if_ath.c revision 225444
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 225444 2011-09-08 01:23:05Z adrian $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42#include "opt_wlan.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/sysctl.h>
47#include <sys/mbuf.h>
48#include <sys/malloc.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/kernel.h>
52#include <sys/socket.h>
53#include <sys/sockio.h>
54#include <sys/errno.h>
55#include <sys/callout.h>
56#include <sys/bus.h>
57#include <sys/endian.h>
58#include <sys/kthread.h>
59#include <sys/taskqueue.h>
60#include <sys/priv.h>
61#include <sys/module.h>
62
63#include <machine/bus.h>
64
65#include <net/if.h>
66#include <net/if_dl.h>
67#include <net/if_media.h>
68#include <net/if_types.h>
69#include <net/if_arp.h>
70#include <net/ethernet.h>
71#include <net/if_llc.h>
72
73#include <net80211/ieee80211_var.h>
74#include <net80211/ieee80211_regdomain.h>
75#ifdef IEEE80211_SUPPORT_SUPERG
76#include <net80211/ieee80211_superg.h>
77#endif
78#ifdef IEEE80211_SUPPORT_TDMA
79#include <net80211/ieee80211_tdma.h>
80#endif
81
82#include <net/bpf.h>
83
84#ifdef INET
85#include <netinet/in.h>
86#include <netinet/if_ether.h>
87#endif
88
89#include <dev/ath/if_athvar.h>
90#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
91#include <dev/ath/ath_hal/ah_diagcodes.h>
92
93#include <dev/ath/if_ath_debug.h>
94#include <dev/ath/if_ath_misc.h>
95#include <dev/ath/if_ath_tx.h>
96#include <dev/ath/if_ath_sysctl.h>
97#include <dev/ath/if_ath_keycache.h>
98#include <dev/ath/if_athdfs.h>
99
100#ifdef ATH_TX99_DIAG
101#include <dev/ath/ath_tx99/ath_tx99.h>
102#endif
103
104
105/*
106 * ATH_BCBUF determines the number of vap's that can transmit
107 * beacons and also (currently) the number of vap's that can
108 * have unique mac addresses/bssid.  When staggering beacons
109 * 4 is probably a good max as otherwise the beacons become
110 * very closely spaced and there is limited time for cab q traffic
111 * to go out.  You can burst beacons instead but that is not good
112 * for stations in power save and at some point you really want
113 * another radio (and channel).
114 *
115 * The limit on the number of mac addresses is tied to our use of
116 * the U/L bit and tracking addresses in a byte; it would be
117 * worthwhile to allow more for applications like proxy sta.
118 */
119CTASSERT(ATH_BCBUF <= 8);
120
121static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
122		    const char name[IFNAMSIZ], int unit, int opmode,
123		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
124		    const uint8_t mac[IEEE80211_ADDR_LEN]);
125static void	ath_vap_delete(struct ieee80211vap *);
126static void	ath_init(void *);
127static void	ath_stop_locked(struct ifnet *);
128static void	ath_stop(struct ifnet *);
129static void	ath_start(struct ifnet *);
130static int	ath_reset_vap(struct ieee80211vap *, u_long);
131static int	ath_media_change(struct ifnet *);
132static void	ath_watchdog(void *);
133static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
134static void	ath_fatal_proc(void *, int);
135static void	ath_bmiss_vap(struct ieee80211vap *);
136static void	ath_bmiss_proc(void *, int);
137static void	ath_key_update_begin(struct ieee80211vap *);
138static void	ath_key_update_end(struct ieee80211vap *);
139static void	ath_update_mcast(struct ifnet *);
140static void	ath_update_promisc(struct ifnet *);
141static void	ath_mode_init(struct ath_softc *);
142static void	ath_setslottime(struct ath_softc *);
143static void	ath_updateslot(struct ifnet *);
144static int	ath_beaconq_setup(struct ath_hal *);
145static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
146static void	ath_beacon_update(struct ieee80211vap *, int item);
147static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
148static void	ath_beacon_proc(void *, int);
149static struct ath_buf *ath_beacon_generate(struct ath_softc *,
150			struct ieee80211vap *);
151static void	ath_bstuck_proc(void *, int);
152static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
153static void	ath_beacon_free(struct ath_softc *);
154static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
155static void	ath_descdma_cleanup(struct ath_softc *sc,
156			struct ath_descdma *, ath_bufhead *);
157static int	ath_desc_alloc(struct ath_softc *);
158static void	ath_desc_free(struct ath_softc *);
159static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
160			const uint8_t [IEEE80211_ADDR_LEN]);
161static void	ath_node_free(struct ieee80211_node *);
162static void	ath_node_getsignal(const struct ieee80211_node *,
163			int8_t *, int8_t *);
164static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
165static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
166			int subtype, int rssi, int nf);
167static void	ath_setdefantenna(struct ath_softc *, u_int);
168static void	ath_rx_proc(void *, int);
169static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
170static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
171static int	ath_tx_setup(struct ath_softc *, int, int);
172static int	ath_wme_update(struct ieee80211com *);
173static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
174static void	ath_tx_cleanup(struct ath_softc *);
175static void	ath_tx_proc_q0(void *, int);
176static void	ath_tx_proc_q0123(void *, int);
177static void	ath_tx_proc(void *, int);
178static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
179static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
180static void	ath_draintxq(struct ath_softc *);
181static void	ath_stoprecv(struct ath_softc *);
182static int	ath_startrecv(struct ath_softc *);
183static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
184static void	ath_scan_start(struct ieee80211com *);
185static void	ath_scan_end(struct ieee80211com *);
186static void	ath_set_channel(struct ieee80211com *);
187static void	ath_calibrate(void *);
188static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
189static void	ath_setup_stationkey(struct ieee80211_node *);
190static void	ath_newassoc(struct ieee80211_node *, int);
191static int	ath_setregdomain(struct ieee80211com *,
192		    struct ieee80211_regdomain *, int,
193		    struct ieee80211_channel []);
194static void	ath_getradiocaps(struct ieee80211com *, int, int *,
195		    struct ieee80211_channel []);
196static int	ath_getchannels(struct ath_softc *);
197static void	ath_led_event(struct ath_softc *, int);
198
199static int	ath_rate_setup(struct ath_softc *, u_int mode);
200static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
201
202static void	ath_announce(struct ath_softc *);
203
204static void	ath_dfs_tasklet(void *, int);
205
206#ifdef IEEE80211_SUPPORT_TDMA
207static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
208		    u_int32_t bintval);
209static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
210		    const struct ieee80211_tdma_state *tdma);
211static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
212static void	ath_tdma_update(struct ieee80211_node *ni,
213		    const struct ieee80211_tdma_param *tdma, int);
214static void	ath_tdma_beacon_send(struct ath_softc *sc,
215		    struct ieee80211vap *vap);
216
217#define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
218#define	TDMA_LPF_LEN		6
219#define	TDMA_DUMMY_MARKER	0x127
220#define	TDMA_EP_MUL(x, mul)	((x) * (mul))
221#define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
222#define	TDMA_LPF(x, y, len) \
223    ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
224#define	TDMA_SAMPLE(x, y) do {					\
225	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
226} while (0)
227#define	TDMA_EP_RND(x,mul) \
228	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
229#define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
230#endif /* IEEE80211_SUPPORT_TDMA */
231
232SYSCTL_DECL(_hw_ath);
233
234/* XXX validate sysctl values */
235static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
236SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
237	    0, "long chip calibration interval (secs)");
238static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
239SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
240	    0, "short chip calibration interval (msecs)");
241static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
242SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
243	    0, "reset chip calibration results (secs)");
244static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
245SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
246	    0, "ANI calibration (msecs)");
247
248static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
249SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
250	    0, "rx buffers allocated");
251TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
252static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
253SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
254	    0, "tx buffers allocated");
255TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
256
257static	int ath_bstuck_threshold = 4;		/* max missed beacons */
258SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
259	    0, "max missed beacon xmits before chip reset");
260
261MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
262
263#define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
264#define	HAL_MODE_HT40 \
265	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
266	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
267int
268ath_attach(u_int16_t devid, struct ath_softc *sc)
269{
270	struct ifnet *ifp;
271	struct ieee80211com *ic;
272	struct ath_hal *ah = NULL;
273	HAL_STATUS status;
274	int error = 0, i;
275	u_int wmodes;
276	uint8_t macaddr[IEEE80211_ADDR_LEN];
277
278	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
279
280	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
281	if (ifp == NULL) {
282		device_printf(sc->sc_dev, "can not if_alloc()\n");
283		error = ENOSPC;
284		goto bad;
285	}
286	ic = ifp->if_l2com;
287
288	/* set these up early for if_printf use */
289	if_initname(ifp, device_get_name(sc->sc_dev),
290		device_get_unit(sc->sc_dev));
291
292	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, sc->sc_eepromdata, &status);
293	if (ah == NULL) {
294		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
295			status);
296		error = ENXIO;
297		goto bad;
298	}
299	sc->sc_ah = ah;
300	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
301#ifdef	ATH_DEBUG
302	sc->sc_debug = ath_debug;
303#endif
304
305	/*
306	 * Check if the MAC has multi-rate retry support.
307	 * We do this by trying to setup a fake extended
308	 * descriptor.  MAC's that don't have support will
309	 * return false w/o doing anything.  MAC's that do
310	 * support it will return true w/o doing anything.
311	 */
312	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
313
314	/*
315	 * Check if the device has hardware counters for PHY
316	 * errors.  If so we need to enable the MIB interrupt
317	 * so we can act on stat triggers.
318	 */
319	if (ath_hal_hwphycounters(ah))
320		sc->sc_needmib = 1;
321
322	/*
323	 * Get the hardware key cache size.
324	 */
325	sc->sc_keymax = ath_hal_keycachesize(ah);
326	if (sc->sc_keymax > ATH_KEYMAX) {
327		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
328			ATH_KEYMAX, sc->sc_keymax);
329		sc->sc_keymax = ATH_KEYMAX;
330	}
331	/*
332	 * Reset the key cache since some parts do not
333	 * reset the contents on initial power up.
334	 */
335	for (i = 0; i < sc->sc_keymax; i++)
336		ath_hal_keyreset(ah, i);
337
338	/*
339	 * Collect the default channel list.
340	 */
341	error = ath_getchannels(sc);
342	if (error != 0)
343		goto bad;
344
345	/*
346	 * Setup rate tables for all potential media types.
347	 */
348	ath_rate_setup(sc, IEEE80211_MODE_11A);
349	ath_rate_setup(sc, IEEE80211_MODE_11B);
350	ath_rate_setup(sc, IEEE80211_MODE_11G);
351	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
352	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
353	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
354	ath_rate_setup(sc, IEEE80211_MODE_11NA);
355	ath_rate_setup(sc, IEEE80211_MODE_11NG);
356	ath_rate_setup(sc, IEEE80211_MODE_HALF);
357	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
358
359	/* NB: setup here so ath_rate_update is happy */
360	ath_setcurmode(sc, IEEE80211_MODE_11A);
361
362	/*
363	 * Allocate tx+rx descriptors and populate the lists.
364	 */
365	error = ath_desc_alloc(sc);
366	if (error != 0) {
367		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
368		goto bad;
369	}
370	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
371	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
372
373	ATH_TXBUF_LOCK_INIT(sc);
374
375	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
376		taskqueue_thread_enqueue, &sc->sc_tq);
377	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
378		"%s taskq", ifp->if_xname);
379
380	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
381	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
382	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
383
384	/*
385	 * Allocate hardware transmit queues: one queue for
386	 * beacon frames and one data queue for each QoS
387	 * priority.  Note that the hal handles resetting
388	 * these queues at the needed time.
389	 *
390	 * XXX PS-Poll
391	 */
392	sc->sc_bhalq = ath_beaconq_setup(ah);
393	if (sc->sc_bhalq == (u_int) -1) {
394		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
395		error = EIO;
396		goto bad2;
397	}
398	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
399	if (sc->sc_cabq == NULL) {
400		if_printf(ifp, "unable to setup CAB xmit queue!\n");
401		error = EIO;
402		goto bad2;
403	}
404	/* NB: insure BK queue is the lowest priority h/w queue */
405	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
406		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
407			ieee80211_wme_acnames[WME_AC_BK]);
408		error = EIO;
409		goto bad2;
410	}
411	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
412	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
413	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
414		/*
415		 * Not enough hardware tx queues to properly do WME;
416		 * just punt and assign them all to the same h/w queue.
417		 * We could do a better job of this if, for example,
418		 * we allocate queues when we switch from station to
419		 * AP mode.
420		 */
421		if (sc->sc_ac2q[WME_AC_VI] != NULL)
422			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
423		if (sc->sc_ac2q[WME_AC_BE] != NULL)
424			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
425		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
426		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
427		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
428	}
429
430	/*
431	 * Special case certain configurations.  Note the
432	 * CAB queue is handled by these specially so don't
433	 * include them when checking the txq setup mask.
434	 */
435	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
436	case 0x01:
437		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
438		break;
439	case 0x0f:
440		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
441		break;
442	default:
443		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
444		break;
445	}
446
447	/*
448	 * Setup rate control.  Some rate control modules
449	 * call back to change the anntena state so expose
450	 * the necessary entry points.
451	 * XXX maybe belongs in struct ath_ratectrl?
452	 */
453	sc->sc_setdefantenna = ath_setdefantenna;
454	sc->sc_rc = ath_rate_attach(sc);
455	if (sc->sc_rc == NULL) {
456		error = EIO;
457		goto bad2;
458	}
459
460	/* Attach DFS module */
461	if (! ath_dfs_attach(sc)) {
462		device_printf(sc->sc_dev, "%s: unable to attach DFS\n", __func__);
463		error = EIO;
464		goto bad2;
465	}
466
467	/* Start DFS processing tasklet */
468	TASK_INIT(&sc->sc_dfstask, 0, ath_dfs_tasklet, sc);
469
470	sc->sc_blinking = 0;
471	sc->sc_ledstate = 1;
472	sc->sc_ledon = 0;			/* low true */
473	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
474	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
475	/*
476	 * Auto-enable soft led processing for IBM cards and for
477	 * 5211 minipci cards.  Users can also manually enable/disable
478	 * support with a sysctl.
479	 */
480	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
481	if (sc->sc_softled) {
482		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
483		    HAL_GPIO_MUX_MAC_NETWORK_LED);
484		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
485	}
486
487	ifp->if_softc = sc;
488	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
489	ifp->if_start = ath_start;
490	ifp->if_ioctl = ath_ioctl;
491	ifp->if_init = ath_init;
492	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
493	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
494	IFQ_SET_READY(&ifp->if_snd);
495
496	ic->ic_ifp = ifp;
497	/* XXX not right but it's not used anywhere important */
498	ic->ic_phytype = IEEE80211_T_OFDM;
499	ic->ic_opmode = IEEE80211_M_STA;
500	ic->ic_caps =
501		  IEEE80211_C_STA		/* station mode */
502		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
503		| IEEE80211_C_HOSTAP		/* hostap mode */
504		| IEEE80211_C_MONITOR		/* monitor mode */
505		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
506		| IEEE80211_C_WDS		/* 4-address traffic works */
507		| IEEE80211_C_MBSS		/* mesh point link mode */
508		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
509		| IEEE80211_C_SHSLOT		/* short slot time supported */
510		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
511		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
512		| IEEE80211_C_TXFRAG		/* handle tx frags */
513#ifdef	ATH_ENABLE_DFS
514		| IEEE80211_C_DFS		/* Enable DFS radar detection */
515#endif
516		;
517	/*
518	 * Query the hal to figure out h/w crypto support.
519	 */
520	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
521		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
522	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
523		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
524	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
525		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
526	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
527		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
528	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
529		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
530		/*
531		 * Check if h/w does the MIC and/or whether the
532		 * separate key cache entries are required to
533		 * handle both tx+rx MIC keys.
534		 */
535		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
536			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
537		/*
538		 * If the h/w supports storing tx+rx MIC keys
539		 * in one cache slot automatically enable use.
540		 */
541		if (ath_hal_hastkipsplit(ah) ||
542		    !ath_hal_settkipsplit(ah, AH_FALSE))
543			sc->sc_splitmic = 1;
544		/*
545		 * If the h/w can do TKIP MIC together with WME then
546		 * we use it; otherwise we force the MIC to be done
547		 * in software by the net80211 layer.
548		 */
549		if (ath_hal_haswmetkipmic(ah))
550			sc->sc_wmetkipmic = 1;
551	}
552	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
553	/*
554	 * Check for multicast key search support.
555	 */
556	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
557	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
558		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
559	}
560	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
561	/*
562	 * Mark key cache slots associated with global keys
563	 * as in use.  If we knew TKIP was not to be used we
564	 * could leave the +32, +64, and +32+64 slots free.
565	 */
566	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
567		setbit(sc->sc_keymap, i);
568		setbit(sc->sc_keymap, i+64);
569		if (sc->sc_splitmic) {
570			setbit(sc->sc_keymap, i+32);
571			setbit(sc->sc_keymap, i+32+64);
572		}
573	}
574	/*
575	 * TPC support can be done either with a global cap or
576	 * per-packet support.  The latter is not available on
577	 * all parts.  We're a bit pedantic here as all parts
578	 * support a global cap.
579	 */
580	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
581		ic->ic_caps |= IEEE80211_C_TXPMGT;
582
583	/*
584	 * Mark WME capability only if we have sufficient
585	 * hardware queues to do proper priority scheduling.
586	 */
587	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
588		ic->ic_caps |= IEEE80211_C_WME;
589	/*
590	 * Check for misc other capabilities.
591	 */
592	if (ath_hal_hasbursting(ah))
593		ic->ic_caps |= IEEE80211_C_BURST;
594	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
595	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
596	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
597	sc->sc_rxslink = ath_hal_self_linked_final_rxdesc(ah);
598	sc->sc_rxtsf32 = ath_hal_has_long_rxdesc_tsf(ah);
599	if (ath_hal_hasfastframes(ah))
600		ic->ic_caps |= IEEE80211_C_FF;
601	wmodes = ath_hal_getwirelessmodes(ah);
602	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
603		ic->ic_caps |= IEEE80211_C_TURBOP;
604#ifdef IEEE80211_SUPPORT_TDMA
605	if (ath_hal_macversion(ah) > 0x78) {
606		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
607		ic->ic_tdma_update = ath_tdma_update;
608	}
609#endif
610
611	/*
612	 * The if_ath 11n support is completely not ready for normal use.
613	 * Enabling this option will likely break everything and everything.
614	 * Don't think of doing that unless you know what you're doing.
615	 */
616
617#ifdef	ATH_ENABLE_11N
618	/*
619	 * Query HT capabilities
620	 */
621	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
622	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
623		int rxs, txs;
624
625		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
626		ic->ic_htcaps = IEEE80211_HTC_HT		/* HT operation */
627			    | IEEE80211_HTC_AMPDU		/* A-MPDU tx/rx */
628			    | IEEE80211_HTC_AMSDU		/* A-MSDU tx/rx */
629			    | IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
630			    | IEEE80211_HTCAP_SMPS_OFF;		/* SM power save off */
631			;
632
633		/*
634		 * Enable short-GI for HT20 only if the hardware
635		 * advertises support.
636		 * Notably, anything earlier than the AR9287 doesn't.
637		 */
638		if ((ath_hal_getcapability(ah,
639		    HAL_CAP_HT20_SGI, 0, NULL) == HAL_OK) &&
640		    (wmodes & HAL_MODE_HT20)) {
641			device_printf(sc->sc_dev,
642			    "[HT] enabling short-GI in 20MHz mode\n");
643			ic->ic_htcaps |= IEEE80211_HTCAP_SHORTGI20;
644		}
645
646		if (wmodes & HAL_MODE_HT40)
647			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
648			    |  IEEE80211_HTCAP_SHORTGI40;
649
650		/*
651		 * rx/tx stream is not currently used anywhere; it needs to be taken
652		 * into account when negotiating which MCS rates it'll receive and
653		 * what MCS rates are available for TX.
654		 */
655		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &rxs);
656		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &txs);
657
658		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
659		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
660
661		ic->ic_txstream = txs;
662		ic->ic_rxstream = rxs;
663
664		device_printf(sc->sc_dev, "[HT] %d RX streams; %d TX streams\n", rxs, txs);
665	}
666#endif
667
668	/*
669	 * Indicate we need the 802.11 header padded to a
670	 * 32-bit boundary for 4-address and QoS frames.
671	 */
672	ic->ic_flags |= IEEE80211_F_DATAPAD;
673
674	/*
675	 * Query the hal about antenna support.
676	 */
677	sc->sc_defant = ath_hal_getdefantenna(ah);
678
679	/*
680	 * Not all chips have the VEOL support we want to
681	 * use with IBSS beacons; check here for it.
682	 */
683	sc->sc_hasveol = ath_hal_hasveol(ah);
684
685	/* get mac address from hardware */
686	ath_hal_getmac(ah, macaddr);
687	if (sc->sc_hasbmask)
688		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
689
690	/* NB: used to size node table key mapping array */
691	ic->ic_max_keyix = sc->sc_keymax;
692	/* call MI attach routine. */
693	ieee80211_ifattach(ic, macaddr);
694	ic->ic_setregdomain = ath_setregdomain;
695	ic->ic_getradiocaps = ath_getradiocaps;
696	sc->sc_opmode = HAL_M_STA;
697
698	/* override default methods */
699	ic->ic_newassoc = ath_newassoc;
700	ic->ic_updateslot = ath_updateslot;
701	ic->ic_wme.wme_update = ath_wme_update;
702	ic->ic_vap_create = ath_vap_create;
703	ic->ic_vap_delete = ath_vap_delete;
704	ic->ic_raw_xmit = ath_raw_xmit;
705	ic->ic_update_mcast = ath_update_mcast;
706	ic->ic_update_promisc = ath_update_promisc;
707	ic->ic_node_alloc = ath_node_alloc;
708	sc->sc_node_free = ic->ic_node_free;
709	ic->ic_node_free = ath_node_free;
710	ic->ic_node_getsignal = ath_node_getsignal;
711	ic->ic_scan_start = ath_scan_start;
712	ic->ic_scan_end = ath_scan_end;
713	ic->ic_set_channel = ath_set_channel;
714
715	ieee80211_radiotap_attach(ic,
716	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
717		ATH_TX_RADIOTAP_PRESENT,
718	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
719		ATH_RX_RADIOTAP_PRESENT);
720
721	/*
722	 * Setup dynamic sysctl's now that country code and
723	 * regdomain are available from the hal.
724	 */
725	ath_sysctlattach(sc);
726	ath_sysctl_stats_attach(sc);
727	ath_sysctl_hal_attach(sc);
728
729	if (bootverbose)
730		ieee80211_announce(ic);
731	ath_announce(sc);
732	return 0;
733bad2:
734	ath_tx_cleanup(sc);
735	ath_desc_free(sc);
736bad:
737	if (ah)
738		ath_hal_detach(ah);
739	if (ifp != NULL)
740		if_free(ifp);
741	sc->sc_invalid = 1;
742	return error;
743}
744
745int
746ath_detach(struct ath_softc *sc)
747{
748	struct ifnet *ifp = sc->sc_ifp;
749
750	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
751		__func__, ifp->if_flags);
752
753	/*
754	 * NB: the order of these is important:
755	 * o stop the chip so no more interrupts will fire
756	 * o call the 802.11 layer before detaching the hal to
757	 *   insure callbacks into the driver to delete global
758	 *   key cache entries can be handled
759	 * o free the taskqueue which drains any pending tasks
760	 * o reclaim the tx queue data structures after calling
761	 *   the 802.11 layer as we'll get called back to reclaim
762	 *   node state and potentially want to use them
763	 * o to cleanup the tx queues the hal is called, so detach
764	 *   it last
765	 * Other than that, it's straightforward...
766	 */
767	ath_stop(ifp);
768	ieee80211_ifdetach(ifp->if_l2com);
769	taskqueue_free(sc->sc_tq);
770#ifdef ATH_TX99_DIAG
771	if (sc->sc_tx99 != NULL)
772		sc->sc_tx99->detach(sc->sc_tx99);
773#endif
774	ath_rate_detach(sc->sc_rc);
775
776	ath_dfs_detach(sc);
777	ath_desc_free(sc);
778	ath_tx_cleanup(sc);
779	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
780	if_free(ifp);
781
782	return 0;
783}
784
785/*
786 * MAC address handling for multiple BSS on the same radio.
787 * The first vap uses the MAC address from the EEPROM.  For
788 * subsequent vap's we set the U/L bit (bit 1) in the MAC
789 * address and use the next six bits as an index.
790 */
791static void
792assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
793{
794	int i;
795
796	if (clone && sc->sc_hasbmask) {
797		/* NB: we only do this if h/w supports multiple bssid */
798		for (i = 0; i < 8; i++)
799			if ((sc->sc_bssidmask & (1<<i)) == 0)
800				break;
801		if (i != 0)
802			mac[0] |= (i << 2)|0x2;
803	} else
804		i = 0;
805	sc->sc_bssidmask |= 1<<i;
806	sc->sc_hwbssidmask[0] &= ~mac[0];
807	if (i == 0)
808		sc->sc_nbssid0++;
809}
810
811static void
812reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
813{
814	int i = mac[0] >> 2;
815	uint8_t mask;
816
817	if (i != 0 || --sc->sc_nbssid0 == 0) {
818		sc->sc_bssidmask &= ~(1<<i);
819		/* recalculate bssid mask from remaining addresses */
820		mask = 0xff;
821		for (i = 1; i < 8; i++)
822			if (sc->sc_bssidmask & (1<<i))
823				mask &= ~((i<<2)|0x2);
824		sc->sc_hwbssidmask[0] |= mask;
825	}
826}
827
828/*
829 * Assign a beacon xmit slot.  We try to space out
830 * assignments so when beacons are staggered the
831 * traffic coming out of the cab q has maximal time
832 * to go out before the next beacon is scheduled.
833 */
834static int
835assign_bslot(struct ath_softc *sc)
836{
837	u_int slot, free;
838
839	free = 0;
840	for (slot = 0; slot < ATH_BCBUF; slot++)
841		if (sc->sc_bslot[slot] == NULL) {
842			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
843			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
844				return slot;
845			free = slot;
846			/* NB: keep looking for a double slot */
847		}
848	return free;
849}
850
851static struct ieee80211vap *
852ath_vap_create(struct ieee80211com *ic,
853	const char name[IFNAMSIZ], int unit, int opmode, int flags,
854	const uint8_t bssid[IEEE80211_ADDR_LEN],
855	const uint8_t mac0[IEEE80211_ADDR_LEN])
856{
857	struct ath_softc *sc = ic->ic_ifp->if_softc;
858	struct ath_vap *avp;
859	struct ieee80211vap *vap;
860	uint8_t mac[IEEE80211_ADDR_LEN];
861	int ic_opmode, needbeacon, error;
862
863	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
864	    M_80211_VAP, M_WAITOK | M_ZERO);
865	needbeacon = 0;
866	IEEE80211_ADDR_COPY(mac, mac0);
867
868	ATH_LOCK(sc);
869	ic_opmode = opmode;		/* default to opmode of new vap */
870	switch (opmode) {
871	case IEEE80211_M_STA:
872		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
873			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
874			goto bad;
875		}
876		if (sc->sc_nvaps) {
877			/*
878			 * With multiple vaps we must fall back
879			 * to s/w beacon miss handling.
880			 */
881			flags |= IEEE80211_CLONE_NOBEACONS;
882		}
883		if (flags & IEEE80211_CLONE_NOBEACONS) {
884			/*
885			 * Station mode w/o beacons are implemented w/ AP mode.
886			 */
887			ic_opmode = IEEE80211_M_HOSTAP;
888		}
889		break;
890	case IEEE80211_M_IBSS:
891		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
892			device_printf(sc->sc_dev,
893			    "only 1 ibss vap supported\n");
894			goto bad;
895		}
896		needbeacon = 1;
897		break;
898	case IEEE80211_M_AHDEMO:
899#ifdef IEEE80211_SUPPORT_TDMA
900		if (flags & IEEE80211_CLONE_TDMA) {
901			if (sc->sc_nvaps != 0) {
902				device_printf(sc->sc_dev,
903				    "only 1 tdma vap supported\n");
904				goto bad;
905			}
906			needbeacon = 1;
907			flags |= IEEE80211_CLONE_NOBEACONS;
908		}
909		/* fall thru... */
910#endif
911	case IEEE80211_M_MONITOR:
912		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
913			/*
914			 * Adopt existing mode.  Adding a monitor or ahdemo
915			 * vap to an existing configuration is of dubious
916			 * value but should be ok.
917			 */
918			/* XXX not right for monitor mode */
919			ic_opmode = ic->ic_opmode;
920		}
921		break;
922	case IEEE80211_M_HOSTAP:
923	case IEEE80211_M_MBSS:
924		needbeacon = 1;
925		break;
926	case IEEE80211_M_WDS:
927		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
928			device_printf(sc->sc_dev,
929			    "wds not supported in sta mode\n");
930			goto bad;
931		}
932		/*
933		 * Silently remove any request for a unique
934		 * bssid; WDS vap's always share the local
935		 * mac address.
936		 */
937		flags &= ~IEEE80211_CLONE_BSSID;
938		if (sc->sc_nvaps == 0)
939			ic_opmode = IEEE80211_M_HOSTAP;
940		else
941			ic_opmode = ic->ic_opmode;
942		break;
943	default:
944		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
945		goto bad;
946	}
947	/*
948	 * Check that a beacon buffer is available; the code below assumes it.
949	 */
950	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
951		device_printf(sc->sc_dev, "no beacon buffer available\n");
952		goto bad;
953	}
954
955	/* STA, AHDEMO? */
956	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
957		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
958		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
959	}
960
961	vap = &avp->av_vap;
962	/* XXX can't hold mutex across if_alloc */
963	ATH_UNLOCK(sc);
964	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
965	    bssid, mac);
966	ATH_LOCK(sc);
967	if (error != 0) {
968		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
969		    __func__, error);
970		goto bad2;
971	}
972
973	/* h/w crypto support */
974	vap->iv_key_alloc = ath_key_alloc;
975	vap->iv_key_delete = ath_key_delete;
976	vap->iv_key_set = ath_key_set;
977	vap->iv_key_update_begin = ath_key_update_begin;
978	vap->iv_key_update_end = ath_key_update_end;
979
980	/* override various methods */
981	avp->av_recv_mgmt = vap->iv_recv_mgmt;
982	vap->iv_recv_mgmt = ath_recv_mgmt;
983	vap->iv_reset = ath_reset_vap;
984	vap->iv_update_beacon = ath_beacon_update;
985	avp->av_newstate = vap->iv_newstate;
986	vap->iv_newstate = ath_newstate;
987	avp->av_bmiss = vap->iv_bmiss;
988	vap->iv_bmiss = ath_bmiss_vap;
989
990	/* Set default parameters */
991
992	/*
993	 * Anything earlier than some AR9300 series MACs don't
994	 * support a smaller MPDU density.
995	 */
996	vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_8;
997	/*
998	 * All NICs can handle the maximum size, however
999	 * AR5416 based MACs can only TX aggregates w/ RTS
1000	 * protection when the total aggregate size is <= 8k.
1001	 * However, for now that's enforced by the TX path.
1002	 */
1003	vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
1004
1005	avp->av_bslot = -1;
1006	if (needbeacon) {
1007		/*
1008		 * Allocate beacon state and setup the q for buffered
1009		 * multicast frames.  We know a beacon buffer is
1010		 * available because we checked above.
1011		 */
1012		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
1013		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
1014		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1015			/*
1016			 * Assign the vap to a beacon xmit slot.  As above
1017			 * this cannot fail to find a free one.
1018			 */
1019			avp->av_bslot = assign_bslot(sc);
1020			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1021			    ("beacon slot %u not empty", avp->av_bslot));
1022			sc->sc_bslot[avp->av_bslot] = vap;
1023			sc->sc_nbcnvaps++;
1024		}
1025		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1026			/*
1027			 * Multple vaps are to transmit beacons and we
1028			 * have h/w support for TSF adjusting; enable
1029			 * use of staggered beacons.
1030			 */
1031			sc->sc_stagbeacons = 1;
1032		}
1033		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1034	}
1035
1036	ic->ic_opmode = ic_opmode;
1037	if (opmode != IEEE80211_M_WDS) {
1038		sc->sc_nvaps++;
1039		if (opmode == IEEE80211_M_STA)
1040			sc->sc_nstavaps++;
1041		if (opmode == IEEE80211_M_MBSS)
1042			sc->sc_nmeshvaps++;
1043	}
1044	switch (ic_opmode) {
1045	case IEEE80211_M_IBSS:
1046		sc->sc_opmode = HAL_M_IBSS;
1047		break;
1048	case IEEE80211_M_STA:
1049		sc->sc_opmode = HAL_M_STA;
1050		break;
1051	case IEEE80211_M_AHDEMO:
1052#ifdef IEEE80211_SUPPORT_TDMA
1053		if (vap->iv_caps & IEEE80211_C_TDMA) {
1054			sc->sc_tdma = 1;
1055			/* NB: disable tsf adjust */
1056			sc->sc_stagbeacons = 0;
1057		}
1058		/*
1059		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1060		 * just ap mode.
1061		 */
1062		/* fall thru... */
1063#endif
1064	case IEEE80211_M_HOSTAP:
1065	case IEEE80211_M_MBSS:
1066		sc->sc_opmode = HAL_M_HOSTAP;
1067		break;
1068	case IEEE80211_M_MONITOR:
1069		sc->sc_opmode = HAL_M_MONITOR;
1070		break;
1071	default:
1072		/* XXX should not happen */
1073		break;
1074	}
1075	if (sc->sc_hastsfadd) {
1076		/*
1077		 * Configure whether or not TSF adjust should be done.
1078		 */
1079		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1080	}
1081	if (flags & IEEE80211_CLONE_NOBEACONS) {
1082		/*
1083		 * Enable s/w beacon miss handling.
1084		 */
1085		sc->sc_swbmiss = 1;
1086	}
1087	ATH_UNLOCK(sc);
1088
1089	/* complete setup */
1090	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1091	return vap;
1092bad2:
1093	reclaim_address(sc, mac);
1094	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1095bad:
1096	free(avp, M_80211_VAP);
1097	ATH_UNLOCK(sc);
1098	return NULL;
1099}
1100
1101static void
1102ath_vap_delete(struct ieee80211vap *vap)
1103{
1104	struct ieee80211com *ic = vap->iv_ic;
1105	struct ifnet *ifp = ic->ic_ifp;
1106	struct ath_softc *sc = ifp->if_softc;
1107	struct ath_hal *ah = sc->sc_ah;
1108	struct ath_vap *avp = ATH_VAP(vap);
1109
1110	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1111		/*
1112		 * Quiesce the hardware while we remove the vap.  In
1113		 * particular we need to reclaim all references to
1114		 * the vap state by any frames pending on the tx queues.
1115		 */
1116		ath_hal_intrset(ah, 0);		/* disable interrupts */
1117		ath_draintxq(sc);		/* stop xmit side */
1118		ath_stoprecv(sc);		/* stop recv side */
1119	}
1120
1121	ieee80211_vap_detach(vap);
1122	ATH_LOCK(sc);
1123	/*
1124	 * Reclaim beacon state.  Note this must be done before
1125	 * the vap instance is reclaimed as we may have a reference
1126	 * to it in the buffer for the beacon frame.
1127	 */
1128	if (avp->av_bcbuf != NULL) {
1129		if (avp->av_bslot != -1) {
1130			sc->sc_bslot[avp->av_bslot] = NULL;
1131			sc->sc_nbcnvaps--;
1132		}
1133		ath_beacon_return(sc, avp->av_bcbuf);
1134		avp->av_bcbuf = NULL;
1135		if (sc->sc_nbcnvaps == 0) {
1136			sc->sc_stagbeacons = 0;
1137			if (sc->sc_hastsfadd)
1138				ath_hal_settsfadjust(sc->sc_ah, 0);
1139		}
1140		/*
1141		 * Reclaim any pending mcast frames for the vap.
1142		 */
1143		ath_tx_draintxq(sc, &avp->av_mcastq);
1144		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1145	}
1146	/*
1147	 * Update bookkeeping.
1148	 */
1149	if (vap->iv_opmode == IEEE80211_M_STA) {
1150		sc->sc_nstavaps--;
1151		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1152			sc->sc_swbmiss = 0;
1153	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1154	    vap->iv_opmode == IEEE80211_M_MBSS) {
1155		reclaim_address(sc, vap->iv_myaddr);
1156		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1157		if (vap->iv_opmode == IEEE80211_M_MBSS)
1158			sc->sc_nmeshvaps--;
1159	}
1160	if (vap->iv_opmode != IEEE80211_M_WDS)
1161		sc->sc_nvaps--;
1162#ifdef IEEE80211_SUPPORT_TDMA
1163	/* TDMA operation ceases when the last vap is destroyed */
1164	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1165		sc->sc_tdma = 0;
1166		sc->sc_swbmiss = 0;
1167	}
1168#endif
1169	ATH_UNLOCK(sc);
1170	free(avp, M_80211_VAP);
1171
1172	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1173		/*
1174		 * Restart rx+tx machines if still running (RUNNING will
1175		 * be reset if we just destroyed the last vap).
1176		 */
1177		if (ath_startrecv(sc) != 0)
1178			if_printf(ifp, "%s: unable to restart recv logic\n",
1179			    __func__);
1180		if (sc->sc_beacons) {		/* restart beacons */
1181#ifdef IEEE80211_SUPPORT_TDMA
1182			if (sc->sc_tdma)
1183				ath_tdma_config(sc, NULL);
1184			else
1185#endif
1186				ath_beacon_config(sc, NULL);
1187		}
1188		ath_hal_intrset(ah, sc->sc_imask);
1189	}
1190}
1191
1192void
1193ath_suspend(struct ath_softc *sc)
1194{
1195	struct ifnet *ifp = sc->sc_ifp;
1196	struct ieee80211com *ic = ifp->if_l2com;
1197
1198	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1199		__func__, ifp->if_flags);
1200
1201	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1202	if (ic->ic_opmode == IEEE80211_M_STA)
1203		ath_stop(ifp);
1204	else
1205		ieee80211_suspend_all(ic);
1206	/*
1207	 * NB: don't worry about putting the chip in low power
1208	 * mode; pci will power off our socket on suspend and
1209	 * CardBus detaches the device.
1210	 */
1211}
1212
1213/*
1214 * Reset the key cache since some parts do not reset the
1215 * contents on resume.  First we clear all entries, then
1216 * re-load keys that the 802.11 layer assumes are setup
1217 * in h/w.
1218 */
1219static void
1220ath_reset_keycache(struct ath_softc *sc)
1221{
1222	struct ifnet *ifp = sc->sc_ifp;
1223	struct ieee80211com *ic = ifp->if_l2com;
1224	struct ath_hal *ah = sc->sc_ah;
1225	int i;
1226
1227	for (i = 0; i < sc->sc_keymax; i++)
1228		ath_hal_keyreset(ah, i);
1229	ieee80211_crypto_reload_keys(ic);
1230}
1231
1232void
1233ath_resume(struct ath_softc *sc)
1234{
1235	struct ifnet *ifp = sc->sc_ifp;
1236	struct ieee80211com *ic = ifp->if_l2com;
1237	struct ath_hal *ah = sc->sc_ah;
1238	HAL_STATUS status;
1239
1240	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1241		__func__, ifp->if_flags);
1242
1243	/*
1244	 * Must reset the chip before we reload the
1245	 * keycache as we were powered down on suspend.
1246	 */
1247	ath_hal_reset(ah, sc->sc_opmode,
1248	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1249	    AH_FALSE, &status);
1250	ath_reset_keycache(sc);
1251
1252	/* Let DFS at it in case it's a DFS channel */
1253	ath_dfs_radar_enable(sc, ic->ic_curchan);
1254
1255	if (sc->sc_resume_up) {
1256		if (ic->ic_opmode == IEEE80211_M_STA) {
1257			ath_init(sc);
1258			/*
1259			 * Program the beacon registers using the last rx'd
1260			 * beacon frame and enable sync on the next beacon
1261			 * we see.  This should handle the case where we
1262			 * wakeup and find the same AP and also the case where
1263			 * we wakeup and need to roam.  For the latter we
1264			 * should get bmiss events that trigger a roam.
1265			 */
1266			ath_beacon_config(sc, NULL);
1267			sc->sc_syncbeacon = 1;
1268		} else
1269			ieee80211_resume_all(ic);
1270	}
1271	if (sc->sc_softled) {
1272		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1273		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1274		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1275	}
1276
1277	/* XXX beacons ? */
1278}
1279
1280void
1281ath_shutdown(struct ath_softc *sc)
1282{
1283	struct ifnet *ifp = sc->sc_ifp;
1284
1285	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1286		__func__, ifp->if_flags);
1287
1288	ath_stop(ifp);
1289	/* NB: no point powering down chip as we're about to reboot */
1290}
1291
1292/*
1293 * Interrupt handler.  Most of the actual processing is deferred.
1294 */
1295void
1296ath_intr(void *arg)
1297{
1298	struct ath_softc *sc = arg;
1299	struct ifnet *ifp = sc->sc_ifp;
1300	struct ath_hal *ah = sc->sc_ah;
1301	HAL_INT status = 0;
1302
1303	if (sc->sc_invalid) {
1304		/*
1305		 * The hardware is not ready/present, don't touch anything.
1306		 * Note this can happen early on if the IRQ is shared.
1307		 */
1308		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1309		return;
1310	}
1311	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1312		return;
1313	if ((ifp->if_flags & IFF_UP) == 0 ||
1314	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1315		HAL_INT status;
1316
1317		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1318			__func__, ifp->if_flags);
1319		ath_hal_getisr(ah, &status);	/* clear ISR */
1320		ath_hal_intrset(ah, 0);		/* disable further intr's */
1321		return;
1322	}
1323	/*
1324	 * Figure out the reason(s) for the interrupt.  Note
1325	 * that the hal returns a pseudo-ISR that may include
1326	 * bits we haven't explicitly enabled so we mask the
1327	 * value to insure we only process bits we requested.
1328	 */
1329	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1330	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1331	status &= sc->sc_imask;			/* discard unasked for bits */
1332
1333	/* Short-circuit un-handled interrupts */
1334	if (status == 0x0)
1335		return;
1336
1337	if (status & HAL_INT_FATAL) {
1338		sc->sc_stats.ast_hardware++;
1339		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1340		ath_fatal_proc(sc, 0);
1341	} else {
1342		if (status & HAL_INT_SWBA) {
1343			/*
1344			 * Software beacon alert--time to send a beacon.
1345			 * Handle beacon transmission directly; deferring
1346			 * this is too slow to meet timing constraints
1347			 * under load.
1348			 */
1349#ifdef IEEE80211_SUPPORT_TDMA
1350			if (sc->sc_tdma) {
1351				if (sc->sc_tdmaswba == 0) {
1352					struct ieee80211com *ic = ifp->if_l2com;
1353					struct ieee80211vap *vap =
1354					    TAILQ_FIRST(&ic->ic_vaps);
1355					ath_tdma_beacon_send(sc, vap);
1356					sc->sc_tdmaswba =
1357					    vap->iv_tdma->tdma_bintval;
1358				} else
1359					sc->sc_tdmaswba--;
1360			} else
1361#endif
1362			{
1363				ath_beacon_proc(sc, 0);
1364#ifdef IEEE80211_SUPPORT_SUPERG
1365				/*
1366				 * Schedule the rx taskq in case there's no
1367				 * traffic so any frames held on the staging
1368				 * queue are aged and potentially flushed.
1369				 */
1370				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1371#endif
1372			}
1373		}
1374		if (status & HAL_INT_RXEOL) {
1375			int imask = sc->sc_imask;
1376			/*
1377			 * NB: the hardware should re-read the link when
1378			 *     RXE bit is written, but it doesn't work at
1379			 *     least on older hardware revs.
1380			 */
1381			sc->sc_stats.ast_rxeol++;
1382			/*
1383			 * Disable RXEOL/RXORN - prevent an interrupt
1384			 * storm until the PCU logic can be reset.
1385			 * In case the interface is reset some other
1386			 * way before "sc_kickpcu" is called, don't
1387			 * modify sc_imask - that way if it is reset
1388			 * by a call to ath_reset() somehow, the
1389			 * interrupt mask will be correctly reprogrammed.
1390			 */
1391			imask &= ~(HAL_INT_RXEOL | HAL_INT_RXORN);
1392			ath_hal_intrset(ah, imask);
1393			/*
1394			 * Enqueue an RX proc, to handled whatever
1395			 * is in the RX queue.
1396			 * This will then kick the PCU.
1397			 */
1398			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1399			sc->sc_rxlink = NULL;
1400			sc->sc_kickpcu = 1;
1401		}
1402		if (status & HAL_INT_TXURN) {
1403			sc->sc_stats.ast_txurn++;
1404			/* bump tx trigger level */
1405			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1406		}
1407		if (status & HAL_INT_RX)
1408			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1409		if (status & HAL_INT_TX)
1410			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1411		if (status & HAL_INT_BMISS) {
1412			sc->sc_stats.ast_bmiss++;
1413			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1414		}
1415		if (status & HAL_INT_GTT)
1416			sc->sc_stats.ast_tx_timeout++;
1417		if (status & HAL_INT_CST)
1418			sc->sc_stats.ast_tx_cst++;
1419		if (status & HAL_INT_MIB) {
1420			sc->sc_stats.ast_mib++;
1421			/*
1422			 * Disable interrupts until we service the MIB
1423			 * interrupt; otherwise it will continue to fire.
1424			 */
1425			ath_hal_intrset(ah, 0);
1426			/*
1427			 * Let the hal handle the event.  We assume it will
1428			 * clear whatever condition caused the interrupt.
1429			 */
1430			ath_hal_mibevent(ah, &sc->sc_halstats);
1431			ath_hal_intrset(ah, sc->sc_imask);
1432		}
1433		if (status & HAL_INT_RXORN) {
1434			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1435			sc->sc_stats.ast_rxorn++;
1436		}
1437	}
1438}
1439
1440static void
1441ath_fatal_proc(void *arg, int pending)
1442{
1443	struct ath_softc *sc = arg;
1444	struct ifnet *ifp = sc->sc_ifp;
1445	u_int32_t *state;
1446	u_int32_t len;
1447	void *sp;
1448
1449	if_printf(ifp, "hardware error; resetting\n");
1450	/*
1451	 * Fatal errors are unrecoverable.  Typically these
1452	 * are caused by DMA errors.  Collect h/w state from
1453	 * the hal so we can diagnose what's going on.
1454	 */
1455	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1456		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1457		state = sp;
1458		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1459		    state[0], state[1] , state[2], state[3],
1460		    state[4], state[5]);
1461	}
1462	ath_reset(ifp);
1463}
1464
1465static void
1466ath_bmiss_vap(struct ieee80211vap *vap)
1467{
1468	/*
1469	 * Workaround phantom bmiss interrupts by sanity-checking
1470	 * the time of our last rx'd frame.  If it is within the
1471	 * beacon miss interval then ignore the interrupt.  If it's
1472	 * truly a bmiss we'll get another interrupt soon and that'll
1473	 * be dispatched up for processing.  Note this applies only
1474	 * for h/w beacon miss events.
1475	 */
1476	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1477		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1478		struct ath_softc *sc = ifp->if_softc;
1479		u_int64_t lastrx = sc->sc_lastrx;
1480		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1481		u_int bmisstimeout =
1482			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1483
1484		DPRINTF(sc, ATH_DEBUG_BEACON,
1485		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1486		    __func__, (unsigned long long) tsf,
1487		    (unsigned long long)(tsf - lastrx),
1488		    (unsigned long long) lastrx, bmisstimeout);
1489
1490		if (tsf - lastrx <= bmisstimeout) {
1491			sc->sc_stats.ast_bmiss_phantom++;
1492			return;
1493		}
1494	}
1495	ATH_VAP(vap)->av_bmiss(vap);
1496}
1497
1498static int
1499ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1500{
1501	uint32_t rsize;
1502	void *sp;
1503
1504	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1505		return 0;
1506	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1507	*hangs = *(uint32_t *)sp;
1508	return 1;
1509}
1510
1511static void
1512ath_bmiss_proc(void *arg, int pending)
1513{
1514	struct ath_softc *sc = arg;
1515	struct ifnet *ifp = sc->sc_ifp;
1516	uint32_t hangs;
1517
1518	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1519
1520	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1521		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1522		ath_reset(ifp);
1523	} else
1524		ieee80211_beacon_miss(ifp->if_l2com);
1525}
1526
1527/*
1528 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1529 * calcs together with WME.  If necessary disable the crypto
1530 * hardware and mark the 802.11 state so keys will be setup
1531 * with the MIC work done in software.
1532 */
1533static void
1534ath_settkipmic(struct ath_softc *sc)
1535{
1536	struct ifnet *ifp = sc->sc_ifp;
1537	struct ieee80211com *ic = ifp->if_l2com;
1538
1539	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1540		if (ic->ic_flags & IEEE80211_F_WME) {
1541			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1542			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1543		} else {
1544			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1545			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1546		}
1547	}
1548}
1549
1550static void
1551ath_init(void *arg)
1552{
1553	struct ath_softc *sc = (struct ath_softc *) arg;
1554	struct ifnet *ifp = sc->sc_ifp;
1555	struct ieee80211com *ic = ifp->if_l2com;
1556	struct ath_hal *ah = sc->sc_ah;
1557	HAL_STATUS status;
1558
1559	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1560		__func__, ifp->if_flags);
1561
1562	ATH_LOCK(sc);
1563	/*
1564	 * Stop anything previously setup.  This is safe
1565	 * whether this is the first time through or not.
1566	 */
1567	ath_stop_locked(ifp);
1568
1569	/*
1570	 * The basic interface to setting the hardware in a good
1571	 * state is ``reset''.  On return the hardware is known to
1572	 * be powered up and with interrupts disabled.  This must
1573	 * be followed by initialization of the appropriate bits
1574	 * and then setup of the interrupt mask.
1575	 */
1576	ath_settkipmic(sc);
1577	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1578		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1579			status);
1580		ATH_UNLOCK(sc);
1581		return;
1582	}
1583	ath_chan_change(sc, ic->ic_curchan);
1584
1585	/* Let DFS at it in case it's a DFS channel */
1586	ath_dfs_radar_enable(sc, ic->ic_curchan);
1587
1588	/*
1589	 * Likewise this is set during reset so update
1590	 * state cached in the driver.
1591	 */
1592	sc->sc_diversity = ath_hal_getdiversity(ah);
1593	sc->sc_lastlongcal = 0;
1594	sc->sc_resetcal = 1;
1595	sc->sc_lastcalreset = 0;
1596	sc->sc_lastani = 0;
1597	sc->sc_lastshortcal = 0;
1598	sc->sc_doresetcal = AH_FALSE;
1599	/*
1600	 * Beacon timers were cleared here; give ath_newstate()
1601	 * a hint that the beacon timers should be poked when
1602	 * things transition to the RUN state.
1603	 */
1604	sc->sc_beacons = 0;
1605
1606	/*
1607	 * Setup the hardware after reset: the key cache
1608	 * is filled as needed and the receive engine is
1609	 * set going.  Frame transmit is handled entirely
1610	 * in the frame output path; there's nothing to do
1611	 * here except setup the interrupt mask.
1612	 */
1613	if (ath_startrecv(sc) != 0) {
1614		if_printf(ifp, "unable to start recv logic\n");
1615		ATH_UNLOCK(sc);
1616		return;
1617	}
1618
1619	/*
1620	 * Enable interrupts.
1621	 */
1622	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1623		  | HAL_INT_RXEOL | HAL_INT_RXORN
1624		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1625	/*
1626	 * Enable MIB interrupts when there are hardware phy counters.
1627	 * Note we only do this (at the moment) for station mode.
1628	 */
1629	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1630		sc->sc_imask |= HAL_INT_MIB;
1631
1632	/* Enable global TX timeout and carrier sense timeout if available */
1633	if (ath_hal_gtxto_supported(ah))
1634		sc->sc_imask |= HAL_INT_GTT;
1635
1636	DPRINTF(sc, ATH_DEBUG_RESET, "%s: imask=0x%x\n",
1637		__func__, sc->sc_imask);
1638
1639	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1640	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1641	ath_hal_intrset(ah, sc->sc_imask);
1642
1643	ATH_UNLOCK(sc);
1644
1645#ifdef ATH_TX99_DIAG
1646	if (sc->sc_tx99 != NULL)
1647		sc->sc_tx99->start(sc->sc_tx99);
1648	else
1649#endif
1650	ieee80211_start_all(ic);		/* start all vap's */
1651}
1652
1653static void
1654ath_stop_locked(struct ifnet *ifp)
1655{
1656	struct ath_softc *sc = ifp->if_softc;
1657	struct ath_hal *ah = sc->sc_ah;
1658
1659	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1660		__func__, sc->sc_invalid, ifp->if_flags);
1661
1662	ATH_LOCK_ASSERT(sc);
1663	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1664		/*
1665		 * Shutdown the hardware and driver:
1666		 *    reset 802.11 state machine
1667		 *    turn off timers
1668		 *    disable interrupts
1669		 *    turn off the radio
1670		 *    clear transmit machinery
1671		 *    clear receive machinery
1672		 *    drain and release tx queues
1673		 *    reclaim beacon resources
1674		 *    power down hardware
1675		 *
1676		 * Note that some of this work is not possible if the
1677		 * hardware is gone (invalid).
1678		 */
1679#ifdef ATH_TX99_DIAG
1680		if (sc->sc_tx99 != NULL)
1681			sc->sc_tx99->stop(sc->sc_tx99);
1682#endif
1683		callout_stop(&sc->sc_wd_ch);
1684		sc->sc_wd_timer = 0;
1685		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1686		if (!sc->sc_invalid) {
1687			if (sc->sc_softled) {
1688				callout_stop(&sc->sc_ledtimer);
1689				ath_hal_gpioset(ah, sc->sc_ledpin,
1690					!sc->sc_ledon);
1691				sc->sc_blinking = 0;
1692			}
1693			ath_hal_intrset(ah, 0);
1694		}
1695		ath_draintxq(sc);
1696		if (!sc->sc_invalid) {
1697			ath_stoprecv(sc);
1698			ath_hal_phydisable(ah);
1699		} else
1700			sc->sc_rxlink = NULL;
1701		ath_beacon_free(sc);	/* XXX not needed */
1702	}
1703}
1704
1705static void
1706ath_stop(struct ifnet *ifp)
1707{
1708	struct ath_softc *sc = ifp->if_softc;
1709
1710	ATH_LOCK(sc);
1711	ath_stop_locked(ifp);
1712	ATH_UNLOCK(sc);
1713}
1714
1715/*
1716 * Reset the hardware w/o losing operational state.  This is
1717 * basically a more efficient way of doing ath_stop, ath_init,
1718 * followed by state transitions to the current 802.11
1719 * operational state.  Used to recover from various errors and
1720 * to reset or reload hardware state.
1721 */
1722int
1723ath_reset(struct ifnet *ifp)
1724{
1725	struct ath_softc *sc = ifp->if_softc;
1726	struct ieee80211com *ic = ifp->if_l2com;
1727	struct ath_hal *ah = sc->sc_ah;
1728	HAL_STATUS status;
1729
1730	ath_hal_intrset(ah, 0);		/* disable interrupts */
1731	ath_draintxq(sc);		/* stop xmit side */
1732	ath_stoprecv(sc);		/* stop recv side */
1733	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1734	/* NB: indicate channel change so we do a full reset */
1735	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1736		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1737			__func__, status);
1738	sc->sc_diversity = ath_hal_getdiversity(ah);
1739
1740	/* Let DFS at it in case it's a DFS channel */
1741	ath_dfs_radar_enable(sc, ic->ic_curchan);
1742
1743	if (ath_startrecv(sc) != 0)	/* restart recv */
1744		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1745	/*
1746	 * We may be doing a reset in response to an ioctl
1747	 * that changes the channel so update any state that
1748	 * might change as a result.
1749	 */
1750	ath_chan_change(sc, ic->ic_curchan);
1751	if (sc->sc_beacons) {		/* restart beacons */
1752#ifdef IEEE80211_SUPPORT_TDMA
1753		if (sc->sc_tdma)
1754			ath_tdma_config(sc, NULL);
1755		else
1756#endif
1757			ath_beacon_config(sc, NULL);
1758	}
1759	ath_hal_intrset(ah, sc->sc_imask);
1760
1761	ath_start(ifp);			/* restart xmit */
1762	return 0;
1763}
1764
1765static int
1766ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1767{
1768	struct ieee80211com *ic = vap->iv_ic;
1769	struct ifnet *ifp = ic->ic_ifp;
1770	struct ath_softc *sc = ifp->if_softc;
1771	struct ath_hal *ah = sc->sc_ah;
1772
1773	switch (cmd) {
1774	case IEEE80211_IOC_TXPOWER:
1775		/*
1776		 * If per-packet TPC is enabled, then we have nothing
1777		 * to do; otherwise we need to force the global limit.
1778		 * All this can happen directly; no need to reset.
1779		 */
1780		if (!ath_hal_gettpc(ah))
1781			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1782		return 0;
1783	}
1784	return ath_reset(ifp);
1785}
1786
1787struct ath_buf *
1788_ath_getbuf_locked(struct ath_softc *sc)
1789{
1790	struct ath_buf *bf;
1791
1792	ATH_TXBUF_LOCK_ASSERT(sc);
1793
1794	bf = STAILQ_FIRST(&sc->sc_txbuf);
1795	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
1796		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1797	else
1798		bf = NULL;
1799	if (bf == NULL) {
1800		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
1801		    STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
1802			"out of xmit buffers" : "xmit buffer busy");
1803	}
1804	return bf;
1805}
1806
1807struct ath_buf *
1808ath_getbuf(struct ath_softc *sc)
1809{
1810	struct ath_buf *bf;
1811
1812	ATH_TXBUF_LOCK(sc);
1813	bf = _ath_getbuf_locked(sc);
1814	if (bf == NULL) {
1815		struct ifnet *ifp = sc->sc_ifp;
1816
1817		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
1818		sc->sc_stats.ast_tx_qstop++;
1819		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1820	}
1821	ATH_TXBUF_UNLOCK(sc);
1822	return bf;
1823}
1824
1825static void
1826ath_start(struct ifnet *ifp)
1827{
1828	struct ath_softc *sc = ifp->if_softc;
1829	struct ieee80211_node *ni;
1830	struct ath_buf *bf;
1831	struct mbuf *m, *next;
1832	ath_bufhead frags;
1833
1834	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1835		return;
1836	for (;;) {
1837		/*
1838		 * Grab a TX buffer and associated resources.
1839		 */
1840		bf = ath_getbuf(sc);
1841		if (bf == NULL)
1842			break;
1843
1844		IFQ_DEQUEUE(&ifp->if_snd, m);
1845		if (m == NULL) {
1846			ATH_TXBUF_LOCK(sc);
1847			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1848			ATH_TXBUF_UNLOCK(sc);
1849			break;
1850		}
1851		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1852		/*
1853		 * Check for fragmentation.  If this frame
1854		 * has been broken up verify we have enough
1855		 * buffers to send all the fragments so all
1856		 * go out or none...
1857		 */
1858		STAILQ_INIT(&frags);
1859		if ((m->m_flags & M_FRAG) &&
1860		    !ath_txfrag_setup(sc, &frags, m, ni)) {
1861			DPRINTF(sc, ATH_DEBUG_XMIT,
1862			    "%s: out of txfrag buffers\n", __func__);
1863			sc->sc_stats.ast_tx_nofrag++;
1864			ifp->if_oerrors++;
1865			ath_freetx(m);
1866			goto bad;
1867		}
1868		ifp->if_opackets++;
1869	nextfrag:
1870		/*
1871		 * Pass the frame to the h/w for transmission.
1872		 * Fragmented frames have each frag chained together
1873		 * with m_nextpkt.  We know there are sufficient ath_buf's
1874		 * to send all the frags because of work done by
1875		 * ath_txfrag_setup.  We leave m_nextpkt set while
1876		 * calling ath_tx_start so it can use it to extend the
1877		 * the tx duration to cover the subsequent frag and
1878		 * so it can reclaim all the mbufs in case of an error;
1879		 * ath_tx_start clears m_nextpkt once it commits to
1880		 * handing the frame to the hardware.
1881		 */
1882		next = m->m_nextpkt;
1883		if (ath_tx_start(sc, ni, bf, m)) {
1884	bad:
1885			ifp->if_oerrors++;
1886	reclaim:
1887			bf->bf_m = NULL;
1888			bf->bf_node = NULL;
1889			ATH_TXBUF_LOCK(sc);
1890			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1891			ath_txfrag_cleanup(sc, &frags, ni);
1892			ATH_TXBUF_UNLOCK(sc);
1893			if (ni != NULL)
1894				ieee80211_free_node(ni);
1895			continue;
1896		}
1897		if (next != NULL) {
1898			/*
1899			 * Beware of state changing between frags.
1900			 * XXX check sta power-save state?
1901			 */
1902			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
1903				DPRINTF(sc, ATH_DEBUG_XMIT,
1904				    "%s: flush fragmented packet, state %s\n",
1905				    __func__,
1906				    ieee80211_state_name[ni->ni_vap->iv_state]);
1907				ath_freetx(next);
1908				goto reclaim;
1909			}
1910			m = next;
1911			bf = STAILQ_FIRST(&frags);
1912			KASSERT(bf != NULL, ("no buf for txfrag"));
1913			STAILQ_REMOVE_HEAD(&frags, bf_list);
1914			goto nextfrag;
1915		}
1916
1917		sc->sc_wd_timer = 5;
1918	}
1919}
1920
1921static int
1922ath_media_change(struct ifnet *ifp)
1923{
1924	int error = ieee80211_media_change(ifp);
1925	/* NB: only the fixed rate can change and that doesn't need a reset */
1926	return (error == ENETRESET ? 0 : error);
1927}
1928
1929/*
1930 * Block/unblock tx+rx processing while a key change is done.
1931 * We assume the caller serializes key management operations
1932 * so we only need to worry about synchronization with other
1933 * uses that originate in the driver.
1934 */
1935static void
1936ath_key_update_begin(struct ieee80211vap *vap)
1937{
1938	struct ifnet *ifp = vap->iv_ic->ic_ifp;
1939	struct ath_softc *sc = ifp->if_softc;
1940
1941	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1942	taskqueue_block(sc->sc_tq);
1943	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1944}
1945
1946static void
1947ath_key_update_end(struct ieee80211vap *vap)
1948{
1949	struct ifnet *ifp = vap->iv_ic->ic_ifp;
1950	struct ath_softc *sc = ifp->if_softc;
1951
1952	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1953	IF_UNLOCK(&ifp->if_snd);
1954	taskqueue_unblock(sc->sc_tq);
1955}
1956
1957/*
1958 * Calculate the receive filter according to the
1959 * operating mode and state:
1960 *
1961 * o always accept unicast, broadcast, and multicast traffic
1962 * o accept PHY error frames when hardware doesn't have MIB support
1963 *   to count and we need them for ANI (sta mode only until recently)
1964 *   and we are not scanning (ANI is disabled)
1965 *   NB: older hal's add rx filter bits out of sight and we need to
1966 *	 blindly preserve them
1967 * o probe request frames are accepted only when operating in
1968 *   hostap, adhoc, mesh, or monitor modes
1969 * o enable promiscuous mode
1970 *   - when in monitor mode
1971 *   - if interface marked PROMISC (assumes bridge setting is filtered)
1972 * o accept beacons:
1973 *   - when operating in station mode for collecting rssi data when
1974 *     the station is otherwise quiet, or
1975 *   - when operating in adhoc mode so the 802.11 layer creates
1976 *     node table entries for peers,
1977 *   - when scanning
1978 *   - when doing s/w beacon miss (e.g. for ap+sta)
1979 *   - when operating in ap mode in 11g to detect overlapping bss that
1980 *     require protection
1981 *   - when operating in mesh mode to detect neighbors
1982 * o accept control frames:
1983 *   - when in monitor mode
1984 * XXX HT protection for 11n
1985 */
1986static u_int32_t
1987ath_calcrxfilter(struct ath_softc *sc)
1988{
1989	struct ifnet *ifp = sc->sc_ifp;
1990	struct ieee80211com *ic = ifp->if_l2com;
1991	u_int32_t rfilt;
1992
1993	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1994	if (!sc->sc_needmib && !sc->sc_scanning)
1995		rfilt |= HAL_RX_FILTER_PHYERR;
1996	if (ic->ic_opmode != IEEE80211_M_STA)
1997		rfilt |= HAL_RX_FILTER_PROBEREQ;
1998	/* XXX ic->ic_monvaps != 0? */
1999	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2000		rfilt |= HAL_RX_FILTER_PROM;
2001	if (ic->ic_opmode == IEEE80211_M_STA ||
2002	    ic->ic_opmode == IEEE80211_M_IBSS ||
2003	    sc->sc_swbmiss || sc->sc_scanning)
2004		rfilt |= HAL_RX_FILTER_BEACON;
2005	/*
2006	 * NB: We don't recalculate the rx filter when
2007	 * ic_protmode changes; otherwise we could do
2008	 * this only when ic_protmode != NONE.
2009	 */
2010	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2011	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2012		rfilt |= HAL_RX_FILTER_BEACON;
2013
2014	/*
2015	 * Enable hardware PS-POLL RX only for hostap mode;
2016	 * STA mode sends PS-POLL frames but never
2017	 * receives them.
2018	 */
2019	if (ath_hal_getcapability(sc->sc_ah, HAL_CAP_PSPOLL,
2020	    0, NULL) == HAL_OK &&
2021	    ic->ic_opmode == IEEE80211_M_HOSTAP)
2022		rfilt |= HAL_RX_FILTER_PSPOLL;
2023
2024	if (sc->sc_nmeshvaps) {
2025		rfilt |= HAL_RX_FILTER_BEACON;
2026		if (sc->sc_hasbmatch)
2027			rfilt |= HAL_RX_FILTER_BSSID;
2028		else
2029			rfilt |= HAL_RX_FILTER_PROM;
2030	}
2031	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2032		rfilt |= HAL_RX_FILTER_CONTROL;
2033
2034	if (sc->sc_dodfs) {
2035		rfilt |= HAL_RX_FILTER_PHYRADAR;
2036	}
2037
2038	/*
2039	 * Enable RX of compressed BAR frames only when doing
2040	 * 802.11n. Required for A-MPDU.
2041	 */
2042	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
2043		rfilt |= HAL_RX_FILTER_COMPBAR;
2044
2045	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2046	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2047	return rfilt;
2048}
2049
2050static void
2051ath_update_promisc(struct ifnet *ifp)
2052{
2053	struct ath_softc *sc = ifp->if_softc;
2054	u_int32_t rfilt;
2055
2056	/* configure rx filter */
2057	rfilt = ath_calcrxfilter(sc);
2058	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2059
2060	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2061}
2062
2063static void
2064ath_update_mcast(struct ifnet *ifp)
2065{
2066	struct ath_softc *sc = ifp->if_softc;
2067	u_int32_t mfilt[2];
2068
2069	/* calculate and install multicast filter */
2070	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2071		struct ifmultiaddr *ifma;
2072		/*
2073		 * Merge multicast addresses to form the hardware filter.
2074		 */
2075		mfilt[0] = mfilt[1] = 0;
2076		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2077		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2078			caddr_t dl;
2079			u_int32_t val;
2080			u_int8_t pos;
2081
2082			/* calculate XOR of eight 6bit values */
2083			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2084			val = LE_READ_4(dl + 0);
2085			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2086			val = LE_READ_4(dl + 3);
2087			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2088			pos &= 0x3f;
2089			mfilt[pos / 32] |= (1 << (pos % 32));
2090		}
2091		if_maddr_runlock(ifp);
2092	} else
2093		mfilt[0] = mfilt[1] = ~0;
2094	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2095	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2096		__func__, mfilt[0], mfilt[1]);
2097}
2098
2099static void
2100ath_mode_init(struct ath_softc *sc)
2101{
2102	struct ifnet *ifp = sc->sc_ifp;
2103	struct ath_hal *ah = sc->sc_ah;
2104	u_int32_t rfilt;
2105
2106	/* configure rx filter */
2107	rfilt = ath_calcrxfilter(sc);
2108	ath_hal_setrxfilter(ah, rfilt);
2109
2110	/* configure operational mode */
2111	ath_hal_setopmode(ah);
2112
2113	/* handle any link-level address change */
2114	ath_hal_setmac(ah, IF_LLADDR(ifp));
2115
2116	/* calculate and install multicast filter */
2117	ath_update_mcast(ifp);
2118}
2119
2120/*
2121 * Set the slot time based on the current setting.
2122 */
2123static void
2124ath_setslottime(struct ath_softc *sc)
2125{
2126	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2127	struct ath_hal *ah = sc->sc_ah;
2128	u_int usec;
2129
2130	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2131		usec = 13;
2132	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2133		usec = 21;
2134	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2135		/* honor short/long slot time only in 11g */
2136		/* XXX shouldn't honor on pure g or turbo g channel */
2137		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2138			usec = HAL_SLOT_TIME_9;
2139		else
2140			usec = HAL_SLOT_TIME_20;
2141	} else
2142		usec = HAL_SLOT_TIME_9;
2143
2144	DPRINTF(sc, ATH_DEBUG_RESET,
2145	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2146	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2147	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2148
2149	ath_hal_setslottime(ah, usec);
2150	sc->sc_updateslot = OK;
2151}
2152
2153/*
2154 * Callback from the 802.11 layer to update the
2155 * slot time based on the current setting.
2156 */
2157static void
2158ath_updateslot(struct ifnet *ifp)
2159{
2160	struct ath_softc *sc = ifp->if_softc;
2161	struct ieee80211com *ic = ifp->if_l2com;
2162
2163	/*
2164	 * When not coordinating the BSS, change the hardware
2165	 * immediately.  For other operation we defer the change
2166	 * until beacon updates have propagated to the stations.
2167	 */
2168	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2169	    ic->ic_opmode == IEEE80211_M_MBSS)
2170		sc->sc_updateslot = UPDATE;
2171	else
2172		ath_setslottime(sc);
2173}
2174
2175/*
2176 * Setup a h/w transmit queue for beacons.
2177 */
2178static int
2179ath_beaconq_setup(struct ath_hal *ah)
2180{
2181	HAL_TXQ_INFO qi;
2182
2183	memset(&qi, 0, sizeof(qi));
2184	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2185	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2186	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2187	/* NB: for dynamic turbo, don't enable any other interrupts */
2188	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2189	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2190}
2191
2192/*
2193 * Setup the transmit queue parameters for the beacon queue.
2194 */
2195static int
2196ath_beaconq_config(struct ath_softc *sc)
2197{
2198#define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2199	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2200	struct ath_hal *ah = sc->sc_ah;
2201	HAL_TXQ_INFO qi;
2202
2203	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2204	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2205	    ic->ic_opmode == IEEE80211_M_MBSS) {
2206		/*
2207		 * Always burst out beacon and CAB traffic.
2208		 */
2209		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2210		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2211		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2212	} else {
2213		struct wmeParams *wmep =
2214			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2215		/*
2216		 * Adhoc mode; important thing is to use 2x cwmin.
2217		 */
2218		qi.tqi_aifs = wmep->wmep_aifsn;
2219		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2220		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2221	}
2222
2223	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2224		device_printf(sc->sc_dev, "unable to update parameters for "
2225			"beacon hardware queue!\n");
2226		return 0;
2227	} else {
2228		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2229		return 1;
2230	}
2231#undef ATH_EXPONENT_TO_VALUE
2232}
2233
2234/*
2235 * Allocate and setup an initial beacon frame.
2236 */
2237static int
2238ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2239{
2240	struct ieee80211vap *vap = ni->ni_vap;
2241	struct ath_vap *avp = ATH_VAP(vap);
2242	struct ath_buf *bf;
2243	struct mbuf *m;
2244	int error;
2245
2246	bf = avp->av_bcbuf;
2247	if (bf->bf_m != NULL) {
2248		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2249		m_freem(bf->bf_m);
2250		bf->bf_m = NULL;
2251	}
2252	if (bf->bf_node != NULL) {
2253		ieee80211_free_node(bf->bf_node);
2254		bf->bf_node = NULL;
2255	}
2256
2257	/*
2258	 * NB: the beacon data buffer must be 32-bit aligned;
2259	 * we assume the mbuf routines will return us something
2260	 * with this alignment (perhaps should assert).
2261	 */
2262	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2263	if (m == NULL) {
2264		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2265		sc->sc_stats.ast_be_nombuf++;
2266		return ENOMEM;
2267	}
2268	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2269				     bf->bf_segs, &bf->bf_nseg,
2270				     BUS_DMA_NOWAIT);
2271	if (error != 0) {
2272		device_printf(sc->sc_dev,
2273		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2274		    __func__, error);
2275		m_freem(m);
2276		return error;
2277	}
2278
2279	/*
2280	 * Calculate a TSF adjustment factor required for staggered
2281	 * beacons.  Note that we assume the format of the beacon
2282	 * frame leaves the tstamp field immediately following the
2283	 * header.
2284	 */
2285	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2286		uint64_t tsfadjust;
2287		struct ieee80211_frame *wh;
2288
2289		/*
2290		 * The beacon interval is in TU's; the TSF is in usecs.
2291		 * We figure out how many TU's to add to align the timestamp
2292		 * then convert to TSF units and handle byte swapping before
2293		 * inserting it in the frame.  The hardware will then add this
2294		 * each time a beacon frame is sent.  Note that we align vap's
2295		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2296		 * timestamp in one beacon interval while the others get a
2297		 * timstamp aligned to the next interval.
2298		 */
2299		tsfadjust = ni->ni_intval *
2300		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2301		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2302
2303		DPRINTF(sc, ATH_DEBUG_BEACON,
2304		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2305		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2306		    avp->av_bslot, ni->ni_intval,
2307		    (long long unsigned) le64toh(tsfadjust));
2308
2309		wh = mtod(m, struct ieee80211_frame *);
2310		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2311	}
2312	bf->bf_m = m;
2313	bf->bf_node = ieee80211_ref_node(ni);
2314
2315	return 0;
2316}
2317
2318/*
2319 * Setup the beacon frame for transmit.
2320 */
2321static void
2322ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2323{
2324#define	USE_SHPREAMBLE(_ic) \
2325	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2326		== IEEE80211_F_SHPREAMBLE)
2327	struct ieee80211_node *ni = bf->bf_node;
2328	struct ieee80211com *ic = ni->ni_ic;
2329	struct mbuf *m = bf->bf_m;
2330	struct ath_hal *ah = sc->sc_ah;
2331	struct ath_desc *ds;
2332	int flags, antenna;
2333	const HAL_RATE_TABLE *rt;
2334	u_int8_t rix, rate;
2335
2336	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2337		__func__, m, m->m_len);
2338
2339	/* setup descriptors */
2340	ds = bf->bf_desc;
2341
2342	flags = HAL_TXDESC_NOACK;
2343	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2344		ds->ds_link = bf->bf_daddr;	/* self-linked */
2345		flags |= HAL_TXDESC_VEOL;
2346		/*
2347		 * Let hardware handle antenna switching.
2348		 */
2349		antenna = sc->sc_txantenna;
2350	} else {
2351		ds->ds_link = 0;
2352		/*
2353		 * Switch antenna every 4 beacons.
2354		 * XXX assumes two antenna
2355		 */
2356		if (sc->sc_txantenna != 0)
2357			antenna = sc->sc_txantenna;
2358		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2359			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2360		else
2361			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2362	}
2363
2364	KASSERT(bf->bf_nseg == 1,
2365		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2366	ds->ds_data = bf->bf_segs[0].ds_addr;
2367	/*
2368	 * Calculate rate code.
2369	 * XXX everything at min xmit rate
2370	 */
2371	rix = 0;
2372	rt = sc->sc_currates;
2373	rate = rt->info[rix].rateCode;
2374	if (USE_SHPREAMBLE(ic))
2375		rate |= rt->info[rix].shortPreamble;
2376	ath_hal_setuptxdesc(ah, ds
2377		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2378		, sizeof(struct ieee80211_frame)/* header length */
2379		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2380		, ni->ni_txpower		/* txpower XXX */
2381		, rate, 1			/* series 0 rate/tries */
2382		, HAL_TXKEYIX_INVALID		/* no encryption */
2383		, antenna			/* antenna mode */
2384		, flags				/* no ack, veol for beacons */
2385		, 0				/* rts/cts rate */
2386		, 0				/* rts/cts duration */
2387	);
2388	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2389	ath_hal_filltxdesc(ah, ds
2390		, roundup(m->m_len, 4)		/* buffer length */
2391		, AH_TRUE			/* first segment */
2392		, AH_TRUE			/* last segment */
2393		, ds				/* first descriptor */
2394	);
2395#if 0
2396	ath_desc_swap(ds);
2397#endif
2398#undef USE_SHPREAMBLE
2399}
2400
2401static void
2402ath_beacon_update(struct ieee80211vap *vap, int item)
2403{
2404	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2405
2406	setbit(bo->bo_flags, item);
2407}
2408
2409/*
2410 * Append the contents of src to dst; both queues
2411 * are assumed to be locked.
2412 */
2413static void
2414ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2415{
2416	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2417	dst->axq_link = src->axq_link;
2418	src->axq_link = NULL;
2419	dst->axq_depth += src->axq_depth;
2420	src->axq_depth = 0;
2421}
2422
2423/*
2424 * Transmit a beacon frame at SWBA.  Dynamic updates to the
2425 * frame contents are done as needed and the slot time is
2426 * also adjusted based on current state.
2427 */
2428static void
2429ath_beacon_proc(void *arg, int pending)
2430{
2431	struct ath_softc *sc = arg;
2432	struct ath_hal *ah = sc->sc_ah;
2433	struct ieee80211vap *vap;
2434	struct ath_buf *bf;
2435	int slot, otherant;
2436	uint32_t bfaddr;
2437
2438	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2439		__func__, pending);
2440	/*
2441	 * Check if the previous beacon has gone out.  If
2442	 * not don't try to post another, skip this period
2443	 * and wait for the next.  Missed beacons indicate
2444	 * a problem and should not occur.  If we miss too
2445	 * many consecutive beacons reset the device.
2446	 */
2447	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2448		sc->sc_bmisscount++;
2449		sc->sc_stats.ast_be_missed++;
2450		DPRINTF(sc, ATH_DEBUG_BEACON,
2451			"%s: missed %u consecutive beacons\n",
2452			__func__, sc->sc_bmisscount);
2453		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2454			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2455		return;
2456	}
2457	if (sc->sc_bmisscount != 0) {
2458		DPRINTF(sc, ATH_DEBUG_BEACON,
2459			"%s: resume beacon xmit after %u misses\n",
2460			__func__, sc->sc_bmisscount);
2461		sc->sc_bmisscount = 0;
2462	}
2463
2464	if (sc->sc_stagbeacons) {			/* staggered beacons */
2465		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2466		uint32_t tsftu;
2467
2468		tsftu = ath_hal_gettsf32(ah) >> 10;
2469		/* XXX lintval */
2470		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2471		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2472		bfaddr = 0;
2473		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2474			bf = ath_beacon_generate(sc, vap);
2475			if (bf != NULL)
2476				bfaddr = bf->bf_daddr;
2477		}
2478	} else {					/* burst'd beacons */
2479		uint32_t *bflink = &bfaddr;
2480
2481		for (slot = 0; slot < ATH_BCBUF; slot++) {
2482			vap = sc->sc_bslot[slot];
2483			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2484				bf = ath_beacon_generate(sc, vap);
2485				if (bf != NULL) {
2486					*bflink = bf->bf_daddr;
2487					bflink = &bf->bf_desc->ds_link;
2488				}
2489			}
2490		}
2491		*bflink = 0;				/* terminate list */
2492	}
2493
2494	/*
2495	 * Handle slot time change when a non-ERP station joins/leaves
2496	 * an 11g network.  The 802.11 layer notifies us via callback,
2497	 * we mark updateslot, then wait one beacon before effecting
2498	 * the change.  This gives associated stations at least one
2499	 * beacon interval to note the state change.
2500	 */
2501	/* XXX locking */
2502	if (sc->sc_updateslot == UPDATE) {
2503		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2504		sc->sc_slotupdate = slot;
2505	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
2506		ath_setslottime(sc);		/* commit change to h/w */
2507
2508	/*
2509	 * Check recent per-antenna transmit statistics and flip
2510	 * the default antenna if noticeably more frames went out
2511	 * on the non-default antenna.
2512	 * XXX assumes 2 anntenae
2513	 */
2514	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
2515		otherant = sc->sc_defant & 1 ? 2 : 1;
2516		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2517			ath_setdefantenna(sc, otherant);
2518		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2519	}
2520
2521	if (bfaddr != 0) {
2522		/*
2523		 * Stop any current dma and put the new frame on the queue.
2524		 * This should never fail since we check above that no frames
2525		 * are still pending on the queue.
2526		 */
2527		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2528			DPRINTF(sc, ATH_DEBUG_ANY,
2529				"%s: beacon queue %u did not stop?\n",
2530				__func__, sc->sc_bhalq);
2531		}
2532		/* NB: cabq traffic should already be queued and primed */
2533		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
2534		ath_hal_txstart(ah, sc->sc_bhalq);
2535
2536		sc->sc_stats.ast_be_xmit++;
2537	}
2538}
2539
2540static struct ath_buf *
2541ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
2542{
2543	struct ath_vap *avp = ATH_VAP(vap);
2544	struct ath_txq *cabq = sc->sc_cabq;
2545	struct ath_buf *bf;
2546	struct mbuf *m;
2547	int nmcastq, error;
2548
2549	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2550	    ("not running, state %d", vap->iv_state));
2551	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2552
2553	/*
2554	 * Update dynamic beacon contents.  If this returns
2555	 * non-zero then we need to remap the memory because
2556	 * the beacon frame changed size (probably because
2557	 * of the TIM bitmap).
2558	 */
2559	bf = avp->av_bcbuf;
2560	m = bf->bf_m;
2561	nmcastq = avp->av_mcastq.axq_depth;
2562	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
2563		/* XXX too conservative? */
2564		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2565		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2566					     bf->bf_segs, &bf->bf_nseg,
2567					     BUS_DMA_NOWAIT);
2568		if (error != 0) {
2569			if_printf(vap->iv_ifp,
2570			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2571			    __func__, error);
2572			return NULL;
2573		}
2574	}
2575	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
2576		DPRINTF(sc, ATH_DEBUG_BEACON,
2577		    "%s: cabq did not drain, mcastq %u cabq %u\n",
2578		    __func__, nmcastq, cabq->axq_depth);
2579		sc->sc_stats.ast_cabq_busy++;
2580		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
2581			/*
2582			 * CABQ traffic from a previous vap is still pending.
2583			 * We must drain the q before this beacon frame goes
2584			 * out as otherwise this vap's stations will get cab
2585			 * frames from a different vap.
2586			 * XXX could be slow causing us to miss DBA
2587			 */
2588			ath_tx_draintxq(sc, cabq);
2589		}
2590	}
2591	ath_beacon_setup(sc, bf);
2592	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2593
2594	/*
2595	 * Enable the CAB queue before the beacon queue to
2596	 * insure cab frames are triggered by this beacon.
2597	 */
2598	if (avp->av_boff.bo_tim[4] & 1) {
2599		struct ath_hal *ah = sc->sc_ah;
2600
2601		/* NB: only at DTIM */
2602		ATH_TXQ_LOCK(cabq);
2603		ATH_TXQ_LOCK(&avp->av_mcastq);
2604		if (nmcastq) {
2605			struct ath_buf *bfm;
2606
2607			/*
2608			 * Move frames from the s/w mcast q to the h/w cab q.
2609			 * XXX MORE_DATA bit
2610			 */
2611			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
2612			if (cabq->axq_link != NULL) {
2613				*cabq->axq_link = bfm->bf_daddr;
2614			} else
2615				ath_hal_puttxbuf(ah, cabq->axq_qnum,
2616					bfm->bf_daddr);
2617			ath_txqmove(cabq, &avp->av_mcastq);
2618
2619			sc->sc_stats.ast_cabq_xmit += nmcastq;
2620		}
2621		/* NB: gated by beacon so safe to start here */
2622		ath_hal_txstart(ah, cabq->axq_qnum);
2623		ATH_TXQ_UNLOCK(cabq);
2624		ATH_TXQ_UNLOCK(&avp->av_mcastq);
2625	}
2626	return bf;
2627}
2628
2629static void
2630ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
2631{
2632	struct ath_vap *avp = ATH_VAP(vap);
2633	struct ath_hal *ah = sc->sc_ah;
2634	struct ath_buf *bf;
2635	struct mbuf *m;
2636	int error;
2637
2638	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2639
2640	/*
2641	 * Update dynamic beacon contents.  If this returns
2642	 * non-zero then we need to remap the memory because
2643	 * the beacon frame changed size (probably because
2644	 * of the TIM bitmap).
2645	 */
2646	bf = avp->av_bcbuf;
2647	m = bf->bf_m;
2648	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
2649		/* XXX too conservative? */
2650		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2651		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2652					     bf->bf_segs, &bf->bf_nseg,
2653					     BUS_DMA_NOWAIT);
2654		if (error != 0) {
2655			if_printf(vap->iv_ifp,
2656			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2657			    __func__, error);
2658			return;
2659		}
2660	}
2661	ath_beacon_setup(sc, bf);
2662	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2663
2664	/* NB: caller is known to have already stopped tx dma */
2665	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2666	ath_hal_txstart(ah, sc->sc_bhalq);
2667}
2668
2669/*
2670 * Reset the hardware after detecting beacons have stopped.
2671 */
2672static void
2673ath_bstuck_proc(void *arg, int pending)
2674{
2675	struct ath_softc *sc = arg;
2676	struct ifnet *ifp = sc->sc_ifp;
2677
2678	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2679		sc->sc_bmisscount);
2680	sc->sc_stats.ast_bstuck++;
2681	ath_reset(ifp);
2682}
2683
2684/*
2685 * Reclaim beacon resources and return buffer to the pool.
2686 */
2687static void
2688ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
2689{
2690
2691	if (bf->bf_m != NULL) {
2692		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2693		m_freem(bf->bf_m);
2694		bf->bf_m = NULL;
2695	}
2696	if (bf->bf_node != NULL) {
2697		ieee80211_free_node(bf->bf_node);
2698		bf->bf_node = NULL;
2699	}
2700	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
2701}
2702
2703/*
2704 * Reclaim beacon resources.
2705 */
2706static void
2707ath_beacon_free(struct ath_softc *sc)
2708{
2709	struct ath_buf *bf;
2710
2711	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2712		if (bf->bf_m != NULL) {
2713			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2714			m_freem(bf->bf_m);
2715			bf->bf_m = NULL;
2716		}
2717		if (bf->bf_node != NULL) {
2718			ieee80211_free_node(bf->bf_node);
2719			bf->bf_node = NULL;
2720		}
2721	}
2722}
2723
2724/*
2725 * Configure the beacon and sleep timers.
2726 *
2727 * When operating as an AP this resets the TSF and sets
2728 * up the hardware to notify us when we need to issue beacons.
2729 *
2730 * When operating in station mode this sets up the beacon
2731 * timers according to the timestamp of the last received
2732 * beacon and the current TSF, configures PCF and DTIM
2733 * handling, programs the sleep registers so the hardware
2734 * will wakeup in time to receive beacons, and configures
2735 * the beacon miss handling so we'll receive a BMISS
2736 * interrupt when we stop seeing beacons from the AP
2737 * we've associated with.
2738 */
2739static void
2740ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
2741{
2742#define	TSF_TO_TU(_h,_l) \
2743	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2744#define	FUDGE	2
2745	struct ath_hal *ah = sc->sc_ah;
2746	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2747	struct ieee80211_node *ni;
2748	u_int32_t nexttbtt, intval, tsftu;
2749	u_int64_t tsf;
2750
2751	if (vap == NULL)
2752		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
2753	ni = vap->iv_bss;
2754
2755	/* extract tstamp from last beacon and convert to TU */
2756	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2757			     LE_READ_4(ni->ni_tstamp.data));
2758	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2759	    ic->ic_opmode == IEEE80211_M_MBSS) {
2760		/*
2761		 * For multi-bss ap/mesh support beacons are either staggered
2762		 * evenly over N slots or burst together.  For the former
2763		 * arrange for the SWBA to be delivered for each slot.
2764		 * Slots that are not occupied will generate nothing.
2765		 */
2766		/* NB: the beacon interval is kept internally in TU's */
2767		intval = ni->ni_intval & HAL_BEACON_PERIOD;
2768		if (sc->sc_stagbeacons)
2769			intval /= ATH_BCBUF;
2770	} else {
2771		/* NB: the beacon interval is kept internally in TU's */
2772		intval = ni->ni_intval & HAL_BEACON_PERIOD;
2773	}
2774	if (nexttbtt == 0)		/* e.g. for ap mode */
2775		nexttbtt = intval;
2776	else if (intval)		/* NB: can be 0 for monitor mode */
2777		nexttbtt = roundup(nexttbtt, intval);
2778	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2779		__func__, nexttbtt, intval, ni->ni_intval);
2780	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
2781		HAL_BEACON_STATE bs;
2782		int dtimperiod, dtimcount;
2783		int cfpperiod, cfpcount;
2784
2785		/*
2786		 * Setup dtim and cfp parameters according to
2787		 * last beacon we received (which may be none).
2788		 */
2789		dtimperiod = ni->ni_dtim_period;
2790		if (dtimperiod <= 0)		/* NB: 0 if not known */
2791			dtimperiod = 1;
2792		dtimcount = ni->ni_dtim_count;
2793		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2794			dtimcount = 0;		/* XXX? */
2795		cfpperiod = 1;			/* NB: no PCF support yet */
2796		cfpcount = 0;
2797		/*
2798		 * Pull nexttbtt forward to reflect the current
2799		 * TSF and calculate dtim+cfp state for the result.
2800		 */
2801		tsf = ath_hal_gettsf64(ah);
2802		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2803		do {
2804			nexttbtt += intval;
2805			if (--dtimcount < 0) {
2806				dtimcount = dtimperiod - 1;
2807				if (--cfpcount < 0)
2808					cfpcount = cfpperiod - 1;
2809			}
2810		} while (nexttbtt < tsftu);
2811		memset(&bs, 0, sizeof(bs));
2812		bs.bs_intval = intval;
2813		bs.bs_nexttbtt = nexttbtt;
2814		bs.bs_dtimperiod = dtimperiod*intval;
2815		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2816		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2817		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2818		bs.bs_cfpmaxduration = 0;
2819#if 0
2820		/*
2821		 * The 802.11 layer records the offset to the DTIM
2822		 * bitmap while receiving beacons; use it here to
2823		 * enable h/w detection of our AID being marked in
2824		 * the bitmap vector (to indicate frames for us are
2825		 * pending at the AP).
2826		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2827		 * XXX enable based on h/w rev for newer chips
2828		 */
2829		bs.bs_timoffset = ni->ni_timoff;
2830#endif
2831		/*
2832		 * Calculate the number of consecutive beacons to miss
2833		 * before taking a BMISS interrupt.
2834		 * Note that we clamp the result to at most 10 beacons.
2835		 */
2836		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
2837		if (bs.bs_bmissthreshold > 10)
2838			bs.bs_bmissthreshold = 10;
2839		else if (bs.bs_bmissthreshold <= 0)
2840			bs.bs_bmissthreshold = 1;
2841
2842		/*
2843		 * Calculate sleep duration.  The configuration is
2844		 * given in ms.  We insure a multiple of the beacon
2845		 * period is used.  Also, if the sleep duration is
2846		 * greater than the DTIM period then it makes senses
2847		 * to make it a multiple of that.
2848		 *
2849		 * XXX fixed at 100ms
2850		 */
2851		bs.bs_sleepduration =
2852			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2853		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2854			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2855
2856		DPRINTF(sc, ATH_DEBUG_BEACON,
2857			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2858			, __func__
2859			, tsf, tsftu
2860			, bs.bs_intval
2861			, bs.bs_nexttbtt
2862			, bs.bs_dtimperiod
2863			, bs.bs_nextdtim
2864			, bs.bs_bmissthreshold
2865			, bs.bs_sleepduration
2866			, bs.bs_cfpperiod
2867			, bs.bs_cfpmaxduration
2868			, bs.bs_cfpnext
2869			, bs.bs_timoffset
2870		);
2871		ath_hal_intrset(ah, 0);
2872		ath_hal_beacontimers(ah, &bs);
2873		sc->sc_imask |= HAL_INT_BMISS;
2874		ath_hal_intrset(ah, sc->sc_imask);
2875	} else {
2876		ath_hal_intrset(ah, 0);
2877		if (nexttbtt == intval)
2878			intval |= HAL_BEACON_RESET_TSF;
2879		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2880			/*
2881			 * In IBSS mode enable the beacon timers but only
2882			 * enable SWBA interrupts if we need to manually
2883			 * prepare beacon frames.  Otherwise we use a
2884			 * self-linked tx descriptor and let the hardware
2885			 * deal with things.
2886			 */
2887			intval |= HAL_BEACON_ENA;
2888			if (!sc->sc_hasveol)
2889				sc->sc_imask |= HAL_INT_SWBA;
2890			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2891				/*
2892				 * Pull nexttbtt forward to reflect
2893				 * the current TSF.
2894				 */
2895				tsf = ath_hal_gettsf64(ah);
2896				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2897				do {
2898					nexttbtt += intval;
2899				} while (nexttbtt < tsftu);
2900			}
2901			ath_beaconq_config(sc);
2902		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2903		    ic->ic_opmode == IEEE80211_M_MBSS) {
2904			/*
2905			 * In AP/mesh mode we enable the beacon timers
2906			 * and SWBA interrupts to prepare beacon frames.
2907			 */
2908			intval |= HAL_BEACON_ENA;
2909			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2910			ath_beaconq_config(sc);
2911		}
2912		ath_hal_beaconinit(ah, nexttbtt, intval);
2913		sc->sc_bmisscount = 0;
2914		ath_hal_intrset(ah, sc->sc_imask);
2915		/*
2916		 * When using a self-linked beacon descriptor in
2917		 * ibss mode load it once here.
2918		 */
2919		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2920			ath_beacon_start_adhoc(sc, vap);
2921	}
2922	sc->sc_syncbeacon = 0;
2923#undef FUDGE
2924#undef TSF_TO_TU
2925}
2926
2927static void
2928ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2929{
2930	bus_addr_t *paddr = (bus_addr_t*) arg;
2931	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2932	*paddr = segs->ds_addr;
2933}
2934
2935static int
2936ath_descdma_setup(struct ath_softc *sc,
2937	struct ath_descdma *dd, ath_bufhead *head,
2938	const char *name, int nbuf, int ndesc)
2939{
2940#define	DS2PHYS(_dd, _ds) \
2941	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2942#define	ATH_DESC_4KB_BOUND_CHECK(_daddr, _len) \
2943	((((u_int32_t)(_daddr) & 0xFFF) > (0x1000 - (_len))) ? 1 : 0)
2944	struct ifnet *ifp = sc->sc_ifp;
2945	uint8_t *ds;
2946	struct ath_buf *bf;
2947	int i, bsize, error;
2948	int desc_len;
2949
2950	desc_len = sizeof(struct ath_desc);
2951
2952	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2953	    __func__, name, nbuf, ndesc);
2954
2955	dd->dd_name = name;
2956	dd->dd_desc_len = desc_len * nbuf * ndesc;
2957
2958	/*
2959	 * Merlin work-around:
2960	 * Descriptors that cross the 4KB boundary can't be used.
2961	 * Assume one skipped descriptor per 4KB page.
2962	 */
2963	if (! ath_hal_split4ktrans(sc->sc_ah)) {
2964		int numdescpage = 4096 / (desc_len * ndesc);
2965		dd->dd_desc_len = (nbuf / numdescpage + 1) * 4096;
2966	}
2967
2968	/*
2969	 * Setup DMA descriptor area.
2970	 */
2971	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2972		       PAGE_SIZE, 0,		/* alignment, bounds */
2973		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2974		       BUS_SPACE_MAXADDR,	/* highaddr */
2975		       NULL, NULL,		/* filter, filterarg */
2976		       dd->dd_desc_len,		/* maxsize */
2977		       1,			/* nsegments */
2978		       dd->dd_desc_len,		/* maxsegsize */
2979		       BUS_DMA_ALLOCNOW,	/* flags */
2980		       NULL,			/* lockfunc */
2981		       NULL,			/* lockarg */
2982		       &dd->dd_dmat);
2983	if (error != 0) {
2984		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2985		return error;
2986	}
2987
2988	/* allocate descriptors */
2989	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2990	if (error != 0) {
2991		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2992			"error %u\n", dd->dd_name, error);
2993		goto fail0;
2994	}
2995
2996	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2997				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2998				 &dd->dd_dmamap);
2999	if (error != 0) {
3000		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3001			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3002		goto fail1;
3003	}
3004
3005	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3006				dd->dd_desc, dd->dd_desc_len,
3007				ath_load_cb, &dd->dd_desc_paddr,
3008				BUS_DMA_NOWAIT);
3009	if (error != 0) {
3010		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3011			dd->dd_name, error);
3012		goto fail2;
3013	}
3014
3015	ds = (uint8_t *) dd->dd_desc;
3016	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3017	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3018	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3019
3020	/* allocate rx buffers */
3021	bsize = sizeof(struct ath_buf) * nbuf;
3022	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3023	if (bf == NULL) {
3024		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3025			dd->dd_name, bsize);
3026		goto fail3;
3027	}
3028	dd->dd_bufptr = bf;
3029
3030	STAILQ_INIT(head);
3031	for (i = 0; i < nbuf; i++, bf++, ds += (ndesc * desc_len)) {
3032		bf->bf_desc = (struct ath_desc *) ds;
3033		bf->bf_daddr = DS2PHYS(dd, ds);
3034		if (! ath_hal_split4ktrans(sc->sc_ah)) {
3035			/*
3036			 * Merlin WAR: Skip descriptor addresses which
3037			 * cause 4KB boundary crossing along any point
3038			 * in the descriptor.
3039			 */
3040			 if (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr,
3041			     desc_len * ndesc)) {
3042				/* Start at the next page */
3043				ds += 0x1000 - (bf->bf_daddr & 0xFFF);
3044				bf->bf_desc = (struct ath_desc *) ds;
3045				bf->bf_daddr = DS2PHYS(dd, ds);
3046			}
3047		}
3048		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3049				&bf->bf_dmamap);
3050		if (error != 0) {
3051			if_printf(ifp, "unable to create dmamap for %s "
3052				"buffer %u, error %u\n", dd->dd_name, i, error);
3053			ath_descdma_cleanup(sc, dd, head);
3054			return error;
3055		}
3056		STAILQ_INSERT_TAIL(head, bf, bf_list);
3057	}
3058	return 0;
3059fail3:
3060	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3061fail2:
3062	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3063fail1:
3064	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3065fail0:
3066	bus_dma_tag_destroy(dd->dd_dmat);
3067	memset(dd, 0, sizeof(*dd));
3068	return error;
3069#undef DS2PHYS
3070#undef ATH_DESC_4KB_BOUND_CHECK
3071}
3072
3073static void
3074ath_descdma_cleanup(struct ath_softc *sc,
3075	struct ath_descdma *dd, ath_bufhead *head)
3076{
3077	struct ath_buf *bf;
3078	struct ieee80211_node *ni;
3079
3080	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3081	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3082	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3083	bus_dma_tag_destroy(dd->dd_dmat);
3084
3085	STAILQ_FOREACH(bf, head, bf_list) {
3086		if (bf->bf_m) {
3087			m_freem(bf->bf_m);
3088			bf->bf_m = NULL;
3089		}
3090		if (bf->bf_dmamap != NULL) {
3091			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3092			bf->bf_dmamap = NULL;
3093		}
3094		ni = bf->bf_node;
3095		bf->bf_node = NULL;
3096		if (ni != NULL) {
3097			/*
3098			 * Reclaim node reference.
3099			 */
3100			ieee80211_free_node(ni);
3101		}
3102	}
3103
3104	STAILQ_INIT(head);
3105	free(dd->dd_bufptr, M_ATHDEV);
3106	memset(dd, 0, sizeof(*dd));
3107}
3108
3109static int
3110ath_desc_alloc(struct ath_softc *sc)
3111{
3112	int error;
3113
3114	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3115			"rx", ath_rxbuf, 1);
3116	if (error != 0)
3117		return error;
3118
3119	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3120			"tx", ath_txbuf, ATH_TXDESC);
3121	if (error != 0) {
3122		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3123		return error;
3124	}
3125
3126	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3127			"beacon", ATH_BCBUF, 1);
3128	if (error != 0) {
3129		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3130		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3131		return error;
3132	}
3133	return 0;
3134}
3135
3136static void
3137ath_desc_free(struct ath_softc *sc)
3138{
3139
3140	if (sc->sc_bdma.dd_desc_len != 0)
3141		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3142	if (sc->sc_txdma.dd_desc_len != 0)
3143		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3144	if (sc->sc_rxdma.dd_desc_len != 0)
3145		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3146}
3147
3148static struct ieee80211_node *
3149ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3150{
3151	struct ieee80211com *ic = vap->iv_ic;
3152	struct ath_softc *sc = ic->ic_ifp->if_softc;
3153	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3154	struct ath_node *an;
3155
3156	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3157	if (an == NULL) {
3158		/* XXX stat+msg */
3159		return NULL;
3160	}
3161	ath_rate_node_init(sc, an);
3162
3163	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3164	return &an->an_node;
3165}
3166
3167static void
3168ath_node_free(struct ieee80211_node *ni)
3169{
3170	struct ieee80211com *ic = ni->ni_ic;
3171        struct ath_softc *sc = ic->ic_ifp->if_softc;
3172
3173	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3174
3175	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3176	sc->sc_node_free(ni);
3177}
3178
3179static void
3180ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3181{
3182	struct ieee80211com *ic = ni->ni_ic;
3183	struct ath_softc *sc = ic->ic_ifp->if_softc;
3184	struct ath_hal *ah = sc->sc_ah;
3185
3186	*rssi = ic->ic_node_getrssi(ni);
3187	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3188		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3189	else
3190		*noise = -95;		/* nominally correct */
3191}
3192
3193static int
3194ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3195{
3196	struct ath_hal *ah = sc->sc_ah;
3197	int error;
3198	struct mbuf *m;
3199	struct ath_desc *ds;
3200
3201	m = bf->bf_m;
3202	if (m == NULL) {
3203		/*
3204		 * NB: by assigning a page to the rx dma buffer we
3205		 * implicitly satisfy the Atheros requirement that
3206		 * this buffer be cache-line-aligned and sized to be
3207		 * multiple of the cache line size.  Not doing this
3208		 * causes weird stuff to happen (for the 5210 at least).
3209		 */
3210		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3211		if (m == NULL) {
3212			DPRINTF(sc, ATH_DEBUG_ANY,
3213				"%s: no mbuf/cluster\n", __func__);
3214			sc->sc_stats.ast_rx_nombuf++;
3215			return ENOMEM;
3216		}
3217		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3218
3219		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3220					     bf->bf_dmamap, m,
3221					     bf->bf_segs, &bf->bf_nseg,
3222					     BUS_DMA_NOWAIT);
3223		if (error != 0) {
3224			DPRINTF(sc, ATH_DEBUG_ANY,
3225			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3226			    __func__, error);
3227			sc->sc_stats.ast_rx_busdma++;
3228			m_freem(m);
3229			return error;
3230		}
3231		KASSERT(bf->bf_nseg == 1,
3232			("multi-segment packet; nseg %u", bf->bf_nseg));
3233		bf->bf_m = m;
3234	}
3235	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3236
3237	/*
3238	 * Setup descriptors.  For receive we always terminate
3239	 * the descriptor list with a self-linked entry so we'll
3240	 * not get overrun under high load (as can happen with a
3241	 * 5212 when ANI processing enables PHY error frames).
3242	 *
3243	 * To insure the last descriptor is self-linked we create
3244	 * each descriptor as self-linked and add it to the end.  As
3245	 * each additional descriptor is added the previous self-linked
3246	 * entry is ``fixed'' naturally.  This should be safe even
3247	 * if DMA is happening.  When processing RX interrupts we
3248	 * never remove/process the last, self-linked, entry on the
3249	 * descriptor list.  This insures the hardware always has
3250	 * someplace to write a new frame.
3251	 */
3252	/*
3253	 * 11N: we can no longer afford to self link the last descriptor.
3254	 * MAC acknowledges BA status as long as it copies frames to host
3255	 * buffer (or rx fifo). This can incorrectly acknowledge packets
3256	 * to a sender if last desc is self-linked.
3257	 */
3258	ds = bf->bf_desc;
3259	if (sc->sc_rxslink)
3260		ds->ds_link = bf->bf_daddr;	/* link to self */
3261	else
3262		ds->ds_link = 0;		/* terminate the list */
3263	ds->ds_data = bf->bf_segs[0].ds_addr;
3264	ath_hal_setuprxdesc(ah, ds
3265		, m->m_len		/* buffer size */
3266		, 0
3267	);
3268
3269	if (sc->sc_rxlink != NULL)
3270		*sc->sc_rxlink = bf->bf_daddr;
3271	sc->sc_rxlink = &ds->ds_link;
3272	return 0;
3273}
3274
3275/*
3276 * Extend 15-bit time stamp from rx descriptor to
3277 * a full 64-bit TSF using the specified TSF.
3278 */
3279static __inline u_int64_t
3280ath_extend_tsf15(u_int32_t rstamp, u_int64_t tsf)
3281{
3282	if ((tsf & 0x7fff) < rstamp)
3283		tsf -= 0x8000;
3284
3285	return ((tsf &~ 0x7fff) | rstamp);
3286}
3287
3288/*
3289 * Extend 32-bit time stamp from rx descriptor to
3290 * a full 64-bit TSF using the specified TSF.
3291 */
3292static __inline u_int64_t
3293ath_extend_tsf32(u_int32_t rstamp, u_int64_t tsf)
3294{
3295	u_int32_t tsf_low = tsf & 0xffffffff;
3296	u_int64_t tsf64 = (tsf & ~0xffffffffULL) | rstamp;
3297
3298	if (rstamp > tsf_low && (rstamp - tsf_low > 0x10000000))
3299		tsf64 -= 0x100000000ULL;
3300
3301	if (rstamp < tsf_low && (tsf_low - rstamp > 0x10000000))
3302		tsf64 += 0x100000000ULL;
3303
3304	return tsf64;
3305}
3306
3307/*
3308 * Extend the TSF from the RX descriptor to a full 64 bit TSF.
3309 * Earlier hardware versions only wrote the low 15 bits of the
3310 * TSF into the RX descriptor; later versions (AR5416 and up)
3311 * include the 32 bit TSF value.
3312 */
3313static __inline u_int64_t
3314ath_extend_tsf(struct ath_softc *sc, u_int32_t rstamp, u_int64_t tsf)
3315{
3316	if (sc->sc_rxtsf32)
3317		return ath_extend_tsf32(rstamp, tsf);
3318	else
3319		return ath_extend_tsf15(rstamp, tsf);
3320}
3321
3322/*
3323 * Intercept management frames to collect beacon rssi data
3324 * and to do ibss merges.
3325 */
3326static void
3327ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3328	int subtype, int rssi, int nf)
3329{
3330	struct ieee80211vap *vap = ni->ni_vap;
3331	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3332
3333	/*
3334	 * Call up first so subsequent work can use information
3335	 * potentially stored in the node (e.g. for ibss merge).
3336	 */
3337	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3338	switch (subtype) {
3339	case IEEE80211_FC0_SUBTYPE_BEACON:
3340		/* update rssi statistics for use by the hal */
3341		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3342		if (sc->sc_syncbeacon &&
3343		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3344			/*
3345			 * Resync beacon timers using the tsf of the beacon
3346			 * frame we just received.
3347			 */
3348			ath_beacon_config(sc, vap);
3349		}
3350		/* fall thru... */
3351	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3352		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3353		    vap->iv_state == IEEE80211_S_RUN) {
3354			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3355			uint64_t tsf = ath_extend_tsf(sc, rstamp,
3356				ath_hal_gettsf64(sc->sc_ah));
3357			/*
3358			 * Handle ibss merge as needed; check the tsf on the
3359			 * frame before attempting the merge.  The 802.11 spec
3360			 * says the station should change it's bssid to match
3361			 * the oldest station with the same ssid, where oldest
3362			 * is determined by the tsf.  Note that hardware
3363			 * reconfiguration happens through callback to
3364			 * ath_newstate as the state machine will go from
3365			 * RUN -> RUN when this happens.
3366			 */
3367			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3368				DPRINTF(sc, ATH_DEBUG_STATE,
3369				    "ibss merge, rstamp %u tsf %ju "
3370				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3371				    (uintmax_t)ni->ni_tstamp.tsf);
3372				(void) ieee80211_ibss_merge(ni);
3373			}
3374		}
3375		break;
3376	}
3377}
3378
3379/*
3380 * Set the default antenna.
3381 */
3382static void
3383ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3384{
3385	struct ath_hal *ah = sc->sc_ah;
3386
3387	/* XXX block beacon interrupts */
3388	ath_hal_setdefantenna(ah, antenna);
3389	if (sc->sc_defant != antenna)
3390		sc->sc_stats.ast_ant_defswitch++;
3391	sc->sc_defant = antenna;
3392	sc->sc_rxotherant = 0;
3393}
3394
3395static void
3396ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3397	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3398{
3399#define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3400#define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3401#define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3402#define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3403	struct ath_softc *sc = ifp->if_softc;
3404	const HAL_RATE_TABLE *rt;
3405	uint8_t rix;
3406
3407	rt = sc->sc_currates;
3408	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3409	rix = rt->rateCodeToIndex[rs->rs_rate];
3410	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3411	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3412#ifdef AH_SUPPORT_AR5416
3413	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3414	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3415		struct ieee80211com *ic = ifp->if_l2com;
3416
3417		if ((rs->rs_flags & HAL_RX_2040) == 0)
3418			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3419		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3420			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3421		else
3422			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3423		if ((rs->rs_flags & HAL_RX_GI) == 0)
3424			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3425	}
3426#endif
3427	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(sc, rs->rs_tstamp, tsf));
3428	if (rs->rs_status & HAL_RXERR_CRC)
3429		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3430	/* XXX propagate other error flags from descriptor */
3431	sc->sc_rx_th.wr_antnoise = nf;
3432	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
3433	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3434#undef CHAN_HT
3435#undef CHAN_HT20
3436#undef CHAN_HT40U
3437#undef CHAN_HT40D
3438}
3439
3440static void
3441ath_handle_micerror(struct ieee80211com *ic,
3442	struct ieee80211_frame *wh, int keyix)
3443{
3444	struct ieee80211_node *ni;
3445
3446	/* XXX recheck MIC to deal w/ chips that lie */
3447	/* XXX discard MIC errors on !data frames */
3448	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3449	if (ni != NULL) {
3450		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3451		ieee80211_free_node(ni);
3452	}
3453}
3454
3455static void
3456ath_rx_proc(void *arg, int npending)
3457{
3458#define	PA2DESC(_sc, _pa) \
3459	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3460		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3461	struct ath_softc *sc = arg;
3462	struct ath_buf *bf;
3463	struct ifnet *ifp = sc->sc_ifp;
3464	struct ieee80211com *ic = ifp->if_l2com;
3465	struct ath_hal *ah = sc->sc_ah;
3466	struct ath_desc *ds;
3467	struct ath_rx_status *rs;
3468	struct mbuf *m;
3469	struct ieee80211_node *ni;
3470	int len, type, ngood;
3471	HAL_STATUS status;
3472	int16_t nf;
3473	u_int64_t tsf;
3474
3475	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3476	ngood = 0;
3477	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
3478	sc->sc_stats.ast_rx_noise = nf;
3479	tsf = ath_hal_gettsf64(ah);
3480	do {
3481		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3482		if (sc->sc_rxslink && bf == NULL) {	/* NB: shouldn't happen */
3483			if_printf(ifp, "%s: no buffer!\n", __func__);
3484			break;
3485		} else if (bf == NULL) {
3486			/*
3487			 * End of List:
3488			 * this can happen for non-self-linked RX chains
3489			 */
3490			sc->sc_stats.ast_rx_hitqueueend++;
3491			break;
3492		}
3493		m = bf->bf_m;
3494		if (m == NULL) {		/* NB: shouldn't happen */
3495			/*
3496			 * If mbuf allocation failed previously there
3497			 * will be no mbuf; try again to re-populate it.
3498			 */
3499			/* XXX make debug msg */
3500			if_printf(ifp, "%s: no mbuf!\n", __func__);
3501			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3502			goto rx_next;
3503		}
3504		ds = bf->bf_desc;
3505		if (ds->ds_link == bf->bf_daddr) {
3506			/* NB: never process the self-linked entry at the end */
3507			sc->sc_stats.ast_rx_hitqueueend++;
3508			break;
3509		}
3510		/* XXX sync descriptor memory */
3511		/*
3512		 * Must provide the virtual address of the current
3513		 * descriptor, the physical address, and the virtual
3514		 * address of the next descriptor in the h/w chain.
3515		 * This allows the HAL to look ahead to see if the
3516		 * hardware is done with a descriptor by checking the
3517		 * done bit in the following descriptor and the address
3518		 * of the current descriptor the DMA engine is working
3519		 * on.  All this is necessary because of our use of
3520		 * a self-linked list to avoid rx overruns.
3521		 */
3522		rs = &bf->bf_status.ds_rxstat;
3523		status = ath_hal_rxprocdesc(ah, ds,
3524				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3525#ifdef ATH_DEBUG
3526		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3527			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
3528#endif
3529		if (status == HAL_EINPROGRESS)
3530			break;
3531		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3532
3533		/* These aren't specifically errors */
3534		if (rs->rs_flags & HAL_RX_GI)
3535			sc->sc_stats.ast_rx_halfgi++;
3536		if (rs->rs_flags & HAL_RX_2040)
3537			sc->sc_stats.ast_rx_2040++;
3538		if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
3539			sc->sc_stats.ast_rx_pre_crc_err++;
3540		if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
3541			sc->sc_stats.ast_rx_post_crc_err++;
3542		if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
3543			sc->sc_stats.ast_rx_decrypt_busy_err++;
3544		if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
3545			sc->sc_stats.ast_rx_hi_rx_chain++;
3546
3547		if (rs->rs_status != 0) {
3548			if (rs->rs_status & HAL_RXERR_CRC)
3549				sc->sc_stats.ast_rx_crcerr++;
3550			if (rs->rs_status & HAL_RXERR_FIFO)
3551				sc->sc_stats.ast_rx_fifoerr++;
3552			if (rs->rs_status & HAL_RXERR_PHY) {
3553				sc->sc_stats.ast_rx_phyerr++;
3554				/* Process DFS radar events */
3555				if ((rs->rs_phyerr == HAL_PHYERR_RADAR) ||
3556				    (rs->rs_phyerr == HAL_PHYERR_FALSE_RADAR_EXT)) {
3557					/* Since we're touching the frame data, sync it */
3558					bus_dmamap_sync(sc->sc_dmat,
3559					    bf->bf_dmamap,
3560					    BUS_DMASYNC_POSTREAD);
3561					/* Now pass it to the radar processing code */
3562					ath_dfs_process_phy_err(sc, mtod(m, char *), tsf, rs);
3563				}
3564
3565				/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
3566				if (rs->rs_phyerr < 64)
3567					sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
3568				goto rx_error;	/* NB: don't count in ierrors */
3569			}
3570			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3571				/*
3572				 * Decrypt error.  If the error occurred
3573				 * because there was no hardware key, then
3574				 * let the frame through so the upper layers
3575				 * can process it.  This is necessary for 5210
3576				 * parts which have no way to setup a ``clear''
3577				 * key cache entry.
3578				 *
3579				 * XXX do key cache faulting
3580				 */
3581				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3582					goto rx_accept;
3583				sc->sc_stats.ast_rx_badcrypt++;
3584			}
3585			if (rs->rs_status & HAL_RXERR_MIC) {
3586				sc->sc_stats.ast_rx_badmic++;
3587				/*
3588				 * Do minimal work required to hand off
3589				 * the 802.11 header for notification.
3590				 */
3591				/* XXX frag's and qos frames */
3592				len = rs->rs_datalen;
3593				if (len >= sizeof (struct ieee80211_frame)) {
3594					bus_dmamap_sync(sc->sc_dmat,
3595					    bf->bf_dmamap,
3596					    BUS_DMASYNC_POSTREAD);
3597					ath_handle_micerror(ic,
3598					    mtod(m, struct ieee80211_frame *),
3599					    sc->sc_splitmic ?
3600						rs->rs_keyix-32 : rs->rs_keyix);
3601				}
3602			}
3603			ifp->if_ierrors++;
3604rx_error:
3605			/*
3606			 * Cleanup any pending partial frame.
3607			 */
3608			if (sc->sc_rxpending != NULL) {
3609				m_freem(sc->sc_rxpending);
3610				sc->sc_rxpending = NULL;
3611			}
3612			/*
3613			 * When a tap is present pass error frames
3614			 * that have been requested.  By default we
3615			 * pass decrypt+mic errors but others may be
3616			 * interesting (e.g. crc).
3617			 */
3618			if (ieee80211_radiotap_active(ic) &&
3619			    (rs->rs_status & sc->sc_monpass)) {
3620				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3621				    BUS_DMASYNC_POSTREAD);
3622				/* NB: bpf needs the mbuf length setup */
3623				len = rs->rs_datalen;
3624				m->m_pkthdr.len = m->m_len = len;
3625				ath_rx_tap(ifp, m, rs, tsf, nf);
3626				ieee80211_radiotap_rx_all(ic, m);
3627			}
3628			/* XXX pass MIC errors up for s/w reclaculation */
3629			goto rx_next;
3630		}
3631rx_accept:
3632		/*
3633		 * Sync and unmap the frame.  At this point we're
3634		 * committed to passing the mbuf somewhere so clear
3635		 * bf_m; this means a new mbuf must be allocated
3636		 * when the rx descriptor is setup again to receive
3637		 * another frame.
3638		 */
3639		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3640		    BUS_DMASYNC_POSTREAD);
3641		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3642		bf->bf_m = NULL;
3643
3644		len = rs->rs_datalen;
3645		m->m_len = len;
3646
3647		if (rs->rs_more) {
3648			/*
3649			 * Frame spans multiple descriptors; save
3650			 * it for the next completed descriptor, it
3651			 * will be used to construct a jumbogram.
3652			 */
3653			if (sc->sc_rxpending != NULL) {
3654				/* NB: max frame size is currently 2 clusters */
3655				sc->sc_stats.ast_rx_toobig++;
3656				m_freem(sc->sc_rxpending);
3657			}
3658			m->m_pkthdr.rcvif = ifp;
3659			m->m_pkthdr.len = len;
3660			sc->sc_rxpending = m;
3661			goto rx_next;
3662		} else if (sc->sc_rxpending != NULL) {
3663			/*
3664			 * This is the second part of a jumbogram,
3665			 * chain it to the first mbuf, adjust the
3666			 * frame length, and clear the rxpending state.
3667			 */
3668			sc->sc_rxpending->m_next = m;
3669			sc->sc_rxpending->m_pkthdr.len += len;
3670			m = sc->sc_rxpending;
3671			sc->sc_rxpending = NULL;
3672		} else {
3673			/*
3674			 * Normal single-descriptor receive; setup
3675			 * the rcvif and packet length.
3676			 */
3677			m->m_pkthdr.rcvif = ifp;
3678			m->m_pkthdr.len = len;
3679		}
3680
3681		ifp->if_ipackets++;
3682		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
3683
3684		/*
3685		 * Populate the rx status block.  When there are bpf
3686		 * listeners we do the additional work to provide
3687		 * complete status.  Otherwise we fill in only the
3688		 * material required by ieee80211_input.  Note that
3689		 * noise setting is filled in above.
3690		 */
3691		if (ieee80211_radiotap_active(ic))
3692			ath_rx_tap(ifp, m, rs, tsf, nf);
3693
3694		/*
3695		 * From this point on we assume the frame is at least
3696		 * as large as ieee80211_frame_min; verify that.
3697		 */
3698		if (len < IEEE80211_MIN_LEN) {
3699			if (!ieee80211_radiotap_active(ic)) {
3700				DPRINTF(sc, ATH_DEBUG_RECV,
3701				    "%s: short packet %d\n", __func__, len);
3702				sc->sc_stats.ast_rx_tooshort++;
3703			} else {
3704				/* NB: in particular this captures ack's */
3705				ieee80211_radiotap_rx_all(ic, m);
3706			}
3707			m_freem(m);
3708			goto rx_next;
3709		}
3710
3711		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3712			const HAL_RATE_TABLE *rt = sc->sc_currates;
3713			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
3714
3715			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
3716			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
3717		}
3718
3719		m_adj(m, -IEEE80211_CRC_LEN);
3720
3721		/*
3722		 * Locate the node for sender, track state, and then
3723		 * pass the (referenced) node up to the 802.11 layer
3724		 * for its use.
3725		 */
3726		ni = ieee80211_find_rxnode_withkey(ic,
3727			mtod(m, const struct ieee80211_frame_min *),
3728			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
3729				IEEE80211_KEYIX_NONE : rs->rs_keyix);
3730		sc->sc_lastrs = rs;
3731
3732		if (rs->rs_isaggr)
3733			sc->sc_stats.ast_rx_agg++;
3734
3735		if (ni != NULL) {
3736			/*
3737 			 * Only punt packets for ampdu reorder processing for
3738			 * 11n nodes; net80211 enforces that M_AMPDU is only
3739			 * set for 11n nodes.
3740 			 */
3741			if (ni->ni_flags & IEEE80211_NODE_HT)
3742				m->m_flags |= M_AMPDU;
3743
3744			/*
3745			 * Sending station is known, dispatch directly.
3746			 */
3747			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
3748			ieee80211_free_node(ni);
3749			/*
3750			 * Arrange to update the last rx timestamp only for
3751			 * frames from our ap when operating in station mode.
3752			 * This assumes the rx key is always setup when
3753			 * associated.
3754			 */
3755			if (ic->ic_opmode == IEEE80211_M_STA &&
3756			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
3757				ngood++;
3758		} else {
3759			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
3760		}
3761		/*
3762		 * Track rx rssi and do any rx antenna management.
3763		 */
3764		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
3765		if (sc->sc_diversity) {
3766			/*
3767			 * When using fast diversity, change the default rx
3768			 * antenna if diversity chooses the other antenna 3
3769			 * times in a row.
3770			 */
3771			if (sc->sc_defant != rs->rs_antenna) {
3772				if (++sc->sc_rxotherant >= 3)
3773					ath_setdefantenna(sc, rs->rs_antenna);
3774			} else
3775				sc->sc_rxotherant = 0;
3776		}
3777
3778		/* Newer school diversity - kite specific for now */
3779		/* XXX perhaps migrate the normal diversity code to this? */
3780		if ((ah)->ah_rxAntCombDiversity)
3781			(*(ah)->ah_rxAntCombDiversity)(ah, rs, ticks, hz);
3782
3783		if (sc->sc_softled) {
3784			/*
3785			 * Blink for any data frame.  Otherwise do a
3786			 * heartbeat-style blink when idle.  The latter
3787			 * is mainly for station mode where we depend on
3788			 * periodic beacon frames to trigger the poll event.
3789			 */
3790			if (type == IEEE80211_FC0_TYPE_DATA) {
3791				const HAL_RATE_TABLE *rt = sc->sc_currates;
3792				ath_led_event(sc,
3793				    rt->rateCodeToIndex[rs->rs_rate]);
3794			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3795				ath_led_event(sc, 0);
3796		}
3797rx_next:
3798		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3799	} while (ath_rxbuf_init(sc, bf) == 0);
3800
3801	/* rx signal state monitoring */
3802	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
3803	if (ngood)
3804		sc->sc_lastrx = tsf;
3805
3806	/* Queue DFS tasklet if needed */
3807	if (ath_dfs_tasklet_needed(sc, sc->sc_curchan))
3808		taskqueue_enqueue(sc->sc_tq, &sc->sc_dfstask);
3809
3810	/*
3811	 * Now that all the RX frames were handled that
3812	 * need to be handled, kick the PCU if there's
3813	 * been an RXEOL condition.
3814	 */
3815	if (sc->sc_kickpcu) {
3816		sc->sc_kickpcu = 0;
3817		ath_stoprecv(sc);
3818		sc->sc_imask |= (HAL_INT_RXEOL | HAL_INT_RXORN);
3819		if (ath_startrecv(sc) != 0) {
3820			if_printf(ifp,
3821			    "%s: couldn't restart RX after RXEOL; resetting\n",
3822			    __func__);
3823			ath_reset(ifp);
3824			return;
3825		}
3826		ath_hal_intrset(ah, sc->sc_imask);
3827	}
3828
3829	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
3830#ifdef IEEE80211_SUPPORT_SUPERG
3831		ieee80211_ff_age_all(ic, 100);
3832#endif
3833		if (!IFQ_IS_EMPTY(&ifp->if_snd))
3834			ath_start(ifp);
3835	}
3836#undef PA2DESC
3837}
3838
3839static void
3840ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3841{
3842	txq->axq_qnum = qnum;
3843	txq->axq_ac = 0;
3844	txq->axq_depth = 0;
3845	txq->axq_intrcnt = 0;
3846	txq->axq_link = NULL;
3847	STAILQ_INIT(&txq->axq_q);
3848	ATH_TXQ_LOCK_INIT(sc, txq);
3849}
3850
3851/*
3852 * Setup a h/w transmit queue.
3853 */
3854static struct ath_txq *
3855ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3856{
3857#define	N(a)	(sizeof(a)/sizeof(a[0]))
3858	struct ath_hal *ah = sc->sc_ah;
3859	HAL_TXQ_INFO qi;
3860	int qnum;
3861
3862	memset(&qi, 0, sizeof(qi));
3863	qi.tqi_subtype = subtype;
3864	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3865	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3866	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3867	/*
3868	 * Enable interrupts only for EOL and DESC conditions.
3869	 * We mark tx descriptors to receive a DESC interrupt
3870	 * when a tx queue gets deep; otherwise waiting for the
3871	 * EOL to reap descriptors.  Note that this is done to
3872	 * reduce interrupt load and this only defers reaping
3873	 * descriptors, never transmitting frames.  Aside from
3874	 * reducing interrupts this also permits more concurrency.
3875	 * The only potential downside is if the tx queue backs
3876	 * up in which case the top half of the kernel may backup
3877	 * due to a lack of tx descriptors.
3878	 */
3879	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3880	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3881	if (qnum == -1) {
3882		/*
3883		 * NB: don't print a message, this happens
3884		 * normally on parts with too few tx queues
3885		 */
3886		return NULL;
3887	}
3888	if (qnum >= N(sc->sc_txq)) {
3889		device_printf(sc->sc_dev,
3890			"hal qnum %u out of range, max %zu!\n",
3891			qnum, N(sc->sc_txq));
3892		ath_hal_releasetxqueue(ah, qnum);
3893		return NULL;
3894	}
3895	if (!ATH_TXQ_SETUP(sc, qnum)) {
3896		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3897		sc->sc_txqsetup |= 1<<qnum;
3898	}
3899	return &sc->sc_txq[qnum];
3900#undef N
3901}
3902
3903/*
3904 * Setup a hardware data transmit queue for the specified
3905 * access control.  The hal may not support all requested
3906 * queues in which case it will return a reference to a
3907 * previously setup queue.  We record the mapping from ac's
3908 * to h/w queues for use by ath_tx_start and also track
3909 * the set of h/w queues being used to optimize work in the
3910 * transmit interrupt handler and related routines.
3911 */
3912static int
3913ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3914{
3915#define	N(a)	(sizeof(a)/sizeof(a[0]))
3916	struct ath_txq *txq;
3917
3918	if (ac >= N(sc->sc_ac2q)) {
3919		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3920			ac, N(sc->sc_ac2q));
3921		return 0;
3922	}
3923	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3924	if (txq != NULL) {
3925		txq->axq_ac = ac;
3926		sc->sc_ac2q[ac] = txq;
3927		return 1;
3928	} else
3929		return 0;
3930#undef N
3931}
3932
3933/*
3934 * Update WME parameters for a transmit queue.
3935 */
3936static int
3937ath_txq_update(struct ath_softc *sc, int ac)
3938{
3939#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3940#define	ATH_TXOP_TO_US(v)		(v<<5)
3941	struct ifnet *ifp = sc->sc_ifp;
3942	struct ieee80211com *ic = ifp->if_l2com;
3943	struct ath_txq *txq = sc->sc_ac2q[ac];
3944	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3945	struct ath_hal *ah = sc->sc_ah;
3946	HAL_TXQ_INFO qi;
3947
3948	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3949#ifdef IEEE80211_SUPPORT_TDMA
3950	if (sc->sc_tdma) {
3951		/*
3952		 * AIFS is zero so there's no pre-transmit wait.  The
3953		 * burst time defines the slot duration and is configured
3954		 * through net80211.  The QCU is setup to not do post-xmit
3955		 * back off, lockout all lower-priority QCU's, and fire
3956		 * off the DMA beacon alert timer which is setup based
3957		 * on the slot configuration.
3958		 */
3959		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3960			      | HAL_TXQ_TXERRINT_ENABLE
3961			      | HAL_TXQ_TXURNINT_ENABLE
3962			      | HAL_TXQ_TXEOLINT_ENABLE
3963			      | HAL_TXQ_DBA_GATED
3964			      | HAL_TXQ_BACKOFF_DISABLE
3965			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3966			      ;
3967		qi.tqi_aifs = 0;
3968		/* XXX +dbaprep? */
3969		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3970		qi.tqi_burstTime = qi.tqi_readyTime;
3971	} else {
3972#endif
3973		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3974			      | HAL_TXQ_TXERRINT_ENABLE
3975			      | HAL_TXQ_TXDESCINT_ENABLE
3976			      | HAL_TXQ_TXURNINT_ENABLE
3977			      ;
3978		qi.tqi_aifs = wmep->wmep_aifsn;
3979		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3980		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3981		qi.tqi_readyTime = 0;
3982		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3983#ifdef IEEE80211_SUPPORT_TDMA
3984	}
3985#endif
3986
3987	DPRINTF(sc, ATH_DEBUG_RESET,
3988	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3989	    __func__, txq->axq_qnum, qi.tqi_qflags,
3990	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3991
3992	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3993		if_printf(ifp, "unable to update hardware queue "
3994			"parameters for %s traffic!\n",
3995			ieee80211_wme_acnames[ac]);
3996		return 0;
3997	} else {
3998		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3999		return 1;
4000	}
4001#undef ATH_TXOP_TO_US
4002#undef ATH_EXPONENT_TO_VALUE
4003}
4004
4005/*
4006 * Callback from the 802.11 layer to update WME parameters.
4007 */
4008static int
4009ath_wme_update(struct ieee80211com *ic)
4010{
4011	struct ath_softc *sc = ic->ic_ifp->if_softc;
4012
4013	return !ath_txq_update(sc, WME_AC_BE) ||
4014	    !ath_txq_update(sc, WME_AC_BK) ||
4015	    !ath_txq_update(sc, WME_AC_VI) ||
4016	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4017}
4018
4019/*
4020 * Reclaim resources for a setup queue.
4021 */
4022static void
4023ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4024{
4025
4026	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4027	ATH_TXQ_LOCK_DESTROY(txq);
4028	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4029}
4030
4031/*
4032 * Reclaim all tx queue resources.
4033 */
4034static void
4035ath_tx_cleanup(struct ath_softc *sc)
4036{
4037	int i;
4038
4039	ATH_TXBUF_LOCK_DESTROY(sc);
4040	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4041		if (ATH_TXQ_SETUP(sc, i))
4042			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4043}
4044
4045/*
4046 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4047 * using the current rates in sc_rixmap.
4048 */
4049int
4050ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4051{
4052	int rix = sc->sc_rixmap[rate];
4053	/* NB: return lowest rix for invalid rate */
4054	return (rix == 0xff ? 0 : rix);
4055}
4056
4057/*
4058 * Process completed xmit descriptors from the specified queue.
4059 */
4060static int
4061ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4062{
4063	struct ath_hal *ah = sc->sc_ah;
4064	struct ifnet *ifp = sc->sc_ifp;
4065	struct ieee80211com *ic = ifp->if_l2com;
4066	struct ath_buf *bf, *last;
4067	struct ath_desc *ds, *ds0;
4068	struct ath_tx_status *ts;
4069	struct ieee80211_node *ni;
4070	struct ath_node *an;
4071	int sr, lr, pri, nacked;
4072	HAL_STATUS status;
4073
4074	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4075		__func__, txq->axq_qnum,
4076		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4077		txq->axq_link);
4078	nacked = 0;
4079	for (;;) {
4080		ATH_TXQ_LOCK(txq);
4081		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4082		bf = STAILQ_FIRST(&txq->axq_q);
4083		if (bf == NULL) {
4084			ATH_TXQ_UNLOCK(txq);
4085			break;
4086		}
4087		ds0 = &bf->bf_desc[0];
4088		ds = &bf->bf_desc[bf->bf_nseg - 1];
4089		ts = &bf->bf_status.ds_txstat;
4090		status = ath_hal_txprocdesc(ah, ds, ts);
4091#ifdef ATH_DEBUG
4092		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4093			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4094			    status == HAL_OK);
4095#endif
4096		if (status == HAL_EINPROGRESS) {
4097			ATH_TXQ_UNLOCK(txq);
4098			break;
4099		}
4100		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4101#ifdef IEEE80211_SUPPORT_TDMA
4102		if (txq->axq_depth > 0) {
4103			/*
4104			 * More frames follow.  Mark the buffer busy
4105			 * so it's not re-used while the hardware may
4106			 * still re-read the link field in the descriptor.
4107			 */
4108			bf->bf_flags |= ATH_BUF_BUSY;
4109		} else
4110#else
4111		if (txq->axq_depth == 0)
4112#endif
4113			txq->axq_link = NULL;
4114		ATH_TXQ_UNLOCK(txq);
4115
4116		ni = bf->bf_node;
4117		if (ni != NULL) {
4118			an = ATH_NODE(ni);
4119			if (ts->ts_status == 0) {
4120				u_int8_t txant = ts->ts_antenna;
4121				sc->sc_stats.ast_ant_tx[txant]++;
4122				sc->sc_ant_tx[txant]++;
4123				if (ts->ts_finaltsi != 0)
4124					sc->sc_stats.ast_tx_altrate++;
4125				pri = M_WME_GETAC(bf->bf_m);
4126				if (pri >= WME_AC_VO)
4127					ic->ic_wme.wme_hipri_traffic++;
4128				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
4129					ni->ni_inact = ni->ni_inact_reload;
4130			} else {
4131				if (ts->ts_status & HAL_TXERR_XRETRY)
4132					sc->sc_stats.ast_tx_xretries++;
4133				if (ts->ts_status & HAL_TXERR_FIFO)
4134					sc->sc_stats.ast_tx_fifoerr++;
4135				if (ts->ts_status & HAL_TXERR_FILT)
4136					sc->sc_stats.ast_tx_filtered++;
4137				if (ts->ts_status & HAL_TXERR_XTXOP)
4138					sc->sc_stats.ast_tx_xtxop++;
4139				if (ts->ts_status & HAL_TXERR_TIMER_EXPIRED)
4140					sc->sc_stats.ast_tx_timerexpired++;
4141
4142				/* XXX HAL_TX_DATA_UNDERRUN */
4143				/* XXX HAL_TX_DELIM_UNDERRUN */
4144
4145				if (bf->bf_m->m_flags & M_FF)
4146					sc->sc_stats.ast_ff_txerr++;
4147			}
4148			/* XXX when is this valid? */
4149			if (ts->ts_status & HAL_TX_DESC_CFG_ERR)
4150				sc->sc_stats.ast_tx_desccfgerr++;
4151
4152			sr = ts->ts_shortretry;
4153			lr = ts->ts_longretry;
4154			sc->sc_stats.ast_tx_shortretry += sr;
4155			sc->sc_stats.ast_tx_longretry += lr;
4156			/*
4157			 * Hand the descriptor to the rate control algorithm.
4158			 */
4159			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4160			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
4161				/*
4162				 * If frame was ack'd update statistics,
4163				 * including the last rx time used to
4164				 * workaround phantom bmiss interrupts.
4165				 */
4166				if (ts->ts_status == 0) {
4167					nacked++;
4168					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
4169					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
4170						ts->ts_rssi);
4171				}
4172				ath_rate_tx_complete(sc, an, bf);
4173			}
4174			/*
4175			 * Do any tx complete callback.  Note this must
4176			 * be done before releasing the node reference.
4177			 */
4178			if (bf->bf_m->m_flags & M_TXCB)
4179				ieee80211_process_callback(ni, bf->bf_m,
4180				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
4181				        ts->ts_status : HAL_TXERR_XRETRY);
4182			ieee80211_free_node(ni);
4183		}
4184		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4185		    BUS_DMASYNC_POSTWRITE);
4186		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4187
4188		m_freem(bf->bf_m);
4189		bf->bf_m = NULL;
4190		bf->bf_node = NULL;
4191
4192		ATH_TXBUF_LOCK(sc);
4193		last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
4194		if (last != NULL)
4195			last->bf_flags &= ~ATH_BUF_BUSY;
4196		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4197		ATH_TXBUF_UNLOCK(sc);
4198	}
4199#ifdef IEEE80211_SUPPORT_SUPERG
4200	/*
4201	 * Flush fast-frame staging queue when traffic slows.
4202	 */
4203	if (txq->axq_depth <= 1)
4204		ieee80211_ff_flush(ic, txq->axq_ac);
4205#endif
4206	return nacked;
4207}
4208
4209static __inline int
4210txqactive(struct ath_hal *ah, int qnum)
4211{
4212	u_int32_t txqs = 1<<qnum;
4213	ath_hal_gettxintrtxqs(ah, &txqs);
4214	return (txqs & (1<<qnum));
4215}
4216
4217/*
4218 * Deferred processing of transmit interrupt; special-cased
4219 * for a single hardware transmit queue (e.g. 5210 and 5211).
4220 */
4221static void
4222ath_tx_proc_q0(void *arg, int npending)
4223{
4224	struct ath_softc *sc = arg;
4225	struct ifnet *ifp = sc->sc_ifp;
4226
4227	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
4228		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4229	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4230		ath_tx_processq(sc, sc->sc_cabq);
4231	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4232	sc->sc_wd_timer = 0;
4233
4234	if (sc->sc_softled)
4235		ath_led_event(sc, sc->sc_txrix);
4236
4237	ath_start(ifp);
4238}
4239
4240/*
4241 * Deferred processing of transmit interrupt; special-cased
4242 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4243 */
4244static void
4245ath_tx_proc_q0123(void *arg, int npending)
4246{
4247	struct ath_softc *sc = arg;
4248	struct ifnet *ifp = sc->sc_ifp;
4249	int nacked;
4250
4251	/*
4252	 * Process each active queue.
4253	 */
4254	nacked = 0;
4255	if (txqactive(sc->sc_ah, 0))
4256		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4257	if (txqactive(sc->sc_ah, 1))
4258		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4259	if (txqactive(sc->sc_ah, 2))
4260		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4261	if (txqactive(sc->sc_ah, 3))
4262		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4263	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4264		ath_tx_processq(sc, sc->sc_cabq);
4265	if (nacked)
4266		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4267
4268	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4269	sc->sc_wd_timer = 0;
4270
4271	if (sc->sc_softled)
4272		ath_led_event(sc, sc->sc_txrix);
4273
4274	ath_start(ifp);
4275}
4276
4277/*
4278 * Deferred processing of transmit interrupt.
4279 */
4280static void
4281ath_tx_proc(void *arg, int npending)
4282{
4283	struct ath_softc *sc = arg;
4284	struct ifnet *ifp = sc->sc_ifp;
4285	int i, nacked;
4286
4287	/*
4288	 * Process each active queue.
4289	 */
4290	nacked = 0;
4291	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4292		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4293			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4294	if (nacked)
4295		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4296
4297	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4298	sc->sc_wd_timer = 0;
4299
4300	if (sc->sc_softled)
4301		ath_led_event(sc, sc->sc_txrix);
4302
4303	ath_start(ifp);
4304}
4305
4306static void
4307ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4308{
4309#ifdef ATH_DEBUG
4310	struct ath_hal *ah = sc->sc_ah;
4311#endif
4312	struct ieee80211_node *ni;
4313	struct ath_buf *bf;
4314	u_int ix;
4315
4316	/*
4317	 * NB: this assumes output has been stopped and
4318	 *     we do not need to block ath_tx_proc
4319	 */
4320	ATH_TXBUF_LOCK(sc);
4321	bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
4322	if (bf != NULL)
4323		bf->bf_flags &= ~ATH_BUF_BUSY;
4324	ATH_TXBUF_UNLOCK(sc);
4325	for (ix = 0;; ix++) {
4326		ATH_TXQ_LOCK(txq);
4327		bf = STAILQ_FIRST(&txq->axq_q);
4328		if (bf == NULL) {
4329			txq->axq_link = NULL;
4330			ATH_TXQ_UNLOCK(txq);
4331			break;
4332		}
4333		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4334		ATH_TXQ_UNLOCK(txq);
4335#ifdef ATH_DEBUG
4336		if (sc->sc_debug & ATH_DEBUG_RESET) {
4337			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4338
4339			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
4340				ath_hal_txprocdesc(ah, bf->bf_desc,
4341				    &bf->bf_status.ds_txstat) == HAL_OK);
4342			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4343			    bf->bf_m->m_len, 0, -1);
4344		}
4345#endif /* ATH_DEBUG */
4346		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4347		ni = bf->bf_node;
4348		bf->bf_node = NULL;
4349		if (ni != NULL) {
4350			/*
4351			 * Do any callback and reclaim the node reference.
4352			 */
4353			if (bf->bf_m->m_flags & M_TXCB)
4354				ieee80211_process_callback(ni, bf->bf_m, -1);
4355			ieee80211_free_node(ni);
4356		}
4357		m_freem(bf->bf_m);
4358		bf->bf_m = NULL;
4359		bf->bf_flags &= ~ATH_BUF_BUSY;
4360
4361		ATH_TXBUF_LOCK(sc);
4362		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4363		ATH_TXBUF_UNLOCK(sc);
4364	}
4365}
4366
4367static void
4368ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4369{
4370	struct ath_hal *ah = sc->sc_ah;
4371
4372	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4373	    __func__, txq->axq_qnum,
4374	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4375	    txq->axq_link);
4376	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4377}
4378
4379/*
4380 * Drain the transmit queues and reclaim resources.
4381 */
4382static void
4383ath_draintxq(struct ath_softc *sc)
4384{
4385	struct ath_hal *ah = sc->sc_ah;
4386	struct ifnet *ifp = sc->sc_ifp;
4387	int i;
4388
4389	/* XXX return value */
4390	if (!sc->sc_invalid) {
4391		/* don't touch the hardware if marked invalid */
4392		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4393		    __func__, sc->sc_bhalq,
4394		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4395		    NULL);
4396		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4397		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4398			if (ATH_TXQ_SETUP(sc, i))
4399				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4400	}
4401	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4402		if (ATH_TXQ_SETUP(sc, i))
4403			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4404#ifdef ATH_DEBUG
4405	if (sc->sc_debug & ATH_DEBUG_RESET) {
4406		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
4407		if (bf != NULL && bf->bf_m != NULL) {
4408			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4409				ath_hal_txprocdesc(ah, bf->bf_desc,
4410				    &bf->bf_status.ds_txstat) == HAL_OK);
4411			ieee80211_dump_pkt(ifp->if_l2com,
4412			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4413			    0, -1);
4414		}
4415	}
4416#endif /* ATH_DEBUG */
4417	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4418	sc->sc_wd_timer = 0;
4419}
4420
4421/*
4422 * Disable the receive h/w in preparation for a reset.
4423 */
4424static void
4425ath_stoprecv(struct ath_softc *sc)
4426{
4427#define	PA2DESC(_sc, _pa) \
4428	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4429		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4430	struct ath_hal *ah = sc->sc_ah;
4431
4432	ath_hal_stoppcurecv(ah);	/* disable PCU */
4433	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4434	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4435	DELAY(3000);			/* 3ms is long enough for 1 frame */
4436#ifdef ATH_DEBUG
4437	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4438		struct ath_buf *bf;
4439		u_int ix;
4440
4441		printf("%s: rx queue %p, link %p\n", __func__,
4442			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4443		ix = 0;
4444		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4445			struct ath_desc *ds = bf->bf_desc;
4446			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
4447			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4448				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4449			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4450				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
4451			ix++;
4452		}
4453	}
4454#endif
4455	if (sc->sc_rxpending != NULL) {
4456		m_freem(sc->sc_rxpending);
4457		sc->sc_rxpending = NULL;
4458	}
4459	sc->sc_rxlink = NULL;		/* just in case */
4460#undef PA2DESC
4461}
4462
4463/*
4464 * Enable the receive h/w following a reset.
4465 */
4466static int
4467ath_startrecv(struct ath_softc *sc)
4468{
4469	struct ath_hal *ah = sc->sc_ah;
4470	struct ath_buf *bf;
4471
4472	sc->sc_rxlink = NULL;
4473	sc->sc_rxpending = NULL;
4474	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4475		int error = ath_rxbuf_init(sc, bf);
4476		if (error != 0) {
4477			DPRINTF(sc, ATH_DEBUG_RECV,
4478				"%s: ath_rxbuf_init failed %d\n",
4479				__func__, error);
4480			return error;
4481		}
4482	}
4483
4484	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4485	ath_hal_putrxbuf(ah, bf->bf_daddr);
4486	ath_hal_rxena(ah);		/* enable recv descriptors */
4487	ath_mode_init(sc);		/* set filters, etc. */
4488	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4489	return 0;
4490}
4491
4492/*
4493 * Update internal state after a channel change.
4494 */
4495static void
4496ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4497{
4498	enum ieee80211_phymode mode;
4499
4500	/*
4501	 * Change channels and update the h/w rate map
4502	 * if we're switching; e.g. 11a to 11b/g.
4503	 */
4504	mode = ieee80211_chan2mode(chan);
4505	if (mode != sc->sc_curmode)
4506		ath_setcurmode(sc, mode);
4507	sc->sc_curchan = chan;
4508}
4509
4510/*
4511 * Set/change channels.  If the channel is really being changed,
4512 * it's done by resetting the chip.  To accomplish this we must
4513 * first cleanup any pending DMA, then restart stuff after a la
4514 * ath_init.
4515 */
4516static int
4517ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4518{
4519	struct ifnet *ifp = sc->sc_ifp;
4520	struct ieee80211com *ic = ifp->if_l2com;
4521	struct ath_hal *ah = sc->sc_ah;
4522
4523	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4524	    __func__, ieee80211_chan2ieee(ic, chan),
4525	    chan->ic_freq, chan->ic_flags);
4526	if (chan != sc->sc_curchan) {
4527		HAL_STATUS status;
4528		/*
4529		 * To switch channels clear any pending DMA operations;
4530		 * wait long enough for the RX fifo to drain, reset the
4531		 * hardware at the new frequency, and then re-enable
4532		 * the relevant bits of the h/w.
4533		 */
4534		ath_hal_intrset(ah, 0);		/* disable interrupts */
4535		ath_draintxq(sc);		/* clear pending tx frames */
4536		ath_stoprecv(sc);		/* turn off frame recv */
4537		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4538			if_printf(ifp, "%s: unable to reset "
4539			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4540			    __func__, ieee80211_chan2ieee(ic, chan),
4541			    chan->ic_freq, chan->ic_flags, status);
4542			return EIO;
4543		}
4544		sc->sc_diversity = ath_hal_getdiversity(ah);
4545
4546		/* Let DFS at it in case it's a DFS channel */
4547		ath_dfs_radar_enable(sc, ic->ic_curchan);
4548
4549		/*
4550		 * Re-enable rx framework.
4551		 */
4552		if (ath_startrecv(sc) != 0) {
4553			if_printf(ifp, "%s: unable to restart recv logic\n",
4554			    __func__);
4555			return EIO;
4556		}
4557
4558		/*
4559		 * Change channels and update the h/w rate map
4560		 * if we're switching; e.g. 11a to 11b/g.
4561		 */
4562		ath_chan_change(sc, chan);
4563
4564		/*
4565		 * Reset clears the beacon timers; reset them
4566		 * here if needed.
4567		 */
4568		if (sc->sc_beacons) {		/* restart beacons */
4569#ifdef IEEE80211_SUPPORT_TDMA
4570			if (sc->sc_tdma)
4571				ath_tdma_config(sc, NULL);
4572			else
4573#endif
4574			ath_beacon_config(sc, NULL);
4575		}
4576
4577		/*
4578		 * Re-enable interrupts.
4579		 */
4580		ath_hal_intrset(ah, sc->sc_imask);
4581	}
4582	return 0;
4583}
4584
4585/*
4586 * Periodically recalibrate the PHY to account
4587 * for temperature/environment changes.
4588 */
4589static void
4590ath_calibrate(void *arg)
4591{
4592	struct ath_softc *sc = arg;
4593	struct ath_hal *ah = sc->sc_ah;
4594	struct ifnet *ifp = sc->sc_ifp;
4595	struct ieee80211com *ic = ifp->if_l2com;
4596	HAL_BOOL longCal, isCalDone;
4597	HAL_BOOL aniCal, shortCal = AH_FALSE;
4598	int nextcal;
4599
4600	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4601		goto restart;
4602	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4603	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4604	if (sc->sc_doresetcal)
4605		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4606
4607	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4608	if (aniCal) {
4609		sc->sc_stats.ast_ani_cal++;
4610		sc->sc_lastani = ticks;
4611		ath_hal_ani_poll(ah, sc->sc_curchan);
4612	}
4613
4614	if (longCal) {
4615		sc->sc_stats.ast_per_cal++;
4616		sc->sc_lastlongcal = ticks;
4617		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4618			/*
4619			 * Rfgain is out of bounds, reset the chip
4620			 * to load new gain values.
4621			 */
4622			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4623				"%s: rfgain change\n", __func__);
4624			sc->sc_stats.ast_per_rfgain++;
4625			ath_reset(ifp);
4626		}
4627		/*
4628		 * If this long cal is after an idle period, then
4629		 * reset the data collection state so we start fresh.
4630		 */
4631		if (sc->sc_resetcal) {
4632			(void) ath_hal_calreset(ah, sc->sc_curchan);
4633			sc->sc_lastcalreset = ticks;
4634			sc->sc_lastshortcal = ticks;
4635			sc->sc_resetcal = 0;
4636			sc->sc_doresetcal = AH_TRUE;
4637		}
4638	}
4639
4640	/* Only call if we're doing a short/long cal, not for ANI calibration */
4641	if (shortCal || longCal) {
4642		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4643			if (longCal) {
4644				/*
4645				 * Calibrate noise floor data again in case of change.
4646				 */
4647				ath_hal_process_noisefloor(ah);
4648			}
4649		} else {
4650			DPRINTF(sc, ATH_DEBUG_ANY,
4651				"%s: calibration of channel %u failed\n",
4652				__func__, sc->sc_curchan->ic_freq);
4653			sc->sc_stats.ast_per_calfail++;
4654		}
4655		if (shortCal)
4656			sc->sc_lastshortcal = ticks;
4657	}
4658	if (!isCalDone) {
4659restart:
4660		/*
4661		 * Use a shorter interval to potentially collect multiple
4662		 * data samples required to complete calibration.  Once
4663		 * we're told the work is done we drop back to a longer
4664		 * interval between requests.  We're more aggressive doing
4665		 * work when operating as an AP to improve operation right
4666		 * after startup.
4667		 */
4668		sc->sc_lastshortcal = ticks;
4669		nextcal = ath_shortcalinterval*hz/1000;
4670		if (sc->sc_opmode != HAL_M_HOSTAP)
4671			nextcal *= 10;
4672		sc->sc_doresetcal = AH_TRUE;
4673	} else {
4674		/* nextcal should be the shortest time for next event */
4675		nextcal = ath_longcalinterval*hz;
4676		if (sc->sc_lastcalreset == 0)
4677			sc->sc_lastcalreset = sc->sc_lastlongcal;
4678		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4679			sc->sc_resetcal = 1;	/* setup reset next trip */
4680		sc->sc_doresetcal = AH_FALSE;
4681	}
4682	/* ANI calibration may occur more often than short/long/resetcal */
4683	if (ath_anicalinterval > 0)
4684		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4685
4686	if (nextcal != 0) {
4687		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4688		    __func__, nextcal, isCalDone ? "" : "!");
4689		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4690	} else {
4691		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4692		    __func__);
4693		/* NB: don't rearm timer */
4694	}
4695}
4696
4697static void
4698ath_scan_start(struct ieee80211com *ic)
4699{
4700	struct ifnet *ifp = ic->ic_ifp;
4701	struct ath_softc *sc = ifp->if_softc;
4702	struct ath_hal *ah = sc->sc_ah;
4703	u_int32_t rfilt;
4704
4705	/* XXX calibration timer? */
4706
4707	sc->sc_scanning = 1;
4708	sc->sc_syncbeacon = 0;
4709	rfilt = ath_calcrxfilter(sc);
4710	ath_hal_setrxfilter(ah, rfilt);
4711	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4712
4713	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4714		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4715}
4716
4717static void
4718ath_scan_end(struct ieee80211com *ic)
4719{
4720	struct ifnet *ifp = ic->ic_ifp;
4721	struct ath_softc *sc = ifp->if_softc;
4722	struct ath_hal *ah = sc->sc_ah;
4723	u_int32_t rfilt;
4724
4725	sc->sc_scanning = 0;
4726	rfilt = ath_calcrxfilter(sc);
4727	ath_hal_setrxfilter(ah, rfilt);
4728	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4729
4730	ath_hal_process_noisefloor(ah);
4731
4732	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4733		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4734		 sc->sc_curaid);
4735}
4736
4737static void
4738ath_set_channel(struct ieee80211com *ic)
4739{
4740	struct ifnet *ifp = ic->ic_ifp;
4741	struct ath_softc *sc = ifp->if_softc;
4742
4743	(void) ath_chan_set(sc, ic->ic_curchan);
4744	/*
4745	 * If we are returning to our bss channel then mark state
4746	 * so the next recv'd beacon's tsf will be used to sync the
4747	 * beacon timers.  Note that since we only hear beacons in
4748	 * sta/ibss mode this has no effect in other operating modes.
4749	 */
4750	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4751		sc->sc_syncbeacon = 1;
4752}
4753
4754/*
4755 * Walk the vap list and check if there any vap's in RUN state.
4756 */
4757static int
4758ath_isanyrunningvaps(struct ieee80211vap *this)
4759{
4760	struct ieee80211com *ic = this->iv_ic;
4761	struct ieee80211vap *vap;
4762
4763	IEEE80211_LOCK_ASSERT(ic);
4764
4765	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4766		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4767			return 1;
4768	}
4769	return 0;
4770}
4771
4772static int
4773ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4774{
4775	struct ieee80211com *ic = vap->iv_ic;
4776	struct ath_softc *sc = ic->ic_ifp->if_softc;
4777	struct ath_vap *avp = ATH_VAP(vap);
4778	struct ath_hal *ah = sc->sc_ah;
4779	struct ieee80211_node *ni = NULL;
4780	int i, error, stamode;
4781	u_int32_t rfilt;
4782	int csa_run_transition = 0;
4783	static const HAL_LED_STATE leds[] = {
4784	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4785	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4786	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4787	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4788	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4789	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4790	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4791	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4792	};
4793
4794	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4795		ieee80211_state_name[vap->iv_state],
4796		ieee80211_state_name[nstate]);
4797
4798	if (vap->iv_state == IEEE80211_S_CSA && nstate == IEEE80211_S_RUN)
4799		csa_run_transition = 1;
4800
4801	callout_drain(&sc->sc_cal_ch);
4802	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4803
4804	if (nstate == IEEE80211_S_SCAN) {
4805		/*
4806		 * Scanning: turn off beacon miss and don't beacon.
4807		 * Mark beacon state so when we reach RUN state we'll
4808		 * [re]setup beacons.  Unblock the task q thread so
4809		 * deferred interrupt processing is done.
4810		 */
4811		ath_hal_intrset(ah,
4812		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4813		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4814		sc->sc_beacons = 0;
4815		taskqueue_unblock(sc->sc_tq);
4816	}
4817
4818	ni = vap->iv_bss;
4819	rfilt = ath_calcrxfilter(sc);
4820	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4821		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4822		   vap->iv_opmode == IEEE80211_M_IBSS);
4823	if (stamode && nstate == IEEE80211_S_RUN) {
4824		sc->sc_curaid = ni->ni_associd;
4825		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
4826		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4827	}
4828	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4829	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
4830	ath_hal_setrxfilter(ah, rfilt);
4831
4832	/* XXX is this to restore keycache on resume? */
4833	if (vap->iv_opmode != IEEE80211_M_STA &&
4834	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
4835		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4836			if (ath_hal_keyisvalid(ah, i))
4837				ath_hal_keysetmac(ah, i, ni->ni_bssid);
4838	}
4839
4840	/*
4841	 * Invoke the parent method to do net80211 work.
4842	 */
4843	error = avp->av_newstate(vap, nstate, arg);
4844	if (error != 0)
4845		goto bad;
4846
4847	if (nstate == IEEE80211_S_RUN) {
4848		/* NB: collect bss node again, it may have changed */
4849		ni = vap->iv_bss;
4850
4851		DPRINTF(sc, ATH_DEBUG_STATE,
4852		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4853		    "capinfo 0x%04x chan %d\n", __func__,
4854		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
4855		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
4856
4857		switch (vap->iv_opmode) {
4858#ifdef IEEE80211_SUPPORT_TDMA
4859		case IEEE80211_M_AHDEMO:
4860			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
4861				break;
4862			/* fall thru... */
4863#endif
4864		case IEEE80211_M_HOSTAP:
4865		case IEEE80211_M_IBSS:
4866		case IEEE80211_M_MBSS:
4867			/*
4868			 * Allocate and setup the beacon frame.
4869			 *
4870			 * Stop any previous beacon DMA.  This may be
4871			 * necessary, for example, when an ibss merge
4872			 * causes reconfiguration; there will be a state
4873			 * transition from RUN->RUN that means we may
4874			 * be called with beacon transmission active.
4875			 */
4876			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4877
4878			error = ath_beacon_alloc(sc, ni);
4879			if (error != 0)
4880				goto bad;
4881			/*
4882			 * If joining an adhoc network defer beacon timer
4883			 * configuration to the next beacon frame so we
4884			 * have a current TSF to use.  Otherwise we're
4885			 * starting an ibss/bss so there's no need to delay;
4886			 * if this is the first vap moving to RUN state, then
4887			 * beacon state needs to be [re]configured.
4888			 */
4889			if (vap->iv_opmode == IEEE80211_M_IBSS &&
4890			    ni->ni_tstamp.tsf != 0) {
4891				sc->sc_syncbeacon = 1;
4892			} else if (!sc->sc_beacons) {
4893#ifdef IEEE80211_SUPPORT_TDMA
4894				if (vap->iv_caps & IEEE80211_C_TDMA)
4895					ath_tdma_config(sc, vap);
4896				else
4897#endif
4898					ath_beacon_config(sc, vap);
4899				sc->sc_beacons = 1;
4900			}
4901			break;
4902		case IEEE80211_M_STA:
4903			/*
4904			 * Defer beacon timer configuration to the next
4905			 * beacon frame so we have a current TSF to use
4906			 * (any TSF collected when scanning is likely old).
4907			 * However if it's due to a CSA -> RUN transition,
4908			 * force a beacon update so we pick up a lack of
4909			 * beacons from an AP in CAC and thus force a
4910			 * scan.
4911			 */
4912			sc->sc_syncbeacon = 1;
4913			if (csa_run_transition)
4914				ath_beacon_config(sc, vap);
4915			break;
4916		case IEEE80211_M_MONITOR:
4917			/*
4918			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
4919			 * transitions so we must re-enable interrupts here to
4920			 * handle the case of a single monitor mode vap.
4921			 */
4922			ath_hal_intrset(ah, sc->sc_imask);
4923			break;
4924		case IEEE80211_M_WDS:
4925			break;
4926		default:
4927			break;
4928		}
4929		/*
4930		 * Let the hal process statistics collected during a
4931		 * scan so it can provide calibrated noise floor data.
4932		 */
4933		ath_hal_process_noisefloor(ah);
4934		/*
4935		 * Reset rssi stats; maybe not the best place...
4936		 */
4937		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4938		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4939		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4940		/*
4941		 * Finally, start any timers and the task q thread
4942		 * (in case we didn't go through SCAN state).
4943		 */
4944		if (ath_longcalinterval != 0) {
4945			/* start periodic recalibration timer */
4946			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4947		} else {
4948			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4949			    "%s: calibration disabled\n", __func__);
4950		}
4951		taskqueue_unblock(sc->sc_tq);
4952	} else if (nstate == IEEE80211_S_INIT) {
4953		/*
4954		 * If there are no vaps left in RUN state then
4955		 * shutdown host/driver operation:
4956		 * o disable interrupts
4957		 * o disable the task queue thread
4958		 * o mark beacon processing as stopped
4959		 */
4960		if (!ath_isanyrunningvaps(vap)) {
4961			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4962			/* disable interrupts  */
4963			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4964			taskqueue_block(sc->sc_tq);
4965			sc->sc_beacons = 0;
4966		}
4967#ifdef IEEE80211_SUPPORT_TDMA
4968		ath_hal_setcca(ah, AH_TRUE);
4969#endif
4970	}
4971bad:
4972	return error;
4973}
4974
4975/*
4976 * Allocate a key cache slot to the station so we can
4977 * setup a mapping from key index to node. The key cache
4978 * slot is needed for managing antenna state and for
4979 * compression when stations do not use crypto.  We do
4980 * it uniliaterally here; if crypto is employed this slot
4981 * will be reassigned.
4982 */
4983static void
4984ath_setup_stationkey(struct ieee80211_node *ni)
4985{
4986	struct ieee80211vap *vap = ni->ni_vap;
4987	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4988	ieee80211_keyix keyix, rxkeyix;
4989
4990	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4991		/*
4992		 * Key cache is full; we'll fall back to doing
4993		 * the more expensive lookup in software.  Note
4994		 * this also means no h/w compression.
4995		 */
4996		/* XXX msg+statistic */
4997	} else {
4998		/* XXX locking? */
4999		ni->ni_ucastkey.wk_keyix = keyix;
5000		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5001		/* NB: must mark device key to get called back on delete */
5002		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5003		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5004		/* NB: this will create a pass-thru key entry */
5005		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
5006	}
5007}
5008
5009/*
5010 * Setup driver-specific state for a newly associated node.
5011 * Note that we're called also on a re-associate, the isnew
5012 * param tells us if this is the first time or not.
5013 */
5014static void
5015ath_newassoc(struct ieee80211_node *ni, int isnew)
5016{
5017	struct ath_node *an = ATH_NODE(ni);
5018	struct ieee80211vap *vap = ni->ni_vap;
5019	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5020	const struct ieee80211_txparam *tp = ni->ni_txparms;
5021
5022	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5023	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5024
5025	ath_rate_newassoc(sc, an, isnew);
5026	if (isnew &&
5027	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5028	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5029		ath_setup_stationkey(ni);
5030}
5031
5032static int
5033ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5034	int nchans, struct ieee80211_channel chans[])
5035{
5036	struct ath_softc *sc = ic->ic_ifp->if_softc;
5037	struct ath_hal *ah = sc->sc_ah;
5038	HAL_STATUS status;
5039
5040	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5041	    "%s: rd %u cc %u location %c%s\n",
5042	    __func__, reg->regdomain, reg->country, reg->location,
5043	    reg->ecm ? " ecm" : "");
5044
5045	status = ath_hal_set_channels(ah, chans, nchans,
5046	    reg->country, reg->regdomain);
5047	if (status != HAL_OK) {
5048		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5049		    __func__, status);
5050		return EINVAL;		/* XXX */
5051	}
5052
5053	return 0;
5054}
5055
5056static void
5057ath_getradiocaps(struct ieee80211com *ic,
5058	int maxchans, int *nchans, struct ieee80211_channel chans[])
5059{
5060	struct ath_softc *sc = ic->ic_ifp->if_softc;
5061	struct ath_hal *ah = sc->sc_ah;
5062
5063	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5064	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5065
5066	/* XXX check return */
5067	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5068	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5069
5070}
5071
5072static int
5073ath_getchannels(struct ath_softc *sc)
5074{
5075	struct ifnet *ifp = sc->sc_ifp;
5076	struct ieee80211com *ic = ifp->if_l2com;
5077	struct ath_hal *ah = sc->sc_ah;
5078	HAL_STATUS status;
5079
5080	/*
5081	 * Collect channel set based on EEPROM contents.
5082	 */
5083	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5084	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5085	if (status != HAL_OK) {
5086		if_printf(ifp, "%s: unable to collect channel list from hal, "
5087		    "status %d\n", __func__, status);
5088		return EINVAL;
5089	}
5090	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5091	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5092	/* XXX map Atheros sku's to net80211 SKU's */
5093	/* XXX net80211 types too small */
5094	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5095	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5096	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5097	ic->ic_regdomain.isocc[1] = ' ';
5098
5099	ic->ic_regdomain.ecm = 1;
5100	ic->ic_regdomain.location = 'I';
5101
5102	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5103	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5104	    __func__, sc->sc_eerd, sc->sc_eecc,
5105	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5106	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5107	return 0;
5108}
5109
5110static void
5111ath_led_done(void *arg)
5112{
5113	struct ath_softc *sc = arg;
5114
5115	sc->sc_blinking = 0;
5116}
5117
5118/*
5119 * Turn the LED off: flip the pin and then set a timer so no
5120 * update will happen for the specified duration.
5121 */
5122static void
5123ath_led_off(void *arg)
5124{
5125	struct ath_softc *sc = arg;
5126
5127	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5128	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
5129}
5130
5131/*
5132 * Blink the LED according to the specified on/off times.
5133 */
5134static void
5135ath_led_blink(struct ath_softc *sc, int on, int off)
5136{
5137	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5138	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5139	sc->sc_blinking = 1;
5140	sc->sc_ledoff = off;
5141	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5142}
5143
5144static void
5145ath_led_event(struct ath_softc *sc, int rix)
5146{
5147	sc->sc_ledevent = ticks;	/* time of last event */
5148	if (sc->sc_blinking)		/* don't interrupt active blink */
5149		return;
5150	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
5151}
5152
5153static int
5154ath_rate_setup(struct ath_softc *sc, u_int mode)
5155{
5156	struct ath_hal *ah = sc->sc_ah;
5157	const HAL_RATE_TABLE *rt;
5158
5159	switch (mode) {
5160	case IEEE80211_MODE_11A:
5161		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5162		break;
5163	case IEEE80211_MODE_HALF:
5164		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5165		break;
5166	case IEEE80211_MODE_QUARTER:
5167		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5168		break;
5169	case IEEE80211_MODE_11B:
5170		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5171		break;
5172	case IEEE80211_MODE_11G:
5173		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5174		break;
5175	case IEEE80211_MODE_TURBO_A:
5176		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5177		break;
5178	case IEEE80211_MODE_TURBO_G:
5179		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5180		break;
5181	case IEEE80211_MODE_STURBO_A:
5182		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5183		break;
5184	case IEEE80211_MODE_11NA:
5185		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5186		break;
5187	case IEEE80211_MODE_11NG:
5188		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5189		break;
5190	default:
5191		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5192			__func__, mode);
5193		return 0;
5194	}
5195	sc->sc_rates[mode] = rt;
5196	return (rt != NULL);
5197}
5198
5199static void
5200ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5201{
5202#define	N(a)	(sizeof(a)/sizeof(a[0]))
5203	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5204	static const struct {
5205		u_int		rate;		/* tx/rx 802.11 rate */
5206		u_int16_t	timeOn;		/* LED on time (ms) */
5207		u_int16_t	timeOff;	/* LED off time (ms) */
5208	} blinkrates[] = {
5209		{ 108,  40,  10 },
5210		{  96,  44,  11 },
5211		{  72,  50,  13 },
5212		{  48,  57,  14 },
5213		{  36,  67,  16 },
5214		{  24,  80,  20 },
5215		{  22, 100,  25 },
5216		{  18, 133,  34 },
5217		{  12, 160,  40 },
5218		{  10, 200,  50 },
5219		{   6, 240,  58 },
5220		{   4, 267,  66 },
5221		{   2, 400, 100 },
5222		{   0, 500, 130 },
5223		/* XXX half/quarter rates */
5224	};
5225	const HAL_RATE_TABLE *rt;
5226	int i, j;
5227
5228	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
5229	rt = sc->sc_rates[mode];
5230	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
5231	for (i = 0; i < rt->rateCount; i++) {
5232		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5233		if (rt->info[i].phy != IEEE80211_T_HT)
5234			sc->sc_rixmap[ieeerate] = i;
5235		else
5236			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
5237	}
5238	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
5239	for (i = 0; i < N(sc->sc_hwmap); i++) {
5240		if (i >= rt->rateCount) {
5241			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
5242			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
5243			continue;
5244		}
5245		sc->sc_hwmap[i].ieeerate =
5246			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
5247		if (rt->info[i].phy == IEEE80211_T_HT)
5248			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
5249		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
5250		if (rt->info[i].shortPreamble ||
5251		    rt->info[i].phy == IEEE80211_T_OFDM)
5252			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
5253		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
5254		for (j = 0; j < N(blinkrates)-1; j++)
5255			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
5256				break;
5257		/* NB: this uses the last entry if the rate isn't found */
5258		/* XXX beware of overlow */
5259		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
5260		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
5261	}
5262	sc->sc_currates = rt;
5263	sc->sc_curmode = mode;
5264	/*
5265	 * All protection frames are transmited at 2Mb/s for
5266	 * 11g, otherwise at 1Mb/s.
5267	 */
5268	if (mode == IEEE80211_MODE_11G)
5269		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5270	else
5271		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5272	/* NB: caller is responsible for resetting rate control state */
5273#undef N
5274}
5275
5276static void
5277ath_watchdog(void *arg)
5278{
5279	struct ath_softc *sc = arg;
5280
5281	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5282		struct ifnet *ifp = sc->sc_ifp;
5283		uint32_t hangs;
5284
5285		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5286		    hangs != 0) {
5287			if_printf(ifp, "%s hang detected (0x%x)\n",
5288			    hangs & 0xff ? "bb" : "mac", hangs);
5289		} else
5290			if_printf(ifp, "device timeout\n");
5291		ath_reset(ifp);
5292		ifp->if_oerrors++;
5293		sc->sc_stats.ast_watchdog++;
5294	}
5295	callout_schedule(&sc->sc_wd_ch, hz);
5296}
5297
5298#ifdef ATH_DIAGAPI
5299/*
5300 * Diagnostic interface to the HAL.  This is used by various
5301 * tools to do things like retrieve register contents for
5302 * debugging.  The mechanism is intentionally opaque so that
5303 * it can change frequently w/o concern for compatiblity.
5304 */
5305static int
5306ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5307{
5308	struct ath_hal *ah = sc->sc_ah;
5309	u_int id = ad->ad_id & ATH_DIAG_ID;
5310	void *indata = NULL;
5311	void *outdata = NULL;
5312	u_int32_t insize = ad->ad_in_size;
5313	u_int32_t outsize = ad->ad_out_size;
5314	int error = 0;
5315
5316	if (ad->ad_id & ATH_DIAG_IN) {
5317		/*
5318		 * Copy in data.
5319		 */
5320		indata = malloc(insize, M_TEMP, M_NOWAIT);
5321		if (indata == NULL) {
5322			error = ENOMEM;
5323			goto bad;
5324		}
5325		error = copyin(ad->ad_in_data, indata, insize);
5326		if (error)
5327			goto bad;
5328	}
5329	if (ad->ad_id & ATH_DIAG_DYN) {
5330		/*
5331		 * Allocate a buffer for the results (otherwise the HAL
5332		 * returns a pointer to a buffer where we can read the
5333		 * results).  Note that we depend on the HAL leaving this
5334		 * pointer for us to use below in reclaiming the buffer;
5335		 * may want to be more defensive.
5336		 */
5337		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5338		if (outdata == NULL) {
5339			error = ENOMEM;
5340			goto bad;
5341		}
5342	}
5343	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5344		if (outsize < ad->ad_out_size)
5345			ad->ad_out_size = outsize;
5346		if (outdata != NULL)
5347			error = copyout(outdata, ad->ad_out_data,
5348					ad->ad_out_size);
5349	} else {
5350		error = EINVAL;
5351	}
5352bad:
5353	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5354		free(indata, M_TEMP);
5355	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5356		free(outdata, M_TEMP);
5357	return error;
5358}
5359#endif /* ATH_DIAGAPI */
5360
5361static int
5362ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5363{
5364#define	IS_RUNNING(ifp) \
5365	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5366	struct ath_softc *sc = ifp->if_softc;
5367	struct ieee80211com *ic = ifp->if_l2com;
5368	struct ifreq *ifr = (struct ifreq *)data;
5369	const HAL_RATE_TABLE *rt;
5370	int error = 0;
5371
5372	switch (cmd) {
5373	case SIOCSIFFLAGS:
5374		ATH_LOCK(sc);
5375		if (IS_RUNNING(ifp)) {
5376			/*
5377			 * To avoid rescanning another access point,
5378			 * do not call ath_init() here.  Instead,
5379			 * only reflect promisc mode settings.
5380			 */
5381			ath_mode_init(sc);
5382		} else if (ifp->if_flags & IFF_UP) {
5383			/*
5384			 * Beware of being called during attach/detach
5385			 * to reset promiscuous mode.  In that case we
5386			 * will still be marked UP but not RUNNING.
5387			 * However trying to re-init the interface
5388			 * is the wrong thing to do as we've already
5389			 * torn down much of our state.  There's
5390			 * probably a better way to deal with this.
5391			 */
5392			if (!sc->sc_invalid)
5393				ath_init(sc);	/* XXX lose error */
5394		} else {
5395			ath_stop_locked(ifp);
5396#ifdef notyet
5397			/* XXX must wakeup in places like ath_vap_delete */
5398			if (!sc->sc_invalid)
5399				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5400#endif
5401		}
5402		ATH_UNLOCK(sc);
5403		break;
5404	case SIOCGIFMEDIA:
5405	case SIOCSIFMEDIA:
5406		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5407		break;
5408	case SIOCGATHSTATS:
5409		/* NB: embed these numbers to get a consistent view */
5410		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5411		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5412		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5413		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5414#ifdef IEEE80211_SUPPORT_TDMA
5415		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
5416		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
5417#endif
5418		rt = sc->sc_currates;
5419		sc->sc_stats.ast_tx_rate =
5420		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
5421		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
5422			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
5423		return copyout(&sc->sc_stats,
5424		    ifr->ifr_data, sizeof (sc->sc_stats));
5425	case SIOCZATHSTATS:
5426		error = priv_check(curthread, PRIV_DRIVER);
5427		if (error == 0)
5428			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
5429		break;
5430#ifdef ATH_DIAGAPI
5431	case SIOCGATHDIAG:
5432		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5433		break;
5434	case SIOCGATHPHYERR:
5435		error = ath_ioctl_phyerr(sc,(struct ath_diag*) ifr);
5436		break;
5437#endif
5438	case SIOCGIFADDR:
5439		error = ether_ioctl(ifp, cmd, data);
5440		break;
5441	default:
5442		error = EINVAL;
5443		break;
5444	}
5445	return error;
5446#undef IS_RUNNING
5447}
5448
5449/*
5450 * Announce various information on device/driver attach.
5451 */
5452static void
5453ath_announce(struct ath_softc *sc)
5454{
5455	struct ifnet *ifp = sc->sc_ifp;
5456	struct ath_hal *ah = sc->sc_ah;
5457
5458	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
5459		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
5460		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5461	if (bootverbose) {
5462		int i;
5463		for (i = 0; i <= WME_AC_VO; i++) {
5464			struct ath_txq *txq = sc->sc_ac2q[i];
5465			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5466				txq->axq_qnum, ieee80211_wme_acnames[i]);
5467		}
5468		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5469			sc->sc_cabq->axq_qnum);
5470		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5471	}
5472	if (ath_rxbuf != ATH_RXBUF)
5473		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5474	if (ath_txbuf != ATH_TXBUF)
5475		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5476	if (sc->sc_mcastkey && bootverbose)
5477		if_printf(ifp, "using multicast key search\n");
5478}
5479
5480#ifdef IEEE80211_SUPPORT_TDMA
5481static void
5482ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
5483{
5484	struct ath_hal *ah = sc->sc_ah;
5485	HAL_BEACON_TIMERS bt;
5486
5487	bt.bt_intval = bintval | HAL_BEACON_ENA;
5488	bt.bt_nexttbtt = nexttbtt;
5489	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
5490	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
5491	bt.bt_nextatim = nexttbtt+1;
5492	/* Enables TBTT, DBA, SWBA timers by default */
5493	bt.bt_flags = 0;
5494	ath_hal_beaconsettimers(ah, &bt);
5495}
5496
5497/*
5498 * Calculate the beacon interval.  This is periodic in the
5499 * superframe for the bss.  We assume each station is configured
5500 * identically wrt transmit rate so the guard time we calculate
5501 * above will be the same on all stations.  Note we need to
5502 * factor in the xmit time because the hardware will schedule
5503 * a frame for transmit if the start of the frame is within
5504 * the burst time.  When we get hardware that properly kills
5505 * frames in the PCU we can reduce/eliminate the guard time.
5506 *
5507 * Roundup to 1024 is so we have 1 TU buffer in the guard time
5508 * to deal with the granularity of the nexttbtt timer.  11n MAC's
5509 * with 1us timer granularity should allow us to reduce/eliminate
5510 * this.
5511 */
5512static void
5513ath_tdma_bintvalsetup(struct ath_softc *sc,
5514	const struct ieee80211_tdma_state *tdma)
5515{
5516	/* copy from vap state (XXX check all vaps have same value?) */
5517	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
5518
5519	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
5520		tdma->tdma_slotcnt, 1024);
5521	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
5522	if (sc->sc_tdmabintval & 1)
5523		sc->sc_tdmabintval++;
5524
5525	if (tdma->tdma_slot == 0) {
5526		/*
5527		 * Only slot 0 beacons; other slots respond.
5528		 */
5529		sc->sc_imask |= HAL_INT_SWBA;
5530		sc->sc_tdmaswba = 0;		/* beacon immediately */
5531	} else {
5532		/* XXX all vaps must be slot 0 or slot !0 */
5533		sc->sc_imask &= ~HAL_INT_SWBA;
5534	}
5535}
5536
5537/*
5538 * Max 802.11 overhead.  This assumes no 4-address frames and
5539 * the encapsulation done by ieee80211_encap (llc).  We also
5540 * include potential crypto overhead.
5541 */
5542#define	IEEE80211_MAXOVERHEAD \
5543	(sizeof(struct ieee80211_qosframe) \
5544	 + sizeof(struct llc) \
5545	 + IEEE80211_ADDR_LEN \
5546	 + IEEE80211_WEP_IVLEN \
5547	 + IEEE80211_WEP_KIDLEN \
5548	 + IEEE80211_WEP_CRCLEN \
5549	 + IEEE80211_WEP_MICLEN \
5550	 + IEEE80211_CRC_LEN)
5551
5552/*
5553 * Setup initially for tdma operation.  Start the beacon
5554 * timers and enable SWBA if we are slot 0.  Otherwise
5555 * we wait for slot 0 to arrive so we can sync up before
5556 * starting to transmit.
5557 */
5558static void
5559ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
5560{
5561	struct ath_hal *ah = sc->sc_ah;
5562	struct ifnet *ifp = sc->sc_ifp;
5563	struct ieee80211com *ic = ifp->if_l2com;
5564	const struct ieee80211_txparam *tp;
5565	const struct ieee80211_tdma_state *tdma = NULL;
5566	int rix;
5567
5568	if (vap == NULL) {
5569		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
5570		if (vap == NULL) {
5571			if_printf(ifp, "%s: no vaps?\n", __func__);
5572			return;
5573		}
5574	}
5575	tp = vap->iv_bss->ni_txparms;
5576	/*
5577	 * Calculate the guard time for each slot.  This is the
5578	 * time to send a maximal-size frame according to the
5579	 * fixed/lowest transmit rate.  Note that the interface
5580	 * mtu does not include the 802.11 overhead so we must
5581	 * tack that on (ath_hal_computetxtime includes the
5582	 * preamble and plcp in it's calculation).
5583	 */
5584	tdma = vap->iv_tdma;
5585	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
5586		rix = ath_tx_findrix(sc, tp->ucastrate);
5587	else
5588		rix = ath_tx_findrix(sc, tp->mcastrate);
5589	/* XXX short preamble assumed */
5590	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
5591		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
5592
5593	ath_hal_intrset(ah, 0);
5594
5595	ath_beaconq_config(sc);			/* setup h/w beacon q */
5596	if (sc->sc_setcca)
5597		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
5598	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
5599	ath_tdma_settimers(sc, sc->sc_tdmabintval,
5600		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
5601	sc->sc_syncbeacon = 0;
5602
5603	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
5604	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
5605
5606	ath_hal_intrset(ah, sc->sc_imask);
5607
5608	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
5609	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
5610	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
5611	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
5612	    sc->sc_tdmadbaprep);
5613}
5614
5615/*
5616 * Update tdma operation.  Called from the 802.11 layer
5617 * when a beacon is received from the TDMA station operating
5618 * in the slot immediately preceding us in the bss.  Use
5619 * the rx timestamp for the beacon frame to update our
5620 * beacon timers so we follow their schedule.  Note that
5621 * by using the rx timestamp we implicitly include the
5622 * propagation delay in our schedule.
5623 */
5624static void
5625ath_tdma_update(struct ieee80211_node *ni,
5626	const struct ieee80211_tdma_param *tdma, int changed)
5627{
5628#define	TSF_TO_TU(_h,_l) \
5629	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
5630#define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
5631	struct ieee80211vap *vap = ni->ni_vap;
5632	struct ieee80211com *ic = ni->ni_ic;
5633	struct ath_softc *sc = ic->ic_ifp->if_softc;
5634	struct ath_hal *ah = sc->sc_ah;
5635	const HAL_RATE_TABLE *rt = sc->sc_currates;
5636	u_int64_t tsf, rstamp, nextslot, nexttbtt;
5637	u_int32_t txtime, nextslottu;
5638	int32_t tudelta, tsfdelta;
5639	const struct ath_rx_status *rs;
5640	int rix;
5641
5642	sc->sc_stats.ast_tdma_update++;
5643
5644	/*
5645	 * Check for and adopt configuration changes.
5646	 */
5647	if (changed != 0) {
5648		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
5649
5650		ath_tdma_bintvalsetup(sc, ts);
5651		if (changed & TDMA_UPDATE_SLOTLEN)
5652			ath_wme_update(ic);
5653
5654		DPRINTF(sc, ATH_DEBUG_TDMA,
5655		    "%s: adopt slot %u slotcnt %u slotlen %u us "
5656		    "bintval %u TU\n", __func__,
5657		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
5658		    sc->sc_tdmabintval);
5659
5660		/* XXX right? */
5661		ath_hal_intrset(ah, sc->sc_imask);
5662		/* NB: beacon timers programmed below */
5663	}
5664
5665	/* extend rx timestamp to 64 bits */
5666	rs = sc->sc_lastrs;
5667	tsf = ath_hal_gettsf64(ah);
5668	rstamp = ath_extend_tsf(sc, rs->rs_tstamp, tsf);
5669	/*
5670	 * The rx timestamp is set by the hardware on completing
5671	 * reception (at the point where the rx descriptor is DMA'd
5672	 * to the host).  To find the start of our next slot we
5673	 * must adjust this time by the time required to send
5674	 * the packet just received.
5675	 */
5676	rix = rt->rateCodeToIndex[rs->rs_rate];
5677	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
5678	    rt->info[rix].shortPreamble);
5679	/* NB: << 9 is to cvt to TU and /2 */
5680	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
5681	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
5682
5683	/*
5684	 * Retrieve the hardware NextTBTT in usecs
5685	 * and calculate the difference between what the
5686	 * other station thinks and what we have programmed.  This
5687	 * lets us figure how to adjust our timers to match.  The
5688	 * adjustments are done by pulling the TSF forward and possibly
5689	 * rewriting the beacon timers.
5690	 */
5691	nexttbtt = ath_hal_getnexttbtt(ah);
5692	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD + 1)) - nexttbtt);
5693
5694	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
5695	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
5696	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
5697
5698	if (tsfdelta < 0) {
5699		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
5700		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
5701		tsfdelta = -tsfdelta % 1024;
5702		nextslottu++;
5703	} else if (tsfdelta > 0) {
5704		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
5705		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
5706		tsfdelta = 1024 - (tsfdelta % 1024);
5707		nextslottu++;
5708	} else {
5709		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
5710		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
5711	}
5712	tudelta = nextslottu - TSF_TO_TU(nexttbtt >> 32, nexttbtt);
5713
5714	/*
5715	 * Copy sender's timetstamp into tdma ie so they can
5716	 * calculate roundtrip time.  We submit a beacon frame
5717	 * below after any timer adjustment.  The frame goes out
5718	 * at the next TBTT so the sender can calculate the
5719	 * roundtrip by inspecting the tdma ie in our beacon frame.
5720	 *
5721	 * NB: This tstamp is subtlely preserved when
5722	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
5723	 *     slot position changes) because ieee80211_add_tdma
5724	 *     skips over the data.
5725	 */
5726	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
5727		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
5728		&ni->ni_tstamp.data, 8);
5729#if 0
5730	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
5731	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u nexttbtt %llu (%d)\n",
5732	    (unsigned long long) tsf, (unsigned long long) nextslot,
5733	    (int)(nextslot - tsf), tsfdelta, nextslottu, nexttbtt, tudelta);
5734#endif
5735	/*
5736	 * Adjust the beacon timers only when pulling them forward
5737	 * or when going back by less than the beacon interval.
5738	 * Negative jumps larger than the beacon interval seem to
5739	 * cause the timers to stop and generally cause instability.
5740	 * This basically filters out jumps due to missed beacons.
5741	 */
5742	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
5743		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
5744		sc->sc_stats.ast_tdma_timers++;
5745	}
5746	if (tsfdelta > 0) {
5747		ath_hal_adjusttsf(ah, tsfdelta);
5748		sc->sc_stats.ast_tdma_tsf++;
5749	}
5750	ath_tdma_beacon_send(sc, vap);		/* prepare response */
5751#undef TU_TO_TSF
5752#undef TSF_TO_TU
5753}
5754
5755/*
5756 * Transmit a beacon frame at SWBA.  Dynamic updates
5757 * to the frame contents are done as needed.
5758 */
5759static void
5760ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
5761{
5762	struct ath_hal *ah = sc->sc_ah;
5763	struct ath_buf *bf;
5764	int otherant;
5765
5766	/*
5767	 * Check if the previous beacon has gone out.  If
5768	 * not don't try to post another, skip this period
5769	 * and wait for the next.  Missed beacons indicate
5770	 * a problem and should not occur.  If we miss too
5771	 * many consecutive beacons reset the device.
5772	 */
5773	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
5774		sc->sc_bmisscount++;
5775		DPRINTF(sc, ATH_DEBUG_BEACON,
5776			"%s: missed %u consecutive beacons\n",
5777			__func__, sc->sc_bmisscount);
5778		if (sc->sc_bmisscount >= ath_bstuck_threshold)
5779			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
5780		return;
5781	}
5782	if (sc->sc_bmisscount != 0) {
5783		DPRINTF(sc, ATH_DEBUG_BEACON,
5784			"%s: resume beacon xmit after %u misses\n",
5785			__func__, sc->sc_bmisscount);
5786		sc->sc_bmisscount = 0;
5787	}
5788
5789	/*
5790	 * Check recent per-antenna transmit statistics and flip
5791	 * the default antenna if noticeably more frames went out
5792	 * on the non-default antenna.
5793	 * XXX assumes 2 anntenae
5794	 */
5795	if (!sc->sc_diversity) {
5796		otherant = sc->sc_defant & 1 ? 2 : 1;
5797		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
5798			ath_setdefantenna(sc, otherant);
5799		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
5800	}
5801
5802	bf = ath_beacon_generate(sc, vap);
5803	if (bf != NULL) {
5804		/*
5805		 * Stop any current dma and put the new frame on the queue.
5806		 * This should never fail since we check above that no frames
5807		 * are still pending on the queue.
5808		 */
5809		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
5810			DPRINTF(sc, ATH_DEBUG_ANY,
5811				"%s: beacon queue %u did not stop?\n",
5812				__func__, sc->sc_bhalq);
5813			/* NB: the HAL still stops DMA, so proceed */
5814		}
5815		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
5816		ath_hal_txstart(ah, sc->sc_bhalq);
5817
5818		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
5819
5820		/*
5821		 * Record local TSF for our last send for use
5822		 * in arbitrating slot collisions.
5823		 */
5824		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
5825	}
5826}
5827#endif /* IEEE80211_SUPPORT_TDMA */
5828
5829static void
5830ath_dfs_tasklet(void *p, int npending)
5831{
5832	struct ath_softc *sc = (struct ath_softc *) p;
5833	struct ifnet *ifp = sc->sc_ifp;
5834	struct ieee80211com *ic = ifp->if_l2com;
5835
5836	/*
5837	 * If previous processing has found a radar event,
5838	 * signal this to the net80211 layer to begin DFS
5839	 * processing.
5840	 */
5841	if (ath_dfs_process_radar_event(sc, sc->sc_curchan)) {
5842		/* DFS event found, initiate channel change */
5843		ieee80211_dfs_notify_radar(ic, sc->sc_curchan);
5844	}
5845}
5846
5847MODULE_VERSION(if_ath, 1);
5848MODULE_DEPEND(if_ath, wlan, 1, 1, 1);          /* 802.11 media layer */
5849