if_ath.c revision 203683
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 203683 2010-02-08 20:23:20Z rpaulo $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42#include "opt_wlan.h"
43
44#include <sys/param.h>
45#include <sys/systm.h>
46#include <sys/sysctl.h>
47#include <sys/mbuf.h>
48#include <sys/malloc.h>
49#include <sys/lock.h>
50#include <sys/mutex.h>
51#include <sys/kernel.h>
52#include <sys/socket.h>
53#include <sys/sockio.h>
54#include <sys/errno.h>
55#include <sys/callout.h>
56#include <sys/bus.h>
57#include <sys/endian.h>
58#include <sys/kthread.h>
59#include <sys/taskqueue.h>
60#include <sys/priv.h>
61
62#include <machine/bus.h>
63
64#include <net/if.h>
65#include <net/if_dl.h>
66#include <net/if_media.h>
67#include <net/if_types.h>
68#include <net/if_arp.h>
69#include <net/ethernet.h>
70#include <net/if_llc.h>
71
72#include <net80211/ieee80211_var.h>
73#include <net80211/ieee80211_regdomain.h>
74#ifdef IEEE80211_SUPPORT_SUPERG
75#include <net80211/ieee80211_superg.h>
76#endif
77#ifdef IEEE80211_SUPPORT_TDMA
78#include <net80211/ieee80211_tdma.h>
79#endif
80
81#include <net/bpf.h>
82
83#ifdef INET
84#include <netinet/in.h>
85#include <netinet/if_ether.h>
86#endif
87
88#include <dev/ath/if_athvar.h>
89#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
90
91#ifdef ATH_TX99_DIAG
92#include <dev/ath/ath_tx99/ath_tx99.h>
93#endif
94
95/*
96 * ATH_BCBUF determines the number of vap's that can transmit
97 * beacons and also (currently) the number of vap's that can
98 * have unique mac addresses/bssid.  When staggering beacons
99 * 4 is probably a good max as otherwise the beacons become
100 * very closely spaced and there is limited time for cab q traffic
101 * to go out.  You can burst beacons instead but that is not good
102 * for stations in power save and at some point you really want
103 * another radio (and channel).
104 *
105 * The limit on the number of mac addresses is tied to our use of
106 * the U/L bit and tracking addresses in a byte; it would be
107 * worthwhile to allow more for applications like proxy sta.
108 */
109CTASSERT(ATH_BCBUF <= 8);
110
111/* unaligned little endian access */
112#define LE_READ_2(p)							\
113	((u_int16_t)							\
114	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
115#define LE_READ_4(p)							\
116	((u_int32_t)							\
117	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
118	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
119
120static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
121		    const char name[IFNAMSIZ], int unit, int opmode,
122		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
123		    const uint8_t mac[IEEE80211_ADDR_LEN]);
124static void	ath_vap_delete(struct ieee80211vap *);
125static void	ath_init(void *);
126static void	ath_stop_locked(struct ifnet *);
127static void	ath_stop(struct ifnet *);
128static void	ath_start(struct ifnet *);
129static int	ath_reset(struct ifnet *);
130static int	ath_reset_vap(struct ieee80211vap *, u_long);
131static int	ath_media_change(struct ifnet *);
132static void	ath_watchdog(void *);
133static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
134static void	ath_fatal_proc(void *, int);
135static void	ath_bmiss_vap(struct ieee80211vap *);
136static void	ath_bmiss_proc(void *, int);
137static int	ath_keyset(struct ath_softc *, const struct ieee80211_key *,
138			struct ieee80211_node *);
139static int	ath_key_alloc(struct ieee80211vap *,
140			struct ieee80211_key *,
141			ieee80211_keyix *, ieee80211_keyix *);
142static int	ath_key_delete(struct ieee80211vap *,
143			const struct ieee80211_key *);
144static int	ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
145			const u_int8_t mac[IEEE80211_ADDR_LEN]);
146static void	ath_key_update_begin(struct ieee80211vap *);
147static void	ath_key_update_end(struct ieee80211vap *);
148static void	ath_update_mcast(struct ifnet *);
149static void	ath_update_promisc(struct ifnet *);
150static void	ath_mode_init(struct ath_softc *);
151static void	ath_setslottime(struct ath_softc *);
152static void	ath_updateslot(struct ifnet *);
153static int	ath_beaconq_setup(struct ath_hal *);
154static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
155static void	ath_beacon_update(struct ieee80211vap *, int item);
156static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
157static void	ath_beacon_proc(void *, int);
158static struct ath_buf *ath_beacon_generate(struct ath_softc *,
159			struct ieee80211vap *);
160static void	ath_bstuck_proc(void *, int);
161static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
162static void	ath_beacon_free(struct ath_softc *);
163static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
164static void	ath_descdma_cleanup(struct ath_softc *sc,
165			struct ath_descdma *, ath_bufhead *);
166static int	ath_desc_alloc(struct ath_softc *);
167static void	ath_desc_free(struct ath_softc *);
168static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
169			const uint8_t [IEEE80211_ADDR_LEN]);
170static void	ath_node_free(struct ieee80211_node *);
171static void	ath_node_getsignal(const struct ieee80211_node *,
172			int8_t *, int8_t *);
173static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
174static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
175			int subtype, int rssi, int nf);
176static void	ath_setdefantenna(struct ath_softc *, u_int);
177static void	ath_rx_proc(void *, int);
178static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
179static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
180static int	ath_tx_setup(struct ath_softc *, int, int);
181static int	ath_wme_update(struct ieee80211com *);
182static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
183static void	ath_tx_cleanup(struct ath_softc *);
184static void	ath_freetx(struct mbuf *);
185static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
186			     struct ath_buf *, struct mbuf *);
187static void	ath_tx_proc_q0(void *, int);
188static void	ath_tx_proc_q0123(void *, int);
189static void	ath_tx_proc(void *, int);
190static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
191static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
192static void	ath_draintxq(struct ath_softc *);
193static void	ath_stoprecv(struct ath_softc *);
194static int	ath_startrecv(struct ath_softc *);
195static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
196static void	ath_scan_start(struct ieee80211com *);
197static void	ath_scan_end(struct ieee80211com *);
198static void	ath_set_channel(struct ieee80211com *);
199static void	ath_calibrate(void *);
200static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
201static void	ath_setup_stationkey(struct ieee80211_node *);
202static void	ath_newassoc(struct ieee80211_node *, int);
203static int	ath_setregdomain(struct ieee80211com *,
204		    struct ieee80211_regdomain *, int,
205		    struct ieee80211_channel []);
206static void	ath_getradiocaps(struct ieee80211com *, int, int *,
207		    struct ieee80211_channel []);
208static int	ath_getchannels(struct ath_softc *);
209static void	ath_led_event(struct ath_softc *, int);
210
211static int	ath_rate_setup(struct ath_softc *, u_int mode);
212static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
213
214static void	ath_sysctlattach(struct ath_softc *);
215static int	ath_raw_xmit(struct ieee80211_node *,
216			struct mbuf *, const struct ieee80211_bpf_params *);
217static void	ath_announce(struct ath_softc *);
218
219#ifdef IEEE80211_SUPPORT_TDMA
220static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
221		    u_int32_t bintval);
222static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
223		    const struct ieee80211_tdma_state *tdma);
224static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
225static void	ath_tdma_update(struct ieee80211_node *ni,
226		    const struct ieee80211_tdma_param *tdma, int);
227static void	ath_tdma_beacon_send(struct ath_softc *sc,
228		    struct ieee80211vap *vap);
229
230static __inline void
231ath_hal_setcca(struct ath_hal *ah, int ena)
232{
233	/*
234	 * NB: fill me in; this is not provided by default because disabling
235	 *     CCA in most locales violates regulatory.
236	 */
237}
238
239static __inline int
240ath_hal_getcca(struct ath_hal *ah)
241{
242	u_int32_t diag;
243	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
244		return 1;
245	return ((diag & 0x500000) == 0);
246}
247
248#define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
249#define	TDMA_LPF_LEN		6
250#define	TDMA_DUMMY_MARKER	0x127
251#define	TDMA_EP_MUL(x, mul)	((x) * (mul))
252#define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
253#define	TDMA_LPF(x, y, len) \
254    ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
255#define	TDMA_SAMPLE(x, y) do {					\
256	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
257} while (0)
258#define	TDMA_EP_RND(x,mul) \
259	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
260#define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
261#endif /* IEEE80211_SUPPORT_TDMA */
262
263SYSCTL_DECL(_hw_ath);
264
265/* XXX validate sysctl values */
266static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
267SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
268	    0, "long chip calibration interval (secs)");
269static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
270SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
271	    0, "short chip calibration interval (msecs)");
272static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
273SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
274	    0, "reset chip calibration results (secs)");
275
276static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
277SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
278	    0, "rx buffers allocated");
279TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
280static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
281SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
282	    0, "tx buffers allocated");
283TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
284
285static	int ath_bstuck_threshold = 4;		/* max missed beacons */
286SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
287	    0, "max missed beacon xmits before chip reset");
288
289#ifdef ATH_DEBUG
290enum {
291	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
292	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
293	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
294	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
295	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
296	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
297	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
298	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
299	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
300	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
301	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
302	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
303	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
304	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
305	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
306	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
307	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
308	ATH_DEBUG_LED		= 0x00100000,	/* led management */
309	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
310	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
311	ATH_DEBUG_TDMA		= 0x00800000,	/* TDMA processing */
312	ATH_DEBUG_TDMA_TIMER	= 0x01000000,	/* TDMA timer processing */
313	ATH_DEBUG_REGDOMAIN	= 0x02000000,	/* regulatory processing */
314	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
315	ATH_DEBUG_ANY		= 0xffffffff
316};
317static	int ath_debug = 0;
318SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
319	    0, "control debugging printfs");
320TUNABLE_INT("hw.ath.debug", &ath_debug);
321
322#define	IFF_DUMPPKTS(sc, m) \
323	((sc->sc_debug & (m)) || \
324	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
325#define	DPRINTF(sc, m, fmt, ...) do {				\
326	if (sc->sc_debug & (m))					\
327		printf(fmt, __VA_ARGS__);			\
328} while (0)
329#define	KEYPRINTF(sc, ix, hk, mac) do {				\
330	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
331		ath_keyprint(sc, __func__, ix, hk, mac);	\
332} while (0)
333static	void ath_printrxbuf(struct ath_softc *, const struct ath_buf *bf,
334	u_int ix, int);
335static	void ath_printtxbuf(struct ath_softc *, const struct ath_buf *bf,
336	u_int qnum, u_int ix, int done);
337#else
338#define	IFF_DUMPPKTS(sc, m) \
339	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
340#define	DPRINTF(sc, m, fmt, ...) do {				\
341	(void) sc;						\
342} while (0)
343#define	KEYPRINTF(sc, k, ix, mac) do {				\
344	(void) sc;						\
345} while (0)
346#endif
347
348MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
349
350int
351ath_attach(u_int16_t devid, struct ath_softc *sc)
352{
353	struct ifnet *ifp;
354	struct ieee80211com *ic;
355	struct ath_hal *ah = NULL;
356	HAL_STATUS status;
357	int error = 0, i;
358	u_int wmodes;
359	uint8_t macaddr[IEEE80211_ADDR_LEN];
360
361	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
362
363	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
364	if (ifp == NULL) {
365		device_printf(sc->sc_dev, "can not if_alloc()\n");
366		error = ENOSPC;
367		goto bad;
368	}
369	ic = ifp->if_l2com;
370
371	/* set these up early for if_printf use */
372	if_initname(ifp, device_get_name(sc->sc_dev),
373		device_get_unit(sc->sc_dev));
374
375	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
376	if (ah == NULL) {
377		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
378			status);
379		error = ENXIO;
380		goto bad;
381	}
382	sc->sc_ah = ah;
383	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
384#ifdef	ATH_DEBUG
385	sc->sc_debug = ath_debug;
386#endif
387
388	/*
389	 * Check if the MAC has multi-rate retry support.
390	 * We do this by trying to setup a fake extended
391	 * descriptor.  MAC's that don't have support will
392	 * return false w/o doing anything.  MAC's that do
393	 * support it will return true w/o doing anything.
394	 */
395	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
396
397	/*
398	 * Check if the device has hardware counters for PHY
399	 * errors.  If so we need to enable the MIB interrupt
400	 * so we can act on stat triggers.
401	 */
402	if (ath_hal_hwphycounters(ah))
403		sc->sc_needmib = 1;
404
405	/*
406	 * Get the hardware key cache size.
407	 */
408	sc->sc_keymax = ath_hal_keycachesize(ah);
409	if (sc->sc_keymax > ATH_KEYMAX) {
410		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
411			ATH_KEYMAX, sc->sc_keymax);
412		sc->sc_keymax = ATH_KEYMAX;
413	}
414	/*
415	 * Reset the key cache since some parts do not
416	 * reset the contents on initial power up.
417	 */
418	for (i = 0; i < sc->sc_keymax; i++)
419		ath_hal_keyreset(ah, i);
420
421	/*
422	 * Collect the default channel list.
423	 */
424	error = ath_getchannels(sc);
425	if (error != 0)
426		goto bad;
427
428	/*
429	 * Setup rate tables for all potential media types.
430	 */
431	ath_rate_setup(sc, IEEE80211_MODE_11A);
432	ath_rate_setup(sc, IEEE80211_MODE_11B);
433	ath_rate_setup(sc, IEEE80211_MODE_11G);
434	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
435	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
436	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
437	ath_rate_setup(sc, IEEE80211_MODE_11NA);
438	ath_rate_setup(sc, IEEE80211_MODE_11NG);
439	ath_rate_setup(sc, IEEE80211_MODE_HALF);
440	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
441
442	/* NB: setup here so ath_rate_update is happy */
443	ath_setcurmode(sc, IEEE80211_MODE_11A);
444
445	/*
446	 * Allocate tx+rx descriptors and populate the lists.
447	 */
448	error = ath_desc_alloc(sc);
449	if (error != 0) {
450		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
451		goto bad;
452	}
453	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
454	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
455
456	ATH_TXBUF_LOCK_INIT(sc);
457
458	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
459		taskqueue_thread_enqueue, &sc->sc_tq);
460	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
461		"%s taskq", ifp->if_xname);
462
463	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
464	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
465	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
466
467	/*
468	 * Allocate hardware transmit queues: one queue for
469	 * beacon frames and one data queue for each QoS
470	 * priority.  Note that the hal handles reseting
471	 * these queues at the needed time.
472	 *
473	 * XXX PS-Poll
474	 */
475	sc->sc_bhalq = ath_beaconq_setup(ah);
476	if (sc->sc_bhalq == (u_int) -1) {
477		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
478		error = EIO;
479		goto bad2;
480	}
481	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
482	if (sc->sc_cabq == NULL) {
483		if_printf(ifp, "unable to setup CAB xmit queue!\n");
484		error = EIO;
485		goto bad2;
486	}
487	/* NB: insure BK queue is the lowest priority h/w queue */
488	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
489		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
490			ieee80211_wme_acnames[WME_AC_BK]);
491		error = EIO;
492		goto bad2;
493	}
494	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
495	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
496	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
497		/*
498		 * Not enough hardware tx queues to properly do WME;
499		 * just punt and assign them all to the same h/w queue.
500		 * We could do a better job of this if, for example,
501		 * we allocate queues when we switch from station to
502		 * AP mode.
503		 */
504		if (sc->sc_ac2q[WME_AC_VI] != NULL)
505			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
506		if (sc->sc_ac2q[WME_AC_BE] != NULL)
507			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
508		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
509		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
510		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
511	}
512
513	/*
514	 * Special case certain configurations.  Note the
515	 * CAB queue is handled by these specially so don't
516	 * include them when checking the txq setup mask.
517	 */
518	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
519	case 0x01:
520		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
521		break;
522	case 0x0f:
523		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
524		break;
525	default:
526		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
527		break;
528	}
529
530	/*
531	 * Setup rate control.  Some rate control modules
532	 * call back to change the anntena state so expose
533	 * the necessary entry points.
534	 * XXX maybe belongs in struct ath_ratectrl?
535	 */
536	sc->sc_setdefantenna = ath_setdefantenna;
537	sc->sc_rc = ath_rate_attach(sc);
538	if (sc->sc_rc == NULL) {
539		error = EIO;
540		goto bad2;
541	}
542
543	sc->sc_blinking = 0;
544	sc->sc_ledstate = 1;
545	sc->sc_ledon = 0;			/* low true */
546	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
547	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
548	/*
549	 * Auto-enable soft led processing for IBM cards and for
550	 * 5211 minipci cards.  Users can also manually enable/disable
551	 * support with a sysctl.
552	 */
553	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
554	if (sc->sc_softled) {
555		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
556		    HAL_GPIO_MUX_MAC_NETWORK_LED);
557		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
558	}
559
560	ifp->if_softc = sc;
561	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
562	ifp->if_start = ath_start;
563	ifp->if_ioctl = ath_ioctl;
564	ifp->if_init = ath_init;
565	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
566	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
567	IFQ_SET_READY(&ifp->if_snd);
568
569	ic->ic_ifp = ifp;
570	/* XXX not right but it's not used anywhere important */
571	ic->ic_phytype = IEEE80211_T_OFDM;
572	ic->ic_opmode = IEEE80211_M_STA;
573	ic->ic_caps =
574		  IEEE80211_C_STA		/* station mode */
575		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
576		| IEEE80211_C_HOSTAP		/* hostap mode */
577		| IEEE80211_C_MONITOR		/* monitor mode */
578		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
579		| IEEE80211_C_WDS		/* 4-address traffic works */
580		| IEEE80211_C_MBSS		/* mesh point link mode */
581		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
582		| IEEE80211_C_SHSLOT		/* short slot time supported */
583		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
584		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
585		| IEEE80211_C_TXFRAG		/* handle tx frags */
586		;
587	/*
588	 * Query the hal to figure out h/w crypto support.
589	 */
590	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
591		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
592	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
593		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
594	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
595		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
596	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
597		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
598	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
599		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
600		/*
601		 * Check if h/w does the MIC and/or whether the
602		 * separate key cache entries are required to
603		 * handle both tx+rx MIC keys.
604		 */
605		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
606			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
607		/*
608		 * If the h/w supports storing tx+rx MIC keys
609		 * in one cache slot automatically enable use.
610		 */
611		if (ath_hal_hastkipsplit(ah) ||
612		    !ath_hal_settkipsplit(ah, AH_FALSE))
613			sc->sc_splitmic = 1;
614		/*
615		 * If the h/w can do TKIP MIC together with WME then
616		 * we use it; otherwise we force the MIC to be done
617		 * in software by the net80211 layer.
618		 */
619		if (ath_hal_haswmetkipmic(ah))
620			sc->sc_wmetkipmic = 1;
621	}
622	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
623	/*
624	 * Check for multicast key sarch support.
625	 */
626	if (ath_hal_hasmcastkeysearch(sc->sc_ah) &&
627	    !ath_hal_getmcastkeysearch(sc->sc_ah)) {
628		ath_hal_setmcastkeysearch(sc->sc_ah, 1);
629	}
630	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
631	/*
632	 * Mark key cache slots associated with global keys
633	 * as in use.  If we knew TKIP was not to be used we
634	 * could leave the +32, +64, and +32+64 slots free.
635	 */
636	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
637		setbit(sc->sc_keymap, i);
638		setbit(sc->sc_keymap, i+64);
639		if (sc->sc_splitmic) {
640			setbit(sc->sc_keymap, i+32);
641			setbit(sc->sc_keymap, i+32+64);
642		}
643	}
644	/*
645	 * TPC support can be done either with a global cap or
646	 * per-packet support.  The latter is not available on
647	 * all parts.  We're a bit pedantic here as all parts
648	 * support a global cap.
649	 */
650	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
651		ic->ic_caps |= IEEE80211_C_TXPMGT;
652
653	/*
654	 * Mark WME capability only if we have sufficient
655	 * hardware queues to do proper priority scheduling.
656	 */
657	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
658		ic->ic_caps |= IEEE80211_C_WME;
659	/*
660	 * Check for misc other capabilities.
661	 */
662	if (ath_hal_hasbursting(ah))
663		ic->ic_caps |= IEEE80211_C_BURST;
664	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
665	sc->sc_hasbmatch = ath_hal_hasbssidmatch(ah);
666	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
667	if (ath_hal_hasfastframes(ah))
668		ic->ic_caps |= IEEE80211_C_FF;
669	wmodes = ath_hal_getwirelessmodes(ah);
670	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
671		ic->ic_caps |= IEEE80211_C_TURBOP;
672#ifdef IEEE80211_SUPPORT_TDMA
673	if (ath_hal_macversion(ah) > 0x78) {
674		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
675		ic->ic_tdma_update = ath_tdma_update;
676	}
677#endif
678	/*
679	 * Indicate we need the 802.11 header padded to a
680	 * 32-bit boundary for 4-address and QoS frames.
681	 */
682	ic->ic_flags |= IEEE80211_F_DATAPAD;
683
684	/*
685	 * Query the hal about antenna support.
686	 */
687	sc->sc_defant = ath_hal_getdefantenna(ah);
688
689	/*
690	 * Not all chips have the VEOL support we want to
691	 * use with IBSS beacons; check here for it.
692	 */
693	sc->sc_hasveol = ath_hal_hasveol(ah);
694
695	/* get mac address from hardware */
696	ath_hal_getmac(ah, macaddr);
697	if (sc->sc_hasbmask)
698		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
699
700	/* NB: used to size node table key mapping array */
701	ic->ic_max_keyix = sc->sc_keymax;
702	/* call MI attach routine. */
703	ieee80211_ifattach(ic, macaddr);
704	ic->ic_setregdomain = ath_setregdomain;
705	ic->ic_getradiocaps = ath_getradiocaps;
706	sc->sc_opmode = HAL_M_STA;
707
708	/* override default methods */
709	ic->ic_newassoc = ath_newassoc;
710	ic->ic_updateslot = ath_updateslot;
711	ic->ic_wme.wme_update = ath_wme_update;
712	ic->ic_vap_create = ath_vap_create;
713	ic->ic_vap_delete = ath_vap_delete;
714	ic->ic_raw_xmit = ath_raw_xmit;
715	ic->ic_update_mcast = ath_update_mcast;
716	ic->ic_update_promisc = ath_update_promisc;
717	ic->ic_node_alloc = ath_node_alloc;
718	sc->sc_node_free = ic->ic_node_free;
719	ic->ic_node_free = ath_node_free;
720	ic->ic_node_getsignal = ath_node_getsignal;
721	ic->ic_scan_start = ath_scan_start;
722	ic->ic_scan_end = ath_scan_end;
723	ic->ic_set_channel = ath_set_channel;
724
725	ieee80211_radiotap_attach(ic,
726	    &sc->sc_tx_th.wt_ihdr, sizeof(sc->sc_tx_th),
727		ATH_TX_RADIOTAP_PRESENT,
728	    &sc->sc_rx_th.wr_ihdr, sizeof(sc->sc_rx_th),
729		ATH_RX_RADIOTAP_PRESENT);
730
731	/*
732	 * Setup dynamic sysctl's now that country code and
733	 * regdomain are available from the hal.
734	 */
735	ath_sysctlattach(sc);
736
737	if (bootverbose)
738		ieee80211_announce(ic);
739	ath_announce(sc);
740	return 0;
741bad2:
742	ath_tx_cleanup(sc);
743	ath_desc_free(sc);
744bad:
745	if (ah)
746		ath_hal_detach(ah);
747	if (ifp != NULL)
748		if_free(ifp);
749	sc->sc_invalid = 1;
750	return error;
751}
752
753int
754ath_detach(struct ath_softc *sc)
755{
756	struct ifnet *ifp = sc->sc_ifp;
757
758	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
759		__func__, ifp->if_flags);
760
761	/*
762	 * NB: the order of these is important:
763	 * o stop the chip so no more interrupts will fire
764	 * o call the 802.11 layer before detaching the hal to
765	 *   insure callbacks into the driver to delete global
766	 *   key cache entries can be handled
767	 * o free the taskqueue which drains any pending tasks
768	 * o reclaim the tx queue data structures after calling
769	 *   the 802.11 layer as we'll get called back to reclaim
770	 *   node state and potentially want to use them
771	 * o to cleanup the tx queues the hal is called, so detach
772	 *   it last
773	 * Other than that, it's straightforward...
774	 */
775	ath_stop(ifp);
776	ieee80211_ifdetach(ifp->if_l2com);
777	taskqueue_free(sc->sc_tq);
778#ifdef ATH_TX99_DIAG
779	if (sc->sc_tx99 != NULL)
780		sc->sc_tx99->detach(sc->sc_tx99);
781#endif
782	ath_rate_detach(sc->sc_rc);
783	ath_desc_free(sc);
784	ath_tx_cleanup(sc);
785	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
786	if_free(ifp);
787
788	return 0;
789}
790
791/*
792 * MAC address handling for multiple BSS on the same radio.
793 * The first vap uses the MAC address from the EEPROM.  For
794 * subsequent vap's we set the U/L bit (bit 1) in the MAC
795 * address and use the next six bits as an index.
796 */
797static void
798assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
799{
800	int i;
801
802	if (clone && sc->sc_hasbmask) {
803		/* NB: we only do this if h/w supports multiple bssid */
804		for (i = 0; i < 8; i++)
805			if ((sc->sc_bssidmask & (1<<i)) == 0)
806				break;
807		if (i != 0)
808			mac[0] |= (i << 2)|0x2;
809	} else
810		i = 0;
811	sc->sc_bssidmask |= 1<<i;
812	sc->sc_hwbssidmask[0] &= ~mac[0];
813	if (i == 0)
814		sc->sc_nbssid0++;
815}
816
817static void
818reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
819{
820	int i = mac[0] >> 2;
821	uint8_t mask;
822
823	if (i != 0 || --sc->sc_nbssid0 == 0) {
824		sc->sc_bssidmask &= ~(1<<i);
825		/* recalculate bssid mask from remaining addresses */
826		mask = 0xff;
827		for (i = 1; i < 8; i++)
828			if (sc->sc_bssidmask & (1<<i))
829				mask &= ~((i<<2)|0x2);
830		sc->sc_hwbssidmask[0] |= mask;
831	}
832}
833
834/*
835 * Assign a beacon xmit slot.  We try to space out
836 * assignments so when beacons are staggered the
837 * traffic coming out of the cab q has maximal time
838 * to go out before the next beacon is scheduled.
839 */
840static int
841assign_bslot(struct ath_softc *sc)
842{
843	u_int slot, free;
844
845	free = 0;
846	for (slot = 0; slot < ATH_BCBUF; slot++)
847		if (sc->sc_bslot[slot] == NULL) {
848			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
849			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
850				return slot;
851			free = slot;
852			/* NB: keep looking for a double slot */
853		}
854	return free;
855}
856
857static struct ieee80211vap *
858ath_vap_create(struct ieee80211com *ic,
859	const char name[IFNAMSIZ], int unit, int opmode, int flags,
860	const uint8_t bssid[IEEE80211_ADDR_LEN],
861	const uint8_t mac0[IEEE80211_ADDR_LEN])
862{
863	struct ath_softc *sc = ic->ic_ifp->if_softc;
864	struct ath_vap *avp;
865	struct ieee80211vap *vap;
866	uint8_t mac[IEEE80211_ADDR_LEN];
867	int ic_opmode, needbeacon, error;
868
869	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
870	    M_80211_VAP, M_WAITOK | M_ZERO);
871	needbeacon = 0;
872	IEEE80211_ADDR_COPY(mac, mac0);
873
874	ATH_LOCK(sc);
875	ic_opmode = opmode;		/* default to opmode of new vap */
876	switch (opmode) {
877	case IEEE80211_M_STA:
878		if (sc->sc_nstavaps != 0) {	/* XXX only 1 for now */
879			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
880			goto bad;
881		}
882		if (sc->sc_nvaps) {
883			/*
884			 * With multiple vaps we must fall back
885			 * to s/w beacon miss handling.
886			 */
887			flags |= IEEE80211_CLONE_NOBEACONS;
888		}
889		if (flags & IEEE80211_CLONE_NOBEACONS) {
890			/*
891			 * Station mode w/o beacons are implemented w/ AP mode.
892			 */
893			ic_opmode = IEEE80211_M_HOSTAP;
894		}
895		break;
896	case IEEE80211_M_IBSS:
897		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
898			device_printf(sc->sc_dev,
899			    "only 1 ibss vap supported\n");
900			goto bad;
901		}
902		needbeacon = 1;
903		break;
904	case IEEE80211_M_AHDEMO:
905#ifdef IEEE80211_SUPPORT_TDMA
906		if (flags & IEEE80211_CLONE_TDMA) {
907			if (sc->sc_nvaps != 0) {
908				device_printf(sc->sc_dev,
909				    "only 1 tdma vap supported\n");
910				goto bad;
911			}
912			needbeacon = 1;
913			flags |= IEEE80211_CLONE_NOBEACONS;
914		}
915		/* fall thru... */
916#endif
917	case IEEE80211_M_MONITOR:
918		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
919			/*
920			 * Adopt existing mode.  Adding a monitor or ahdemo
921			 * vap to an existing configuration is of dubious
922			 * value but should be ok.
923			 */
924			/* XXX not right for monitor mode */
925			ic_opmode = ic->ic_opmode;
926		}
927		break;
928	case IEEE80211_M_HOSTAP:
929	case IEEE80211_M_MBSS:
930		needbeacon = 1;
931		break;
932	case IEEE80211_M_WDS:
933		if (sc->sc_nvaps != 0 && ic->ic_opmode == IEEE80211_M_STA) {
934			device_printf(sc->sc_dev,
935			    "wds not supported in sta mode\n");
936			goto bad;
937		}
938		/*
939		 * Silently remove any request for a unique
940		 * bssid; WDS vap's always share the local
941		 * mac address.
942		 */
943		flags &= ~IEEE80211_CLONE_BSSID;
944		if (sc->sc_nvaps == 0)
945			ic_opmode = IEEE80211_M_HOSTAP;
946		else
947			ic_opmode = ic->ic_opmode;
948		break;
949	default:
950		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
951		goto bad;
952	}
953	/*
954	 * Check that a beacon buffer is available; the code below assumes it.
955	 */
956	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
957		device_printf(sc->sc_dev, "no beacon buffer available\n");
958		goto bad;
959	}
960
961	/* STA, AHDEMO? */
962	if (opmode == IEEE80211_M_HOSTAP || opmode == IEEE80211_M_MBSS) {
963		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
964		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
965	}
966
967	vap = &avp->av_vap;
968	/* XXX can't hold mutex across if_alloc */
969	ATH_UNLOCK(sc);
970	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
971	    bssid, mac);
972	ATH_LOCK(sc);
973	if (error != 0) {
974		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
975		    __func__, error);
976		goto bad2;
977	}
978
979	/* h/w crypto support */
980	vap->iv_key_alloc = ath_key_alloc;
981	vap->iv_key_delete = ath_key_delete;
982	vap->iv_key_set = ath_key_set;
983	vap->iv_key_update_begin = ath_key_update_begin;
984	vap->iv_key_update_end = ath_key_update_end;
985
986	/* override various methods */
987	avp->av_recv_mgmt = vap->iv_recv_mgmt;
988	vap->iv_recv_mgmt = ath_recv_mgmt;
989	vap->iv_reset = ath_reset_vap;
990	vap->iv_update_beacon = ath_beacon_update;
991	avp->av_newstate = vap->iv_newstate;
992	vap->iv_newstate = ath_newstate;
993	avp->av_bmiss = vap->iv_bmiss;
994	vap->iv_bmiss = ath_bmiss_vap;
995
996	avp->av_bslot = -1;
997	if (needbeacon) {
998		/*
999		 * Allocate beacon state and setup the q for buffered
1000		 * multicast frames.  We know a beacon buffer is
1001		 * available because we checked above.
1002		 */
1003		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
1004		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
1005		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
1006			/*
1007			 * Assign the vap to a beacon xmit slot.  As above
1008			 * this cannot fail to find a free one.
1009			 */
1010			avp->av_bslot = assign_bslot(sc);
1011			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
1012			    ("beacon slot %u not empty", avp->av_bslot));
1013			sc->sc_bslot[avp->av_bslot] = vap;
1014			sc->sc_nbcnvaps++;
1015		}
1016		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1017			/*
1018			 * Multple vaps are to transmit beacons and we
1019			 * have h/w support for TSF adjusting; enable
1020			 * use of staggered beacons.
1021			 */
1022			sc->sc_stagbeacons = 1;
1023		}
1024		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1025	}
1026
1027	ic->ic_opmode = ic_opmode;
1028	if (opmode != IEEE80211_M_WDS) {
1029		sc->sc_nvaps++;
1030		if (opmode == IEEE80211_M_STA)
1031			sc->sc_nstavaps++;
1032		if (opmode == IEEE80211_M_MBSS)
1033			sc->sc_nmeshvaps++;
1034	}
1035	switch (ic_opmode) {
1036	case IEEE80211_M_IBSS:
1037		sc->sc_opmode = HAL_M_IBSS;
1038		break;
1039	case IEEE80211_M_STA:
1040		sc->sc_opmode = HAL_M_STA;
1041		break;
1042	case IEEE80211_M_AHDEMO:
1043#ifdef IEEE80211_SUPPORT_TDMA
1044		if (vap->iv_caps & IEEE80211_C_TDMA) {
1045			sc->sc_tdma = 1;
1046			/* NB: disable tsf adjust */
1047			sc->sc_stagbeacons = 0;
1048		}
1049		/*
1050		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1051		 * just ap mode.
1052		 */
1053		/* fall thru... */
1054#endif
1055	case IEEE80211_M_HOSTAP:
1056	case IEEE80211_M_MBSS:
1057		sc->sc_opmode = HAL_M_HOSTAP;
1058		break;
1059	case IEEE80211_M_MONITOR:
1060		sc->sc_opmode = HAL_M_MONITOR;
1061		break;
1062	default:
1063		/* XXX should not happen */
1064		break;
1065	}
1066	if (sc->sc_hastsfadd) {
1067		/*
1068		 * Configure whether or not TSF adjust should be done.
1069		 */
1070		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1071	}
1072	if (flags & IEEE80211_CLONE_NOBEACONS) {
1073		/*
1074		 * Enable s/w beacon miss handling.
1075		 */
1076		sc->sc_swbmiss = 1;
1077	}
1078	ATH_UNLOCK(sc);
1079
1080	/* complete setup */
1081	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1082	return vap;
1083bad2:
1084	reclaim_address(sc, mac);
1085	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1086bad:
1087	free(avp, M_80211_VAP);
1088	ATH_UNLOCK(sc);
1089	return NULL;
1090}
1091
1092static void
1093ath_vap_delete(struct ieee80211vap *vap)
1094{
1095	struct ieee80211com *ic = vap->iv_ic;
1096	struct ifnet *ifp = ic->ic_ifp;
1097	struct ath_softc *sc = ifp->if_softc;
1098	struct ath_hal *ah = sc->sc_ah;
1099	struct ath_vap *avp = ATH_VAP(vap);
1100
1101	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1102		/*
1103		 * Quiesce the hardware while we remove the vap.  In
1104		 * particular we need to reclaim all references to
1105		 * the vap state by any frames pending on the tx queues.
1106		 */
1107		ath_hal_intrset(ah, 0);		/* disable interrupts */
1108		ath_draintxq(sc);		/* stop xmit side */
1109		ath_stoprecv(sc);		/* stop recv side */
1110	}
1111
1112	ieee80211_vap_detach(vap);
1113	ATH_LOCK(sc);
1114	/*
1115	 * Reclaim beacon state.  Note this must be done before
1116	 * the vap instance is reclaimed as we may have a reference
1117	 * to it in the buffer for the beacon frame.
1118	 */
1119	if (avp->av_bcbuf != NULL) {
1120		if (avp->av_bslot != -1) {
1121			sc->sc_bslot[avp->av_bslot] = NULL;
1122			sc->sc_nbcnvaps--;
1123		}
1124		ath_beacon_return(sc, avp->av_bcbuf);
1125		avp->av_bcbuf = NULL;
1126		if (sc->sc_nbcnvaps == 0) {
1127			sc->sc_stagbeacons = 0;
1128			if (sc->sc_hastsfadd)
1129				ath_hal_settsfadjust(sc->sc_ah, 0);
1130		}
1131		/*
1132		 * Reclaim any pending mcast frames for the vap.
1133		 */
1134		ath_tx_draintxq(sc, &avp->av_mcastq);
1135		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1136	}
1137	/*
1138	 * Update bookkeeping.
1139	 */
1140	if (vap->iv_opmode == IEEE80211_M_STA) {
1141		sc->sc_nstavaps--;
1142		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1143			sc->sc_swbmiss = 0;
1144	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP ||
1145	    vap->iv_opmode == IEEE80211_M_MBSS) {
1146		reclaim_address(sc, vap->iv_myaddr);
1147		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1148		if (vap->iv_opmode == IEEE80211_M_MBSS)
1149			sc->sc_nmeshvaps--;
1150	}
1151	if (vap->iv_opmode != IEEE80211_M_WDS)
1152		sc->sc_nvaps--;
1153#ifdef IEEE80211_SUPPORT_TDMA
1154	/* TDMA operation ceases when the last vap is destroyed */
1155	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1156		sc->sc_tdma = 0;
1157		sc->sc_swbmiss = 0;
1158	}
1159#endif
1160	ATH_UNLOCK(sc);
1161	free(avp, M_80211_VAP);
1162
1163	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1164		/*
1165		 * Restart rx+tx machines if still running (RUNNING will
1166		 * be reset if we just destroyed the last vap).
1167		 */
1168		if (ath_startrecv(sc) != 0)
1169			if_printf(ifp, "%s: unable to restart recv logic\n",
1170			    __func__);
1171		if (sc->sc_beacons) {		/* restart beacons */
1172#ifdef IEEE80211_SUPPORT_TDMA
1173			if (sc->sc_tdma)
1174				ath_tdma_config(sc, NULL);
1175			else
1176#endif
1177				ath_beacon_config(sc, NULL);
1178		}
1179		ath_hal_intrset(ah, sc->sc_imask);
1180	}
1181}
1182
1183void
1184ath_suspend(struct ath_softc *sc)
1185{
1186	struct ifnet *ifp = sc->sc_ifp;
1187	struct ieee80211com *ic = ifp->if_l2com;
1188
1189	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1190		__func__, ifp->if_flags);
1191
1192	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1193	if (ic->ic_opmode == IEEE80211_M_STA)
1194		ath_stop(ifp);
1195	else
1196		ieee80211_suspend_all(ic);
1197	/*
1198	 * NB: don't worry about putting the chip in low power
1199	 * mode; pci will power off our socket on suspend and
1200	 * CardBus detaches the device.
1201	 */
1202}
1203
1204/*
1205 * Reset the key cache since some parts do not reset the
1206 * contents on resume.  First we clear all entries, then
1207 * re-load keys that the 802.11 layer assumes are setup
1208 * in h/w.
1209 */
1210static void
1211ath_reset_keycache(struct ath_softc *sc)
1212{
1213	struct ifnet *ifp = sc->sc_ifp;
1214	struct ieee80211com *ic = ifp->if_l2com;
1215	struct ath_hal *ah = sc->sc_ah;
1216	int i;
1217
1218	for (i = 0; i < sc->sc_keymax; i++)
1219		ath_hal_keyreset(ah, i);
1220	ieee80211_crypto_reload_keys(ic);
1221}
1222
1223void
1224ath_resume(struct ath_softc *sc)
1225{
1226	struct ifnet *ifp = sc->sc_ifp;
1227	struct ieee80211com *ic = ifp->if_l2com;
1228	struct ath_hal *ah = sc->sc_ah;
1229	HAL_STATUS status;
1230
1231	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1232		__func__, ifp->if_flags);
1233
1234	/*
1235	 * Must reset the chip before we reload the
1236	 * keycache as we were powered down on suspend.
1237	 */
1238	ath_hal_reset(ah, sc->sc_opmode,
1239	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1240	    AH_FALSE, &status);
1241	ath_reset_keycache(sc);
1242	if (sc->sc_resume_up) {
1243		if (ic->ic_opmode == IEEE80211_M_STA) {
1244			ath_init(sc);
1245			/*
1246			 * Program the beacon registers using the last rx'd
1247			 * beacon frame and enable sync on the next beacon
1248			 * we see.  This should handle the case where we
1249			 * wakeup and find the same AP and also the case where
1250			 * we wakeup and need to roam.  For the latter we
1251			 * should get bmiss events that trigger a roam.
1252			 */
1253			ath_beacon_config(sc, NULL);
1254			sc->sc_syncbeacon = 1;
1255		} else
1256			ieee80211_resume_all(ic);
1257	}
1258	if (sc->sc_softled) {
1259		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1260		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1261		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1262	}
1263}
1264
1265void
1266ath_shutdown(struct ath_softc *sc)
1267{
1268	struct ifnet *ifp = sc->sc_ifp;
1269
1270	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1271		__func__, ifp->if_flags);
1272
1273	ath_stop(ifp);
1274	/* NB: no point powering down chip as we're about to reboot */
1275}
1276
1277/*
1278 * Interrupt handler.  Most of the actual processing is deferred.
1279 */
1280void
1281ath_intr(void *arg)
1282{
1283	struct ath_softc *sc = arg;
1284	struct ifnet *ifp = sc->sc_ifp;
1285	struct ath_hal *ah = sc->sc_ah;
1286	HAL_INT status;
1287
1288	if (sc->sc_invalid) {
1289		/*
1290		 * The hardware is not ready/present, don't touch anything.
1291		 * Note this can happen early on if the IRQ is shared.
1292		 */
1293		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1294		return;
1295	}
1296	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1297		return;
1298	if ((ifp->if_flags & IFF_UP) == 0 ||
1299	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1300		HAL_INT status;
1301
1302		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1303			__func__, ifp->if_flags);
1304		ath_hal_getisr(ah, &status);	/* clear ISR */
1305		ath_hal_intrset(ah, 0);		/* disable further intr's */
1306		return;
1307	}
1308	/*
1309	 * Figure out the reason(s) for the interrupt.  Note
1310	 * that the hal returns a pseudo-ISR that may include
1311	 * bits we haven't explicitly enabled so we mask the
1312	 * value to insure we only process bits we requested.
1313	 */
1314	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1315	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1316	status &= sc->sc_imask;			/* discard unasked for bits */
1317	if (status & HAL_INT_FATAL) {
1318		sc->sc_stats.ast_hardware++;
1319		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1320		ath_fatal_proc(sc, 0);
1321	} else {
1322		if (status & HAL_INT_SWBA) {
1323			/*
1324			 * Software beacon alert--time to send a beacon.
1325			 * Handle beacon transmission directly; deferring
1326			 * this is too slow to meet timing constraints
1327			 * under load.
1328			 */
1329#ifdef IEEE80211_SUPPORT_TDMA
1330			if (sc->sc_tdma) {
1331				if (sc->sc_tdmaswba == 0) {
1332					struct ieee80211com *ic = ifp->if_l2com;
1333					struct ieee80211vap *vap =
1334					    TAILQ_FIRST(&ic->ic_vaps);
1335					ath_tdma_beacon_send(sc, vap);
1336					sc->sc_tdmaswba =
1337					    vap->iv_tdma->tdma_bintval;
1338				} else
1339					sc->sc_tdmaswba--;
1340			} else
1341#endif
1342			{
1343				ath_beacon_proc(sc, 0);
1344#ifdef IEEE80211_SUPPORT_SUPERG
1345				/*
1346				 * Schedule the rx taskq in case there's no
1347				 * traffic so any frames held on the staging
1348				 * queue are aged and potentially flushed.
1349				 */
1350				taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1351#endif
1352			}
1353		}
1354		if (status & HAL_INT_RXEOL) {
1355			/*
1356			 * NB: the hardware should re-read the link when
1357			 *     RXE bit is written, but it doesn't work at
1358			 *     least on older hardware revs.
1359			 */
1360			sc->sc_stats.ast_rxeol++;
1361			sc->sc_rxlink = NULL;
1362		}
1363		if (status & HAL_INT_TXURN) {
1364			sc->sc_stats.ast_txurn++;
1365			/* bump tx trigger level */
1366			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1367		}
1368		if (status & HAL_INT_RX)
1369			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1370		if (status & HAL_INT_TX)
1371			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1372		if (status & HAL_INT_BMISS) {
1373			sc->sc_stats.ast_bmiss++;
1374			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1375		}
1376		if (status & HAL_INT_MIB) {
1377			sc->sc_stats.ast_mib++;
1378			/*
1379			 * Disable interrupts until we service the MIB
1380			 * interrupt; otherwise it will continue to fire.
1381			 */
1382			ath_hal_intrset(ah, 0);
1383			/*
1384			 * Let the hal handle the event.  We assume it will
1385			 * clear whatever condition caused the interrupt.
1386			 */
1387			ath_hal_mibevent(ah, &sc->sc_halstats);
1388			ath_hal_intrset(ah, sc->sc_imask);
1389		}
1390		if (status & HAL_INT_RXORN) {
1391			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1392			sc->sc_stats.ast_rxorn++;
1393		}
1394	}
1395}
1396
1397static void
1398ath_fatal_proc(void *arg, int pending)
1399{
1400	struct ath_softc *sc = arg;
1401	struct ifnet *ifp = sc->sc_ifp;
1402	u_int32_t *state;
1403	u_int32_t len;
1404	void *sp;
1405
1406	if_printf(ifp, "hardware error; resetting\n");
1407	/*
1408	 * Fatal errors are unrecoverable.  Typically these
1409	 * are caused by DMA errors.  Collect h/w state from
1410	 * the hal so we can diagnose what's going on.
1411	 */
1412	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1413		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1414		state = sp;
1415		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1416		    state[0], state[1] , state[2], state[3],
1417		    state[4], state[5]);
1418	}
1419	ath_reset(ifp);
1420}
1421
1422static void
1423ath_bmiss_vap(struct ieee80211vap *vap)
1424{
1425	/*
1426	 * Workaround phantom bmiss interrupts by sanity-checking
1427	 * the time of our last rx'd frame.  If it is within the
1428	 * beacon miss interval then ignore the interrupt.  If it's
1429	 * truly a bmiss we'll get another interrupt soon and that'll
1430	 * be dispatched up for processing.  Note this applies only
1431	 * for h/w beacon miss events.
1432	 */
1433	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1434		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1435		struct ath_softc *sc = ifp->if_softc;
1436		u_int64_t lastrx = sc->sc_lastrx;
1437		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1438		u_int bmisstimeout =
1439			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1440
1441		DPRINTF(sc, ATH_DEBUG_BEACON,
1442		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1443		    __func__, (unsigned long long) tsf,
1444		    (unsigned long long)(tsf - lastrx),
1445		    (unsigned long long) lastrx, bmisstimeout);
1446
1447		if (tsf - lastrx <= bmisstimeout) {
1448			sc->sc_stats.ast_bmiss_phantom++;
1449			return;
1450		}
1451	}
1452	ATH_VAP(vap)->av_bmiss(vap);
1453}
1454
1455static int
1456ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1457{
1458	uint32_t rsize;
1459	void *sp;
1460
1461	if (!ath_hal_getdiagstate(ah, 32, &mask, sizeof(mask), &sp, &rsize))
1462		return 0;
1463	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1464	*hangs = *(uint32_t *)sp;
1465	return 1;
1466}
1467
1468static void
1469ath_bmiss_proc(void *arg, int pending)
1470{
1471	struct ath_softc *sc = arg;
1472	struct ifnet *ifp = sc->sc_ifp;
1473	uint32_t hangs;
1474
1475	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1476
1477	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1478		if_printf(ifp, "bb hang detected (0x%x), reseting\n", hangs);
1479		ath_reset(ifp);
1480	} else
1481		ieee80211_beacon_miss(ifp->if_l2com);
1482}
1483
1484/*
1485 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1486 * calcs together with WME.  If necessary disable the crypto
1487 * hardware and mark the 802.11 state so keys will be setup
1488 * with the MIC work done in software.
1489 */
1490static void
1491ath_settkipmic(struct ath_softc *sc)
1492{
1493	struct ifnet *ifp = sc->sc_ifp;
1494	struct ieee80211com *ic = ifp->if_l2com;
1495
1496	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1497		if (ic->ic_flags & IEEE80211_F_WME) {
1498			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1499			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1500		} else {
1501			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1502			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1503		}
1504	}
1505}
1506
1507static void
1508ath_init(void *arg)
1509{
1510	struct ath_softc *sc = (struct ath_softc *) arg;
1511	struct ifnet *ifp = sc->sc_ifp;
1512	struct ieee80211com *ic = ifp->if_l2com;
1513	struct ath_hal *ah = sc->sc_ah;
1514	HAL_STATUS status;
1515
1516	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1517		__func__, ifp->if_flags);
1518
1519	ATH_LOCK(sc);
1520	/*
1521	 * Stop anything previously setup.  This is safe
1522	 * whether this is the first time through or not.
1523	 */
1524	ath_stop_locked(ifp);
1525
1526	/*
1527	 * The basic interface to setting the hardware in a good
1528	 * state is ``reset''.  On return the hardware is known to
1529	 * be powered up and with interrupts disabled.  This must
1530	 * be followed by initialization of the appropriate bits
1531	 * and then setup of the interrupt mask.
1532	 */
1533	ath_settkipmic(sc);
1534	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1535		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1536			status);
1537		ATH_UNLOCK(sc);
1538		return;
1539	}
1540	ath_chan_change(sc, ic->ic_curchan);
1541
1542	/*
1543	 * Likewise this is set during reset so update
1544	 * state cached in the driver.
1545	 */
1546	sc->sc_diversity = ath_hal_getdiversity(ah);
1547	sc->sc_lastlongcal = 0;
1548	sc->sc_resetcal = 1;
1549	sc->sc_lastcalreset = 0;
1550
1551	/*
1552	 * Setup the hardware after reset: the key cache
1553	 * is filled as needed and the receive engine is
1554	 * set going.  Frame transmit is handled entirely
1555	 * in the frame output path; there's nothing to do
1556	 * here except setup the interrupt mask.
1557	 */
1558	if (ath_startrecv(sc) != 0) {
1559		if_printf(ifp, "unable to start recv logic\n");
1560		ATH_UNLOCK(sc);
1561		return;
1562	}
1563
1564	/*
1565	 * Enable interrupts.
1566	 */
1567	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1568		  | HAL_INT_RXEOL | HAL_INT_RXORN
1569		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1570	/*
1571	 * Enable MIB interrupts when there are hardware phy counters.
1572	 * Note we only do this (at the moment) for station mode.
1573	 */
1574	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1575		sc->sc_imask |= HAL_INT_MIB;
1576
1577	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1578	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1579	ath_hal_intrset(ah, sc->sc_imask);
1580
1581	ATH_UNLOCK(sc);
1582
1583#ifdef ATH_TX99_DIAG
1584	if (sc->sc_tx99 != NULL)
1585		sc->sc_tx99->start(sc->sc_tx99);
1586	else
1587#endif
1588	ieee80211_start_all(ic);		/* start all vap's */
1589}
1590
1591static void
1592ath_stop_locked(struct ifnet *ifp)
1593{
1594	struct ath_softc *sc = ifp->if_softc;
1595	struct ath_hal *ah = sc->sc_ah;
1596
1597	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1598		__func__, sc->sc_invalid, ifp->if_flags);
1599
1600	ATH_LOCK_ASSERT(sc);
1601	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1602		/*
1603		 * Shutdown the hardware and driver:
1604		 *    reset 802.11 state machine
1605		 *    turn off timers
1606		 *    disable interrupts
1607		 *    turn off the radio
1608		 *    clear transmit machinery
1609		 *    clear receive machinery
1610		 *    drain and release tx queues
1611		 *    reclaim beacon resources
1612		 *    power down hardware
1613		 *
1614		 * Note that some of this work is not possible if the
1615		 * hardware is gone (invalid).
1616		 */
1617#ifdef ATH_TX99_DIAG
1618		if (sc->sc_tx99 != NULL)
1619			sc->sc_tx99->stop(sc->sc_tx99);
1620#endif
1621		callout_stop(&sc->sc_wd_ch);
1622		sc->sc_wd_timer = 0;
1623		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1624		if (!sc->sc_invalid) {
1625			if (sc->sc_softled) {
1626				callout_stop(&sc->sc_ledtimer);
1627				ath_hal_gpioset(ah, sc->sc_ledpin,
1628					!sc->sc_ledon);
1629				sc->sc_blinking = 0;
1630			}
1631			ath_hal_intrset(ah, 0);
1632		}
1633		ath_draintxq(sc);
1634		if (!sc->sc_invalid) {
1635			ath_stoprecv(sc);
1636			ath_hal_phydisable(ah);
1637		} else
1638			sc->sc_rxlink = NULL;
1639		ath_beacon_free(sc);	/* XXX not needed */
1640	}
1641}
1642
1643static void
1644ath_stop(struct ifnet *ifp)
1645{
1646	struct ath_softc *sc = ifp->if_softc;
1647
1648	ATH_LOCK(sc);
1649	ath_stop_locked(ifp);
1650	ATH_UNLOCK(sc);
1651}
1652
1653/*
1654 * Reset the hardware w/o losing operational state.  This is
1655 * basically a more efficient way of doing ath_stop, ath_init,
1656 * followed by state transitions to the current 802.11
1657 * operational state.  Used to recover from various errors and
1658 * to reset or reload hardware state.
1659 */
1660static int
1661ath_reset(struct ifnet *ifp)
1662{
1663	struct ath_softc *sc = ifp->if_softc;
1664	struct ieee80211com *ic = ifp->if_l2com;
1665	struct ath_hal *ah = sc->sc_ah;
1666	HAL_STATUS status;
1667
1668	ath_hal_intrset(ah, 0);		/* disable interrupts */
1669	ath_draintxq(sc);		/* stop xmit side */
1670	ath_stoprecv(sc);		/* stop recv side */
1671	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1672	/* NB: indicate channel change so we do a full reset */
1673	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1674		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1675			__func__, status);
1676	sc->sc_diversity = ath_hal_getdiversity(ah);
1677	if (ath_startrecv(sc) != 0)	/* restart recv */
1678		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1679	/*
1680	 * We may be doing a reset in response to an ioctl
1681	 * that changes the channel so update any state that
1682	 * might change as a result.
1683	 */
1684	ath_chan_change(sc, ic->ic_curchan);
1685	if (sc->sc_beacons) {		/* restart beacons */
1686#ifdef IEEE80211_SUPPORT_TDMA
1687		if (sc->sc_tdma)
1688			ath_tdma_config(sc, NULL);
1689		else
1690#endif
1691			ath_beacon_config(sc, NULL);
1692	}
1693	ath_hal_intrset(ah, sc->sc_imask);
1694
1695	ath_start(ifp);			/* restart xmit */
1696	return 0;
1697}
1698
1699static int
1700ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1701{
1702	struct ieee80211com *ic = vap->iv_ic;
1703	struct ifnet *ifp = ic->ic_ifp;
1704	struct ath_softc *sc = ifp->if_softc;
1705	struct ath_hal *ah = sc->sc_ah;
1706
1707	switch (cmd) {
1708	case IEEE80211_IOC_TXPOWER:
1709		/*
1710		 * If per-packet TPC is enabled, then we have nothing
1711		 * to do; otherwise we need to force the global limit.
1712		 * All this can happen directly; no need to reset.
1713		 */
1714		if (!ath_hal_gettpc(ah))
1715			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1716		return 0;
1717	}
1718	return ath_reset(ifp);
1719}
1720
1721static struct ath_buf *
1722_ath_getbuf_locked(struct ath_softc *sc)
1723{
1724	struct ath_buf *bf;
1725
1726	ATH_TXBUF_LOCK_ASSERT(sc);
1727
1728	bf = STAILQ_FIRST(&sc->sc_txbuf);
1729	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
1730		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1731	else
1732		bf = NULL;
1733	if (bf == NULL) {
1734		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
1735		    STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
1736			"out of xmit buffers" : "xmit buffer busy");
1737	}
1738	return bf;
1739}
1740
1741static struct ath_buf *
1742ath_getbuf(struct ath_softc *sc)
1743{
1744	struct ath_buf *bf;
1745
1746	ATH_TXBUF_LOCK(sc);
1747	bf = _ath_getbuf_locked(sc);
1748	if (bf == NULL) {
1749		struct ifnet *ifp = sc->sc_ifp;
1750
1751		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
1752		sc->sc_stats.ast_tx_qstop++;
1753		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1754	}
1755	ATH_TXBUF_UNLOCK(sc);
1756	return bf;
1757}
1758
1759/*
1760 * Cleanup driver resources when we run out of buffers
1761 * while processing fragments; return the tx buffers
1762 * allocated and drop node references.
1763 */
1764static void
1765ath_txfrag_cleanup(struct ath_softc *sc,
1766	ath_bufhead *frags, struct ieee80211_node *ni)
1767{
1768	struct ath_buf *bf, *next;
1769
1770	ATH_TXBUF_LOCK_ASSERT(sc);
1771
1772	STAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
1773		/* NB: bf assumed clean */
1774		STAILQ_REMOVE_HEAD(frags, bf_list);
1775		STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1776		ieee80211_node_decref(ni);
1777	}
1778}
1779
1780/*
1781 * Setup xmit of a fragmented frame.  Allocate a buffer
1782 * for each frag and bump the node reference count to
1783 * reflect the held reference to be setup by ath_tx_start.
1784 */
1785static int
1786ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1787	struct mbuf *m0, struct ieee80211_node *ni)
1788{
1789	struct mbuf *m;
1790	struct ath_buf *bf;
1791
1792	ATH_TXBUF_LOCK(sc);
1793	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1794		bf = _ath_getbuf_locked(sc);
1795		if (bf == NULL) {	/* out of buffers, cleanup */
1796			ath_txfrag_cleanup(sc, frags, ni);
1797			break;
1798		}
1799		ieee80211_node_incref(ni);
1800		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1801	}
1802	ATH_TXBUF_UNLOCK(sc);
1803
1804	return !STAILQ_EMPTY(frags);
1805}
1806
1807static void
1808ath_start(struct ifnet *ifp)
1809{
1810	struct ath_softc *sc = ifp->if_softc;
1811	struct ieee80211_node *ni;
1812	struct ath_buf *bf;
1813	struct mbuf *m, *next;
1814	ath_bufhead frags;
1815
1816	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1817		return;
1818	for (;;) {
1819		/*
1820		 * Grab a TX buffer and associated resources.
1821		 */
1822		bf = ath_getbuf(sc);
1823		if (bf == NULL)
1824			break;
1825
1826		IFQ_DEQUEUE(&ifp->if_snd, m);
1827		if (m == NULL) {
1828			ATH_TXBUF_LOCK(sc);
1829			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1830			ATH_TXBUF_UNLOCK(sc);
1831			break;
1832		}
1833		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1834		/*
1835		 * Check for fragmentation.  If this frame
1836		 * has been broken up verify we have enough
1837		 * buffers to send all the fragments so all
1838		 * go out or none...
1839		 */
1840		STAILQ_INIT(&frags);
1841		if ((m->m_flags & M_FRAG) &&
1842		    !ath_txfrag_setup(sc, &frags, m, ni)) {
1843			DPRINTF(sc, ATH_DEBUG_XMIT,
1844			    "%s: out of txfrag buffers\n", __func__);
1845			sc->sc_stats.ast_tx_nofrag++;
1846			ifp->if_oerrors++;
1847			ath_freetx(m);
1848			goto bad;
1849		}
1850		ifp->if_opackets++;
1851	nextfrag:
1852		/*
1853		 * Pass the frame to the h/w for transmission.
1854		 * Fragmented frames have each frag chained together
1855		 * with m_nextpkt.  We know there are sufficient ath_buf's
1856		 * to send all the frags because of work done by
1857		 * ath_txfrag_setup.  We leave m_nextpkt set while
1858		 * calling ath_tx_start so it can use it to extend the
1859		 * the tx duration to cover the subsequent frag and
1860		 * so it can reclaim all the mbufs in case of an error;
1861		 * ath_tx_start clears m_nextpkt once it commits to
1862		 * handing the frame to the hardware.
1863		 */
1864		next = m->m_nextpkt;
1865		if (ath_tx_start(sc, ni, bf, m)) {
1866	bad:
1867			ifp->if_oerrors++;
1868	reclaim:
1869			bf->bf_m = NULL;
1870			bf->bf_node = NULL;
1871			ATH_TXBUF_LOCK(sc);
1872			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1873			ath_txfrag_cleanup(sc, &frags, ni);
1874			ATH_TXBUF_UNLOCK(sc);
1875			if (ni != NULL)
1876				ieee80211_free_node(ni);
1877			continue;
1878		}
1879		if (next != NULL) {
1880			/*
1881			 * Beware of state changing between frags.
1882			 * XXX check sta power-save state?
1883			 */
1884			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
1885				DPRINTF(sc, ATH_DEBUG_XMIT,
1886				    "%s: flush fragmented packet, state %s\n",
1887				    __func__,
1888				    ieee80211_state_name[ni->ni_vap->iv_state]);
1889				ath_freetx(next);
1890				goto reclaim;
1891			}
1892			m = next;
1893			bf = STAILQ_FIRST(&frags);
1894			KASSERT(bf != NULL, ("no buf for txfrag"));
1895			STAILQ_REMOVE_HEAD(&frags, bf_list);
1896			goto nextfrag;
1897		}
1898
1899		sc->sc_wd_timer = 5;
1900	}
1901}
1902
1903static int
1904ath_media_change(struct ifnet *ifp)
1905{
1906	int error = ieee80211_media_change(ifp);
1907	/* NB: only the fixed rate can change and that doesn't need a reset */
1908	return (error == ENETRESET ? 0 : error);
1909}
1910
1911#ifdef ATH_DEBUG
1912static void
1913ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
1914	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1915{
1916	static const char *ciphers[] = {
1917		"WEP",
1918		"AES-OCB",
1919		"AES-CCM",
1920		"CKIP",
1921		"TKIP",
1922		"CLR",
1923	};
1924	int i, n;
1925
1926	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1927	for (i = 0, n = hk->kv_len; i < n; i++)
1928		printf("%02x", hk->kv_val[i]);
1929	printf(" mac %s", ether_sprintf(mac));
1930	if (hk->kv_type == HAL_CIPHER_TKIP) {
1931		printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
1932		for (i = 0; i < sizeof(hk->kv_mic); i++)
1933			printf("%02x", hk->kv_mic[i]);
1934		if (!sc->sc_splitmic) {
1935			printf(" txmic ");
1936			for (i = 0; i < sizeof(hk->kv_txmic); i++)
1937				printf("%02x", hk->kv_txmic[i]);
1938		}
1939	}
1940	printf("\n");
1941}
1942#endif
1943
1944/*
1945 * Set a TKIP key into the hardware.  This handles the
1946 * potential distribution of key state to multiple key
1947 * cache slots for TKIP.
1948 */
1949static int
1950ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1951	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1952{
1953#define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1954	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1955	struct ath_hal *ah = sc->sc_ah;
1956
1957	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1958		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1959	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1960		if (sc->sc_splitmic) {
1961			/*
1962			 * TX key goes at first index, RX key at the rx index.
1963			 * The hal handles the MIC keys at index+64.
1964			 */
1965			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1966			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1967			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1968				return 0;
1969
1970			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1971			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1972			/* XXX delete tx key on failure? */
1973			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1974		} else {
1975			/*
1976			 * Room for both TX+RX MIC keys in one key cache
1977			 * slot, just set key at the first index; the hal
1978			 * will handle the rest.
1979			 */
1980			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1981			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1982			KEYPRINTF(sc, k->wk_keyix, hk, mac);
1983			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1984		}
1985	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
1986		if (sc->sc_splitmic) {
1987			/*
1988			 * NB: must pass MIC key in expected location when
1989			 * the keycache only holds one MIC key per entry.
1990			 */
1991			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
1992		} else
1993			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
1994		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1995		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1996	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
1997		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1998		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1999		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2000	}
2001	return 0;
2002#undef IEEE80211_KEY_XR
2003}
2004
2005/*
2006 * Set a net80211 key into the hardware.  This handles the
2007 * potential distribution of key state to multiple key
2008 * cache slots for TKIP with hardware MIC support.
2009 */
2010static int
2011ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
2012	struct ieee80211_node *bss)
2013{
2014#define	N(a)	(sizeof(a)/sizeof(a[0]))
2015	static const u_int8_t ciphermap[] = {
2016		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
2017		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
2018		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
2019		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
2020		(u_int8_t) -1,		/* 4 is not allocated */
2021		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
2022		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
2023	};
2024	struct ath_hal *ah = sc->sc_ah;
2025	const struct ieee80211_cipher *cip = k->wk_cipher;
2026	u_int8_t gmac[IEEE80211_ADDR_LEN];
2027	const u_int8_t *mac;
2028	HAL_KEYVAL hk;
2029
2030	memset(&hk, 0, sizeof(hk));
2031	/*
2032	 * Software crypto uses a "clear key" so non-crypto
2033	 * state kept in the key cache are maintained and
2034	 * so that rx frames have an entry to match.
2035	 */
2036	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
2037		KASSERT(cip->ic_cipher < N(ciphermap),
2038			("invalid cipher type %u", cip->ic_cipher));
2039		hk.kv_type = ciphermap[cip->ic_cipher];
2040		hk.kv_len = k->wk_keylen;
2041		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
2042	} else
2043		hk.kv_type = HAL_CIPHER_CLR;
2044
2045	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
2046		/*
2047		 * Group keys on hardware that supports multicast frame
2048		 * key search use a MAC that is the sender's address with
2049		 * the high bit set instead of the app-specified address.
2050		 */
2051		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
2052		gmac[0] |= 0x80;
2053		mac = gmac;
2054	} else
2055		mac = k->wk_macaddr;
2056
2057	if (hk.kv_type == HAL_CIPHER_TKIP &&
2058	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2059		return ath_keyset_tkip(sc, k, &hk, mac);
2060	} else {
2061		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
2062		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
2063	}
2064#undef N
2065}
2066
2067/*
2068 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2069 * each key, one for decrypt/encrypt and the other for the MIC.
2070 */
2071static u_int16_t
2072key_alloc_2pair(struct ath_softc *sc,
2073	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2074{
2075#define	N(a)	(sizeof(a)/sizeof(a[0]))
2076	u_int i, keyix;
2077
2078	KASSERT(sc->sc_splitmic, ("key cache !split"));
2079	/* XXX could optimize */
2080	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2081		u_int8_t b = sc->sc_keymap[i];
2082		if (b != 0xff) {
2083			/*
2084			 * One or more slots in this byte are free.
2085			 */
2086			keyix = i*NBBY;
2087			while (b & 1) {
2088		again:
2089				keyix++;
2090				b >>= 1;
2091			}
2092			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
2093			if (isset(sc->sc_keymap, keyix+32) ||
2094			    isset(sc->sc_keymap, keyix+64) ||
2095			    isset(sc->sc_keymap, keyix+32+64)) {
2096				/* full pair unavailable */
2097				/* XXX statistic */
2098				if (keyix == (i+1)*NBBY) {
2099					/* no slots were appropriate, advance */
2100					continue;
2101				}
2102				goto again;
2103			}
2104			setbit(sc->sc_keymap, keyix);
2105			setbit(sc->sc_keymap, keyix+64);
2106			setbit(sc->sc_keymap, keyix+32);
2107			setbit(sc->sc_keymap, keyix+32+64);
2108			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2109				"%s: key pair %u,%u %u,%u\n",
2110				__func__, keyix, keyix+64,
2111				keyix+32, keyix+32+64);
2112			*txkeyix = keyix;
2113			*rxkeyix = keyix+32;
2114			return 1;
2115		}
2116	}
2117	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2118	return 0;
2119#undef N
2120}
2121
2122/*
2123 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2124 * each key, one for decrypt/encrypt and the other for the MIC.
2125 */
2126static u_int16_t
2127key_alloc_pair(struct ath_softc *sc,
2128	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2129{
2130#define	N(a)	(sizeof(a)/sizeof(a[0]))
2131	u_int i, keyix;
2132
2133	KASSERT(!sc->sc_splitmic, ("key cache split"));
2134	/* XXX could optimize */
2135	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2136		u_int8_t b = sc->sc_keymap[i];
2137		if (b != 0xff) {
2138			/*
2139			 * One or more slots in this byte are free.
2140			 */
2141			keyix = i*NBBY;
2142			while (b & 1) {
2143		again:
2144				keyix++;
2145				b >>= 1;
2146			}
2147			if (isset(sc->sc_keymap, keyix+64)) {
2148				/* full pair unavailable */
2149				/* XXX statistic */
2150				if (keyix == (i+1)*NBBY) {
2151					/* no slots were appropriate, advance */
2152					continue;
2153				}
2154				goto again;
2155			}
2156			setbit(sc->sc_keymap, keyix);
2157			setbit(sc->sc_keymap, keyix+64);
2158			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2159				"%s: key pair %u,%u\n",
2160				__func__, keyix, keyix+64);
2161			*txkeyix = *rxkeyix = keyix;
2162			return 1;
2163		}
2164	}
2165	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2166	return 0;
2167#undef N
2168}
2169
2170/*
2171 * Allocate a single key cache slot.
2172 */
2173static int
2174key_alloc_single(struct ath_softc *sc,
2175	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2176{
2177#define	N(a)	(sizeof(a)/sizeof(a[0]))
2178	u_int i, keyix;
2179
2180	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2181	for (i = 0; i < N(sc->sc_keymap); i++) {
2182		u_int8_t b = sc->sc_keymap[i];
2183		if (b != 0xff) {
2184			/*
2185			 * One or more slots are free.
2186			 */
2187			keyix = i*NBBY;
2188			while (b & 1)
2189				keyix++, b >>= 1;
2190			setbit(sc->sc_keymap, keyix);
2191			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2192				__func__, keyix);
2193			*txkeyix = *rxkeyix = keyix;
2194			return 1;
2195		}
2196	}
2197	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2198	return 0;
2199#undef N
2200}
2201
2202/*
2203 * Allocate one or more key cache slots for a uniacst key.  The
2204 * key itself is needed only to identify the cipher.  For hardware
2205 * TKIP with split cipher+MIC keys we allocate two key cache slot
2206 * pairs so that we can setup separate TX and RX MIC keys.  Note
2207 * that the MIC key for a TKIP key at slot i is assumed by the
2208 * hardware to be at slot i+64.  This limits TKIP keys to the first
2209 * 64 entries.
2210 */
2211static int
2212ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2213	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2214{
2215	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2216
2217	/*
2218	 * Group key allocation must be handled specially for
2219	 * parts that do not support multicast key cache search
2220	 * functionality.  For those parts the key id must match
2221	 * the h/w key index so lookups find the right key.  On
2222	 * parts w/ the key search facility we install the sender's
2223	 * mac address (with the high bit set) and let the hardware
2224	 * find the key w/o using the key id.  This is preferred as
2225	 * it permits us to support multiple users for adhoc and/or
2226	 * multi-station operation.
2227	 */
2228	if (k->wk_keyix != IEEE80211_KEYIX_NONE) {
2229		/*
2230		 * Only global keys should have key index assigned.
2231		 */
2232		if (!(&vap->iv_nw_keys[0] <= k &&
2233		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2234			/* should not happen */
2235			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2236				"%s: bogus group key\n", __func__);
2237			return 0;
2238		}
2239		 */
2240		if (vap->iv_opmode != IEEE80211_M_HOSTAP ||
2241		    !(k->wk_flags & IEEE80211_KEY_GROUP) ||
2242		    !sc->sc_mcastkey) {
2243			/*
2244			 * XXX we pre-allocate the global keys so
2245			 * have no way to check if they've already
2246			 * been allocated.
2247			 */
2248			*keyix = *rxkeyix = k - vap->iv_nw_keys;
2249			return 1;
2250		}
2251		/*
2252		 * Group key and device supports multicast key search.
2253		 */
2254		k->wk_keyix = IEEE80211_KEYIX_NONE;
2255	}
2256
2257	/*
2258	 * We allocate two pair for TKIP when using the h/w to do
2259	 * the MIC.  For everything else, including software crypto,
2260	 * we allocate a single entry.  Note that s/w crypto requires
2261	 * a pass-through slot on the 5211 and 5212.  The 5210 does
2262	 * not support pass-through cache entries and we map all
2263	 * those requests to slot 0.
2264	 */
2265	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2266		return key_alloc_single(sc, keyix, rxkeyix);
2267	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2268	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2269		if (sc->sc_splitmic)
2270			return key_alloc_2pair(sc, keyix, rxkeyix);
2271		else
2272			return key_alloc_pair(sc, keyix, rxkeyix);
2273	} else {
2274		return key_alloc_single(sc, keyix, rxkeyix);
2275	}
2276}
2277
2278/*
2279 * Delete an entry in the key cache allocated by ath_key_alloc.
2280 */
2281static int
2282ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2283{
2284	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2285	struct ath_hal *ah = sc->sc_ah;
2286	const struct ieee80211_cipher *cip = k->wk_cipher;
2287	u_int keyix = k->wk_keyix;
2288
2289	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2290
2291	ath_hal_keyreset(ah, keyix);
2292	/*
2293	 * Handle split tx/rx keying required for TKIP with h/w MIC.
2294	 */
2295	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2296	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2297		ath_hal_keyreset(ah, keyix+32);		/* RX key */
2298	if (keyix >= IEEE80211_WEP_NKID) {
2299		/*
2300		 * Don't touch keymap entries for global keys so
2301		 * they are never considered for dynamic allocation.
2302		 */
2303		clrbit(sc->sc_keymap, keyix);
2304		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2305		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2306			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
2307			if (sc->sc_splitmic) {
2308				/* +32 for RX key, +32+64 for RX key MIC */
2309				clrbit(sc->sc_keymap, keyix+32);
2310				clrbit(sc->sc_keymap, keyix+32+64);
2311			}
2312		}
2313	}
2314	return 1;
2315}
2316
2317/*
2318 * Set the key cache contents for the specified key.  Key cache
2319 * slot(s) must already have been allocated by ath_key_alloc.
2320 */
2321static int
2322ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
2323	const u_int8_t mac[IEEE80211_ADDR_LEN])
2324{
2325	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2326
2327	return ath_keyset(sc, k, vap->iv_bss);
2328}
2329
2330/*
2331 * Block/unblock tx+rx processing while a key change is done.
2332 * We assume the caller serializes key management operations
2333 * so we only need to worry about synchronization with other
2334 * uses that originate in the driver.
2335 */
2336static void
2337ath_key_update_begin(struct ieee80211vap *vap)
2338{
2339	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2340	struct ath_softc *sc = ifp->if_softc;
2341
2342	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2343	taskqueue_block(sc->sc_tq);
2344	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2345}
2346
2347static void
2348ath_key_update_end(struct ieee80211vap *vap)
2349{
2350	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2351	struct ath_softc *sc = ifp->if_softc;
2352
2353	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2354	IF_UNLOCK(&ifp->if_snd);
2355	taskqueue_unblock(sc->sc_tq);
2356}
2357
2358/*
2359 * Calculate the receive filter according to the
2360 * operating mode and state:
2361 *
2362 * o always accept unicast, broadcast, and multicast traffic
2363 * o accept PHY error frames when hardware doesn't have MIB support
2364 *   to count and we need them for ANI (sta mode only until recently)
2365 *   and we are not scanning (ANI is disabled)
2366 *   NB: older hal's add rx filter bits out of sight and we need to
2367 *	 blindly preserve them
2368 * o probe request frames are accepted only when operating in
2369 *   hostap, adhoc, mesh, or monitor modes
2370 * o enable promiscuous mode
2371 *   - when in monitor mode
2372 *   - if interface marked PROMISC (assumes bridge setting is filtered)
2373 * o accept beacons:
2374 *   - when operating in station mode for collecting rssi data when
2375 *     the station is otherwise quiet, or
2376 *   - when operating in adhoc mode so the 802.11 layer creates
2377 *     node table entries for peers,
2378 *   - when scanning
2379 *   - when doing s/w beacon miss (e.g. for ap+sta)
2380 *   - when operating in ap mode in 11g to detect overlapping bss that
2381 *     require protection
2382 *   - when operating in mesh mode to detect neighbors
2383 * o accept control frames:
2384 *   - when in monitor mode
2385 * XXX BAR frames for 11n
2386 * XXX HT protection for 11n
2387 */
2388static u_int32_t
2389ath_calcrxfilter(struct ath_softc *sc)
2390{
2391	struct ifnet *ifp = sc->sc_ifp;
2392	struct ieee80211com *ic = ifp->if_l2com;
2393	u_int32_t rfilt;
2394
2395	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2396	if (!sc->sc_needmib && !sc->sc_scanning)
2397		rfilt |= HAL_RX_FILTER_PHYERR;
2398	if (ic->ic_opmode != IEEE80211_M_STA)
2399		rfilt |= HAL_RX_FILTER_PROBEREQ;
2400	/* XXX ic->ic_monvaps != 0? */
2401	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2402		rfilt |= HAL_RX_FILTER_PROM;
2403	if (ic->ic_opmode == IEEE80211_M_STA ||
2404	    ic->ic_opmode == IEEE80211_M_IBSS ||
2405	    sc->sc_swbmiss || sc->sc_scanning)
2406		rfilt |= HAL_RX_FILTER_BEACON;
2407	/*
2408	 * NB: We don't recalculate the rx filter when
2409	 * ic_protmode changes; otherwise we could do
2410	 * this only when ic_protmode != NONE.
2411	 */
2412	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2413	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2414		rfilt |= HAL_RX_FILTER_BEACON;
2415	if (sc->sc_nmeshvaps) {
2416		rfilt |= HAL_RX_FILTER_BEACON;
2417		if (sc->sc_hasbmatch)
2418			rfilt |= HAL_RX_FILTER_BSSID;
2419		else
2420			rfilt |= HAL_RX_FILTER_PROM;
2421	}
2422	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2423		rfilt |= HAL_RX_FILTER_CONTROL;
2424	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2425	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2426	return rfilt;
2427}
2428
2429static void
2430ath_update_promisc(struct ifnet *ifp)
2431{
2432	struct ath_softc *sc = ifp->if_softc;
2433	u_int32_t rfilt;
2434
2435	/* configure rx filter */
2436	rfilt = ath_calcrxfilter(sc);
2437	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2438
2439	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2440}
2441
2442static void
2443ath_update_mcast(struct ifnet *ifp)
2444{
2445	struct ath_softc *sc = ifp->if_softc;
2446	u_int32_t mfilt[2];
2447
2448	/* calculate and install multicast filter */
2449	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2450		struct ifmultiaddr *ifma;
2451		/*
2452		 * Merge multicast addresses to form the hardware filter.
2453		 */
2454		mfilt[0] = mfilt[1] = 0;
2455		if_maddr_rlock(ifp);	/* XXX need some fiddling to remove? */
2456		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2457			caddr_t dl;
2458			u_int32_t val;
2459			u_int8_t pos;
2460
2461			/* calculate XOR of eight 6bit values */
2462			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2463			val = LE_READ_4(dl + 0);
2464			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2465			val = LE_READ_4(dl + 3);
2466			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2467			pos &= 0x3f;
2468			mfilt[pos / 32] |= (1 << (pos % 32));
2469		}
2470		if_maddr_runlock(ifp);
2471	} else
2472		mfilt[0] = mfilt[1] = ~0;
2473	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2474	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2475		__func__, mfilt[0], mfilt[1]);
2476}
2477
2478static void
2479ath_mode_init(struct ath_softc *sc)
2480{
2481	struct ifnet *ifp = sc->sc_ifp;
2482	struct ath_hal *ah = sc->sc_ah;
2483	u_int32_t rfilt;
2484
2485	/* configure rx filter */
2486	rfilt = ath_calcrxfilter(sc);
2487	ath_hal_setrxfilter(ah, rfilt);
2488
2489	/* configure operational mode */
2490	ath_hal_setopmode(ah);
2491
2492	/* handle any link-level address change */
2493	ath_hal_setmac(ah, IF_LLADDR(ifp));
2494
2495	/* calculate and install multicast filter */
2496	ath_update_mcast(ifp);
2497}
2498
2499/*
2500 * Set the slot time based on the current setting.
2501 */
2502static void
2503ath_setslottime(struct ath_softc *sc)
2504{
2505	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2506	struct ath_hal *ah = sc->sc_ah;
2507	u_int usec;
2508
2509	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2510		usec = 13;
2511	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2512		usec = 21;
2513	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2514		/* honor short/long slot time only in 11g */
2515		/* XXX shouldn't honor on pure g or turbo g channel */
2516		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2517			usec = HAL_SLOT_TIME_9;
2518		else
2519			usec = HAL_SLOT_TIME_20;
2520	} else
2521		usec = HAL_SLOT_TIME_9;
2522
2523	DPRINTF(sc, ATH_DEBUG_RESET,
2524	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2525	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2526	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2527
2528	ath_hal_setslottime(ah, usec);
2529	sc->sc_updateslot = OK;
2530}
2531
2532/*
2533 * Callback from the 802.11 layer to update the
2534 * slot time based on the current setting.
2535 */
2536static void
2537ath_updateslot(struct ifnet *ifp)
2538{
2539	struct ath_softc *sc = ifp->if_softc;
2540	struct ieee80211com *ic = ifp->if_l2com;
2541
2542	/*
2543	 * When not coordinating the BSS, change the hardware
2544	 * immediately.  For other operation we defer the change
2545	 * until beacon updates have propagated to the stations.
2546	 */
2547	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2548	    ic->ic_opmode == IEEE80211_M_MBSS)
2549		sc->sc_updateslot = UPDATE;
2550	else
2551		ath_setslottime(sc);
2552}
2553
2554/*
2555 * Setup a h/w transmit queue for beacons.
2556 */
2557static int
2558ath_beaconq_setup(struct ath_hal *ah)
2559{
2560	HAL_TXQ_INFO qi;
2561
2562	memset(&qi, 0, sizeof(qi));
2563	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2564	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2565	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2566	/* NB: for dynamic turbo, don't enable any other interrupts */
2567	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2568	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2569}
2570
2571/*
2572 * Setup the transmit queue parameters for the beacon queue.
2573 */
2574static int
2575ath_beaconq_config(struct ath_softc *sc)
2576{
2577#define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2578	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2579	struct ath_hal *ah = sc->sc_ah;
2580	HAL_TXQ_INFO qi;
2581
2582	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2583	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2584	    ic->ic_opmode == IEEE80211_M_MBSS) {
2585		/*
2586		 * Always burst out beacon and CAB traffic.
2587		 */
2588		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2589		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2590		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2591	} else {
2592		struct wmeParams *wmep =
2593			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2594		/*
2595		 * Adhoc mode; important thing is to use 2x cwmin.
2596		 */
2597		qi.tqi_aifs = wmep->wmep_aifsn;
2598		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2599		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2600	}
2601
2602	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2603		device_printf(sc->sc_dev, "unable to update parameters for "
2604			"beacon hardware queue!\n");
2605		return 0;
2606	} else {
2607		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2608		return 1;
2609	}
2610#undef ATH_EXPONENT_TO_VALUE
2611}
2612
2613/*
2614 * Allocate and setup an initial beacon frame.
2615 */
2616static int
2617ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2618{
2619	struct ieee80211vap *vap = ni->ni_vap;
2620	struct ath_vap *avp = ATH_VAP(vap);
2621	struct ath_buf *bf;
2622	struct mbuf *m;
2623	int error;
2624
2625	bf = avp->av_bcbuf;
2626	if (bf->bf_m != NULL) {
2627		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2628		m_freem(bf->bf_m);
2629		bf->bf_m = NULL;
2630	}
2631	if (bf->bf_node != NULL) {
2632		ieee80211_free_node(bf->bf_node);
2633		bf->bf_node = NULL;
2634	}
2635
2636	/*
2637	 * NB: the beacon data buffer must be 32-bit aligned;
2638	 * we assume the mbuf routines will return us something
2639	 * with this alignment (perhaps should assert).
2640	 */
2641	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2642	if (m == NULL) {
2643		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2644		sc->sc_stats.ast_be_nombuf++;
2645		return ENOMEM;
2646	}
2647	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2648				     bf->bf_segs, &bf->bf_nseg,
2649				     BUS_DMA_NOWAIT);
2650	if (error != 0) {
2651		device_printf(sc->sc_dev,
2652		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2653		    __func__, error);
2654		m_freem(m);
2655		return error;
2656	}
2657
2658	/*
2659	 * Calculate a TSF adjustment factor required for staggered
2660	 * beacons.  Note that we assume the format of the beacon
2661	 * frame leaves the tstamp field immediately following the
2662	 * header.
2663	 */
2664	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2665		uint64_t tsfadjust;
2666		struct ieee80211_frame *wh;
2667
2668		/*
2669		 * The beacon interval is in TU's; the TSF is in usecs.
2670		 * We figure out how many TU's to add to align the timestamp
2671		 * then convert to TSF units and handle byte swapping before
2672		 * inserting it in the frame.  The hardware will then add this
2673		 * each time a beacon frame is sent.  Note that we align vap's
2674		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2675		 * timestamp in one beacon interval while the others get a
2676		 * timstamp aligned to the next interval.
2677		 */
2678		tsfadjust = ni->ni_intval *
2679		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2680		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2681
2682		DPRINTF(sc, ATH_DEBUG_BEACON,
2683		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2684		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2685		    avp->av_bslot, ni->ni_intval,
2686		    (long long unsigned) le64toh(tsfadjust));
2687
2688		wh = mtod(m, struct ieee80211_frame *);
2689		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2690	}
2691	bf->bf_m = m;
2692	bf->bf_node = ieee80211_ref_node(ni);
2693
2694	return 0;
2695}
2696
2697/*
2698 * Setup the beacon frame for transmit.
2699 */
2700static void
2701ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2702{
2703#define	USE_SHPREAMBLE(_ic) \
2704	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2705		== IEEE80211_F_SHPREAMBLE)
2706	struct ieee80211_node *ni = bf->bf_node;
2707	struct ieee80211com *ic = ni->ni_ic;
2708	struct mbuf *m = bf->bf_m;
2709	struct ath_hal *ah = sc->sc_ah;
2710	struct ath_desc *ds;
2711	int flags, antenna;
2712	const HAL_RATE_TABLE *rt;
2713	u_int8_t rix, rate;
2714
2715	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2716		__func__, m, m->m_len);
2717
2718	/* setup descriptors */
2719	ds = bf->bf_desc;
2720
2721	flags = HAL_TXDESC_NOACK;
2722	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2723		ds->ds_link = bf->bf_daddr;	/* self-linked */
2724		flags |= HAL_TXDESC_VEOL;
2725		/*
2726		 * Let hardware handle antenna switching.
2727		 */
2728		antenna = sc->sc_txantenna;
2729	} else {
2730		ds->ds_link = 0;
2731		/*
2732		 * Switch antenna every 4 beacons.
2733		 * XXX assumes two antenna
2734		 */
2735		if (sc->sc_txantenna != 0)
2736			antenna = sc->sc_txantenna;
2737		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2738			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2739		else
2740			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2741	}
2742
2743	KASSERT(bf->bf_nseg == 1,
2744		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2745	ds->ds_data = bf->bf_segs[0].ds_addr;
2746	/*
2747	 * Calculate rate code.
2748	 * XXX everything at min xmit rate
2749	 */
2750	rix = 0;
2751	rt = sc->sc_currates;
2752	rate = rt->info[rix].rateCode;
2753	if (USE_SHPREAMBLE(ic))
2754		rate |= rt->info[rix].shortPreamble;
2755	ath_hal_setuptxdesc(ah, ds
2756		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2757		, sizeof(struct ieee80211_frame)/* header length */
2758		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2759		, ni->ni_txpower		/* txpower XXX */
2760		, rate, 1			/* series 0 rate/tries */
2761		, HAL_TXKEYIX_INVALID		/* no encryption */
2762		, antenna			/* antenna mode */
2763		, flags				/* no ack, veol for beacons */
2764		, 0				/* rts/cts rate */
2765		, 0				/* rts/cts duration */
2766	);
2767	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2768	ath_hal_filltxdesc(ah, ds
2769		, roundup(m->m_len, 4)		/* buffer length */
2770		, AH_TRUE			/* first segment */
2771		, AH_TRUE			/* last segment */
2772		, ds				/* first descriptor */
2773	);
2774#if 0
2775	ath_desc_swap(ds);
2776#endif
2777#undef USE_SHPREAMBLE
2778}
2779
2780static void
2781ath_beacon_update(struct ieee80211vap *vap, int item)
2782{
2783	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2784
2785	setbit(bo->bo_flags, item);
2786}
2787
2788/*
2789 * Append the contents of src to dst; both queues
2790 * are assumed to be locked.
2791 */
2792static void
2793ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2794{
2795	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2796	dst->axq_link = src->axq_link;
2797	src->axq_link = NULL;
2798	dst->axq_depth += src->axq_depth;
2799	src->axq_depth = 0;
2800}
2801
2802/*
2803 * Transmit a beacon frame at SWBA.  Dynamic updates to the
2804 * frame contents are done as needed and the slot time is
2805 * also adjusted based on current state.
2806 */
2807static void
2808ath_beacon_proc(void *arg, int pending)
2809{
2810	struct ath_softc *sc = arg;
2811	struct ath_hal *ah = sc->sc_ah;
2812	struct ieee80211vap *vap;
2813	struct ath_buf *bf;
2814	int slot, otherant;
2815	uint32_t bfaddr;
2816
2817	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2818		__func__, pending);
2819	/*
2820	 * Check if the previous beacon has gone out.  If
2821	 * not don't try to post another, skip this period
2822	 * and wait for the next.  Missed beacons indicate
2823	 * a problem and should not occur.  If we miss too
2824	 * many consecutive beacons reset the device.
2825	 */
2826	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2827		sc->sc_bmisscount++;
2828		DPRINTF(sc, ATH_DEBUG_BEACON,
2829			"%s: missed %u consecutive beacons\n",
2830			__func__, sc->sc_bmisscount);
2831		if (sc->sc_bmisscount >= ath_bstuck_threshold)
2832			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2833		return;
2834	}
2835	if (sc->sc_bmisscount != 0) {
2836		DPRINTF(sc, ATH_DEBUG_BEACON,
2837			"%s: resume beacon xmit after %u misses\n",
2838			__func__, sc->sc_bmisscount);
2839		sc->sc_bmisscount = 0;
2840	}
2841
2842	if (sc->sc_stagbeacons) {			/* staggered beacons */
2843		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2844		uint32_t tsftu;
2845
2846		tsftu = ath_hal_gettsf32(ah) >> 10;
2847		/* XXX lintval */
2848		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
2849		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
2850		bfaddr = 0;
2851		if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2852			bf = ath_beacon_generate(sc, vap);
2853			if (bf != NULL)
2854				bfaddr = bf->bf_daddr;
2855		}
2856	} else {					/* burst'd beacons */
2857		uint32_t *bflink = &bfaddr;
2858
2859		for (slot = 0; slot < ATH_BCBUF; slot++) {
2860			vap = sc->sc_bslot[slot];
2861			if (vap != NULL && vap->iv_state >= IEEE80211_S_RUN) {
2862				bf = ath_beacon_generate(sc, vap);
2863				if (bf != NULL) {
2864					*bflink = bf->bf_daddr;
2865					bflink = &bf->bf_desc->ds_link;
2866				}
2867			}
2868		}
2869		*bflink = 0;				/* terminate list */
2870	}
2871
2872	/*
2873	 * Handle slot time change when a non-ERP station joins/leaves
2874	 * an 11g network.  The 802.11 layer notifies us via callback,
2875	 * we mark updateslot, then wait one beacon before effecting
2876	 * the change.  This gives associated stations at least one
2877	 * beacon interval to note the state change.
2878	 */
2879	/* XXX locking */
2880	if (sc->sc_updateslot == UPDATE) {
2881		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2882		sc->sc_slotupdate = slot;
2883	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
2884		ath_setslottime(sc);		/* commit change to h/w */
2885
2886	/*
2887	 * Check recent per-antenna transmit statistics and flip
2888	 * the default antenna if noticeably more frames went out
2889	 * on the non-default antenna.
2890	 * XXX assumes 2 anntenae
2891	 */
2892	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
2893		otherant = sc->sc_defant & 1 ? 2 : 1;
2894		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2895			ath_setdefantenna(sc, otherant);
2896		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2897	}
2898
2899	if (bfaddr != 0) {
2900		/*
2901		 * Stop any current dma and put the new frame on the queue.
2902		 * This should never fail since we check above that no frames
2903		 * are still pending on the queue.
2904		 */
2905		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2906			DPRINTF(sc, ATH_DEBUG_ANY,
2907				"%s: beacon queue %u did not stop?\n",
2908				__func__, sc->sc_bhalq);
2909		}
2910		/* NB: cabq traffic should already be queued and primed */
2911		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
2912		ath_hal_txstart(ah, sc->sc_bhalq);
2913
2914		sc->sc_stats.ast_be_xmit++;
2915	}
2916}
2917
2918static struct ath_buf *
2919ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
2920{
2921	struct ath_vap *avp = ATH_VAP(vap);
2922	struct ath_txq *cabq = sc->sc_cabq;
2923	struct ath_buf *bf;
2924	struct mbuf *m;
2925	int nmcastq, error;
2926
2927	KASSERT(vap->iv_state >= IEEE80211_S_RUN,
2928	    ("not running, state %d", vap->iv_state));
2929	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
2930
2931	/*
2932	 * Update dynamic beacon contents.  If this returns
2933	 * non-zero then we need to remap the memory because
2934	 * the beacon frame changed size (probably because
2935	 * of the TIM bitmap).
2936	 */
2937	bf = avp->av_bcbuf;
2938	m = bf->bf_m;
2939	nmcastq = avp->av_mcastq.axq_depth;
2940	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
2941		/* XXX too conservative? */
2942		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2943		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2944					     bf->bf_segs, &bf->bf_nseg,
2945					     BUS_DMA_NOWAIT);
2946		if (error != 0) {
2947			if_printf(vap->iv_ifp,
2948			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2949			    __func__, error);
2950			return NULL;
2951		}
2952	}
2953	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
2954		DPRINTF(sc, ATH_DEBUG_BEACON,
2955		    "%s: cabq did not drain, mcastq %u cabq %u\n",
2956		    __func__, nmcastq, cabq->axq_depth);
2957		sc->sc_stats.ast_cabq_busy++;
2958		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
2959			/*
2960			 * CABQ traffic from a previous vap is still pending.
2961			 * We must drain the q before this beacon frame goes
2962			 * out as otherwise this vap's stations will get cab
2963			 * frames from a different vap.
2964			 * XXX could be slow causing us to miss DBA
2965			 */
2966			ath_tx_draintxq(sc, cabq);
2967		}
2968	}
2969	ath_beacon_setup(sc, bf);
2970	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2971
2972	/*
2973	 * Enable the CAB queue before the beacon queue to
2974	 * insure cab frames are triggered by this beacon.
2975	 */
2976	if (avp->av_boff.bo_tim[4] & 1) {
2977		struct ath_hal *ah = sc->sc_ah;
2978
2979		/* NB: only at DTIM */
2980		ATH_TXQ_LOCK(cabq);
2981		ATH_TXQ_LOCK(&avp->av_mcastq);
2982		if (nmcastq) {
2983			struct ath_buf *bfm;
2984
2985			/*
2986			 * Move frames from the s/w mcast q to the h/w cab q.
2987			 * XXX MORE_DATA bit
2988			 */
2989			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
2990			if (cabq->axq_link != NULL) {
2991				*cabq->axq_link = bfm->bf_daddr;
2992			} else
2993				ath_hal_puttxbuf(ah, cabq->axq_qnum,
2994					bfm->bf_daddr);
2995			ath_txqmove(cabq, &avp->av_mcastq);
2996
2997			sc->sc_stats.ast_cabq_xmit += nmcastq;
2998		}
2999		/* NB: gated by beacon so safe to start here */
3000		ath_hal_txstart(ah, cabq->axq_qnum);
3001		ATH_TXQ_UNLOCK(cabq);
3002		ATH_TXQ_UNLOCK(&avp->av_mcastq);
3003	}
3004	return bf;
3005}
3006
3007static void
3008ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3009{
3010	struct ath_vap *avp = ATH_VAP(vap);
3011	struct ath_hal *ah = sc->sc_ah;
3012	struct ath_buf *bf;
3013	struct mbuf *m;
3014	int error;
3015
3016	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3017
3018	/*
3019	 * Update dynamic beacon contents.  If this returns
3020	 * non-zero then we need to remap the memory because
3021	 * the beacon frame changed size (probably because
3022	 * of the TIM bitmap).
3023	 */
3024	bf = avp->av_bcbuf;
3025	m = bf->bf_m;
3026	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3027		/* XXX too conservative? */
3028		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3029		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3030					     bf->bf_segs, &bf->bf_nseg,
3031					     BUS_DMA_NOWAIT);
3032		if (error != 0) {
3033			if_printf(vap->iv_ifp,
3034			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3035			    __func__, error);
3036			return;
3037		}
3038	}
3039	ath_beacon_setup(sc, bf);
3040	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3041
3042	/* NB: caller is known to have already stopped tx dma */
3043	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3044	ath_hal_txstart(ah, sc->sc_bhalq);
3045}
3046
3047/*
3048 * Reset the hardware after detecting beacons have stopped.
3049 */
3050static void
3051ath_bstuck_proc(void *arg, int pending)
3052{
3053	struct ath_softc *sc = arg;
3054	struct ifnet *ifp = sc->sc_ifp;
3055
3056	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3057		sc->sc_bmisscount);
3058	sc->sc_stats.ast_bstuck++;
3059	ath_reset(ifp);
3060}
3061
3062/*
3063 * Reclaim beacon resources and return buffer to the pool.
3064 */
3065static void
3066ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3067{
3068
3069	if (bf->bf_m != NULL) {
3070		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3071		m_freem(bf->bf_m);
3072		bf->bf_m = NULL;
3073	}
3074	if (bf->bf_node != NULL) {
3075		ieee80211_free_node(bf->bf_node);
3076		bf->bf_node = NULL;
3077	}
3078	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3079}
3080
3081/*
3082 * Reclaim beacon resources.
3083 */
3084static void
3085ath_beacon_free(struct ath_softc *sc)
3086{
3087	struct ath_buf *bf;
3088
3089	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3090		if (bf->bf_m != NULL) {
3091			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3092			m_freem(bf->bf_m);
3093			bf->bf_m = NULL;
3094		}
3095		if (bf->bf_node != NULL) {
3096			ieee80211_free_node(bf->bf_node);
3097			bf->bf_node = NULL;
3098		}
3099	}
3100}
3101
3102/*
3103 * Configure the beacon and sleep timers.
3104 *
3105 * When operating as an AP this resets the TSF and sets
3106 * up the hardware to notify us when we need to issue beacons.
3107 *
3108 * When operating in station mode this sets up the beacon
3109 * timers according to the timestamp of the last received
3110 * beacon and the current TSF, configures PCF and DTIM
3111 * handling, programs the sleep registers so the hardware
3112 * will wakeup in time to receive beacons, and configures
3113 * the beacon miss handling so we'll receive a BMISS
3114 * interrupt when we stop seeing beacons from the AP
3115 * we've associated with.
3116 */
3117static void
3118ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3119{
3120#define	TSF_TO_TU(_h,_l) \
3121	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3122#define	FUDGE	2
3123	struct ath_hal *ah = sc->sc_ah;
3124	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3125	struct ieee80211_node *ni;
3126	u_int32_t nexttbtt, intval, tsftu;
3127	u_int64_t tsf;
3128
3129	if (vap == NULL)
3130		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3131	ni = vap->iv_bss;
3132
3133	/* extract tstamp from last beacon and convert to TU */
3134	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3135			     LE_READ_4(ni->ni_tstamp.data));
3136	if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3137	    ic->ic_opmode == IEEE80211_M_MBSS) {
3138		/*
3139		 * For multi-bss ap/mesh support beacons are either staggered
3140		 * evenly over N slots or burst together.  For the former
3141		 * arrange for the SWBA to be delivered for each slot.
3142		 * Slots that are not occupied will generate nothing.
3143		 */
3144		/* NB: the beacon interval is kept internally in TU's */
3145		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3146		if (sc->sc_stagbeacons)
3147			intval /= ATH_BCBUF;
3148	} else {
3149		/* NB: the beacon interval is kept internally in TU's */
3150		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3151	}
3152	if (nexttbtt == 0)		/* e.g. for ap mode */
3153		nexttbtt = intval;
3154	else if (intval)		/* NB: can be 0 for monitor mode */
3155		nexttbtt = roundup(nexttbtt, intval);
3156	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3157		__func__, nexttbtt, intval, ni->ni_intval);
3158	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3159		HAL_BEACON_STATE bs;
3160		int dtimperiod, dtimcount;
3161		int cfpperiod, cfpcount;
3162
3163		/*
3164		 * Setup dtim and cfp parameters according to
3165		 * last beacon we received (which may be none).
3166		 */
3167		dtimperiod = ni->ni_dtim_period;
3168		if (dtimperiod <= 0)		/* NB: 0 if not known */
3169			dtimperiod = 1;
3170		dtimcount = ni->ni_dtim_count;
3171		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3172			dtimcount = 0;		/* XXX? */
3173		cfpperiod = 1;			/* NB: no PCF support yet */
3174		cfpcount = 0;
3175		/*
3176		 * Pull nexttbtt forward to reflect the current
3177		 * TSF and calculate dtim+cfp state for the result.
3178		 */
3179		tsf = ath_hal_gettsf64(ah);
3180		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3181		do {
3182			nexttbtt += intval;
3183			if (--dtimcount < 0) {
3184				dtimcount = dtimperiod - 1;
3185				if (--cfpcount < 0)
3186					cfpcount = cfpperiod - 1;
3187			}
3188		} while (nexttbtt < tsftu);
3189		memset(&bs, 0, sizeof(bs));
3190		bs.bs_intval = intval;
3191		bs.bs_nexttbtt = nexttbtt;
3192		bs.bs_dtimperiod = dtimperiod*intval;
3193		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3194		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3195		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3196		bs.bs_cfpmaxduration = 0;
3197#if 0
3198		/*
3199		 * The 802.11 layer records the offset to the DTIM
3200		 * bitmap while receiving beacons; use it here to
3201		 * enable h/w detection of our AID being marked in
3202		 * the bitmap vector (to indicate frames for us are
3203		 * pending at the AP).
3204		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3205		 * XXX enable based on h/w rev for newer chips
3206		 */
3207		bs.bs_timoffset = ni->ni_timoff;
3208#endif
3209		/*
3210		 * Calculate the number of consecutive beacons to miss
3211		 * before taking a BMISS interrupt.
3212		 * Note that we clamp the result to at most 10 beacons.
3213		 */
3214		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3215		if (bs.bs_bmissthreshold > 10)
3216			bs.bs_bmissthreshold = 10;
3217		else if (bs.bs_bmissthreshold <= 0)
3218			bs.bs_bmissthreshold = 1;
3219
3220		/*
3221		 * Calculate sleep duration.  The configuration is
3222		 * given in ms.  We insure a multiple of the beacon
3223		 * period is used.  Also, if the sleep duration is
3224		 * greater than the DTIM period then it makes senses
3225		 * to make it a multiple of that.
3226		 *
3227		 * XXX fixed at 100ms
3228		 */
3229		bs.bs_sleepduration =
3230			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3231		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3232			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3233
3234		DPRINTF(sc, ATH_DEBUG_BEACON,
3235			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3236			, __func__
3237			, tsf, tsftu
3238			, bs.bs_intval
3239			, bs.bs_nexttbtt
3240			, bs.bs_dtimperiod
3241			, bs.bs_nextdtim
3242			, bs.bs_bmissthreshold
3243			, bs.bs_sleepduration
3244			, bs.bs_cfpperiod
3245			, bs.bs_cfpmaxduration
3246			, bs.bs_cfpnext
3247			, bs.bs_timoffset
3248		);
3249		ath_hal_intrset(ah, 0);
3250		ath_hal_beacontimers(ah, &bs);
3251		sc->sc_imask |= HAL_INT_BMISS;
3252		ath_hal_intrset(ah, sc->sc_imask);
3253	} else {
3254		ath_hal_intrset(ah, 0);
3255		if (nexttbtt == intval)
3256			intval |= HAL_BEACON_RESET_TSF;
3257		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3258			/*
3259			 * In IBSS mode enable the beacon timers but only
3260			 * enable SWBA interrupts if we need to manually
3261			 * prepare beacon frames.  Otherwise we use a
3262			 * self-linked tx descriptor and let the hardware
3263			 * deal with things.
3264			 */
3265			intval |= HAL_BEACON_ENA;
3266			if (!sc->sc_hasveol)
3267				sc->sc_imask |= HAL_INT_SWBA;
3268			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3269				/*
3270				 * Pull nexttbtt forward to reflect
3271				 * the current TSF.
3272				 */
3273				tsf = ath_hal_gettsf64(ah);
3274				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3275				do {
3276					nexttbtt += intval;
3277				} while (nexttbtt < tsftu);
3278			}
3279			ath_beaconq_config(sc);
3280		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3281		    ic->ic_opmode == IEEE80211_M_MBSS) {
3282			/*
3283			 * In AP/mesh mode we enable the beacon timers
3284			 * and SWBA interrupts to prepare beacon frames.
3285			 */
3286			intval |= HAL_BEACON_ENA;
3287			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3288			ath_beaconq_config(sc);
3289		}
3290		ath_hal_beaconinit(ah, nexttbtt, intval);
3291		sc->sc_bmisscount = 0;
3292		ath_hal_intrset(ah, sc->sc_imask);
3293		/*
3294		 * When using a self-linked beacon descriptor in
3295		 * ibss mode load it once here.
3296		 */
3297		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3298			ath_beacon_start_adhoc(sc, vap);
3299	}
3300	sc->sc_syncbeacon = 0;
3301#undef FUDGE
3302#undef TSF_TO_TU
3303}
3304
3305static void
3306ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3307{
3308	bus_addr_t *paddr = (bus_addr_t*) arg;
3309	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3310	*paddr = segs->ds_addr;
3311}
3312
3313static int
3314ath_descdma_setup(struct ath_softc *sc,
3315	struct ath_descdma *dd, ath_bufhead *head,
3316	const char *name, int nbuf, int ndesc)
3317{
3318#define	DS2PHYS(_dd, _ds) \
3319	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3320	struct ifnet *ifp = sc->sc_ifp;
3321	struct ath_desc *ds;
3322	struct ath_buf *bf;
3323	int i, bsize, error;
3324
3325	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3326	    __func__, name, nbuf, ndesc);
3327
3328	dd->dd_name = name;
3329	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
3330
3331	/*
3332	 * Setup DMA descriptor area.
3333	 */
3334	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3335		       PAGE_SIZE, 0,		/* alignment, bounds */
3336		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3337		       BUS_SPACE_MAXADDR,	/* highaddr */
3338		       NULL, NULL,		/* filter, filterarg */
3339		       dd->dd_desc_len,		/* maxsize */
3340		       1,			/* nsegments */
3341		       dd->dd_desc_len,		/* maxsegsize */
3342		       BUS_DMA_ALLOCNOW,	/* flags */
3343		       NULL,			/* lockfunc */
3344		       NULL,			/* lockarg */
3345		       &dd->dd_dmat);
3346	if (error != 0) {
3347		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3348		return error;
3349	}
3350
3351	/* allocate descriptors */
3352	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3353	if (error != 0) {
3354		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3355			"error %u\n", dd->dd_name, error);
3356		goto fail0;
3357	}
3358
3359	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3360				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3361				 &dd->dd_dmamap);
3362	if (error != 0) {
3363		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3364			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3365		goto fail1;
3366	}
3367
3368	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3369				dd->dd_desc, dd->dd_desc_len,
3370				ath_load_cb, &dd->dd_desc_paddr,
3371				BUS_DMA_NOWAIT);
3372	if (error != 0) {
3373		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3374			dd->dd_name, error);
3375		goto fail2;
3376	}
3377
3378	ds = dd->dd_desc;
3379	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3380	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3381	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3382
3383	/* allocate rx buffers */
3384	bsize = sizeof(struct ath_buf) * nbuf;
3385	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3386	if (bf == NULL) {
3387		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3388			dd->dd_name, bsize);
3389		goto fail3;
3390	}
3391	dd->dd_bufptr = bf;
3392
3393	STAILQ_INIT(head);
3394	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3395		bf->bf_desc = ds;
3396		bf->bf_daddr = DS2PHYS(dd, ds);
3397		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3398				&bf->bf_dmamap);
3399		if (error != 0) {
3400			if_printf(ifp, "unable to create dmamap for %s "
3401				"buffer %u, error %u\n", dd->dd_name, i, error);
3402			ath_descdma_cleanup(sc, dd, head);
3403			return error;
3404		}
3405		STAILQ_INSERT_TAIL(head, bf, bf_list);
3406	}
3407	return 0;
3408fail3:
3409	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3410fail2:
3411	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3412fail1:
3413	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3414fail0:
3415	bus_dma_tag_destroy(dd->dd_dmat);
3416	memset(dd, 0, sizeof(*dd));
3417	return error;
3418#undef DS2PHYS
3419}
3420
3421static void
3422ath_descdma_cleanup(struct ath_softc *sc,
3423	struct ath_descdma *dd, ath_bufhead *head)
3424{
3425	struct ath_buf *bf;
3426	struct ieee80211_node *ni;
3427
3428	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3429	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3430	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3431	bus_dma_tag_destroy(dd->dd_dmat);
3432
3433	STAILQ_FOREACH(bf, head, bf_list) {
3434		if (bf->bf_m) {
3435			m_freem(bf->bf_m);
3436			bf->bf_m = NULL;
3437		}
3438		if (bf->bf_dmamap != NULL) {
3439			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3440			bf->bf_dmamap = NULL;
3441		}
3442		ni = bf->bf_node;
3443		bf->bf_node = NULL;
3444		if (ni != NULL) {
3445			/*
3446			 * Reclaim node reference.
3447			 */
3448			ieee80211_free_node(ni);
3449		}
3450	}
3451
3452	STAILQ_INIT(head);
3453	free(dd->dd_bufptr, M_ATHDEV);
3454	memset(dd, 0, sizeof(*dd));
3455}
3456
3457static int
3458ath_desc_alloc(struct ath_softc *sc)
3459{
3460	int error;
3461
3462	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3463			"rx", ath_rxbuf, 1);
3464	if (error != 0)
3465		return error;
3466
3467	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3468			"tx", ath_txbuf, ATH_TXDESC);
3469	if (error != 0) {
3470		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3471		return error;
3472	}
3473
3474	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3475			"beacon", ATH_BCBUF, 1);
3476	if (error != 0) {
3477		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3478		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3479		return error;
3480	}
3481	return 0;
3482}
3483
3484static void
3485ath_desc_free(struct ath_softc *sc)
3486{
3487
3488	if (sc->sc_bdma.dd_desc_len != 0)
3489		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3490	if (sc->sc_txdma.dd_desc_len != 0)
3491		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3492	if (sc->sc_rxdma.dd_desc_len != 0)
3493		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3494}
3495
3496static struct ieee80211_node *
3497ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3498{
3499	struct ieee80211com *ic = vap->iv_ic;
3500	struct ath_softc *sc = ic->ic_ifp->if_softc;
3501	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3502	struct ath_node *an;
3503
3504	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3505	if (an == NULL) {
3506		/* XXX stat+msg */
3507		return NULL;
3508	}
3509	ath_rate_node_init(sc, an);
3510
3511	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3512	return &an->an_node;
3513}
3514
3515static void
3516ath_node_free(struct ieee80211_node *ni)
3517{
3518	struct ieee80211com *ic = ni->ni_ic;
3519        struct ath_softc *sc = ic->ic_ifp->if_softc;
3520
3521	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3522
3523	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3524	sc->sc_node_free(ni);
3525}
3526
3527static void
3528ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3529{
3530	struct ieee80211com *ic = ni->ni_ic;
3531	struct ath_softc *sc = ic->ic_ifp->if_softc;
3532	struct ath_hal *ah = sc->sc_ah;
3533
3534	*rssi = ic->ic_node_getrssi(ni);
3535	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3536		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3537	else
3538		*noise = -95;		/* nominally correct */
3539}
3540
3541static int
3542ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3543{
3544	struct ath_hal *ah = sc->sc_ah;
3545	int error;
3546	struct mbuf *m;
3547	struct ath_desc *ds;
3548
3549	m = bf->bf_m;
3550	if (m == NULL) {
3551		/*
3552		 * NB: by assigning a page to the rx dma buffer we
3553		 * implicitly satisfy the Atheros requirement that
3554		 * this buffer be cache-line-aligned and sized to be
3555		 * multiple of the cache line size.  Not doing this
3556		 * causes weird stuff to happen (for the 5210 at least).
3557		 */
3558		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3559		if (m == NULL) {
3560			DPRINTF(sc, ATH_DEBUG_ANY,
3561				"%s: no mbuf/cluster\n", __func__);
3562			sc->sc_stats.ast_rx_nombuf++;
3563			return ENOMEM;
3564		}
3565		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3566
3567		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3568					     bf->bf_dmamap, m,
3569					     bf->bf_segs, &bf->bf_nseg,
3570					     BUS_DMA_NOWAIT);
3571		if (error != 0) {
3572			DPRINTF(sc, ATH_DEBUG_ANY,
3573			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3574			    __func__, error);
3575			sc->sc_stats.ast_rx_busdma++;
3576			m_freem(m);
3577			return error;
3578		}
3579		KASSERT(bf->bf_nseg == 1,
3580			("multi-segment packet; nseg %u", bf->bf_nseg));
3581		bf->bf_m = m;
3582	}
3583	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3584
3585	/*
3586	 * Setup descriptors.  For receive we always terminate
3587	 * the descriptor list with a self-linked entry so we'll
3588	 * not get overrun under high load (as can happen with a
3589	 * 5212 when ANI processing enables PHY error frames).
3590	 *
3591	 * To insure the last descriptor is self-linked we create
3592	 * each descriptor as self-linked and add it to the end.  As
3593	 * each additional descriptor is added the previous self-linked
3594	 * entry is ``fixed'' naturally.  This should be safe even
3595	 * if DMA is happening.  When processing RX interrupts we
3596	 * never remove/process the last, self-linked, entry on the
3597	 * descriptor list.  This insures the hardware always has
3598	 * someplace to write a new frame.
3599	 */
3600	ds = bf->bf_desc;
3601	ds->ds_link = bf->bf_daddr;	/* link to self */
3602	ds->ds_data = bf->bf_segs[0].ds_addr;
3603	ath_hal_setuprxdesc(ah, ds
3604		, m->m_len		/* buffer size */
3605		, 0
3606	);
3607
3608	if (sc->sc_rxlink != NULL)
3609		*sc->sc_rxlink = bf->bf_daddr;
3610	sc->sc_rxlink = &ds->ds_link;
3611	return 0;
3612}
3613
3614/*
3615 * Extend 15-bit time stamp from rx descriptor to
3616 * a full 64-bit TSF using the specified TSF.
3617 */
3618static __inline u_int64_t
3619ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3620{
3621	if ((tsf & 0x7fff) < rstamp)
3622		tsf -= 0x8000;
3623	return ((tsf &~ 0x7fff) | rstamp);
3624}
3625
3626/*
3627 * Intercept management frames to collect beacon rssi data
3628 * and to do ibss merges.
3629 */
3630static void
3631ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3632	int subtype, int rssi, int nf)
3633{
3634	struct ieee80211vap *vap = ni->ni_vap;
3635	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3636
3637	/*
3638	 * Call up first so subsequent work can use information
3639	 * potentially stored in the node (e.g. for ibss merge).
3640	 */
3641	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, nf);
3642	switch (subtype) {
3643	case IEEE80211_FC0_SUBTYPE_BEACON:
3644		/* update rssi statistics for use by the hal */
3645		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3646		if (sc->sc_syncbeacon &&
3647		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3648			/*
3649			 * Resync beacon timers using the tsf of the beacon
3650			 * frame we just received.
3651			 */
3652			ath_beacon_config(sc, vap);
3653		}
3654		/* fall thru... */
3655	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3656		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3657		    vap->iv_state == IEEE80211_S_RUN) {
3658			uint32_t rstamp = sc->sc_lastrs->rs_tstamp;
3659			u_int64_t tsf = ath_extend_tsf(rstamp,
3660				ath_hal_gettsf64(sc->sc_ah));
3661			/*
3662			 * Handle ibss merge as needed; check the tsf on the
3663			 * frame before attempting the merge.  The 802.11 spec
3664			 * says the station should change it's bssid to match
3665			 * the oldest station with the same ssid, where oldest
3666			 * is determined by the tsf.  Note that hardware
3667			 * reconfiguration happens through callback to
3668			 * ath_newstate as the state machine will go from
3669			 * RUN -> RUN when this happens.
3670			 */
3671			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3672				DPRINTF(sc, ATH_DEBUG_STATE,
3673				    "ibss merge, rstamp %u tsf %ju "
3674				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3675				    (uintmax_t)ni->ni_tstamp.tsf);
3676				(void) ieee80211_ibss_merge(ni);
3677			}
3678		}
3679		break;
3680	}
3681}
3682
3683/*
3684 * Set the default antenna.
3685 */
3686static void
3687ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3688{
3689	struct ath_hal *ah = sc->sc_ah;
3690
3691	/* XXX block beacon interrupts */
3692	ath_hal_setdefantenna(ah, antenna);
3693	if (sc->sc_defant != antenna)
3694		sc->sc_stats.ast_ant_defswitch++;
3695	sc->sc_defant = antenna;
3696	sc->sc_rxotherant = 0;
3697}
3698
3699static void
3700ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3701	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3702{
3703#define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3704#define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3705#define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3706#define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3707	struct ath_softc *sc = ifp->if_softc;
3708	const HAL_RATE_TABLE *rt;
3709	uint8_t rix;
3710
3711	rt = sc->sc_currates;
3712	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3713	rix = rt->rateCodeToIndex[rs->rs_rate];
3714	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3715	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3716#ifdef AH_SUPPORT_AR5416
3717	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3718	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3719		struct ieee80211com *ic = ifp->if_l2com;
3720
3721		if ((rs->rs_flags & HAL_RX_2040) == 0)
3722			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3723		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
3724			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3725		else
3726			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3727		if ((rs->rs_flags & HAL_RX_GI) == 0)
3728			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3729	}
3730#endif
3731	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
3732	if (rs->rs_status & HAL_RXERR_CRC)
3733		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3734	/* XXX propagate other error flags from descriptor */
3735	sc->sc_rx_th.wr_antnoise = nf;
3736	sc->sc_rx_th.wr_antsignal = nf + rs->rs_rssi;
3737	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3738#undef CHAN_HT
3739#undef CHAN_HT20
3740#undef CHAN_HT40U
3741#undef CHAN_HT40D
3742}
3743
3744static void
3745ath_handle_micerror(struct ieee80211com *ic,
3746	struct ieee80211_frame *wh, int keyix)
3747{
3748	struct ieee80211_node *ni;
3749
3750	/* XXX recheck MIC to deal w/ chips that lie */
3751	/* XXX discard MIC errors on !data frames */
3752	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3753	if (ni != NULL) {
3754		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3755		ieee80211_free_node(ni);
3756	}
3757}
3758
3759static void
3760ath_rx_proc(void *arg, int npending)
3761{
3762#define	PA2DESC(_sc, _pa) \
3763	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3764		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3765	struct ath_softc *sc = arg;
3766	struct ath_buf *bf;
3767	struct ifnet *ifp = sc->sc_ifp;
3768	struct ieee80211com *ic = ifp->if_l2com;
3769	struct ath_hal *ah = sc->sc_ah;
3770	struct ath_desc *ds;
3771	struct ath_rx_status *rs;
3772	struct mbuf *m;
3773	struct ieee80211_node *ni;
3774	int len, type, ngood;
3775	u_int phyerr;
3776	HAL_STATUS status;
3777	int16_t nf;
3778	u_int64_t tsf;
3779
3780	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3781	ngood = 0;
3782	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
3783	sc->sc_stats.ast_rx_noise = nf;
3784	tsf = ath_hal_gettsf64(ah);
3785	do {
3786		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3787		if (bf == NULL) {		/* NB: shouldn't happen */
3788			if_printf(ifp, "%s: no buffer!\n", __func__);
3789			break;
3790		}
3791		m = bf->bf_m;
3792		if (m == NULL) {		/* NB: shouldn't happen */
3793			/*
3794			 * If mbuf allocation failed previously there
3795			 * will be no mbuf; try again to re-populate it.
3796			 */
3797			/* XXX make debug msg */
3798			if_printf(ifp, "%s: no mbuf!\n", __func__);
3799			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3800			goto rx_next;
3801		}
3802		ds = bf->bf_desc;
3803		if (ds->ds_link == bf->bf_daddr) {
3804			/* NB: never process the self-linked entry at the end */
3805			break;
3806		}
3807		/* XXX sync descriptor memory */
3808		/*
3809		 * Must provide the virtual address of the current
3810		 * descriptor, the physical address, and the virtual
3811		 * address of the next descriptor in the h/w chain.
3812		 * This allows the HAL to look ahead to see if the
3813		 * hardware is done with a descriptor by checking the
3814		 * done bit in the following descriptor and the address
3815		 * of the current descriptor the DMA engine is working
3816		 * on.  All this is necessary because of our use of
3817		 * a self-linked list to avoid rx overruns.
3818		 */
3819		rs = &bf->bf_status.ds_rxstat;
3820		status = ath_hal_rxprocdesc(ah, ds,
3821				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
3822#ifdef ATH_DEBUG
3823		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
3824			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
3825#endif
3826		if (status == HAL_EINPROGRESS)
3827			break;
3828		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
3829		if (rs->rs_status != 0) {
3830			if (rs->rs_status & HAL_RXERR_CRC)
3831				sc->sc_stats.ast_rx_crcerr++;
3832			if (rs->rs_status & HAL_RXERR_FIFO)
3833				sc->sc_stats.ast_rx_fifoerr++;
3834			if (rs->rs_status & HAL_RXERR_PHY) {
3835				sc->sc_stats.ast_rx_phyerr++;
3836				phyerr = rs->rs_phyerr & 0x1f;
3837				sc->sc_stats.ast_rx_phy[phyerr]++;
3838				goto rx_error;	/* NB: don't count in ierrors */
3839			}
3840			if (rs->rs_status & HAL_RXERR_DECRYPT) {
3841				/*
3842				 * Decrypt error.  If the error occurred
3843				 * because there was no hardware key, then
3844				 * let the frame through so the upper layers
3845				 * can process it.  This is necessary for 5210
3846				 * parts which have no way to setup a ``clear''
3847				 * key cache entry.
3848				 *
3849				 * XXX do key cache faulting
3850				 */
3851				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
3852					goto rx_accept;
3853				sc->sc_stats.ast_rx_badcrypt++;
3854			}
3855			if (rs->rs_status & HAL_RXERR_MIC) {
3856				sc->sc_stats.ast_rx_badmic++;
3857				/*
3858				 * Do minimal work required to hand off
3859				 * the 802.11 header for notification.
3860				 */
3861				/* XXX frag's and qos frames */
3862				len = rs->rs_datalen;
3863				if (len >= sizeof (struct ieee80211_frame)) {
3864					bus_dmamap_sync(sc->sc_dmat,
3865					    bf->bf_dmamap,
3866					    BUS_DMASYNC_POSTREAD);
3867					ath_handle_micerror(ic,
3868					    mtod(m, struct ieee80211_frame *),
3869					    sc->sc_splitmic ?
3870						rs->rs_keyix-32 : rs->rs_keyix);
3871				}
3872			}
3873			ifp->if_ierrors++;
3874rx_error:
3875			/*
3876			 * Cleanup any pending partial frame.
3877			 */
3878			if (sc->sc_rxpending != NULL) {
3879				m_freem(sc->sc_rxpending);
3880				sc->sc_rxpending = NULL;
3881			}
3882			/*
3883			 * When a tap is present pass error frames
3884			 * that have been requested.  By default we
3885			 * pass decrypt+mic errors but others may be
3886			 * interesting (e.g. crc).
3887			 */
3888			if (ieee80211_radiotap_active(ic) &&
3889			    (rs->rs_status & sc->sc_monpass)) {
3890				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3891				    BUS_DMASYNC_POSTREAD);
3892				/* NB: bpf needs the mbuf length setup */
3893				len = rs->rs_datalen;
3894				m->m_pkthdr.len = m->m_len = len;
3895				ath_rx_tap(ifp, m, rs, tsf, nf);
3896				ieee80211_radiotap_rx_all(ic, m);
3897			}
3898			/* XXX pass MIC errors up for s/w reclaculation */
3899			goto rx_next;
3900		}
3901rx_accept:
3902		/*
3903		 * Sync and unmap the frame.  At this point we're
3904		 * committed to passing the mbuf somewhere so clear
3905		 * bf_m; this means a new mbuf must be allocated
3906		 * when the rx descriptor is setup again to receive
3907		 * another frame.
3908		 */
3909		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3910		    BUS_DMASYNC_POSTREAD);
3911		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3912		bf->bf_m = NULL;
3913
3914		len = rs->rs_datalen;
3915		m->m_len = len;
3916
3917		if (rs->rs_more) {
3918			/*
3919			 * Frame spans multiple descriptors; save
3920			 * it for the next completed descriptor, it
3921			 * will be used to construct a jumbogram.
3922			 */
3923			if (sc->sc_rxpending != NULL) {
3924				/* NB: max frame size is currently 2 clusters */
3925				sc->sc_stats.ast_rx_toobig++;
3926				m_freem(sc->sc_rxpending);
3927			}
3928			m->m_pkthdr.rcvif = ifp;
3929			m->m_pkthdr.len = len;
3930			sc->sc_rxpending = m;
3931			goto rx_next;
3932		} else if (sc->sc_rxpending != NULL) {
3933			/*
3934			 * This is the second part of a jumbogram,
3935			 * chain it to the first mbuf, adjust the
3936			 * frame length, and clear the rxpending state.
3937			 */
3938			sc->sc_rxpending->m_next = m;
3939			sc->sc_rxpending->m_pkthdr.len += len;
3940			m = sc->sc_rxpending;
3941			sc->sc_rxpending = NULL;
3942		} else {
3943			/*
3944			 * Normal single-descriptor receive; setup
3945			 * the rcvif and packet length.
3946			 */
3947			m->m_pkthdr.rcvif = ifp;
3948			m->m_pkthdr.len = len;
3949		}
3950
3951		ifp->if_ipackets++;
3952		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
3953
3954		/*
3955		 * Populate the rx status block.  When there are bpf
3956		 * listeners we do the additional work to provide
3957		 * complete status.  Otherwise we fill in only the
3958		 * material required by ieee80211_input.  Note that
3959		 * noise setting is filled in above.
3960		 */
3961		if (ieee80211_radiotap_active(ic))
3962			ath_rx_tap(ifp, m, rs, tsf, nf);
3963
3964		/*
3965		 * From this point on we assume the frame is at least
3966		 * as large as ieee80211_frame_min; verify that.
3967		 */
3968		if (len < IEEE80211_MIN_LEN) {
3969			if (!ieee80211_radiotap_active(ic)) {
3970				DPRINTF(sc, ATH_DEBUG_RECV,
3971				    "%s: short packet %d\n", __func__, len);
3972				sc->sc_stats.ast_rx_tooshort++;
3973			} else {
3974				/* NB: in particular this captures ack's */
3975				ieee80211_radiotap_rx_all(ic, m);
3976			}
3977			m_freem(m);
3978			goto rx_next;
3979		}
3980
3981		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
3982			const HAL_RATE_TABLE *rt = sc->sc_currates;
3983			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
3984
3985			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
3986			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
3987		}
3988
3989		m_adj(m, -IEEE80211_CRC_LEN);
3990
3991		/*
3992		 * Locate the node for sender, track state, and then
3993		 * pass the (referenced) node up to the 802.11 layer
3994		 * for its use.
3995		 */
3996		ni = ieee80211_find_rxnode_withkey(ic,
3997			mtod(m, const struct ieee80211_frame_min *),
3998			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
3999				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4000		if (ni != NULL) {
4001			/*
4002			 * Sending station is known, dispatch directly.
4003			 */
4004			sc->sc_lastrs = rs;
4005			type = ieee80211_input(ni, m, rs->rs_rssi, nf);
4006			ieee80211_free_node(ni);
4007			/*
4008			 * Arrange to update the last rx timestamp only for
4009			 * frames from our ap when operating in station mode.
4010			 * This assumes the rx key is always setup when
4011			 * associated.
4012			 */
4013			if (ic->ic_opmode == IEEE80211_M_STA &&
4014			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4015				ngood++;
4016		} else {
4017			type = ieee80211_input_all(ic, m, rs->rs_rssi, nf);
4018		}
4019		/*
4020		 * Track rx rssi and do any rx antenna management.
4021		 */
4022		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4023		if (sc->sc_diversity) {
4024			/*
4025			 * When using fast diversity, change the default rx
4026			 * antenna if diversity chooses the other antenna 3
4027			 * times in a row.
4028			 */
4029			if (sc->sc_defant != rs->rs_antenna) {
4030				if (++sc->sc_rxotherant >= 3)
4031					ath_setdefantenna(sc, rs->rs_antenna);
4032			} else
4033				sc->sc_rxotherant = 0;
4034		}
4035		if (sc->sc_softled) {
4036			/*
4037			 * Blink for any data frame.  Otherwise do a
4038			 * heartbeat-style blink when idle.  The latter
4039			 * is mainly for station mode where we depend on
4040			 * periodic beacon frames to trigger the poll event.
4041			 */
4042			if (type == IEEE80211_FC0_TYPE_DATA) {
4043				const HAL_RATE_TABLE *rt = sc->sc_currates;
4044				ath_led_event(sc,
4045				    rt->rateCodeToIndex[rs->rs_rate]);
4046			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4047				ath_led_event(sc, 0);
4048		}
4049rx_next:
4050		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4051	} while (ath_rxbuf_init(sc, bf) == 0);
4052
4053	/* rx signal state monitoring */
4054	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4055	if (ngood)
4056		sc->sc_lastrx = tsf;
4057
4058	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0) {
4059#ifdef IEEE80211_SUPPORT_SUPERG
4060		ieee80211_ff_age_all(ic, 100);
4061#endif
4062		if (!IFQ_IS_EMPTY(&ifp->if_snd))
4063			ath_start(ifp);
4064	}
4065#undef PA2DESC
4066}
4067
4068static void
4069ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4070{
4071	txq->axq_qnum = qnum;
4072	txq->axq_ac = 0;
4073	txq->axq_depth = 0;
4074	txq->axq_intrcnt = 0;
4075	txq->axq_link = NULL;
4076	STAILQ_INIT(&txq->axq_q);
4077	ATH_TXQ_LOCK_INIT(sc, txq);
4078}
4079
4080/*
4081 * Setup a h/w transmit queue.
4082 */
4083static struct ath_txq *
4084ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4085{
4086#define	N(a)	(sizeof(a)/sizeof(a[0]))
4087	struct ath_hal *ah = sc->sc_ah;
4088	HAL_TXQ_INFO qi;
4089	int qnum;
4090
4091	memset(&qi, 0, sizeof(qi));
4092	qi.tqi_subtype = subtype;
4093	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4094	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4095	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4096	/*
4097	 * Enable interrupts only for EOL and DESC conditions.
4098	 * We mark tx descriptors to receive a DESC interrupt
4099	 * when a tx queue gets deep; otherwise waiting for the
4100	 * EOL to reap descriptors.  Note that this is done to
4101	 * reduce interrupt load and this only defers reaping
4102	 * descriptors, never transmitting frames.  Aside from
4103	 * reducing interrupts this also permits more concurrency.
4104	 * The only potential downside is if the tx queue backs
4105	 * up in which case the top half of the kernel may backup
4106	 * due to a lack of tx descriptors.
4107	 */
4108	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4109	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4110	if (qnum == -1) {
4111		/*
4112		 * NB: don't print a message, this happens
4113		 * normally on parts with too few tx queues
4114		 */
4115		return NULL;
4116	}
4117	if (qnum >= N(sc->sc_txq)) {
4118		device_printf(sc->sc_dev,
4119			"hal qnum %u out of range, max %zu!\n",
4120			qnum, N(sc->sc_txq));
4121		ath_hal_releasetxqueue(ah, qnum);
4122		return NULL;
4123	}
4124	if (!ATH_TXQ_SETUP(sc, qnum)) {
4125		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4126		sc->sc_txqsetup |= 1<<qnum;
4127	}
4128	return &sc->sc_txq[qnum];
4129#undef N
4130}
4131
4132/*
4133 * Setup a hardware data transmit queue for the specified
4134 * access control.  The hal may not support all requested
4135 * queues in which case it will return a reference to a
4136 * previously setup queue.  We record the mapping from ac's
4137 * to h/w queues for use by ath_tx_start and also track
4138 * the set of h/w queues being used to optimize work in the
4139 * transmit interrupt handler and related routines.
4140 */
4141static int
4142ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4143{
4144#define	N(a)	(sizeof(a)/sizeof(a[0]))
4145	struct ath_txq *txq;
4146
4147	if (ac >= N(sc->sc_ac2q)) {
4148		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4149			ac, N(sc->sc_ac2q));
4150		return 0;
4151	}
4152	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4153	if (txq != NULL) {
4154		txq->axq_ac = ac;
4155		sc->sc_ac2q[ac] = txq;
4156		return 1;
4157	} else
4158		return 0;
4159#undef N
4160}
4161
4162/*
4163 * Update WME parameters for a transmit queue.
4164 */
4165static int
4166ath_txq_update(struct ath_softc *sc, int ac)
4167{
4168#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4169#define	ATH_TXOP_TO_US(v)		(v<<5)
4170	struct ifnet *ifp = sc->sc_ifp;
4171	struct ieee80211com *ic = ifp->if_l2com;
4172	struct ath_txq *txq = sc->sc_ac2q[ac];
4173	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4174	struct ath_hal *ah = sc->sc_ah;
4175	HAL_TXQ_INFO qi;
4176
4177	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4178#ifdef IEEE80211_SUPPORT_TDMA
4179	if (sc->sc_tdma) {
4180		/*
4181		 * AIFS is zero so there's no pre-transmit wait.  The
4182		 * burst time defines the slot duration and is configured
4183		 * through net80211.  The QCU is setup to not do post-xmit
4184		 * back off, lockout all lower-priority QCU's, and fire
4185		 * off the DMA beacon alert timer which is setup based
4186		 * on the slot configuration.
4187		 */
4188		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4189			      | HAL_TXQ_TXERRINT_ENABLE
4190			      | HAL_TXQ_TXURNINT_ENABLE
4191			      | HAL_TXQ_TXEOLINT_ENABLE
4192			      | HAL_TXQ_DBA_GATED
4193			      | HAL_TXQ_BACKOFF_DISABLE
4194			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4195			      ;
4196		qi.tqi_aifs = 0;
4197		/* XXX +dbaprep? */
4198		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4199		qi.tqi_burstTime = qi.tqi_readyTime;
4200	} else {
4201#endif
4202		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4203			      | HAL_TXQ_TXERRINT_ENABLE
4204			      | HAL_TXQ_TXDESCINT_ENABLE
4205			      | HAL_TXQ_TXURNINT_ENABLE
4206			      ;
4207		qi.tqi_aifs = wmep->wmep_aifsn;
4208		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4209		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4210		qi.tqi_readyTime = 0;
4211		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4212#ifdef IEEE80211_SUPPORT_TDMA
4213	}
4214#endif
4215
4216	DPRINTF(sc, ATH_DEBUG_RESET,
4217	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4218	    __func__, txq->axq_qnum, qi.tqi_qflags,
4219	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4220
4221	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4222		if_printf(ifp, "unable to update hardware queue "
4223			"parameters for %s traffic!\n",
4224			ieee80211_wme_acnames[ac]);
4225		return 0;
4226	} else {
4227		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4228		return 1;
4229	}
4230#undef ATH_TXOP_TO_US
4231#undef ATH_EXPONENT_TO_VALUE
4232}
4233
4234/*
4235 * Callback from the 802.11 layer to update WME parameters.
4236 */
4237static int
4238ath_wme_update(struct ieee80211com *ic)
4239{
4240	struct ath_softc *sc = ic->ic_ifp->if_softc;
4241
4242	return !ath_txq_update(sc, WME_AC_BE) ||
4243	    !ath_txq_update(sc, WME_AC_BK) ||
4244	    !ath_txq_update(sc, WME_AC_VI) ||
4245	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4246}
4247
4248/*
4249 * Reclaim resources for a setup queue.
4250 */
4251static void
4252ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4253{
4254
4255	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4256	ATH_TXQ_LOCK_DESTROY(txq);
4257	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4258}
4259
4260/*
4261 * Reclaim all tx queue resources.
4262 */
4263static void
4264ath_tx_cleanup(struct ath_softc *sc)
4265{
4266	int i;
4267
4268	ATH_TXBUF_LOCK_DESTROY(sc);
4269	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4270		if (ATH_TXQ_SETUP(sc, i))
4271			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4272}
4273
4274/*
4275 * Return h/w rate index for an IEEE rate (w/o basic rate bit)
4276 * using the current rates in sc_rixmap.
4277 */
4278static __inline int
4279ath_tx_findrix(const struct ath_softc *sc, uint8_t rate)
4280{
4281	int rix = sc->sc_rixmap[rate];
4282	/* NB: return lowest rix for invalid rate */
4283	return (rix == 0xff ? 0 : rix);
4284}
4285
4286/*
4287 * Reclaim mbuf resources.  For fragmented frames we
4288 * need to claim each frag chained with m_nextpkt.
4289 */
4290static void
4291ath_freetx(struct mbuf *m)
4292{
4293	struct mbuf *next;
4294
4295	do {
4296		next = m->m_nextpkt;
4297		m->m_nextpkt = NULL;
4298		m_freem(m);
4299	} while ((m = next) != NULL);
4300}
4301
4302static int
4303ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
4304{
4305	struct mbuf *m;
4306	int error;
4307
4308	/*
4309	 * Load the DMA map so any coalescing is done.  This
4310	 * also calculates the number of descriptors we need.
4311	 */
4312	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4313				     bf->bf_segs, &bf->bf_nseg,
4314				     BUS_DMA_NOWAIT);
4315	if (error == EFBIG) {
4316		/* XXX packet requires too many descriptors */
4317		bf->bf_nseg = ATH_TXDESC+1;
4318	} else if (error != 0) {
4319		sc->sc_stats.ast_tx_busdma++;
4320		ath_freetx(m0);
4321		return error;
4322	}
4323	/*
4324	 * Discard null packets and check for packets that
4325	 * require too many TX descriptors.  We try to convert
4326	 * the latter to a cluster.
4327	 */
4328	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
4329		sc->sc_stats.ast_tx_linear++;
4330		m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
4331		if (m == NULL) {
4332			ath_freetx(m0);
4333			sc->sc_stats.ast_tx_nombuf++;
4334			return ENOMEM;
4335		}
4336		m0 = m;
4337		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4338					     bf->bf_segs, &bf->bf_nseg,
4339					     BUS_DMA_NOWAIT);
4340		if (error != 0) {
4341			sc->sc_stats.ast_tx_busdma++;
4342			ath_freetx(m0);
4343			return error;
4344		}
4345		KASSERT(bf->bf_nseg <= ATH_TXDESC,
4346		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
4347	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
4348		sc->sc_stats.ast_tx_nodata++;
4349		ath_freetx(m0);
4350		return EIO;
4351	}
4352	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
4353		__func__, m0, m0->m_pkthdr.len);
4354	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
4355	bf->bf_m = m0;
4356
4357	return 0;
4358}
4359
4360static void
4361ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
4362{
4363	struct ath_hal *ah = sc->sc_ah;
4364	struct ath_desc *ds, *ds0;
4365	int i;
4366
4367	/*
4368	 * Fillin the remainder of the descriptor info.
4369	 */
4370	ds0 = ds = bf->bf_desc;
4371	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4372		ds->ds_data = bf->bf_segs[i].ds_addr;
4373		if (i == bf->bf_nseg - 1)
4374			ds->ds_link = 0;
4375		else
4376			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4377		ath_hal_filltxdesc(ah, ds
4378			, bf->bf_segs[i].ds_len	/* segment length */
4379			, i == 0		/* first segment */
4380			, i == bf->bf_nseg - 1	/* last segment */
4381			, ds0			/* first descriptor */
4382		);
4383		DPRINTF(sc, ATH_DEBUG_XMIT,
4384			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4385			__func__, i, ds->ds_link, ds->ds_data,
4386			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4387	}
4388	/*
4389	 * Insert the frame on the outbound list and pass it on
4390	 * to the hardware.  Multicast frames buffered for power
4391	 * save stations and transmit from the CAB queue are stored
4392	 * on a s/w only queue and loaded on to the CAB queue in
4393	 * the SWBA handler since frames only go out on DTIM and
4394	 * to avoid possible races.
4395	 */
4396	ATH_TXQ_LOCK(txq);
4397	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
4398	     ("busy status 0x%x", bf->bf_flags));
4399	if (txq->axq_qnum != ATH_TXQ_SWQ) {
4400#ifdef IEEE80211_SUPPORT_TDMA
4401		int qbusy;
4402
4403		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4404		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
4405		if (txq->axq_link == NULL) {
4406			/*
4407			 * Be careful writing the address to TXDP.  If
4408			 * the tx q is enabled then this write will be
4409			 * ignored.  Normally this is not an issue but
4410			 * when tdma is in use and the q is beacon gated
4411			 * this race can occur.  If the q is busy then
4412			 * defer the work to later--either when another
4413			 * packet comes along or when we prepare a beacon
4414			 * frame at SWBA.
4415			 */
4416			if (!qbusy) {
4417				ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4418				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4419				DPRINTF(sc, ATH_DEBUG_XMIT,
4420				    "%s: TXDP[%u] = %p (%p) depth %d\n",
4421				    __func__, txq->axq_qnum,
4422				    (caddr_t)bf->bf_daddr, bf->bf_desc,
4423				    txq->axq_depth);
4424			} else {
4425				txq->axq_flags |= ATH_TXQ_PUTPENDING;
4426				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4427				    "%s: Q%u busy, defer enable\n", __func__,
4428				    txq->axq_qnum);
4429			}
4430		} else {
4431			*txq->axq_link = bf->bf_daddr;
4432			DPRINTF(sc, ATH_DEBUG_XMIT,
4433			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4434			    txq->axq_qnum, txq->axq_link,
4435			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4436			if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
4437				/*
4438				 * The q was busy when we previously tried
4439				 * to write the address of the first buffer
4440				 * in the chain.  Since it's not busy now
4441				 * handle this chore.  We are certain the
4442				 * buffer at the front is the right one since
4443				 * axq_link is NULL only when the buffer list
4444				 * is/was empty.
4445				 */
4446				ath_hal_puttxbuf(ah, txq->axq_qnum,
4447					STAILQ_FIRST(&txq->axq_q)->bf_daddr);
4448				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4449				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4450				    "%s: Q%u restarted\n", __func__,
4451				    txq->axq_qnum);
4452			}
4453		}
4454#else
4455		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4456		if (txq->axq_link == NULL) {
4457			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4458			DPRINTF(sc, ATH_DEBUG_XMIT,
4459			    "%s: TXDP[%u] = %p (%p) depth %d\n",
4460			    __func__, txq->axq_qnum,
4461			    (caddr_t)bf->bf_daddr, bf->bf_desc,
4462			    txq->axq_depth);
4463		} else {
4464			*txq->axq_link = bf->bf_daddr;
4465			DPRINTF(sc, ATH_DEBUG_XMIT,
4466			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4467			    txq->axq_qnum, txq->axq_link,
4468			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4469		}
4470#endif /* IEEE80211_SUPPORT_TDMA */
4471		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4472		ath_hal_txstart(ah, txq->axq_qnum);
4473	} else {
4474		if (txq->axq_link != NULL) {
4475			struct ath_buf *last = ATH_TXQ_LAST(txq);
4476			struct ieee80211_frame *wh;
4477
4478			/* mark previous frame */
4479			wh = mtod(last->bf_m, struct ieee80211_frame *);
4480			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
4481			bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
4482			    BUS_DMASYNC_PREWRITE);
4483
4484			/* link descriptor */
4485			*txq->axq_link = bf->bf_daddr;
4486		}
4487		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4488		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4489	}
4490	ATH_TXQ_UNLOCK(txq);
4491}
4492
4493static int
4494ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
4495    struct mbuf *m0)
4496{
4497	struct ieee80211vap *vap = ni->ni_vap;
4498	struct ath_vap *avp = ATH_VAP(vap);
4499	struct ath_hal *ah = sc->sc_ah;
4500	struct ifnet *ifp = sc->sc_ifp;
4501	struct ieee80211com *ic = ifp->if_l2com;
4502	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
4503	int error, iswep, ismcast, isfrag, ismrr;
4504	int keyix, hdrlen, pktlen, try0;
4505	u_int8_t rix, txrate, ctsrate;
4506	u_int8_t cix = 0xff;		/* NB: silence compiler */
4507	struct ath_desc *ds;
4508	struct ath_txq *txq;
4509	struct ieee80211_frame *wh;
4510	u_int subtype, flags, ctsduration;
4511	HAL_PKT_TYPE atype;
4512	const HAL_RATE_TABLE *rt;
4513	HAL_BOOL shortPreamble;
4514	struct ath_node *an;
4515	u_int pri;
4516
4517	wh = mtod(m0, struct ieee80211_frame *);
4518	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
4519	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
4520	isfrag = m0->m_flags & M_FRAG;
4521	hdrlen = ieee80211_anyhdrsize(wh);
4522	/*
4523	 * Packet length must not include any
4524	 * pad bytes; deduct them here.
4525	 */
4526	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
4527
4528	if (iswep) {
4529		const struct ieee80211_cipher *cip;
4530		struct ieee80211_key *k;
4531
4532		/*
4533		 * Construct the 802.11 header+trailer for an encrypted
4534		 * frame. The only reason this can fail is because of an
4535		 * unknown or unsupported cipher/key type.
4536		 */
4537		k = ieee80211_crypto_encap(ni, m0);
4538		if (k == NULL) {
4539			/*
4540			 * This can happen when the key is yanked after the
4541			 * frame was queued.  Just discard the frame; the
4542			 * 802.11 layer counts failures and provides
4543			 * debugging/diagnostics.
4544			 */
4545			ath_freetx(m0);
4546			return EIO;
4547		}
4548		/*
4549		 * Adjust the packet + header lengths for the crypto
4550		 * additions and calculate the h/w key index.  When
4551		 * a s/w mic is done the frame will have had any mic
4552		 * added to it prior to entry so m0->m_pkthdr.len will
4553		 * account for it. Otherwise we need to add it to the
4554		 * packet length.
4555		 */
4556		cip = k->wk_cipher;
4557		hdrlen += cip->ic_header;
4558		pktlen += cip->ic_header + cip->ic_trailer;
4559		/* NB: frags always have any TKIP MIC done in s/w */
4560		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
4561			pktlen += cip->ic_miclen;
4562		keyix = k->wk_keyix;
4563
4564		/* packet header may have moved, reset our local pointer */
4565		wh = mtod(m0, struct ieee80211_frame *);
4566	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
4567		/*
4568		 * Use station key cache slot, if assigned.
4569		 */
4570		keyix = ni->ni_ucastkey.wk_keyix;
4571		if (keyix == IEEE80211_KEYIX_NONE)
4572			keyix = HAL_TXKEYIX_INVALID;
4573	} else
4574		keyix = HAL_TXKEYIX_INVALID;
4575
4576	pktlen += IEEE80211_CRC_LEN;
4577
4578	/*
4579	 * Load the DMA map so any coalescing is done.  This
4580	 * also calculates the number of descriptors we need.
4581	 */
4582	error = ath_tx_dmasetup(sc, bf, m0);
4583	if (error != 0)
4584		return error;
4585	bf->bf_node = ni;			/* NB: held reference */
4586	m0 = bf->bf_m;				/* NB: may have changed */
4587	wh = mtod(m0, struct ieee80211_frame *);
4588
4589	/* setup descriptors */
4590	ds = bf->bf_desc;
4591	rt = sc->sc_currates;
4592	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4593
4594	/*
4595	 * NB: the 802.11 layer marks whether or not we should
4596	 * use short preamble based on the current mode and
4597	 * negotiated parameters.
4598	 */
4599	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
4600	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
4601		shortPreamble = AH_TRUE;
4602		sc->sc_stats.ast_tx_shortpre++;
4603	} else {
4604		shortPreamble = AH_FALSE;
4605	}
4606
4607	an = ATH_NODE(ni);
4608	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
4609	ismrr = 0;				/* default no multi-rate retry*/
4610	pri = M_WME_GETAC(m0);			/* honor classification */
4611	/* XXX use txparams instead of fixed values */
4612	/*
4613	 * Calculate Atheros packet type from IEEE80211 packet header,
4614	 * setup for rate calculations, and select h/w transmit queue.
4615	 */
4616	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
4617	case IEEE80211_FC0_TYPE_MGT:
4618		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4619		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
4620			atype = HAL_PKT_TYPE_BEACON;
4621		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4622			atype = HAL_PKT_TYPE_PROBE_RESP;
4623		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
4624			atype = HAL_PKT_TYPE_ATIM;
4625		else
4626			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
4627		rix = an->an_mgmtrix;
4628		txrate = rt->info[rix].rateCode;
4629		if (shortPreamble)
4630			txrate |= rt->info[rix].shortPreamble;
4631		try0 = ATH_TXMGTTRY;
4632		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4633		break;
4634	case IEEE80211_FC0_TYPE_CTL:
4635		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
4636		rix = an->an_mgmtrix;
4637		txrate = rt->info[rix].rateCode;
4638		if (shortPreamble)
4639			txrate |= rt->info[rix].shortPreamble;
4640		try0 = ATH_TXMGTTRY;
4641		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4642		break;
4643	case IEEE80211_FC0_TYPE_DATA:
4644		atype = HAL_PKT_TYPE_NORMAL;		/* default */
4645		/*
4646		 * Data frames: multicast frames go out at a fixed rate,
4647		 * EAPOL frames use the mgmt frame rate; otherwise consult
4648		 * the rate control module for the rate to use.
4649		 */
4650		if (ismcast) {
4651			rix = an->an_mcastrix;
4652			txrate = rt->info[rix].rateCode;
4653			if (shortPreamble)
4654				txrate |= rt->info[rix].shortPreamble;
4655			try0 = 1;
4656		} else if (m0->m_flags & M_EAPOL) {
4657			/* XXX? maybe always use long preamble? */
4658			rix = an->an_mgmtrix;
4659			txrate = rt->info[rix].rateCode;
4660			if (shortPreamble)
4661				txrate |= rt->info[rix].shortPreamble;
4662			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
4663		} else {
4664			ath_rate_findrate(sc, an, shortPreamble, pktlen,
4665				&rix, &try0, &txrate);
4666			sc->sc_txrix = rix;		/* for LED blinking */
4667			sc->sc_lastdatarix = rix;	/* for fast frames */
4668			if (try0 != ATH_TXMAXTRY)
4669				ismrr = 1;
4670		}
4671		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
4672			flags |= HAL_TXDESC_NOACK;
4673		break;
4674	default:
4675		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
4676			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
4677		/* XXX statistic */
4678		ath_freetx(m0);
4679		return EIO;
4680	}
4681	txq = sc->sc_ac2q[pri];
4682
4683	/*
4684	 * When servicing one or more stations in power-save mode
4685	 * (or) if there is some mcast data waiting on the mcast
4686	 * queue (to prevent out of order delivery) multicast
4687	 * frames must be buffered until after the beacon.
4688	 */
4689	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
4690		txq = &avp->av_mcastq;
4691
4692	/*
4693	 * Calculate miscellaneous flags.
4694	 */
4695	if (ismcast) {
4696		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
4697	} else if (pktlen > vap->iv_rtsthreshold &&
4698	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
4699		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
4700		cix = rt->info[rix].controlRate;
4701		sc->sc_stats.ast_tx_rts++;
4702	}
4703	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
4704		sc->sc_stats.ast_tx_noack++;
4705#ifdef IEEE80211_SUPPORT_TDMA
4706	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
4707		DPRINTF(sc, ATH_DEBUG_TDMA,
4708		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
4709		sc->sc_stats.ast_tdma_ack++;
4710		ath_freetx(m0);
4711		return EIO;
4712	}
4713#endif
4714
4715	/*
4716	 * If 802.11g protection is enabled, determine whether
4717	 * to use RTS/CTS or just CTS.  Note that this is only
4718	 * done for OFDM unicast frames.
4719	 */
4720	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
4721	    rt->info[rix].phy == IEEE80211_T_OFDM &&
4722	    (flags & HAL_TXDESC_NOACK) == 0) {
4723		/* XXX fragments must use CCK rates w/ protection */
4724		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4725			flags |= HAL_TXDESC_RTSENA;
4726		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4727			flags |= HAL_TXDESC_CTSENA;
4728		if (isfrag) {
4729			/*
4730			 * For frags it would be desirable to use the
4731			 * highest CCK rate for RTS/CTS.  But stations
4732			 * farther away may detect it at a lower CCK rate
4733			 * so use the configured protection rate instead
4734			 * (for now).
4735			 */
4736			cix = rt->info[sc->sc_protrix].controlRate;
4737		} else
4738			cix = rt->info[sc->sc_protrix].controlRate;
4739		sc->sc_stats.ast_tx_protect++;
4740	}
4741
4742	/*
4743	 * Calculate duration.  This logically belongs in the 802.11
4744	 * layer but it lacks sufficient information to calculate it.
4745	 */
4746	if ((flags & HAL_TXDESC_NOACK) == 0 &&
4747	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
4748		u_int16_t dur;
4749		if (shortPreamble)
4750			dur = rt->info[rix].spAckDuration;
4751		else
4752			dur = rt->info[rix].lpAckDuration;
4753		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
4754			dur += dur;		/* additional SIFS+ACK */
4755			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
4756			/*
4757			 * Include the size of next fragment so NAV is
4758			 * updated properly.  The last fragment uses only
4759			 * the ACK duration
4760			 */
4761			dur += ath_hal_computetxtime(ah, rt,
4762					m0->m_nextpkt->m_pkthdr.len,
4763					rix, shortPreamble);
4764		}
4765		if (isfrag) {
4766			/*
4767			 * Force hardware to use computed duration for next
4768			 * fragment by disabling multi-rate retry which updates
4769			 * duration based on the multi-rate duration table.
4770			 */
4771			ismrr = 0;
4772			try0 = ATH_TXMGTTRY;	/* XXX? */
4773		}
4774		*(u_int16_t *)wh->i_dur = htole16(dur);
4775	}
4776
4777	/*
4778	 * Calculate RTS/CTS rate and duration if needed.
4779	 */
4780	ctsduration = 0;
4781	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
4782		/*
4783		 * CTS transmit rate is derived from the transmit rate
4784		 * by looking in the h/w rate table.  We must also factor
4785		 * in whether or not a short preamble is to be used.
4786		 */
4787		/* NB: cix is set above where RTS/CTS is enabled */
4788		KASSERT(cix != 0xff, ("cix not setup"));
4789		ctsrate = rt->info[cix].rateCode;
4790		/*
4791		 * Compute the transmit duration based on the frame
4792		 * size and the size of an ACK frame.  We call into the
4793		 * HAL to do the computation since it depends on the
4794		 * characteristics of the actual PHY being used.
4795		 *
4796		 * NB: CTS is assumed the same size as an ACK so we can
4797		 *     use the precalculated ACK durations.
4798		 */
4799		if (shortPreamble) {
4800			ctsrate |= rt->info[cix].shortPreamble;
4801			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4802				ctsduration += rt->info[cix].spAckDuration;
4803			ctsduration += ath_hal_computetxtime(ah,
4804				rt, pktlen, rix, AH_TRUE);
4805			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4806				ctsduration += rt->info[rix].spAckDuration;
4807		} else {
4808			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4809				ctsduration += rt->info[cix].lpAckDuration;
4810			ctsduration += ath_hal_computetxtime(ah,
4811				rt, pktlen, rix, AH_FALSE);
4812			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4813				ctsduration += rt->info[rix].lpAckDuration;
4814		}
4815		/*
4816		 * Must disable multi-rate retry when using RTS/CTS.
4817		 */
4818		ismrr = 0;
4819		try0 = ATH_TXMGTTRY;		/* XXX */
4820	} else
4821		ctsrate = 0;
4822
4823	/*
4824	 * At this point we are committed to sending the frame
4825	 * and we don't need to look at m_nextpkt; clear it in
4826	 * case this frame is part of frag chain.
4827	 */
4828	m0->m_nextpkt = NULL;
4829
4830	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
4831		ieee80211_dump_pkt(ic, mtod(m0, const uint8_t *), m0->m_len,
4832		    sc->sc_hwmap[rix].ieeerate, -1);
4833
4834	if (ieee80211_radiotap_active_vap(vap)) {
4835		u_int64_t tsf = ath_hal_gettsf64(ah);
4836
4837		sc->sc_tx_th.wt_tsf = htole64(tsf);
4838		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
4839		if (iswep)
4840			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4841		if (isfrag)
4842			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
4843		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
4844		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
4845		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
4846
4847		ieee80211_radiotap_tx(vap, m0);
4848	}
4849
4850	/*
4851	 * Determine if a tx interrupt should be generated for
4852	 * this descriptor.  We take a tx interrupt to reap
4853	 * descriptors when the h/w hits an EOL condition or
4854	 * when the descriptor is specifically marked to generate
4855	 * an interrupt.  We periodically mark descriptors in this
4856	 * way to insure timely replenishing of the supply needed
4857	 * for sending frames.  Defering interrupts reduces system
4858	 * load and potentially allows more concurrent work to be
4859	 * done but if done to aggressively can cause senders to
4860	 * backup.
4861	 *
4862	 * NB: use >= to deal with sc_txintrperiod changing
4863	 *     dynamically through sysctl.
4864	 */
4865	if (flags & HAL_TXDESC_INTREQ) {
4866		txq->axq_intrcnt = 0;
4867	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4868		flags |= HAL_TXDESC_INTREQ;
4869		txq->axq_intrcnt = 0;
4870	}
4871
4872	/*
4873	 * Formulate first tx descriptor with tx controls.
4874	 */
4875	/* XXX check return value? */
4876	ath_hal_setuptxdesc(ah, ds
4877		, pktlen		/* packet length */
4878		, hdrlen		/* header length */
4879		, atype			/* Atheros packet type */
4880		, ni->ni_txpower	/* txpower */
4881		, txrate, try0		/* series 0 rate/tries */
4882		, keyix			/* key cache index */
4883		, sc->sc_txantenna	/* antenna mode */
4884		, flags			/* flags */
4885		, ctsrate		/* rts/cts rate */
4886		, ctsduration		/* rts/cts duration */
4887	);
4888	bf->bf_txflags = flags;
4889	/*
4890	 * Setup the multi-rate retry state only when we're
4891	 * going to use it.  This assumes ath_hal_setuptxdesc
4892	 * initializes the descriptors (so we don't have to)
4893	 * when the hardware supports multi-rate retry and
4894	 * we don't use it.
4895	 */
4896	if (ismrr)
4897		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4898
4899	ath_tx_handoff(sc, txq, bf);
4900	return 0;
4901}
4902
4903/*
4904 * Process completed xmit descriptors from the specified queue.
4905 */
4906static int
4907ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4908{
4909	struct ath_hal *ah = sc->sc_ah;
4910	struct ifnet *ifp = sc->sc_ifp;
4911	struct ieee80211com *ic = ifp->if_l2com;
4912	struct ath_buf *bf, *last;
4913	struct ath_desc *ds, *ds0;
4914	struct ath_tx_status *ts;
4915	struct ieee80211_node *ni;
4916	struct ath_node *an;
4917	int sr, lr, pri, nacked;
4918	HAL_STATUS status;
4919
4920	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
4921		__func__, txq->axq_qnum,
4922		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
4923		txq->axq_link);
4924	nacked = 0;
4925	for (;;) {
4926		ATH_TXQ_LOCK(txq);
4927		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
4928		bf = STAILQ_FIRST(&txq->axq_q);
4929		if (bf == NULL) {
4930			ATH_TXQ_UNLOCK(txq);
4931			break;
4932		}
4933		ds0 = &bf->bf_desc[0];
4934		ds = &bf->bf_desc[bf->bf_nseg - 1];
4935		ts = &bf->bf_status.ds_txstat;
4936		status = ath_hal_txprocdesc(ah, ds, ts);
4937#ifdef ATH_DEBUG
4938		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
4939			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
4940			    status == HAL_OK);
4941#endif
4942		if (status == HAL_EINPROGRESS) {
4943			ATH_TXQ_UNLOCK(txq);
4944			break;
4945		}
4946		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
4947#ifdef IEEE80211_SUPPORT_TDMA
4948		if (txq->axq_depth > 0) {
4949			/*
4950			 * More frames follow.  Mark the buffer busy
4951			 * so it's not re-used while the hardware may
4952			 * still re-read the link field in the descriptor.
4953			 */
4954			bf->bf_flags |= ATH_BUF_BUSY;
4955		} else
4956#else
4957		if (txq->axq_depth == 0)
4958#endif
4959			txq->axq_link = NULL;
4960		ATH_TXQ_UNLOCK(txq);
4961
4962		ni = bf->bf_node;
4963		if (ni != NULL) {
4964			an = ATH_NODE(ni);
4965			if (ts->ts_status == 0) {
4966				u_int8_t txant = ts->ts_antenna;
4967				sc->sc_stats.ast_ant_tx[txant]++;
4968				sc->sc_ant_tx[txant]++;
4969				if (ts->ts_finaltsi != 0)
4970					sc->sc_stats.ast_tx_altrate++;
4971				pri = M_WME_GETAC(bf->bf_m);
4972				if (pri >= WME_AC_VO)
4973					ic->ic_wme.wme_hipri_traffic++;
4974				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
4975					ni->ni_inact = ni->ni_inact_reload;
4976			} else {
4977				if (ts->ts_status & HAL_TXERR_XRETRY)
4978					sc->sc_stats.ast_tx_xretries++;
4979				if (ts->ts_status & HAL_TXERR_FIFO)
4980					sc->sc_stats.ast_tx_fifoerr++;
4981				if (ts->ts_status & HAL_TXERR_FILT)
4982					sc->sc_stats.ast_tx_filtered++;
4983				if (bf->bf_m->m_flags & M_FF)
4984					sc->sc_stats.ast_ff_txerr++;
4985			}
4986			sr = ts->ts_shortretry;
4987			lr = ts->ts_longretry;
4988			sc->sc_stats.ast_tx_shortretry += sr;
4989			sc->sc_stats.ast_tx_longretry += lr;
4990			/*
4991			 * Hand the descriptor to the rate control algorithm.
4992			 */
4993			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
4994			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
4995				/*
4996				 * If frame was ack'd update statistics,
4997				 * including the last rx time used to
4998				 * workaround phantom bmiss interrupts.
4999				 */
5000				if (ts->ts_status == 0) {
5001					nacked++;
5002					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
5003					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
5004						ts->ts_rssi);
5005				}
5006				ath_rate_tx_complete(sc, an, bf);
5007			}
5008			/*
5009			 * Do any tx complete callback.  Note this must
5010			 * be done before releasing the node reference.
5011			 */
5012			if (bf->bf_m->m_flags & M_TXCB)
5013				ieee80211_process_callback(ni, bf->bf_m,
5014				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
5015				        ts->ts_status : HAL_TXERR_XRETRY);
5016			ieee80211_free_node(ni);
5017		}
5018		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5019		    BUS_DMASYNC_POSTWRITE);
5020		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5021
5022		m_freem(bf->bf_m);
5023		bf->bf_m = NULL;
5024		bf->bf_node = NULL;
5025
5026		ATH_TXBUF_LOCK(sc);
5027		last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5028		if (last != NULL)
5029			last->bf_flags &= ~ATH_BUF_BUSY;
5030		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5031		ATH_TXBUF_UNLOCK(sc);
5032	}
5033#ifdef IEEE80211_SUPPORT_SUPERG
5034	/*
5035	 * Flush fast-frame staging queue when traffic slows.
5036	 */
5037	if (txq->axq_depth <= 1)
5038		ieee80211_ff_flush(ic, txq->axq_ac);
5039#endif
5040	return nacked;
5041}
5042
5043static __inline int
5044txqactive(struct ath_hal *ah, int qnum)
5045{
5046	u_int32_t txqs = 1<<qnum;
5047	ath_hal_gettxintrtxqs(ah, &txqs);
5048	return (txqs & (1<<qnum));
5049}
5050
5051/*
5052 * Deferred processing of transmit interrupt; special-cased
5053 * for a single hardware transmit queue (e.g. 5210 and 5211).
5054 */
5055static void
5056ath_tx_proc_q0(void *arg, int npending)
5057{
5058	struct ath_softc *sc = arg;
5059	struct ifnet *ifp = sc->sc_ifp;
5060
5061	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
5062		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5063	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5064		ath_tx_processq(sc, sc->sc_cabq);
5065	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5066	sc->sc_wd_timer = 0;
5067
5068	if (sc->sc_softled)
5069		ath_led_event(sc, sc->sc_txrix);
5070
5071	ath_start(ifp);
5072}
5073
5074/*
5075 * Deferred processing of transmit interrupt; special-cased
5076 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5077 */
5078static void
5079ath_tx_proc_q0123(void *arg, int npending)
5080{
5081	struct ath_softc *sc = arg;
5082	struct ifnet *ifp = sc->sc_ifp;
5083	int nacked;
5084
5085	/*
5086	 * Process each active queue.
5087	 */
5088	nacked = 0;
5089	if (txqactive(sc->sc_ah, 0))
5090		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
5091	if (txqactive(sc->sc_ah, 1))
5092		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
5093	if (txqactive(sc->sc_ah, 2))
5094		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
5095	if (txqactive(sc->sc_ah, 3))
5096		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
5097	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5098		ath_tx_processq(sc, sc->sc_cabq);
5099	if (nacked)
5100		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5101
5102	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5103	sc->sc_wd_timer = 0;
5104
5105	if (sc->sc_softled)
5106		ath_led_event(sc, sc->sc_txrix);
5107
5108	ath_start(ifp);
5109}
5110
5111/*
5112 * Deferred processing of transmit interrupt.
5113 */
5114static void
5115ath_tx_proc(void *arg, int npending)
5116{
5117	struct ath_softc *sc = arg;
5118	struct ifnet *ifp = sc->sc_ifp;
5119	int i, nacked;
5120
5121	/*
5122	 * Process each active queue.
5123	 */
5124	nacked = 0;
5125	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5126		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
5127			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
5128	if (nacked)
5129		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5130
5131	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5132	sc->sc_wd_timer = 0;
5133
5134	if (sc->sc_softled)
5135		ath_led_event(sc, sc->sc_txrix);
5136
5137	ath_start(ifp);
5138}
5139
5140static void
5141ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5142{
5143#ifdef ATH_DEBUG
5144	struct ath_hal *ah = sc->sc_ah;
5145#endif
5146	struct ieee80211_node *ni;
5147	struct ath_buf *bf;
5148	u_int ix;
5149
5150	/*
5151	 * NB: this assumes output has been stopped and
5152	 *     we do not need to block ath_tx_proc
5153	 */
5154	ATH_TXBUF_LOCK(sc);
5155	bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5156	if (bf != NULL)
5157		bf->bf_flags &= ~ATH_BUF_BUSY;
5158	ATH_TXBUF_UNLOCK(sc);
5159	for (ix = 0;; ix++) {
5160		ATH_TXQ_LOCK(txq);
5161		bf = STAILQ_FIRST(&txq->axq_q);
5162		if (bf == NULL) {
5163			txq->axq_link = NULL;
5164			ATH_TXQ_UNLOCK(txq);
5165			break;
5166		}
5167		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5168		ATH_TXQ_UNLOCK(txq);
5169#ifdef ATH_DEBUG
5170		if (sc->sc_debug & ATH_DEBUG_RESET) {
5171			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5172
5173			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5174				ath_hal_txprocdesc(ah, bf->bf_desc,
5175				    &bf->bf_status.ds_txstat) == HAL_OK);
5176			ieee80211_dump_pkt(ic, mtod(bf->bf_m, const uint8_t *),
5177			    bf->bf_m->m_len, 0, -1);
5178		}
5179#endif /* ATH_DEBUG */
5180		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5181		ni = bf->bf_node;
5182		bf->bf_node = NULL;
5183		if (ni != NULL) {
5184			/*
5185			 * Do any callback and reclaim the node reference.
5186			 */
5187			if (bf->bf_m->m_flags & M_TXCB)
5188				ieee80211_process_callback(ni, bf->bf_m, -1);
5189			ieee80211_free_node(ni);
5190		}
5191		m_freem(bf->bf_m);
5192		bf->bf_m = NULL;
5193		bf->bf_flags &= ~ATH_BUF_BUSY;
5194
5195		ATH_TXBUF_LOCK(sc);
5196		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5197		ATH_TXBUF_UNLOCK(sc);
5198	}
5199}
5200
5201static void
5202ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5203{
5204	struct ath_hal *ah = sc->sc_ah;
5205
5206	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5207	    __func__, txq->axq_qnum,
5208	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5209	    txq->axq_link);
5210	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5211}
5212
5213/*
5214 * Drain the transmit queues and reclaim resources.
5215 */
5216static void
5217ath_draintxq(struct ath_softc *sc)
5218{
5219	struct ath_hal *ah = sc->sc_ah;
5220	struct ifnet *ifp = sc->sc_ifp;
5221	int i;
5222
5223	/* XXX return value */
5224	if (!sc->sc_invalid) {
5225		/* don't touch the hardware if marked invalid */
5226		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5227		    __func__, sc->sc_bhalq,
5228		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5229		    NULL);
5230		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5231		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5232			if (ATH_TXQ_SETUP(sc, i))
5233				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5234	}
5235	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5236		if (ATH_TXQ_SETUP(sc, i))
5237			ath_tx_draintxq(sc, &sc->sc_txq[i]);
5238#ifdef ATH_DEBUG
5239	if (sc->sc_debug & ATH_DEBUG_RESET) {
5240		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
5241		if (bf != NULL && bf->bf_m != NULL) {
5242			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5243				ath_hal_txprocdesc(ah, bf->bf_desc,
5244				    &bf->bf_status.ds_txstat) == HAL_OK);
5245			ieee80211_dump_pkt(ifp->if_l2com,
5246			    mtod(bf->bf_m, const uint8_t *), bf->bf_m->m_len,
5247			    0, -1);
5248		}
5249	}
5250#endif /* ATH_DEBUG */
5251	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5252	sc->sc_wd_timer = 0;
5253}
5254
5255/*
5256 * Disable the receive h/w in preparation for a reset.
5257 */
5258static void
5259ath_stoprecv(struct ath_softc *sc)
5260{
5261#define	PA2DESC(_sc, _pa) \
5262	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5263		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5264	struct ath_hal *ah = sc->sc_ah;
5265
5266	ath_hal_stoppcurecv(ah);	/* disable PCU */
5267	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5268	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5269	DELAY(3000);			/* 3ms is long enough for 1 frame */
5270#ifdef ATH_DEBUG
5271	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5272		struct ath_buf *bf;
5273		u_int ix;
5274
5275		printf("%s: rx queue %p, link %p\n", __func__,
5276			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5277		ix = 0;
5278		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5279			struct ath_desc *ds = bf->bf_desc;
5280			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5281			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5282				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5283			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5284				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5285			ix++;
5286		}
5287	}
5288#endif
5289	if (sc->sc_rxpending != NULL) {
5290		m_freem(sc->sc_rxpending);
5291		sc->sc_rxpending = NULL;
5292	}
5293	sc->sc_rxlink = NULL;		/* just in case */
5294#undef PA2DESC
5295}
5296
5297/*
5298 * Enable the receive h/w following a reset.
5299 */
5300static int
5301ath_startrecv(struct ath_softc *sc)
5302{
5303	struct ath_hal *ah = sc->sc_ah;
5304	struct ath_buf *bf;
5305
5306	sc->sc_rxlink = NULL;
5307	sc->sc_rxpending = NULL;
5308	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5309		int error = ath_rxbuf_init(sc, bf);
5310		if (error != 0) {
5311			DPRINTF(sc, ATH_DEBUG_RECV,
5312				"%s: ath_rxbuf_init failed %d\n",
5313				__func__, error);
5314			return error;
5315		}
5316	}
5317
5318	bf = STAILQ_FIRST(&sc->sc_rxbuf);
5319	ath_hal_putrxbuf(ah, bf->bf_daddr);
5320	ath_hal_rxena(ah);		/* enable recv descriptors */
5321	ath_mode_init(sc);		/* set filters, etc. */
5322	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5323	return 0;
5324}
5325
5326/*
5327 * Update internal state after a channel change.
5328 */
5329static void
5330ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5331{
5332	enum ieee80211_phymode mode;
5333
5334	/*
5335	 * Change channels and update the h/w rate map
5336	 * if we're switching; e.g. 11a to 11b/g.
5337	 */
5338	mode = ieee80211_chan2mode(chan);
5339	if (mode != sc->sc_curmode)
5340		ath_setcurmode(sc, mode);
5341	sc->sc_curchan = chan;
5342}
5343
5344/*
5345 * Set/change channels.  If the channel is really being changed,
5346 * it's done by reseting the chip.  To accomplish this we must
5347 * first cleanup any pending DMA, then restart stuff after a la
5348 * ath_init.
5349 */
5350static int
5351ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5352{
5353	struct ifnet *ifp = sc->sc_ifp;
5354	struct ieee80211com *ic = ifp->if_l2com;
5355	struct ath_hal *ah = sc->sc_ah;
5356
5357	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5358	    __func__, ieee80211_chan2ieee(ic, chan),
5359	    chan->ic_freq, chan->ic_flags);
5360	if (chan != sc->sc_curchan) {
5361		HAL_STATUS status;
5362		/*
5363		 * To switch channels clear any pending DMA operations;
5364		 * wait long enough for the RX fifo to drain, reset the
5365		 * hardware at the new frequency, and then re-enable
5366		 * the relevant bits of the h/w.
5367		 */
5368		ath_hal_intrset(ah, 0);		/* disable interrupts */
5369		ath_draintxq(sc);		/* clear pending tx frames */
5370		ath_stoprecv(sc);		/* turn off frame recv */
5371		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5372			if_printf(ifp, "%s: unable to reset "
5373			    "channel %u (%u MHz, flags 0x%x), hal status %u\n",
5374			    __func__, ieee80211_chan2ieee(ic, chan),
5375			    chan->ic_freq, chan->ic_flags, status);
5376			return EIO;
5377		}
5378		sc->sc_diversity = ath_hal_getdiversity(ah);
5379
5380		/*
5381		 * Re-enable rx framework.
5382		 */
5383		if (ath_startrecv(sc) != 0) {
5384			if_printf(ifp, "%s: unable to restart recv logic\n",
5385			    __func__);
5386			return EIO;
5387		}
5388
5389		/*
5390		 * Change channels and update the h/w rate map
5391		 * if we're switching; e.g. 11a to 11b/g.
5392		 */
5393		ath_chan_change(sc, chan);
5394
5395		/*
5396		 * Re-enable interrupts.
5397		 */
5398		ath_hal_intrset(ah, sc->sc_imask);
5399	}
5400	return 0;
5401}
5402
5403/*
5404 * Periodically recalibrate the PHY to account
5405 * for temperature/environment changes.
5406 */
5407static void
5408ath_calibrate(void *arg)
5409{
5410	struct ath_softc *sc = arg;
5411	struct ath_hal *ah = sc->sc_ah;
5412	struct ifnet *ifp = sc->sc_ifp;
5413	struct ieee80211com *ic = ifp->if_l2com;
5414	HAL_BOOL longCal, isCalDone;
5415	int nextcal;
5416
5417	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5418		goto restart;
5419	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5420	if (longCal) {
5421		sc->sc_stats.ast_per_cal++;
5422		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5423			/*
5424			 * Rfgain is out of bounds, reset the chip
5425			 * to load new gain values.
5426			 */
5427			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5428				"%s: rfgain change\n", __func__);
5429			sc->sc_stats.ast_per_rfgain++;
5430			ath_reset(ifp);
5431		}
5432		/*
5433		 * If this long cal is after an idle period, then
5434		 * reset the data collection state so we start fresh.
5435		 */
5436		if (sc->sc_resetcal) {
5437			(void) ath_hal_calreset(ah, sc->sc_curchan);
5438			sc->sc_lastcalreset = ticks;
5439			sc->sc_resetcal = 0;
5440		}
5441	}
5442	if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5443		if (longCal) {
5444			/*
5445			 * Calibrate noise floor data again in case of change.
5446			 */
5447			ath_hal_process_noisefloor(ah);
5448		}
5449	} else {
5450		DPRINTF(sc, ATH_DEBUG_ANY,
5451			"%s: calibration of channel %u failed\n",
5452			__func__, sc->sc_curchan->ic_freq);
5453		sc->sc_stats.ast_per_calfail++;
5454	}
5455	if (!isCalDone) {
5456restart:
5457		/*
5458		 * Use a shorter interval to potentially collect multiple
5459		 * data samples required to complete calibration.  Once
5460		 * we're told the work is done we drop back to a longer
5461		 * interval between requests.  We're more aggressive doing
5462		 * work when operating as an AP to improve operation right
5463		 * after startup.
5464		 */
5465		nextcal = (1000*ath_shortcalinterval)/hz;
5466		if (sc->sc_opmode != HAL_M_HOSTAP)
5467			nextcal *= 10;
5468	} else {
5469		nextcal = ath_longcalinterval*hz;
5470		sc->sc_lastlongcal = ticks;
5471		if (sc->sc_lastcalreset == 0)
5472			sc->sc_lastcalreset = sc->sc_lastlongcal;
5473		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5474			sc->sc_resetcal = 1;	/* setup reset next trip */
5475	}
5476
5477	if (nextcal != 0) {
5478		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5479		    __func__, nextcal, isCalDone ? "" : "!");
5480		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5481	} else {
5482		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5483		    __func__);
5484		/* NB: don't rearm timer */
5485	}
5486}
5487
5488static void
5489ath_scan_start(struct ieee80211com *ic)
5490{
5491	struct ifnet *ifp = ic->ic_ifp;
5492	struct ath_softc *sc = ifp->if_softc;
5493	struct ath_hal *ah = sc->sc_ah;
5494	u_int32_t rfilt;
5495
5496	/* XXX calibration timer? */
5497
5498	sc->sc_scanning = 1;
5499	sc->sc_syncbeacon = 0;
5500	rfilt = ath_calcrxfilter(sc);
5501	ath_hal_setrxfilter(ah, rfilt);
5502	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5503
5504	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5505		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5506}
5507
5508static void
5509ath_scan_end(struct ieee80211com *ic)
5510{
5511	struct ifnet *ifp = ic->ic_ifp;
5512	struct ath_softc *sc = ifp->if_softc;
5513	struct ath_hal *ah = sc->sc_ah;
5514	u_int32_t rfilt;
5515
5516	sc->sc_scanning = 0;
5517	rfilt = ath_calcrxfilter(sc);
5518	ath_hal_setrxfilter(ah, rfilt);
5519	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5520
5521	ath_hal_process_noisefloor(ah);
5522
5523	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5524		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5525		 sc->sc_curaid);
5526}
5527
5528static void
5529ath_set_channel(struct ieee80211com *ic)
5530{
5531	struct ifnet *ifp = ic->ic_ifp;
5532	struct ath_softc *sc = ifp->if_softc;
5533
5534	(void) ath_chan_set(sc, ic->ic_curchan);
5535	/*
5536	 * If we are returning to our bss channel then mark state
5537	 * so the next recv'd beacon's tsf will be used to sync the
5538	 * beacon timers.  Note that since we only hear beacons in
5539	 * sta/ibss mode this has no effect in other operating modes.
5540	 */
5541	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5542		sc->sc_syncbeacon = 1;
5543}
5544
5545/*
5546 * Walk the vap list and check if there any vap's in RUN state.
5547 */
5548static int
5549ath_isanyrunningvaps(struct ieee80211vap *this)
5550{
5551	struct ieee80211com *ic = this->iv_ic;
5552	struct ieee80211vap *vap;
5553
5554	IEEE80211_LOCK_ASSERT(ic);
5555
5556	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5557		if (vap != this && vap->iv_state >= IEEE80211_S_RUN)
5558			return 1;
5559	}
5560	return 0;
5561}
5562
5563static int
5564ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5565{
5566	struct ieee80211com *ic = vap->iv_ic;
5567	struct ath_softc *sc = ic->ic_ifp->if_softc;
5568	struct ath_vap *avp = ATH_VAP(vap);
5569	struct ath_hal *ah = sc->sc_ah;
5570	struct ieee80211_node *ni = NULL;
5571	int i, error, stamode;
5572	u_int32_t rfilt;
5573	static const HAL_LED_STATE leds[] = {
5574	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5575	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5576	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5577	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5578	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5579	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5580	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5581	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5582	};
5583
5584	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5585		ieee80211_state_name[vap->iv_state],
5586		ieee80211_state_name[nstate]);
5587
5588	callout_drain(&sc->sc_cal_ch);
5589	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5590
5591	if (nstate == IEEE80211_S_SCAN) {
5592		/*
5593		 * Scanning: turn off beacon miss and don't beacon.
5594		 * Mark beacon state so when we reach RUN state we'll
5595		 * [re]setup beacons.  Unblock the task q thread so
5596		 * deferred interrupt processing is done.
5597		 */
5598		ath_hal_intrset(ah,
5599		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5600		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5601		sc->sc_beacons = 0;
5602		taskqueue_unblock(sc->sc_tq);
5603	}
5604
5605	ni = vap->iv_bss;
5606	rfilt = ath_calcrxfilter(sc);
5607	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5608		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5609		   vap->iv_opmode == IEEE80211_M_IBSS);
5610	if (stamode && nstate == IEEE80211_S_RUN) {
5611		sc->sc_curaid = ni->ni_associd;
5612		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5613		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5614	}
5615	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5616	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5617	ath_hal_setrxfilter(ah, rfilt);
5618
5619	/* XXX is this to restore keycache on resume? */
5620	if (vap->iv_opmode != IEEE80211_M_STA &&
5621	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5622		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5623			if (ath_hal_keyisvalid(ah, i))
5624				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5625	}
5626
5627	/*
5628	 * Invoke the parent method to do net80211 work.
5629	 */
5630	error = avp->av_newstate(vap, nstate, arg);
5631	if (error != 0)
5632		goto bad;
5633
5634	if (nstate == IEEE80211_S_RUN) {
5635		/* NB: collect bss node again, it may have changed */
5636		ni = vap->iv_bss;
5637
5638		DPRINTF(sc, ATH_DEBUG_STATE,
5639		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5640		    "capinfo 0x%04x chan %d\n", __func__,
5641		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5642		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5643
5644		switch (vap->iv_opmode) {
5645#ifdef IEEE80211_SUPPORT_TDMA
5646		case IEEE80211_M_AHDEMO:
5647			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5648				break;
5649			/* fall thru... */
5650#endif
5651		case IEEE80211_M_HOSTAP:
5652		case IEEE80211_M_IBSS:
5653		case IEEE80211_M_MBSS:
5654			/*
5655			 * Allocate and setup the beacon frame.
5656			 *
5657			 * Stop any previous beacon DMA.  This may be
5658			 * necessary, for example, when an ibss merge
5659			 * causes reconfiguration; there will be a state
5660			 * transition from RUN->RUN that means we may
5661			 * be called with beacon transmission active.
5662			 */
5663			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5664
5665			error = ath_beacon_alloc(sc, ni);
5666			if (error != 0)
5667				goto bad;
5668			/*
5669			 * If joining an adhoc network defer beacon timer
5670			 * configuration to the next beacon frame so we
5671			 * have a current TSF to use.  Otherwise we're
5672			 * starting an ibss/bss so there's no need to delay;
5673			 * if this is the first vap moving to RUN state, then
5674			 * beacon state needs to be [re]configured.
5675			 */
5676			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5677			    ni->ni_tstamp.tsf != 0) {
5678				sc->sc_syncbeacon = 1;
5679			} else if (!sc->sc_beacons) {
5680#ifdef IEEE80211_SUPPORT_TDMA
5681				if (vap->iv_caps & IEEE80211_C_TDMA)
5682					ath_tdma_config(sc, vap);
5683				else
5684#endif
5685					ath_beacon_config(sc, vap);
5686				sc->sc_beacons = 1;
5687			}
5688			break;
5689		case IEEE80211_M_STA:
5690			/*
5691			 * Defer beacon timer configuration to the next
5692			 * beacon frame so we have a current TSF to use
5693			 * (any TSF collected when scanning is likely old).
5694			 */
5695			sc->sc_syncbeacon = 1;
5696			break;
5697		case IEEE80211_M_MONITOR:
5698			/*
5699			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5700			 * transitions so we must re-enable interrupts here to
5701			 * handle the case of a single monitor mode vap.
5702			 */
5703			ath_hal_intrset(ah, sc->sc_imask);
5704			break;
5705		case IEEE80211_M_WDS:
5706			break;
5707		default:
5708			break;
5709		}
5710		/*
5711		 * Let the hal process statistics collected during a
5712		 * scan so it can provide calibrated noise floor data.
5713		 */
5714		ath_hal_process_noisefloor(ah);
5715		/*
5716		 * Reset rssi stats; maybe not the best place...
5717		 */
5718		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5719		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5720		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5721		/*
5722		 * Finally, start any timers and the task q thread
5723		 * (in case we didn't go through SCAN state).
5724		 */
5725		if (ath_longcalinterval != 0) {
5726			/* start periodic recalibration timer */
5727			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
5728		} else {
5729			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5730			    "%s: calibration disabled\n", __func__);
5731		}
5732		taskqueue_unblock(sc->sc_tq);
5733	} else if (nstate == IEEE80211_S_INIT) {
5734		/*
5735		 * If there are no vaps left in RUN state then
5736		 * shutdown host/driver operation:
5737		 * o disable interrupts
5738		 * o disable the task queue thread
5739		 * o mark beacon processing as stopped
5740		 */
5741		if (!ath_isanyrunningvaps(vap)) {
5742			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5743			/* disable interrupts  */
5744			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5745			taskqueue_block(sc->sc_tq);
5746			sc->sc_beacons = 0;
5747		}
5748#ifdef IEEE80211_SUPPORT_TDMA
5749		ath_hal_setcca(ah, AH_TRUE);
5750#endif
5751	}
5752bad:
5753	return error;
5754}
5755
5756/*
5757 * Allocate a key cache slot to the station so we can
5758 * setup a mapping from key index to node. The key cache
5759 * slot is needed for managing antenna state and for
5760 * compression when stations do not use crypto.  We do
5761 * it uniliaterally here; if crypto is employed this slot
5762 * will be reassigned.
5763 */
5764static void
5765ath_setup_stationkey(struct ieee80211_node *ni)
5766{
5767	struct ieee80211vap *vap = ni->ni_vap;
5768	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5769	ieee80211_keyix keyix, rxkeyix;
5770
5771	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5772		/*
5773		 * Key cache is full; we'll fall back to doing
5774		 * the more expensive lookup in software.  Note
5775		 * this also means no h/w compression.
5776		 */
5777		/* XXX msg+statistic */
5778	} else {
5779		/* XXX locking? */
5780		ni->ni_ucastkey.wk_keyix = keyix;
5781		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5782		/* NB: must mark device key to get called back on delete */
5783		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
5784		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5785		/* NB: this will create a pass-thru key entry */
5786		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
5787	}
5788}
5789
5790/*
5791 * Setup driver-specific state for a newly associated node.
5792 * Note that we're called also on a re-associate, the isnew
5793 * param tells us if this is the first time or not.
5794 */
5795static void
5796ath_newassoc(struct ieee80211_node *ni, int isnew)
5797{
5798	struct ath_node *an = ATH_NODE(ni);
5799	struct ieee80211vap *vap = ni->ni_vap;
5800	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5801	const struct ieee80211_txparam *tp = ni->ni_txparms;
5802
5803	an->an_mcastrix = ath_tx_findrix(sc, tp->mcastrate);
5804	an->an_mgmtrix = ath_tx_findrix(sc, tp->mgmtrate);
5805
5806	ath_rate_newassoc(sc, an, isnew);
5807	if (isnew &&
5808	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5809	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5810		ath_setup_stationkey(ni);
5811}
5812
5813static int
5814ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
5815	int nchans, struct ieee80211_channel chans[])
5816{
5817	struct ath_softc *sc = ic->ic_ifp->if_softc;
5818	struct ath_hal *ah = sc->sc_ah;
5819	HAL_STATUS status;
5820
5821	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5822	    "%s: rd %u cc %u location %c%s\n",
5823	    __func__, reg->regdomain, reg->country, reg->location,
5824	    reg->ecm ? " ecm" : "");
5825
5826	status = ath_hal_set_channels(ah, chans, nchans,
5827	    reg->country, reg->regdomain);
5828	if (status != HAL_OK) {
5829		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
5830		    __func__, status);
5831		return EINVAL;		/* XXX */
5832	}
5833	return 0;
5834}
5835
5836static void
5837ath_getradiocaps(struct ieee80211com *ic,
5838	int maxchans, int *nchans, struct ieee80211_channel chans[])
5839{
5840	struct ath_softc *sc = ic->ic_ifp->if_softc;
5841	struct ath_hal *ah = sc->sc_ah;
5842
5843	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
5844	    __func__, SKU_DEBUG, CTRY_DEFAULT);
5845
5846	/* XXX check return */
5847	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
5848	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
5849
5850}
5851
5852static int
5853ath_getchannels(struct ath_softc *sc)
5854{
5855	struct ifnet *ifp = sc->sc_ifp;
5856	struct ieee80211com *ic = ifp->if_l2com;
5857	struct ath_hal *ah = sc->sc_ah;
5858	HAL_STATUS status;
5859
5860	/*
5861	 * Collect channel set based on EEPROM contents.
5862	 */
5863	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
5864	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
5865	if (status != HAL_OK) {
5866		if_printf(ifp, "%s: unable to collect channel list from hal, "
5867		    "status %d\n", __func__, status);
5868		return EINVAL;
5869	}
5870	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
5871	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
5872	/* XXX map Atheros sku's to net80211 SKU's */
5873	/* XXX net80211 types too small */
5874	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
5875	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
5876	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
5877	ic->ic_regdomain.isocc[1] = ' ';
5878
5879	ic->ic_regdomain.ecm = 1;
5880	ic->ic_regdomain.location = 'I';
5881
5882	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5883	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
5884	    __func__, sc->sc_eerd, sc->sc_eecc,
5885	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
5886	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
5887	return 0;
5888}
5889
5890static void
5891ath_led_done(void *arg)
5892{
5893	struct ath_softc *sc = arg;
5894
5895	sc->sc_blinking = 0;
5896}
5897
5898/*
5899 * Turn the LED off: flip the pin and then set a timer so no
5900 * update will happen for the specified duration.
5901 */
5902static void
5903ath_led_off(void *arg)
5904{
5905	struct ath_softc *sc = arg;
5906
5907	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
5908	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
5909}
5910
5911/*
5912 * Blink the LED according to the specified on/off times.
5913 */
5914static void
5915ath_led_blink(struct ath_softc *sc, int on, int off)
5916{
5917	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
5918	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
5919	sc->sc_blinking = 1;
5920	sc->sc_ledoff = off;
5921	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
5922}
5923
5924static void
5925ath_led_event(struct ath_softc *sc, int rix)
5926{
5927	sc->sc_ledevent = ticks;	/* time of last event */
5928	if (sc->sc_blinking)		/* don't interrupt active blink */
5929		return;
5930	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
5931}
5932
5933static int
5934ath_rate_setup(struct ath_softc *sc, u_int mode)
5935{
5936	struct ath_hal *ah = sc->sc_ah;
5937	const HAL_RATE_TABLE *rt;
5938
5939	switch (mode) {
5940	case IEEE80211_MODE_11A:
5941		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
5942		break;
5943	case IEEE80211_MODE_HALF:
5944		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
5945		break;
5946	case IEEE80211_MODE_QUARTER:
5947		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
5948		break;
5949	case IEEE80211_MODE_11B:
5950		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
5951		break;
5952	case IEEE80211_MODE_11G:
5953		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
5954		break;
5955	case IEEE80211_MODE_TURBO_A:
5956		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
5957		break;
5958	case IEEE80211_MODE_TURBO_G:
5959		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
5960		break;
5961	case IEEE80211_MODE_STURBO_A:
5962		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
5963		break;
5964	case IEEE80211_MODE_11NA:
5965		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
5966		break;
5967	case IEEE80211_MODE_11NG:
5968		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
5969		break;
5970	default:
5971		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
5972			__func__, mode);
5973		return 0;
5974	}
5975	sc->sc_rates[mode] = rt;
5976	return (rt != NULL);
5977}
5978
5979static void
5980ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
5981{
5982#define	N(a)	(sizeof(a)/sizeof(a[0]))
5983	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
5984	static const struct {
5985		u_int		rate;		/* tx/rx 802.11 rate */
5986		u_int16_t	timeOn;		/* LED on time (ms) */
5987		u_int16_t	timeOff;	/* LED off time (ms) */
5988	} blinkrates[] = {
5989		{ 108,  40,  10 },
5990		{  96,  44,  11 },
5991		{  72,  50,  13 },
5992		{  48,  57,  14 },
5993		{  36,  67,  16 },
5994		{  24,  80,  20 },
5995		{  22, 100,  25 },
5996		{  18, 133,  34 },
5997		{  12, 160,  40 },
5998		{  10, 200,  50 },
5999		{   6, 240,  58 },
6000		{   4, 267,  66 },
6001		{   2, 400, 100 },
6002		{   0, 500, 130 },
6003		/* XXX half/quarter rates */
6004	};
6005	const HAL_RATE_TABLE *rt;
6006	int i, j;
6007
6008	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6009	rt = sc->sc_rates[mode];
6010	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6011	for (i = 0; i < rt->rateCount; i++) {
6012		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6013		if (rt->info[i].phy != IEEE80211_T_HT)
6014			sc->sc_rixmap[ieeerate] = i;
6015		else
6016			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6017	}
6018	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6019	for (i = 0; i < N(sc->sc_hwmap); i++) {
6020		if (i >= rt->rateCount) {
6021			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6022			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6023			continue;
6024		}
6025		sc->sc_hwmap[i].ieeerate =
6026			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6027		if (rt->info[i].phy == IEEE80211_T_HT)
6028			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6029		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6030		if (rt->info[i].shortPreamble ||
6031		    rt->info[i].phy == IEEE80211_T_OFDM)
6032			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6033		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags;
6034		for (j = 0; j < N(blinkrates)-1; j++)
6035			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6036				break;
6037		/* NB: this uses the last entry if the rate isn't found */
6038		/* XXX beware of overlow */
6039		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6040		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6041	}
6042	sc->sc_currates = rt;
6043	sc->sc_curmode = mode;
6044	/*
6045	 * All protection frames are transmited at 2Mb/s for
6046	 * 11g, otherwise at 1Mb/s.
6047	 */
6048	if (mode == IEEE80211_MODE_11G)
6049		sc->sc_protrix = ath_tx_findrix(sc, 2*2);
6050	else
6051		sc->sc_protrix = ath_tx_findrix(sc, 2*1);
6052	/* NB: caller is responsible for reseting rate control state */
6053#undef N
6054}
6055
6056#ifdef ATH_DEBUG
6057static void
6058ath_printrxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6059	u_int ix, int done)
6060{
6061	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
6062	struct ath_hal *ah = sc->sc_ah;
6063	const struct ath_desc *ds;
6064	int i;
6065
6066	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6067		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
6068		       "      %08x %08x %08x %08x\n",
6069		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
6070		    ds->ds_link, ds->ds_data,
6071		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
6072		    ds->ds_ctl0, ds->ds_ctl1,
6073		    ds->ds_hw[0], ds->ds_hw[1]);
6074		if (ah->ah_magic == 0x20065416) {
6075			printf("        %08x %08x %08x %08x %08x %08x %08x\n",
6076			    ds->ds_hw[2], ds->ds_hw[3], ds->ds_hw[4],
6077			    ds->ds_hw[5], ds->ds_hw[6], ds->ds_hw[7],
6078			    ds->ds_hw[8]);
6079		}
6080	}
6081}
6082
6083static void
6084ath_printtxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6085	u_int qnum, u_int ix, int done)
6086{
6087	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
6088	struct ath_hal *ah = sc->sc_ah;
6089	const struct ath_desc *ds;
6090	int i;
6091
6092	printf("Q%u[%3u]", qnum, ix);
6093	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6094		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
6095		       "        %08x %08x %08x %08x %08x %08x\n",
6096		    ds, (const struct ath_desc *)bf->bf_daddr + i,
6097		    ds->ds_link, ds->ds_data, bf->bf_txflags,
6098		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
6099		    ds->ds_ctl0, ds->ds_ctl1,
6100		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
6101		if (ah->ah_magic == 0x20065416) {
6102			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6103			    ds->ds_hw[4], ds->ds_hw[5], ds->ds_hw[6],
6104			    ds->ds_hw[7], ds->ds_hw[8], ds->ds_hw[9],
6105			    ds->ds_hw[10],ds->ds_hw[11]);
6106			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6107			    ds->ds_hw[12],ds->ds_hw[13],ds->ds_hw[14],
6108			    ds->ds_hw[15],ds->ds_hw[16],ds->ds_hw[17],
6109			    ds->ds_hw[18], ds->ds_hw[19]);
6110		}
6111	}
6112}
6113#endif /* ATH_DEBUG */
6114
6115static void
6116ath_watchdog(void *arg)
6117{
6118	struct ath_softc *sc = arg;
6119
6120	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6121		struct ifnet *ifp = sc->sc_ifp;
6122		uint32_t hangs;
6123
6124		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6125		    hangs != 0) {
6126			if_printf(ifp, "%s hang detected (0x%x)\n",
6127			    hangs & 0xff ? "bb" : "mac", hangs);
6128		} else
6129			if_printf(ifp, "device timeout\n");
6130		ath_reset(ifp);
6131		ifp->if_oerrors++;
6132		sc->sc_stats.ast_watchdog++;
6133	}
6134	callout_schedule(&sc->sc_wd_ch, hz);
6135}
6136
6137#ifdef ATH_DIAGAPI
6138/*
6139 * Diagnostic interface to the HAL.  This is used by various
6140 * tools to do things like retrieve register contents for
6141 * debugging.  The mechanism is intentionally opaque so that
6142 * it can change frequently w/o concern for compatiblity.
6143 */
6144static int
6145ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6146{
6147	struct ath_hal *ah = sc->sc_ah;
6148	u_int id = ad->ad_id & ATH_DIAG_ID;
6149	void *indata = NULL;
6150	void *outdata = NULL;
6151	u_int32_t insize = ad->ad_in_size;
6152	u_int32_t outsize = ad->ad_out_size;
6153	int error = 0;
6154
6155	if (ad->ad_id & ATH_DIAG_IN) {
6156		/*
6157		 * Copy in data.
6158		 */
6159		indata = malloc(insize, M_TEMP, M_NOWAIT);
6160		if (indata == NULL) {
6161			error = ENOMEM;
6162			goto bad;
6163		}
6164		error = copyin(ad->ad_in_data, indata, insize);
6165		if (error)
6166			goto bad;
6167	}
6168	if (ad->ad_id & ATH_DIAG_DYN) {
6169		/*
6170		 * Allocate a buffer for the results (otherwise the HAL
6171		 * returns a pointer to a buffer where we can read the
6172		 * results).  Note that we depend on the HAL leaving this
6173		 * pointer for us to use below in reclaiming the buffer;
6174		 * may want to be more defensive.
6175		 */
6176		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6177		if (outdata == NULL) {
6178			error = ENOMEM;
6179			goto bad;
6180		}
6181	}
6182	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6183		if (outsize < ad->ad_out_size)
6184			ad->ad_out_size = outsize;
6185		if (outdata != NULL)
6186			error = copyout(outdata, ad->ad_out_data,
6187					ad->ad_out_size);
6188	} else {
6189		error = EINVAL;
6190	}
6191bad:
6192	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6193		free(indata, M_TEMP);
6194	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6195		free(outdata, M_TEMP);
6196	return error;
6197}
6198#endif /* ATH_DIAGAPI */
6199
6200static int
6201ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6202{
6203#define	IS_RUNNING(ifp) \
6204	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6205	struct ath_softc *sc = ifp->if_softc;
6206	struct ieee80211com *ic = ifp->if_l2com;
6207	struct ifreq *ifr = (struct ifreq *)data;
6208	const HAL_RATE_TABLE *rt;
6209	int error = 0;
6210
6211	switch (cmd) {
6212	case SIOCSIFFLAGS:
6213		ATH_LOCK(sc);
6214		if (IS_RUNNING(ifp)) {
6215			/*
6216			 * To avoid rescanning another access point,
6217			 * do not call ath_init() here.  Instead,
6218			 * only reflect promisc mode settings.
6219			 */
6220			ath_mode_init(sc);
6221		} else if (ifp->if_flags & IFF_UP) {
6222			/*
6223			 * Beware of being called during attach/detach
6224			 * to reset promiscuous mode.  In that case we
6225			 * will still be marked UP but not RUNNING.
6226			 * However trying to re-init the interface
6227			 * is the wrong thing to do as we've already
6228			 * torn down much of our state.  There's
6229			 * probably a better way to deal with this.
6230			 */
6231			if (!sc->sc_invalid)
6232				ath_init(sc);	/* XXX lose error */
6233		} else {
6234			ath_stop_locked(ifp);
6235#ifdef notyet
6236			/* XXX must wakeup in places like ath_vap_delete */
6237			if (!sc->sc_invalid)
6238				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6239#endif
6240		}
6241		ATH_UNLOCK(sc);
6242		break;
6243	case SIOCGIFMEDIA:
6244	case SIOCSIFMEDIA:
6245		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6246		break;
6247	case SIOCGATHSTATS:
6248		/* NB: embed these numbers to get a consistent view */
6249		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6250		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6251		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6252		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6253#ifdef IEEE80211_SUPPORT_TDMA
6254		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6255		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6256#endif
6257		rt = sc->sc_currates;
6258		/* XXX HT rates */
6259		sc->sc_stats.ast_tx_rate =
6260		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6261		return copyout(&sc->sc_stats,
6262		    ifr->ifr_data, sizeof (sc->sc_stats));
6263	case SIOCZATHSTATS:
6264		error = priv_check(curthread, PRIV_DRIVER);
6265		if (error == 0)
6266			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6267		break;
6268#ifdef ATH_DIAGAPI
6269	case SIOCGATHDIAG:
6270		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6271		break;
6272#endif
6273	case SIOCGIFADDR:
6274		error = ether_ioctl(ifp, cmd, data);
6275		break;
6276	default:
6277		error = EINVAL;
6278		break;
6279	}
6280	return error;
6281#undef IS_RUNNING
6282}
6283
6284static int
6285ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
6286{
6287	struct ath_softc *sc = arg1;
6288	u_int slottime = ath_hal_getslottime(sc->sc_ah);
6289	int error;
6290
6291	error = sysctl_handle_int(oidp, &slottime, 0, req);
6292	if (error || !req->newptr)
6293		return error;
6294	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
6295}
6296
6297static int
6298ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
6299{
6300	struct ath_softc *sc = arg1;
6301	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
6302	int error;
6303
6304	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
6305	if (error || !req->newptr)
6306		return error;
6307	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
6308}
6309
6310static int
6311ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
6312{
6313	struct ath_softc *sc = arg1;
6314	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
6315	int error;
6316
6317	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
6318	if (error || !req->newptr)
6319		return error;
6320	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
6321}
6322
6323static int
6324ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
6325{
6326	struct ath_softc *sc = arg1;
6327	int softled = sc->sc_softled;
6328	int error;
6329
6330	error = sysctl_handle_int(oidp, &softled, 0, req);
6331	if (error || !req->newptr)
6332		return error;
6333	softled = (softled != 0);
6334	if (softled != sc->sc_softled) {
6335		if (softled) {
6336			/* NB: handle any sc_ledpin change */
6337			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6338			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6339			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6340				!sc->sc_ledon);
6341		}
6342		sc->sc_softled = softled;
6343	}
6344	return 0;
6345}
6346
6347static int
6348ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
6349{
6350	struct ath_softc *sc = arg1;
6351	int ledpin = sc->sc_ledpin;
6352	int error;
6353
6354	error = sysctl_handle_int(oidp, &ledpin, 0, req);
6355	if (error || !req->newptr)
6356		return error;
6357	if (ledpin != sc->sc_ledpin) {
6358		sc->sc_ledpin = ledpin;
6359		if (sc->sc_softled) {
6360			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6361			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6362			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6363				!sc->sc_ledon);
6364		}
6365	}
6366	return 0;
6367}
6368
6369static int
6370ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
6371{
6372	struct ath_softc *sc = arg1;
6373	u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah);
6374	int error;
6375
6376	error = sysctl_handle_int(oidp, &txantenna, 0, req);
6377	if (!error && req->newptr) {
6378		/* XXX assumes 2 antenna ports */
6379		if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B)
6380			return EINVAL;
6381		ath_hal_setantennaswitch(sc->sc_ah, txantenna);
6382		/*
6383		 * NB: with the switch locked this isn't meaningful,
6384		 *     but set it anyway so things like radiotap get
6385		 *     consistent info in their data.
6386		 */
6387		sc->sc_txantenna = txantenna;
6388	}
6389	return error;
6390}
6391
6392static int
6393ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
6394{
6395	struct ath_softc *sc = arg1;
6396	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
6397	int error;
6398
6399	error = sysctl_handle_int(oidp, &defantenna, 0, req);
6400	if (!error && req->newptr)
6401		ath_hal_setdefantenna(sc->sc_ah, defantenna);
6402	return error;
6403}
6404
6405static int
6406ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
6407{
6408	struct ath_softc *sc = arg1;
6409	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
6410	int error;
6411
6412	error = sysctl_handle_int(oidp, &diversity, 0, req);
6413	if (error || !req->newptr)
6414		return error;
6415	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
6416		return EINVAL;
6417	sc->sc_diversity = diversity;
6418	return 0;
6419}
6420
6421static int
6422ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
6423{
6424	struct ath_softc *sc = arg1;
6425	u_int32_t diag;
6426	int error;
6427
6428	if (!ath_hal_getdiag(sc->sc_ah, &diag))
6429		return EINVAL;
6430	error = sysctl_handle_int(oidp, &diag, 0, req);
6431	if (error || !req->newptr)
6432		return error;
6433	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
6434}
6435
6436static int
6437ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
6438{
6439	struct ath_softc *sc = arg1;
6440	struct ifnet *ifp = sc->sc_ifp;
6441	u_int32_t scale;
6442	int error;
6443
6444	(void) ath_hal_gettpscale(sc->sc_ah, &scale);
6445	error = sysctl_handle_int(oidp, &scale, 0, req);
6446	if (error || !req->newptr)
6447		return error;
6448	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL :
6449	    (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6450}
6451
6452static int
6453ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
6454{
6455	struct ath_softc *sc = arg1;
6456	u_int tpc = ath_hal_gettpc(sc->sc_ah);
6457	int error;
6458
6459	error = sysctl_handle_int(oidp, &tpc, 0, req);
6460	if (error || !req->newptr)
6461		return error;
6462	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
6463}
6464
6465static int
6466ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
6467{
6468	struct ath_softc *sc = arg1;
6469	struct ifnet *ifp = sc->sc_ifp;
6470	struct ath_hal *ah = sc->sc_ah;
6471	u_int rfkill = ath_hal_getrfkill(ah);
6472	int error;
6473
6474	error = sysctl_handle_int(oidp, &rfkill, 0, req);
6475	if (error || !req->newptr)
6476		return error;
6477	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
6478		return 0;
6479	if (!ath_hal_setrfkill(ah, rfkill))
6480		return EINVAL;
6481	return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6482}
6483
6484static int
6485ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
6486{
6487	struct ath_softc *sc = arg1;
6488	u_int rfsilent;
6489	int error;
6490
6491	(void) ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
6492	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
6493	if (error || !req->newptr)
6494		return error;
6495	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
6496		return EINVAL;
6497	sc->sc_rfsilentpin = rfsilent & 0x1c;
6498	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
6499	return 0;
6500}
6501
6502static int
6503ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
6504{
6505	struct ath_softc *sc = arg1;
6506	u_int32_t tpack;
6507	int error;
6508
6509	(void) ath_hal_gettpack(sc->sc_ah, &tpack);
6510	error = sysctl_handle_int(oidp, &tpack, 0, req);
6511	if (error || !req->newptr)
6512		return error;
6513	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
6514}
6515
6516static int
6517ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
6518{
6519	struct ath_softc *sc = arg1;
6520	u_int32_t tpcts;
6521	int error;
6522
6523	(void) ath_hal_gettpcts(sc->sc_ah, &tpcts);
6524	error = sysctl_handle_int(oidp, &tpcts, 0, req);
6525	if (error || !req->newptr)
6526		return error;
6527	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
6528}
6529
6530static int
6531ath_sysctl_intmit(SYSCTL_HANDLER_ARGS)
6532{
6533	struct ath_softc *sc = arg1;
6534	int intmit, error;
6535
6536	intmit = ath_hal_getintmit(sc->sc_ah);
6537	error = sysctl_handle_int(oidp, &intmit, 0, req);
6538	if (error || !req->newptr)
6539		return error;
6540	return !ath_hal_setintmit(sc->sc_ah, intmit) ? EINVAL : 0;
6541}
6542
6543#ifdef IEEE80211_SUPPORT_TDMA
6544static int
6545ath_sysctl_setcca(SYSCTL_HANDLER_ARGS)
6546{
6547	struct ath_softc *sc = arg1;
6548	int setcca, error;
6549
6550	setcca = sc->sc_setcca;
6551	error = sysctl_handle_int(oidp, &setcca, 0, req);
6552	if (error || !req->newptr)
6553		return error;
6554	sc->sc_setcca = (setcca != 0);
6555	return 0;
6556}
6557#endif /* IEEE80211_SUPPORT_TDMA */
6558
6559static void
6560ath_sysctlattach(struct ath_softc *sc)
6561{
6562	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
6563	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
6564	struct ath_hal *ah = sc->sc_ah;
6565
6566	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6567		"countrycode", CTLFLAG_RD, &sc->sc_eecc, 0,
6568		"EEPROM country code");
6569	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6570		"regdomain", CTLFLAG_RD, &sc->sc_eerd, 0,
6571		"EEPROM regdomain code");
6572#ifdef	ATH_DEBUG
6573	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6574		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
6575		"control debugging printfs");
6576#endif
6577	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6578		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6579		ath_sysctl_slottime, "I", "802.11 slot time (us)");
6580	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6581		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6582		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
6583	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6584		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6585		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
6586	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6587		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6588		ath_sysctl_softled, "I", "enable/disable software LED support");
6589	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6590		"ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6591		ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
6592	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6593		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
6594		"setting to turn LED on");
6595	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6596		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
6597		"idle time for inactivity LED (ticks)");
6598	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6599		"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6600		ath_sysctl_txantenna, "I", "antenna switch");
6601	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6602		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6603		ath_sysctl_rxantenna, "I", "default/rx antenna");
6604	if (ath_hal_hasdiversity(ah))
6605		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6606			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6607			ath_sysctl_diversity, "I", "antenna diversity");
6608	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
6609	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6610		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
6611		"tx descriptor batching");
6612	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6613		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6614		ath_sysctl_diag, "I", "h/w diagnostic control");
6615	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6616		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6617		ath_sysctl_tpscale, "I", "tx power scaling");
6618	if (ath_hal_hastpc(ah)) {
6619		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6620			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6621			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
6622		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6623			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6624			ath_sysctl_tpack, "I", "tx power for ack frames");
6625		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6626			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6627			ath_sysctl_tpcts, "I", "tx power for cts frames");
6628	}
6629	if (ath_hal_hasrfsilent(ah)) {
6630		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6631			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6632			ath_sysctl_rfsilent, "I", "h/w RF silent config");
6633		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6634			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6635			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
6636	}
6637	if (ath_hal_hasintmit(ah)) {
6638		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6639			"intmit", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6640			ath_sysctl_intmit, "I", "interference mitigation");
6641	}
6642	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
6643	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6644		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
6645		"mask of error frames to pass when monitoring");
6646#ifdef IEEE80211_SUPPORT_TDMA
6647	if (ath_hal_macversion(ah) > 0x78) {
6648		sc->sc_tdmadbaprep = 2;
6649		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6650			"dbaprep", CTLFLAG_RW, &sc->sc_tdmadbaprep, 0,
6651			"TDMA DBA preparation time");
6652		sc->sc_tdmaswbaprep = 10;
6653		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6654			"swbaprep", CTLFLAG_RW, &sc->sc_tdmaswbaprep, 0,
6655			"TDMA SWBA preparation time");
6656		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6657			"guardtime", CTLFLAG_RW, &sc->sc_tdmaguard, 0,
6658			"TDMA slot guard time");
6659		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6660			"superframe", CTLFLAG_RD, &sc->sc_tdmabintval, 0,
6661			"TDMA calculated super frame");
6662		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6663			"setcca", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6664			ath_sysctl_setcca, "I", "enable CCA control");
6665	}
6666#endif
6667}
6668
6669static int
6670ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
6671	struct ath_buf *bf, struct mbuf *m0,
6672	const struct ieee80211_bpf_params *params)
6673{
6674	struct ifnet *ifp = sc->sc_ifp;
6675	struct ieee80211com *ic = ifp->if_l2com;
6676	struct ath_hal *ah = sc->sc_ah;
6677	struct ieee80211vap *vap = ni->ni_vap;
6678	int error, ismcast, ismrr;
6679	int keyix, hdrlen, pktlen, try0, txantenna;
6680	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
6681	struct ieee80211_frame *wh;
6682	u_int flags, ctsduration;
6683	HAL_PKT_TYPE atype;
6684	const HAL_RATE_TABLE *rt;
6685	struct ath_desc *ds;
6686	u_int pri;
6687
6688	wh = mtod(m0, struct ieee80211_frame *);
6689	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
6690	hdrlen = ieee80211_anyhdrsize(wh);
6691	/*
6692	 * Packet length must not include any
6693	 * pad bytes; deduct them here.
6694	 */
6695	/* XXX honor IEEE80211_BPF_DATAPAD */
6696	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
6697
6698	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
6699		const struct ieee80211_cipher *cip;
6700		struct ieee80211_key *k;
6701
6702		/*
6703		 * Construct the 802.11 header+trailer for an encrypted
6704		 * frame. The only reason this can fail is because of an
6705		 * unknown or unsupported cipher/key type.
6706		 */
6707		k = ieee80211_crypto_encap(ni, m0);
6708		if (k == NULL) {
6709			/*
6710			 * This can happen when the key is yanked after the
6711			 * frame was queued.  Just discard the frame; the
6712			 * 802.11 layer counts failures and provides
6713			 * debugging/diagnostics.
6714			 */
6715			ath_freetx(m0);
6716			return EIO;
6717		}
6718		/*
6719		 * Adjust the packet + header lengths for the crypto
6720		 * additions and calculate the h/w key index.  When
6721		 * a s/w mic is done the frame will have had any mic
6722		 * added to it prior to entry so m0->m_pkthdr.len will
6723		 * account for it. Otherwise we need to add it to the
6724		 * packet length.
6725		 */
6726		cip = k->wk_cipher;
6727		hdrlen += cip->ic_header;
6728		pktlen += cip->ic_header + cip->ic_trailer;
6729		/* NB: frags always have any TKIP MIC done in s/w */
6730		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
6731			pktlen += cip->ic_miclen;
6732		keyix = k->wk_keyix;
6733
6734		/* packet header may have moved, reset our local pointer */
6735		wh = mtod(m0, struct ieee80211_frame *);
6736	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
6737		/*
6738		 * Use station key cache slot, if assigned.
6739		 */
6740		keyix = ni->ni_ucastkey.wk_keyix;
6741		if (keyix == IEEE80211_KEYIX_NONE)
6742			keyix = HAL_TXKEYIX_INVALID;
6743	} else
6744		keyix = HAL_TXKEYIX_INVALID;
6745
6746	error = ath_tx_dmasetup(sc, bf, m0);
6747	if (error != 0)
6748		return error;
6749	m0 = bf->bf_m;				/* NB: may have changed */
6750	wh = mtod(m0, struct ieee80211_frame *);
6751	bf->bf_node = ni;			/* NB: held reference */
6752
6753	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
6754	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
6755	if (params->ibp_flags & IEEE80211_BPF_RTS)
6756		flags |= HAL_TXDESC_RTSENA;
6757	else if (params->ibp_flags & IEEE80211_BPF_CTS)
6758		flags |= HAL_TXDESC_CTSENA;
6759	/* XXX leave ismcast to injector? */
6760	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
6761		flags |= HAL_TXDESC_NOACK;
6762
6763	rt = sc->sc_currates;
6764	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
6765	rix = ath_tx_findrix(sc, params->ibp_rate0);
6766	txrate = rt->info[rix].rateCode;
6767	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6768		txrate |= rt->info[rix].shortPreamble;
6769	sc->sc_txrix = rix;
6770	try0 = params->ibp_try0;
6771	ismrr = (params->ibp_try1 != 0);
6772	txantenna = params->ibp_pri >> 2;
6773	if (txantenna == 0)			/* XXX? */
6774		txantenna = sc->sc_txantenna;
6775	ctsduration = 0;
6776	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
6777		cix = ath_tx_findrix(sc, params->ibp_ctsrate);
6778		ctsrate = rt->info[cix].rateCode;
6779		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
6780			ctsrate |= rt->info[cix].shortPreamble;
6781			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6782				ctsduration += rt->info[cix].spAckDuration;
6783			ctsduration += ath_hal_computetxtime(ah,
6784				rt, pktlen, rix, AH_TRUE);
6785			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6786				ctsduration += rt->info[rix].spAckDuration;
6787		} else {
6788			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6789				ctsduration += rt->info[cix].lpAckDuration;
6790			ctsduration += ath_hal_computetxtime(ah,
6791				rt, pktlen, rix, AH_FALSE);
6792			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6793				ctsduration += rt->info[rix].lpAckDuration;
6794		}
6795		ismrr = 0;			/* XXX */
6796	} else
6797		ctsrate = 0;
6798	pri = params->ibp_pri & 3;
6799	/*
6800	 * NB: we mark all packets as type PSPOLL so the h/w won't
6801	 * set the sequence number, duration, etc.
6802	 */
6803	atype = HAL_PKT_TYPE_PSPOLL;
6804
6805	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
6806		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
6807		    sc->sc_hwmap[rix].ieeerate, -1);
6808
6809	if (ieee80211_radiotap_active_vap(vap)) {
6810		u_int64_t tsf = ath_hal_gettsf64(ah);
6811
6812		sc->sc_tx_th.wt_tsf = htole64(tsf);
6813		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
6814		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
6815			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
6816		if (m0->m_flags & M_FRAG)
6817			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
6818		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
6819		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
6820		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
6821
6822		ieee80211_radiotap_tx(vap, m0);
6823	}
6824
6825	/*
6826	 * Formulate first tx descriptor with tx controls.
6827	 */
6828	ds = bf->bf_desc;
6829	/* XXX check return value? */
6830	ath_hal_setuptxdesc(ah, ds
6831		, pktlen		/* packet length */
6832		, hdrlen		/* header length */
6833		, atype			/* Atheros packet type */
6834		, params->ibp_power	/* txpower */
6835		, txrate, try0		/* series 0 rate/tries */
6836		, keyix			/* key cache index */
6837		, txantenna		/* antenna mode */
6838		, flags			/* flags */
6839		, ctsrate		/* rts/cts rate */
6840		, ctsduration		/* rts/cts duration */
6841	);
6842	bf->bf_txflags = flags;
6843
6844	if (ismrr) {
6845		rix = ath_tx_findrix(sc, params->ibp_rate1);
6846		rate1 = rt->info[rix].rateCode;
6847		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6848			rate1 |= rt->info[rix].shortPreamble;
6849		if (params->ibp_try2) {
6850			rix = ath_tx_findrix(sc, params->ibp_rate2);
6851			rate2 = rt->info[rix].rateCode;
6852			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6853				rate2 |= rt->info[rix].shortPreamble;
6854		} else
6855			rate2 = 0;
6856		if (params->ibp_try3) {
6857			rix = ath_tx_findrix(sc, params->ibp_rate3);
6858			rate3 = rt->info[rix].rateCode;
6859			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6860				rate3 |= rt->info[rix].shortPreamble;
6861		} else
6862			rate3 = 0;
6863		ath_hal_setupxtxdesc(ah, ds
6864			, rate1, params->ibp_try1	/* series 1 */
6865			, rate2, params->ibp_try2	/* series 2 */
6866			, rate3, params->ibp_try3	/* series 3 */
6867		);
6868	}
6869
6870	/* NB: no buffered multicast in power save support */
6871	ath_tx_handoff(sc, sc->sc_ac2q[pri], bf);
6872	return 0;
6873}
6874
6875static int
6876ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
6877	const struct ieee80211_bpf_params *params)
6878{
6879	struct ieee80211com *ic = ni->ni_ic;
6880	struct ifnet *ifp = ic->ic_ifp;
6881	struct ath_softc *sc = ifp->if_softc;
6882	struct ath_buf *bf;
6883	int error;
6884
6885	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
6886		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
6887		    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ?
6888			"!running" : "invalid");
6889		m_freem(m);
6890		error = ENETDOWN;
6891		goto bad;
6892	}
6893	/*
6894	 * Grab a TX buffer and associated resources.
6895	 */
6896	bf = ath_getbuf(sc);
6897	if (bf == NULL) {
6898		sc->sc_stats.ast_tx_nobuf++;
6899		m_freem(m);
6900		error = ENOBUFS;
6901		goto bad;
6902	}
6903
6904	if (params == NULL) {
6905		/*
6906		 * Legacy path; interpret frame contents to decide
6907		 * precisely how to send the frame.
6908		 */
6909		if (ath_tx_start(sc, ni, bf, m)) {
6910			error = EIO;		/* XXX */
6911			goto bad2;
6912		}
6913	} else {
6914		/*
6915		 * Caller supplied explicit parameters to use in
6916		 * sending the frame.
6917		 */
6918		if (ath_tx_raw_start(sc, ni, bf, m, params)) {
6919			error = EIO;		/* XXX */
6920			goto bad2;
6921		}
6922	}
6923	sc->sc_wd_timer = 5;
6924	ifp->if_opackets++;
6925	sc->sc_stats.ast_tx_raw++;
6926
6927	return 0;
6928bad2:
6929	ATH_TXBUF_LOCK(sc);
6930	STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
6931	ATH_TXBUF_UNLOCK(sc);
6932bad:
6933	ifp->if_oerrors++;
6934	sc->sc_stats.ast_tx_raw_fail++;
6935	ieee80211_free_node(ni);
6936	return error;
6937}
6938
6939/*
6940 * Announce various information on device/driver attach.
6941 */
6942static void
6943ath_announce(struct ath_softc *sc)
6944{
6945	struct ifnet *ifp = sc->sc_ifp;
6946	struct ath_hal *ah = sc->sc_ah;
6947
6948	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
6949		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
6950		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
6951	if (bootverbose) {
6952		int i;
6953		for (i = 0; i <= WME_AC_VO; i++) {
6954			struct ath_txq *txq = sc->sc_ac2q[i];
6955			if_printf(ifp, "Use hw queue %u for %s traffic\n",
6956				txq->axq_qnum, ieee80211_wme_acnames[i]);
6957		}
6958		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
6959			sc->sc_cabq->axq_qnum);
6960		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
6961	}
6962	if (ath_rxbuf != ATH_RXBUF)
6963		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
6964	if (ath_txbuf != ATH_TXBUF)
6965		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
6966	if (sc->sc_mcastkey && bootverbose)
6967		if_printf(ifp, "using multicast key search\n");
6968}
6969
6970#ifdef IEEE80211_SUPPORT_TDMA
6971static __inline uint32_t
6972ath_hal_getnexttbtt(struct ath_hal *ah)
6973{
6974#define	AR_TIMER0	0x8028
6975	return OS_REG_READ(ah, AR_TIMER0);
6976}
6977
6978static __inline void
6979ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
6980{
6981	/* XXX handle wrap/overflow */
6982	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
6983}
6984
6985static void
6986ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
6987{
6988	struct ath_hal *ah = sc->sc_ah;
6989	HAL_BEACON_TIMERS bt;
6990
6991	bt.bt_intval = bintval | HAL_BEACON_ENA;
6992	bt.bt_nexttbtt = nexttbtt;
6993	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
6994	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
6995	bt.bt_nextatim = nexttbtt+1;
6996	ath_hal_beaconsettimers(ah, &bt);
6997}
6998
6999/*
7000 * Calculate the beacon interval.  This is periodic in the
7001 * superframe for the bss.  We assume each station is configured
7002 * identically wrt transmit rate so the guard time we calculate
7003 * above will be the same on all stations.  Note we need to
7004 * factor in the xmit time because the hardware will schedule
7005 * a frame for transmit if the start of the frame is within
7006 * the burst time.  When we get hardware that properly kills
7007 * frames in the PCU we can reduce/eliminate the guard time.
7008 *
7009 * Roundup to 1024 is so we have 1 TU buffer in the guard time
7010 * to deal with the granularity of the nexttbtt timer.  11n MAC's
7011 * with 1us timer granularity should allow us to reduce/eliminate
7012 * this.
7013 */
7014static void
7015ath_tdma_bintvalsetup(struct ath_softc *sc,
7016	const struct ieee80211_tdma_state *tdma)
7017{
7018	/* copy from vap state (XXX check all vaps have same value?) */
7019	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
7020
7021	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
7022		tdma->tdma_slotcnt, 1024);
7023	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
7024	if (sc->sc_tdmabintval & 1)
7025		sc->sc_tdmabintval++;
7026
7027	if (tdma->tdma_slot == 0) {
7028		/*
7029		 * Only slot 0 beacons; other slots respond.
7030		 */
7031		sc->sc_imask |= HAL_INT_SWBA;
7032		sc->sc_tdmaswba = 0;		/* beacon immediately */
7033	} else {
7034		/* XXX all vaps must be slot 0 or slot !0 */
7035		sc->sc_imask &= ~HAL_INT_SWBA;
7036	}
7037}
7038
7039/*
7040 * Max 802.11 overhead.  This assumes no 4-address frames and
7041 * the encapsulation done by ieee80211_encap (llc).  We also
7042 * include potential crypto overhead.
7043 */
7044#define	IEEE80211_MAXOVERHEAD \
7045	(sizeof(struct ieee80211_qosframe) \
7046	 + sizeof(struct llc) \
7047	 + IEEE80211_ADDR_LEN \
7048	 + IEEE80211_WEP_IVLEN \
7049	 + IEEE80211_WEP_KIDLEN \
7050	 + IEEE80211_WEP_CRCLEN \
7051	 + IEEE80211_WEP_MICLEN \
7052	 + IEEE80211_CRC_LEN)
7053
7054/*
7055 * Setup initially for tdma operation.  Start the beacon
7056 * timers and enable SWBA if we are slot 0.  Otherwise
7057 * we wait for slot 0 to arrive so we can sync up before
7058 * starting to transmit.
7059 */
7060static void
7061ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
7062{
7063	struct ath_hal *ah = sc->sc_ah;
7064	struct ifnet *ifp = sc->sc_ifp;
7065	struct ieee80211com *ic = ifp->if_l2com;
7066	const struct ieee80211_txparam *tp;
7067	const struct ieee80211_tdma_state *tdma = NULL;
7068	int rix;
7069
7070	if (vap == NULL) {
7071		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
7072		if (vap == NULL) {
7073			if_printf(ifp, "%s: no vaps?\n", __func__);
7074			return;
7075		}
7076	}
7077	tp = vap->iv_bss->ni_txparms;
7078	/*
7079	 * Calculate the guard time for each slot.  This is the
7080	 * time to send a maximal-size frame according to the
7081	 * fixed/lowest transmit rate.  Note that the interface
7082	 * mtu does not include the 802.11 overhead so we must
7083	 * tack that on (ath_hal_computetxtime includes the
7084	 * preamble and plcp in it's calculation).
7085	 */
7086	tdma = vap->iv_tdma;
7087	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
7088		rix = ath_tx_findrix(sc, tp->ucastrate);
7089	else
7090		rix = ath_tx_findrix(sc, tp->mcastrate);
7091	/* XXX short preamble assumed */
7092	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
7093		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
7094
7095	ath_hal_intrset(ah, 0);
7096
7097	ath_beaconq_config(sc);			/* setup h/w beacon q */
7098	if (sc->sc_setcca)
7099		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
7100	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
7101	ath_tdma_settimers(sc, sc->sc_tdmabintval,
7102		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
7103	sc->sc_syncbeacon = 0;
7104
7105	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
7106	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
7107
7108	ath_hal_intrset(ah, sc->sc_imask);
7109
7110	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
7111	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
7112	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
7113	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
7114	    sc->sc_tdmadbaprep);
7115}
7116
7117/*
7118 * Update tdma operation.  Called from the 802.11 layer
7119 * when a beacon is received from the TDMA station operating
7120 * in the slot immediately preceding us in the bss.  Use
7121 * the rx timestamp for the beacon frame to update our
7122 * beacon timers so we follow their schedule.  Note that
7123 * by using the rx timestamp we implicitly include the
7124 * propagation delay in our schedule.
7125 */
7126static void
7127ath_tdma_update(struct ieee80211_node *ni,
7128	const struct ieee80211_tdma_param *tdma, int changed)
7129{
7130#define	TSF_TO_TU(_h,_l) \
7131	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
7132#define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
7133	struct ieee80211vap *vap = ni->ni_vap;
7134	struct ieee80211com *ic = ni->ni_ic;
7135	struct ath_softc *sc = ic->ic_ifp->if_softc;
7136	struct ath_hal *ah = sc->sc_ah;
7137	const HAL_RATE_TABLE *rt = sc->sc_currates;
7138	u_int64_t tsf, rstamp, nextslot;
7139	u_int32_t txtime, nextslottu, timer0;
7140	int32_t tudelta, tsfdelta;
7141	const struct ath_rx_status *rs;
7142	int rix;
7143
7144	sc->sc_stats.ast_tdma_update++;
7145
7146	/*
7147	 * Check for and adopt configuration changes.
7148	 */
7149	if (changed != 0) {
7150		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
7151
7152		ath_tdma_bintvalsetup(sc, ts);
7153		if (changed & TDMA_UPDATE_SLOTLEN)
7154			ath_wme_update(ic);
7155
7156		DPRINTF(sc, ATH_DEBUG_TDMA,
7157		    "%s: adopt slot %u slotcnt %u slotlen %u us "
7158		    "bintval %u TU\n", __func__,
7159		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
7160		    sc->sc_tdmabintval);
7161
7162		/* XXX right? */
7163		ath_hal_intrset(ah, sc->sc_imask);
7164		/* NB: beacon timers programmed below */
7165	}
7166
7167	/* extend rx timestamp to 64 bits */
7168	rs = sc->sc_lastrs;
7169	tsf = ath_hal_gettsf64(ah);
7170	rstamp = ath_extend_tsf(rs->rs_tstamp, tsf);
7171	/*
7172	 * The rx timestamp is set by the hardware on completing
7173	 * reception (at the point where the rx descriptor is DMA'd
7174	 * to the host).  To find the start of our next slot we
7175	 * must adjust this time by the time required to send
7176	 * the packet just received.
7177	 */
7178	rix = rt->rateCodeToIndex[rs->rs_rate];
7179	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
7180	    rt->info[rix].shortPreamble);
7181	/* NB: << 9 is to cvt to TU and /2 */
7182	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
7183	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
7184
7185	/*
7186	 * TIMER0 is the h/w's idea of NextTBTT (in TU's).  Convert
7187	 * to usecs and calculate the difference between what the
7188	 * other station thinks and what we have programmed.  This
7189	 * lets us figure how to adjust our timers to match.  The
7190	 * adjustments are done by pulling the TSF forward and possibly
7191	 * rewriting the beacon timers.
7192	 */
7193	timer0 = ath_hal_getnexttbtt(ah);
7194	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0));
7195
7196	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7197	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
7198	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
7199
7200	if (tsfdelta < 0) {
7201		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7202		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
7203		tsfdelta = -tsfdelta % 1024;
7204		nextslottu++;
7205	} else if (tsfdelta > 0) {
7206		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
7207		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7208		tsfdelta = 1024 - (tsfdelta % 1024);
7209		nextslottu++;
7210	} else {
7211		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7212		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7213	}
7214	tudelta = nextslottu - timer0;
7215
7216	/*
7217	 * Copy sender's timetstamp into tdma ie so they can
7218	 * calculate roundtrip time.  We submit a beacon frame
7219	 * below after any timer adjustment.  The frame goes out
7220	 * at the next TBTT so the sender can calculate the
7221	 * roundtrip by inspecting the tdma ie in our beacon frame.
7222	 *
7223	 * NB: This tstamp is subtlely preserved when
7224	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
7225	 *     slot position changes) because ieee80211_add_tdma
7226	 *     skips over the data.
7227	 */
7228	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
7229		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
7230		&ni->ni_tstamp.data, 8);
7231#if 0
7232	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7233	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n",
7234	    (unsigned long long) tsf, (unsigned long long) nextslot,
7235	    (int)(nextslot - tsf), tsfdelta,
7236	    nextslottu, timer0, tudelta);
7237#endif
7238	/*
7239	 * Adjust the beacon timers only when pulling them forward
7240	 * or when going back by less than the beacon interval.
7241	 * Negative jumps larger than the beacon interval seem to
7242	 * cause the timers to stop and generally cause instability.
7243	 * This basically filters out jumps due to missed beacons.
7244	 */
7245	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
7246		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
7247		sc->sc_stats.ast_tdma_timers++;
7248	}
7249	if (tsfdelta > 0) {
7250		ath_hal_adjusttsf(ah, tsfdelta);
7251		sc->sc_stats.ast_tdma_tsf++;
7252	}
7253	ath_tdma_beacon_send(sc, vap);		/* prepare response */
7254#undef TU_TO_TSF
7255#undef TSF_TO_TU
7256}
7257
7258/*
7259 * Transmit a beacon frame at SWBA.  Dynamic updates
7260 * to the frame contents are done as needed.
7261 */
7262static void
7263ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
7264{
7265	struct ath_hal *ah = sc->sc_ah;
7266	struct ath_buf *bf;
7267	int otherant;
7268
7269	/*
7270	 * Check if the previous beacon has gone out.  If
7271	 * not don't try to post another, skip this period
7272	 * and wait for the next.  Missed beacons indicate
7273	 * a problem and should not occur.  If we miss too
7274	 * many consecutive beacons reset the device.
7275	 */
7276	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
7277		sc->sc_bmisscount++;
7278		DPRINTF(sc, ATH_DEBUG_BEACON,
7279			"%s: missed %u consecutive beacons\n",
7280			__func__, sc->sc_bmisscount);
7281		if (sc->sc_bmisscount >= ath_bstuck_threshold)
7282			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
7283		return;
7284	}
7285	if (sc->sc_bmisscount != 0) {
7286		DPRINTF(sc, ATH_DEBUG_BEACON,
7287			"%s: resume beacon xmit after %u misses\n",
7288			__func__, sc->sc_bmisscount);
7289		sc->sc_bmisscount = 0;
7290	}
7291
7292	/*
7293	 * Check recent per-antenna transmit statistics and flip
7294	 * the default antenna if noticeably more frames went out
7295	 * on the non-default antenna.
7296	 * XXX assumes 2 anntenae
7297	 */
7298	if (!sc->sc_diversity) {
7299		otherant = sc->sc_defant & 1 ? 2 : 1;
7300		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
7301			ath_setdefantenna(sc, otherant);
7302		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
7303	}
7304
7305	bf = ath_beacon_generate(sc, vap);
7306	if (bf != NULL) {
7307		/*
7308		 * Stop any current dma and put the new frame on the queue.
7309		 * This should never fail since we check above that no frames
7310		 * are still pending on the queue.
7311		 */
7312		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
7313			DPRINTF(sc, ATH_DEBUG_ANY,
7314				"%s: beacon queue %u did not stop?\n",
7315				__func__, sc->sc_bhalq);
7316			/* NB: the HAL still stops DMA, so proceed */
7317		}
7318		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
7319		ath_hal_txstart(ah, sc->sc_bhalq);
7320
7321		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
7322
7323		/*
7324		 * Record local TSF for our last send for use
7325		 * in arbitrating slot collisions.
7326		 */
7327		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
7328	}
7329}
7330#endif /* IEEE80211_SUPPORT_TDMA */
7331