if_ath.c revision 185479
1/*-
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 185479 2008-11-30 18:27:10Z sam $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/sysctl.h>
46#include <sys/mbuf.h>
47#include <sys/malloc.h>
48#include <sys/lock.h>
49#include <sys/mutex.h>
50#include <sys/kernel.h>
51#include <sys/socket.h>
52#include <sys/sockio.h>
53#include <sys/errno.h>
54#include <sys/callout.h>
55#include <sys/bus.h>
56#include <sys/endian.h>
57#include <sys/kthread.h>
58#include <sys/taskqueue.h>
59
60#include <machine/bus.h>
61
62#include <net/if.h>
63#include <net/if_dl.h>
64#include <net/if_media.h>
65#include <net/if_types.h>
66#include <net/if_arp.h>
67#include <net/ethernet.h>
68#include <net/if_llc.h>
69
70#include <net80211/ieee80211_var.h>
71
72#include <net/bpf.h>
73
74#ifdef INET
75#include <netinet/in.h>
76#include <netinet/if_ether.h>
77#endif
78
79#include <dev/ath/if_athvar.h>
80#include <contrib/dev/ath/ah_desc.h>
81#include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
82
83#ifdef ATH_TX99_DIAG
84#include <dev/ath/ath_tx99/ath_tx99.h>
85#endif
86
87/*
88 * We require a HAL w/ the changes for split tx/rx MIC.
89 */
90CTASSERT(HAL_ABI_VERSION > 0x06052200);
91
92/*
93 * ATH_BCBUF determines the number of vap's that can transmit
94 * beacons and also (currently) the number of vap's that can
95 * have unique mac addresses/bssid.  When staggering beacons
96 * 4 is probably a good max as otherwise the beacons become
97 * very closely spaced and there is limited time for cab q traffic
98 * to go out.  You can burst beacons instead but that is not good
99 * for stations in power save and at some point you really want
100 * another radio (and channel).
101 *
102 * The limit on the number of mac addresses is tied to our use of
103 * the U/L bit and tracking addresses in a byte; it would be
104 * worthwhile to allow more for applications like proxy sta.
105 */
106CTASSERT(ATH_BCBUF <= 8);
107
108/* unaligned little endian access */
109#define LE_READ_2(p)							\
110	((u_int16_t)							\
111	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
112#define LE_READ_4(p)							\
113	((u_int32_t)							\
114	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
115	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
116
117#define	CTRY_XR9	5001		/* Ubiquiti XR9 */
118#define	CTRY_GZ901	5002		/* ZComax GZ-901 */
119
120static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
121		    const char name[IFNAMSIZ], int unit, int opmode,
122		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
123		    const uint8_t mac[IEEE80211_ADDR_LEN]);
124static void	ath_vap_delete(struct ieee80211vap *);
125static void	ath_init(void *);
126static void	ath_stop_locked(struct ifnet *);
127static void	ath_stop(struct ifnet *);
128static void	ath_start(struct ifnet *);
129static int	ath_reset(struct ifnet *);
130static int	ath_reset_vap(struct ieee80211vap *, u_long);
131static int	ath_media_change(struct ifnet *);
132static void	ath_watchdog(struct ifnet *);
133static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
134static void	ath_fatal_proc(void *, int);
135static void	ath_bmiss_vap(struct ieee80211vap *);
136static void	ath_bmiss_proc(void *, int);
137static int	ath_keyset(struct ath_softc *, const struct ieee80211_key *,
138			struct ieee80211_node *);
139static int	ath_key_alloc(struct ieee80211vap *,
140			struct ieee80211_key *,
141			ieee80211_keyix *, ieee80211_keyix *);
142static int	ath_key_delete(struct ieee80211vap *,
143			const struct ieee80211_key *);
144static int	ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
145			const u_int8_t mac[IEEE80211_ADDR_LEN]);
146static void	ath_key_update_begin(struct ieee80211vap *);
147static void	ath_key_update_end(struct ieee80211vap *);
148static void	ath_update_mcast(struct ifnet *);
149static void	ath_update_promisc(struct ifnet *);
150static void	ath_mode_init(struct ath_softc *);
151static void	ath_setslottime(struct ath_softc *);
152static void	ath_updateslot(struct ifnet *);
153static int	ath_beaconq_setup(struct ath_hal *);
154static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
155static void	ath_beacon_update(struct ieee80211vap *, int item);
156static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
157static void	ath_beacon_proc(void *, int);
158static struct ath_buf *ath_beacon_generate(struct ath_softc *,
159			struct ieee80211vap *);
160static void	ath_bstuck_proc(void *, int);
161static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
162static void	ath_beacon_free(struct ath_softc *);
163static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
164static void	ath_descdma_cleanup(struct ath_softc *sc,
165			struct ath_descdma *, ath_bufhead *);
166static int	ath_desc_alloc(struct ath_softc *);
167static void	ath_desc_free(struct ath_softc *);
168static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
169			const uint8_t [IEEE80211_ADDR_LEN]);
170static void	ath_node_free(struct ieee80211_node *);
171static void	ath_node_getsignal(const struct ieee80211_node *,
172			int8_t *, int8_t *);
173static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
174static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
175			int subtype, int rssi, int noise, u_int32_t rstamp);
176static void	ath_setdefantenna(struct ath_softc *, u_int);
177static void	ath_rx_proc(void *, int);
178static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
179static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
180static int	ath_tx_setup(struct ath_softc *, int, int);
181static int	ath_wme_update(struct ieee80211com *);
182static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
183static void	ath_tx_cleanup(struct ath_softc *);
184static void	ath_freetx(struct mbuf *);
185static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
186			     struct ath_buf *, struct mbuf *);
187static void	ath_tx_proc_q0(void *, int);
188static void	ath_tx_proc_q0123(void *, int);
189static void	ath_tx_proc(void *, int);
190static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
191static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
192static void	ath_draintxq(struct ath_softc *);
193static void	ath_stoprecv(struct ath_softc *);
194static int	ath_startrecv(struct ath_softc *);
195static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
196static void	ath_scan_start(struct ieee80211com *);
197static void	ath_scan_end(struct ieee80211com *);
198static void	ath_set_channel(struct ieee80211com *);
199static void	ath_calibrate(void *);
200static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
201static void	ath_setup_stationkey(struct ieee80211_node *);
202static void	ath_newassoc(struct ieee80211_node *, int);
203static int	ath_setregdomain(struct ieee80211com *,
204		    struct ieee80211_regdomain *, int,
205		    struct ieee80211_channel []);
206static void	ath_getradiocaps(struct ieee80211com *, int *,
207		    struct ieee80211_channel []);
208static int	ath_getchannels(struct ath_softc *);
209static void	ath_led_event(struct ath_softc *, int);
210
211static int	ath_rate_setup(struct ath_softc *, u_int mode);
212static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
213
214static void	ath_sysctlattach(struct ath_softc *);
215static int	ath_raw_xmit(struct ieee80211_node *,
216			struct mbuf *, const struct ieee80211_bpf_params *);
217static void	ath_bpfattach(struct ath_softc *);
218static void	ath_announce(struct ath_softc *);
219
220SYSCTL_DECL(_hw_ath);
221
222/* XXX validate sysctl values */
223static	int ath_calinterval = 30;		/* calibrate every 30 secs */
224SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
225	    0, "chip calibration interval (secs)");
226
227static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
228SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
229	    0, "rx buffers allocated");
230TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
231static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
232SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
233	    0, "tx buffers allocated");
234TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
235
236#ifdef ATH_DEBUG
237enum {
238	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
239	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
240	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
241	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
242	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
243	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
244	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
245	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
246	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
247	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
248	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
249	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
250	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
251	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
252	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
253	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
254	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
255	ATH_DEBUG_LED		= 0x00100000,	/* led management */
256	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
257	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
258	ATH_DEBUG_REGDOMAIN	= 0x02000000,	/* regulatory processing */
259	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
260	ATH_DEBUG_ANY		= 0xffffffff
261};
262static	int ath_debug = 0;
263SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
264	    0, "control debugging printfs");
265TUNABLE_INT("hw.ath.debug", &ath_debug);
266
267#define	IFF_DUMPPKTS(sc, m) \
268	((sc->sc_debug & (m)) || \
269	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
270#define	DPRINTF(sc, m, fmt, ...) do {				\
271	if (sc->sc_debug & (m))					\
272		printf(fmt, __VA_ARGS__);			\
273} while (0)
274#define	KEYPRINTF(sc, ix, hk, mac) do {				\
275	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
276		ath_keyprint(sc, __func__, ix, hk, mac);	\
277} while (0)
278static	void ath_printrxbuf(struct ath_softc *, const struct ath_buf *bf,
279	u_int ix, int);
280static	void ath_printtxbuf(struct ath_softc *, const struct ath_buf *bf,
281	u_int qnum, u_int ix, int done);
282#else
283#define	IFF_DUMPPKTS(sc, m) \
284	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
285#define	DPRINTF(sc, m, fmt, ...) do {				\
286	(void) sc;						\
287} while (0)
288#define	KEYPRINTF(sc, k, ix, mac) do {				\
289	(void) sc;						\
290} while (0)
291#endif
292
293MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
294
295int
296ath_attach(u_int16_t devid, struct ath_softc *sc)
297{
298	struct ifnet *ifp;
299	struct ieee80211com *ic;
300	struct ath_hal *ah = NULL;
301	HAL_STATUS status;
302	int error = 0, i;
303	u_int wmodes;
304
305	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
306
307	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
308	if (ifp == NULL) {
309		device_printf(sc->sc_dev, "can not if_alloc()\n");
310		error = ENOSPC;
311		goto bad;
312	}
313	ic = ifp->if_l2com;
314
315	/* set these up early for if_printf use */
316	if_initname(ifp, device_get_name(sc->sc_dev),
317		device_get_unit(sc->sc_dev));
318
319	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
320	if (ah == NULL) {
321		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
322			status);
323		error = ENXIO;
324		goto bad;
325	}
326	if (ah->ah_abi != HAL_ABI_VERSION) {
327		if_printf(ifp, "HAL ABI mismatch detected "
328			"(HAL:0x%x != driver:0x%x)\n",
329			ah->ah_abi, HAL_ABI_VERSION);
330		error = ENXIO;
331		goto bad;
332	}
333	sc->sc_ah = ah;
334	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
335#ifdef	ATH_DEBUG
336	sc->sc_debug = ath_debug;
337#endif
338
339	/*
340	 * Check if the MAC has multi-rate retry support.
341	 * We do this by trying to setup a fake extended
342	 * descriptor.  MAC's that don't have support will
343	 * return false w/o doing anything.  MAC's that do
344	 * support it will return true w/o doing anything.
345	 */
346	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
347
348	/*
349	 * Check if the device has hardware counters for PHY
350	 * errors.  If so we need to enable the MIB interrupt
351	 * so we can act on stat triggers.
352	 */
353	if (ath_hal_hwphycounters(ah))
354		sc->sc_needmib = 1;
355
356	/*
357	 * Get the hardware key cache size.
358	 */
359	sc->sc_keymax = ath_hal_keycachesize(ah);
360	if (sc->sc_keymax > ATH_KEYMAX) {
361		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
362			ATH_KEYMAX, sc->sc_keymax);
363		sc->sc_keymax = ATH_KEYMAX;
364	}
365	/*
366	 * Reset the key cache since some parts do not
367	 * reset the contents on initial power up.
368	 */
369	for (i = 0; i < sc->sc_keymax; i++)
370		ath_hal_keyreset(ah, i);
371
372	/*
373	 * Collect the default channel list.
374	 */
375	error = ath_getchannels(sc);
376	if (error != 0)
377		goto bad;
378
379	/*
380	 * Setup rate tables for all potential media types.
381	 */
382	ath_rate_setup(sc, IEEE80211_MODE_11A);
383	ath_rate_setup(sc, IEEE80211_MODE_11B);
384	ath_rate_setup(sc, IEEE80211_MODE_11G);
385	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
386	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
387	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
388	ath_rate_setup(sc, IEEE80211_MODE_11NA);
389	ath_rate_setup(sc, IEEE80211_MODE_11NG);
390	ath_rate_setup(sc, IEEE80211_MODE_HALF);
391	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
392
393	/* NB: setup here so ath_rate_update is happy */
394	ath_setcurmode(sc, IEEE80211_MODE_11A);
395
396	/*
397	 * Allocate tx+rx descriptors and populate the lists.
398	 */
399	error = ath_desc_alloc(sc);
400	if (error != 0) {
401		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
402		goto bad;
403	}
404	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
405
406	ATH_TXBUF_LOCK_INIT(sc);
407
408	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
409		taskqueue_thread_enqueue, &sc->sc_tq);
410	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
411		"%s taskq", ifp->if_xname);
412
413	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
414	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
415	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
416
417	/*
418	 * Allocate hardware transmit queues: one queue for
419	 * beacon frames and one data queue for each QoS
420	 * priority.  Note that the hal handles reseting
421	 * these queues at the needed time.
422	 *
423	 * XXX PS-Poll
424	 */
425	sc->sc_bhalq = ath_beaconq_setup(ah);
426	if (sc->sc_bhalq == (u_int) -1) {
427		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
428		error = EIO;
429		goto bad2;
430	}
431	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
432	if (sc->sc_cabq == NULL) {
433		if_printf(ifp, "unable to setup CAB xmit queue!\n");
434		error = EIO;
435		goto bad2;
436	}
437	/* NB: insure BK queue is the lowest priority h/w queue */
438	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
439		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
440			ieee80211_wme_acnames[WME_AC_BK]);
441		error = EIO;
442		goto bad2;
443	}
444	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
445	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
446	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
447		/*
448		 * Not enough hardware tx queues to properly do WME;
449		 * just punt and assign them all to the same h/w queue.
450		 * We could do a better job of this if, for example,
451		 * we allocate queues when we switch from station to
452		 * AP mode.
453		 */
454		if (sc->sc_ac2q[WME_AC_VI] != NULL)
455			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
456		if (sc->sc_ac2q[WME_AC_BE] != NULL)
457			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
458		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
459		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
460		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
461	}
462
463	/*
464	 * Special case certain configurations.  Note the
465	 * CAB queue is handled by these specially so don't
466	 * include them when checking the txq setup mask.
467	 */
468	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
469	case 0x01:
470		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
471		break;
472	case 0x0f:
473		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
474		break;
475	default:
476		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
477		break;
478	}
479
480	/*
481	 * Setup rate control.  Some rate control modules
482	 * call back to change the anntena state so expose
483	 * the necessary entry points.
484	 * XXX maybe belongs in struct ath_ratectrl?
485	 */
486	sc->sc_setdefantenna = ath_setdefantenna;
487	sc->sc_rc = ath_rate_attach(sc);
488	if (sc->sc_rc == NULL) {
489		error = EIO;
490		goto bad2;
491	}
492
493	sc->sc_blinking = 0;
494	sc->sc_ledstate = 1;
495	sc->sc_ledon = 0;			/* low true */
496	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
497	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
498	/*
499	 * Auto-enable soft led processing for IBM cards and for
500	 * 5211 minipci cards.  Users can also manually enable/disable
501	 * support with a sysctl.
502	 */
503	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
504	if (sc->sc_softled) {
505		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
506		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
507	}
508
509	ifp->if_softc = sc;
510	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
511	ifp->if_start = ath_start;
512	ifp->if_watchdog = ath_watchdog;
513	ifp->if_ioctl = ath_ioctl;
514	ifp->if_init = ath_init;
515	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
516	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
517	IFQ_SET_READY(&ifp->if_snd);
518
519	ic->ic_ifp = ifp;
520	/* XXX not right but it's not used anywhere important */
521	ic->ic_phytype = IEEE80211_T_OFDM;
522	ic->ic_opmode = IEEE80211_M_STA;
523	ic->ic_caps =
524		  IEEE80211_C_STA		/* station mode */
525		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
526		| IEEE80211_C_HOSTAP		/* hostap mode */
527		| IEEE80211_C_MONITOR		/* monitor mode */
528		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
529		| IEEE80211_C_WDS		/* 4-address traffic works */
530		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
531		| IEEE80211_C_SHSLOT		/* short slot time supported */
532		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
533		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
534		| IEEE80211_C_TXFRAG		/* handle tx frags */
535		;
536	/*
537	 * Query the hal to figure out h/w crypto support.
538	 */
539	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
540		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
541	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
542		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
543	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
544		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
545	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
546		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
547	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
548		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
549		/*
550		 * Check if h/w does the MIC and/or whether the
551		 * separate key cache entries are required to
552		 * handle both tx+rx MIC keys.
553		 */
554		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
555			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
556		/*
557		 * If the h/w supports storing tx+rx MIC keys
558		 * in one cache slot automatically enable use.
559		 */
560		if (ath_hal_hastkipsplit(ah) ||
561		    !ath_hal_settkipsplit(ah, AH_FALSE))
562			sc->sc_splitmic = 1;
563		/*
564		 * If the h/w can do TKIP MIC together with WME then
565		 * we use it; otherwise we force the MIC to be done
566		 * in software by the net80211 layer.
567		 */
568		if (ath_hal_haswmetkipmic(ah))
569			sc->sc_wmetkipmic = 1;
570	}
571	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
572	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
573	/*
574	 * Mark key cache slots associated with global keys
575	 * as in use.  If we knew TKIP was not to be used we
576	 * could leave the +32, +64, and +32+64 slots free.
577	 */
578	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
579		setbit(sc->sc_keymap, i);
580		setbit(sc->sc_keymap, i+64);
581		if (sc->sc_splitmic) {
582			setbit(sc->sc_keymap, i+32);
583			setbit(sc->sc_keymap, i+32+64);
584		}
585	}
586	/*
587	 * TPC support can be done either with a global cap or
588	 * per-packet support.  The latter is not available on
589	 * all parts.  We're a bit pedantic here as all parts
590	 * support a global cap.
591	 */
592	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
593		ic->ic_caps |= IEEE80211_C_TXPMGT;
594
595	/*
596	 * Mark WME capability only if we have sufficient
597	 * hardware queues to do proper priority scheduling.
598	 */
599	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
600		ic->ic_caps |= IEEE80211_C_WME;
601	/*
602	 * Check for misc other capabilities.
603	 */
604	if (ath_hal_hasbursting(ah))
605		ic->ic_caps |= IEEE80211_C_BURST;
606	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
607	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
608	if (ath_hal_hasfastframes(ah))
609		ic->ic_caps |= IEEE80211_C_FF;
610	wmodes = ath_hal_getwirelessmodes(ah, ic->ic_regdomain.country);
611	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
612		ic->ic_caps |= IEEE80211_C_TURBOP;
613
614	/*
615	 * Indicate we need the 802.11 header padded to a
616	 * 32-bit boundary for 4-address and QoS frames.
617	 */
618	ic->ic_flags |= IEEE80211_F_DATAPAD;
619
620	/*
621	 * Query the hal about antenna support.
622	 */
623	sc->sc_defant = ath_hal_getdefantenna(ah);
624
625	/*
626	 * Not all chips have the VEOL support we want to
627	 * use with IBSS beacons; check here for it.
628	 */
629	sc->sc_hasveol = ath_hal_hasveol(ah);
630
631	/* get mac address from hardware */
632	ath_hal_getmac(ah, ic->ic_myaddr);
633	if (sc->sc_hasbmask)
634		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
635
636	/* NB: used to size node table key mapping array */
637	ic->ic_max_keyix = sc->sc_keymax;
638	/* call MI attach routine. */
639	ieee80211_ifattach(ic);
640	ic->ic_setregdomain = ath_setregdomain;
641	ic->ic_getradiocaps = ath_getradiocaps;
642	sc->sc_opmode = HAL_M_STA;
643
644	/* override default methods */
645	ic->ic_newassoc = ath_newassoc;
646	ic->ic_updateslot = ath_updateslot;
647	ic->ic_wme.wme_update = ath_wme_update;
648	ic->ic_vap_create = ath_vap_create;
649	ic->ic_vap_delete = ath_vap_delete;
650	ic->ic_raw_xmit = ath_raw_xmit;
651	ic->ic_update_mcast = ath_update_mcast;
652	ic->ic_update_promisc = ath_update_promisc;
653	ic->ic_node_alloc = ath_node_alloc;
654	sc->sc_node_free = ic->ic_node_free;
655	ic->ic_node_free = ath_node_free;
656	ic->ic_node_getsignal = ath_node_getsignal;
657	ic->ic_scan_start = ath_scan_start;
658	ic->ic_scan_end = ath_scan_end;
659	ic->ic_set_channel = ath_set_channel;
660
661	ath_bpfattach(sc);
662	/*
663	 * Setup dynamic sysctl's now that country code and
664	 * regdomain are available from the hal.
665	 */
666	ath_sysctlattach(sc);
667
668	if (bootverbose)
669		ieee80211_announce(ic);
670	ath_announce(sc);
671	return 0;
672bad2:
673	ath_tx_cleanup(sc);
674	ath_desc_free(sc);
675bad:
676	if (ah)
677		ath_hal_detach(ah);
678	if (ifp != NULL)
679		if_free(ifp);
680	sc->sc_invalid = 1;
681	return error;
682}
683
684int
685ath_detach(struct ath_softc *sc)
686{
687	struct ifnet *ifp = sc->sc_ifp;
688
689	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
690		__func__, ifp->if_flags);
691
692	/*
693	 * NB: the order of these is important:
694	 * o stop the chip so no more interrupts will fire
695	 * o call the 802.11 layer before detaching the hal to
696	 *   insure callbacks into the driver to delete global
697	 *   key cache entries can be handled
698	 * o free the taskqueue which drains any pending tasks
699	 * o reclaim the bpf tap now that we know nothing will use
700	 *   it (e.g. rx processing from the task q thread)
701	 * o reclaim the tx queue data structures after calling
702	 *   the 802.11 layer as we'll get called back to reclaim
703	 *   node state and potentially want to use them
704	 * o to cleanup the tx queues the hal is called, so detach
705	 *   it last
706	 * Other than that, it's straightforward...
707	 */
708	ath_stop(ifp);
709	ieee80211_ifdetach(ifp->if_l2com);
710	taskqueue_free(sc->sc_tq);
711	bpfdetach(ifp);
712#ifdef ATH_TX99_DIAG
713	if (sc->sc_tx99 != NULL)
714		sc->sc_tx99->detach(sc->sc_tx99);
715#endif
716	ath_rate_detach(sc->sc_rc);
717	ath_desc_free(sc);
718	ath_tx_cleanup(sc);
719	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
720	if_free(ifp);
721
722	return 0;
723}
724
725/*
726 * MAC address handling for multiple BSS on the same radio.
727 * The first vap uses the MAC address from the EEPROM.  For
728 * subsequent vap's we set the U/L bit (bit 1) in the MAC
729 * address and use the next six bits as an index.
730 */
731static void
732assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
733{
734	int i;
735
736	if (clone && sc->sc_hasbmask) {
737		/* NB: we only do this if h/w supports multiple bssid */
738		for (i = 0; i < 8; i++)
739			if ((sc->sc_bssidmask & (1<<i)) == 0)
740				break;
741		if (i != 0)
742			mac[0] |= (i << 2)|0x2;
743	} else
744		i = 0;
745	sc->sc_bssidmask |= 1<<i;
746	sc->sc_hwbssidmask[0] &= ~mac[0];
747	if (i == 0)
748		sc->sc_nbssid0++;
749}
750
751static void
752reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
753{
754	int i = mac[0] >> 2;
755	uint8_t mask;
756
757	if (i != 0 || --sc->sc_nbssid0 == 0) {
758		sc->sc_bssidmask &= ~(1<<i);
759		/* recalculate bssid mask from remaining addresses */
760		mask = 0xff;
761		for (i = 1; i < 8; i++)
762			if (sc->sc_bssidmask & (1<<i))
763				mask &= ~((i<<2)|0x2);
764		sc->sc_hwbssidmask[0] |= mask;
765	}
766}
767
768/*
769 * Assign a beacon xmit slot.  We try to space out
770 * assignments so when beacons are staggered the
771 * traffic coming out of the cab q has maximal time
772 * to go out before the next beacon is scheduled.
773 */
774static int
775assign_bslot(struct ath_softc *sc)
776{
777	u_int slot, free;
778
779	free = 0;
780	for (slot = 0; slot < ATH_BCBUF; slot++)
781		if (sc->sc_bslot[slot] == NULL) {
782			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
783			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
784				return slot;
785			free = slot;
786			/* NB: keep looking for a double slot */
787		}
788	return free;
789}
790
791static struct ieee80211vap *
792ath_vap_create(struct ieee80211com *ic,
793	const char name[IFNAMSIZ], int unit, int opmode, int flags,
794	const uint8_t bssid[IEEE80211_ADDR_LEN],
795	const uint8_t mac0[IEEE80211_ADDR_LEN])
796{
797	struct ath_softc *sc = ic->ic_ifp->if_softc;
798	struct ath_vap *avp;
799	struct ieee80211vap *vap;
800	uint8_t mac[IEEE80211_ADDR_LEN];
801	int ic_opmode, needbeacon, error;
802
803	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
804	    M_80211_VAP, M_WAITOK | M_ZERO);
805	needbeacon = 0;
806	IEEE80211_ADDR_COPY(mac, mac0);
807
808	ATH_LOCK(sc);
809	switch (opmode) {
810	case IEEE80211_M_STA:
811		if (sc->sc_nstavaps != 0) {	/* XXX only 1 sta for now */
812			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
813			goto bad;
814		}
815		if (sc->sc_nvaps) {
816			/*
817			 * When there are multiple vaps we must fall
818			 * back to s/w beacon miss handling.
819			 */
820			flags |= IEEE80211_CLONE_NOBEACONS;
821		}
822		if (flags & IEEE80211_CLONE_NOBEACONS) {
823			sc->sc_swbmiss = 1;
824			ic_opmode = IEEE80211_M_HOSTAP;
825		} else
826			ic_opmode = opmode;
827		break;
828	case IEEE80211_M_IBSS:
829		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
830			device_printf(sc->sc_dev,
831			    "only 1 ibss vap supported\n");
832			goto bad;
833		}
834		ic_opmode = opmode;
835		needbeacon = 1;
836		break;
837	case IEEE80211_M_AHDEMO:
838		/* fall thru... */
839	case IEEE80211_M_MONITOR:
840		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
841			/* XXX not right for monitor mode */
842			ic_opmode = ic->ic_opmode;
843		} else
844			ic_opmode = opmode;
845		break;
846	case IEEE80211_M_HOSTAP:
847		needbeacon = 1;
848		/* fall thru... */
849	case IEEE80211_M_WDS:
850		if (sc->sc_nvaps && ic->ic_opmode == IEEE80211_M_STA) {
851			device_printf(sc->sc_dev,
852			    "wds not supported in sta mode\n");
853			goto bad;
854		}
855		if (opmode == IEEE80211_M_WDS) {
856			/*
857			 * Silently remove any request for a unique
858			 * bssid; WDS vap's always share the local
859			 * mac address.
860			 */
861			flags &= ~IEEE80211_CLONE_BSSID;
862		}
863		ic_opmode = IEEE80211_M_HOSTAP;
864		break;
865	default:
866		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
867		goto bad;
868	}
869	/*
870	 * Check that a beacon buffer is available; the code below assumes it.
871	 */
872	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
873		device_printf(sc->sc_dev, "no beacon buffer available\n");
874		goto bad;
875	}
876
877	/* STA, AHDEMO? */
878	if (opmode == IEEE80211_M_HOSTAP) {
879		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
880		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
881	}
882
883	vap = &avp->av_vap;
884	/* XXX can't hold mutex across if_alloc */
885	ATH_UNLOCK(sc);
886	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
887	    bssid, mac);
888	ATH_LOCK(sc);
889	if (error != 0) {
890		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
891		    __func__, error);
892		goto bad2;
893	}
894
895	/* h/w crypto support */
896	vap->iv_key_alloc = ath_key_alloc;
897	vap->iv_key_delete = ath_key_delete;
898	vap->iv_key_set = ath_key_set;
899	vap->iv_key_update_begin = ath_key_update_begin;
900	vap->iv_key_update_end = ath_key_update_end;
901
902	/* override various methods */
903	avp->av_recv_mgmt = vap->iv_recv_mgmt;
904	vap->iv_recv_mgmt = ath_recv_mgmt;
905	vap->iv_reset = ath_reset_vap;
906	vap->iv_update_beacon = ath_beacon_update;
907	avp->av_newstate = vap->iv_newstate;
908	vap->iv_newstate = ath_newstate;
909	avp->av_bmiss = vap->iv_bmiss;
910	vap->iv_bmiss = ath_bmiss_vap;
911
912	avp->av_bslot = -1;
913	if (needbeacon) {
914		/*
915		 * Allocate beacon state and setup the q for buffered
916		 * multicast frames.  We know a beacon buffer is
917		 * available because we checked above.
918		 */
919		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
920		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
921		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
922			/*
923			 * Assign the vap to a beacon xmit slot.  As above
924			 * this cannot fail to find a free one.
925			 */
926			avp->av_bslot = assign_bslot(sc);
927			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
928			    ("beacon slot %u not empty", avp->av_bslot));
929			sc->sc_bslot[avp->av_bslot] = vap;
930			sc->sc_nbcnvaps++;
931		}
932		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
933			/*
934			 * Multple vaps are to transmit beacons and we
935			 * have h/w support for TSF adjusting; enable
936			 * use of staggered beacons.
937			 */
938			sc->sc_stagbeacons = 1;
939		}
940		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
941	}
942
943	ic->ic_opmode = ic_opmode;
944	if (opmode != IEEE80211_M_WDS) {
945		sc->sc_nvaps++;
946		if (opmode == IEEE80211_M_STA)
947			sc->sc_nstavaps++;
948	}
949	switch (ic_opmode) {
950	case IEEE80211_M_IBSS:
951		sc->sc_opmode = HAL_M_IBSS;
952		break;
953	case IEEE80211_M_STA:
954		sc->sc_opmode = HAL_M_STA;
955		break;
956	case IEEE80211_M_AHDEMO:
957	case IEEE80211_M_HOSTAP:
958		sc->sc_opmode = HAL_M_HOSTAP;
959		break;
960	case IEEE80211_M_MONITOR:
961		sc->sc_opmode = HAL_M_MONITOR;
962		break;
963	default:
964		/* XXX should not happen */
965		break;
966	}
967	if (sc->sc_hastsfadd) {
968		/*
969		 * Configure whether or not TSF adjust should be done.
970		 */
971		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
972	}
973	ATH_UNLOCK(sc);
974
975	/* complete setup */
976	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
977	return vap;
978bad2:
979	reclaim_address(sc, mac);
980	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
981bad:
982	free(avp, M_80211_VAP);
983	ATH_UNLOCK(sc);
984	return NULL;
985}
986
987static void
988ath_vap_delete(struct ieee80211vap *vap)
989{
990	struct ieee80211com *ic = vap->iv_ic;
991	struct ifnet *ifp = ic->ic_ifp;
992	struct ath_softc *sc = ifp->if_softc;
993	struct ath_hal *ah = sc->sc_ah;
994	struct ath_vap *avp = ATH_VAP(vap);
995
996	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
997		/*
998		 * Quiesce the hardware while we remove the vap.  In
999		 * particular we need to reclaim all references to
1000		 * the vap state by any frames pending on the tx queues.
1001		 */
1002		ath_hal_intrset(ah, 0);		/* disable interrupts */
1003		ath_draintxq(sc);		/* stop xmit side */
1004		ath_stoprecv(sc);		/* stop recv side */
1005	}
1006
1007	ieee80211_vap_detach(vap);
1008	ATH_LOCK(sc);
1009	/*
1010	 * Reclaim beacon state.  Note this must be done before
1011	 * the vap instance is reclaimed as we may have a reference
1012	 * to it in the buffer for the beacon frame.
1013	 */
1014	if (avp->av_bcbuf != NULL) {
1015		if (avp->av_bslot != -1) {
1016			sc->sc_bslot[avp->av_bslot] = NULL;
1017			sc->sc_nbcnvaps--;
1018		}
1019		ath_beacon_return(sc, avp->av_bcbuf);
1020		avp->av_bcbuf = NULL;
1021		if (sc->sc_nbcnvaps == 0) {
1022			sc->sc_stagbeacons = 0;
1023			if (sc->sc_hastsfadd)
1024				ath_hal_settsfadjust(sc->sc_ah, 0);
1025		}
1026		/*
1027		 * Reclaim any pending mcast frames for the vap.
1028		 */
1029		ath_tx_draintxq(sc, &avp->av_mcastq);
1030		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1031	}
1032	/*
1033	 * Update bookkeeping.
1034	 */
1035	if (vap->iv_opmode == IEEE80211_M_STA) {
1036		sc->sc_nstavaps--;
1037		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1038			sc->sc_swbmiss = 0;
1039	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
1040		reclaim_address(sc, vap->iv_myaddr);
1041		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1042	}
1043	if (vap->iv_opmode != IEEE80211_M_WDS)
1044		sc->sc_nvaps--;
1045	ATH_UNLOCK(sc);
1046	free(avp, M_80211_VAP);
1047
1048	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1049		/*
1050		 * Restart rx+tx machines if still running (RUNNING will
1051		 * be reset if we just destroyed the last vap).
1052		 */
1053		if (ath_startrecv(sc) != 0)
1054			if_printf(ifp, "%s: unable to restart recv logic\n",
1055			    __func__);
1056		if (sc->sc_beacons)
1057			ath_beacon_config(sc, NULL);
1058		ath_hal_intrset(ah, sc->sc_imask);
1059	}
1060}
1061
1062void
1063ath_suspend(struct ath_softc *sc)
1064{
1065	struct ifnet *ifp = sc->sc_ifp;
1066	struct ieee80211com *ic = ifp->if_l2com;
1067
1068	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1069		__func__, ifp->if_flags);
1070
1071	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1072	if (ic->ic_opmode == IEEE80211_M_STA)
1073		ath_stop(ifp);
1074	else
1075		ieee80211_suspend_all(ic);
1076	/*
1077	 * NB: don't worry about putting the chip in low power
1078	 * mode; pci will power off our socket on suspend and
1079	 * cardbus detaches the device.
1080	 */
1081}
1082
1083/*
1084 * Reset the key cache since some parts do not reset the
1085 * contents on resume.  First we clear all entries, then
1086 * re-load keys that the 802.11 layer assumes are setup
1087 * in h/w.
1088 */
1089static void
1090ath_reset_keycache(struct ath_softc *sc)
1091{
1092	struct ifnet *ifp = sc->sc_ifp;
1093	struct ieee80211com *ic = ifp->if_l2com;
1094	struct ath_hal *ah = sc->sc_ah;
1095	int i;
1096
1097	for (i = 0; i < sc->sc_keymax; i++)
1098		ath_hal_keyreset(ah, i);
1099	ieee80211_crypto_reload_keys(ic);
1100}
1101
1102void
1103ath_resume(struct ath_softc *sc)
1104{
1105	struct ifnet *ifp = sc->sc_ifp;
1106	struct ieee80211com *ic = ifp->if_l2com;
1107	struct ath_hal *ah = sc->sc_ah;
1108	HAL_STATUS status;
1109
1110	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1111		__func__, ifp->if_flags);
1112
1113	/*
1114	 * Must reset the chip before we reload the
1115	 * keycache as we were powered down on suspend.
1116	 */
1117	ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status);
1118	ath_reset_keycache(sc);
1119	if (sc->sc_resume_up) {
1120		if (ic->ic_opmode == IEEE80211_M_STA) {
1121			ath_init(sc);
1122			ieee80211_beacon_miss(ic);
1123		} else
1124			ieee80211_resume_all(ic);
1125	}
1126	if (sc->sc_softled) {
1127		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
1128		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1129	}
1130}
1131
1132void
1133ath_shutdown(struct ath_softc *sc)
1134{
1135	struct ifnet *ifp = sc->sc_ifp;
1136
1137	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1138		__func__, ifp->if_flags);
1139
1140	ath_stop(ifp);
1141	/* NB: no point powering down chip as we're about to reboot */
1142}
1143
1144/*
1145 * Interrupt handler.  Most of the actual processing is deferred.
1146 */
1147void
1148ath_intr(void *arg)
1149{
1150	struct ath_softc *sc = arg;
1151	struct ifnet *ifp = sc->sc_ifp;
1152	struct ath_hal *ah = sc->sc_ah;
1153	HAL_INT status;
1154
1155	if (sc->sc_invalid) {
1156		/*
1157		 * The hardware is not ready/present, don't touch anything.
1158		 * Note this can happen early on if the IRQ is shared.
1159		 */
1160		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1161		return;
1162	}
1163	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1164		return;
1165	if ((ifp->if_flags & IFF_UP) == 0 ||
1166	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1167		HAL_INT status;
1168
1169		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1170			__func__, ifp->if_flags);
1171		ath_hal_getisr(ah, &status);	/* clear ISR */
1172		ath_hal_intrset(ah, 0);		/* disable further intr's */
1173		return;
1174	}
1175	/*
1176	 * Figure out the reason(s) for the interrupt.  Note
1177	 * that the hal returns a pseudo-ISR that may include
1178	 * bits we haven't explicitly enabled so we mask the
1179	 * value to insure we only process bits we requested.
1180	 */
1181	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1182	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1183	status &= sc->sc_imask;			/* discard unasked for bits */
1184	if (status & HAL_INT_FATAL) {
1185		sc->sc_stats.ast_hardware++;
1186		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1187		ath_fatal_proc(sc, 0);
1188	} else {
1189		if (status & HAL_INT_SWBA) {
1190			/*
1191			 * Software beacon alert--time to send a beacon.
1192			 * Handle beacon transmission directly; deferring
1193			 * this is too slow to meet timing constraints
1194			 * under load.
1195			 */
1196			ath_beacon_proc(sc, 0);
1197		}
1198		if (status & HAL_INT_RXEOL) {
1199			/*
1200			 * NB: the hardware should re-read the link when
1201			 *     RXE bit is written, but it doesn't work at
1202			 *     least on older hardware revs.
1203			 */
1204			sc->sc_stats.ast_rxeol++;
1205			sc->sc_rxlink = NULL;
1206		}
1207		if (status & HAL_INT_TXURN) {
1208			sc->sc_stats.ast_txurn++;
1209			/* bump tx trigger level */
1210			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1211		}
1212		if (status & HAL_INT_RX)
1213			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1214		if (status & HAL_INT_TX)
1215			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1216		if (status & HAL_INT_BMISS) {
1217			sc->sc_stats.ast_bmiss++;
1218			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1219		}
1220		if (status & HAL_INT_MIB) {
1221			sc->sc_stats.ast_mib++;
1222			/*
1223			 * Disable interrupts until we service the MIB
1224			 * interrupt; otherwise it will continue to fire.
1225			 */
1226			ath_hal_intrset(ah, 0);
1227			/*
1228			 * Let the hal handle the event.  We assume it will
1229			 * clear whatever condition caused the interrupt.
1230			 */
1231			ath_hal_mibevent(ah, &sc->sc_halstats);
1232			ath_hal_intrset(ah, sc->sc_imask);
1233		}
1234		if (status & HAL_INT_RXORN) {
1235			/* NB: hal marks HAL_INT_FATAL when RXORN is fatal */
1236			sc->sc_stats.ast_rxorn++;
1237		}
1238	}
1239}
1240
1241static void
1242ath_fatal_proc(void *arg, int pending)
1243{
1244	struct ath_softc *sc = arg;
1245	struct ifnet *ifp = sc->sc_ifp;
1246	u_int32_t *state;
1247	u_int32_t len;
1248	void *sp;
1249
1250	if_printf(ifp, "hardware error; resetting\n");
1251	/*
1252	 * Fatal errors are unrecoverable.  Typically these
1253	 * are caused by DMA errors.  Collect h/w state from
1254	 * the hal so we can diagnose what's going on.
1255	 */
1256	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1257		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1258		state = sp;
1259		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1260		    state[0], state[1] , state[2], state[3],
1261		    state[4], state[5]);
1262	}
1263	ath_reset(ifp);
1264}
1265
1266static void
1267ath_bmiss_vap(struct ieee80211vap *vap)
1268{
1269	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
1270	u_int64_t lastrx = sc->sc_lastrx;
1271	u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1272	u_int bmisstimeout =
1273		vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1274
1275	DPRINTF(sc, ATH_DEBUG_BEACON,
1276	    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1277	    __func__, (unsigned long long) tsf,
1278	    (unsigned long long)(tsf - lastrx),
1279	    (unsigned long long) lastrx, bmisstimeout);
1280	/*
1281	 * Workaround phantom bmiss interrupts by sanity-checking
1282	 * the time of our last rx'd frame.  If it is within the
1283	 * beacon miss interval then ignore the interrupt.  If it's
1284	 * truly a bmiss we'll get another interrupt soon and that'll
1285	 * be dispatched up for processing.
1286	 */
1287	if (tsf - lastrx > bmisstimeout)
1288		ATH_VAP(vap)->av_bmiss(vap);
1289	else
1290		sc->sc_stats.ast_bmiss_phantom++;
1291}
1292
1293static void
1294ath_bmiss_proc(void *arg, int pending)
1295{
1296	struct ath_softc *sc = arg;
1297	struct ifnet *ifp = sc->sc_ifp;
1298
1299	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1300	ieee80211_beacon_miss(ifp->if_l2com);
1301}
1302
1303/*
1304 * Convert net80211 channel to a HAL channel with the flags
1305 * constrained to reflect the current operating mode and
1306 * the frequency possibly mapped for GSM channels.
1307 */
1308static void
1309ath_mapchan(const struct ieee80211com *ic,
1310	HAL_CHANNEL *hc, const struct ieee80211_channel *chan)
1311{
1312#define	N(a)	(sizeof(a) / sizeof(a[0]))
1313	static const u_int modeflags[IEEE80211_MODE_MAX] = {
1314		0,			/* IEEE80211_MODE_AUTO */
1315		CHANNEL_A,		/* IEEE80211_MODE_11A */
1316		CHANNEL_B,		/* IEEE80211_MODE_11B */
1317		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
1318		0,			/* IEEE80211_MODE_FH */
1319		CHANNEL_108A,		/* IEEE80211_MODE_TURBO_A */
1320		CHANNEL_108G,		/* IEEE80211_MODE_TURBO_G */
1321		CHANNEL_ST,		/* IEEE80211_MODE_STURBO_A */
1322		CHANNEL_A,		/* IEEE80211_MODE_11NA */
1323		CHANNEL_PUREG,		/* IEEE80211_MODE_11NG */
1324	};
1325	enum ieee80211_phymode mode = ieee80211_chan2mode(chan);
1326
1327	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
1328	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
1329	hc->channelFlags = modeflags[mode];
1330	if (IEEE80211_IS_CHAN_HALF(chan))
1331		hc->channelFlags |= CHANNEL_HALF;
1332	if (IEEE80211_IS_CHAN_QUARTER(chan))
1333		hc->channelFlags |= CHANNEL_QUARTER;
1334	if (IEEE80211_IS_CHAN_HT20(chan))
1335		hc->channelFlags |= CHANNEL_HT20;
1336	if (IEEE80211_IS_CHAN_HT40D(chan))
1337		hc->channelFlags |= CHANNEL_HT40MINUS;
1338	if (IEEE80211_IS_CHAN_HT40U(chan))
1339		hc->channelFlags |= CHANNEL_HT40PLUS;
1340
1341	if (IEEE80211_IS_CHAN_GSM(chan)) {
1342		if (ic->ic_regdomain.country == CTRY_XR9)
1343			hc->channel = 1520 + chan->ic_freq;
1344		else if (ic->ic_regdomain.country == CTRY_GZ901)
1345			hc->channel = 1544 + chan->ic_freq;
1346		else
1347			hc->channel = 3344 - chan->ic_freq;
1348	} else
1349		hc->channel = chan->ic_freq;
1350#undef N
1351}
1352
1353/*
1354 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1355 * calcs together with WME.  If necessary disable the crypto
1356 * hardware and mark the 802.11 state so keys will be setup
1357 * with the MIC work done in software.
1358 */
1359static void
1360ath_settkipmic(struct ath_softc *sc)
1361{
1362	struct ifnet *ifp = sc->sc_ifp;
1363	struct ieee80211com *ic = ifp->if_l2com;
1364
1365	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1366		if (ic->ic_flags & IEEE80211_F_WME) {
1367			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1368			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1369		} else {
1370			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1371			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1372		}
1373	}
1374}
1375
1376static void
1377ath_init(void *arg)
1378{
1379	struct ath_softc *sc = (struct ath_softc *) arg;
1380	struct ifnet *ifp = sc->sc_ifp;
1381	struct ieee80211com *ic = ifp->if_l2com;
1382	struct ath_hal *ah = sc->sc_ah;
1383	HAL_STATUS status;
1384
1385	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1386		__func__, ifp->if_flags);
1387
1388	ATH_LOCK(sc);
1389	/*
1390	 * Stop anything previously setup.  This is safe
1391	 * whether this is the first time through or not.
1392	 */
1393	ath_stop_locked(ifp);
1394
1395	/*
1396	 * The basic interface to setting the hardware in a good
1397	 * state is ``reset''.  On return the hardware is known to
1398	 * be powered up and with interrupts disabled.  This must
1399	 * be followed by initialization of the appropriate bits
1400	 * and then setup of the interrupt mask.
1401	 */
1402	ath_mapchan(ic, &sc->sc_curchan, ic->ic_curchan);
1403	ath_settkipmic(sc);
1404	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1405		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1406			status);
1407		ATH_UNLOCK(sc);
1408		return;
1409	}
1410	ath_chan_change(sc, ic->ic_curchan);
1411
1412	/*
1413	 * Likewise this is set during reset so update
1414	 * state cached in the driver.
1415	 */
1416	sc->sc_diversity = ath_hal_getdiversity(ah);
1417	sc->sc_calinterval = 1;
1418	sc->sc_caltries = 0;
1419
1420	/*
1421	 * Setup the hardware after reset: the key cache
1422	 * is filled as needed and the receive engine is
1423	 * set going.  Frame transmit is handled entirely
1424	 * in the frame output path; there's nothing to do
1425	 * here except setup the interrupt mask.
1426	 */
1427	if (ath_startrecv(sc) != 0) {
1428		if_printf(ifp, "unable to start recv logic\n");
1429		ATH_UNLOCK(sc);
1430		return;
1431	}
1432
1433	/*
1434	 * Enable interrupts.
1435	 */
1436	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1437		  | HAL_INT_RXEOL | HAL_INT_RXORN
1438		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1439	/*
1440	 * Enable MIB interrupts when there are hardware phy counters.
1441	 * Note we only do this (at the moment) for station mode.
1442	 */
1443	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1444		sc->sc_imask |= HAL_INT_MIB;
1445
1446	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1447	ath_hal_intrset(ah, sc->sc_imask);
1448
1449	ATH_UNLOCK(sc);
1450
1451#ifdef ATH_TX99_DIAG
1452	if (sc->sc_tx99 != NULL)
1453		sc->sc_tx99->start(sc->sc_tx99);
1454	else
1455#endif
1456	ieee80211_start_all(ic);		/* start all vap's */
1457}
1458
1459static void
1460ath_stop_locked(struct ifnet *ifp)
1461{
1462	struct ath_softc *sc = ifp->if_softc;
1463	struct ath_hal *ah = sc->sc_ah;
1464
1465	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1466		__func__, sc->sc_invalid, ifp->if_flags);
1467
1468	ATH_LOCK_ASSERT(sc);
1469	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1470		/*
1471		 * Shutdown the hardware and driver:
1472		 *    reset 802.11 state machine
1473		 *    turn off timers
1474		 *    disable interrupts
1475		 *    turn off the radio
1476		 *    clear transmit machinery
1477		 *    clear receive machinery
1478		 *    drain and release tx queues
1479		 *    reclaim beacon resources
1480		 *    power down hardware
1481		 *
1482		 * Note that some of this work is not possible if the
1483		 * hardware is gone (invalid).
1484		 */
1485#ifdef ATH_TX99_DIAG
1486		if (sc->sc_tx99 != NULL)
1487			sc->sc_tx99->stop(sc->sc_tx99);
1488#endif
1489		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1490		ifp->if_timer = 0;
1491		if (!sc->sc_invalid) {
1492			if (sc->sc_softled) {
1493				callout_stop(&sc->sc_ledtimer);
1494				ath_hal_gpioset(ah, sc->sc_ledpin,
1495					!sc->sc_ledon);
1496				sc->sc_blinking = 0;
1497			}
1498			ath_hal_intrset(ah, 0);
1499		}
1500		ath_draintxq(sc);
1501		if (!sc->sc_invalid) {
1502			ath_stoprecv(sc);
1503			ath_hal_phydisable(ah);
1504		} else
1505			sc->sc_rxlink = NULL;
1506		ath_beacon_free(sc);	/* XXX not needed */
1507	}
1508}
1509
1510static void
1511ath_stop(struct ifnet *ifp)
1512{
1513	struct ath_softc *sc = ifp->if_softc;
1514
1515	ATH_LOCK(sc);
1516	ath_stop_locked(ifp);
1517	ATH_UNLOCK(sc);
1518}
1519
1520/*
1521 * Reset the hardware w/o losing operational state.  This is
1522 * basically a more efficient way of doing ath_stop, ath_init,
1523 * followed by state transitions to the current 802.11
1524 * operational state.  Used to recover from various errors and
1525 * to reset or reload hardware state.
1526 */
1527static int
1528ath_reset(struct ifnet *ifp)
1529{
1530	struct ath_softc *sc = ifp->if_softc;
1531	struct ieee80211com *ic = ifp->if_l2com;
1532	struct ath_hal *ah = sc->sc_ah;
1533	HAL_STATUS status;
1534
1535	/*
1536	 * Convert to a HAL channel description with the flags
1537	 * constrained to reflect the current operating mode.
1538	 */
1539	ath_mapchan(ic, &sc->sc_curchan, ic->ic_curchan);
1540
1541	ath_hal_intrset(ah, 0);		/* disable interrupts */
1542	ath_draintxq(sc);		/* stop xmit side */
1543	ath_stoprecv(sc);		/* stop recv side */
1544	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1545	/* NB: indicate channel change so we do a full reset */
1546	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_TRUE, &status))
1547		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1548			__func__, status);
1549	sc->sc_diversity = ath_hal_getdiversity(ah);
1550	sc->sc_calinterval = 1;
1551	sc->sc_caltries = 0;
1552	if (ath_startrecv(sc) != 0)	/* restart recv */
1553		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1554	/*
1555	 * We may be doing a reset in response to an ioctl
1556	 * that changes the channel so update any state that
1557	 * might change as a result.
1558	 */
1559	ath_chan_change(sc, ic->ic_curchan);
1560	if (sc->sc_beacons)
1561		ath_beacon_config(sc, NULL);	/* restart beacons */
1562	ath_hal_intrset(ah, sc->sc_imask);
1563
1564	ath_start(ifp);			/* restart xmit */
1565	return 0;
1566}
1567
1568static int
1569ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1570{
1571	struct ieee80211com *ic = vap->iv_ic;
1572	struct ifnet *ifp = ic->ic_ifp;
1573	struct ath_softc *sc = ifp->if_softc;
1574	struct ath_hal *ah = sc->sc_ah;
1575
1576	switch (cmd) {
1577	case IEEE80211_IOC_TXPOWER:
1578		/*
1579		 * If per-packet TPC is enabled, then we have nothing
1580		 * to do; otherwise we need to force the global limit.
1581		 * All this can happen directly; no need to reset.
1582		 */
1583		if (!ath_hal_gettpc(ah))
1584			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1585		return 0;
1586	}
1587	return ath_reset(ifp);
1588}
1589
1590static int
1591ath_ff_always(struct ath_txq *txq, struct ath_buf *bf)
1592{
1593	return 0;
1594}
1595
1596#if 0
1597static int
1598ath_ff_ageflushtestdone(struct ath_txq *txq, struct ath_buf *bf)
1599{
1600	return (txq->axq_curage - bf->bf_age) < ATH_FF_STAGEMAX;
1601}
1602#endif
1603
1604/*
1605 * Flush FF staging queue.
1606 */
1607static void
1608ath_ff_stageq_flush(struct ath_softc *sc, struct ath_txq *txq,
1609	int (*ath_ff_flushdonetest)(struct ath_txq *txq, struct ath_buf *bf))
1610{
1611	struct ath_buf *bf;
1612	struct ieee80211_node *ni;
1613	int pktlen, pri;
1614
1615	for (;;) {
1616		ATH_TXQ_LOCK(txq);
1617		/*
1618		 * Go from the back (oldest) to front so we can
1619		 * stop early based on the age of the entry.
1620		 */
1621		bf = TAILQ_LAST(&txq->axq_stageq, axq_headtype);
1622		if (bf == NULL || ath_ff_flushdonetest(txq, bf)) {
1623			ATH_TXQ_UNLOCK(txq);
1624			break;
1625		}
1626
1627		ni = bf->bf_node;
1628		pri = M_WME_GETAC(bf->bf_m);
1629		KASSERT(ATH_NODE(ni)->an_ff_buf[pri],
1630			("no bf on staging queue %p", bf));
1631		ATH_NODE(ni)->an_ff_buf[pri] = NULL;
1632		TAILQ_REMOVE(&txq->axq_stageq, bf, bf_stagelist);
1633
1634		ATH_TXQ_UNLOCK(txq);
1635
1636		DPRINTF(sc, ATH_DEBUG_FF, "%s: flush frame, age %u\n",
1637			__func__, bf->bf_age);
1638
1639		sc->sc_stats.ast_ff_flush++;
1640
1641		/* encap and xmit */
1642		bf->bf_m = ieee80211_encap(ni, bf->bf_m);
1643		if (bf->bf_m == NULL) {
1644			DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1645				"%s: discard, encapsulation failure\n",
1646				__func__);
1647			sc->sc_stats.ast_tx_encap++;
1648			goto bad;
1649		}
1650		pktlen = bf->bf_m->m_pkthdr.len; /* NB: don't reference below */
1651		if (ath_tx_start(sc, ni, bf, bf->bf_m) == 0) {
1652#if 0 /*XXX*/
1653			ifp->if_opackets++;
1654#endif
1655			continue;
1656		}
1657	bad:
1658		if (ni != NULL)
1659			ieee80211_free_node(ni);
1660		bf->bf_node = NULL;
1661		if (bf->bf_m != NULL) {
1662			m_freem(bf->bf_m);
1663			bf->bf_m = NULL;
1664		}
1665
1666		ATH_TXBUF_LOCK(sc);
1667		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1668		ATH_TXBUF_UNLOCK(sc);
1669	}
1670}
1671
1672static __inline u_int32_t
1673ath_ff_approx_txtime(struct ath_softc *sc, struct ath_node *an, struct mbuf *m)
1674{
1675	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1676	u_int32_t framelen;
1677	struct ath_buf *bf;
1678
1679	/*
1680	 * Approximate the frame length to be transmitted. A swag to add
1681	 * the following maximal values to the skb payload:
1682	 *   - 32: 802.11 encap + CRC
1683	 *   - 24: encryption overhead (if wep bit)
1684	 *   - 4 + 6: fast-frame header and padding
1685	 *   - 16: 2 LLC FF tunnel headers
1686	 *   - 14: 1 802.3 FF tunnel header (skb already accounts for 2nd)
1687	 */
1688	framelen = m->m_pkthdr.len + 32 + 4 + 6 + 16 + 14;
1689	if (ic->ic_flags & IEEE80211_F_PRIVACY)
1690		framelen += 24;
1691	bf = an->an_ff_buf[M_WME_GETAC(m)];
1692	if (bf != NULL)
1693		framelen += bf->bf_m->m_pkthdr.len;
1694	return ath_hal_computetxtime(sc->sc_ah, sc->sc_currates, framelen,
1695			sc->sc_lastdatarix, AH_FALSE);
1696}
1697
1698/*
1699 * Determine if a data frame may be aggregated via ff tunnelling.
1700 * Note the caller is responsible for checking if the destination
1701 * supports fast frames.
1702 *
1703 *  NB: allowing EAPOL frames to be aggregated with other unicast traffic.
1704 *      Do 802.1x EAPOL frames proceed in the clear? Then they couldn't
1705 *      be aggregated with other types of frames when encryption is on?
1706 *
1707 *  NB: assumes lock on an_ff_buf effectively held by txq lock mechanism.
1708 */
1709static __inline int
1710ath_ff_can_aggregate(struct ath_softc *sc,
1711	struct ath_node *an, struct mbuf *m, int *flushq)
1712{
1713	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1714	struct ath_txq *txq;
1715	u_int32_t txoplimit;
1716	u_int pri;
1717
1718	*flushq = 0;
1719
1720	/*
1721	 * If there is no frame to combine with and the txq has
1722	 * fewer frames than the minimum required; then do not
1723	 * attempt to aggregate this frame.
1724	 */
1725	pri = M_WME_GETAC(m);
1726	txq = sc->sc_ac2q[pri];
1727	if (an->an_ff_buf[pri] == NULL && txq->axq_depth < sc->sc_fftxqmin)
1728		return 0;
1729	/*
1730	 * When not in station mode never aggregate a multicast
1731	 * frame; this insures, for example, that a combined frame
1732	 * does not require multiple encryption keys when using
1733	 * 802.1x/WPA.
1734	 */
1735	if (ic->ic_opmode != IEEE80211_M_STA &&
1736	    ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost))
1737		return 0;
1738	/*
1739	 * Consult the max bursting interval to insure a combined
1740	 * frame fits within the TxOp window.
1741	 */
1742	txoplimit = IEEE80211_TXOP_TO_US(
1743		ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit);
1744	if (txoplimit != 0 && ath_ff_approx_txtime(sc, an, m) > txoplimit) {
1745		DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1746			"%s: FF TxOp violation\n", __func__);
1747		if (an->an_ff_buf[pri] != NULL)
1748			*flushq = 1;
1749		return 0;
1750	}
1751	return 1;		/* try to aggregate */
1752}
1753
1754/*
1755 * Check if the supplied frame can be partnered with an existing
1756 * or pending frame.  Return a reference to any frame that should be
1757 * sent on return; otherwise return NULL.
1758 */
1759static struct mbuf *
1760ath_ff_check(struct ath_softc *sc, struct ath_txq *txq,
1761	struct ath_buf *bf, struct mbuf *m, struct ieee80211_node *ni)
1762{
1763	struct ath_node *an = ATH_NODE(ni);
1764	struct ath_buf *bfstaged;
1765	int ff_flush, pri;
1766
1767	/*
1768	 * Check if the supplied frame can be aggregated.
1769	 *
1770	 * NB: we use the txq lock to protect references to
1771	 *     an->an_ff_txbuf in ath_ff_can_aggregate().
1772	 */
1773	ATH_TXQ_LOCK(txq);
1774	pri = M_WME_GETAC(m);
1775	if (ath_ff_can_aggregate(sc, an, m, &ff_flush)) {
1776		struct ath_buf *bfstaged = an->an_ff_buf[pri];
1777		if (bfstaged != NULL) {
1778			/*
1779			 * A frame is available for partnering; remove
1780			 * it, chain it to this one, and encapsulate.
1781			 */
1782			an->an_ff_buf[pri] = NULL;
1783			TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1784			ATH_TXQ_UNLOCK(txq);
1785
1786			/*
1787			 * Chain mbufs and add FF magic.
1788			 */
1789			DPRINTF(sc, ATH_DEBUG_FF,
1790				"[%s] aggregate fast-frame, age %u\n",
1791				ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1792			m->m_nextpkt = NULL;
1793			bfstaged->bf_m->m_nextpkt = m;
1794			m = bfstaged->bf_m;
1795			bfstaged->bf_m = NULL;
1796			m->m_flags |= M_FF;
1797			/*
1798			 * Release the node reference held while
1799			 * the packet sat on an_ff_buf[]
1800			 */
1801			bfstaged->bf_node = NULL;
1802			ieee80211_free_node(ni);
1803
1804			/*
1805			 * Return bfstaged to the free list.
1806			 */
1807			ATH_TXBUF_LOCK(sc);
1808			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bfstaged, bf_list);
1809			ATH_TXBUF_UNLOCK(sc);
1810
1811			return m;		/* ready to go */
1812		} else {
1813			/*
1814			 * No frame available, queue this frame to wait
1815			 * for a partner.  Note that we hold the buffer
1816			 * and a reference to the node; we need the
1817			 * buffer in particular so we're certain we
1818			 * can flush the frame at a later time.
1819			 */
1820			DPRINTF(sc, ATH_DEBUG_FF,
1821				"[%s] stage fast-frame, age %u\n",
1822				ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1823
1824			bf->bf_m = m;
1825			bf->bf_node = ni;	/* NB: held reference */
1826			bf->bf_age = txq->axq_curage;
1827			an->an_ff_buf[pri] = bf;
1828			TAILQ_INSERT_HEAD(&txq->axq_stageq, bf, bf_stagelist);
1829			ATH_TXQ_UNLOCK(txq);
1830
1831			return NULL;		/* consumed */
1832		}
1833	}
1834	/*
1835	 * Frame could not be aggregated, it needs to be returned
1836	 * to the caller for immediate transmission.  In addition
1837	 * we check if we should first flush a frame from the
1838	 * staging queue before sending this one.
1839	 *
1840	 * NB: ath_ff_can_aggregate only marks ff_flush if a frame
1841	 *     is present to flush.
1842	 */
1843	if (ff_flush) {
1844		int pktlen;
1845
1846		bfstaged = an->an_ff_buf[pri];
1847		an->an_ff_buf[pri] = NULL;
1848		TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1849		ATH_TXQ_UNLOCK(txq);
1850
1851		DPRINTF(sc, ATH_DEBUG_FF, "[%s] flush staged frame\n",
1852			ether_sprintf(an->an_node.ni_macaddr));
1853
1854		/* encap and xmit */
1855		bfstaged->bf_m = ieee80211_encap(ni, bfstaged->bf_m);
1856		if (bfstaged->bf_m == NULL) {
1857			DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1858				"%s: discard, encap failure\n", __func__);
1859			sc->sc_stats.ast_tx_encap++;
1860			goto ff_flushbad;
1861		}
1862		pktlen = bfstaged->bf_m->m_pkthdr.len;
1863		if (ath_tx_start(sc, ni, bfstaged, bfstaged->bf_m)) {
1864			DPRINTF(sc, ATH_DEBUG_XMIT,
1865				"%s: discard, xmit failure\n", __func__);
1866	ff_flushbad:
1867			/*
1868			 * Unable to transmit frame that was on the staging
1869			 * queue.  Reclaim the node reference and other
1870			 * resources.
1871			 */
1872			if (ni != NULL)
1873				ieee80211_free_node(ni);
1874			bfstaged->bf_node = NULL;
1875			if (bfstaged->bf_m != NULL) {
1876				m_freem(bfstaged->bf_m);
1877				bfstaged->bf_m = NULL;
1878			}
1879
1880			ATH_TXBUF_LOCK(sc);
1881			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bfstaged, bf_list);
1882			ATH_TXBUF_UNLOCK(sc);
1883		} else {
1884#if 0
1885			ifp->if_opackets++;
1886#endif
1887		}
1888	} else {
1889		if (an->an_ff_buf[pri] != NULL) {
1890			/*
1891			 * XXX: out-of-order condition only occurs for AP
1892			 * mode and multicast.  There may be no valid way
1893			 * to get this condition.
1894			 */
1895			DPRINTF(sc, ATH_DEBUG_FF, "[%s] out-of-order frame\n",
1896				ether_sprintf(an->an_node.ni_macaddr));
1897			/* XXX stat */
1898		}
1899		ATH_TXQ_UNLOCK(txq);
1900	}
1901	return m;
1902}
1903
1904/*
1905 * Cleanup driver resources when we run out of buffers
1906 * while processing fragments; return the tx buffers
1907 * allocated and drop node references.
1908 */
1909static void
1910ath_txfrag_cleanup(struct ath_softc *sc,
1911	ath_bufhead *frags, struct ieee80211_node *ni)
1912{
1913	struct ath_buf *bf, *next;
1914
1915	ATH_TXBUF_LOCK_ASSERT(sc);
1916
1917	STAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
1918		/* NB: bf assumed clean */
1919		STAILQ_REMOVE_HEAD(frags, bf_list);
1920		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1921		ieee80211_node_decref(ni);
1922	}
1923}
1924
1925/*
1926 * Setup xmit of a fragmented frame.  Allocate a buffer
1927 * for each frag and bump the node reference count to
1928 * reflect the held reference to be setup by ath_tx_start.
1929 */
1930static int
1931ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1932	struct mbuf *m0, struct ieee80211_node *ni)
1933{
1934	struct mbuf *m;
1935	struct ath_buf *bf;
1936
1937	ATH_TXBUF_LOCK(sc);
1938	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1939		bf = STAILQ_FIRST(&sc->sc_txbuf);
1940		if (bf == NULL) {	/* out of buffers, cleanup */
1941			ath_txfrag_cleanup(sc, frags, ni);
1942			break;
1943		}
1944		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1945		ieee80211_node_incref(ni);
1946		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1947	}
1948	ATH_TXBUF_UNLOCK(sc);
1949
1950	return !STAILQ_EMPTY(frags);
1951}
1952
1953static void
1954ath_start(struct ifnet *ifp)
1955{
1956	struct ath_softc *sc = ifp->if_softc;
1957	struct ieee80211com *ic = ifp->if_l2com;
1958	struct ieee80211_node *ni;
1959	struct ath_buf *bf;
1960	struct mbuf *m, *next;
1961	struct ath_txq *txq;
1962	ath_bufhead frags;
1963	int pri;
1964
1965	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1966		return;
1967	for (;;) {
1968		/*
1969		 * Grab a TX buffer and associated resources.
1970		 */
1971		ATH_TXBUF_LOCK(sc);
1972		bf = STAILQ_FIRST(&sc->sc_txbuf);
1973		if (bf != NULL)
1974			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1975		ATH_TXBUF_UNLOCK(sc);
1976		if (bf == NULL) {
1977			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1978				__func__);
1979			sc->sc_stats.ast_tx_qstop++;
1980			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1981			break;
1982		}
1983
1984		IFQ_DEQUEUE(&ifp->if_snd, m);
1985		if (m == NULL) {
1986			ATH_TXBUF_LOCK(sc);
1987			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1988			ATH_TXBUF_UNLOCK(sc);
1989			break;
1990		}
1991		STAILQ_INIT(&frags);
1992		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1993		pri = M_WME_GETAC(m);
1994		txq = sc->sc_ac2q[pri];
1995		if (IEEE80211_ATH_CAP(ni->ni_vap, ni, IEEE80211_NODE_FF)) {
1996			/*
1997			 * Check queue length; if too deep drop this
1998			 * frame (tail drop considered good).
1999			 */
2000			if (txq->axq_depth >= sc->sc_fftxqmax) {
2001				DPRINTF(sc, ATH_DEBUG_FF,
2002				    "[%s] tail drop on q %u depth %u\n",
2003				    ether_sprintf(ni->ni_macaddr),
2004				    txq->axq_qnum, txq->axq_depth);
2005				sc->sc_stats.ast_tx_qfull++;
2006				m_freem(m);
2007				goto reclaim;
2008			}
2009			m = ath_ff_check(sc, txq, bf, m, ni);
2010			if (m == NULL) {
2011				/* NB: ni ref & bf held on stageq */
2012				continue;
2013			}
2014		}
2015		ifp->if_opackets++;
2016		/*
2017		 * Encapsulate the packet in prep for transmission.
2018		 */
2019		m = ieee80211_encap(ni, m);
2020		if (m == NULL) {
2021			DPRINTF(sc, ATH_DEBUG_XMIT,
2022			    "%s: encapsulation failure\n", __func__);
2023			sc->sc_stats.ast_tx_encap++;
2024			goto bad;
2025		}
2026		/*
2027		 * Check for fragmentation.  If this frame
2028		 * has been broken up verify we have enough
2029		 * buffers to send all the fragments so all
2030		 * go out or none...
2031		 */
2032		if ((m->m_flags & M_FRAG) &&
2033		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2034			DPRINTF(sc, ATH_DEBUG_XMIT,
2035			    "%s: out of txfrag buffers\n", __func__);
2036			ic->ic_stats.is_tx_nobuf++;	/* XXX */
2037			ath_freetx(m);
2038			goto bad;
2039		}
2040	nextfrag:
2041		/*
2042		 * Pass the frame to the h/w for transmission.
2043		 * Fragmented frames have each frag chained together
2044		 * with m_nextpkt.  We know there are sufficient ath_buf's
2045		 * to send all the frags because of work done by
2046		 * ath_txfrag_setup.  We leave m_nextpkt set while
2047		 * calling ath_tx_start so it can use it to extend the
2048		 * the tx duration to cover the subsequent frag and
2049		 * so it can reclaim all the mbufs in case of an error;
2050		 * ath_tx_start clears m_nextpkt once it commits to
2051		 * handing the frame to the hardware.
2052		 */
2053		next = m->m_nextpkt;
2054		if (ath_tx_start(sc, ni, bf, m)) {
2055	bad:
2056			ifp->if_oerrors++;
2057	reclaim:
2058			bf->bf_m = NULL;
2059			bf->bf_node = NULL;
2060			ATH_TXBUF_LOCK(sc);
2061			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2062			ath_txfrag_cleanup(sc, &frags, ni);
2063			ATH_TXBUF_UNLOCK(sc);
2064			if (ni != NULL)
2065				ieee80211_free_node(ni);
2066			continue;
2067		}
2068		if (next != NULL) {
2069			/*
2070			 * Beware of state changing between frags.
2071			 * XXX check sta power-save state?
2072			 */
2073			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2074				DPRINTF(sc, ATH_DEBUG_XMIT,
2075				    "%s: flush fragmented packet, state %s\n",
2076				    __func__,
2077				    ieee80211_state_name[ni->ni_vap->iv_state]);
2078				ath_freetx(next);
2079				goto reclaim;
2080			}
2081			m = next;
2082			bf = STAILQ_FIRST(&frags);
2083			KASSERT(bf != NULL, ("no buf for txfrag"));
2084			STAILQ_REMOVE_HEAD(&frags, bf_list);
2085			goto nextfrag;
2086		}
2087
2088		ifp->if_timer = 5;
2089#if 0
2090		/*
2091		 * Flush stale frames from the fast-frame staging queue.
2092		 */
2093		if (ic->ic_opmode != IEEE80211_M_STA)
2094			ath_ff_stageq_flush(sc, txq, ath_ff_ageflushtestdone);
2095#endif
2096	}
2097}
2098
2099static int
2100ath_media_change(struct ifnet *ifp)
2101{
2102	int error = ieee80211_media_change(ifp);
2103	/* NB: only the fixed rate can change and that doesn't need a reset */
2104	return (error == ENETRESET ? 0 : error);
2105}
2106
2107#ifdef ATH_DEBUG
2108static void
2109ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
2110	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
2111{
2112	static const char *ciphers[] = {
2113		"WEP",
2114		"AES-OCB",
2115		"AES-CCM",
2116		"CKIP",
2117		"TKIP",
2118		"CLR",
2119	};
2120	int i, n;
2121
2122	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
2123	for (i = 0, n = hk->kv_len; i < n; i++)
2124		printf("%02x", hk->kv_val[i]);
2125	printf(" mac %s", ether_sprintf(mac));
2126	if (hk->kv_type == HAL_CIPHER_TKIP) {
2127		printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
2128		for (i = 0; i < sizeof(hk->kv_mic); i++)
2129			printf("%02x", hk->kv_mic[i]);
2130		if (!sc->sc_splitmic) {
2131			printf(" txmic ");
2132			for (i = 0; i < sizeof(hk->kv_txmic); i++)
2133				printf("%02x", hk->kv_txmic[i]);
2134		}
2135	}
2136	printf("\n");
2137}
2138#endif
2139
2140/*
2141 * Set a TKIP key into the hardware.  This handles the
2142 * potential distribution of key state to multiple key
2143 * cache slots for TKIP.
2144 */
2145static int
2146ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
2147	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
2148{
2149#define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
2150	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
2151	struct ath_hal *ah = sc->sc_ah;
2152
2153	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
2154		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
2155	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
2156		if (sc->sc_splitmic) {
2157			/*
2158			 * TX key goes at first index, RX key at the rx index.
2159			 * The hal handles the MIC keys at index+64.
2160			 */
2161			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
2162			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
2163			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
2164				return 0;
2165
2166			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2167			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
2168			/* XXX delete tx key on failure? */
2169			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
2170		} else {
2171			/*
2172			 * Room for both TX+RX MIC keys in one key cache
2173			 * slot, just set key at the first index; the hal
2174			 * will handle the rest.
2175			 */
2176			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2177			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
2178			KEYPRINTF(sc, k->wk_keyix, hk, mac);
2179			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2180		}
2181	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
2182		if (sc->sc_splitmic) {
2183			/*
2184			 * NB: must pass MIC key in expected location when
2185			 * the keycache only holds one MIC key per entry.
2186			 */
2187			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
2188		} else
2189			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
2190		KEYPRINTF(sc, k->wk_keyix, hk, mac);
2191		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2192	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
2193		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2194		KEYPRINTF(sc, k->wk_keyix, hk, mac);
2195		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2196	}
2197	return 0;
2198#undef IEEE80211_KEY_XR
2199}
2200
2201/*
2202 * Set a net80211 key into the hardware.  This handles the
2203 * potential distribution of key state to multiple key
2204 * cache slots for TKIP with hardware MIC support.
2205 */
2206static int
2207ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
2208	struct ieee80211_node *bss)
2209{
2210#define	N(a)	(sizeof(a)/sizeof(a[0]))
2211	static const u_int8_t ciphermap[] = {
2212		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
2213		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
2214		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
2215		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
2216		(u_int8_t) -1,		/* 4 is not allocated */
2217		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
2218		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
2219	};
2220	struct ath_hal *ah = sc->sc_ah;
2221	const struct ieee80211_cipher *cip = k->wk_cipher;
2222	u_int8_t gmac[IEEE80211_ADDR_LEN];
2223	const u_int8_t *mac;
2224	HAL_KEYVAL hk;
2225
2226	memset(&hk, 0, sizeof(hk));
2227	/*
2228	 * Software crypto uses a "clear key" so non-crypto
2229	 * state kept in the key cache are maintained and
2230	 * so that rx frames have an entry to match.
2231	 */
2232	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
2233		KASSERT(cip->ic_cipher < N(ciphermap),
2234			("invalid cipher type %u", cip->ic_cipher));
2235		hk.kv_type = ciphermap[cip->ic_cipher];
2236		hk.kv_len = k->wk_keylen;
2237		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
2238	} else
2239		hk.kv_type = HAL_CIPHER_CLR;
2240
2241	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
2242		/*
2243		 * Group keys on hardware that supports multicast frame
2244		 * key search use a mac that is the sender's address with
2245		 * the high bit set instead of the app-specified address.
2246		 */
2247		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
2248		gmac[0] |= 0x80;
2249		mac = gmac;
2250	} else
2251		mac = k->wk_macaddr;
2252
2253	if (hk.kv_type == HAL_CIPHER_TKIP &&
2254	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2255		return ath_keyset_tkip(sc, k, &hk, mac);
2256	} else {
2257		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
2258		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
2259	}
2260#undef N
2261}
2262
2263/*
2264 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2265 * each key, one for decrypt/encrypt and the other for the MIC.
2266 */
2267static u_int16_t
2268key_alloc_2pair(struct ath_softc *sc,
2269	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2270{
2271#define	N(a)	(sizeof(a)/sizeof(a[0]))
2272	u_int i, keyix;
2273
2274	KASSERT(sc->sc_splitmic, ("key cache !split"));
2275	/* XXX could optimize */
2276	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2277		u_int8_t b = sc->sc_keymap[i];
2278		if (b != 0xff) {
2279			/*
2280			 * One or more slots in this byte are free.
2281			 */
2282			keyix = i*NBBY;
2283			while (b & 1) {
2284		again:
2285				keyix++;
2286				b >>= 1;
2287			}
2288			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
2289			if (isset(sc->sc_keymap, keyix+32) ||
2290			    isset(sc->sc_keymap, keyix+64) ||
2291			    isset(sc->sc_keymap, keyix+32+64)) {
2292				/* full pair unavailable */
2293				/* XXX statistic */
2294				if (keyix == (i+1)*NBBY) {
2295					/* no slots were appropriate, advance */
2296					continue;
2297				}
2298				goto again;
2299			}
2300			setbit(sc->sc_keymap, keyix);
2301			setbit(sc->sc_keymap, keyix+64);
2302			setbit(sc->sc_keymap, keyix+32);
2303			setbit(sc->sc_keymap, keyix+32+64);
2304			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2305				"%s: key pair %u,%u %u,%u\n",
2306				__func__, keyix, keyix+64,
2307				keyix+32, keyix+32+64);
2308			*txkeyix = keyix;
2309			*rxkeyix = keyix+32;
2310			return 1;
2311		}
2312	}
2313	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2314	return 0;
2315#undef N
2316}
2317
2318/*
2319 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2320 * each key, one for decrypt/encrypt and the other for the MIC.
2321 */
2322static u_int16_t
2323key_alloc_pair(struct ath_softc *sc,
2324	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2325{
2326#define	N(a)	(sizeof(a)/sizeof(a[0]))
2327	u_int i, keyix;
2328
2329	KASSERT(!sc->sc_splitmic, ("key cache split"));
2330	/* XXX could optimize */
2331	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2332		u_int8_t b = sc->sc_keymap[i];
2333		if (b != 0xff) {
2334			/*
2335			 * One or more slots in this byte are free.
2336			 */
2337			keyix = i*NBBY;
2338			while (b & 1) {
2339		again:
2340				keyix++;
2341				b >>= 1;
2342			}
2343			if (isset(sc->sc_keymap, keyix+64)) {
2344				/* full pair unavailable */
2345				/* XXX statistic */
2346				if (keyix == (i+1)*NBBY) {
2347					/* no slots were appropriate, advance */
2348					continue;
2349				}
2350				goto again;
2351			}
2352			setbit(sc->sc_keymap, keyix);
2353			setbit(sc->sc_keymap, keyix+64);
2354			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2355				"%s: key pair %u,%u\n",
2356				__func__, keyix, keyix+64);
2357			*txkeyix = *rxkeyix = keyix;
2358			return 1;
2359		}
2360	}
2361	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2362	return 0;
2363#undef N
2364}
2365
2366/*
2367 * Allocate a single key cache slot.
2368 */
2369static int
2370key_alloc_single(struct ath_softc *sc,
2371	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2372{
2373#define	N(a)	(sizeof(a)/sizeof(a[0]))
2374	u_int i, keyix;
2375
2376	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2377	for (i = 0; i < N(sc->sc_keymap); i++) {
2378		u_int8_t b = sc->sc_keymap[i];
2379		if (b != 0xff) {
2380			/*
2381			 * One or more slots are free.
2382			 */
2383			keyix = i*NBBY;
2384			while (b & 1)
2385				keyix++, b >>= 1;
2386			setbit(sc->sc_keymap, keyix);
2387			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2388				__func__, keyix);
2389			*txkeyix = *rxkeyix = keyix;
2390			return 1;
2391		}
2392	}
2393	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2394	return 0;
2395#undef N
2396}
2397
2398/*
2399 * Allocate one or more key cache slots for a uniacst key.  The
2400 * key itself is needed only to identify the cipher.  For hardware
2401 * TKIP with split cipher+MIC keys we allocate two key cache slot
2402 * pairs so that we can setup separate TX and RX MIC keys.  Note
2403 * that the MIC key for a TKIP key at slot i is assumed by the
2404 * hardware to be at slot i+64.  This limits TKIP keys to the first
2405 * 64 entries.
2406 */
2407static int
2408ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2409	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2410{
2411	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2412
2413	/*
2414	 * Group key allocation must be handled specially for
2415	 * parts that do not support multicast key cache search
2416	 * functionality.  For those parts the key id must match
2417	 * the h/w key index so lookups find the right key.  On
2418	 * parts w/ the key search facility we install the sender's
2419	 * mac address (with the high bit set) and let the hardware
2420	 * find the key w/o using the key id.  This is preferred as
2421	 * it permits us to support multiple users for adhoc and/or
2422	 * multi-station operation.
2423	 */
2424	if (k->wk_keyix != IEEE80211_KEYIX_NONE ||	/* global key */
2425	    ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey)) {
2426		if (!(&vap->iv_nw_keys[0] <= k &&
2427		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2428			/* should not happen */
2429			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2430				"%s: bogus group key\n", __func__);
2431			return 0;
2432		}
2433		/*
2434		 * XXX we pre-allocate the global keys so
2435		 * have no way to check if they've already been allocated.
2436		 */
2437		*keyix = *rxkeyix = k - vap->iv_nw_keys;
2438		return 1;
2439	}
2440
2441	/*
2442	 * We allocate two pair for TKIP when using the h/w to do
2443	 * the MIC.  For everything else, including software crypto,
2444	 * we allocate a single entry.  Note that s/w crypto requires
2445	 * a pass-through slot on the 5211 and 5212.  The 5210 does
2446	 * not support pass-through cache entries and we map all
2447	 * those requests to slot 0.
2448	 */
2449	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2450		return key_alloc_single(sc, keyix, rxkeyix);
2451	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2452	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2453		if (sc->sc_splitmic)
2454			return key_alloc_2pair(sc, keyix, rxkeyix);
2455		else
2456			return key_alloc_pair(sc, keyix, rxkeyix);
2457	} else {
2458		return key_alloc_single(sc, keyix, rxkeyix);
2459	}
2460}
2461
2462/*
2463 * Delete an entry in the key cache allocated by ath_key_alloc.
2464 */
2465static int
2466ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2467{
2468	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2469	struct ath_hal *ah = sc->sc_ah;
2470	const struct ieee80211_cipher *cip = k->wk_cipher;
2471	u_int keyix = k->wk_keyix;
2472
2473	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2474
2475	ath_hal_keyreset(ah, keyix);
2476	/*
2477	 * Handle split tx/rx keying required for TKIP with h/w MIC.
2478	 */
2479	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2480	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2481		ath_hal_keyreset(ah, keyix+32);		/* RX key */
2482	if (keyix >= IEEE80211_WEP_NKID) {
2483		/*
2484		 * Don't touch keymap entries for global keys so
2485		 * they are never considered for dynamic allocation.
2486		 */
2487		clrbit(sc->sc_keymap, keyix);
2488		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2489		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2490			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
2491			if (sc->sc_splitmic) {
2492				/* +32 for RX key, +32+64 for RX key MIC */
2493				clrbit(sc->sc_keymap, keyix+32);
2494				clrbit(sc->sc_keymap, keyix+32+64);
2495			}
2496		}
2497	}
2498	return 1;
2499}
2500
2501/*
2502 * Set the key cache contents for the specified key.  Key cache
2503 * slot(s) must already have been allocated by ath_key_alloc.
2504 */
2505static int
2506ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
2507	const u_int8_t mac[IEEE80211_ADDR_LEN])
2508{
2509	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2510
2511	return ath_keyset(sc, k, vap->iv_bss);
2512}
2513
2514/*
2515 * Block/unblock tx+rx processing while a key change is done.
2516 * We assume the caller serializes key management operations
2517 * so we only need to worry about synchronization with other
2518 * uses that originate in the driver.
2519 */
2520static void
2521ath_key_update_begin(struct ieee80211vap *vap)
2522{
2523	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2524	struct ath_softc *sc = ifp->if_softc;
2525
2526	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2527	taskqueue_block(sc->sc_tq);
2528	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2529}
2530
2531static void
2532ath_key_update_end(struct ieee80211vap *vap)
2533{
2534	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2535	struct ath_softc *sc = ifp->if_softc;
2536
2537	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2538	IF_UNLOCK(&ifp->if_snd);
2539	taskqueue_unblock(sc->sc_tq);
2540}
2541
2542/*
2543 * Calculate the receive filter according to the
2544 * operating mode and state:
2545 *
2546 * o always accept unicast, broadcast, and multicast traffic
2547 * o accept PHY error frames when hardware doesn't have MIB support
2548 *   to count and we need them for ANI (sta mode only until recently)
2549 *   and we are not scanning (ANI is disabled)
2550 *   NB: older hal's add rx filter bits out of sight and we need to
2551 *	 blindly preserve them
2552 * o probe request frames are accepted only when operating in
2553 *   hostap, adhoc, or monitor modes
2554 * o enable promiscuous mode
2555 *   - when in monitor mode
2556 *   - if interface marked PROMISC (assumes bridge setting is filtered)
2557 * o accept beacons:
2558 *   - when operating in station mode for collecting rssi data when
2559 *     the station is otherwise quiet, or
2560 *   - when operating in adhoc mode so the 802.11 layer creates
2561 *     node table entries for peers,
2562 *   - when scanning
2563 *   - when doing s/w beacon miss (e.g. for ap+sta)
2564 *   - when operating in ap mode in 11g to detect overlapping bss that
2565 *     require protection
2566 * o accept control frames:
2567 *   - when in monitor mode
2568 * XXX BAR frames for 11n
2569 * XXX HT protection for 11n
2570 */
2571static u_int32_t
2572ath_calcrxfilter(struct ath_softc *sc)
2573{
2574	struct ifnet *ifp = sc->sc_ifp;
2575	struct ieee80211com *ic = ifp->if_l2com;
2576	u_int32_t rfilt;
2577
2578	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2579#if HAL_ABI_VERSION < 0x08011600
2580	rfilt |= (ath_hal_getrxfilter(sc->sc_ah) &
2581		(HAL_RX_FILTER_PHYRADAR | HAL_RX_FILTER_PHYERR));
2582#elif HAL_ABI_VERSION < 0x08060100
2583	if (ic->ic_opmode == IEEE80211_M_STA &&
2584	    !sc->sc_needmib && !sc->sc_scanning)
2585		rfilt |= HAL_RX_FILTER_PHYERR;
2586#else
2587	if (!sc->sc_needmib && !sc->sc_scanning)
2588		rfilt |= HAL_RX_FILTER_PHYERR;
2589#endif
2590	if (ic->ic_opmode != IEEE80211_M_STA)
2591		rfilt |= HAL_RX_FILTER_PROBEREQ;
2592	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2593		rfilt |= HAL_RX_FILTER_PROM;
2594	if (ic->ic_opmode == IEEE80211_M_STA ||
2595	    ic->ic_opmode == IEEE80211_M_IBSS ||
2596	    sc->sc_swbmiss || sc->sc_scanning)
2597		rfilt |= HAL_RX_FILTER_BEACON;
2598	/*
2599	 * NB: We don't recalculate the rx filter when
2600	 * ic_protmode changes; otherwise we could do
2601	 * this only when ic_protmode != NONE.
2602	 */
2603	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2604	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2605		rfilt |= HAL_RX_FILTER_BEACON;
2606	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2607		rfilt |= HAL_RX_FILTER_CONTROL;
2608	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2609	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2610	return rfilt;
2611}
2612
2613static void
2614ath_update_promisc(struct ifnet *ifp)
2615{
2616	struct ath_softc *sc = ifp->if_softc;
2617	u_int32_t rfilt;
2618
2619	/* configure rx filter */
2620	rfilt = ath_calcrxfilter(sc);
2621	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2622
2623	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2624}
2625
2626static void
2627ath_update_mcast(struct ifnet *ifp)
2628{
2629	struct ath_softc *sc = ifp->if_softc;
2630	u_int32_t mfilt[2];
2631
2632	/* calculate and install multicast filter */
2633	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2634		struct ifmultiaddr *ifma;
2635		/*
2636		 * Merge multicast addresses to form the hardware filter.
2637		 */
2638		mfilt[0] = mfilt[1] = 0;
2639		IF_ADDR_LOCK(ifp);	/* XXX need some fiddling to remove? */
2640		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2641			caddr_t dl;
2642			u_int32_t val;
2643			u_int8_t pos;
2644
2645			/* calculate XOR of eight 6bit values */
2646			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2647			val = LE_READ_4(dl + 0);
2648			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2649			val = LE_READ_4(dl + 3);
2650			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2651			pos &= 0x3f;
2652			mfilt[pos / 32] |= (1 << (pos % 32));
2653		}
2654		IF_ADDR_UNLOCK(ifp);
2655	} else
2656		mfilt[0] = mfilt[1] = ~0;
2657	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2658	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2659		__func__, mfilt[0], mfilt[1]);
2660}
2661
2662static void
2663ath_mode_init(struct ath_softc *sc)
2664{
2665	struct ifnet *ifp = sc->sc_ifp;
2666	struct ieee80211com *ic = ifp->if_l2com;
2667	struct ath_hal *ah = sc->sc_ah;
2668	u_int32_t rfilt;
2669
2670	/* configure rx filter */
2671	rfilt = ath_calcrxfilter(sc);
2672	ath_hal_setrxfilter(ah, rfilt);
2673
2674	/* configure operational mode */
2675	ath_hal_setopmode(ah);
2676
2677	/*
2678	 * Handle any link-level address change.  Note that we only
2679	 * need to force ic_myaddr; any other addresses are handled
2680	 * as a byproduct of the ifnet code marking the interface
2681	 * down then up.
2682	 *
2683	 * XXX should get from lladdr instead of arpcom but that's more work
2684	 */
2685	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2686	ath_hal_setmac(ah, ic->ic_myaddr);
2687
2688	/* calculate and install multicast filter */
2689	ath_update_mcast(ifp);
2690}
2691
2692/*
2693 * Set the slot time based on the current setting.
2694 */
2695static void
2696ath_setslottime(struct ath_softc *sc)
2697{
2698	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2699	struct ath_hal *ah = sc->sc_ah;
2700	u_int usec;
2701
2702	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2703		usec = 13;
2704	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2705		usec = 21;
2706	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2707		/* honor short/long slot time only in 11g */
2708		/* XXX shouldn't honor on pure g or turbo g channel */
2709		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2710			usec = HAL_SLOT_TIME_9;
2711		else
2712			usec = HAL_SLOT_TIME_20;
2713	} else
2714		usec = HAL_SLOT_TIME_9;
2715
2716	DPRINTF(sc, ATH_DEBUG_RESET,
2717	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2718	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2719	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2720
2721	ath_hal_setslottime(ah, usec);
2722	sc->sc_updateslot = OK;
2723}
2724
2725/*
2726 * Callback from the 802.11 layer to update the
2727 * slot time based on the current setting.
2728 */
2729static void
2730ath_updateslot(struct ifnet *ifp)
2731{
2732	struct ath_softc *sc = ifp->if_softc;
2733	struct ieee80211com *ic = ifp->if_l2com;
2734
2735	/*
2736	 * When not coordinating the BSS, change the hardware
2737	 * immediately.  For other operation we defer the change
2738	 * until beacon updates have propagated to the stations.
2739	 */
2740	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2741		sc->sc_updateslot = UPDATE;
2742	else
2743		ath_setslottime(sc);
2744}
2745
2746/*
2747 * Setup a h/w transmit queue for beacons.
2748 */
2749static int
2750ath_beaconq_setup(struct ath_hal *ah)
2751{
2752	HAL_TXQ_INFO qi;
2753
2754	memset(&qi, 0, sizeof(qi));
2755	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2756	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2757	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2758	/* NB: for dynamic turbo, don't enable any other interrupts */
2759	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2760	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2761}
2762
2763/*
2764 * Setup the transmit queue parameters for the beacon queue.
2765 */
2766static int
2767ath_beaconq_config(struct ath_softc *sc)
2768{
2769#define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2770	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2771	struct ath_hal *ah = sc->sc_ah;
2772	HAL_TXQ_INFO qi;
2773
2774	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2775	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2776		/*
2777		 * Always burst out beacon and CAB traffic.
2778		 */
2779		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2780		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2781		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2782	} else {
2783		struct wmeParams *wmep =
2784			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2785		/*
2786		 * Adhoc mode; important thing is to use 2x cwmin.
2787		 */
2788		qi.tqi_aifs = wmep->wmep_aifsn;
2789		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2790		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2791	}
2792
2793	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2794		device_printf(sc->sc_dev, "unable to update parameters for "
2795			"beacon hardware queue!\n");
2796		return 0;
2797	} else {
2798		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2799		return 1;
2800	}
2801#undef ATH_EXPONENT_TO_VALUE
2802}
2803
2804/*
2805 * Allocate and setup an initial beacon frame.
2806 */
2807static int
2808ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2809{
2810	struct ieee80211vap *vap = ni->ni_vap;
2811	struct ath_vap *avp = ATH_VAP(vap);
2812	struct ath_buf *bf;
2813	struct mbuf *m;
2814	int error;
2815
2816	bf = avp->av_bcbuf;
2817	if (bf->bf_m != NULL) {
2818		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2819		m_freem(bf->bf_m);
2820		bf->bf_m = NULL;
2821	}
2822	if (bf->bf_node != NULL) {
2823		ieee80211_free_node(bf->bf_node);
2824		bf->bf_node = NULL;
2825	}
2826
2827	/*
2828	 * NB: the beacon data buffer must be 32-bit aligned;
2829	 * we assume the mbuf routines will return us something
2830	 * with this alignment (perhaps should assert).
2831	 */
2832	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2833	if (m == NULL) {
2834		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2835		sc->sc_stats.ast_be_nombuf++;
2836		return ENOMEM;
2837	}
2838	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2839				     bf->bf_segs, &bf->bf_nseg,
2840				     BUS_DMA_NOWAIT);
2841	if (error != 0) {
2842		device_printf(sc->sc_dev,
2843		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2844		    __func__, error);
2845		m_freem(m);
2846		return error;
2847	}
2848
2849	/*
2850	 * Calculate a TSF adjustment factor required for staggered
2851	 * beacons.  Note that we assume the format of the beacon
2852	 * frame leaves the tstamp field immediately following the
2853	 * header.
2854	 */
2855	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2856		uint64_t tsfadjust;
2857		struct ieee80211_frame *wh;
2858
2859		/*
2860		 * The beacon interval is in TU's; the TSF is in usecs.
2861		 * We figure out how many TU's to add to align the timestamp
2862		 * then convert to TSF units and handle byte swapping before
2863		 * inserting it in the frame.  The hardware will then add this
2864		 * each time a beacon frame is sent.  Note that we align vap's
2865		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2866		 * timestamp in one beacon interval while the others get a
2867		 * timstamp aligned to the next interval.
2868		 */
2869		tsfadjust = ni->ni_intval *
2870		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2871		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2872
2873		DPRINTF(sc, ATH_DEBUG_BEACON,
2874		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2875		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2876		    avp->av_bslot, ni->ni_intval,
2877		    (long long unsigned) le64toh(tsfadjust));
2878
2879		wh = mtod(m, struct ieee80211_frame *);
2880		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2881	}
2882	bf->bf_m = m;
2883	bf->bf_node = ieee80211_ref_node(ni);
2884
2885	return 0;
2886}
2887
2888/*
2889 * Setup the beacon frame for transmit.
2890 */
2891static void
2892ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2893{
2894#define	USE_SHPREAMBLE(_ic) \
2895	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2896		== IEEE80211_F_SHPREAMBLE)
2897	struct ieee80211_node *ni = bf->bf_node;
2898	struct ieee80211com *ic = ni->ni_ic;
2899	struct mbuf *m = bf->bf_m;
2900	struct ath_hal *ah = sc->sc_ah;
2901	struct ath_desc *ds;
2902	int flags, antenna;
2903	const HAL_RATE_TABLE *rt;
2904	u_int8_t rix, rate;
2905
2906	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2907		__func__, m, m->m_len);
2908
2909	/* setup descriptors */
2910	ds = bf->bf_desc;
2911
2912	flags = HAL_TXDESC_NOACK;
2913	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2914		ds->ds_link = bf->bf_daddr;	/* self-linked */
2915		flags |= HAL_TXDESC_VEOL;
2916		/*
2917		 * Let hardware handle antenna switching.
2918		 */
2919		antenna = sc->sc_txantenna;
2920	} else {
2921		ds->ds_link = 0;
2922		/*
2923		 * Switch antenna every 4 beacons.
2924		 * XXX assumes two antenna
2925		 */
2926		if (sc->sc_txantenna != 0)
2927			antenna = sc->sc_txantenna;
2928		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2929			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2930		else
2931			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2932	}
2933
2934	KASSERT(bf->bf_nseg == 1,
2935		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2936	ds->ds_data = bf->bf_segs[0].ds_addr;
2937	/*
2938	 * Calculate rate code.
2939	 * XXX everything at min xmit rate
2940	 */
2941	rix = 0;
2942	rt = sc->sc_currates;
2943	rate = rt->info[rix].rateCode;
2944	if (USE_SHPREAMBLE(ic))
2945		rate |= rt->info[rix].shortPreamble;
2946	ath_hal_setuptxdesc(ah, ds
2947		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2948		, sizeof(struct ieee80211_frame)/* header length */
2949		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2950		, ni->ni_txpower		/* txpower XXX */
2951		, rate, 1			/* series 0 rate/tries */
2952		, HAL_TXKEYIX_INVALID		/* no encryption */
2953		, antenna			/* antenna mode */
2954		, flags				/* no ack, veol for beacons */
2955		, 0				/* rts/cts rate */
2956		, 0				/* rts/cts duration */
2957	);
2958	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2959	ath_hal_filltxdesc(ah, ds
2960		, roundup(m->m_len, 4)		/* buffer length */
2961		, AH_TRUE			/* first segment */
2962		, AH_TRUE			/* last segment */
2963		, ds				/* first descriptor */
2964	);
2965#if 0
2966	ath_desc_swap(ds);
2967#endif
2968#undef USE_SHPREAMBLE
2969}
2970
2971static void
2972ath_beacon_update(struct ieee80211vap *vap, int item)
2973{
2974	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2975
2976	setbit(bo->bo_flags, item);
2977}
2978
2979/*
2980 * Append the contents of src to dst; both queues
2981 * are assumed to be locked.
2982 */
2983static void
2984ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2985{
2986	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2987	dst->axq_link = src->axq_link;
2988	src->axq_link = NULL;
2989	dst->axq_depth += src->axq_depth;
2990	src->axq_depth = 0;
2991}
2992
2993/*
2994 * Transmit a beacon frame at SWBA.  Dynamic updates to the
2995 * frame contents are done as needed and the slot time is
2996 * also adjusted based on current state.
2997 */
2998static void
2999ath_beacon_proc(void *arg, int pending)
3000{
3001	struct ath_softc *sc = arg;
3002	struct ath_hal *ah = sc->sc_ah;
3003	struct ieee80211vap *vap;
3004	struct ath_buf *bf;
3005	int slot, otherant;
3006	uint32_t bfaddr;
3007
3008	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
3009		__func__, pending);
3010	/*
3011	 * Check if the previous beacon has gone out.  If
3012	 * not don't try to post another, skip this period
3013	 * and wait for the next.  Missed beacons indicate
3014	 * a problem and should not occur.  If we miss too
3015	 * many consecutive beacons reset the device.
3016	 */
3017	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
3018		sc->sc_bmisscount++;
3019		DPRINTF(sc, ATH_DEBUG_BEACON,
3020			"%s: missed %u consecutive beacons\n",
3021			__func__, sc->sc_bmisscount);
3022		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
3023			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
3024		return;
3025	}
3026	if (sc->sc_bmisscount != 0) {
3027		DPRINTF(sc, ATH_DEBUG_BEACON,
3028			"%s: resume beacon xmit after %u misses\n",
3029			__func__, sc->sc_bmisscount);
3030		sc->sc_bmisscount = 0;
3031	}
3032
3033	if (sc->sc_stagbeacons) {			/* staggered beacons */
3034		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3035		uint32_t tsftu;
3036
3037		tsftu = ath_hal_gettsf32(ah) >> 10;
3038		/* XXX lintval */
3039		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
3040		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
3041		bfaddr = 0;
3042		if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
3043			bf = ath_beacon_generate(sc, vap);
3044			if (bf != NULL)
3045				bfaddr = bf->bf_daddr;
3046		}
3047	} else {					/* burst'd beacons */
3048		uint32_t *bflink = &bfaddr;
3049
3050		for (slot = 0; slot < ATH_BCBUF; slot++) {
3051			vap = sc->sc_bslot[slot];
3052			if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
3053				bf = ath_beacon_generate(sc, vap);
3054				if (bf != NULL) {
3055					*bflink = bf->bf_daddr;
3056					bflink = &bf->bf_desc->ds_link;
3057				}
3058			}
3059		}
3060		*bflink = 0;				/* terminate list */
3061	}
3062
3063	/*
3064	 * Handle slot time change when a non-ERP station joins/leaves
3065	 * an 11g network.  The 802.11 layer notifies us via callback,
3066	 * we mark updateslot, then wait one beacon before effecting
3067	 * the change.  This gives associated stations at least one
3068	 * beacon interval to note the state change.
3069	 */
3070	/* XXX locking */
3071	if (sc->sc_updateslot == UPDATE) {
3072		sc->sc_updateslot = COMMIT;	/* commit next beacon */
3073		sc->sc_slotupdate = slot;
3074	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
3075		ath_setslottime(sc);		/* commit change to h/w */
3076
3077	/*
3078	 * Check recent per-antenna transmit statistics and flip
3079	 * the default antenna if noticeably more frames went out
3080	 * on the non-default antenna.
3081	 * XXX assumes 2 anntenae
3082	 */
3083	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
3084		otherant = sc->sc_defant & 1 ? 2 : 1;
3085		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
3086			ath_setdefantenna(sc, otherant);
3087		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
3088	}
3089
3090	if (bfaddr != 0) {
3091		/*
3092		 * Stop any current dma and put the new frame on the queue.
3093		 * This should never fail since we check above that no frames
3094		 * are still pending on the queue.
3095		 */
3096		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
3097			DPRINTF(sc, ATH_DEBUG_ANY,
3098				"%s: beacon queue %u did not stop?\n",
3099				__func__, sc->sc_bhalq);
3100		}
3101		/* NB: cabq traffic should already be queued and primed */
3102		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
3103		ath_hal_txstart(ah, sc->sc_bhalq);
3104
3105		sc->sc_stats.ast_be_xmit++;
3106	}
3107}
3108
3109static struct ath_buf *
3110ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
3111{
3112	struct ath_vap *avp = ATH_VAP(vap);
3113	struct ath_txq *cabq = sc->sc_cabq;
3114	struct ath_buf *bf;
3115	struct mbuf *m;
3116	int nmcastq, error;
3117
3118	KASSERT(vap->iv_state == IEEE80211_S_RUN,
3119	    ("not running, state %d", vap->iv_state));
3120	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3121
3122	/*
3123	 * Update dynamic beacon contents.  If this returns
3124	 * non-zero then we need to remap the memory because
3125	 * the beacon frame changed size (probably because
3126	 * of the TIM bitmap).
3127	 */
3128	bf = avp->av_bcbuf;
3129	m = bf->bf_m;
3130	nmcastq = avp->av_mcastq.axq_depth;
3131	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
3132		/* XXX too conservative? */
3133		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3134		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3135					     bf->bf_segs, &bf->bf_nseg,
3136					     BUS_DMA_NOWAIT);
3137		if (error != 0) {
3138			if_printf(vap->iv_ifp,
3139			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3140			    __func__, error);
3141			return NULL;
3142		}
3143	}
3144	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
3145		DPRINTF(sc, ATH_DEBUG_BEACON,
3146		    "%s: cabq did not drain, mcastq %u cabq %u\n",
3147		    __func__, nmcastq, cabq->axq_depth);
3148		sc->sc_stats.ast_cabq_busy++;
3149		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
3150			/*
3151			 * CABQ traffic from a previous vap is still pending.
3152			 * We must drain the q before this beacon frame goes
3153			 * out as otherwise this vap's stations will get cab
3154			 * frames from a different vap.
3155			 * XXX could be slow causing us to miss DBA
3156			 */
3157			ath_tx_draintxq(sc, cabq);
3158		}
3159	}
3160	ath_beacon_setup(sc, bf);
3161	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3162
3163	/*
3164	 * Enable the CAB queue before the beacon queue to
3165	 * insure cab frames are triggered by this beacon.
3166	 */
3167	if (avp->av_boff.bo_tim[4] & 1) {
3168		struct ath_hal *ah = sc->sc_ah;
3169
3170		/* NB: only at DTIM */
3171		ATH_TXQ_LOCK(cabq);
3172		ATH_TXQ_LOCK(&avp->av_mcastq);
3173		if (nmcastq) {
3174			struct ath_buf *bfm;
3175
3176			/*
3177			 * Move frames from the s/w mcast q to the h/w cab q.
3178			 * XXX MORE_DATA bit
3179			 */
3180			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
3181			if (cabq->axq_link != NULL) {
3182				*cabq->axq_link = bfm->bf_daddr;
3183			} else
3184				ath_hal_puttxbuf(ah, cabq->axq_qnum,
3185					bfm->bf_daddr);
3186			ath_txqmove(cabq, &avp->av_mcastq);
3187
3188			sc->sc_stats.ast_cabq_xmit += nmcastq;
3189		}
3190		/* NB: gated by beacon so safe to start here */
3191		ath_hal_txstart(ah, cabq->axq_qnum);
3192		ATH_TXQ_UNLOCK(cabq);
3193		ATH_TXQ_UNLOCK(&avp->av_mcastq);
3194	}
3195	return bf;
3196}
3197
3198static void
3199ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3200{
3201	struct ath_vap *avp = ATH_VAP(vap);
3202	struct ath_hal *ah = sc->sc_ah;
3203	struct ath_buf *bf;
3204	struct mbuf *m;
3205	int error;
3206
3207	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3208
3209	/*
3210	 * Update dynamic beacon contents.  If this returns
3211	 * non-zero then we need to remap the memory because
3212	 * the beacon frame changed size (probably because
3213	 * of the TIM bitmap).
3214	 */
3215	bf = avp->av_bcbuf;
3216	m = bf->bf_m;
3217	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3218		/* XXX too conservative? */
3219		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3220		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3221					     bf->bf_segs, &bf->bf_nseg,
3222					     BUS_DMA_NOWAIT);
3223		if (error != 0) {
3224			if_printf(vap->iv_ifp,
3225			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3226			    __func__, error);
3227			return;
3228		}
3229	}
3230	ath_beacon_setup(sc, bf);
3231	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3232
3233	/* NB: caller is known to have already stopped tx dma */
3234	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3235	ath_hal_txstart(ah, sc->sc_bhalq);
3236}
3237
3238/*
3239 * Reset the hardware after detecting beacons have stopped.
3240 */
3241static void
3242ath_bstuck_proc(void *arg, int pending)
3243{
3244	struct ath_softc *sc = arg;
3245	struct ifnet *ifp = sc->sc_ifp;
3246
3247	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3248		sc->sc_bmisscount);
3249	ath_reset(ifp);
3250}
3251
3252/*
3253 * Reclaim beacon resources and return buffer to the pool.
3254 */
3255static void
3256ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3257{
3258
3259	if (bf->bf_m != NULL) {
3260		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3261		m_freem(bf->bf_m);
3262		bf->bf_m = NULL;
3263	}
3264	if (bf->bf_node != NULL) {
3265		ieee80211_free_node(bf->bf_node);
3266		bf->bf_node = NULL;
3267	}
3268	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3269}
3270
3271/*
3272 * Reclaim beacon resources.
3273 */
3274static void
3275ath_beacon_free(struct ath_softc *sc)
3276{
3277	struct ath_buf *bf;
3278
3279	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3280		if (bf->bf_m != NULL) {
3281			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3282			m_freem(bf->bf_m);
3283			bf->bf_m = NULL;
3284		}
3285		if (bf->bf_node != NULL) {
3286			ieee80211_free_node(bf->bf_node);
3287			bf->bf_node = NULL;
3288		}
3289	}
3290}
3291
3292/*
3293 * Configure the beacon and sleep timers.
3294 *
3295 * When operating as an AP this resets the TSF and sets
3296 * up the hardware to notify us when we need to issue beacons.
3297 *
3298 * When operating in station mode this sets up the beacon
3299 * timers according to the timestamp of the last received
3300 * beacon and the current TSF, configures PCF and DTIM
3301 * handling, programs the sleep registers so the hardware
3302 * will wakeup in time to receive beacons, and configures
3303 * the beacon miss handling so we'll receive a BMISS
3304 * interrupt when we stop seeing beacons from the AP
3305 * we've associated with.
3306 */
3307static void
3308ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3309{
3310#define	TSF_TO_TU(_h,_l) \
3311	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3312#define	FUDGE	2
3313	struct ath_hal *ah = sc->sc_ah;
3314	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3315	struct ieee80211_node *ni;
3316	u_int32_t nexttbtt, intval, tsftu;
3317	u_int64_t tsf;
3318
3319	if (vap == NULL)
3320		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3321	ni = vap->iv_bss;
3322
3323	/* extract tstamp from last beacon and convert to TU */
3324	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3325			     LE_READ_4(ni->ni_tstamp.data));
3326	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3327		/*
3328		 * For multi-bss ap support beacons are either staggered
3329		 * evenly over N slots or burst together.  For the former
3330		 * arrange for the SWBA to be delivered for each slot.
3331		 * Slots that are not occupied will generate nothing.
3332		 */
3333		/* NB: the beacon interval is kept internally in TU's */
3334		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3335		if (sc->sc_stagbeacons)
3336			intval /= ATH_BCBUF;
3337	} else {
3338		/* NB: the beacon interval is kept internally in TU's */
3339		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3340	}
3341	if (nexttbtt == 0)		/* e.g. for ap mode */
3342		nexttbtt = intval;
3343	else if (intval)		/* NB: can be 0 for monitor mode */
3344		nexttbtt = roundup(nexttbtt, intval);
3345	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3346		__func__, nexttbtt, intval, ni->ni_intval);
3347	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3348		HAL_BEACON_STATE bs;
3349		int dtimperiod, dtimcount;
3350		int cfpperiod, cfpcount;
3351
3352		/*
3353		 * Setup dtim and cfp parameters according to
3354		 * last beacon we received (which may be none).
3355		 */
3356		dtimperiod = ni->ni_dtim_period;
3357		if (dtimperiod <= 0)		/* NB: 0 if not known */
3358			dtimperiod = 1;
3359		dtimcount = ni->ni_dtim_count;
3360		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3361			dtimcount = 0;		/* XXX? */
3362		cfpperiod = 1;			/* NB: no PCF support yet */
3363		cfpcount = 0;
3364		/*
3365		 * Pull nexttbtt forward to reflect the current
3366		 * TSF and calculate dtim+cfp state for the result.
3367		 */
3368		tsf = ath_hal_gettsf64(ah);
3369		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3370		do {
3371			nexttbtt += intval;
3372			if (--dtimcount < 0) {
3373				dtimcount = dtimperiod - 1;
3374				if (--cfpcount < 0)
3375					cfpcount = cfpperiod - 1;
3376			}
3377		} while (nexttbtt < tsftu);
3378		memset(&bs, 0, sizeof(bs));
3379		bs.bs_intval = intval;
3380		bs.bs_nexttbtt = nexttbtt;
3381		bs.bs_dtimperiod = dtimperiod*intval;
3382		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3383		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3384		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3385		bs.bs_cfpmaxduration = 0;
3386#if 0
3387		/*
3388		 * The 802.11 layer records the offset to the DTIM
3389		 * bitmap while receiving beacons; use it here to
3390		 * enable h/w detection of our AID being marked in
3391		 * the bitmap vector (to indicate frames for us are
3392		 * pending at the AP).
3393		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3394		 * XXX enable based on h/w rev for newer chips
3395		 */
3396		bs.bs_timoffset = ni->ni_timoff;
3397#endif
3398		/*
3399		 * Calculate the number of consecutive beacons to miss
3400		 * before taking a BMISS interrupt.
3401		 * Note that we clamp the result to at most 10 beacons.
3402		 */
3403		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3404		if (bs.bs_bmissthreshold > 10)
3405			bs.bs_bmissthreshold = 10;
3406		else if (bs.bs_bmissthreshold <= 0)
3407			bs.bs_bmissthreshold = 1;
3408
3409		/*
3410		 * Calculate sleep duration.  The configuration is
3411		 * given in ms.  We insure a multiple of the beacon
3412		 * period is used.  Also, if the sleep duration is
3413		 * greater than the DTIM period then it makes senses
3414		 * to make it a multiple of that.
3415		 *
3416		 * XXX fixed at 100ms
3417		 */
3418		bs.bs_sleepduration =
3419			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3420		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3421			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3422
3423		DPRINTF(sc, ATH_DEBUG_BEACON,
3424			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3425			, __func__
3426			, tsf, tsftu
3427			, bs.bs_intval
3428			, bs.bs_nexttbtt
3429			, bs.bs_dtimperiod
3430			, bs.bs_nextdtim
3431			, bs.bs_bmissthreshold
3432			, bs.bs_sleepduration
3433			, bs.bs_cfpperiod
3434			, bs.bs_cfpmaxduration
3435			, bs.bs_cfpnext
3436			, bs.bs_timoffset
3437		);
3438		ath_hal_intrset(ah, 0);
3439		ath_hal_beacontimers(ah, &bs);
3440		sc->sc_imask |= HAL_INT_BMISS;
3441		ath_hal_intrset(ah, sc->sc_imask);
3442	} else {
3443		ath_hal_intrset(ah, 0);
3444		if (nexttbtt == intval)
3445			intval |= HAL_BEACON_RESET_TSF;
3446		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3447			/*
3448			 * In IBSS mode enable the beacon timers but only
3449			 * enable SWBA interrupts if we need to manually
3450			 * prepare beacon frames.  Otherwise we use a
3451			 * self-linked tx descriptor and let the hardware
3452			 * deal with things.
3453			 */
3454			intval |= HAL_BEACON_ENA;
3455			if (!sc->sc_hasveol)
3456				sc->sc_imask |= HAL_INT_SWBA;
3457			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3458				/*
3459				 * Pull nexttbtt forward to reflect
3460				 * the current TSF.
3461				 */
3462				tsf = ath_hal_gettsf64(ah);
3463				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3464				do {
3465					nexttbtt += intval;
3466				} while (nexttbtt < tsftu);
3467			}
3468			ath_beaconq_config(sc);
3469		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3470			/*
3471			 * In AP mode we enable the beacon timers and
3472			 * SWBA interrupts to prepare beacon frames.
3473			 */
3474			intval |= HAL_BEACON_ENA;
3475			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3476			ath_beaconq_config(sc);
3477		}
3478		ath_hal_beaconinit(ah, nexttbtt, intval);
3479		sc->sc_bmisscount = 0;
3480		ath_hal_intrset(ah, sc->sc_imask);
3481		/*
3482		 * When using a self-linked beacon descriptor in
3483		 * ibss mode load it once here.
3484		 */
3485		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3486			ath_beacon_start_adhoc(sc, vap);
3487	}
3488	sc->sc_syncbeacon = 0;
3489#undef FUDGE
3490#undef TSF_TO_TU
3491}
3492
3493static void
3494ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3495{
3496	bus_addr_t *paddr = (bus_addr_t*) arg;
3497	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3498	*paddr = segs->ds_addr;
3499}
3500
3501static int
3502ath_descdma_setup(struct ath_softc *sc,
3503	struct ath_descdma *dd, ath_bufhead *head,
3504	const char *name, int nbuf, int ndesc)
3505{
3506#define	DS2PHYS(_dd, _ds) \
3507	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3508	struct ifnet *ifp = sc->sc_ifp;
3509	struct ath_desc *ds;
3510	struct ath_buf *bf;
3511	int i, bsize, error;
3512
3513	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3514	    __func__, name, nbuf, ndesc);
3515
3516	dd->dd_name = name;
3517	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
3518
3519	/*
3520	 * Setup DMA descriptor area.
3521	 */
3522	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3523		       PAGE_SIZE, 0,		/* alignment, bounds */
3524		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3525		       BUS_SPACE_MAXADDR,	/* highaddr */
3526		       NULL, NULL,		/* filter, filterarg */
3527		       dd->dd_desc_len,		/* maxsize */
3528		       1,			/* nsegments */
3529		       dd->dd_desc_len,		/* maxsegsize */
3530		       BUS_DMA_ALLOCNOW,	/* flags */
3531		       NULL,			/* lockfunc */
3532		       NULL,			/* lockarg */
3533		       &dd->dd_dmat);
3534	if (error != 0) {
3535		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3536		return error;
3537	}
3538
3539	/* allocate descriptors */
3540	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3541	if (error != 0) {
3542		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3543			"error %u\n", dd->dd_name, error);
3544		goto fail0;
3545	}
3546
3547	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3548				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3549				 &dd->dd_dmamap);
3550	if (error != 0) {
3551		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3552			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3553		goto fail1;
3554	}
3555
3556	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3557				dd->dd_desc, dd->dd_desc_len,
3558				ath_load_cb, &dd->dd_desc_paddr,
3559				BUS_DMA_NOWAIT);
3560	if (error != 0) {
3561		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3562			dd->dd_name, error);
3563		goto fail2;
3564	}
3565
3566	ds = dd->dd_desc;
3567	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3568	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3569	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3570
3571	/* allocate rx buffers */
3572	bsize = sizeof(struct ath_buf) * nbuf;
3573	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3574	if (bf == NULL) {
3575		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3576			dd->dd_name, bsize);
3577		goto fail3;
3578	}
3579	dd->dd_bufptr = bf;
3580
3581	STAILQ_INIT(head);
3582	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3583		bf->bf_desc = ds;
3584		bf->bf_daddr = DS2PHYS(dd, ds);
3585		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3586				&bf->bf_dmamap);
3587		if (error != 0) {
3588			if_printf(ifp, "unable to create dmamap for %s "
3589				"buffer %u, error %u\n", dd->dd_name, i, error);
3590			ath_descdma_cleanup(sc, dd, head);
3591			return error;
3592		}
3593		STAILQ_INSERT_TAIL(head, bf, bf_list);
3594	}
3595	return 0;
3596fail3:
3597	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3598fail2:
3599	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3600fail1:
3601	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3602fail0:
3603	bus_dma_tag_destroy(dd->dd_dmat);
3604	memset(dd, 0, sizeof(*dd));
3605	return error;
3606#undef DS2PHYS
3607}
3608
3609static void
3610ath_descdma_cleanup(struct ath_softc *sc,
3611	struct ath_descdma *dd, ath_bufhead *head)
3612{
3613	struct ath_buf *bf;
3614	struct ieee80211_node *ni;
3615
3616	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3617	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3618	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3619	bus_dma_tag_destroy(dd->dd_dmat);
3620
3621	STAILQ_FOREACH(bf, head, bf_list) {
3622		if (bf->bf_m) {
3623			m_freem(bf->bf_m);
3624			bf->bf_m = NULL;
3625		}
3626		if (bf->bf_dmamap != NULL) {
3627			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3628			bf->bf_dmamap = NULL;
3629		}
3630		ni = bf->bf_node;
3631		bf->bf_node = NULL;
3632		if (ni != NULL) {
3633			/*
3634			 * Reclaim node reference.
3635			 */
3636			ieee80211_free_node(ni);
3637		}
3638	}
3639
3640	STAILQ_INIT(head);
3641	free(dd->dd_bufptr, M_ATHDEV);
3642	memset(dd, 0, sizeof(*dd));
3643}
3644
3645static int
3646ath_desc_alloc(struct ath_softc *sc)
3647{
3648	int error;
3649
3650	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3651			"rx", ath_rxbuf, 1);
3652	if (error != 0)
3653		return error;
3654
3655	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3656			"tx", ath_txbuf, ATH_TXDESC);
3657	if (error != 0) {
3658		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3659		return error;
3660	}
3661
3662	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3663			"beacon", ATH_BCBUF, 1);
3664	if (error != 0) {
3665		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3666		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3667		return error;
3668	}
3669	return 0;
3670}
3671
3672static void
3673ath_desc_free(struct ath_softc *sc)
3674{
3675
3676	if (sc->sc_bdma.dd_desc_len != 0)
3677		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3678	if (sc->sc_txdma.dd_desc_len != 0)
3679		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3680	if (sc->sc_rxdma.dd_desc_len != 0)
3681		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3682}
3683
3684static struct ieee80211_node *
3685ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3686{
3687	struct ieee80211com *ic = vap->iv_ic;
3688	struct ath_softc *sc = ic->ic_ifp->if_softc;
3689	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3690	struct ath_node *an;
3691
3692	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3693	if (an == NULL) {
3694		/* XXX stat+msg */
3695		return NULL;
3696	}
3697	ath_rate_node_init(sc, an);
3698
3699	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3700	return &an->an_node;
3701}
3702
3703static void
3704ath_node_free(struct ieee80211_node *ni)
3705{
3706	struct ieee80211com *ic = ni->ni_ic;
3707        struct ath_softc *sc = ic->ic_ifp->if_softc;
3708
3709	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3710
3711	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3712	sc->sc_node_free(ni);
3713}
3714
3715static void
3716ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3717{
3718	struct ieee80211com *ic = ni->ni_ic;
3719	struct ath_softc *sc = ic->ic_ifp->if_softc;
3720	struct ath_hal *ah = sc->sc_ah;
3721	HAL_CHANNEL hchan;
3722
3723	*rssi = ic->ic_node_getrssi(ni);
3724	if (ni->ni_chan != IEEE80211_CHAN_ANYC) {
3725		ath_mapchan(ic, &hchan, ni->ni_chan);
3726		*noise = ath_hal_getchannoise(ah, &hchan);
3727	} else
3728		*noise = -95;		/* nominally correct */
3729}
3730
3731static int
3732ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3733{
3734	struct ath_hal *ah = sc->sc_ah;
3735	int error;
3736	struct mbuf *m;
3737	struct ath_desc *ds;
3738
3739	m = bf->bf_m;
3740	if (m == NULL) {
3741		/*
3742		 * NB: by assigning a page to the rx dma buffer we
3743		 * implicitly satisfy the Atheros requirement that
3744		 * this buffer be cache-line-aligned and sized to be
3745		 * multiple of the cache line size.  Not doing this
3746		 * causes weird stuff to happen (for the 5210 at least).
3747		 */
3748		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3749		if (m == NULL) {
3750			DPRINTF(sc, ATH_DEBUG_ANY,
3751				"%s: no mbuf/cluster\n", __func__);
3752			sc->sc_stats.ast_rx_nombuf++;
3753			return ENOMEM;
3754		}
3755		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3756
3757		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3758					     bf->bf_dmamap, m,
3759					     bf->bf_segs, &bf->bf_nseg,
3760					     BUS_DMA_NOWAIT);
3761		if (error != 0) {
3762			DPRINTF(sc, ATH_DEBUG_ANY,
3763			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3764			    __func__, error);
3765			sc->sc_stats.ast_rx_busdma++;
3766			m_freem(m);
3767			return error;
3768		}
3769		KASSERT(bf->bf_nseg == 1,
3770			("multi-segment packet; nseg %u", bf->bf_nseg));
3771		bf->bf_m = m;
3772	}
3773	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3774
3775	/*
3776	 * Setup descriptors.  For receive we always terminate
3777	 * the descriptor list with a self-linked entry so we'll
3778	 * not get overrun under high load (as can happen with a
3779	 * 5212 when ANI processing enables PHY error frames).
3780	 *
3781	 * To insure the last descriptor is self-linked we create
3782	 * each descriptor as self-linked and add it to the end.  As
3783	 * each additional descriptor is added the previous self-linked
3784	 * entry is ``fixed'' naturally.  This should be safe even
3785	 * if DMA is happening.  When processing RX interrupts we
3786	 * never remove/process the last, self-linked, entry on the
3787	 * descriptor list.  This insures the hardware always has
3788	 * someplace to write a new frame.
3789	 */
3790	ds = bf->bf_desc;
3791	ds->ds_link = bf->bf_daddr;	/* link to self */
3792	ds->ds_data = bf->bf_segs[0].ds_addr;
3793	ath_hal_setuprxdesc(ah, ds
3794		, m->m_len		/* buffer size */
3795		, 0
3796	);
3797
3798	if (sc->sc_rxlink != NULL)
3799		*sc->sc_rxlink = bf->bf_daddr;
3800	sc->sc_rxlink = &ds->ds_link;
3801	return 0;
3802}
3803
3804/*
3805 * Extend 15-bit time stamp from rx descriptor to
3806 * a full 64-bit TSF using the specified TSF.
3807 */
3808static __inline u_int64_t
3809ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3810{
3811	if ((tsf & 0x7fff) < rstamp)
3812		tsf -= 0x8000;
3813	return ((tsf &~ 0x7fff) | rstamp);
3814}
3815
3816/*
3817 * Intercept management frames to collect beacon rssi data
3818 * and to do ibss merges.
3819 */
3820static void
3821ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3822	int subtype, int rssi, int noise, u_int32_t rstamp)
3823{
3824	struct ieee80211vap *vap = ni->ni_vap;
3825	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3826
3827	/*
3828	 * Call up first so subsequent work can use information
3829	 * potentially stored in the node (e.g. for ibss merge).
3830	 */
3831	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, noise, rstamp);
3832	switch (subtype) {
3833	case IEEE80211_FC0_SUBTYPE_BEACON:
3834		/* update rssi statistics for use by the hal */
3835		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3836		if (sc->sc_syncbeacon &&
3837		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3838			/*
3839			 * Resync beacon timers using the tsf of the beacon
3840			 * frame we just received.
3841			 */
3842			ath_beacon_config(sc, vap);
3843		}
3844		/* fall thru... */
3845	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3846		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3847		    vap->iv_state == IEEE80211_S_RUN) {
3848			u_int64_t tsf = ath_extend_tsf(rstamp,
3849				ath_hal_gettsf64(sc->sc_ah));
3850			/*
3851			 * Handle ibss merge as needed; check the tsf on the
3852			 * frame before attempting the merge.  The 802.11 spec
3853			 * says the station should change it's bssid to match
3854			 * the oldest station with the same ssid, where oldest
3855			 * is determined by the tsf.  Note that hardware
3856			 * reconfiguration happens through callback to
3857			 * ath_newstate as the state machine will go from
3858			 * RUN -> RUN when this happens.
3859			 */
3860			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3861				DPRINTF(sc, ATH_DEBUG_STATE,
3862				    "ibss merge, rstamp %u tsf %ju "
3863				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3864				    (uintmax_t)ni->ni_tstamp.tsf);
3865				(void) ieee80211_ibss_merge(ni);
3866			}
3867		}
3868		break;
3869	}
3870}
3871
3872/*
3873 * Set the default antenna.
3874 */
3875static void
3876ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3877{
3878	struct ath_hal *ah = sc->sc_ah;
3879
3880	/* XXX block beacon interrupts */
3881	ath_hal_setdefantenna(ah, antenna);
3882	if (sc->sc_defant != antenna)
3883		sc->sc_stats.ast_ant_defswitch++;
3884	sc->sc_defant = antenna;
3885	sc->sc_rxotherant = 0;
3886}
3887
3888static int
3889ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3890	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3891{
3892#define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3893#define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3894#define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3895#define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3896	struct ath_softc *sc = ifp->if_softc;
3897	const HAL_RATE_TABLE *rt;
3898	uint8_t rix;
3899
3900	/*
3901	 * Discard anything shorter than an ack or cts.
3902	 */
3903	if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
3904		DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
3905			__func__, m->m_pkthdr.len);
3906		sc->sc_stats.ast_rx_tooshort++;
3907		return 0;
3908	}
3909	rt = sc->sc_currates;
3910	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3911	rix = rt->rateCodeToIndex[rs->rs_rate];
3912	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3913	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3914#ifdef AH_SUPPORT_AR5416
3915	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3916	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3917		if ((rs->rs_flags & HAL_RX_2040) == 0)
3918			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3919		else if (sc->sc_curchan.channelFlags & CHANNEL_HT40PLUS)
3920			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3921		else
3922			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3923		if ((rs->rs_flags & HAL_RX_GI) == 0)
3924			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3925	}
3926#endif
3927	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
3928	if (rs->rs_status & HAL_RXERR_CRC)
3929		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3930	/* XXX propagate other error flags from descriptor */
3931	sc->sc_rx_th.wr_antsignal = rs->rs_rssi + nf;
3932	sc->sc_rx_th.wr_antnoise = nf;
3933	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3934
3935	bpf_mtap2(ifp->if_bpf, &sc->sc_rx_th, sc->sc_rx_th_len, m);
3936
3937	return 1;
3938#undef CHAN_HT
3939#undef CHAN_HT20
3940#undef CHAN_HT40U
3941#undef CHAN_HT40D
3942}
3943
3944static void
3945ath_handle_micerror(struct ieee80211com *ic,
3946	struct ieee80211_frame *wh, int keyix)
3947{
3948	struct ieee80211_node *ni;
3949
3950	/* XXX recheck MIC to deal w/ chips that lie */
3951	/* XXX discard MIC errors on !data frames */
3952	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3953	if (ni != NULL) {
3954		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3955		ieee80211_free_node(ni);
3956	}
3957}
3958
3959static void
3960ath_rx_proc(void *arg, int npending)
3961{
3962#define	PA2DESC(_sc, _pa) \
3963	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3964		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3965	struct ath_softc *sc = arg;
3966	struct ath_buf *bf;
3967	struct ifnet *ifp = sc->sc_ifp;
3968	struct ieee80211com *ic = ifp->if_l2com;
3969	struct ath_hal *ah = sc->sc_ah;
3970	struct ath_desc *ds;
3971	struct ath_rx_status *rs;
3972	struct mbuf *m;
3973	struct ieee80211_node *ni;
3974	int len, type, ngood;
3975	u_int phyerr;
3976	HAL_STATUS status;
3977	int16_t nf;
3978	u_int64_t tsf;
3979
3980	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3981	ngood = 0;
3982	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3983	sc->sc_stats.ast_rx_noise = nf;
3984	tsf = ath_hal_gettsf64(ah);
3985	do {
3986		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3987		if (bf == NULL) {		/* NB: shouldn't happen */
3988			if_printf(ifp, "%s: no buffer!\n", __func__);
3989			break;
3990		}
3991		m = bf->bf_m;
3992		if (m == NULL) {		/* NB: shouldn't happen */
3993			/*
3994			 * If mbuf allocation failed previously there
3995			 * will be no mbuf; try again to re-populate it.
3996			 */
3997			/* XXX make debug msg */
3998			if_printf(ifp, "%s: no mbuf!\n", __func__);
3999			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
4000			goto rx_next;
4001		}
4002		ds = bf->bf_desc;
4003		if (ds->ds_link == bf->bf_daddr) {
4004			/* NB: never process the self-linked entry at the end */
4005			break;
4006		}
4007		/* XXX sync descriptor memory */
4008		/*
4009		 * Must provide the virtual address of the current
4010		 * descriptor, the physical address, and the virtual
4011		 * address of the next descriptor in the h/w chain.
4012		 * This allows the HAL to look ahead to see if the
4013		 * hardware is done with a descriptor by checking the
4014		 * done bit in the following descriptor and the address
4015		 * of the current descriptor the DMA engine is working
4016		 * on.  All this is necessary because of our use of
4017		 * a self-linked list to avoid rx overruns.
4018		 */
4019		rs = &bf->bf_status.ds_rxstat;
4020		status = ath_hal_rxprocdesc(ah, ds,
4021				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4022#ifdef ATH_DEBUG
4023		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
4024			ath_printrxbuf(sc, bf, 0, status == HAL_OK);
4025#endif
4026		if (status == HAL_EINPROGRESS)
4027			break;
4028		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
4029		if (rs->rs_status != 0) {
4030			if (rs->rs_status & HAL_RXERR_CRC)
4031				sc->sc_stats.ast_rx_crcerr++;
4032			if (rs->rs_status & HAL_RXERR_FIFO)
4033				sc->sc_stats.ast_rx_fifoerr++;
4034			if (rs->rs_status & HAL_RXERR_PHY) {
4035				sc->sc_stats.ast_rx_phyerr++;
4036				phyerr = rs->rs_phyerr & 0x1f;
4037				sc->sc_stats.ast_rx_phy[phyerr]++;
4038				goto rx_error;	/* NB: don't count in ierrors */
4039			}
4040			if (rs->rs_status & HAL_RXERR_DECRYPT) {
4041				/*
4042				 * Decrypt error.  If the error occurred
4043				 * because there was no hardware key, then
4044				 * let the frame through so the upper layers
4045				 * can process it.  This is necessary for 5210
4046				 * parts which have no way to setup a ``clear''
4047				 * key cache entry.
4048				 *
4049				 * XXX do key cache faulting
4050				 */
4051				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
4052					goto rx_accept;
4053				sc->sc_stats.ast_rx_badcrypt++;
4054			}
4055			if (rs->rs_status & HAL_RXERR_MIC) {
4056				sc->sc_stats.ast_rx_badmic++;
4057				/*
4058				 * Do minimal work required to hand off
4059				 * the 802.11 header for notifcation.
4060				 */
4061				/* XXX frag's and qos frames */
4062				len = rs->rs_datalen;
4063				if (len >= sizeof (struct ieee80211_frame)) {
4064					bus_dmamap_sync(sc->sc_dmat,
4065					    bf->bf_dmamap,
4066					    BUS_DMASYNC_POSTREAD);
4067					ath_handle_micerror(ic,
4068					    mtod(m, struct ieee80211_frame *),
4069					    sc->sc_splitmic ?
4070						rs->rs_keyix-32 : rs->rs_keyix);
4071				}
4072			}
4073			ifp->if_ierrors++;
4074rx_error:
4075			/*
4076			 * Cleanup any pending partial frame.
4077			 */
4078			if (sc->sc_rxpending != NULL) {
4079				m_freem(sc->sc_rxpending);
4080				sc->sc_rxpending = NULL;
4081			}
4082			/*
4083			 * When a tap is present pass error frames
4084			 * that have been requested.  By default we
4085			 * pass decrypt+mic errors but others may be
4086			 * interesting (e.g. crc).
4087			 */
4088			if (bpf_peers_present(ifp->if_bpf) &&
4089			    (rs->rs_status & sc->sc_monpass)) {
4090				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4091				    BUS_DMASYNC_POSTREAD);
4092				/* NB: bpf needs the mbuf length setup */
4093				len = rs->rs_datalen;
4094				m->m_pkthdr.len = m->m_len = len;
4095				(void) ath_rx_tap(ifp, m, rs, tsf, nf);
4096			}
4097			/* XXX pass MIC errors up for s/w reclaculation */
4098			goto rx_next;
4099		}
4100rx_accept:
4101		/*
4102		 * Sync and unmap the frame.  At this point we're
4103		 * committed to passing the mbuf somewhere so clear
4104		 * bf_m; this means a new mbuf must be allocated
4105		 * when the rx descriptor is setup again to receive
4106		 * another frame.
4107		 */
4108		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4109		    BUS_DMASYNC_POSTREAD);
4110		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4111		bf->bf_m = NULL;
4112
4113		len = rs->rs_datalen;
4114		m->m_len = len;
4115
4116		if (rs->rs_more) {
4117			/*
4118			 * Frame spans multiple descriptors; save
4119			 * it for the next completed descriptor, it
4120			 * will be used to construct a jumbogram.
4121			 */
4122			if (sc->sc_rxpending != NULL) {
4123				/* NB: max frame size is currently 2 clusters */
4124				sc->sc_stats.ast_rx_toobig++;
4125				m_freem(sc->sc_rxpending);
4126			}
4127			m->m_pkthdr.rcvif = ifp;
4128			m->m_pkthdr.len = len;
4129			sc->sc_rxpending = m;
4130			goto rx_next;
4131		} else if (sc->sc_rxpending != NULL) {
4132			/*
4133			 * This is the second part of a jumbogram,
4134			 * chain it to the first mbuf, adjust the
4135			 * frame length, and clear the rxpending state.
4136			 */
4137			sc->sc_rxpending->m_next = m;
4138			sc->sc_rxpending->m_pkthdr.len += len;
4139			m = sc->sc_rxpending;
4140			sc->sc_rxpending = NULL;
4141		} else {
4142			/*
4143			 * Normal single-descriptor receive; setup
4144			 * the rcvif and packet length.
4145			 */
4146			m->m_pkthdr.rcvif = ifp;
4147			m->m_pkthdr.len = len;
4148		}
4149
4150		ifp->if_ipackets++;
4151		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
4152
4153		if (bpf_peers_present(ifp->if_bpf) &&
4154		    !ath_rx_tap(ifp, m, rs, tsf, nf)) {
4155			m_freem(m);		/* XXX reclaim */
4156			goto rx_next;
4157		}
4158
4159		/*
4160		 * From this point on we assume the frame is at least
4161		 * as large as ieee80211_frame_min; verify that.
4162		 */
4163		if (len < IEEE80211_MIN_LEN) {
4164			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
4165				__func__, len);
4166			sc->sc_stats.ast_rx_tooshort++;
4167			m_freem(m);
4168			goto rx_next;
4169		}
4170
4171		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
4172			const HAL_RATE_TABLE *rt = sc->sc_currates;
4173			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
4174
4175			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
4176			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
4177		}
4178
4179		m_adj(m, -IEEE80211_CRC_LEN);
4180
4181		/*
4182		 * Locate the node for sender, track state, and then
4183		 * pass the (referenced) node up to the 802.11 layer
4184		 * for its use.
4185		 */
4186		ni = ieee80211_find_rxnode_withkey(ic,
4187			mtod(m, const struct ieee80211_frame_min *),
4188			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
4189				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4190		if (ni != NULL) {
4191			/*
4192			 * Sending station is known, dispatch directly.
4193			 */
4194			type = ieee80211_input(ni, m,
4195			    rs->rs_rssi, nf, rs->rs_tstamp);
4196			ieee80211_free_node(ni);
4197			/*
4198			 * Arrange to update the last rx timestamp only for
4199			 * frames from our ap when operating in station mode.
4200			 * This assumes the rx key is always setup when
4201			 * associated.
4202			 */
4203			if (ic->ic_opmode == IEEE80211_M_STA &&
4204			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4205				ngood++;
4206		} else {
4207			type = ieee80211_input_all(ic, m,
4208			    rs->rs_rssi, nf, rs->rs_tstamp);
4209		}
4210		/*
4211		 * Track rx rssi and do any rx antenna management.
4212		 */
4213		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4214		if (sc->sc_diversity) {
4215			/*
4216			 * When using fast diversity, change the default rx
4217			 * antenna if diversity chooses the other antenna 3
4218			 * times in a row.
4219			 */
4220			if (sc->sc_defant != rs->rs_antenna) {
4221				if (++sc->sc_rxotherant >= 3)
4222					ath_setdefantenna(sc, rs->rs_antenna);
4223			} else
4224				sc->sc_rxotherant = 0;
4225		}
4226		if (sc->sc_softled) {
4227			/*
4228			 * Blink for any data frame.  Otherwise do a
4229			 * heartbeat-style blink when idle.  The latter
4230			 * is mainly for station mode where we depend on
4231			 * periodic beacon frames to trigger the poll event.
4232			 */
4233			if (type == IEEE80211_FC0_TYPE_DATA) {
4234				const HAL_RATE_TABLE *rt = sc->sc_currates;
4235				ath_led_event(sc,
4236				    rt->rateCodeToIndex[rs->rs_rate]);
4237			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4238				ath_led_event(sc, 0);
4239		}
4240rx_next:
4241		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4242	} while (ath_rxbuf_init(sc, bf) == 0);
4243
4244	/* rx signal state monitoring */
4245	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
4246	if (ngood)
4247		sc->sc_lastrx = tsf;
4248
4249	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
4250	    !IFQ_IS_EMPTY(&ifp->if_snd))
4251		ath_start(ifp);
4252
4253#undef PA2DESC
4254}
4255
4256static void
4257ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4258{
4259	txq->axq_qnum = qnum;
4260	txq->axq_depth = 0;
4261	txq->axq_intrcnt = 0;
4262	txq->axq_link = NULL;
4263	STAILQ_INIT(&txq->axq_q);
4264	ATH_TXQ_LOCK_INIT(sc, txq);
4265	TAILQ_INIT(&txq->axq_stageq);
4266	txq->axq_curage = 0;
4267}
4268
4269/*
4270 * Setup a h/w transmit queue.
4271 */
4272static struct ath_txq *
4273ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4274{
4275#define	N(a)	(sizeof(a)/sizeof(a[0]))
4276	struct ath_hal *ah = sc->sc_ah;
4277	HAL_TXQ_INFO qi;
4278	int qnum;
4279
4280	memset(&qi, 0, sizeof(qi));
4281	qi.tqi_subtype = subtype;
4282	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4283	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4284	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4285	/*
4286	 * Enable interrupts only for EOL and DESC conditions.
4287	 * We mark tx descriptors to receive a DESC interrupt
4288	 * when a tx queue gets deep; otherwise waiting for the
4289	 * EOL to reap descriptors.  Note that this is done to
4290	 * reduce interrupt load and this only defers reaping
4291	 * descriptors, never transmitting frames.  Aside from
4292	 * reducing interrupts this also permits more concurrency.
4293	 * The only potential downside is if the tx queue backs
4294	 * up in which case the top half of the kernel may backup
4295	 * due to a lack of tx descriptors.
4296	 */
4297	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4298	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4299	if (qnum == -1) {
4300		/*
4301		 * NB: don't print a message, this happens
4302		 * normally on parts with too few tx queues
4303		 */
4304		return NULL;
4305	}
4306	if (qnum >= N(sc->sc_txq)) {
4307		device_printf(sc->sc_dev,
4308			"hal qnum %u out of range, max %zu!\n",
4309			qnum, N(sc->sc_txq));
4310		ath_hal_releasetxqueue(ah, qnum);
4311		return NULL;
4312	}
4313	if (!ATH_TXQ_SETUP(sc, qnum)) {
4314		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4315		sc->sc_txqsetup |= 1<<qnum;
4316	}
4317	return &sc->sc_txq[qnum];
4318#undef N
4319}
4320
4321/*
4322 * Setup a hardware data transmit queue for the specified
4323 * access control.  The hal may not support all requested
4324 * queues in which case it will return a reference to a
4325 * previously setup queue.  We record the mapping from ac's
4326 * to h/w queues for use by ath_tx_start and also track
4327 * the set of h/w queues being used to optimize work in the
4328 * transmit interrupt handler and related routines.
4329 */
4330static int
4331ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4332{
4333#define	N(a)	(sizeof(a)/sizeof(a[0]))
4334	struct ath_txq *txq;
4335
4336	if (ac >= N(sc->sc_ac2q)) {
4337		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4338			ac, N(sc->sc_ac2q));
4339		return 0;
4340	}
4341	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4342	if (txq != NULL) {
4343		sc->sc_ac2q[ac] = txq;
4344		return 1;
4345	} else
4346		return 0;
4347#undef N
4348}
4349
4350/*
4351 * Update WME parameters for a transmit queue.
4352 */
4353static int
4354ath_txq_update(struct ath_softc *sc, int ac)
4355{
4356#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4357#define	ATH_TXOP_TO_US(v)		(v<<5)
4358	struct ifnet *ifp = sc->sc_ifp;
4359	struct ieee80211com *ic = ifp->if_l2com;
4360	struct ath_txq *txq = sc->sc_ac2q[ac];
4361	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4362	struct ath_hal *ah = sc->sc_ah;
4363	HAL_TXQ_INFO qi;
4364
4365	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4366	qi.tqi_aifs = wmep->wmep_aifsn;
4367	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4368	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4369	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4370
4371	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4372		if_printf(ifp, "unable to update hardware queue "
4373			"parameters for %s traffic!\n",
4374			ieee80211_wme_acnames[ac]);
4375		return 0;
4376	} else {
4377		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4378		return 1;
4379	}
4380#undef ATH_TXOP_TO_US
4381#undef ATH_EXPONENT_TO_VALUE
4382}
4383
4384/*
4385 * Callback from the 802.11 layer to update WME parameters.
4386 */
4387static int
4388ath_wme_update(struct ieee80211com *ic)
4389{
4390	struct ath_softc *sc = ic->ic_ifp->if_softc;
4391
4392	return !ath_txq_update(sc, WME_AC_BE) ||
4393	    !ath_txq_update(sc, WME_AC_BK) ||
4394	    !ath_txq_update(sc, WME_AC_VI) ||
4395	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4396}
4397
4398/*
4399 * Reclaim resources for a setup queue.
4400 */
4401static void
4402ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4403{
4404
4405	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4406	ATH_TXQ_LOCK_DESTROY(txq);
4407	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4408}
4409
4410/*
4411 * Reclaim all tx queue resources.
4412 */
4413static void
4414ath_tx_cleanup(struct ath_softc *sc)
4415{
4416	int i;
4417
4418	ATH_TXBUF_LOCK_DESTROY(sc);
4419	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4420		if (ATH_TXQ_SETUP(sc, i))
4421			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4422}
4423
4424/*
4425 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
4426 */
4427static int
4428ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
4429{
4430	int i;
4431
4432	for (i = 0; i < rt->rateCount; i++)
4433		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
4434			return i;
4435	return 0;		/* NB: lowest rate */
4436}
4437
4438/*
4439 * Reclaim mbuf resources.  For fragmented frames we
4440 * need to claim each frag chained with m_nextpkt.
4441 */
4442static void
4443ath_freetx(struct mbuf *m)
4444{
4445	struct mbuf *next;
4446
4447	do {
4448		next = m->m_nextpkt;
4449		m->m_nextpkt = NULL;
4450		m_freem(m);
4451	} while ((m = next) != NULL);
4452}
4453
4454static int
4455ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
4456{
4457	struct mbuf *m;
4458	int error;
4459
4460	/*
4461	 * Load the DMA map so any coalescing is done.  This
4462	 * also calculates the number of descriptors we need.
4463	 */
4464	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4465				     bf->bf_segs, &bf->bf_nseg,
4466				     BUS_DMA_NOWAIT);
4467	if (error == EFBIG) {
4468		/* XXX packet requires too many descriptors */
4469		bf->bf_nseg = ATH_TXDESC+1;
4470	} else if (error != 0) {
4471		sc->sc_stats.ast_tx_busdma++;
4472		ath_freetx(m0);
4473		return error;
4474	}
4475	/*
4476	 * Discard null packets and check for packets that
4477	 * require too many TX descriptors.  We try to convert
4478	 * the latter to a cluster.
4479	 */
4480	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
4481		sc->sc_stats.ast_tx_linear++;
4482		m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
4483		if (m == NULL) {
4484			ath_freetx(m0);
4485			sc->sc_stats.ast_tx_nombuf++;
4486			return ENOMEM;
4487		}
4488		m0 = m;
4489		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4490					     bf->bf_segs, &bf->bf_nseg,
4491					     BUS_DMA_NOWAIT);
4492		if (error != 0) {
4493			sc->sc_stats.ast_tx_busdma++;
4494			ath_freetx(m0);
4495			return error;
4496		}
4497		KASSERT(bf->bf_nseg <= ATH_TXDESC,
4498		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
4499	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
4500		sc->sc_stats.ast_tx_nodata++;
4501		ath_freetx(m0);
4502		return EIO;
4503	}
4504	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
4505		__func__, m0, m0->m_pkthdr.len);
4506	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
4507	bf->bf_m = m0;
4508
4509	return 0;
4510}
4511
4512static void
4513ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
4514{
4515	struct ath_hal *ah = sc->sc_ah;
4516	struct ath_desc *ds, *ds0;
4517	int i;
4518
4519	/*
4520	 * Fillin the remainder of the descriptor info.
4521	 */
4522	ds0 = ds = bf->bf_desc;
4523	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4524		ds->ds_data = bf->bf_segs[i].ds_addr;
4525		if (i == bf->bf_nseg - 1)
4526			ds->ds_link = 0;
4527		else
4528			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4529		ath_hal_filltxdesc(ah, ds
4530			, bf->bf_segs[i].ds_len	/* segment length */
4531			, i == 0		/* first segment */
4532			, i == bf->bf_nseg - 1	/* last segment */
4533			, ds0			/* first descriptor */
4534		);
4535		DPRINTF(sc, ATH_DEBUG_XMIT,
4536			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4537			__func__, i, ds->ds_link, ds->ds_data,
4538			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4539	}
4540	/*
4541	 * Insert the frame on the outbound list and pass it on
4542	 * to the hardware.  Multicast frames buffered for power
4543	 * save stations and transmit from the CAB queue are stored
4544	 * on a s/w only queue and loaded on to the CAB queue in
4545	 * the SWBA handler since frames only go out on DTIM and
4546	 * to avoid possible races.
4547	 */
4548	ATH_TXQ_LOCK(txq);
4549	if (txq->axq_qnum != ATH_TXQ_SWQ) {
4550		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4551		if (txq->axq_link == NULL) {
4552			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4553			DPRINTF(sc, ATH_DEBUG_XMIT,
4554			    "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
4555			    txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
4556			    txq->axq_depth);
4557		} else {
4558			*txq->axq_link = bf->bf_daddr;
4559			DPRINTF(sc, ATH_DEBUG_XMIT,
4560			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4561			    txq->axq_qnum, txq->axq_link,
4562			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4563		}
4564		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4565		ath_hal_txstart(ah, txq->axq_qnum);
4566	} else {
4567		if (txq->axq_link != NULL) {
4568			struct ath_buf *last = ATH_TXQ_LAST(txq);
4569			struct ieee80211_frame *wh;
4570
4571			/* mark previous frame */
4572			wh = mtod(last->bf_m, struct ieee80211_frame *);
4573			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
4574			bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
4575			    BUS_DMASYNC_PREWRITE);
4576
4577			/* link descriptor */
4578			*txq->axq_link = bf->bf_daddr;
4579		}
4580		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4581		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4582	}
4583	ATH_TXQ_UNLOCK(txq);
4584}
4585
4586static int
4587ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
4588    struct mbuf *m0)
4589{
4590	struct ieee80211vap *vap = ni->ni_vap;
4591	struct ath_vap *avp = ATH_VAP(vap);
4592	struct ath_hal *ah = sc->sc_ah;
4593	struct ifnet *ifp = sc->sc_ifp;
4594	struct ieee80211com *ic = ifp->if_l2com;
4595	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
4596	int error, iswep, ismcast, isfrag, ismrr;
4597	int keyix, hdrlen, pktlen, try0;
4598	u_int8_t rix, txrate, ctsrate;
4599	u_int8_t cix = 0xff;		/* NB: silence compiler */
4600	struct ath_desc *ds;
4601	struct ath_txq *txq;
4602	struct ieee80211_frame *wh;
4603	u_int subtype, flags, ctsduration;
4604	HAL_PKT_TYPE atype;
4605	const HAL_RATE_TABLE *rt;
4606	HAL_BOOL shortPreamble;
4607	struct ath_node *an;
4608	u_int pri;
4609
4610	wh = mtod(m0, struct ieee80211_frame *);
4611	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
4612	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
4613	isfrag = m0->m_flags & M_FRAG;
4614	hdrlen = ieee80211_anyhdrsize(wh);
4615	/*
4616	 * Packet length must not include any
4617	 * pad bytes; deduct them here.
4618	 */
4619	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
4620
4621	if (iswep) {
4622		const struct ieee80211_cipher *cip;
4623		struct ieee80211_key *k;
4624
4625		/*
4626		 * Construct the 802.11 header+trailer for an encrypted
4627		 * frame. The only reason this can fail is because of an
4628		 * unknown or unsupported cipher/key type.
4629		 */
4630		k = ieee80211_crypto_encap(ni, m0);
4631		if (k == NULL) {
4632			/*
4633			 * This can happen when the key is yanked after the
4634			 * frame was queued.  Just discard the frame; the
4635			 * 802.11 layer counts failures and provides
4636			 * debugging/diagnostics.
4637			 */
4638			ath_freetx(m0);
4639			return EIO;
4640		}
4641		/*
4642		 * Adjust the packet + header lengths for the crypto
4643		 * additions and calculate the h/w key index.  When
4644		 * a s/w mic is done the frame will have had any mic
4645		 * added to it prior to entry so m0->m_pkthdr.len will
4646		 * account for it. Otherwise we need to add it to the
4647		 * packet length.
4648		 */
4649		cip = k->wk_cipher;
4650		hdrlen += cip->ic_header;
4651		pktlen += cip->ic_header + cip->ic_trailer;
4652		/* NB: frags always have any TKIP MIC done in s/w */
4653		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
4654			pktlen += cip->ic_miclen;
4655		keyix = k->wk_keyix;
4656
4657		/* packet header may have moved, reset our local pointer */
4658		wh = mtod(m0, struct ieee80211_frame *);
4659	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
4660		/*
4661		 * Use station key cache slot, if assigned.
4662		 */
4663		keyix = ni->ni_ucastkey.wk_keyix;
4664		if (keyix == IEEE80211_KEYIX_NONE)
4665			keyix = HAL_TXKEYIX_INVALID;
4666	} else
4667		keyix = HAL_TXKEYIX_INVALID;
4668
4669	pktlen += IEEE80211_CRC_LEN;
4670
4671	/*
4672	 * Load the DMA map so any coalescing is done.  This
4673	 * also calculates the number of descriptors we need.
4674	 */
4675	error = ath_tx_dmasetup(sc, bf, m0);
4676	if (error != 0)
4677		return error;
4678	bf->bf_node = ni;			/* NB: held reference */
4679	m0 = bf->bf_m;				/* NB: may have changed */
4680	wh = mtod(m0, struct ieee80211_frame *);
4681
4682	/* setup descriptors */
4683	ds = bf->bf_desc;
4684	rt = sc->sc_currates;
4685	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4686
4687	/*
4688	 * NB: the 802.11 layer marks whether or not we should
4689	 * use short preamble based on the current mode and
4690	 * negotiated parameters.
4691	 */
4692	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
4693	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
4694		shortPreamble = AH_TRUE;
4695		sc->sc_stats.ast_tx_shortpre++;
4696	} else {
4697		shortPreamble = AH_FALSE;
4698	}
4699
4700	an = ATH_NODE(ni);
4701	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
4702	ismrr = 0;				/* default no multi-rate retry*/
4703	pri = M_WME_GETAC(m0);			/* honor classification */
4704	/* XXX use txparams instead of fixed values */
4705	/*
4706	 * Calculate Atheros packet type from IEEE80211 packet header,
4707	 * setup for rate calculations, and select h/w transmit queue.
4708	 */
4709	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
4710	case IEEE80211_FC0_TYPE_MGT:
4711		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4712		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
4713			atype = HAL_PKT_TYPE_BEACON;
4714		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4715			atype = HAL_PKT_TYPE_PROBE_RESP;
4716		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
4717			atype = HAL_PKT_TYPE_ATIM;
4718		else
4719			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
4720		rix = an->an_mgmtrix;
4721		txrate = rt->info[rix].rateCode;
4722		if (shortPreamble)
4723			txrate |= rt->info[rix].shortPreamble;
4724		try0 = ATH_TXMGTTRY;
4725		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4726		break;
4727	case IEEE80211_FC0_TYPE_CTL:
4728		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
4729		rix = an->an_mgmtrix;
4730		txrate = rt->info[rix].rateCode;
4731		if (shortPreamble)
4732			txrate |= rt->info[rix].shortPreamble;
4733		try0 = ATH_TXMGTTRY;
4734		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4735		break;
4736	case IEEE80211_FC0_TYPE_DATA:
4737		atype = HAL_PKT_TYPE_NORMAL;		/* default */
4738		/*
4739		 * Data frames: multicast frames go out at a fixed rate,
4740		 * EAPOL frames use the mgmt frame rate; otherwise consult
4741		 * the rate control module for the rate to use.
4742		 */
4743		if (ismcast) {
4744			rix = an->an_mcastrix;
4745			txrate = rt->info[rix].rateCode;
4746			if (shortPreamble)
4747				txrate |= rt->info[rix].shortPreamble;
4748			try0 = 1;
4749		} else if (m0->m_flags & M_EAPOL) {
4750			/* XXX? maybe always use long preamble? */
4751			rix = an->an_mgmtrix;
4752			txrate = rt->info[rix].rateCode;
4753			if (shortPreamble)
4754				txrate |= rt->info[rix].shortPreamble;
4755			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
4756		} else {
4757			ath_rate_findrate(sc, an, shortPreamble, pktlen,
4758				&rix, &try0, &txrate);
4759			sc->sc_txrix = rix;		/* for LED blinking */
4760			sc->sc_lastdatarix = rix;	/* for fast frames */
4761			if (try0 != ATH_TXMAXTRY)
4762				ismrr = 1;
4763		}
4764		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
4765			flags |= HAL_TXDESC_NOACK;
4766		break;
4767	default:
4768		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
4769			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
4770		/* XXX statistic */
4771		ath_freetx(m0);
4772		return EIO;
4773	}
4774	txq = sc->sc_ac2q[pri];
4775
4776	/*
4777	 * When servicing one or more stations in power-save mode
4778	 * (or) if there is some mcast data waiting on the mcast
4779	 * queue (to prevent out of order delivery) multicast
4780	 * frames must be buffered until after the beacon.
4781	 */
4782	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
4783		txq = &avp->av_mcastq;
4784
4785	/*
4786	 * Calculate miscellaneous flags.
4787	 */
4788	if (ismcast) {
4789		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
4790	} else if (pktlen > vap->iv_rtsthreshold &&
4791	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
4792		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
4793		cix = rt->info[rix].controlRate;
4794		sc->sc_stats.ast_tx_rts++;
4795	}
4796	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
4797		sc->sc_stats.ast_tx_noack++;
4798
4799	/*
4800	 * If 802.11g protection is enabled, determine whether
4801	 * to use RTS/CTS or just CTS.  Note that this is only
4802	 * done for OFDM unicast frames.
4803	 */
4804	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
4805	    rt->info[rix].phy == IEEE80211_T_OFDM &&
4806	    (flags & HAL_TXDESC_NOACK) == 0) {
4807		/* XXX fragments must use CCK rates w/ protection */
4808		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4809			flags |= HAL_TXDESC_RTSENA;
4810		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4811			flags |= HAL_TXDESC_CTSENA;
4812		if (isfrag) {
4813			/*
4814			 * For frags it would be desirable to use the
4815			 * highest CCK rate for RTS/CTS.  But stations
4816			 * farther away may detect it at a lower CCK rate
4817			 * so use the configured protection rate instead
4818			 * (for now).
4819			 */
4820			cix = rt->info[sc->sc_protrix].controlRate;
4821		} else
4822			cix = rt->info[sc->sc_protrix].controlRate;
4823		sc->sc_stats.ast_tx_protect++;
4824	}
4825
4826	/*
4827	 * Calculate duration.  This logically belongs in the 802.11
4828	 * layer but it lacks sufficient information to calculate it.
4829	 */
4830	if ((flags & HAL_TXDESC_NOACK) == 0 &&
4831	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
4832		u_int16_t dur;
4833		if (shortPreamble)
4834			dur = rt->info[rix].spAckDuration;
4835		else
4836			dur = rt->info[rix].lpAckDuration;
4837		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
4838			dur += dur;		/* additional SIFS+ACK */
4839			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
4840			/*
4841			 * Include the size of next fragment so NAV is
4842			 * updated properly.  The last fragment uses only
4843			 * the ACK duration
4844			 */
4845			dur += ath_hal_computetxtime(ah, rt,
4846					m0->m_nextpkt->m_pkthdr.len,
4847					rix, shortPreamble);
4848		}
4849		if (isfrag) {
4850			/*
4851			 * Force hardware to use computed duration for next
4852			 * fragment by disabling multi-rate retry which updates
4853			 * duration based on the multi-rate duration table.
4854			 */
4855			ismrr = 0;
4856			try0 = ATH_TXMGTTRY;	/* XXX? */
4857		}
4858		*(u_int16_t *)wh->i_dur = htole16(dur);
4859	}
4860
4861	/*
4862	 * Calculate RTS/CTS rate and duration if needed.
4863	 */
4864	ctsduration = 0;
4865	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
4866		/*
4867		 * CTS transmit rate is derived from the transmit rate
4868		 * by looking in the h/w rate table.  We must also factor
4869		 * in whether or not a short preamble is to be used.
4870		 */
4871		/* NB: cix is set above where RTS/CTS is enabled */
4872		KASSERT(cix != 0xff, ("cix not setup"));
4873		ctsrate = rt->info[cix].rateCode;
4874		/*
4875		 * Compute the transmit duration based on the frame
4876		 * size and the size of an ACK frame.  We call into the
4877		 * HAL to do the computation since it depends on the
4878		 * characteristics of the actual PHY being used.
4879		 *
4880		 * NB: CTS is assumed the same size as an ACK so we can
4881		 *     use the precalculated ACK durations.
4882		 */
4883		if (shortPreamble) {
4884			ctsrate |= rt->info[cix].shortPreamble;
4885			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4886				ctsduration += rt->info[cix].spAckDuration;
4887			ctsduration += ath_hal_computetxtime(ah,
4888				rt, pktlen, rix, AH_TRUE);
4889			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4890				ctsduration += rt->info[rix].spAckDuration;
4891		} else {
4892			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4893				ctsduration += rt->info[cix].lpAckDuration;
4894			ctsduration += ath_hal_computetxtime(ah,
4895				rt, pktlen, rix, AH_FALSE);
4896			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4897				ctsduration += rt->info[rix].lpAckDuration;
4898		}
4899		/*
4900		 * Must disable multi-rate retry when using RTS/CTS.
4901		 */
4902		ismrr = 0;
4903		try0 = ATH_TXMGTTRY;		/* XXX */
4904	} else
4905		ctsrate = 0;
4906
4907	/*
4908	 * At this point we are committed to sending the frame
4909	 * and we don't need to look at m_nextpkt; clear it in
4910	 * case this frame is part of frag chain.
4911	 */
4912	m0->m_nextpkt = NULL;
4913
4914	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
4915		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
4916			sc->sc_hwmap[rix].ieeerate, -1);
4917
4918	if (bpf_peers_present(ifp->if_bpf)) {
4919		u_int64_t tsf = ath_hal_gettsf64(ah);
4920
4921		sc->sc_tx_th.wt_tsf = htole64(tsf);
4922		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
4923		if (iswep)
4924			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4925		if (isfrag)
4926			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
4927		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
4928		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
4929		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
4930
4931		bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
4932	}
4933
4934	/*
4935	 * Determine if a tx interrupt should be generated for
4936	 * this descriptor.  We take a tx interrupt to reap
4937	 * descriptors when the h/w hits an EOL condition or
4938	 * when the descriptor is specifically marked to generate
4939	 * an interrupt.  We periodically mark descriptors in this
4940	 * way to insure timely replenishing of the supply needed
4941	 * for sending frames.  Defering interrupts reduces system
4942	 * load and potentially allows more concurrent work to be
4943	 * done but if done to aggressively can cause senders to
4944	 * backup.
4945	 *
4946	 * NB: use >= to deal with sc_txintrperiod changing
4947	 *     dynamically through sysctl.
4948	 */
4949	if (flags & HAL_TXDESC_INTREQ) {
4950		txq->axq_intrcnt = 0;
4951	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4952		flags |= HAL_TXDESC_INTREQ;
4953		txq->axq_intrcnt = 0;
4954	}
4955
4956	/*
4957	 * Formulate first tx descriptor with tx controls.
4958	 */
4959	/* XXX check return value? */
4960	ath_hal_setuptxdesc(ah, ds
4961		, pktlen		/* packet length */
4962		, hdrlen		/* header length */
4963		, atype			/* Atheros packet type */
4964		, ni->ni_txpower	/* txpower */
4965		, txrate, try0		/* series 0 rate/tries */
4966		, keyix			/* key cache index */
4967		, sc->sc_txantenna	/* antenna mode */
4968		, flags			/* flags */
4969		, ctsrate		/* rts/cts rate */
4970		, ctsduration		/* rts/cts duration */
4971	);
4972	bf->bf_txflags = flags;
4973	/*
4974	 * Setup the multi-rate retry state only when we're
4975	 * going to use it.  This assumes ath_hal_setuptxdesc
4976	 * initializes the descriptors (so we don't have to)
4977	 * when the hardware supports multi-rate retry and
4978	 * we don't use it.
4979	 */
4980	if (ismrr)
4981		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4982
4983	ath_tx_handoff(sc, txq, bf);
4984	return 0;
4985}
4986
4987/*
4988 * Process completed xmit descriptors from the specified queue.
4989 */
4990static int
4991ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4992{
4993	struct ath_hal *ah = sc->sc_ah;
4994	struct ifnet *ifp = sc->sc_ifp;
4995	struct ieee80211com *ic = ifp->if_l2com;
4996	struct ath_buf *bf;
4997	struct ath_desc *ds, *ds0;
4998	struct ath_tx_status *ts;
4999	struct ieee80211_node *ni;
5000	struct ath_node *an;
5001	int sr, lr, pri, nacked;
5002	HAL_STATUS status;
5003
5004	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
5005		__func__, txq->axq_qnum,
5006		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
5007		txq->axq_link);
5008	nacked = 0;
5009	for (;;) {
5010		ATH_TXQ_LOCK(txq);
5011		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
5012		bf = STAILQ_FIRST(&txq->axq_q);
5013		if (bf == NULL) {
5014			ATH_TXQ_UNLOCK(txq);
5015			break;
5016		}
5017		ds0 = &bf->bf_desc[0];
5018		ds = &bf->bf_desc[bf->bf_nseg - 1];
5019		ts = &bf->bf_status.ds_txstat;
5020		status = ath_hal_txprocdesc(ah, ds, ts);
5021#ifdef ATH_DEBUG
5022		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
5023			ath_printtxbuf(sc, bf, txq->axq_qnum, 0,
5024			    status == HAL_OK);
5025#endif
5026		if (status == HAL_EINPROGRESS) {
5027			ATH_TXQ_UNLOCK(txq);
5028			break;
5029		}
5030		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5031		if (txq->axq_depth == 0)
5032			txq->axq_link = NULL;
5033		ATH_TXQ_UNLOCK(txq);
5034
5035		ni = bf->bf_node;
5036		if (ni != NULL) {
5037			an = ATH_NODE(ni);
5038			if (ts->ts_status == 0) {
5039				u_int8_t txant = ts->ts_antenna;
5040				sc->sc_stats.ast_ant_tx[txant]++;
5041				sc->sc_ant_tx[txant]++;
5042				if (ts->ts_rate & HAL_TXSTAT_ALTRATE)
5043					sc->sc_stats.ast_tx_altrate++;
5044				pri = M_WME_GETAC(bf->bf_m);
5045				if (pri >= WME_AC_VO)
5046					ic->ic_wme.wme_hipri_traffic++;
5047				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
5048					ni->ni_inact = ni->ni_inact_reload;
5049			} else {
5050				if (ts->ts_status & HAL_TXERR_XRETRY)
5051					sc->sc_stats.ast_tx_xretries++;
5052				if (ts->ts_status & HAL_TXERR_FIFO)
5053					sc->sc_stats.ast_tx_fifoerr++;
5054				if (ts->ts_status & HAL_TXERR_FILT)
5055					sc->sc_stats.ast_tx_filtered++;
5056				if (bf->bf_m->m_flags & M_FF)
5057					sc->sc_stats.ast_ff_txerr++;
5058			}
5059			sr = ts->ts_shortretry;
5060			lr = ts->ts_longretry;
5061			sc->sc_stats.ast_tx_shortretry += sr;
5062			sc->sc_stats.ast_tx_longretry += lr;
5063			/*
5064			 * Hand the descriptor to the rate control algorithm.
5065			 */
5066			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
5067			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
5068				/*
5069				 * If frame was ack'd update statistics,
5070				 * including the last rx time used to
5071				 * workaround phantom bmiss interrupts.
5072				 */
5073				if (ts->ts_status == 0) {
5074					nacked++;
5075					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
5076					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
5077						ts->ts_rssi);
5078				}
5079				ath_rate_tx_complete(sc, an, bf);
5080			}
5081			/*
5082			 * Do any tx complete callback.  Note this must
5083			 * be done before releasing the node reference.
5084			 */
5085			if (bf->bf_m->m_flags & M_TXCB)
5086				ieee80211_process_callback(ni, bf->bf_m,
5087				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
5088				        ts->ts_status : HAL_TXERR_XRETRY);
5089			/*
5090			 * Reclaim reference to node.
5091			 *
5092			 * NB: the node may be reclaimed here if, for example
5093			 *     this is a DEAUTH message that was sent and the
5094			 *     node was timed out due to inactivity.
5095			 */
5096			ieee80211_free_node(ni);
5097		}
5098		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5099		    BUS_DMASYNC_POSTWRITE);
5100		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5101
5102		m_freem(bf->bf_m);
5103		bf->bf_m = NULL;
5104		bf->bf_node = NULL;
5105
5106		ATH_TXBUF_LOCK(sc);
5107		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5108		ATH_TXBUF_UNLOCK(sc);
5109	}
5110	/*
5111	 * Flush fast-frame staging queue when traffic slows.
5112	 */
5113	if (txq->axq_depth <= 1)
5114		ath_ff_stageq_flush(sc, txq, ath_ff_always);
5115	return nacked;
5116}
5117
5118static __inline int
5119txqactive(struct ath_hal *ah, int qnum)
5120{
5121	u_int32_t txqs = 1<<qnum;
5122	ath_hal_gettxintrtxqs(ah, &txqs);
5123	return (txqs & (1<<qnum));
5124}
5125
5126/*
5127 * Deferred processing of transmit interrupt; special-cased
5128 * for a single hardware transmit queue (e.g. 5210 and 5211).
5129 */
5130static void
5131ath_tx_proc_q0(void *arg, int npending)
5132{
5133	struct ath_softc *sc = arg;
5134	struct ifnet *ifp = sc->sc_ifp;
5135
5136	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
5137		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5138	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5139		ath_tx_processq(sc, sc->sc_cabq);
5140	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5141	ifp->if_timer = 0;
5142
5143	if (sc->sc_softled)
5144		ath_led_event(sc, sc->sc_txrix);
5145
5146	ath_start(ifp);
5147}
5148
5149/*
5150 * Deferred processing of transmit interrupt; special-cased
5151 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5152 */
5153static void
5154ath_tx_proc_q0123(void *arg, int npending)
5155{
5156	struct ath_softc *sc = arg;
5157	struct ifnet *ifp = sc->sc_ifp;
5158	int nacked;
5159
5160	/*
5161	 * Process each active queue.
5162	 */
5163	nacked = 0;
5164	if (txqactive(sc->sc_ah, 0))
5165		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
5166	if (txqactive(sc->sc_ah, 1))
5167		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
5168	if (txqactive(sc->sc_ah, 2))
5169		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
5170	if (txqactive(sc->sc_ah, 3))
5171		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
5172	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5173		ath_tx_processq(sc, sc->sc_cabq);
5174	if (nacked)
5175		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5176
5177	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5178	ifp->if_timer = 0;
5179
5180	if (sc->sc_softled)
5181		ath_led_event(sc, sc->sc_txrix);
5182
5183	ath_start(ifp);
5184}
5185
5186/*
5187 * Deferred processing of transmit interrupt.
5188 */
5189static void
5190ath_tx_proc(void *arg, int npending)
5191{
5192	struct ath_softc *sc = arg;
5193	struct ifnet *ifp = sc->sc_ifp;
5194	int i, nacked;
5195
5196	/*
5197	 * Process each active queue.
5198	 */
5199	nacked = 0;
5200	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5201		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
5202			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
5203	if (nacked)
5204		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5205
5206	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5207	ifp->if_timer = 0;
5208
5209	if (sc->sc_softled)
5210		ath_led_event(sc, sc->sc_txrix);
5211
5212	ath_start(ifp);
5213}
5214
5215static void
5216ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5217{
5218#ifdef ATH_DEBUG
5219	struct ath_hal *ah = sc->sc_ah;
5220#endif
5221	struct ieee80211_node *ni;
5222	struct ath_buf *bf;
5223	u_int ix;
5224
5225	/*
5226	 * NB: this assumes output has been stopped and
5227	 *     we do not need to block ath_tx_proc
5228	 */
5229	for (ix = 0;; ix++) {
5230		ATH_TXQ_LOCK(txq);
5231		bf = STAILQ_FIRST(&txq->axq_q);
5232		if (bf == NULL) {
5233			txq->axq_link = NULL;
5234			ATH_TXQ_UNLOCK(txq);
5235			break;
5236		}
5237		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5238		ATH_TXQ_UNLOCK(txq);
5239#ifdef ATH_DEBUG
5240		if (sc->sc_debug & ATH_DEBUG_RESET) {
5241			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5242
5243			ath_printtxbuf(sc, bf, txq->axq_qnum, ix,
5244				ath_hal_txprocdesc(ah, bf->bf_desc,
5245				    &bf->bf_status.ds_txstat) == HAL_OK);
5246			ieee80211_dump_pkt(ic, mtod(bf->bf_m, caddr_t),
5247				bf->bf_m->m_len, 0, -1);
5248		}
5249#endif /* ATH_DEBUG */
5250		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5251		ni = bf->bf_node;
5252		bf->bf_node = NULL;
5253		if (ni != NULL) {
5254			/*
5255			 * Do any callback and reclaim the node reference.
5256			 */
5257			if (bf->bf_m->m_flags & M_TXCB)
5258				ieee80211_process_callback(ni, bf->bf_m, -1);
5259			ieee80211_free_node(ni);
5260		}
5261		m_freem(bf->bf_m);
5262		bf->bf_m = NULL;
5263
5264		ATH_TXBUF_LOCK(sc);
5265		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5266		ATH_TXBUF_UNLOCK(sc);
5267	}
5268}
5269
5270static void
5271ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5272{
5273	struct ath_hal *ah = sc->sc_ah;
5274
5275	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5276	    __func__, txq->axq_qnum,
5277	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5278	    txq->axq_link);
5279	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5280}
5281
5282/*
5283 * Drain the transmit queues and reclaim resources.
5284 */
5285static void
5286ath_draintxq(struct ath_softc *sc)
5287{
5288	struct ath_hal *ah = sc->sc_ah;
5289	struct ifnet *ifp = sc->sc_ifp;
5290	int i;
5291
5292	/* XXX return value */
5293	if (!sc->sc_invalid) {
5294		/* don't touch the hardware if marked invalid */
5295		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5296		    __func__, sc->sc_bhalq,
5297		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5298		    NULL);
5299		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5300		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5301			if (ATH_TXQ_SETUP(sc, i))
5302				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5303	}
5304	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5305		if (ATH_TXQ_SETUP(sc, i))
5306			ath_tx_draintxq(sc, &sc->sc_txq[i]);
5307#ifdef ATH_DEBUG
5308	if (sc->sc_debug & ATH_DEBUG_RESET) {
5309		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
5310		if (bf != NULL && bf->bf_m != NULL) {
5311			ath_printtxbuf(sc, bf, sc->sc_bhalq, 0,
5312				ath_hal_txprocdesc(ah, bf->bf_desc,
5313				    &bf->bf_status.ds_txstat) == HAL_OK);
5314			ieee80211_dump_pkt(ifp->if_l2com, mtod(bf->bf_m, caddr_t),
5315				bf->bf_m->m_len, 0, -1);
5316		}
5317	}
5318#endif /* ATH_DEBUG */
5319	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5320	ifp->if_timer = 0;
5321}
5322
5323/*
5324 * Disable the receive h/w in preparation for a reset.
5325 */
5326static void
5327ath_stoprecv(struct ath_softc *sc)
5328{
5329#define	PA2DESC(_sc, _pa) \
5330	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5331		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5332	struct ath_hal *ah = sc->sc_ah;
5333
5334	ath_hal_stoppcurecv(ah);	/* disable PCU */
5335	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5336	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5337	DELAY(3000);			/* 3ms is long enough for 1 frame */
5338#ifdef ATH_DEBUG
5339	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5340		struct ath_buf *bf;
5341		u_int ix;
5342
5343		printf("%s: rx queue %p, link %p\n", __func__,
5344			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5345		ix = 0;
5346		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5347			struct ath_desc *ds = bf->bf_desc;
5348			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5349			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5350				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5351			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5352				ath_printrxbuf(sc, bf, ix, status == HAL_OK);
5353			ix++;
5354		}
5355	}
5356#endif
5357	if (sc->sc_rxpending != NULL) {
5358		m_freem(sc->sc_rxpending);
5359		sc->sc_rxpending = NULL;
5360	}
5361	sc->sc_rxlink = NULL;		/* just in case */
5362#undef PA2DESC
5363}
5364
5365/*
5366 * Enable the receive h/w following a reset.
5367 */
5368static int
5369ath_startrecv(struct ath_softc *sc)
5370{
5371	struct ath_hal *ah = sc->sc_ah;
5372	struct ath_buf *bf;
5373
5374	sc->sc_rxlink = NULL;
5375	sc->sc_rxpending = NULL;
5376	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5377		int error = ath_rxbuf_init(sc, bf);
5378		if (error != 0) {
5379			DPRINTF(sc, ATH_DEBUG_RECV,
5380				"%s: ath_rxbuf_init failed %d\n",
5381				__func__, error);
5382			return error;
5383		}
5384	}
5385
5386	bf = STAILQ_FIRST(&sc->sc_rxbuf);
5387	ath_hal_putrxbuf(ah, bf->bf_daddr);
5388	ath_hal_rxena(ah);		/* enable recv descriptors */
5389	ath_mode_init(sc);		/* set filters, etc. */
5390	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5391	return 0;
5392}
5393
5394/*
5395 * Update internal state after a channel change.
5396 */
5397static void
5398ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5399{
5400	enum ieee80211_phymode mode;
5401
5402	/*
5403	 * Change channels and update the h/w rate map
5404	 * if we're switching; e.g. 11a to 11b/g.
5405	 */
5406	if (IEEE80211_IS_CHAN_HALF(chan))
5407		mode = IEEE80211_MODE_HALF;
5408	else if (IEEE80211_IS_CHAN_QUARTER(chan))
5409		mode = IEEE80211_MODE_QUARTER;
5410	else
5411		mode = ieee80211_chan2mode(chan);
5412	if (mode != sc->sc_curmode)
5413		ath_setcurmode(sc, mode);
5414
5415	sc->sc_rx_th.wr_chan_flags = htole32(chan->ic_flags);
5416	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags;
5417	sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq);
5418	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq;
5419	sc->sc_rx_th.wr_chan_ieee = chan->ic_ieee;
5420	sc->sc_tx_th.wt_chan_ieee = sc->sc_rx_th.wr_chan_ieee;
5421	sc->sc_rx_th.wr_chan_maxpow = chan->ic_maxregpower;
5422	sc->sc_tx_th.wt_chan_maxpow = sc->sc_rx_th.wr_chan_maxpow;
5423}
5424
5425/*
5426 * Set/change channels.  If the channel is really being changed,
5427 * it's done by reseting the chip.  To accomplish this we must
5428 * first cleanup any pending DMA, then restart stuff after a la
5429 * ath_init.
5430 */
5431static int
5432ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5433{
5434	struct ifnet *ifp = sc->sc_ifp;
5435	struct ieee80211com *ic = ifp->if_l2com;
5436	struct ath_hal *ah = sc->sc_ah;
5437	HAL_CHANNEL hchan;
5438
5439	/*
5440	 * Convert to a HAL channel description with
5441	 * the flags constrained to reflect the current
5442	 * operating mode.
5443	 */
5444	ath_mapchan(ic, &hchan, chan);
5445
5446	DPRINTF(sc, ATH_DEBUG_RESET,
5447	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
5448	    __func__,
5449	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
5450		sc->sc_curchan.channelFlags),
5451	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
5452	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
5453	        hchan.channel, hchan.channelFlags);
5454	if (hchan.channel != sc->sc_curchan.channel ||
5455	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
5456		HAL_STATUS status;
5457
5458		/*
5459		 * To switch channels clear any pending DMA operations;
5460		 * wait long enough for the RX fifo to drain, reset the
5461		 * hardware at the new frequency, and then re-enable
5462		 * the relevant bits of the h/w.
5463		 */
5464		ath_hal_intrset(ah, 0);		/* disable interrupts */
5465		ath_draintxq(sc);		/* clear pending tx frames */
5466		ath_stoprecv(sc);		/* turn off frame recv */
5467		if (!ath_hal_reset(ah, sc->sc_opmode, &hchan, AH_TRUE, &status)) {
5468			if_printf(ifp, "%s: unable to reset "
5469			    "channel %u (%u Mhz, flags 0x%x hal flags 0x%x), "
5470			    "hal status %u\n", __func__,
5471			    ieee80211_chan2ieee(ic, chan), chan->ic_freq,
5472			    chan->ic_flags, hchan.channelFlags, status);
5473			return EIO;
5474		}
5475		sc->sc_curchan = hchan;
5476		sc->sc_diversity = ath_hal_getdiversity(ah);
5477		sc->sc_calinterval = 1;
5478		sc->sc_caltries = 0;
5479
5480		/*
5481		 * Re-enable rx framework.
5482		 */
5483		if (ath_startrecv(sc) != 0) {
5484			if_printf(ifp, "%s: unable to restart recv logic\n",
5485			    __func__);
5486			return EIO;
5487		}
5488
5489		/*
5490		 * Change channels and update the h/w rate map
5491		 * if we're switching; e.g. 11a to 11b/g.
5492		 */
5493		ath_chan_change(sc, chan);
5494
5495		/*
5496		 * Re-enable interrupts.
5497		 */
5498		ath_hal_intrset(ah, sc->sc_imask);
5499	}
5500	return 0;
5501}
5502
5503/*
5504 * Periodically recalibrate the PHY to account
5505 * for temperature/environment changes.
5506 */
5507static void
5508ath_calibrate(void *arg)
5509{
5510	struct ath_softc *sc = arg;
5511	struct ath_hal *ah = sc->sc_ah;
5512	HAL_BOOL iqCalDone;
5513
5514	sc->sc_stats.ast_per_cal++;
5515
5516	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5517		/*
5518		 * Rfgain is out of bounds, reset the chip
5519		 * to load new gain values.
5520		 */
5521		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5522			"%s: rfgain change\n", __func__);
5523		sc->sc_stats.ast_per_rfgain++;
5524		ath_reset(sc->sc_ifp);
5525	}
5526	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
5527		DPRINTF(sc, ATH_DEBUG_ANY,
5528			"%s: calibration of channel %u failed\n",
5529			__func__, sc->sc_curchan.channel);
5530		sc->sc_stats.ast_per_calfail++;
5531	}
5532	/*
5533	 * Calibrate noise floor data again in case of change.
5534	 */
5535	ath_hal_process_noisefloor(ah);
5536	/*
5537	 * Poll more frequently when the IQ calibration is in
5538	 * progress to speedup loading the final settings.
5539	 * We temper this aggressive polling with an exponential
5540	 * back off after 4 tries up to ath_calinterval.
5541	 */
5542	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
5543		sc->sc_caltries = 0;
5544		sc->sc_calinterval = ath_calinterval;
5545	} else if (sc->sc_caltries > 4) {
5546		sc->sc_caltries = 0;
5547		sc->sc_calinterval <<= 1;
5548		if (sc->sc_calinterval > ath_calinterval)
5549			sc->sc_calinterval = ath_calinterval;
5550	}
5551	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
5552		("bad calibration interval %u", sc->sc_calinterval));
5553
5554	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5555		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
5556		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
5557	sc->sc_caltries++;
5558	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
5559		ath_calibrate, sc);
5560}
5561
5562static void
5563ath_scan_start(struct ieee80211com *ic)
5564{
5565	struct ifnet *ifp = ic->ic_ifp;
5566	struct ath_softc *sc = ifp->if_softc;
5567	struct ath_hal *ah = sc->sc_ah;
5568	u_int32_t rfilt;
5569
5570	/* XXX calibration timer? */
5571
5572	sc->sc_scanning = 1;
5573	sc->sc_syncbeacon = 0;
5574	rfilt = ath_calcrxfilter(sc);
5575	ath_hal_setrxfilter(ah, rfilt);
5576	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5577
5578	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5579		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5580}
5581
5582static void
5583ath_scan_end(struct ieee80211com *ic)
5584{
5585	struct ifnet *ifp = ic->ic_ifp;
5586	struct ath_softc *sc = ifp->if_softc;
5587	struct ath_hal *ah = sc->sc_ah;
5588	u_int32_t rfilt;
5589
5590	sc->sc_scanning = 0;
5591	rfilt = ath_calcrxfilter(sc);
5592	ath_hal_setrxfilter(ah, rfilt);
5593	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5594
5595	ath_hal_process_noisefloor(ah);
5596
5597	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5598		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5599		 sc->sc_curaid);
5600}
5601
5602static void
5603ath_set_channel(struct ieee80211com *ic)
5604{
5605	struct ifnet *ifp = ic->ic_ifp;
5606	struct ath_softc *sc = ifp->if_softc;
5607
5608	(void) ath_chan_set(sc, ic->ic_curchan);
5609	/*
5610	 * If we are returning to our bss channel then mark state
5611	 * so the next recv'd beacon's tsf will be used to sync the
5612	 * beacon timers.  Note that since we only hear beacons in
5613	 * sta/ibss mode this has no effect in other operating modes.
5614	 */
5615	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5616		sc->sc_syncbeacon = 1;
5617}
5618
5619/*
5620 * Walk the vap list and check if there any vap's in RUN state.
5621 */
5622static int
5623ath_isanyrunningvaps(struct ieee80211vap *this)
5624{
5625	struct ieee80211com *ic = this->iv_ic;
5626	struct ieee80211vap *vap;
5627
5628	IEEE80211_LOCK_ASSERT(ic);
5629
5630	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5631		if (vap != this && vap->iv_state == IEEE80211_S_RUN)
5632			return 1;
5633	}
5634	return 0;
5635}
5636
5637static int
5638ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5639{
5640	struct ieee80211com *ic = vap->iv_ic;
5641	struct ath_softc *sc = ic->ic_ifp->if_softc;
5642	struct ath_vap *avp = ATH_VAP(vap);
5643	struct ath_hal *ah = sc->sc_ah;
5644	struct ieee80211_node *ni = NULL;
5645	int i, error, stamode;
5646	u_int32_t rfilt;
5647	static const HAL_LED_STATE leds[] = {
5648	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5649	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5650	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5651	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5652	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5653	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5654	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5655	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5656	};
5657
5658	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5659		ieee80211_state_name[vap->iv_state],
5660		ieee80211_state_name[nstate]);
5661
5662	callout_stop(&sc->sc_cal_ch);
5663	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5664
5665	if (nstate == IEEE80211_S_SCAN) {
5666		/*
5667		 * Scanning: turn off beacon miss and don't beacon.
5668		 * Mark beacon state so when we reach RUN state we'll
5669		 * [re]setup beacons.  Unblock the task q thread so
5670		 * deferred interrupt processing is done.
5671		 */
5672		ath_hal_intrset(ah,
5673		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5674		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5675		sc->sc_beacons = 0;
5676		taskqueue_unblock(sc->sc_tq);
5677	}
5678
5679	ni = vap->iv_bss;
5680	rfilt = ath_calcrxfilter(sc);
5681	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5682		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5683		   vap->iv_opmode == IEEE80211_M_IBSS);
5684	if (stamode && nstate == IEEE80211_S_RUN) {
5685		sc->sc_curaid = ni->ni_associd;
5686		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5687		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5688	}
5689	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5690	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5691	ath_hal_setrxfilter(ah, rfilt);
5692
5693	/* XXX is this to restore keycache on resume? */
5694	if (vap->iv_opmode != IEEE80211_M_STA &&
5695	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5696		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5697			if (ath_hal_keyisvalid(ah, i))
5698				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5699	}
5700
5701	/*
5702	 * Invoke the parent method to do net80211 work.
5703	 */
5704	error = avp->av_newstate(vap, nstate, arg);
5705	if (error != 0)
5706		goto bad;
5707
5708	if (nstate == IEEE80211_S_RUN) {
5709		/* NB: collect bss node again, it may have changed */
5710		ni = vap->iv_bss;
5711
5712		DPRINTF(sc, ATH_DEBUG_STATE,
5713		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5714		    "capinfo 0x%04x chan %d\n", __func__,
5715		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5716		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5717
5718		switch (vap->iv_opmode) {
5719		case IEEE80211_M_HOSTAP:
5720		case IEEE80211_M_IBSS:
5721			/*
5722			 * Allocate and setup the beacon frame.
5723			 *
5724			 * Stop any previous beacon DMA.  This may be
5725			 * necessary, for example, when an ibss merge
5726			 * causes reconfiguration; there will be a state
5727			 * transition from RUN->RUN that means we may
5728			 * be called with beacon transmission active.
5729			 */
5730			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5731
5732			error = ath_beacon_alloc(sc, ni);
5733			if (error != 0)
5734				goto bad;
5735			/*
5736			 * If joining an adhoc network defer beacon timer
5737			 * configuration to the next beacon frame so we
5738			 * have a current TSF to use.  Otherwise we're
5739			 * starting an ibss/bss so there's no need to delay;
5740			 * if this is the first vap moving to RUN state, then
5741			 * beacon state needs to be [re]configured.
5742			 */
5743			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5744			    ni->ni_tstamp.tsf != 0) {
5745				sc->sc_syncbeacon = 1;
5746			} else if (!sc->sc_beacons) {
5747				ath_beacon_config(sc, vap);
5748				sc->sc_beacons = 1;
5749			}
5750			break;
5751		case IEEE80211_M_STA:
5752			/*
5753			 * Defer beacon timer configuration to the next
5754			 * beacon frame so we have a current TSF to use
5755			 * (any TSF collected when scanning is likely old).
5756			 */
5757			sc->sc_syncbeacon = 1;
5758			break;
5759		case IEEE80211_M_MONITOR:
5760			/*
5761			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5762			 * transitions so we must re-enable interrupts here to
5763			 * handle the case of a single monitor mode vap.
5764			 */
5765			ath_hal_intrset(ah, sc->sc_imask);
5766			break;
5767		case IEEE80211_M_WDS:
5768			break;
5769		default:
5770			break;
5771		}
5772		/*
5773		 * Let the hal process statistics collected during a
5774		 * scan so it can provide calibrated noise floor data.
5775		 */
5776		ath_hal_process_noisefloor(ah);
5777		/*
5778		 * Reset rssi stats; maybe not the best place...
5779		 */
5780		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5781		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5782		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5783		/*
5784		 * Finally, start any timers and the task q thread
5785		 * (in case we didn't go through SCAN state).
5786		 */
5787		if (sc->sc_calinterval != 0) {
5788			/* start periodic recalibration timer */
5789			callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
5790				ath_calibrate, sc);
5791		}
5792		taskqueue_unblock(sc->sc_tq);
5793	} else if (nstate == IEEE80211_S_INIT) {
5794		/*
5795		 * If there are no vaps left in RUN state then
5796		 * shutdown host/driver operation:
5797		 * o disable interrupts
5798		 * o disable the task queue thread
5799		 * o mark beacon processing as stopped
5800		 */
5801		if (!ath_isanyrunningvaps(vap)) {
5802			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5803			/* disable interrupts  */
5804			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5805			taskqueue_block(sc->sc_tq);
5806			sc->sc_beacons = 0;
5807		}
5808	}
5809bad:
5810	return error;
5811}
5812
5813/*
5814 * Allocate a key cache slot to the station so we can
5815 * setup a mapping from key index to node. The key cache
5816 * slot is needed for managing antenna state and for
5817 * compression when stations do not use crypto.  We do
5818 * it uniliaterally here; if crypto is employed this slot
5819 * will be reassigned.
5820 */
5821static void
5822ath_setup_stationkey(struct ieee80211_node *ni)
5823{
5824	struct ieee80211vap *vap = ni->ni_vap;
5825	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5826	ieee80211_keyix keyix, rxkeyix;
5827
5828	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5829		/*
5830		 * Key cache is full; we'll fall back to doing
5831		 * the more expensive lookup in software.  Note
5832		 * this also means no h/w compression.
5833		 */
5834		/* XXX msg+statistic */
5835	} else {
5836		/* XXX locking? */
5837		ni->ni_ucastkey.wk_keyix = keyix;
5838		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5839		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5840		/* NB: this will create a pass-thru key entry */
5841		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
5842	}
5843}
5844
5845/*
5846 * Setup driver-specific state for a newly associated node.
5847 * Note that we're called also on a re-associate, the isnew
5848 * param tells us if this is the first time or not.
5849 */
5850static void
5851ath_newassoc(struct ieee80211_node *ni, int isnew)
5852{
5853	struct ath_node *an = ATH_NODE(ni);
5854	struct ieee80211vap *vap = ni->ni_vap;
5855	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5856	const struct ieee80211_txparam *tp = ni->ni_txparms;
5857
5858	an->an_mcastrix = ath_tx_findrix(sc->sc_currates, tp->mcastrate);
5859	an->an_mgmtrix = ath_tx_findrix(sc->sc_currates, tp->mgmtrate);
5860
5861	ath_rate_newassoc(sc, an, isnew);
5862	if (isnew &&
5863	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5864	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5865		ath_setup_stationkey(ni);
5866}
5867
5868static int
5869getchannels(struct ath_softc *sc, int *nchans, struct ieee80211_channel chans[],
5870	int cc, int ecm, int outdoor)
5871{
5872	struct ath_hal *ah = sc->sc_ah;
5873	HAL_CHANNEL *halchans;
5874	int i, nhalchans, error;
5875
5876	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: cc %u outdoor %u ecm %u\n",
5877	    __func__, cc, outdoor, ecm);
5878
5879	halchans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
5880			M_TEMP, M_NOWAIT | M_ZERO);
5881	if (halchans == NULL) {
5882		device_printf(sc->sc_dev,
5883		    "%s: unable to allocate channel table\n", __func__);
5884		return ENOMEM;
5885	}
5886	error = 0;
5887	if (!ath_hal_init_channels(ah, halchans, IEEE80211_CHAN_MAX, &nhalchans,
5888	    NULL, 0, NULL, cc, HAL_MODE_ALL, outdoor, ecm)) {
5889		u_int32_t rd;
5890		(void) ath_hal_getregdomain(ah, &rd);
5891		device_printf(sc->sc_dev, "ath_hal_init_channels failed, "
5892		    "rd %d cc %u outdoor %u ecm %u\n", rd, cc, outdoor, ecm);
5893		error = EINVAL;
5894		goto done;
5895	}
5896	if (nchans == NULL)		/* no table requested */
5897		goto done;
5898
5899	/*
5900	 * Convert HAL channels to ieee80211 ones.
5901	 */
5902	for (i = 0; i < nhalchans; i++) {
5903		HAL_CHANNEL *c = &halchans[i];
5904		struct ieee80211_channel *ichan = &chans[i];
5905
5906		ichan->ic_ieee = ath_hal_mhz2ieee(ah, c->channel,
5907					c->channelFlags);
5908		if (bootverbose)
5909			device_printf(sc->sc_dev, "hal channel %u/%x -> %u "
5910			    "maxpow %d minpow %d maxreg %d\n",
5911			    c->channel, c->channelFlags, ichan->ic_ieee,
5912			    c->maxTxPower, c->minTxPower, c->maxRegTxPower);
5913		ichan->ic_freq = c->channel;
5914
5915		if ((c->channelFlags & CHANNEL_PUREG) == CHANNEL_PUREG) {
5916			/*
5917			 * Except for AR5211, HAL's PUREG means mixed
5918			 * DSSS and OFDM.
5919			 */
5920			ichan->ic_flags = c->channelFlags &~ CHANNEL_PUREG;
5921			ichan->ic_flags |= IEEE80211_CHAN_G;
5922		} else {
5923			ichan->ic_flags = c->channelFlags;
5924		}
5925
5926		if (ath_hal_isgsmsku(ah)) {
5927			/*
5928			 * Remap to true frequencies: Ubiquiti XR9 cards use a
5929			 * frequency mapping different from their SR9 cards.
5930			 * We define special country codes to deal with this.
5931			 */
5932			if (cc == CTRY_XR9)
5933				ichan->ic_freq = ichan->ic_freq - 1520;
5934			else if (cc == CTRY_GZ901)
5935				ichan->ic_freq = ichan->ic_freq - 1544;
5936			else
5937				ichan->ic_freq = 3344 - ichan->ic_freq;
5938			ichan->ic_flags |= IEEE80211_CHAN_GSM;
5939			ichan->ic_ieee = ieee80211_mhz2ieee(ichan->ic_freq,
5940						    ichan->ic_flags);
5941		}
5942		ichan->ic_maxregpower = c->maxRegTxPower;	/* dBm */
5943		/* XXX: old hal's don't provide maxTxPower for some parts */
5944		ichan->ic_maxpower = (c->maxTxPower != 0) ?
5945		    c->maxTxPower : 2*c->maxRegTxPower;		/* 1/2 dBm */
5946		ichan->ic_minpower = c->minTxPower;		/* 1/2 dBm */
5947	}
5948	*nchans = nhalchans;
5949done:
5950	free(halchans, M_TEMP);
5951	return error;
5952}
5953
5954/* XXX hard to include ieee80211_regdomain.h right now */
5955#define	SKU_DEBUG	0x1ff
5956
5957static void
5958ath_maprd(const struct ieee80211_regdomain *rd,
5959	u_int32_t *ath_rd, u_int32_t *ath_cc)
5960{
5961	/* map SKU's to Atheros sku's */
5962	switch (rd->regdomain) {
5963	case SKU_DEBUG:
5964		if (rd->country == 0) {
5965			*ath_rd = 0;
5966			*ath_cc = CTRY_DEBUG;
5967			return;
5968		}
5969		break;
5970	}
5971	*ath_rd = rd->regdomain;
5972	*ath_cc = rd->country;
5973}
5974
5975static int
5976ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
5977	int nchans, struct ieee80211_channel chans[])
5978{
5979	struct ath_softc *sc = ic->ic_ifp->if_softc;
5980	struct ath_hal *ah = sc->sc_ah;
5981	u_int32_t ord, regdomain, cc;
5982	int error;
5983
5984	(void) ath_hal_getregdomain(ah, &ord);
5985	ath_maprd(rd, &regdomain, &cc);
5986	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5987	    "%s: rd %u cc %u location %c ecm %u (mapped rd %u cc %u)\n",
5988	    __func__, rd->regdomain, rd->country, rd->location, rd->ecm,
5989	    regdomain, cc);
5990	ath_hal_setregdomain(ah, regdomain);
5991
5992	error = getchannels(sc, &nchans, chans, cc,
5993	     rd->ecm ? AH_TRUE : AH_FALSE,
5994	     rd->location != 'I' ? AH_TRUE : AH_FALSE);
5995	if (error != 0) {
5996		/*
5997		 * Restore previous state.
5998		 */
5999		ath_hal_setregdomain(ah, ord);
6000		(void) getchannels(sc, NULL, NULL, ic->ic_regdomain.country,
6001		     ic->ic_regdomain.ecm ? AH_TRUE : AH_FALSE,
6002		     ic->ic_regdomain.location != 'I' ? AH_TRUE : AH_FALSE);
6003		return error;
6004	}
6005	return 0;
6006}
6007
6008static void
6009ath_getradiocaps(struct ieee80211com *ic,
6010	int *nchans, struct ieee80211_channel chans[])
6011{
6012	struct ath_softc *sc = ic->ic_ifp->if_softc;
6013	struct ath_hal *ah = sc->sc_ah;
6014	u_int32_t ord;
6015
6016	(void) ath_hal_getregdomain(ah, &ord);
6017
6018	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d, ord %u\n",
6019	    __func__, 0, CTRY_DEBUG, ord);
6020
6021	ath_hal_setregdomain(ah, 0);
6022	/* XXX not quite right but close enough for now */
6023	getchannels(sc, nchans, chans, CTRY_DEBUG, AH_TRUE, AH_FALSE);
6024
6025	/* NB: restore previous state */
6026	ath_hal_setregdomain(ah, ord);
6027	(void) getchannels(sc, NULL, NULL, ic->ic_regdomain.country,
6028	     ic->ic_regdomain.ecm ? AH_TRUE : AH_FALSE,
6029	     ic->ic_regdomain.location != 'I' ? AH_TRUE : AH_FALSE);
6030}
6031
6032static void
6033ath_mapsku(u_int32_t ath_rd, u_int32_t ath_cc, struct ieee80211_regdomain *rd)
6034{
6035	rd->isocc[0] = ' ';	/* XXX don't know */
6036	rd->isocc[1] = ' ';
6037
6038	/* map Atheros sku's to SKU's */
6039	switch (ath_rd) {
6040	case 0:
6041		if (ath_cc == CTRY_DEBUG) {
6042			rd->regdomain = SKU_DEBUG;
6043			rd->country = 0;
6044			return;
6045		}
6046		break;
6047	}
6048	/* XXX net80211 types too small */
6049	rd->regdomain = (uint16_t) ath_rd;
6050	rd->country = (uint16_t) ath_cc;
6051}
6052
6053static int
6054ath_getchannels(struct ath_softc *sc)
6055{
6056	struct ifnet *ifp = sc->sc_ifp;
6057	struct ieee80211com *ic = ifp->if_l2com;
6058	struct ath_hal *ah = sc->sc_ah;
6059	int error;
6060
6061	/*
6062	 * Convert HAL channels to ieee80211 ones.
6063	 */
6064	error = getchannels(sc, &ic->ic_nchans, ic->ic_channels,
6065	    CTRY_DEFAULT, AH_TRUE, AH_FALSE);
6066	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6067	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6068	if (error) {
6069		if_printf(ifp, "%s: unable to collect channel list from hal, "
6070		    "error %d\n", __func__, error);
6071		if (error == EINVAL) {
6072			if_printf(ifp, "%s: regdomain likely %u country code %u\n",
6073			    __func__, sc->sc_eerd, sc->sc_eecc);
6074		}
6075		return error;
6076	}
6077	ic->ic_regdomain.ecm = 1;
6078	ic->ic_regdomain.location = 'I';
6079	ath_mapsku(sc->sc_eerd, sc->sc_eecc, &ic->ic_regdomain);
6080
6081	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6082	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c ecm %u\n",
6083	    __func__, sc->sc_eerd, sc->sc_eecc,
6084	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6085	    ic->ic_regdomain.location, ic->ic_regdomain.ecm);
6086	return 0;
6087}
6088
6089static void
6090ath_led_done(void *arg)
6091{
6092	struct ath_softc *sc = arg;
6093
6094	sc->sc_blinking = 0;
6095}
6096
6097/*
6098 * Turn the LED off: flip the pin and then set a timer so no
6099 * update will happen for the specified duration.
6100 */
6101static void
6102ath_led_off(void *arg)
6103{
6104	struct ath_softc *sc = arg;
6105
6106	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
6107	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
6108}
6109
6110/*
6111 * Blink the LED according to the specified on/off times.
6112 */
6113static void
6114ath_led_blink(struct ath_softc *sc, int on, int off)
6115{
6116	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
6117	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
6118	sc->sc_blinking = 1;
6119	sc->sc_ledoff = off;
6120	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
6121}
6122
6123static void
6124ath_led_event(struct ath_softc *sc, int rix)
6125{
6126	sc->sc_ledevent = ticks;	/* time of last event */
6127	if (sc->sc_blinking)		/* don't interrupt active blink */
6128		return;
6129	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
6130}
6131
6132static int
6133ath_rate_setup(struct ath_softc *sc, u_int mode)
6134{
6135	struct ath_hal *ah = sc->sc_ah;
6136	const HAL_RATE_TABLE *rt;
6137
6138	switch (mode) {
6139	case IEEE80211_MODE_11A:
6140		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6141		break;
6142	case IEEE80211_MODE_HALF:
6143		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6144		break;
6145	case IEEE80211_MODE_QUARTER:
6146		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6147		break;
6148	case IEEE80211_MODE_11B:
6149		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6150		break;
6151	case IEEE80211_MODE_11G:
6152		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6153		break;
6154	case IEEE80211_MODE_TURBO_A:
6155		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6156#if HAL_ABI_VERSION < 0x07013100
6157		if (rt == NULL)		/* XXX bandaid for old hal's */
6158			rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6159#endif
6160		break;
6161	case IEEE80211_MODE_TURBO_G:
6162		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6163		break;
6164	case IEEE80211_MODE_STURBO_A:
6165		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6166		break;
6167	case IEEE80211_MODE_11NA:
6168		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6169		break;
6170	case IEEE80211_MODE_11NG:
6171		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6172		break;
6173	default:
6174		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6175			__func__, mode);
6176		return 0;
6177	}
6178	sc->sc_rates[mode] = rt;
6179	return (rt != NULL);
6180}
6181
6182static void
6183ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6184{
6185#define	N(a)	(sizeof(a)/sizeof(a[0]))
6186	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6187	static const struct {
6188		u_int		rate;		/* tx/rx 802.11 rate */
6189		u_int16_t	timeOn;		/* LED on time (ms) */
6190		u_int16_t	timeOff;	/* LED off time (ms) */
6191	} blinkrates[] = {
6192		{ 108,  40,  10 },
6193		{  96,  44,  11 },
6194		{  72,  50,  13 },
6195		{  48,  57,  14 },
6196		{  36,  67,  16 },
6197		{  24,  80,  20 },
6198		{  22, 100,  25 },
6199		{  18, 133,  34 },
6200		{  12, 160,  40 },
6201		{  10, 200,  50 },
6202		{   6, 240,  58 },
6203		{   4, 267,  66 },
6204		{   2, 400, 100 },
6205		{   0, 500, 130 },
6206		/* XXX half/quarter rates */
6207	};
6208	const HAL_RATE_TABLE *rt;
6209	int i, j;
6210
6211	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6212	rt = sc->sc_rates[mode];
6213	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6214	for (i = 0; i < rt->rateCount; i++) {
6215		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6216		if (rt->info[i].phy != IEEE80211_T_HT)
6217			sc->sc_rixmap[ieeerate] = i;
6218		else
6219			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6220	}
6221	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6222	for (i = 0; i < N(sc->sc_hwmap); i++) {
6223		if (i >= rt->rateCount) {
6224			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6225			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6226			continue;
6227		}
6228		sc->sc_hwmap[i].ieeerate =
6229			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6230		if (rt->info[i].phy == IEEE80211_T_HT)
6231			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6232		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6233		if (rt->info[i].shortPreamble ||
6234		    rt->info[i].phy == IEEE80211_T_OFDM)
6235			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6236		/* NB: receive frames include FCS */
6237		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
6238			IEEE80211_RADIOTAP_F_FCS;
6239		/* setup blink rate table to avoid per-packet lookup */
6240		for (j = 0; j < N(blinkrates)-1; j++)
6241			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6242				break;
6243		/* NB: this uses the last entry if the rate isn't found */
6244		/* XXX beware of overlow */
6245		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6246		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6247	}
6248	sc->sc_currates = rt;
6249	sc->sc_curmode = mode;
6250	/*
6251	 * All protection frames are transmited at 2Mb/s for
6252	 * 11g, otherwise at 1Mb/s.
6253	 */
6254	if (mode == IEEE80211_MODE_11G)
6255		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
6256	else
6257		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
6258	/* NB: caller is responsible for reseting rate control state */
6259#undef N
6260}
6261
6262#ifdef ATH_DEBUG
6263static void
6264ath_printrxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6265	u_int ix, int done)
6266{
6267	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
6268	struct ath_hal *ah = sc->sc_ah;
6269	const struct ath_desc *ds;
6270	int i;
6271
6272	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6273		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
6274		       "      %08x %08x %08x %08x\n",
6275		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
6276		    ds->ds_link, ds->ds_data,
6277		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
6278		    ds->ds_ctl0, ds->ds_ctl1,
6279		    ds->ds_hw[0], ds->ds_hw[1]);
6280		if (ah->ah_magic == 0x20065416) {
6281			printf("        %08x %08x %08x %08x %08x %08x %08x\n",
6282			    ds->ds_hw[2], ds->ds_hw[3], ds->ds_hw[4],
6283			    ds->ds_hw[5], ds->ds_hw[6], ds->ds_hw[7],
6284			    ds->ds_hw[8]);
6285		}
6286	}
6287}
6288
6289static void
6290ath_printtxbuf(struct ath_softc *sc, const struct ath_buf *bf,
6291	u_int qnum, u_int ix, int done)
6292{
6293	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
6294	struct ath_hal *ah = sc->sc_ah;
6295	const struct ath_desc *ds;
6296	int i;
6297
6298	printf("Q%u[%3u]", qnum, ix);
6299	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6300		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
6301		       "        %08x %08x %08x %08x %08x %08x\n",
6302		    ds, (const struct ath_desc *)bf->bf_daddr + i,
6303		    ds->ds_link, ds->ds_data, bf->bf_txflags,
6304		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
6305		    ds->ds_ctl0, ds->ds_ctl1,
6306		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
6307		if (ah->ah_magic == 0x20065416) {
6308			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6309			    ds->ds_hw[4], ds->ds_hw[5], ds->ds_hw[6],
6310			    ds->ds_hw[7], ds->ds_hw[8], ds->ds_hw[9],
6311			    ds->ds_hw[10],ds->ds_hw[11]);
6312			printf("        %08x %08x %08x %08x %08x %08x %08x %08x\n",
6313			    ds->ds_hw[12],ds->ds_hw[13],ds->ds_hw[14],
6314			    ds->ds_hw[15],ds->ds_hw[16],ds->ds_hw[17],
6315			    ds->ds_hw[18], ds->ds_hw[19]);
6316		}
6317	}
6318}
6319#endif /* ATH_DEBUG */
6320
6321static void
6322ath_watchdog(struct ifnet *ifp)
6323{
6324	struct ath_softc *sc = ifp->if_softc;
6325
6326	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && !sc->sc_invalid) {
6327		if_printf(ifp, "device timeout\n");
6328		ath_reset(ifp);
6329		ifp->if_oerrors++;
6330		sc->sc_stats.ast_watchdog++;
6331	}
6332}
6333
6334#ifdef ATH_DIAGAPI
6335/*
6336 * Diagnostic interface to the HAL.  This is used by various
6337 * tools to do things like retrieve register contents for
6338 * debugging.  The mechanism is intentionally opaque so that
6339 * it can change frequently w/o concern for compatiblity.
6340 */
6341static int
6342ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6343{
6344	struct ath_hal *ah = sc->sc_ah;
6345	u_int id = ad->ad_id & ATH_DIAG_ID;
6346	void *indata = NULL;
6347	void *outdata = NULL;
6348	u_int32_t insize = ad->ad_in_size;
6349	u_int32_t outsize = ad->ad_out_size;
6350	int error = 0;
6351
6352	if (ad->ad_id & ATH_DIAG_IN) {
6353		/*
6354		 * Copy in data.
6355		 */
6356		indata = malloc(insize, M_TEMP, M_NOWAIT);
6357		if (indata == NULL) {
6358			error = ENOMEM;
6359			goto bad;
6360		}
6361		error = copyin(ad->ad_in_data, indata, insize);
6362		if (error)
6363			goto bad;
6364	}
6365	if (ad->ad_id & ATH_DIAG_DYN) {
6366		/*
6367		 * Allocate a buffer for the results (otherwise the HAL
6368		 * returns a pointer to a buffer where we can read the
6369		 * results).  Note that we depend on the HAL leaving this
6370		 * pointer for us to use below in reclaiming the buffer;
6371		 * may want to be more defensive.
6372		 */
6373		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6374		if (outdata == NULL) {
6375			error = ENOMEM;
6376			goto bad;
6377		}
6378	}
6379	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6380		if (outsize < ad->ad_out_size)
6381			ad->ad_out_size = outsize;
6382		if (outdata != NULL)
6383			error = copyout(outdata, ad->ad_out_data,
6384					ad->ad_out_size);
6385	} else {
6386		error = EINVAL;
6387	}
6388bad:
6389	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6390		free(indata, M_TEMP);
6391	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6392		free(outdata, M_TEMP);
6393	return error;
6394}
6395#endif /* ATH_DIAGAPI */
6396
6397static int
6398ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6399{
6400#define	IS_RUNNING(ifp) \
6401	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6402	struct ath_softc *sc = ifp->if_softc;
6403	struct ieee80211com *ic = ifp->if_l2com;
6404	struct ifreq *ifr = (struct ifreq *)data;
6405	const HAL_RATE_TABLE *rt;
6406	int error = 0;
6407
6408	switch (cmd) {
6409	case SIOCSIFFLAGS:
6410		ATH_LOCK(sc);
6411		if (IS_RUNNING(ifp)) {
6412			/*
6413			 * To avoid rescanning another access point,
6414			 * do not call ath_init() here.  Instead,
6415			 * only reflect promisc mode settings.
6416			 */
6417			ath_mode_init(sc);
6418		} else if (ifp->if_flags & IFF_UP) {
6419			/*
6420			 * Beware of being called during attach/detach
6421			 * to reset promiscuous mode.  In that case we
6422			 * will still be marked UP but not RUNNING.
6423			 * However trying to re-init the interface
6424			 * is the wrong thing to do as we've already
6425			 * torn down much of our state.  There's
6426			 * probably a better way to deal with this.
6427			 */
6428			if (!sc->sc_invalid)
6429				ath_init(sc);	/* XXX lose error */
6430		} else {
6431			ath_stop_locked(ifp);
6432#ifdef notyet
6433			/* XXX must wakeup in places like ath_vap_delete */
6434			if (!sc->sc_invalid)
6435				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6436#endif
6437		}
6438		ATH_UNLOCK(sc);
6439		break;
6440	case SIOCGIFMEDIA:
6441	case SIOCSIFMEDIA:
6442		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6443		break;
6444	case SIOCGATHSTATS:
6445		/* NB: embed these numbers to get a consistent view */
6446		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6447		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6448		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6449		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6450		rt = sc->sc_currates;
6451		/* XXX HT rates */
6452		sc->sc_stats.ast_tx_rate =
6453		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6454		return copyout(&sc->sc_stats,
6455		    ifr->ifr_data, sizeof (sc->sc_stats));
6456#ifdef ATH_DIAGAPI
6457	case SIOCGATHDIAG:
6458		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6459		break;
6460#endif
6461	case SIOCGIFADDR:
6462		error = ether_ioctl(ifp, cmd, data);
6463		break;
6464	default:
6465		error = EINVAL;
6466		break;
6467	}
6468	return error;
6469#undef IS_RUNNING
6470}
6471
6472static int
6473ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
6474{
6475	struct ath_softc *sc = arg1;
6476	u_int slottime = ath_hal_getslottime(sc->sc_ah);
6477	int error;
6478
6479	error = sysctl_handle_int(oidp, &slottime, 0, req);
6480	if (error || !req->newptr)
6481		return error;
6482	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
6483}
6484
6485static int
6486ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
6487{
6488	struct ath_softc *sc = arg1;
6489	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
6490	int error;
6491
6492	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
6493	if (error || !req->newptr)
6494		return error;
6495	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
6496}
6497
6498static int
6499ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
6500{
6501	struct ath_softc *sc = arg1;
6502	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
6503	int error;
6504
6505	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
6506	if (error || !req->newptr)
6507		return error;
6508	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
6509}
6510
6511static int
6512ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
6513{
6514	struct ath_softc *sc = arg1;
6515	int softled = sc->sc_softled;
6516	int error;
6517
6518	error = sysctl_handle_int(oidp, &softled, 0, req);
6519	if (error || !req->newptr)
6520		return error;
6521	softled = (softled != 0);
6522	if (softled != sc->sc_softled) {
6523		if (softled) {
6524			/* NB: handle any sc_ledpin change */
6525			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
6526			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6527				!sc->sc_ledon);
6528		}
6529		sc->sc_softled = softled;
6530	}
6531	return 0;
6532}
6533
6534static int
6535ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
6536{
6537	struct ath_softc *sc = arg1;
6538	int ledpin = sc->sc_ledpin;
6539	int error;
6540
6541	error = sysctl_handle_int(oidp, &ledpin, 0, req);
6542	if (error || !req->newptr)
6543		return error;
6544	if (ledpin != sc->sc_ledpin) {
6545		sc->sc_ledpin = ledpin;
6546		if (sc->sc_softled) {
6547			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
6548			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6549				!sc->sc_ledon);
6550		}
6551	}
6552	return 0;
6553}
6554
6555static int
6556ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
6557{
6558	struct ath_softc *sc = arg1;
6559	u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah);
6560	int error;
6561
6562	error = sysctl_handle_int(oidp, &txantenna, 0, req);
6563	if (!error && req->newptr) {
6564		/* XXX assumes 2 antenna ports */
6565		if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B)
6566			return EINVAL;
6567		ath_hal_setantennaswitch(sc->sc_ah, txantenna);
6568		/*
6569		 * NB: with the switch locked this isn't meaningful,
6570		 *     but set it anyway so things like radiotap get
6571		 *     consistent info in their data.
6572		 */
6573		sc->sc_txantenna = txantenna;
6574	}
6575	return error;
6576}
6577
6578static int
6579ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
6580{
6581	struct ath_softc *sc = arg1;
6582	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
6583	int error;
6584
6585	error = sysctl_handle_int(oidp, &defantenna, 0, req);
6586	if (!error && req->newptr)
6587		ath_hal_setdefantenna(sc->sc_ah, defantenna);
6588	return error;
6589}
6590
6591static int
6592ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
6593{
6594	struct ath_softc *sc = arg1;
6595	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
6596	int error;
6597
6598	error = sysctl_handle_int(oidp, &diversity, 0, req);
6599	if (error || !req->newptr)
6600		return error;
6601	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
6602		return EINVAL;
6603	sc->sc_diversity = diversity;
6604	return 0;
6605}
6606
6607static int
6608ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
6609{
6610	struct ath_softc *sc = arg1;
6611	u_int32_t diag;
6612	int error;
6613
6614	if (!ath_hal_getdiag(sc->sc_ah, &diag))
6615		return EINVAL;
6616	error = sysctl_handle_int(oidp, &diag, 0, req);
6617	if (error || !req->newptr)
6618		return error;
6619	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
6620}
6621
6622static int
6623ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
6624{
6625	struct ath_softc *sc = arg1;
6626	struct ifnet *ifp = sc->sc_ifp;
6627	u_int32_t scale;
6628	int error;
6629
6630	(void) ath_hal_gettpscale(sc->sc_ah, &scale);
6631	error = sysctl_handle_int(oidp, &scale, 0, req);
6632	if (error || !req->newptr)
6633		return error;
6634	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL :
6635	    (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6636}
6637
6638static int
6639ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
6640{
6641	struct ath_softc *sc = arg1;
6642	u_int tpc = ath_hal_gettpc(sc->sc_ah);
6643	int error;
6644
6645	error = sysctl_handle_int(oidp, &tpc, 0, req);
6646	if (error || !req->newptr)
6647		return error;
6648	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
6649}
6650
6651static int
6652ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
6653{
6654	struct ath_softc *sc = arg1;
6655	struct ifnet *ifp = sc->sc_ifp;
6656	struct ath_hal *ah = sc->sc_ah;
6657	u_int rfkill = ath_hal_getrfkill(ah);
6658	int error;
6659
6660	error = sysctl_handle_int(oidp, &rfkill, 0, req);
6661	if (error || !req->newptr)
6662		return error;
6663	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
6664		return 0;
6665	if (!ath_hal_setrfkill(ah, rfkill))
6666		return EINVAL;
6667	return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6668}
6669
6670static int
6671ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
6672{
6673	struct ath_softc *sc = arg1;
6674	u_int rfsilent;
6675	int error;
6676
6677	(void) ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
6678	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
6679	if (error || !req->newptr)
6680		return error;
6681	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
6682		return EINVAL;
6683	sc->sc_rfsilentpin = rfsilent & 0x1c;
6684	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
6685	return 0;
6686}
6687
6688static int
6689ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
6690{
6691	struct ath_softc *sc = arg1;
6692	u_int32_t tpack;
6693	int error;
6694
6695	(void) ath_hal_gettpack(sc->sc_ah, &tpack);
6696	error = sysctl_handle_int(oidp, &tpack, 0, req);
6697	if (error || !req->newptr)
6698		return error;
6699	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
6700}
6701
6702static int
6703ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
6704{
6705	struct ath_softc *sc = arg1;
6706	u_int32_t tpcts;
6707	int error;
6708
6709	(void) ath_hal_gettpcts(sc->sc_ah, &tpcts);
6710	error = sysctl_handle_int(oidp, &tpcts, 0, req);
6711	if (error || !req->newptr)
6712		return error;
6713	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
6714}
6715
6716static int
6717ath_sysctl_intmit(SYSCTL_HANDLER_ARGS)
6718{
6719	struct ath_softc *sc = arg1;
6720	int intmit, error;
6721
6722	intmit = ath_hal_getintmit(sc->sc_ah);
6723	error = sysctl_handle_int(oidp, &intmit, 0, req);
6724	if (error || !req->newptr)
6725		return error;
6726	return !ath_hal_setintmit(sc->sc_ah, intmit) ? EINVAL : 0;
6727}
6728
6729static void
6730ath_sysctlattach(struct ath_softc *sc)
6731{
6732	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
6733	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
6734	struct ath_hal *ah = sc->sc_ah;
6735
6736	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6737		"countrycode", CTLFLAG_RD, &sc->sc_eecc, 0,
6738		"EEPROM country code");
6739	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6740		"regdomain", CTLFLAG_RD, &sc->sc_eerd, 0,
6741		"EEPROM regdomain code");
6742#ifdef	ATH_DEBUG
6743	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6744		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
6745		"control debugging printfs");
6746#endif
6747	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6748		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6749		ath_sysctl_slottime, "I", "802.11 slot time (us)");
6750	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6751		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6752		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
6753	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6754		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6755		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
6756	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6757		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6758		ath_sysctl_softled, "I", "enable/disable software LED support");
6759	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6760		"ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6761		ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
6762	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6763		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
6764		"setting to turn LED on");
6765	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6766		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
6767		"idle time for inactivity LED (ticks)");
6768	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6769		"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6770		ath_sysctl_txantenna, "I", "antenna switch");
6771	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6772		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6773		ath_sysctl_rxantenna, "I", "default/rx antenna");
6774	if (ath_hal_hasdiversity(ah))
6775		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6776			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6777			ath_sysctl_diversity, "I", "antenna diversity");
6778	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
6779	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6780		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
6781		"tx descriptor batching");
6782	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6783		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6784		ath_sysctl_diag, "I", "h/w diagnostic control");
6785	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6786		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6787		ath_sysctl_tpscale, "I", "tx power scaling");
6788	if (ath_hal_hastpc(ah)) {
6789		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6790			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6791			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
6792		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6793			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6794			ath_sysctl_tpack, "I", "tx power for ack frames");
6795		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6796			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6797			ath_sysctl_tpcts, "I", "tx power for cts frames");
6798	}
6799	if (ath_hal_hasfastframes(sc->sc_ah)) {
6800		sc->sc_fftxqmin = ATH_FF_TXQMIN;
6801		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6802			"fftxqmin", CTLFLAG_RW, &sc->sc_fftxqmin, 0,
6803			"min frames before fast-frame staging");
6804		sc->sc_fftxqmax = ATH_FF_TXQMAX;
6805		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6806			"fftxqmax", CTLFLAG_RW, &sc->sc_fftxqmax, 0,
6807			"max queued frames before tail drop");
6808	}
6809	if (ath_hal_hasrfsilent(ah)) {
6810		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6811			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6812			ath_sysctl_rfsilent, "I", "h/w RF silent config");
6813		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6814			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6815			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
6816	}
6817	if (ath_hal_hasintmit(ah)) {
6818		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6819			"intmit", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6820			ath_sysctl_intmit, "I", "interference mitigation");
6821	}
6822	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
6823	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6824		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
6825		"mask of error frames to pass when monitoring");
6826}
6827
6828static void
6829ath_bpfattach(struct ath_softc *sc)
6830{
6831	struct ifnet *ifp = sc->sc_ifp;
6832
6833	bpfattach(ifp, DLT_IEEE802_11_RADIO,
6834		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th));
6835	/*
6836	 * Initialize constant fields.
6837	 * XXX make header lengths a multiple of 32-bits so subsequent
6838	 *     headers are properly aligned; this is a kludge to keep
6839	 *     certain applications happy.
6840	 *
6841	 * NB: the channel is setup each time we transition to the
6842	 *     RUN state to avoid filling it in for each frame.
6843	 */
6844	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
6845	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
6846	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
6847
6848	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
6849	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
6850	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
6851}
6852
6853static int
6854ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
6855	struct ath_buf *bf, struct mbuf *m0,
6856	const struct ieee80211_bpf_params *params)
6857{
6858	struct ifnet *ifp = sc->sc_ifp;
6859	struct ieee80211com *ic = ifp->if_l2com;
6860	struct ath_hal *ah = sc->sc_ah;
6861	int error, ismcast, ismrr;
6862	int hdrlen, pktlen, try0, txantenna;
6863	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
6864	struct ieee80211_frame *wh;
6865	u_int flags, ctsduration;
6866	HAL_PKT_TYPE atype;
6867	const HAL_RATE_TABLE *rt;
6868	struct ath_desc *ds;
6869	u_int pri;
6870
6871	wh = mtod(m0, struct ieee80211_frame *);
6872	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
6873	hdrlen = ieee80211_anyhdrsize(wh);
6874	/*
6875	 * Packet length must not include any
6876	 * pad bytes; deduct them here.
6877	 */
6878	/* XXX honor IEEE80211_BPF_DATAPAD */
6879	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
6880
6881	error = ath_tx_dmasetup(sc, bf, m0);
6882	if (error != 0)
6883		return error;
6884	m0 = bf->bf_m;				/* NB: may have changed */
6885	wh = mtod(m0, struct ieee80211_frame *);
6886	bf->bf_node = ni;			/* NB: held reference */
6887
6888	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
6889	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
6890	if (params->ibp_flags & IEEE80211_BPF_RTS)
6891		flags |= HAL_TXDESC_RTSENA;
6892	else if (params->ibp_flags & IEEE80211_BPF_CTS)
6893		flags |= HAL_TXDESC_CTSENA;
6894	/* XXX leave ismcast to injector? */
6895	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
6896		flags |= HAL_TXDESC_NOACK;
6897
6898	rt = sc->sc_currates;
6899	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
6900	rix = ath_tx_findrix(rt, params->ibp_rate0);
6901	txrate = rt->info[rix].rateCode;
6902	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6903		txrate |= rt->info[rix].shortPreamble;
6904	sc->sc_txrix = rix;
6905	try0 = params->ibp_try0;
6906	ismrr = (params->ibp_try1 != 0);
6907	txantenna = params->ibp_pri >> 2;
6908	if (txantenna == 0)			/* XXX? */
6909		txantenna = sc->sc_txantenna;
6910	ctsduration = 0;
6911	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
6912		cix = ath_tx_findrix(rt, params->ibp_ctsrate);
6913		ctsrate = rt->info[cix].rateCode;
6914		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
6915			ctsrate |= rt->info[cix].shortPreamble;
6916			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6917				ctsduration += rt->info[cix].spAckDuration;
6918			ctsduration += ath_hal_computetxtime(ah,
6919				rt, pktlen, rix, AH_TRUE);
6920			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6921				ctsduration += rt->info[rix].spAckDuration;
6922		} else {
6923			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6924				ctsduration += rt->info[cix].lpAckDuration;
6925			ctsduration += ath_hal_computetxtime(ah,
6926				rt, pktlen, rix, AH_FALSE);
6927			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6928				ctsduration += rt->info[rix].lpAckDuration;
6929		}
6930		ismrr = 0;			/* XXX */
6931	} else
6932		ctsrate = 0;
6933	pri = params->ibp_pri & 3;
6934	/*
6935	 * NB: we mark all packets as type PSPOLL so the h/w won't
6936	 * set the sequence number, duration, etc.
6937	 */
6938	atype = HAL_PKT_TYPE_PSPOLL;
6939
6940	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
6941		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
6942			sc->sc_hwmap[rix].ieeerate, -1);
6943
6944	if (bpf_peers_present(ifp->if_bpf)) {
6945		u_int64_t tsf = ath_hal_gettsf64(ah);
6946
6947		sc->sc_tx_th.wt_tsf = htole64(tsf);
6948		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
6949		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
6950			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
6951		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
6952		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
6953		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
6954
6955		bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
6956	}
6957
6958	/*
6959	 * Formulate first tx descriptor with tx controls.
6960	 */
6961	ds = bf->bf_desc;
6962	/* XXX check return value? */
6963	ath_hal_setuptxdesc(ah, ds
6964		, pktlen		/* packet length */
6965		, hdrlen		/* header length */
6966		, atype			/* Atheros packet type */
6967		, params->ibp_power	/* txpower */
6968		, txrate, try0		/* series 0 rate/tries */
6969		, HAL_TXKEYIX_INVALID	/* key cache index */
6970		, txantenna		/* antenna mode */
6971		, flags			/* flags */
6972		, ctsrate		/* rts/cts rate */
6973		, ctsduration		/* rts/cts duration */
6974	);
6975	bf->bf_txflags = flags;
6976
6977	if (ismrr) {
6978		rix = ath_tx_findrix(rt, params->ibp_rate1);
6979		rate1 = rt->info[rix].rateCode;
6980		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6981			rate1 |= rt->info[rix].shortPreamble;
6982		if (params->ibp_try2) {
6983			rix = ath_tx_findrix(rt, params->ibp_rate2);
6984			rate2 = rt->info[rix].rateCode;
6985			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6986				rate2 |= rt->info[rix].shortPreamble;
6987		} else
6988			rate2 = 0;
6989		if (params->ibp_try3) {
6990			rix = ath_tx_findrix(rt, params->ibp_rate3);
6991			rate3 = rt->info[rix].rateCode;
6992			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6993				rate3 |= rt->info[rix].shortPreamble;
6994		} else
6995			rate3 = 0;
6996		ath_hal_setupxtxdesc(ah, ds
6997			, rate1, params->ibp_try1	/* series 1 */
6998			, rate2, params->ibp_try2	/* series 2 */
6999			, rate3, params->ibp_try3	/* series 3 */
7000		);
7001	}
7002
7003	/* NB: no buffered multicast in power save support */
7004	ath_tx_handoff(sc, sc->sc_ac2q[pri], bf);
7005	return 0;
7006}
7007
7008static int
7009ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
7010	const struct ieee80211_bpf_params *params)
7011{
7012	struct ieee80211com *ic = ni->ni_ic;
7013	struct ifnet *ifp = ic->ic_ifp;
7014	struct ath_softc *sc = ifp->if_softc;
7015	struct ath_buf *bf;
7016
7017	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
7018		ieee80211_free_node(ni);
7019		m_freem(m);
7020		return ENETDOWN;
7021	}
7022	/*
7023	 * Grab a TX buffer and associated resources.
7024	 */
7025	ATH_TXBUF_LOCK(sc);
7026	bf = STAILQ_FIRST(&sc->sc_txbuf);
7027	if (bf != NULL)
7028		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
7029	ATH_TXBUF_UNLOCK(sc);
7030	if (bf == NULL) {
7031		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
7032			__func__);
7033		sc->sc_stats.ast_tx_qstop++;
7034		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7035		ieee80211_free_node(ni);
7036		m_freem(m);
7037		return ENOBUFS;
7038	}
7039
7040	ifp->if_opackets++;
7041	sc->sc_stats.ast_tx_raw++;
7042
7043	if (params == NULL) {
7044		/*
7045		 * Legacy path; interpret frame contents to decide
7046		 * precisely how to send the frame.
7047		 */
7048		if (ath_tx_start(sc, ni, bf, m))
7049			goto bad;
7050	} else {
7051		/*
7052		 * Caller supplied explicit parameters to use in
7053		 * sending the frame.
7054		 */
7055		if (ath_tx_raw_start(sc, ni, bf, m, params))
7056			goto bad;
7057	}
7058	ifp->if_timer = 5;
7059
7060	return 0;
7061bad:
7062	ifp->if_oerrors++;
7063	ATH_TXBUF_LOCK(sc);
7064	STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
7065	ATH_TXBUF_UNLOCK(sc);
7066	ieee80211_free_node(ni);
7067	return EIO;		/* XXX */
7068}
7069
7070/*
7071 * Announce various information on device/driver attach.
7072 */
7073static void
7074ath_announce(struct ath_softc *sc)
7075{
7076#define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
7077	struct ifnet *ifp = sc->sc_ifp;
7078	struct ath_hal *ah = sc->sc_ah;
7079	u_int modes, cc;
7080
7081	if_printf(ifp, "mac %d.%d phy %d.%d",
7082		ah->ah_macVersion, ah->ah_macRev,
7083		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
7084	/*
7085	 * Print radio revision(s).  We check the wireless modes
7086	 * to avoid falsely printing revs for inoperable parts.
7087	 * Dual-band radio revs are returned in the 5Ghz rev number.
7088	 */
7089	ath_hal_getcountrycode(ah, &cc);
7090	modes = ath_hal_getwirelessmodes(ah, cc);
7091	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
7092		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
7093			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
7094				ah->ah_analog5GhzRev >> 4,
7095				ah->ah_analog5GhzRev & 0xf,
7096				ah->ah_analog2GhzRev >> 4,
7097				ah->ah_analog2GhzRev & 0xf);
7098		else
7099			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
7100				ah->ah_analog5GhzRev & 0xf);
7101	} else
7102		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
7103			ah->ah_analog5GhzRev & 0xf);
7104	printf("\n");
7105	if (bootverbose) {
7106		int i;
7107		for (i = 0; i <= WME_AC_VO; i++) {
7108			struct ath_txq *txq = sc->sc_ac2q[i];
7109			if_printf(ifp, "Use hw queue %u for %s traffic\n",
7110				txq->axq_qnum, ieee80211_wme_acnames[i]);
7111		}
7112		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
7113			sc->sc_cabq->axq_qnum);
7114		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
7115	}
7116	if (ath_rxbuf != ATH_RXBUF)
7117		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
7118	if (ath_txbuf != ATH_TXBUF)
7119		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
7120#undef HAL_MODE_DUALBAND
7121}
7122