if_ath.c revision 219891
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 219891 2011-03-22 22:59:09Z adrian $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42#include "opt_wlan.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/sysctl.h>
47#include <sys/mbuf.h>
48#include <sys/malloc.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/kernel.h>
52#include <sys/socket.h>
53#include <sys/sockio.h>
54#include <sys/errno.h>
55#include <sys/callout.h>
56#include <sys/bus.h>
57#include <sys/endian.h>
58#include <sys/kthread.h>
59#include <sys/taskqueue.h>
60#include <sys/priv.h>
61
62#include <machine/bus.h>
63
64#include <net/if.h>
65#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_types.h>
68#include <net/if_arp.h>
69#include <net/ethernet.h>
70#include <net/if_llc.h>
71
72#include <net80211/ieee80211_var.h>
73#include <net80211/ieee80211_regdomain.h>
74#ifdef IEEE80211_SUPPORT_SUPERG
75#include <net80211/ieee80211_superg.h>
76#endif
77#ifdef IEEE80211_SUPPORT_TDMA
78#include <net80211/ieee80211_tdma.h>
79#endif
80
81#include <net/bpf.h>
82
83#ifdef INET
84#include <netinet/in.h>
85#include <netinet/if_ether.h>
86#endif
87
88#include <dev/ath/if_athvar.h>
89#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
90#include <dev/ath/ath_hal/ah_diagcodes.h>
91
92#include <dev/ath/if_ath_debug.h>
93#include <dev/ath/if_ath_misc.h>
94#include <dev/ath/if_ath_tx.h>
95#include <dev/ath/if_ath_sysctl.h>
96#include <dev/ath/if_ath_keycache.h>
97
98#ifdef ATH_TX99_DIAG
99#include <dev/ath/ath_tx99/ath_tx99.h>
100#endif
101
102/*
103 * ATH_BCBUF determines the number of vap's that can transmit
104 * beacons and also (currently) the number of vap's that can
105 * have unique mac addresses/bssid.  When staggering beacons
106 * 4 is probably a good max as otherwise the beacons become
107 * very closely spaced and there is limited time for cab q traffic
108 * to go out.  You can burst beacons instead but that is not good
109 * for stations in power save and at some point you really want
110 * another radio (and channel).
111 *
112 * The limit on the number of mac addresses is tied to our use of
113 * the U/L bit and tracking addresses in a byte; it would be
114 * worthwhile to allow more for applications like proxy sta.
115 */
116CTASSERT(ATH_BCBUF <= 8);
117
118static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
119		    const char name[IFNAMSIZ], int unit, int opmode,
120		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
121		    const uint8_t mac[IEEE80211_ADDR_LEN]);
122static void	ath_vap_delete(struct ieee80211vap *);
123static void	ath_init(void *);
124static void	ath_stop_locked(struct ifnet *);
125static void	ath_stop(struct ifnet *);
126static void	ath_start(struct ifnet *);
127static int	ath_reset_vap(struct ieee80211vap *, u_long);
128static int	ath_media_change(struct ifnet *);
129static void	ath_watchdog(void *);
130static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
131static void	ath_fatal_proc(void *, int);
132static void	ath_bmiss_vap(struct ieee80211vap *);
133static void	ath_bmiss_proc(void *, int);
134static void	ath_key_update_begin(struct ieee80211vap *);
135static void	ath_key_update_end(struct ieee80211vap *);
136static void	ath_update_mcast(struct ifnet *);
137static void	ath_update_promisc(struct ifnet *);
138static void	ath_mode_init(struct ath_softc *);
139static void	ath_setslottime(struct ath_softc *);
140static void	ath_updateslot(struct ifnet *);
141static int	ath_beaconq_setup(struct ath_hal *);
142static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
143static void	ath_beacon_update(struct ieee80211vap *, int item);
144static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
145static void	ath_beacon_proc(void *, int);
146static struct ath_buf *ath_beacon_generate(struct ath_softc *,
147			struct ieee80211vap *);
148static void	ath_bstuck_proc(void *, int);
149static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
150static void	ath_beacon_free(struct ath_softc *);
151static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
152static void	ath_descdma_cleanup(struct ath_softc *sc,
153			struct ath_descdma *, ath_bufhead *);
154static int	ath_desc_alloc(struct ath_softc *);
155static void	ath_desc_free(struct ath_softc *);
156static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
157			const uint8_t [IEEE80211_ADDR_LEN]);
158static void	ath_node_free(struct ieee80211_node *);
159static void	ath_node_getsignal(const struct ieee80211_node *,
160			int8_t *, int8_t *);
161static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
162static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
163			int subtype, int rssi, int nf);
164static void	ath_setdefantenna(struct ath_softc *, u_int);
165static void	ath_rx_proc(void *, int);
166static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
167static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
168static int	ath_tx_setup(struct ath_softc *, int, int);
169static int	ath_wme_update(struct ieee80211com *);
170static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
171static void	ath_tx_cleanup(struct ath_softc *);
172static void	ath_tx_proc_q0(void *, int);
173static void	ath_tx_proc_q0123(void *, int);
174static void	ath_tx_proc(void *, int);
175static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
176static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
177static void	ath_draintxq(struct ath_softc *);
178static void	ath_stoprecv(struct ath_softc *);
179static int	ath_startrecv(struct ath_softc *);
180static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
181static void	ath_scan_start(struct ieee80211com *);
182static void	ath_scan_end(struct ieee80211com *);
183static void	ath_set_channel(struct ieee80211com *);
184static void	ath_calibrate(void *);
185static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
186static void	ath_setup_stationkey(struct ieee80211_node *);
187static void	ath_newassoc(struct ieee80211_node *, int);
188static int	ath_setregdomain(struct ieee80211com *,
189		    struct ieee80211_regdomain *, int,
190		    struct ieee80211_channel []);
191static void	ath_getradiocaps(struct ieee80211com *, int, int *,
192		    struct ieee80211_channel []);
193static int	ath_getchannels(struct ath_softc *);
194static void	ath_led_event(struct ath_softc *, int);
195
196static int	ath_rate_setup(struct ath_softc *, u_int mode);
197static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
198
199static void	ath_announce(struct ath_softc *);
200
201#ifdef IEEE80211_SUPPORT_TDMA
202static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
203		    u_int32_t bintval);
204static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
205		    const struct ieee80211_tdma_state *tdma);
206static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
207static void	ath_tdma_update(struct ieee80211_node *ni,
208		    const struct ieee80211_tdma_param *tdma, int);
209static void	ath_tdma_beacon_send(struct ath_softc *sc,
210		    struct ieee80211vap *vap);
211
212static __inline void
213ath_hal_setcca(struct ath_hal *ah, int ena)
214{
215	/*
216	 * NB: fill me in; this is not provided by default because disabling
217	 *     CCA in most locales violates regulatory.
218	 */
219}
220
221static __inline int
222ath_hal_getcca(struct ath_hal *ah)
223{
224	u_int32_t diag;
225	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
226		return 1;
227	return ((diag & 0x500000) == 0);
228}
229
230#define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
231#define	TDMA_LPF_LEN		6
232#define	TDMA_DUMMY_MARKER	0x127
233#define	TDMA_EP_MUL(x, mul)	((x) * (mul))
234#define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
235#define	TDMA_LPF(x, y, len) \
236    ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
237#define	TDMA_SAMPLE(x, y) do {					\
238	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
239} while (0)
240#define	TDMA_EP_RND(x,mul) \
241	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
242#define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
243#endif /* IEEE80211_SUPPORT_TDMA */
244
245SYSCTL_DECL(_hw_ath);
246
247/* XXX validate sysctl values */
248static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
249SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
250	    0, "long chip calibration interval (secs)");
251static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
252SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
253	    0, "short chip calibration interval (msecs)");
254static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
255SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
256	    0, "reset chip calibration results (secs)");
257static	int ath_anicalinterval = 100;		/* ANI calibration - 100 msec */
258SYSCTL_INT(_hw_ath, OID_AUTO, anical, CTLFLAG_RW, &ath_anicalinterval,
259	    0, "ANI calibration (msecs)");
260
261static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
262SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
263	    0, "rx buffers allocated");
264TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
265static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
266SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
267	    0, "tx buffers allocated");
268TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
269
270static	int ath_bstuck_threshold = 4;		/* max missed beacons */
271SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
272	    0, "max missed beacon xmits before chip reset");
273
274MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
275
276#define	HAL_MODE_HT20 (HAL_MODE_11NG_HT20 | HAL_MODE_11NA_HT20)
277#define	HAL_MODE_HT40 \
278	(HAL_MODE_11NG_HT40PLUS | HAL_MODE_11NG_HT40MINUS | \
279	HAL_MODE_11NA_HT40PLUS | HAL_MODE_11NA_HT40MINUS)
280int
281ath_attach(u_int16_t devid, struct ath_softc *sc)
282{
283	struct ifnet *ifp;
284	struct ieee80211com *ic;
285	struct ath_hal *ah = NULL;
286	HAL_STATUS status;
287	int error = 0, i;
288	u_int wmodes;
289	uint8_t macaddr[IEEE80211_ADDR_LEN];
290
291	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
292
293	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
294	if (ifp == NULL) {
295		device_printf(sc->sc_dev, "can not if_alloc()\n");
296		error = ENOSPC;
297		goto bad;
298	}
299	ic = ifp->if_l2com;
300
301	/* set these up early for if_printf use */
302	if_initname(ifp, device_get_name(sc->sc_dev),
303		device_get_unit(sc->sc_dev));
304
305	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, sc->sc_eepromdata, &status);
306	if (ah == NULL) {
307		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
308			status);
309		error = ENXIO;
310		goto bad;
311	}
312	sc->sc_ah = ah;
313	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
314#ifdef	ATH_DEBUG
315	sc->sc_debug = ath_debug;
316#endif
317
318	/*
319	 * Check if the MAC has multi-rate retry support.
320	 * We do this by trying to setup a fake extended
321	 * descriptor.  MAC's that don't have support will
322	 * return false w/o doing anything.  MAC's that do
323	 * support it will return true w/o doing anything.
324	 */
325	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
326
327	/*
328	 * Check if the device has hardware counters for PHY
329	 * errors.  If so we need to enable the MIB interrupt
330	 * so we can act on stat triggers.
331	 */
332	if (ath_hal_hwphycounters(ah))
333		sc->sc_needmib = 1;
334
335	/*
336	 * Get the hardware key cache size.
337	 */
338	sc->sc_keymax = ath_hal_keycachesize(ah);
339	if (sc->sc_keymax > ATH_KEYMAX) {
340		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
341			ATH_KEYMAX, sc->sc_keymax);
342		sc->sc_keymax = ATH_KEYMAX;
343	}
344	/*
345	 * Reset the key cache since some parts do not
346	 * reset the contents on initial power up.
347	 */
348	for (i = 0; i < sc->sc_keymax; i++)
349		ath_hal_keyreset(ah, i);
350
351	/*
352	 * Collect the default channel list.
353	 */
354	error = ath_getchannels(sc);
355	if (error != 0)
356		goto bad;
357
358	/*
359	 * Setup rate tables for all potential media types.
360	 */
361	ath_rate_setup(sc, IEEE80211_MODE_11A);
362	ath_rate_setup(sc, IEEE80211_MODE_11B);
363	ath_rate_setup(sc, IEEE80211_MODE_11G);
364	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
365	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
366	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
367	ath_rate_setup(sc, IEEE80211_MODE_11NA);
368	ath_rate_setup(sc, IEEE80211_MODE_11NG);
369	ath_rate_setup(sc, IEEE80211_MODE_HALF);
370	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
371
372	/* NB: setup here so ath_rate_update is happy */
373	ath_setcurmode(sc, IEEE80211_MODE_11A);
374
375	/*
376	 * Allocate tx+rx descriptors and populate the lists.
377	 */
378	error = ath_desc_alloc(sc);
379	if (error != 0) {
380		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
381		goto bad;
382	}
383	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
384	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
385
386	ATH_TXBUF_LOCK_INIT(sc);
387
388	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
389		taskqueue_thread_enqueue, &sc->sc_tq);
390	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
391		"%s taskq", ifp->if_xname);
392
393	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
394	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
395	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
396
397	/*
398	 * Allocate hardware transmit queues: one queue for
399	 * beacon frames and one data queue for each QoS
400	 * priority.  Note that the hal handles resetting
401	 * these queues at the needed time.
402	 *
403	 * XXX PS-Poll
404	 */
405	sc->sc_bhalq = ath_beaconq_setup(ah);
406	if (sc->sc_bhalq == (u_int) -1) {
407		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
408		error = EIO;
409		goto bad2;
410	}
411	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
412	if (sc->sc_cabq == NULL) {
413		if_printf(ifp, "unable to setup CAB xmit queue!\n");
414		error = EIO;
415		goto bad2;
416	}
417	/* NB: insure BK queue is the lowest priority h/w queue */
418	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
419		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
420			ieee80211_wme_acnames[WME_AC_BK]);
421		error = EIO;
422		goto bad2;
423	}
424	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
425	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
426	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
427		/*
428		 * Not enough hardware tx queues to properly do WME;
429		 * just punt and assign them all to the same h/w queue.
430		 * We could do a better job of this if, for example,
431		 * we allocate queues when we switch from station to
432		 * AP mode.
433		 */
434		if (sc->sc_ac2q[WME_AC_VI] != NULL)
435			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
436		if (sc->sc_ac2q[WME_AC_BE] != NULL)
437			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
438		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
439		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
440		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
441	}
442
443	/*
444	 * Special case certain configurations.  Note the
445	 * CAB queue is handled by these specially so don't
446	 * include them when checking the txq setup mask.
447	 */
448	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
449	case 0x01:
450		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
451		break;
452	case 0x0f:
453		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
454		break;
455	default:
456		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
457		break;
458	}
459
460	/*
461	 * Setup rate control.  Some rate control modules
462	 * call back to change the anntena state so expose
463	 * the necessary entry points.
464	 * XXX maybe belongs in struct ath_ratectrl?
465	 */
466	sc->sc_setdefantenna = ath_setdefantenna;
467	sc->sc_rc = ath_rate_attach(sc);
468	if (sc->sc_rc == NULL) {
469		error = EIO;
470		goto bad2;
471	}
472
473	sc->sc_blinking = 0;
474	sc->sc_ledstate = 1;
475	sc->sc_ledon = 0;			/* low true */
476	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
477	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
478	/*
479	 * Auto-enable soft led processing for IBM cards and for
480	 * 5211 minipci cards.  Users can also manually enable/disable
481	 * support with a sysctl.
482	 */
483	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
484	if (sc->sc_softled) {
485		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
486		    HAL_GPIO_MUX_MAC_NETWORK_LED);
487		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
488	}
489
490	ifp->if_softc = sc;
491	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
492	ifp->if_start = ath_start;
493	ifp->if_ioctl = ath_ioctl;
494	ifp->if_init = ath_init;
495	IFQ_SET_MAXLEN(&ifp->if_snd, ifqmaxlen);
496	ifp->if_snd.ifq_drv_maxlen = ifqmaxlen;
497	IFQ_SET_READY(&ifp->if_snd);
498
499	ic->ic_ifp = ifp;
500	/* XXX not right but it's not used anywhere important */
501	ic->ic_phytype = IEEE80211_T_OFDM;
502	ic->ic_opmode = IEEE80211_M_STA;
503	ic->ic_caps =
504		  IEEE80211_C_STA		/* station mode */
505		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
506		| IEEE80211_C_HOSTAP		/* hostap mode */
507		| IEEE80211_C_MONITOR		/* monitor mode */
508		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
509		| IEEE80211_C_WDS		/* 4-address traffic works */
510		| IEEE80211_C_MBSS		/* mesh point link mode */
511		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
512		| IEEE80211_C_SHSLOT		/* short slot time supported */
513		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
514		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
515		| IEEE80211_C_TXFRAG		/* handle tx frags */
516		;
517	/*
518	 * Query the hal to figure out h/w crypto support.
519	 */
520	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
521		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
522	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
523		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
524	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
525		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
526	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
527		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
528	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
529		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
530		/*
531		 * Check if h/w does the MIC and/or whether the
532		 * separate key cache entries are required to
533		 * handle both tx+rx MIC keys.
534		 */
535		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
536			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
537		/*
538		 * If the h/w supports storing tx+rx MIC keys
539		 * in one cache slot automatically enable use.
540		 */
541		if (ath_hal_hastkipsplit(ah) ||
542		    !ath_hal_settkipsplit(ah, AH_FALSE))
543			sc->sc_splitmic = 1;
544		/*
545		 * If the h/w can do TKIP MIC together with WME then
546		 * we use it; otherwise we force the MIC to be done
547		 * in software by the net80211 layer.
548		 */
549		if (ath_hal_haswmetkipmic(ah))
550			sc->sc_wmetkipmic = 1;
551	}
552	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
553	/*
554	 * Check for multicast key search support.
555	 */
556	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
557	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
558		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
559	}
560	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
561	/*
562	 * Mark key cache slots associated with global keys
563	 * as in use.  If we knew TKIP was not to be used we
564	 * could leave the +32, +64, and +32+64 slots free.
565	 */
566	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
567		setbit(sc->sc_keymap, i);
568		setbit(sc->sc_keymap, i+64);
569		if (sc->sc_splitmic) {
570			setbit(sc->sc_keymap, i+32);
571			setbit(sc->sc_keymap, i+32+64);
572		}
573	}
574	/*
575	 * TPC support can be done either with a global cap or
576	 * per-packet support.  The latter is not available on
577	 * all parts.  We're a bit pedantic here as all parts
578	 * support a global cap.
579	 */
580	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
581		ic->ic_caps |= IEEE80211_C_TXPMGT;
582
583	/*
584	 * Mark WME capability only if we have sufficient
585	 * hardware queues to do proper priority scheduling.
586	 */
587	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
588		ic->ic_caps |= IEEE80211_C_WME;
589	/*
590	 * Check for misc other capabilities.
591	 */
592	if (ath_hal_hasbursting(ah))
593		ic->ic_caps |= IEEE80211_C_BURST;
594	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
595	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
596	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
597	if (ath_hal_hasfastframes(ah))
598		ic->ic_caps |= IEEE80211_C_FF;
599	wmodes = ath_hal_getwirelessmodes(ah);
600	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
601		ic->ic_caps |= IEEE80211_C_TURBOP;
602#ifdef IEEE80211_SUPPORT_TDMA
603	if (ath_hal_macversion(ah) > 0x78) {
604		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
605		ic->ic_tdma_update = ath_tdma_update;
606	}
607#endif
608
609	/*
610	 * The if_ath 11n support is completely not ready for normal use.
611	 * Enabling this option will likely break everything and everything.
612	 * Don't think of doing that unless you know what you're doing.
613	 */
614
615#ifdef	AH_ENABLE_11N
616	/*
617	 * Query HT capabilities
618	 */
619	if (ath_hal_getcapability(ah, HAL_CAP_HT, 0, NULL) == HAL_OK &&
620	    (wmodes & (HAL_MODE_HT20 | HAL_MODE_HT40))) {
621		int rxs, txs;
622
623		device_printf(sc->sc_dev, "[HT] enabling HT modes\n");
624		ic->ic_htcaps = IEEE80211_HTC_HT		/* HT operation */
625			    | IEEE80211_HTC_AMPDU		/* A-MPDU tx/rx */
626			    | IEEE80211_HTC_AMSDU		/* A-MSDU tx/rx */
627			    | IEEE80211_HTCAP_MAXAMSDU_3839	/* max A-MSDU length */
628		/* At the present time, the hardware doesn't support short-GI in 20mhz mode */
629#if 0
630			    | IEEE80211_HTCAP_SHORTGI20		/* short GI in 20MHz */
631#endif
632			    | IEEE80211_HTCAP_SMPS_OFF;		/* SM power save off */
633			;
634
635		if (wmodes & HAL_MODE_HT40)
636			ic->ic_htcaps |= IEEE80211_HTCAP_CHWIDTH40
637			    |  IEEE80211_HTCAP_SHORTGI40;
638
639		/*
640		 * rx/tx stream is not currently used anywhere; it needs to be taken
641		 * into account when negotiating which MCS rates it'll receive and
642		 * what MCS rates are available for TX.
643		 */
644		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 0, &rxs);
645		(void) ath_hal_getcapability(ah, HAL_CAP_STREAMS, 1, &txs);
646
647		ath_hal_getrxchainmask(ah, &sc->sc_rxchainmask);
648		ath_hal_gettxchainmask(ah, &sc->sc_txchainmask);
649
650		ic->ic_txstream = txs;
651		ic->ic_rxstream = rxs;
652
653		device_printf(sc->sc_dev, "[HT] %d RX streams; %d TX streams\n", rxs, txs);
654	}
655#endif
656
657	/*
658	 * Indicate we need the 802.11 header padded to a
659	 * 32-bit boundary for 4-address and QoS frames.
660	 */
661	ic->ic_flags |= IEEE80211_F_DATAPAD;
662
663	/*
664	 * Query the hal about antenna support.
665	 */
666	sc->sc_defant = ath_hal_getdefantenna(ah);
667
668	/*
669	 * Not all chips have the VEOL support we want to
670	 * use with IBSS beacons; check here for it.
671	 */
672	sc->sc_hasveol = ath_hal_hasveol(ah);
673
674	/* get mac address from hardware */
675	ath_hal_getmac(ah, macaddr);
676	if (sc->sc_hasbmask)
677		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
678
679	/* NB: used to size node table key mapping array */
680	ic->ic_max_keyix = sc->sc_keymax;
681	/* call MI attach routine. */
682	ieee80211_ifattach(ic, macaddr);
683	ic->ic_setregdomain = ath_setregdomain;
684	ic->ic_getradiocaps = ath_getradiocaps;
685	sc->sc_opmode = HAL_M_STA;
686
687	/* override default methods */
688	ic->ic_newassoc = ath_newassoc;
689	ic->ic_updateslot = ath_updateslot;
690	ic->ic_wme.wme_update = ath_wme_update;
691	ic->ic_vap_create = ath_vap_create;
692	ic->ic_vap_delete = ath_vap_delete;
693	ic->ic_raw_xmit = ath_raw_xmit;
694	ic->ic_update_mcast = ath_update_mcast;
695	ic->ic_update_promisc = ath_update_promisc;
696	ic->ic_node_alloc = ath_node_alloc;
697	sc->sc_node_free = ic->ic_node_free;
698	ic->ic_node_free = ath_node_free;
699	ic->ic_node_getsignal = ath_node_getsignal;
700	ic->ic_scan_start = ath_scan_start;
701	ic->ic_scan_end = ath_scan_end;
702	ic->ic_set_channel = ath_set_channel;
703
704	ieee80211_radiotap_attach(ic,
705	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
706		ATH_TX_RADIOTAP_PRESENT,
707	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
708		ATH_RX_RADIOTAP_PRESENT);
709
710	/*
711	 * Setup dynamic sysctl's now that country code and
712	 * regdomain are available from the hal.
713	 */
714	ath_sysctlattach(sc);
715	ath_sysctl_stats_attach(sc);
716
717	if (bootverbose)
718		ieee80211_announce(ic);
719	ath_announce(sc);
720	return 0;
721bad2:
722	ath_tx_cleanup(sc);
723	ath_desc_free(sc);
724bad:
725	if (ah)
726		ath_hal_detach(ah);
727	if (ifp != NULL)
728		if_free(ifp);
729	sc->sc_invalid = 1;
730	return error;
731}
732
733int
734ath_detach(struct ath_softc *sc)
735{
736	struct ifnet *ifp = sc->sc_ifp;
737
738	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
739		__func__, ifp->if_flags);
740
741	/*
742	 * NB: the order of these is important:
743	 * o stop the chip so no more interrupts will fire
744	 * o call the 802.11 layer before detaching the hal to
745	 *   insure callbacks into the driver to delete global
746	 *   key cache entries can be handled
747	 * o free the taskqueue which drains any pending tasks
748	 * o reclaim the tx queue data structures after calling
749	 *   the 802.11 layer as we'll get called back to reclaim
750	 *   node state and potentially want to use them
751	 * o to cleanup the tx queues the hal is called, so detach
752	 *   it last
753	 * Other than that, it's straightforward...
754	 */
755	ath_stop(ifp);
756	ieee80211_ifdetach(ifp->if_l2com);
757	taskqueue_free(sc->sc_tq);
758#ifdef ATH_TX99_DIAG
759	if (sc->sc_tx99 != NULL)
760		sc->sc_tx99->detach(sc->sc_tx99);
761#endif
762	ath_rate_detach(sc->sc_rc);
763	ath_desc_free(sc);
764	ath_tx_cleanup(sc);
765	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
766	if_free(ifp);
767
768	return 0;
769}
770
771/*
772 * MAC address handling for multiple BSS on the same radio.
773 * The first vap uses the MAC address from the EEPROM.  For
774 * subsequent vap's we set the U/L bit (bit 1) in the MAC
775 * address and use the next six bits as an index.
776 */
777static void
778assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
779{
780	int i;
781
782	if (clone && sc->sc_hasbmask) {
783		/* NB: we only do this if h/w supports multiple bssid */
784		for (i = 0; i < 8; i++)
785			if ((sc->sc_bssidmask & (1<<i)) == 0)
786				break;
787		if (i != 0)
788			mac[0] |= (i << 2)|0x2;
789	} else
790		i = 0;
791	sc->sc_bssidmask |= 1<<i;
792	sc->sc_hwbssidmask[0] &= ~mac[0];
793	if (i == 0)
794		sc->sc_nbssid0++;
795}
796
797static void
798reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
799{
800	int i = mac[0] >> 2;
801	uint8_t mask;
802
803	if (i != 0 || --sc->sc_nbssid0 == 0) {
804		sc->sc_bssidmask &= ~(1<<i);
805		/* recalculate bssid mask from remaining addresses */
806		mask = 0xff;
807		for (i = 1; i < 8; i++)
808			if (sc->sc_bssidmask & (1<<i))
809				mask &= ~((i<<2)|0x2);
810		sc->sc_hwbssidmask[0] |= mask;
811	}
812}
813
814/*
815 * Assign a beacon xmit slot.  We try to space out
816 * assignments so when beacons are staggered the
817 * traffic coming out of the cab q has maximal time
818 * to go out before the next beacon is scheduled.
819 */
820static int
821assign_bslot(struct ath_softc *sc)
822{
823	u_int slot, free;
824
825	free = 0;
826	for (slot = 0; slot < ATH_BCBUF; slot++)
827		if (sc->sc_bslot[slot] == NULL) {
828			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
829			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
830				return slot;
831			free = slot;
832			/* NB: keep looking for a double slot */
833		}
834	return free;
835}
836
837static struct ieee80211vap *
838ath_vap_create(struct ieee80211com *ic,
839	const char name[IFNAMSIZ], int unit, int opmode, int flags,
840	const uint8_t bssid[IEEE80211_ADDR_LEN],
841	const uint8_t mac0[IEEE80211_ADDR_LEN])
842{
843	struct ath_softc *sc = ic->ic_ifp->if_softc;
844	struct ath_vap *avp;
845	struct ieee80211vap *vap;
846	uint8_t mac[IEEE80211_ADDR_LEN];
847	int ic_opmode, needbeacon, error;
848
849	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
850	    M_80211_VAP, M_WAITOK | M_ZERO);
851	needbeacon = 0;
852	IEEE80211_ADDR_COPY(mac, mac0);
853
854	ATH_LOCK(sc);
855	ic_opmode = opmode;		/* default to opmode of new vap */
856	switch (opmode) {
857	case IEEE80211_M_STA:
858		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
859			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
860			goto bad;
861		}
862		if (sc->sc_nvaps) {
863			/*
864			 * With multiple vaps we must fall back
865			 * to s/w beacon miss handling.
866			 */
867			flags |= IEEE80211_CLONE_NOBEACONS;
868		}
869		if (flags & IEEE80211_CLONE_NOBEACONS) {
870			/*
871			 * Station mode w/o beacons are implemented w/ AP mode.
872			 */
873			ic_opmode = IEEE80211_M_HOSTAP;
874		}
875		break;
876	case IEEE80211_M_IBSS:
877		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
878			device_printf(sc->sc_dev,
879			    "only 1 ibss vap supported\n");
880			goto bad;
881		}
882		needbeacon = 1;
883		break;
884	case IEEE80211_M_AHDEMO:
885#ifdef IEEE80211_SUPPORT_TDMA
886		if (flags & IEEE80211_CLONE_TDMA) {
887			if (sc->sc_nvaps != 0) {
888				device_printf(sc->sc_dev,
889				    "only 1 tdma vap supported\n");
890				goto bad;
891			}
892			needbeacon = 1;
893			flags |= IEEE80211_CLONE_NOBEACONS;
894		}
895		/* fall thru... */
896#endif
897	case IEEE80211_M_MONITOR:
898		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
899			/*
900			 * Adopt existing mode.  Adding a monitor or ahdemo
901			 * vap to an existing configuration is of dubious
902			 * value but should be ok.
903			 */
904			/* XXX not right for monitor mode */
905			ic_opmode = ic->ic_opmode;
906		}
907		break;
908	case IEEE80211_M_HOSTAP:
909	case IEEE80211_M_MBSS:
910		needbeacon = 1;
911		break;
912	case IEEE80211_M_WDS:
913		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
914			device_printf(sc->sc_dev,
915			    "wds not supported in sta mode\n");
916			goto bad;
917		}
918		/*
919		 * Silently remove any request for a unique
920		 * bssid; WDS vap's always share the local
921		 * mac address.
922		 */
923		flags &= ~IEEE80211_CLONE_BSSID;
924		if (sc->sc_nvaps == 0)
925			ic_opmode = IEEE80211_M_HOSTAP;
926		else
927			ic_opmode = ic->ic_opmode;
928		break;
929	default:
930		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
931		goto bad;
932	}
933	/*
934	 * Check that a beacon buffer is available; the code below assumes it.
935	 */
936	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
937		device_printf(sc->sc_dev, "no beacon buffer available\n");
938		goto bad;
939	}
940
941	/* STA, AHDEMO? */
942	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
943		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
944		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
945	}
946
947	vap = &avp->av_vap;
948	/* XXX can't hold mutex across if_alloc */
949	ATH_UNLOCK(sc);
950	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
951	    bssid, mac);
952	ATH_LOCK(sc);
953	if (error != 0) {
954		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
955		    __func__, error);
956		goto bad2;
957	}
958
959	/* h/w crypto support */
960	vap->iv_key_alloc = ath_key_alloc;
961	vap->iv_key_delete = ath_key_delete;
962	vap->iv_key_set = ath_key_set;
963	vap->iv_key_update_begin = ath_key_update_begin;
964	vap->iv_key_update_end = ath_key_update_end;
965
966	/* override various methods */
967	avp->av_recv_mgmt = vap->iv_recv_mgmt;
968	vap->iv_recv_mgmt = ath_recv_mgmt;
969	vap->iv_reset = ath_reset_vap;
970	vap->iv_update_beacon = ath_beacon_update;
971	avp->av_newstate = vap->iv_newstate;
972	vap->iv_newstate = ath_newstate;
973	avp->av_bmiss = vap->iv_bmiss;
974	vap->iv_bmiss = ath_bmiss_vap;
975
976	avp->av_bslot = -1;
977	if (needbeacon) {
978		/*
979		 * Allocate beacon state and setup the q for buffered
980		 * multicast frames.  We know a beacon buffer is
981		 * available because we checked above.
982		 */
983		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
984		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
985		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
986			/*
987			 * Assign the vap to a beacon xmit slot.  As above
988			 * this cannot fail to find a free one.
989			 */
990			avp->av_bslot = assign_bslot(sc);
991			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
992			    ("beacon slot %u not empty", avp->av_bslot));
993			sc->sc_bslot[avp->av_bslot] = vap;
994			sc->sc_nbcnvaps++;
995		}
996		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
997			/*
998			 * Multple vaps are to transmit beacons and we
999			 * have h/w support for TSF adjusting; enable
1000			 * use of staggered beacons.
1001			 */
1002			sc->sc_stagbeacons = 1;
1003		}
1004		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1005	}
1006
1007	ic->ic_opmode = ic_opmode;
1008	if (opmode != IEEE80211_M_WDS) {
1009		sc->sc_nvaps++;
1010		if (opmode == IEEE80211_M_STA)
1011			sc->sc_nstavaps++;
1012		if (opmode == IEEE80211_M_MBSS)
1013			sc->sc_nmeshvaps++;
1014	}
1015	switch (ic_opmode) {
1016	case IEEE80211_M_IBSS:
1017		sc->sc_opmode = HAL_M_IBSS;
1018		break;
1019	case IEEE80211_M_STA:
1020		sc->sc_opmode = HAL_M_STA;
1021		break;
1022	case IEEE80211_M_AHDEMO:
1023#ifdef IEEE80211_SUPPORT_TDMA
1024		if (vap->iv_caps & IEEE80211_C_TDMA) {
1025			sc->sc_tdma = 1;
1026			/* NB: disable tsf adjust */
1027			sc->sc_stagbeacons = 0;
1028		}
1029		/*
1030		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1031		 * just ap mode.
1032		 */
1033		/* fall thru... */
1034#endif
1035	case IEEE80211_M_HOSTAP:
1036	case IEEE80211_M_MBSS:
1037		sc->sc_opmode = HAL_M_HOSTAP;
1038		break;
1039	case IEEE80211_M_MONITOR:
1040		sc->sc_opmode = HAL_M_MONITOR;
1041		break;
1042	default:
1043		/* XXX should not happen */
1044		break;
1045	}
1046	if (sc->sc_hastsfadd) {
1047		/*
1048		 * Configure whether or not TSF adjust should be done.
1049		 */
1050		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1051	}
1052	if (flags & IEEE80211_CLONE_NOBEACONS) {
1053		/*
1054		 * Enable s/w beacon miss handling.
1055		 */
1056		sc->sc_swbmiss = 1;
1057	}
1058	ATH_UNLOCK(sc);
1059
1060	/* complete setup */
1061	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1062	return vap;
1063bad2:
1064	reclaim_address(sc, mac);
1065	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1066bad:
1067	free(avp, M_80211_VAP);
1068	ATH_UNLOCK(sc);
1069	return NULL;
1070}
1071
1072static void
1073ath_vap_delete(struct ieee80211vap *vap)
1074{
1075	struct ieee80211com *ic = vap->iv_ic;
1076	struct ifnet *ifp = ic->ic_ifp;
1077	struct ath_softc *sc = ifp->if_softc;
1078	struct ath_hal *ah = sc->sc_ah;
1079	struct ath_vap *avp = ATH_VAP(vap);
1080
1081	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1082		/*
1083		 * Quiesce the hardware while we remove the vap.  In
1084		 * particular we need to reclaim all references to
1085		 * the vap state by any frames pending on the tx queues.
1086		 */
1087		ath_hal_intrset(ah, 0);		/* disable interrupts */
1088		ath_draintxq(sc);		/* stop xmit side */
1089		ath_stoprecv(sc);		/* stop recv side */
1090	}
1091
1092	ieee80211_vap_detach(vap);
1093	ATH_LOCK(sc);
1094	/*
1095	 * Reclaim beacon state.  Note this must be done before
1096	 * the vap instance is reclaimed as we may have a reference
1097	 * to it in the buffer for the beacon frame.
1098	 */
1099	if (avp->av_bcbuf != NULL) {
1100		if (avp->av_bslot != -1) {
1101			sc->sc_bslot[avp->av_bslot] = NULL;
1102			sc->sc_nbcnvaps--;
1103		}
1104		ath_beacon_return(sc, avp->av_bcbuf);
1105		avp->av_bcbuf = NULL;
1106		if (sc->sc_nbcnvaps == 0) {
1107			sc->sc_stagbeacons = 0;
1108			if (sc->sc_hastsfadd)
1109				ath_hal_settsfadjust(sc->sc_ah, 0);
1110		}
1111		/*
1112		 * Reclaim any pending mcast frames for the vap.
1113		 */
1114		ath_tx_draintxq(sc, &avp->av_mcastq);
1115		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1116	}
1117	/*
1118	 * Update bookkeeping.
1119	 */
1120	if (vap->iv_opmode == IEEE80211_M_STA) {
1121		sc->sc_nstavaps--;
1122		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1123			sc->sc_swbmiss = 0;
1124	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1125	    vap->iv_opmode == IEEE80211_M_MBSS) {
1126		reclaim_address(sc, vap->iv_myaddr);
1127		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1128		if (vap->iv_opmode == IEEE80211_M_MBSS)
1129			sc->sc_nmeshvaps--;
1130	}
1131	if (vap->iv_opmode != IEEE80211_M_WDS)
1132		sc->sc_nvaps--;
1133#ifdef IEEE80211_SUPPORT_TDMA
1134	/* TDMA operation ceases when the last vap is destroyed */
1135	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1136		sc->sc_tdma = 0;
1137		sc->sc_swbmiss = 0;
1138	}
1139#endif
1140	ATH_UNLOCK(sc);
1141	free(avp, M_80211_VAP);
1142
1143	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1144		/*
1145		 * Restart rx+tx machines if still running (RUNNING will
1146		 * be reset if we just destroyed the last vap).
1147		 */
1148		if (ath_startrecv(sc) != 0)
1149			if_printf(ifp, "%s: unable to restart recv logic\n",
1150			    __func__);
1151		if (sc->sc_beacons) {		/* restart beacons */
1152#ifdef IEEE80211_SUPPORT_TDMA
1153			if (sc->sc_tdma)
1154				ath_tdma_config(sc, NULL);
1155			else
1156#endif
1157				ath_beacon_config(sc, NULL);
1158		}
1159		ath_hal_intrset(ah, sc->sc_imask);
1160	}
1161}
1162
1163void
1164ath_suspend(struct ath_softc *sc)
1165{
1166	struct ifnet *ifp = sc->sc_ifp;
1167	struct ieee80211com *ic = ifp->if_l2com;
1168
1169	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1170		__func__, ifp->if_flags);
1171
1172	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1173	if (ic->ic_opmode == IEEE80211_M_STA)
1174		ath_stop(ifp);
1175	else
1176		ieee80211_suspend_all(ic);
1177	/*
1178	 * NB: don't worry about putting the chip in low power
1179	 * mode; pci will power off our socket on suspend and
1180	 * CardBus detaches the device.
1181	 */
1182}
1183
1184/*
1185 * Reset the key cache since some parts do not reset the
1186 * contents on resume.  First we clear all entries, then
1187 * re-load keys that the 802.11 layer assumes are setup
1188 * in h/w.
1189 */
1190static void
1191ath_reset_keycache(struct ath_softc *sc)
1192{
1193	struct ifnet *ifp = sc->sc_ifp;
1194	struct ieee80211com *ic = ifp->if_l2com;
1195	struct ath_hal *ah = sc->sc_ah;
1196	int i;
1197
1198	for (i = 0; i < sc->sc_keymax; i++)
1199		ath_hal_keyreset(ah, i);
1200	ieee80211_crypto_reload_keys(ic);
1201}
1202
1203void
1204ath_resume(struct ath_softc *sc)
1205{
1206	struct ifnet *ifp = sc->sc_ifp;
1207	struct ieee80211com *ic = ifp->if_l2com;
1208	struct ath_hal *ah = sc->sc_ah;
1209	HAL_STATUS status;
1210
1211	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1212		__func__, ifp->if_flags);
1213
1214	/*
1215	 * Must reset the chip before we reload the
1216	 * keycache as we were powered down on suspend.
1217	 */
1218	ath_hal_reset(ah, sc->sc_opmode,
1219	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1220	    AH_FALSE, &status);
1221	ath_reset_keycache(sc);
1222	if (sc->sc_resume_up) {
1223		if (ic->ic_opmode == IEEE80211_M_STA) {
1224			ath_init(sc);
1225			/*
1226			 * Program the beacon registers using the last rx'd
1227			 * beacon frame and enable sync on the next beacon
1228			 * we see.  This should handle the case where we
1229			 * wakeup and find the same AP and also the case where
1230			 * we wakeup and need to roam.  For the latter we
1231			 * should get bmiss events that trigger a roam.
1232			 */
1233			ath_beacon_config(sc, NULL);
1234			sc->sc_syncbeacon = 1;
1235		} else
1236			ieee80211_resume_all(ic);
1237	}
1238	if (sc->sc_softled) {
1239		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1240		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1241		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1242	}
1243}
1244
1245void
1246ath_shutdown(struct ath_softc *sc)
1247{
1248	struct ifnet *ifp = sc->sc_ifp;
1249
1250	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1251		__func__, ifp->if_flags);
1252
1253	ath_stop(ifp);
1254	/* NB: no point powering down chip as we're about to reboot */
1255}
1256
1257/*
1258 * Interrupt handler.  Most of the actual processing is deferred.
1259 */
1260void
1261ath_intr(void *arg)
1262{
1263	struct ath_softc *sc = arg;
1264	struct ifnet *ifp = sc->sc_ifp;
1265	struct ath_hal *ah = sc->sc_ah;
1266	HAL_INT status;
1267
1268	if (sc->sc_invalid) {
1269		/*
1270		 * The hardware is not ready/present, don't touch anything.
1271		 * Note this can happen early on if the IRQ is shared.
1272		 */
1273		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1274		return;
1275	}
1276	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1277		return;
1278	if ((ifp->if_flags & IFF_UP) == 0 ||
1279	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1280		HAL_INT status;
1281
1282		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1283			__func__, ifp->if_flags);
1284		ath_hal_getisr(ah, &status);	/* clear ISR */
1285		ath_hal_intrset(ah, 0);		/* disable further intr's */
1286		return;
1287	}
1288	/*
1289	 * Figure out the reason(s) for the interrupt.  Note
1290	 * that the hal returns a pseudo-ISR that may include
1291	 * bits we haven't explicitly enabled so we mask the
1292	 * value to insure we only process bits we requested.
1293	 */
1294	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1295	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1296	status &= sc->sc_imask;			/* discard unasked for bits */
1297	if (status & HAL_INT_FATAL) {
1298		sc->sc_stats.ast_hardware++;
1299		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1300		ath_fatal_proc(sc, 0);
1301	} else {
1302		if (status & HAL_INT_SWBA) {
1303			/*
1304			 * Software beacon alert--time to send a beacon.
1305			 * Handle beacon transmission directly; deferring
1306			 * this is too slow to meet timing constraints
1307			 * under load.
1308			 */
1309#ifdef IEEE80211_SUPPORT_TDMA
1310			if (sc->sc_tdma) {
1311				if (sc->sc_tdmaswba == 0) {
1312					struct ieee80211com *ic = ifp->if_l2com;
1313					struct ieee80211vap *vap =
1314					    TAILQ_FIRST(&ic->ic_vaps);
1315					ath_tdma_beacon_send(sc, vap);
1316					sc->sc_tdmaswba =
1317					    vap->iv_tdma->tdma_bintval;
1318				} else
1319					sc->sc_tdmaswba--;
1320			} else
1321#endif
1322			{
1323				ath_beacon_proc(sc, 0);
1324#ifdef IEEE80211_SUPPORT_SUPERG
1325				/*
1326				 * Schedule the rx taskq in case there's no
1327				 * traffic so any frames held on the staging
1328				 * queue are aged and potentially flushed.
1329				 */
1330				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1331#endif
1332			}
1333		}
1334		if (status & HAL_INT_RXEOL) {
1335			/*
1336			 * NB: the hardware should re-read the link when
1337			 *     RXE bit is written, but it doesn't work at
1338			 *     least on older hardware revs.
1339			 */
1340			sc->sc_stats.ast_rxeol++;
1341			sc->sc_rxlink = NULL;
1342		}
1343		if (status & HAL_INT_TXURN) {
1344			sc->sc_stats.ast_txurn++;
1345			/* bump tx trigger level */
1346			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1347		}
1348		if (status & HAL_INT_RX)
1349			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1350		if (status & HAL_INT_TX)
1351			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1352		if (status & HAL_INT_BMISS) {
1353			sc->sc_stats.ast_bmiss++;
1354			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1355		}
1356		if (status & HAL_INT_MIB) {
1357			sc->sc_stats.ast_mib++;
1358			/*
1359			 * Disable interrupts until we service the MIB
1360			 * interrupt; otherwise it will continue to fire.
1361			 */
1362			ath_hal_intrset(ah, 0);
1363			/*
1364			 * Let the hal handle the event.  We assume it will
1365			 * clear whatever condition caused the interrupt.
1366			 */
1367			ath_hal_mibevent(ah, &sc->sc_halstats);
1368			ath_hal_intrset(ah, sc->sc_imask);
1369		}
1370		if (status & HAL_INT_RXORN) {
1371			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1372			sc->sc_stats.ast_rxorn++;
1373		}
1374	}
1375}
1376
1377static void
1378ath_fatal_proc(void *arg, int pending)
1379{
1380	struct ath_softc *sc = arg;
1381	struct ifnet *ifp = sc->sc_ifp;
1382	u_int32_t *state;
1383	u_int32_t len;
1384	void *sp;
1385
1386	if_printf(ifp, "hardware error; resetting\n");
1387	/*
1388	 * Fatal errors are unrecoverable.  Typically these
1389	 * are caused by DMA errors.  Collect h/w state from
1390	 * the hal so we can diagnose what's going on.
1391	 */
1392	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1393		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1394		state = sp;
1395		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1396		    state[0], state[1] , state[2], state[3],
1397		    state[4], state[5]);
1398	}
1399	ath_reset(ifp);
1400}
1401
1402static void
1403ath_bmiss_vap(struct ieee80211vap *vap)
1404{
1405	/*
1406	 * Workaround phantom bmiss interrupts by sanity-checking
1407	 * the time of our last rx'd frame.  If it is within the
1408	 * beacon miss interval then ignore the interrupt.  If it's
1409	 * truly a bmiss we'll get another interrupt soon and that'll
1410	 * be dispatched up for processing.  Note this applies only
1411	 * for h/w beacon miss events.
1412	 */
1413	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1414		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1415		struct ath_softc *sc = ifp->if_softc;
1416		u_int64_t lastrx = sc->sc_lastrx;
1417		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1418		u_int bmisstimeout =
1419			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1420
1421		DPRINTF(sc, ATH_DEBUG_BEACON,
1422		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1423		    __func__, (unsigned long long) tsf,
1424		    (unsigned long long)(tsf - lastrx),
1425		    (unsigned long long) lastrx, bmisstimeout);
1426
1427		if (tsf - lastrx <= bmisstimeout) {
1428			sc->sc_stats.ast_bmiss_phantom++;
1429			return;
1430		}
1431	}
1432	ATH_VAP(vap)->av_bmiss(vap);
1433}
1434
1435static int
1436ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1437{
1438	uint32_t rsize;
1439	void *sp;
1440
1441	if (!ath_hal_getdiagstate(ah, HAL_DIAG_CHECK_HANGS, &mask, sizeof(mask), &sp, &rsize))
1442		return 0;
1443	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1444	*hangs = *(uint32_t *)sp;
1445	return 1;
1446}
1447
1448static void
1449ath_bmiss_proc(void *arg, int pending)
1450{
1451	struct ath_softc *sc = arg;
1452	struct ifnet *ifp = sc->sc_ifp;
1453	uint32_t hangs;
1454
1455	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1456
1457	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1458		if_printf(ifp, "bb hang detected (0x%x), resetting\n", hangs);
1459		ath_reset(ifp);
1460	} else
1461		ieee80211_beacon_miss(ifp->if_l2com);
1462}
1463
1464/*
1465 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1466 * calcs together with WME.  If necessary disable the crypto
1467 * hardware and mark the 802.11 state so keys will be setup
1468 * with the MIC work done in software.
1469 */
1470static void
1471ath_settkipmic(struct ath_softc *sc)
1472{
1473	struct ifnet *ifp = sc->sc_ifp;
1474	struct ieee80211com *ic = ifp->if_l2com;
1475
1476	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1477		if (ic->ic_flags & IEEE80211_F_WME) {
1478			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1479			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1480		} else {
1481			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1482			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1483		}
1484	}
1485}
1486
1487static void
1488ath_init(void *arg)
1489{
1490	struct ath_softc *sc = (struct ath_softc *) arg;
1491	struct ifnet *ifp = sc->sc_ifp;
1492	struct ieee80211com *ic = ifp->if_l2com;
1493	struct ath_hal *ah = sc->sc_ah;
1494	HAL_STATUS status;
1495
1496	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1497		__func__, ifp->if_flags);
1498
1499	ATH_LOCK(sc);
1500	/*
1501	 * Stop anything previously setup.  This is safe
1502	 * whether this is the first time through or not.
1503	 */
1504	ath_stop_locked(ifp);
1505
1506	/*
1507	 * The basic interface to setting the hardware in a good
1508	 * state is ``reset''.  On return the hardware is known to
1509	 * be powered up and with interrupts disabled.  This must
1510	 * be followed by initialization of the appropriate bits
1511	 * and then setup of the interrupt mask.
1512	 */
1513	ath_settkipmic(sc);
1514	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1515		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1516			status);
1517		ATH_UNLOCK(sc);
1518		return;
1519	}
1520	ath_chan_change(sc, ic->ic_curchan);
1521
1522	/*
1523	 * Likewise this is set during reset so update
1524	 * state cached in the driver.
1525	 */
1526	sc->sc_diversity = ath_hal_getdiversity(ah);
1527	sc->sc_lastlongcal = 0;
1528	sc->sc_resetcal = 1;
1529	sc->sc_lastcalreset = 0;
1530	sc->sc_lastani = 0;
1531	sc->sc_lastshortcal = 0;
1532	sc->sc_doresetcal = AH_FALSE;
1533
1534	/*
1535	 * Setup the hardware after reset: the key cache
1536	 * is filled as needed and the receive engine is
1537	 * set going.  Frame transmit is handled entirely
1538	 * in the frame output path; there's nothing to do
1539	 * here except setup the interrupt mask.
1540	 */
1541	if (ath_startrecv(sc) != 0) {
1542		if_printf(ifp, "unable to start recv logic\n");
1543		ATH_UNLOCK(sc);
1544		return;
1545	}
1546
1547	/*
1548	 * Enable interrupts.
1549	 */
1550	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1551		  | HAL_INT_RXEOL | HAL_INT_RXORN
1552		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1553	/*
1554	 * Enable MIB interrupts when there are hardware phy counters.
1555	 * Note we only do this (at the moment) for station mode.
1556	 */
1557	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1558		sc->sc_imask |= HAL_INT_MIB;
1559
1560	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1561	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1562	ath_hal_intrset(ah, sc->sc_imask);
1563
1564	ATH_UNLOCK(sc);
1565
1566#ifdef ATH_TX99_DIAG
1567	if (sc->sc_tx99 != NULL)
1568		sc->sc_tx99->start(sc->sc_tx99);
1569	else
1570#endif
1571	ieee80211_start_all(ic);		/* start all vap's */
1572}
1573
1574static void
1575ath_stop_locked(struct ifnet *ifp)
1576{
1577	struct ath_softc *sc = ifp->if_softc;
1578	struct ath_hal *ah = sc->sc_ah;
1579
1580	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1581		__func__, sc->sc_invalid, ifp->if_flags);
1582
1583	ATH_LOCK_ASSERT(sc);
1584	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1585		/*
1586		 * Shutdown the hardware and driver:
1587		 *    reset 802.11 state machine
1588		 *    turn off timers
1589		 *    disable interrupts
1590		 *    turn off the radio
1591		 *    clear transmit machinery
1592		 *    clear receive machinery
1593		 *    drain and release tx queues
1594		 *    reclaim beacon resources
1595		 *    power down hardware
1596		 *
1597		 * Note that some of this work is not possible if the
1598		 * hardware is gone (invalid).
1599		 */
1600#ifdef ATH_TX99_DIAG
1601		if (sc->sc_tx99 != NULL)
1602			sc->sc_tx99->stop(sc->sc_tx99);
1603#endif
1604		callout_stop(&sc->sc_wd_ch);
1605		sc->sc_wd_timer = 0;
1606		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1607		if (!sc->sc_invalid) {
1608			if (sc->sc_softled) {
1609				callout_stop(&sc->sc_ledtimer);
1610				ath_hal_gpioset(ah, sc->sc_ledpin,
1611					!sc->sc_ledon);
1612				sc->sc_blinking = 0;
1613			}
1614			ath_hal_intrset(ah, 0);
1615		}
1616		ath_draintxq(sc);
1617		if (!sc->sc_invalid) {
1618			ath_stoprecv(sc);
1619			ath_hal_phydisable(ah);
1620		} else
1621			sc->sc_rxlink = NULL;
1622		ath_beacon_free(sc);	/* XXX not needed */
1623	}
1624}
1625
1626static void
1627ath_stop(struct ifnet *ifp)
1628{
1629	struct ath_softc *sc = ifp->if_softc;
1630
1631	ATH_LOCK(sc);
1632	ath_stop_locked(ifp);
1633	ATH_UNLOCK(sc);
1634}
1635
1636/*
1637 * Reset the hardware w/o losing operational state.  This is
1638 * basically a more efficient way of doing ath_stop, ath_init,
1639 * followed by state transitions to the current 802.11
1640 * operational state.  Used to recover from various errors and
1641 * to reset or reload hardware state.
1642 */
1643int
1644ath_reset(struct ifnet *ifp)
1645{
1646	struct ath_softc *sc = ifp->if_softc;
1647	struct ieee80211com *ic = ifp->if_l2com;
1648	struct ath_hal *ah = sc->sc_ah;
1649	HAL_STATUS status;
1650
1651	ath_hal_intrset(ah, 0);		/* disable interrupts */
1652	ath_draintxq(sc);		/* stop xmit side */
1653	ath_stoprecv(sc);		/* stop recv side */
1654	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1655	/* NB: indicate channel change so we do a full reset */
1656	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1657		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1658			__func__, status);
1659	sc->sc_diversity = ath_hal_getdiversity(ah);
1660	if (ath_startrecv(sc) != 0)	/* restart recv */
1661		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1662	/*
1663	 * We may be doing a reset in response to an ioctl
1664	 * that changes the channel so update any state that
1665	 * might change as a result.
1666	 */
1667	ath_chan_change(sc, ic->ic_curchan);
1668	if (sc->sc_beacons) {		/* restart beacons */
1669#ifdef IEEE80211_SUPPORT_TDMA
1670		if (sc->sc_tdma)
1671			ath_tdma_config(sc, NULL);
1672		else
1673#endif
1674			ath_beacon_config(sc, NULL);
1675	}
1676	ath_hal_intrset(ah, sc->sc_imask);
1677
1678	ath_start(ifp);			/* restart xmit */
1679	return 0;
1680}
1681
1682static int
1683ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1684{
1685	struct ieee80211com *ic = vap->iv_ic;
1686	struct ifnet *ifp = ic->ic_ifp;
1687	struct ath_softc *sc = ifp->if_softc;
1688	struct ath_hal *ah = sc->sc_ah;
1689
1690	switch (cmd) {
1691	case IEEE80211_IOC_TXPOWER:
1692		/*
1693		 * If per-packet TPC is enabled, then we have nothing
1694		 * to do; otherwise we need to force the global limit.
1695		 * All this can happen directly; no need to reset.
1696		 */
1697		if (!ath_hal_gettpc(ah))
1698			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1699		return 0;
1700	}
1701	return ath_reset(ifp);
1702}
1703
1704struct ath_buf *
1705_ath_getbuf_locked(struct ath_softc *sc)
1706{
1707	struct ath_buf *bf;
1708
1709	ATH_TXBUF_LOCK_ASSERT(sc);
1710
1711	bf = STAILQ_FIRST(&sc->sc_txbuf);
1712	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
1713		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1714	else
1715		bf = NULL;
1716	if (bf == NULL) {
1717		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
1718		    STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
1719			"out of xmit buffers" : "xmit buffer busy");
1720	}
1721	return bf;
1722}
1723
1724struct ath_buf *
1725ath_getbuf(struct ath_softc *sc)
1726{
1727	struct ath_buf *bf;
1728
1729	ATH_TXBUF_LOCK(sc);
1730	bf = _ath_getbuf_locked(sc);
1731	if (bf == NULL) {
1732		struct ifnet *ifp = sc->sc_ifp;
1733
1734		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
1735		sc->sc_stats.ast_tx_qstop++;
1736		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1737	}
1738	ATH_TXBUF_UNLOCK(sc);
1739	return bf;
1740}
1741
1742static void
1743ath_start(struct ifnet *ifp)
1744{
1745	struct ath_softc *sc = ifp->if_softc;
1746	struct ieee80211_node *ni;
1747	struct ath_buf *bf;
1748	struct mbuf *m, *next;
1749	ath_bufhead frags;
1750
1751	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1752		return;
1753	for (;;) {
1754		/*
1755		 * Grab a TX buffer and associated resources.
1756		 */
1757		bf = ath_getbuf(sc);
1758		if (bf == NULL)
1759			break;
1760
1761		IFQ_DEQUEUE(&ifp->if_snd, m);
1762		if (m == NULL) {
1763			ATH_TXBUF_LOCK(sc);
1764			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1765			ATH_TXBUF_UNLOCK(sc);
1766			break;
1767		}
1768		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1769		/*
1770		 * Check for fragmentation.  If this frame
1771		 * has been broken up verify we have enough
1772		 * buffers to send all the fragments so all
1773		 * go out or none...
1774		 */
1775		STAILQ_INIT(&frags);
1776		if ((m->m_flags & M_FRAG) &&
1777		    !ath_txfrag_setup(sc, &frags, m, ni)) {
1778			DPRINTF(sc, ATH_DEBUG_XMIT,
1779			    "%s: out of txfrag buffers\n", __func__);
1780			sc->sc_stats.ast_tx_nofrag++;
1781			ifp->if_oerrors++;
1782			ath_freetx(m);
1783			goto bad;
1784		}
1785		ifp->if_opackets++;
1786	nextfrag:
1787		/*
1788		 * Pass the frame to the h/w for transmission.
1789		 * Fragmented frames have each frag chained together
1790		 * with m_nextpkt.  We know there are sufficient ath_buf's
1791		 * to send all the frags because of work done by
1792		 * ath_txfrag_setup.  We leave m_nextpkt set while
1793		 * calling ath_tx_start so it can use it to extend the
1794		 * the tx duration to cover the subsequent frag and
1795		 * so it can reclaim all the mbufs in case of an error;
1796		 * ath_tx_start clears m_nextpkt once it commits to
1797		 * handing the frame to the hardware.
1798		 */
1799		next = m->m_nextpkt;
1800		if (ath_tx_start(sc, ni, bf, m)) {
1801	bad:
1802			ifp->if_oerrors++;
1803	reclaim:
1804			bf->bf_m = NULL;
1805			bf->bf_node = NULL;
1806			ATH_TXBUF_LOCK(sc);
1807			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1808			ath_txfrag_cleanup(sc, &frags, ni);
1809			ATH_TXBUF_UNLOCK(sc);
1810			if (ni != NULL)
1811				ieee80211_free_node(ni);
1812			continue;
1813		}
1814		if (next != NULL) {
1815			/*
1816			 * Beware of state changing between frags.
1817			 * XXX check sta power-save state?
1818			 */
1819			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
1820				DPRINTF(sc, ATH_DEBUG_XMIT,
1821				    "%s: flush fragmented packet, state %s\n",
1822				    __func__,
1823				    ieee80211_state_name[ni->ni_vap->iv_state]);
1824				ath_freetx(next);
1825				goto reclaim;
1826			}
1827			m = next;
1828			bf = STAILQ_FIRST(&frags);
1829			KASSERT(bf != NULL, ("no buf for txfrag"));
1830			STAILQ_REMOVE_HEAD(&frags, bf_list);
1831			goto nextfrag;
1832		}
1833
1834		sc->sc_wd_timer = 5;
1835	}
1836}
1837
1838static int
1839ath_media_change(struct ifnet *ifp)
1840{
1841	int error = ieee80211_media_change(ifp);
1842	/* NB: only the fixed rate can change and that doesn't need a reset */
1843	return (error == ENETRESET ? 0 : error);
1844}
1845
1846/*
1847 * Block/unblock tx+rx processing while a key change is done.
1848 * We assume the caller serializes key management operations
1849 * so we only need to worry about synchronization with other
1850 * uses that originate in the driver.
1851 */
1852static void
1853ath_key_update_begin(struct ieee80211vap *vap)
1854{
1855	struct ifnet *ifp = vap->iv_ic->ic_ifp;
1856	struct ath_softc *sc = ifp->if_softc;
1857
1858	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1859	taskqueue_block(sc->sc_tq);
1860	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1861}
1862
1863static void
1864ath_key_update_end(struct ieee80211vap *vap)
1865{
1866	struct ifnet *ifp = vap->iv_ic->ic_ifp;
1867	struct ath_softc *sc = ifp->if_softc;
1868
1869	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1870	IF_UNLOCK(&ifp->if_snd);
1871	taskqueue_unblock(sc->sc_tq);
1872}
1873
1874/*
1875 * Calculate the receive filter according to the
1876 * operating mode and state:
1877 *
1878 * o always accept unicast, broadcast, and multicast traffic
1879 * o accept PHY error frames when hardware doesn't have MIB support
1880 *   to count and we need them for ANI (sta mode only until recently)
1881 *   and we are not scanning (ANI is disabled)
1882 *   NB: older hal's add rx filter bits out of sight and we need to
1883 *	 blindly preserve them
1884 * o probe request frames are accepted only when operating in
1885 *   hostap, adhoc, mesh, or monitor modes
1886 * o enable promiscuous mode
1887 *   - when in monitor mode
1888 *   - if interface marked PROMISC (assumes bridge setting is filtered)
1889 * o accept beacons:
1890 *   - when operating in station mode for collecting rssi data when
1891 *     the station is otherwise quiet, or
1892 *   - when operating in adhoc mode so the 802.11 layer creates
1893 *     node table entries for peers,
1894 *   - when scanning
1895 *   - when doing s/w beacon miss (e.g. for ap+sta)
1896 *   - when operating in ap mode in 11g to detect overlapping bss that
1897 *     require protection
1898 *   - when operating in mesh mode to detect neighbors
1899 * o accept control frames:
1900 *   - when in monitor mode
1901 * XXX HT protection for 11n
1902 */
1903static u_int32_t
1904ath_calcrxfilter(struct ath_softc *sc)
1905{
1906	struct ifnet *ifp = sc->sc_ifp;
1907	struct ieee80211com *ic = ifp->if_l2com;
1908	u_int32_t rfilt;
1909
1910	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1911	if (!sc->sc_needmib && !sc->sc_scanning)
1912		rfilt |= HAL_RX_FILTER_PHYERR;
1913	if (ic->ic_opmode != IEEE80211_M_STA)
1914		rfilt |= HAL_RX_FILTER_PROBEREQ;
1915	/* XXX ic->ic_monvaps != 0? */
1916	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
1917		rfilt |= HAL_RX_FILTER_PROM;
1918	if (ic->ic_opmode == IEEE80211_M_STA ||
1919	    ic->ic_opmode == IEEE80211_M_IBSS ||
1920	    sc->sc_swbmiss || sc->sc_scanning)
1921		rfilt |= HAL_RX_FILTER_BEACON;
1922	/*
1923	 * NB: We don't recalculate the rx filter when
1924	 * ic_protmode changes; otherwise we could do
1925	 * this only when ic_protmode != NONE.
1926	 */
1927	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
1928	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
1929		rfilt |= HAL_RX_FILTER_BEACON;
1930	if (sc->sc_nmeshvaps) {
1931		rfilt |= HAL_RX_FILTER_BEACON;
1932		if (sc->sc_hasbmatch)
1933			rfilt |= HAL_RX_FILTER_BSSID;
1934		else
1935			rfilt |= HAL_RX_FILTER_PROM;
1936	}
1937	if (ic->ic_opmode == IEEE80211_M_MONITOR)
1938		rfilt |= HAL_RX_FILTER_CONTROL;
1939	if (IEEE80211_IS_CHAN_HT(ic->ic_curchan))
1940		rfilt |= HAL_RX_FILTER_COMPBAR;
1941	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
1942	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
1943	return rfilt;
1944}
1945
1946static void
1947ath_update_promisc(struct ifnet *ifp)
1948{
1949	struct ath_softc *sc = ifp->if_softc;
1950	u_int32_t rfilt;
1951
1952	/* configure rx filter */
1953	rfilt = ath_calcrxfilter(sc);
1954	ath_hal_setrxfilter(sc->sc_ah, rfilt);
1955
1956	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
1957}
1958
1959static void
1960ath_update_mcast(struct ifnet *ifp)
1961{
1962	struct ath_softc *sc = ifp->if_softc;
1963	u_int32_t mfilt[2];
1964
1965	/* calculate and install multicast filter */
1966	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1967		struct ifmultiaddr *ifma;
1968		/*
1969		 * Merge multicast addresses to form the hardware filter.
1970		 */
1971		mfilt[0] = mfilt[1] = 0;
1972		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
1973		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1974			caddr_t dl;
1975			u_int32_t val;
1976			u_int8_t pos;
1977
1978			/* calculate XOR of eight 6bit values */
1979			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1980			val = LE_READ_4(dl + 0);
1981			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1982			val = LE_READ_4(dl + 3);
1983			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1984			pos &= 0x3f;
1985			mfilt[pos / 32] |= (1 << (pos % 32));
1986		}
1987		if_maddr_runlock(ifp);
1988	} else
1989		mfilt[0] = mfilt[1] = ~0;
1990	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
1991	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
1992		__func__, mfilt[0], mfilt[1]);
1993}
1994
1995static void
1996ath_mode_init(struct ath_softc *sc)
1997{
1998	struct ifnet *ifp = sc->sc_ifp;
1999	struct ath_hal *ah = sc->sc_ah;
2000	u_int32_t rfilt;
2001
2002	/* configure rx filter */
2003	rfilt = ath_calcrxfilter(sc);
2004	ath_hal_setrxfilter(ah, rfilt);
2005
2006	/* configure operational mode */
2007	ath_hal_setopmode(ah);
2008
2009	/* handle any link-level address change */
2010	ath_hal_setmac(ah, IF_LLADDR(ifp));
2011
2012	/* calculate and install multicast filter */
2013	ath_update_mcast(ifp);
2014}
2015
2016/*
2017 * Set the slot time based on the current setting.
2018 */
2019static void
2020ath_setslottime(struct ath_softc *sc)
2021{
2022	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2023	struct ath_hal *ah = sc->sc_ah;
2024	u_int usec;
2025
2026	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2027		usec = 13;
2028	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2029		usec = 21;
2030	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2031		/* honor short/long slot time only in 11g */
2032		/* XXX shouldn't honor on pure g or turbo g channel */
2033		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2034			usec = HAL_SLOT_TIME_9;
2035		else
2036			usec = HAL_SLOT_TIME_20;
2037	} else
2038		usec = HAL_SLOT_TIME_9;
2039
2040	DPRINTF(sc, ATH_DEBUG_RESET,
2041	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2042	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2043	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2044
2045	ath_hal_setslottime(ah, usec);
2046	sc->sc_updateslot = OK;
2047}
2048
2049/*
2050 * Callback from the 802.11 layer to update the
2051 * slot time based on the current setting.
2052 */
2053static void
2054ath_updateslot(struct ifnet *ifp)
2055{
2056	struct ath_softc *sc = ifp->if_softc;
2057	struct ieee80211com *ic = ifp->if_l2com;
2058
2059	/*
2060	 * When not coordinating the BSS, change the hardware
2061	 * immediately.  For other operation we defer the change
2062	 * until beacon updates have propagated to the stations.
2063	 */
2064	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2065	    ic->ic_opmode == IEEE80211_M_MBSS)
2066		sc->sc_updateslot = UPDATE;
2067	else
2068		ath_setslottime(sc);
2069}
2070
2071/*
2072 * Setup a h/w transmit queue for beacons.
2073 */
2074static int
2075ath_beaconq_setup(struct ath_hal *ah)
2076{
2077	HAL_TXQ_INFO qi;
2078
2079	memset(&qi, 0, sizeof(qi));
2080	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2081	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2082	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2083	/* NB: for dynamic turbo, don't enable any other interrupts */
2084	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2085	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2086}
2087
2088/*
2089 * Setup the transmit queue parameters for the beacon queue.
2090 */
2091static int
2092ath_beaconq_config(struct ath_softc *sc)
2093{
2094#define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2095	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2096	struct ath_hal *ah = sc->sc_ah;
2097	HAL_TXQ_INFO qi;
2098
2099	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2100	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2101	    ic->ic_opmode == IEEE80211_M_MBSS) {
2102		/*
2103		 * Always burst out beacon and CAB traffic.
2104		 */
2105		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2106		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2107		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2108	} else {
2109		struct wmeParams *wmep =
2110			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2111		/*
2112		 * Adhoc mode; important thing is to use 2x cwmin.
2113		 */
2114		qi.tqi_aifs = wmep->wmep_aifsn;
2115		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2116		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2117	}
2118
2119	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2120		device_printf(sc->sc_dev, "unable to update parameters for "
2121			"beacon hardware queue!\n");
2122		return 0;
2123	} else {
2124		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2125		return 1;
2126	}
2127#undef ATH_EXPONENT_TO_VALUE
2128}
2129
2130/*
2131 * Allocate and setup an initial beacon frame.
2132 */
2133static int
2134ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2135{
2136	struct ieee80211vap *vap = ni->ni_vap;
2137	struct ath_vap *avp = ATH_VAP(vap);
2138	struct ath_buf *bf;
2139	struct mbuf *m;
2140	int error;
2141
2142	bf = avp->av_bcbuf;
2143	if (bf->bf_m != NULL) {
2144		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2145		m_freem(bf->bf_m);
2146		bf->bf_m = NULL;
2147	}
2148	if (bf->bf_node != NULL) {
2149		ieee80211_free_node(bf->bf_node);
2150		bf->bf_node = NULL;
2151	}
2152
2153	/*
2154	 * NB: the beacon data buffer must be 32-bit aligned;
2155	 * we assume the mbuf routines will return us something
2156	 * with this alignment (perhaps should assert).
2157	 */
2158	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2159	if (m == NULL) {
2160		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2161		sc->sc_stats.ast_be_nombuf++;
2162		return ENOMEM;
2163	}
2164	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2165				     bf->bf_segs, &bf->bf_nseg,
2166				     BUS_DMA_NOWAIT);
2167	if (error != 0) {
2168		device_printf(sc->sc_dev,
2169		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2170		    __func__, error);
2171		m_freem(m);
2172		return error;
2173	}
2174
2175	/*
2176	 * Calculate a TSF adjustment factor required for staggered
2177	 * beacons.  Note that we assume the format of the beacon
2178	 * frame leaves the tstamp field immediately following the
2179	 * header.
2180	 */
2181	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2182		uint64_t tsfadjust;
2183		struct ieee80211_frame *wh;
2184
2185		/*
2186		 * The beacon interval is in TU's; the TSF is in usecs.
2187		 * We figure out how many TU's to add to align the timestamp
2188		 * then convert to TSF units and handle byte swapping before
2189		 * inserting it in the frame.  The hardware will then add this
2190		 * each time a beacon frame is sent.  Note that we align vap's
2191		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2192		 * timestamp in one beacon interval while the others get a
2193		 * timstamp aligned to the next interval.
2194		 */
2195		tsfadjust = ni->ni_intval *
2196		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2197		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2198
2199		DPRINTF(sc, ATH_DEBUG_BEACON,
2200		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2201		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2202		    avp->av_bslot, ni->ni_intval,
2203		    (long long unsigned) le64toh(tsfadjust));
2204
2205		wh = mtod(m, struct ieee80211_frame *);
2206		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2207	}
2208	bf->bf_m = m;
2209	bf->bf_node = ieee80211_ref_node(ni);
2210
2211	return 0;
2212}
2213
2214/*
2215 * Setup the beacon frame for transmit.
2216 */
2217static void
2218ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2219{
2220#define	USE_SHPREAMBLE(_ic) \
2221	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2222		== IEEE80211_F_SHPREAMBLE)
2223	struct ieee80211_node *ni = bf->bf_node;
2224	struct ieee80211com *ic = ni->ni_ic;
2225	struct mbuf *m = bf->bf_m;
2226	struct ath_hal *ah = sc->sc_ah;
2227	struct ath_desc *ds;
2228	int flags, antenna;
2229	const HAL_RATE_TABLE *rt;
2230	u_int8_t rix, rate;
2231
2232	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2233		__func__, m, m->m_len);
2234
2235	/* setup descriptors */
2236	ds = bf->bf_desc;
2237
2238	flags = HAL_TXDESC_NOACK;
2239	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2240		ds->ds_link = bf->bf_daddr;	/* self-linked */
2241		flags |= HAL_TXDESC_VEOL;
2242		/*
2243		 * Let hardware handle antenna switching.
2244		 */
2245		antenna = sc->sc_txantenna;
2246	} else {
2247		ds->ds_link = 0;
2248		/*
2249		 * Switch antenna every 4 beacons.
2250		 * XXX assumes two antenna
2251		 */
2252		if (sc->sc_txantenna != 0)
2253			antenna = sc->sc_txantenna;
2254		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2255			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2256		else
2257			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2258	}
2259
2260	KASSERT(bf->bf_nseg == 1,
2261		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2262	ds->ds_data = bf->bf_segs[0].ds_addr;
2263	/*
2264	 * Calculate rate code.
2265	 * XXX everything at min xmit rate
2266	 */
2267	rix = 0;
2268	rt = sc->sc_currates;
2269	rate = rt->info[rix].rateCode;
2270	if (USE_SHPREAMBLE(ic))
2271		rate |= rt->info[rix].shortPreamble;
2272	ath_hal_setuptxdesc(ah, ds
2273		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2274		, sizeof(struct ieee80211_frame)/* header length */
2275		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2276		, ni->ni_txpower		/* txpower XXX */
2277		, rate, 1			/* series 0 rate/tries */
2278		, HAL_TXKEYIX_INVALID		/* no encryption */
2279		, antenna			/* antenna mode */
2280		, flags				/* no ack, veol for beacons */
2281		, 0				/* rts/cts rate */
2282		, 0				/* rts/cts duration */
2283	);
2284	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2285	ath_hal_filltxdesc(ah, ds
2286		, roundup(m->m_len, 4)		/* buffer length */
2287		, AH_TRUE			/* first segment */
2288		, AH_TRUE			/* last segment */
2289		, ds				/* first descriptor */
2290	);
2291#if 0
2292	ath_desc_swap(ds);
2293#endif
2294#undef USE_SHPREAMBLE
2295}
2296
2297static void
2298ath_beacon_update(struct ieee80211vap *vap, int item)
2299{
2300	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2301
2302	setbit(bo->bo_flags, item);
2303}
2304
2305/*
2306 * Append the contents of src to dst; both queues
2307 * are assumed to be locked.
2308 */
2309static void
2310ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2311{
2312	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2313	dst->axq_link = src->axq_link;
2314	src->axq_link = NULL;
2315	dst->axq_depth += src->axq_depth;
2316	src->axq_depth = 0;
2317}
2318
2319/*
2320 * Transmit a beacon frame at SWBA.  Dynamic updates to the
2321 * frame contents are done as needed and the slot time is
2322 * also adjusted based on current state.
2323 */
2324static void
2325ath_beacon_proc(void *arg, int pending)
2326{
2327	struct ath_softc *sc = arg;
2328	struct ath_hal *ah = sc->sc_ah;
2329	struct ieee80211vap *vap;
2330	struct ath_buf *bf;
2331	int slot, otherant;
2332	uint32_t bfaddr;
2333
2334	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2335		__func__, pending);
2336	/*
2337	 * Check if the previous beacon has gone out.  If
2338	 * not don't try to post another, skip this period
2339	 * and wait for the next.  Missed beacons indicate
2340	 * a problem and should not occur.  If we miss too
2341	 * many consecutive beacons reset the device.
2342	 */
2343	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2344		sc->sc_bmisscount++;
2345		sc->sc_stats.ast_be_missed++;
2346		DPRINTF(sc, ATH_DEBUG_BEACON,
2347			"%s: missed %u consecutive beacons\n",
2348			__func__, sc->sc_bmisscount);
2349		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2350			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2351		return;
2352	}
2353	if (sc->sc_bmisscount != 0) {
2354		DPRINTF(sc, ATH_DEBUG_BEACON,
2355			"%s: resume beacon xmit after %u misses\n",
2356			__func__, sc->sc_bmisscount);
2357		sc->sc_bmisscount = 0;
2358	}
2359
2360	if (sc->sc_stagbeacons) {			/* staggered beacons */
2361		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2362		uint32_t tsftu;
2363
2364		tsftu = ath_hal_gettsf32(ah) >> 10;
2365		/* XXX lintval */
2366		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2367		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2368		bfaddr = 0;
2369		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2370			bf = ath_beacon_generate(sc, vap);
2371			if (bf != NULL)
2372				bfaddr = bf->bf_daddr;
2373		}
2374	} else {					/* burst'd beacons */
2375		uint32_t *bflink = &bfaddr;
2376
2377		for (slot = 0; slot < ATH_BCBUF; slot++) {
2378			vap = sc->sc_bslot[slot];
2379			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2380				bf = ath_beacon_generate(sc, vap);
2381				if (bf != NULL) {
2382					*bflink = bf->bf_daddr;
2383					bflink = &bf->bf_desc->ds_link;
2384				}
2385			}
2386		}
2387		*bflink = 0;				/* terminate list */
2388	}
2389
2390	/*
2391	 * Handle slot time change when a non-ERP station joins/leaves
2392	 * an 11g network.  The 802.11 layer notifies us via callback,
2393	 * we mark updateslot, then wait one beacon before effecting
2394	 * the change.  This gives associated stations at least one
2395	 * beacon interval to note the state change.
2396	 */
2397	/* XXX locking */
2398	if (sc->sc_updateslot == UPDATE) {
2399		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2400		sc->sc_slotupdate = slot;
2401	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
2402		ath_setslottime(sc);		/* commit change to h/w */
2403
2404	/*
2405	 * Check recent per-antenna transmit statistics and flip
2406	 * the default antenna if noticeably more frames went out
2407	 * on the non-default antenna.
2408	 * XXX assumes 2 anntenae
2409	 */
2410	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
2411		otherant = sc->sc_defant & 1 ? 2 : 1;
2412		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2413			ath_setdefantenna(sc, otherant);
2414		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2415	}
2416
2417	if (bfaddr != 0) {
2418		/*
2419		 * Stop any current dma and put the new frame on the queue.
2420		 * This should never fail since we check above that no frames
2421		 * are still pending on the queue.
2422		 */
2423		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2424			DPRINTF(sc, ATH_DEBUG_ANY,
2425				"%s: beacon queue %u did not stop?\n",
2426				__func__, sc->sc_bhalq);
2427		}
2428		/* NB: cabq traffic should already be queued and primed */
2429		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
2430		ath_hal_txstart(ah, sc->sc_bhalq);
2431
2432		sc->sc_stats.ast_be_xmit++;
2433	}
2434}
2435
2436static struct ath_buf *
2437ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
2438{
2439	struct ath_vap *avp = ATH_VAP(vap);
2440	struct ath_txq *cabq = sc->sc_cabq;
2441	struct ath_buf *bf;
2442	struct mbuf *m;
2443	int nmcastq, error;
2444
2445	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2446	    ("not running, state %d", vap->iv_state));
2447	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2448
2449	/*
2450	 * Update dynamic beacon contents.  If this returns
2451	 * non-zero then we need to remap the memory because
2452	 * the beacon frame changed size (probably because
2453	 * of the TIM bitmap).
2454	 */
2455	bf = avp->av_bcbuf;
2456	m = bf->bf_m;
2457	nmcastq = avp->av_mcastq.axq_depth;
2458	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
2459		/* XXX too conservative? */
2460		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2461		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2462					     bf->bf_segs, &bf->bf_nseg,
2463					     BUS_DMA_NOWAIT);
2464		if (error != 0) {
2465			if_printf(vap->iv_ifp,
2466			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2467			    __func__, error);
2468			return NULL;
2469		}
2470	}
2471	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
2472		DPRINTF(sc, ATH_DEBUG_BEACON,
2473		    "%s: cabq did not drain, mcastq %u cabq %u\n",
2474		    __func__, nmcastq, cabq->axq_depth);
2475		sc->sc_stats.ast_cabq_busy++;
2476		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
2477			/*
2478			 * CABQ traffic from a previous vap is still pending.
2479			 * We must drain the q before this beacon frame goes
2480			 * out as otherwise this vap's stations will get cab
2481			 * frames from a different vap.
2482			 * XXX could be slow causing us to miss DBA
2483			 */
2484			ath_tx_draintxq(sc, cabq);
2485		}
2486	}
2487	ath_beacon_setup(sc, bf);
2488	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2489
2490	/*
2491	 * Enable the CAB queue before the beacon queue to
2492	 * insure cab frames are triggered by this beacon.
2493	 */
2494	if (avp->av_boff.bo_tim[4] & 1) {
2495		struct ath_hal *ah = sc->sc_ah;
2496
2497		/* NB: only at DTIM */
2498		ATH_TXQ_LOCK(cabq);
2499		ATH_TXQ_LOCK(&avp->av_mcastq);
2500		if (nmcastq) {
2501			struct ath_buf *bfm;
2502
2503			/*
2504			 * Move frames from the s/w mcast q to the h/w cab q.
2505			 * XXX MORE_DATA bit
2506			 */
2507			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
2508			if (cabq->axq_link != NULL) {
2509				*cabq->axq_link = bfm->bf_daddr;
2510			} else
2511				ath_hal_puttxbuf(ah, cabq->axq_qnum,
2512					bfm->bf_daddr);
2513			ath_txqmove(cabq, &avp->av_mcastq);
2514
2515			sc->sc_stats.ast_cabq_xmit += nmcastq;
2516		}
2517		/* NB: gated by beacon so safe to start here */
2518		ath_hal_txstart(ah, cabq->axq_qnum);
2519		ATH_TXQ_UNLOCK(cabq);
2520		ATH_TXQ_UNLOCK(&avp->av_mcastq);
2521	}
2522	return bf;
2523}
2524
2525static void
2526ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
2527{
2528	struct ath_vap *avp = ATH_VAP(vap);
2529	struct ath_hal *ah = sc->sc_ah;
2530	struct ath_buf *bf;
2531	struct mbuf *m;
2532	int error;
2533
2534	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2535
2536	/*
2537	 * Update dynamic beacon contents.  If this returns
2538	 * non-zero then we need to remap the memory because
2539	 * the beacon frame changed size (probably because
2540	 * of the TIM bitmap).
2541	 */
2542	bf = avp->av_bcbuf;
2543	m = bf->bf_m;
2544	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
2545		/* XXX too conservative? */
2546		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2547		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2548					     bf->bf_segs, &bf->bf_nseg,
2549					     BUS_DMA_NOWAIT);
2550		if (error != 0) {
2551			if_printf(vap->iv_ifp,
2552			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2553			    __func__, error);
2554			return;
2555		}
2556	}
2557	ath_beacon_setup(sc, bf);
2558	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2559
2560	/* NB: caller is known to have already stopped tx dma */
2561	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2562	ath_hal_txstart(ah, sc->sc_bhalq);
2563}
2564
2565/*
2566 * Reset the hardware after detecting beacons have stopped.
2567 */
2568static void
2569ath_bstuck_proc(void *arg, int pending)
2570{
2571	struct ath_softc *sc = arg;
2572	struct ifnet *ifp = sc->sc_ifp;
2573
2574	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2575		sc->sc_bmisscount);
2576	sc->sc_stats.ast_bstuck++;
2577	ath_reset(ifp);
2578}
2579
2580/*
2581 * Reclaim beacon resources and return buffer to the pool.
2582 */
2583static void
2584ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
2585{
2586
2587	if (bf->bf_m != NULL) {
2588		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2589		m_freem(bf->bf_m);
2590		bf->bf_m = NULL;
2591	}
2592	if (bf->bf_node != NULL) {
2593		ieee80211_free_node(bf->bf_node);
2594		bf->bf_node = NULL;
2595	}
2596	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
2597}
2598
2599/*
2600 * Reclaim beacon resources.
2601 */
2602static void
2603ath_beacon_free(struct ath_softc *sc)
2604{
2605	struct ath_buf *bf;
2606
2607	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2608		if (bf->bf_m != NULL) {
2609			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2610			m_freem(bf->bf_m);
2611			bf->bf_m = NULL;
2612		}
2613		if (bf->bf_node != NULL) {
2614			ieee80211_free_node(bf->bf_node);
2615			bf->bf_node = NULL;
2616		}
2617	}
2618}
2619
2620/*
2621 * Configure the beacon and sleep timers.
2622 *
2623 * When operating as an AP this resets the TSF and sets
2624 * up the hardware to notify us when we need to issue beacons.
2625 *
2626 * When operating in station mode this sets up the beacon
2627 * timers according to the timestamp of the last received
2628 * beacon and the current TSF, configures PCF and DTIM
2629 * handling, programs the sleep registers so the hardware
2630 * will wakeup in time to receive beacons, and configures
2631 * the beacon miss handling so we'll receive a BMISS
2632 * interrupt when we stop seeing beacons from the AP
2633 * we've associated with.
2634 */
2635static void
2636ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
2637{
2638#define	TSF_TO_TU(_h,_l) \
2639	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2640#define	FUDGE	2
2641	struct ath_hal *ah = sc->sc_ah;
2642	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2643	struct ieee80211_node *ni;
2644	u_int32_t nexttbtt, intval, tsftu;
2645	u_int64_t tsf;
2646
2647	if (vap == NULL)
2648		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
2649	ni = vap->iv_bss;
2650
2651	/* extract tstamp from last beacon and convert to TU */
2652	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2653			     LE_READ_4(ni->ni_tstamp.data));
2654	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2655	    ic->ic_opmode == IEEE80211_M_MBSS) {
2656		/*
2657		 * For multi-bss ap/mesh support beacons are either staggered
2658		 * evenly over N slots or burst together.  For the former
2659		 * arrange for the SWBA to be delivered for each slot.
2660		 * Slots that are not occupied will generate nothing.
2661		 */
2662		/* NB: the beacon interval is kept internally in TU's */
2663		intval = ni->ni_intval & HAL_BEACON_PERIOD;
2664		if (sc->sc_stagbeacons)
2665			intval /= ATH_BCBUF;
2666	} else {
2667		/* NB: the beacon interval is kept internally in TU's */
2668		intval = ni->ni_intval & HAL_BEACON_PERIOD;
2669	}
2670	if (nexttbtt == 0)		/* e.g. for ap mode */
2671		nexttbtt = intval;
2672	else if (intval)		/* NB: can be 0 for monitor mode */
2673		nexttbtt = roundup(nexttbtt, intval);
2674	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2675		__func__, nexttbtt, intval, ni->ni_intval);
2676	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
2677		HAL_BEACON_STATE bs;
2678		int dtimperiod, dtimcount;
2679		int cfpperiod, cfpcount;
2680
2681		/*
2682		 * Setup dtim and cfp parameters according to
2683		 * last beacon we received (which may be none).
2684		 */
2685		dtimperiod = ni->ni_dtim_period;
2686		if (dtimperiod <= 0)		/* NB: 0 if not known */
2687			dtimperiod = 1;
2688		dtimcount = ni->ni_dtim_count;
2689		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2690			dtimcount = 0;		/* XXX? */
2691		cfpperiod = 1;			/* NB: no PCF support yet */
2692		cfpcount = 0;
2693		/*
2694		 * Pull nexttbtt forward to reflect the current
2695		 * TSF and calculate dtim+cfp state for the result.
2696		 */
2697		tsf = ath_hal_gettsf64(ah);
2698		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2699		do {
2700			nexttbtt += intval;
2701			if (--dtimcount < 0) {
2702				dtimcount = dtimperiod - 1;
2703				if (--cfpcount < 0)
2704					cfpcount = cfpperiod - 1;
2705			}
2706		} while (nexttbtt < tsftu);
2707		memset(&bs, 0, sizeof(bs));
2708		bs.bs_intval = intval;
2709		bs.bs_nexttbtt = nexttbtt;
2710		bs.bs_dtimperiod = dtimperiod*intval;
2711		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2712		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2713		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2714		bs.bs_cfpmaxduration = 0;
2715#if 0
2716		/*
2717		 * The 802.11 layer records the offset to the DTIM
2718		 * bitmap while receiving beacons; use it here to
2719		 * enable h/w detection of our AID being marked in
2720		 * the bitmap vector (to indicate frames for us are
2721		 * pending at the AP).
2722		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2723		 * XXX enable based on h/w rev for newer chips
2724		 */
2725		bs.bs_timoffset = ni->ni_timoff;
2726#endif
2727		/*
2728		 * Calculate the number of consecutive beacons to miss
2729		 * before taking a BMISS interrupt.
2730		 * Note that we clamp the result to at most 10 beacons.
2731		 */
2732		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
2733		if (bs.bs_bmissthreshold > 10)
2734			bs.bs_bmissthreshold = 10;
2735		else if (bs.bs_bmissthreshold <= 0)
2736			bs.bs_bmissthreshold = 1;
2737
2738		/*
2739		 * Calculate sleep duration.  The configuration is
2740		 * given in ms.  We insure a multiple of the beacon
2741		 * period is used.  Also, if the sleep duration is
2742		 * greater than the DTIM period then it makes senses
2743		 * to make it a multiple of that.
2744		 *
2745		 * XXX fixed at 100ms
2746		 */
2747		bs.bs_sleepduration =
2748			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2749		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2750			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2751
2752		DPRINTF(sc, ATH_DEBUG_BEACON,
2753			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2754			, __func__
2755			, tsf, tsftu
2756			, bs.bs_intval
2757			, bs.bs_nexttbtt
2758			, bs.bs_dtimperiod
2759			, bs.bs_nextdtim
2760			, bs.bs_bmissthreshold
2761			, bs.bs_sleepduration
2762			, bs.bs_cfpperiod
2763			, bs.bs_cfpmaxduration
2764			, bs.bs_cfpnext
2765			, bs.bs_timoffset
2766		);
2767		ath_hal_intrset(ah, 0);
2768		ath_hal_beacontimers(ah, &bs);
2769		sc->sc_imask |= HAL_INT_BMISS;
2770		ath_hal_intrset(ah, sc->sc_imask);
2771	} else {
2772		ath_hal_intrset(ah, 0);
2773		if (nexttbtt == intval)
2774			intval |= HAL_BEACON_RESET_TSF;
2775		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2776			/*
2777			 * In IBSS mode enable the beacon timers but only
2778			 * enable SWBA interrupts if we need to manually
2779			 * prepare beacon frames.  Otherwise we use a
2780			 * self-linked tx descriptor and let the hardware
2781			 * deal with things.
2782			 */
2783			intval |= HAL_BEACON_ENA;
2784			if (!sc->sc_hasveol)
2785				sc->sc_imask |= HAL_INT_SWBA;
2786			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2787				/*
2788				 * Pull nexttbtt forward to reflect
2789				 * the current TSF.
2790				 */
2791				tsf = ath_hal_gettsf64(ah);
2792				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2793				do {
2794					nexttbtt += intval;
2795				} while (nexttbtt < tsftu);
2796			}
2797			ath_beaconq_config(sc);
2798		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2799		    ic->ic_opmode == IEEE80211_M_MBSS) {
2800			/*
2801			 * In AP/mesh mode we enable the beacon timers
2802			 * and SWBA interrupts to prepare beacon frames.
2803			 */
2804			intval |= HAL_BEACON_ENA;
2805			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2806			ath_beaconq_config(sc);
2807		}
2808		ath_hal_beaconinit(ah, nexttbtt, intval);
2809		sc->sc_bmisscount = 0;
2810		ath_hal_intrset(ah, sc->sc_imask);
2811		/*
2812		 * When using a self-linked beacon descriptor in
2813		 * ibss mode load it once here.
2814		 */
2815		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2816			ath_beacon_start_adhoc(sc, vap);
2817	}
2818	sc->sc_syncbeacon = 0;
2819#undef FUDGE
2820#undef TSF_TO_TU
2821}
2822
2823static void
2824ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2825{
2826	bus_addr_t *paddr = (bus_addr_t*) arg;
2827	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2828	*paddr = segs->ds_addr;
2829}
2830
2831static int
2832ath_descdma_setup(struct ath_softc *sc,
2833	struct ath_descdma *dd, ath_bufhead *head,
2834	const char *name, int nbuf, int ndesc)
2835{
2836#define	DS2PHYS(_dd, _ds) \
2837	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2838	struct ifnet *ifp = sc->sc_ifp;
2839	struct ath_desc *ds;
2840	struct ath_buf *bf;
2841	int i, bsize, error;
2842
2843	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2844	    __func__, name, nbuf, ndesc);
2845
2846	dd->dd_name = name;
2847	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2848
2849	/*
2850	 * Setup DMA descriptor area.
2851	 */
2852	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
2853		       PAGE_SIZE, 0,		/* alignment, bounds */
2854		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2855		       BUS_SPACE_MAXADDR,	/* highaddr */
2856		       NULL, NULL,		/* filter, filterarg */
2857		       dd->dd_desc_len,		/* maxsize */
2858		       1,			/* nsegments */
2859		       dd->dd_desc_len,		/* maxsegsize */
2860		       BUS_DMA_ALLOCNOW,	/* flags */
2861		       NULL,			/* lockfunc */
2862		       NULL,			/* lockarg */
2863		       &dd->dd_dmat);
2864	if (error != 0) {
2865		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2866		return error;
2867	}
2868
2869	/* allocate descriptors */
2870	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2871	if (error != 0) {
2872		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2873			"error %u\n", dd->dd_name, error);
2874		goto fail0;
2875	}
2876
2877	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2878				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
2879				 &dd->dd_dmamap);
2880	if (error != 0) {
2881		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2882			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2883		goto fail1;
2884	}
2885
2886	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2887				dd->dd_desc, dd->dd_desc_len,
2888				ath_load_cb, &dd->dd_desc_paddr,
2889				BUS_DMA_NOWAIT);
2890	if (error != 0) {
2891		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2892			dd->dd_name, error);
2893		goto fail2;
2894	}
2895
2896	ds = dd->dd_desc;
2897	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2898	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2899	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2900
2901	/* allocate rx buffers */
2902	bsize = sizeof(struct ath_buf) * nbuf;
2903	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2904	if (bf == NULL) {
2905		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2906			dd->dd_name, bsize);
2907		goto fail3;
2908	}
2909	dd->dd_bufptr = bf;
2910
2911	STAILQ_INIT(head);
2912	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2913		bf->bf_desc = ds;
2914		bf->bf_daddr = DS2PHYS(dd, ds);
2915		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2916				&bf->bf_dmamap);
2917		if (error != 0) {
2918			if_printf(ifp, "unable to create dmamap for %s "
2919				"buffer %u, error %u\n", dd->dd_name, i, error);
2920			ath_descdma_cleanup(sc, dd, head);
2921			return error;
2922		}
2923		STAILQ_INSERT_TAIL(head, bf, bf_list);
2924	}
2925	return 0;
2926fail3:
2927	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2928fail2:
2929	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2930fail1:
2931	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2932fail0:
2933	bus_dma_tag_destroy(dd->dd_dmat);
2934	memset(dd, 0, sizeof(*dd));
2935	return error;
2936#undef DS2PHYS
2937}
2938
2939static void
2940ath_descdma_cleanup(struct ath_softc *sc,
2941	struct ath_descdma *dd, ath_bufhead *head)
2942{
2943	struct ath_buf *bf;
2944	struct ieee80211_node *ni;
2945
2946	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2947	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2948	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2949	bus_dma_tag_destroy(dd->dd_dmat);
2950
2951	STAILQ_FOREACH(bf, head, bf_list) {
2952		if (bf->bf_m) {
2953			m_freem(bf->bf_m);
2954			bf->bf_m = NULL;
2955		}
2956		if (bf->bf_dmamap != NULL) {
2957			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2958			bf->bf_dmamap = NULL;
2959		}
2960		ni = bf->bf_node;
2961		bf->bf_node = NULL;
2962		if (ni != NULL) {
2963			/*
2964			 * Reclaim node reference.
2965			 */
2966			ieee80211_free_node(ni);
2967		}
2968	}
2969
2970	STAILQ_INIT(head);
2971	free(dd->dd_bufptr, M_ATHDEV);
2972	memset(dd, 0, sizeof(*dd));
2973}
2974
2975static int
2976ath_desc_alloc(struct ath_softc *sc)
2977{
2978	int error;
2979
2980	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2981			"rx", ath_rxbuf, 1);
2982	if (error != 0)
2983		return error;
2984
2985	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2986			"tx", ath_txbuf, ATH_TXDESC);
2987	if (error != 0) {
2988		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2989		return error;
2990	}
2991
2992	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2993			"beacon", ATH_BCBUF, 1);
2994	if (error != 0) {
2995		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2996		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2997		return error;
2998	}
2999	return 0;
3000}
3001
3002static void
3003ath_desc_free(struct ath_softc *sc)
3004{
3005
3006	if (sc->sc_bdma.dd_desc_len != 0)
3007		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3008	if (sc->sc_txdma.dd_desc_len != 0)
3009		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3010	if (sc->sc_rxdma.dd_desc_len != 0)
3011		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3012}
3013
3014static struct ieee80211_node *
3015ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3016{
3017	struct ieee80211com *ic = vap->iv_ic;
3018	struct ath_softc *sc = ic->ic_ifp->if_softc;
3019	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3020	struct ath_node *an;
3021
3022	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3023	if (an == NULL) {
3024		/* XXX stat+msg */
3025		return NULL;
3026	}
3027	ath_rate_node_init(sc, an);
3028
3029	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3030	return &an->an_node;
3031}
3032
3033static void
3034ath_node_free(struct ieee80211_node *ni)
3035{
3036	struct ieee80211com *ic = ni->ni_ic;
3037        struct ath_softc *sc = ic->ic_ifp->if_softc;
3038
3039	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3040
3041	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3042	sc->sc_node_free(ni);
3043}
3044
3045static void
3046ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3047{
3048	struct ieee80211com *ic = ni->ni_ic;
3049	struct ath_softc *sc = ic->ic_ifp->if_softc;
3050	struct ath_hal *ah = sc->sc_ah;
3051
3052	*rssi = ic->ic_node_getrssi(ni);
3053	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3054		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3055	else
3056		*noise = -95;		/* nominally correct */
3057}
3058
3059static int
3060ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3061{
3062	struct ath_hal *ah = sc->sc_ah;
3063	int error;
3064	struct mbuf *m;
3065	struct ath_desc *ds;
3066
3067	m = bf->bf_m;
3068	if (m == NULL) {
3069		/*
3070		 * NB: by assigning a page to the rx dma buffer we
3071		 * implicitly satisfy the Atheros requirement that
3072		 * this buffer be cache-line-aligned and sized to be
3073		 * multiple of the cache line size.  Not doing this
3074		 * causes weird stuff to happen (for the 5210 at least).
3075		 */
3076		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3077		if (m == NULL) {
3078			DPRINTF(sc, ATH_DEBUG_ANY,
3079				"%s: no mbuf/cluster\n", __func__);
3080			sc->sc_stats.ast_rx_nombuf++;
3081			return ENOMEM;
3082		}
3083		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3084
3085		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3086					     bf->bf_dmamap, m,
3087					     bf->bf_segs, &bf->bf_nseg,
3088					     BUS_DMA_NOWAIT);
3089		if (error != 0) {
3090			DPRINTF(sc, ATH_DEBUG_ANY,
3091			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3092			    __func__, error);
3093			sc->sc_stats.ast_rx_busdma++;
3094			m_freem(m);
3095			return error;
3096		}
3097		KASSERT(bf->bf_nseg == 1,
3098			("multi-segment packet; nseg %u", bf->bf_nseg));
3099		bf->bf_m = m;
3100	}
3101	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3102
3103	/*
3104	 * Setup descriptors.  For receive we always terminate
3105	 * the descriptor list with a self-linked entry so we'll
3106	 * not get overrun under high load (as can happen with a
3107	 * 5212 when ANI processing enables PHY error frames).
3108	 *
3109	 * To insure the last descriptor is self-linked we create
3110	 * each descriptor as self-linked and add it to the end.  As
3111	 * each additional descriptor is added the previous self-linked
3112	 * entry is ``fixed'' naturally.  This should be safe even
3113	 * if DMA is happening.  When processing RX interrupts we
3114	 * never remove/process the last, self-linked, entry on the
3115	 * descriptor list.  This insures the hardware always has
3116	 * someplace to write a new frame.
3117	 */
3118	ds = bf->bf_desc;
3119	ds->ds_link = bf->bf_daddr;	/* link to self */
3120	ds->ds_data = bf->bf_segs[0].ds_addr;
3121	ath_hal_setuprxdesc(ah, ds
3122		, m->m_len		/* buffer size */
3123		, 0
3124	);
3125
3126	if (sc->sc_rxlink != NULL)
3127		*sc->sc_rxlink = bf->bf_daddr;
3128	sc->sc_rxlink = &ds->ds_link;
3129	return 0;
3130}
3131
3132/*
3133 * Extend 15-bit time stamp from rx descriptor to
3134 * a full 64-bit TSF using the specified TSF.
3135 */
3136static __inline u_int64_t
3137ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3138{
3139	if ((tsf & 0x7fff) < rstamp)
3140		tsf -= 0x8000;
3141	return ((tsf &~ 0x7fff) | rstamp);
3142}
3143
3144/*
3145 * Intercept management frames to collect beacon rssi data
3146 * and to do ibss merges.
3147 */
3148static void
3149ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3150	int subtype, int rssi, int nf)
3151{
3152	struct ieee80211vap *vap = ni->ni_vap;
3153	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3154
3155	/*
3156	 * Call up first so subsequent work can use information
3157	 * potentially stored in the node (e.g. for ibss merge).
3158	 */
3159	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3160	switch (subtype) {
3161	case IEEE80211_FC0_SUBTYPE_BEACON:
3162		/* update rssi statistics for use by the hal */
3163		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3164		if (sc->sc_syncbeacon &&
3165		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3166			/*
3167			 * Resync beacon timers using the tsf of the beacon
3168			 * frame we just received.
3169			 */
3170			ath_beacon_config(sc, vap);
3171		}
3172		/* fall thru... */
3173	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3174		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3175		    vap->iv_state == IEEE80211_S_RUN) {
3176			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3177			uint64_t tsf = ath_extend_tsf(rstamp,
3178				ath_hal_gettsf64(sc->sc_ah));
3179			/*
3180			 * Handle ibss merge as needed; check the tsf on the
3181			 * frame before attempting the merge.  The 802.11 spec
3182			 * says the station should change it's bssid to match
3183			 * the oldest station with the same ssid, where oldest
3184			 * is determined by the tsf.  Note that hardware
3185			 * reconfiguration happens through callback to
3186			 * ath_newstate as the state machine will go from
3187			 * RUN -> RUN when this happens.
3188			 */
3189			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3190				DPRINTF(sc, ATH_DEBUG_STATE,
3191				    "ibss merge, rstamp %u tsf %ju "
3192				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3193				    (uintmax_t)ni->ni_tstamp.tsf);
3194				(void) ieee80211_ibss_merge(ni);
3195			}
3196		}
3197		break;
3198	}
3199}
3200
3201/*
3202 * Set the default antenna.
3203 */
3204static void
3205ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3206{
3207	struct ath_hal *ah = sc->sc_ah;
3208
3209	/* XXX block beacon interrupts */
3210	ath_hal_setdefantenna(ah, antenna);
3211	if (sc->sc_defant != antenna)
3212		sc->sc_stats.ast_ant_defswitch++;
3213	sc->sc_defant = antenna;
3214	sc->sc_rxotherant = 0;
3215}
3216
3217static void
3218ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3219	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3220{
3221#define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3222#define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3223#define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3224#define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3225	struct ath_softc *sc = ifp->if_softc;
3226	const HAL_RATE_TABLE *rt;
3227	uint8_t rix;
3228
3229	rt = sc->sc_currates;
3230	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3231	rix = rt->rateCodeToIndex[rs->rs_rate];
3232	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3233	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3234#ifdef AH_SUPPORT_AR5416
3235	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3236	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3237		struct ieee80211com *ic = ifp->if_l2com;
3238
3239		if ((rs->rs_flags & HAL_RX_2040) == 0)
3240			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3241		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3242			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3243		else
3244			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3245		if ((rs->rs_flags & HAL_RX_GI) == 0)
3246			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3247	}
3248#endif
3249	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
3250	if (rs->rs_status & HAL_RXERR_CRC)
3251		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3252	/* XXX propagate other error flags from descriptor */
3253	sc->sc_rx_th.wr_antnoise = nf;
3254	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
3255	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3256#undef CHAN_HT
3257#undef CHAN_HT20
3258#undef CHAN_HT40U
3259#undef CHAN_HT40D
3260}
3261
3262static void
3263ath_handle_micerror(struct ieee80211com *ic,
3264	struct ieee80211_frame *wh, int keyix)
3265{
3266	struct ieee80211_node *ni;
3267
3268	/* XXX recheck MIC to deal w/ chips that lie */
3269	/* XXX discard MIC errors on !data frames */
3270	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3271	if (ni != NULL) {
3272		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3273		ieee80211_free_node(ni);
3274	}
3275}
3276
3277static void
3278ath_rx_proc(void *arg, int npending)
3279{
3280#define	PA2DESC(_sc, _pa) \
3281	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3282		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3283	struct ath_softc *sc = arg;
3284	struct ath_buf *bf;
3285	struct ifnet *ifp = sc->sc_ifp;
3286	struct ieee80211com *ic = ifp->if_l2com;
3287	struct ath_hal *ah = sc->sc_ah;
3288	struct ath_desc *ds;
3289	struct ath_rx_status *rs;
3290	struct mbuf *m;
3291	struct ieee80211_node *ni;
3292	int len, type, ngood;
3293	HAL_STATUS status;
3294	int16_t nf;
3295	u_int64_t tsf;
3296
3297	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3298	ngood = 0;
3299	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
3300	sc->sc_stats.ast_rx_noise = nf;
3301	tsf = ath_hal_gettsf64(ah);
3302	do {
3303		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3304		if (bf == NULL) {		/* NB: shouldn't happen */
3305			if_printf(ifp, "%s: no buffer!\n", __func__);
3306			break;
3307		}
3308		m = bf->bf_m;
3309		if (m == NULL) {		/* NB: shouldn't happen */
3310			/*
3311			 * If mbuf allocation failed previously there
3312			 * will be no mbuf; try again to re-populate it.
3313			 */
3314			/* XXX make debug msg */
3315			if_printf(ifp, "%s: no mbuf!\n", __func__);
3316			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3317			goto rx_next;
3318		}
3319		ds = bf->bf_desc;
3320		if (ds->ds_link == bf->bf_daddr) {
3321			/* NB: never process the self-linked entry at the end */
3322			break;
3323		}
3324		/* XXX sync descriptor memory */
3325		/*
3326		 * Must provide the virtual address of the current
3327		 * descriptor, the physical address, and the virtual
3328		 * address of the next descriptor in the h/w chain.
3329		 * This allows the HAL to look ahead to see if the
3330		 * hardware is done with a descriptor by checking the
3331		 * done bit in the following descriptor and the address
3332		 * of the current descriptor the DMA engine is working
3333		 * on.  All this is necessary because of our use of
3334		 * a self-linked list to avoid rx overruns.
3335		 */
3336		rs = &bf->bf_status.ds_rxstat;
3337		status = ath_hal_rxprocdesc(ah, ds,
3338				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3339#ifdef ATH_DEBUG
3340		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3341			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
3342#endif
3343		if (status == HAL_EINPROGRESS)
3344			break;
3345		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3346
3347		/* These aren't specifically errors */
3348		if (rs->rs_flags & HAL_RX_GI)
3349			sc->sc_stats.ast_rx_halfgi++;
3350		if (rs->rs_flags & HAL_RX_2040)
3351			sc->sc_stats.ast_rx_2040++;
3352		if (rs->rs_flags & HAL_RX_DELIM_CRC_PRE)
3353			sc->sc_stats.ast_rx_pre_crc_err++;
3354		if (rs->rs_flags & HAL_RX_DELIM_CRC_POST)
3355			sc->sc_stats.ast_rx_post_crc_err++;
3356		if (rs->rs_flags & HAL_RX_DECRYPT_BUSY)
3357			sc->sc_stats.ast_rx_decrypt_busy_err++;
3358		if (rs->rs_flags & HAL_RX_HI_RX_CHAIN)
3359			sc->sc_stats.ast_rx_hi_rx_chain++;
3360
3361		if (rs->rs_status != 0) {
3362			if (rs->rs_status & HAL_RXERR_CRC)
3363				sc->sc_stats.ast_rx_crcerr++;
3364			if (rs->rs_status & HAL_RXERR_FIFO)
3365				sc->sc_stats.ast_rx_fifoerr++;
3366			if (rs->rs_status & HAL_RXERR_PHY) {
3367				sc->sc_stats.ast_rx_phyerr++;
3368				/* Be suitably paranoid about receiving phy errors out of the stats array bounds */
3369				if (rs->rs_phyerr < 64)
3370					sc->sc_stats.ast_rx_phy[rs->rs_phyerr]++;
3371				goto rx_error;	/* NB: don't count in ierrors */
3372			}
3373			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3374				/*
3375				 * Decrypt error.  If the error occurred
3376				 * because there was no hardware key, then
3377				 * let the frame through so the upper layers
3378				 * can process it.  This is necessary for 5210
3379				 * parts which have no way to setup a ``clear''
3380				 * key cache entry.
3381				 *
3382				 * XXX do key cache faulting
3383				 */
3384				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3385					goto rx_accept;
3386				sc->sc_stats.ast_rx_badcrypt++;
3387			}
3388			if (rs->rs_status & HAL_RXERR_MIC) {
3389				sc->sc_stats.ast_rx_badmic++;
3390				/*
3391				 * Do minimal work required to hand off
3392				 * the 802.11 header for notification.
3393				 */
3394				/* XXX frag's and qos frames */
3395				len = rs->rs_datalen;
3396				if (len >= sizeof (struct ieee80211_frame)) {
3397					bus_dmamap_sync(sc->sc_dmat,
3398					    bf->bf_dmamap,
3399					    BUS_DMASYNC_POSTREAD);
3400					ath_handle_micerror(ic,
3401					    mtod(m, struct ieee80211_frame *),
3402					    sc->sc_splitmic ?
3403						rs->rs_keyix-32 : rs->rs_keyix);
3404				}
3405			}
3406			ifp->if_ierrors++;
3407rx_error:
3408			/*
3409			 * Cleanup any pending partial frame.
3410			 */
3411			if (sc->sc_rxpending != NULL) {
3412				m_freem(sc->sc_rxpending);
3413				sc->sc_rxpending = NULL;
3414			}
3415			/*
3416			 * When a tap is present pass error frames
3417			 * that have been requested.  By default we
3418			 * pass decrypt+mic errors but others may be
3419			 * interesting (e.g. crc).
3420			 */
3421			if (ieee80211_radiotap_active(ic) &&
3422			    (rs->rs_status & sc->sc_monpass)) {
3423				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3424				    BUS_DMASYNC_POSTREAD);
3425				/* NB: bpf needs the mbuf length setup */
3426				len = rs->rs_datalen;
3427				m->m_pkthdr.len = m->m_len = len;
3428				ath_rx_tap(ifp, m, rs, tsf, nf);
3429				ieee80211_radiotap_rx_all(ic, m);
3430			}
3431			/* XXX pass MIC errors up for s/w reclaculation */
3432			goto rx_next;
3433		}
3434rx_accept:
3435		/*
3436		 * Sync and unmap the frame.  At this point we're
3437		 * committed to passing the mbuf somewhere so clear
3438		 * bf_m; this means a new mbuf must be allocated
3439		 * when the rx descriptor is setup again to receive
3440		 * another frame.
3441		 */
3442		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3443		    BUS_DMASYNC_POSTREAD);
3444		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3445		bf->bf_m = NULL;
3446
3447		len = rs->rs_datalen;
3448		m->m_len = len;
3449
3450		if (rs->rs_more) {
3451			/*
3452			 * Frame spans multiple descriptors; save
3453			 * it for the next completed descriptor, it
3454			 * will be used to construct a jumbogram.
3455			 */
3456			if (sc->sc_rxpending != NULL) {
3457				/* NB: max frame size is currently 2 clusters */
3458				sc->sc_stats.ast_rx_toobig++;
3459				m_freem(sc->sc_rxpending);
3460			}
3461			m->m_pkthdr.rcvif = ifp;
3462			m->m_pkthdr.len = len;
3463			sc->sc_rxpending = m;
3464			goto rx_next;
3465		} else if (sc->sc_rxpending != NULL) {
3466			/*
3467			 * This is the second part of a jumbogram,
3468			 * chain it to the first mbuf, adjust the
3469			 * frame length, and clear the rxpending state.
3470			 */
3471			sc->sc_rxpending->m_next = m;
3472			sc->sc_rxpending->m_pkthdr.len += len;
3473			m = sc->sc_rxpending;
3474			sc->sc_rxpending = NULL;
3475		} else {
3476			/*
3477			 * Normal single-descriptor receive; setup
3478			 * the rcvif and packet length.
3479			 */
3480			m->m_pkthdr.rcvif = ifp;
3481			m->m_pkthdr.len = len;
3482		}
3483
3484		ifp->if_ipackets++;
3485		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
3486
3487		/*
3488		 * Populate the rx status block.  When there are bpf
3489		 * listeners we do the additional work to provide
3490		 * complete status.  Otherwise we fill in only the
3491		 * material required by ieee80211_input.  Note that
3492		 * noise setting is filled in above.
3493		 */
3494		if (ieee80211_radiotap_active(ic))
3495			ath_rx_tap(ifp, m, rs, tsf, nf);
3496
3497		/*
3498		 * From this point on we assume the frame is at least
3499		 * as large as ieee80211_frame_min; verify that.
3500		 */
3501		if (len < IEEE80211_MIN_LEN) {
3502			if (!ieee80211_radiotap_active(ic)) {
3503				DPRINTF(sc, ATH_DEBUG_RECV,
3504				    "%s: short packet %d\n", __func__, len);
3505				sc->sc_stats.ast_rx_tooshort++;
3506			} else {
3507				/* NB: in particular this captures ack's */
3508				ieee80211_radiotap_rx_all(ic, m);
3509			}
3510			m_freem(m);
3511			goto rx_next;
3512		}
3513
3514		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3515			const HAL_RATE_TABLE *rt = sc->sc_currates;
3516			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
3517
3518			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
3519			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
3520		}
3521
3522		m_adj(m, -IEEE80211_CRC_LEN);
3523
3524		/*
3525		 * Locate the node for sender, track state, and then
3526		 * pass the (referenced) node up to the 802.11 layer
3527		 * for its use.
3528		 */
3529		ni = ieee80211_find_rxnode_withkey(ic,
3530			mtod(m, const struct ieee80211_frame_min *),
3531			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
3532				IEEE80211_KEYIX_NONE : rs->rs_keyix);
3533		sc->sc_lastrs = rs;
3534
3535		/* Keep statistics on the number of aggregate packets received */
3536		if (rs->rs_isaggr)
3537			sc->sc_stats.ast_rx_agg++;
3538
3539		if (ni != NULL) {
3540			/*
3541 			 * Only punt packets for ampdu reorder processing for 11n nodes;
3542 			 * net80211 enforces that M_AMPDU is only set for 11n nodes.
3543 			 */
3544			if (ni->ni_flags & IEEE80211_NODE_HT)
3545				m->m_flags |= M_AMPDU;
3546
3547			/*
3548			 * Sending station is known, dispatch directly.
3549			 */
3550			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
3551			ieee80211_free_node(ni);
3552			/*
3553			 * Arrange to update the last rx timestamp only for
3554			 * frames from our ap when operating in station mode.
3555			 * This assumes the rx key is always setup when
3556			 * associated.
3557			 */
3558			if (ic->ic_opmode == IEEE80211_M_STA &&
3559			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
3560				ngood++;
3561		} else {
3562			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
3563		}
3564		/*
3565		 * Track rx rssi and do any rx antenna management.
3566		 */
3567		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
3568		if (sc->sc_diversity) {
3569			/*
3570			 * When using fast diversity, change the default rx
3571			 * antenna if diversity chooses the other antenna 3
3572			 * times in a row.
3573			 */
3574			if (sc->sc_defant != rs->rs_antenna) {
3575				if (++sc->sc_rxotherant >= 3)
3576					ath_setdefantenna(sc, rs->rs_antenna);
3577			} else
3578				sc->sc_rxotherant = 0;
3579		}
3580		if (sc->sc_softled) {
3581			/*
3582			 * Blink for any data frame.  Otherwise do a
3583			 * heartbeat-style blink when idle.  The latter
3584			 * is mainly for station mode where we depend on
3585			 * periodic beacon frames to trigger the poll event.
3586			 */
3587			if (type == IEEE80211_FC0_TYPE_DATA) {
3588				const HAL_RATE_TABLE *rt = sc->sc_currates;
3589				ath_led_event(sc,
3590				    rt->rateCodeToIndex[rs->rs_rate]);
3591			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3592				ath_led_event(sc, 0);
3593		}
3594rx_next:
3595		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3596	} while (ath_rxbuf_init(sc, bf) == 0);
3597
3598	/* rx signal state monitoring */
3599	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
3600	if (ngood)
3601		sc->sc_lastrx = tsf;
3602
3603	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
3604#ifdef IEEE80211_SUPPORT_SUPERG
3605		ieee80211_ff_age_all(ic, 100);
3606#endif
3607		if (!IFQ_IS_EMPTY(&ifp->if_snd))
3608			ath_start(ifp);
3609	}
3610#undef PA2DESC
3611}
3612
3613static void
3614ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
3615{
3616	txq->axq_qnum = qnum;
3617	txq->axq_ac = 0;
3618	txq->axq_depth = 0;
3619	txq->axq_intrcnt = 0;
3620	txq->axq_link = NULL;
3621	STAILQ_INIT(&txq->axq_q);
3622	ATH_TXQ_LOCK_INIT(sc, txq);
3623}
3624
3625/*
3626 * Setup a h/w transmit queue.
3627 */
3628static struct ath_txq *
3629ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3630{
3631#define	N(a)	(sizeof(a)/sizeof(a[0]))
3632	struct ath_hal *ah = sc->sc_ah;
3633	HAL_TXQ_INFO qi;
3634	int qnum;
3635
3636	memset(&qi, 0, sizeof(qi));
3637	qi.tqi_subtype = subtype;
3638	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3639	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3640	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3641	/*
3642	 * Enable interrupts only for EOL and DESC conditions.
3643	 * We mark tx descriptors to receive a DESC interrupt
3644	 * when a tx queue gets deep; otherwise waiting for the
3645	 * EOL to reap descriptors.  Note that this is done to
3646	 * reduce interrupt load and this only defers reaping
3647	 * descriptors, never transmitting frames.  Aside from
3648	 * reducing interrupts this also permits more concurrency.
3649	 * The only potential downside is if the tx queue backs
3650	 * up in which case the top half of the kernel may backup
3651	 * due to a lack of tx descriptors.
3652	 */
3653	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3654	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3655	if (qnum == -1) {
3656		/*
3657		 * NB: don't print a message, this happens
3658		 * normally on parts with too few tx queues
3659		 */
3660		return NULL;
3661	}
3662	if (qnum >= N(sc->sc_txq)) {
3663		device_printf(sc->sc_dev,
3664			"hal qnum %u out of range, max %zu!\n",
3665			qnum, N(sc->sc_txq));
3666		ath_hal_releasetxqueue(ah, qnum);
3667		return NULL;
3668	}
3669	if (!ATH_TXQ_SETUP(sc, qnum)) {
3670		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
3671		sc->sc_txqsetup |= 1<<qnum;
3672	}
3673	return &sc->sc_txq[qnum];
3674#undef N
3675}
3676
3677/*
3678 * Setup a hardware data transmit queue for the specified
3679 * access control.  The hal may not support all requested
3680 * queues in which case it will return a reference to a
3681 * previously setup queue.  We record the mapping from ac's
3682 * to h/w queues for use by ath_tx_start and also track
3683 * the set of h/w queues being used to optimize work in the
3684 * transmit interrupt handler and related routines.
3685 */
3686static int
3687ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3688{
3689#define	N(a)	(sizeof(a)/sizeof(a[0]))
3690	struct ath_txq *txq;
3691
3692	if (ac >= N(sc->sc_ac2q)) {
3693		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3694			ac, N(sc->sc_ac2q));
3695		return 0;
3696	}
3697	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3698	if (txq != NULL) {
3699		txq->axq_ac = ac;
3700		sc->sc_ac2q[ac] = txq;
3701		return 1;
3702	} else
3703		return 0;
3704#undef N
3705}
3706
3707/*
3708 * Update WME parameters for a transmit queue.
3709 */
3710static int
3711ath_txq_update(struct ath_softc *sc, int ac)
3712{
3713#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3714#define	ATH_TXOP_TO_US(v)		(v<<5)
3715	struct ifnet *ifp = sc->sc_ifp;
3716	struct ieee80211com *ic = ifp->if_l2com;
3717	struct ath_txq *txq = sc->sc_ac2q[ac];
3718	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3719	struct ath_hal *ah = sc->sc_ah;
3720	HAL_TXQ_INFO qi;
3721
3722	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3723#ifdef IEEE80211_SUPPORT_TDMA
3724	if (sc->sc_tdma) {
3725		/*
3726		 * AIFS is zero so there's no pre-transmit wait.  The
3727		 * burst time defines the slot duration and is configured
3728		 * through net80211.  The QCU is setup to not do post-xmit
3729		 * back off, lockout all lower-priority QCU's, and fire
3730		 * off the DMA beacon alert timer which is setup based
3731		 * on the slot configuration.
3732		 */
3733		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3734			      | HAL_TXQ_TXERRINT_ENABLE
3735			      | HAL_TXQ_TXURNINT_ENABLE
3736			      | HAL_TXQ_TXEOLINT_ENABLE
3737			      | HAL_TXQ_DBA_GATED
3738			      | HAL_TXQ_BACKOFF_DISABLE
3739			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
3740			      ;
3741		qi.tqi_aifs = 0;
3742		/* XXX +dbaprep? */
3743		qi.tqi_readyTime = sc->sc_tdmaslotlen;
3744		qi.tqi_burstTime = qi.tqi_readyTime;
3745	} else {
3746#endif
3747		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
3748			      | HAL_TXQ_TXERRINT_ENABLE
3749			      | HAL_TXQ_TXDESCINT_ENABLE
3750			      | HAL_TXQ_TXURNINT_ENABLE
3751			      ;
3752		qi.tqi_aifs = wmep->wmep_aifsn;
3753		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3754		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3755		qi.tqi_readyTime = 0;
3756		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3757#ifdef IEEE80211_SUPPORT_TDMA
3758	}
3759#endif
3760
3761	DPRINTF(sc, ATH_DEBUG_RESET,
3762	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
3763	    __func__, txq->axq_qnum, qi.tqi_qflags,
3764	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
3765
3766	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3767		if_printf(ifp, "unable to update hardware queue "
3768			"parameters for %s traffic!\n",
3769			ieee80211_wme_acnames[ac]);
3770		return 0;
3771	} else {
3772		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3773		return 1;
3774	}
3775#undef ATH_TXOP_TO_US
3776#undef ATH_EXPONENT_TO_VALUE
3777}
3778
3779/*
3780 * Callback from the 802.11 layer to update WME parameters.
3781 */
3782static int
3783ath_wme_update(struct ieee80211com *ic)
3784{
3785	struct ath_softc *sc = ic->ic_ifp->if_softc;
3786
3787	return !ath_txq_update(sc, WME_AC_BE) ||
3788	    !ath_txq_update(sc, WME_AC_BK) ||
3789	    !ath_txq_update(sc, WME_AC_VI) ||
3790	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3791}
3792
3793/*
3794 * Reclaim resources for a setup queue.
3795 */
3796static void
3797ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3798{
3799
3800	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3801	ATH_TXQ_LOCK_DESTROY(txq);
3802	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3803}
3804
3805/*
3806 * Reclaim all tx queue resources.
3807 */
3808static void
3809ath_tx_cleanup(struct ath_softc *sc)
3810{
3811	int i;
3812
3813	ATH_TXBUF_LOCK_DESTROY(sc);
3814	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3815		if (ATH_TXQ_SETUP(sc, i))
3816			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3817}
3818
3819/*
3820 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
3821 * using the current rates in sc_rixmap.
3822 */
3823int
3824ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
3825{
3826	int rix = sc->sc_rixmap[rate];
3827	/* NB: return lowest rix for invalid rate */
3828	return (rix == 0xff ? 0 : rix);
3829}
3830
3831/*
3832 * Process completed xmit descriptors from the specified queue.
3833 */
3834static int
3835ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3836{
3837	struct ath_hal *ah = sc->sc_ah;
3838	struct ifnet *ifp = sc->sc_ifp;
3839	struct ieee80211com *ic = ifp->if_l2com;
3840	struct ath_buf *bf, *last;
3841	struct ath_desc *ds, *ds0;
3842	struct ath_tx_status *ts;
3843	struct ieee80211_node *ni;
3844	struct ath_node *an;
3845	int sr, lr, pri, nacked;
3846	HAL_STATUS status;
3847
3848	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3849		__func__, txq->axq_qnum,
3850		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3851		txq->axq_link);
3852	nacked = 0;
3853	for (;;) {
3854		ATH_TXQ_LOCK(txq);
3855		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3856		bf = STAILQ_FIRST(&txq->axq_q);
3857		if (bf == NULL) {
3858			ATH_TXQ_UNLOCK(txq);
3859			break;
3860		}
3861		ds0 = &bf->bf_desc[0];
3862		ds = &bf->bf_desc[bf->bf_nseg - 1];
3863		ts = &bf->bf_status.ds_txstat;
3864		status = ath_hal_txprocdesc(ah, ds, ts);
3865#ifdef ATH_DEBUG
3866		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3867			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
3868			    status == HAL_OK);
3869#endif
3870		if (status == HAL_EINPROGRESS) {
3871			ATH_TXQ_UNLOCK(txq);
3872			break;
3873		}
3874		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3875#ifdef IEEE80211_SUPPORT_TDMA
3876		if (txq->axq_depth > 0) {
3877			/*
3878			 * More frames follow.  Mark the buffer busy
3879			 * so it's not re-used while the hardware may
3880			 * still re-read the link field in the descriptor.
3881			 */
3882			bf->bf_flags |= ATH_BUF_BUSY;
3883		} else
3884#else
3885		if (txq->axq_depth == 0)
3886#endif
3887			txq->axq_link = NULL;
3888		ATH_TXQ_UNLOCK(txq);
3889
3890		ni = bf->bf_node;
3891		if (ni != NULL) {
3892			an = ATH_NODE(ni);
3893			if (ts->ts_status == 0) {
3894				u_int8_t txant = ts->ts_antenna;
3895				sc->sc_stats.ast_ant_tx[txant]++;
3896				sc->sc_ant_tx[txant]++;
3897				if (ts->ts_finaltsi != 0)
3898					sc->sc_stats.ast_tx_altrate++;
3899				pri = M_WME_GETAC(bf->bf_m);
3900				if (pri >= WME_AC_VO)
3901					ic->ic_wme.wme_hipri_traffic++;
3902				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
3903					ni->ni_inact = ni->ni_inact_reload;
3904			} else {
3905				if (ts->ts_status & HAL_TXERR_XRETRY)
3906					sc->sc_stats.ast_tx_xretries++;
3907				if (ts->ts_status & HAL_TXERR_FIFO)
3908					sc->sc_stats.ast_tx_fifoerr++;
3909				if (ts->ts_status & HAL_TXERR_FILT)
3910					sc->sc_stats.ast_tx_filtered++;
3911				if (bf->bf_m->m_flags & M_FF)
3912					sc->sc_stats.ast_ff_txerr++;
3913			}
3914			sr = ts->ts_shortretry;
3915			lr = ts->ts_longretry;
3916			sc->sc_stats.ast_tx_shortretry += sr;
3917			sc->sc_stats.ast_tx_longretry += lr;
3918			/*
3919			 * Hand the descriptor to the rate control algorithm.
3920			 */
3921			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
3922			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
3923				/*
3924				 * If frame was ack'd update statistics,
3925				 * including the last rx time used to
3926				 * workaround phantom bmiss interrupts.
3927				 */
3928				if (ts->ts_status == 0) {
3929					nacked++;
3930					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
3931					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3932						ts->ts_rssi);
3933				}
3934				ath_rate_tx_complete(sc, an, bf);
3935			}
3936			/*
3937			 * Do any tx complete callback.  Note this must
3938			 * be done before releasing the node reference.
3939			 */
3940			if (bf->bf_m->m_flags & M_TXCB)
3941				ieee80211_process_callback(ni, bf->bf_m,
3942				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
3943				        ts->ts_status : HAL_TXERR_XRETRY);
3944			ieee80211_free_node(ni);
3945		}
3946		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3947		    BUS_DMASYNC_POSTWRITE);
3948		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3949
3950		m_freem(bf->bf_m);
3951		bf->bf_m = NULL;
3952		bf->bf_node = NULL;
3953
3954		ATH_TXBUF_LOCK(sc);
3955		last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
3956		if (last != NULL)
3957			last->bf_flags &= ~ATH_BUF_BUSY;
3958		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3959		ATH_TXBUF_UNLOCK(sc);
3960	}
3961#ifdef IEEE80211_SUPPORT_SUPERG
3962	/*
3963	 * Flush fast-frame staging queue when traffic slows.
3964	 */
3965	if (txq->axq_depth <= 1)
3966		ieee80211_ff_flush(ic, txq->axq_ac);
3967#endif
3968	return nacked;
3969}
3970
3971static __inline int
3972txqactive(struct ath_hal *ah, int qnum)
3973{
3974	u_int32_t txqs = 1<<qnum;
3975	ath_hal_gettxintrtxqs(ah, &txqs);
3976	return (txqs & (1<<qnum));
3977}
3978
3979/*
3980 * Deferred processing of transmit interrupt; special-cased
3981 * for a single hardware transmit queue (e.g. 5210 and 5211).
3982 */
3983static void
3984ath_tx_proc_q0(void *arg, int npending)
3985{
3986	struct ath_softc *sc = arg;
3987	struct ifnet *ifp = sc->sc_ifp;
3988
3989	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
3990		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3991	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
3992		ath_tx_processq(sc, sc->sc_cabq);
3993	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3994	sc->sc_wd_timer = 0;
3995
3996	if (sc->sc_softled)
3997		ath_led_event(sc, sc->sc_txrix);
3998
3999	ath_start(ifp);
4000}
4001
4002/*
4003 * Deferred processing of transmit interrupt; special-cased
4004 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
4005 */
4006static void
4007ath_tx_proc_q0123(void *arg, int npending)
4008{
4009	struct ath_softc *sc = arg;
4010	struct ifnet *ifp = sc->sc_ifp;
4011	int nacked;
4012
4013	/*
4014	 * Process each active queue.
4015	 */
4016	nacked = 0;
4017	if (txqactive(sc->sc_ah, 0))
4018		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
4019	if (txqactive(sc->sc_ah, 1))
4020		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
4021	if (txqactive(sc->sc_ah, 2))
4022		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
4023	if (txqactive(sc->sc_ah, 3))
4024		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
4025	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
4026		ath_tx_processq(sc, sc->sc_cabq);
4027	if (nacked)
4028		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4029
4030	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4031	sc->sc_wd_timer = 0;
4032
4033	if (sc->sc_softled)
4034		ath_led_event(sc, sc->sc_txrix);
4035
4036	ath_start(ifp);
4037}
4038
4039/*
4040 * Deferred processing of transmit interrupt.
4041 */
4042static void
4043ath_tx_proc(void *arg, int npending)
4044{
4045	struct ath_softc *sc = arg;
4046	struct ifnet *ifp = sc->sc_ifp;
4047	int i, nacked;
4048
4049	/*
4050	 * Process each active queue.
4051	 */
4052	nacked = 0;
4053	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4054		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
4055			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
4056	if (nacked)
4057		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
4058
4059	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4060	sc->sc_wd_timer = 0;
4061
4062	if (sc->sc_softled)
4063		ath_led_event(sc, sc->sc_txrix);
4064
4065	ath_start(ifp);
4066}
4067
4068static void
4069ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
4070{
4071#ifdef ATH_DEBUG
4072	struct ath_hal *ah = sc->sc_ah;
4073#endif
4074	struct ieee80211_node *ni;
4075	struct ath_buf *bf;
4076	u_int ix;
4077
4078	/*
4079	 * NB: this assumes output has been stopped and
4080	 *     we do not need to block ath_tx_proc
4081	 */
4082	ATH_TXBUF_LOCK(sc);
4083	bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
4084	if (bf != NULL)
4085		bf->bf_flags &= ~ATH_BUF_BUSY;
4086	ATH_TXBUF_UNLOCK(sc);
4087	for (ix = 0;; ix++) {
4088		ATH_TXQ_LOCK(txq);
4089		bf = STAILQ_FIRST(&txq->axq_q);
4090		if (bf == NULL) {
4091			txq->axq_link = NULL;
4092			ATH_TXQ_UNLOCK(txq);
4093			break;
4094		}
4095		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4096		ATH_TXQ_UNLOCK(txq);
4097#ifdef ATH_DEBUG
4098		if (sc->sc_debug & ATH_DEBUG_RESET) {
4099			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
4100
4101			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
4102				ath_hal_txprocdesc(ah, bf->bf_desc,
4103				    &bf->bf_status.ds_txstat) == HAL_OK);
4104			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
4105			    bf->bf_m->m_len, 0, -1);
4106		}
4107#endif /* ATH_DEBUG */
4108		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4109		ni = bf->bf_node;
4110		bf->bf_node = NULL;
4111		if (ni != NULL) {
4112			/*
4113			 * Do any callback and reclaim the node reference.
4114			 */
4115			if (bf->bf_m->m_flags & M_TXCB)
4116				ieee80211_process_callback(ni, bf->bf_m, -1);
4117			ieee80211_free_node(ni);
4118		}
4119		m_freem(bf->bf_m);
4120		bf->bf_m = NULL;
4121		bf->bf_flags &= ~ATH_BUF_BUSY;
4122
4123		ATH_TXBUF_LOCK(sc);
4124		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4125		ATH_TXBUF_UNLOCK(sc);
4126	}
4127}
4128
4129static void
4130ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4131{
4132	struct ath_hal *ah = sc->sc_ah;
4133
4134	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4135	    __func__, txq->axq_qnum,
4136	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4137	    txq->axq_link);
4138	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4139}
4140
4141/*
4142 * Drain the transmit queues and reclaim resources.
4143 */
4144static void
4145ath_draintxq(struct ath_softc *sc)
4146{
4147	struct ath_hal *ah = sc->sc_ah;
4148	struct ifnet *ifp = sc->sc_ifp;
4149	int i;
4150
4151	/* XXX return value */
4152	if (!sc->sc_invalid) {
4153		/* don't touch the hardware if marked invalid */
4154		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4155		    __func__, sc->sc_bhalq,
4156		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4157		    NULL);
4158		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4159		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4160			if (ATH_TXQ_SETUP(sc, i))
4161				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4162	}
4163	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4164		if (ATH_TXQ_SETUP(sc, i))
4165			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4166#ifdef ATH_DEBUG
4167	if (sc->sc_debug & ATH_DEBUG_RESET) {
4168		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
4169		if (bf != NULL && bf->bf_m != NULL) {
4170			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
4171				ath_hal_txprocdesc(ah, bf->bf_desc,
4172				    &bf->bf_status.ds_txstat) == HAL_OK);
4173			ieee80211_dump_pkt(ifp->if_l2com,
4174			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
4175			    0, -1);
4176		}
4177	}
4178#endif /* ATH_DEBUG */
4179	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4180	sc->sc_wd_timer = 0;
4181}
4182
4183/*
4184 * Disable the receive h/w in preparation for a reset.
4185 */
4186static void
4187ath_stoprecv(struct ath_softc *sc)
4188{
4189#define	PA2DESC(_sc, _pa) \
4190	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4191		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4192	struct ath_hal *ah = sc->sc_ah;
4193
4194	ath_hal_stoppcurecv(ah);	/* disable PCU */
4195	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4196	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4197	DELAY(3000);			/* 3ms is long enough for 1 frame */
4198#ifdef ATH_DEBUG
4199	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4200		struct ath_buf *bf;
4201		u_int ix;
4202
4203		printf("%s: rx queue %p, link %p\n", __func__,
4204			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4205		ix = 0;
4206		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4207			struct ath_desc *ds = bf->bf_desc;
4208			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
4209			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4210				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4211			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4212				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
4213			ix++;
4214		}
4215	}
4216#endif
4217	if (sc->sc_rxpending != NULL) {
4218		m_freem(sc->sc_rxpending);
4219		sc->sc_rxpending = NULL;
4220	}
4221	sc->sc_rxlink = NULL;		/* just in case */
4222#undef PA2DESC
4223}
4224
4225/*
4226 * Enable the receive h/w following a reset.
4227 */
4228static int
4229ath_startrecv(struct ath_softc *sc)
4230{
4231	struct ath_hal *ah = sc->sc_ah;
4232	struct ath_buf *bf;
4233
4234	sc->sc_rxlink = NULL;
4235	sc->sc_rxpending = NULL;
4236	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4237		int error = ath_rxbuf_init(sc, bf);
4238		if (error != 0) {
4239			DPRINTF(sc, ATH_DEBUG_RECV,
4240				"%s: ath_rxbuf_init failed %d\n",
4241				__func__, error);
4242			return error;
4243		}
4244	}
4245
4246	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4247	ath_hal_putrxbuf(ah, bf->bf_daddr);
4248	ath_hal_rxena(ah);		/* enable recv descriptors */
4249	ath_mode_init(sc);		/* set filters, etc. */
4250	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4251	return 0;
4252}
4253
4254/*
4255 * Update internal state after a channel change.
4256 */
4257static void
4258ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4259{
4260	enum ieee80211_phymode mode;
4261
4262	/*
4263	 * Change channels and update the h/w rate map
4264	 * if we're switching; e.g. 11a to 11b/g.
4265	 */
4266	mode = ieee80211_chan2mode(chan);
4267	if (mode != sc->sc_curmode)
4268		ath_setcurmode(sc, mode);
4269	sc->sc_curchan = chan;
4270}
4271
4272/*
4273 * Set/change channels.  If the channel is really being changed,
4274 * it's done by resetting the chip.  To accomplish this we must
4275 * first cleanup any pending DMA, then restart stuff after a la
4276 * ath_init.
4277 */
4278static int
4279ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4280{
4281	struct ifnet *ifp = sc->sc_ifp;
4282	struct ieee80211com *ic = ifp->if_l2com;
4283	struct ath_hal *ah = sc->sc_ah;
4284
4285	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
4286	    __func__, ieee80211_chan2ieee(ic, chan),
4287	    chan->ic_freq, chan->ic_flags);
4288	if (chan != sc->sc_curchan) {
4289		HAL_STATUS status;
4290		/*
4291		 * To switch channels clear any pending DMA operations;
4292		 * wait long enough for the RX fifo to drain, reset the
4293		 * hardware at the new frequency, and then re-enable
4294		 * the relevant bits of the h/w.
4295		 */
4296		ath_hal_intrset(ah, 0);		/* disable interrupts */
4297		ath_draintxq(sc);		/* clear pending tx frames */
4298		ath_stoprecv(sc);		/* turn off frame recv */
4299		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
4300			if_printf(ifp, "%s: unable to reset "
4301			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
4302			    __func__, ieee80211_chan2ieee(ic, chan),
4303			    chan->ic_freq, chan->ic_flags, status);
4304			return EIO;
4305		}
4306		sc->sc_diversity = ath_hal_getdiversity(ah);
4307
4308		/*
4309		 * Re-enable rx framework.
4310		 */
4311		if (ath_startrecv(sc) != 0) {
4312			if_printf(ifp, "%s: unable to restart recv logic\n",
4313			    __func__);
4314			return EIO;
4315		}
4316
4317		/*
4318		 * Change channels and update the h/w rate map
4319		 * if we're switching; e.g. 11a to 11b/g.
4320		 */
4321		ath_chan_change(sc, chan);
4322
4323		/*
4324		 * Re-enable interrupts.
4325		 */
4326		ath_hal_intrset(ah, sc->sc_imask);
4327	}
4328	return 0;
4329}
4330
4331/*
4332 * Periodically recalibrate the PHY to account
4333 * for temperature/environment changes.
4334 */
4335static void
4336ath_calibrate(void *arg)
4337{
4338	struct ath_softc *sc = arg;
4339	struct ath_hal *ah = sc->sc_ah;
4340	struct ifnet *ifp = sc->sc_ifp;
4341	struct ieee80211com *ic = ifp->if_l2com;
4342	HAL_BOOL longCal, isCalDone;
4343	HAL_BOOL aniCal, shortCal = AH_FALSE;
4344	int nextcal;
4345
4346	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
4347		goto restart;
4348	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
4349	aniCal = (ticks - sc->sc_lastani >= ath_anicalinterval*hz/1000);
4350	if (sc->sc_doresetcal)
4351		shortCal = (ticks - sc->sc_lastshortcal >= ath_shortcalinterval*hz/1000);
4352
4353	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: shortCal=%d; longCal=%d; aniCal=%d\n", __func__, shortCal, longCal, aniCal);
4354	if (aniCal) {
4355		sc->sc_stats.ast_ani_cal++;
4356		sc->sc_lastani = ticks;
4357		ath_hal_ani_poll(ah, sc->sc_curchan);
4358	}
4359
4360	if (longCal) {
4361		sc->sc_stats.ast_per_cal++;
4362		sc->sc_lastlongcal = ticks;
4363		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4364			/*
4365			 * Rfgain is out of bounds, reset the chip
4366			 * to load new gain values.
4367			 */
4368			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4369				"%s: rfgain change\n", __func__);
4370			sc->sc_stats.ast_per_rfgain++;
4371			ath_reset(ifp);
4372		}
4373		/*
4374		 * If this long cal is after an idle period, then
4375		 * reset the data collection state so we start fresh.
4376		 */
4377		if (sc->sc_resetcal) {
4378			(void) ath_hal_calreset(ah, sc->sc_curchan);
4379			sc->sc_lastcalreset = ticks;
4380			sc->sc_lastshortcal = ticks;
4381			sc->sc_resetcal = 0;
4382			sc->sc_doresetcal = AH_TRUE;
4383		}
4384	}
4385
4386	/* Only call if we're doing a short/long cal, not for ANI calibration */
4387	if (shortCal || longCal) {
4388		if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
4389			if (longCal) {
4390				/*
4391				 * Calibrate noise floor data again in case of change.
4392				 */
4393				ath_hal_process_noisefloor(ah);
4394			}
4395		} else {
4396			DPRINTF(sc, ATH_DEBUG_ANY,
4397				"%s: calibration of channel %u failed\n",
4398				__func__, sc->sc_curchan->ic_freq);
4399			sc->sc_stats.ast_per_calfail++;
4400		}
4401		if (shortCal)
4402			sc->sc_lastshortcal = ticks;
4403	}
4404	if (!isCalDone) {
4405restart:
4406		/*
4407		 * Use a shorter interval to potentially collect multiple
4408		 * data samples required to complete calibration.  Once
4409		 * we're told the work is done we drop back to a longer
4410		 * interval between requests.  We're more aggressive doing
4411		 * work when operating as an AP to improve operation right
4412		 * after startup.
4413		 */
4414		sc->sc_lastshortcal = ticks;
4415		nextcal = ath_shortcalinterval*hz/1000;
4416		if (sc->sc_opmode != HAL_M_HOSTAP)
4417			nextcal *= 10;
4418		sc->sc_doresetcal = AH_TRUE;
4419	} else {
4420		/* nextcal should be the shortest time for next event */
4421		nextcal = ath_longcalinterval*hz;
4422		if (sc->sc_lastcalreset == 0)
4423			sc->sc_lastcalreset = sc->sc_lastlongcal;
4424		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
4425			sc->sc_resetcal = 1;	/* setup reset next trip */
4426		sc->sc_doresetcal = AH_FALSE;
4427	}
4428	/* ANI calibration may occur more often than short/long/resetcal */
4429	if (ath_anicalinterval > 0)
4430		nextcal = MIN(nextcal, ath_anicalinterval*hz/1000);
4431
4432	if (nextcal != 0) {
4433		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
4434		    __func__, nextcal, isCalDone ? "" : "!");
4435		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
4436	} else {
4437		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
4438		    __func__);
4439		/* NB: don't rearm timer */
4440	}
4441}
4442
4443static void
4444ath_scan_start(struct ieee80211com *ic)
4445{
4446	struct ifnet *ifp = ic->ic_ifp;
4447	struct ath_softc *sc = ifp->if_softc;
4448	struct ath_hal *ah = sc->sc_ah;
4449	u_int32_t rfilt;
4450
4451	/* XXX calibration timer? */
4452
4453	sc->sc_scanning = 1;
4454	sc->sc_syncbeacon = 0;
4455	rfilt = ath_calcrxfilter(sc);
4456	ath_hal_setrxfilter(ah, rfilt);
4457	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
4458
4459	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
4460		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
4461}
4462
4463static void
4464ath_scan_end(struct ieee80211com *ic)
4465{
4466	struct ifnet *ifp = ic->ic_ifp;
4467	struct ath_softc *sc = ifp->if_softc;
4468	struct ath_hal *ah = sc->sc_ah;
4469	u_int32_t rfilt;
4470
4471	sc->sc_scanning = 0;
4472	rfilt = ath_calcrxfilter(sc);
4473	ath_hal_setrxfilter(ah, rfilt);
4474	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4475
4476	ath_hal_process_noisefloor(ah);
4477
4478	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4479		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
4480		 sc->sc_curaid);
4481}
4482
4483static void
4484ath_set_channel(struct ieee80211com *ic)
4485{
4486	struct ifnet *ifp = ic->ic_ifp;
4487	struct ath_softc *sc = ifp->if_softc;
4488
4489	(void) ath_chan_set(sc, ic->ic_curchan);
4490	/*
4491	 * If we are returning to our bss channel then mark state
4492	 * so the next recv'd beacon's tsf will be used to sync the
4493	 * beacon timers.  Note that since we only hear beacons in
4494	 * sta/ibss mode this has no effect in other operating modes.
4495	 */
4496	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
4497		sc->sc_syncbeacon = 1;
4498}
4499
4500/*
4501 * Walk the vap list and check if there any vap's in RUN state.
4502 */
4503static int
4504ath_isanyrunningvaps(struct ieee80211vap *this)
4505{
4506	struct ieee80211com *ic = this->iv_ic;
4507	struct ieee80211vap *vap;
4508
4509	IEEE80211_LOCK_ASSERT(ic);
4510
4511	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
4512		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
4513			return 1;
4514	}
4515	return 0;
4516}
4517
4518static int
4519ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
4520{
4521	struct ieee80211com *ic = vap->iv_ic;
4522	struct ath_softc *sc = ic->ic_ifp->if_softc;
4523	struct ath_vap *avp = ATH_VAP(vap);
4524	struct ath_hal *ah = sc->sc_ah;
4525	struct ieee80211_node *ni = NULL;
4526	int i, error, stamode;
4527	u_int32_t rfilt;
4528	static const HAL_LED_STATE leds[] = {
4529	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4530	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4531	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4532	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4533	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
4534	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4535	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
4536	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
4537	};
4538
4539	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4540		ieee80211_state_name[vap->iv_state],
4541		ieee80211_state_name[nstate]);
4542
4543	callout_drain(&sc->sc_cal_ch);
4544	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4545
4546	if (nstate == IEEE80211_S_SCAN) {
4547		/*
4548		 * Scanning: turn off beacon miss and don't beacon.
4549		 * Mark beacon state so when we reach RUN state we'll
4550		 * [re]setup beacons.  Unblock the task q thread so
4551		 * deferred interrupt processing is done.
4552		 */
4553		ath_hal_intrset(ah,
4554		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4555		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4556		sc->sc_beacons = 0;
4557		taskqueue_unblock(sc->sc_tq);
4558	}
4559
4560	ni = vap->iv_bss;
4561	rfilt = ath_calcrxfilter(sc);
4562	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
4563		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
4564		   vap->iv_opmode == IEEE80211_M_IBSS);
4565	if (stamode && nstate == IEEE80211_S_RUN) {
4566		sc->sc_curaid = ni->ni_associd;
4567		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
4568		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
4569	}
4570	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
4571	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
4572	ath_hal_setrxfilter(ah, rfilt);
4573
4574	/* XXX is this to restore keycache on resume? */
4575	if (vap->iv_opmode != IEEE80211_M_STA &&
4576	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
4577		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4578			if (ath_hal_keyisvalid(ah, i))
4579				ath_hal_keysetmac(ah, i, ni->ni_bssid);
4580	}
4581
4582	/*
4583	 * Invoke the parent method to do net80211 work.
4584	 */
4585	error = avp->av_newstate(vap, nstate, arg);
4586	if (error != 0)
4587		goto bad;
4588
4589	if (nstate == IEEE80211_S_RUN) {
4590		/* NB: collect bss node again, it may have changed */
4591		ni = vap->iv_bss;
4592
4593		DPRINTF(sc, ATH_DEBUG_STATE,
4594		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
4595		    "capinfo 0x%04x chan %d\n", __func__,
4596		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
4597		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
4598
4599		switch (vap->iv_opmode) {
4600#ifdef IEEE80211_SUPPORT_TDMA
4601		case IEEE80211_M_AHDEMO:
4602			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
4603				break;
4604			/* fall thru... */
4605#endif
4606		case IEEE80211_M_HOSTAP:
4607		case IEEE80211_M_IBSS:
4608		case IEEE80211_M_MBSS:
4609			/*
4610			 * Allocate and setup the beacon frame.
4611			 *
4612			 * Stop any previous beacon DMA.  This may be
4613			 * necessary, for example, when an ibss merge
4614			 * causes reconfiguration; there will be a state
4615			 * transition from RUN->RUN that means we may
4616			 * be called with beacon transmission active.
4617			 */
4618			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4619
4620			error = ath_beacon_alloc(sc, ni);
4621			if (error != 0)
4622				goto bad;
4623			/*
4624			 * If joining an adhoc network defer beacon timer
4625			 * configuration to the next beacon frame so we
4626			 * have a current TSF to use.  Otherwise we're
4627			 * starting an ibss/bss so there's no need to delay;
4628			 * if this is the first vap moving to RUN state, then
4629			 * beacon state needs to be [re]configured.
4630			 */
4631			if (vap->iv_opmode == IEEE80211_M_IBSS &&
4632			    ni->ni_tstamp.tsf != 0) {
4633				sc->sc_syncbeacon = 1;
4634			} else if (!sc->sc_beacons) {
4635#ifdef IEEE80211_SUPPORT_TDMA
4636				if (vap->iv_caps & IEEE80211_C_TDMA)
4637					ath_tdma_config(sc, vap);
4638				else
4639#endif
4640					ath_beacon_config(sc, vap);
4641				sc->sc_beacons = 1;
4642			}
4643			break;
4644		case IEEE80211_M_STA:
4645			/*
4646			 * Defer beacon timer configuration to the next
4647			 * beacon frame so we have a current TSF to use
4648			 * (any TSF collected when scanning is likely old).
4649			 */
4650			sc->sc_syncbeacon = 1;
4651			break;
4652		case IEEE80211_M_MONITOR:
4653			/*
4654			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
4655			 * transitions so we must re-enable interrupts here to
4656			 * handle the case of a single monitor mode vap.
4657			 */
4658			ath_hal_intrset(ah, sc->sc_imask);
4659			break;
4660		case IEEE80211_M_WDS:
4661			break;
4662		default:
4663			break;
4664		}
4665		/*
4666		 * Let the hal process statistics collected during a
4667		 * scan so it can provide calibrated noise floor data.
4668		 */
4669		ath_hal_process_noisefloor(ah);
4670		/*
4671		 * Reset rssi stats; maybe not the best place...
4672		 */
4673		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4674		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4675		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4676		/*
4677		 * Finally, start any timers and the task q thread
4678		 * (in case we didn't go through SCAN state).
4679		 */
4680		if (ath_longcalinterval != 0) {
4681			/* start periodic recalibration timer */
4682			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
4683		} else {
4684			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4685			    "%s: calibration disabled\n", __func__);
4686		}
4687		taskqueue_unblock(sc->sc_tq);
4688	} else if (nstate == IEEE80211_S_INIT) {
4689		/*
4690		 * If there are no vaps left in RUN state then
4691		 * shutdown host/driver operation:
4692		 * o disable interrupts
4693		 * o disable the task queue thread
4694		 * o mark beacon processing as stopped
4695		 */
4696		if (!ath_isanyrunningvaps(vap)) {
4697			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4698			/* disable interrupts  */
4699			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4700			taskqueue_block(sc->sc_tq);
4701			sc->sc_beacons = 0;
4702		}
4703#ifdef IEEE80211_SUPPORT_TDMA
4704		ath_hal_setcca(ah, AH_TRUE);
4705#endif
4706	}
4707bad:
4708	return error;
4709}
4710
4711/*
4712 * Allocate a key cache slot to the station so we can
4713 * setup a mapping from key index to node. The key cache
4714 * slot is needed for managing antenna state and for
4715 * compression when stations do not use crypto.  We do
4716 * it uniliaterally here; if crypto is employed this slot
4717 * will be reassigned.
4718 */
4719static void
4720ath_setup_stationkey(struct ieee80211_node *ni)
4721{
4722	struct ieee80211vap *vap = ni->ni_vap;
4723	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4724	ieee80211_keyix keyix, rxkeyix;
4725
4726	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4727		/*
4728		 * Key cache is full; we'll fall back to doing
4729		 * the more expensive lookup in software.  Note
4730		 * this also means no h/w compression.
4731		 */
4732		/* XXX msg+statistic */
4733	} else {
4734		/* XXX locking? */
4735		ni->ni_ucastkey.wk_keyix = keyix;
4736		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4737		/* NB: must mark device key to get called back on delete */
4738		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
4739		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
4740		/* NB: this will create a pass-thru key entry */
4741		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
4742	}
4743}
4744
4745/*
4746 * Setup driver-specific state for a newly associated node.
4747 * Note that we're called also on a re-associate, the isnew
4748 * param tells us if this is the first time or not.
4749 */
4750static void
4751ath_newassoc(struct ieee80211_node *ni, int isnew)
4752{
4753	struct ath_node *an = ATH_NODE(ni);
4754	struct ieee80211vap *vap = ni->ni_vap;
4755	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
4756	const struct ieee80211_txparam *tp = ni->ni_txparms;
4757
4758	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
4759	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
4760
4761	ath_rate_newassoc(sc, an, isnew);
4762	if (isnew &&
4763	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
4764	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4765		ath_setup_stationkey(ni);
4766}
4767
4768static int
4769ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
4770	int nchans, struct ieee80211_channel chans[])
4771{
4772	struct ath_softc *sc = ic->ic_ifp->if_softc;
4773	struct ath_hal *ah = sc->sc_ah;
4774	HAL_STATUS status;
4775
4776	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4777	    "%s: rd %u cc %u location %c%s\n",
4778	    __func__, reg->regdomain, reg->country, reg->location,
4779	    reg->ecm ? " ecm" : "");
4780
4781	status = ath_hal_set_channels(ah, chans, nchans,
4782	    reg->country, reg->regdomain);
4783	if (status != HAL_OK) {
4784		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
4785		    __func__, status);
4786		return EINVAL;		/* XXX */
4787	}
4788	return 0;
4789}
4790
4791static void
4792ath_getradiocaps(struct ieee80211com *ic,
4793	int maxchans, int *nchans, struct ieee80211_channel chans[])
4794{
4795	struct ath_softc *sc = ic->ic_ifp->if_softc;
4796	struct ath_hal *ah = sc->sc_ah;
4797
4798	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
4799	    __func__, SKU_DEBUG, CTRY_DEFAULT);
4800
4801	/* XXX check return */
4802	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
4803	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
4804
4805}
4806
4807static int
4808ath_getchannels(struct ath_softc *sc)
4809{
4810	struct ifnet *ifp = sc->sc_ifp;
4811	struct ieee80211com *ic = ifp->if_l2com;
4812	struct ath_hal *ah = sc->sc_ah;
4813	HAL_STATUS status;
4814
4815	/*
4816	 * Collect channel set based on EEPROM contents.
4817	 */
4818	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
4819	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
4820	if (status != HAL_OK) {
4821		if_printf(ifp, "%s: unable to collect channel list from hal, "
4822		    "status %d\n", __func__, status);
4823		return EINVAL;
4824	}
4825	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
4826	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
4827	/* XXX map Atheros sku's to net80211 SKU's */
4828	/* XXX net80211 types too small */
4829	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
4830	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
4831	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
4832	ic->ic_regdomain.isocc[1] = ' ';
4833
4834	ic->ic_regdomain.ecm = 1;
4835	ic->ic_regdomain.location = 'I';
4836
4837	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
4838	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
4839	    __func__, sc->sc_eerd, sc->sc_eecc,
4840	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
4841	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
4842	return 0;
4843}
4844
4845static void
4846ath_led_done(void *arg)
4847{
4848	struct ath_softc *sc = arg;
4849
4850	sc->sc_blinking = 0;
4851}
4852
4853/*
4854 * Turn the LED off: flip the pin and then set a timer so no
4855 * update will happen for the specified duration.
4856 */
4857static void
4858ath_led_off(void *arg)
4859{
4860	struct ath_softc *sc = arg;
4861
4862	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4863	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4864}
4865
4866/*
4867 * Blink the LED according to the specified on/off times.
4868 */
4869static void
4870ath_led_blink(struct ath_softc *sc, int on, int off)
4871{
4872	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4873	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4874	sc->sc_blinking = 1;
4875	sc->sc_ledoff = off;
4876	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4877}
4878
4879static void
4880ath_led_event(struct ath_softc *sc, int rix)
4881{
4882	sc->sc_ledevent = ticks;	/* time of last event */
4883	if (sc->sc_blinking)		/* don't interrupt active blink */
4884		return;
4885	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
4886}
4887
4888static int
4889ath_rate_setup(struct ath_softc *sc, u_int mode)
4890{
4891	struct ath_hal *ah = sc->sc_ah;
4892	const HAL_RATE_TABLE *rt;
4893
4894	switch (mode) {
4895	case IEEE80211_MODE_11A:
4896		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4897		break;
4898	case IEEE80211_MODE_HALF:
4899		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
4900		break;
4901	case IEEE80211_MODE_QUARTER:
4902		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
4903		break;
4904	case IEEE80211_MODE_11B:
4905		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4906		break;
4907	case IEEE80211_MODE_11G:
4908		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4909		break;
4910	case IEEE80211_MODE_TURBO_A:
4911		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
4912		break;
4913	case IEEE80211_MODE_TURBO_G:
4914		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4915		break;
4916	case IEEE80211_MODE_STURBO_A:
4917		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4918		break;
4919	case IEEE80211_MODE_11NA:
4920		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
4921		break;
4922	case IEEE80211_MODE_11NG:
4923		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
4924		break;
4925	default:
4926		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4927			__func__, mode);
4928		return 0;
4929	}
4930	sc->sc_rates[mode] = rt;
4931	return (rt != NULL);
4932}
4933
4934static void
4935ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4936{
4937#define	N(a)	(sizeof(a)/sizeof(a[0]))
4938	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4939	static const struct {
4940		u_int		rate;		/* tx/rx 802.11 rate */
4941		u_int16_t	timeOn;		/* LED on time (ms) */
4942		u_int16_t	timeOff;	/* LED off time (ms) */
4943	} blinkrates[] = {
4944		{ 108,  40,  10 },
4945		{  96,  44,  11 },
4946		{  72,  50,  13 },
4947		{  48,  57,  14 },
4948		{  36,  67,  16 },
4949		{  24,  80,  20 },
4950		{  22, 100,  25 },
4951		{  18, 133,  34 },
4952		{  12, 160,  40 },
4953		{  10, 200,  50 },
4954		{   6, 240,  58 },
4955		{   4, 267,  66 },
4956		{   2, 400, 100 },
4957		{   0, 500, 130 },
4958		/* XXX half/quarter rates */
4959	};
4960	const HAL_RATE_TABLE *rt;
4961	int i, j;
4962
4963	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4964	rt = sc->sc_rates[mode];
4965	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4966	for (i = 0; i < rt->rateCount; i++) {
4967		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
4968		if (rt->info[i].phy != IEEE80211_T_HT)
4969			sc->sc_rixmap[ieeerate] = i;
4970		else
4971			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
4972	}
4973	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4974	for (i = 0; i < N(sc->sc_hwmap); i++) {
4975		if (i >= rt->rateCount) {
4976			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4977			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4978			continue;
4979		}
4980		sc->sc_hwmap[i].ieeerate =
4981			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
4982		if (rt->info[i].phy == IEEE80211_T_HT)
4983			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
4984		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4985		if (rt->info[i].shortPreamble ||
4986		    rt->info[i].phy == IEEE80211_T_OFDM)
4987			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4988		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
4989		for (j = 0; j < N(blinkrates)-1; j++)
4990			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4991				break;
4992		/* NB: this uses the last entry if the rate isn't found */
4993		/* XXX beware of overlow */
4994		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4995		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4996	}
4997	sc->sc_currates = rt;
4998	sc->sc_curmode = mode;
4999	/*
5000	 * All protection frames are transmited at 2Mb/s for
5001	 * 11g, otherwise at 1Mb/s.
5002	 */
5003	if (mode == IEEE80211_MODE_11G)
5004		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
5005	else
5006		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
5007	/* NB: caller is responsible for resetting rate control state */
5008#undef N
5009}
5010
5011static void
5012ath_watchdog(void *arg)
5013{
5014	struct ath_softc *sc = arg;
5015
5016	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
5017		struct ifnet *ifp = sc->sc_ifp;
5018		uint32_t hangs;
5019
5020		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
5021		    hangs != 0) {
5022			if_printf(ifp, "%s hang detected (0x%x)\n",
5023			    hangs & 0xff ? "bb" : "mac", hangs);
5024		} else
5025			if_printf(ifp, "device timeout\n");
5026		ath_reset(ifp);
5027		ifp->if_oerrors++;
5028		sc->sc_stats.ast_watchdog++;
5029	}
5030	callout_schedule(&sc->sc_wd_ch, hz);
5031}
5032
5033#ifdef ATH_DIAGAPI
5034/*
5035 * Diagnostic interface to the HAL.  This is used by various
5036 * tools to do things like retrieve register contents for
5037 * debugging.  The mechanism is intentionally opaque so that
5038 * it can change frequently w/o concern for compatiblity.
5039 */
5040static int
5041ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
5042{
5043	struct ath_hal *ah = sc->sc_ah;
5044	u_int id = ad->ad_id & ATH_DIAG_ID;
5045	void *indata = NULL;
5046	void *outdata = NULL;
5047	u_int32_t insize = ad->ad_in_size;
5048	u_int32_t outsize = ad->ad_out_size;
5049	int error = 0;
5050
5051	if (ad->ad_id & ATH_DIAG_IN) {
5052		/*
5053		 * Copy in data.
5054		 */
5055		indata = malloc(insize, M_TEMP, M_NOWAIT);
5056		if (indata == NULL) {
5057			error = ENOMEM;
5058			goto bad;
5059		}
5060		error = copyin(ad->ad_in_data, indata, insize);
5061		if (error)
5062			goto bad;
5063	}
5064	if (ad->ad_id & ATH_DIAG_DYN) {
5065		/*
5066		 * Allocate a buffer for the results (otherwise the HAL
5067		 * returns a pointer to a buffer where we can read the
5068		 * results).  Note that we depend on the HAL leaving this
5069		 * pointer for us to use below in reclaiming the buffer;
5070		 * may want to be more defensive.
5071		 */
5072		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
5073		if (outdata == NULL) {
5074			error = ENOMEM;
5075			goto bad;
5076		}
5077	}
5078	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
5079		if (outsize < ad->ad_out_size)
5080			ad->ad_out_size = outsize;
5081		if (outdata != NULL)
5082			error = copyout(outdata, ad->ad_out_data,
5083					ad->ad_out_size);
5084	} else {
5085		error = EINVAL;
5086	}
5087bad:
5088	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
5089		free(indata, M_TEMP);
5090	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5091		free(outdata, M_TEMP);
5092	return error;
5093}
5094#endif /* ATH_DIAGAPI */
5095
5096static int
5097ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5098{
5099#define	IS_RUNNING(ifp) \
5100	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5101	struct ath_softc *sc = ifp->if_softc;
5102	struct ieee80211com *ic = ifp->if_l2com;
5103	struct ifreq *ifr = (struct ifreq *)data;
5104	const HAL_RATE_TABLE *rt;
5105	int error = 0;
5106
5107	switch (cmd) {
5108	case SIOCSIFFLAGS:
5109		ATH_LOCK(sc);
5110		if (IS_RUNNING(ifp)) {
5111			/*
5112			 * To avoid rescanning another access point,
5113			 * do not call ath_init() here.  Instead,
5114			 * only reflect promisc mode settings.
5115			 */
5116			ath_mode_init(sc);
5117		} else if (ifp->if_flags & IFF_UP) {
5118			/*
5119			 * Beware of being called during attach/detach
5120			 * to reset promiscuous mode.  In that case we
5121			 * will still be marked UP but not RUNNING.
5122			 * However trying to re-init the interface
5123			 * is the wrong thing to do as we've already
5124			 * torn down much of our state.  There's
5125			 * probably a better way to deal with this.
5126			 */
5127			if (!sc->sc_invalid)
5128				ath_init(sc);	/* XXX lose error */
5129		} else {
5130			ath_stop_locked(ifp);
5131#ifdef notyet
5132			/* XXX must wakeup in places like ath_vap_delete */
5133			if (!sc->sc_invalid)
5134				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
5135#endif
5136		}
5137		ATH_UNLOCK(sc);
5138		break;
5139	case SIOCGIFMEDIA:
5140	case SIOCSIFMEDIA:
5141		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
5142		break;
5143	case SIOCGATHSTATS:
5144		/* NB: embed these numbers to get a consistent view */
5145		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5146		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5147		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
5148		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
5149#ifdef IEEE80211_SUPPORT_TDMA
5150		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
5151		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
5152#endif
5153		rt = sc->sc_currates;
5154		sc->sc_stats.ast_tx_rate =
5155		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
5156		if (rt->info[sc->sc_txrix].phy & IEEE80211_T_HT)
5157			sc->sc_stats.ast_tx_rate |= IEEE80211_RATE_MCS;
5158		return copyout(&sc->sc_stats,
5159		    ifr->ifr_data, sizeof (sc->sc_stats));
5160	case SIOCZATHSTATS:
5161		error = priv_check(curthread, PRIV_DRIVER);
5162		if (error == 0)
5163			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
5164		break;
5165#ifdef ATH_DIAGAPI
5166	case SIOCGATHDIAG:
5167		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5168		break;
5169#endif
5170	case SIOCGIFADDR:
5171		error = ether_ioctl(ifp, cmd, data);
5172		break;
5173	default:
5174		error = EINVAL;
5175		break;
5176	}
5177	return error;
5178#undef IS_RUNNING
5179}
5180
5181/*
5182 * Announce various information on device/driver attach.
5183 */
5184static void
5185ath_announce(struct ath_softc *sc)
5186{
5187	struct ifnet *ifp = sc->sc_ifp;
5188	struct ath_hal *ah = sc->sc_ah;
5189
5190	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
5191		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
5192		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5193	if (bootverbose) {
5194		int i;
5195		for (i = 0; i <= WME_AC_VO; i++) {
5196			struct ath_txq *txq = sc->sc_ac2q[i];
5197			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5198				txq->axq_qnum, ieee80211_wme_acnames[i]);
5199		}
5200		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5201			sc->sc_cabq->axq_qnum);
5202		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5203	}
5204	if (ath_rxbuf != ATH_RXBUF)
5205		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5206	if (ath_txbuf != ATH_TXBUF)
5207		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5208	if (sc->sc_mcastkey && bootverbose)
5209		if_printf(ifp, "using multicast key search\n");
5210}
5211
5212#ifdef IEEE80211_SUPPORT_TDMA
5213static __inline uint32_t
5214ath_hal_getnexttbtt(struct ath_hal *ah)
5215{
5216#define	AR_TIMER0	0x8028
5217	return OS_REG_READ(ah, AR_TIMER0);
5218}
5219
5220static __inline void
5221ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
5222{
5223	/* XXX handle wrap/overflow */
5224	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
5225}
5226
5227static void
5228ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
5229{
5230	struct ath_hal *ah = sc->sc_ah;
5231	HAL_BEACON_TIMERS bt;
5232
5233	bt.bt_intval = bintval | HAL_BEACON_ENA;
5234	bt.bt_nexttbtt = nexttbtt;
5235	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
5236	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
5237	bt.bt_nextatim = nexttbtt+1;
5238	ath_hal_beaconsettimers(ah, &bt);
5239}
5240
5241/*
5242 * Calculate the beacon interval.  This is periodic in the
5243 * superframe for the bss.  We assume each station is configured
5244 * identically wrt transmit rate so the guard time we calculate
5245 * above will be the same on all stations.  Note we need to
5246 * factor in the xmit time because the hardware will schedule
5247 * a frame for transmit if the start of the frame is within
5248 * the burst time.  When we get hardware that properly kills
5249 * frames in the PCU we can reduce/eliminate the guard time.
5250 *
5251 * Roundup to 1024 is so we have 1 TU buffer in the guard time
5252 * to deal with the granularity of the nexttbtt timer.  11n MAC's
5253 * with 1us timer granularity should allow us to reduce/eliminate
5254 * this.
5255 */
5256static void
5257ath_tdma_bintvalsetup(struct ath_softc *sc,
5258	const struct ieee80211_tdma_state *tdma)
5259{
5260	/* copy from vap state (XXX check all vaps have same value?) */
5261	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
5262
5263	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
5264		tdma->tdma_slotcnt, 1024);
5265	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
5266	if (sc->sc_tdmabintval & 1)
5267		sc->sc_tdmabintval++;
5268
5269	if (tdma->tdma_slot == 0) {
5270		/*
5271		 * Only slot 0 beacons; other slots respond.
5272		 */
5273		sc->sc_imask |= HAL_INT_SWBA;
5274		sc->sc_tdmaswba = 0;		/* beacon immediately */
5275	} else {
5276		/* XXX all vaps must be slot 0 or slot !0 */
5277		sc->sc_imask &= ~HAL_INT_SWBA;
5278	}
5279}
5280
5281/*
5282 * Max 802.11 overhead.  This assumes no 4-address frames and
5283 * the encapsulation done by ieee80211_encap (llc).  We also
5284 * include potential crypto overhead.
5285 */
5286#define	IEEE80211_MAXOVERHEAD \
5287	(sizeof(struct ieee80211_qosframe) \
5288	 + sizeof(struct llc) \
5289	 + IEEE80211_ADDR_LEN \
5290	 + IEEE80211_WEP_IVLEN \
5291	 + IEEE80211_WEP_KIDLEN \
5292	 + IEEE80211_WEP_CRCLEN \
5293	 + IEEE80211_WEP_MICLEN \
5294	 + IEEE80211_CRC_LEN)
5295
5296/*
5297 * Setup initially for tdma operation.  Start the beacon
5298 * timers and enable SWBA if we are slot 0.  Otherwise
5299 * we wait for slot 0 to arrive so we can sync up before
5300 * starting to transmit.
5301 */
5302static void
5303ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
5304{
5305	struct ath_hal *ah = sc->sc_ah;
5306	struct ifnet *ifp = sc->sc_ifp;
5307	struct ieee80211com *ic = ifp->if_l2com;
5308	const struct ieee80211_txparam *tp;
5309	const struct ieee80211_tdma_state *tdma = NULL;
5310	int rix;
5311
5312	if (vap == NULL) {
5313		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
5314		if (vap == NULL) {
5315			if_printf(ifp, "%s: no vaps?\n", __func__);
5316			return;
5317		}
5318	}
5319	tp = vap->iv_bss->ni_txparms;
5320	/*
5321	 * Calculate the guard time for each slot.  This is the
5322	 * time to send a maximal-size frame according to the
5323	 * fixed/lowest transmit rate.  Note that the interface
5324	 * mtu does not include the 802.11 overhead so we must
5325	 * tack that on (ath_hal_computetxtime includes the
5326	 * preamble and plcp in it's calculation).
5327	 */
5328	tdma = vap->iv_tdma;
5329	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
5330		rix = ath_tx_findrix(sc, tp->ucastrate);
5331	else
5332		rix = ath_tx_findrix(sc, tp->mcastrate);
5333	/* XXX short preamble assumed */
5334	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
5335		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
5336
5337	ath_hal_intrset(ah, 0);
5338
5339	ath_beaconq_config(sc);			/* setup h/w beacon q */
5340	if (sc->sc_setcca)
5341		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
5342	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
5343	ath_tdma_settimers(sc, sc->sc_tdmabintval,
5344		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
5345	sc->sc_syncbeacon = 0;
5346
5347	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
5348	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
5349
5350	ath_hal_intrset(ah, sc->sc_imask);
5351
5352	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
5353	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
5354	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
5355	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
5356	    sc->sc_tdmadbaprep);
5357}
5358
5359/*
5360 * Update tdma operation.  Called from the 802.11 layer
5361 * when a beacon is received from the TDMA station operating
5362 * in the slot immediately preceding us in the bss.  Use
5363 * the rx timestamp for the beacon frame to update our
5364 * beacon timers so we follow their schedule.  Note that
5365 * by using the rx timestamp we implicitly include the
5366 * propagation delay in our schedule.
5367 */
5368static void
5369ath_tdma_update(struct ieee80211_node *ni,
5370	const struct ieee80211_tdma_param *tdma, int changed)
5371{
5372#define	TSF_TO_TU(_h,_l) \
5373	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
5374#define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
5375	struct ieee80211vap *vap = ni->ni_vap;
5376	struct ieee80211com *ic = ni->ni_ic;
5377	struct ath_softc *sc = ic->ic_ifp->if_softc;
5378	struct ath_hal *ah = sc->sc_ah;
5379	const HAL_RATE_TABLE *rt = sc->sc_currates;
5380	u_int64_t tsf, rstamp, nextslot;
5381	u_int32_t txtime, nextslottu, timer0;
5382	int32_t tudelta, tsfdelta;
5383	const struct ath_rx_status *rs;
5384	int rix;
5385
5386	sc->sc_stats.ast_tdma_update++;
5387
5388	/*
5389	 * Check for and adopt configuration changes.
5390	 */
5391	if (changed != 0) {
5392		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
5393
5394		ath_tdma_bintvalsetup(sc, ts);
5395		if (changed & TDMA_UPDATE_SLOTLEN)
5396			ath_wme_update(ic);
5397
5398		DPRINTF(sc, ATH_DEBUG_TDMA,
5399		    "%s: adopt slot %u slotcnt %u slotlen %u us "
5400		    "bintval %u TU\n", __func__,
5401		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
5402		    sc->sc_tdmabintval);
5403
5404		/* XXX right? */
5405		ath_hal_intrset(ah, sc->sc_imask);
5406		/* NB: beacon timers programmed below */
5407	}
5408
5409	/* extend rx timestamp to 64 bits */
5410	rs = sc->sc_lastrs;
5411	tsf = ath_hal_gettsf64(ah);
5412	rstamp = ath_extend_tsf(rs->rs_tstamp, tsf);
5413	/*
5414	 * The rx timestamp is set by the hardware on completing
5415	 * reception (at the point where the rx descriptor is DMA'd
5416	 * to the host).  To find the start of our next slot we
5417	 * must adjust this time by the time required to send
5418	 * the packet just received.
5419	 */
5420	rix = rt->rateCodeToIndex[rs->rs_rate];
5421	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
5422	    rt->info[rix].shortPreamble);
5423	/* NB: << 9 is to cvt to TU and /2 */
5424	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
5425	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
5426
5427	/*
5428	 * TIMER0 is the h/w's idea of NextTBTT (in TU's).  Convert
5429	 * to usecs and calculate the difference between what the
5430	 * other station thinks and what we have programmed.  This
5431	 * lets us figure how to adjust our timers to match.  The
5432	 * adjustments are done by pulling the TSF forward and possibly
5433	 * rewriting the beacon timers.
5434	 */
5435	timer0 = ath_hal_getnexttbtt(ah);
5436	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0));
5437
5438	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
5439	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
5440	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
5441
5442	if (tsfdelta < 0) {
5443		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
5444		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
5445		tsfdelta = -tsfdelta % 1024;
5446		nextslottu++;
5447	} else if (tsfdelta > 0) {
5448		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
5449		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
5450		tsfdelta = 1024 - (tsfdelta % 1024);
5451		nextslottu++;
5452	} else {
5453		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
5454		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
5455	}
5456	tudelta = nextslottu - timer0;
5457
5458	/*
5459	 * Copy sender's timetstamp into tdma ie so they can
5460	 * calculate roundtrip time.  We submit a beacon frame
5461	 * below after any timer adjustment.  The frame goes out
5462	 * at the next TBTT so the sender can calculate the
5463	 * roundtrip by inspecting the tdma ie in our beacon frame.
5464	 *
5465	 * NB: This tstamp is subtlely preserved when
5466	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
5467	 *     slot position changes) because ieee80211_add_tdma
5468	 *     skips over the data.
5469	 */
5470	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
5471		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
5472		&ni->ni_tstamp.data, 8);
5473#if 0
5474	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
5475	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n",
5476	    (unsigned long long) tsf, (unsigned long long) nextslot,
5477	    (int)(nextslot - tsf), tsfdelta,
5478	    nextslottu, timer0, tudelta);
5479#endif
5480	/*
5481	 * Adjust the beacon timers only when pulling them forward
5482	 * or when going back by less than the beacon interval.
5483	 * Negative jumps larger than the beacon interval seem to
5484	 * cause the timers to stop and generally cause instability.
5485	 * This basically filters out jumps due to missed beacons.
5486	 */
5487	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
5488		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
5489		sc->sc_stats.ast_tdma_timers++;
5490	}
5491	if (tsfdelta > 0) {
5492		ath_hal_adjusttsf(ah, tsfdelta);
5493		sc->sc_stats.ast_tdma_tsf++;
5494	}
5495	ath_tdma_beacon_send(sc, vap);		/* prepare response */
5496#undef TU_TO_TSF
5497#undef TSF_TO_TU
5498}
5499
5500/*
5501 * Transmit a beacon frame at SWBA.  Dynamic updates
5502 * to the frame contents are done as needed.
5503 */
5504static void
5505ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
5506{
5507	struct ath_hal *ah = sc->sc_ah;
5508	struct ath_buf *bf;
5509	int otherant;
5510
5511	/*
5512	 * Check if the previous beacon has gone out.  If
5513	 * not don't try to post another, skip this period
5514	 * and wait for the next.  Missed beacons indicate
5515	 * a problem and should not occur.  If we miss too
5516	 * many consecutive beacons reset the device.
5517	 */
5518	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
5519		sc->sc_bmisscount++;
5520		DPRINTF(sc, ATH_DEBUG_BEACON,
5521			"%s: missed %u consecutive beacons\n",
5522			__func__, sc->sc_bmisscount);
5523		if (sc->sc_bmisscount >= ath_bstuck_threshold)
5524			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
5525		return;
5526	}
5527	if (sc->sc_bmisscount != 0) {
5528		DPRINTF(sc, ATH_DEBUG_BEACON,
5529			"%s: resume beacon xmit after %u misses\n",
5530			__func__, sc->sc_bmisscount);
5531		sc->sc_bmisscount = 0;
5532	}
5533
5534	/*
5535	 * Check recent per-antenna transmit statistics and flip
5536	 * the default antenna if noticeably more frames went out
5537	 * on the non-default antenna.
5538	 * XXX assumes 2 anntenae
5539	 */
5540	if (!sc->sc_diversity) {
5541		otherant = sc->sc_defant & 1 ? 2 : 1;
5542		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
5543			ath_setdefantenna(sc, otherant);
5544		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
5545	}
5546
5547	bf = ath_beacon_generate(sc, vap);
5548	if (bf != NULL) {
5549		/*
5550		 * Stop any current dma and put the new frame on the queue.
5551		 * This should never fail since we check above that no frames
5552		 * are still pending on the queue.
5553		 */
5554		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
5555			DPRINTF(sc, ATH_DEBUG_ANY,
5556				"%s: beacon queue %u did not stop?\n",
5557				__func__, sc->sc_bhalq);
5558			/* NB: the HAL still stops DMA, so proceed */
5559		}
5560		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
5561		ath_hal_txstart(ah, sc->sc_bhalq);
5562
5563		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
5564
5565		/*
5566		 * Record local TSF for our last send for use
5567		 * in arbitrating slot collisions.
5568		 */
5569		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
5570	}
5571}
5572#endif /* IEEE80211_SUPPORT_TDMA */
5573
5574