
638		/*
639		 * Enable short-GI for HT20 only if the hardware
640		 * advertises support.
641		 * Notably, anything earlier than the AR9287 doesn't.
642		 */
643		if ((ath_hal_getcapability(ah,
644		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
645		    (wmodes & HAL_MODE_HT20)) {
646			device_printf(sc->sc_dev,
647			    "[HT] enabling short-GI in 20MHz mode\n");
648			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
649		}
650
651		if (wmodes & HAL_MODE_HT40)
652			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
653			    |  IEEE80211_HTCAP_SHORTGI40;
654
655		/*
656		 * rx/tx stream is not currently used anywhere; it needs to be taken
657		 * into account when negotiating which MCS rates it'll receive and
658		 * what MCS rates are available for TX.
659		 */
660		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &rxs);
661		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &txs);
662
663		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
664		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
665
666		ic->ic_txstream = txs;
667		ic->ic_rxstream = rxs;
668
669		device_printf(sc->sc_dev, "[HT] %d RX streams; %d TX streams\n", rxs, txs);
670	}
671#endif
672
673	/*
674	 * Indicate we need the 802.11 header padded to a
675	 * 32-bit boundary for 4-address and QoS frames.
676	 */
677	ic->ic_flags |= IEEE80211_F_DATAPAD;
678
679	/*
680	 * Query the hal about antenna support.
681	 */
682	sc->sc_defant = ath_hal_getdefantenna(ah);
683
684	/*
685	 * Not all chips have the VEOL support we want to
686	 * use with IBSS beacons; check here for it.
687	 */
688	sc->sc_hasveol = ath_hal_hasveol(ah);
689
690	/* get mac address from hardware */
691	ath_hal_getmac(ah, macaddr);
692	if (sc->sc_hasbmask)
693		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
694
695	/* NB: used to size node table key mapping array */
696	ic->ic_max_keyix = sc->sc_keymax;
697	/* call MI attach routine. */
698	ieee80211_ifattach(ic, macaddr);
699	ic->ic_setregdomain = ath_setregdomain;
700	ic->ic_getradiocaps = ath_getradiocaps;
701	sc->sc_opmode = HAL_M_STA;
702
703	/* override default methods */
704	ic->ic_newassoc = ath_newassoc;
705	ic->ic_updateslot = ath_updateslot;
706	ic->ic_wme.wme_update = ath_wme_update;
707	ic->ic_vap_create = ath_vap_create;
708	ic->ic_vap_delete = ath_vap_delete;
709	ic->ic_raw_xmit = ath_raw_xmit;
710	ic->ic_update_mcast = ath_update_mcast;
711	ic->ic_update_promisc = ath_update_promisc;
712	ic->ic_node_alloc = ath_node_alloc;
713	sc->sc_node_free = ic->ic_node_free;
714	ic->ic_node_free = ath_node_free;
715	ic->ic_node_getsignal = ath_node_getsignal;
716	ic->ic_scan_start = ath_scan_start;
717	ic->ic_scan_end = ath_scan_end;
718	ic->ic_set_channel = ath_set_channel;
719
720	ieee80211_radiotap_attach(ic,
721	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
722		ATH_TX_RADIOTAP_PRESENT,
723	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
724		ATH_RX_RADIOTAP_PRESENT);
725
726	/*
727	 * Setup dynamic sysctl's now that country code and
728	 * regdomain are available from the hal.
729	 */
730	ath_sysctlattach(sc);
731	ath_sysctl_stats_attach(sc);
732	ath_sysctl_hal_attach(sc);
733
734	if (bootverbose)
735		ieee80211_announce(ic);
736	ath_announce(sc);
737	return 0;
738bad2:
739	ath_tx_cleanup(sc);
740	ath_desc_free(sc);
741bad:
742	if (ah)
743		ath_hal_detach(ah);
744	if (ifp != NULL)
745		if_free(ifp);
746	sc->sc_invalid = 1;
747	return error;
748}
749
750int
751ath_detach(struct ath_softc *sc)
752{
753	struct ifnet *ifp = sc->sc_ifp;
754
755	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
756		__func__, ifp->if_flags);
757
758	/*
759	 * NB: the order of these is important:
760	 * o stop the chip so no more interrupts will fire
761	 * o call the 802.11 layer before detaching the hal to
762	 *   insure callbacks into the driver to delete global
763	 *   key cache entries can be handled
764	 * o free the taskqueue which drains any pending tasks
765	 * o reclaim the tx queue data structures after calling
766	 *   the 802.11 layer as we'll get called back to reclaim
767	 *   node state and potentially want to use them
768	 * o to cleanup the tx queues the hal is called, so detach
769	 *   it last
770	 * Other than that, it's straightforward...
771	 */
772	ath_stop(ifp);
773	ieee80211_ifdetach(ifp->if_l2com);
774	taskqueue_free(sc->sc_tq);
775#ifdef ATH_TX99_DIAG
776	if (sc->sc_tx99 != NULL)
777		sc->sc_tx99->detach(sc->sc_tx99);
778#endif
779	ath_rate_detach(sc->sc_rc);
780
781	ath_dfs_detach(sc);
782	ath_desc_free(sc);
783	ath_tx_cleanup(sc);
784	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
785	if_free(ifp);
786
787	return 0;
788}
789
790/*
791 * MAC address handling for multiple BSS on the same radio.
792 * The first vap uses the MAC address from the EEPROM.  For
793 * subsequent vap's we set the U/L bit (bit 1) in the MAC
794 * address and use the next six bits as an index.
795 */
796static void
797assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
798{
799	int i;
800
801	if (clone && sc->sc_hasbmask) {
802		/* NB: we only do this if h/w supports multiple bssid */
803		for (i = 0; i < 8; i++)
804			if ((sc->sc_bssidmask & (1<<i)) == 0)
805				break;
806		if (i != 0)
807			mac[0] |= (i << 2)|0x2;
808	} else
809		i = 0;
810	sc->sc_bssidmask |= 1<<i;
811	sc->sc_hwbssidmask[0] &= ~mac[0];
812	if (i == 0)
813		sc->sc_nbssid0++;
814}
815
816static void
817reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
818{
819	int i = mac[0] >> 2;
820	uint8_t mask;
821
822	if (i != 0 || --sc->sc_nbssid0 == 0) {
823		sc->sc_bssidmask &= ~(1<<i);
824		/* recalculate bssid mask from remaining addresses */
825		mask = 0xff;
826		for (i = 1; i < 8; i++)
827			if (sc->sc_bssidmask & (1<<i))
828				mask &= ~((i<<2)|0x2);
829		sc->sc_hwbssidmask[0] |= mask;
830	}
831}
832
833/*
834 * Assign a beacon xmit slot.  We try to space out
835 * assignments so when beacons are staggered the
836 * traffic coming out of the cab q has maximal time
837 * to go out before the next beacon is scheduled.
838 */
839static int
840assign_bslot(struct ath_softc *sc)
841{
842	u_int slot, free;
843
844	free = 0;
845	for (slot = 0; slot < ATH_BCBUF; slot++)
846		if (sc->sc_bslot[slot] == NULL) {
847			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
848			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
849				return slot;
850			free = slot;
851			/* NB: keep looking for a double slot */
852		}
853	return free;
854}
855
856static struct ieee80211vap *
857ath_vap_create(struct ieee80211com *ic,
858	const char name[IFNAMSIZ], int unit, int opmode, int flags,
859	const uint8_t bssid[IEEE80211_ADDR_LEN],
860	const uint8_t mac0[IEEE80211_ADDR_LEN])
861{
862	struct ath_softc *sc = ic->ic_ifp->if_softc;
863	struct ath_vap *avp;
864	struct ieee80211vap *vap;
865	uint8_t mac[IEEE80211_ADDR_LEN];
866	int ic_opmode, needbeacon, error;
867
868	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
869	    M_80211_VAP, M_WAITOK | M_ZERO);
870	needbeacon = 0;
871	IEEE80211_ADDR_COPY(mac, mac0);
872
873	ATH_LOCK(sc);
874	ic_opmode = opmode;		/* default to opmode of new vap */
875	switch (opmode) {
876	case IEEE80211_M_STA:
877		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
878			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
879			goto bad;
880		}
881		if (sc->sc_nvaps) {
882			/*
883			 * With multiple vaps we must fall back
884			 * to s/w beacon miss handling.
885			 */
886			flags |= IEEE80211_CLONE_NOBEACONS;
887		}
888		if (flags & IEEE80211_CLONE_NOBEACONS) {
889			/*
890			 * Station mode w/o beacons are implemented w/ AP mode.
891			 */
892			ic_opmode = IEEE80211_M_HOSTAP;
893		}
894		break;
895	case IEEE80211_M_IBSS:
896		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
897			device_printf(sc->sc_dev,
898			    "only 1 ibss vap supported\n");
899			goto bad;
900		}
901		needbeacon = 1;
902		break;
903	case IEEE80211_M_AHDEMO:
904#ifdef IEEE80211_SUPPORT_TDMA
905		if (flags & IEEE80211_CLONE_TDMA) {
906			if (sc->sc_nvaps != 0) {
907				device_printf(sc->sc_dev,
908				    "only 1 tdma vap supported\n");
909				goto bad;
910			}
911			needbeacon = 1;
912			flags |= IEEE80211_CLONE_NOBEACONS;
913		}
914		/* fall thru... */
915#endif
916	case IEEE80211_M_MONITOR:
917		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
918			/*
919			 * Adopt existing mode.  Adding a monitor or ahdemo
920			 * vap to an existing configuration is of dubious
921			 * value but should be ok.
922			 */
923			/* XXX not right for monitor mode */
924			ic_opmode = ic->ic_opmode;
925		}
926		break;
927	case IEEE80211_M_HOSTAP:
928	case IEEE80211_M_MBSS:
929		needbeacon = 1;
930		break;
931	case IEEE80211_M_WDS:
932		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
933			device_printf(sc->sc_dev,
934			    "wds not supported in sta mode\n");
935			goto bad;
936		}
937		/*
938		 * Silently remove any request for a unique
939		 * bssid; WDS vap's always share the local
940		 * mac address.
941		 */
942		flags &= ~IEEE80211_CLONE_BSSID;
943		if (sc->sc_nvaps == 0)
944			ic_opmode = IEEE80211_M_HOSTAP;
945		else
946			ic_opmode = ic->ic_opmode;
947		break;
948	default:
949		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
950		goto bad;
951	}
952	/*
953	 * Check that a beacon buffer is available; the code below assumes it.
954	 */
955	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
956		device_printf(sc->sc_dev, "no beacon buffer available\n");
957		goto bad;
958	}
959
960	/* STA, AHDEMO? */
961	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
962		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
963		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
964	}
965
966	vap = &avp->av_vap;
967	/* XXX can't hold mutex across if_alloc */
968	ATH_UNLOCK(sc);
969	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
970	    bssid, mac);
971	ATH_LOCK(sc);
972	if (error != 0) {
973		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
974		    __func__, error);
975		goto bad2;
976	}
977
978	/* h/w crypto support */
979	vap->iv_key_alloc = ath_key_alloc;
980	vap->iv_key_delete = ath_key_delete;
981	vap->iv_key_set = ath_key_set;
982	vap->iv_key_update_begin = ath_key_update_begin;
983	vap->iv_key_update_end = ath_key_update_end;
984
985	/* override various methods */
986	avp->av_recv_mgmt = vap->iv_recv_mgmt;
987	vap->iv_recv_mgmt = ath_recv_mgmt;
988	vap->iv_reset = ath_reset_vap;
989	vap->iv_update_beacon = ath_beacon_update;
990	avp->av_newstate = vap->iv_newstate;
991	vap->iv_newstate = ath_newstate;
992	avp->av_bmiss = vap->iv_bmiss;
993	vap->iv_bmiss = ath_bmiss_vap;
994
995	/* Set default parameters */
996
997	/*
998	 * Anything earlier than some AR9300 series MACs don't
999	 * support a smaller MPDU density.
1000	 */
1001	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
1002	/*
1003	 * All NICs can handle the maximum size, however
1004	 * AR5416 based MACs can only TX aggregates w/ RTS
1005	 * protection when the total aggregate size is <= 8k.
1006	 * However, for now that's enforced by the TX path.
1007	 */
1008	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1009
1010	avp->av_bslot = -1;
1011	if (needbeacon) {
1012		/*
1013		 * Allocate beacon state and setup the q for buffered
1014		 * multicast frames.  We know a beacon buffer is
1015		 * available because we checked above.
1016		 */
1017		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
1018		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
1019		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1020			/*
1021			 * Assign the vap to a beacon xmit slot.  As above
1022			 * this cannot fail to find a free one.
1023			 */
1024			avp->av_bslot = assign_bslot(sc);
1025			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1026			    ("beacon slot %u not empty", avp->av_bslot));
1027			sc->sc_bslot[avp->av_bslot] = vap;
1028			sc->sc_nbcnvaps++;
1029		}
1030		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1031			/*
1032			 * Multple vaps are to transmit beacons and we
1033			 * have h/w support for TSF adjusting; enable
1034			 * use of staggered beacons.
1035			 */
1036			sc->sc_stagbeacons = 1;
1037		}
1038		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1039	}
1040
1041	ic->ic_opmode = ic_opmode;
1042	if (opmode != IEEE80211_M_WDS) {
1043		sc->sc_nvaps++;
1044		if (opmode == IEEE80211_M_STA)
1045			sc->sc_nstavaps++;
1046		if (opmode == IEEE80211_M_MBSS)
1047			sc->sc_nmeshvaps++;
1048	}
1049	switch (ic_opmode) {
1050	case IEEE80211_M_IBSS:
1051		sc->sc_opmode = HAL_M_IBSS;
1052		break;
1053	case IEEE80211_M_STA:
1054		sc->sc_opmode = HAL_M_STA;
1055		break;
1056	case IEEE80211_M_AHDEMO:
1057#ifdef IEEE80211_SUPPORT_TDMA
1058		if (vap->iv_caps & IEEE80211_C_TDMA) {
1059			sc->sc_tdma = 1;
1060			/* NB: disable tsf adjust */
1061			sc->sc_stagbeacons = 0;
1062		}
1063		/*
1064		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1065		 * just ap mode.
1066		 */
1067		/* fall thru... */
1068#endif
1069	case IEEE80211_M_HOSTAP:
1070	case IEEE80211_M_MBSS:
1071		sc->sc_opmode = HAL_M_HOSTAP;
1072		break;
1073	case IEEE80211_M_MONITOR:
1074		sc->sc_opmode = HAL_M_MONITOR;
1075		break;
1076	default:
1077		/* XXX should not happen */
1078		break;
1079	}
1080	if (sc->sc_hastsfadd) {
1081		/*
1082		 * Configure whether or not TSF adjust should be done.
1083		 */
1084		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1085	}
1086	if (flags & IEEE80211_CLONE_NOBEACONS) {
1087		/*
1088		 * Enable s/w beacon miss handling.
1089		 */
1090		sc->sc_swbmiss = 1;
1091	}
1092	ATH_UNLOCK(sc);
1093
1094	/* complete setup */
1095	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1096	return vap;
1097bad2:
1098	reclaim_address(sc, mac);
1099	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1100bad:
1101	free(avp, M_80211_VAP);
1102	ATH_UNLOCK(sc);
1103	return NULL;
1104}
1105
1106static void
1107ath_vap_delete(struct ieee80211vap *vap)
1108{
1109	struct ieee80211com *ic = vap->iv_ic;
1110	struct ifnet *ifp = ic->ic_ifp;
1111	struct ath_softc *sc = ifp->if_softc;
1112	struct ath_hal *ah = sc->sc_ah;
1113	struct ath_vap *avp = ATH_VAP(vap);
1114
1115	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1116		/*
1117		 * Quiesce the hardware while we remove the vap.  In
1118		 * particular we need to reclaim all references to
1119		 * the vap state by any frames pending on the tx queues.
1120		 */
1121		ath_hal_intrset(ah, 0);		/* disable interrupts */
1122		ath_draintxq(sc);		/* stop xmit side */
1123		ath_stoprecv(sc);		/* stop recv side */
1124	}
1125
1126	ieee80211_vap_detach(vap);
1127	ATH_LOCK(sc);
1128	/*
1129	 * Reclaim beacon state.  Note this must be done before
1130	 * the vap instance is reclaimed as we may have a reference
1131	 * to it in the buffer for the beacon frame.
1132	 */
1133	if (avp->av_bcbuf != NULL) {
1134		if (avp->av_bslot != -1) {
1135			sc->sc_bslot[avp->av_bslot] = NULL;
1136			sc->sc_nbcnvaps--;
1137		}
1138		ath_beacon_return(sc, avp->av_bcbuf);
1139		avp->av_bcbuf = NULL;
1140		if (sc->sc_nbcnvaps == 0) {
1141			sc->sc_stagbeacons = 0;
1142			if (sc->sc_hastsfadd)
1143				ath_hal_settsfadjust(sc->sc_ah, 0);
1144		}
1145		/*
1146		 * Reclaim any pending mcast frames for the vap.
1147		 */
1148		ath_tx_draintxq(sc, &avp->av_mcastq);
1149		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1150	}
1151	/*
1152	 * Update bookkeeping.
1153	 */
1154	if (vap->iv_opmode == IEEE80211_M_STA) {
1155		sc->sc_nstavaps--;
1156		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1157			sc->sc_swbmiss = 0;
1158	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1159	    vap->iv_opmode == IEEE80211_M_MBSS) {
1160		reclaim_address(sc, vap->iv_myaddr);
1161		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1162		if (vap->iv_opmode == IEEE80211_M_MBSS)
1163			sc->sc_nmeshvaps--;
1164	}
1165	if (vap->iv_opmode != IEEE80211_M_WDS)
1166		sc->sc_nvaps--;
1167#ifdef IEEE80211_SUPPORT_TDMA
1168	/* TDMA operation ceases when the last vap is destroyed */
1169	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1170		sc->sc_tdma = 0;
1171		sc->sc_swbmiss = 0;
1172	}
1173#endif
1174	ATH_UNLOCK(sc);
1175	free(avp, M_80211_VAP);
1176
1177	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1178		/*
1179		 * Restart rx+tx machines if still running (RUNNING will
1180		 * be reset if we just destroyed the last vap).
1181		 */
1182		if (ath_startrecv(sc) != 0)
1183			if_printf(ifp, "%s: unable to restart recv logic\n",
1184			    __func__);
1185		if (sc->sc_beacons) {		/* restart beacons */
1186#ifdef IEEE80211_SUPPORT_TDMA
1187			if (sc->sc_tdma)
1188				ath_tdma_config(sc, NULL);
1189			else
1190#endif
1191				ath_beacon_config(sc, NULL);
1192		}
1193		ath_hal_intrset(ah, sc->sc_imask);
1194	}
1195}
1196
1197void
1198ath_suspend(struct ath_softc *sc)
1199{
1200	struct ifnet *ifp = sc->sc_ifp;
1201	struct ieee80211com *ic = ifp->if_l2com;
1202
1203	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1204		__func__, ifp->if_flags);
1205
1206	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1207	if (ic->ic_opmode == IEEE80211_M_STA)
1208		ath_stop(ifp);
1209	else
1210		ieee80211_suspend_all(ic);
1211	/*
1212	 * NB: don't worry about putting the chip in low power
1213	 * mode; pci will power off our socket on suspend and
1214	 * CardBus detaches the device.
1215	 */
1216}
1217
1218/*
1219 * Reset the key cache since some parts do not reset the
1220 * contents on resume.  First we clear all entries, then
1221 * re-load keys that the 802.11 layer assumes are setup
1222 * in h/w.
1223 */
1224static void
1225ath_reset_keycache(struct ath_softc *sc)
1226{
1227	struct ifnet *ifp = sc->sc_ifp;
1228	struct ieee80211com *ic = ifp->if_l2com;
1229	struct ath_hal *ah = sc->sc_ah;
1230	int i;
1231
1232	for (i = 0; i < sc->sc_keymax; i++)
1233		ath_hal_keyreset(ah, i);
1234	ieee80211_crypto_reload_keys(ic);
1235}
1236
1237void
1238ath_resume(struct ath_softc *sc)
1239{
1240	struct ifnet *ifp = sc->sc_ifp;
1241	struct ieee80211com *ic = ifp->if_l2com;
1242	struct ath_hal *ah = sc->sc_ah;
1243	HAL_STATUS status;
1244
1245	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1246		__func__, ifp->if_flags);
1247
1248	/*
1249	 * Must reset the chip before we reload the
1250	 * keycache as we were powered down on suspend.
1251	 */
1252	ath_hal_reset(ah, sc->sc_opmode,
1253	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1254	    AH_FALSE, &status);
1255	ath_reset_keycache(sc);
1256
1257	/* Let DFS at it in case it's a DFS channel */
1258	ath_dfs_radar_enable(sc, ic->ic_curchan);
1259
1260	if (sc->sc_resume_up) {
1261		if (ic->ic_opmode == IEEE80211_M_STA) {
1262			ath_init(sc);
1263			/*
1264			 * Program the beacon registers using the last rx'd
1265			 * beacon frame and enable sync on the next beacon
1266			 * we see.  This should handle the case where we
1267			 * wakeup and find the same AP and also the case where
1268			 * we wakeup and need to roam.  For the latter we
1269			 * should get bmiss events that trigger a roam.
1270			 */
1271			ath_beacon_config(sc, NULL);
1272			sc->sc_syncbeacon = 1;
1273		} else
1274			ieee80211_resume_all(ic);
1275	}
1276	if (sc->sc_softled) {
1277		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1278		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1279		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1280	}
1281
1282	/* XXX beacons ? */
1283}
1284
1285void
1286ath_shutdown(struct ath_softc *sc)
1287{
1288	struct ifnet *ifp = sc->sc_ifp;
1289
1290	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1291		__func__, ifp->if_flags);
1292
1293	ath_stop(ifp);
1294	/* NB: no point powering down chip as we're about to reboot */
1295}
1296
1297/*
1298 * Interrupt handler.  Most of the actual processing is deferred.
1299 */
1300void
1301ath_intr(void *arg)
1302{
1303	struct ath_softc *sc = arg;
1304	struct ifnet *ifp = sc->sc_ifp;
1305	struct ath_hal *ah = sc->sc_ah;
1306	HAL_INT status = 0;
1307
1308	if (sc->sc_invalid) {
1309		/*
1310		 * The hardware is not ready/present, don't touch anything.
1311		 * Note this can happen early on if the IRQ is shared.
1312		 */
1313		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1314		return;
1315	}
1316	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1317		return;
1318	if ((ifp->if_flags & IFF_UP) == 0 ||
1319	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1320		HAL_INT status;
1321
1322		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1323			__func__, ifp->if_flags);
1324		ath_hal_getisr(ah, &status);	/* clear ISR */
1325		ath_hal_intrset(ah, 0);		/* disable further intr's */
1326		return;
1327	}
1328	/*
1329	 * Figure out the reason(s) for the interrupt.  Note
1330	 * that the hal returns a pseudo-ISR that may include
1331	 * bits we haven't explicitly enabled so we mask the
1332	 * value to insure we only process bits we requested.
1333	 */
1334	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1335	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1336	status &= sc->sc_imask;			/* discard unasked for bits */
1337
1338	/* Short-circuit un-handled interrupts */
1339	if (status == 0x0)
1340		return;
1341
1342	if (status & HAL_INT_FATAL) {
1343		sc->sc_stats.ast_hardware++;
1344		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1345		ath_fatal_proc(sc, 0);
1346	} else {
1347		if (status & HAL_INT_SWBA) {
1348			/*
1349			 * Software beacon alert--time to send a beacon.
1350			 * Handle beacon transmission directly; deferring
1351			 * this is too slow to meet timing constraints
1352			 * under load.
1353			 */
1354#ifdef IEEE80211_SUPPORT_TDMA
1355			if (sc->sc_tdma) {
1356				if (sc->sc_tdmaswba == 0) {
1357					struct ieee80211com *ic = ifp->if_l2com;
1358					struct ieee80211vap *vap =
1359					    TAILQ_FIRST(&ic->ic_vaps);
1360					ath_tdma_beacon_send(sc, vap);
1361					sc->sc_tdmaswba =
1362					    vap->iv_tdma->tdma_bintval;
1363				} else
1364					sc->sc_tdmaswba--;
1365			} else
1366#endif
1367			{
1368				ath_beacon_proc(sc, 0);
1369#ifdef IEEE80211_SUPPORT_SUPERG
1370				/*
1371				 * Schedule the rx taskq in case there's no
1372				 * traffic so any frames held on the staging
1373				 * queue are aged and potentially flushed.
1374				 */
1375				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1376#endif
1377			}
1378		}
1379		if (status & HAL_INT_RXEOL) {
1380			int imask = sc->sc_imask;
1381			/*
1382			 * NB: the hardware should re-read the link when
1383			 *     RXE bit is written, but it doesn't work at
1384			 *     least on older hardware revs.
1385			 */
1386			sc->sc_stats.ast_rxeol++;
1387			/*
1388			 * Disable RXEOL/RXORN - prevent an interrupt
1389			 * storm until the PCU logic can be reset.
1390			 * In case the interface is reset some other
1391			 * way before "sc_kickpcu" is called, don't
1392			 * modify sc_imask - that way if it is reset
1393			 * by a call to ath_reset() somehow, the
1394			 * interrupt mask will be correctly reprogrammed.
1395			 */
1396			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1397			ath_hal_intrset(ah, imask);
1398			/*
1399			 * Enqueue an RX proc, to handled whatever
1400			 * is in the RX queue.
1401			 * This will then kick the PCU.
1402			 */
1403			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1404			sc->sc_rxlink = NULL;
1405			sc->sc_kickpcu = 1;
1406		}
1407		if (status & HAL_INT_TXURN) {
1408			sc->sc_stats.ast_txurn++;
1409			/* bump tx trigger level */
1410			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1411		}
1412		if (status & HAL_INT_RX)
1413			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1414		if (status & HAL_INT_TX)
1415			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1416		if (status & HAL_INT_BMISS) {
1417			sc->sc_stats.ast_bmiss++;
1418			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1419		}
1420		if (status & HAL_INT_GTT)
1421			sc->sc_stats.ast_tx_timeout++;
1422		if (status & HAL_INT_CST)
1423			sc->sc_stats.ast_tx_cst++;
1424		if (status & HAL_INT_MIB) {
1425			sc->sc_stats.ast_mib++;
1426			/*
1427			 * Disable interrupts until we service the MIB
1428			 * interrupt; otherwise it will continue to fire.
1429			 */
1430			ath_hal_intrset(ah, 0);
1431			/*
1432			 * Let the hal handle the event.  We assume it will
1433			 * clear whatever condition caused the interrupt.
1434			 */
1435			ath_hal_mibevent(ah, &sc->sc_halstats);
1436			ath_hal_intrset(ah, sc->sc_imask);
1437		}
1438		if (status & HAL_INT_RXORN) {
1439			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1440			sc->sc_stats.ast_rxorn++;
1441		}
1442	}
1443}
1444
1445static void
1446ath_fatal_proc(void *arg, int pending)
1447{
1448	struct ath_softc *sc = arg;
1449	struct ifnet *ifp = sc->sc_ifp;
1450	u_int32_t *state;
1451	u_int32_t len;
1452	void *sp;
1453
1454	if_printf(ifp, "hardware error; resetting\n");
1455	/*
1456	 * Fatal errors are unrecoverable.  Typically these
1457	 * are caused by DMA errors.  Collect h/w state from
1458	 * the hal so we can diagnose what's going on.
1459	 */
1460	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1461		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1462		state = sp;
1463		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1464		    state[0], state[1] , state[2], state[3],
1465		    state[4], state[5]);
1466	}
1467	ath_reset(ifp);
1468}
1469
1470static void
1471ath_bmiss_vap(struct ieee80211vap *vap)
1472{
1473	/*
1474	 * Workaround phantom bmiss interrupts by sanity-checking
1475	 * the time of our last rx'd frame.  If it is within the
1476	 * beacon miss interval then ignore the interrupt.  If it's
1477	 * truly a bmiss we'll get another interrupt soon and that'll
1478	 * be dispatched up for processing.  Note this applies only
1479	 * for h/w beacon miss events.
1480	 */
1481	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1482		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1483		struct ath_softc *sc = ifp->if_softc;
1484		u_int64_t lastrx = sc->sc_lastrx;
1485		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1486		u_int bmisstimeout =
1487			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1488
1489		DPRINTF(sc, ATH_DEBUG_BEACON,
1490		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1491		    __func__, (unsigned long long) tsf,
1492		    (unsigned long long)(tsf - lastrx),
1493		    (unsigned long long) lastrx, bmisstimeout);
1494
1495		if (tsf - lastrx <= bmisstimeout) {
1496			sc->sc_stats.ast_bmiss_phantom++;
1497			return;
1498		}
1499	}
1500	ATH_VAP(vap)->av_bmiss(vap);
1501}
1502
1503static int
1504ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1505{
1506	uint32_t rsize;
1507	void *sp;
1508
1509	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1510		return 0;
1511	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1512	*hangs = *(uint32_t *)sp;
1513	return 1;
1514}
1515
1516static void
1517ath_bmiss_proc(void *arg, int pending)
1518{
1519	struct ath_softc *sc = arg;
1520	struct ifnet *ifp = sc->sc_ifp;
1521	uint32_t hangs;
1522
1523	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1524
1525	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1526		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1527		ath_reset(ifp);
1528	} else
1529		ieee80211_beacon_miss(ifp->if_l2com);
1530}
1531
1532/*
1533 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1534 * calcs together with WME.  If necessary disable the crypto
1535 * hardware and mark the 802.11 state so keys will be setup
1536 * with the MIC work done in software.
1537 */
1538static void
1539ath_settkipmic(struct ath_softc *sc)
1540{
1541	struct ifnet *ifp = sc->sc_ifp;
1542	struct ieee80211com *ic = ifp->if_l2com;
1543
1544	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1545		if (ic->ic_flags & IEEE80211_F_WME) {
1546			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1547			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1548		} else {
1549			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1550			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1551		}
1552	}
1553}
1554
1555static void
1556ath_init(void *arg)
1557{
1558	struct ath_softc *sc = (struct ath_softc *) arg;
1559	struct ifnet *ifp = sc->sc_ifp;
1560	struct ieee80211com *ic = ifp->if_l2com;
1561	struct ath_hal *ah = sc->sc_ah;
1562	HAL_STATUS status;
1563
1564	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1565		__func__, ifp->if_flags);
1566
1567	ATH_LOCK(sc);
1568	/*
1569	 * Stop anything previously setup.  This is safe
1570	 * whether this is the first time through or not.
1571	 */
1572	ath_stop_locked(ifp);
1573
1574	/*
1575	 * The basic interface to setting the hardware in a good
1576	 * state is ``reset''.  On return the hardware is known to
1577	 * be powered up and with interrupts disabled.  This must
1578	 * be followed by initialization of the appropriate bits
1579	 * and then setup of the interrupt mask.
1580	 */
1581	ath_settkipmic(sc);
1582	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1583		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1584			status);
1585		ATH_UNLOCK(sc);
1586		return;
1587	}
1588	ath_chan_change(sc, ic->ic_curchan);
1589
1590	/* Let DFS at it in case it's a DFS channel */
1591	ath_dfs_radar_enable(sc, ic->ic_curchan);
1592
1593	/*
1594	 * Likewise this is set during reset so update
1595	 * state cached in the driver.
1596	 */
1597	sc->sc_diversity = ath_hal_getdiversity(ah);
1598	sc->sc_lastlongcal = 0;
1599	sc->sc_resetcal = 1;
1600	sc->sc_lastcalreset = 0;
1601	sc->sc_lastani = 0;
1602	sc->sc_lastshortcal = 0;
1603	sc->sc_doresetcal = AH_FALSE;
1604	/*
1605	 * Beacon timers were cleared here; give ath_newstate()
1606	 * a hint that the beacon timers should be poked when
1607	 * things transition to the RUN state.
1608	 */
1609	sc->sc_beacons = 0;
1610
1611	/*
1612	 * Setup the hardware after reset: the key cache
1613	 * is filled as needed and the receive engine is
1614	 * set going.  Frame transmit is handled entirely
1615	 * in the frame output path; there's nothing to do
1616	 * here except setup the interrupt mask.
1617	 */
1618	if (ath_startrecv(sc) != 0) {
1619		if_printf(ifp, "unable to start recv logic\n");
1620		ATH_UNLOCK(sc);
1621		return;
1622	}
1623
1624	/*
1625	 * Enable interrupts.
1626	 */
1627	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1628		  | HAL_INT_RXEOL | HAL_INT_RXORN
1629		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1630	/*
1631	 * Enable MIB interrupts when there are hardware phy counters.
1632	 * Note we only do this (at the moment) for station mode.
1633	 */
1634	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1635		sc->sc_imask |= HAL_INT_MIB;
1636
1637	/* Enable global TX timeout and carrier sense timeout if available */
1638	if (ath_hal_gtxto_supported(ah))
1639		sc->sc_imask |= HAL_INT_GTT;
1640
1641	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1642		__func__, sc->sc_imask);
1643
1644	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1645	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1646	ath_hal_intrset(ah, sc->sc_imask);
1647
1648	ATH_UNLOCK(sc);
1649
1650#ifdef ATH_TX99_DIAG
1651	if (sc->sc_tx99 != NULL)
1652		sc->sc_tx99->start(sc->sc_tx99);
1653	else
1654#endif
1655	ieee80211_start_all(ic);		/* start all vap's */
1656}
1657
1658static void
1659ath_stop_locked(struct ifnet *ifp)
1660{
1661	struct ath_softc *sc = ifp->if_softc;
1662	struct ath_hal *ah = sc->sc_ah;
1663
1664	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1665		__func__, sc->sc_invalid, ifp->if_flags);
1666
1667	ATH_LOCK_ASSERT(sc);
1668	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1669		/*
1670		 * Shutdown the hardware and driver:
1671		 *    reset 802.11 state machine
1672		 *    turn off timers
1673		 *    disable interrupts
1674		 *    turn off the radio
1675		 *    clear transmit machinery
1676		 *    clear receive machinery
1677		 *    drain and release tx queues
1678		 *    reclaim beacon resources
1679		 *    power down hardware
1680		 *
1681		 * Note that some of this work is not possible if the
1682		 * hardware is gone (invalid).
1683		 */
1684#ifdef ATH_TX99_DIAG
1685		if (sc->sc_tx99 != NULL)
1686			sc->sc_tx99->stop(sc->sc_tx99);
1687#endif
1688		callout_stop(&sc->sc_wd_ch);
1689		sc->sc_wd_timer = 0;
1690		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1691		if (!sc->sc_invalid) {
1692			if (sc->sc_softled) {
1693				callout_stop(&sc->sc_ledtimer);
1694				ath_hal_gpioset(ah, sc->sc_ledpin,
1695					!sc->sc_ledon);
1696				sc->sc_blinking = 0;
1697			}
1698			ath_hal_intrset(ah, 0);
1699		}
1700		ath_draintxq(sc);
1701		if (!sc->sc_invalid) {
1702			ath_stoprecv(sc);
1703			ath_hal_phydisable(ah);
1704		} else
1705			sc->sc_rxlink = NULL;
1706		ath_beacon_free(sc);	/* XXX not needed */
1707	}
1708}
1709
1710static void
1711ath_stop(struct ifnet *ifp)
1712{
1713	struct ath_softc *sc = ifp->if_softc;
1714
1715	ATH_LOCK(sc);
1716	ath_stop_locked(ifp);
1717	ATH_UNLOCK(sc);
1718}
1719
1720/*
1721 * Reset the hardware w/o losing operational state.  This is
1722 * basically a more efficient way of doing ath_stop, ath_init,
1723 * followed by state transitions to the current 802.11
1724 * operational state.  Used to recover from various errors and
1725 * to reset or reload hardware state.
1726 */
1727int
1728ath_reset(struct ifnet *ifp)
1729{
1730	struct ath_softc *sc = ifp->if_softc;
1731	struct ieee80211com *ic = ifp->if_l2com;
1732	struct ath_hal *ah = sc->sc_ah;
1733	HAL_STATUS status;
1734
1735	ath_hal_intrset(ah, 0);		/* disable interrupts */
1736	ath_draintxq(sc);		/* stop xmit side */
1737	ath_stoprecv(sc);		/* stop recv side */
1738	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1739	/* NB: indicate channel change so we do a full reset */
1740	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1741		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1742			__func__, status);
1743	sc->sc_diversity = ath_hal_getdiversity(ah);
1744
1745	/* Let DFS at it in case it's a DFS channel */
1746	ath_dfs_radar_enable(sc, ic->ic_curchan);
1747
1748	if (ath_startrecv(sc) != 0)	/* restart recv */
1749		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1750	/*
1751	 * We may be doing a reset in response to an ioctl
1752	 * that changes the channel so update any state that
1753	 * might change as a result.
1754	 */
1755	ath_chan_change(sc, ic->ic_curchan);
1756	if (sc->sc_beacons) {		/* restart beacons */
1757#ifdef IEEE80211_SUPPORT_TDMA
1758		if (sc->sc_tdma)
1759			ath_tdma_config(sc, NULL);
1760		else
1761#endif
1762			ath_beacon_config(sc, NULL);
1763	}
1764	ath_hal_intrset(ah, sc->sc_imask);
1765
1766	ath_start(ifp);			/* restart xmit */
1767	return 0;
1768}
1769
1770static int
1771ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1772{
1773	struct ieee80211com *ic = vap->iv_ic;
1774	struct ifnet *ifp = ic->ic_ifp;
1775	struct ath_softc *sc = ifp->if_softc;
1776	struct ath_hal *ah = sc->sc_ah;
1777
1778	switch (cmd) {
1779	case IEEE80211_IOC_TXPOWER:
1780		/*
1781		 * If per-packet TPC is enabled, then we have nothing
1782		 * to do; otherwise we need to force the global limit.
1783		 * All this can happen directly; no need to reset.
1784		 */
1785		if (!ath_hal_gettpc(ah))
1786			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1787		return 0;
1788	}
1789	return ath_reset(ifp);
1790}
1791
1792struct ath_buf *
1793_ath_getbuf_locked(struct ath_softc *sc)
1794{
1795	struct ath_buf *bf;
1796
1797	ATH_TXBUF_LOCK_ASSERT(sc);
1798
1799	bf = STAILQ_FIRST(&sc->sc_txbuf);
1800	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
1801		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1802	else
1803		bf = NULL;
1804	if (bf == NULL) {
1805		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
1806		    STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
1807			"out of xmit buffers" : "xmit buffer busy");
1808	}
1809	return bf;
1810}
1811
1812struct ath_buf *
1813ath_getbuf(struct ath_softc *sc)
1814{
1815	struct ath_buf *bf;
1816
1817	ATH_TXBUF_LOCK(sc);
1818	bf = _ath_getbuf_locked(sc);
1819	if (bf == NULL) {
1820		struct ifnet *ifp = sc->sc_ifp;
1821
1822		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
1823		sc->sc_stats.ast_tx_qstop++;
1824		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1825	}
1826	ATH_TXBUF_UNLOCK(sc);
1827	return bf;
1828}
1829
1830static void
1831ath_start(struct ifnet *ifp)
1832{
1833	struct ath_softc *sc = ifp->if_softc;
1834	struct ieee80211_node *ni;
1835	struct ath_buf *bf;
1836	struct mbuf *m, *next;
1837	ath_bufhead frags;
1838
1839	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1840		return;
1841	for (;;) {
1842		/*
1843		 * Grab a TX buffer and associated resources.
1844		 */
1845		bf = ath_getbuf(sc);
1846		if (bf == NULL)
1847			break;
1848
1849		IFQ_DEQUEUE(&ifp->if_snd, m);
1850		if (m == NULL) {
1851			ATH_TXBUF_LOCK(sc);
1852			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1853			ATH_TXBUF_UNLOCK(sc);
1854			break;
1855		}
1856		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1857		/*
1858		 * Check for fragmentation.  If this frame
1859		 * has been broken up verify we have enough
1860		 * buffers to send all the fragments so all
1861		 * go out or none...
1862		 */
1863		STAILQ_INIT(&frags);
1864		if ((m->m_flags & M_FRAG) &&
1865		    !ath_txfrag_setup(sc, &frags, m, ni)) {
1866			DPRINTF(sc, ATH_DEBUG_XMIT,
1867			    "%s: out of txfrag buffers\n", __func__);
1868			sc->sc_stats.ast_tx_nofrag++;
1869			ifp->if_oerrors++;
1870			ath_freetx(m);
1871			goto bad;
1872		}
1873		ifp->if_opackets++;
1874	nextfrag:
1875		/*
1876		 * Pass the frame to the h/w for transmission.
1877		 * Fragmented frames have each frag chained together
1878		 * with m_nextpkt.  We know there are sufficient ath_buf's
1879		 * to send all the frags because of work done by
1880		 * ath_txfrag_setup.  We leave m_nextpkt set while
1881		 * calling ath_tx_start so it can use it to extend the
1882		 * the tx duration to cover the subsequent frag and
1883		 * so it can reclaim all the mbufs in case of an error;
1884		 * ath_tx_start clears m_nextpkt once it commits to
1885		 * handing the frame to the hardware.
1886		 */
1887		next = m->m_nextpkt;
1888		if (ath_tx_start(sc, ni, bf, m)) {
1889	bad:
1890			ifp->if_oerrors++;
1891	reclaim:
1892			bf->bf_m = NULL;
1893			bf->bf_node = NULL;
1894			ATH_TXBUF_LOCK(sc);
1895			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1896			ath_txfrag_cleanup(sc, &frags, ni);
1897			ATH_TXBUF_UNLOCK(sc);
1898			if (ni != NULL)
1899				ieee80211_free_node(ni);
1900			continue;
1901		}
1902		if (next != NULL) {
1903			/*
1904			 * Beware of state changing between frags.
1905			 * XXX check sta power-save state?
1906			 */
1907			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
1908				DPRINTF(sc, ATH_DEBUG_XMIT,
1909				    "%s: flush fragmented packet, state %s\n",
1910				    __func__,
1911				    ieee80211_state_name[ni->ni_vap->iv_state]);
1912				ath_freetx(next);
1913				goto reclaim;
1914			}
1915			m = next;
1916			bf = STAILQ_FIRST(&frags);
1917			KASSERT(bf != NULL, ("no buf for txfrag"));
1918			STAILQ_REMOVE_HEAD(&frags, bf_list);
1919			goto nextfrag;
1920		}
1921
1922		sc->sc_wd_timer = 5;
1923	}
1924}
1925
1926static int
1927ath_media_change(struct ifnet *ifp)
1928{
1929	int error = ieee80211_media_change(ifp);
1930	/* NB: only the fixed rate can change and that doesn't need a reset */
1931	return (error == ENETRESET ? 0 : error);
1932}
1933
1934/*
1935 * Block/unblock tx+rx processing while a key change is done.
1936 * We assume the caller serializes key management operations
1937 * so we only need to worry about synchronization with other
1938 * uses that originate in the driver.
1939 */
1940static void
1941ath_key_update_begin(struct ieee80211vap *vap)
1942{
1943	struct ifnet *ifp = vap->iv_ic->ic_ifp;
1944	struct ath_softc *sc = ifp->if_softc;
1945
1946	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1947	taskqueue_block(sc->sc_tq);
1948	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1949}
1950
1951static void
1952ath_key_update_end(struct ieee80211vap *vap)
1953{
1954	struct ifnet *ifp = vap->iv_ic->ic_ifp;
1955	struct ath_softc *sc = ifp->if_softc;
1956
1957	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1958	IF_UNLOCK(&ifp->if_snd);
1959	taskqueue_unblock(sc->sc_tq);
1960}
1961
1962/*
1963 * Calculate the receive filter according to the
1964 * operating mode and state:
1965 *
1966 * o always accept unicast, broadcast, and multicast traffic
1967 * o accept PHY error frames when hardware doesn't have MIB support
1968 *   to count and we need them for ANI (sta mode only until recently)
1969 *   and we are not scanning (ANI is disabled)
1970 *   NB: older hal's add rx filter bits out of sight and we need to
1971 *	 blindly preserve them
1972 * o probe request frames are accepted only when operating in
1973 *   hostap, adhoc, mesh, or monitor modes
1974 * o enable promiscuous mode
1975 *   - when in monitor mode
1976 *   - if interface marked PROMISC (assumes bridge setting is filtered)
1977 * o accept beacons:
1978 *   - when operating in station mode for collecting rssi data when
1979 *     the station is otherwise quiet, or
1980 *   - when operating in adhoc mode so the 802.11 layer creates
1981 *     node table entries for peers,
1982 *   - when scanning
1983 *   - when doing s/w beacon miss (e.g. for ap+sta)
1984 *   - when operating in ap mode in 11g to detect overlapping bss that
1985 *     require protection
1986 *   - when operating in mesh mode to detect neighbors
1987 * o accept control frames:
1988 *   - when in monitor mode
1989 * XXX HT protection for 11n
1990 */
1991static u_int32_t
1992ath_calcrxfilter(struct ath_softc *sc)
1993{
1994	struct ifnet *ifp = sc->sc_ifp;
1995	struct ieee80211com *ic = ifp->if_l2com;
1996	u_int32_t rfilt;
1997
1998	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1999	if (!sc->sc_needmib && !sc->sc_scanning)
2000		rfilt |= HAL_RX_FILTER_PHYERR;
2001	if (ic->ic_opmode != IEEE80211_M_STA)
2002		rfilt |= HAL_RX_FILTER_PROBEREQ;
2003	/* XXX ic->ic_monvaps != 0? */
2004	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2005		rfilt |= HAL_RX_FILTER_PROM;
2006	if (ic->ic_opmode == IEEE80211_M_STA ||
2007	    ic->ic_opmode == IEEE80211_M_IBSS ||
2008	    sc->sc_swbmiss || sc->sc_scanning)
2009		rfilt |= HAL_RX_FILTER_BEACON;
2010	/*
2011	 * NB: We don't recalculate the rx filter when
2012	 * ic_protmode changes; otherwise we could do
2013	 * this only when ic_protmode != NONE.
2014	 */
2015	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2016	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2017		rfilt |= HAL_RX_FILTER_BEACON;
2018
2019	/*
2020	 * Enable hardware PS-POLL RX only for hostap mode;
2021	 * STA mode sends PS-POLL frames but never
2022	 * receives them.
2023	 */
2024	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
2025	    0, NULL) == HAL_OK &&
2026	    ic->ic_opmode == IEEE80211_M_HOSTAP)
2027		rfilt |= HAL_RX_FILTER_PSPOLL;
2028
2029	if (sc->sc_nmeshvaps) {
2030		rfilt |= HAL_RX_FILTER_BEACON;
2031		if (sc->sc_hasbmatch)
2032			rfilt |= HAL_RX_FILTER_BSSID;
2033		else
2034			rfilt |= HAL_RX_FILTER_PROM;
2035	}
2036	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2037		rfilt |= HAL_RX_FILTER_CONTROL;
2038
2039	/*
2040	 * Enable RX of compressed BAR frames only when doing
2041	 * 802.11n. Required for A-MPDU.
2042	 */
2043	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
2044		rfilt |= HAL_RX_FILTER_COMPBAR;
2045
2046	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2047	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2048	return rfilt;
2049}
2050
2051static void
2052ath_update_promisc(struct ifnet *ifp)
2053{
2054	struct ath_softc *sc = ifp->if_softc;
2055	u_int32_t rfilt;
2056
2057	/* configure rx filter */
2058	rfilt = ath_calcrxfilter(sc);
2059	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2060
2061	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2062}
2063
2064static void
2065ath_update_mcast(struct ifnet *ifp)
2066{
2067	struct ath_softc *sc = ifp->if_softc;
2068	u_int32_t mfilt[2];
2069
2070	/* calculate and install multicast filter */
2071	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2072		struct ifmultiaddr *ifma;
2073		/*
2074		 * Merge multicast addresses to form the hardware filter.
2075		 */
2076		mfilt[0] = mfilt[1] = 0;
2077		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2078		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2079			caddr_t dl;
2080			u_int32_t val;
2081			u_int8_t pos;
2082
2083			/* calculate XOR of eight 6bit values */
2084			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2085			val = LE_READ_4(dl + 0);
2086			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2087			val = LE_READ_4(dl + 3);
2088			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2089			pos &= 0x3f;
2090			mfilt[pos / 32] |= (1 << (pos % 32));
2091		}
2092		if_maddr_runlock(ifp);
2093	} else
2094		mfilt[0] = mfilt[1] = ~0;
2095	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2096	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2097		__func__, mfilt[0], mfilt[1]);
2098}
2099
2100static void
2101ath_mode_init(struct ath_softc *sc)
2102{
2103	struct ifnet *ifp = sc->sc_ifp;
2104	struct ath_hal *ah = sc->sc_ah;
2105	u_int32_t rfilt;
2106
2107	/* configure rx filter */
2108	rfilt = ath_calcrxfilter(sc);
2109	ath_hal_setrxfilter(ah, rfilt);
2110
2111	/* configure operational mode */
2112	ath_hal_setopmode(ah);
2113
2114	/* handle any link-level address change */
2115	ath_hal_setmac(ah, IF_LLADDR(ifp));
2116
2117	/* calculate and install multicast filter */
2118	ath_update_mcast(ifp);
2119}
2120
2121/*
2122 * Set the slot time based on the current setting.
2123 */
2124static void
2125ath_setslottime(struct ath_softc *sc)
2126{
2127	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2128	struct ath_hal *ah = sc->sc_ah;
2129	u_int usec;
2130
2131	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2132		usec = 13;
2133	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2134		usec = 21;
2135	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2136		/* honor short/long slot time only in 11g */
2137		/* XXX shouldn't honor on pure g or turbo g channel */
2138		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2139			usec = HAL_SLOT_TIME_9;
2140		else
2141			usec = HAL_SLOT_TIME_20;
2142	} else
2143		usec = HAL_SLOT_TIME_9;
2144
2145	DPRINTF(sc, ATH_DEBUG_RESET,
2146	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2147	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2148	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2149
2150	ath_hal_setslottime(ah, usec);
2151	sc->sc_updateslot = OK;
2152}
2153
2154/*
2155 * Callback from the 802.11 layer to update the
2156 * slot time based on the current setting.
2157 */
2158static void
2159ath_updateslot(struct ifnet *ifp)
2160{
2161	struct ath_softc *sc = ifp->if_softc;
2162	struct ieee80211com *ic = ifp->if_l2com;
2163
2164	/*
2165	 * When not coordinating the BSS, change the hardware
2166	 * immediately.  For other operation we defer the change
2167	 * until beacon updates have propagated to the stations.
2168	 */
2169	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2170	    ic->ic_opmode == IEEE80211_M_MBSS)
2171		sc->sc_updateslot = UPDATE;
2172	else
2173		ath_setslottime(sc);
2174}
2175
2176/*
2177 * Setup a h/w transmit queue for beacons.
2178 */
2179static int
2180ath_beaconq_setup(struct ath_hal *ah)
2181{
2182	HAL_TXQ_INFO qi;
2183
2184	memset(&qi, 0, sizeof(qi));
2185	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2186	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2187	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2188	/* NB: for dynamic turbo, don't enable any other interrupts */
2189	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2190	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2191}
2192
2193/*
2194 * Setup the transmit queue parameters for the beacon queue.
2195 */
2196static int
2197ath_beaconq_config(struct ath_softc *sc)
2198{
2199#define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2200	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2201	struct ath_hal *ah = sc->sc_ah;
2202	HAL_TXQ_INFO qi;
2203
2204	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2205	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2206	    ic->ic_opmode == IEEE80211_M_MBSS) {
2207		/*
2208		 * Always burst out beacon and CAB traffic.
2209		 */
2210		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2211		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2212		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2213	} else {
2214		struct wmeParams *wmep =
2215			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2216		/*
2217		 * Adhoc mode; important thing is to use 2x cwmin.
2218		 */
2219		qi.tqi_aifs = wmep->wmep_aifsn;
2220		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2221		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2222	}
2223
2224	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2225		device_printf(sc->sc_dev, "unable to update parameters for "
2226			"beacon hardware queue!\n");
2227		return 0;
2228	} else {
2229		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2230		return 1;
2231	}
2232#undef ATH_EXPONENT_TO_VALUE
2233}
2234
2235/*
2236 * Allocate and setup an initial beacon frame.
2237 */
2238static int
2239ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2240{
2241	struct ieee80211vap *vap = ni->ni_vap;
2242	struct ath_vap *avp = ATH_VAP(vap);
2243	struct ath_buf *bf;
2244	struct mbuf *m;
2245	int error;
2246
2247	bf = avp->av_bcbuf;
2248	if (bf->bf_m != NULL) {
2249		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2250		m_freem(bf->bf_m);
2251		bf->bf_m = NULL;
2252	}
2253	if (bf->bf_node != NULL) {
2254		ieee80211_free_node(bf->bf_node);
2255		bf->bf_node = NULL;
2256	}
2257
2258	/*
2259	 * NB: the beacon data buffer must be 32-bit aligned;
2260	 * we assume the mbuf routines will return us something
2261	 * with this alignment (perhaps should assert).
2262	 */
2263	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2264	if (m == NULL) {
2265		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2266		sc->sc_stats.ast_be_nombuf++;
2267		return ENOMEM;
2268	}
2269	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2270				     bf->bf_segs, &bf->bf_nseg,
2271				     BUS_DMA_NOWAIT);
2272	if (error != 0) {
2273		device_printf(sc->sc_dev,
2274		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2275		    __func__, error);
2276		m_freem(m);
2277		return error;
2278	}
2279
2280	/*
2281	 * Calculate a TSF adjustment factor required for staggered
2282	 * beacons.  Note that we assume the format of the beacon
2283	 * frame leaves the tstamp field immediately following the
2284	 * header.
2285	 */
2286	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2287		uint64_t tsfadjust;
2288		struct ieee80211_frame *wh;
2289
2290		/*
2291		 * The beacon interval is in TU's; the TSF is in usecs.
2292		 * We figure out how many TU's to add to align the timestamp
2293		 * then convert to TSF units and handle byte swapping before
2294		 * inserting it in the frame.  The hardware will then add this
2295		 * each time a beacon frame is sent.  Note that we align vap's
2296		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2297		 * timestamp in one beacon interval while the others get a
2298		 * timstamp aligned to the next interval.
2299		 */
2300		tsfadjust = ni->ni_intval *
2301		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2302		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2303
2304		DPRINTF(sc, ATH_DEBUG_BEACON,
2305		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2306		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2307		    avp->av_bslot, ni->ni_intval,
2308		    (long long unsigned) le64toh(tsfadjust));
2309
2310		wh = mtod(m, struct ieee80211_frame *);
2311		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2312	}
2313	bf->bf_m = m;
2314	bf->bf_node = ieee80211_ref_node(ni);
2315
2316	return 0;
2317}
2318
2319/*
2320 * Setup the beacon frame for transmit.
2321 */
2322static void
2323ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2324{
2325#define	USE_SHPREAMBLE(_ic) \
2326	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2327		== IEEE80211_F_SHPREAMBLE)
2328	struct ieee80211_node *ni = bf->bf_node;
2329	struct ieee80211com *ic = ni->ni_ic;
2330	struct mbuf *m = bf->bf_m;
2331	struct ath_hal *ah = sc->sc_ah;
2332	struct ath_desc *ds;
2333	int flags, antenna;
2334	const HAL_RATE_TABLE *rt;
2335	u_int8_t rix, rate;
2336
2337	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2338		__func__, m, m->m_len);
2339
2340	/* setup descriptors */
2341	ds = bf->bf_desc;
2342
2343	flags = HAL_TXDESC_NOACK;
2344	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2345		ds->ds_link = bf->bf_daddr;	/* self-linked */
2346		flags |= HAL_TXDESC_VEOL;
2347		/*
2348		 * Let hardware handle antenna switching.
2349		 */
2350		antenna = sc->sc_txantenna;
2351	} else {
2352		ds->ds_link = 0;
2353		/*
2354		 * Switch antenna every 4 beacons.
2355		 * XXX assumes two antenna
2356		 */
2357		if (sc->sc_txantenna != 0)
2358			antenna = sc->sc_txantenna;
2359		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2360			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2361		else
2362			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2363	}
2364
2365	KASSERT(bf->bf_nseg == 1,
2366		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2367	ds->ds_data = bf->bf_segs[0].ds_addr;
2368	/*
2369	 * Calculate rate code.
2370	 * XXX everything at min xmit rate
2371	 */
2372	rix = 0;
2373	rt = sc->sc_currates;
2374	rate = rt->info[rix].rateCode;
2375	if (USE_SHPREAMBLE(ic))
2376		rate |= rt->info[rix].shortPreamble;
2377	ath_hal_setuptxdesc(ah, ds
2378		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2379		, sizeof(struct ieee80211_frame)/* header length */
2380		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2381		, ni->ni_txpower		/* txpower XXX */
2382		, rate, 1			/* series 0 rate/tries */
2383		, HAL_TXKEYIX_INVALID		/* no encryption */
2384		, antenna			/* antenna mode */
2385		, flags				/* no ack, veol for beacons */
2386		, 0				/* rts/cts rate */
2387		, 0				/* rts/cts duration */
2388	);
2389	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2390	ath_hal_filltxdesc(ah, ds
2391		, roundup(m->m_len, 4)		/* buffer length */
2392		, AH_TRUE			/* first segment */
2393		, AH_TRUE			/* last segment */
2394		, ds				/* first descriptor */
2395	);
2396#if 0
2397	ath_desc_swap(ds);
2398#endif
2399#undef USE_SHPREAMBLE
2400}
2401
2402static void
2403ath_beacon_update(struct ieee80211vap *vap, int item)
2404{
2405	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2406
2407	setbit(bo->bo_flags, item);
2408}
2409
2410/*
2411 * Append the contents of src to dst; both queues
2412 * are assumed to be locked.
2413 */
2414static void
2415ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2416{
2417	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2418	dst->axq_link = src->axq_link;
2419	src->axq_link = NULL;
2420	dst->axq_depth += src->axq_depth;
2421	src->axq_depth = 0;
2422}
2423
2424/*
2425 * Transmit a beacon frame at SWBA.  Dynamic updates to the
2426 * frame contents are done as needed and the slot time is
2427 * also adjusted based on current state.
2428 */
2429static void
2430ath_beacon_proc(void *arg, int pending)
2431{
2432	struct ath_softc *sc = arg;
2433	struct ath_hal *ah = sc->sc_ah;
2434	struct ieee80211vap *vap;
2435	struct ath_buf *bf;
2436	int slot, otherant;
2437	uint32_t bfaddr;
2438
2439	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2440		__func__, pending);
2441	/*
2442	 * Check if the previous beacon has gone out.  If
2443	 * not don't try to post another, skip this period
2444	 * and wait for the next.  Missed beacons indicate
2445	 * a problem and should not occur.  If we miss too
2446	 * many consecutive beacons reset the device.
2447	 */
2448	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2449		sc->sc_bmisscount++;
2450		sc->sc_stats.ast_be_missed++;
2451		DPRINTF(sc, ATH_DEBUG_BEACON,
2452			"%s: missed %u consecutive beacons\n",
2453			__func__, sc->sc_bmisscount);
2454		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2455			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2456		return;
2457	}
2458	if (sc->sc_bmisscount != 0) {
2459		DPRINTF(sc, ATH_DEBUG_BEACON,
2460			"%s: resume beacon xmit after %u misses\n",
2461			__func__, sc->sc_bmisscount);
2462		sc->sc_bmisscount = 0;
2463	}
2464
2465	if (sc->sc_stagbeacons) {			/* staggered beacons */
2466		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2467		uint32_t tsftu;
2468
2469		tsftu = ath_hal_gettsf32(ah) >> 10;
2470		/* XXX lintval */
2471		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2472		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2473		bfaddr = 0;
2474		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2475			bf = ath_beacon_generate(sc, vap);
2476			if (bf != NULL)
2477				bfaddr = bf->bf_daddr;
2478		}
2479	} else {					/* burst'd beacons */
2480		uint32_t *bflink = &bfaddr;
2481
2482		for (slot = 0; slot < ATH_BCBUF; slot++) {
2483			vap = sc->sc_bslot[slot];
2484			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2485				bf = ath_beacon_generate(sc, vap);
2486				if (bf != NULL) {
2487					*bflink = bf->bf_daddr;
2488					bflink = &bf->bf_desc->ds_link;
2489				}
2490			}
2491		}
2492		*bflink = 0;				/* terminate list */
2493	}
2494
2495	/*
2496	 * Handle slot time change when a non-ERP station joins/leaves
2497	 * an 11g network.  The 802.11 layer notifies us via callback,
2498	 * we mark updateslot, then wait one beacon before effecting
2499	 * the change.  This gives associated stations at least one
2500	 * beacon interval to note the state change.
2501	 */
2502	/* XXX locking */
2503	if (sc->sc_updateslot == UPDATE) {
2504		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2505		sc->sc_slotupdate = slot;
2506	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
2507		ath_setslottime(sc);		/* commit change to h/w */
2508
2509	/*
2510	 * Check recent per-antenna transmit statistics and flip
2511	 * the default antenna if noticeably more frames went out
2512	 * on the non-default antenna.
2513	 * XXX assumes 2 anntenae
2514	 */
2515	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
2516		otherant = sc->sc_defant & 1 ? 2 : 1;
2517		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2518			ath_setdefantenna(sc, otherant);
2519		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2520	}
2521
2522	if (bfaddr != 0) {
2523		/*
2524		 * Stop any current dma and put the new frame on the queue.
2525		 * This should never fail since we check above that no frames
2526		 * are still pending on the queue.
2527		 */
2528		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2529			DPRINTF(sc, ATH_DEBUG_ANY,
2530				"%s: beacon queue %u did not stop?\n",
2531				__func__, sc->sc_bhalq);
2532		}
2533		/* NB: cabq traffic should already be queued and primed */
2534		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
2535		ath_hal_txstart(ah, sc->sc_bhalq);
2536
2537		sc->sc_stats.ast_be_xmit++;
2538	}
2539}
2540
2541static struct ath_buf *
2542ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
2543{
2544	struct ath_vap *avp = ATH_VAP(vap);
2545	struct ath_txq *cabq = sc->sc_cabq;
2546	struct ath_buf *bf;
2547	struct mbuf *m;
2548	int nmcastq, error;
2549
2550	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2551	    ("not running, state %d", vap->iv_state));
2552	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2553
2554	/*
2555	 * Update dynamic beacon contents.  If this returns
2556	 * non-zero then we need to remap the memory because
2557	 * the beacon frame changed size (probably because
2558	 * of the TIM bitmap).
2559	 */
2560	bf = avp->av_bcbuf;
2561	m = bf->bf_m;
2562	nmcastq = avp->av_mcastq.axq_depth;
2563	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
2564		/* XXX too conservative? */
2565		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2566		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2567					     bf->bf_segs, &bf->bf_nseg,
2568					     BUS_DMA_NOWAIT);
2569		if (error != 0) {
2570			if_printf(vap->iv_ifp,
2571			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2572			    __func__, error);
2573			return NULL;
2574		}
2575	}
2576	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
2577		DPRINTF(sc, ATH_DEBUG_BEACON,
2578		    "%s: cabq did not drain, mcastq %u cabq %u\n",
2579		    __func__, nmcastq, cabq->axq_depth);
2580		sc->sc_stats.ast_cabq_busy++;
2581		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
2582			/*
2583			 * CABQ traffic from a previous vap is still pending.
2584			 * We must drain the q before this beacon frame goes
2585			 * out as otherwise this vap's stations will get cab
2586			 * frames from a different vap.
2587			 * XXX could be slow causing us to miss DBA
2588			 */
2589			ath_tx_draintxq(sc, cabq);
2590		}
2591	}
2592	ath_beacon_setup(sc, bf);
2593	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2594
2595	/*
2596	 * Enable the CAB queue before the beacon queue to
2597	 * insure cab frames are triggered by this beacon.
2598	 */
2599	if (avp->av_boff.bo_tim[4] & 1) {
2600		struct ath_hal *ah = sc->sc_ah;
2601
2602		/* NB: only at DTIM */
2603		ATH_TXQ_LOCK(cabq);
2604		ATH_TXQ_LOCK(&avp->av_mcastq);
2605		if (nmcastq) {
2606			struct ath_buf *bfm;
2607
2608			/*
2609			 * Move frames from the s/w mcast q to the h/w cab q.
2610			 * XXX MORE_DATA bit
2611			 */
2612			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
2613			if (cabq->axq_link != NULL) {
2614				*cabq->axq_link = bfm->bf_daddr;
2615			} else
2616				ath_hal_puttxbuf(ah, cabq->axq_qnum,
2617					bfm->bf_daddr);
2618			ath_txqmove(cabq, &avp->av_mcastq);
2619
2620			sc->sc_stats.ast_cabq_xmit += nmcastq;
2621		}
2622		/* NB: gated by beacon so safe to start here */
2623		if (! STAILQ_EMPTY(&(cabq->axq_q)))
2624			ath_hal_txstart(ah, cabq->axq_qnum);
2625		ATH_TXQ_UNLOCK(&avp->av_mcastq);
2626		ATH_TXQ_UNLOCK(cabq);
2627	}
2628	return bf;
2629}
2630
2631static void
2632ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
2633{
2634	struct ath_vap *avp = ATH_VAP(vap);
2635	struct ath_hal *ah = sc->sc_ah;
2636	struct ath_buf *bf;
2637	struct mbuf *m;
2638	int error;
2639
2640	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2641
2642	/*
2643	 * Update dynamic beacon contents.  If this returns
2644	 * non-zero then we need to remap the memory because
2645	 * the beacon frame changed size (probably because
2646	 * of the TIM bitmap).
2647	 */
2648	bf = avp->av_bcbuf;
2649	m = bf->bf_m;
2650	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
2651		/* XXX too conservative? */
2652		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2653		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2654					     bf->bf_segs, &bf->bf_nseg,
2655					     BUS_DMA_NOWAIT);
2656		if (error != 0) {
2657			if_printf(vap->iv_ifp,
2658			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2659			    __func__, error);
2660			return;
2661		}
2662	}
2663	ath_beacon_setup(sc, bf);
2664	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2665
2666	/* NB: caller is known to have already stopped tx dma */
2667	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2668	ath_hal_txstart(ah, sc->sc_bhalq);
2669}
2670
2671/*
2672 * Reset the hardware after detecting beacons have stopped.
2673 */
2674static void
2675ath_bstuck_proc(void *arg, int pending)
2676{
2677	struct ath_softc *sc = arg;
2678	struct ifnet *ifp = sc->sc_ifp;
2679
2680	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2681		sc->sc_bmisscount);
2682	sc->sc_stats.ast_bstuck++;
2683	ath_reset(ifp);
2684}
2685
2686/*
2687 * Reclaim beacon resources and return buffer to the pool.
2688 */
2689static void
2690ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
2691{
2692
2693	if (bf->bf_m != NULL) {
2694		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2695		m_freem(bf->bf_m);
2696		bf->bf_m = NULL;
2697	}
2698	if (bf->bf_node != NULL) {
2699		ieee80211_free_node(bf->bf_node);
2700		bf->bf_node = NULL;
2701	}
2702	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
2703}
2704
2705/*
2706 * Reclaim beacon resources.
2707 */
2708static void
2709ath_beacon_free(struct ath_softc *sc)
2710{
2711	struct ath_buf *bf;
2712
2713	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2714		if (bf->bf_m != NULL) {
2715			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2716			m_freem(bf->bf_m);
2717			bf->bf_m = NULL;
2718		}
2719		if (bf->bf_node != NULL) {
2720			ieee80211_free_node(bf->bf_node);
2721			bf->bf_node = NULL;
2722		}
2723	}
2724}
2725
2726/*
2727 * Configure the beacon and sleep timers.
2728 *
2729 * When operating as an AP this resets the TSF and sets
2730 * up the hardware to notify us when we need to issue beacons.
2731 *
2732 * When operating in station mode this sets up the beacon
2733 * timers according to the timestamp of the last received
2734 * beacon and the current TSF, configures PCF and DTIM
2735 * handling, programs the sleep registers so the hardware
2736 * will wakeup in time to receive beacons, and configures
2737 * the beacon miss handling so we'll receive a BMISS
2738 * interrupt when we stop seeing beacons from the AP
2739 * we've associated with.
2740 */
2741static void
2742ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
2743{
2744#define	TSF_TO_TU(_h,_l) \
2745	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2746#define	FUDGE	2
2747	struct ath_hal *ah = sc->sc_ah;
2748	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2749	struct ieee80211_node *ni;
2750	u_int32_t nexttbtt, intval, tsftu;
2751	u_int64_t tsf;
2752
2753	if (vap == NULL)
2754		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
2755	ni = vap->iv_bss;
2756
2757	/* extract tstamp from last beacon and convert to TU */
2758	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2759			     LE_READ_4(ni->ni_tstamp.data));
2760	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2761	    ic->ic_opmode == IEEE80211_M_MBSS) {
2762		/*
2763		 * For multi-bss ap/mesh support beacons are either staggered
2764		 * evenly over N slots or burst together.  For the former
2765		 * arrange for the SWBA to be delivered for each slot.
2766		 * Slots that are not occupied will generate nothing.
2767		 */
2768		/* NB: the beacon interval is kept internally in TU's */
2769		intval = ni->ni_intval & HAL_BEACON_PERIOD;
2770		if (sc->sc_stagbeacons)
2771			intval /= ATH_BCBUF;
2772	} else {
2773		/* NB: the beacon interval is kept internally in TU's */
2774		intval = ni->ni_intval & HAL_BEACON_PERIOD;
2775	}
2776	if (nexttbtt == 0)		/* e.g. for ap mode */
2777		nexttbtt = intval;
2778	else if (intval)		/* NB: can be 0 for monitor mode */
2779		nexttbtt = roundup(nexttbtt, intval);
2780	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2781		__func__, nexttbtt, intval, ni->ni_intval);
2782	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
2783		HAL_BEACON_STATE bs;
2784		int dtimperiod, dtimcount;
2785		int cfpperiod, cfpcount;
2786
2787		/*
2788		 * Setup dtim and cfp parameters according to
2789		 * last beacon we received (which may be none).
2790		 */
2791		dtimperiod = ni->ni_dtim_period;
2792		if (dtimperiod <= 0)		/* NB: 0 if not known */
2793			dtimperiod = 1;
2794		dtimcount = ni->ni_dtim_count;
2795		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2796			dtimcount = 0;		/* XXX? */
2797		cfpperiod = 1;			/* NB: no PCF support yet */
2798		cfpcount = 0;
2799		/*
2800		 * Pull nexttbtt forward to reflect the current
2801		 * TSF and calculate dtim+cfp state for the result.
2802		 */
2803		tsf = ath_hal_gettsf64(ah);
2804		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2805		do {
2806			nexttbtt += intval;
2807			if (--dtimcount < 0) {
2808				dtimcount = dtimperiod - 1;
2809				if (--cfpcount < 0)
2810					cfpcount = cfpperiod - 1;
2811			}
2812		} while (nexttbtt < tsftu);
2813		memset(&bs, 0, sizeof(bs));
2814		bs.bs_intval = intval;
2815		bs.bs_nexttbtt = nexttbtt;
2816		bs.bs_dtimperiod = dtimperiod*intval;
2817		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2818		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2819		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2820		bs.bs_cfpmaxduration = 0;
2821#if 0
2822		/*
2823		 * The 802.11 layer records the offset to the DTIM
2824		 * bitmap while receiving beacons; use it here to
2825		 * enable h/w detection of our AID being marked in
2826		 * the bitmap vector (to indicate frames for us are
2827		 * pending at the AP).
2828		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2829		 * XXX enable based on h/w rev for newer chips
2830		 */
2831		bs.bs_timoffset = ni->ni_timoff;
2832#endif
2833		/*
2834		 * Calculate the number of consecutive beacons to miss
2835		 * before taking a BMISS interrupt.
2836		 * Note that we clamp the result to at most 10 beacons.
2837		 */
2838		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
2839		if (bs.bs_bmissthreshold > 10)
2840			bs.bs_bmissthreshold = 10;
2841		else if (bs.bs_bmissthreshold <= 0)
2842			bs.bs_bmissthreshold = 1;
2843
2844		/*
2845		 * Calculate sleep duration.  The configuration is
2846		 * given in ms.  We insure a multiple of the beacon
2847		 * period is used.  Also, if the sleep duration is
2848		 * greater than the DTIM period then it makes senses
2849		 * to make it a multiple of that.
2850		 *
2851		 * XXX fixed at 100ms
2852		 */
2853		bs.bs_sleepduration =
2854			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2855		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2856			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2857
2858		DPRINTF(sc, ATH_DEBUG_BEACON,
2859			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2860			, __func__
2861			, tsf, tsftu
2862			, bs.bs_intval
2863			, bs.bs_nexttbtt
2864			, bs.bs_dtimperiod
2865			, bs.bs_nextdtim
2866			, bs.bs_bmissthreshold
2867			, bs.bs_sleepduration
2868			, bs.bs_cfpperiod
2869			, bs.bs_cfpmaxduration
2870			, bs.bs_cfpnext
2871			, bs.bs_timoffset
2872		);
2873		ath_hal_intrset(ah, 0);
2874		ath_hal_beacontimers(ah, &bs);
2875		sc->sc_imask |= HAL_INT_BMISS;
2876		ath_hal_intrset(ah, sc->sc_imask);
2877	} else {
2878		ath_hal_intrset(ah, 0);
2879		if (nexttbtt == intval)
2880			intval |= HAL_BEACON_RESET_TSF;
2881		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2882			/*
2883			 * In IBSS mode enable the beacon timers but only
2884			 * enable SWBA interrupts if we need to manually
2885			 * prepare beacon frames.  Otherwise we use a
2886			 * self-linked tx descriptor and let the hardware
2887			 * deal with things.
2888			 */
2889			intval |= HAL_BEACON_ENA;
2890			if (!sc->sc_hasveol)
2891				sc->sc_imask |= HAL_INT_SWBA;
2892			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2893				/*
2894				 * Pull nexttbtt forward to reflect
2895				 * the current TSF.
2896				 */
2897				tsf = ath_hal_gettsf64(ah);
2898				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2899				do {
2900					nexttbtt += intval;
2901				} while (nexttbtt < tsftu);
2902			}
2903			ath_beaconq_config(sc);
2904		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2905		    ic->ic_opmode == IEEE80211_M_MBSS) {
2906			/*
2907			 * In AP/mesh mode we enable the beacon timers
2908			 * and SWBA interrupts to prepare beacon frames.
2909			 */
2910			intval |= HAL_BEACON_ENA;
2911			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2912			ath_beaconq_config(sc);
2913		}
2914		ath_hal_beaconinit(ah, nexttbtt, intval);
2915		sc->sc_bmisscount = 0;
2916		ath_hal_intrset(ah, sc->sc_imask);
2917		/*
2918		 * When using a self-linked beacon descriptor in
2919		 * ibss mode load it once here.
2920		 */
2921		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2922			ath_beacon_start_adhoc(sc, vap);
2923	}
2924	sc->sc_syncbeacon = 0;
2925#undef FUDGE
2926#undef TSF_TO_TU
2927}
2928
2929static void
2930ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2931{
2932	bus_addr_t *paddr = (bus_addr_t*) arg;
2933	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2934	*paddr = segs->ds_addr;
2935}
2936
2937static int
2938ath_descdma_setup(struct ath_softc *sc,
2939	struct ath_descdma *dd, ath_bufhead *head,
2940	const char *name, int nbuf, int ndesc)
2941{
2942#define	DS2PHYS(_dd, _ds) \
2943	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2944#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
2945	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
2946	struct ifnet *ifp = sc->sc_ifp;
2947	uint8_t *ds;
2948	struct ath_buf *bf;
2949	int i, bsize, error;
2950	int desc_len;
2951
2952	desc_len = sizeof(struct ath_desc);
2953
2954	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2955	    __func__, name, nbuf, ndesc);
2956
2957	dd->dd_name = name;
2958	dd->dd_desc_len = desc_len * nbuf * ndesc;
2959
2960	/*
2961	 * Merlin work-around:
2962	 * Descriptors that cross the 4KB boundary can't be used.
2963	 * Assume one skipped descriptor per 4KB page.
2964	 */
2965	if (! ath_hal_split4ktrans(sc->sc_ah)) {
2966		int numdescpage = 4096 / (desc_len * ndesc);
2967		dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096;
2968	}
2969
2970	/*
2971	 * Setup DMA descriptor area.
2972	 */
2973	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2974		       PAGE_SIZE, 0,		/* alignment, bounds */
2975		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2976		       BUS_SPACE_MAXADDR,	/* highaddr */
2977		       NULL, NULL,		/* filter, filterarg */
2978		       dd->dd_desc_len,		/* maxsize */
2979		       1,			/* nsegments */
2980		       dd->dd_desc_len,		/* maxsegsize */
2981		       BUS_DMA_ALLOCNOW,	/* flags */
2982		       NULL,			/* lockfunc */
2983		       NULL,			/* lockarg */
2984		       &dd->dd_dmat);
2985	if (error != 0) {
2986		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2987		return error;
2988	}
2989
2990	/* allocate descriptors */
2991	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2992	if (error != 0) {
2993		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2994			"error %u\n", dd->dd_name, error);
2995		goto fail0;
2996	}
2997
2998	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2999				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3000				 &dd->dd_dmamap);
3001	if (error != 0) {
3002		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3003			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3004		goto fail1;
3005	}
3006
3007	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3008				dd->dd_desc, dd->dd_desc_len,
3009				ath_load_cb, &dd->dd_desc_paddr,
3010				BUS_DMA_NOWAIT);
3011	if (error != 0) {
3012		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3013			dd->dd_name, error);
3014		goto fail2;
3015	}
3016
3017	ds = (uint8_t *) dd->dd_desc;
3018	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3019	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3020	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3021
3022	/* allocate rx buffers */
3023	bsize = sizeof(struct ath_buf) * nbuf;
3024	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3025	if (bf == NULL) {
3026		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3027			dd->dd_name, bsize);
3028		goto fail3;
3029	}
3030	dd->dd_bufptr = bf;
3031
3032	STAILQ_INIT(head);
3033	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) {
3034		bf->bf_desc = (struct ath_desc *) ds;
3035		bf->bf_daddr = DS2PHYS(dd, ds);
3036		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3037			/*
3038			 * Merlin WAR: Skip descriptor addresses which
3039			 * cause 4KB boundary crossing along any point
3040			 * in the descriptor.
3041			 */
3042			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3043			     desc_len * ndesc)) {
3044				/* Start at the next page */
3045				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3046				bf->bf_desc = (struct ath_desc *) ds;
3047				bf->bf_daddr = DS2PHYS(dd, ds);
3048			}
3049		}
3050		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3051				&bf->bf_dmamap);
3052		if (error != 0) {
3053			if_printf(ifp, "unable to create dmamap for %s "
3054				"buffer %u, error %u\n", dd->dd_name, i, error);
3055			ath_descdma_cleanup(sc, dd, head);
3056			return error;
3057		}
3058		STAILQ_INSERT_TAIL(head, bf, bf_list);
3059	}
3060	return 0;
3061fail3:
3062	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3063fail2:
3064	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3065fail1:
3066	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3067fail0:
3068	bus_dma_tag_destroy(dd->dd_dmat);
3069	memset(dd, 0, sizeof(*dd));
3070	return error;
3071#undef DS2PHYS
3072#undef ATH_DESC_4KB_BOUND_CHECK
3073}
3074
3075static void
3076ath_descdma_cleanup(struct ath_softc *sc,
3077	struct ath_descdma *dd, ath_bufhead *head)
3078{
3079	struct ath_buf *bf;
3080	struct ieee80211_node *ni;
3081
3082	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3083	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3084	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3085	bus_dma_tag_destroy(dd->dd_dmat);
3086
3087	STAILQ_FOREACH(bf, head, bf_list) {
3088		if (bf->bf_m) {
3089			m_freem(bf->bf_m);
3090			bf->bf_m = NULL;
3091		}
3092		if (bf->bf_dmamap != NULL) {
3093			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3094			bf->bf_dmamap = NULL;
3095		}
3096		ni = bf->bf_node;
3097		bf->bf_node = NULL;
3098		if (ni != NULL) {
3099			/*
3100			 * Reclaim node reference.
3101			 */
3102			ieee80211_free_node(ni);
3103		}
3104	}
3105
3106	STAILQ_INIT(head);
3107	free(dd->dd_bufptr, M_ATHDEV);
3108	memset(dd, 0, sizeof(*dd));
3109}
3110
3111static int
3112ath_desc_alloc(struct ath_softc *sc)
3113{
3114	int error;
3115
3116	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3117			"rx", ath_rxbuf, 1);
3118	if (error != 0)
3119		return error;
3120
3121	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3122			"tx", ath_txbuf, ATH_TXDESC);
3123	if (error != 0) {
3124		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3125		return error;
3126	}
3127
3128	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3129			"beacon", ATH_BCBUF, 1);
3130	if (error != 0) {
3131		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3132		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3133		return error;
3134	}
3135	return 0;
3136}
3137
3138static void
3139ath_desc_free(struct ath_softc *sc)
3140{
3141
3142	if (sc->sc_bdma.dd_desc_len != 0)
3143		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3144	if (sc->sc_txdma.dd_desc_len != 0)
3145		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3146	if (sc->sc_rxdma.dd_desc_len != 0)
3147		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3148}
3149
3150static struct ieee80211_node *
3151ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3152{
3153	struct ieee80211com *ic = vap->iv_ic;
3154	struct ath_softc *sc = ic->ic_ifp->if_softc;
3155	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3156	struct ath_node *an;
3157
3158	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3159	if (an == NULL) {
3160		/* XXX stat+msg */
3161		return NULL;
3162	}
3163	ath_rate_node_init(sc, an);
3164
3165	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3166	return &an->an_node;
3167}
3168
3169static void
3170ath_node_free(struct ieee80211_node *ni)
3171{
3172	struct ieee80211com *ic = ni->ni_ic;
3173        struct ath_softc *sc = ic->ic_ifp->if_softc;
3174
3175	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3176
3177	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3178	sc->sc_node_free(ni);
3179}
3180
3181static void
3182ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3183{
3184	struct ieee80211com *ic = ni->ni_ic;
3185	struct ath_softc *sc = ic->ic_ifp->if_softc;
3186	struct ath_hal *ah = sc->sc_ah;
3187
3188	*rssi = ic->ic_node_getrssi(ni);
3189	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3190		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3191	else
3192		*noise = -95;		/* nominally correct */
3193}
3194
3195static int
3196ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3197{
3198	struct ath_hal *ah = sc->sc_ah;
3199	int error;
3200	struct mbuf *m;
3201	struct ath_desc *ds;
3202
3203	m = bf->bf_m;
3204	if (m == NULL) {
3205		/*
3206		 * NB: by assigning a page to the rx dma buffer we
3207		 * implicitly satisfy the Atheros requirement that
3208		 * this buffer be cache-line-aligned and sized to be
3209		 * multiple of the cache line size.  Not doing this
3210		 * causes weird stuff to happen (for the 5210 at least).
3211		 */
3212		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3213		if (m == NULL) {
3214			DPRINTF(sc, ATH_DEBUG_ANY,
3215				"%s: no mbuf/cluster\n", __func__);
3216			sc->sc_stats.ast_rx_nombuf++;
3217			return ENOMEM;
3218		}
3219		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3220
3221		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3222					     bf->bf_dmamap, m,
3223					     bf->bf_segs, &bf->bf_nseg,
3224					     BUS_DMA_NOWAIT);
3225		if (error != 0) {
3226			DPRINTF(sc, ATH_DEBUG_ANY,
3227			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3228			    __func__, error);
3229			sc->sc_stats.ast_rx_busdma++;
3230			m_freem(m);
3231			return error;
3232		}
3233		KASSERT(bf->bf_nseg == 1,
3234			("multi-segment packet; nseg %u", bf->bf_nseg));
3235		bf->bf_m = m;
3236	}
3237	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3238
3239	/*
3240	 * Setup descriptors.  For receive we always terminate
3241	 * the descriptor list with a self-linked entry so we'll
3242	 * not get overrun under high load (as can happen with a
3243	 * 5212 when ANI processing enables PHY error frames).
3244	 *
3245	 * To insure the last descriptor is self-linked we create
3246	 * each descriptor as self-linked and add it to the end.  As
3247	 * each additional descriptor is added the previous self-linked
3248	 * entry is ``fixed'' naturally.  This should be safe even
3249	 * if DMA is happening.  When processing RX interrupts we
3250	 * never remove/process the last, self-linked, entry on the
3251	 * descriptor list.  This insures the hardware always has
3252	 * someplace to write a new frame.
3253	 */
3254	/*
3255	 * 11N: we can no longer afford to self link the last descriptor.
3256	 * MAC acknowledges BA status as long as it copies frames to host
3257	 * buffer (or rx fifo). This can incorrectly acknowledge packets
3258	 * to a sender if last desc is self-linked.
3259	 */
3260	ds = bf->bf_desc;
3261	if (sc->sc_rxslink)
3262		ds->ds_link = bf->bf_daddr;	/* link to self */
3263	else
3264		ds->ds_link = 0;		/* terminate the list */
3265	ds->ds_data = bf->bf_segs[0].ds_addr;
3266	ath_hal_setuprxdesc(ah, ds
3267		, m->m_len		/* buffer size */
3268		, 0
3269	);
3270
3271	if (sc->sc_rxlink != NULL)
3272		*sc->sc_rxlink = bf->bf_daddr;
3273	sc->sc_rxlink = &ds->ds_link;
3274	return 0;
3275}
3276
3277/*
3278 * Extend 15-bit time stamp from rx descriptor to
3279 * a full 64-bit TSF using the specified TSF.
3280 */
3281static __inline u_int64_t
3282ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf)
3283{
3284	if ((tsf & 0x7fff) < rstamp)
3285		tsf -= 0x8000;
3286
3287	return ((tsf &~ 0x7fff) | rstamp);
3288}
3289
3290/*
3291 * Extend 32-bit time stamp from rx descriptor to
3292 * a full 64-bit TSF using the specified TSF.
3293 */
3294static __inline u_int64_t
3295ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf)
3296{
3297	u_int32_t tsf_low = tsf & 0xffffffff;
3298	u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp;
3299
3300	if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000))
3301		tsf64 -= 0x100000000ULL;
3302
3303	if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000))
3304		tsf64 += 0x100000000ULL;
3305
3306	return tsf64;
3307}
3308
3309/*
3310 * Extend the TSF from the RX descriptor to a full 64 bit TSF.
3311 * Earlier hardware versions only wrote the low 15 bits of the
3312 * TSF into the RX descriptor; later versions (AR5416 and up)
3313 * include the 32 bit TSF value.
3314 */
3315static __inline u_int64_t
3316ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf)
3317{
3318	if (sc->sc_rxtsf32)
3319		return ath_extend_tsf32(rstamp, tsf);
3320	else
3321		return ath_extend_tsf15(rstamp, tsf);
3322}
3323
3324/*
3325 * Intercept management frames to collect beacon rssi data
3326 * and to do ibss merges.
3327 */
3328static void
3329ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3330	int subtype, int rssi, int nf)
3331{
3332	struct ieee80211vap *vap = ni->ni_vap;
3333	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3334
3335	/*
3336	 * Call up first so subsequent work can use information
3337	 * potentially stored in the node (e.g. for ibss merge).
3338	 */
3339	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3340	switch (subtype) {
3341	case IEEE80211_FC0_SUBTYPE_BEACON:
3342		/* update rssi statistics for use by the hal */
3343		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3344		if (sc->sc_syncbeacon &&
3345		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3346			/*
3347			 * Resync beacon timers using the tsf of the beacon
3348			 * frame we just received.
3349			 */
3350			ath_beacon_config(sc, vap);
3351		}
3352		/* fall thru... */
3353	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3354		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3355		    vap->iv_state == IEEE80211_S_RUN) {
3356			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3357			uint64_t tsf = ath_extend_tsf(sc, rstamp,
3358				ath_hal_gettsf64(sc->sc_ah));
3359			/*
3360			 * Handle ibss merge as needed; check the tsf on the
3361			 * frame before attempting the merge.  The 802.11 spec
3362			 * says the station should change it's bssid to match
3363			 * the oldest station with the same ssid, where oldest
3364			 * is determined by the tsf.  Note that hardware
3365			 * reconfiguration happens through callback to
3366			 * ath_newstate as the state machine will go from
3367			 * RUN -> RUN when this happens.
3368			 */
3369			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3370				DPRINTF(sc, ATH_DEBUG_STATE,
3371				    "ibss merge, rstamp %u tsf %ju "
3372				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3373				    (uintmax_t)ni->ni_tstamp.tsf);
3374				(void) ieee80211_ibss_merge(ni);
3375			}
3376		}
3377		break;
3378	}
3379}
3380
3381/*
3382 * Set the default antenna.
3383 */
3384static void
3385ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3386{
3387	struct ath_hal *ah = sc->sc_ah;
3388
3389	/* XXX block beacon interrupts */
3390	ath_hal_setdefantenna(ah, antenna);
3391	if (sc->sc_defant != antenna)
3392		sc->sc_stats.ast_ant_defswitch++;
3393	sc->sc_defant = antenna;
3394	sc->sc_rxotherant = 0;
3395}
3396
3397static void
3398ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3399	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3400{
3401#define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3402#define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3403#define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3404#define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3405	struct ath_softc *sc = ifp->if_softc;
3406	const HAL_RATE_TABLE *rt;
3407	uint8_t rix;
3408
3409	rt = sc->sc_currates;
3410	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3411	rix = rt->rateCodeToIndex[rs->rs_rate];
3412	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3413	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3414#ifdef AH_SUPPORT_AR5416
3415	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3416	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3417		struct ieee80211com *ic = ifp->if_l2com;
3418
3419		if ((rs->rs_flags & HAL_RX_2040) == 0)
3420			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3421		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3422			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3423		else
3424			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3425		if ((rs->rs_flags & HAL_RX_GI) == 0)
3426			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3427	}
3428#endif
3429	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
3430	if (rs->rs_status & HAL_RXERR_CRC)
3431		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3432	/* XXX propagate other error flags from descriptor */
3433	sc->sc_rx_th.wr_antnoise = nf;
3434	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
3435	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3436#undef CHAN_HT
3437#undef CHAN_HT20
3438#undef CHAN_HT40U
3439#undef CHAN_HT40D
3440}
3441
3442static void
3443ath_handle_micerror(struct ieee80211com *ic,
3444	struct ieee80211_frame *wh, int keyix)
3445{
3446	struct ieee80211_node *ni;
3447
3448	/* XXX recheck MIC to deal w/ chips that lie */
3449	/* XXX discard MIC errors on !data frames */
3450	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3451	if (ni != NULL) {
3452		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3453		ieee80211_free_node(ni);
3454	}
3455}
3456
3457static void
3458ath_rx_proc(void *arg, int npending)
3459{
3460#define	PA2DESC(_sc, _pa) \
3461	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3462		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3463	struct ath_softc *sc = arg;
3464	struct ath_buf *bf;
3465	struct ifnet *ifp = sc->sc_ifp;
3466	struct ieee80211com *ic = ifp->if_l2com;
3467	struct ath_hal *ah = sc->sc_ah;
3468	struct ath_desc *ds;
3469	struct ath_rx_status *rs;
3470	struct mbuf *m;
3471	struct ieee80211_node *ni;
3472	int len, type, ngood;
3473	HAL_STATUS status;
3474	int16_t nf;
3475	u_int64_t tsf;
3476
3477	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3478	ngood = 0;
3479	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
3480	sc->sc_stats.ast_rx_noise = nf;
3481	tsf = ath_hal_gettsf64(ah);
3482	do {
3483		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3484		if (sc->sc_rxslink && bf == NULL) {	/* NB: shouldn't happen */
3485			if_printf(ifp, "%s: no buffer!\n", __func__);
3486			break;
3487		} else if (bf == NULL) {
3488			/*
3489			 * End of List:
3490			 * this can happen for non-self-linked RX chains
3491			 */
3492			sc->sc_stats.ast_rx_hitqueueend++;
3493			break;
3494		}
3495		m = bf->bf_m;
3496		if (m == NULL) {		/* NB: shouldn't happen */
3497			/*
3498			 * If mbuf allocation failed previously there
3499			 * will be no mbuf; try again to re-populate it.
3500			 */
3501			/* XXX make debug msg */
3502			if_printf(ifp, "%s: no mbuf!\n", __func__);
3503			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3504			goto rx_next;
3505		}
3506		ds = bf->bf_desc;
3507		if (ds->ds_link == bf->bf_daddr) {
3508			/* NB: never process the self-linked entry at the end */
3509			sc->sc_stats.ast_rx_hitqueueend++;
3510			break;
3511		}
3512		/* XXX sync descriptor memory */
3513		/*
3514		 * Must provide the virtual address of the current
3515		 * descriptor, the physical address, and the virtual
3516		 * address of the next descriptor in the h/w chain.
3517		 * This allows the HAL to look ahead to see if the
3518		 * hardware is done with a descriptor by checking the
3519		 * done bit in the following descriptor and the address
3520		 * of the current descriptor the DMA engine is working
3521		 * on.  All this is necessary because of our use of
3522		 * a self-linked list to avoid rx overruns.
3523		 */
3524		rs = &bf->bf_status.ds_rxstat;
3525		status = ath_hal_rxprocdesc(ah, ds,
3526				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3527#ifdef ATH_DEBUG
3528		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3529			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
3530#endif
3531		if (status == HAL_EINPROGRESS)
3532			break;
3533		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3534
3535		/* These aren't specifically errors */
3536		if (rs->rs_flags & HAL_RX_GI)
3537			sc->sc_stats.ast_rx_halfgi++;
3538		if (rs->rs_flags & HAL_RX_2040)
3539			sc->sc_stats.ast_rx_2040++;
3540		if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
3541			sc->sc_stats.ast_rx_pre_crc_err++;
3542		if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
3543			sc->sc_stats.ast_rx_post_crc_err++;
3544		if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
3545			sc->sc_stats.ast_rx_decrypt_busy_err++;
3546		if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
3547			sc->sc_stats.ast_rx_hi_rx_chain++;
3548
3549		if (rs->rs_status != 0) {
3550			if (rs->rs_status & HAL_RXERR_CRC)
3551				sc->sc_stats.ast_rx_crcerr++;
3552			if (rs->rs_status & HAL_RXERR_FIFO)
3553				sc->sc_stats.ast_rx_fifoerr++;
3554			if (rs->rs_status & HAL_RXERR_PHY) {
3555				sc->sc_stats.ast_rx_phyerr++;
3556				/* Process DFS radar events */
3557				if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
3558				    (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
3559					/* Since we're touching the frame data, sync it */
3560					bus_dmamap_sync(sc->sc_dmat,
3561					    bf->bf_dmamap,
3562					    BUS_DMASYNC_POSTREAD);
3563					/* Now pass it to the radar processing code */
3564					ath_dfs_process_phy_err(sc, mtod(m, char *), tsf, rs);
3565				}
3566
3567				/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
3568				if (rs->rs_phyerr < 64)
3569					sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
3570				goto rx_error;	/* NB: don't count in ierrors */
3571			}
3572			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3573				/*
3574				 * Decrypt error.  If the error occurred
3575				 * because there was no hardware key, then
3576				 * let the frame through so the upper layers
3577				 * can process it.  This is necessary for 5210
3578				 * parts which have no way to setup a ``clear''
3579				 * key cache entry.
3580				 *
3581				 * XXX do key cache faulting
3582				 */
3583				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3584					goto rx_accept;
3585				sc->sc_stats.ast_rx_badcrypt++;
3586			}
3587			if (rs->rs_status & HAL_RXERR_MIC) {
3588				sc->sc_stats.ast_rx_badmic++;
3589				/*
3590				 * Do minimal work required to hand off
3591				 * the 802.11 header for notification.
3592				 */
3593				/* XXX frag's and qos frames */
3594				len = rs->rs_datalen;
3595				if (len >= sizeof (struct ieee80211_frame)) {
3596					bus_dmamap_sync(sc->sc_dmat,
3597					    bf->bf_dmamap,
3598					    BUS_DMASYNC_POSTREAD);
3599					ath_handle_micerror(ic,
3600					    mtod(m, struct ieee80211_frame *),
3601					    sc->sc_splitmic ?
3602						rs->rs_keyix-32 : rs->rs_keyix);
3603				}
3604			}
3605			ifp->if_ierrors++;
3606rx_error:
3607			/*
3608			 * Cleanup any pending partial frame.
3609			 */
3610			if (sc->sc_rxpending != NULL) {
3611				m_freem(sc->sc_rxpending);
3612				sc->sc_rxpending = NULL;
3613			}
3614			/*
3615			 * When a tap is present pass error frames
3616			 * that have been requested.  By default we
3617			 * pass decrypt+mic errors but others may be
3618			 * interesting (e.g. crc).
3619			 */
3620			if (ieee80211_radiotap_active(ic) &&
3621			    (rs->rs_status & sc->sc_monpass)) {
3622				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3623				    BUS_DMASYNC_POSTREAD);
3624				/* NB: bpf needs the mbuf length setup */
3625				len = rs->rs_datalen;
3626				m->m_pkthdr.len = m->m_len = len;
3627				bf->bf_m = NULL;
3628				ath_rx_tap(ifp, m, rs, tsf, nf);
3629				ieee80211_radiotap_rx_all(ic, m);
3630				m_freem(m);
3631			}
3632			/* XXX pass MIC errors up for s/w reclaculation */
3633			goto rx_next;
3634		}
3635rx_accept:
3636		/*
3637		 * Sync and unmap the frame.  At this point we're
3638		 * committed to passing the mbuf somewhere so clear
3639		 * bf_m; this means a new mbuf must be allocated
3640		 * when the rx descriptor is setup again to receive
3641		 * another frame.
3642		 */
3643		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3644		    BUS_DMASYNC_POSTREAD);
3645		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3646		bf->bf_m = NULL;
3647
3648		len = rs->rs_datalen;
3649		m->m_len = len;
3650
3651		if (rs->rs_more) {
3652			/*
3653			 * Frame spans multiple descriptors; save
3654			 * it for the next completed descriptor, it
3655			 * will be used to construct a jumbogram.
3656			 */
3657			if (sc->sc_rxpending != NULL) {
3658				/* NB: max frame size is currently 2 clusters */
3659				sc->sc_stats.ast_rx_toobig++;
3660				m_freem(sc->sc_rxpending);
3661			}
3662			m->m_pkthdr.rcvif = ifp;
3663			m->m_pkthdr.len = len;
3664			sc->sc_rxpending = m;
3665			goto rx_next;
3666		} else if (sc->sc_rxpending != NULL) {
3667			/*
3668			 * This is the second part of a jumbogram,
3669			 * chain it to the first mbuf, adjust the
3670			 * frame length, and clear the rxpending state.
3671			 */
3672			sc->sc_rxpending->m_next = m;
3673			sc->sc_rxpending->m_pkthdr.len += len;
3674			m = sc->sc_rxpending;
3675			sc->sc_rxpending = NULL;
3676		} else {
3677			/*
3678			 * Normal single-descriptor receive; setup
3679			 * the rcvif and packet length.
3680			 */
3681			m->m_pkthdr.rcvif = ifp;
3682			m->m_pkthdr.len = len;
3683		}
3684
3685		ifp->if_ipackets++;
3686		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
3687
3688		/*
3689		 * Populate the rx status block.  When there are bpf
3690		 * listeners we do the additional work to provide
3691		 * complete status.  Otherwise we fill in only the
3692		 * material required by ieee80211_input.  Note that
3693		 * noise setting is filled in above.
3694		 */
3695		if (ieee80211_radiotap_active(ic))
3696			ath_rx_tap(ifp, m, rs, tsf, nf);
3697
3698		/*
3699		 * From this point on we assume the frame is at least
3700		 * as large as ieee80211_frame_min; verify that.
3701		 */
3702		if (len < IEEE80211_MIN_LEN) {
3703			if (!ieee80211_radiotap_active(ic)) {
3704				DPRINTF(sc, ATH_DEBUG_RECV,
3705				    "%s: short packet %d\n", __func__, len);
3706				sc->sc_stats.ast_rx_tooshort++;
3707			} else {
3708				/* NB: in particular this captures ack's */
3709				ieee80211_radiotap_rx_all(ic, m);
3710			}
3711			m_freem(m);
3712			goto rx_next;
3713		}
3714
3715		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3716			const HAL_RATE_TABLE *rt = sc->sc_currates;
3717			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
3718
3719			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
3720			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
3721		}
3722
3723		m_adj(m, -IEEE80211_CRC_LEN);
3724
3725		/*
3726		 * Locate the node for sender, track state, and then
3727		 * pass the (referenced) node up to the 802.11 layer
3728		 * for its use.
3729		 */
3730		ni = ieee80211_find_rxnode_withkey(ic,
3731			mtod(m, const struct ieee80211_frame_min *),
3732			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
3733				IEEE80211_KEYIX_NONE : rs->rs_keyix);
3734		sc->sc_lastrs = rs;
3735
3736		if (rs->rs_isaggr)
3737			sc->sc_stats.ast_rx_agg++;
3738
3739		if (ni != NULL) {
3740			/*
3741 			 * Only punt packets for ampdu reorder processing for
3742			 * 11n nodes; net80211 enforces that M_AMPDU is only
3743			 * set for 11n nodes.
3744 			 */
3745			if (ni->ni_flags & IEEE80211_NODE_HT)
3746				m->m_flags |= M_AMPDU;
3747
3748			/*
3749			 * Sending station is known, dispatch directly.
3750			 */
3751			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
3752			ieee80211_free_node(ni);
3753			/*
3754			 * Arrange to update the last rx timestamp only for
3755			 * frames from our ap when operating in station mode.
3756			 * This assumes the rx key is always setup when
3757			 * associated.
3758			 */
3759			if (ic->ic_opmode == IEEE80211_M_STA &&
3760			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
3761				ngood++;
3762		} else {
3763			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
3764		}
3765		/*
3766		 * Track rx rssi and do any rx antenna management.
3767		 */
3768		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
3769		if (sc->sc_diversity) {
3770			/*
3771			 * When using fast diversity, change the default rx
3772			 * antenna if diversity chooses the other antenna 3
3773			 * times in a row.
3774			 */
3775			if (sc->sc_defant != rs->rs_antenna) {
3776				if (++sc->sc_rxotherant >= 3)
3777					ath_setdefantenna(sc, rs->rs_antenna);
3778			} else
3779				sc->sc_rxotherant = 0;
3780		}
3781
3782		/* Newer school diversity - kite specific for now */
3783		/* XXX perhaps migrate the normal diversity code to this? */
3784		if ((ah)->ah_rxAntCombDiversity)
3785			(*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz);
3786
3787		if (sc->sc_softled) {
3788			/*
3789			 * Blink for any data frame.  Otherwise do a
3790			 * heartbeat-style blink when idle.  The latter
3791			 * is mainly for station mode where we depend on
3792			 * periodic beacon frames to trigger the poll event.
3793			 */
3794			if (type == IEEE80211_FC0_TYPE_DATA) {
3795				const HAL_RATE_TABLE *rt = sc->sc_currates;
3796				ath_led_event(sc,
3797				    rt->rateCodeToIndex[rs->rs_rate]);
3798			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3799				ath_led_event(sc, 0);
3800		}
3801rx_next:
3802		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3803	} while (ath_rxbuf_init(sc, bf) == 0);
3804
3805	/* rx signal state monitoring */
3806	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
3807	if (ngood)
3808		sc->sc_lastrx = tsf;
3809
3810	/* Queue DFS tasklet if needed */
3811	if (ath_dfs_tasklet_needed(sc, sc->sc_curchan))
3812		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
3813
3814	/*
3815	 * Now that all the RX frames were handled that
3816	 * need to be handled, kick the PCU if there's
3817	 * been an RXEOL condition.
3818	 */
3819	if (sc->sc_kickpcu) {
3820		sc->sc_kickpcu = 0;
3821		ath_stoprecv(sc);
3822		sc->sc_imask |= (HAL_INT_RXEOL | HAL_INT_RXORN);
3823		if (ath_startrecv(sc) != 0) {
3824			if_printf(ifp,
3825			    "%s: couldn't restart RX after RXEOL; resetting\n",
3826			    __func__);
3827			ath_reset(ifp);
3828			return;
3829		}
3830		ath_hal_intrset(ah, sc->sc_imask);
3831	}
3832
3833	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
3834#ifdef IEEE80211_SUPPORT_SUPERG
3835		ieee80211_ff_age_all(ic, 100);
3836#endif
3837		if (!IFQ_IS_EMPTY(&ifp->if_snd))
3838			ath_start(ifp);
3839	}
3840#undef PA2DESC
3841}
3842
3843static void
3844ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3845{
3846	txq->axq_qnum = qnum;
3847	txq->axq_ac = 0;
3848	txq->axq_depth = 0;
3849	txq->axq_intrcnt = 0;
3850	txq->axq_link = NULL;
3851	STAILQ_INIT(&txq->axq_q);
3852	ATH_TXQ_LOCK_INIT(sc, txq);
3853}
3854
3855/*
3856 * Setup a h/w transmit queue.
3857 */
3858static struct ath_txq *
3859ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3860{
3861#define	N(a)	(sizeof(a)/sizeof(a[0]))
3862	struct ath_hal *ah = sc->sc_ah;
3863	HAL_TXQ_INFO qi;
3864	int qnum;
3865
3866	memset(&qi, 0, sizeof(qi));
3867	qi.tqi_subtype = subtype;
3868	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3869	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3870	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3871	/*
3872	 * Enable interrupts only for EOL and DESC conditions.
3873	 * We mark tx descriptors to receive a DESC interrupt
3874	 * when a tx queue gets deep; otherwise waiting for the
3875	 * EOL to reap descriptors.  Note that this is done to
3876	 * reduce interrupt load and this only defers reaping
3877	 * descriptors, never transmitting frames.  Aside from
3878	 * reducing interrupts this also permits more concurrency.
3879	 * The only potential downside is if the tx queue backs
3880	 * up in which case the top half of the kernel may backup
3881	 * due to a lack of tx descriptors.
3882	 */
3883	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3884	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3885	if (qnum == -1) {
3886		/*
3887		 * NB: don't print a message, this happens
3888		 * normally on parts with too few tx queues
3889		 */
3890		return NULL;
3891	}
3892	if (qnum >= N(sc->sc_txq)) {
3893		device_printf(sc->sc_dev,
3894			"hal qnum %u out of range, max %zu!\n",
3895			qnum, N(sc->sc_txq));
3896		ath_hal_releasetxqueue(ah, qnum);
3897		return NULL;
3898	}
3899	if (!ATH_TXQ_SETUP(sc, qnum)) {
3900		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3901		sc->sc_txqsetup |= 1<<qnum;
3902	}
3903	return &sc->sc_txq[qnum];
3904#undef N
3905}
3906
3907/*
3908 * Setup a hardware data transmit queue for the specified
3909 * access control.  The hal may not support all requested
3910 * queues in which case it will return a reference to a
3911 * previously setup queue.  We record the mapping from ac's
3912 * to h/w queues for use by ath_tx_start and also track
3913 * the set of h/w queues being used to optimize work in the
3914 * transmit interrupt handler and related routines.
3915 */
3916static int
3917ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3918{
3919#define	N(a)	(sizeof(a)/sizeof(a[0]))
3920	struct ath_txq *txq;
3921
3922	if (ac >= N(sc->sc_ac2q)) {
3923		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3924			ac, N(sc->sc_ac2q));
3925		return 0;
3926	}
3927	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3928	if (txq != NULL) {
3929		txq->axq_ac = ac;
3930		sc->sc_ac2q[ac] = txq;
3931		return 1;
3932	} else
3933		return 0;
3934#undef N
3935}
3936
3937/*
3938 * Update WME parameters for a transmit queue.
3939 */
3940static int
3941ath_txq_update(struct ath_softc *sc, int ac)
3942{
3943#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3944#define	ATH_TXOP_TO_US(v)		(v<<5)
3945	struct ifnet *ifp = sc->sc_ifp;
3946	struct ieee80211com *ic = ifp->if_l2com;
3947	struct ath_txq *txq = sc->sc_ac2q[ac];
3948	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3949	struct ath_hal *ah = sc->sc_ah;
3950	HAL_TXQ_INFO qi;
3951
3952	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3953#ifdef IEEE80211_SUPPORT_TDMA
3954	if (sc->sc_tdma) {
3955		/*
3956		 * AIFS is zero so there's no pre-transmit wait.  The
3957		 * burst time defines the slot duration and is configured
3958		 * through net80211.  The QCU is setup to not do post-xmit
3959		 * back off, lockout all lower-priority QCU's, and fire
3960		 * off the DMA beacon alert timer which is setup based
3961		 * on the slot configuration.
3962		 */
3963		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3964			      | HAL_TXQ_TXERRINT_ENABLE
3965			      | HAL_TXQ_TXURNINT_ENABLE
3966			      | HAL_TXQ_TXEOLINT_ENABLE
3967			      | HAL_TXQ_DBA_GATED
3968			      | HAL_TXQ_BACKOFF_DISABLE
3969			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3970			      ;
3971		qi.tqi_aifs = 0;
3972		/* XXX +dbaprep? */
3973		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3974		qi.tqi_burstTime = qi.tqi_readyTime;
3975	} else {
3976#endif
3977		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3978			      | HAL_TXQ_TXERRINT_ENABLE
3979			      | HAL_TXQ_TXDESCINT_ENABLE
3980			      | HAL_TXQ_TXURNINT_ENABLE
3981			      ;
3982		qi.tqi_aifs = wmep->wmep_aifsn;
3983		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3984		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3985		qi.tqi_readyTime = 0;
3986		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3987#ifdef IEEE80211_SUPPORT_TDMA
3988	}
3989#endif
3990
3991	DPRINTF(sc, ATH_DEBUG_RESET,
3992	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3993	    __func__, txq->axq_qnum, qi.tqi_qflags,
3994	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3995
3996	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3997		if_printf(ifp, "unable to update hardware queue "
3998			"parameters for %s traffic!\n",
3999			ieee80211_wme_acnames[ac]);
4000		return 0;
4001	} else {
4002		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4003		return 1;
4004	}
4005#undef ATH_TXOP_TO_US
4006#undef ATH_EXPONENT_TO_VALUE
4007}
4008
4009/*
4010 * Callback from the 802.11 layer to update WME parameters.
4011 */
4012static int
4013ath_wme_update(struct ieee80211com *ic)
4014{
4015	struct ath_softc *sc = ic->ic_ifp->if_softc;
4016
4017	return !ath_txq_update(sc, WME_AC_BE) ||
4018	    !ath_txq_update(sc, WME_AC_BK) ||
4019	    !ath_txq_update(sc, WME_AC_VI) ||
4020	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4021}
4022
4023/*
4024 * Reclaim resources for a setup queue.
4025 */
4026static void
4027ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4028{
4029
4030	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4031	ATH_TXQ_LOCK_DESTROY(txq);
4032	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4033}
4034
4035/*
4036 * Reclaim all tx queue resources.
4037 */
4038static void
4039ath_tx_cleanup(struct ath_softc *sc)
4040{
4041	int i;
4042
4043	ATH_TXBUF_LOCK_DESTROY(sc);
4044	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4045		if (ATH_TXQ_SETUP(sc, i))
4046			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4047}
4048
4049/*
4050 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4051 * using the current rates in sc_rixmap.
4052 */
4053int
4054ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4055{
4056	int rix = sc->sc_rixmap[rate];
4057	/* NB: return lowest rix for invalid rate */
4058	return (rix == 0xff ? 0 : rix);
4059}
4060
4061/*
4062 * Process completed xmit descriptors from the specified queue.
4063 */
4064static int
4065ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4066{
4067	struct ath_hal *ah = sc->sc_ah;
4068	struct ifnet *ifp = sc->sc_ifp;
4069	struct ieee80211com *ic = ifp->if_l2com;
4070	struct ath_buf *bf, *last;
4071	struct ath_desc *ds, *ds0;
4072	struct ath_tx_status *ts;
4073	struct ieee80211_node *ni;
4074	struct ath_node *an;
4075	int sr, lr, pri, nacked;
4076	HAL_STATUS status;
4077
4078	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4079		__func__, txq->axq_qnum,
4080		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4081		txq->axq_link);
4082	nacked = 0;
4083	for (;;) {
4084		ATH_TXQ_LOCK(txq);
4085		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4086		bf = STAILQ_FIRST(&txq->axq_q);
4087		if (bf == NULL) {
4088			ATH_TXQ_UNLOCK(txq);
4089			break;
4090		}
4091		ds0 = &bf->bf_desc[0];
4092		ds = &bf->bf_desc[bf->bf_nseg - 1];
4093		ts = &bf->bf_status.ds_txstat;
4094		status = ath_hal_txprocdesc(ah, ds, ts);
4095#ifdef ATH_DEBUG
4096		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4097			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4098			    status == HAL_OK);
4099#endif
4100		if (status == HAL_EINPROGRESS) {
4101			ATH_TXQ_UNLOCK(txq);
4102			break;
4103		}
4104		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4105#ifdef IEEE80211_SUPPORT_TDMA
4106		if (txq->axq_depth > 0) {
4107			/*
4108			 * More frames follow.  Mark the buffer busy
4109			 * so it's not re-used while the hardware may
4110			 * still re-read the link field in the descriptor.
4111			 */
4112			bf->bf_flags |= ATH_BUF_BUSY;
4113		} else
4114#else
4115		if (txq->axq_depth == 0)
4116#endif
4117			txq->axq_link = NULL;
4118		ATH_TXQ_UNLOCK(txq);
4119
4120		ni = bf->bf_node;
4121		if (ni != NULL) {
4122			an = ATH_NODE(ni);
4123			if (ts->ts_status == 0) {
4124				u_int8_t txant = ts->ts_antenna;
4125				sc->sc_stats.ast_ant_tx[txant]++;
4126				sc->sc_ant_tx[txant]++;
4127				if (ts->ts_finaltsi != 0)
4128					sc->sc_stats.ast_tx_altrate++;
4129				pri = M_WME_GETAC(bf->bf_m);
4130				if (pri >= WME_AC_VO)
4131					ic->ic_wme.wme_hipri_traffic++;
4132				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
4133					ni->ni_inact = ni->ni_inact_reload;
4134			} else {
4135				if (ts->ts_status & HAL_TXERR_XRETRY)
4136					sc->sc_stats.ast_tx_xretries++;
4137				if (ts->ts_status & HAL_TXERR_FIFO)
4138					sc->sc_stats.ast_tx_fifoerr++;
4139				if (ts->ts_status & HAL_TXERR_FILT)
4140					sc->sc_stats.ast_tx_filtered++;
4141				if (ts->ts_status & HAL_TXERR_XTXOP)
4142					sc->sc_stats.ast_tx_xtxop++;
4143				if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4144					sc->sc_stats.ast_tx_timerexpired++;
4145
4146				/* XXX HAL_TX_DATA_UNDERRUN */
4147				/* XXX HAL_TX_DELIM_UNDERRUN */
4148
4149				if (bf->bf_m->m_flags & M_FF)
4150					sc->sc_stats.ast_ff_txerr++;
4151			}
4152			/* XXX when is this valid? */
4153			if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
4154				sc->sc_stats.ast_tx_desccfgerr++;
4155
4156			sr = ts->ts_shortretry;
4157			lr = ts->ts_longretry;
4158			sc->sc_stats.ast_tx_shortretry += sr;
4159			sc->sc_stats.ast_tx_longretry += lr;
4160			/*
4161			 * Hand the descriptor to the rate control algorithm.
4162			 */
4163			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4164			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
4165				/*
4166				 * If frame was ack'd update statistics,
4167				 * including the last rx time used to
4168				 * workaround phantom bmiss interrupts.
4169				 */
4170				if (ts->ts_status == 0) {
4171					nacked++;
4172					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4173					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4174						ts->ts_rssi);
4175				}
4176				ath_rate_tx_complete(sc, an, bf);
4177			}
4178			/*
4179			 * Do any tx complete callback.  Note this must
4180			 * be done before releasing the node reference.
4181			 */
4182			if (bf->bf_m->m_flags & M_TXCB)
4183				ieee80211_process_callback(ni, bf->bf_m,
4184				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
4185				        ts->ts_status : HAL_TXERR_XRETRY);
4186			ieee80211_free_node(ni);
4187		}
4188		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4189		    BUS_DMASYNC_POSTWRITE);
4190		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4191
4192		m_freem(bf->bf_m);
4193		bf->bf_m = NULL;
4194		bf->bf_node = NULL;
4195
4196		ATH_TXBUF_LOCK(sc);
4197		last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
4198		if (last != NULL)
4199			last->bf_flags &= ~ATH_BUF_BUSY;
4200		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4201		ATH_TXBUF_UNLOCK(sc);
4202	}
4203#ifdef IEEE80211_SUPPORT_SUPERG
4204	/*
4205	 * Flush fast-frame staging queue when traffic slows.
4206	 */
4207	if (txq->axq_depth <= 1)
4208		ieee80211_ff_flush(ic, txq->axq_ac);
4209#endif
4210	return nacked;
4211}
4212
4213static __inline int
4214txqactive(struct ath_hal *ah, int qnum)
4215{
4216	u_int32_t txqs = 1<<qnum;
4217	ath_hal_gettxintrtxqs(ah, &txqs);
4218	return (txqs & (1<<qnum));
4219}
4220
4221/*
4222 * Deferred processing of transmit interrupt; special-cased
4223 * for a single hardware transmit queue (e.g. 5210 and 5211).
4224 */
4225static void
4226ath_tx_proc_q0(void *arg, int npending)
4227{
4228	struct ath_softc *sc = arg;
4229	struct ifnet *ifp = sc->sc_ifp;
4230
4231	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
4232		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4233	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4234		ath_tx_processq(sc, sc->sc_cabq);
4235	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4236	sc->sc_wd_timer = 0;
4237
4238	if (sc->sc_softled)
4239		ath_led_event(sc, sc->sc_txrix);
4240
4241	ath_start(ifp);
4242}
4243
4244/*
4245 * Deferred processing of transmit interrupt; special-cased
4246 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4247 */
4248static void
4249ath_tx_proc_q0123(void *arg, int npending)
4250{
4251	struct ath_softc *sc = arg;
4252	struct ifnet *ifp = sc->sc_ifp;
4253	int nacked;
4254
4255	/*
4256	 * Process each active queue.
4257	 */
4258	nacked = 0;
4259	if (txqactive(sc->sc_ah, 0))
4260		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4261	if (txqactive(sc->sc_ah, 1))
4262		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4263	if (txqactive(sc->sc_ah, 2))
4264		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4265	if (txqactive(sc->sc_ah, 3))
4266		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4267	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4268		ath_tx_processq(sc, sc->sc_cabq);
4269	if (nacked)
4270		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4271
4272	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4273	sc->sc_wd_timer = 0;
4274
4275	if (sc->sc_softled)
4276		ath_led_event(sc, sc->sc_txrix);
4277
4278	ath_start(ifp);
4279}
4280
4281/*
4282 * Deferred processing of transmit interrupt.
4283 */
4284static void
4285ath_tx_proc(void *arg, int npending)
4286{
4287	struct ath_softc *sc = arg;
4288	struct ifnet *ifp = sc->sc_ifp;
4289	int i, nacked;
4290
4291	/*
4292	 * Process each active queue.
4293	 */
4294	nacked = 0;
4295	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4296		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4297			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4298	if (nacked)
4299		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4300
4301	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4302	sc->sc_wd_timer = 0;
4303
4304	if (sc->sc_softled)
4305		ath_led_event(sc, sc->sc_txrix);
4306
4307	ath_start(ifp);
4308}
4309
4310static void
4311ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4312{
4313#ifdef ATH_DEBUG
4314	struct ath_hal *ah = sc->sc_ah;
4315#endif
4316	struct ieee80211_node *ni;
4317	struct ath_buf *bf;
4318	u_int ix;
4319
4320	/*
4321	 * NB: this assumes output has been stopped and
4322	 *     we do not need to block ath_tx_proc
4323	 */
4324	ATH_TXBUF_LOCK(sc);
4325	bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
4326	if (bf != NULL)
4327		bf->bf_flags &= ~ATH_BUF_BUSY;
4328	ATH_TXBUF_UNLOCK(sc);
4329	for (ix = 0;; ix++) {
4330		ATH_TXQ_LOCK(txq);
4331		bf = STAILQ_FIRST(&txq->axq_q);
4332		if (bf == NULL) {
4333			txq->axq_link = NULL;
4334			ATH_TXQ_UNLOCK(txq);
4335			break;
4336		}
4337		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4338		ATH_TXQ_UNLOCK(txq);
4339#ifdef ATH_DEBUG
4340		if (sc->sc_debug & ATH_DEBUG_RESET) {
4341			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4342
4343			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
4344				ath_hal_txprocdesc(ah, bf->bf_desc,
4345				    &bf->bf_status.ds_txstat) == HAL_OK);
4346			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4347			    bf->bf_m->m_len, 0, -1);
4348		}
4349#endif /* ATH_DEBUG */
4350		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4351		ni = bf->bf_node;
4352		bf->bf_node = NULL;
4353		if (ni != NULL) {
4354			/*
4355			 * Do any callback and reclaim the node reference.
4356			 */
4357			if (bf->bf_m->m_flags & M_TXCB)
4358				ieee80211_process_callback(ni, bf->bf_m, -1);
4359			ieee80211_free_node(ni);
4360		}
4361		m_freem(bf->bf_m);
4362		bf->bf_m = NULL;
4363		bf->bf_flags &= ~ATH_BUF_BUSY;
4364
4365		ATH_TXBUF_LOCK(sc);
4366		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4367		ATH_TXBUF_UNLOCK(sc);
4368	}
4369}
4370
4371static void
4372ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4373{
4374	struct ath_hal *ah = sc->sc_ah;
4375
4376	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4377	    __func__, txq->axq_qnum,
4378	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4379	    txq->axq_link);
4380	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4381}
4382
4383/*
4384 * Drain the transmit queues and reclaim resources.
4385 */
4386static void
4387ath_draintxq(struct ath_softc *sc)
4388{
4389	struct ath_hal *ah = sc->sc_ah;
4390	struct ifnet *ifp = sc->sc_ifp;
4391	int i;
4392
4393	/* XXX return value */
4394	if (!sc->sc_invalid) {
4395		/* don't touch the hardware if marked invalid */
4396		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4397		    __func__, sc->sc_bhalq,
4398		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4399		    NULL);
4400		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4401		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4402			if (ATH_TXQ_SETUP(sc, i))
4403				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4404	}
4405	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4406		if (ATH_TXQ_SETUP(sc, i))
4407			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4408#ifdef ATH_DEBUG
4409	if (sc->sc_debug & ATH_DEBUG_RESET) {
4410		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
4411		if (bf != NULL && bf->bf_m != NULL) {
4412			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4413				ath_hal_txprocdesc(ah, bf->bf_desc,
4414				    &bf->bf_status.ds_txstat) == HAL_OK);
4415			ieee80211_dump_pkt(ifp->if_l2com,
4416			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4417			    0, -1);
4418		}
4419	}
4420#endif /* ATH_DEBUG */
4421	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4422	sc->sc_wd_timer = 0;
4423}
4424
4425/*
4426 * Disable the receive h/w in preparation for a reset.
4427 */
4428static void
4429ath_stoprecv(struct ath_softc *sc)
4430{
4431#define	PA2DESC(_sc, _pa) \
4432	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4433		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4434	struct ath_hal *ah = sc->sc_ah;
4435
4436	ath_hal_stoppcurecv(ah);	/* disable PCU */
4437	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4438	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4439	DELAY(3000);			/* 3ms is long enough for 1 frame */
4440#ifdef ATH_DEBUG
4441	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4442		struct ath_buf *bf;
4443		u_int ix;
4444
4445		printf("%s: rx queue %p, link %p\n", __func__,
4446			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4447		ix = 0;
4448		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4449			struct ath_desc *ds = bf->bf_desc;
4450			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
4451			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4452				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4453			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4454				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
4455			ix++;
4456		}
4457	}
4458#endif
4459	if (sc->sc_rxpending != NULL) {
4460		m_freem(sc->sc_rxpending);
4461		sc->sc_rxpending = NULL;
4462	}
4463	sc->sc_rxlink = NULL;		/* just in case */
4464#undef PA2DESC
4465}
4466
4467/*
4468 * Enable the receive h/w following a reset.
4469 */
4470static int
4471ath_startrecv(struct ath_softc *sc)
4472{
4473	struct ath_hal *ah = sc->sc_ah;
4474	struct ath_buf *bf;
4475
4476	sc->sc_rxlink = NULL;
4477	sc->sc_rxpending = NULL;
4478	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4479		int error = ath_rxbuf_init(sc, bf);
4480		if (error != 0) {
4481			DPRINTF(sc, ATH_DEBUG_RECV,
4482				"%s: ath_rxbuf_init failed %d\n",
4483				__func__, error);
4484			return error;
4485		}
4486	}
4487
4488	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4489	ath_hal_putrxbuf(ah, bf->bf_daddr);
4490	ath_hal_rxena(ah);		/* enable recv descriptors */
4491	ath_mode_init(sc);		/* set filters, etc. */
4492	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4493	return 0;
4494}
4495
4496/*
4497 * Update internal state after a channel change.
4498 */
4499static void
4500ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4501{
4502	enum ieee80211_phymode mode;
4503
4504	/*
4505	 * Change channels and update the h/w rate map
4506	 * if we're switching; e.g. 11a to 11b/g.
4507	 */
4508	mode = ieee80211_chan2mode(chan);
4509	if (mode != sc->sc_curmode)
4510		ath_setcurmode(sc, mode);
4511	sc->sc_curchan = chan;
4512}
4513
4514/*
4515 * Set/change channels.  If the channel is really being changed,
4516 * it's done by resetting the chip.  To accomplish this we must
4517 * first cleanup any pending DMA, then restart stuff after a la
4518 * ath_init.
4519 */
4520static int
4521ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4522{
4523	struct ifnet *ifp = sc->sc_ifp;
4524	struct ieee80211com *ic = ifp->if_l2com;
4525	struct ath_hal *ah = sc->sc_ah;
4526
4527	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4528	    __func__, ieee80211_chan2ieee(ic, chan),
4529	    chan->ic_freq, chan->ic_flags);
4530	if (chan != sc->sc_curchan) {
4531		HAL_STATUS status;
4532		/*
4533		 * To switch channels clear any pending DMA operations;
4534		 * wait long enough for the RX fifo to drain, reset the
4535		 * hardware at the new frequency, and then re-enable
4536		 * the relevant bits of the h/w.
4537		 */
4538		ath_hal_intrset(ah, 0);		/* disable interrupts */
4539		ath_draintxq(sc);		/* clear pending tx frames */
4540		ath_stoprecv(sc);		/* turn off frame recv */
4541		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4542			if_printf(ifp, "%s: unable to reset "
4543			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4544			    __func__, ieee80211_chan2ieee(ic, chan),
4545			    chan->ic_freq, chan->ic_flags, status);
4546			return EIO;
4547		}
4548		sc->sc_diversity = ath_hal_getdiversity(ah);
4549
4550		/* Let DFS at it in case it's a DFS channel */
4551		ath_dfs_radar_enable(sc, ic->ic_curchan);
4552
4553		/*
4554		 * Re-enable rx framework.
4555		 */
4556		if (ath_startrecv(sc) != 0) {
4557			if_printf(ifp, "%s: unable to restart recv logic\n",
4558			    __func__);
4559			return EIO;
4560		}
4561
4562		/*
4563		 * Change channels and update the h/w rate map
4564		 * if we're switching; e.g. 11a to 11b/g.
4565		 */
4566		ath_chan_change(sc, chan);
4567
4568		/*
4569		 * Reset clears the beacon timers; reset them
4570		 * here if needed.
4571		 */
4572		if (sc->sc_beacons) {		/* restart beacons */
4573#ifdef IEEE80211_SUPPORT_TDMA
4574			if (sc->sc_tdma)
4575				ath_tdma_config(sc, NULL);
4576			else
4577#endif
4578			ath_beacon_config(sc, NULL);
4579		}
4580
4581		/*
4582		 * Re-enable interrupts.
4583		 */
4584		ath_hal_intrset(ah, sc->sc_imask);
4585	}
4586	return 0;
4587}
4588
4589/*
4590 * Periodically recalibrate the PHY to account
4591 * for temperature/environment changes.
4592 */
4593static void
4594ath_calibrate(void *arg)
4595{
4596	struct ath_softc *sc = arg;
4597	struct ath_hal *ah = sc->sc_ah;
4598	struct ifnet *ifp = sc->sc_ifp;
4599	struct ieee80211com *ic = ifp->if_l2com;
4600	HAL_BOOL longCal, isCalDone;
4601	HAL_BOOL aniCal, shortCal = AH_FALSE;
4602	int nextcal;
4603
4604	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4605		goto restart;
4606	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4607	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4608	if (sc->sc_doresetcal)
4609		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4610
4611	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4612	if (aniCal) {
4613		sc->sc_stats.ast_ani_cal++;
4614		sc->sc_lastani = ticks;
4615		ath_hal_ani_poll(ah, sc->sc_curchan);
4616	}
4617
4618	if (longCal) {
4619		sc->sc_stats.ast_per_cal++;
4620		sc->sc_lastlongcal = ticks;
4621		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4622			/*
4623			 * Rfgain is out of bounds, reset the chip
4624			 * to load new gain values.
4625			 */
4626			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4627				"%s: rfgain change\n", __func__);
4628			sc->sc_stats.ast_per_rfgain++;
4629			ath_reset(ifp);
4630		}
4631		/*
4632		 * If this long cal is after an idle period, then
4633		 * reset the data collection state so we start fresh.
4634		 */
4635		if (sc->sc_resetcal) {
4636			(void) ath_hal_calreset(ah, sc->sc_curchan);
4637			sc->sc_lastcalreset = ticks;
4638			sc->sc_lastshortcal = ticks;
4639			sc->sc_resetcal = 0;
4640			sc->sc_doresetcal = AH_TRUE;
4641		}
4642	}
4643
4644	/* Only call if we're doing a short/long cal, not for ANI calibration */
4645	if (shortCal || longCal) {
4646		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4647			if (longCal) {
4648				/*
4649				 * Calibrate noise floor data again in case of change.
4650				 */
4651				ath_hal_process_noisefloor(ah);
4652			}
4653		} else {
4654			DPRINTF(sc, ATH_DEBUG_ANY,
4655				"%s: calibration of channel %u failed\n",
4656				__func__, sc->sc_curchan->ic_freq);
4657			sc->sc_stats.ast_per_calfail++;
4658		}
4659		if (shortCal)
4660			sc->sc_lastshortcal = ticks;
4661	}
4662	if (!isCalDone) {
4663restart:
4664		/*
4665		 * Use a shorter interval to potentially collect multiple
4666		 * data samples required to complete calibration.  Once
4667		 * we're told the work is done we drop back to a longer
4668		 * interval between requests.  We're more aggressive doing
4669		 * work when operating as an AP to improve operation right
4670		 * after startup.
4671		 */
4672		sc->sc_lastshortcal = ticks;
4673		nextcal = ath_shortcalinterval*hz/1000;
4674		if (sc->sc_opmode != HAL_M_HOSTAP)
4675			nextcal *= 10;
4676		sc->sc_doresetcal = AH_TRUE;
4677	} else {
4678		/* nextcal should be the shortest time for next event */
4679		nextcal = ath_longcalinterval*hz;
4680		if (sc->sc_lastcalreset == 0)
4681			sc->sc_lastcalreset = sc->sc_lastlongcal;
4682		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4683			sc->sc_resetcal = 1;	/* setup reset next trip */
4684		sc->sc_doresetcal = AH_FALSE;
4685	}
4686	/* ANI calibration may occur more often than short/long/resetcal */
4687	if (ath_anicalinterval > 0)
4688		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4689
4690	if (nextcal != 0) {
4691		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4692		    __func__, nextcal, isCalDone ? "" : "!");
4693		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4694	} else {
4695		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4696		    __func__);
4697		/* NB: don't rearm timer */
4698	}
4699}
4700
4701static void
4702ath_scan_start(struct ieee80211com *ic)
4703{
4704	struct ifnet *ifp = ic->ic_ifp;
4705	struct ath_softc *sc = ifp->if_softc;
4706	struct ath_hal *ah = sc->sc_ah;
4707	u_int32_t rfilt;
4708
4709	/* XXX calibration timer? */
4710
4711	sc->sc_scanning = 1;
4712	sc->sc_syncbeacon = 0;
4713	rfilt = ath_calcrxfilter(sc);
4714	ath_hal_setrxfilter(ah, rfilt);
4715	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4716
4717	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4718		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4719}
4720
4721static void
4722ath_scan_end(struct ieee80211com *ic)
4723{
4724	struct ifnet *ifp = ic->ic_ifp;
4725	struct ath_softc *sc = ifp->if_softc;
4726	struct ath_hal *ah = sc->sc_ah;
4727	u_int32_t rfilt;
4728
4729	sc->sc_scanning = 0;
4730	rfilt = ath_calcrxfilter(sc);
4731	ath_hal_setrxfilter(ah, rfilt);
4732	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4733
4734	ath_hal_process_noisefloor(ah);
4735
4736	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4737		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4738		 sc->sc_curaid);
4739}
4740
4741static void
4742ath_set_channel(struct ieee80211com *ic)
4743{
4744	struct ifnet *ifp = ic->ic_ifp;
4745	struct ath_softc *sc = ifp->if_softc;
4746
4747	(void) ath_chan_set(sc, ic->ic_curchan);
4748	/*
4749	 * If we are returning to our bss channel then mark state
4750	 * so the next recv'd beacon's tsf will be used to sync the
4751	 * beacon timers.  Note that since we only hear beacons in
4752	 * sta/ibss mode this has no effect in other operating modes.
4753	 */
4754	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4755		sc->sc_syncbeacon = 1;
4756}
4757
4758/*
4759 * Walk the vap list and check if there any vap's in RUN state.
4760 */
4761static int
4762ath_isanyrunningvaps(struct ieee80211vap *this)
4763{
4764	struct ieee80211com *ic = this->iv_ic;
4765	struct ieee80211vap *vap;
4766
4767	IEEE80211_LOCK_ASSERT(ic);
4768
4769	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4770		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4771			return 1;
4772	}
4773	return 0;
4774}
4775
4776static int
4777ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4778{
4779	struct ieee80211com *ic = vap->iv_ic;
4780	struct ath_softc *sc = ic->ic_ifp->if_softc;
4781	struct ath_vap *avp = ATH_VAP(vap);
4782	struct ath_hal *ah = sc->sc_ah;
4783	struct ieee80211_node *ni = NULL;
4784	int i, error, stamode;
4785	u_int32_t rfilt;
4786	int csa_run_transition = 0;
4787	static const HAL_LED_STATE leds[] = {
4788	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4789	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4790	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4791	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4792	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4793	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4794	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4795	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4796	};
4797
4798	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4799		ieee80211_state_name[vap->iv_state],
4800		ieee80211_state_name[nstate]);
4801
4802	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
4803		csa_run_transition = 1;
4804
4805	callout_drain(&sc->sc_cal_ch);
4806	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4807
4808	if (nstate == IEEE80211_S_SCAN) {
4809		/*
4810		 * Scanning: turn off beacon miss and don't beacon.
4811		 * Mark beacon state so when we reach RUN state we'll
4812		 * [re]setup beacons.  Unblock the task q thread so
4813		 * deferred interrupt processing is done.
4814		 */
4815		ath_hal_intrset(ah,
4816		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4817		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4818		sc->sc_beacons = 0;
4819		taskqueue_unblock(sc->sc_tq);
4820	}
4821
4822	ni = vap->iv_bss;
4823	rfilt = ath_calcrxfilter(sc);
4824	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4825		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4826		   vap->iv_opmode == IEEE80211_M_IBSS);
4827	if (stamode && nstate == IEEE80211_S_RUN) {
4828		sc->sc_curaid = ni->ni_associd;
4829		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
4830		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4831	}
4832	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4833	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
4834	ath_hal_setrxfilter(ah, rfilt);
4835
4836	/* XXX is this to restore keycache on resume? */
4837	if (vap->iv_opmode != IEEE80211_M_STA &&
4838	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
4839		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4840			if (ath_hal_keyisvalid(ah, i))
4841				ath_hal_keysetmac(ah, i, ni->ni_bssid);
4842	}
4843
4844	/*
4845	 * Invoke the parent method to do net80211 work.
4846	 */
4847	error = avp->av_newstate(vap, nstate, arg);
4848	if (error != 0)
4849		goto bad;
4850
4851	if (nstate == IEEE80211_S_RUN) {
4852		/* NB: collect bss node again, it may have changed */
4853		ni = vap->iv_bss;
4854
4855		DPRINTF(sc, ATH_DEBUG_STATE,
4856		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4857		    "capinfo 0x%04x chan %d\n", __func__,
4858		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
4859		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
4860
4861		switch (vap->iv_opmode) {
4862#ifdef IEEE80211_SUPPORT_TDMA
4863		case IEEE80211_M_AHDEMO:
4864			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
4865				break;
4866			/* fall thru... */
4867#endif
4868		case IEEE80211_M_HOSTAP:
4869		case IEEE80211_M_IBSS:
4870		case IEEE80211_M_MBSS:
4871			/*
4872			 * Allocate and setup the beacon frame.
4873			 *
4874			 * Stop any previous beacon DMA.  This may be
4875			 * necessary, for example, when an ibss merge
4876			 * causes reconfiguration; there will be a state
4877			 * transition from RUN->RUN that means we may
4878			 * be called with beacon transmission active.
4879			 */
4880			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4881
4882			error = ath_beacon_alloc(sc, ni);
4883			if (error != 0)
4884				goto bad;
4885			/*
4886			 * If joining an adhoc network defer beacon timer
4887			 * configuration to the next beacon frame so we
4888			 * have a current TSF to use.  Otherwise we're
4889			 * starting an ibss/bss so there's no need to delay;
4890			 * if this is the first vap moving to RUN state, then
4891			 * beacon state needs to be [re]configured.
4892			 */
4893			if (vap->iv_opmode == IEEE80211_M_IBSS &&
4894			    ni->ni_tstamp.tsf != 0) {
4895				sc->sc_syncbeacon = 1;
4896			} else if (!sc->sc_beacons) {
4897#ifdef IEEE80211_SUPPORT_TDMA
4898				if (vap->iv_caps & IEEE80211_C_TDMA)
4899					ath_tdma_config(sc, vap);
4900				else
4901#endif
4902					ath_beacon_config(sc, vap);
4903				sc->sc_beacons = 1;
4904			}
4905			break;
4906		case IEEE80211_M_STA:
4907			/*
4908			 * Defer beacon timer configuration to the next
4909			 * beacon frame so we have a current TSF to use
4910			 * (any TSF collected when scanning is likely old).
4911			 * However if it's due to a CSA -> RUN transition,
4912			 * force a beacon update so we pick up a lack of
4913			 * beacons from an AP in CAC and thus force a
4914			 * scan.
4915			 */
4916			sc->sc_syncbeacon = 1;
4917			if (csa_run_transition)
4918				ath_beacon_config(sc, vap);
4919			break;
4920		case IEEE80211_M_MONITOR:
4921			/*
4922			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
4923			 * transitions so we must re-enable interrupts here to
4924			 * handle the case of a single monitor mode vap.
4925			 */
4926			ath_hal_intrset(ah, sc->sc_imask);
4927			break;
4928		case IEEE80211_M_WDS:
4929			break;
4930		default:
4931			break;
4932		}
4933		/*
4934		 * Let the hal process statistics collected during a
4935		 * scan so it can provide calibrated noise floor data.
4936		 */
4937		ath_hal_process_noisefloor(ah);
4938		/*
4939		 * Reset rssi stats; maybe not the best place...
4940		 */
4941		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4942		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4943		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4944		/*
4945		 * Finally, start any timers and the task q thread
4946		 * (in case we didn't go through SCAN state).
4947		 */
4948		if (ath_longcalinterval != 0) {
4949			/* start periodic recalibration timer */
4950			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4951		} else {
4952			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4953			    "%s: calibration disabled\n", __func__);
4954		}
4955		taskqueue_unblock(sc->sc_tq);
4956	} else if (nstate == IEEE80211_S_INIT) {
4957		/*
4958		 * If there are no vaps left in RUN state then
4959		 * shutdown host/driver operation:
4960		 * o disable interrupts
4961		 * o disable the task queue thread
4962		 * o mark beacon processing as stopped
4963		 */
4964		if (!ath_isanyrunningvaps(vap)) {
4965			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4966			/* disable interrupts  */
4967			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4968			taskqueue_block(sc->sc_tq);
4969			sc->sc_beacons = 0;
4970		}
4971#ifdef IEEE80211_SUPPORT_TDMA
4972		ath_hal_setcca(ah, AH_TRUE);
4973#endif
4974	}
4975bad:
4976	return error;
4977}
4978
4979/*
4980 * Allocate a key cache slot to the station so we can
4981 * setup a mapping from key index to node. The key cache
4982 * slot is needed for managing antenna state and for
4983 * compression when stations do not use crypto.  We do
4984 * it uniliaterally here; if crypto is employed this slot
4985 * will be reassigned.
4986 */
4987static void
4988ath_setup_stationkey(struct ieee80211_node *ni)
4989{
4990	struct ieee80211vap *vap = ni->ni_vap;
4991	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4992	ieee80211_keyix keyix, rxkeyix;
4993
4994	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4995		/*
4996		 * Key cache is full; we'll fall back to doing
4997		 * the more expensive lookup in software.  Note
4998		 * this also means no h/w compression.
4999		 */
5000		/* XXX msg+statistic */
5001	} else {
5002		/* XXX locking? */
5003		ni->ni_ucastkey.wk_keyix = keyix;
5004		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5005		/* NB: must mark device key to get called back on delete */
5006		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5007		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5008		/* NB: this will create a pass-thru key entry */
5009		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
5010	}
5011}
5012
5013/*
5014 * Setup driver-specific state for a newly associated node.
5015 * Note that we're called also on a re-associate, the isnew
5016 * param tells us if this is the first time or not.
5017 */
5018static void
5019ath_newassoc(struct ieee80211_node *ni, int isnew)
5020{
5021	struct ath_node *an = ATH_NODE(ni);
5022	struct ieee80211vap *vap = ni->ni_vap;
5023	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5024	const struct ieee80211_txparam *tp = ni->ni_txparms;
5025
5026	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5027	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5028
5029	ath_rate_newassoc(sc, an, isnew);
5030	if (isnew &&
5031	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5032	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5033		ath_setup_stationkey(ni);
5034}
5035
5036static int
5037ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5038	int nchans, struct ieee80211_channel chans[])
5039{
5040	struct ath_softc *sc = ic->ic_ifp->if_softc;
5041	struct ath_hal *ah = sc->sc_ah;
5042	HAL_STATUS status;
5043
5044	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5045	    "%s: rd %u cc %u location %c%s\n",
5046	    __func__, reg->regdomain, reg->country, reg->location,
5047	    reg->ecm ? " ecm" : "");
5048
5049	status = ath_hal_set_channels(ah, chans, nchans,
5050	    reg->country, reg->regdomain);
5051	if (status != HAL_OK) {
5052		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5053		    __func__, status);
5054		return EINVAL;		/* XXX */
5055	}
5056
5057	return 0;
5058}
5059
5060static void
5061ath_getradiocaps(struct ieee80211com *ic,
5062	int maxchans, int *nchans, struct ieee80211_channel chans[])
5063{
5064	struct ath_softc *sc = ic->ic_ifp->if_softc;
5065	struct ath_hal *ah = sc->sc_ah;
5066
5067	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5068	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5069
5070	/* XXX check return */
5071	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5072	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5073
5074}
5075
5076static int
5077ath_getchannels(struct ath_softc *sc)
5078{
5079	struct ifnet *ifp = sc->sc_ifp;
5080	struct ieee80211com *ic = ifp->if_l2com;
5081	struct ath_hal *ah = sc->sc_ah;
5082	HAL_STATUS status;
5083
5084	/*
5085	 * Collect channel set based on EEPROM contents.
5086	 */
5087	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5088	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5089	if (status != HAL_OK) {
5090		if_printf(ifp, "%s: unable to collect channel list from hal, "
5091		    "status %d\n", __func__, status);
5092		return EINVAL;
5093	}
5094	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5095	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5096	/* XXX map Atheros sku's to net80211 SKU's */
5097	/* XXX net80211 types too small */
5098	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5099	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5100	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5101	ic->ic_regdomain.isocc[1] = ' ';
5102
5103	ic->ic_regdomain.ecm = 1;
5104	ic->ic_regdomain.location = 'I';
5105
5106	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5107	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5108	    __func__, sc->sc_eerd, sc->sc_eecc,
5109	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5110	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5111	return 0;
5112}
5113
5114static void
5115ath_led_done(void *arg)
5116{
5117	struct ath_softc *sc = arg;
5118
5119	sc->sc_blinking = 0;
5120}
5121
5122/*
5123 * Turn the LED off: flip the pin and then set a timer so no
5124 * update will happen for the specified duration.
5125 */
5126static void
5127ath_led_off(void *arg)
5128{
5129	struct ath_softc *sc = arg;
5130
5131	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5132	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
5133}
5134
5135/*
5136 * Blink the LED according to the specified on/off times.
5137 */
5138static void
5139ath_led_blink(struct ath_softc *sc, int on, int off)
5140{
5141	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5142	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5143	sc->sc_blinking = 1;
5144	sc->sc_ledoff = off;
5145	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5146}
5147
5148static void
5149ath_led_event(struct ath_softc *sc, int rix)
5150{
5151	sc->sc_ledevent = ticks;	/* time of last event */
5152	if (sc->sc_blinking)		/* don't interrupt active blink */
5153		return;
5154	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
5155}
5156
5157static int
5158ath_rate_setup(struct ath_softc *sc, u_int mode)
5159{
5160	struct ath_hal *ah = sc->sc_ah;
5161	const HAL_RATE_TABLE *rt;
5162
5163	switch (mode) {
5164	case IEEE80211_MODE_11A:
5165		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5166		break;
5167	case IEEE80211_MODE_HALF:
5168		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5169		break;
5170	case IEEE80211_MODE_QUARTER:
5171		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5172		break;
5173	case IEEE80211_MODE_11B:
5174		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5175		break;
5176	case IEEE80211_MODE_11G:
5177		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5178		break;
5179	case IEEE80211_MODE_TURBO_A:
5180		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5181		break;
5182	case IEEE80211_MODE_TURBO_G:
5183		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5184		break;
5185	case IEEE80211_MODE_STURBO_A:
5186		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5187		break;
5188	case IEEE80211_MODE_11NA:
5189		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5190		break;
5191	case IEEE80211_MODE_11NG:
5192		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5193		break;
5194	default:
5195		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5196			__func__, mode);
5197		return 0;
5198	}
5199	sc->sc_rates[mode] = rt;
5200	return (rt != NULL);
5201}
5202
5203static void
5204ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5205{
5206#define	N(a)	(sizeof(a)/sizeof(a[0]))
5207	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5208	static const struct {
5209		u_int		rate;		/* tx/rx 802.11 rate */
5210		u_int16_t	timeOn;		/* LED on time (ms) */
5211		u_int16_t	timeOff;	/* LED off time (ms) */
5212	} blinkrates[] = {
5213		{ 108,  40,  10 },
5214		{  96,  44,  11 },
5215		{  72,  50,  13 },
5216		{  48,  57,  14 },
5217		{  36,  67,  16 },
5218		{  24,  80,  20 },
5219		{  22, 100,  25 },
5220		{  18, 133,  34 },
5221		{  12, 160,  40 },
5222		{  10, 200,  50 },
5223		{   6, 240,  58 },
5224		{   4, 267,  66 },
5225		{   2, 400, 100 },
5226		{   0, 500, 130 },
5227		/* XXX half/quarter rates */
5228	};
5229	const HAL_RATE_TABLE *rt;
5230	int i, j;
5231
5232	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5233	rt = sc->sc_rates[mode];
5234	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5235	for (i = 0; i < rt->rateCount; i++) {
5236		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5237		if (rt->info[i].phy != IEEE80211_T_HT)
5238			sc->sc_rixmap[ieeerate] = i;
5239		else
5240			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5241	}
5242	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5243	for (i = 0; i < N(sc->sc_hwmap); i++) {
5244		if (i >= rt->rateCount) {
5245			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5246			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5247			continue;
5248		}
5249		sc->sc_hwmap[i].ieeerate =
5250			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5251		if (rt->info[i].phy == IEEE80211_T_HT)
5252			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5253		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5254		if (rt->info[i].shortPreamble ||
5255		    rt->info[i].phy == IEEE80211_T_OFDM)
5256			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5257		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5258		for (j = 0; j < N(blinkrates)-1; j++)
5259			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5260				break;
5261		/* NB: this uses the last entry if the rate isn't found */
5262		/* XXX beware of overlow */
5263		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5264		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5265	}
5266	sc->sc_currates = rt;
5267	sc->sc_curmode = mode;
5268	/*
5269	 * All protection frames are transmited at 2Mb/s for
5270	 * 11g, otherwise at 1Mb/s.
5271	 */
5272	if (mode == IEEE80211_MODE_11G)
5273		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5274	else
5275		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5276	/* NB: caller is responsible for resetting rate control state */
5277#undef N
5278}
5279
5280static void
5281ath_watchdog(void *arg)
5282{
5283	struct ath_softc *sc = arg;
5284
5285	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5286		struct ifnet *ifp = sc->sc_ifp;
5287		uint32_t hangs;
5288
5289		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5290		    hangs != 0) {
5291			if_printf(ifp, "%s hang detected (0x%x)\n",
5292			    hangs & 0xff ? "bb" : "mac", hangs);
5293		} else
5294			if_printf(ifp, "device timeout\n");
5295		ath_reset(ifp);
5296		ifp->if_oerrors++;
5297		sc->sc_stats.ast_watchdog++;
5298	}
5299	callout_schedule(&sc->sc_wd_ch, hz);
5300}
5301
5302#ifdef ATH_DIAGAPI
5303/*
5304 * Diagnostic interface to the HAL.  This is used by various
5305 * tools to do things like retrieve register contents for
5306 * debugging.  The mechanism is intentionally opaque so that
5307 * it can change frequently w/o concern for compatiblity.
5308 */
5309static int
5310ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5311{
5312	struct ath_hal *ah = sc->sc_ah;
5313	u_int id = ad->ad_id & ATH_DIAG_ID;
5314	void *indata = NULL;
5315	void *outdata = NULL;
5316	u_int32_t insize = ad->ad_in_size;
5317	u_int32_t outsize = ad->ad_out_size;
5318	int error = 0;
5319
5320	if (ad->ad_id & ATH_DIAG_IN) {
5321		/*
5322		 * Copy in data.
5323		 */
5324		indata = malloc(insize, M_TEMP, M_NOWAIT);
5325		if (indata == NULL) {
5326			error = ENOMEM;
5327			goto bad;
5328		}
5329		error = copyin(ad->ad_in_data, indata, insize);
5330		if (error)
5331			goto bad;
5332	}
5333	if (ad->ad_id & ATH_DIAG_DYN) {
5334		/*
5335		 * Allocate a buffer for the results (otherwise the HAL
5336		 * returns a pointer to a buffer where we can read the
5337		 * results).  Note that we depend on the HAL leaving this
5338		 * pointer for us to use below in reclaiming the buffer;
5339		 * may want to be more defensive.
5340		 */
5341		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5342		if (outdata == NULL) {
5343			error = ENOMEM;
5344			goto bad;
5345		}
5346	}
5347	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5348		if (outsize < ad->ad_out_size)
5349			ad->ad_out_size = outsize;
5350		if (outdata != NULL)
5351			error = copyout(outdata, ad->ad_out_data,
5352					ad->ad_out_size);
5353	} else {
5354		error = EINVAL;
5355	}
5356bad:
5357	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5358		free(indata, M_TEMP);
5359	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5360		free(outdata, M_TEMP);
5361	return error;
5362}
5363#endif /* ATH_DIAGAPI */
5364
5365static int
5366ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5367{
5368#define	IS_RUNNING(ifp) \
5369	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5370	struct ath_softc *sc = ifp->if_softc;
5371	struct ieee80211com *ic = ifp->if_l2com;
5372	struct ifreq *ifr = (struct ifreq *)data;
5373	const HAL_RATE_TABLE *rt;
5374	int error = 0;
5375
5376	switch (cmd) {
5377	case SIOCSIFFLAGS:
5378		ATH_LOCK(sc);
5379		if (IS_RUNNING(ifp)) {
5380			/*
5381			 * To avoid rescanning another access point,
5382			 * do not call ath_init() here.  Instead,
5383			 * only reflect promisc mode settings.
5384			 */
5385			ath_mode_init(sc);
5386		} else if (ifp->if_flags & IFF_UP) {
5387			/*
5388			 * Beware of being called during attach/detach
5389			 * to reset promiscuous mode.  In that case we
5390			 * will still be marked UP but not RUNNING.
5391			 * However trying to re-init the interface
5392			 * is the wrong thing to do as we've already
5393			 * torn down much of our state.  There's
5394			 * probably a better way to deal with this.
5395			 */
5396			if (!sc->sc_invalid)
5397				ath_init(sc);	/* XXX lose error */
5398		} else {
5399			ath_stop_locked(ifp);
5400#ifdef notyet
5401			/* XXX must wakeup in places like ath_vap_delete */
5402			if (!sc->sc_invalid)
5403				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5404#endif
5405		}
5406		ATH_UNLOCK(sc);
5407		break;
5408	case SIOCGIFMEDIA:
5409	case SIOCSIFMEDIA:
5410		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5411		break;
5412	case SIOCGATHSTATS:
5413		/* NB: embed these numbers to get a consistent view */
5414		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5415		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5416		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5417		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5418#ifdef IEEE80211_SUPPORT_TDMA
5419		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
5420		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
5421#endif
5422		rt = sc->sc_currates;
5423		sc->sc_stats.ast_tx_rate =
5424		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
5425		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
5426			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
5427		return copyout(&sc->sc_stats,
5428		    ifr->ifr_data, sizeof (sc->sc_stats));
5429	case SIOCZATHSTATS:
5430		error = priv_check(curthread, PRIV_DRIVER);
5431		if (error == 0)
5432			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
5433		break;
5434#ifdef ATH_DIAGAPI
5435	case SIOCGATHDIAG:
5436		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5437		break;
5438	case SIOCGATHPHYERR:
5439		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
5440		break;
5441#endif
5442	case SIOCGIFADDR:
5443		error = ether_ioctl(ifp, cmd, data);
5444		break;
5445	default:
5446		error = EINVAL;
5447		break;
5448	}
5449	return error;
5450#undef IS_RUNNING
5451}
5452
5453/*
5454 * Announce various information on device/driver attach.
5455 */
5456static void
5457ath_announce(struct ath_softc *sc)
5458{
5459	struct ifnet *ifp = sc->sc_ifp;
5460	struct ath_hal *ah = sc->sc_ah;
5461
5462	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
5463		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
5464		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5465	if (bootverbose) {
5466		int i;
5467		for (i = 0; i <= WME_AC_VO; i++) {
5468			struct ath_txq *txq = sc->sc_ac2q[i];
5469			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5470				txq->axq_qnum, ieee80211_wme_acnames[i]);
5471		}
5472		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5473			sc->sc_cabq->axq_qnum);
5474		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5475	}
5476	if (ath_rxbuf != ATH_RXBUF)
5477		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5478	if (ath_txbuf != ATH_TXBUF)
5479		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5480	if (sc->sc_mcastkey && bootverbose)
5481		if_printf(ifp, "using multicast key search\n");
5482}
5483
5484#ifdef IEEE80211_SUPPORT_TDMA
5485static void
5486ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
5487{
5488	struct ath_hal *ah = sc->sc_ah;
5489	HAL_BEACON_TIMERS bt;
5490
5491	bt.bt_intval = bintval | HAL_BEACON_ENA;
5492	bt.bt_nexttbtt = nexttbtt;
5493	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
5494	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
5495	bt.bt_nextatim = nexttbtt+1;
5496	/* Enables TBTT, DBA, SWBA timers by default */
5497	bt.bt_flags = 0;
5498	ath_hal_beaconsettimers(ah, &bt);
5499}
5500
5501/*
5502 * Calculate the beacon interval.  This is periodic in the
5503 * superframe for the bss.  We assume each station is configured
5504 * identically wrt transmit rate so the guard time we calculate
5505 * above will be the same on all stations.  Note we need to
5506 * factor in the xmit time because the hardware will schedule
5507 * a frame for transmit if the start of the frame is within
5508 * the burst time.  When we get hardware that properly kills
5509 * frames in the PCU we can reduce/eliminate the guard time.
5510 *
5511 * Roundup to 1024 is so we have 1 TU buffer in the guard time
5512 * to deal with the granularity of the nexttbtt timer.  11n MAC's
5513 * with 1us timer granularity should allow us to reduce/eliminate
5514 * this.
5515 */
5516static void
5517ath_tdma_bintvalsetup(struct ath_softc *sc,
5518	const struct ieee80211_tdma_state *tdma)
5519{
5520	/* copy from vap state (XXX check all vaps have same value?) */
5521	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
5522
5523	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
5524		tdma->tdma_slotcnt, 1024);
5525	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
5526	if (sc->sc_tdmabintval & 1)
5527		sc->sc_tdmabintval++;
5528
5529	if (tdma->tdma_slot == 0) {
5530		/*
5531		 * Only slot 0 beacons; other slots respond.
5532		 */
5533		sc->sc_imask |= HAL_INT_SWBA;
5534		sc->sc_tdmaswba = 0;		/* beacon immediately */
5535	} else {
5536		/* XXX all vaps must be slot 0 or slot !0 */
5537		sc->sc_imask &= ~HAL_INT_SWBA;
5538	}
5539}
5540
5541/*
5542 * Max 802.11 overhead.  This assumes no 4-address frames and
5543 * the encapsulation done by ieee80211_encap (llc).  We also
5544 * include potential crypto overhead.
5545 */
5546#define	IEEE80211_MAXOVERHEAD \
5547	(sizeof(struct ieee80211_qosframe) \
5548	 + sizeof(struct llc) \
5549	 + IEEE80211_ADDR_LEN \
5550	 + IEEE80211_WEP_IVLEN \
5551	 + IEEE80211_WEP_KIDLEN \
5552	 + IEEE80211_WEP_CRCLEN \
5553	 + IEEE80211_WEP_MICLEN \
5554	 + IEEE80211_CRC_LEN)
5555
5556/*
5557 * Setup initially for tdma operation.  Start the beacon
5558 * timers and enable SWBA if we are slot 0.  Otherwise
5559 * we wait for slot 0 to arrive so we can sync up before
5560 * starting to transmit.
5561 */
5562static void
5563ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
5564{
5565	struct ath_hal *ah = sc->sc_ah;
5566	struct ifnet *ifp = sc->sc_ifp;
5567	struct ieee80211com *ic = ifp->if_l2com;
5568	const struct ieee80211_txparam *tp;
5569	const struct ieee80211_tdma_state *tdma = NULL;
5570	int rix;
5571
5572	if (vap == NULL) {
5573		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
5574		if (vap == NULL) {
5575			if_printf(ifp, "%s: no vaps?\n", __func__);
5576			return;
5577		}
5578	}
5579	tp = vap->iv_bss->ni_txparms;
5580	/*
5581	 * Calculate the guard time for each slot.  This is the
5582	 * time to send a maximal-size frame according to the
5583	 * fixed/lowest transmit rate.  Note that the interface
5584	 * mtu does not include the 802.11 overhead so we must
5585	 * tack that on (ath_hal_computetxtime includes the
5586	 * preamble and plcp in it's calculation).
5587	 */
5588	tdma = vap->iv_tdma;
5589	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
5590		rix = ath_tx_findrix(sc, tp->ucastrate);
5591	else
5592		rix = ath_tx_findrix(sc, tp->mcastrate);
5593	/* XXX short preamble assumed */
5594	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
5595		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
5596
5597	ath_hal_intrset(ah, 0);
5598
5599	ath_beaconq_config(sc);			/* setup h/w beacon q */
5600	if (sc->sc_setcca)
5601		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
5602	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
5603	ath_tdma_settimers(sc, sc->sc_tdmabintval,
5604		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
5605	sc->sc_syncbeacon = 0;
5606
5607	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
5608	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
5609
5610	ath_hal_intrset(ah, sc->sc_imask);
5611
5612	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
5613	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
5614	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
5615	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
5616	    sc->sc_tdmadbaprep);
5617}
5618
5619/*
5620 * Update tdma operation.  Called from the 802.11 layer
5621 * when a beacon is received from the TDMA station operating
5622 * in the slot immediately preceding us in the bss.  Use
5623 * the rx timestamp for the beacon frame to update our
5624 * beacon timers so we follow their schedule.  Note that
5625 * by using the rx timestamp we implicitly include the
5626 * propagation delay in our schedule.
5627 */
5628static void
5629ath_tdma_update(struct ieee80211_node *ni,
5630	const struct ieee80211_tdma_param *tdma, int changed)
5631{
5632#define	TSF_TO_TU(_h,_l) \
5633	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
5634#define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
5635	struct ieee80211vap *vap = ni->ni_vap;
5636	struct ieee80211com *ic = ni->ni_ic;
5637	struct ath_softc *sc = ic->ic_ifp->if_softc;
5638	struct ath_hal *ah = sc->sc_ah;
5639	const HAL_RATE_TABLE *rt = sc->sc_currates;
5640	u_int64_t tsf, rstamp, nextslot, nexttbtt;
5641	u_int32_t txtime, nextslottu;
5642	int32_t tudelta, tsfdelta;
5643	const struct ath_rx_status *rs;
5644	int rix;
5645
5646	sc->sc_stats.ast_tdma_update++;
5647
5648	/*
5649	 * Check for and adopt configuration changes.
5650	 */
5651	if (changed != 0) {
5652		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
5653
5654		ath_tdma_bintvalsetup(sc, ts);
5655		if (changed & TDMA_UPDATE_SLOTLEN)
5656			ath_wme_update(ic);
5657
5658		DPRINTF(sc, ATH_DEBUG_TDMA,
5659		    "%s: adopt slot %u slotcnt %u slotlen %u us "
5660		    "bintval %u TU\n", __func__,
5661		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
5662		    sc->sc_tdmabintval);
5663
5664		/* XXX right? */
5665		ath_hal_intrset(ah, sc->sc_imask);
5666		/* NB: beacon timers programmed below */
5667	}
5668
5669	/* extend rx timestamp to 64 bits */
5670	rs = sc->sc_lastrs;
5671	tsf = ath_hal_gettsf64(ah);
5672	rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
5673	/*
5674	 * The rx timestamp is set by the hardware on completing
5675	 * reception (at the point where the rx descriptor is DMA'd
5676	 * to the host).  To find the start of our next slot we
5677	 * must adjust this time by the time required to send
5678	 * the packet just received.
5679	 */
5680	rix = rt->rateCodeToIndex[rs->rs_rate];
5681	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
5682	    rt->info[rix].shortPreamble);
5683	/* NB: << 9 is to cvt to TU and /2 */
5684	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
5685	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
5686
5687	/*
5688	 * Retrieve the hardware NextTBTT in usecs
5689	 * and calculate the difference between what the
5690	 * other station thinks and what we have programmed.  This
5691	 * lets us figure how to adjust our timers to match.  The
5692	 * adjustments are done by pulling the TSF forward and possibly
5693	 * rewriting the beacon timers.
5694	 */
5695	nexttbtt = ath_hal_getnexttbtt(ah);
5696	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt);
5697
5698	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
5699	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
5700	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
5701
5702	if (tsfdelta < 0) {
5703		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
5704		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
5705		tsfdelta = -tsfdelta % 1024;
5706		nextslottu++;
5707	} else if (tsfdelta > 0) {
5708		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
5709		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
5710		tsfdelta = 1024 - (tsfdelta % 1024);
5711		nextslottu++;
5712	} else {
5713		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
5714		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
5715	}
5716	tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt);
5717
5718	/*
5719	 * Copy sender's timetstamp into tdma ie so they can
5720	 * calculate roundtrip time.  We submit a beacon frame
5721	 * below after any timer adjustment.  The frame goes out
5722	 * at the next TBTT so the sender can calculate the
5723	 * roundtrip by inspecting the tdma ie in our beacon frame.
5724	 *
5725	 * NB: This tstamp is subtlely preserved when
5726	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
5727	 *     slot position changes) because ieee80211_add_tdma
5728	 *     skips over the data.
5729	 */
5730	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
5731		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
5732		&ni->ni_tstamp.data, 8);
5733#if 0
5734	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
5735	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n",
5736	    (unsigned long long) tsf, (unsigned long long) nextslot,
5737	    (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta);
5738#endif
5739	/*
5740	 * Adjust the beacon timers only when pulling them forward
5741	 * or when going back by less than the beacon interval.
5742	 * Negative jumps larger than the beacon interval seem to
5743	 * cause the timers to stop and generally cause instability.
5744	 * This basically filters out jumps due to missed beacons.
5745	 */
5746	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
5747		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
5748		sc->sc_stats.ast_tdma_timers++;
5749	}
5750	if (tsfdelta > 0) {
5751		ath_hal_adjusttsf(ah, tsfdelta);
5752		sc->sc_stats.ast_tdma_tsf++;
5753	}
5754	ath_tdma_beacon_send(sc, vap);		/* prepare response */
5755#undef TU_TO_TSF
5756#undef TSF_TO_TU
5757}
5758
5759/*
5760 * Transmit a beacon frame at SWBA.  Dynamic updates
5761 * to the frame contents are done as needed.
5762 */
5763static void
5764ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
5765{
5766	struct ath_hal *ah = sc->sc_ah;
5767	struct ath_buf *bf;
5768	int otherant;
5769
5770	/*
5771	 * Check if the previous beacon has gone out.  If
5772	 * not don't try to post another, skip this period
5773	 * and wait for the next.  Missed beacons indicate
5774	 * a problem and should not occur.  If we miss too
5775	 * many consecutive beacons reset the device.
5776	 */
5777	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
5778		sc->sc_bmisscount++;
5779		DPRINTF(sc, ATH_DEBUG_BEACON,
5780			"%s: missed %u consecutive beacons\n",
5781			__func__, sc->sc_bmisscount);
5782		if (sc->sc_bmisscount >= ath_bstuck_threshold)
5783			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
5784		return;
5785	}
5786	if (sc->sc_bmisscount != 0) {
5787		DPRINTF(sc, ATH_DEBUG_BEACON,
5788			"%s: resume beacon xmit after %u misses\n",
5789			__func__, sc->sc_bmisscount);
5790		sc->sc_bmisscount = 0;
5791	}
5792
5793	/*
5794	 * Check recent per-antenna transmit statistics and flip
5795	 * the default antenna if noticeably more frames went out
5796	 * on the non-default antenna.
5797	 * XXX assumes 2 anntenae
5798	 */
5799	if (!sc->sc_diversity) {
5800		otherant = sc->sc_defant & 1 ? 2 : 1;
5801		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
5802			ath_setdefantenna(sc, otherant);
5803		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
5804	}
5805
5806	bf = ath_beacon_generate(sc, vap);
5807	if (bf != NULL) {
5808		/*
5809		 * Stop any current dma and put the new frame on the queue.
5810		 * This should never fail since we check above that no frames
5811		 * are still pending on the queue.
5812		 */
5813		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
5814			DPRINTF(sc, ATH_DEBUG_ANY,
5815				"%s: beacon queue %u did not stop?\n",
5816				__func__, sc->sc_bhalq);
5817			/* NB: the HAL still stops DMA, so proceed */
5818		}
5819		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
5820		ath_hal_txstart(ah, sc->sc_bhalq);
5821
5822		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
5823
5824		/*
5825		 * Record local TSF for our last send for use
5826		 * in arbitrating slot collisions.
5827		 */
5828		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
5829	}
5830}
5831#endif /* IEEE80211_SUPPORT_TDMA */
5832
5833static void
5834ath_dfs_tasklet(void *p, int npending)
5835{
5836	struct ath_softc *sc = (struct ath_softc *) p;
5837	struct ifnet *ifp = sc->sc_ifp;
5838	struct ieee80211com *ic = ifp->if_l2com;
5839
5840	/*
5841	 * If previous processing has found a radar event,
5842	 * signal this to the net80211 layer to begin DFS
5843	 * processing.
5844	 */
5845	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
5846		/* DFS event found, initiate channel change */
5847		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
5848	}
5849}
5850
5851MODULE_VERSION(if_ath, 1);
5852MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
5853