if_ath.c revision 189605
1/*-
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 189605 2009-03-09 23:10:19Z sam $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/sysctl.h>
46#include <sys/mbuf.h>
47#include <sys/malloc.h>
48#include <sys/lock.h>
49#include <sys/mutex.h>
50#include <sys/kernel.h>
51#include <sys/socket.h>
52#include <sys/sockio.h>
53#include <sys/errno.h>
54#include <sys/callout.h>
55#include <sys/bus.h>
56#include <sys/endian.h>
57#include <sys/kthread.h>
58#include <sys/taskqueue.h>
59#include <sys/priv.h>
60
61#include <machine/bus.h>
62
63#include <net/if.h>
64#include <net/if_dl.h>
65#include <net/if_media.h>
66#include <net/if_types.h>
67#include <net/if_arp.h>
68#include <net/ethernet.h>
69#include <net/if_llc.h>
70
71#include <net80211/ieee80211_var.h>
72#include <net80211/ieee80211_regdomain.h>
73#ifdef ATH_SUPPORT_TDMA
74#include <net80211/ieee80211_tdma.h>
75#endif
76
77#include <net/bpf.h>
78
79#ifdef INET
80#include <netinet/in.h>
81#include <netinet/if_ether.h>
82#endif
83
84#include <dev/ath/if_athvar.h>
85#include <dev/ath/ath_hal/ah_devid.h>		/* XXX for softled */
86
87#ifdef ATH_TX99_DIAG
88#include <dev/ath/ath_tx99/ath_tx99.h>
89#endif
90
91/*
92 * We require a HAL w/ the changes for split tx/rx MIC.
93 */
94CTASSERT(HAL_ABI_VERSION > 0x06052200);
95
96/*
97 * ATH_BCBUF determines the number of vap's that can transmit
98 * beacons and also (currently) the number of vap's that can
99 * have unique mac addresses/bssid.  When staggering beacons
100 * 4 is probably a good max as otherwise the beacons become
101 * very closely spaced and there is limited time for cab q traffic
102 * to go out.  You can burst beacons instead but that is not good
103 * for stations in power save and at some point you really want
104 * another radio (and channel).
105 *
106 * The limit on the number of mac addresses is tied to our use of
107 * the U/L bit and tracking addresses in a byte; it would be
108 * worthwhile to allow more for applications like proxy sta.
109 */
110CTASSERT(ATH_BCBUF <= 8);
111
112/* unaligned little endian access */
113#define LE_READ_2(p)							\
114	((u_int16_t)							\
115	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
116#define LE_READ_4(p)							\
117	((u_int32_t)							\
118	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
119	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
120
121static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
122		    const char name[IFNAMSIZ], int unit, int opmode,
123		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
124		    const uint8_t mac[IEEE80211_ADDR_LEN]);
125static void	ath_vap_delete(struct ieee80211vap *);
126static void	ath_init(void *);
127static void	ath_stop_locked(struct ifnet *);
128static void	ath_stop(struct ifnet *);
129static void	ath_start(struct ifnet *);
130static int	ath_reset(struct ifnet *);
131static int	ath_reset_vap(struct ieee80211vap *, u_long);
132static int	ath_media_change(struct ifnet *);
133static void	ath_watchdog(void *);
134static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
135static void	ath_fatal_proc(void *, int);
136static void	ath_bmiss_vap(struct ieee80211vap *);
137static void	ath_bmiss_proc(void *, int);
138static int	ath_keyset(struct ath_softc *, const struct ieee80211_key *,
139			struct ieee80211_node *);
140static int	ath_key_alloc(struct ieee80211vap *,
141			struct ieee80211_key *,
142			ieee80211_keyix *, ieee80211_keyix *);
143static int	ath_key_delete(struct ieee80211vap *,
144			const struct ieee80211_key *);
145static int	ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
146			const u_int8_t mac[IEEE80211_ADDR_LEN]);
147static void	ath_key_update_begin(struct ieee80211vap *);
148static void	ath_key_update_end(struct ieee80211vap *);
149static void	ath_update_mcast(struct ifnet *);
150static void	ath_update_promisc(struct ifnet *);
151static void	ath_mode_init(struct ath_softc *);
152static void	ath_setslottime(struct ath_softc *);
153static void	ath_updateslot(struct ifnet *);
154static int	ath_beaconq_setup(struct ath_hal *);
155static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
156static void	ath_beacon_update(struct ieee80211vap *, int item);
157static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
158static void	ath_beacon_proc(void *, int);
159static struct ath_buf *ath_beacon_generate(struct ath_softc *,
160			struct ieee80211vap *);
161static void	ath_bstuck_proc(void *, int);
162static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
163static void	ath_beacon_free(struct ath_softc *);
164static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
165static void	ath_descdma_cleanup(struct ath_softc *sc,
166			struct ath_descdma *, ath_bufhead *);
167static int	ath_desc_alloc(struct ath_softc *);
168static void	ath_desc_free(struct ath_softc *);
169static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
170			const uint8_t [IEEE80211_ADDR_LEN]);
171static void	ath_node_free(struct ieee80211_node *);
172static void	ath_node_getsignal(const struct ieee80211_node *,
173			int8_t *, int8_t *);
174static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
175static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
176			int subtype, int rssi, int noise, u_int32_t rstamp);
177static void	ath_setdefantenna(struct ath_softc *, u_int);
178static void	ath_rx_proc(void *, int);
179static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
180static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
181static int	ath_tx_setup(struct ath_softc *, int, int);
182static int	ath_wme_update(struct ieee80211com *);
183static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
184static void	ath_tx_cleanup(struct ath_softc *);
185static void	ath_freetx(struct mbuf *);
186static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
187			     struct ath_buf *, struct mbuf *);
188static void	ath_tx_proc_q0(void *, int);
189static void	ath_tx_proc_q0123(void *, int);
190static void	ath_tx_proc(void *, int);
191static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
192static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
193static void	ath_draintxq(struct ath_softc *);
194static void	ath_stoprecv(struct ath_softc *);
195static int	ath_startrecv(struct ath_softc *);
196static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
197static void	ath_scan_start(struct ieee80211com *);
198static void	ath_scan_end(struct ieee80211com *);
199static void	ath_set_channel(struct ieee80211com *);
200static void	ath_calibrate(void *);
201static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
202static void	ath_setup_stationkey(struct ieee80211_node *);
203static void	ath_newassoc(struct ieee80211_node *, int);
204static int	ath_setregdomain(struct ieee80211com *,
205		    struct ieee80211_regdomain *, int,
206		    struct ieee80211_channel []);
207static void	ath_getradiocaps(struct ieee80211com *, int, int *,
208		    struct ieee80211_channel []);
209static int	ath_getchannels(struct ath_softc *);
210static void	ath_led_event(struct ath_softc *, int);
211
212static int	ath_rate_setup(struct ath_softc *, u_int mode);
213static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
214
215static void	ath_sysctlattach(struct ath_softc *);
216static int	ath_raw_xmit(struct ieee80211_node *,
217			struct mbuf *, const struct ieee80211_bpf_params *);
218static void	ath_bpfattach(struct ath_softc *);
219static void	ath_announce(struct ath_softc *);
220
221#ifdef ATH_SUPPORT_TDMA
222static void	ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt,
223		    u_int32_t bintval);
224static void	ath_tdma_bintvalsetup(struct ath_softc *sc,
225		    const struct ieee80211_tdma_state *tdma);
226static void	ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap);
227static void	ath_tdma_update(struct ieee80211_node *ni,
228		    const struct ieee80211_tdma_param *tdma);
229static void	ath_tdma_beacon_send(struct ath_softc *sc,
230		    struct ieee80211vap *vap);
231
232static __inline void
233ath_hal_setcca(struct ath_hal *ah, int ena)
234{
235	/*
236	 * NB: fill me in; this is not provided by default because disabling
237	 *     CCA in most locales violates regulatory.
238	 */
239}
240
241static __inline int
242ath_hal_getcca(struct ath_hal *ah)
243{
244	u_int32_t diag;
245	if (ath_hal_getcapability(ah, HAL_CAP_DIAG, 0, &diag) != HAL_OK)
246		return 1;
247	return ((diag & 0x500000) == 0);
248}
249
250#define	TDMA_EP_MULTIPLIER	(1<<10) /* pow2 to optimize out * and / */
251#define	TDMA_LPF_LEN		6
252#define	TDMA_DUMMY_MARKER	0x127
253#define	TDMA_EP_MUL(x, mul)	((x) * (mul))
254#define	TDMA_IN(x)		(TDMA_EP_MUL((x), TDMA_EP_MULTIPLIER))
255#define	TDMA_LPF(x, y, len) \
256    ((x != TDMA_DUMMY_MARKER) ? (((x) * ((len)-1) + (y)) / (len)) : (y))
257#define	TDMA_SAMPLE(x, y) do {					\
258	x = TDMA_LPF((x), TDMA_IN(y), TDMA_LPF_LEN);		\
259} while (0)
260#define	TDMA_EP_RND(x,mul) \
261	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
262#define	TDMA_AVG(x)		TDMA_EP_RND(x, TDMA_EP_MULTIPLIER)
263#endif /* ATH_SUPPORT_TDMA */
264
265SYSCTL_DECL(_hw_ath);
266
267/* XXX validate sysctl values */
268static	int ath_longcalinterval = 30;		/* long cals every 30 secs */
269SYSCTL_INT(_hw_ath, OID_AUTO, longcal, CTLFLAG_RW, &ath_longcalinterval,
270	    0, "long chip calibration interval (secs)");
271static	int ath_shortcalinterval = 100;		/* short cals every 100 ms */
272SYSCTL_INT(_hw_ath, OID_AUTO, shortcal, CTLFLAG_RW, &ath_shortcalinterval,
273	    0, "short chip calibration interval (msecs)");
274static	int ath_resetcalinterval = 20*60;	/* reset cal state 20 mins */
275SYSCTL_INT(_hw_ath, OID_AUTO, resetcal, CTLFLAG_RW, &ath_resetcalinterval,
276	    0, "reset chip calibration results (secs)");
277
278static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
279SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
280	    0, "rx buffers allocated");
281TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
282static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
283SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
284	    0, "tx buffers allocated");
285TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
286
287static	int ath_bstuck_threshold = 4;		/* max missed beacons */
288SYSCTL_INT(_hw_ath, OID_AUTO, bstuck, CTLFLAG_RW, &ath_bstuck_threshold,
289	    0, "max missed beacon xmits before chip reset");
290
291#ifdef ATH_DEBUG
292enum {
293	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
294	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
295	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
296	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
297	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
298	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
299	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
300	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
301	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
302	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
303	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
304	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
305	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
306	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
307	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
308	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
309	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
310	ATH_DEBUG_LED		= 0x00100000,	/* led management */
311	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
312	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
313	ATH_DEBUG_TDMA		= 0x00800000,	/* TDMA processing */
314	ATH_DEBUG_TDMA_TIMER	= 0x01000000,	/* TDMA timer processing */
315	ATH_DEBUG_REGDOMAIN	= 0x02000000,	/* regulatory processing */
316	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
317	ATH_DEBUG_ANY		= 0xffffffff
318};
319static	int ath_debug = 0;
320SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
321	    0, "control debugging printfs");
322TUNABLE_INT("hw.ath.debug", &ath_debug);
323
324#define	IFF_DUMPPKTS(sc, m) \
325	((sc->sc_debug & (m)) || \
326	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
327#define	DPRINTF(sc, m, fmt, ...) do {				\
328	if (sc->sc_debug & (m))					\
329		printf(fmt, __VA_ARGS__);			\
330} while (0)
331#define	KEYPRINTF(sc, ix, hk, mac) do {				\
332	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
333		ath_keyprint(sc, __func__, ix, hk, mac);	\
334} while (0)
335static	void ath_printrxbuf(struct ath_softc *, const struct ath_buf *bf,
336	u_int ix, int);
337static	void ath_printtxbuf(struct ath_softc *, const struct ath_buf *bf,
338	u_int qnum, u_int ix, int done);
339#else
340#define	IFF_DUMPPKTS(sc, m) \
341	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
342#define	DPRINTF(sc, m, fmt, ...) do {				\
343	(void) sc;						\
344} while (0)
345#define	KEYPRINTF(sc, k, ix, mac) do {				\
346	(void) sc;						\
347} while (0)
348#endif
349
350MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
351
352int
353ath_attach(u_int16_t devid, struct ath_softc *sc)
354{
355	struct ifnet *ifp;
356	struct ieee80211com *ic;
357	struct ath_hal *ah = NULL;
358	HAL_STATUS status;
359	int error = 0, i;
360	u_int wmodes;
361
362	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
363
364	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
365	if (ifp == NULL) {
366		device_printf(sc->sc_dev, "can not if_alloc()\n");
367		error = ENOSPC;
368		goto bad;
369	}
370	ic = ifp->if_l2com;
371
372	/* set these up early for if_printf use */
373	if_initname(ifp, device_get_name(sc->sc_dev),
374		device_get_unit(sc->sc_dev));
375
376	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
377	if (ah == NULL) {
378		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
379			status);
380		error = ENXIO;
381		goto bad;
382	}
383	if (ah->ah_abi != HAL_ABI_VERSION) {
384		if_printf(ifp, "HAL ABI mismatch detected "
385			"(HAL:0x%x != driver:0x%x)\n",
386			ah->ah_abi, HAL_ABI_VERSION);
387		error = ENXIO;
388		goto bad;
389	}
390	sc->sc_ah = ah;
391	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
392#ifdef	ATH_DEBUG
393	sc->sc_debug = ath_debug;
394#endif
395
396	/*
397	 * Check if the MAC has multi-rate retry support.
398	 * We do this by trying to setup a fake extended
399	 * descriptor.  MAC's that don't have support will
400	 * return false w/o doing anything.  MAC's that do
401	 * support it will return true w/o doing anything.
402	 */
403	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
404
405	/*
406	 * Check if the device has hardware counters for PHY
407	 * errors.  If so we need to enable the MIB interrupt
408	 * so we can act on stat triggers.
409	 */
410	if (ath_hal_hwphycounters(ah))
411		sc->sc_needmib = 1;
412
413	/*
414	 * Get the hardware key cache size.
415	 */
416	sc->sc_keymax = ath_hal_keycachesize(ah);
417	if (sc->sc_keymax > ATH_KEYMAX) {
418		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
419			ATH_KEYMAX, sc->sc_keymax);
420		sc->sc_keymax = ATH_KEYMAX;
421	}
422	/*
423	 * Reset the key cache since some parts do not
424	 * reset the contents on initial power up.
425	 */
426	for (i = 0; i < sc->sc_keymax; i++)
427		ath_hal_keyreset(ah, i);
428
429	/*
430	 * Collect the default channel list.
431	 */
432	error = ath_getchannels(sc);
433	if (error != 0)
434		goto bad;
435
436	/*
437	 * Setup rate tables for all potential media types.
438	 */
439	ath_rate_setup(sc, IEEE80211_MODE_11A);
440	ath_rate_setup(sc, IEEE80211_MODE_11B);
441	ath_rate_setup(sc, IEEE80211_MODE_11G);
442	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
443	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
444	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
445	ath_rate_setup(sc, IEEE80211_MODE_11NA);
446	ath_rate_setup(sc, IEEE80211_MODE_11NG);
447	ath_rate_setup(sc, IEEE80211_MODE_HALF);
448	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
449
450	/* NB: setup here so ath_rate_update is happy */
451	ath_setcurmode(sc, IEEE80211_MODE_11A);
452
453	/*
454	 * Allocate tx+rx descriptors and populate the lists.
455	 */
456	error = ath_desc_alloc(sc);
457	if (error != 0) {
458		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
459		goto bad;
460	}
461	callout_init_mtx(&sc->sc_cal_ch, &sc->sc_mtx, 0);
462	callout_init_mtx(&sc->sc_wd_ch, &sc->sc_mtx, 0);
463
464	ATH_TXBUF_LOCK_INIT(sc);
465
466	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
467		taskqueue_thread_enqueue, &sc->sc_tq);
468	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
469		"%s taskq", ifp->if_xname);
470
471	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
472	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
473	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
474
475	/*
476	 * Allocate hardware transmit queues: one queue for
477	 * beacon frames and one data queue for each QoS
478	 * priority.  Note that the hal handles reseting
479	 * these queues at the needed time.
480	 *
481	 * XXX PS-Poll
482	 */
483	sc->sc_bhalq = ath_beaconq_setup(ah);
484	if (sc->sc_bhalq == (u_int) -1) {
485		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
486		error = EIO;
487		goto bad2;
488	}
489	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
490	if (sc->sc_cabq == NULL) {
491		if_printf(ifp, "unable to setup CAB xmit queue!\n");
492		error = EIO;
493		goto bad2;
494	}
495	/* NB: insure BK queue is the lowest priority h/w queue */
496	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
497		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
498			ieee80211_wme_acnames[WME_AC_BK]);
499		error = EIO;
500		goto bad2;
501	}
502	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
503	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
504	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
505		/*
506		 * Not enough hardware tx queues to properly do WME;
507		 * just punt and assign them all to the same h/w queue.
508		 * We could do a better job of this if, for example,
509		 * we allocate queues when we switch from station to
510		 * AP mode.
511		 */
512		if (sc->sc_ac2q[WME_AC_VI] != NULL)
513			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
514		if (sc->sc_ac2q[WME_AC_BE] != NULL)
515			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
516		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
517		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
518		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
519	}
520
521	/*
522	 * Special case certain configurations.  Note the
523	 * CAB queue is handled by these specially so don't
524	 * include them when checking the txq setup mask.
525	 */
526	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
527	case 0x01:
528		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
529		break;
530	case 0x0f:
531		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
532		break;
533	default:
534		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
535		break;
536	}
537
538	/*
539	 * Setup rate control.  Some rate control modules
540	 * call back to change the anntena state so expose
541	 * the necessary entry points.
542	 * XXX maybe belongs in struct ath_ratectrl?
543	 */
544	sc->sc_setdefantenna = ath_setdefantenna;
545	sc->sc_rc = ath_rate_attach(sc);
546	if (sc->sc_rc == NULL) {
547		error = EIO;
548		goto bad2;
549	}
550
551	sc->sc_blinking = 0;
552	sc->sc_ledstate = 1;
553	sc->sc_ledon = 0;			/* low true */
554	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
555	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
556	/*
557	 * Auto-enable soft led processing for IBM cards and for
558	 * 5211 minipci cards.  Users can also manually enable/disable
559	 * support with a sysctl.
560	 */
561	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
562	if (sc->sc_softled) {
563		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
564		    HAL_GPIO_MUX_MAC_NETWORK_LED);
565		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
566	}
567
568	ifp->if_softc = sc;
569	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
570	ifp->if_start = ath_start;
571	ifp->if_watchdog = NULL;
572	ifp->if_ioctl = ath_ioctl;
573	ifp->if_init = ath_init;
574	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
575	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
576	IFQ_SET_READY(&ifp->if_snd);
577
578	ic->ic_ifp = ifp;
579	/* XXX not right but it's not used anywhere important */
580	ic->ic_phytype = IEEE80211_T_OFDM;
581	ic->ic_opmode = IEEE80211_M_STA;
582	ic->ic_caps =
583		  IEEE80211_C_STA		/* station mode */
584		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
585		| IEEE80211_C_HOSTAP		/* hostap mode */
586		| IEEE80211_C_MONITOR		/* monitor mode */
587		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
588		| IEEE80211_C_WDS		/* 4-address traffic works */
589		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
590		| IEEE80211_C_SHSLOT		/* short slot time supported */
591		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
592		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
593		| IEEE80211_C_TXFRAG		/* handle tx frags */
594		;
595	/*
596	 * Query the hal to figure out h/w crypto support.
597	 */
598	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
599		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
600	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
601		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
602	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
603		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
604	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
605		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
606	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
607		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
608		/*
609		 * Check if h/w does the MIC and/or whether the
610		 * separate key cache entries are required to
611		 * handle both tx+rx MIC keys.
612		 */
613		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
614			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
615		/*
616		 * If the h/w supports storing tx+rx MIC keys
617		 * in one cache slot automatically enable use.
618		 */
619		if (ath_hal_hastkipsplit(ah) ||
620		    !ath_hal_settkipsplit(ah, AH_FALSE))
621			sc->sc_splitmic = 1;
622		/*
623		 * If the h/w can do TKIP MIC together with WME then
624		 * we use it; otherwise we force the MIC to be done
625		 * in software by the net80211 layer.
626		 */
627		if (ath_hal_haswmetkipmic(ah))
628			sc->sc_wmetkipmic = 1;
629	}
630	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
631	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
632	/*
633	 * Mark key cache slots associated with global keys
634	 * as in use.  If we knew TKIP was not to be used we
635	 * could leave the +32, +64, and +32+64 slots free.
636	 */
637	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
638		setbit(sc->sc_keymap, i);
639		setbit(sc->sc_keymap, i+64);
640		if (sc->sc_splitmic) {
641			setbit(sc->sc_keymap, i+32);
642			setbit(sc->sc_keymap, i+32+64);
643		}
644	}
645	/*
646	 * TPC support can be done either with a global cap or
647	 * per-packet support.  The latter is not available on
648	 * all parts.  We're a bit pedantic here as all parts
649	 * support a global cap.
650	 */
651	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
652		ic->ic_caps |= IEEE80211_C_TXPMGT;
653
654	/*
655	 * Mark WME capability only if we have sufficient
656	 * hardware queues to do proper priority scheduling.
657	 */
658	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
659		ic->ic_caps |= IEEE80211_C_WME;
660	/*
661	 * Check for misc other capabilities.
662	 */
663	if (ath_hal_hasbursting(ah))
664		ic->ic_caps |= IEEE80211_C_BURST;
665	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
666	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
667	if (ath_hal_hasfastframes(ah))
668		ic->ic_caps |= IEEE80211_C_FF;
669	wmodes = ath_hal_getwirelessmodes(ah);
670	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
671		ic->ic_caps |= IEEE80211_C_TURBOP;
672#ifdef ATH_SUPPORT_TDMA
673	if (ath_hal_macversion(ah) > 0x78) {
674		ic->ic_caps |= IEEE80211_C_TDMA; /* capable of TDMA */
675		ic->ic_tdma_update = ath_tdma_update;
676	}
677#endif
678	/*
679	 * Indicate we need the 802.11 header padded to a
680	 * 32-bit boundary for 4-address and QoS frames.
681	 */
682	ic->ic_flags |= IEEE80211_F_DATAPAD;
683
684	/*
685	 * Query the hal about antenna support.
686	 */
687	sc->sc_defant = ath_hal_getdefantenna(ah);
688
689	/*
690	 * Not all chips have the VEOL support we want to
691	 * use with IBSS beacons; check here for it.
692	 */
693	sc->sc_hasveol = ath_hal_hasveol(ah);
694
695	/* get mac address from hardware */
696	ath_hal_getmac(ah, ic->ic_myaddr);
697	if (sc->sc_hasbmask)
698		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
699
700	/* NB: used to size node table key mapping array */
701	ic->ic_max_keyix = sc->sc_keymax;
702	/* call MI attach routine. */
703	ieee80211_ifattach(ic);
704	ic->ic_setregdomain = ath_setregdomain;
705	ic->ic_getradiocaps = ath_getradiocaps;
706	sc->sc_opmode = HAL_M_STA;
707
708	/* override default methods */
709	ic->ic_newassoc = ath_newassoc;
710	ic->ic_updateslot = ath_updateslot;
711	ic->ic_wme.wme_update = ath_wme_update;
712	ic->ic_vap_create = ath_vap_create;
713	ic->ic_vap_delete = ath_vap_delete;
714	ic->ic_raw_xmit = ath_raw_xmit;
715	ic->ic_update_mcast = ath_update_mcast;
716	ic->ic_update_promisc = ath_update_promisc;
717	ic->ic_node_alloc = ath_node_alloc;
718	sc->sc_node_free = ic->ic_node_free;
719	ic->ic_node_free = ath_node_free;
720	ic->ic_node_getsignal = ath_node_getsignal;
721	ic->ic_scan_start = ath_scan_start;
722	ic->ic_scan_end = ath_scan_end;
723	ic->ic_set_channel = ath_set_channel;
724
725	ath_bpfattach(sc);
726	/*
727	 * Setup dynamic sysctl's now that country code and
728	 * regdomain are available from the hal.
729	 */
730	ath_sysctlattach(sc);
731
732	if (bootverbose)
733		ieee80211_announce(ic);
734	ath_announce(sc);
735	return 0;
736bad2:
737	ath_tx_cleanup(sc);
738	ath_desc_free(sc);
739bad:
740	if (ah)
741		ath_hal_detach(ah);
742	if (ifp != NULL)
743		if_free(ifp);
744	sc->sc_invalid = 1;
745	return error;
746}
747
748int
749ath_detach(struct ath_softc *sc)
750{
751	struct ifnet *ifp = sc->sc_ifp;
752
753	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
754		__func__, ifp->if_flags);
755
756	/*
757	 * NB: the order of these is important:
758	 * o stop the chip so no more interrupts will fire
759	 * o call the 802.11 layer before detaching the hal to
760	 *   insure callbacks into the driver to delete global
761	 *   key cache entries can be handled
762	 * o free the taskqueue which drains any pending tasks
763	 * o reclaim the bpf tap now that we know nothing will use
764	 *   it (e.g. rx processing from the task q thread)
765	 * o reclaim the tx queue data structures after calling
766	 *   the 802.11 layer as we'll get called back to reclaim
767	 *   node state and potentially want to use them
768	 * o to cleanup the tx queues the hal is called, so detach
769	 *   it last
770	 * Other than that, it's straightforward...
771	 */
772	ath_stop(ifp);
773	ieee80211_ifdetach(ifp->if_l2com);
774	taskqueue_free(sc->sc_tq);
775	bpfdetach(ifp);
776#ifdef ATH_TX99_DIAG
777	if (sc->sc_tx99 != NULL)
778		sc->sc_tx99->detach(sc->sc_tx99);
779#endif
780	ath_rate_detach(sc->sc_rc);
781	ath_desc_free(sc);
782	ath_tx_cleanup(sc);
783	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
784	if_free(ifp);
785
786	return 0;
787}
788
789/*
790 * MAC address handling for multiple BSS on the same radio.
791 * The first vap uses the MAC address from the EEPROM.  For
792 * subsequent vap's we set the U/L bit (bit 1) in the MAC
793 * address and use the next six bits as an index.
794 */
795static void
796assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
797{
798	int i;
799
800	if (clone && sc->sc_hasbmask) {
801		/* NB: we only do this if h/w supports multiple bssid */
802		for (i = 0; i < 8; i++)
803			if ((sc->sc_bssidmask & (1<<i)) == 0)
804				break;
805		if (i != 0)
806			mac[0] |= (i << 2)|0x2;
807	} else
808		i = 0;
809	sc->sc_bssidmask |= 1<<i;
810	sc->sc_hwbssidmask[0] &= ~mac[0];
811	if (i == 0)
812		sc->sc_nbssid0++;
813}
814
815static void
816reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
817{
818	int i = mac[0] >> 2;
819	uint8_t mask;
820
821	if (i != 0 || --sc->sc_nbssid0 == 0) {
822		sc->sc_bssidmask &= ~(1<<i);
823		/* recalculate bssid mask from remaining addresses */
824		mask = 0xff;
825		for (i = 1; i < 8; i++)
826			if (sc->sc_bssidmask & (1<<i))
827				mask &= ~((i<<2)|0x2);
828		sc->sc_hwbssidmask[0] |= mask;
829	}
830}
831
832/*
833 * Assign a beacon xmit slot.  We try to space out
834 * assignments so when beacons are staggered the
835 * traffic coming out of the cab q has maximal time
836 * to go out before the next beacon is scheduled.
837 */
838static int
839assign_bslot(struct ath_softc *sc)
840{
841	u_int slot, free;
842
843	free = 0;
844	for (slot = 0; slot < ATH_BCBUF; slot++)
845		if (sc->sc_bslot[slot] == NULL) {
846			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
847			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
848				return slot;
849			free = slot;
850			/* NB: keep looking for a double slot */
851		}
852	return free;
853}
854
855static struct ieee80211vap *
856ath_vap_create(struct ieee80211com *ic,
857	const char name[IFNAMSIZ], int unit, int opmode, int flags,
858	const uint8_t bssid[IEEE80211_ADDR_LEN],
859	const uint8_t mac0[IEEE80211_ADDR_LEN])
860{
861	struct ath_softc *sc = ic->ic_ifp->if_softc;
862	struct ath_vap *avp;
863	struct ieee80211vap *vap;
864	uint8_t mac[IEEE80211_ADDR_LEN];
865	int ic_opmode, needbeacon, error;
866
867	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
868	    M_80211_VAP, M_WAITOK | M_ZERO);
869	needbeacon = 0;
870	IEEE80211_ADDR_COPY(mac, mac0);
871
872	ATH_LOCK(sc);
873	switch (opmode) {
874	case IEEE80211_M_STA:
875		if (sc->sc_nstavaps != 0) {	/* XXX only 1 sta for now */
876			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
877			goto bad;
878		}
879		if (sc->sc_nvaps) {
880			/*
881			 * When there are multiple vaps we must fall
882			 * back to s/w beacon miss handling.
883			 */
884			flags |= IEEE80211_CLONE_NOBEACONS;
885		}
886		if (flags & IEEE80211_CLONE_NOBEACONS)
887			ic_opmode = IEEE80211_M_HOSTAP;
888		else
889			ic_opmode = opmode;
890		break;
891	case IEEE80211_M_IBSS:
892		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
893			device_printf(sc->sc_dev,
894			    "only 1 ibss vap supported\n");
895			goto bad;
896		}
897		ic_opmode = opmode;
898		needbeacon = 1;
899		break;
900	case IEEE80211_M_AHDEMO:
901#ifdef ATH_SUPPORT_TDMA
902		if (flags & IEEE80211_CLONE_TDMA) {
903			needbeacon = 1;
904			flags |= IEEE80211_CLONE_NOBEACONS;
905		}
906		/* fall thru... */
907#endif
908	case IEEE80211_M_MONITOR:
909		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
910			/* XXX not right for monitor mode */
911			ic_opmode = ic->ic_opmode;
912		} else
913			ic_opmode = opmode;
914		break;
915	case IEEE80211_M_HOSTAP:
916		needbeacon = 1;
917		/* fall thru... */
918	case IEEE80211_M_WDS:
919		if (sc->sc_nvaps && ic->ic_opmode == IEEE80211_M_STA) {
920			device_printf(sc->sc_dev,
921			    "wds not supported in sta mode\n");
922			goto bad;
923		}
924		if (opmode == IEEE80211_M_WDS) {
925			/*
926			 * Silently remove any request for a unique
927			 * bssid; WDS vap's always share the local
928			 * mac address.
929			 */
930			flags &= ~IEEE80211_CLONE_BSSID;
931		}
932		ic_opmode = IEEE80211_M_HOSTAP;
933		break;
934	default:
935		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
936		goto bad;
937	}
938	/*
939	 * Check that a beacon buffer is available; the code below assumes it.
940	 */
941	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
942		device_printf(sc->sc_dev, "no beacon buffer available\n");
943		goto bad;
944	}
945
946	/* STA, AHDEMO? */
947	if (opmode == IEEE80211_M_HOSTAP) {
948		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
949		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
950	}
951
952	vap = &avp->av_vap;
953	/* XXX can't hold mutex across if_alloc */
954	ATH_UNLOCK(sc);
955	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
956	    bssid, mac);
957	ATH_LOCK(sc);
958	if (error != 0) {
959		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
960		    __func__, error);
961		goto bad2;
962	}
963
964	/* h/w crypto support */
965	vap->iv_key_alloc = ath_key_alloc;
966	vap->iv_key_delete = ath_key_delete;
967	vap->iv_key_set = ath_key_set;
968	vap->iv_key_update_begin = ath_key_update_begin;
969	vap->iv_key_update_end = ath_key_update_end;
970
971	/* override various methods */
972	avp->av_recv_mgmt = vap->iv_recv_mgmt;
973	vap->iv_recv_mgmt = ath_recv_mgmt;
974	vap->iv_reset = ath_reset_vap;
975	vap->iv_update_beacon = ath_beacon_update;
976	avp->av_newstate = vap->iv_newstate;
977	vap->iv_newstate = ath_newstate;
978	avp->av_bmiss = vap->iv_bmiss;
979	vap->iv_bmiss = ath_bmiss_vap;
980
981	avp->av_bslot = -1;
982	if (needbeacon) {
983		/*
984		 * Allocate beacon state and setup the q for buffered
985		 * multicast frames.  We know a beacon buffer is
986		 * available because we checked above.
987		 */
988		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
989		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
990		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
991			/*
992			 * Assign the vap to a beacon xmit slot.  As above
993			 * this cannot fail to find a free one.
994			 */
995			avp->av_bslot = assign_bslot(sc);
996			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
997			    ("beacon slot %u not empty", avp->av_bslot));
998			sc->sc_bslot[avp->av_bslot] = vap;
999			sc->sc_nbcnvaps++;
1000		}
1001		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
1002			/*
1003			 * Multple vaps are to transmit beacons and we
1004			 * have h/w support for TSF adjusting; enable
1005			 * use of staggered beacons.
1006			 */
1007			sc->sc_stagbeacons = 1;
1008		}
1009		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
1010	}
1011
1012	ic->ic_opmode = ic_opmode;
1013	if (opmode != IEEE80211_M_WDS) {
1014		sc->sc_nvaps++;
1015		if (opmode == IEEE80211_M_STA)
1016			sc->sc_nstavaps++;
1017	}
1018	switch (ic_opmode) {
1019	case IEEE80211_M_IBSS:
1020		sc->sc_opmode = HAL_M_IBSS;
1021		break;
1022	case IEEE80211_M_STA:
1023		sc->sc_opmode = HAL_M_STA;
1024		break;
1025	case IEEE80211_M_AHDEMO:
1026#ifdef ATH_SUPPORT_TDMA
1027		if (vap->iv_caps & IEEE80211_C_TDMA) {
1028			sc->sc_tdma = 1;
1029			/* NB: disable tsf adjust */
1030			sc->sc_stagbeacons = 0;
1031		}
1032		/*
1033		 * NB: adhoc demo mode is a pseudo mode; to the hal it's
1034		 * just ap mode.
1035		 */
1036		/* fall thru... */
1037#endif
1038	case IEEE80211_M_HOSTAP:
1039		sc->sc_opmode = HAL_M_HOSTAP;
1040		break;
1041	case IEEE80211_M_MONITOR:
1042		sc->sc_opmode = HAL_M_MONITOR;
1043		break;
1044	default:
1045		/* XXX should not happen */
1046		break;
1047	}
1048	if (sc->sc_hastsfadd) {
1049		/*
1050		 * Configure whether or not TSF adjust should be done.
1051		 */
1052		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
1053	}
1054	if (flags & IEEE80211_CLONE_NOBEACONS) {
1055		/*
1056		 * Enable s/w beacon miss handling.
1057		 */
1058		sc->sc_swbmiss = 1;
1059	}
1060	ATH_UNLOCK(sc);
1061
1062	/* complete setup */
1063	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
1064	return vap;
1065bad2:
1066	reclaim_address(sc, mac);
1067	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
1068bad:
1069	free(avp, M_80211_VAP);
1070	ATH_UNLOCK(sc);
1071	return NULL;
1072}
1073
1074static void
1075ath_vap_delete(struct ieee80211vap *vap)
1076{
1077	struct ieee80211com *ic = vap->iv_ic;
1078	struct ifnet *ifp = ic->ic_ifp;
1079	struct ath_softc *sc = ifp->if_softc;
1080	struct ath_hal *ah = sc->sc_ah;
1081	struct ath_vap *avp = ATH_VAP(vap);
1082
1083	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1084		/*
1085		 * Quiesce the hardware while we remove the vap.  In
1086		 * particular we need to reclaim all references to
1087		 * the vap state by any frames pending on the tx queues.
1088		 */
1089		ath_hal_intrset(ah, 0);		/* disable interrupts */
1090		ath_draintxq(sc);		/* stop xmit side */
1091		ath_stoprecv(sc);		/* stop recv side */
1092	}
1093
1094	ieee80211_vap_detach(vap);
1095	ATH_LOCK(sc);
1096	/*
1097	 * Reclaim beacon state.  Note this must be done before
1098	 * the vap instance is reclaimed as we may have a reference
1099	 * to it in the buffer for the beacon frame.
1100	 */
1101	if (avp->av_bcbuf != NULL) {
1102		if (avp->av_bslot != -1) {
1103			sc->sc_bslot[avp->av_bslot] = NULL;
1104			sc->sc_nbcnvaps--;
1105		}
1106		ath_beacon_return(sc, avp->av_bcbuf);
1107		avp->av_bcbuf = NULL;
1108		if (sc->sc_nbcnvaps == 0) {
1109			sc->sc_stagbeacons = 0;
1110			if (sc->sc_hastsfadd)
1111				ath_hal_settsfadjust(sc->sc_ah, 0);
1112		}
1113		/*
1114		 * Reclaim any pending mcast frames for the vap.
1115		 */
1116		ath_tx_draintxq(sc, &avp->av_mcastq);
1117		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1118	}
1119	/*
1120	 * Update bookkeeping.
1121	 */
1122	if (vap->iv_opmode == IEEE80211_M_STA) {
1123		sc->sc_nstavaps--;
1124		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1125			sc->sc_swbmiss = 0;
1126	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
1127		reclaim_address(sc, vap->iv_myaddr);
1128		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1129	}
1130	if (vap->iv_opmode != IEEE80211_M_WDS)
1131		sc->sc_nvaps--;
1132#ifdef ATH_SUPPORT_TDMA
1133	/* TDMA operation ceases when the last vap is destroyed */
1134	if (sc->sc_tdma && sc->sc_nvaps == 0) {
1135		sc->sc_tdma = 0;
1136		sc->sc_swbmiss = 0;
1137	}
1138#endif
1139	ATH_UNLOCK(sc);
1140	free(avp, M_80211_VAP);
1141
1142	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1143		/*
1144		 * Restart rx+tx machines if still running (RUNNING will
1145		 * be reset if we just destroyed the last vap).
1146		 */
1147		if (ath_startrecv(sc) != 0)
1148			if_printf(ifp, "%s: unable to restart recv logic\n",
1149			    __func__);
1150		if (sc->sc_beacons)
1151			ath_beacon_config(sc, NULL);
1152		ath_hal_intrset(ah, sc->sc_imask);
1153	}
1154}
1155
1156void
1157ath_suspend(struct ath_softc *sc)
1158{
1159	struct ifnet *ifp = sc->sc_ifp;
1160	struct ieee80211com *ic = ifp->if_l2com;
1161
1162	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1163		__func__, ifp->if_flags);
1164
1165	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1166	if (ic->ic_opmode == IEEE80211_M_STA)
1167		ath_stop(ifp);
1168	else
1169		ieee80211_suspend_all(ic);
1170	/*
1171	 * NB: don't worry about putting the chip in low power
1172	 * mode; pci will power off our socket on suspend and
1173	 * cardbus detaches the device.
1174	 */
1175}
1176
1177/*
1178 * Reset the key cache since some parts do not reset the
1179 * contents on resume.  First we clear all entries, then
1180 * re-load keys that the 802.11 layer assumes are setup
1181 * in h/w.
1182 */
1183static void
1184ath_reset_keycache(struct ath_softc *sc)
1185{
1186	struct ifnet *ifp = sc->sc_ifp;
1187	struct ieee80211com *ic = ifp->if_l2com;
1188	struct ath_hal *ah = sc->sc_ah;
1189	int i;
1190
1191	for (i = 0; i < sc->sc_keymax; i++)
1192		ath_hal_keyreset(ah, i);
1193	ieee80211_crypto_reload_keys(ic);
1194}
1195
1196void
1197ath_resume(struct ath_softc *sc)
1198{
1199	struct ifnet *ifp = sc->sc_ifp;
1200	struct ieee80211com *ic = ifp->if_l2com;
1201	struct ath_hal *ah = sc->sc_ah;
1202	HAL_STATUS status;
1203
1204	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1205		__func__, ifp->if_flags);
1206
1207	/*
1208	 * Must reset the chip before we reload the
1209	 * keycache as we were powered down on suspend.
1210	 */
1211	ath_hal_reset(ah, sc->sc_opmode,
1212	    sc->sc_curchan != NULL ? sc->sc_curchan : ic->ic_curchan,
1213	    AH_FALSE, &status);
1214	ath_reset_keycache(sc);
1215	if (sc->sc_resume_up) {
1216		if (ic->ic_opmode == IEEE80211_M_STA) {
1217			ath_init(sc);
1218			ieee80211_beacon_miss(ic);
1219		} else
1220			ieee80211_resume_all(ic);
1221	}
1222	if (sc->sc_softled) {
1223		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin,
1224		    HAL_GPIO_MUX_MAC_NETWORK_LED);
1225		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1226	}
1227}
1228
1229void
1230ath_shutdown(struct ath_softc *sc)
1231{
1232	struct ifnet *ifp = sc->sc_ifp;
1233
1234	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1235		__func__, ifp->if_flags);
1236
1237	ath_stop(ifp);
1238	/* NB: no point powering down chip as we're about to reboot */
1239}
1240
1241/*
1242 * Interrupt handler.  Most of the actual processing is deferred.
1243 */
1244void
1245ath_intr(void *arg)
1246{
1247	struct ath_softc *sc = arg;
1248	struct ifnet *ifp = sc->sc_ifp;
1249	struct ath_hal *ah = sc->sc_ah;
1250	HAL_INT status;
1251
1252	if (sc->sc_invalid) {
1253		/*
1254		 * The hardware is not ready/present, don't touch anything.
1255		 * Note this can happen early on if the IRQ is shared.
1256		 */
1257		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1258		return;
1259	}
1260	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1261		return;
1262	if ((ifp->if_flags & IFF_UP) == 0 ||
1263	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1264		HAL_INT status;
1265
1266		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1267			__func__, ifp->if_flags);
1268		ath_hal_getisr(ah, &status);	/* clear ISR */
1269		ath_hal_intrset(ah, 0);		/* disable further intr's */
1270		return;
1271	}
1272	/*
1273	 * Figure out the reason(s) for the interrupt.  Note
1274	 * that the hal returns a pseudo-ISR that may include
1275	 * bits we haven't explicitly enabled so we mask the
1276	 * value to insure we only process bits we requested.
1277	 */
1278	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1279	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1280	status &= sc->sc_imask;			/* discard unasked for bits */
1281	if (status & HAL_INT_FATAL) {
1282		sc->sc_stats.ast_hardware++;
1283		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1284		ath_fatal_proc(sc, 0);
1285	} else {
1286		if (status & HAL_INT_SWBA) {
1287			/*
1288			 * Software beacon alert--time to send a beacon.
1289			 * Handle beacon transmission directly; deferring
1290			 * this is too slow to meet timing constraints
1291			 * under load.
1292			 */
1293#ifdef ATH_SUPPORT_TDMA
1294			if (sc->sc_tdma) {
1295				if (sc->sc_tdmaswba == 0) {
1296					struct ieee80211com *ic = ifp->if_l2com;
1297					struct ieee80211vap *vap =
1298					    TAILQ_FIRST(&ic->ic_vaps);
1299					ath_tdma_beacon_send(sc, vap);
1300					sc->sc_tdmaswba =
1301					    vap->iv_tdma->tdma_bintval;
1302				} else
1303					sc->sc_tdmaswba--;
1304			} else
1305#endif
1306				ath_beacon_proc(sc, 0);
1307		}
1308		if (status & HAL_INT_RXEOL) {
1309			/*
1310			 * NB: the hardware should re-read the link when
1311			 *     RXE bit is written, but it doesn't work at
1312			 *     least on older hardware revs.
1313			 */
1314			sc->sc_stats.ast_rxeol++;
1315			sc->sc_rxlink = NULL;
1316		}
1317		if (status & HAL_INT_TXURN) {
1318			sc->sc_stats.ast_txurn++;
1319			/* bump tx trigger level */
1320			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1321		}
1322		if (status & HAL_INT_RX)
1323			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1324		if (status & HAL_INT_TX)
1325			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1326		if (status & HAL_INT_BMISS) {
1327			sc->sc_stats.ast_bmiss++;
1328			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1329		}
1330		if (status & HAL_INT_MIB) {
1331			sc->sc_stats.ast_mib++;
1332			/*
1333			 * Disable interrupts until we service the MIB
1334			 * interrupt; otherwise it will continue to fire.
1335			 */
1336			ath_hal_intrset(ah, 0);
1337			/*
1338			 * Let the hal handle the event.  We assume it will
1339			 * clear whatever condition caused the interrupt.
1340			 */
1341			ath_hal_mibevent(ah, &sc->sc_halstats);
1342			ath_hal_intrset(ah, sc->sc_imask);
1343		}
1344		if (status & HAL_INT_RXORN) {
1345			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1346			sc->sc_stats.ast_rxorn++;
1347		}
1348	}
1349}
1350
1351static void
1352ath_fatal_proc(void *arg, int pending)
1353{
1354	struct ath_softc *sc = arg;
1355	struct ifnet *ifp = sc->sc_ifp;
1356	u_int32_t *state;
1357	u_int32_t len;
1358	void *sp;
1359
1360	if_printf(ifp, "hardware error; resetting\n");
1361	/*
1362	 * Fatal errors are unrecoverable.  Typically these
1363	 * are caused by DMA errors.  Collect h/w state from
1364	 * the hal so we can diagnose what's going on.
1365	 */
1366	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1367		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1368		state = sp;
1369		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1370		    state[0], state[1] , state[2], state[3],
1371		    state[4], state[5]);
1372	}
1373	ath_reset(ifp);
1374}
1375
1376static void
1377ath_bmiss_vap(struct ieee80211vap *vap)
1378{
1379	/*
1380	 * Workaround phantom bmiss interrupts by sanity-checking
1381	 * the time of our last rx'd frame.  If it is within the
1382	 * beacon miss interval then ignore the interrupt.  If it's
1383	 * truly a bmiss we'll get another interrupt soon and that'll
1384	 * be dispatched up for processing.  Note this applies only
1385	 * for h/w beacon miss events.
1386	 */
1387	if ((vap->iv_flags_ext & IEEE80211_FEXT_SWBMISS) == 0) {
1388		struct ifnet *ifp = vap->iv_ic->ic_ifp;
1389		struct ath_softc *sc = ifp->if_softc;
1390		u_int64_t lastrx = sc->sc_lastrx;
1391		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1392		u_int bmisstimeout =
1393			vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1394
1395		DPRINTF(sc, ATH_DEBUG_BEACON,
1396		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1397		    __func__, (unsigned long long) tsf,
1398		    (unsigned long long)(tsf - lastrx),
1399		    (unsigned long long) lastrx, bmisstimeout);
1400
1401		if (tsf - lastrx <= bmisstimeout) {
1402			sc->sc_stats.ast_bmiss_phantom++;
1403			return;
1404		}
1405	}
1406	ATH_VAP(vap)->av_bmiss(vap);
1407}
1408
1409static int
1410ath_hal_gethangstate(struct ath_hal *ah, uint32_t mask, uint32_t *hangs)
1411{
1412	uint32_t rsize;
1413	void *sp;
1414
1415	if (!ath_hal_getdiagstate(ah, 32, &mask, sizeof(&mask), &sp, &rsize))
1416		return 0;
1417	KASSERT(rsize == sizeof(uint32_t), ("resultsize %u", rsize));
1418	*hangs = *(uint32_t *)sp;
1419	return 1;
1420}
1421
1422static void
1423ath_bmiss_proc(void *arg, int pending)
1424{
1425	struct ath_softc *sc = arg;
1426	struct ifnet *ifp = sc->sc_ifp;
1427	uint32_t hangs;
1428
1429	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1430
1431	if (ath_hal_gethangstate(sc->sc_ah, 0xff, &hangs) && hangs != 0) {
1432		if_printf(ifp, "bb hang detected (0x%x), reseting\n", hangs);
1433		ath_reset(ifp);
1434	} else
1435		ieee80211_beacon_miss(ifp->if_l2com);
1436}
1437
1438/*
1439 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1440 * calcs together with WME.  If necessary disable the crypto
1441 * hardware and mark the 802.11 state so keys will be setup
1442 * with the MIC work done in software.
1443 */
1444static void
1445ath_settkipmic(struct ath_softc *sc)
1446{
1447	struct ifnet *ifp = sc->sc_ifp;
1448	struct ieee80211com *ic = ifp->if_l2com;
1449
1450	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1451		if (ic->ic_flags & IEEE80211_F_WME) {
1452			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1453			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1454		} else {
1455			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1456			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1457		}
1458	}
1459}
1460
1461static void
1462ath_init(void *arg)
1463{
1464	struct ath_softc *sc = (struct ath_softc *) arg;
1465	struct ifnet *ifp = sc->sc_ifp;
1466	struct ieee80211com *ic = ifp->if_l2com;
1467	struct ath_hal *ah = sc->sc_ah;
1468	HAL_STATUS status;
1469
1470	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1471		__func__, ifp->if_flags);
1472
1473	ATH_LOCK(sc);
1474	/*
1475	 * Stop anything previously setup.  This is safe
1476	 * whether this is the first time through or not.
1477	 */
1478	ath_stop_locked(ifp);
1479
1480	/*
1481	 * The basic interface to setting the hardware in a good
1482	 * state is ``reset''.  On return the hardware is known to
1483	 * be powered up and with interrupts disabled.  This must
1484	 * be followed by initialization of the appropriate bits
1485	 * and then setup of the interrupt mask.
1486	 */
1487	ath_settkipmic(sc);
1488	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_FALSE, &status)) {
1489		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1490			status);
1491		ATH_UNLOCK(sc);
1492		return;
1493	}
1494	ath_chan_change(sc, ic->ic_curchan);
1495
1496	/*
1497	 * Likewise this is set during reset so update
1498	 * state cached in the driver.
1499	 */
1500	sc->sc_diversity = ath_hal_getdiversity(ah);
1501	sc->sc_lastlongcal = 0;
1502	sc->sc_resetcal = 1;
1503	sc->sc_lastcalreset = 0;
1504
1505	/*
1506	 * Setup the hardware after reset: the key cache
1507	 * is filled as needed and the receive engine is
1508	 * set going.  Frame transmit is handled entirely
1509	 * in the frame output path; there's nothing to do
1510	 * here except setup the interrupt mask.
1511	 */
1512	if (ath_startrecv(sc) != 0) {
1513		if_printf(ifp, "unable to start recv logic\n");
1514		ATH_UNLOCK(sc);
1515		return;
1516	}
1517
1518	/*
1519	 * Enable interrupts.
1520	 */
1521	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1522		  | HAL_INT_RXEOL | HAL_INT_RXORN
1523		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1524	/*
1525	 * Enable MIB interrupts when there are hardware phy counters.
1526	 * Note we only do this (at the moment) for station mode.
1527	 */
1528	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1529		sc->sc_imask |= HAL_INT_MIB;
1530
1531	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1532	callout_reset(&sc->sc_wd_ch, hz, ath_watchdog, sc);
1533	ath_hal_intrset(ah, sc->sc_imask);
1534
1535	ATH_UNLOCK(sc);
1536
1537#ifdef ATH_TX99_DIAG
1538	if (sc->sc_tx99 != NULL)
1539		sc->sc_tx99->start(sc->sc_tx99);
1540	else
1541#endif
1542	ieee80211_start_all(ic);		/* start all vap's */
1543}
1544
1545static void
1546ath_stop_locked(struct ifnet *ifp)
1547{
1548	struct ath_softc *sc = ifp->if_softc;
1549	struct ath_hal *ah = sc->sc_ah;
1550
1551	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1552		__func__, sc->sc_invalid, ifp->if_flags);
1553
1554	ATH_LOCK_ASSERT(sc);
1555	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1556		/*
1557		 * Shutdown the hardware and driver:
1558		 *    reset 802.11 state machine
1559		 *    turn off timers
1560		 *    disable interrupts
1561		 *    turn off the radio
1562		 *    clear transmit machinery
1563		 *    clear receive machinery
1564		 *    drain and release tx queues
1565		 *    reclaim beacon resources
1566		 *    power down hardware
1567		 *
1568		 * Note that some of this work is not possible if the
1569		 * hardware is gone (invalid).
1570		 */
1571#ifdef ATH_TX99_DIAG
1572		if (sc->sc_tx99 != NULL)
1573			sc->sc_tx99->stop(sc->sc_tx99);
1574#endif
1575		callout_stop(&sc->sc_wd_ch);
1576		sc->sc_wd_timer = 0;
1577		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1578		if (!sc->sc_invalid) {
1579			if (sc->sc_softled) {
1580				callout_stop(&sc->sc_ledtimer);
1581				ath_hal_gpioset(ah, sc->sc_ledpin,
1582					!sc->sc_ledon);
1583				sc->sc_blinking = 0;
1584			}
1585			ath_hal_intrset(ah, 0);
1586		}
1587		ath_draintxq(sc);
1588		if (!sc->sc_invalid) {
1589			ath_stoprecv(sc);
1590			ath_hal_phydisable(ah);
1591		} else
1592			sc->sc_rxlink = NULL;
1593		ath_beacon_free(sc);	/* XXX not needed */
1594	}
1595}
1596
1597static void
1598ath_stop(struct ifnet *ifp)
1599{
1600	struct ath_softc *sc = ifp->if_softc;
1601
1602	ATH_LOCK(sc);
1603	ath_stop_locked(ifp);
1604	ATH_UNLOCK(sc);
1605}
1606
1607/*
1608 * Reset the hardware w/o losing operational state.  This is
1609 * basically a more efficient way of doing ath_stop, ath_init,
1610 * followed by state transitions to the current 802.11
1611 * operational state.  Used to recover from various errors and
1612 * to reset or reload hardware state.
1613 */
1614static int
1615ath_reset(struct ifnet *ifp)
1616{
1617	struct ath_softc *sc = ifp->if_softc;
1618	struct ieee80211com *ic = ifp->if_l2com;
1619	struct ath_hal *ah = sc->sc_ah;
1620	HAL_STATUS status;
1621
1622	ath_hal_intrset(ah, 0);		/* disable interrupts */
1623	ath_draintxq(sc);		/* stop xmit side */
1624	ath_stoprecv(sc);		/* stop recv side */
1625	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1626	/* NB: indicate channel change so we do a full reset */
1627	if (!ath_hal_reset(ah, sc->sc_opmode, ic->ic_curchan, AH_TRUE, &status))
1628		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1629			__func__, status);
1630	sc->sc_diversity = ath_hal_getdiversity(ah);
1631	if (ath_startrecv(sc) != 0)	/* restart recv */
1632		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1633	/*
1634	 * We may be doing a reset in response to an ioctl
1635	 * that changes the channel so update any state that
1636	 * might change as a result.
1637	 */
1638	ath_chan_change(sc, ic->ic_curchan);
1639	if (sc->sc_beacons) {
1640#ifdef ATH_SUPPORT_TDMA
1641		if (sc->sc_tdma)
1642			ath_tdma_config(sc, NULL);
1643		else
1644#endif
1645			ath_beacon_config(sc, NULL);	/* restart beacons */
1646	}
1647	ath_hal_intrset(ah, sc->sc_imask);
1648
1649	ath_start(ifp);			/* restart xmit */
1650	return 0;
1651}
1652
1653static int
1654ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1655{
1656	struct ieee80211com *ic = vap->iv_ic;
1657	struct ifnet *ifp = ic->ic_ifp;
1658	struct ath_softc *sc = ifp->if_softc;
1659	struct ath_hal *ah = sc->sc_ah;
1660
1661	switch (cmd) {
1662	case IEEE80211_IOC_TXPOWER:
1663		/*
1664		 * If per-packet TPC is enabled, then we have nothing
1665		 * to do; otherwise we need to force the global limit.
1666		 * All this can happen directly; no need to reset.
1667		 */
1668		if (!ath_hal_gettpc(ah))
1669			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1670		return 0;
1671	}
1672	return ath_reset(ifp);
1673}
1674
1675static int
1676ath_ff_always(struct ath_txq *txq, struct ath_buf *bf)
1677{
1678	return 0;
1679}
1680
1681#if 0
1682static int
1683ath_ff_ageflushtestdone(struct ath_txq *txq, struct ath_buf *bf)
1684{
1685	return (txq->axq_curage - bf->bf_age) < ATH_FF_STAGEMAX;
1686}
1687#endif
1688
1689/*
1690 * Flush FF staging queue.
1691 */
1692static void
1693ath_ff_stageq_flush(struct ath_softc *sc, struct ath_txq *txq,
1694	int (*ath_ff_flushdonetest)(struct ath_txq *txq, struct ath_buf *bf))
1695{
1696	struct ath_buf *bf;
1697	struct ieee80211_node *ni;
1698	int pktlen, pri;
1699
1700	for (;;) {
1701		ATH_TXQ_LOCK(txq);
1702		/*
1703		 * Go from the back (oldest) to front so we can
1704		 * stop early based on the age of the entry.
1705		 */
1706		bf = TAILQ_LAST(&txq->axq_stageq, axq_headtype);
1707		if (bf == NULL || ath_ff_flushdonetest(txq, bf)) {
1708			ATH_TXQ_UNLOCK(txq);
1709			break;
1710		}
1711
1712		ni = bf->bf_node;
1713		pri = M_WME_GETAC(bf->bf_m);
1714		KASSERT(ATH_NODE(ni)->an_ff_buf[pri],
1715			("no bf on staging queue %p", bf));
1716		ATH_NODE(ni)->an_ff_buf[pri] = NULL;
1717		TAILQ_REMOVE(&txq->axq_stageq, bf, bf_stagelist);
1718
1719		ATH_TXQ_UNLOCK(txq);
1720
1721		DPRINTF(sc, ATH_DEBUG_FF, "%s: flush frame, age %u\n",
1722			__func__, bf->bf_age);
1723
1724		sc->sc_stats.ast_ff_flush++;
1725
1726		/* encap and xmit */
1727		bf->bf_m = ieee80211_encap(ni, bf->bf_m);
1728		if (bf->bf_m == NULL) {
1729			DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1730				"%s: discard, encapsulation failure\n",
1731				__func__);
1732			sc->sc_stats.ast_tx_encap++;
1733			goto bad;
1734		}
1735		pktlen = bf->bf_m->m_pkthdr.len; /* NB: don't reference below */
1736		if (ath_tx_start(sc, ni, bf, bf->bf_m) == 0) {
1737#if 0 /*XXX*/
1738			ifp->if_opackets++;
1739#endif
1740			continue;
1741		}
1742	bad:
1743		if (ni != NULL)
1744			ieee80211_free_node(ni);
1745		bf->bf_node = NULL;
1746		if (bf->bf_m != NULL) {
1747			m_freem(bf->bf_m);
1748			bf->bf_m = NULL;
1749		}
1750
1751		ATH_TXBUF_LOCK(sc);
1752		STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
1753		ATH_TXBUF_UNLOCK(sc);
1754	}
1755}
1756
1757static __inline u_int32_t
1758ath_ff_approx_txtime(struct ath_softc *sc, struct ath_node *an, struct mbuf *m)
1759{
1760	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1761	u_int32_t framelen;
1762	struct ath_buf *bf;
1763
1764	/*
1765	 * Approximate the frame length to be transmitted. A swag to add
1766	 * the following maximal values to the skb payload:
1767	 *   - 32: 802.11 encap + CRC
1768	 *   - 24: encryption overhead (if wep bit)
1769	 *   - 4 + 6: fast-frame header and padding
1770	 *   - 16: 2 LLC FF tunnel headers
1771	 *   - 14: 1 802.3 FF tunnel header (skb already accounts for 2nd)
1772	 */
1773	framelen = m->m_pkthdr.len + 32 + 4 + 6 + 16 + 14;
1774	if (ic->ic_flags & IEEE80211_F_PRIVACY)
1775		framelen += 24;
1776	bf = an->an_ff_buf[M_WME_GETAC(m)];
1777	if (bf != NULL)
1778		framelen += bf->bf_m->m_pkthdr.len;
1779	return ath_hal_computetxtime(sc->sc_ah, sc->sc_currates, framelen,
1780			sc->sc_lastdatarix, AH_FALSE);
1781}
1782
1783/*
1784 * Determine if a data frame may be aggregated via ff tunnelling.
1785 * Note the caller is responsible for checking if the destination
1786 * supports fast frames.
1787 *
1788 *  NB: allowing EAPOL frames to be aggregated with other unicast traffic.
1789 *      Do 802.1x EAPOL frames proceed in the clear? Then they couldn't
1790 *      be aggregated with other types of frames when encryption is on?
1791 *
1792 *  NB: assumes lock on an_ff_buf effectively held by txq lock mechanism.
1793 */
1794static __inline int
1795ath_ff_can_aggregate(struct ath_softc *sc,
1796	struct ath_node *an, struct mbuf *m, int *flushq)
1797{
1798	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1799	struct ath_txq *txq;
1800	u_int32_t txoplimit;
1801	u_int pri;
1802
1803	*flushq = 0;
1804
1805	/*
1806	 * If there is no frame to combine with and the txq has
1807	 * fewer frames than the minimum required; then do not
1808	 * attempt to aggregate this frame.
1809	 */
1810	pri = M_WME_GETAC(m);
1811	txq = sc->sc_ac2q[pri];
1812	if (an->an_ff_buf[pri] == NULL && txq->axq_depth < sc->sc_fftxqmin)
1813		return 0;
1814	/*
1815	 * When not in station mode never aggregate a multicast
1816	 * frame; this insures, for example, that a combined frame
1817	 * does not require multiple encryption keys when using
1818	 * 802.1x/WPA.
1819	 */
1820	if (ic->ic_opmode != IEEE80211_M_STA &&
1821	    ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost))
1822		return 0;
1823	/*
1824	 * Consult the max bursting interval to insure a combined
1825	 * frame fits within the TxOp window.
1826	 */
1827	txoplimit = IEEE80211_TXOP_TO_US(
1828		ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit);
1829	if (txoplimit != 0 && ath_ff_approx_txtime(sc, an, m) > txoplimit) {
1830		DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1831			"%s: FF TxOp violation\n", __func__);
1832		if (an->an_ff_buf[pri] != NULL)
1833			*flushq = 1;
1834		return 0;
1835	}
1836	return 1;		/* try to aggregate */
1837}
1838
1839/*
1840 * Check if the supplied frame can be partnered with an existing
1841 * or pending frame.  Return a reference to any frame that should be
1842 * sent on return; otherwise return NULL.
1843 */
1844static struct mbuf *
1845ath_ff_check(struct ath_softc *sc, struct ath_txq *txq,
1846	struct ath_buf *bf, struct mbuf *m, struct ieee80211_node *ni)
1847{
1848	struct ath_node *an = ATH_NODE(ni);
1849	struct ath_buf *bfstaged;
1850	int ff_flush, pri;
1851
1852	/*
1853	 * Check if the supplied frame can be aggregated.
1854	 *
1855	 * NB: we use the txq lock to protect references to
1856	 *     an->an_ff_txbuf in ath_ff_can_aggregate().
1857	 */
1858	ATH_TXQ_LOCK(txq);
1859	pri = M_WME_GETAC(m);
1860	if (ath_ff_can_aggregate(sc, an, m, &ff_flush)) {
1861		struct ath_buf *bfstaged = an->an_ff_buf[pri];
1862		if (bfstaged != NULL) {
1863			/*
1864			 * A frame is available for partnering; remove
1865			 * it, chain it to this one, and encapsulate.
1866			 */
1867			an->an_ff_buf[pri] = NULL;
1868			TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1869			ATH_TXQ_UNLOCK(txq);
1870
1871			/*
1872			 * Chain mbufs and add FF magic.
1873			 */
1874			DPRINTF(sc, ATH_DEBUG_FF,
1875				"[%s] aggregate fast-frame, age %u\n",
1876				ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1877			m->m_nextpkt = NULL;
1878			bfstaged->bf_m->m_nextpkt = m;
1879			m = bfstaged->bf_m;
1880			bfstaged->bf_m = NULL;
1881			m->m_flags |= M_FF;
1882			/*
1883			 * Release the node reference held while
1884			 * the packet sat on an_ff_buf[]
1885			 */
1886			bfstaged->bf_node = NULL;
1887			ieee80211_free_node(ni);
1888
1889			/*
1890			 * Return bfstaged to the free list.
1891			 */
1892			ATH_TXBUF_LOCK(sc);
1893			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bfstaged, bf_list);
1894			ATH_TXBUF_UNLOCK(sc);
1895
1896			return m;		/* ready to go */
1897		} else {
1898			/*
1899			 * No frame available, queue this frame to wait
1900			 * for a partner.  Note that we hold the buffer
1901			 * and a reference to the node; we need the
1902			 * buffer in particular so we're certain we
1903			 * can flush the frame at a later time.
1904			 */
1905			DPRINTF(sc, ATH_DEBUG_FF,
1906				"[%s] stage fast-frame, age %u\n",
1907				ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1908
1909			bf->bf_m = m;
1910			bf->bf_node = ni;	/* NB: held reference */
1911			bf->bf_age = txq->axq_curage;
1912			an->an_ff_buf[pri] = bf;
1913			TAILQ_INSERT_HEAD(&txq->axq_stageq, bf, bf_stagelist);
1914			ATH_TXQ_UNLOCK(txq);
1915
1916			return NULL;		/* consumed */
1917		}
1918	}
1919	/*
1920	 * Frame could not be aggregated, it needs to be returned
1921	 * to the caller for immediate transmission.  In addition
1922	 * we check if we should first flush a frame from the
1923	 * staging queue before sending this one.
1924	 *
1925	 * NB: ath_ff_can_aggregate only marks ff_flush if a frame
1926	 *     is present to flush.
1927	 */
1928	if (ff_flush) {
1929		int pktlen;
1930
1931		bfstaged = an->an_ff_buf[pri];
1932		an->an_ff_buf[pri] = NULL;
1933		TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1934		ATH_TXQ_UNLOCK(txq);
1935
1936		DPRINTF(sc, ATH_DEBUG_FF, "[%s] flush staged frame\n",
1937			ether_sprintf(an->an_node.ni_macaddr));
1938
1939		/* encap and xmit */
1940		bfstaged->bf_m = ieee80211_encap(ni, bfstaged->bf_m);
1941		if (bfstaged->bf_m == NULL) {
1942			DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1943				"%s: discard, encap failure\n", __func__);
1944			sc->sc_stats.ast_tx_encap++;
1945			goto ff_flushbad;
1946		}
1947		pktlen = bfstaged->bf_m->m_pkthdr.len;
1948		if (ath_tx_start(sc, ni, bfstaged, bfstaged->bf_m)) {
1949			DPRINTF(sc, ATH_DEBUG_XMIT,
1950				"%s: discard, xmit failure\n", __func__);
1951	ff_flushbad:
1952			/*
1953			 * Unable to transmit frame that was on the staging
1954			 * queue.  Reclaim the node reference and other
1955			 * resources.
1956			 */
1957			if (ni != NULL)
1958				ieee80211_free_node(ni);
1959			bfstaged->bf_node = NULL;
1960			if (bfstaged->bf_m != NULL) {
1961				m_freem(bfstaged->bf_m);
1962				bfstaged->bf_m = NULL;
1963			}
1964
1965			ATH_TXBUF_LOCK(sc);
1966			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bfstaged, bf_list);
1967			ATH_TXBUF_UNLOCK(sc);
1968		} else {
1969#if 0
1970			ifp->if_opackets++;
1971#endif
1972		}
1973	} else {
1974		if (an->an_ff_buf[pri] != NULL) {
1975			/*
1976			 * XXX: out-of-order condition only occurs for AP
1977			 * mode and multicast.  There may be no valid way
1978			 * to get this condition.
1979			 */
1980			DPRINTF(sc, ATH_DEBUG_FF, "[%s] out-of-order frame\n",
1981				ether_sprintf(an->an_node.ni_macaddr));
1982			/* XXX stat */
1983		}
1984		ATH_TXQ_UNLOCK(txq);
1985	}
1986	return m;
1987}
1988
1989static struct ath_buf *
1990_ath_getbuf_locked(struct ath_softc *sc)
1991{
1992	struct ath_buf *bf;
1993
1994	ATH_TXBUF_LOCK_ASSERT(sc);
1995
1996	bf = STAILQ_FIRST(&sc->sc_txbuf);
1997	if (bf != NULL && (bf->bf_flags & ATH_BUF_BUSY) == 0)
1998		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1999	else
2000		bf = NULL;
2001	if (bf == NULL) {
2002		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: %s\n", __func__,
2003		    STAILQ_FIRST(&sc->sc_txbuf) == NULL ?
2004			"out of xmit buffers" : "xmit buffer busy");
2005		sc->sc_stats.ast_tx_nobuf++;
2006	}
2007	return bf;
2008}
2009
2010static struct ath_buf *
2011ath_getbuf(struct ath_softc *sc)
2012{
2013	struct ath_buf *bf;
2014
2015	ATH_TXBUF_LOCK(sc);
2016	bf = _ath_getbuf_locked(sc);
2017	if (bf == NULL) {
2018		struct ifnet *ifp = sc->sc_ifp;
2019
2020		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: stop queue\n", __func__);
2021		sc->sc_stats.ast_tx_qstop++;
2022		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
2023	}
2024	ATH_TXBUF_UNLOCK(sc);
2025	return bf;
2026}
2027
2028/*
2029 * Cleanup driver resources when we run out of buffers
2030 * while processing fragments; return the tx buffers
2031 * allocated and drop node references.
2032 */
2033static void
2034ath_txfrag_cleanup(struct ath_softc *sc,
2035	ath_bufhead *frags, struct ieee80211_node *ni)
2036{
2037	struct ath_buf *bf, *next;
2038
2039	ATH_TXBUF_LOCK_ASSERT(sc);
2040
2041	STAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
2042		/* NB: bf assumed clean */
2043		STAILQ_REMOVE_HEAD(frags, bf_list);
2044		STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2045		ieee80211_node_decref(ni);
2046	}
2047}
2048
2049/*
2050 * Setup xmit of a fragmented frame.  Allocate a buffer
2051 * for each frag and bump the node reference count to
2052 * reflect the held reference to be setup by ath_tx_start.
2053 */
2054static int
2055ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
2056	struct mbuf *m0, struct ieee80211_node *ni)
2057{
2058	struct mbuf *m;
2059	struct ath_buf *bf;
2060
2061	ATH_TXBUF_LOCK(sc);
2062	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
2063		bf = _ath_getbuf_locked(sc);
2064		if (bf == NULL) {	/* out of buffers, cleanup */
2065			ath_txfrag_cleanup(sc, frags, ni);
2066			break;
2067		}
2068		ieee80211_node_incref(ni);
2069		STAILQ_INSERT_TAIL(frags, bf, bf_list);
2070	}
2071	ATH_TXBUF_UNLOCK(sc);
2072
2073	return !STAILQ_EMPTY(frags);
2074}
2075
2076static void
2077ath_start(struct ifnet *ifp)
2078{
2079	struct ath_softc *sc = ifp->if_softc;
2080	struct ieee80211_node *ni;
2081	struct ath_buf *bf;
2082	struct mbuf *m, *next;
2083	struct ath_txq *txq;
2084	ath_bufhead frags;
2085	int pri;
2086
2087	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
2088		return;
2089	for (;;) {
2090		/*
2091		 * Grab a TX buffer and associated resources.
2092		 */
2093		bf = ath_getbuf(sc);
2094		if (bf == NULL)
2095			break;
2096
2097		IFQ_DEQUEUE(&ifp->if_snd, m);
2098		if (m == NULL) {
2099			ATH_TXBUF_LOCK(sc);
2100			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2101			ATH_TXBUF_UNLOCK(sc);
2102			break;
2103		}
2104		STAILQ_INIT(&frags);
2105		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2106		pri = M_WME_GETAC(m);
2107		txq = sc->sc_ac2q[pri];
2108		if (IEEE80211_ATH_CAP(ni->ni_vap, ni, IEEE80211_NODE_FF)) {
2109			/*
2110			 * Check queue length; if too deep drop this
2111			 * frame (tail drop considered good).
2112			 */
2113			if (txq->axq_depth >= sc->sc_fftxqmax) {
2114				DPRINTF(sc, ATH_DEBUG_FF,
2115				    "[%s] tail drop on q %u depth %u\n",
2116				    ether_sprintf(ni->ni_macaddr),
2117				    txq->axq_qnum, txq->axq_depth);
2118				sc->sc_stats.ast_tx_qfull++;
2119				m_freem(m);
2120				goto reclaim;
2121			}
2122			m = ath_ff_check(sc, txq, bf, m, ni);
2123			if (m == NULL) {
2124				/* NB: ni ref & bf held on stageq */
2125				continue;
2126			}
2127		}
2128		ifp->if_opackets++;
2129		/*
2130		 * Encapsulate the packet in prep for transmission.
2131		 */
2132		m = ieee80211_encap(ni, m);
2133		if (m == NULL) {
2134			DPRINTF(sc, ATH_DEBUG_XMIT,
2135			    "%s: encapsulation failure\n", __func__);
2136			sc->sc_stats.ast_tx_encap++;
2137			goto bad;
2138		}
2139		/*
2140		 * Check for fragmentation.  If this frame
2141		 * has been broken up verify we have enough
2142		 * buffers to send all the fragments so all
2143		 * go out or none...
2144		 */
2145		if ((m->m_flags & M_FRAG) &&
2146		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2147			DPRINTF(sc, ATH_DEBUG_XMIT,
2148			    "%s: out of txfrag buffers\n", __func__);
2149			sc->sc_stats.ast_tx_nofrag++;
2150			ath_freetx(m);
2151			goto bad;
2152		}
2153	nextfrag:
2154		/*
2155		 * Pass the frame to the h/w for transmission.
2156		 * Fragmented frames have each frag chained together
2157		 * with m_nextpkt.  We know there are sufficient ath_buf's
2158		 * to send all the frags because of work done by
2159		 * ath_txfrag_setup.  We leave m_nextpkt set while
2160		 * calling ath_tx_start so it can use it to extend the
2161		 * the tx duration to cover the subsequent frag and
2162		 * so it can reclaim all the mbufs in case of an error;
2163		 * ath_tx_start clears m_nextpkt once it commits to
2164		 * handing the frame to the hardware.
2165		 */
2166		next = m->m_nextpkt;
2167		if (ath_tx_start(sc, ni, bf, m)) {
2168	bad:
2169			ifp->if_oerrors++;
2170	reclaim:
2171			bf->bf_m = NULL;
2172			bf->bf_node = NULL;
2173			ATH_TXBUF_LOCK(sc);
2174			STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
2175			ath_txfrag_cleanup(sc, &frags, ni);
2176			ATH_TXBUF_UNLOCK(sc);
2177			if (ni != NULL)
2178				ieee80211_free_node(ni);
2179			continue;
2180		}
2181		if (next != NULL) {
2182			/*
2183			 * Beware of state changing between frags.
2184			 * XXX check sta power-save state?
2185			 */
2186			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2187				DPRINTF(sc, ATH_DEBUG_XMIT,
2188				    "%s: flush fragmented packet, state %s\n",
2189				    __func__,
2190				    ieee80211_state_name[ni->ni_vap->iv_state]);
2191				ath_freetx(next);
2192				goto reclaim;
2193			}
2194			m = next;
2195			bf = STAILQ_FIRST(&frags);
2196			KASSERT(bf != NULL, ("no buf for txfrag"));
2197			STAILQ_REMOVE_HEAD(&frags, bf_list);
2198			goto nextfrag;
2199		}
2200
2201		sc->sc_wd_timer = 5;
2202#if 0
2203		/*
2204		 * Flush stale frames from the fast-frame staging queue.
2205		 */
2206		if (ic->ic_opmode != IEEE80211_M_STA)
2207			ath_ff_stageq_flush(sc, txq, ath_ff_ageflushtestdone);
2208#endif
2209	}
2210}
2211
2212static int
2213ath_media_change(struct ifnet *ifp)
2214{
2215	int error = ieee80211_media_change(ifp);
2216	/* NB: only the fixed rate can change and that doesn't need a reset */
2217	return (error == ENETRESET ? 0 : error);
2218}
2219
2220#ifdef ATH_DEBUG
2221static void
2222ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
2223	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
2224{
2225	static const char *ciphers[] = {
2226		"WEP",
2227		"AES-OCB",
2228		"AES-CCM",
2229		"CKIP",
2230		"TKIP",
2231		"CLR",
2232	};
2233	int i, n;
2234
2235	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
2236	for (i = 0, n = hk->kv_len; i < n; i++)
2237		printf("%02x", hk->kv_val[i]);
2238	printf(" mac %s", ether_sprintf(mac));
2239	if (hk->kv_type == HAL_CIPHER_TKIP) {
2240		printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
2241		for (i = 0; i < sizeof(hk->kv_mic); i++)
2242			printf("%02x", hk->kv_mic[i]);
2243		if (!sc->sc_splitmic) {
2244			printf(" txmic ");
2245			for (i = 0; i < sizeof(hk->kv_txmic); i++)
2246				printf("%02x", hk->kv_txmic[i]);
2247		}
2248	}
2249	printf("\n");
2250}
2251#endif
2252
2253/*
2254 * Set a TKIP key into the hardware.  This handles the
2255 * potential distribution of key state to multiple key
2256 * cache slots for TKIP.
2257 */
2258static int
2259ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
2260	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
2261{
2262#define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
2263	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
2264	struct ath_hal *ah = sc->sc_ah;
2265
2266	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
2267		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
2268	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
2269		if (sc->sc_splitmic) {
2270			/*
2271			 * TX key goes at first index, RX key at the rx index.
2272			 * The hal handles the MIC keys at index+64.
2273			 */
2274			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
2275			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
2276			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
2277				return 0;
2278
2279			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2280			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
2281			/* XXX delete tx key on failure? */
2282			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
2283		} else {
2284			/*
2285			 * Room for both TX+RX MIC keys in one key cache
2286			 * slot, just set key at the first index; the hal
2287			 * will handle the rest.
2288			 */
2289			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2290			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
2291			KEYPRINTF(sc, k->wk_keyix, hk, mac);
2292			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2293		}
2294	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
2295		if (sc->sc_splitmic) {
2296			/*
2297			 * NB: must pass MIC key in expected location when
2298			 * the keycache only holds one MIC key per entry.
2299			 */
2300			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
2301		} else
2302			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
2303		KEYPRINTF(sc, k->wk_keyix, hk, mac);
2304		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2305	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
2306		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2307		KEYPRINTF(sc, k->wk_keyix, hk, mac);
2308		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2309	}
2310	return 0;
2311#undef IEEE80211_KEY_XR
2312}
2313
2314/*
2315 * Set a net80211 key into the hardware.  This handles the
2316 * potential distribution of key state to multiple key
2317 * cache slots for TKIP with hardware MIC support.
2318 */
2319static int
2320ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
2321	struct ieee80211_node *bss)
2322{
2323#define	N(a)	(sizeof(a)/sizeof(a[0]))
2324	static const u_int8_t ciphermap[] = {
2325		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
2326		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
2327		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
2328		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
2329		(u_int8_t) -1,		/* 4 is not allocated */
2330		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
2331		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
2332	};
2333	struct ath_hal *ah = sc->sc_ah;
2334	const struct ieee80211_cipher *cip = k->wk_cipher;
2335	u_int8_t gmac[IEEE80211_ADDR_LEN];
2336	const u_int8_t *mac;
2337	HAL_KEYVAL hk;
2338
2339	memset(&hk, 0, sizeof(hk));
2340	/*
2341	 * Software crypto uses a "clear key" so non-crypto
2342	 * state kept in the key cache are maintained and
2343	 * so that rx frames have an entry to match.
2344	 */
2345	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
2346		KASSERT(cip->ic_cipher < N(ciphermap),
2347			("invalid cipher type %u", cip->ic_cipher));
2348		hk.kv_type = ciphermap[cip->ic_cipher];
2349		hk.kv_len = k->wk_keylen;
2350		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
2351	} else
2352		hk.kv_type = HAL_CIPHER_CLR;
2353
2354	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
2355		/*
2356		 * Group keys on hardware that supports multicast frame
2357		 * key search use a mac that is the sender's address with
2358		 * the high bit set instead of the app-specified address.
2359		 */
2360		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
2361		gmac[0] |= 0x80;
2362		mac = gmac;
2363	} else
2364		mac = k->wk_macaddr;
2365
2366	if (hk.kv_type == HAL_CIPHER_TKIP &&
2367	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2368		return ath_keyset_tkip(sc, k, &hk, mac);
2369	} else {
2370		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
2371		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
2372	}
2373#undef N
2374}
2375
2376/*
2377 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2378 * each key, one for decrypt/encrypt and the other for the MIC.
2379 */
2380static u_int16_t
2381key_alloc_2pair(struct ath_softc *sc,
2382	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2383{
2384#define	N(a)	(sizeof(a)/sizeof(a[0]))
2385	u_int i, keyix;
2386
2387	KASSERT(sc->sc_splitmic, ("key cache !split"));
2388	/* XXX could optimize */
2389	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2390		u_int8_t b = sc->sc_keymap[i];
2391		if (b != 0xff) {
2392			/*
2393			 * One or more slots in this byte are free.
2394			 */
2395			keyix = i*NBBY;
2396			while (b & 1) {
2397		again:
2398				keyix++;
2399				b >>= 1;
2400			}
2401			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
2402			if (isset(sc->sc_keymap, keyix+32) ||
2403			    isset(sc->sc_keymap, keyix+64) ||
2404			    isset(sc->sc_keymap, keyix+32+64)) {
2405				/* full pair unavailable */
2406				/* XXX statistic */
2407				if (keyix == (i+1)*NBBY) {
2408					/* no slots were appropriate, advance */
2409					continue;
2410				}
2411				goto again;
2412			}
2413			setbit(sc->sc_keymap, keyix);
2414			setbit(sc->sc_keymap, keyix+64);
2415			setbit(sc->sc_keymap, keyix+32);
2416			setbit(sc->sc_keymap, keyix+32+64);
2417			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2418				"%s: key pair %u,%u %u,%u\n",
2419				__func__, keyix, keyix+64,
2420				keyix+32, keyix+32+64);
2421			*txkeyix = keyix;
2422			*rxkeyix = keyix+32;
2423			return 1;
2424		}
2425	}
2426	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2427	return 0;
2428#undef N
2429}
2430
2431/*
2432 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2433 * each key, one for decrypt/encrypt and the other for the MIC.
2434 */
2435static u_int16_t
2436key_alloc_pair(struct ath_softc *sc,
2437	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2438{
2439#define	N(a)	(sizeof(a)/sizeof(a[0]))
2440	u_int i, keyix;
2441
2442	KASSERT(!sc->sc_splitmic, ("key cache split"));
2443	/* XXX could optimize */
2444	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2445		u_int8_t b = sc->sc_keymap[i];
2446		if (b != 0xff) {
2447			/*
2448			 * One or more slots in this byte are free.
2449			 */
2450			keyix = i*NBBY;
2451			while (b & 1) {
2452		again:
2453				keyix++;
2454				b >>= 1;
2455			}
2456			if (isset(sc->sc_keymap, keyix+64)) {
2457				/* full pair unavailable */
2458				/* XXX statistic */
2459				if (keyix == (i+1)*NBBY) {
2460					/* no slots were appropriate, advance */
2461					continue;
2462				}
2463				goto again;
2464			}
2465			setbit(sc->sc_keymap, keyix);
2466			setbit(sc->sc_keymap, keyix+64);
2467			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2468				"%s: key pair %u,%u\n",
2469				__func__, keyix, keyix+64);
2470			*txkeyix = *rxkeyix = keyix;
2471			return 1;
2472		}
2473	}
2474	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2475	return 0;
2476#undef N
2477}
2478
2479/*
2480 * Allocate a single key cache slot.
2481 */
2482static int
2483key_alloc_single(struct ath_softc *sc,
2484	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2485{
2486#define	N(a)	(sizeof(a)/sizeof(a[0]))
2487	u_int i, keyix;
2488
2489	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2490	for (i = 0; i < N(sc->sc_keymap); i++) {
2491		u_int8_t b = sc->sc_keymap[i];
2492		if (b != 0xff) {
2493			/*
2494			 * One or more slots are free.
2495			 */
2496			keyix = i*NBBY;
2497			while (b & 1)
2498				keyix++, b >>= 1;
2499			setbit(sc->sc_keymap, keyix);
2500			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2501				__func__, keyix);
2502			*txkeyix = *rxkeyix = keyix;
2503			return 1;
2504		}
2505	}
2506	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2507	return 0;
2508#undef N
2509}
2510
2511/*
2512 * Allocate one or more key cache slots for a uniacst key.  The
2513 * key itself is needed only to identify the cipher.  For hardware
2514 * TKIP with split cipher+MIC keys we allocate two key cache slot
2515 * pairs so that we can setup separate TX and RX MIC keys.  Note
2516 * that the MIC key for a TKIP key at slot i is assumed by the
2517 * hardware to be at slot i+64.  This limits TKIP keys to the first
2518 * 64 entries.
2519 */
2520static int
2521ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2522	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2523{
2524	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2525
2526	/*
2527	 * Group key allocation must be handled specially for
2528	 * parts that do not support multicast key cache search
2529	 * functionality.  For those parts the key id must match
2530	 * the h/w key index so lookups find the right key.  On
2531	 * parts w/ the key search facility we install the sender's
2532	 * mac address (with the high bit set) and let the hardware
2533	 * find the key w/o using the key id.  This is preferred as
2534	 * it permits us to support multiple users for adhoc and/or
2535	 * multi-station operation.
2536	 */
2537	if (k->wk_keyix != IEEE80211_KEYIX_NONE ||	/* global key */
2538	    ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey)) {
2539		if (!(&vap->iv_nw_keys[0] <= k &&
2540		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2541			/* should not happen */
2542			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2543				"%s: bogus group key\n", __func__);
2544			return 0;
2545		}
2546		/*
2547		 * XXX we pre-allocate the global keys so
2548		 * have no way to check if they've already been allocated.
2549		 */
2550		*keyix = *rxkeyix = k - vap->iv_nw_keys;
2551		return 1;
2552	}
2553
2554	/*
2555	 * We allocate two pair for TKIP when using the h/w to do
2556	 * the MIC.  For everything else, including software crypto,
2557	 * we allocate a single entry.  Note that s/w crypto requires
2558	 * a pass-through slot on the 5211 and 5212.  The 5210 does
2559	 * not support pass-through cache entries and we map all
2560	 * those requests to slot 0.
2561	 */
2562	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2563		return key_alloc_single(sc, keyix, rxkeyix);
2564	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2565	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2566		if (sc->sc_splitmic)
2567			return key_alloc_2pair(sc, keyix, rxkeyix);
2568		else
2569			return key_alloc_pair(sc, keyix, rxkeyix);
2570	} else {
2571		return key_alloc_single(sc, keyix, rxkeyix);
2572	}
2573}
2574
2575/*
2576 * Delete an entry in the key cache allocated by ath_key_alloc.
2577 */
2578static int
2579ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2580{
2581	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2582	struct ath_hal *ah = sc->sc_ah;
2583	const struct ieee80211_cipher *cip = k->wk_cipher;
2584	u_int keyix = k->wk_keyix;
2585
2586	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2587
2588	ath_hal_keyreset(ah, keyix);
2589	/*
2590	 * Handle split tx/rx keying required for TKIP with h/w MIC.
2591	 */
2592	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2593	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2594		ath_hal_keyreset(ah, keyix+32);		/* RX key */
2595	if (keyix >= IEEE80211_WEP_NKID) {
2596		/*
2597		 * Don't touch keymap entries for global keys so
2598		 * they are never considered for dynamic allocation.
2599		 */
2600		clrbit(sc->sc_keymap, keyix);
2601		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2602		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2603			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
2604			if (sc->sc_splitmic) {
2605				/* +32 for RX key, +32+64 for RX key MIC */
2606				clrbit(sc->sc_keymap, keyix+32);
2607				clrbit(sc->sc_keymap, keyix+32+64);
2608			}
2609		}
2610	}
2611	return 1;
2612}
2613
2614/*
2615 * Set the key cache contents for the specified key.  Key cache
2616 * slot(s) must already have been allocated by ath_key_alloc.
2617 */
2618static int
2619ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
2620	const u_int8_t mac[IEEE80211_ADDR_LEN])
2621{
2622	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2623
2624	return ath_keyset(sc, k, vap->iv_bss);
2625}
2626
2627/*
2628 * Block/unblock tx+rx processing while a key change is done.
2629 * We assume the caller serializes key management operations
2630 * so we only need to worry about synchronization with other
2631 * uses that originate in the driver.
2632 */
2633static void
2634ath_key_update_begin(struct ieee80211vap *vap)
2635{
2636	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2637	struct ath_softc *sc = ifp->if_softc;
2638
2639	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2640	taskqueue_block(sc->sc_tq);
2641	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2642}
2643
2644static void
2645ath_key_update_end(struct ieee80211vap *vap)
2646{
2647	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2648	struct ath_softc *sc = ifp->if_softc;
2649
2650	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2651	IF_UNLOCK(&ifp->if_snd);
2652	taskqueue_unblock(sc->sc_tq);
2653}
2654
2655/*
2656 * Calculate the receive filter according to the
2657 * operating mode and state:
2658 *
2659 * o always accept unicast, broadcast, and multicast traffic
2660 * o accept PHY error frames when hardware doesn't have MIB support
2661 *   to count and we need them for ANI (sta mode only until recently)
2662 *   and we are not scanning (ANI is disabled)
2663 *   NB: older hal's add rx filter bits out of sight and we need to
2664 *	 blindly preserve them
2665 * o probe request frames are accepted only when operating in
2666 *   hostap, adhoc, or monitor modes
2667 * o enable promiscuous mode
2668 *   - when in monitor mode
2669 *   - if interface marked PROMISC (assumes bridge setting is filtered)
2670 * o accept beacons:
2671 *   - when operating in station mode for collecting rssi data when
2672 *     the station is otherwise quiet, or
2673 *   - when operating in adhoc mode so the 802.11 layer creates
2674 *     node table entries for peers,
2675 *   - when scanning
2676 *   - when doing s/w beacon miss (e.g. for ap+sta)
2677 *   - when operating in ap mode in 11g to detect overlapping bss that
2678 *     require protection
2679 * o accept control frames:
2680 *   - when in monitor mode
2681 * XXX BAR frames for 11n
2682 * XXX HT protection for 11n
2683 */
2684static u_int32_t
2685ath_calcrxfilter(struct ath_softc *sc)
2686{
2687	struct ifnet *ifp = sc->sc_ifp;
2688	struct ieee80211com *ic = ifp->if_l2com;
2689	u_int32_t rfilt;
2690
2691	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2692#if HAL_ABI_VERSION < 0x08011600
2693	rfilt |= (ath_hal_getrxfilter(sc->sc_ah) &
2694		(HAL_RX_FILTER_PHYRADAR | HAL_RX_FILTER_PHYERR));
2695#elif HAL_ABI_VERSION < 0x08060100
2696	if (ic->ic_opmode == IEEE80211_M_STA &&
2697	    !sc->sc_needmib && !sc->sc_scanning)
2698		rfilt |= HAL_RX_FILTER_PHYERR;
2699#else
2700	if (!sc->sc_needmib && !sc->sc_scanning)
2701		rfilt |= HAL_RX_FILTER_PHYERR;
2702#endif
2703	if (ic->ic_opmode != IEEE80211_M_STA)
2704		rfilt |= HAL_RX_FILTER_PROBEREQ;
2705	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2706		rfilt |= HAL_RX_FILTER_PROM;
2707	if (ic->ic_opmode == IEEE80211_M_STA ||
2708	    ic->ic_opmode == IEEE80211_M_IBSS ||
2709	    sc->sc_swbmiss || sc->sc_scanning)
2710		rfilt |= HAL_RX_FILTER_BEACON;
2711	/*
2712	 * NB: We don't recalculate the rx filter when
2713	 * ic_protmode changes; otherwise we could do
2714	 * this only when ic_protmode != NONE.
2715	 */
2716	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2717	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2718		rfilt |= HAL_RX_FILTER_BEACON;
2719	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2720		rfilt |= HAL_RX_FILTER_CONTROL;
2721	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2722	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2723	return rfilt;
2724}
2725
2726static void
2727ath_update_promisc(struct ifnet *ifp)
2728{
2729	struct ath_softc *sc = ifp->if_softc;
2730	u_int32_t rfilt;
2731
2732	/* configure rx filter */
2733	rfilt = ath_calcrxfilter(sc);
2734	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2735
2736	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2737}
2738
2739static void
2740ath_update_mcast(struct ifnet *ifp)
2741{
2742	struct ath_softc *sc = ifp->if_softc;
2743	u_int32_t mfilt[2];
2744
2745	/* calculate and install multicast filter */
2746	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2747		struct ifmultiaddr *ifma;
2748		/*
2749		 * Merge multicast addresses to form the hardware filter.
2750		 */
2751		mfilt[0] = mfilt[1] = 0;
2752		IF_ADDR_LOCK(ifp);	/* XXX need some fiddling to remove? */
2753		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2754			caddr_t dl;
2755			u_int32_t val;
2756			u_int8_t pos;
2757
2758			/* calculate XOR of eight 6bit values */
2759			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2760			val = LE_READ_4(dl + 0);
2761			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2762			val = LE_READ_4(dl + 3);
2763			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2764			pos &= 0x3f;
2765			mfilt[pos / 32] |= (1 << (pos % 32));
2766		}
2767		IF_ADDR_UNLOCK(ifp);
2768	} else
2769		mfilt[0] = mfilt[1] = ~0;
2770	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2771	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2772		__func__, mfilt[0], mfilt[1]);
2773}
2774
2775static void
2776ath_mode_init(struct ath_softc *sc)
2777{
2778	struct ifnet *ifp = sc->sc_ifp;
2779	struct ieee80211com *ic = ifp->if_l2com;
2780	struct ath_hal *ah = sc->sc_ah;
2781	u_int32_t rfilt;
2782
2783	/* configure rx filter */
2784	rfilt = ath_calcrxfilter(sc);
2785	ath_hal_setrxfilter(ah, rfilt);
2786
2787	/* configure operational mode */
2788	ath_hal_setopmode(ah);
2789
2790	/*
2791	 * Handle any link-level address change.  Note that we only
2792	 * need to force ic_myaddr; any other addresses are handled
2793	 * as a byproduct of the ifnet code marking the interface
2794	 * down then up.
2795	 *
2796	 * XXX should get from lladdr instead of arpcom but that's more work
2797	 */
2798	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2799	ath_hal_setmac(ah, ic->ic_myaddr);
2800
2801	/* calculate and install multicast filter */
2802	ath_update_mcast(ifp);
2803}
2804
2805/*
2806 * Set the slot time based on the current setting.
2807 */
2808static void
2809ath_setslottime(struct ath_softc *sc)
2810{
2811	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2812	struct ath_hal *ah = sc->sc_ah;
2813	u_int usec;
2814
2815	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2816		usec = 13;
2817	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2818		usec = 21;
2819	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2820		/* honor short/long slot time only in 11g */
2821		/* XXX shouldn't honor on pure g or turbo g channel */
2822		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2823			usec = HAL_SLOT_TIME_9;
2824		else
2825			usec = HAL_SLOT_TIME_20;
2826	} else
2827		usec = HAL_SLOT_TIME_9;
2828
2829	DPRINTF(sc, ATH_DEBUG_RESET,
2830	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2831	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2832	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2833
2834	ath_hal_setslottime(ah, usec);
2835	sc->sc_updateslot = OK;
2836}
2837
2838/*
2839 * Callback from the 802.11 layer to update the
2840 * slot time based on the current setting.
2841 */
2842static void
2843ath_updateslot(struct ifnet *ifp)
2844{
2845	struct ath_softc *sc = ifp->if_softc;
2846	struct ieee80211com *ic = ifp->if_l2com;
2847
2848	/*
2849	 * When not coordinating the BSS, change the hardware
2850	 * immediately.  For other operation we defer the change
2851	 * until beacon updates have propagated to the stations.
2852	 */
2853	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2854		sc->sc_updateslot = UPDATE;
2855	else
2856		ath_setslottime(sc);
2857}
2858
2859/*
2860 * Setup a h/w transmit queue for beacons.
2861 */
2862static int
2863ath_beaconq_setup(struct ath_hal *ah)
2864{
2865	HAL_TXQ_INFO qi;
2866
2867	memset(&qi, 0, sizeof(qi));
2868	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2869	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2870	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2871	/* NB: for dynamic turbo, don't enable any other interrupts */
2872	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2873	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2874}
2875
2876/*
2877 * Setup the transmit queue parameters for the beacon queue.
2878 */
2879static int
2880ath_beaconq_config(struct ath_softc *sc)
2881{
2882#define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2883	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2884	struct ath_hal *ah = sc->sc_ah;
2885	HAL_TXQ_INFO qi;
2886
2887	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2888	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2889		/*
2890		 * Always burst out beacon and CAB traffic.
2891		 */
2892		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2893		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2894		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2895	} else {
2896		struct wmeParams *wmep =
2897			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2898		/*
2899		 * Adhoc mode; important thing is to use 2x cwmin.
2900		 */
2901		qi.tqi_aifs = wmep->wmep_aifsn;
2902		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2903		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2904	}
2905
2906	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2907		device_printf(sc->sc_dev, "unable to update parameters for "
2908			"beacon hardware queue!\n");
2909		return 0;
2910	} else {
2911		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2912		return 1;
2913	}
2914#undef ATH_EXPONENT_TO_VALUE
2915}
2916
2917/*
2918 * Allocate and setup an initial beacon frame.
2919 */
2920static int
2921ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2922{
2923	struct ieee80211vap *vap = ni->ni_vap;
2924	struct ath_vap *avp = ATH_VAP(vap);
2925	struct ath_buf *bf;
2926	struct mbuf *m;
2927	int error;
2928
2929	bf = avp->av_bcbuf;
2930	if (bf->bf_m != NULL) {
2931		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2932		m_freem(bf->bf_m);
2933		bf->bf_m = NULL;
2934	}
2935	if (bf->bf_node != NULL) {
2936		ieee80211_free_node(bf->bf_node);
2937		bf->bf_node = NULL;
2938	}
2939
2940	/*
2941	 * NB: the beacon data buffer must be 32-bit aligned;
2942	 * we assume the mbuf routines will return us something
2943	 * with this alignment (perhaps should assert).
2944	 */
2945	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2946	if (m == NULL) {
2947		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2948		sc->sc_stats.ast_be_nombuf++;
2949		return ENOMEM;
2950	}
2951	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2952				     bf->bf_segs, &bf->bf_nseg,
2953				     BUS_DMA_NOWAIT);
2954	if (error != 0) {
2955		device_printf(sc->sc_dev,
2956		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2957		    __func__, error);
2958		m_freem(m);
2959		return error;
2960	}
2961
2962	/*
2963	 * Calculate a TSF adjustment factor required for staggered
2964	 * beacons.  Note that we assume the format of the beacon
2965	 * frame leaves the tstamp field immediately following the
2966	 * header.
2967	 */
2968	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2969		uint64_t tsfadjust;
2970		struct ieee80211_frame *wh;
2971
2972		/*
2973		 * The beacon interval is in TU's; the TSF is in usecs.
2974		 * We figure out how many TU's to add to align the timestamp
2975		 * then convert to TSF units and handle byte swapping before
2976		 * inserting it in the frame.  The hardware will then add this
2977		 * each time a beacon frame is sent.  Note that we align vap's
2978		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2979		 * timestamp in one beacon interval while the others get a
2980		 * timstamp aligned to the next interval.
2981		 */
2982		tsfadjust = ni->ni_intval *
2983		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2984		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2985
2986		DPRINTF(sc, ATH_DEBUG_BEACON,
2987		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2988		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2989		    avp->av_bslot, ni->ni_intval,
2990		    (long long unsigned) le64toh(tsfadjust));
2991
2992		wh = mtod(m, struct ieee80211_frame *);
2993		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2994	}
2995	bf->bf_m = m;
2996	bf->bf_node = ieee80211_ref_node(ni);
2997
2998	return 0;
2999}
3000
3001/*
3002 * Setup the beacon frame for transmit.
3003 */
3004static void
3005ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
3006{
3007#define	USE_SHPREAMBLE(_ic) \
3008	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
3009		== IEEE80211_F_SHPREAMBLE)
3010	struct ieee80211_node *ni = bf->bf_node;
3011	struct ieee80211com *ic = ni->ni_ic;
3012	struct mbuf *m = bf->bf_m;
3013	struct ath_hal *ah = sc->sc_ah;
3014	struct ath_desc *ds;
3015	int flags, antenna;
3016	const HAL_RATE_TABLE *rt;
3017	u_int8_t rix, rate;
3018
3019	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
3020		__func__, m, m->m_len);
3021
3022	/* setup descriptors */
3023	ds = bf->bf_desc;
3024
3025	flags = HAL_TXDESC_NOACK;
3026	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
3027		ds->ds_link = bf->bf_daddr;	/* self-linked */
3028		flags |= HAL_TXDESC_VEOL;
3029		/*
3030		 * Let hardware handle antenna switching.
3031		 */
3032		antenna = sc->sc_txantenna;
3033	} else {
3034		ds->ds_link = 0;
3035		/*
3036		 * Switch antenna every 4 beacons.
3037		 * XXX assumes two antenna
3038		 */
3039		if (sc->sc_txantenna != 0)
3040			antenna = sc->sc_txantenna;
3041		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
3042			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
3043		else
3044			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
3045	}
3046
3047	KASSERT(bf->bf_nseg == 1,
3048		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
3049	ds->ds_data = bf->bf_segs[0].ds_addr;
3050	/*
3051	 * Calculate rate code.
3052	 * XXX everything at min xmit rate
3053	 */
3054	rix = 0;
3055	rt = sc->sc_currates;
3056	rate = rt->info[rix].rateCode;
3057	if (USE_SHPREAMBLE(ic))
3058		rate |= rt->info[rix].shortPreamble;
3059	ath_hal_setuptxdesc(ah, ds
3060		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
3061		, sizeof(struct ieee80211_frame)/* header length */
3062		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
3063		, ni->ni_txpower		/* txpower XXX */
3064		, rate, 1			/* series 0 rate/tries */
3065		, HAL_TXKEYIX_INVALID		/* no encryption */
3066		, antenna			/* antenna mode */
3067		, flags				/* no ack, veol for beacons */
3068		, 0				/* rts/cts rate */
3069		, 0				/* rts/cts duration */
3070	);
3071	/* NB: beacon's BufLen must be a multiple of 4 bytes */
3072	ath_hal_filltxdesc(ah, ds
3073		, roundup(m->m_len, 4)		/* buffer length */
3074		, AH_TRUE			/* first segment */
3075		, AH_TRUE			/* last segment */
3076		, ds				/* first descriptor */
3077	);
3078#if 0
3079	ath_desc_swap(ds);
3080#endif
3081#undef USE_SHPREAMBLE
3082}
3083
3084static void
3085ath_beacon_update(struct ieee80211vap *vap, int item)
3086{
3087	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
3088
3089	setbit(bo->bo_flags, item);
3090}
3091
3092/*
3093 * Append the contents of src to dst; both queues
3094 * are assumed to be locked.
3095 */
3096static void
3097ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
3098{
3099	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
3100	dst->axq_link = src->axq_link;
3101	src->axq_link = NULL;
3102	dst->axq_depth += src->axq_depth;
3103	src->axq_depth = 0;
3104}
3105
3106/*
3107 * Transmit a beacon frame at SWBA.  Dynamic updates to the
3108 * frame contents are done as needed and the slot time is
3109 * also adjusted based on current state.
3110 */
3111static void
3112ath_beacon_proc(void *arg, int pending)
3113{
3114	struct ath_softc *sc = arg;
3115	struct ath_hal *ah = sc->sc_ah;
3116	struct ieee80211vap *vap;
3117	struct ath_buf *bf;
3118	int slot, otherant;
3119	uint32_t bfaddr;
3120
3121	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
3122		__func__, pending);
3123	/*
3124	 * Check if the previous beacon has gone out.  If
3125	 * not don't try to post another, skip this period
3126	 * and wait for the next.  Missed beacons indicate
3127	 * a problem and should not occur.  If we miss too
3128	 * many consecutive beacons reset the device.
3129	 */
3130	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
3131		sc->sc_bmisscount++;
3132		DPRINTF(sc, ATH_DEBUG_BEACON,
3133			"%s: missed %u consecutive beacons\n",
3134			__func__, sc->sc_bmisscount);
3135		if (sc->sc_bmisscount >= ath_bstuck_threshold)
3136			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
3137		return;
3138	}
3139	if (sc->sc_bmisscount != 0) {
3140		DPRINTF(sc, ATH_DEBUG_BEACON,
3141			"%s: resume beacon xmit after %u misses\n",
3142			__func__, sc->sc_bmisscount);
3143		sc->sc_bmisscount = 0;
3144	}
3145
3146	if (sc->sc_stagbeacons) {			/* staggered beacons */
3147		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3148		uint32_t tsftu;
3149
3150		tsftu = ath_hal_gettsf32(ah) >> 10;
3151		/* XXX lintval */
3152		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
3153		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
3154		bfaddr = 0;
3155		if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
3156			bf = ath_beacon_generate(sc, vap);
3157			if (bf != NULL)
3158				bfaddr = bf->bf_daddr;
3159		}
3160	} else {					/* burst'd beacons */
3161		uint32_t *bflink = &bfaddr;
3162
3163		for (slot = 0; slot < ATH_BCBUF; slot++) {
3164			vap = sc->sc_bslot[slot];
3165			if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
3166				bf = ath_beacon_generate(sc, vap);
3167				if (bf != NULL) {
3168					*bflink = bf->bf_daddr;
3169					bflink = &bf->bf_desc->ds_link;
3170				}
3171			}
3172		}
3173		*bflink = 0;				/* terminate list */
3174	}
3175
3176	/*
3177	 * Handle slot time change when a non-ERP station joins/leaves
3178	 * an 11g network.  The 802.11 layer notifies us via callback,
3179	 * we mark updateslot, then wait one beacon before effecting
3180	 * the change.  This gives associated stations at least one
3181	 * beacon interval to note the state change.
3182	 */
3183	/* XXX locking */
3184	if (sc->sc_updateslot == UPDATE) {
3185		sc->sc_updateslot = COMMIT;	/* commit next beacon */
3186		sc->sc_slotupdate = slot;
3187	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
3188		ath_setslottime(sc);		/* commit change to h/w */
3189
3190	/*
3191	 * Check recent per-antenna transmit statistics and flip
3192	 * the default antenna if noticeably more frames went out
3193	 * on the non-default antenna.
3194	 * XXX assumes 2 anntenae
3195	 */
3196	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
3197		otherant = sc->sc_defant & 1 ? 2 : 1;
3198		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
3199			ath_setdefantenna(sc, otherant);
3200		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
3201	}
3202
3203	if (bfaddr != 0) {
3204		/*
3205		 * Stop any current dma and put the new frame on the queue.
3206		 * This should never fail since we check above that no frames
3207		 * are still pending on the queue.
3208		 */
3209		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
3210			DPRINTF(sc, ATH_DEBUG_ANY,
3211				"%s: beacon queue %u did not stop?\n",
3212				__func__, sc->sc_bhalq);
3213		}
3214		/* NB: cabq traffic should already be queued and primed */
3215		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
3216		ath_hal_txstart(ah, sc->sc_bhalq);
3217
3218		sc->sc_stats.ast_be_xmit++;
3219	}
3220}
3221
3222static struct ath_buf *
3223ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
3224{
3225	struct ath_vap *avp = ATH_VAP(vap);
3226	struct ath_txq *cabq = sc->sc_cabq;
3227	struct ath_buf *bf;
3228	struct mbuf *m;
3229	int nmcastq, error;
3230
3231	KASSERT(vap->iv_state == IEEE80211_S_RUN,
3232	    ("not running, state %d", vap->iv_state));
3233	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3234
3235	/*
3236	 * Update dynamic beacon contents.  If this returns
3237	 * non-zero then we need to remap the memory because
3238	 * the beacon frame changed size (probably because
3239	 * of the TIM bitmap).
3240	 */
3241	bf = avp->av_bcbuf;
3242	m = bf->bf_m;
3243	nmcastq = avp->av_mcastq.axq_depth;
3244	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
3245		/* XXX too conservative? */
3246		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3247		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3248					     bf->bf_segs, &bf->bf_nseg,
3249					     BUS_DMA_NOWAIT);
3250		if (error != 0) {
3251			if_printf(vap->iv_ifp,
3252			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3253			    __func__, error);
3254			return NULL;
3255		}
3256	}
3257	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
3258		DPRINTF(sc, ATH_DEBUG_BEACON,
3259		    "%s: cabq did not drain, mcastq %u cabq %u\n",
3260		    __func__, nmcastq, cabq->axq_depth);
3261		sc->sc_stats.ast_cabq_busy++;
3262		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
3263			/*
3264			 * CABQ traffic from a previous vap is still pending.
3265			 * We must drain the q before this beacon frame goes
3266			 * out as otherwise this vap's stations will get cab
3267			 * frames from a different vap.
3268			 * XXX could be slow causing us to miss DBA
3269			 */
3270			ath_tx_draintxq(sc, cabq);
3271		}
3272	}
3273	ath_beacon_setup(sc, bf);
3274	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3275
3276	/*
3277	 * Enable the CAB queue before the beacon queue to
3278	 * insure cab frames are triggered by this beacon.
3279	 */
3280	if (avp->av_boff.bo_tim[4] & 1) {
3281		struct ath_hal *ah = sc->sc_ah;
3282
3283		/* NB: only at DTIM */
3284		ATH_TXQ_LOCK(cabq);
3285		ATH_TXQ_LOCK(&avp->av_mcastq);
3286		if (nmcastq) {
3287			struct ath_buf *bfm;
3288
3289			/*
3290			 * Move frames from the s/w mcast q to the h/w cab q.
3291			 * XXX MORE_DATA bit
3292			 */
3293			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
3294			if (cabq->axq_link != NULL) {
3295				*cabq->axq_link = bfm->bf_daddr;
3296			} else
3297				ath_hal_puttxbuf(ah, cabq->axq_qnum,
3298					bfm->bf_daddr);
3299			ath_txqmove(cabq, &avp->av_mcastq);
3300
3301			sc->sc_stats.ast_cabq_xmit += nmcastq;
3302		}
3303		/* NB: gated by beacon so safe to start here */
3304		ath_hal_txstart(ah, cabq->axq_qnum);
3305		ATH_TXQ_UNLOCK(cabq);
3306		ATH_TXQ_UNLOCK(&avp->av_mcastq);
3307	}
3308	return bf;
3309}
3310
3311static void
3312ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3313{
3314	struct ath_vap *avp = ATH_VAP(vap);
3315	struct ath_hal *ah = sc->sc_ah;
3316	struct ath_buf *bf;
3317	struct mbuf *m;
3318	int error;
3319
3320	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3321
3322	/*
3323	 * Update dynamic beacon contents.  If this returns
3324	 * non-zero then we need to remap the memory because
3325	 * the beacon frame changed size (probably because
3326	 * of the TIM bitmap).
3327	 */
3328	bf = avp->av_bcbuf;
3329	m = bf->bf_m;
3330	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3331		/* XXX too conservative? */
3332		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3333		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3334					     bf->bf_segs, &bf->bf_nseg,
3335					     BUS_DMA_NOWAIT);
3336		if (error != 0) {
3337			if_printf(vap->iv_ifp,
3338			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3339			    __func__, error);
3340			return;
3341		}
3342	}
3343	ath_beacon_setup(sc, bf);
3344	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3345
3346	/* NB: caller is known to have already stopped tx dma */
3347	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3348	ath_hal_txstart(ah, sc->sc_bhalq);
3349}
3350
3351/*
3352 * Reset the hardware after detecting beacons have stopped.
3353 */
3354static void
3355ath_bstuck_proc(void *arg, int pending)
3356{
3357	struct ath_softc *sc = arg;
3358	struct ifnet *ifp = sc->sc_ifp;
3359
3360	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3361		sc->sc_bmisscount);
3362	sc->sc_stats.ast_bstuck++;
3363	ath_reset(ifp);
3364}
3365
3366/*
3367 * Reclaim beacon resources and return buffer to the pool.
3368 */
3369static void
3370ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3371{
3372
3373	if (bf->bf_m != NULL) {
3374		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3375		m_freem(bf->bf_m);
3376		bf->bf_m = NULL;
3377	}
3378	if (bf->bf_node != NULL) {
3379		ieee80211_free_node(bf->bf_node);
3380		bf->bf_node = NULL;
3381	}
3382	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3383}
3384
3385/*
3386 * Reclaim beacon resources.
3387 */
3388static void
3389ath_beacon_free(struct ath_softc *sc)
3390{
3391	struct ath_buf *bf;
3392
3393	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3394		if (bf->bf_m != NULL) {
3395			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3396			m_freem(bf->bf_m);
3397			bf->bf_m = NULL;
3398		}
3399		if (bf->bf_node != NULL) {
3400			ieee80211_free_node(bf->bf_node);
3401			bf->bf_node = NULL;
3402		}
3403	}
3404}
3405
3406/*
3407 * Configure the beacon and sleep timers.
3408 *
3409 * When operating as an AP this resets the TSF and sets
3410 * up the hardware to notify us when we need to issue beacons.
3411 *
3412 * When operating in station mode this sets up the beacon
3413 * timers according to the timestamp of the last received
3414 * beacon and the current TSF, configures PCF and DTIM
3415 * handling, programs the sleep registers so the hardware
3416 * will wakeup in time to receive beacons, and configures
3417 * the beacon miss handling so we'll receive a BMISS
3418 * interrupt when we stop seeing beacons from the AP
3419 * we've associated with.
3420 */
3421static void
3422ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3423{
3424#define	TSF_TO_TU(_h,_l) \
3425	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3426#define	FUDGE	2
3427	struct ath_hal *ah = sc->sc_ah;
3428	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3429	struct ieee80211_node *ni;
3430	u_int32_t nexttbtt, intval, tsftu;
3431	u_int64_t tsf;
3432
3433	if (vap == NULL)
3434		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3435	ni = vap->iv_bss;
3436
3437	/* extract tstamp from last beacon and convert to TU */
3438	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3439			     LE_READ_4(ni->ni_tstamp.data));
3440	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3441		/*
3442		 * For multi-bss ap support beacons are either staggered
3443		 * evenly over N slots or burst together.  For the former
3444		 * arrange for the SWBA to be delivered for each slot.
3445		 * Slots that are not occupied will generate nothing.
3446		 */
3447		/* NB: the beacon interval is kept internally in TU's */
3448		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3449		if (sc->sc_stagbeacons)
3450			intval /= ATH_BCBUF;
3451	} else {
3452		/* NB: the beacon interval is kept internally in TU's */
3453		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3454	}
3455	if (nexttbtt == 0)		/* e.g. for ap mode */
3456		nexttbtt = intval;
3457	else if (intval)		/* NB: can be 0 for monitor mode */
3458		nexttbtt = roundup(nexttbtt, intval);
3459	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3460		__func__, nexttbtt, intval, ni->ni_intval);
3461	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3462		HAL_BEACON_STATE bs;
3463		int dtimperiod, dtimcount;
3464		int cfpperiod, cfpcount;
3465
3466		/*
3467		 * Setup dtim and cfp parameters according to
3468		 * last beacon we received (which may be none).
3469		 */
3470		dtimperiod = ni->ni_dtim_period;
3471		if (dtimperiod <= 0)		/* NB: 0 if not known */
3472			dtimperiod = 1;
3473		dtimcount = ni->ni_dtim_count;
3474		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3475			dtimcount = 0;		/* XXX? */
3476		cfpperiod = 1;			/* NB: no PCF support yet */
3477		cfpcount = 0;
3478		/*
3479		 * Pull nexttbtt forward to reflect the current
3480		 * TSF and calculate dtim+cfp state for the result.
3481		 */
3482		tsf = ath_hal_gettsf64(ah);
3483		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3484		do {
3485			nexttbtt += intval;
3486			if (--dtimcount < 0) {
3487				dtimcount = dtimperiod - 1;
3488				if (--cfpcount < 0)
3489					cfpcount = cfpperiod - 1;
3490			}
3491		} while (nexttbtt < tsftu);
3492		memset(&bs, 0, sizeof(bs));
3493		bs.bs_intval = intval;
3494		bs.bs_nexttbtt = nexttbtt;
3495		bs.bs_dtimperiod = dtimperiod*intval;
3496		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3497		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3498		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3499		bs.bs_cfpmaxduration = 0;
3500#if 0
3501		/*
3502		 * The 802.11 layer records the offset to the DTIM
3503		 * bitmap while receiving beacons; use it here to
3504		 * enable h/w detection of our AID being marked in
3505		 * the bitmap vector (to indicate frames for us are
3506		 * pending at the AP).
3507		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3508		 * XXX enable based on h/w rev for newer chips
3509		 */
3510		bs.bs_timoffset = ni->ni_timoff;
3511#endif
3512		/*
3513		 * Calculate the number of consecutive beacons to miss
3514		 * before taking a BMISS interrupt.
3515		 * Note that we clamp the result to at most 10 beacons.
3516		 */
3517		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3518		if (bs.bs_bmissthreshold > 10)
3519			bs.bs_bmissthreshold = 10;
3520		else if (bs.bs_bmissthreshold <= 0)
3521			bs.bs_bmissthreshold = 1;
3522
3523		/*
3524		 * Calculate sleep duration.  The configuration is
3525		 * given in ms.  We insure a multiple of the beacon
3526		 * period is used.  Also, if the sleep duration is
3527		 * greater than the DTIM period then it makes senses
3528		 * to make it a multiple of that.
3529		 *
3530		 * XXX fixed at 100ms
3531		 */
3532		bs.bs_sleepduration =
3533			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3534		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3535			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3536
3537		DPRINTF(sc, ATH_DEBUG_BEACON,
3538			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3539			, __func__
3540			, tsf, tsftu
3541			, bs.bs_intval
3542			, bs.bs_nexttbtt
3543			, bs.bs_dtimperiod
3544			, bs.bs_nextdtim
3545			, bs.bs_bmissthreshold
3546			, bs.bs_sleepduration
3547			, bs.bs_cfpperiod
3548			, bs.bs_cfpmaxduration
3549			, bs.bs_cfpnext
3550			, bs.bs_timoffset
3551		);
3552		ath_hal_intrset(ah, 0);
3553		ath_hal_beacontimers(ah, &bs);
3554		sc->sc_imask |= HAL_INT_BMISS;
3555		ath_hal_intrset(ah, sc->sc_imask);
3556	} else {
3557		ath_hal_intrset(ah, 0);
3558		if (nexttbtt == intval)
3559			intval |= HAL_BEACON_RESET_TSF;
3560		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3561			/*
3562			 * In IBSS mode enable the beacon timers but only
3563			 * enable SWBA interrupts if we need to manually
3564			 * prepare beacon frames.  Otherwise we use a
3565			 * self-linked tx descriptor and let the hardware
3566			 * deal with things.
3567			 */
3568			intval |= HAL_BEACON_ENA;
3569			if (!sc->sc_hasveol)
3570				sc->sc_imask |= HAL_INT_SWBA;
3571			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3572				/*
3573				 * Pull nexttbtt forward to reflect
3574				 * the current TSF.
3575				 */
3576				tsf = ath_hal_gettsf64(ah);
3577				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3578				do {
3579					nexttbtt += intval;
3580				} while (nexttbtt < tsftu);
3581			}
3582			ath_beaconq_config(sc);
3583		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3584			/*
3585			 * In AP mode we enable the beacon timers and
3586			 * SWBA interrupts to prepare beacon frames.
3587			 */
3588			intval |= HAL_BEACON_ENA;
3589			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3590			ath_beaconq_config(sc);
3591		}
3592		ath_hal_beaconinit(ah, nexttbtt, intval);
3593		sc->sc_bmisscount = 0;
3594		ath_hal_intrset(ah, sc->sc_imask);
3595		/*
3596		 * When using a self-linked beacon descriptor in
3597		 * ibss mode load it once here.
3598		 */
3599		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3600			ath_beacon_start_adhoc(sc, vap);
3601	}
3602	sc->sc_syncbeacon = 0;
3603#undef FUDGE
3604#undef TSF_TO_TU
3605}
3606
3607static void
3608ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3609{
3610	bus_addr_t *paddr = (bus_addr_t*) arg;
3611	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3612	*paddr = segs->ds_addr;
3613}
3614
3615static int
3616ath_descdma_setup(struct ath_softc *sc,
3617	struct ath_descdma *dd, ath_bufhead *head,
3618	const char *name, int nbuf, int ndesc)
3619{
3620#define	DS2PHYS(_dd, _ds) \
3621	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3622	struct ifnet *ifp = sc->sc_ifp;
3623	struct ath_desc *ds;
3624	struct ath_buf *bf;
3625	int i, bsize, error;
3626
3627	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3628	    __func__, name, nbuf, ndesc);
3629
3630	dd->dd_name = name;
3631	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
3632
3633	/*
3634	 * Setup DMA descriptor area.
3635	 */
3636	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3637		       PAGE_SIZE, 0,		/* alignment, bounds */
3638		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3639		       BUS_SPACE_MAXADDR,	/* highaddr */
3640		       NULL, NULL,		/* filter, filterarg */
3641		       dd->dd_desc_len,		/* maxsize */
3642		       1,			/* nsegments */
3643		       dd->dd_desc_len,		/* maxsegsize */
3644		       BUS_DMA_ALLOCNOW,	/* flags */
3645		       NULL,			/* lockfunc */
3646		       NULL,			/* lockarg */
3647		       &dd->dd_dmat);
3648	if (error != 0) {
3649		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3650		return error;
3651	}
3652
3653	/* allocate descriptors */
3654	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3655	if (error != 0) {
3656		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3657			"error %u\n", dd->dd_name, error);
3658		goto fail0;
3659	}
3660
3661	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3662				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3663				 &dd->dd_dmamap);
3664	if (error != 0) {
3665		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3666			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3667		goto fail1;
3668	}
3669
3670	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3671				dd->dd_desc, dd->dd_desc_len,
3672				ath_load_cb, &dd->dd_desc_paddr,
3673				BUS_DMA_NOWAIT);
3674	if (error != 0) {
3675		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3676			dd->dd_name, error);
3677		goto fail2;
3678	}
3679
3680	ds = dd->dd_desc;
3681	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3682	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3683	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3684
3685	/* allocate rx buffers */
3686	bsize = sizeof(struct ath_buf) * nbuf;
3687	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3688	if (bf == NULL) {
3689		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3690			dd->dd_name, bsize);
3691		goto fail3;
3692	}
3693	dd->dd_bufptr = bf;
3694
3695	STAILQ_INIT(head);
3696	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3697		bf->bf_desc = ds;
3698		bf->bf_daddr = DS2PHYS(dd, ds);
3699		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3700				&bf->bf_dmamap);
3701		if (error != 0) {
3702			if_printf(ifp, "unable to create dmamap for %s "
3703				"buffer %u, error %u\n", dd->dd_name, i, error);
3704			ath_descdma_cleanup(sc, dd, head);
3705			return error;
3706		}
3707		STAILQ_INSERT_TAIL(head, bf, bf_list);
3708	}
3709	return 0;
3710fail3:
3711	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3712fail2:
3713	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3714fail1:
3715	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3716fail0:
3717	bus_dma_tag_destroy(dd->dd_dmat);
3718	memset(dd, 0, sizeof(*dd));
3719	return error;
3720#undef DS2PHYS
3721}
3722
3723static void
3724ath_descdma_cleanup(struct ath_softc *sc,
3725	struct ath_descdma *dd, ath_bufhead *head)
3726{
3727	struct ath_buf *bf;
3728	struct ieee80211_node *ni;
3729
3730	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3731	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3732	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3733	bus_dma_tag_destroy(dd->dd_dmat);
3734
3735	STAILQ_FOREACH(bf, head, bf_list) {
3736		if (bf->bf_m) {
3737			m_freem(bf->bf_m);
3738			bf->bf_m = NULL;
3739		}
3740		if (bf->bf_dmamap != NULL) {
3741			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3742			bf->bf_dmamap = NULL;
3743		}
3744		ni = bf->bf_node;
3745		bf->bf_node = NULL;
3746		if (ni != NULL) {
3747			/*
3748			 * Reclaim node reference.
3749			 */
3750			ieee80211_free_node(ni);
3751		}
3752	}
3753
3754	STAILQ_INIT(head);
3755	free(dd->dd_bufptr, M_ATHDEV);
3756	memset(dd, 0, sizeof(*dd));
3757}
3758
3759static int
3760ath_desc_alloc(struct ath_softc *sc)
3761{
3762	int error;
3763
3764	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3765			"rx", ath_rxbuf, 1);
3766	if (error != 0)
3767		return error;
3768
3769	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3770			"tx", ath_txbuf, ATH_TXDESC);
3771	if (error != 0) {
3772		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3773		return error;
3774	}
3775
3776	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3777			"beacon", ATH_BCBUF, 1);
3778	if (error != 0) {
3779		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3780		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3781		return error;
3782	}
3783	return 0;
3784}
3785
3786static void
3787ath_desc_free(struct ath_softc *sc)
3788{
3789
3790	if (sc->sc_bdma.dd_desc_len != 0)
3791		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3792	if (sc->sc_txdma.dd_desc_len != 0)
3793		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3794	if (sc->sc_rxdma.dd_desc_len != 0)
3795		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3796}
3797
3798static struct ieee80211_node *
3799ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3800{
3801	struct ieee80211com *ic = vap->iv_ic;
3802	struct ath_softc *sc = ic->ic_ifp->if_softc;
3803	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3804	struct ath_node *an;
3805
3806	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3807	if (an == NULL) {
3808		/* XXX stat+msg */
3809		return NULL;
3810	}
3811	ath_rate_node_init(sc, an);
3812
3813	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3814	return &an->an_node;
3815}
3816
3817static void
3818ath_node_free(struct ieee80211_node *ni)
3819{
3820	struct ieee80211com *ic = ni->ni_ic;
3821        struct ath_softc *sc = ic->ic_ifp->if_softc;
3822
3823	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3824
3825	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3826	sc->sc_node_free(ni);
3827}
3828
3829static void
3830ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3831{
3832	struct ieee80211com *ic = ni->ni_ic;
3833	struct ath_softc *sc = ic->ic_ifp->if_softc;
3834	struct ath_hal *ah = sc->sc_ah;
3835
3836	*rssi = ic->ic_node_getrssi(ni);
3837	if (ni->ni_chan != IEEE80211_CHAN_ANYC)
3838		*noise = ath_hal_getchannoise(ah, ni->ni_chan);
3839	else
3840		*noise = -95;		/* nominally correct */
3841}
3842
3843static int
3844ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3845{
3846	struct ath_hal *ah = sc->sc_ah;
3847	int error;
3848	struct mbuf *m;
3849	struct ath_desc *ds;
3850
3851	m = bf->bf_m;
3852	if (m == NULL) {
3853		/*
3854		 * NB: by assigning a page to the rx dma buffer we
3855		 * implicitly satisfy the Atheros requirement that
3856		 * this buffer be cache-line-aligned and sized to be
3857		 * multiple of the cache line size.  Not doing this
3858		 * causes weird stuff to happen (for the 5210 at least).
3859		 */
3860		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3861		if (m == NULL) {
3862			DPRINTF(sc, ATH_DEBUG_ANY,
3863				"%s: no mbuf/cluster\n", __func__);
3864			sc->sc_stats.ast_rx_nombuf++;
3865			return ENOMEM;
3866		}
3867		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3868
3869		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3870					     bf->bf_dmamap, m,
3871					     bf->bf_segs, &bf->bf_nseg,
3872					     BUS_DMA_NOWAIT);
3873		if (error != 0) {
3874			DPRINTF(sc, ATH_DEBUG_ANY,
3875			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3876			    __func__, error);
3877			sc->sc_stats.ast_rx_busdma++;
3878			m_freem(m);
3879			return error;
3880		}
3881		KASSERT(bf->bf_nseg == 1,
3882			("multi-segment packet; nseg %u", bf->bf_nseg));
3883		bf->bf_m = m;
3884	}
3885	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3886
3887	/*
3888	 * Setup descriptors.  For receive we always terminate
3889	 * the descriptor list with a self-linked entry so we'll
3890	 * not get overrun under high load (as can happen with a
3891	 * 5212 when ANI processing enables PHY error frames).
3892	 *
3893	 * To insure the last descriptor is self-linked we create
3894	 * each descriptor as self-linked and add it to the end.  As
3895	 * each additional descriptor is added the previous self-linked
3896	 * entry is ``fixed'' naturally.  This should be safe even
3897	 * if DMA is happening.  When processing RX interrupts we
3898	 * never remove/process the last, self-linked, entry on the
3899	 * descriptor list.  This insures the hardware always has
3900	 * someplace to write a new frame.
3901	 */
3902	ds = bf->bf_desc;
3903	ds->ds_link = bf->bf_daddr;	/* link to self */
3904	ds->ds_data = bf->bf_segs[0].ds_addr;
3905	ath_hal_setuprxdesc(ah, ds
3906		, m->m_len		/* buffer size */
3907		, 0
3908	);
3909
3910	if (sc->sc_rxlink != NULL)
3911		*sc->sc_rxlink = bf->bf_daddr;
3912	sc->sc_rxlink = &ds->ds_link;
3913	return 0;
3914}
3915
3916/*
3917 * Extend 15-bit time stamp from rx descriptor to
3918 * a full 64-bit TSF using the specified TSF.
3919 */
3920static __inline u_int64_t
3921ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3922{
3923	if ((tsf & 0x7fff) < rstamp)
3924		tsf -= 0x8000;
3925	return ((tsf &~ 0x7fff) | rstamp);
3926}
3927
3928/*
3929 * Intercept management frames to collect beacon rssi data
3930 * and to do ibss merges.
3931 */
3932static void
3933ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3934	int subtype, int rssi, int noise, u_int32_t rstamp)
3935{
3936	struct ieee80211vap *vap = ni->ni_vap;
3937	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3938
3939	/*
3940	 * Call up first so subsequent work can use information
3941	 * potentially stored in the node (e.g. for ibss merge).
3942	 */
3943	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, noise, rstamp);
3944	switch (subtype) {
3945	case IEEE80211_FC0_SUBTYPE_BEACON:
3946		/* update rssi statistics for use by the hal */
3947		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3948		if (sc->sc_syncbeacon &&
3949		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3950			/*
3951			 * Resync beacon timers using the tsf of the beacon
3952			 * frame we just received.
3953			 */
3954			ath_beacon_config(sc, vap);
3955		}
3956		/* fall thru... */
3957	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3958		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3959		    vap->iv_state == IEEE80211_S_RUN) {
3960			u_int64_t tsf = ath_extend_tsf(rstamp,
3961				ath_hal_gettsf64(sc->sc_ah));
3962			/*
3963			 * Handle ibss merge as needed; check the tsf on the
3964			 * frame before attempting the merge.  The 802.11 spec
3965			 * says the station should change it's bssid to match
3966			 * the oldest station with the same ssid, where oldest
3967			 * is determined by the tsf.  Note that hardware
3968			 * reconfiguration happens through callback to
3969			 * ath_newstate as the state machine will go from
3970			 * RUN -> RUN when this happens.
3971			 */
3972			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3973				DPRINTF(sc, ATH_DEBUG_STATE,
3974				    "ibss merge, rstamp %u tsf %ju "
3975				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3976				    (uintmax_t)ni->ni_tstamp.tsf);
3977				(void) ieee80211_ibss_merge(ni);
3978			}
3979		}
3980		break;
3981	}
3982}
3983
3984/*
3985 * Set the default antenna.
3986 */
3987static void
3988ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3989{
3990	struct ath_hal *ah = sc->sc_ah;
3991
3992	/* XXX block beacon interrupts */
3993	ath_hal_setdefantenna(ah, antenna);
3994	if (sc->sc_defant != antenna)
3995		sc->sc_stats.ast_ant_defswitch++;
3996	sc->sc_defant = antenna;
3997	sc->sc_rxotherant = 0;
3998}
3999
4000static int
4001ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
4002	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
4003{
4004#define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
4005#define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
4006#define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
4007#define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
4008	struct ath_softc *sc = ifp->if_softc;
4009	const HAL_RATE_TABLE *rt;
4010	uint8_t rix;
4011
4012	/*
4013	 * Discard anything shorter than an ack or cts.
4014	 */
4015	if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
4016		DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
4017			__func__, m->m_pkthdr.len);
4018		sc->sc_stats.ast_rx_tooshort++;
4019		return 0;
4020	}
4021	rt = sc->sc_currates;
4022	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4023	rix = rt->rateCodeToIndex[rs->rs_rate];
4024	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
4025	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
4026#ifdef AH_SUPPORT_AR5416
4027	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
4028	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
4029		struct ieee80211com *ic = ifp->if_l2com;
4030
4031		if ((rs->rs_flags & HAL_RX_2040) == 0)
4032			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
4033		else if (IEEE80211_IS_CHAN_HT40U(ic->ic_curchan))
4034			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
4035		else
4036			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
4037		if ((rs->rs_flags & HAL_RX_GI) == 0)
4038			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
4039	}
4040#endif
4041	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
4042	if (rs->rs_status & HAL_RXERR_CRC)
4043		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
4044	/* XXX propagate other error flags from descriptor */
4045	sc->sc_rx_th.wr_antsignal = rs->rs_rssi + nf;
4046	sc->sc_rx_th.wr_antnoise = nf;
4047	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
4048
4049	bpf_mtap2(ifp->if_bpf, &sc->sc_rx_th, sc->sc_rx_th_len, m);
4050
4051	return 1;
4052#undef CHAN_HT
4053#undef CHAN_HT20
4054#undef CHAN_HT40U
4055#undef CHAN_HT40D
4056}
4057
4058static void
4059ath_handle_micerror(struct ieee80211com *ic,
4060	struct ieee80211_frame *wh, int keyix)
4061{
4062	struct ieee80211_node *ni;
4063
4064	/* XXX recheck MIC to deal w/ chips that lie */
4065	/* XXX discard MIC errors on !data frames */
4066	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
4067	if (ni != NULL) {
4068		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
4069		ieee80211_free_node(ni);
4070	}
4071}
4072
4073static void
4074ath_rx_proc(void *arg, int npending)
4075{
4076#define	PA2DESC(_sc, _pa) \
4077	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4078		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4079	struct ath_softc *sc = arg;
4080	struct ath_buf *bf;
4081	struct ifnet *ifp = sc->sc_ifp;
4082	struct ieee80211com *ic = ifp->if_l2com;
4083	struct ath_hal *ah = sc->sc_ah;
4084	struct ath_desc *ds;
4085	struct ath_rx_status *rs;
4086	struct mbuf *m;
4087	struct ieee80211_node *ni;
4088	int len, type, ngood;
4089	u_int phyerr;
4090	HAL_STATUS status;
4091	int16_t nf;
4092	u_int64_t tsf;
4093
4094	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
4095	ngood = 0;
4096	nf = ath_hal_getchannoise(ah, sc->sc_curchan);
4097	sc->sc_stats.ast_rx_noise = nf;
4098	tsf = ath_hal_gettsf64(ah);
4099	do {
4100		bf = STAILQ_FIRST(&sc->sc_rxbuf);
4101		if (bf == NULL) {		/* NB: shouldn't happen */
4102			if_printf(ifp, "%s: no buffer!\n", __func__);
4103			break;
4104		}
4105		m = bf->bf_m;
4106		if (m == NULL) {		/* NB: shouldn't happen */
4107			/*
4108			 * If mbuf allocation failed previously there
4109			 * will be no mbuf; try again to re-populate it.
4110			 */
4111			/* XXX make debug msg */
4112			if_printf(ifp, "%s: no mbuf!\n", __func__);
4113			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
4114			goto rx_next;
4115		}
4116		ds = bf->bf_desc;
4117		if (ds->ds_link == bf->bf_daddr) {
4118			/* NB: never process the self-linked entry at the end */
4119			break;
4120		}
4121		/* XXX sync descriptor memory */
4122		/*
4123		 * Must provide the virtual address of the current
4124		 * descriptor, the physical address, and the virtual
4125		 * address of the next descriptor in the h/w chain.
4126		 * This allows the HAL to look ahead to see if the
4127		 * hardware is done with a descriptor by checking the
4128		 * done bit in the following descriptor and the address
4129		 * of the current descriptor the DMA engine is working
4130		 * on.  All this is necessary because of our use of
4131		 * a self-linked list to avoid rx overruns.
4132		 */
4133		rs = &bf->bf_status.ds_rxstat;
4134		status = ath_hal_rxprocdesc(ah, ds,
4135				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4136#ifdef ATH_DEBUG
4137		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
4138			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
4139#endif
4140		if (status == HAL_EINPROGRESS)
4141			break;
4142		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
4143		if (rs->rs_status != 0) {
4144			if (rs->rs_status & HAL_RXERR_CRC)
4145				sc->sc_stats.ast_rx_crcerr++;
4146			if (rs->rs_status & HAL_RXERR_FIFO)
4147				sc->sc_stats.ast_rx_fifoerr++;
4148			if (rs->rs_status & HAL_RXERR_PHY) {
4149				sc->sc_stats.ast_rx_phyerr++;
4150				phyerr = rs->rs_phyerr & 0x1f;
4151				sc->sc_stats.ast_rx_phy[phyerr]++;
4152				goto rx_error;	/* NB: don't count in ierrors */
4153			}
4154			if (rs->rs_status & HAL_RXERR_DECRYPT) {
4155				/*
4156				 * Decrypt error.  If the error occurred
4157				 * because there was no hardware key, then
4158				 * let the frame through so the upper layers
4159				 * can process it.  This is necessary for 5210
4160				 * parts which have no way to setup a ``clear''
4161				 * key cache entry.
4162				 *
4163				 * XXX do key cache faulting
4164				 */
4165				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
4166					goto rx_accept;
4167				sc->sc_stats.ast_rx_badcrypt++;
4168			}
4169			if (rs->rs_status & HAL_RXERR_MIC) {
4170				sc->sc_stats.ast_rx_badmic++;
4171				/*
4172				 * Do minimal work required to hand off
4173				 * the 802.11 header for notifcation.
4174				 */
4175				/* XXX frag's and qos frames */
4176				len = rs->rs_datalen;
4177				if (len >= sizeof (struct ieee80211_frame)) {
4178					bus_dmamap_sync(sc->sc_dmat,
4179					    bf->bf_dmamap,
4180					    BUS_DMASYNC_POSTREAD);
4181					ath_handle_micerror(ic,
4182					    mtod(m, struct ieee80211_frame *),
4183					    sc->sc_splitmic ?
4184						rs->rs_keyix-32 : rs->rs_keyix);
4185				}
4186			}
4187			ifp->if_ierrors++;
4188rx_error:
4189			/*
4190			 * Cleanup any pending partial frame.
4191			 */
4192			if (sc->sc_rxpending != NULL) {
4193				m_freem(sc->sc_rxpending);
4194				sc->sc_rxpending = NULL;
4195			}
4196			/*
4197			 * When a tap is present pass error frames
4198			 * that have been requested.  By default we
4199			 * pass decrypt+mic errors but others may be
4200			 * interesting (e.g. crc).
4201			 */
4202			if (bpf_peers_present(ifp->if_bpf) &&
4203			    (rs->rs_status & sc->sc_monpass)) {
4204				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4205				    BUS_DMASYNC_POSTREAD);
4206				/* NB: bpf needs the mbuf length setup */
4207				len = rs->rs_datalen;
4208				m->m_pkthdr.len = m->m_len = len;
4209				(void) ath_rx_tap(ifp, m, rs, tsf, nf);
4210			}
4211			/* XXX pass MIC errors up for s/w reclaculation */
4212			goto rx_next;
4213		}
4214rx_accept:
4215		/*
4216		 * Sync and unmap the frame.  At this point we're
4217		 * committed to passing the mbuf somewhere so clear
4218		 * bf_m; this means a new mbuf must be allocated
4219		 * when the rx descriptor is setup again to receive
4220		 * another frame.
4221		 */
4222		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4223		    BUS_DMASYNC_POSTREAD);
4224		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4225		bf->bf_m = NULL;
4226
4227		len = rs->rs_datalen;
4228		m->m_len = len;
4229
4230		if (rs->rs_more) {
4231			/*
4232			 * Frame spans multiple descriptors; save
4233			 * it for the next completed descriptor, it
4234			 * will be used to construct a jumbogram.
4235			 */
4236			if (sc->sc_rxpending != NULL) {
4237				/* NB: max frame size is currently 2 clusters */
4238				sc->sc_stats.ast_rx_toobig++;
4239				m_freem(sc->sc_rxpending);
4240			}
4241			m->m_pkthdr.rcvif = ifp;
4242			m->m_pkthdr.len = len;
4243			sc->sc_rxpending = m;
4244			goto rx_next;
4245		} else if (sc->sc_rxpending != NULL) {
4246			/*
4247			 * This is the second part of a jumbogram,
4248			 * chain it to the first mbuf, adjust the
4249			 * frame length, and clear the rxpending state.
4250			 */
4251			sc->sc_rxpending->m_next = m;
4252			sc->sc_rxpending->m_pkthdr.len += len;
4253			m = sc->sc_rxpending;
4254			sc->sc_rxpending = NULL;
4255		} else {
4256			/*
4257			 * Normal single-descriptor receive; setup
4258			 * the rcvif and packet length.
4259			 */
4260			m->m_pkthdr.rcvif = ifp;
4261			m->m_pkthdr.len = len;
4262		}
4263
4264		ifp->if_ipackets++;
4265		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
4266
4267		if (bpf_peers_present(ifp->if_bpf) &&
4268		    !ath_rx_tap(ifp, m, rs, tsf, nf)) {
4269			m_freem(m);		/* XXX reclaim */
4270			goto rx_next;
4271		}
4272
4273		/*
4274		 * From this point on we assume the frame is at least
4275		 * as large as ieee80211_frame_min; verify that.
4276		 */
4277		if (len < IEEE80211_MIN_LEN) {
4278			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
4279				__func__, len);
4280			sc->sc_stats.ast_rx_tooshort++;
4281			m_freem(m);
4282			goto rx_next;
4283		}
4284
4285		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
4286			const HAL_RATE_TABLE *rt = sc->sc_currates;
4287			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
4288
4289			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
4290			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
4291		}
4292
4293		m_adj(m, -IEEE80211_CRC_LEN);
4294
4295		/*
4296		 * Locate the node for sender, track state, and then
4297		 * pass the (referenced) node up to the 802.11 layer
4298		 * for its use.
4299		 */
4300		ni = ieee80211_find_rxnode_withkey(ic,
4301			mtod(m, const struct ieee80211_frame_min *),
4302			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
4303				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4304		if (ni != NULL) {
4305			/*
4306			 * Sending station is known, dispatch directly.
4307			 */
4308#ifdef ATH_SUPPORT_TDMA
4309			sc->sc_tdmars = rs;
4310#endif
4311			type = ieee80211_input(ni, m,
4312			    rs->rs_rssi, nf, rs->rs_tstamp);
4313			ieee80211_free_node(ni);
4314			/*
4315			 * Arrange to update the last rx timestamp only for
4316			 * frames from our ap when operating in station mode.
4317			 * This assumes the rx key is always setup when
4318			 * associated.
4319			 */
4320			if (ic->ic_opmode == IEEE80211_M_STA &&
4321			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4322				ngood++;
4323		} else {
4324			type = ieee80211_input_all(ic, m,
4325			    rs->rs_rssi, nf, rs->rs_tstamp);
4326		}
4327		/*
4328		 * Track rx rssi and do any rx antenna management.
4329		 */
4330		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4331		if (sc->sc_diversity) {
4332			/*
4333			 * When using fast diversity, change the default rx
4334			 * antenna if diversity chooses the other antenna 3
4335			 * times in a row.
4336			 */
4337			if (sc->sc_defant != rs->rs_antenna) {
4338				if (++sc->sc_rxotherant >= 3)
4339					ath_setdefantenna(sc, rs->rs_antenna);
4340			} else
4341				sc->sc_rxotherant = 0;
4342		}
4343		if (sc->sc_softled) {
4344			/*
4345			 * Blink for any data frame.  Otherwise do a
4346			 * heartbeat-style blink when idle.  The latter
4347			 * is mainly for station mode where we depend on
4348			 * periodic beacon frames to trigger the poll event.
4349			 */
4350			if (type == IEEE80211_FC0_TYPE_DATA) {
4351				const HAL_RATE_TABLE *rt = sc->sc_currates;
4352				ath_led_event(sc,
4353				    rt->rateCodeToIndex[rs->rs_rate]);
4354			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4355				ath_led_event(sc, 0);
4356		}
4357rx_next:
4358		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4359	} while (ath_rxbuf_init(sc, bf) == 0);
4360
4361	/* rx signal state monitoring */
4362	ath_hal_rxmonitor(ah, &sc->sc_halstats, sc->sc_curchan);
4363	if (ngood)
4364		sc->sc_lastrx = tsf;
4365
4366	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
4367	    !IFQ_IS_EMPTY(&ifp->if_snd))
4368		ath_start(ifp);
4369
4370#undef PA2DESC
4371}
4372
4373static void
4374ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4375{
4376	txq->axq_qnum = qnum;
4377	txq->axq_depth = 0;
4378	txq->axq_intrcnt = 0;
4379	txq->axq_link = NULL;
4380	STAILQ_INIT(&txq->axq_q);
4381	ATH_TXQ_LOCK_INIT(sc, txq);
4382	TAILQ_INIT(&txq->axq_stageq);
4383	txq->axq_curage = 0;
4384}
4385
4386/*
4387 * Setup a h/w transmit queue.
4388 */
4389static struct ath_txq *
4390ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4391{
4392#define	N(a)	(sizeof(a)/sizeof(a[0]))
4393	struct ath_hal *ah = sc->sc_ah;
4394	HAL_TXQ_INFO qi;
4395	int qnum;
4396
4397	memset(&qi, 0, sizeof(qi));
4398	qi.tqi_subtype = subtype;
4399	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4400	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4401	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4402	/*
4403	 * Enable interrupts only for EOL and DESC conditions.
4404	 * We mark tx descriptors to receive a DESC interrupt
4405	 * when a tx queue gets deep; otherwise waiting for the
4406	 * EOL to reap descriptors.  Note that this is done to
4407	 * reduce interrupt load and this only defers reaping
4408	 * descriptors, never transmitting frames.  Aside from
4409	 * reducing interrupts this also permits more concurrency.
4410	 * The only potential downside is if the tx queue backs
4411	 * up in which case the top half of the kernel may backup
4412	 * due to a lack of tx descriptors.
4413	 */
4414	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4415	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4416	if (qnum == -1) {
4417		/*
4418		 * NB: don't print a message, this happens
4419		 * normally on parts with too few tx queues
4420		 */
4421		return NULL;
4422	}
4423	if (qnum >= N(sc->sc_txq)) {
4424		device_printf(sc->sc_dev,
4425			"hal qnum %u out of range, max %zu!\n",
4426			qnum, N(sc->sc_txq));
4427		ath_hal_releasetxqueue(ah, qnum);
4428		return NULL;
4429	}
4430	if (!ATH_TXQ_SETUP(sc, qnum)) {
4431		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4432		sc->sc_txqsetup |= 1<<qnum;
4433	}
4434	return &sc->sc_txq[qnum];
4435#undef N
4436}
4437
4438/*
4439 * Setup a hardware data transmit queue for the specified
4440 * access control.  The hal may not support all requested
4441 * queues in which case it will return a reference to a
4442 * previously setup queue.  We record the mapping from ac's
4443 * to h/w queues for use by ath_tx_start and also track
4444 * the set of h/w queues being used to optimize work in the
4445 * transmit interrupt handler and related routines.
4446 */
4447static int
4448ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4449{
4450#define	N(a)	(sizeof(a)/sizeof(a[0]))
4451	struct ath_txq *txq;
4452
4453	if (ac >= N(sc->sc_ac2q)) {
4454		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4455			ac, N(sc->sc_ac2q));
4456		return 0;
4457	}
4458	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4459	if (txq != NULL) {
4460		sc->sc_ac2q[ac] = txq;
4461		return 1;
4462	} else
4463		return 0;
4464#undef N
4465}
4466
4467/*
4468 * Update WME parameters for a transmit queue.
4469 */
4470static int
4471ath_txq_update(struct ath_softc *sc, int ac)
4472{
4473#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4474#define	ATH_TXOP_TO_US(v)		(v<<5)
4475	struct ifnet *ifp = sc->sc_ifp;
4476	struct ieee80211com *ic = ifp->if_l2com;
4477	struct ath_txq *txq = sc->sc_ac2q[ac];
4478	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4479	struct ath_hal *ah = sc->sc_ah;
4480	HAL_TXQ_INFO qi;
4481
4482	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4483#ifdef ATH_SUPPORT_TDMA
4484	if (sc->sc_tdma) {
4485		/*
4486		 * AIFS is zero so there's no pre-transmit wait.  The
4487		 * burst time defines the slot duration and is configured
4488		 * via sysctl.  The QCU is setup to not do post-xmit
4489		 * back off, lockout all lower-priority QCU's, and fire
4490		 * off the DMA beacon alert timer which is setup based
4491		 * on the slot configuration.
4492		 */
4493		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4494			      | HAL_TXQ_TXERRINT_ENABLE
4495			      | HAL_TXQ_TXURNINT_ENABLE
4496			      | HAL_TXQ_TXEOLINT_ENABLE
4497			      | HAL_TXQ_DBA_GATED
4498			      | HAL_TXQ_BACKOFF_DISABLE
4499			      | HAL_TXQ_ARB_LOCKOUT_GLOBAL
4500			      ;
4501		qi.tqi_aifs = 0;
4502		/* XXX +dbaprep? */
4503		qi.tqi_readyTime = sc->sc_tdmaslotlen;
4504		qi.tqi_burstTime = qi.tqi_readyTime;
4505	} else {
4506#endif
4507		qi.tqi_qflags = HAL_TXQ_TXOKINT_ENABLE
4508			      | HAL_TXQ_TXERRINT_ENABLE
4509			      | HAL_TXQ_TXDESCINT_ENABLE
4510			      | HAL_TXQ_TXURNINT_ENABLE
4511			      ;
4512		qi.tqi_aifs = wmep->wmep_aifsn;
4513		qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4514		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4515		qi.tqi_readyTime = 0;
4516		qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4517#ifdef ATH_SUPPORT_TDMA
4518	}
4519#endif
4520
4521	DPRINTF(sc, ATH_DEBUG_RESET,
4522	    "%s: Q%u qflags 0x%x aifs %u cwmin %u cwmax %u burstTime %u\n",
4523	    __func__, txq->axq_qnum, qi.tqi_qflags,
4524	    qi.tqi_aifs, qi.tqi_cwmin, qi.tqi_cwmax, qi.tqi_burstTime);
4525
4526	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4527		if_printf(ifp, "unable to update hardware queue "
4528			"parameters for %s traffic!\n",
4529			ieee80211_wme_acnames[ac]);
4530		return 0;
4531	} else {
4532		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4533		return 1;
4534	}
4535#undef ATH_TXOP_TO_US
4536#undef ATH_EXPONENT_TO_VALUE
4537}
4538
4539/*
4540 * Callback from the 802.11 layer to update WME parameters.
4541 */
4542static int
4543ath_wme_update(struct ieee80211com *ic)
4544{
4545	struct ath_softc *sc = ic->ic_ifp->if_softc;
4546
4547	return !ath_txq_update(sc, WME_AC_BE) ||
4548	    !ath_txq_update(sc, WME_AC_BK) ||
4549	    !ath_txq_update(sc, WME_AC_VI) ||
4550	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4551}
4552
4553/*
4554 * Reclaim resources for a setup queue.
4555 */
4556static void
4557ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4558{
4559
4560	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4561	ATH_TXQ_LOCK_DESTROY(txq);
4562	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4563}
4564
4565/*
4566 * Reclaim all tx queue resources.
4567 */
4568static void
4569ath_tx_cleanup(struct ath_softc *sc)
4570{
4571	int i;
4572
4573	ATH_TXBUF_LOCK_DESTROY(sc);
4574	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4575		if (ATH_TXQ_SETUP(sc, i))
4576			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4577}
4578
4579/*
4580 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
4581 */
4582static int
4583ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
4584{
4585	int i;
4586
4587	for (i = 0; i < rt->rateCount; i++)
4588		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
4589			return i;
4590	return 0;		/* NB: lowest rate */
4591}
4592
4593/*
4594 * Reclaim mbuf resources.  For fragmented frames we
4595 * need to claim each frag chained with m_nextpkt.
4596 */
4597static void
4598ath_freetx(struct mbuf *m)
4599{
4600	struct mbuf *next;
4601
4602	do {
4603		next = m->m_nextpkt;
4604		m->m_nextpkt = NULL;
4605		m_freem(m);
4606	} while ((m = next) != NULL);
4607}
4608
4609static int
4610ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
4611{
4612	struct mbuf *m;
4613	int error;
4614
4615	/*
4616	 * Load the DMA map so any coalescing is done.  This
4617	 * also calculates the number of descriptors we need.
4618	 */
4619	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4620				     bf->bf_segs, &bf->bf_nseg,
4621				     BUS_DMA_NOWAIT);
4622	if (error == EFBIG) {
4623		/* XXX packet requires too many descriptors */
4624		bf->bf_nseg = ATH_TXDESC+1;
4625	} else if (error != 0) {
4626		sc->sc_stats.ast_tx_busdma++;
4627		ath_freetx(m0);
4628		return error;
4629	}
4630	/*
4631	 * Discard null packets and check for packets that
4632	 * require too many TX descriptors.  We try to convert
4633	 * the latter to a cluster.
4634	 */
4635	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
4636		sc->sc_stats.ast_tx_linear++;
4637		m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
4638		if (m == NULL) {
4639			ath_freetx(m0);
4640			sc->sc_stats.ast_tx_nombuf++;
4641			return ENOMEM;
4642		}
4643		m0 = m;
4644		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4645					     bf->bf_segs, &bf->bf_nseg,
4646					     BUS_DMA_NOWAIT);
4647		if (error != 0) {
4648			sc->sc_stats.ast_tx_busdma++;
4649			ath_freetx(m0);
4650			return error;
4651		}
4652		KASSERT(bf->bf_nseg <= ATH_TXDESC,
4653		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
4654	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
4655		sc->sc_stats.ast_tx_nodata++;
4656		ath_freetx(m0);
4657		return EIO;
4658	}
4659	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
4660		__func__, m0, m0->m_pkthdr.len);
4661	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
4662	bf->bf_m = m0;
4663
4664	return 0;
4665}
4666
4667static void
4668ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
4669{
4670	struct ath_hal *ah = sc->sc_ah;
4671	struct ath_desc *ds, *ds0;
4672	int i;
4673
4674	/*
4675	 * Fillin the remainder of the descriptor info.
4676	 */
4677	ds0 = ds = bf->bf_desc;
4678	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4679		ds->ds_data = bf->bf_segs[i].ds_addr;
4680		if (i == bf->bf_nseg - 1)
4681			ds->ds_link = 0;
4682		else
4683			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4684		ath_hal_filltxdesc(ah, ds
4685			, bf->bf_segs[i].ds_len	/* segment length */
4686			, i == 0		/* first segment */
4687			, i == bf->bf_nseg - 1	/* last segment */
4688			, ds0			/* first descriptor */
4689		);
4690		DPRINTF(sc, ATH_DEBUG_XMIT,
4691			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4692			__func__, i, ds->ds_link, ds->ds_data,
4693			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4694	}
4695	/*
4696	 * Insert the frame on the outbound list and pass it on
4697	 * to the hardware.  Multicast frames buffered for power
4698	 * save stations and transmit from the CAB queue are stored
4699	 * on a s/w only queue and loaded on to the CAB queue in
4700	 * the SWBA handler since frames only go out on DTIM and
4701	 * to avoid possible races.
4702	 */
4703	ATH_TXQ_LOCK(txq);
4704	KASSERT((bf->bf_flags & ATH_BUF_BUSY) == 0,
4705	     ("busy status 0x%x", bf->bf_flags));
4706	if (txq->axq_qnum != ATH_TXQ_SWQ) {
4707#ifdef ATH_SUPPORT_TDMA
4708		int qbusy;
4709
4710		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4711		qbusy = ath_hal_txqenabled(ah, txq->axq_qnum);
4712		if (txq->axq_link == NULL) {
4713			/*
4714			 * Be careful writing the address to TXDP.  If
4715			 * the tx q is enabled then this write will be
4716			 * ignored.  Normally this is not an issue but
4717			 * when tdma is in use and the q is beacon gated
4718			 * this race can occur.  If the q is busy then
4719			 * defer the work to later--either when another
4720			 * packet comes along or when we prepare a beacon
4721			 * frame at SWBA.
4722			 */
4723			if (!qbusy) {
4724				ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4725				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4726				DPRINTF(sc, ATH_DEBUG_XMIT,
4727				    "%s: TXDP[%u] = %p (%p) depth %d\n",
4728				    __func__, txq->axq_qnum,
4729				    (caddr_t)bf->bf_daddr, bf->bf_desc,
4730				    txq->axq_depth);
4731			} else {
4732				txq->axq_flags |= ATH_TXQ_PUTPENDING;
4733				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4734				    "%s: Q%u busy, defer enable\n", __func__,
4735				    txq->axq_qnum);
4736			}
4737		} else {
4738			*txq->axq_link = bf->bf_daddr;
4739			DPRINTF(sc, ATH_DEBUG_XMIT,
4740			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4741			    txq->axq_qnum, txq->axq_link,
4742			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4743			if ((txq->axq_flags & ATH_TXQ_PUTPENDING) && !qbusy) {
4744				/*
4745				 * The q was busy when we previously tried
4746				 * to write the address of the first buffer
4747				 * in the chain.  Since it's not busy now
4748				 * handle this chore.  We are certain the
4749				 * buffer at the front is the right one since
4750				 * axq_link is NULL only when the buffer list
4751				 * is/was empty.
4752				 */
4753				ath_hal_puttxbuf(ah, txq->axq_qnum,
4754					STAILQ_FIRST(&txq->axq_q)->bf_daddr);
4755				txq->axq_flags &= ~ATH_TXQ_PUTPENDING;
4756				DPRINTF(sc, ATH_DEBUG_TDMA | ATH_DEBUG_XMIT,
4757				    "%s: Q%u restarted\n", __func__,
4758				    txq->axq_qnum);
4759			}
4760		}
4761#else
4762		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4763		if (txq->axq_link == NULL) {
4764			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4765			DPRINTF(sc, ATH_DEBUG_XMIT,
4766			    "%s: TXDP[%u] = %p (%p) depth %d\n",
4767			    __func__, txq->axq_qnum,
4768			    (caddr_t)bf->bf_daddr, bf->bf_desc,
4769			    txq->axq_depth);
4770		} else {
4771			*txq->axq_link = bf->bf_daddr;
4772			DPRINTF(sc, ATH_DEBUG_XMIT,
4773			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4774			    txq->axq_qnum, txq->axq_link,
4775			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4776		}
4777#endif /* ATH_SUPPORT_TDMA */
4778		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4779		ath_hal_txstart(ah, txq->axq_qnum);
4780	} else {
4781		if (txq->axq_link != NULL) {
4782			struct ath_buf *last = ATH_TXQ_LAST(txq);
4783			struct ieee80211_frame *wh;
4784
4785			/* mark previous frame */
4786			wh = mtod(last->bf_m, struct ieee80211_frame *);
4787			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
4788			bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
4789			    BUS_DMASYNC_PREWRITE);
4790
4791			/* link descriptor */
4792			*txq->axq_link = bf->bf_daddr;
4793		}
4794		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4795		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4796	}
4797	ATH_TXQ_UNLOCK(txq);
4798}
4799
4800static int
4801ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
4802    struct mbuf *m0)
4803{
4804	struct ieee80211vap *vap = ni->ni_vap;
4805	struct ath_vap *avp = ATH_VAP(vap);
4806	struct ath_hal *ah = sc->sc_ah;
4807	struct ifnet *ifp = sc->sc_ifp;
4808	struct ieee80211com *ic = ifp->if_l2com;
4809	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
4810	int error, iswep, ismcast, isfrag, ismrr;
4811	int keyix, hdrlen, pktlen, try0;
4812	u_int8_t rix, txrate, ctsrate;
4813	u_int8_t cix = 0xff;		/* NB: silence compiler */
4814	struct ath_desc *ds;
4815	struct ath_txq *txq;
4816	struct ieee80211_frame *wh;
4817	u_int subtype, flags, ctsduration;
4818	HAL_PKT_TYPE atype;
4819	const HAL_RATE_TABLE *rt;
4820	HAL_BOOL shortPreamble;
4821	struct ath_node *an;
4822	u_int pri;
4823
4824	wh = mtod(m0, struct ieee80211_frame *);
4825	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
4826	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
4827	isfrag = m0->m_flags & M_FRAG;
4828	hdrlen = ieee80211_anyhdrsize(wh);
4829	/*
4830	 * Packet length must not include any
4831	 * pad bytes; deduct them here.
4832	 */
4833	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
4834
4835	if (iswep) {
4836		const struct ieee80211_cipher *cip;
4837		struct ieee80211_key *k;
4838
4839		/*
4840		 * Construct the 802.11 header+trailer for an encrypted
4841		 * frame. The only reason this can fail is because of an
4842		 * unknown or unsupported cipher/key type.
4843		 */
4844		k = ieee80211_crypto_encap(ni, m0);
4845		if (k == NULL) {
4846			/*
4847			 * This can happen when the key is yanked after the
4848			 * frame was queued.  Just discard the frame; the
4849			 * 802.11 layer counts failures and provides
4850			 * debugging/diagnostics.
4851			 */
4852			ath_freetx(m0);
4853			return EIO;
4854		}
4855		/*
4856		 * Adjust the packet + header lengths for the crypto
4857		 * additions and calculate the h/w key index.  When
4858		 * a s/w mic is done the frame will have had any mic
4859		 * added to it prior to entry so m0->m_pkthdr.len will
4860		 * account for it. Otherwise we need to add it to the
4861		 * packet length.
4862		 */
4863		cip = k->wk_cipher;
4864		hdrlen += cip->ic_header;
4865		pktlen += cip->ic_header + cip->ic_trailer;
4866		/* NB: frags always have any TKIP MIC done in s/w */
4867		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
4868			pktlen += cip->ic_miclen;
4869		keyix = k->wk_keyix;
4870
4871		/* packet header may have moved, reset our local pointer */
4872		wh = mtod(m0, struct ieee80211_frame *);
4873	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
4874		/*
4875		 * Use station key cache slot, if assigned.
4876		 */
4877		keyix = ni->ni_ucastkey.wk_keyix;
4878		if (keyix == IEEE80211_KEYIX_NONE)
4879			keyix = HAL_TXKEYIX_INVALID;
4880	} else
4881		keyix = HAL_TXKEYIX_INVALID;
4882
4883	pktlen += IEEE80211_CRC_LEN;
4884
4885	/*
4886	 * Load the DMA map so any coalescing is done.  This
4887	 * also calculates the number of descriptors we need.
4888	 */
4889	error = ath_tx_dmasetup(sc, bf, m0);
4890	if (error != 0)
4891		return error;
4892	bf->bf_node = ni;			/* NB: held reference */
4893	m0 = bf->bf_m;				/* NB: may have changed */
4894	wh = mtod(m0, struct ieee80211_frame *);
4895
4896	/* setup descriptors */
4897	ds = bf->bf_desc;
4898	rt = sc->sc_currates;
4899	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4900
4901	/*
4902	 * NB: the 802.11 layer marks whether or not we should
4903	 * use short preamble based on the current mode and
4904	 * negotiated parameters.
4905	 */
4906	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
4907	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
4908		shortPreamble = AH_TRUE;
4909		sc->sc_stats.ast_tx_shortpre++;
4910	} else {
4911		shortPreamble = AH_FALSE;
4912	}
4913
4914	an = ATH_NODE(ni);
4915	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
4916	ismrr = 0;				/* default no multi-rate retry*/
4917	pri = M_WME_GETAC(m0);			/* honor classification */
4918	/* XXX use txparams instead of fixed values */
4919	/*
4920	 * Calculate Atheros packet type from IEEE80211 packet header,
4921	 * setup for rate calculations, and select h/w transmit queue.
4922	 */
4923	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
4924	case IEEE80211_FC0_TYPE_MGT:
4925		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4926		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
4927			atype = HAL_PKT_TYPE_BEACON;
4928		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4929			atype = HAL_PKT_TYPE_PROBE_RESP;
4930		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
4931			atype = HAL_PKT_TYPE_ATIM;
4932		else
4933			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
4934		rix = an->an_mgmtrix;
4935		txrate = rt->info[rix].rateCode;
4936		if (shortPreamble)
4937			txrate |= rt->info[rix].shortPreamble;
4938		try0 = ATH_TXMGTTRY;
4939		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4940		break;
4941	case IEEE80211_FC0_TYPE_CTL:
4942		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
4943		rix = an->an_mgmtrix;
4944		txrate = rt->info[rix].rateCode;
4945		if (shortPreamble)
4946			txrate |= rt->info[rix].shortPreamble;
4947		try0 = ATH_TXMGTTRY;
4948		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4949		break;
4950	case IEEE80211_FC0_TYPE_DATA:
4951		atype = HAL_PKT_TYPE_NORMAL;		/* default */
4952		/*
4953		 * Data frames: multicast frames go out at a fixed rate,
4954		 * EAPOL frames use the mgmt frame rate; otherwise consult
4955		 * the rate control module for the rate to use.
4956		 */
4957		if (ismcast) {
4958			rix = an->an_mcastrix;
4959			txrate = rt->info[rix].rateCode;
4960			if (shortPreamble)
4961				txrate |= rt->info[rix].shortPreamble;
4962			try0 = 1;
4963		} else if (m0->m_flags & M_EAPOL) {
4964			/* XXX? maybe always use long preamble? */
4965			rix = an->an_mgmtrix;
4966			txrate = rt->info[rix].rateCode;
4967			if (shortPreamble)
4968				txrate |= rt->info[rix].shortPreamble;
4969			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
4970		} else {
4971			ath_rate_findrate(sc, an, shortPreamble, pktlen,
4972				&rix, &try0, &txrate);
4973			sc->sc_txrix = rix;		/* for LED blinking */
4974			sc->sc_lastdatarix = rix;	/* for fast frames */
4975			if (try0 != ATH_TXMAXTRY)
4976				ismrr = 1;
4977		}
4978		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
4979			flags |= HAL_TXDESC_NOACK;
4980		break;
4981	default:
4982		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
4983			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
4984		/* XXX statistic */
4985		ath_freetx(m0);
4986		return EIO;
4987	}
4988	txq = sc->sc_ac2q[pri];
4989
4990	/*
4991	 * When servicing one or more stations in power-save mode
4992	 * (or) if there is some mcast data waiting on the mcast
4993	 * queue (to prevent out of order delivery) multicast
4994	 * frames must be buffered until after the beacon.
4995	 */
4996	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
4997		txq = &avp->av_mcastq;
4998
4999	/*
5000	 * Calculate miscellaneous flags.
5001	 */
5002	if (ismcast) {
5003		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
5004	} else if (pktlen > vap->iv_rtsthreshold &&
5005	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
5006		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
5007		cix = rt->info[rix].controlRate;
5008		sc->sc_stats.ast_tx_rts++;
5009	}
5010	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
5011		sc->sc_stats.ast_tx_noack++;
5012#ifdef ATH_SUPPORT_TDMA
5013	if (sc->sc_tdma && (flags & HAL_TXDESC_NOACK) == 0) {
5014		DPRINTF(sc, ATH_DEBUG_TDMA,
5015		    "%s: discard frame, ACK required w/ TDMA\n", __func__);
5016		sc->sc_stats.ast_tdma_ack++;
5017		ath_freetx(m0);
5018		return EIO;
5019	}
5020#endif
5021
5022	/*
5023	 * If 802.11g protection is enabled, determine whether
5024	 * to use RTS/CTS or just CTS.  Note that this is only
5025	 * done for OFDM unicast frames.
5026	 */
5027	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
5028	    rt->info[rix].phy == IEEE80211_T_OFDM &&
5029	    (flags & HAL_TXDESC_NOACK) == 0) {
5030		/* XXX fragments must use CCK rates w/ protection */
5031		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
5032			flags |= HAL_TXDESC_RTSENA;
5033		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
5034			flags |= HAL_TXDESC_CTSENA;
5035		if (isfrag) {
5036			/*
5037			 * For frags it would be desirable to use the
5038			 * highest CCK rate for RTS/CTS.  But stations
5039			 * farther away may detect it at a lower CCK rate
5040			 * so use the configured protection rate instead
5041			 * (for now).
5042			 */
5043			cix = rt->info[sc->sc_protrix].controlRate;
5044		} else
5045			cix = rt->info[sc->sc_protrix].controlRate;
5046		sc->sc_stats.ast_tx_protect++;
5047	}
5048
5049	/*
5050	 * Calculate duration.  This logically belongs in the 802.11
5051	 * layer but it lacks sufficient information to calculate it.
5052	 */
5053	if ((flags & HAL_TXDESC_NOACK) == 0 &&
5054	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
5055		u_int16_t dur;
5056		if (shortPreamble)
5057			dur = rt->info[rix].spAckDuration;
5058		else
5059			dur = rt->info[rix].lpAckDuration;
5060		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
5061			dur += dur;		/* additional SIFS+ACK */
5062			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
5063			/*
5064			 * Include the size of next fragment so NAV is
5065			 * updated properly.  The last fragment uses only
5066			 * the ACK duration
5067			 */
5068			dur += ath_hal_computetxtime(ah, rt,
5069					m0->m_nextpkt->m_pkthdr.len,
5070					rix, shortPreamble);
5071		}
5072		if (isfrag) {
5073			/*
5074			 * Force hardware to use computed duration for next
5075			 * fragment by disabling multi-rate retry which updates
5076			 * duration based on the multi-rate duration table.
5077			 */
5078			ismrr = 0;
5079			try0 = ATH_TXMGTTRY;	/* XXX? */
5080		}
5081		*(u_int16_t *)wh->i_dur = htole16(dur);
5082	}
5083
5084	/*
5085	 * Calculate RTS/CTS rate and duration if needed.
5086	 */
5087	ctsduration = 0;
5088	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
5089		/*
5090		 * CTS transmit rate is derived from the transmit rate
5091		 * by looking in the h/w rate table.  We must also factor
5092		 * in whether or not a short preamble is to be used.
5093		 */
5094		/* NB: cix is set above where RTS/CTS is enabled */
5095		KASSERT(cix != 0xff, ("cix not setup"));
5096		ctsrate = rt->info[cix].rateCode;
5097		/*
5098		 * Compute the transmit duration based on the frame
5099		 * size and the size of an ACK frame.  We call into the
5100		 * HAL to do the computation since it depends on the
5101		 * characteristics of the actual PHY being used.
5102		 *
5103		 * NB: CTS is assumed the same size as an ACK so we can
5104		 *     use the precalculated ACK durations.
5105		 */
5106		if (shortPreamble) {
5107			ctsrate |= rt->info[cix].shortPreamble;
5108			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
5109				ctsduration += rt->info[cix].spAckDuration;
5110			ctsduration += ath_hal_computetxtime(ah,
5111				rt, pktlen, rix, AH_TRUE);
5112			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
5113				ctsduration += rt->info[rix].spAckDuration;
5114		} else {
5115			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
5116				ctsduration += rt->info[cix].lpAckDuration;
5117			ctsduration += ath_hal_computetxtime(ah,
5118				rt, pktlen, rix, AH_FALSE);
5119			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
5120				ctsduration += rt->info[rix].lpAckDuration;
5121		}
5122		/*
5123		 * Must disable multi-rate retry when using RTS/CTS.
5124		 */
5125		ismrr = 0;
5126		try0 = ATH_TXMGTTRY;		/* XXX */
5127	} else
5128		ctsrate = 0;
5129
5130	/*
5131	 * At this point we are committed to sending the frame
5132	 * and we don't need to look at m_nextpkt; clear it in
5133	 * case this frame is part of frag chain.
5134	 */
5135	m0->m_nextpkt = NULL;
5136
5137	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
5138		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
5139			sc->sc_hwmap[rix].ieeerate, -1);
5140
5141	if (bpf_peers_present(ifp->if_bpf)) {
5142		u_int64_t tsf = ath_hal_gettsf64(ah);
5143
5144		sc->sc_tx_th.wt_tsf = htole64(tsf);
5145		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
5146		if (iswep)
5147			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
5148		if (isfrag)
5149			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
5150		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
5151		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
5152		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
5153
5154		bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
5155	}
5156
5157	/*
5158	 * Determine if a tx interrupt should be generated for
5159	 * this descriptor.  We take a tx interrupt to reap
5160	 * descriptors when the h/w hits an EOL condition or
5161	 * when the descriptor is specifically marked to generate
5162	 * an interrupt.  We periodically mark descriptors in this
5163	 * way to insure timely replenishing of the supply needed
5164	 * for sending frames.  Defering interrupts reduces system
5165	 * load and potentially allows more concurrent work to be
5166	 * done but if done to aggressively can cause senders to
5167	 * backup.
5168	 *
5169	 * NB: use >= to deal with sc_txintrperiod changing
5170	 *     dynamically through sysctl.
5171	 */
5172	if (flags & HAL_TXDESC_INTREQ) {
5173		txq->axq_intrcnt = 0;
5174	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
5175		flags |= HAL_TXDESC_INTREQ;
5176		txq->axq_intrcnt = 0;
5177	}
5178
5179	/*
5180	 * Formulate first tx descriptor with tx controls.
5181	 */
5182	/* XXX check return value? */
5183	ath_hal_setuptxdesc(ah, ds
5184		, pktlen		/* packet length */
5185		, hdrlen		/* header length */
5186		, atype			/* Atheros packet type */
5187		, ni->ni_txpower	/* txpower */
5188		, txrate, try0		/* series 0 rate/tries */
5189		, keyix			/* key cache index */
5190		, sc->sc_txantenna	/* antenna mode */
5191		, flags			/* flags */
5192		, ctsrate		/* rts/cts rate */
5193		, ctsduration		/* rts/cts duration */
5194	);
5195	bf->bf_txflags = flags;
5196	/*
5197	 * Setup the multi-rate retry state only when we're
5198	 * going to use it.  This assumes ath_hal_setuptxdesc
5199	 * initializes the descriptors (so we don't have to)
5200	 * when the hardware supports multi-rate retry and
5201	 * we don't use it.
5202	 */
5203	if (ismrr)
5204		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
5205
5206	ath_tx_handoff(sc, txq, bf);
5207	return 0;
5208}
5209
5210/*
5211 * Process completed xmit descriptors from the specified queue.
5212 */
5213static int
5214ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
5215{
5216	struct ath_hal *ah = sc->sc_ah;
5217	struct ifnet *ifp = sc->sc_ifp;
5218	struct ieee80211com *ic = ifp->if_l2com;
5219	struct ath_buf *bf, *last;
5220	struct ath_desc *ds, *ds0;
5221	struct ath_tx_status *ts;
5222	struct ieee80211_node *ni;
5223	struct ath_node *an;
5224	int sr, lr, pri, nacked;
5225	HAL_STATUS status;
5226
5227	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
5228		__func__, txq->axq_qnum,
5229		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
5230		txq->axq_link);
5231	nacked = 0;
5232	for (;;) {
5233		ATH_TXQ_LOCK(txq);
5234		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
5235		bf = STAILQ_FIRST(&txq->axq_q);
5236		if (bf == NULL) {
5237			ATH_TXQ_UNLOCK(txq);
5238			break;
5239		}
5240		ds0 = &bf->bf_desc[0];
5241		ds = &bf->bf_desc[bf->bf_nseg - 1];
5242		ts = &bf->bf_status.ds_txstat;
5243		status = ath_hal_txprocdesc(ah, ds, ts);
5244#ifdef ATH_DEBUG
5245		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
5246			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
5247			    status == HAL_OK);
5248#endif
5249		if (status == HAL_EINPROGRESS) {
5250			ATH_TXQ_UNLOCK(txq);
5251			break;
5252		}
5253		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5254#ifdef ATH_SUPPORT_TDMA
5255		if (txq->axq_depth > 0) {
5256			/*
5257			 * More frames follow.  Mark the buffer busy
5258			 * so it's not re-used while the hardware may
5259			 * still re-read the link field in the descriptor.
5260			 */
5261			bf->bf_flags |= ATH_BUF_BUSY;
5262		} else
5263#else
5264		if (txq->axq_depth == 0)
5265#endif
5266			txq->axq_link = NULL;
5267		ATH_TXQ_UNLOCK(txq);
5268
5269		ni = bf->bf_node;
5270		if (ni != NULL) {
5271			an = ATH_NODE(ni);
5272			if (ts->ts_status == 0) {
5273				u_int8_t txant = ts->ts_antenna;
5274				sc->sc_stats.ast_ant_tx[txant]++;
5275				sc->sc_ant_tx[txant]++;
5276				if (ts->ts_rate & HAL_TXSTAT_ALTRATE)
5277					sc->sc_stats.ast_tx_altrate++;
5278				pri = M_WME_GETAC(bf->bf_m);
5279				if (pri >= WME_AC_VO)
5280					ic->ic_wme.wme_hipri_traffic++;
5281				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
5282					ni->ni_inact = ni->ni_inact_reload;
5283			} else {
5284				if (ts->ts_status & HAL_TXERR_XRETRY)
5285					sc->sc_stats.ast_tx_xretries++;
5286				if (ts->ts_status & HAL_TXERR_FIFO)
5287					sc->sc_stats.ast_tx_fifoerr++;
5288				if (ts->ts_status & HAL_TXERR_FILT)
5289					sc->sc_stats.ast_tx_filtered++;
5290				if (bf->bf_m->m_flags & M_FF)
5291					sc->sc_stats.ast_ff_txerr++;
5292			}
5293			sr = ts->ts_shortretry;
5294			lr = ts->ts_longretry;
5295			sc->sc_stats.ast_tx_shortretry += sr;
5296			sc->sc_stats.ast_tx_longretry += lr;
5297			/*
5298			 * Hand the descriptor to the rate control algorithm.
5299			 */
5300			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
5301			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
5302				/*
5303				 * If frame was ack'd update statistics,
5304				 * including the last rx time used to
5305				 * workaround phantom bmiss interrupts.
5306				 */
5307				if (ts->ts_status == 0) {
5308					nacked++;
5309					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
5310					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
5311						ts->ts_rssi);
5312				}
5313				ath_rate_tx_complete(sc, an, bf);
5314			}
5315			/*
5316			 * Do any tx complete callback.  Note this must
5317			 * be done before releasing the node reference.
5318			 */
5319			if (bf->bf_m->m_flags & M_TXCB)
5320				ieee80211_process_callback(ni, bf->bf_m,
5321				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
5322				        ts->ts_status : HAL_TXERR_XRETRY);
5323			/*
5324			 * Reclaim reference to node.
5325			 *
5326			 * NB: the node may be reclaimed here if, for example
5327			 *     this is a DEAUTH message that was sent and the
5328			 *     node was timed out due to inactivity.
5329			 */
5330			ieee80211_free_node(ni);
5331		}
5332		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5333		    BUS_DMASYNC_POSTWRITE);
5334		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5335
5336		m_freem(bf->bf_m);
5337		bf->bf_m = NULL;
5338		bf->bf_node = NULL;
5339
5340		ATH_TXBUF_LOCK(sc);
5341		last = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5342		if (last != NULL)
5343			last->bf_flags &= ~ATH_BUF_BUSY;
5344		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5345		ATH_TXBUF_UNLOCK(sc);
5346	}
5347	/*
5348	 * Flush fast-frame staging queue when traffic slows.
5349	 */
5350	if (txq->axq_depth <= 1)
5351		ath_ff_stageq_flush(sc, txq, ath_ff_always);
5352	return nacked;
5353}
5354
5355static __inline int
5356txqactive(struct ath_hal *ah, int qnum)
5357{
5358	u_int32_t txqs = 1<<qnum;
5359	ath_hal_gettxintrtxqs(ah, &txqs);
5360	return (txqs & (1<<qnum));
5361}
5362
5363/*
5364 * Deferred processing of transmit interrupt; special-cased
5365 * for a single hardware transmit queue (e.g. 5210 and 5211).
5366 */
5367static void
5368ath_tx_proc_q0(void *arg, int npending)
5369{
5370	struct ath_softc *sc = arg;
5371	struct ifnet *ifp = sc->sc_ifp;
5372
5373	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
5374		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5375	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5376		ath_tx_processq(sc, sc->sc_cabq);
5377	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5378	sc->sc_wd_timer = 0;
5379
5380	if (sc->sc_softled)
5381		ath_led_event(sc, sc->sc_txrix);
5382
5383	ath_start(ifp);
5384}
5385
5386/*
5387 * Deferred processing of transmit interrupt; special-cased
5388 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5389 */
5390static void
5391ath_tx_proc_q0123(void *arg, int npending)
5392{
5393	struct ath_softc *sc = arg;
5394	struct ifnet *ifp = sc->sc_ifp;
5395	int nacked;
5396
5397	/*
5398	 * Process each active queue.
5399	 */
5400	nacked = 0;
5401	if (txqactive(sc->sc_ah, 0))
5402		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
5403	if (txqactive(sc->sc_ah, 1))
5404		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
5405	if (txqactive(sc->sc_ah, 2))
5406		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
5407	if (txqactive(sc->sc_ah, 3))
5408		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
5409	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5410		ath_tx_processq(sc, sc->sc_cabq);
5411	if (nacked)
5412		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5413
5414	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5415	sc->sc_wd_timer = 0;
5416
5417	if (sc->sc_softled)
5418		ath_led_event(sc, sc->sc_txrix);
5419
5420	ath_start(ifp);
5421}
5422
5423/*
5424 * Deferred processing of transmit interrupt.
5425 */
5426static void
5427ath_tx_proc(void *arg, int npending)
5428{
5429	struct ath_softc *sc = arg;
5430	struct ifnet *ifp = sc->sc_ifp;
5431	int i, nacked;
5432
5433	/*
5434	 * Process each active queue.
5435	 */
5436	nacked = 0;
5437	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5438		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
5439			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
5440	if (nacked)
5441		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5442
5443	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5444	sc->sc_wd_timer = 0;
5445
5446	if (sc->sc_softled)
5447		ath_led_event(sc, sc->sc_txrix);
5448
5449	ath_start(ifp);
5450}
5451
5452static void
5453ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5454{
5455#ifdef ATH_DEBUG
5456	struct ath_hal *ah = sc->sc_ah;
5457#endif
5458	struct ieee80211_node *ni;
5459	struct ath_buf *bf;
5460	u_int ix;
5461
5462	/*
5463	 * NB: this assumes output has been stopped and
5464	 *     we do not need to block ath_tx_proc
5465	 */
5466	ATH_TXBUF_LOCK(sc);
5467	bf = STAILQ_LAST(&sc->sc_txbuf, ath_buf, bf_list);
5468	if (bf != NULL)
5469		bf->bf_flags &= ~ATH_BUF_BUSY;
5470	ATH_TXBUF_UNLOCK(sc);
5471	for (ix = 0;; ix++) {
5472		ATH_TXQ_LOCK(txq);
5473		bf = STAILQ_FIRST(&txq->axq_q);
5474		if (bf == NULL) {
5475			txq->axq_link = NULL;
5476			ATH_TXQ_UNLOCK(txq);
5477			break;
5478		}
5479		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5480		ATH_TXQ_UNLOCK(txq);
5481#ifdef ATH_DEBUG
5482		if (sc->sc_debug & ATH_DEBUG_RESET) {
5483			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5484
5485			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5486				ath_hal_txprocdesc(ah, bf->bf_desc,
5487				    &bf->bf_status.ds_txstat) == HAL_OK);
5488			ieee80211_dump_pkt(ic, mtod(bf->bf_m, caddr_t),
5489				bf->bf_m->m_len, 0, -1);
5490		}
5491#endif /* ATH_DEBUG */
5492		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5493		ni = bf->bf_node;
5494		bf->bf_node = NULL;
5495		if (ni != NULL) {
5496			/*
5497			 * Do any callback and reclaim the node reference.
5498			 */
5499			if (bf->bf_m->m_flags & M_TXCB)
5500				ieee80211_process_callback(ni, bf->bf_m, -1);
5501			ieee80211_free_node(ni);
5502		}
5503		m_freem(bf->bf_m);
5504		bf->bf_m = NULL;
5505		bf->bf_flags &= ~ATH_BUF_BUSY;
5506
5507		ATH_TXBUF_LOCK(sc);
5508		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5509		ATH_TXBUF_UNLOCK(sc);
5510	}
5511}
5512
5513static void
5514ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5515{
5516	struct ath_hal *ah = sc->sc_ah;
5517
5518	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5519	    __func__, txq->axq_qnum,
5520	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5521	    txq->axq_link);
5522	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5523}
5524
5525/*
5526 * Drain the transmit queues and reclaim resources.
5527 */
5528static void
5529ath_draintxq(struct ath_softc *sc)
5530{
5531	struct ath_hal *ah = sc->sc_ah;
5532	struct ifnet *ifp = sc->sc_ifp;
5533	int i;
5534
5535	/* XXX return value */
5536	if (!sc->sc_invalid) {
5537		/* don't touch the hardware if marked invalid */
5538		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5539		    __func__, sc->sc_bhalq,
5540		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5541		    NULL);
5542		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5543		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5544			if (ATH_TXQ_SETUP(sc, i))
5545				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5546	}
5547	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5548		if (ATH_TXQ_SETUP(sc, i))
5549			ath_tx_draintxq(sc, &sc->sc_txq[i]);
5550#ifdef ATH_DEBUG
5551	if (sc->sc_debug & ATH_DEBUG_RESET) {
5552		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
5553		if (bf != NULL && bf->bf_m != NULL) {
5554			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5555				ath_hal_txprocdesc(ah, bf->bf_desc,
5556				    &bf->bf_status.ds_txstat) == HAL_OK);
5557			ieee80211_dump_pkt(ifp->if_l2com, mtod(bf->bf_m, caddr_t),
5558				bf->bf_m->m_len, 0, -1);
5559		}
5560	}
5561#endif /* ATH_DEBUG */
5562	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5563	sc->sc_wd_timer = 0;
5564}
5565
5566/*
5567 * Disable the receive h/w in preparation for a reset.
5568 */
5569static void
5570ath_stoprecv(struct ath_softc *sc)
5571{
5572#define	PA2DESC(_sc, _pa) \
5573	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5574		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5575	struct ath_hal *ah = sc->sc_ah;
5576
5577	ath_hal_stoppcurecv(ah);	/* disable PCU */
5578	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5579	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5580	DELAY(3000);			/* 3ms is long enough for 1 frame */
5581#ifdef ATH_DEBUG
5582	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5583		struct ath_buf *bf;
5584		u_int ix;
5585
5586		printf("%s: rx queue %p, link %p\n", __func__,
5587			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5588		ix = 0;
5589		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5590			struct ath_desc *ds = bf->bf_desc;
5591			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5592			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5593				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5594			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5595				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5596			ix++;
5597		}
5598	}
5599#endif
5600	if (sc->sc_rxpending != NULL) {
5601		m_freem(sc->sc_rxpending);
5602		sc->sc_rxpending = NULL;
5603	}
5604	sc->sc_rxlink = NULL;		/* just in case */
5605#undef PA2DESC
5606}
5607
5608/*
5609 * Enable the receive h/w following a reset.
5610 */
5611static int
5612ath_startrecv(struct ath_softc *sc)
5613{
5614	struct ath_hal *ah = sc->sc_ah;
5615	struct ath_buf *bf;
5616
5617	sc->sc_rxlink = NULL;
5618	sc->sc_rxpending = NULL;
5619	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5620		int error = ath_rxbuf_init(sc, bf);
5621		if (error != 0) {
5622			DPRINTF(sc, ATH_DEBUG_RECV,
5623				"%s: ath_rxbuf_init failed %d\n",
5624				__func__, error);
5625			return error;
5626		}
5627	}
5628
5629	bf = STAILQ_FIRST(&sc->sc_rxbuf);
5630	ath_hal_putrxbuf(ah, bf->bf_daddr);
5631	ath_hal_rxena(ah);		/* enable recv descriptors */
5632	ath_mode_init(sc);		/* set filters, etc. */
5633	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5634	return 0;
5635}
5636
5637/*
5638 * Update internal state after a channel change.
5639 */
5640static void
5641ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5642{
5643	enum ieee80211_phymode mode;
5644
5645	/*
5646	 * Change channels and update the h/w rate map
5647	 * if we're switching; e.g. 11a to 11b/g.
5648	 */
5649	mode = ieee80211_chan2mode(chan);
5650	if (mode != sc->sc_curmode)
5651		ath_setcurmode(sc, mode);
5652	sc->sc_curchan = chan;
5653
5654	sc->sc_rx_th.wr_chan_flags = htole32(chan->ic_flags);
5655	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags;
5656	sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq);
5657	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq;
5658	sc->sc_rx_th.wr_chan_ieee = chan->ic_ieee;
5659	sc->sc_tx_th.wt_chan_ieee = sc->sc_rx_th.wr_chan_ieee;
5660	sc->sc_rx_th.wr_chan_maxpow = chan->ic_maxregpower;
5661	sc->sc_tx_th.wt_chan_maxpow = sc->sc_rx_th.wr_chan_maxpow;
5662}
5663
5664/*
5665 * Set/change channels.  If the channel is really being changed,
5666 * it's done by reseting the chip.  To accomplish this we must
5667 * first cleanup any pending DMA, then restart stuff after a la
5668 * ath_init.
5669 */
5670static int
5671ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5672{
5673	struct ifnet *ifp = sc->sc_ifp;
5674	struct ieee80211com *ic = ifp->if_l2com;
5675	struct ath_hal *ah = sc->sc_ah;
5676
5677	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz, flags 0x%x)\n",
5678	    __func__, ieee80211_chan2ieee(ic, chan),
5679	    chan->ic_freq, chan->ic_flags);
5680	if (chan != sc->sc_curchan) {
5681		HAL_STATUS status;
5682		/*
5683		 * To switch channels clear any pending DMA operations;
5684		 * wait long enough for the RX fifo to drain, reset the
5685		 * hardware at the new frequency, and then re-enable
5686		 * the relevant bits of the h/w.
5687		 */
5688		ath_hal_intrset(ah, 0);		/* disable interrupts */
5689		ath_draintxq(sc);		/* clear pending tx frames */
5690		ath_stoprecv(sc);		/* turn off frame recv */
5691		if (!ath_hal_reset(ah, sc->sc_opmode, chan, AH_TRUE, &status)) {
5692			if_printf(ifp, "%s: unable to reset "
5693			    "channel %u (%u Mhz, flags 0x%x), hal status %u\n",
5694			    __func__, ieee80211_chan2ieee(ic, chan),
5695			    chan->ic_freq, chan->ic_flags, status);
5696			return EIO;
5697		}
5698		sc->sc_diversity = ath_hal_getdiversity(ah);
5699
5700		/*
5701		 * Re-enable rx framework.
5702		 */
5703		if (ath_startrecv(sc) != 0) {
5704			if_printf(ifp, "%s: unable to restart recv logic\n",
5705			    __func__);
5706			return EIO;
5707		}
5708
5709		/*
5710		 * Change channels and update the h/w rate map
5711		 * if we're switching; e.g. 11a to 11b/g.
5712		 */
5713		ath_chan_change(sc, chan);
5714
5715		/*
5716		 * Re-enable interrupts.
5717		 */
5718		ath_hal_intrset(ah, sc->sc_imask);
5719	}
5720	return 0;
5721}
5722
5723/*
5724 * Periodically recalibrate the PHY to account
5725 * for temperature/environment changes.
5726 */
5727static void
5728ath_calibrate(void *arg)
5729{
5730	struct ath_softc *sc = arg;
5731	struct ath_hal *ah = sc->sc_ah;
5732	struct ifnet *ifp = sc->sc_ifp;
5733	struct ieee80211com *ic = ifp->if_l2com;
5734	HAL_BOOL longCal, isCalDone;
5735	int nextcal;
5736
5737	if (ic->ic_flags & IEEE80211_F_SCAN)	/* defer, off channel */
5738		goto restart;
5739	longCal = (ticks - sc->sc_lastlongcal >= ath_longcalinterval*hz);
5740	if (longCal) {
5741		sc->sc_stats.ast_per_cal++;
5742		if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5743			/*
5744			 * Rfgain is out of bounds, reset the chip
5745			 * to load new gain values.
5746			 */
5747			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5748				"%s: rfgain change\n", __func__);
5749			sc->sc_stats.ast_per_rfgain++;
5750			ath_reset(ifp);
5751		}
5752		/*
5753		 * If this long cal is after an idle period, then
5754		 * reset the data collection state so we start fresh.
5755		 */
5756		if (sc->sc_resetcal) {
5757			(void) ath_hal_calreset(ah, sc->sc_curchan);
5758			sc->sc_lastcalreset = ticks;
5759			sc->sc_resetcal = 0;
5760		}
5761	}
5762	if (ath_hal_calibrateN(ah, sc->sc_curchan, longCal, &isCalDone)) {
5763		if (longCal) {
5764			/*
5765			 * Calibrate noise floor data again in case of change.
5766			 */
5767			ath_hal_process_noisefloor(ah);
5768		}
5769	} else {
5770		DPRINTF(sc, ATH_DEBUG_ANY,
5771			"%s: calibration of channel %u failed\n",
5772			__func__, sc->sc_curchan->ic_freq);
5773		sc->sc_stats.ast_per_calfail++;
5774	}
5775	if (!isCalDone) {
5776restart:
5777		/*
5778		 * Use a shorter interval to potentially collect multiple
5779		 * data samples required to complete calibration.  Once
5780		 * we're told the work is done we drop back to a longer
5781		 * interval between requests.  We're more aggressive doing
5782		 * work when operating as an AP to improve operation right
5783		 * after startup.
5784		 */
5785		nextcal = (1000*ath_shortcalinterval)/hz;
5786		if (sc->sc_opmode != HAL_M_HOSTAP)
5787			nextcal *= 10;
5788	} else {
5789		nextcal = ath_longcalinterval*hz;
5790		sc->sc_lastlongcal = ticks;
5791		if (sc->sc_lastcalreset == 0)
5792			sc->sc_lastcalreset = sc->sc_lastlongcal;
5793		else if (ticks - sc->sc_lastcalreset >= ath_resetcalinterval*hz)
5794			sc->sc_resetcal = 1;	/* setup reset next trip */
5795	}
5796
5797	if (nextcal != 0) {
5798		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: next +%u (%sisCalDone)\n",
5799		    __func__, nextcal, isCalDone ? "" : "!");
5800		callout_reset(&sc->sc_cal_ch, nextcal, ath_calibrate, sc);
5801	} else {
5802		DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: calibration disabled\n",
5803		    __func__);
5804		/* NB: don't rearm timer */
5805	}
5806}
5807
5808static void
5809ath_scan_start(struct ieee80211com *ic)
5810{
5811	struct ifnet *ifp = ic->ic_ifp;
5812	struct ath_softc *sc = ifp->if_softc;
5813	struct ath_hal *ah = sc->sc_ah;
5814	u_int32_t rfilt;
5815
5816	/* XXX calibration timer? */
5817
5818	sc->sc_scanning = 1;
5819	sc->sc_syncbeacon = 0;
5820	rfilt = ath_calcrxfilter(sc);
5821	ath_hal_setrxfilter(ah, rfilt);
5822	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5823
5824	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5825		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5826}
5827
5828static void
5829ath_scan_end(struct ieee80211com *ic)
5830{
5831	struct ifnet *ifp = ic->ic_ifp;
5832	struct ath_softc *sc = ifp->if_softc;
5833	struct ath_hal *ah = sc->sc_ah;
5834	u_int32_t rfilt;
5835
5836	sc->sc_scanning = 0;
5837	rfilt = ath_calcrxfilter(sc);
5838	ath_hal_setrxfilter(ah, rfilt);
5839	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5840
5841	ath_hal_process_noisefloor(ah);
5842
5843	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5844		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5845		 sc->sc_curaid);
5846}
5847
5848static void
5849ath_set_channel(struct ieee80211com *ic)
5850{
5851	struct ifnet *ifp = ic->ic_ifp;
5852	struct ath_softc *sc = ifp->if_softc;
5853
5854	(void) ath_chan_set(sc, ic->ic_curchan);
5855	/*
5856	 * If we are returning to our bss channel then mark state
5857	 * so the next recv'd beacon's tsf will be used to sync the
5858	 * beacon timers.  Note that since we only hear beacons in
5859	 * sta/ibss mode this has no effect in other operating modes.
5860	 */
5861	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5862		sc->sc_syncbeacon = 1;
5863}
5864
5865/*
5866 * Walk the vap list and check if there any vap's in RUN state.
5867 */
5868static int
5869ath_isanyrunningvaps(struct ieee80211vap *this)
5870{
5871	struct ieee80211com *ic = this->iv_ic;
5872	struct ieee80211vap *vap;
5873
5874	IEEE80211_LOCK_ASSERT(ic);
5875
5876	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5877		if (vap != this && vap->iv_state == IEEE80211_S_RUN)
5878			return 1;
5879	}
5880	return 0;
5881}
5882
5883static int
5884ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5885{
5886	struct ieee80211com *ic = vap->iv_ic;
5887	struct ath_softc *sc = ic->ic_ifp->if_softc;
5888	struct ath_vap *avp = ATH_VAP(vap);
5889	struct ath_hal *ah = sc->sc_ah;
5890	struct ieee80211_node *ni = NULL;
5891	int i, error, stamode;
5892	u_int32_t rfilt;
5893	static const HAL_LED_STATE leds[] = {
5894	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5895	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5896	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5897	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5898	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5899	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5900	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5901	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5902	};
5903
5904	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5905		ieee80211_state_name[vap->iv_state],
5906		ieee80211_state_name[nstate]);
5907
5908	callout_drain(&sc->sc_cal_ch);
5909	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5910
5911	if (nstate == IEEE80211_S_SCAN) {
5912		/*
5913		 * Scanning: turn off beacon miss and don't beacon.
5914		 * Mark beacon state so when we reach RUN state we'll
5915		 * [re]setup beacons.  Unblock the task q thread so
5916		 * deferred interrupt processing is done.
5917		 */
5918		ath_hal_intrset(ah,
5919		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5920		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5921		sc->sc_beacons = 0;
5922		taskqueue_unblock(sc->sc_tq);
5923	}
5924
5925	ni = vap->iv_bss;
5926	rfilt = ath_calcrxfilter(sc);
5927	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5928		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5929		   vap->iv_opmode == IEEE80211_M_IBSS);
5930	if (stamode && nstate == IEEE80211_S_RUN) {
5931		sc->sc_curaid = ni->ni_associd;
5932		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5933		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5934	}
5935	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5936	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5937	ath_hal_setrxfilter(ah, rfilt);
5938
5939	/* XXX is this to restore keycache on resume? */
5940	if (vap->iv_opmode != IEEE80211_M_STA &&
5941	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5942		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5943			if (ath_hal_keyisvalid(ah, i))
5944				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5945	}
5946
5947	/*
5948	 * Invoke the parent method to do net80211 work.
5949	 */
5950	error = avp->av_newstate(vap, nstate, arg);
5951	if (error != 0)
5952		goto bad;
5953
5954	if (nstate == IEEE80211_S_RUN) {
5955		/* NB: collect bss node again, it may have changed */
5956		ni = vap->iv_bss;
5957
5958		DPRINTF(sc, ATH_DEBUG_STATE,
5959		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5960		    "capinfo 0x%04x chan %d\n", __func__,
5961		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5962		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5963
5964		switch (vap->iv_opmode) {
5965#ifdef ATH_SUPPORT_TDMA
5966		case IEEE80211_M_AHDEMO:
5967			if ((vap->iv_caps & IEEE80211_C_TDMA) == 0)
5968				break;
5969			/* fall thru... */
5970#endif
5971		case IEEE80211_M_HOSTAP:
5972		case IEEE80211_M_IBSS:
5973			/*
5974			 * Allocate and setup the beacon frame.
5975			 *
5976			 * Stop any previous beacon DMA.  This may be
5977			 * necessary, for example, when an ibss merge
5978			 * causes reconfiguration; there will be a state
5979			 * transition from RUN->RUN that means we may
5980			 * be called with beacon transmission active.
5981			 */
5982			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5983
5984			error = ath_beacon_alloc(sc, ni);
5985			if (error != 0)
5986				goto bad;
5987			/*
5988			 * If joining an adhoc network defer beacon timer
5989			 * configuration to the next beacon frame so we
5990			 * have a current TSF to use.  Otherwise we're
5991			 * starting an ibss/bss so there's no need to delay;
5992			 * if this is the first vap moving to RUN state, then
5993			 * beacon state needs to be [re]configured.
5994			 */
5995			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5996			    ni->ni_tstamp.tsf != 0) {
5997				sc->sc_syncbeacon = 1;
5998			} else if (!sc->sc_beacons) {
5999#ifdef ATH_SUPPORT_TDMA
6000				if (vap->iv_caps & IEEE80211_C_TDMA)
6001					ath_tdma_config(sc, vap);
6002				else
6003#endif
6004					ath_beacon_config(sc, vap);
6005				sc->sc_beacons = 1;
6006			}
6007			break;
6008		case IEEE80211_M_STA:
6009			/*
6010			 * Defer beacon timer configuration to the next
6011			 * beacon frame so we have a current TSF to use
6012			 * (any TSF collected when scanning is likely old).
6013			 */
6014			sc->sc_syncbeacon = 1;
6015			break;
6016		case IEEE80211_M_MONITOR:
6017			/*
6018			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
6019			 * transitions so we must re-enable interrupts here to
6020			 * handle the case of a single monitor mode vap.
6021			 */
6022			ath_hal_intrset(ah, sc->sc_imask);
6023			break;
6024		case IEEE80211_M_WDS:
6025			break;
6026		default:
6027			break;
6028		}
6029		/*
6030		 * Let the hal process statistics collected during a
6031		 * scan so it can provide calibrated noise floor data.
6032		 */
6033		ath_hal_process_noisefloor(ah);
6034		/*
6035		 * Reset rssi stats; maybe not the best place...
6036		 */
6037		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
6038		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
6039		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
6040		/*
6041		 * Finally, start any timers and the task q thread
6042		 * (in case we didn't go through SCAN state).
6043		 */
6044		if (ath_longcalinterval != 0) {
6045			/* start periodic recalibration timer */
6046			callout_reset(&sc->sc_cal_ch, 1, ath_calibrate, sc);
6047		} else {
6048			DPRINTF(sc, ATH_DEBUG_CALIBRATE,
6049			    "%s: calibration disabled\n", __func__);
6050		}
6051		taskqueue_unblock(sc->sc_tq);
6052	} else if (nstate == IEEE80211_S_INIT) {
6053		/*
6054		 * If there are no vaps left in RUN state then
6055		 * shutdown host/driver operation:
6056		 * o disable interrupts
6057		 * o disable the task queue thread
6058		 * o mark beacon processing as stopped
6059		 */
6060		if (!ath_isanyrunningvaps(vap)) {
6061			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
6062			/* disable interrupts  */
6063			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
6064			taskqueue_block(sc->sc_tq);
6065			sc->sc_beacons = 0;
6066		}
6067#ifdef ATH_SUPPORT_TDMA
6068		ath_hal_setcca(ah, AH_TRUE);
6069#endif
6070	}
6071bad:
6072	return error;
6073}
6074
6075/*
6076 * Allocate a key cache slot to the station so we can
6077 * setup a mapping from key index to node. The key cache
6078 * slot is needed for managing antenna state and for
6079 * compression when stations do not use crypto.  We do
6080 * it uniliaterally here; if crypto is employed this slot
6081 * will be reassigned.
6082 */
6083static void
6084ath_setup_stationkey(struct ieee80211_node *ni)
6085{
6086	struct ieee80211vap *vap = ni->ni_vap;
6087	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6088	ieee80211_keyix keyix, rxkeyix;
6089
6090	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
6091		/*
6092		 * Key cache is full; we'll fall back to doing
6093		 * the more expensive lookup in software.  Note
6094		 * this also means no h/w compression.
6095		 */
6096		/* XXX msg+statistic */
6097	} else {
6098		/* XXX locking? */
6099		ni->ni_ucastkey.wk_keyix = keyix;
6100		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
6101		/* NB: must mark device key to get called back on delete */
6102		ni->ni_ucastkey.wk_flags |= IEEE80211_KEY_DEVKEY;
6103		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
6104		/* NB: this will create a pass-thru key entry */
6105		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
6106	}
6107}
6108
6109/*
6110 * Setup driver-specific state for a newly associated node.
6111 * Note that we're called also on a re-associate, the isnew
6112 * param tells us if this is the first time or not.
6113 */
6114static void
6115ath_newassoc(struct ieee80211_node *ni, int isnew)
6116{
6117	struct ath_node *an = ATH_NODE(ni);
6118	struct ieee80211vap *vap = ni->ni_vap;
6119	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
6120	const struct ieee80211_txparam *tp = ni->ni_txparms;
6121
6122	an->an_mcastrix = ath_tx_findrix(sc->sc_currates, tp->mcastrate);
6123	an->an_mgmtrix = ath_tx_findrix(sc->sc_currates, tp->mgmtrate);
6124
6125	ath_rate_newassoc(sc, an, isnew);
6126	if (isnew &&
6127	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
6128	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
6129		ath_setup_stationkey(ni);
6130}
6131
6132static int
6133ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *reg,
6134	int nchans, struct ieee80211_channel chans[])
6135{
6136	struct ath_softc *sc = ic->ic_ifp->if_softc;
6137	struct ath_hal *ah = sc->sc_ah;
6138	HAL_STATUS status;
6139
6140	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6141	    "%s: rd %u cc %u location %c%s\n",
6142	    __func__, reg->regdomain, reg->country, reg->location,
6143	    reg->ecm ? " ecm" : "");
6144
6145	status = ath_hal_set_channels(ah, chans, nchans,
6146	    reg->country, reg->regdomain);
6147	if (status != HAL_OK) {
6148		DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: failed, status %u\n",
6149		    __func__, status);
6150		return EINVAL;		/* XXX */
6151	}
6152	return 0;
6153}
6154
6155static void
6156ath_getradiocaps(struct ieee80211com *ic,
6157	int maxchans, int *nchans, struct ieee80211_channel chans[])
6158{
6159	struct ath_softc *sc = ic->ic_ifp->if_softc;
6160	struct ath_hal *ah = sc->sc_ah;
6161
6162	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d\n",
6163	    __func__, SKU_DEBUG, CTRY_DEFAULT);
6164
6165	/* XXX check return */
6166	(void) ath_hal_getchannels(ah, chans, maxchans, nchans,
6167	    HAL_MODE_ALL, CTRY_DEFAULT, SKU_DEBUG, AH_TRUE);
6168
6169}
6170
6171static int
6172ath_getchannels(struct ath_softc *sc)
6173{
6174	struct ifnet *ifp = sc->sc_ifp;
6175	struct ieee80211com *ic = ifp->if_l2com;
6176	struct ath_hal *ah = sc->sc_ah;
6177	HAL_STATUS status;
6178
6179	/*
6180	 * Collect channel set based on EEPROM contents.
6181	 */
6182	status = ath_hal_init_channels(ah, ic->ic_channels, IEEE80211_CHAN_MAX,
6183	    &ic->ic_nchans, HAL_MODE_ALL, CTRY_DEFAULT, SKU_NONE, AH_TRUE);
6184	if (status != HAL_OK) {
6185		if_printf(ifp, "%s: unable to collect channel list from hal, "
6186		    "status %d\n", __func__, status);
6187		return EINVAL;
6188	}
6189	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6190	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6191	/* XXX map Atheros sku's to net80211 SKU's */
6192	/* XXX net80211 types too small */
6193	ic->ic_regdomain.regdomain = (uint16_t) sc->sc_eerd;
6194	ic->ic_regdomain.country = (uint16_t) sc->sc_eecc;
6195	ic->ic_regdomain.isocc[0] = ' ';	/* XXX don't know */
6196	ic->ic_regdomain.isocc[1] = ' ';
6197
6198	ic->ic_regdomain.ecm = 1;
6199	ic->ic_regdomain.location = 'I';
6200
6201	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6202	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c%s\n",
6203	    __func__, sc->sc_eerd, sc->sc_eecc,
6204	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6205	    ic->ic_regdomain.location, ic->ic_regdomain.ecm ? " ecm" : "");
6206	return 0;
6207}
6208
6209static void
6210ath_led_done(void *arg)
6211{
6212	struct ath_softc *sc = arg;
6213
6214	sc->sc_blinking = 0;
6215}
6216
6217/*
6218 * Turn the LED off: flip the pin and then set a timer so no
6219 * update will happen for the specified duration.
6220 */
6221static void
6222ath_led_off(void *arg)
6223{
6224	struct ath_softc *sc = arg;
6225
6226	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
6227	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
6228}
6229
6230/*
6231 * Blink the LED according to the specified on/off times.
6232 */
6233static void
6234ath_led_blink(struct ath_softc *sc, int on, int off)
6235{
6236	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
6237	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
6238	sc->sc_blinking = 1;
6239	sc->sc_ledoff = off;
6240	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
6241}
6242
6243static void
6244ath_led_event(struct ath_softc *sc, int rix)
6245{
6246	sc->sc_ledevent = ticks;	/* time of last event */
6247	if (sc->sc_blinking)		/* don't interrupt active blink */
6248		return;
6249	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
6250}
6251
6252static int
6253ath_rate_setup(struct ath_softc *sc, u_int mode)
6254{
6255	struct ath_hal *ah = sc->sc_ah;
6256	const HAL_RATE_TABLE *rt;
6257
6258	switch (mode) {
6259	case IEEE80211_MODE_11A:
6260		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6261		break;
6262	case IEEE80211_MODE_HALF:
6263		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6264		break;
6265	case IEEE80211_MODE_QUARTER:
6266		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6267		break;
6268	case IEEE80211_MODE_11B:
6269		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6270		break;
6271	case IEEE80211_MODE_11G:
6272		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6273		break;
6274	case IEEE80211_MODE_TURBO_A:
6275		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6276#if HAL_ABI_VERSION < 0x07013100
6277		if (rt == NULL)		/* XXX bandaid for old hal's */
6278			rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6279#endif
6280		break;
6281	case IEEE80211_MODE_TURBO_G:
6282		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6283		break;
6284	case IEEE80211_MODE_STURBO_A:
6285		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6286		break;
6287	case IEEE80211_MODE_11NA:
6288		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6289		break;
6290	case IEEE80211_MODE_11NG:
6291		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6292		break;
6293	default:
6294		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6295			__func__, mode);
6296		return 0;
6297	}
6298	sc->sc_rates[mode] = rt;
6299	return (rt != NULL);
6300}
6301
6302static void
6303ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6304{
6305#define	N(a)	(sizeof(a)/sizeof(a[0]))
6306	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6307	static const struct {
6308		u_int		rate;		/* tx/rx 802.11 rate */
6309		u_int16_t	timeOn;		/* LED on time (ms) */
6310		u_int16_t	timeOff;	/* LED off time (ms) */
6311	} blinkrates[] = {
6312		{ 108,  40,  10 },
6313		{  96,  44,  11 },
6314		{  72,  50,  13 },
6315		{  48,  57,  14 },
6316		{  36,  67,  16 },
6317		{  24,  80,  20 },
6318		{  22, 100,  25 },
6319		{  18, 133,  34 },
6320		{  12, 160,  40 },
6321		{  10, 200,  50 },
6322		{   6, 240,  58 },
6323		{   4, 267,  66 },
6324		{   2, 400, 100 },
6325		{   0, 500, 130 },
6326		/* XXX half/quarter rates */
6327	};
6328	const HAL_RATE_TABLE *rt;
6329	int i, j;
6330
6331	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6332	rt = sc->sc_rates[mode];
6333	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6334	for (i = 0; i < rt->rateCount; i++) {
6335		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6336		if (rt->info[i].phy != IEEE80211_T_HT)
6337			sc->sc_rixmap[ieeerate] = i;
6338		else
6339			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6340	}
6341	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6342	for (i = 0; i < N(sc->sc_hwmap); i++) {
6343		if (i >= rt->rateCount) {
6344			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6345			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6346			continue;
6347		}
6348		sc->sc_hwmap[i].ieeerate =
6349			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6350		if (rt->info[i].phy == IEEE80211_T_HT)
6351			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6352		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6353		if (rt->info[i].shortPreamble ||
6354		    rt->info[i].phy == IEEE80211_T_OFDM)
6355			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6356		/* NB: receive frames include FCS */
6357		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
6358			IEEE80211_RADIOTAP_F_FCS;
6359		/* setup blink rate table to avoid per-packet lookup */
6360		for (j = 0; j < N(blinkrates)-1; j++)
6361			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6362				break;
6363		/* NB: this uses the last entry if the rate isn't found */
6364		/* XXX beware of overlow */
6365		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6366		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6367	}
6368	sc->sc_currates = rt;
6369	sc->sc_curmode = mode;
6370	/*
6371	 * All protection frames are transmited at 2Mb/s for
6372	 * 11g, otherwise at 1Mb/s.
6373	 */
6374	if (mode == IEEE80211_MODE_11G)
6375		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
6376	else
6377		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
6378	/* NB: caller is responsible for reseting rate control state */
6379#undef N
6380}
6381
6382#ifdef ATH_DEBUG
6383static void
6384ath_printrxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6385	u_int ix, int done)
6386{
6387	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
6388	struct ath_hal *ah = sc->sc_ah;
6389	const struct ath_desc *ds;
6390	int i;
6391
6392	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6393		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
6394		       "      %08x %08x %08x %08x\n",
6395		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
6396		    ds->ds_link, ds->ds_data,
6397		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
6398		    ds->ds_ctl0, ds->ds_ctl1,
6399		    ds->ds_hw[0], ds->ds_hw[1]);
6400		if (ah->ah_magic == 0x20065416) {
6401			printf("        %08x %08x %08x %08x %08x %08x %08x\n",
6402			    ds->ds_hw[2], ds->ds_hw[3], ds->ds_hw[4],
6403			    ds->ds_hw[5], ds->ds_hw[6], ds->ds_hw[7],
6404			    ds->ds_hw[8]);
6405		}
6406	}
6407}
6408
6409static void
6410ath_printtxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6411	u_int qnum, u_int ix, int done)
6412{
6413	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
6414	struct ath_hal *ah = sc->sc_ah;
6415	const struct ath_desc *ds;
6416	int i;
6417
6418	printf("Q%u[%3u]", qnum, ix);
6419	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6420		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
6421		       "        %08x %08x %08x %08x %08x %08x\n",
6422		    ds, (const struct ath_desc *)bf->bf_daddr + i,
6423		    ds->ds_link, ds->ds_data, bf->bf_txflags,
6424		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
6425		    ds->ds_ctl0, ds->ds_ctl1,
6426		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
6427		if (ah->ah_magic == 0x20065416) {
6428			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6429			    ds->ds_hw[4], ds->ds_hw[5], ds->ds_hw[6],
6430			    ds->ds_hw[7], ds->ds_hw[8], ds->ds_hw[9],
6431			    ds->ds_hw[10],ds->ds_hw[11]);
6432			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6433			    ds->ds_hw[12],ds->ds_hw[13],ds->ds_hw[14],
6434			    ds->ds_hw[15],ds->ds_hw[16],ds->ds_hw[17],
6435			    ds->ds_hw[18], ds->ds_hw[19]);
6436		}
6437	}
6438}
6439#endif /* ATH_DEBUG */
6440
6441static void
6442ath_watchdog(void *arg)
6443{
6444	struct ath_softc *sc = arg;
6445
6446	if (sc->sc_wd_timer != 0 && --sc->sc_wd_timer == 0) {
6447		struct ifnet *ifp = sc->sc_ifp;
6448		uint32_t hangs;
6449
6450		if (ath_hal_gethangstate(sc->sc_ah, 0xffff, &hangs) &&
6451		    hangs != 0) {
6452			if_printf(ifp, "%s hang detected (0x%x)\n",
6453			    hangs & 0xff ? "bb" : "mac", hangs);
6454		} else
6455			if_printf(ifp, "device timeout\n");
6456		ath_reset(ifp);
6457		ifp->if_oerrors++;
6458		sc->sc_stats.ast_watchdog++;
6459	}
6460	callout_schedule(&sc->sc_wd_ch, hz);
6461}
6462
6463#ifdef ATH_DIAGAPI
6464/*
6465 * Diagnostic interface to the HAL.  This is used by various
6466 * tools to do things like retrieve register contents for
6467 * debugging.  The mechanism is intentionally opaque so that
6468 * it can change frequently w/o concern for compatiblity.
6469 */
6470static int
6471ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6472{
6473	struct ath_hal *ah = sc->sc_ah;
6474	u_int id = ad->ad_id & ATH_DIAG_ID;
6475	void *indata = NULL;
6476	void *outdata = NULL;
6477	u_int32_t insize = ad->ad_in_size;
6478	u_int32_t outsize = ad->ad_out_size;
6479	int error = 0;
6480
6481	if (ad->ad_id & ATH_DIAG_IN) {
6482		/*
6483		 * Copy in data.
6484		 */
6485		indata = malloc(insize, M_TEMP, M_NOWAIT);
6486		if (indata == NULL) {
6487			error = ENOMEM;
6488			goto bad;
6489		}
6490		error = copyin(ad->ad_in_data, indata, insize);
6491		if (error)
6492			goto bad;
6493	}
6494	if (ad->ad_id & ATH_DIAG_DYN) {
6495		/*
6496		 * Allocate a buffer for the results (otherwise the HAL
6497		 * returns a pointer to a buffer where we can read the
6498		 * results).  Note that we depend on the HAL leaving this
6499		 * pointer for us to use below in reclaiming the buffer;
6500		 * may want to be more defensive.
6501		 */
6502		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6503		if (outdata == NULL) {
6504			error = ENOMEM;
6505			goto bad;
6506		}
6507	}
6508	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6509		if (outsize < ad->ad_out_size)
6510			ad->ad_out_size = outsize;
6511		if (outdata != NULL)
6512			error = copyout(outdata, ad->ad_out_data,
6513					ad->ad_out_size);
6514	} else {
6515		error = EINVAL;
6516	}
6517bad:
6518	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6519		free(indata, M_TEMP);
6520	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6521		free(outdata, M_TEMP);
6522	return error;
6523}
6524#endif /* ATH_DIAGAPI */
6525
6526static int
6527ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6528{
6529#define	IS_RUNNING(ifp) \
6530	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6531	struct ath_softc *sc = ifp->if_softc;
6532	struct ieee80211com *ic = ifp->if_l2com;
6533	struct ifreq *ifr = (struct ifreq *)data;
6534	const HAL_RATE_TABLE *rt;
6535	int error = 0;
6536
6537	switch (cmd) {
6538	case SIOCSIFFLAGS:
6539		ATH_LOCK(sc);
6540		if (IS_RUNNING(ifp)) {
6541			/*
6542			 * To avoid rescanning another access point,
6543			 * do not call ath_init() here.  Instead,
6544			 * only reflect promisc mode settings.
6545			 */
6546			ath_mode_init(sc);
6547		} else if (ifp->if_flags & IFF_UP) {
6548			/*
6549			 * Beware of being called during attach/detach
6550			 * to reset promiscuous mode.  In that case we
6551			 * will still be marked UP but not RUNNING.
6552			 * However trying to re-init the interface
6553			 * is the wrong thing to do as we've already
6554			 * torn down much of our state.  There's
6555			 * probably a better way to deal with this.
6556			 */
6557			if (!sc->sc_invalid)
6558				ath_init(sc);	/* XXX lose error */
6559		} else {
6560			ath_stop_locked(ifp);
6561#ifdef notyet
6562			/* XXX must wakeup in places like ath_vap_delete */
6563			if (!sc->sc_invalid)
6564				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6565#endif
6566		}
6567		ATH_UNLOCK(sc);
6568		break;
6569	case SIOCGIFMEDIA:
6570	case SIOCSIFMEDIA:
6571		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6572		break;
6573	case SIOCGATHSTATS:
6574		/* NB: embed these numbers to get a consistent view */
6575		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6576		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6577		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6578		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6579#ifdef ATH_SUPPORT_TDMA
6580		sc->sc_stats.ast_tdma_tsfadjp = TDMA_AVG(sc->sc_avgtsfdeltap);
6581		sc->sc_stats.ast_tdma_tsfadjm = TDMA_AVG(sc->sc_avgtsfdeltam);
6582#endif
6583		rt = sc->sc_currates;
6584		/* XXX HT rates */
6585		sc->sc_stats.ast_tx_rate =
6586		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6587		return copyout(&sc->sc_stats,
6588		    ifr->ifr_data, sizeof (sc->sc_stats));
6589	case SIOCZATHSTATS:
6590		error = priv_check(curthread, PRIV_DRIVER);
6591		if (error == 0)
6592			memset(&sc->sc_stats, 0, sizeof(sc->sc_stats));
6593		break;
6594#ifdef ATH_DIAGAPI
6595	case SIOCGATHDIAG:
6596		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6597		break;
6598#endif
6599	case SIOCGIFADDR:
6600		error = ether_ioctl(ifp, cmd, data);
6601		break;
6602	default:
6603		error = EINVAL;
6604		break;
6605	}
6606	return error;
6607#undef IS_RUNNING
6608}
6609
6610static int
6611ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
6612{
6613	struct ath_softc *sc = arg1;
6614	u_int slottime = ath_hal_getslottime(sc->sc_ah);
6615	int error;
6616
6617	error = sysctl_handle_int(oidp, &slottime, 0, req);
6618	if (error || !req->newptr)
6619		return error;
6620	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
6621}
6622
6623static int
6624ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
6625{
6626	struct ath_softc *sc = arg1;
6627	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
6628	int error;
6629
6630	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
6631	if (error || !req->newptr)
6632		return error;
6633	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
6634}
6635
6636static int
6637ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
6638{
6639	struct ath_softc *sc = arg1;
6640	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
6641	int error;
6642
6643	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
6644	if (error || !req->newptr)
6645		return error;
6646	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
6647}
6648
6649static int
6650ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
6651{
6652	struct ath_softc *sc = arg1;
6653	int softled = sc->sc_softled;
6654	int error;
6655
6656	error = sysctl_handle_int(oidp, &softled, 0, req);
6657	if (error || !req->newptr)
6658		return error;
6659	softled = (softled != 0);
6660	if (softled != sc->sc_softled) {
6661		if (softled) {
6662			/* NB: handle any sc_ledpin change */
6663			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6664			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6665			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6666				!sc->sc_ledon);
6667		}
6668		sc->sc_softled = softled;
6669	}
6670	return 0;
6671}
6672
6673static int
6674ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
6675{
6676	struct ath_softc *sc = arg1;
6677	int ledpin = sc->sc_ledpin;
6678	int error;
6679
6680	error = sysctl_handle_int(oidp, &ledpin, 0, req);
6681	if (error || !req->newptr)
6682		return error;
6683	if (ledpin != sc->sc_ledpin) {
6684		sc->sc_ledpin = ledpin;
6685		if (sc->sc_softled) {
6686			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin,
6687			    HAL_GPIO_MUX_MAC_NETWORK_LED);
6688			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6689				!sc->sc_ledon);
6690		}
6691	}
6692	return 0;
6693}
6694
6695static int
6696ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
6697{
6698	struct ath_softc *sc = arg1;
6699	u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah);
6700	int error;
6701
6702	error = sysctl_handle_int(oidp, &txantenna, 0, req);
6703	if (!error && req->newptr) {
6704		/* XXX assumes 2 antenna ports */
6705		if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B)
6706			return EINVAL;
6707		ath_hal_setantennaswitch(sc->sc_ah, txantenna);
6708		/*
6709		 * NB: with the switch locked this isn't meaningful,
6710		 *     but set it anyway so things like radiotap get
6711		 *     consistent info in their data.
6712		 */
6713		sc->sc_txantenna = txantenna;
6714	}
6715	return error;
6716}
6717
6718static int
6719ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
6720{
6721	struct ath_softc *sc = arg1;
6722	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
6723	int error;
6724
6725	error = sysctl_handle_int(oidp, &defantenna, 0, req);
6726	if (!error && req->newptr)
6727		ath_hal_setdefantenna(sc->sc_ah, defantenna);
6728	return error;
6729}
6730
6731static int
6732ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
6733{
6734	struct ath_softc *sc = arg1;
6735	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
6736	int error;
6737
6738	error = sysctl_handle_int(oidp, &diversity, 0, req);
6739	if (error || !req->newptr)
6740		return error;
6741	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
6742		return EINVAL;
6743	sc->sc_diversity = diversity;
6744	return 0;
6745}
6746
6747static int
6748ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
6749{
6750	struct ath_softc *sc = arg1;
6751	u_int32_t diag;
6752	int error;
6753
6754	if (!ath_hal_getdiag(sc->sc_ah, &diag))
6755		return EINVAL;
6756	error = sysctl_handle_int(oidp, &diag, 0, req);
6757	if (error || !req->newptr)
6758		return error;
6759	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
6760}
6761
6762static int
6763ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
6764{
6765	struct ath_softc *sc = arg1;
6766	struct ifnet *ifp = sc->sc_ifp;
6767	u_int32_t scale;
6768	int error;
6769
6770	(void) ath_hal_gettpscale(sc->sc_ah, &scale);
6771	error = sysctl_handle_int(oidp, &scale, 0, req);
6772	if (error || !req->newptr)
6773		return error;
6774	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL :
6775	    (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6776}
6777
6778static int
6779ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
6780{
6781	struct ath_softc *sc = arg1;
6782	u_int tpc = ath_hal_gettpc(sc->sc_ah);
6783	int error;
6784
6785	error = sysctl_handle_int(oidp, &tpc, 0, req);
6786	if (error || !req->newptr)
6787		return error;
6788	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
6789}
6790
6791static int
6792ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
6793{
6794	struct ath_softc *sc = arg1;
6795	struct ifnet *ifp = sc->sc_ifp;
6796	struct ath_hal *ah = sc->sc_ah;
6797	u_int rfkill = ath_hal_getrfkill(ah);
6798	int error;
6799
6800	error = sysctl_handle_int(oidp, &rfkill, 0, req);
6801	if (error || !req->newptr)
6802		return error;
6803	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
6804		return 0;
6805	if (!ath_hal_setrfkill(ah, rfkill))
6806		return EINVAL;
6807	return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6808}
6809
6810static int
6811ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
6812{
6813	struct ath_softc *sc = arg1;
6814	u_int rfsilent;
6815	int error;
6816
6817	(void) ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
6818	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
6819	if (error || !req->newptr)
6820		return error;
6821	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
6822		return EINVAL;
6823	sc->sc_rfsilentpin = rfsilent & 0x1c;
6824	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
6825	return 0;
6826}
6827
6828static int
6829ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
6830{
6831	struct ath_softc *sc = arg1;
6832	u_int32_t tpack;
6833	int error;
6834
6835	(void) ath_hal_gettpack(sc->sc_ah, &tpack);
6836	error = sysctl_handle_int(oidp, &tpack, 0, req);
6837	if (error || !req->newptr)
6838		return error;
6839	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
6840}
6841
6842static int
6843ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
6844{
6845	struct ath_softc *sc = arg1;
6846	u_int32_t tpcts;
6847	int error;
6848
6849	(void) ath_hal_gettpcts(sc->sc_ah, &tpcts);
6850	error = sysctl_handle_int(oidp, &tpcts, 0, req);
6851	if (error || !req->newptr)
6852		return error;
6853	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
6854}
6855
6856static int
6857ath_sysctl_intmit(SYSCTL_HANDLER_ARGS)
6858{
6859	struct ath_softc *sc = arg1;
6860	int intmit, error;
6861
6862	intmit = ath_hal_getintmit(sc->sc_ah);
6863	error = sysctl_handle_int(oidp, &intmit, 0, req);
6864	if (error || !req->newptr)
6865		return error;
6866	return !ath_hal_setintmit(sc->sc_ah, intmit) ? EINVAL : 0;
6867}
6868
6869#ifdef ATH_SUPPORT_TDMA
6870static int
6871ath_sysctl_setcca(SYSCTL_HANDLER_ARGS)
6872{
6873	struct ath_softc *sc = arg1;
6874	int setcca, error;
6875
6876	setcca = sc->sc_setcca;
6877	error = sysctl_handle_int(oidp, &setcca, 0, req);
6878	if (error || !req->newptr)
6879		return error;
6880	sc->sc_setcca = (setcca != 0);
6881	return 0;
6882}
6883#endif /* ATH_SUPPORT_TDMA */
6884
6885static void
6886ath_sysctlattach(struct ath_softc *sc)
6887{
6888	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
6889	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
6890	struct ath_hal *ah = sc->sc_ah;
6891
6892	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6893		"countrycode", CTLFLAG_RD, &sc->sc_eecc, 0,
6894		"EEPROM country code");
6895	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6896		"regdomain", CTLFLAG_RD, &sc->sc_eerd, 0,
6897		"EEPROM regdomain code");
6898#ifdef	ATH_DEBUG
6899	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6900		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
6901		"control debugging printfs");
6902#endif
6903	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6904		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6905		ath_sysctl_slottime, "I", "802.11 slot time (us)");
6906	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6907		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6908		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
6909	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6910		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6911		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
6912	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6913		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6914		ath_sysctl_softled, "I", "enable/disable software LED support");
6915	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6916		"ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6917		ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
6918	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6919		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
6920		"setting to turn LED on");
6921	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6922		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
6923		"idle time for inactivity LED (ticks)");
6924	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6925		"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6926		ath_sysctl_txantenna, "I", "antenna switch");
6927	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6928		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6929		ath_sysctl_rxantenna, "I", "default/rx antenna");
6930	if (ath_hal_hasdiversity(ah))
6931		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6932			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6933			ath_sysctl_diversity, "I", "antenna diversity");
6934	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
6935	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6936		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
6937		"tx descriptor batching");
6938	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6939		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6940		ath_sysctl_diag, "I", "h/w diagnostic control");
6941	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6942		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6943		ath_sysctl_tpscale, "I", "tx power scaling");
6944	if (ath_hal_hastpc(ah)) {
6945		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6946			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6947			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
6948		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6949			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6950			ath_sysctl_tpack, "I", "tx power for ack frames");
6951		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6952			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6953			ath_sysctl_tpcts, "I", "tx power for cts frames");
6954	}
6955	if (ath_hal_hasfastframes(sc->sc_ah)) {
6956		sc->sc_fftxqmin = ATH_FF_TXQMIN;
6957		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6958			"fftxqmin", CTLFLAG_RW, &sc->sc_fftxqmin, 0,
6959			"min frames before fast-frame staging");
6960		sc->sc_fftxqmax = ATH_FF_TXQMAX;
6961		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6962			"fftxqmax", CTLFLAG_RW, &sc->sc_fftxqmax, 0,
6963			"max queued frames before tail drop");
6964	}
6965	if (ath_hal_hasrfsilent(ah)) {
6966		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6967			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6968			ath_sysctl_rfsilent, "I", "h/w RF silent config");
6969		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6970			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6971			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
6972	}
6973	if (ath_hal_hasintmit(ah)) {
6974		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6975			"intmit", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6976			ath_sysctl_intmit, "I", "interference mitigation");
6977	}
6978	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
6979	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6980		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
6981		"mask of error frames to pass when monitoring");
6982#ifdef ATH_SUPPORT_TDMA
6983	if (ath_hal_macversion(ah) > 0x78) {
6984		sc->sc_tdmadbaprep = 2;
6985		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6986			"dbaprep", CTLFLAG_RW, &sc->sc_tdmadbaprep, 0,
6987			"TDMA DBA preparation time");
6988		sc->sc_tdmaswbaprep = 10;
6989		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6990			"swbaprep", CTLFLAG_RW, &sc->sc_tdmaswbaprep, 0,
6991			"TDMA SWBA preparation time");
6992		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6993			"guardtime", CTLFLAG_RW, &sc->sc_tdmaguard, 0,
6994			"TDMA slot guard time");
6995		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6996			"superframe", CTLFLAG_RD, &sc->sc_tdmabintval, 0,
6997			"TDMA calculated super frame");
6998		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6999			"setcca", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
7000			ath_sysctl_setcca, "I", "enable CCA control");
7001	}
7002#endif
7003}
7004
7005static void
7006ath_bpfattach(struct ath_softc *sc)
7007{
7008	struct ifnet *ifp = sc->sc_ifp;
7009
7010	bpfattach(ifp, DLT_IEEE802_11_RADIO,
7011		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th));
7012	/*
7013	 * Initialize constant fields.
7014	 * XXX make header lengths a multiple of 32-bits so subsequent
7015	 *     headers are properly aligned; this is a kludge to keep
7016	 *     certain applications happy.
7017	 *
7018	 * NB: the channel is setup each time we transition to the
7019	 *     RUN state to avoid filling it in for each frame.
7020	 */
7021	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
7022	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
7023	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
7024
7025	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
7026	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
7027	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
7028}
7029
7030static int
7031ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
7032	struct ath_buf *bf, struct mbuf *m0,
7033	const struct ieee80211_bpf_params *params)
7034{
7035	struct ifnet *ifp = sc->sc_ifp;
7036	struct ieee80211com *ic = ifp->if_l2com;
7037	struct ath_hal *ah = sc->sc_ah;
7038	int error, ismcast, ismrr;
7039	int keyix, hdrlen, pktlen, try0, txantenna;
7040	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
7041	struct ieee80211_frame *wh;
7042	u_int flags, ctsduration;
7043	HAL_PKT_TYPE atype;
7044	const HAL_RATE_TABLE *rt;
7045	struct ath_desc *ds;
7046	u_int pri;
7047
7048	wh = mtod(m0, struct ieee80211_frame *);
7049	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
7050	hdrlen = ieee80211_anyhdrsize(wh);
7051	/*
7052	 * Packet length must not include any
7053	 * pad bytes; deduct them here.
7054	 */
7055	/* XXX honor IEEE80211_BPF_DATAPAD */
7056	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
7057
7058	if (params->ibp_flags & IEEE80211_BPF_CRYPTO) {
7059		const struct ieee80211_cipher *cip;
7060		struct ieee80211_key *k;
7061
7062		/*
7063		 * Construct the 802.11 header+trailer for an encrypted
7064		 * frame. The only reason this can fail is because of an
7065		 * unknown or unsupported cipher/key type.
7066		 */
7067		k = ieee80211_crypto_encap(ni, m0);
7068		if (k == NULL) {
7069			/*
7070			 * This can happen when the key is yanked after the
7071			 * frame was queued.  Just discard the frame; the
7072			 * 802.11 layer counts failures and provides
7073			 * debugging/diagnostics.
7074			 */
7075			ath_freetx(m0);
7076			return EIO;
7077		}
7078		/*
7079		 * Adjust the packet + header lengths for the crypto
7080		 * additions and calculate the h/w key index.  When
7081		 * a s/w mic is done the frame will have had any mic
7082		 * added to it prior to entry so m0->m_pkthdr.len will
7083		 * account for it. Otherwise we need to add it to the
7084		 * packet length.
7085		 */
7086		cip = k->wk_cipher;
7087		hdrlen += cip->ic_header;
7088		pktlen += cip->ic_header + cip->ic_trailer;
7089		/* NB: frags always have any TKIP MIC done in s/w */
7090		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
7091			pktlen += cip->ic_miclen;
7092		keyix = k->wk_keyix;
7093
7094		/* packet header may have moved, reset our local pointer */
7095		wh = mtod(m0, struct ieee80211_frame *);
7096	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
7097		/*
7098		 * Use station key cache slot, if assigned.
7099		 */
7100		keyix = ni->ni_ucastkey.wk_keyix;
7101		if (keyix == IEEE80211_KEYIX_NONE)
7102			keyix = HAL_TXKEYIX_INVALID;
7103	} else
7104		keyix = HAL_TXKEYIX_INVALID;
7105
7106	error = ath_tx_dmasetup(sc, bf, m0);
7107	if (error != 0)
7108		return error;
7109	m0 = bf->bf_m;				/* NB: may have changed */
7110	wh = mtod(m0, struct ieee80211_frame *);
7111	bf->bf_node = ni;			/* NB: held reference */
7112
7113	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
7114	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
7115	if (params->ibp_flags & IEEE80211_BPF_RTS)
7116		flags |= HAL_TXDESC_RTSENA;
7117	else if (params->ibp_flags & IEEE80211_BPF_CTS)
7118		flags |= HAL_TXDESC_CTSENA;
7119	/* XXX leave ismcast to injector? */
7120	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
7121		flags |= HAL_TXDESC_NOACK;
7122
7123	rt = sc->sc_currates;
7124	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
7125	rix = ath_tx_findrix(rt, params->ibp_rate0);
7126	txrate = rt->info[rix].rateCode;
7127	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7128		txrate |= rt->info[rix].shortPreamble;
7129	sc->sc_txrix = rix;
7130	try0 = params->ibp_try0;
7131	ismrr = (params->ibp_try1 != 0);
7132	txantenna = params->ibp_pri >> 2;
7133	if (txantenna == 0)			/* XXX? */
7134		txantenna = sc->sc_txantenna;
7135	ctsduration = 0;
7136	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
7137		cix = ath_tx_findrix(rt, params->ibp_ctsrate);
7138		ctsrate = rt->info[cix].rateCode;
7139		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
7140			ctsrate |= rt->info[cix].shortPreamble;
7141			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
7142				ctsduration += rt->info[cix].spAckDuration;
7143			ctsduration += ath_hal_computetxtime(ah,
7144				rt, pktlen, rix, AH_TRUE);
7145			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
7146				ctsduration += rt->info[rix].spAckDuration;
7147		} else {
7148			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
7149				ctsduration += rt->info[cix].lpAckDuration;
7150			ctsduration += ath_hal_computetxtime(ah,
7151				rt, pktlen, rix, AH_FALSE);
7152			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
7153				ctsduration += rt->info[rix].lpAckDuration;
7154		}
7155		ismrr = 0;			/* XXX */
7156	} else
7157		ctsrate = 0;
7158	pri = params->ibp_pri & 3;
7159	/*
7160	 * NB: we mark all packets as type PSPOLL so the h/w won't
7161	 * set the sequence number, duration, etc.
7162	 */
7163	atype = HAL_PKT_TYPE_PSPOLL;
7164
7165	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
7166		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
7167			sc->sc_hwmap[rix].ieeerate, -1);
7168
7169	if (bpf_peers_present(ifp->if_bpf)) {
7170		u_int64_t tsf = ath_hal_gettsf64(ah);
7171
7172		sc->sc_tx_th.wt_tsf = htole64(tsf);
7173		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
7174		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
7175			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
7176		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
7177		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
7178		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
7179
7180		bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
7181	}
7182
7183	/*
7184	 * Formulate first tx descriptor with tx controls.
7185	 */
7186	ds = bf->bf_desc;
7187	/* XXX check return value? */
7188	ath_hal_setuptxdesc(ah, ds
7189		, pktlen		/* packet length */
7190		, hdrlen		/* header length */
7191		, atype			/* Atheros packet type */
7192		, params->ibp_power	/* txpower */
7193		, txrate, try0		/* series 0 rate/tries */
7194		, keyix			/* key cache index */
7195		, txantenna		/* antenna mode */
7196		, flags			/* flags */
7197		, ctsrate		/* rts/cts rate */
7198		, ctsduration		/* rts/cts duration */
7199	);
7200	bf->bf_txflags = flags;
7201
7202	if (ismrr) {
7203		rix = ath_tx_findrix(rt, params->ibp_rate1);
7204		rate1 = rt->info[rix].rateCode;
7205		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7206			rate1 |= rt->info[rix].shortPreamble;
7207		if (params->ibp_try2) {
7208			rix = ath_tx_findrix(rt, params->ibp_rate2);
7209			rate2 = rt->info[rix].rateCode;
7210			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7211				rate2 |= rt->info[rix].shortPreamble;
7212		} else
7213			rate2 = 0;
7214		if (params->ibp_try3) {
7215			rix = ath_tx_findrix(rt, params->ibp_rate3);
7216			rate3 = rt->info[rix].rateCode;
7217			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
7218				rate3 |= rt->info[rix].shortPreamble;
7219		} else
7220			rate3 = 0;
7221		ath_hal_setupxtxdesc(ah, ds
7222			, rate1, params->ibp_try1	/* series 1 */
7223			, rate2, params->ibp_try2	/* series 2 */
7224			, rate3, params->ibp_try3	/* series 3 */
7225		);
7226	}
7227
7228	/* NB: no buffered multicast in power save support */
7229	ath_tx_handoff(sc, sc->sc_ac2q[pri], bf);
7230	return 0;
7231}
7232
7233static int
7234ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
7235	const struct ieee80211_bpf_params *params)
7236{
7237	struct ieee80211com *ic = ni->ni_ic;
7238	struct ifnet *ifp = ic->ic_ifp;
7239	struct ath_softc *sc = ifp->if_softc;
7240	struct ath_buf *bf;
7241
7242	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
7243		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: discard frame, %s", __func__,
7244		    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 ?
7245			"!running" : "invalid");
7246		sc->sc_stats.ast_tx_raw_fail++;
7247		ieee80211_free_node(ni);
7248		m_freem(m);
7249		return ENETDOWN;
7250	}
7251	/*
7252	 * Grab a TX buffer and associated resources.
7253	 */
7254	bf = ath_getbuf(sc);
7255	if (bf == NULL) {
7256		/* NB: ath_getbuf handles stat+msg */
7257		ieee80211_free_node(ni);
7258		m_freem(m);
7259		return ENOBUFS;
7260	}
7261
7262	ifp->if_opackets++;
7263	sc->sc_stats.ast_tx_raw++;
7264
7265	if (params == NULL) {
7266		/*
7267		 * Legacy path; interpret frame contents to decide
7268		 * precisely how to send the frame.
7269		 */
7270		if (ath_tx_start(sc, ni, bf, m))
7271			goto bad;
7272	} else {
7273		/*
7274		 * Caller supplied explicit parameters to use in
7275		 * sending the frame.
7276		 */
7277		if (ath_tx_raw_start(sc, ni, bf, m, params))
7278			goto bad;
7279	}
7280	sc->sc_wd_timer = 5;
7281
7282	return 0;
7283bad:
7284	ifp->if_oerrors++;
7285	ATH_TXBUF_LOCK(sc);
7286	STAILQ_INSERT_HEAD(&sc->sc_txbuf, bf, bf_list);
7287	ATH_TXBUF_UNLOCK(sc);
7288	ieee80211_free_node(ni);
7289	return EIO;		/* XXX */
7290}
7291
7292/*
7293 * Announce various information on device/driver attach.
7294 */
7295static void
7296ath_announce(struct ath_softc *sc)
7297{
7298	struct ifnet *ifp = sc->sc_ifp;
7299	struct ath_hal *ah = sc->sc_ah;
7300
7301	if_printf(ifp, "AR%s mac %d.%d RF%s phy %d.%d\n",
7302		ath_hal_mac_name(ah), ah->ah_macVersion, ah->ah_macRev,
7303		ath_hal_rf_name(ah), ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
7304	if (bootverbose) {
7305		int i;
7306		for (i = 0; i <= WME_AC_VO; i++) {
7307			struct ath_txq *txq = sc->sc_ac2q[i];
7308			if_printf(ifp, "Use hw queue %u for %s traffic\n",
7309				txq->axq_qnum, ieee80211_wme_acnames[i]);
7310		}
7311		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
7312			sc->sc_cabq->axq_qnum);
7313		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
7314	}
7315	if (ath_rxbuf != ATH_RXBUF)
7316		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
7317	if (ath_txbuf != ATH_TXBUF)
7318		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
7319}
7320
7321#ifdef ATH_SUPPORT_TDMA
7322static __inline uint32_t
7323ath_hal_getnexttbtt(struct ath_hal *ah)
7324{
7325#define	AR_TIMER0	0x8028
7326	return OS_REG_READ(ah, AR_TIMER0);
7327}
7328
7329static __inline void
7330ath_hal_adjusttsf(struct ath_hal *ah, int32_t tsfdelta)
7331{
7332	/* XXX handle wrap/overflow */
7333	OS_REG_WRITE(ah, AR_TSF_L32, OS_REG_READ(ah, AR_TSF_L32) + tsfdelta);
7334}
7335
7336static void
7337ath_tdma_settimers(struct ath_softc *sc, u_int32_t nexttbtt, u_int32_t bintval)
7338{
7339	struct ath_hal *ah = sc->sc_ah;
7340	HAL_BEACON_TIMERS bt;
7341
7342	bt.bt_intval = bintval | HAL_BEACON_ENA;
7343	bt.bt_nexttbtt = nexttbtt;
7344	bt.bt_nextdba = (nexttbtt<<3) - sc->sc_tdmadbaprep;
7345	bt.bt_nextswba = (nexttbtt<<3) - sc->sc_tdmaswbaprep;
7346	bt.bt_nextatim = nexttbtt+1;
7347	ath_hal_beaconsettimers(ah, &bt);
7348}
7349
7350/*
7351 * Calculate the beacon interval.  This is periodic in the
7352 * superframe for the bss.  We assume each station is configured
7353 * identically wrt transmit rate so the guard time we calculate
7354 * above will be the same on all stations.  Note we need to
7355 * factor in the xmit time because the hardware will schedule
7356 * a frame for transmit if the start of the frame is within
7357 * the burst time.  When we get hardware that properly kills
7358 * frames in the PCU we can reduce/eliminate the guard time.
7359 *
7360 * Roundup to 1024 is so we have 1 TU buffer in the guard time
7361 * to deal with the granularity of the nexttbtt timer.  11n MAC's
7362 * with 1us timer granularity should allow us to reduce/eliminate
7363 * this.
7364 */
7365static void
7366ath_tdma_bintvalsetup(struct ath_softc *sc,
7367	const struct ieee80211_tdma_state *tdma)
7368{
7369	/* copy from vap state (XXX check all vaps have same value?) */
7370	sc->sc_tdmaslotlen = tdma->tdma_slotlen;
7371	sc->sc_tdmabintcnt = tdma->tdma_bintval;
7372
7373	sc->sc_tdmabintval = roundup((sc->sc_tdmaslotlen+sc->sc_tdmaguard) *
7374		tdma->tdma_slotcnt, 1024);
7375	sc->sc_tdmabintval >>= 10;		/* TSF -> TU */
7376	if (sc->sc_tdmabintval & 1)
7377		sc->sc_tdmabintval++;
7378
7379	if (tdma->tdma_slot == 0) {
7380		/*
7381		 * Only slot 0 beacons; other slots respond.
7382		 */
7383		sc->sc_imask |= HAL_INT_SWBA;
7384		sc->sc_tdmaswba = 0;		/* beacon immediately */
7385	} else {
7386		/* XXX all vaps must be slot 0 or slot !0 */
7387		sc->sc_imask &= ~HAL_INT_SWBA;
7388	}
7389}
7390
7391/*
7392 * Max 802.11 overhead.  This assumes no 4-address frames and
7393 * the encapsulation done by ieee80211_encap (llc).  We also
7394 * include potential crypto overhead.
7395 */
7396#define	IEEE80211_MAXOVERHEAD \
7397	(sizeof(struct ieee80211_qosframe) \
7398	 + sizeof(struct llc) \
7399	 + IEEE80211_ADDR_LEN \
7400	 + IEEE80211_WEP_IVLEN \
7401	 + IEEE80211_WEP_KIDLEN \
7402	 + IEEE80211_WEP_CRCLEN \
7403	 + IEEE80211_WEP_MICLEN \
7404	 + IEEE80211_CRC_LEN)
7405
7406/*
7407 * Setup initially for tdma operation.  Start the beacon
7408 * timers and enable SWBA if we are slot 0.  Otherwise
7409 * we wait for slot 0 to arrive so we can sync up before
7410 * starting to transmit.
7411 */
7412static void
7413ath_tdma_config(struct ath_softc *sc, struct ieee80211vap *vap)
7414{
7415	struct ath_hal *ah = sc->sc_ah;
7416	struct ifnet *ifp = sc->sc_ifp;
7417	struct ieee80211com *ic = ifp->if_l2com;
7418	const struct ieee80211_txparam *tp;
7419	const struct ieee80211_tdma_state *tdma = NULL;
7420	int rix;
7421
7422	if (vap == NULL) {
7423		vap = TAILQ_FIRST(&ic->ic_vaps);   /* XXX */
7424		if (vap == NULL) {
7425			if_printf(ifp, "%s: no vaps?\n", __func__);
7426			return;
7427		}
7428	}
7429	tp = vap->iv_bss->ni_txparms;
7430	/*
7431	 * Calculate the guard time for each slot.  This is the
7432	 * time to send a maximal-size frame according to the
7433	 * fixed/lowest transmit rate.  Note that the interface
7434	 * mtu does not include the 802.11 overhead so we must
7435	 * tack that on (ath_hal_computetxtime includes the
7436	 * preamble and plcp in it's calculation).
7437	 */
7438	tdma = vap->iv_tdma;
7439	if (tp->ucastrate != IEEE80211_FIXED_RATE_NONE)
7440		rix = ath_tx_findrix(sc->sc_currates, tp->ucastrate);
7441	else
7442		rix = ath_tx_findrix(sc->sc_currates, tp->mcastrate);
7443	/* XXX short preamble assumed */
7444	sc->sc_tdmaguard = ath_hal_computetxtime(ah, sc->sc_currates,
7445		ifp->if_mtu + IEEE80211_MAXOVERHEAD, rix, AH_TRUE);
7446
7447	ath_hal_intrset(ah, 0);
7448
7449	ath_beaconq_config(sc);			/* setup h/w beacon q */
7450	if (sc->sc_setcca)
7451		ath_hal_setcca(ah, AH_FALSE);	/* disable CCA */
7452	ath_tdma_bintvalsetup(sc, tdma);	/* calculate beacon interval */
7453	ath_tdma_settimers(sc, sc->sc_tdmabintval,
7454		sc->sc_tdmabintval | HAL_BEACON_RESET_TSF);
7455	sc->sc_syncbeacon = 0;
7456
7457	sc->sc_avgtsfdeltap = TDMA_DUMMY_MARKER;
7458	sc->sc_avgtsfdeltam = TDMA_DUMMY_MARKER;
7459
7460	ath_hal_intrset(ah, sc->sc_imask);
7461
7462	DPRINTF(sc, ATH_DEBUG_TDMA, "%s: slot %u len %uus cnt %u "
7463	    "bsched %u guard %uus bintval %u TU dba prep %u\n", __func__,
7464	    tdma->tdma_slot, tdma->tdma_slotlen, tdma->tdma_slotcnt,
7465	    tdma->tdma_bintval, sc->sc_tdmaguard, sc->sc_tdmabintval,
7466	    sc->sc_tdmadbaprep);
7467}
7468
7469/*
7470 * Update tdma operation.  Called from the 802.11 layer
7471 * when a beacon is received from the TDMA station operating
7472 * in the slot immediately preceding us in the bss.  Use
7473 * the rx timestamp for the beacon frame to update our
7474 * beacon timers so we follow their schedule.  Note that
7475 * by using the rx timestamp we implicitly include the
7476 * propagation delay in our schedule.
7477 */
7478static void
7479ath_tdma_update(struct ieee80211_node *ni,
7480	const struct ieee80211_tdma_param *tdma)
7481{
7482#define	TSF_TO_TU(_h,_l) \
7483	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
7484#define	TU_TO_TSF(_tu)	(((u_int64_t)(_tu)) << 10)
7485	struct ieee80211vap *vap = ni->ni_vap;
7486	struct ieee80211com *ic = ni->ni_ic;
7487	struct ath_softc *sc = ic->ic_ifp->if_softc;
7488	struct ath_hal *ah = sc->sc_ah;
7489	const HAL_RATE_TABLE *rt = sc->sc_currates;
7490	u_int64_t tsf, rstamp, nextslot;
7491	u_int32_t txtime, nextslottu, timer0;
7492	int32_t tudelta, tsfdelta;
7493	const struct ath_rx_status *rs;
7494	int rix;
7495
7496	sc->sc_stats.ast_tdma_update++;
7497
7498	/*
7499	 * Check for and adopt configuration changes.
7500	 */
7501	if (isset(ATH_VAP(vap)->av_boff.bo_flags, IEEE80211_BEACON_TDMA)) {
7502		const struct ieee80211_tdma_state *ts = vap->iv_tdma;
7503
7504		ath_tdma_bintvalsetup(sc, ts);
7505
7506		DPRINTF(sc, ATH_DEBUG_TDMA,
7507		    "%s: adopt slot %u slotcnt %u slotlen %u us "
7508		    "bintval %u TU\n", __func__,
7509		    ts->tdma_slot, ts->tdma_slotcnt, ts->tdma_slotlen,
7510		    sc->sc_tdmabintval);
7511
7512		ath_beaconq_config(sc);
7513		/* XXX right? */
7514		ath_hal_intrset(ah, sc->sc_imask);
7515		/* NB: beacon timers programmed below */
7516	}
7517
7518	/* extend rx timestamp to 64 bits */
7519	tsf = ath_hal_gettsf64(ah);
7520	rstamp = ath_extend_tsf(ni->ni_rstamp, tsf);
7521	/*
7522	 * The rx timestamp is set by the hardware on completing
7523	 * reception (at the point where the rx descriptor is DMA'd
7524	 * to the host).  To find the start of our next slot we
7525	 * must adjust this time by the time required to send
7526	 * the packet just received.
7527	 */
7528	rs = sc->sc_tdmars;
7529	rix = rt->rateCodeToIndex[rs->rs_rate];
7530	txtime = ath_hal_computetxtime(ah, rt, rs->rs_datalen, rix,
7531	    rt->info[rix].shortPreamble);
7532	/* NB: << 9 is to cvt to TU and /2 */
7533	nextslot = (rstamp - txtime) + (sc->sc_tdmabintval << 9);
7534	nextslottu = TSF_TO_TU(nextslot>>32, nextslot) & HAL_BEACON_PERIOD;
7535
7536	/*
7537	 * TIMER0 is the h/w's idea of NextTBTT (in TU's).  Convert
7538	 * to usecs and calculate the difference between what the
7539	 * other station thinks and what we have programmed.  This
7540	 * lets us figure how to adjust our timers to match.  The
7541	 * adjustments are done by pulling the TSF forward and possibly
7542	 * rewriting the beacon timers.
7543	 */
7544	timer0 = ath_hal_getnexttbtt(ah);
7545	tsfdelta = (int32_t)((nextslot % TU_TO_TSF(HAL_BEACON_PERIOD+1)) - TU_TO_TSF(timer0));
7546
7547	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7548	    "tsfdelta %d avg +%d/-%d\n", tsfdelta,
7549	    TDMA_AVG(sc->sc_avgtsfdeltap), TDMA_AVG(sc->sc_avgtsfdeltam));
7550
7551	if (tsfdelta < 0) {
7552		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7553		TDMA_SAMPLE(sc->sc_avgtsfdeltam, -tsfdelta);
7554		tsfdelta = -tsfdelta % 1024;
7555		nextslottu++;
7556	} else if (tsfdelta > 0) {
7557		TDMA_SAMPLE(sc->sc_avgtsfdeltap, tsfdelta);
7558		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7559		tsfdelta = 1024 - (tsfdelta % 1024);
7560		nextslottu++;
7561	} else {
7562		TDMA_SAMPLE(sc->sc_avgtsfdeltap, 0);
7563		TDMA_SAMPLE(sc->sc_avgtsfdeltam, 0);
7564	}
7565	tudelta = nextslottu - timer0;
7566
7567	/*
7568	 * Copy sender's timetstamp into tdma ie so they can
7569	 * calculate roundtrip time.  We submit a beacon frame
7570	 * below after any timer adjustment.  The frame goes out
7571	 * at the next TBTT so the sender can calculate the
7572	 * roundtrip by inspecting the tdma ie in our beacon frame.
7573	 *
7574	 * NB: This tstamp is subtlely preserved when
7575	 *     IEEE80211_BEACON_TDMA is marked (e.g. when the
7576	 *     slot position changes) because ieee80211_add_tdma
7577	 *     skips over the data.
7578	 */
7579	memcpy(ATH_VAP(vap)->av_boff.bo_tdma +
7580		__offsetof(struct ieee80211_tdma_param, tdma_tstamp),
7581		&ni->ni_tstamp.data, 8);
7582#if 0
7583	DPRINTF(sc, ATH_DEBUG_TDMA_TIMER,
7584	    "tsf %llu nextslot %llu (%d, %d) nextslottu %u timer0 %u (%d)\n",
7585	    (unsigned long long) tsf, (unsigned long long) nextslot,
7586	    (int)(nextslot - tsf), tsfdelta,
7587	    nextslottu, timer0, tudelta);
7588#endif
7589	/*
7590	 * Adjust the beacon timers only when pulling them forward
7591	 * or when going back by less than the beacon interval.
7592	 * Negative jumps larger than the beacon interval seem to
7593	 * cause the timers to stop and generally cause instability.
7594	 * This basically filters out jumps due to missed beacons.
7595	 */
7596	if (tudelta != 0 && (tudelta > 0 || -tudelta < sc->sc_tdmabintval)) {
7597		ath_tdma_settimers(sc, nextslottu, sc->sc_tdmabintval);
7598		sc->sc_stats.ast_tdma_timers++;
7599	}
7600	if (tsfdelta > 0) {
7601		ath_hal_adjusttsf(ah, tsfdelta);
7602		sc->sc_stats.ast_tdma_tsf++;
7603	}
7604	ath_tdma_beacon_send(sc, vap);		/* prepare response */
7605#undef TU_TO_TSF
7606#undef TSF_TO_TU
7607}
7608
7609/*
7610 * Transmit a beacon frame at SWBA.  Dynamic updates
7611 * to the frame contents are done as needed.
7612 */
7613static void
7614ath_tdma_beacon_send(struct ath_softc *sc, struct ieee80211vap *vap)
7615{
7616	struct ath_hal *ah = sc->sc_ah;
7617	struct ath_buf *bf;
7618	int otherant;
7619
7620	/*
7621	 * Check if the previous beacon has gone out.  If
7622	 * not don't try to post another, skip this period
7623	 * and wait for the next.  Missed beacons indicate
7624	 * a problem and should not occur.  If we miss too
7625	 * many consecutive beacons reset the device.
7626	 */
7627	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
7628		sc->sc_bmisscount++;
7629		DPRINTF(sc, ATH_DEBUG_BEACON,
7630			"%s: missed %u consecutive beacons\n",
7631			__func__, sc->sc_bmisscount);
7632		if (sc->sc_bmisscount >= ath_bstuck_threshold)
7633			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
7634		return;
7635	}
7636	if (sc->sc_bmisscount != 0) {
7637		DPRINTF(sc, ATH_DEBUG_BEACON,
7638			"%s: resume beacon xmit after %u misses\n",
7639			__func__, sc->sc_bmisscount);
7640		sc->sc_bmisscount = 0;
7641	}
7642
7643	/*
7644	 * Check recent per-antenna transmit statistics and flip
7645	 * the default antenna if noticeably more frames went out
7646	 * on the non-default antenna.
7647	 * XXX assumes 2 anntenae
7648	 */
7649	if (!sc->sc_diversity) {
7650		otherant = sc->sc_defant & 1 ? 2 : 1;
7651		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
7652			ath_setdefantenna(sc, otherant);
7653		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
7654	}
7655
7656	bf = ath_beacon_generate(sc, vap);
7657	if (bf != NULL) {
7658		/*
7659		 * Stop any current dma and put the new frame on the queue.
7660		 * This should never fail since we check above that no frames
7661		 * are still pending on the queue.
7662		 */
7663		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
7664			DPRINTF(sc, ATH_DEBUG_ANY,
7665				"%s: beacon queue %u did not stop?\n",
7666				__func__, sc->sc_bhalq);
7667			/* NB: the HAL still stops DMA, so proceed */
7668		}
7669		ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
7670		ath_hal_txstart(ah, sc->sc_bhalq);
7671
7672		sc->sc_stats.ast_be_xmit++;		/* XXX per-vap? */
7673
7674		/*
7675		 * Record local TSF for our last send for use
7676		 * in arbitrating slot collisions.
7677		 */
7678		vap->iv_bss->ni_tstamp.tsf = ath_hal_gettsf64(ah);
7679	}
7680}
7681#endif /* ATH_SUPPORT_TDMA */
7682