if_ath.c revision 184480
1/*-
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 *
16 * NO WARRANTY
17 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
18 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
19 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
20 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
22 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
25 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
27 * THE POSSIBILITY OF SUCH DAMAGES.
28 */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 184480 2008-10-30 16:22:04Z sam $");
32
33/*
34 * Driver for the Atheros Wireless LAN controller.
35 *
36 * This software is derived from work of Atsushi Onoe; his contribution
37 * is greatly appreciated.
38 */
39
40#include "opt_inet.h"
41#include "opt_ath.h"
42
43#include <sys/param.h>
44#include <sys/systm.h>
45#include <sys/sysctl.h>
46#include <sys/mbuf.h>
47#include <sys/malloc.h>
48#include <sys/lock.h>
49#include <sys/mutex.h>
50#include <sys/kernel.h>
51#include <sys/socket.h>
52#include <sys/sockio.h>
53#include <sys/errno.h>
54#include <sys/callout.h>
55#include <sys/bus.h>
56#include <sys/endian.h>
57#include <sys/kthread.h>
58#include <sys/taskqueue.h>
59
60#include <machine/bus.h>
61
62#include <net/if.h>
63#include <net/if_dl.h>
64#include <net/if_media.h>
65#include <net/if_types.h>
66#include <net/if_arp.h>
67#include <net/ethernet.h>
68#include <net/if_llc.h>
69
70#include <net80211/ieee80211_var.h>
71
72#include <net/bpf.h>
73
74#ifdef INET
75#include <netinet/in.h>
76#include <netinet/if_ether.h>
77#endif
78
79#include <dev/ath/if_athvar.h>
80#include <contrib/dev/ath/ah_desc.h>
81#include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
82
83#ifdef ATH_TX99_DIAG
84#include <dev/ath/ath_tx99/ath_tx99.h>
85#endif
86
87/*
88 * We require a HAL w/ the changes for split tx/rx MIC.
89 */
90CTASSERT(HAL_ABI_VERSION > 0x06052200);
91
92/*
93 * ATH_BCBUF determines the number of vap's that can transmit
94 * beacons and also (currently) the number of vap's that can
95 * have unique mac addresses/bssid.  When staggering beacons
96 * 4 is probably a good max as otherwise the beacons become
97 * very closely spaced and there is limited time for cab q traffic
98 * to go out.  You can burst beacons instead but that is not good
99 * for stations in power save and at some point you really want
100 * another radio (and channel).
101 *
102 * The limit on the number of mac addresses is tied to our use of
103 * the U/L bit and tracking addresses in a byte; it would be
104 * worthwhile to allow more for applications like proxy sta.
105 */
106CTASSERT(ATH_BCBUF <= 8);
107
108/* unaligned little endian access */
109#define LE_READ_2(p)							\
110	((u_int16_t)							\
111	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
112#define LE_READ_4(p)							\
113	((u_int32_t)							\
114	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
115	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
116
117#define	CTRY_XR9	5001		/* Ubiquiti XR9 */
118
119static struct ieee80211vap *ath_vap_create(struct ieee80211com *,
120		    const char name[IFNAMSIZ], int unit, int opmode,
121		    int flags, const uint8_t bssid[IEEE80211_ADDR_LEN],
122		    const uint8_t mac[IEEE80211_ADDR_LEN]);
123static void	ath_vap_delete(struct ieee80211vap *);
124static void	ath_init(void *);
125static void	ath_stop_locked(struct ifnet *);
126static void	ath_stop(struct ifnet *);
127static void	ath_start(struct ifnet *);
128static int	ath_reset(struct ifnet *);
129static int	ath_reset_vap(struct ieee80211vap *, u_long);
130static int	ath_media_change(struct ifnet *);
131static void	ath_watchdog(struct ifnet *);
132static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
133static void	ath_fatal_proc(void *, int);
134static void	ath_rxorn_proc(void *, int);
135static void	ath_bmiss_vap(struct ieee80211vap *);
136static void	ath_bmiss_proc(void *, int);
137static int	ath_keyset(struct ath_softc *, const struct ieee80211_key *,
138			struct ieee80211_node *);
139static int	ath_key_alloc(struct ieee80211vap *,
140			struct ieee80211_key *,
141			ieee80211_keyix *, ieee80211_keyix *);
142static int	ath_key_delete(struct ieee80211vap *,
143			const struct ieee80211_key *);
144static int	ath_key_set(struct ieee80211vap *, const struct ieee80211_key *,
145			const u_int8_t mac[IEEE80211_ADDR_LEN]);
146static void	ath_key_update_begin(struct ieee80211vap *);
147static void	ath_key_update_end(struct ieee80211vap *);
148static void	ath_update_mcast(struct ifnet *);
149static void	ath_update_promisc(struct ifnet *);
150static void	ath_mode_init(struct ath_softc *);
151static void	ath_setslottime(struct ath_softc *);
152static void	ath_updateslot(struct ifnet *);
153static int	ath_beaconq_setup(struct ath_hal *);
154static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
155static void	ath_beacon_update(struct ieee80211vap *, int item);
156static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
157static void	ath_beacon_proc(void *, int);
158static struct ath_buf *ath_beacon_generate(struct ath_softc *,
159			struct ieee80211vap *);
160static void	ath_bstuck_proc(void *, int);
161static void	ath_beacon_return(struct ath_softc *, struct ath_buf *);
162static void	ath_beacon_free(struct ath_softc *);
163static void	ath_beacon_config(struct ath_softc *, struct ieee80211vap *);
164static void	ath_descdma_cleanup(struct ath_softc *sc,
165			struct ath_descdma *, ath_bufhead *);
166static int	ath_desc_alloc(struct ath_softc *);
167static void	ath_desc_free(struct ath_softc *);
168static struct ieee80211_node *ath_node_alloc(struct ieee80211vap *,
169			const uint8_t [IEEE80211_ADDR_LEN]);
170static void	ath_node_free(struct ieee80211_node *);
171static void	ath_node_getsignal(const struct ieee80211_node *,
172			int8_t *, int8_t *);
173static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
174static void	ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
175			int subtype, int rssi, int noise, u_int32_t rstamp);
176static void	ath_setdefantenna(struct ath_softc *, u_int);
177static void	ath_rx_proc(void *, int);
178static void	ath_txq_init(struct ath_softc *sc, struct ath_txq *, int);
179static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
180static int	ath_tx_setup(struct ath_softc *, int, int);
181static int	ath_wme_update(struct ieee80211com *);
182static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
183static void	ath_tx_cleanup(struct ath_softc *);
184static void	ath_freetx(struct mbuf *);
185static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
186			     struct ath_buf *, struct mbuf *);
187static void	ath_tx_proc_q0(void *, int);
188static void	ath_tx_proc_q0123(void *, int);
189static void	ath_tx_proc(void *, int);
190static void	ath_tx_draintxq(struct ath_softc *, struct ath_txq *);
191static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
192static void	ath_draintxq(struct ath_softc *);
193static void	ath_stoprecv(struct ath_softc *);
194static int	ath_startrecv(struct ath_softc *);
195static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
196static void	ath_scan_start(struct ieee80211com *);
197static void	ath_scan_end(struct ieee80211com *);
198static void	ath_set_channel(struct ieee80211com *);
199static void	ath_calibrate(void *);
200static int	ath_newstate(struct ieee80211vap *, enum ieee80211_state, int);
201static void	ath_setup_stationkey(struct ieee80211_node *);
202static void	ath_newassoc(struct ieee80211_node *, int);
203static int	ath_setregdomain(struct ieee80211com *,
204		    struct ieee80211_regdomain *, int,
205		    struct ieee80211_channel []);
206static void	ath_getradiocaps(struct ieee80211com *, int *,
207		    struct ieee80211_channel []);
208static int	ath_getchannels(struct ath_softc *);
209static void	ath_led_event(struct ath_softc *, int);
210
211static int	ath_rate_setup(struct ath_softc *, u_int mode);
212static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
213
214static void	ath_sysctlattach(struct ath_softc *);
215static int	ath_raw_xmit(struct ieee80211_node *,
216			struct mbuf *, const struct ieee80211_bpf_params *);
217static void	ath_bpfattach(struct ath_softc *);
218static void	ath_announce(struct ath_softc *);
219
220SYSCTL_DECL(_hw_ath);
221
222/* XXX validate sysctl values */
223static	int ath_calinterval = 30;		/* calibrate every 30 secs */
224SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
225	    0, "chip calibration interval (secs)");
226
227static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
228SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RW, &ath_rxbuf,
229	    0, "rx buffers allocated");
230TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
231static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
232SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RW, &ath_txbuf,
233	    0, "tx buffers allocated");
234TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
235
236#ifdef ATH_DEBUG
237enum {
238	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
239	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
240	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
241	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
242	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
243	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
244	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
245	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
246	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
247	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
248	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
249	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
250	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
251	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
252	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
253	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
254	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
255	ATH_DEBUG_LED		= 0x00100000,	/* led management */
256	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
257	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
258	ATH_DEBUG_REGDOMAIN	= 0x02000000,	/* regulatory processing */
259	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
260	ATH_DEBUG_ANY		= 0xffffffff
261};
262static	int ath_debug = 0;
263SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
264	    0, "control debugging printfs");
265TUNABLE_INT("hw.ath.debug", &ath_debug);
266
267#define	IFF_DUMPPKTS(sc, m) \
268	((sc->sc_debug & (m)) || \
269	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
270#define	DPRINTF(sc, m, fmt, ...) do {				\
271	if (sc->sc_debug & (m))					\
272		printf(fmt, __VA_ARGS__);			\
273} while (0)
274#define	KEYPRINTF(sc, ix, hk, mac) do {				\
275	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
276		ath_keyprint(sc, __func__, ix, hk, mac);	\
277} while (0)
278static	void ath_printrxbuf(const struct ath_buf *bf, u_int ix, int);
279static	void ath_printtxbuf(const struct ath_buf *bf, u_int qnum, u_int ix, int done);
280#else
281#define	IFF_DUMPPKTS(sc, m) \
282	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
283#define	DPRINTF(sc, m, fmt, ...) do {				\
284	(void) sc;						\
285} while (0)
286#define	KEYPRINTF(sc, k, ix, mac) do {				\
287	(void) sc;						\
288} while (0)
289#endif
290
291MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
292
293int
294ath_attach(u_int16_t devid, struct ath_softc *sc)
295{
296	struct ifnet *ifp;
297	struct ieee80211com *ic;
298	struct ath_hal *ah = NULL;
299	HAL_STATUS status;
300	int error = 0, i;
301	u_int wmodes;
302
303	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
304
305	ifp = sc->sc_ifp = if_alloc(IFT_IEEE80211);
306	if (ifp == NULL) {
307		device_printf(sc->sc_dev, "can not if_alloc()\n");
308		error = ENOSPC;
309		goto bad;
310	}
311	ic = ifp->if_l2com;
312
313	/* set these up early for if_printf use */
314	if_initname(ifp, device_get_name(sc->sc_dev),
315		device_get_unit(sc->sc_dev));
316
317	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
318	if (ah == NULL) {
319		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
320			status);
321		error = ENXIO;
322		goto bad;
323	}
324	if (ah->ah_abi != HAL_ABI_VERSION) {
325		if_printf(ifp, "HAL ABI mismatch detected "
326			"(HAL:0x%x != driver:0x%x)\n",
327			ah->ah_abi, HAL_ABI_VERSION);
328		error = ENXIO;
329		goto bad;
330	}
331	sc->sc_ah = ah;
332	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
333#ifdef	ATH_DEBUG
334	sc->sc_debug = ath_debug;
335#endif
336
337	/*
338	 * Check if the MAC has multi-rate retry support.
339	 * We do this by trying to setup a fake extended
340	 * descriptor.  MAC's that don't have support will
341	 * return false w/o doing anything.  MAC's that do
342	 * support it will return true w/o doing anything.
343	 */
344	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
345
346	/*
347	 * Check if the device has hardware counters for PHY
348	 * errors.  If so we need to enable the MIB interrupt
349	 * so we can act on stat triggers.
350	 */
351	if (ath_hal_hwphycounters(ah))
352		sc->sc_needmib = 1;
353
354	/*
355	 * Get the hardware key cache size.
356	 */
357	sc->sc_keymax = ath_hal_keycachesize(ah);
358	if (sc->sc_keymax > ATH_KEYMAX) {
359		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
360			ATH_KEYMAX, sc->sc_keymax);
361		sc->sc_keymax = ATH_KEYMAX;
362	}
363	/*
364	 * Reset the key cache since some parts do not
365	 * reset the contents on initial power up.
366	 */
367	for (i = 0; i < sc->sc_keymax; i++)
368		ath_hal_keyreset(ah, i);
369
370	/*
371	 * Collect the default channel list.
372	 */
373	error = ath_getchannels(sc);
374	if (error != 0)
375		goto bad;
376
377	/*
378	 * Setup rate tables for all potential media types.
379	 */
380	ath_rate_setup(sc, IEEE80211_MODE_11A);
381	ath_rate_setup(sc, IEEE80211_MODE_11B);
382	ath_rate_setup(sc, IEEE80211_MODE_11G);
383	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
384	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
385	ath_rate_setup(sc, IEEE80211_MODE_STURBO_A);
386	ath_rate_setup(sc, IEEE80211_MODE_11NA);
387	ath_rate_setup(sc, IEEE80211_MODE_11NG);
388	ath_rate_setup(sc, IEEE80211_MODE_HALF);
389	ath_rate_setup(sc, IEEE80211_MODE_QUARTER);
390
391	/* NB: setup here so ath_rate_update is happy */
392	ath_setcurmode(sc, IEEE80211_MODE_11A);
393
394	/*
395	 * Allocate tx+rx descriptors and populate the lists.
396	 */
397	error = ath_desc_alloc(sc);
398	if (error != 0) {
399		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
400		goto bad;
401	}
402	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
403
404	ATH_TXBUF_LOCK_INIT(sc);
405
406	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
407		taskqueue_thread_enqueue, &sc->sc_tq);
408	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
409		"%s taskq", ifp->if_xname);
410
411	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
412	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
413	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
414	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
415
416	/*
417	 * Allocate hardware transmit queues: one queue for
418	 * beacon frames and one data queue for each QoS
419	 * priority.  Note that the hal handles reseting
420	 * these queues at the needed time.
421	 *
422	 * XXX PS-Poll
423	 */
424	sc->sc_bhalq = ath_beaconq_setup(ah);
425	if (sc->sc_bhalq == (u_int) -1) {
426		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
427		error = EIO;
428		goto bad2;
429	}
430	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
431	if (sc->sc_cabq == NULL) {
432		if_printf(ifp, "unable to setup CAB xmit queue!\n");
433		error = EIO;
434		goto bad2;
435	}
436	/* NB: insure BK queue is the lowest priority h/w queue */
437	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
438		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
439			ieee80211_wme_acnames[WME_AC_BK]);
440		error = EIO;
441		goto bad2;
442	}
443	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
444	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
445	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
446		/*
447		 * Not enough hardware tx queues to properly do WME;
448		 * just punt and assign them all to the same h/w queue.
449		 * We could do a better job of this if, for example,
450		 * we allocate queues when we switch from station to
451		 * AP mode.
452		 */
453		if (sc->sc_ac2q[WME_AC_VI] != NULL)
454			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
455		if (sc->sc_ac2q[WME_AC_BE] != NULL)
456			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
457		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
458		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
459		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
460	}
461
462	/*
463	 * Special case certain configurations.  Note the
464	 * CAB queue is handled by these specially so don't
465	 * include them when checking the txq setup mask.
466	 */
467	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
468	case 0x01:
469		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
470		break;
471	case 0x0f:
472		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
473		break;
474	default:
475		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
476		break;
477	}
478
479	/*
480	 * Setup rate control.  Some rate control modules
481	 * call back to change the anntena state so expose
482	 * the necessary entry points.
483	 * XXX maybe belongs in struct ath_ratectrl?
484	 */
485	sc->sc_setdefantenna = ath_setdefantenna;
486	sc->sc_rc = ath_rate_attach(sc);
487	if (sc->sc_rc == NULL) {
488		error = EIO;
489		goto bad2;
490	}
491
492	sc->sc_blinking = 0;
493	sc->sc_ledstate = 1;
494	sc->sc_ledon = 0;			/* low true */
495	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
496	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
497	/*
498	 * Auto-enable soft led processing for IBM cards and for
499	 * 5211 minipci cards.  Users can also manually enable/disable
500	 * support with a sysctl.
501	 */
502	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
503	if (sc->sc_softled) {
504		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
505		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
506	}
507
508	ifp->if_softc = sc;
509	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
510	ifp->if_start = ath_start;
511	ifp->if_watchdog = ath_watchdog;
512	ifp->if_ioctl = ath_ioctl;
513	ifp->if_init = ath_init;
514	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
515	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
516	IFQ_SET_READY(&ifp->if_snd);
517
518	ic->ic_ifp = ifp;
519	/* XXX not right but it's not used anywhere important */
520	ic->ic_phytype = IEEE80211_T_OFDM;
521	ic->ic_opmode = IEEE80211_M_STA;
522	ic->ic_caps =
523		  IEEE80211_C_STA		/* station mode */
524		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
525		| IEEE80211_C_HOSTAP		/* hostap mode */
526		| IEEE80211_C_MONITOR		/* monitor mode */
527		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
528		| IEEE80211_C_WDS		/* 4-address traffic works */
529		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
530		| IEEE80211_C_SHSLOT		/* short slot time supported */
531		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
532		| IEEE80211_C_BGSCAN		/* capable of bg scanning */
533		| IEEE80211_C_TXFRAG		/* handle tx frags */
534		;
535	/*
536	 * Query the hal to figure out h/w crypto support.
537	 */
538	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
539		ic->ic_cryptocaps |= IEEE80211_CRYPTO_WEP;
540	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
541		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_OCB;
542	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
543		ic->ic_cryptocaps |= IEEE80211_CRYPTO_AES_CCM;
544	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
545		ic->ic_cryptocaps |= IEEE80211_CRYPTO_CKIP;
546	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
547		ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIP;
548		/*
549		 * Check if h/w does the MIC and/or whether the
550		 * separate key cache entries are required to
551		 * handle both tx+rx MIC keys.
552		 */
553		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
554			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
555		/*
556		 * If the h/w supports storing tx+rx MIC keys
557		 * in one cache slot automatically enable use.
558		 */
559		if (ath_hal_hastkipsplit(ah) ||
560		    !ath_hal_settkipsplit(ah, AH_FALSE))
561			sc->sc_splitmic = 1;
562		/*
563		 * If the h/w can do TKIP MIC together with WME then
564		 * we use it; otherwise we force the MIC to be done
565		 * in software by the net80211 layer.
566		 */
567		if (ath_hal_haswmetkipmic(ah))
568			sc->sc_wmetkipmic = 1;
569	}
570	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
571	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
572	/*
573	 * Mark key cache slots associated with global keys
574	 * as in use.  If we knew TKIP was not to be used we
575	 * could leave the +32, +64, and +32+64 slots free.
576	 */
577	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
578		setbit(sc->sc_keymap, i);
579		setbit(sc->sc_keymap, i+64);
580		if (sc->sc_splitmic) {
581			setbit(sc->sc_keymap, i+32);
582			setbit(sc->sc_keymap, i+32+64);
583		}
584	}
585	/*
586	 * TPC support can be done either with a global cap or
587	 * per-packet support.  The latter is not available on
588	 * all parts.  We're a bit pedantic here as all parts
589	 * support a global cap.
590	 */
591	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
592		ic->ic_caps |= IEEE80211_C_TXPMGT;
593
594	/*
595	 * Mark WME capability only if we have sufficient
596	 * hardware queues to do proper priority scheduling.
597	 */
598	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
599		ic->ic_caps |= IEEE80211_C_WME;
600	/*
601	 * Check for misc other capabilities.
602	 */
603	if (ath_hal_hasbursting(ah))
604		ic->ic_caps |= IEEE80211_C_BURST;
605	sc->sc_hasbmask = ath_hal_hasbssidmask(ah);
606	sc->sc_hastsfadd = ath_hal_hastsfadjust(ah);
607	if (ath_hal_hasfastframes(ah))
608		ic->ic_caps |= IEEE80211_C_FF;
609	wmodes = ath_hal_getwirelessmodes(ah, ic->ic_regdomain.country);
610	if (wmodes & (HAL_MODE_108G|HAL_MODE_TURBO))
611		ic->ic_caps |= IEEE80211_C_TURBOP;
612
613	/*
614	 * Indicate we need the 802.11 header padded to a
615	 * 32-bit boundary for 4-address and QoS frames.
616	 */
617	ic->ic_flags |= IEEE80211_F_DATAPAD;
618
619	/*
620	 * Query the hal about antenna support.
621	 */
622	sc->sc_defant = ath_hal_getdefantenna(ah);
623
624	/*
625	 * Not all chips have the VEOL support we want to
626	 * use with IBSS beacons; check here for it.
627	 */
628	sc->sc_hasveol = ath_hal_hasveol(ah);
629
630	/* get mac address from hardware */
631	ath_hal_getmac(ah, ic->ic_myaddr);
632	if (sc->sc_hasbmask)
633		ath_hal_getbssidmask(ah, sc->sc_hwbssidmask);
634
635	/* NB: used to size node table key mapping array */
636	ic->ic_max_keyix = sc->sc_keymax;
637	/* call MI attach routine. */
638	ieee80211_ifattach(ic);
639	ic->ic_setregdomain = ath_setregdomain;
640	ic->ic_getradiocaps = ath_getradiocaps;
641	sc->sc_opmode = HAL_M_STA;
642
643	/* override default methods */
644	ic->ic_newassoc = ath_newassoc;
645	ic->ic_updateslot = ath_updateslot;
646	ic->ic_wme.wme_update = ath_wme_update;
647	ic->ic_vap_create = ath_vap_create;
648	ic->ic_vap_delete = ath_vap_delete;
649	ic->ic_raw_xmit = ath_raw_xmit;
650	ic->ic_update_mcast = ath_update_mcast;
651	ic->ic_update_promisc = ath_update_promisc;
652	ic->ic_node_alloc = ath_node_alloc;
653	sc->sc_node_free = ic->ic_node_free;
654	ic->ic_node_free = ath_node_free;
655	ic->ic_node_getsignal = ath_node_getsignal;
656	ic->ic_scan_start = ath_scan_start;
657	ic->ic_scan_end = ath_scan_end;
658	ic->ic_set_channel = ath_set_channel;
659
660	ath_bpfattach(sc);
661	/*
662	 * Setup dynamic sysctl's now that country code and
663	 * regdomain are available from the hal.
664	 */
665	ath_sysctlattach(sc);
666
667	if (bootverbose)
668		ieee80211_announce(ic);
669	ath_announce(sc);
670	return 0;
671bad2:
672	ath_tx_cleanup(sc);
673	ath_desc_free(sc);
674bad:
675	if (ah)
676		ath_hal_detach(ah);
677	if (ifp != NULL)
678		if_free(ifp);
679	sc->sc_invalid = 1;
680	return error;
681}
682
683int
684ath_detach(struct ath_softc *sc)
685{
686	struct ifnet *ifp = sc->sc_ifp;
687
688	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
689		__func__, ifp->if_flags);
690
691	/*
692	 * NB: the order of these is important:
693	 * o stop the chip so no more interrupts will fire
694	 * o call the 802.11 layer before detaching the hal to
695	 *   insure callbacks into the driver to delete global
696	 *   key cache entries can be handled
697	 * o free the taskqueue which drains any pending tasks
698	 * o reclaim the bpf tap now that we know nothing will use
699	 *   it (e.g. rx processing from the task q thread)
700	 * o reclaim the tx queue data structures after calling
701	 *   the 802.11 layer as we'll get called back to reclaim
702	 *   node state and potentially want to use them
703	 * o to cleanup the tx queues the hal is called, so detach
704	 *   it last
705	 * Other than that, it's straightforward...
706	 */
707	ath_stop(ifp);
708	ieee80211_ifdetach(ifp->if_l2com);
709	taskqueue_free(sc->sc_tq);
710	bpfdetach(ifp);
711#ifdef ATH_TX99_DIAG
712	if (sc->sc_tx99 != NULL)
713		sc->sc_tx99->detach(sc->sc_tx99);
714#endif
715	ath_rate_detach(sc->sc_rc);
716	ath_desc_free(sc);
717	ath_tx_cleanup(sc);
718	ath_hal_detach(sc->sc_ah);	/* NB: sets chip in full sleep */
719	if_free(ifp);
720
721	return 0;
722}
723
724/*
725 * MAC address handling for multiple BSS on the same radio.
726 * The first vap uses the MAC address from the EEPROM.  For
727 * subsequent vap's we set the U/L bit (bit 1) in the MAC
728 * address and use the next six bits as an index.
729 */
730static void
731assign_address(struct ath_softc *sc, uint8_t mac[IEEE80211_ADDR_LEN], int clone)
732{
733	int i;
734
735	if (clone && sc->sc_hasbmask) {
736		/* NB: we only do this if h/w supports multiple bssid */
737		for (i = 0; i < 8; i++)
738			if ((sc->sc_bssidmask & (1<<i)) == 0)
739				break;
740		if (i != 0)
741			mac[0] |= (i << 2)|0x2;
742	} else
743		i = 0;
744	sc->sc_bssidmask |= 1<<i;
745	sc->sc_hwbssidmask[0] &= ~mac[0];
746	if (i == 0)
747		sc->sc_nbssid0++;
748}
749
750static void
751reclaim_address(struct ath_softc *sc, const uint8_t mac[IEEE80211_ADDR_LEN])
752{
753	int i = mac[0] >> 2;
754	uint8_t mask;
755
756	if (i != 0 || --sc->sc_nbssid0 == 0) {
757		sc->sc_bssidmask &= ~(1<<i);
758		/* recalculate bssid mask from remaining addresses */
759		mask = 0xff;
760		for (i = 1; i < 8; i++)
761			if (sc->sc_bssidmask & (1<<i))
762				mask &= ~((i<<2)|0x2);
763		sc->sc_hwbssidmask[0] |= mask;
764	}
765}
766
767/*
768 * Assign a beacon xmit slot.  We try to space out
769 * assignments so when beacons are staggered the
770 * traffic coming out of the cab q has maximal time
771 * to go out before the next beacon is scheduled.
772 */
773static int
774assign_bslot(struct ath_softc *sc)
775{
776	u_int slot, free;
777
778	free = 0;
779	for (slot = 0; slot < ATH_BCBUF; slot++)
780		if (sc->sc_bslot[slot] == NULL) {
781			if (sc->sc_bslot[(slot+1)%ATH_BCBUF] == NULL &&
782			    sc->sc_bslot[(slot-1)%ATH_BCBUF] == NULL)
783				return slot;
784			free = slot;
785			/* NB: keep looking for a double slot */
786		}
787	return free;
788}
789
790static struct ieee80211vap *
791ath_vap_create(struct ieee80211com *ic,
792	const char name[IFNAMSIZ], int unit, int opmode, int flags,
793	const uint8_t bssid[IEEE80211_ADDR_LEN],
794	const uint8_t mac0[IEEE80211_ADDR_LEN])
795{
796	struct ath_softc *sc = ic->ic_ifp->if_softc;
797	struct ath_vap *avp;
798	struct ieee80211vap *vap;
799	uint8_t mac[IEEE80211_ADDR_LEN];
800	int ic_opmode, needbeacon, error;
801
802	avp = (struct ath_vap *) malloc(sizeof(struct ath_vap),
803	    M_80211_VAP, M_WAITOK | M_ZERO);
804	needbeacon = 0;
805	IEEE80211_ADDR_COPY(mac, mac0);
806
807	ATH_LOCK(sc);
808	switch (opmode) {
809	case IEEE80211_M_STA:
810		if (sc->sc_nstavaps != 0) {	/* XXX only 1 sta for now */
811			device_printf(sc->sc_dev, "only 1 sta vap supported\n");
812			goto bad;
813		}
814		if (sc->sc_nvaps) {
815			/*
816			 * When there are multiple vaps we must fall
817			 * back to s/w beacon miss handling.
818			 */
819			flags |= IEEE80211_CLONE_NOBEACONS;
820		}
821		if (flags & IEEE80211_CLONE_NOBEACONS) {
822			sc->sc_swbmiss = 1;
823			ic_opmode = IEEE80211_M_HOSTAP;
824		} else
825			ic_opmode = opmode;
826		break;
827	case IEEE80211_M_IBSS:
828		if (sc->sc_nvaps != 0) {	/* XXX only 1 for now */
829			device_printf(sc->sc_dev,
830			    "only 1 ibss vap supported\n");
831			goto bad;
832		}
833		ic_opmode = opmode;
834		needbeacon = 1;
835		break;
836	case IEEE80211_M_AHDEMO:
837		/* fall thru... */
838	case IEEE80211_M_MONITOR:
839		if (sc->sc_nvaps != 0 && ic->ic_opmode != opmode) {
840			/* XXX not right for monitor mode */
841			ic_opmode = ic->ic_opmode;
842		} else
843			ic_opmode = opmode;
844		break;
845	case IEEE80211_M_HOSTAP:
846		needbeacon = 1;
847		/* fall thru... */
848	case IEEE80211_M_WDS:
849		if (sc->sc_nvaps && ic->ic_opmode == IEEE80211_M_STA) {
850			device_printf(sc->sc_dev,
851			    "wds not supported in sta mode\n");
852			goto bad;
853		}
854		if (opmode == IEEE80211_M_WDS) {
855			/*
856			 * Silently remove any request for a unique
857			 * bssid; WDS vap's always share the local
858			 * mac address.
859			 */
860			flags &= ~IEEE80211_CLONE_BSSID;
861		}
862		ic_opmode = IEEE80211_M_HOSTAP;
863		break;
864	default:
865		device_printf(sc->sc_dev, "unknown opmode %d\n", opmode);
866		goto bad;
867	}
868	/*
869	 * Check that a beacon buffer is available; the code below assumes it.
870	 */
871	if (needbeacon & STAILQ_EMPTY(&sc->sc_bbuf)) {
872		device_printf(sc->sc_dev, "no beacon buffer available\n");
873		goto bad;
874	}
875
876	/* STA, AHDEMO? */
877	if (opmode == IEEE80211_M_HOSTAP) {
878		assign_address(sc, mac, flags & IEEE80211_CLONE_BSSID);
879		ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
880	}
881
882	vap = &avp->av_vap;
883	/* XXX can't hold mutex across if_alloc */
884	ATH_UNLOCK(sc);
885	error = ieee80211_vap_setup(ic, vap, name, unit, opmode, flags,
886	    bssid, mac);
887	ATH_LOCK(sc);
888	if (error != 0) {
889		device_printf(sc->sc_dev, "%s: error %d creating vap\n",
890		    __func__, error);
891		goto bad2;
892	}
893
894	/* h/w crypto support */
895	vap->iv_key_alloc = ath_key_alloc;
896	vap->iv_key_delete = ath_key_delete;
897	vap->iv_key_set = ath_key_set;
898	vap->iv_key_update_begin = ath_key_update_begin;
899	vap->iv_key_update_end = ath_key_update_end;
900
901	/* override various methods */
902	avp->av_recv_mgmt = vap->iv_recv_mgmt;
903	vap->iv_recv_mgmt = ath_recv_mgmt;
904	vap->iv_reset = ath_reset_vap;
905	vap->iv_update_beacon = ath_beacon_update;
906	avp->av_newstate = vap->iv_newstate;
907	vap->iv_newstate = ath_newstate;
908	avp->av_bmiss = vap->iv_bmiss;
909	vap->iv_bmiss = ath_bmiss_vap;
910
911	avp->av_bslot = -1;
912	if (needbeacon) {
913		/*
914		 * Allocate beacon state and setup the q for buffered
915		 * multicast frames.  We know a beacon buffer is
916		 * available because we checked above.
917		 */
918		avp->av_bcbuf = STAILQ_FIRST(&sc->sc_bbuf);
919		STAILQ_REMOVE_HEAD(&sc->sc_bbuf, bf_list);
920		if (opmode != IEEE80211_M_IBSS || !sc->sc_hasveol) {
921			/*
922			 * Assign the vap to a beacon xmit slot.  As above
923			 * this cannot fail to find a free one.
924			 */
925			avp->av_bslot = assign_bslot(sc);
926			KASSERT(sc->sc_bslot[avp->av_bslot] == NULL,
927			    ("beacon slot %u not empty", avp->av_bslot));
928			sc->sc_bslot[avp->av_bslot] = vap;
929			sc->sc_nbcnvaps++;
930		}
931		if (sc->sc_hastsfadd && sc->sc_nbcnvaps > 0) {
932			/*
933			 * Multple vaps are to transmit beacons and we
934			 * have h/w support for TSF adjusting; enable
935			 * use of staggered beacons.
936			 */
937			sc->sc_stagbeacons = 1;
938		}
939		ath_txq_init(sc, &avp->av_mcastq, ATH_TXQ_SWQ);
940	}
941
942	ic->ic_opmode = ic_opmode;
943	if (opmode != IEEE80211_M_WDS) {
944		sc->sc_nvaps++;
945		if (opmode == IEEE80211_M_STA)
946			sc->sc_nstavaps++;
947	}
948	switch (ic_opmode) {
949	case IEEE80211_M_IBSS:
950		sc->sc_opmode = HAL_M_IBSS;
951		break;
952	case IEEE80211_M_STA:
953		sc->sc_opmode = HAL_M_STA;
954		break;
955	case IEEE80211_M_AHDEMO:
956	case IEEE80211_M_HOSTAP:
957		sc->sc_opmode = HAL_M_HOSTAP;
958		break;
959	case IEEE80211_M_MONITOR:
960		sc->sc_opmode = HAL_M_MONITOR;
961		break;
962	default:
963		/* XXX should not happen */
964		break;
965	}
966	if (sc->sc_hastsfadd) {
967		/*
968		 * Configure whether or not TSF adjust should be done.
969		 */
970		ath_hal_settsfadjust(sc->sc_ah, sc->sc_stagbeacons);
971	}
972	ATH_UNLOCK(sc);
973
974	/* complete setup */
975	ieee80211_vap_attach(vap, ath_media_change, ieee80211_media_status);
976	return vap;
977bad2:
978	reclaim_address(sc, mac);
979	ath_hal_setbssidmask(sc->sc_ah, sc->sc_hwbssidmask);
980bad:
981	free(avp, M_80211_VAP);
982	ATH_UNLOCK(sc);
983	return NULL;
984}
985
986static void
987ath_vap_delete(struct ieee80211vap *vap)
988{
989	struct ieee80211com *ic = vap->iv_ic;
990	struct ifnet *ifp = ic->ic_ifp;
991	struct ath_softc *sc = ifp->if_softc;
992	struct ath_hal *ah = sc->sc_ah;
993	struct ath_vap *avp = ATH_VAP(vap);
994
995	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
996		/*
997		 * Quiesce the hardware while we remove the vap.  In
998		 * particular we need to reclaim all references to
999		 * the vap state by any frames pending on the tx queues.
1000		 */
1001		ath_hal_intrset(ah, 0);		/* disable interrupts */
1002		ath_draintxq(sc);		/* stop xmit side */
1003		ath_stoprecv(sc);		/* stop recv side */
1004	}
1005
1006	ieee80211_vap_detach(vap);
1007	ATH_LOCK(sc);
1008	/*
1009	 * Reclaim beacon state.  Note this must be done before
1010	 * the vap instance is reclaimed as we may have a reference
1011	 * to it in the buffer for the beacon frame.
1012	 */
1013	if (avp->av_bcbuf != NULL) {
1014		if (avp->av_bslot != -1) {
1015			sc->sc_bslot[avp->av_bslot] = NULL;
1016			sc->sc_nbcnvaps--;
1017		}
1018		ath_beacon_return(sc, avp->av_bcbuf);
1019		avp->av_bcbuf = NULL;
1020		if (sc->sc_nbcnvaps == 0) {
1021			sc->sc_stagbeacons = 0;
1022			if (sc->sc_hastsfadd)
1023				ath_hal_settsfadjust(sc->sc_ah, 0);
1024		}
1025		/*
1026		 * Reclaim any pending mcast frames for the vap.
1027		 */
1028		ath_tx_draintxq(sc, &avp->av_mcastq);
1029		ATH_TXQ_LOCK_DESTROY(&avp->av_mcastq);
1030	}
1031	/*
1032	 * Update bookkeeping.
1033	 */
1034	if (vap->iv_opmode == IEEE80211_M_STA) {
1035		sc->sc_nstavaps--;
1036		if (sc->sc_nstavaps == 0 && sc->sc_swbmiss)
1037			sc->sc_swbmiss = 0;
1038	} else if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
1039		reclaim_address(sc, vap->iv_myaddr);
1040		ath_hal_setbssidmask(ah, sc->sc_hwbssidmask);
1041	}
1042	if (vap->iv_opmode != IEEE80211_M_WDS)
1043		sc->sc_nvaps--;
1044	ATH_UNLOCK(sc);
1045	free(avp, M_80211_VAP);
1046
1047	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1048		/*
1049		 * Restart rx+tx machines if still running (RUNNING will
1050		 * be reset if we just destroyed the last vap).
1051		 */
1052		if (ath_startrecv(sc) != 0)
1053			if_printf(ifp, "%s: unable to restart recv logic\n",
1054			    __func__);
1055		if (sc->sc_beacons)
1056			ath_beacon_config(sc, NULL);
1057		ath_hal_intrset(ah, sc->sc_imask);
1058	}
1059}
1060
1061void
1062ath_suspend(struct ath_softc *sc)
1063{
1064	struct ifnet *ifp = sc->sc_ifp;
1065	struct ieee80211com *ic = ifp->if_l2com;
1066
1067	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1068		__func__, ifp->if_flags);
1069
1070	sc->sc_resume_up = (ifp->if_flags & IFF_UP) != 0;
1071	if (ic->ic_opmode == IEEE80211_M_STA)
1072		ath_stop(ifp);
1073	else
1074		ieee80211_suspend_all(ic);
1075	/*
1076	 * NB: don't worry about putting the chip in low power
1077	 * mode; pci will power off our socket on suspend and
1078	 * cardbus detaches the device.
1079	 */
1080}
1081
1082/*
1083 * Reset the key cache since some parts do not reset the
1084 * contents on resume.  First we clear all entries, then
1085 * re-load keys that the 802.11 layer assumes are setup
1086 * in h/w.
1087 */
1088static void
1089ath_reset_keycache(struct ath_softc *sc)
1090{
1091	struct ifnet *ifp = sc->sc_ifp;
1092	struct ieee80211com *ic = ifp->if_l2com;
1093	struct ath_hal *ah = sc->sc_ah;
1094	int i;
1095
1096	for (i = 0; i < sc->sc_keymax; i++)
1097		ath_hal_keyreset(ah, i);
1098	ieee80211_crypto_reload_keys(ic);
1099}
1100
1101void
1102ath_resume(struct ath_softc *sc)
1103{
1104	struct ifnet *ifp = sc->sc_ifp;
1105	struct ieee80211com *ic = ifp->if_l2com;
1106	struct ath_hal *ah = sc->sc_ah;
1107	HAL_STATUS status;
1108
1109	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1110		__func__, ifp->if_flags);
1111
1112	/*
1113	 * Must reset the chip before we reload the
1114	 * keycache as we were powered down on suspend.
1115	 */
1116	ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status);
1117	ath_reset_keycache(sc);
1118	if (sc->sc_resume_up) {
1119		if (ic->ic_opmode == IEEE80211_M_STA) {
1120			ath_init(sc);
1121			ieee80211_beacon_miss(ic);
1122		} else
1123			ieee80211_resume_all(ic);
1124	}
1125	if (sc->sc_softled) {
1126		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
1127		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
1128	}
1129}
1130
1131void
1132ath_shutdown(struct ath_softc *sc)
1133{
1134	struct ifnet *ifp = sc->sc_ifp;
1135
1136	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
1137		__func__, ifp->if_flags);
1138
1139	ath_stop(ifp);
1140	/* NB: no point powering down chip as we're about to reboot */
1141}
1142
1143/*
1144 * Interrupt handler.  Most of the actual processing is deferred.
1145 */
1146void
1147ath_intr(void *arg)
1148{
1149	struct ath_softc *sc = arg;
1150	struct ifnet *ifp = sc->sc_ifp;
1151	struct ath_hal *ah = sc->sc_ah;
1152	HAL_INT status;
1153
1154	if (sc->sc_invalid) {
1155		/*
1156		 * The hardware is not ready/present, don't touch anything.
1157		 * Note this can happen early on if the IRQ is shared.
1158		 */
1159		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
1160		return;
1161	}
1162	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
1163		return;
1164	if ((ifp->if_flags & IFF_UP) == 0 ||
1165	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1166		HAL_INT status;
1167
1168		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1169			__func__, ifp->if_flags);
1170		ath_hal_getisr(ah, &status);	/* clear ISR */
1171		ath_hal_intrset(ah, 0);		/* disable further intr's */
1172		return;
1173	}
1174	/*
1175	 * Figure out the reason(s) for the interrupt.  Note
1176	 * that the hal returns a pseudo-ISR that may include
1177	 * bits we haven't explicitly enabled so we mask the
1178	 * value to insure we only process bits we requested.
1179	 */
1180	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
1181	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
1182	status &= sc->sc_imask;			/* discard unasked for bits */
1183	if (status & HAL_INT_FATAL) {
1184		sc->sc_stats.ast_hardware++;
1185		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1186		ath_fatal_proc(sc, 0);
1187	} else if (status & HAL_INT_RXORN) {
1188		sc->sc_stats.ast_rxorn++;
1189		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
1190		taskqueue_enqueue(sc->sc_tq, &sc->sc_rxorntask);
1191	} else {
1192		if (status & HAL_INT_SWBA) {
1193			/*
1194			 * Software beacon alert--time to send a beacon.
1195			 * Handle beacon transmission directly; deferring
1196			 * this is too slow to meet timing constraints
1197			 * under load.
1198			 */
1199			ath_beacon_proc(sc, 0);
1200		}
1201		if (status & HAL_INT_RXEOL) {
1202			/*
1203			 * NB: the hardware should re-read the link when
1204			 *     RXE bit is written, but it doesn't work at
1205			 *     least on older hardware revs.
1206			 */
1207			sc->sc_stats.ast_rxeol++;
1208			sc->sc_rxlink = NULL;
1209		}
1210		if (status & HAL_INT_TXURN) {
1211			sc->sc_stats.ast_txurn++;
1212			/* bump tx trigger level */
1213			ath_hal_updatetxtriglevel(ah, AH_TRUE);
1214		}
1215		if (status & HAL_INT_RX)
1216			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
1217		if (status & HAL_INT_TX)
1218			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
1219		if (status & HAL_INT_BMISS) {
1220			sc->sc_stats.ast_bmiss++;
1221			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
1222		}
1223		if (status & HAL_INT_MIB) {
1224			sc->sc_stats.ast_mib++;
1225			/*
1226			 * Disable interrupts until we service the MIB
1227			 * interrupt; otherwise it will continue to fire.
1228			 */
1229			ath_hal_intrset(ah, 0);
1230			/*
1231			 * Let the hal handle the event.  We assume it will
1232			 * clear whatever condition caused the interrupt.
1233			 */
1234			ath_hal_mibevent(ah, &sc->sc_halstats);
1235			ath_hal_intrset(ah, sc->sc_imask);
1236		}
1237	}
1238}
1239
1240static void
1241ath_fatal_proc(void *arg, int pending)
1242{
1243	struct ath_softc *sc = arg;
1244	struct ifnet *ifp = sc->sc_ifp;
1245	u_int32_t *state;
1246	u_int32_t len;
1247	void *sp;
1248
1249	if_printf(ifp, "hardware error; resetting\n");
1250	/*
1251	 * Fatal errors are unrecoverable.  Typically these
1252	 * are caused by DMA errors.  Collect h/w state from
1253	 * the hal so we can diagnose what's going on.
1254	 */
1255	if (ath_hal_getfatalstate(sc->sc_ah, &sp, &len)) {
1256		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
1257		state = sp;
1258		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
1259		    state[0], state[1] , state[2], state[3],
1260		    state[4], state[5]);
1261	}
1262	ath_reset(ifp);
1263}
1264
1265static void
1266ath_rxorn_proc(void *arg, int pending)
1267{
1268	struct ath_softc *sc = arg;
1269	struct ifnet *ifp = sc->sc_ifp;
1270
1271	if_printf(ifp, "rx FIFO overrun; resetting\n");
1272	ath_reset(ifp);
1273}
1274
1275static void
1276ath_bmiss_vap(struct ieee80211vap *vap)
1277{
1278	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
1279	u_int64_t lastrx = sc->sc_lastrx;
1280	u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
1281	u_int bmisstimeout =
1282		vap->iv_bmissthreshold * vap->iv_bss->ni_intval * 1024;
1283
1284	DPRINTF(sc, ATH_DEBUG_BEACON,
1285	    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
1286	    __func__, (unsigned long long) tsf,
1287	    (unsigned long long)(tsf - lastrx),
1288	    (unsigned long long) lastrx, bmisstimeout);
1289	/*
1290	 * Workaround phantom bmiss interrupts by sanity-checking
1291	 * the time of our last rx'd frame.  If it is within the
1292	 * beacon miss interval then ignore the interrupt.  If it's
1293	 * truly a bmiss we'll get another interrupt soon and that'll
1294	 * be dispatched up for processing.
1295	 */
1296	if (tsf - lastrx > bmisstimeout)
1297		ATH_VAP(vap)->av_bmiss(vap);
1298	else
1299		sc->sc_stats.ast_bmiss_phantom++;
1300}
1301
1302static void
1303ath_bmiss_proc(void *arg, int pending)
1304{
1305	struct ath_softc *sc = arg;
1306	struct ifnet *ifp = sc->sc_ifp;
1307
1308	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
1309	ieee80211_beacon_miss(ifp->if_l2com);
1310}
1311
1312/*
1313 * Convert net80211 channel to a HAL channel with the flags
1314 * constrained to reflect the current operating mode and
1315 * the frequency possibly mapped for GSM channels.
1316 */
1317static void
1318ath_mapchan(const struct ieee80211com *ic,
1319	HAL_CHANNEL *hc, const struct ieee80211_channel *chan)
1320{
1321#define	N(a)	(sizeof(a) / sizeof(a[0]))
1322	static const u_int modeflags[IEEE80211_MODE_MAX] = {
1323		0,			/* IEEE80211_MODE_AUTO */
1324		CHANNEL_A,		/* IEEE80211_MODE_11A */
1325		CHANNEL_B,		/* IEEE80211_MODE_11B */
1326		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
1327		0,			/* IEEE80211_MODE_FH */
1328		CHANNEL_108A,		/* IEEE80211_MODE_TURBO_A */
1329		CHANNEL_108G,		/* IEEE80211_MODE_TURBO_G */
1330		CHANNEL_ST,		/* IEEE80211_MODE_STURBO_A */
1331		CHANNEL_A,		/* IEEE80211_MODE_11NA */
1332		CHANNEL_PUREG,		/* IEEE80211_MODE_11NG */
1333	};
1334	enum ieee80211_phymode mode = ieee80211_chan2mode(chan);
1335
1336	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
1337	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
1338	hc->channelFlags = modeflags[mode];
1339	if (IEEE80211_IS_CHAN_HALF(chan))
1340		hc->channelFlags |= CHANNEL_HALF;
1341	if (IEEE80211_IS_CHAN_QUARTER(chan))
1342		hc->channelFlags |= CHANNEL_QUARTER;
1343	if (IEEE80211_IS_CHAN_HT20(chan))
1344		hc->channelFlags |= CHANNEL_HT20;
1345	if (IEEE80211_IS_CHAN_HT40D(chan))
1346		hc->channelFlags |= CHANNEL_HT40MINUS;
1347	if (IEEE80211_IS_CHAN_HT40U(chan))
1348		hc->channelFlags |= CHANNEL_HT40PLUS;
1349
1350	if (IEEE80211_IS_CHAN_GSM(chan)) {
1351		if (ic->ic_regdomain.country == CTRY_XR9)
1352			hc->channel = 2427 + (chan->ic_freq - 907);
1353		else
1354			hc->channel = 2422 + (922 - chan->ic_freq);
1355	} else
1356		hc->channel = chan->ic_freq;
1357#undef N
1358}
1359
1360/*
1361 * Handle TKIP MIC setup to deal hardware that doesn't do MIC
1362 * calcs together with WME.  If necessary disable the crypto
1363 * hardware and mark the 802.11 state so keys will be setup
1364 * with the MIC work done in software.
1365 */
1366static void
1367ath_settkipmic(struct ath_softc *sc)
1368{
1369	struct ifnet *ifp = sc->sc_ifp;
1370	struct ieee80211com *ic = ifp->if_l2com;
1371
1372	if ((ic->ic_cryptocaps & IEEE80211_CRYPTO_TKIP) && !sc->sc_wmetkipmic) {
1373		if (ic->ic_flags & IEEE80211_F_WME) {
1374			ath_hal_settkipmic(sc->sc_ah, AH_FALSE);
1375			ic->ic_cryptocaps &= ~IEEE80211_CRYPTO_TKIPMIC;
1376		} else {
1377			ath_hal_settkipmic(sc->sc_ah, AH_TRUE);
1378			ic->ic_cryptocaps |= IEEE80211_CRYPTO_TKIPMIC;
1379		}
1380	}
1381}
1382
1383static void
1384ath_init(void *arg)
1385{
1386	struct ath_softc *sc = (struct ath_softc *) arg;
1387	struct ifnet *ifp = sc->sc_ifp;
1388	struct ieee80211com *ic = ifp->if_l2com;
1389	struct ath_hal *ah = sc->sc_ah;
1390	HAL_STATUS status;
1391
1392	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
1393		__func__, ifp->if_flags);
1394
1395	ATH_LOCK(sc);
1396	/*
1397	 * Stop anything previously setup.  This is safe
1398	 * whether this is the first time through or not.
1399	 */
1400	ath_stop_locked(ifp);
1401
1402	/*
1403	 * The basic interface to setting the hardware in a good
1404	 * state is ``reset''.  On return the hardware is known to
1405	 * be powered up and with interrupts disabled.  This must
1406	 * be followed by initialization of the appropriate bits
1407	 * and then setup of the interrupt mask.
1408	 */
1409	ath_mapchan(ic, &sc->sc_curchan, ic->ic_curchan);
1410	ath_settkipmic(sc);
1411	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
1412		if_printf(ifp, "unable to reset hardware; hal status %u\n",
1413			status);
1414		ATH_UNLOCK(sc);
1415		return;
1416	}
1417	ath_chan_change(sc, ic->ic_curchan);
1418
1419	/*
1420	 * Likewise this is set during reset so update
1421	 * state cached in the driver.
1422	 */
1423	sc->sc_diversity = ath_hal_getdiversity(ah);
1424	sc->sc_calinterval = 1;
1425	sc->sc_caltries = 0;
1426
1427	/*
1428	 * Setup the hardware after reset: the key cache
1429	 * is filled as needed and the receive engine is
1430	 * set going.  Frame transmit is handled entirely
1431	 * in the frame output path; there's nothing to do
1432	 * here except setup the interrupt mask.
1433	 */
1434	if (ath_startrecv(sc) != 0) {
1435		if_printf(ifp, "unable to start recv logic\n");
1436		ATH_UNLOCK(sc);
1437		return;
1438	}
1439
1440	/*
1441	 * Enable interrupts.
1442	 */
1443	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
1444		  | HAL_INT_RXEOL | HAL_INT_RXORN
1445		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
1446	/*
1447	 * Enable MIB interrupts when there are hardware phy counters.
1448	 * Note we only do this (at the moment) for station mode.
1449	 */
1450	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
1451		sc->sc_imask |= HAL_INT_MIB;
1452
1453	ifp->if_drv_flags |= IFF_DRV_RUNNING;
1454	ath_hal_intrset(ah, sc->sc_imask);
1455
1456	ATH_UNLOCK(sc);
1457
1458#ifdef ATH_TX99_DIAG
1459	if (sc->sc_tx99 != NULL)
1460		sc->sc_tx99->start(sc->sc_tx99);
1461	else
1462#endif
1463	ieee80211_start_all(ic);		/* start all vap's */
1464}
1465
1466static void
1467ath_stop_locked(struct ifnet *ifp)
1468{
1469	struct ath_softc *sc = ifp->if_softc;
1470	struct ath_hal *ah = sc->sc_ah;
1471
1472	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1473		__func__, sc->sc_invalid, ifp->if_flags);
1474
1475	ATH_LOCK_ASSERT(sc);
1476	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1477		/*
1478		 * Shutdown the hardware and driver:
1479		 *    reset 802.11 state machine
1480		 *    turn off timers
1481		 *    disable interrupts
1482		 *    turn off the radio
1483		 *    clear transmit machinery
1484		 *    clear receive machinery
1485		 *    drain and release tx queues
1486		 *    reclaim beacon resources
1487		 *    power down hardware
1488		 *
1489		 * Note that some of this work is not possible if the
1490		 * hardware is gone (invalid).
1491		 */
1492#ifdef ATH_TX99_DIAG
1493		if (sc->sc_tx99 != NULL)
1494			sc->sc_tx99->stop(sc->sc_tx99);
1495#endif
1496		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1497		ifp->if_timer = 0;
1498		if (!sc->sc_invalid) {
1499			if (sc->sc_softled) {
1500				callout_stop(&sc->sc_ledtimer);
1501				ath_hal_gpioset(ah, sc->sc_ledpin,
1502					!sc->sc_ledon);
1503				sc->sc_blinking = 0;
1504			}
1505			ath_hal_intrset(ah, 0);
1506		}
1507		ath_draintxq(sc);
1508		if (!sc->sc_invalid) {
1509			ath_stoprecv(sc);
1510			ath_hal_phydisable(ah);
1511		} else
1512			sc->sc_rxlink = NULL;
1513		ath_beacon_free(sc);	/* XXX not needed */
1514	}
1515}
1516
1517static void
1518ath_stop(struct ifnet *ifp)
1519{
1520	struct ath_softc *sc = ifp->if_softc;
1521
1522	ATH_LOCK(sc);
1523	ath_stop_locked(ifp);
1524	ATH_UNLOCK(sc);
1525}
1526
1527/*
1528 * Reset the hardware w/o losing operational state.  This is
1529 * basically a more efficient way of doing ath_stop, ath_init,
1530 * followed by state transitions to the current 802.11
1531 * operational state.  Used to recover from various errors and
1532 * to reset or reload hardware state.
1533 */
1534static int
1535ath_reset(struct ifnet *ifp)
1536{
1537	struct ath_softc *sc = ifp->if_softc;
1538	struct ieee80211com *ic = ifp->if_l2com;
1539	struct ath_hal *ah = sc->sc_ah;
1540	HAL_STATUS status;
1541
1542	/*
1543	 * Convert to a HAL channel description with the flags
1544	 * constrained to reflect the current operating mode.
1545	 */
1546	ath_mapchan(ic, &sc->sc_curchan, ic->ic_curchan);
1547
1548	ath_hal_intrset(ah, 0);		/* disable interrupts */
1549	ath_draintxq(sc);		/* stop xmit side */
1550	ath_stoprecv(sc);		/* stop recv side */
1551	ath_settkipmic(sc);		/* configure TKIP MIC handling */
1552	/* NB: indicate channel change so we do a full reset */
1553	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_TRUE, &status))
1554		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1555			__func__, status);
1556	sc->sc_diversity = ath_hal_getdiversity(ah);
1557	sc->sc_calinterval = 1;
1558	sc->sc_caltries = 0;
1559	if (ath_startrecv(sc) != 0)	/* restart recv */
1560		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1561	/*
1562	 * We may be doing a reset in response to an ioctl
1563	 * that changes the channel so update any state that
1564	 * might change as a result.
1565	 */
1566	ath_chan_change(sc, ic->ic_curchan);
1567	if (sc->sc_beacons)
1568		ath_beacon_config(sc, NULL);	/* restart beacons */
1569	ath_hal_intrset(ah, sc->sc_imask);
1570
1571	ath_start(ifp);			/* restart xmit */
1572	return 0;
1573}
1574
1575static int
1576ath_reset_vap(struct ieee80211vap *vap, u_long cmd)
1577{
1578	struct ieee80211com *ic = vap->iv_ic;
1579	struct ifnet *ifp = ic->ic_ifp;
1580	struct ath_softc *sc = ifp->if_softc;
1581	struct ath_hal *ah = sc->sc_ah;
1582
1583	switch (cmd) {
1584	case IEEE80211_IOC_TXPOWER:
1585		/*
1586		 * If per-packet TPC is enabled, then we have nothing
1587		 * to do; otherwise we need to force the global limit.
1588		 * All this can happen directly; no need to reset.
1589		 */
1590		if (!ath_hal_gettpc(ah))
1591			ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
1592		return 0;
1593	}
1594	return ath_reset(ifp);
1595}
1596
1597static int
1598ath_ff_always(struct ath_txq *txq, struct ath_buf *bf)
1599{
1600	return 0;
1601}
1602
1603#if 0
1604static int
1605ath_ff_ageflushtestdone(struct ath_txq *txq, struct ath_buf *bf)
1606{
1607	return (txq->axq_curage - bf->bf_age) < ATH_FF_STAGEMAX;
1608}
1609#endif
1610
1611/*
1612 * Flush FF staging queue.
1613 */
1614static void
1615ath_ff_stageq_flush(struct ath_softc *sc, struct ath_txq *txq,
1616	int (*ath_ff_flushdonetest)(struct ath_txq *txq, struct ath_buf *bf))
1617{
1618	struct ath_buf *bf;
1619	struct ieee80211_node *ni;
1620	int pktlen, pri;
1621
1622	for (;;) {
1623		ATH_TXQ_LOCK(txq);
1624		/*
1625		 * Go from the back (oldest) to front so we can
1626		 * stop early based on the age of the entry.
1627		 */
1628		bf = TAILQ_LAST(&txq->axq_stageq, axq_headtype);
1629		if (bf == NULL || ath_ff_flushdonetest(txq, bf)) {
1630			ATH_TXQ_UNLOCK(txq);
1631			break;
1632		}
1633
1634		ni = bf->bf_node;
1635		pri = M_WME_GETAC(bf->bf_m);
1636		KASSERT(ATH_NODE(ni)->an_ff_buf[pri],
1637			("no bf on staging queue %p", bf));
1638		ATH_NODE(ni)->an_ff_buf[pri] = NULL;
1639		TAILQ_REMOVE(&txq->axq_stageq, bf, bf_stagelist);
1640
1641		ATH_TXQ_UNLOCK(txq);
1642
1643		DPRINTF(sc, ATH_DEBUG_FF, "%s: flush frame, age %u\n",
1644			__func__, bf->bf_age);
1645
1646		sc->sc_stats.ast_ff_flush++;
1647
1648		/* encap and xmit */
1649		bf->bf_m = ieee80211_encap(ni, bf->bf_m);
1650		if (bf->bf_m == NULL) {
1651			DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1652				"%s: discard, encapsulation failure\n",
1653				__func__);
1654			sc->sc_stats.ast_tx_encap++;
1655			goto bad;
1656		}
1657		pktlen = bf->bf_m->m_pkthdr.len; /* NB: don't reference below */
1658		if (ath_tx_start(sc, ni, bf, bf->bf_m) == 0) {
1659#if 0 /*XXX*/
1660			ifp->if_opackets++;
1661#endif
1662			continue;
1663		}
1664	bad:
1665		if (ni != NULL)
1666			ieee80211_free_node(ni);
1667		bf->bf_node = NULL;
1668		if (bf->bf_m != NULL) {
1669			m_freem(bf->bf_m);
1670			bf->bf_m = NULL;
1671		}
1672
1673		ATH_TXBUF_LOCK(sc);
1674		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1675		ATH_TXBUF_UNLOCK(sc);
1676	}
1677}
1678
1679static __inline u_int32_t
1680ath_ff_approx_txtime(struct ath_softc *sc, struct ath_node *an, struct mbuf *m)
1681{
1682	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1683	u_int32_t framelen;
1684	struct ath_buf *bf;
1685
1686	/*
1687	 * Approximate the frame length to be transmitted. A swag to add
1688	 * the following maximal values to the skb payload:
1689	 *   - 32: 802.11 encap + CRC
1690	 *   - 24: encryption overhead (if wep bit)
1691	 *   - 4 + 6: fast-frame header and padding
1692	 *   - 16: 2 LLC FF tunnel headers
1693	 *   - 14: 1 802.3 FF tunnel header (skb already accounts for 2nd)
1694	 */
1695	framelen = m->m_pkthdr.len + 32 + 4 + 6 + 16 + 14;
1696	if (ic->ic_flags & IEEE80211_F_PRIVACY)
1697		framelen += 24;
1698	bf = an->an_ff_buf[M_WME_GETAC(m)];
1699	if (bf != NULL)
1700		framelen += bf->bf_m->m_pkthdr.len;
1701	return ath_hal_computetxtime(sc->sc_ah, sc->sc_currates, framelen,
1702			sc->sc_lastdatarix, AH_FALSE);
1703}
1704
1705/*
1706 * Determine if a data frame may be aggregated via ff tunnelling.
1707 * Note the caller is responsible for checking if the destination
1708 * supports fast frames.
1709 *
1710 *  NB: allowing EAPOL frames to be aggregated with other unicast traffic.
1711 *      Do 802.1x EAPOL frames proceed in the clear? Then they couldn't
1712 *      be aggregated with other types of frames when encryption is on?
1713 *
1714 *  NB: assumes lock on an_ff_buf effectively held by txq lock mechanism.
1715 */
1716static __inline int
1717ath_ff_can_aggregate(struct ath_softc *sc,
1718	struct ath_node *an, struct mbuf *m, int *flushq)
1719{
1720	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
1721	struct ath_txq *txq;
1722	u_int32_t txoplimit;
1723	u_int pri;
1724
1725	*flushq = 0;
1726
1727	/*
1728	 * If there is no frame to combine with and the txq has
1729	 * fewer frames than the minimum required; then do not
1730	 * attempt to aggregate this frame.
1731	 */
1732	pri = M_WME_GETAC(m);
1733	txq = sc->sc_ac2q[pri];
1734	if (an->an_ff_buf[pri] == NULL && txq->axq_depth < sc->sc_fftxqmin)
1735		return 0;
1736	/*
1737	 * When not in station mode never aggregate a multicast
1738	 * frame; this insures, for example, that a combined frame
1739	 * does not require multiple encryption keys when using
1740	 * 802.1x/WPA.
1741	 */
1742	if (ic->ic_opmode != IEEE80211_M_STA &&
1743	    ETHER_IS_MULTICAST(mtod(m, struct ether_header *)->ether_dhost))
1744		return 0;
1745	/*
1746	 * Consult the max bursting interval to insure a combined
1747	 * frame fits within the TxOp window.
1748	 */
1749	txoplimit = IEEE80211_TXOP_TO_US(
1750		ic->ic_wme.wme_chanParams.cap_wmeParams[pri].wmep_txopLimit);
1751	if (txoplimit != 0 && ath_ff_approx_txtime(sc, an, m) > txoplimit) {
1752		DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1753			"%s: FF TxOp violation\n", __func__);
1754		if (an->an_ff_buf[pri] != NULL)
1755			*flushq = 1;
1756		return 0;
1757	}
1758	return 1;		/* try to aggregate */
1759}
1760
1761/*
1762 * Check if the supplied frame can be partnered with an existing
1763 * or pending frame.  Return a reference to any frame that should be
1764 * sent on return; otherwise return NULL.
1765 */
1766static struct mbuf *
1767ath_ff_check(struct ath_softc *sc, struct ath_txq *txq,
1768	struct ath_buf *bf, struct mbuf *m, struct ieee80211_node *ni)
1769{
1770	struct ath_node *an = ATH_NODE(ni);
1771	struct ath_buf *bfstaged;
1772	int ff_flush, pri;
1773
1774	/*
1775	 * Check if the supplied frame can be aggregated.
1776	 *
1777	 * NB: we use the txq lock to protect references to
1778	 *     an->an_ff_txbuf in ath_ff_can_aggregate().
1779	 */
1780	ATH_TXQ_LOCK(txq);
1781	pri = M_WME_GETAC(m);
1782	if (ath_ff_can_aggregate(sc, an, m, &ff_flush)) {
1783		struct ath_buf *bfstaged = an->an_ff_buf[pri];
1784		if (bfstaged != NULL) {
1785			/*
1786			 * A frame is available for partnering; remove
1787			 * it, chain it to this one, and encapsulate.
1788			 */
1789			an->an_ff_buf[pri] = NULL;
1790			TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1791			ATH_TXQ_UNLOCK(txq);
1792
1793			/*
1794			 * Chain mbufs and add FF magic.
1795			 */
1796			DPRINTF(sc, ATH_DEBUG_FF,
1797				"[%s] aggregate fast-frame, age %u\n",
1798				ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1799			m->m_nextpkt = NULL;
1800			bfstaged->bf_m->m_nextpkt = m;
1801			m = bfstaged->bf_m;
1802			bfstaged->bf_m = NULL;
1803			m->m_flags |= M_FF;
1804			/*
1805			 * Release the node reference held while
1806			 * the packet sat on an_ff_buf[]
1807			 */
1808			bfstaged->bf_node = NULL;
1809			ieee80211_free_node(ni);
1810
1811			/*
1812			 * Return bfstaged to the free list.
1813			 */
1814			ATH_TXBUF_LOCK(sc);
1815			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bfstaged, bf_list);
1816			ATH_TXBUF_UNLOCK(sc);
1817
1818			return m;		/* ready to go */
1819		} else {
1820			/*
1821			 * No frame available, queue this frame to wait
1822			 * for a partner.  Note that we hold the buffer
1823			 * and a reference to the node; we need the
1824			 * buffer in particular so we're certain we
1825			 * can flush the frame at a later time.
1826			 */
1827			DPRINTF(sc, ATH_DEBUG_FF,
1828				"[%s] stage fast-frame, age %u\n",
1829				ether_sprintf(ni->ni_macaddr), txq->axq_curage);
1830
1831			bf->bf_m = m;
1832			bf->bf_node = ni;	/* NB: held reference */
1833			bf->bf_age = txq->axq_curage;
1834			an->an_ff_buf[pri] = bf;
1835			TAILQ_INSERT_HEAD(&txq->axq_stageq, bf, bf_stagelist);
1836			ATH_TXQ_UNLOCK(txq);
1837
1838			return NULL;		/* consumed */
1839		}
1840	}
1841	/*
1842	 * Frame could not be aggregated, it needs to be returned
1843	 * to the caller for immediate transmission.  In addition
1844	 * we check if we should first flush a frame from the
1845	 * staging queue before sending this one.
1846	 *
1847	 * NB: ath_ff_can_aggregate only marks ff_flush if a frame
1848	 *     is present to flush.
1849	 */
1850	if (ff_flush) {
1851		int pktlen;
1852
1853		bfstaged = an->an_ff_buf[pri];
1854		an->an_ff_buf[pri] = NULL;
1855		TAILQ_REMOVE(&txq->axq_stageq, bfstaged, bf_stagelist);
1856		ATH_TXQ_UNLOCK(txq);
1857
1858		DPRINTF(sc, ATH_DEBUG_FF, "[%s] flush staged frame\n",
1859			ether_sprintf(an->an_node.ni_macaddr));
1860
1861		/* encap and xmit */
1862		bfstaged->bf_m = ieee80211_encap(ni, bfstaged->bf_m);
1863		if (bfstaged->bf_m == NULL) {
1864			DPRINTF(sc, ATH_DEBUG_XMIT | ATH_DEBUG_FF,
1865				"%s: discard, encap failure\n", __func__);
1866			sc->sc_stats.ast_tx_encap++;
1867			goto ff_flushbad;
1868		}
1869		pktlen = bfstaged->bf_m->m_pkthdr.len;
1870		if (ath_tx_start(sc, ni, bfstaged, bfstaged->bf_m)) {
1871			DPRINTF(sc, ATH_DEBUG_XMIT,
1872				"%s: discard, xmit failure\n", __func__);
1873	ff_flushbad:
1874			/*
1875			 * Unable to transmit frame that was on the staging
1876			 * queue.  Reclaim the node reference and other
1877			 * resources.
1878			 */
1879			if (ni != NULL)
1880				ieee80211_free_node(ni);
1881			bfstaged->bf_node = NULL;
1882			if (bfstaged->bf_m != NULL) {
1883				m_freem(bfstaged->bf_m);
1884				bfstaged->bf_m = NULL;
1885			}
1886
1887			ATH_TXBUF_LOCK(sc);
1888			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bfstaged, bf_list);
1889			ATH_TXBUF_UNLOCK(sc);
1890		} else {
1891#if 0
1892			ifp->if_opackets++;
1893#endif
1894		}
1895	} else {
1896		if (an->an_ff_buf[pri] != NULL) {
1897			/*
1898			 * XXX: out-of-order condition only occurs for AP
1899			 * mode and multicast.  There may be no valid way
1900			 * to get this condition.
1901			 */
1902			DPRINTF(sc, ATH_DEBUG_FF, "[%s] out-of-order frame\n",
1903				ether_sprintf(an->an_node.ni_macaddr));
1904			/* XXX stat */
1905		}
1906		ATH_TXQ_UNLOCK(txq);
1907	}
1908	return m;
1909}
1910
1911/*
1912 * Cleanup driver resources when we run out of buffers
1913 * while processing fragments; return the tx buffers
1914 * allocated and drop node references.
1915 */
1916static void
1917ath_txfrag_cleanup(struct ath_softc *sc,
1918	ath_bufhead *frags, struct ieee80211_node *ni)
1919{
1920	struct ath_buf *bf, *next;
1921
1922	ATH_TXBUF_LOCK_ASSERT(sc);
1923
1924	STAILQ_FOREACH_SAFE(bf, frags, bf_list, next) {
1925		/* NB: bf assumed clean */
1926		STAILQ_REMOVE_HEAD(frags, bf_list);
1927		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1928		ieee80211_node_decref(ni);
1929	}
1930}
1931
1932/*
1933 * Setup xmit of a fragmented frame.  Allocate a buffer
1934 * for each frag and bump the node reference count to
1935 * reflect the held reference to be setup by ath_tx_start.
1936 */
1937static int
1938ath_txfrag_setup(struct ath_softc *sc, ath_bufhead *frags,
1939	struct mbuf *m0, struct ieee80211_node *ni)
1940{
1941	struct mbuf *m;
1942	struct ath_buf *bf;
1943
1944	ATH_TXBUF_LOCK(sc);
1945	for (m = m0->m_nextpkt; m != NULL; m = m->m_nextpkt) {
1946		bf = STAILQ_FIRST(&sc->sc_txbuf);
1947		if (bf == NULL) {	/* out of buffers, cleanup */
1948			ath_txfrag_cleanup(sc, frags, ni);
1949			break;
1950		}
1951		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1952		ieee80211_node_incref(ni);
1953		STAILQ_INSERT_TAIL(frags, bf, bf_list);
1954	}
1955	ATH_TXBUF_UNLOCK(sc);
1956
1957	return !STAILQ_EMPTY(frags);
1958}
1959
1960static void
1961ath_start(struct ifnet *ifp)
1962{
1963	struct ath_softc *sc = ifp->if_softc;
1964	struct ieee80211com *ic = ifp->if_l2com;
1965	struct ieee80211_node *ni;
1966	struct ath_buf *bf;
1967	struct mbuf *m, *next;
1968	struct ath_txq *txq;
1969	ath_bufhead frags;
1970	int pri;
1971
1972	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1973		return;
1974	for (;;) {
1975		/*
1976		 * Grab a TX buffer and associated resources.
1977		 */
1978		ATH_TXBUF_LOCK(sc);
1979		bf = STAILQ_FIRST(&sc->sc_txbuf);
1980		if (bf != NULL)
1981			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1982		ATH_TXBUF_UNLOCK(sc);
1983		if (bf == NULL) {
1984			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1985				__func__);
1986			sc->sc_stats.ast_tx_qstop++;
1987			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1988			break;
1989		}
1990
1991		IFQ_DEQUEUE(&ifp->if_snd, m);
1992		if (m == NULL) {
1993			ATH_TXBUF_LOCK(sc);
1994			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1995			ATH_TXBUF_UNLOCK(sc);
1996			break;
1997		}
1998		STAILQ_INIT(&frags);
1999		ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
2000		pri = M_WME_GETAC(m);
2001		txq = sc->sc_ac2q[pri];
2002		if (IEEE80211_ATH_CAP(ni->ni_vap, ni, IEEE80211_NODE_FF)) {
2003			/*
2004			 * Check queue length; if too deep drop this
2005			 * frame (tail drop considered good).
2006			 */
2007			if (txq->axq_depth >= sc->sc_fftxqmax) {
2008				DPRINTF(sc, ATH_DEBUG_FF,
2009				    "[%s] tail drop on q %u depth %u\n",
2010				    ether_sprintf(ni->ni_macaddr),
2011				    txq->axq_qnum, txq->axq_depth);
2012				sc->sc_stats.ast_tx_qfull++;
2013				m_freem(m);
2014				goto reclaim;
2015			}
2016			m = ath_ff_check(sc, txq, bf, m, ni);
2017			if (m == NULL) {
2018				/* NB: ni ref & bf held on stageq */
2019				continue;
2020			}
2021		}
2022		ifp->if_opackets++;
2023		/*
2024		 * Encapsulate the packet in prep for transmission.
2025		 */
2026		m = ieee80211_encap(ni, m);
2027		if (m == NULL) {
2028			DPRINTF(sc, ATH_DEBUG_XMIT,
2029			    "%s: encapsulation failure\n", __func__);
2030			sc->sc_stats.ast_tx_encap++;
2031			goto bad;
2032		}
2033		/*
2034		 * Check for fragmentation.  If this frame
2035		 * has been broken up verify we have enough
2036		 * buffers to send all the fragments so all
2037		 * go out or none...
2038		 */
2039		if ((m->m_flags & M_FRAG) &&
2040		    !ath_txfrag_setup(sc, &frags, m, ni)) {
2041			DPRINTF(sc, ATH_DEBUG_XMIT,
2042			    "%s: out of txfrag buffers\n", __func__);
2043			ic->ic_stats.is_tx_nobuf++;	/* XXX */
2044			ath_freetx(m);
2045			goto bad;
2046		}
2047	nextfrag:
2048		/*
2049		 * Pass the frame to the h/w for transmission.
2050		 * Fragmented frames have each frag chained together
2051		 * with m_nextpkt.  We know there are sufficient ath_buf's
2052		 * to send all the frags because of work done by
2053		 * ath_txfrag_setup.  We leave m_nextpkt set while
2054		 * calling ath_tx_start so it can use it to extend the
2055		 * the tx duration to cover the subsequent frag and
2056		 * so it can reclaim all the mbufs in case of an error;
2057		 * ath_tx_start clears m_nextpkt once it commits to
2058		 * handing the frame to the hardware.
2059		 */
2060		next = m->m_nextpkt;
2061		if (ath_tx_start(sc, ni, bf, m)) {
2062	bad:
2063			ifp->if_oerrors++;
2064	reclaim:
2065			bf->bf_m = NULL;
2066			bf->bf_node = NULL;
2067			ATH_TXBUF_LOCK(sc);
2068			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2069			ath_txfrag_cleanup(sc, &frags, ni);
2070			ATH_TXBUF_UNLOCK(sc);
2071			if (ni != NULL)
2072				ieee80211_free_node(ni);
2073			continue;
2074		}
2075		if (next != NULL) {
2076			/*
2077			 * Beware of state changing between frags.
2078			 * XXX check sta power-save state?
2079			 */
2080			if (ni->ni_vap->iv_state != IEEE80211_S_RUN) {
2081				DPRINTF(sc, ATH_DEBUG_XMIT,
2082				    "%s: flush fragmented packet, state %s\n",
2083				    __func__,
2084				    ieee80211_state_name[ni->ni_vap->iv_state]);
2085				ath_freetx(next);
2086				goto reclaim;
2087			}
2088			m = next;
2089			bf = STAILQ_FIRST(&frags);
2090			KASSERT(bf != NULL, ("no buf for txfrag"));
2091			STAILQ_REMOVE_HEAD(&frags, bf_list);
2092			goto nextfrag;
2093		}
2094
2095		ifp->if_timer = 5;
2096#if 0
2097		/*
2098		 * Flush stale frames from the fast-frame staging queue.
2099		 */
2100		if (ic->ic_opmode != IEEE80211_M_STA)
2101			ath_ff_stageq_flush(sc, txq, ath_ff_ageflushtestdone);
2102#endif
2103	}
2104}
2105
2106static int
2107ath_media_change(struct ifnet *ifp)
2108{
2109	int error = ieee80211_media_change(ifp);
2110	/* NB: only the fixed rate can change and that doesn't need a reset */
2111	return (error == ENETRESET ? 0 : error);
2112}
2113
2114#ifdef ATH_DEBUG
2115static void
2116ath_keyprint(struct ath_softc *sc, const char *tag, u_int ix,
2117	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
2118{
2119	static const char *ciphers[] = {
2120		"WEP",
2121		"AES-OCB",
2122		"AES-CCM",
2123		"CKIP",
2124		"TKIP",
2125		"CLR",
2126	};
2127	int i, n;
2128
2129	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
2130	for (i = 0, n = hk->kv_len; i < n; i++)
2131		printf("%02x", hk->kv_val[i]);
2132	printf(" mac %s", ether_sprintf(mac));
2133	if (hk->kv_type == HAL_CIPHER_TKIP) {
2134		printf(" %s ", sc->sc_splitmic ? "mic" : "rxmic");
2135		for (i = 0; i < sizeof(hk->kv_mic); i++)
2136			printf("%02x", hk->kv_mic[i]);
2137		if (!sc->sc_splitmic) {
2138			printf(" txmic ");
2139			for (i = 0; i < sizeof(hk->kv_txmic); i++)
2140				printf("%02x", hk->kv_txmic[i]);
2141		}
2142	}
2143	printf("\n");
2144}
2145#endif
2146
2147/*
2148 * Set a TKIP key into the hardware.  This handles the
2149 * potential distribution of key state to multiple key
2150 * cache slots for TKIP.
2151 */
2152static int
2153ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
2154	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
2155{
2156#define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
2157	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
2158	struct ath_hal *ah = sc->sc_ah;
2159
2160	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
2161		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
2162	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
2163		if (sc->sc_splitmic) {
2164			/*
2165			 * TX key goes at first index, RX key at the rx index.
2166			 * The hal handles the MIC keys at index+64.
2167			 */
2168			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
2169			KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
2170			if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
2171				return 0;
2172
2173			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2174			KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
2175			/* XXX delete tx key on failure? */
2176			return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
2177		} else {
2178			/*
2179			 * Room for both TX+RX MIC keys in one key cache
2180			 * slot, just set key at the first index; the hal
2181			 * will handle the rest.
2182			 */
2183			memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2184			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
2185			KEYPRINTF(sc, k->wk_keyix, hk, mac);
2186			return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2187		}
2188	} else if (k->wk_flags & IEEE80211_KEY_XMIT) {
2189		if (sc->sc_splitmic) {
2190			/*
2191			 * NB: must pass MIC key in expected location when
2192			 * the keycache only holds one MIC key per entry.
2193			 */
2194			memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_txmic));
2195		} else
2196			memcpy(hk->kv_txmic, k->wk_txmic, sizeof(hk->kv_txmic));
2197		KEYPRINTF(sc, k->wk_keyix, hk, mac);
2198		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2199	} else if (k->wk_flags & IEEE80211_KEY_RECV) {
2200		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
2201		KEYPRINTF(sc, k->wk_keyix, hk, mac);
2202		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
2203	}
2204	return 0;
2205#undef IEEE80211_KEY_XR
2206}
2207
2208/*
2209 * Set a net80211 key into the hardware.  This handles the
2210 * potential distribution of key state to multiple key
2211 * cache slots for TKIP with hardware MIC support.
2212 */
2213static int
2214ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
2215	struct ieee80211_node *bss)
2216{
2217#define	N(a)	(sizeof(a)/sizeof(a[0]))
2218	static const u_int8_t ciphermap[] = {
2219		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
2220		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
2221		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
2222		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
2223		(u_int8_t) -1,		/* 4 is not allocated */
2224		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
2225		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
2226	};
2227	struct ath_hal *ah = sc->sc_ah;
2228	const struct ieee80211_cipher *cip = k->wk_cipher;
2229	u_int8_t gmac[IEEE80211_ADDR_LEN];
2230	const u_int8_t *mac;
2231	HAL_KEYVAL hk;
2232
2233	memset(&hk, 0, sizeof(hk));
2234	/*
2235	 * Software crypto uses a "clear key" so non-crypto
2236	 * state kept in the key cache are maintained and
2237	 * so that rx frames have an entry to match.
2238	 */
2239	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
2240		KASSERT(cip->ic_cipher < N(ciphermap),
2241			("invalid cipher type %u", cip->ic_cipher));
2242		hk.kv_type = ciphermap[cip->ic_cipher];
2243		hk.kv_len = k->wk_keylen;
2244		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
2245	} else
2246		hk.kv_type = HAL_CIPHER_CLR;
2247
2248	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
2249		/*
2250		 * Group keys on hardware that supports multicast frame
2251		 * key search use a mac that is the sender's address with
2252		 * the high bit set instead of the app-specified address.
2253		 */
2254		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
2255		gmac[0] |= 0x80;
2256		mac = gmac;
2257	} else
2258		mac = k->wk_macaddr;
2259
2260	if (hk.kv_type == HAL_CIPHER_TKIP &&
2261	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2262		return ath_keyset_tkip(sc, k, &hk, mac);
2263	} else {
2264		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
2265		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
2266	}
2267#undef N
2268}
2269
2270/*
2271 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2272 * each key, one for decrypt/encrypt and the other for the MIC.
2273 */
2274static u_int16_t
2275key_alloc_2pair(struct ath_softc *sc,
2276	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2277{
2278#define	N(a)	(sizeof(a)/sizeof(a[0]))
2279	u_int i, keyix;
2280
2281	KASSERT(sc->sc_splitmic, ("key cache !split"));
2282	/* XXX could optimize */
2283	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2284		u_int8_t b = sc->sc_keymap[i];
2285		if (b != 0xff) {
2286			/*
2287			 * One or more slots in this byte are free.
2288			 */
2289			keyix = i*NBBY;
2290			while (b & 1) {
2291		again:
2292				keyix++;
2293				b >>= 1;
2294			}
2295			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
2296			if (isset(sc->sc_keymap, keyix+32) ||
2297			    isset(sc->sc_keymap, keyix+64) ||
2298			    isset(sc->sc_keymap, keyix+32+64)) {
2299				/* full pair unavailable */
2300				/* XXX statistic */
2301				if (keyix == (i+1)*NBBY) {
2302					/* no slots were appropriate, advance */
2303					continue;
2304				}
2305				goto again;
2306			}
2307			setbit(sc->sc_keymap, keyix);
2308			setbit(sc->sc_keymap, keyix+64);
2309			setbit(sc->sc_keymap, keyix+32);
2310			setbit(sc->sc_keymap, keyix+32+64);
2311			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2312				"%s: key pair %u,%u %u,%u\n",
2313				__func__, keyix, keyix+64,
2314				keyix+32, keyix+32+64);
2315			*txkeyix = keyix;
2316			*rxkeyix = keyix+32;
2317			return 1;
2318		}
2319	}
2320	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2321	return 0;
2322#undef N
2323}
2324
2325/*
2326 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
2327 * each key, one for decrypt/encrypt and the other for the MIC.
2328 */
2329static u_int16_t
2330key_alloc_pair(struct ath_softc *sc,
2331	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2332{
2333#define	N(a)	(sizeof(a)/sizeof(a[0]))
2334	u_int i, keyix;
2335
2336	KASSERT(!sc->sc_splitmic, ("key cache split"));
2337	/* XXX could optimize */
2338	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
2339		u_int8_t b = sc->sc_keymap[i];
2340		if (b != 0xff) {
2341			/*
2342			 * One or more slots in this byte are free.
2343			 */
2344			keyix = i*NBBY;
2345			while (b & 1) {
2346		again:
2347				keyix++;
2348				b >>= 1;
2349			}
2350			if (isset(sc->sc_keymap, keyix+64)) {
2351				/* full pair unavailable */
2352				/* XXX statistic */
2353				if (keyix == (i+1)*NBBY) {
2354					/* no slots were appropriate, advance */
2355					continue;
2356				}
2357				goto again;
2358			}
2359			setbit(sc->sc_keymap, keyix);
2360			setbit(sc->sc_keymap, keyix+64);
2361			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2362				"%s: key pair %u,%u\n",
2363				__func__, keyix, keyix+64);
2364			*txkeyix = *rxkeyix = keyix;
2365			return 1;
2366		}
2367	}
2368	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
2369	return 0;
2370#undef N
2371}
2372
2373/*
2374 * Allocate a single key cache slot.
2375 */
2376static int
2377key_alloc_single(struct ath_softc *sc,
2378	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
2379{
2380#define	N(a)	(sizeof(a)/sizeof(a[0]))
2381	u_int i, keyix;
2382
2383	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
2384	for (i = 0; i < N(sc->sc_keymap); i++) {
2385		u_int8_t b = sc->sc_keymap[i];
2386		if (b != 0xff) {
2387			/*
2388			 * One or more slots are free.
2389			 */
2390			keyix = i*NBBY;
2391			while (b & 1)
2392				keyix++, b >>= 1;
2393			setbit(sc->sc_keymap, keyix);
2394			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
2395				__func__, keyix);
2396			*txkeyix = *rxkeyix = keyix;
2397			return 1;
2398		}
2399	}
2400	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
2401	return 0;
2402#undef N
2403}
2404
2405/*
2406 * Allocate one or more key cache slots for a uniacst key.  The
2407 * key itself is needed only to identify the cipher.  For hardware
2408 * TKIP with split cipher+MIC keys we allocate two key cache slot
2409 * pairs so that we can setup separate TX and RX MIC keys.  Note
2410 * that the MIC key for a TKIP key at slot i is assumed by the
2411 * hardware to be at slot i+64.  This limits TKIP keys to the first
2412 * 64 entries.
2413 */
2414static int
2415ath_key_alloc(struct ieee80211vap *vap, struct ieee80211_key *k,
2416	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
2417{
2418	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2419
2420	/*
2421	 * Group key allocation must be handled specially for
2422	 * parts that do not support multicast key cache search
2423	 * functionality.  For those parts the key id must match
2424	 * the h/w key index so lookups find the right key.  On
2425	 * parts w/ the key search facility we install the sender's
2426	 * mac address (with the high bit set) and let the hardware
2427	 * find the key w/o using the key id.  This is preferred as
2428	 * it permits us to support multiple users for adhoc and/or
2429	 * multi-station operation.
2430	 */
2431	if (k->wk_keyix != IEEE80211_KEYIX_NONE ||	/* global key */
2432	    ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey)) {
2433		if (!(&vap->iv_nw_keys[0] <= k &&
2434		      k < &vap->iv_nw_keys[IEEE80211_WEP_NKID])) {
2435			/* should not happen */
2436			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
2437				"%s: bogus group key\n", __func__);
2438			return 0;
2439		}
2440		/*
2441		 * XXX we pre-allocate the global keys so
2442		 * have no way to check if they've already been allocated.
2443		 */
2444		*keyix = *rxkeyix = k - vap->iv_nw_keys;
2445		return 1;
2446	}
2447
2448	/*
2449	 * We allocate two pair for TKIP when using the h/w to do
2450	 * the MIC.  For everything else, including software crypto,
2451	 * we allocate a single entry.  Note that s/w crypto requires
2452	 * a pass-through slot on the 5211 and 5212.  The 5210 does
2453	 * not support pass-through cache entries and we map all
2454	 * those requests to slot 0.
2455	 */
2456	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
2457		return key_alloc_single(sc, keyix, rxkeyix);
2458	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
2459	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2460		if (sc->sc_splitmic)
2461			return key_alloc_2pair(sc, keyix, rxkeyix);
2462		else
2463			return key_alloc_pair(sc, keyix, rxkeyix);
2464	} else {
2465		return key_alloc_single(sc, keyix, rxkeyix);
2466	}
2467}
2468
2469/*
2470 * Delete an entry in the key cache allocated by ath_key_alloc.
2471 */
2472static int
2473ath_key_delete(struct ieee80211vap *vap, const struct ieee80211_key *k)
2474{
2475	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2476	struct ath_hal *ah = sc->sc_ah;
2477	const struct ieee80211_cipher *cip = k->wk_cipher;
2478	u_int keyix = k->wk_keyix;
2479
2480	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
2481
2482	ath_hal_keyreset(ah, keyix);
2483	/*
2484	 * Handle split tx/rx keying required for TKIP with h/w MIC.
2485	 */
2486	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2487	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
2488		ath_hal_keyreset(ah, keyix+32);		/* RX key */
2489	if (keyix >= IEEE80211_WEP_NKID) {
2490		/*
2491		 * Don't touch keymap entries for global keys so
2492		 * they are never considered for dynamic allocation.
2493		 */
2494		clrbit(sc->sc_keymap, keyix);
2495		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
2496		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0) {
2497			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
2498			if (sc->sc_splitmic) {
2499				/* +32 for RX key, +32+64 for RX key MIC */
2500				clrbit(sc->sc_keymap, keyix+32);
2501				clrbit(sc->sc_keymap, keyix+32+64);
2502			}
2503		}
2504	}
2505	return 1;
2506}
2507
2508/*
2509 * Set the key cache contents for the specified key.  Key cache
2510 * slot(s) must already have been allocated by ath_key_alloc.
2511 */
2512static int
2513ath_key_set(struct ieee80211vap *vap, const struct ieee80211_key *k,
2514	const u_int8_t mac[IEEE80211_ADDR_LEN])
2515{
2516	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
2517
2518	return ath_keyset(sc, k, vap->iv_bss);
2519}
2520
2521/*
2522 * Block/unblock tx+rx processing while a key change is done.
2523 * We assume the caller serializes key management operations
2524 * so we only need to worry about synchronization with other
2525 * uses that originate in the driver.
2526 */
2527static void
2528ath_key_update_begin(struct ieee80211vap *vap)
2529{
2530	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2531	struct ath_softc *sc = ifp->if_softc;
2532
2533	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2534	taskqueue_block(sc->sc_tq);
2535	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
2536}
2537
2538static void
2539ath_key_update_end(struct ieee80211vap *vap)
2540{
2541	struct ifnet *ifp = vap->iv_ic->ic_ifp;
2542	struct ath_softc *sc = ifp->if_softc;
2543
2544	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
2545	IF_UNLOCK(&ifp->if_snd);
2546	taskqueue_unblock(sc->sc_tq);
2547}
2548
2549/*
2550 * Calculate the receive filter according to the
2551 * operating mode and state:
2552 *
2553 * o always accept unicast, broadcast, and multicast traffic
2554 * o accept PHY error frames when hardware doesn't have MIB support
2555 *   to count and we need them for ANI (sta mode only until recently)
2556 *   and we are not scanning (ANI is disabled)
2557 *   NB: older hal's add rx filter bits out of sight and we need to
2558 *	 blindly preserve them
2559 * o probe request frames are accepted only when operating in
2560 *   hostap, adhoc, or monitor modes
2561 * o enable promiscuous mode
2562 *   - when in monitor mode
2563 *   - if interface marked PROMISC (assumes bridge setting is filtered)
2564 * o accept beacons:
2565 *   - when operating in station mode for collecting rssi data when
2566 *     the station is otherwise quiet, or
2567 *   - when operating in adhoc mode so the 802.11 layer creates
2568 *     node table entries for peers,
2569 *   - when scanning
2570 *   - when doing s/w beacon miss (e.g. for ap+sta)
2571 *   - when operating in ap mode in 11g to detect overlapping bss that
2572 *     require protection
2573 * o accept control frames:
2574 *   - when in monitor mode
2575 * XXX BAR frames for 11n
2576 * XXX HT protection for 11n
2577 */
2578static u_int32_t
2579ath_calcrxfilter(struct ath_softc *sc)
2580{
2581	struct ifnet *ifp = sc->sc_ifp;
2582	struct ieee80211com *ic = ifp->if_l2com;
2583	u_int32_t rfilt;
2584
2585	rfilt = HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
2586#if HAL_ABI_VERSION < 0x08011600
2587	rfilt |= (ath_hal_getrxfilter(sc->sc_ah) &
2588		(HAL_RX_FILTER_PHYRADAR | HAL_RX_FILTER_PHYERR));
2589#elif HAL_ABI_VERSION < 0x08060100
2590	if (ic->ic_opmode == IEEE80211_M_STA &&
2591	    !sc->sc_needmib && !sc->sc_scanning)
2592		rfilt |= HAL_RX_FILTER_PHYERR;
2593#else
2594	if (!sc->sc_needmib && !sc->sc_scanning)
2595		rfilt |= HAL_RX_FILTER_PHYERR;
2596#endif
2597	if (ic->ic_opmode != IEEE80211_M_STA)
2598		rfilt |= HAL_RX_FILTER_PROBEREQ;
2599	if (ic->ic_opmode == IEEE80211_M_MONITOR || (ifp->if_flags & IFF_PROMISC))
2600		rfilt |= HAL_RX_FILTER_PROM;
2601	if (ic->ic_opmode == IEEE80211_M_STA ||
2602	    ic->ic_opmode == IEEE80211_M_IBSS ||
2603	    sc->sc_swbmiss || sc->sc_scanning)
2604		rfilt |= HAL_RX_FILTER_BEACON;
2605	/*
2606	 * NB: We don't recalculate the rx filter when
2607	 * ic_protmode changes; otherwise we could do
2608	 * this only when ic_protmode != NONE.
2609	 */
2610	if (ic->ic_opmode == IEEE80211_M_HOSTAP &&
2611	    IEEE80211_IS_CHAN_ANYG(ic->ic_curchan))
2612		rfilt |= HAL_RX_FILTER_BEACON;
2613	if (ic->ic_opmode == IEEE80211_M_MONITOR)
2614		rfilt |= HAL_RX_FILTER_CONTROL;
2615	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, %s if_flags 0x%x\n",
2616	    __func__, rfilt, ieee80211_opmode_name[ic->ic_opmode], ifp->if_flags);
2617	return rfilt;
2618}
2619
2620static void
2621ath_update_promisc(struct ifnet *ifp)
2622{
2623	struct ath_softc *sc = ifp->if_softc;
2624	u_int32_t rfilt;
2625
2626	/* configure rx filter */
2627	rfilt = ath_calcrxfilter(sc);
2628	ath_hal_setrxfilter(sc->sc_ah, rfilt);
2629
2630	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x\n", __func__, rfilt);
2631}
2632
2633static void
2634ath_update_mcast(struct ifnet *ifp)
2635{
2636	struct ath_softc *sc = ifp->if_softc;
2637	u_int32_t mfilt[2];
2638
2639	/* calculate and install multicast filter */
2640	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
2641		struct ifmultiaddr *ifma;
2642		/*
2643		 * Merge multicast addresses to form the hardware filter.
2644		 */
2645		mfilt[0] = mfilt[1] = 0;
2646		IF_ADDR_LOCK(ifp);	/* XXX need some fiddling to remove? */
2647		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
2648			caddr_t dl;
2649			u_int32_t val;
2650			u_int8_t pos;
2651
2652			/* calculate XOR of eight 6bit values */
2653			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
2654			val = LE_READ_4(dl + 0);
2655			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2656			val = LE_READ_4(dl + 3);
2657			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
2658			pos &= 0x3f;
2659			mfilt[pos / 32] |= (1 << (pos % 32));
2660		}
2661		IF_ADDR_UNLOCK(ifp);
2662	} else
2663		mfilt[0] = mfilt[1] = ~0;
2664	ath_hal_setmcastfilter(sc->sc_ah, mfilt[0], mfilt[1]);
2665	DPRINTF(sc, ATH_DEBUG_MODE, "%s: MC filter %08x:%08x\n",
2666		__func__, mfilt[0], mfilt[1]);
2667}
2668
2669static void
2670ath_mode_init(struct ath_softc *sc)
2671{
2672	struct ifnet *ifp = sc->sc_ifp;
2673	struct ieee80211com *ic = ifp->if_l2com;
2674	struct ath_hal *ah = sc->sc_ah;
2675	u_int32_t rfilt;
2676
2677	/* configure rx filter */
2678	rfilt = ath_calcrxfilter(sc);
2679	ath_hal_setrxfilter(ah, rfilt);
2680
2681	/* configure operational mode */
2682	ath_hal_setopmode(ah);
2683
2684	/*
2685	 * Handle any link-level address change.  Note that we only
2686	 * need to force ic_myaddr; any other addresses are handled
2687	 * as a byproduct of the ifnet code marking the interface
2688	 * down then up.
2689	 *
2690	 * XXX should get from lladdr instead of arpcom but that's more work
2691	 */
2692	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
2693	ath_hal_setmac(ah, ic->ic_myaddr);
2694
2695	/* calculate and install multicast filter */
2696	ath_update_mcast(ifp);
2697}
2698
2699/*
2700 * Set the slot time based on the current setting.
2701 */
2702static void
2703ath_setslottime(struct ath_softc *sc)
2704{
2705	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2706	struct ath_hal *ah = sc->sc_ah;
2707	u_int usec;
2708
2709	if (IEEE80211_IS_CHAN_HALF(ic->ic_curchan))
2710		usec = 13;
2711	else if (IEEE80211_IS_CHAN_QUARTER(ic->ic_curchan))
2712		usec = 21;
2713	else if (IEEE80211_IS_CHAN_ANYG(ic->ic_curchan)) {
2714		/* honor short/long slot time only in 11g */
2715		/* XXX shouldn't honor on pure g or turbo g channel */
2716		if (ic->ic_flags & IEEE80211_F_SHSLOT)
2717			usec = HAL_SLOT_TIME_9;
2718		else
2719			usec = HAL_SLOT_TIME_20;
2720	} else
2721		usec = HAL_SLOT_TIME_9;
2722
2723	DPRINTF(sc, ATH_DEBUG_RESET,
2724	    "%s: chan %u MHz flags 0x%x %s slot, %u usec\n",
2725	    __func__, ic->ic_curchan->ic_freq, ic->ic_curchan->ic_flags,
2726	    ic->ic_flags & IEEE80211_F_SHSLOT ? "short" : "long", usec);
2727
2728	ath_hal_setslottime(ah, usec);
2729	sc->sc_updateslot = OK;
2730}
2731
2732/*
2733 * Callback from the 802.11 layer to update the
2734 * slot time based on the current setting.
2735 */
2736static void
2737ath_updateslot(struct ifnet *ifp)
2738{
2739	struct ath_softc *sc = ifp->if_softc;
2740	struct ieee80211com *ic = ifp->if_l2com;
2741
2742	/*
2743	 * When not coordinating the BSS, change the hardware
2744	 * immediately.  For other operation we defer the change
2745	 * until beacon updates have propagated to the stations.
2746	 */
2747	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
2748		sc->sc_updateslot = UPDATE;
2749	else
2750		ath_setslottime(sc);
2751}
2752
2753/*
2754 * Setup a h/w transmit queue for beacons.
2755 */
2756static int
2757ath_beaconq_setup(struct ath_hal *ah)
2758{
2759	HAL_TXQ_INFO qi;
2760
2761	memset(&qi, 0, sizeof(qi));
2762	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2763	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2764	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2765	/* NB: for dynamic turbo, don't enable any other interrupts */
2766	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
2767	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
2768}
2769
2770/*
2771 * Setup the transmit queue parameters for the beacon queue.
2772 */
2773static int
2774ath_beaconq_config(struct ath_softc *sc)
2775{
2776#define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
2777	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
2778	struct ath_hal *ah = sc->sc_ah;
2779	HAL_TXQ_INFO qi;
2780
2781	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
2782	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2783		/*
2784		 * Always burst out beacon and CAB traffic.
2785		 */
2786		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
2787		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
2788		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
2789	} else {
2790		struct wmeParams *wmep =
2791			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
2792		/*
2793		 * Adhoc mode; important thing is to use 2x cwmin.
2794		 */
2795		qi.tqi_aifs = wmep->wmep_aifsn;
2796		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2797		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2798	}
2799
2800	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
2801		device_printf(sc->sc_dev, "unable to update parameters for "
2802			"beacon hardware queue!\n");
2803		return 0;
2804	} else {
2805		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
2806		return 1;
2807	}
2808#undef ATH_EXPONENT_TO_VALUE
2809}
2810
2811/*
2812 * Allocate and setup an initial beacon frame.
2813 */
2814static int
2815ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
2816{
2817	struct ieee80211vap *vap = ni->ni_vap;
2818	struct ath_vap *avp = ATH_VAP(vap);
2819	struct ath_buf *bf;
2820	struct mbuf *m;
2821	int error;
2822
2823	bf = avp->av_bcbuf;
2824	if (bf->bf_m != NULL) {
2825		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2826		m_freem(bf->bf_m);
2827		bf->bf_m = NULL;
2828	}
2829	if (bf->bf_node != NULL) {
2830		ieee80211_free_node(bf->bf_node);
2831		bf->bf_node = NULL;
2832	}
2833
2834	/*
2835	 * NB: the beacon data buffer must be 32-bit aligned;
2836	 * we assume the mbuf routines will return us something
2837	 * with this alignment (perhaps should assert).
2838	 */
2839	m = ieee80211_beacon_alloc(ni, &avp->av_boff);
2840	if (m == NULL) {
2841		device_printf(sc->sc_dev, "%s: cannot get mbuf\n", __func__);
2842		sc->sc_stats.ast_be_nombuf++;
2843		return ENOMEM;
2844	}
2845	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2846				     bf->bf_segs, &bf->bf_nseg,
2847				     BUS_DMA_NOWAIT);
2848	if (error != 0) {
2849		device_printf(sc->sc_dev,
2850		    "%s: cannot map mbuf, bus_dmamap_load_mbuf_sg returns %d\n",
2851		    __func__, error);
2852		m_freem(m);
2853		return error;
2854	}
2855
2856	/*
2857	 * Calculate a TSF adjustment factor required for staggered
2858	 * beacons.  Note that we assume the format of the beacon
2859	 * frame leaves the tstamp field immediately following the
2860	 * header.
2861	 */
2862	if (sc->sc_stagbeacons && avp->av_bslot > 0) {
2863		uint64_t tsfadjust;
2864		struct ieee80211_frame *wh;
2865
2866		/*
2867		 * The beacon interval is in TU's; the TSF is in usecs.
2868		 * We figure out how many TU's to add to align the timestamp
2869		 * then convert to TSF units and handle byte swapping before
2870		 * inserting it in the frame.  The hardware will then add this
2871		 * each time a beacon frame is sent.  Note that we align vap's
2872		 * 1..N and leave vap 0 untouched.  This means vap 0 has a
2873		 * timestamp in one beacon interval while the others get a
2874		 * timstamp aligned to the next interval.
2875		 */
2876		tsfadjust = ni->ni_intval *
2877		    (ATH_BCBUF - avp->av_bslot) / ATH_BCBUF;
2878		tsfadjust = htole64(tsfadjust << 10);	/* TU -> TSF */
2879
2880		DPRINTF(sc, ATH_DEBUG_BEACON,
2881		    "%s: %s beacons bslot %d intval %u tsfadjust %llu\n",
2882		    __func__, sc->sc_stagbeacons ? "stagger" : "burst",
2883		    avp->av_bslot, ni->ni_intval,
2884		    (long long unsigned) le64toh(tsfadjust));
2885
2886		wh = mtod(m, struct ieee80211_frame *);
2887		memcpy(&wh[1], &tsfadjust, sizeof(tsfadjust));
2888	}
2889	bf->bf_m = m;
2890	bf->bf_node = ieee80211_ref_node(ni);
2891
2892	return 0;
2893}
2894
2895/*
2896 * Setup the beacon frame for transmit.
2897 */
2898static void
2899ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
2900{
2901#define	USE_SHPREAMBLE(_ic) \
2902	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
2903		== IEEE80211_F_SHPREAMBLE)
2904	struct ieee80211_node *ni = bf->bf_node;
2905	struct ieee80211com *ic = ni->ni_ic;
2906	struct mbuf *m = bf->bf_m;
2907	struct ath_hal *ah = sc->sc_ah;
2908	struct ath_desc *ds;
2909	int flags, antenna;
2910	const HAL_RATE_TABLE *rt;
2911	u_int8_t rix, rate;
2912
2913	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
2914		__func__, m, m->m_len);
2915
2916	/* setup descriptors */
2917	ds = bf->bf_desc;
2918
2919	flags = HAL_TXDESC_NOACK;
2920	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
2921		ds->ds_link = bf->bf_daddr;	/* self-linked */
2922		flags |= HAL_TXDESC_VEOL;
2923		/*
2924		 * Let hardware handle antenna switching.
2925		 */
2926		antenna = sc->sc_txantenna;
2927	} else {
2928		ds->ds_link = 0;
2929		/*
2930		 * Switch antenna every 4 beacons.
2931		 * XXX assumes two antenna
2932		 */
2933		if (sc->sc_txantenna != 0)
2934			antenna = sc->sc_txantenna;
2935		else if (sc->sc_stagbeacons && sc->sc_nbcnvaps != 0)
2936			antenna = ((sc->sc_stats.ast_be_xmit / sc->sc_nbcnvaps) & 4 ? 2 : 1);
2937		else
2938			antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
2939	}
2940
2941	KASSERT(bf->bf_nseg == 1,
2942		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
2943	ds->ds_data = bf->bf_segs[0].ds_addr;
2944	/*
2945	 * Calculate rate code.
2946	 * XXX everything at min xmit rate
2947	 */
2948	rix = 0;
2949	rt = sc->sc_currates;
2950	rate = rt->info[rix].rateCode;
2951	if (USE_SHPREAMBLE(ic))
2952		rate |= rt->info[rix].shortPreamble;
2953	ath_hal_setuptxdesc(ah, ds
2954		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
2955		, sizeof(struct ieee80211_frame)/* header length */
2956		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
2957		, ni->ni_txpower		/* txpower XXX */
2958		, rate, 1			/* series 0 rate/tries */
2959		, HAL_TXKEYIX_INVALID		/* no encryption */
2960		, antenna			/* antenna mode */
2961		, flags				/* no ack, veol for beacons */
2962		, 0				/* rts/cts rate */
2963		, 0				/* rts/cts duration */
2964	);
2965	/* NB: beacon's BufLen must be a multiple of 4 bytes */
2966	ath_hal_filltxdesc(ah, ds
2967		, roundup(m->m_len, 4)		/* buffer length */
2968		, AH_TRUE			/* first segment */
2969		, AH_TRUE			/* last segment */
2970		, ds				/* first descriptor */
2971	);
2972#if 0
2973	ath_desc_swap(ds);
2974#endif
2975#undef USE_SHPREAMBLE
2976}
2977
2978static void
2979ath_beacon_update(struct ieee80211vap *vap, int item)
2980{
2981	struct ieee80211_beacon_offsets *bo = &ATH_VAP(vap)->av_boff;
2982
2983	setbit(bo->bo_flags, item);
2984}
2985
2986/*
2987 * Append the contents of src to dst; both queues
2988 * are assumed to be locked.
2989 */
2990static void
2991ath_txqmove(struct ath_txq *dst, struct ath_txq *src)
2992{
2993	STAILQ_CONCAT(&dst->axq_q, &src->axq_q);
2994	dst->axq_link = src->axq_link;
2995	src->axq_link = NULL;
2996	dst->axq_depth += src->axq_depth;
2997	src->axq_depth = 0;
2998}
2999
3000/*
3001 * Transmit a beacon frame at SWBA.  Dynamic updates to the
3002 * frame contents are done as needed and the slot time is
3003 * also adjusted based on current state.
3004 */
3005static void
3006ath_beacon_proc(void *arg, int pending)
3007{
3008	struct ath_softc *sc = arg;
3009	struct ath_hal *ah = sc->sc_ah;
3010	struct ieee80211vap *vap;
3011	struct ath_buf *bf;
3012	int slot, otherant;
3013	uint32_t bfaddr;
3014
3015	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
3016		__func__, pending);
3017	/*
3018	 * Check if the previous beacon has gone out.  If
3019	 * not don't try to post another, skip this period
3020	 * and wait for the next.  Missed beacons indicate
3021	 * a problem and should not occur.  If we miss too
3022	 * many consecutive beacons reset the device.
3023	 */
3024	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
3025		sc->sc_bmisscount++;
3026		DPRINTF(sc, ATH_DEBUG_BEACON,
3027			"%s: missed %u consecutive beacons\n",
3028			__func__, sc->sc_bmisscount);
3029		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
3030			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
3031		return;
3032	}
3033	if (sc->sc_bmisscount != 0) {
3034		DPRINTF(sc, ATH_DEBUG_BEACON,
3035			"%s: resume beacon xmit after %u misses\n",
3036			__func__, sc->sc_bmisscount);
3037		sc->sc_bmisscount = 0;
3038	}
3039
3040	if (sc->sc_stagbeacons) {			/* staggered beacons */
3041		struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3042		uint32_t tsftu;
3043
3044		tsftu = ath_hal_gettsf32(ah) >> 10;
3045		/* XXX lintval */
3046		slot = ((tsftu % ic->ic_lintval) * ATH_BCBUF) / ic->ic_lintval;
3047		vap = sc->sc_bslot[(slot+1) % ATH_BCBUF];
3048		bfaddr = 0;
3049		if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
3050			bf = ath_beacon_generate(sc, vap);
3051			if (bf != NULL)
3052				bfaddr = bf->bf_daddr;
3053		}
3054	} else {					/* burst'd beacons */
3055		uint32_t *bflink = &bfaddr;
3056
3057		for (slot = 0; slot < ATH_BCBUF; slot++) {
3058			vap = sc->sc_bslot[slot];
3059			if (vap != NULL && vap->iv_state == IEEE80211_S_RUN) {
3060				bf = ath_beacon_generate(sc, vap);
3061				if (bf != NULL) {
3062					*bflink = bf->bf_daddr;
3063					bflink = &bf->bf_desc->ds_link;
3064				}
3065			}
3066		}
3067		*bflink = 0;				/* terminate list */
3068	}
3069
3070	/*
3071	 * Handle slot time change when a non-ERP station joins/leaves
3072	 * an 11g network.  The 802.11 layer notifies us via callback,
3073	 * we mark updateslot, then wait one beacon before effecting
3074	 * the change.  This gives associated stations at least one
3075	 * beacon interval to note the state change.
3076	 */
3077	/* XXX locking */
3078	if (sc->sc_updateslot == UPDATE) {
3079		sc->sc_updateslot = COMMIT;	/* commit next beacon */
3080		sc->sc_slotupdate = slot;
3081	} else if (sc->sc_updateslot == COMMIT && sc->sc_slotupdate == slot)
3082		ath_setslottime(sc);		/* commit change to h/w */
3083
3084	/*
3085	 * Check recent per-antenna transmit statistics and flip
3086	 * the default antenna if noticeably more frames went out
3087	 * on the non-default antenna.
3088	 * XXX assumes 2 anntenae
3089	 */
3090	if (!sc->sc_diversity && (!sc->sc_stagbeacons || slot == 0)) {
3091		otherant = sc->sc_defant & 1 ? 2 : 1;
3092		if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
3093			ath_setdefantenna(sc, otherant);
3094		sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
3095	}
3096
3097	if (bfaddr != 0) {
3098		/*
3099		 * Stop any current dma and put the new frame on the queue.
3100		 * This should never fail since we check above that no frames
3101		 * are still pending on the queue.
3102		 */
3103		if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
3104			DPRINTF(sc, ATH_DEBUG_ANY,
3105				"%s: beacon queue %u did not stop?\n",
3106				__func__, sc->sc_bhalq);
3107		}
3108		/* NB: cabq traffic should already be queued and primed */
3109		ath_hal_puttxbuf(ah, sc->sc_bhalq, bfaddr);
3110		ath_hal_txstart(ah, sc->sc_bhalq);
3111
3112		sc->sc_stats.ast_be_xmit++;
3113	}
3114}
3115
3116static struct ath_buf *
3117ath_beacon_generate(struct ath_softc *sc, struct ieee80211vap *vap)
3118{
3119	struct ath_vap *avp = ATH_VAP(vap);
3120	struct ath_txq *cabq = sc->sc_cabq;
3121	struct ath_buf *bf;
3122	struct mbuf *m;
3123	int nmcastq, error;
3124
3125	KASSERT(vap->iv_state == IEEE80211_S_RUN,
3126	    ("not running, state %d", vap->iv_state));
3127	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3128
3129	/*
3130	 * Update dynamic beacon contents.  If this returns
3131	 * non-zero then we need to remap the memory because
3132	 * the beacon frame changed size (probably because
3133	 * of the TIM bitmap).
3134	 */
3135	bf = avp->av_bcbuf;
3136	m = bf->bf_m;
3137	nmcastq = avp->av_mcastq.axq_depth;
3138	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, nmcastq)) {
3139		/* XXX too conservative? */
3140		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3141		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3142					     bf->bf_segs, &bf->bf_nseg,
3143					     BUS_DMA_NOWAIT);
3144		if (error != 0) {
3145			if_printf(vap->iv_ifp,
3146			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3147			    __func__, error);
3148			return NULL;
3149		}
3150	}
3151	if ((avp->av_boff.bo_tim[4] & 1) && cabq->axq_depth) {
3152		DPRINTF(sc, ATH_DEBUG_BEACON,
3153		    "%s: cabq did not drain, mcastq %u cabq %u\n",
3154		    __func__, nmcastq, cabq->axq_depth);
3155		sc->sc_stats.ast_cabq_busy++;
3156		if (sc->sc_nvaps > 1 && sc->sc_stagbeacons) {
3157			/*
3158			 * CABQ traffic from a previous vap is still pending.
3159			 * We must drain the q before this beacon frame goes
3160			 * out as otherwise this vap's stations will get cab
3161			 * frames from a different vap.
3162			 * XXX could be slow causing us to miss DBA
3163			 */
3164			ath_tx_draintxq(sc, cabq);
3165		}
3166	}
3167	ath_beacon_setup(sc, bf);
3168	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3169
3170	/*
3171	 * Enable the CAB queue before the beacon queue to
3172	 * insure cab frames are triggered by this beacon.
3173	 */
3174	if (avp->av_boff.bo_tim[4] & 1) {
3175		struct ath_hal *ah = sc->sc_ah;
3176
3177		/* NB: only at DTIM */
3178		ATH_TXQ_LOCK(cabq);
3179		ATH_TXQ_LOCK(&avp->av_mcastq);
3180		if (nmcastq) {
3181			struct ath_buf *bfm;
3182
3183			/*
3184			 * Move frames from the s/w mcast q to the h/w cab q.
3185			 * XXX MORE_DATA bit
3186			 */
3187			bfm = STAILQ_FIRST(&avp->av_mcastq.axq_q);
3188			if (cabq->axq_link != NULL) {
3189				*cabq->axq_link = bfm->bf_daddr;
3190			} else
3191				ath_hal_puttxbuf(ah, cabq->axq_qnum,
3192					bfm->bf_daddr);
3193			ath_txqmove(cabq, &avp->av_mcastq);
3194
3195			sc->sc_stats.ast_cabq_xmit += nmcastq;
3196		}
3197		/* NB: gated by beacon so safe to start here */
3198		ath_hal_txstart(ah, cabq->axq_qnum);
3199		ATH_TXQ_UNLOCK(cabq);
3200		ATH_TXQ_UNLOCK(&avp->av_mcastq);
3201	}
3202	return bf;
3203}
3204
3205static void
3206ath_beacon_start_adhoc(struct ath_softc *sc, struct ieee80211vap *vap)
3207{
3208	struct ath_vap *avp = ATH_VAP(vap);
3209	struct ath_hal *ah = sc->sc_ah;
3210	struct ath_buf *bf;
3211	struct mbuf *m;
3212	int error;
3213
3214	KASSERT(avp->av_bcbuf != NULL, ("no beacon buffer"));
3215
3216	/*
3217	 * Update dynamic beacon contents.  If this returns
3218	 * non-zero then we need to remap the memory because
3219	 * the beacon frame changed size (probably because
3220	 * of the TIM bitmap).
3221	 */
3222	bf = avp->av_bcbuf;
3223	m = bf->bf_m;
3224	if (ieee80211_beacon_update(bf->bf_node, &avp->av_boff, m, 0)) {
3225		/* XXX too conservative? */
3226		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3227		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
3228					     bf->bf_segs, &bf->bf_nseg,
3229					     BUS_DMA_NOWAIT);
3230		if (error != 0) {
3231			if_printf(vap->iv_ifp,
3232			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
3233			    __func__, error);
3234			return;
3235		}
3236	}
3237	ath_beacon_setup(sc, bf);
3238	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3239
3240	/* NB: caller is known to have already stopped tx dma */
3241	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
3242	ath_hal_txstart(ah, sc->sc_bhalq);
3243}
3244
3245/*
3246 * Reset the hardware after detecting beacons have stopped.
3247 */
3248static void
3249ath_bstuck_proc(void *arg, int pending)
3250{
3251	struct ath_softc *sc = arg;
3252	struct ifnet *ifp = sc->sc_ifp;
3253
3254	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
3255		sc->sc_bmisscount);
3256	ath_reset(ifp);
3257}
3258
3259/*
3260 * Reclaim beacon resources and return buffer to the pool.
3261 */
3262static void
3263ath_beacon_return(struct ath_softc *sc, struct ath_buf *bf)
3264{
3265
3266	if (bf->bf_m != NULL) {
3267		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3268		m_freem(bf->bf_m);
3269		bf->bf_m = NULL;
3270	}
3271	if (bf->bf_node != NULL) {
3272		ieee80211_free_node(bf->bf_node);
3273		bf->bf_node = NULL;
3274	}
3275	STAILQ_INSERT_TAIL(&sc->sc_bbuf, bf, bf_list);
3276}
3277
3278/*
3279 * Reclaim beacon resources.
3280 */
3281static void
3282ath_beacon_free(struct ath_softc *sc)
3283{
3284	struct ath_buf *bf;
3285
3286	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
3287		if (bf->bf_m != NULL) {
3288			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3289			m_freem(bf->bf_m);
3290			bf->bf_m = NULL;
3291		}
3292		if (bf->bf_node != NULL) {
3293			ieee80211_free_node(bf->bf_node);
3294			bf->bf_node = NULL;
3295		}
3296	}
3297}
3298
3299/*
3300 * Configure the beacon and sleep timers.
3301 *
3302 * When operating as an AP this resets the TSF and sets
3303 * up the hardware to notify us when we need to issue beacons.
3304 *
3305 * When operating in station mode this sets up the beacon
3306 * timers according to the timestamp of the last received
3307 * beacon and the current TSF, configures PCF and DTIM
3308 * handling, programs the sleep registers so the hardware
3309 * will wakeup in time to receive beacons, and configures
3310 * the beacon miss handling so we'll receive a BMISS
3311 * interrupt when we stop seeing beacons from the AP
3312 * we've associated with.
3313 */
3314static void
3315ath_beacon_config(struct ath_softc *sc, struct ieee80211vap *vap)
3316{
3317#define	TSF_TO_TU(_h,_l) \
3318	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
3319#define	FUDGE	2
3320	struct ath_hal *ah = sc->sc_ah;
3321	struct ieee80211com *ic = sc->sc_ifp->if_l2com;
3322	struct ieee80211_node *ni;
3323	u_int32_t nexttbtt, intval, tsftu;
3324	u_int64_t tsf;
3325
3326	if (vap == NULL)
3327		vap = TAILQ_FIRST(&ic->ic_vaps);	/* XXX */
3328	ni = vap->iv_bss;
3329
3330	/* extract tstamp from last beacon and convert to TU */
3331	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
3332			     LE_READ_4(ni->ni_tstamp.data));
3333	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3334		/*
3335		 * For multi-bss ap support beacons are either staggered
3336		 * evenly over N slots or burst together.  For the former
3337		 * arrange for the SWBA to be delivered for each slot.
3338		 * Slots that are not occupied will generate nothing.
3339		 */
3340		/* NB: the beacon interval is kept internally in TU's */
3341		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3342		if (sc->sc_stagbeacons)
3343			intval /= ATH_BCBUF;
3344	} else {
3345		/* NB: the beacon interval is kept internally in TU's */
3346		intval = ni->ni_intval & HAL_BEACON_PERIOD;
3347	}
3348	if (nexttbtt == 0)		/* e.g. for ap mode */
3349		nexttbtt = intval;
3350	else if (intval)		/* NB: can be 0 for monitor mode */
3351		nexttbtt = roundup(nexttbtt, intval);
3352	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
3353		__func__, nexttbtt, intval, ni->ni_intval);
3354	if (ic->ic_opmode == IEEE80211_M_STA && !sc->sc_swbmiss) {
3355		HAL_BEACON_STATE bs;
3356		int dtimperiod, dtimcount;
3357		int cfpperiod, cfpcount;
3358
3359		/*
3360		 * Setup dtim and cfp parameters according to
3361		 * last beacon we received (which may be none).
3362		 */
3363		dtimperiod = ni->ni_dtim_period;
3364		if (dtimperiod <= 0)		/* NB: 0 if not known */
3365			dtimperiod = 1;
3366		dtimcount = ni->ni_dtim_count;
3367		if (dtimcount >= dtimperiod)	/* NB: sanity check */
3368			dtimcount = 0;		/* XXX? */
3369		cfpperiod = 1;			/* NB: no PCF support yet */
3370		cfpcount = 0;
3371		/*
3372		 * Pull nexttbtt forward to reflect the current
3373		 * TSF and calculate dtim+cfp state for the result.
3374		 */
3375		tsf = ath_hal_gettsf64(ah);
3376		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3377		do {
3378			nexttbtt += intval;
3379			if (--dtimcount < 0) {
3380				dtimcount = dtimperiod - 1;
3381				if (--cfpcount < 0)
3382					cfpcount = cfpperiod - 1;
3383			}
3384		} while (nexttbtt < tsftu);
3385		memset(&bs, 0, sizeof(bs));
3386		bs.bs_intval = intval;
3387		bs.bs_nexttbtt = nexttbtt;
3388		bs.bs_dtimperiod = dtimperiod*intval;
3389		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
3390		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
3391		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
3392		bs.bs_cfpmaxduration = 0;
3393#if 0
3394		/*
3395		 * The 802.11 layer records the offset to the DTIM
3396		 * bitmap while receiving beacons; use it here to
3397		 * enable h/w detection of our AID being marked in
3398		 * the bitmap vector (to indicate frames for us are
3399		 * pending at the AP).
3400		 * XXX do DTIM handling in s/w to WAR old h/w bugs
3401		 * XXX enable based on h/w rev for newer chips
3402		 */
3403		bs.bs_timoffset = ni->ni_timoff;
3404#endif
3405		/*
3406		 * Calculate the number of consecutive beacons to miss
3407		 * before taking a BMISS interrupt.
3408		 * Note that we clamp the result to at most 10 beacons.
3409		 */
3410		bs.bs_bmissthreshold = vap->iv_bmissthreshold;
3411		if (bs.bs_bmissthreshold > 10)
3412			bs.bs_bmissthreshold = 10;
3413		else if (bs.bs_bmissthreshold <= 0)
3414			bs.bs_bmissthreshold = 1;
3415
3416		/*
3417		 * Calculate sleep duration.  The configuration is
3418		 * given in ms.  We insure a multiple of the beacon
3419		 * period is used.  Also, if the sleep duration is
3420		 * greater than the DTIM period then it makes senses
3421		 * to make it a multiple of that.
3422		 *
3423		 * XXX fixed at 100ms
3424		 */
3425		bs.bs_sleepduration =
3426			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
3427		if (bs.bs_sleepduration > bs.bs_dtimperiod)
3428			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
3429
3430		DPRINTF(sc, ATH_DEBUG_BEACON,
3431			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
3432			, __func__
3433			, tsf, tsftu
3434			, bs.bs_intval
3435			, bs.bs_nexttbtt
3436			, bs.bs_dtimperiod
3437			, bs.bs_nextdtim
3438			, bs.bs_bmissthreshold
3439			, bs.bs_sleepduration
3440			, bs.bs_cfpperiod
3441			, bs.bs_cfpmaxduration
3442			, bs.bs_cfpnext
3443			, bs.bs_timoffset
3444		);
3445		ath_hal_intrset(ah, 0);
3446		ath_hal_beacontimers(ah, &bs);
3447		sc->sc_imask |= HAL_INT_BMISS;
3448		ath_hal_intrset(ah, sc->sc_imask);
3449	} else {
3450		ath_hal_intrset(ah, 0);
3451		if (nexttbtt == intval)
3452			intval |= HAL_BEACON_RESET_TSF;
3453		if (ic->ic_opmode == IEEE80211_M_IBSS) {
3454			/*
3455			 * In IBSS mode enable the beacon timers but only
3456			 * enable SWBA interrupts if we need to manually
3457			 * prepare beacon frames.  Otherwise we use a
3458			 * self-linked tx descriptor and let the hardware
3459			 * deal with things.
3460			 */
3461			intval |= HAL_BEACON_ENA;
3462			if (!sc->sc_hasveol)
3463				sc->sc_imask |= HAL_INT_SWBA;
3464			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
3465				/*
3466				 * Pull nexttbtt forward to reflect
3467				 * the current TSF.
3468				 */
3469				tsf = ath_hal_gettsf64(ah);
3470				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
3471				do {
3472					nexttbtt += intval;
3473				} while (nexttbtt < tsftu);
3474			}
3475			ath_beaconq_config(sc);
3476		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
3477			/*
3478			 * In AP mode we enable the beacon timers and
3479			 * SWBA interrupts to prepare beacon frames.
3480			 */
3481			intval |= HAL_BEACON_ENA;
3482			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
3483			ath_beaconq_config(sc);
3484		}
3485		ath_hal_beaconinit(ah, nexttbtt, intval);
3486		sc->sc_bmisscount = 0;
3487		ath_hal_intrset(ah, sc->sc_imask);
3488		/*
3489		 * When using a self-linked beacon descriptor in
3490		 * ibss mode load it once here.
3491		 */
3492		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
3493			ath_beacon_start_adhoc(sc, vap);
3494	}
3495	sc->sc_syncbeacon = 0;
3496#undef FUDGE
3497#undef TSF_TO_TU
3498}
3499
3500static void
3501ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
3502{
3503	bus_addr_t *paddr = (bus_addr_t*) arg;
3504	KASSERT(error == 0, ("error %u on bus_dma callback", error));
3505	*paddr = segs->ds_addr;
3506}
3507
3508static int
3509ath_descdma_setup(struct ath_softc *sc,
3510	struct ath_descdma *dd, ath_bufhead *head,
3511	const char *name, int nbuf, int ndesc)
3512{
3513#define	DS2PHYS(_dd, _ds) \
3514	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
3515	struct ifnet *ifp = sc->sc_ifp;
3516	struct ath_desc *ds;
3517	struct ath_buf *bf;
3518	int i, bsize, error;
3519
3520	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
3521	    __func__, name, nbuf, ndesc);
3522
3523	dd->dd_name = name;
3524	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
3525
3526	/*
3527	 * Setup DMA descriptor area.
3528	 */
3529	error = bus_dma_tag_create(bus_get_dma_tag(sc->sc_dev),	/* parent */
3530		       PAGE_SIZE, 0,		/* alignment, bounds */
3531		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
3532		       BUS_SPACE_MAXADDR,	/* highaddr */
3533		       NULL, NULL,		/* filter, filterarg */
3534		       dd->dd_desc_len,		/* maxsize */
3535		       1,			/* nsegments */
3536		       dd->dd_desc_len,		/* maxsegsize */
3537		       BUS_DMA_ALLOCNOW,	/* flags */
3538		       NULL,			/* lockfunc */
3539		       NULL,			/* lockarg */
3540		       &dd->dd_dmat);
3541	if (error != 0) {
3542		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
3543		return error;
3544	}
3545
3546	/* allocate descriptors */
3547	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
3548	if (error != 0) {
3549		if_printf(ifp, "unable to create dmamap for %s descriptors, "
3550			"error %u\n", dd->dd_name, error);
3551		goto fail0;
3552	}
3553
3554	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
3555				 BUS_DMA_NOWAIT | BUS_DMA_COHERENT,
3556				 &dd->dd_dmamap);
3557	if (error != 0) {
3558		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
3559			"error %u\n", nbuf * ndesc, dd->dd_name, error);
3560		goto fail1;
3561	}
3562
3563	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
3564				dd->dd_desc, dd->dd_desc_len,
3565				ath_load_cb, &dd->dd_desc_paddr,
3566				BUS_DMA_NOWAIT);
3567	if (error != 0) {
3568		if_printf(ifp, "unable to map %s descriptors, error %u\n",
3569			dd->dd_name, error);
3570		goto fail2;
3571	}
3572
3573	ds = dd->dd_desc;
3574	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
3575	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
3576	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
3577
3578	/* allocate rx buffers */
3579	bsize = sizeof(struct ath_buf) * nbuf;
3580	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
3581	if (bf == NULL) {
3582		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
3583			dd->dd_name, bsize);
3584		goto fail3;
3585	}
3586	dd->dd_bufptr = bf;
3587
3588	STAILQ_INIT(head);
3589	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
3590		bf->bf_desc = ds;
3591		bf->bf_daddr = DS2PHYS(dd, ds);
3592		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
3593				&bf->bf_dmamap);
3594		if (error != 0) {
3595			if_printf(ifp, "unable to create dmamap for %s "
3596				"buffer %u, error %u\n", dd->dd_name, i, error);
3597			ath_descdma_cleanup(sc, dd, head);
3598			return error;
3599		}
3600		STAILQ_INSERT_TAIL(head, bf, bf_list);
3601	}
3602	return 0;
3603fail3:
3604	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3605fail2:
3606	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3607fail1:
3608	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3609fail0:
3610	bus_dma_tag_destroy(dd->dd_dmat);
3611	memset(dd, 0, sizeof(*dd));
3612	return error;
3613#undef DS2PHYS
3614}
3615
3616static void
3617ath_descdma_cleanup(struct ath_softc *sc,
3618	struct ath_descdma *dd, ath_bufhead *head)
3619{
3620	struct ath_buf *bf;
3621	struct ieee80211_node *ni;
3622
3623	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
3624	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
3625	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
3626	bus_dma_tag_destroy(dd->dd_dmat);
3627
3628	STAILQ_FOREACH(bf, head, bf_list) {
3629		if (bf->bf_m) {
3630			m_freem(bf->bf_m);
3631			bf->bf_m = NULL;
3632		}
3633		if (bf->bf_dmamap != NULL) {
3634			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
3635			bf->bf_dmamap = NULL;
3636		}
3637		ni = bf->bf_node;
3638		bf->bf_node = NULL;
3639		if (ni != NULL) {
3640			/*
3641			 * Reclaim node reference.
3642			 */
3643			ieee80211_free_node(ni);
3644		}
3645	}
3646
3647	STAILQ_INIT(head);
3648	free(dd->dd_bufptr, M_ATHDEV);
3649	memset(dd, 0, sizeof(*dd));
3650}
3651
3652static int
3653ath_desc_alloc(struct ath_softc *sc)
3654{
3655	int error;
3656
3657	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
3658			"rx", ath_rxbuf, 1);
3659	if (error != 0)
3660		return error;
3661
3662	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
3663			"tx", ath_txbuf, ATH_TXDESC);
3664	if (error != 0) {
3665		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3666		return error;
3667	}
3668
3669	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
3670			"beacon", ATH_BCBUF, 1);
3671	if (error != 0) {
3672		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3673		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3674		return error;
3675	}
3676	return 0;
3677}
3678
3679static void
3680ath_desc_free(struct ath_softc *sc)
3681{
3682
3683	if (sc->sc_bdma.dd_desc_len != 0)
3684		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
3685	if (sc->sc_txdma.dd_desc_len != 0)
3686		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
3687	if (sc->sc_rxdma.dd_desc_len != 0)
3688		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
3689}
3690
3691static struct ieee80211_node *
3692ath_node_alloc(struct ieee80211vap *vap, const uint8_t mac[IEEE80211_ADDR_LEN])
3693{
3694	struct ieee80211com *ic = vap->iv_ic;
3695	struct ath_softc *sc = ic->ic_ifp->if_softc;
3696	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
3697	struct ath_node *an;
3698
3699	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
3700	if (an == NULL) {
3701		/* XXX stat+msg */
3702		return NULL;
3703	}
3704	ath_rate_node_init(sc, an);
3705
3706	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
3707	return &an->an_node;
3708}
3709
3710static void
3711ath_node_free(struct ieee80211_node *ni)
3712{
3713	struct ieee80211com *ic = ni->ni_ic;
3714        struct ath_softc *sc = ic->ic_ifp->if_softc;
3715
3716	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
3717
3718	ath_rate_node_cleanup(sc, ATH_NODE(ni));
3719	sc->sc_node_free(ni);
3720}
3721
3722static void
3723ath_node_getsignal(const struct ieee80211_node *ni, int8_t *rssi, int8_t *noise)
3724{
3725	struct ieee80211com *ic = ni->ni_ic;
3726	struct ath_softc *sc = ic->ic_ifp->if_softc;
3727	struct ath_hal *ah = sc->sc_ah;
3728	HAL_CHANNEL hchan;
3729
3730	*rssi = ic->ic_node_getrssi(ni);
3731	if (ni->ni_chan != IEEE80211_CHAN_ANYC) {
3732		ath_mapchan(ic, &hchan, ni->ni_chan);
3733		*noise = ath_hal_getchannoise(ah, &hchan);
3734	} else
3735		*noise = -95;		/* nominally correct */
3736}
3737
3738static int
3739ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
3740{
3741	struct ath_hal *ah = sc->sc_ah;
3742	int error;
3743	struct mbuf *m;
3744	struct ath_desc *ds;
3745
3746	m = bf->bf_m;
3747	if (m == NULL) {
3748		/*
3749		 * NB: by assigning a page to the rx dma buffer we
3750		 * implicitly satisfy the Atheros requirement that
3751		 * this buffer be cache-line-aligned and sized to be
3752		 * multiple of the cache line size.  Not doing this
3753		 * causes weird stuff to happen (for the 5210 at least).
3754		 */
3755		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3756		if (m == NULL) {
3757			DPRINTF(sc, ATH_DEBUG_ANY,
3758				"%s: no mbuf/cluster\n", __func__);
3759			sc->sc_stats.ast_rx_nombuf++;
3760			return ENOMEM;
3761		}
3762		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
3763
3764		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
3765					     bf->bf_dmamap, m,
3766					     bf->bf_segs, &bf->bf_nseg,
3767					     BUS_DMA_NOWAIT);
3768		if (error != 0) {
3769			DPRINTF(sc, ATH_DEBUG_ANY,
3770			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
3771			    __func__, error);
3772			sc->sc_stats.ast_rx_busdma++;
3773			m_freem(m);
3774			return error;
3775		}
3776		KASSERT(bf->bf_nseg == 1,
3777			("multi-segment packet; nseg %u", bf->bf_nseg));
3778		bf->bf_m = m;
3779	}
3780	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
3781
3782	/*
3783	 * Setup descriptors.  For receive we always terminate
3784	 * the descriptor list with a self-linked entry so we'll
3785	 * not get overrun under high load (as can happen with a
3786	 * 5212 when ANI processing enables PHY error frames).
3787	 *
3788	 * To insure the last descriptor is self-linked we create
3789	 * each descriptor as self-linked and add it to the end.  As
3790	 * each additional descriptor is added the previous self-linked
3791	 * entry is ``fixed'' naturally.  This should be safe even
3792	 * if DMA is happening.  When processing RX interrupts we
3793	 * never remove/process the last, self-linked, entry on the
3794	 * descriptor list.  This insures the hardware always has
3795	 * someplace to write a new frame.
3796	 */
3797	ds = bf->bf_desc;
3798	ds->ds_link = bf->bf_daddr;	/* link to self */
3799	ds->ds_data = bf->bf_segs[0].ds_addr;
3800	ath_hal_setuprxdesc(ah, ds
3801		, m->m_len		/* buffer size */
3802		, 0
3803	);
3804
3805	if (sc->sc_rxlink != NULL)
3806		*sc->sc_rxlink = bf->bf_daddr;
3807	sc->sc_rxlink = &ds->ds_link;
3808	return 0;
3809}
3810
3811/*
3812 * Extend 15-bit time stamp from rx descriptor to
3813 * a full 64-bit TSF using the specified TSF.
3814 */
3815static __inline u_int64_t
3816ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
3817{
3818	if ((tsf & 0x7fff) < rstamp)
3819		tsf -= 0x8000;
3820	return ((tsf &~ 0x7fff) | rstamp);
3821}
3822
3823/*
3824 * Intercept management frames to collect beacon rssi data
3825 * and to do ibss merges.
3826 */
3827static void
3828ath_recv_mgmt(struct ieee80211_node *ni, struct mbuf *m,
3829	int subtype, int rssi, int noise, u_int32_t rstamp)
3830{
3831	struct ieee80211vap *vap = ni->ni_vap;
3832	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
3833
3834	/*
3835	 * Call up first so subsequent work can use information
3836	 * potentially stored in the node (e.g. for ibss merge).
3837	 */
3838	ATH_VAP(vap)->av_recv_mgmt(ni, m, subtype, rssi, noise, rstamp);
3839	switch (subtype) {
3840	case IEEE80211_FC0_SUBTYPE_BEACON:
3841		/* update rssi statistics for use by the hal */
3842		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
3843		if (sc->sc_syncbeacon &&
3844		    ni == vap->iv_bss && vap->iv_state == IEEE80211_S_RUN) {
3845			/*
3846			 * Resync beacon timers using the tsf of the beacon
3847			 * frame we just received.
3848			 */
3849			ath_beacon_config(sc, vap);
3850		}
3851		/* fall thru... */
3852	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
3853		if (vap->iv_opmode == IEEE80211_M_IBSS &&
3854		    vap->iv_state == IEEE80211_S_RUN) {
3855			u_int64_t tsf = ath_extend_tsf(rstamp,
3856				ath_hal_gettsf64(sc->sc_ah));
3857			/*
3858			 * Handle ibss merge as needed; check the tsf on the
3859			 * frame before attempting the merge.  The 802.11 spec
3860			 * says the station should change it's bssid to match
3861			 * the oldest station with the same ssid, where oldest
3862			 * is determined by the tsf.  Note that hardware
3863			 * reconfiguration happens through callback to
3864			 * ath_newstate as the state machine will go from
3865			 * RUN -> RUN when this happens.
3866			 */
3867			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
3868				DPRINTF(sc, ATH_DEBUG_STATE,
3869				    "ibss merge, rstamp %u tsf %ju "
3870				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
3871				    (uintmax_t)ni->ni_tstamp.tsf);
3872				(void) ieee80211_ibss_merge(ni);
3873			}
3874		}
3875		break;
3876	}
3877}
3878
3879/*
3880 * Set the default antenna.
3881 */
3882static void
3883ath_setdefantenna(struct ath_softc *sc, u_int antenna)
3884{
3885	struct ath_hal *ah = sc->sc_ah;
3886
3887	/* XXX block beacon interrupts */
3888	ath_hal_setdefantenna(ah, antenna);
3889	if (sc->sc_defant != antenna)
3890		sc->sc_stats.ast_ant_defswitch++;
3891	sc->sc_defant = antenna;
3892	sc->sc_rxotherant = 0;
3893}
3894
3895static int
3896ath_rx_tap(struct ifnet *ifp, struct mbuf *m,
3897	const struct ath_rx_status *rs, u_int64_t tsf, int16_t nf)
3898{
3899#define	CHAN_HT20	htole32(IEEE80211_CHAN_HT20)
3900#define	CHAN_HT40U	htole32(IEEE80211_CHAN_HT40U)
3901#define	CHAN_HT40D	htole32(IEEE80211_CHAN_HT40D)
3902#define	CHAN_HT		(CHAN_HT20|CHAN_HT40U|CHAN_HT40D)
3903	struct ath_softc *sc = ifp->if_softc;
3904	const HAL_RATE_TABLE *rt;
3905	uint8_t rix;
3906
3907	/*
3908	 * Discard anything shorter than an ack or cts.
3909	 */
3910	if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
3911		DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
3912			__func__, m->m_pkthdr.len);
3913		sc->sc_stats.ast_rx_tooshort++;
3914		return 0;
3915	}
3916	rt = sc->sc_currates;
3917	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3918	rix = rt->rateCodeToIndex[rs->rs_rate];
3919	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
3920	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
3921#ifdef AH_SUPPORT_AR5416
3922	sc->sc_rx_th.wr_chan_flags &= ~CHAN_HT;
3923	if (sc->sc_rx_th.wr_rate & IEEE80211_RATE_MCS) {	/* HT rate */
3924		if ((rs->rs_flags & HAL_RX_2040) == 0)
3925			sc->sc_rx_th.wr_chan_flags |= CHAN_HT20;
3926		else if (sc->sc_curchan.channelFlags & CHANNEL_HT40PLUS)
3927			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40U;
3928		else
3929			sc->sc_rx_th.wr_chan_flags |= CHAN_HT40D;
3930		if ((rs->rs_flags & HAL_RX_GI) == 0)
3931			sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
3932	}
3933#endif
3934	sc->sc_rx_th.wr_tsf = htole64(ath_extend_tsf(rs->rs_tstamp, tsf));
3935	if (rs->rs_status & HAL_RXERR_CRC)
3936		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
3937	/* XXX propagate other error flags from descriptor */
3938	sc->sc_rx_th.wr_antsignal = rs->rs_rssi + nf;
3939	sc->sc_rx_th.wr_antnoise = nf;
3940	sc->sc_rx_th.wr_antenna = rs->rs_antenna;
3941
3942	bpf_mtap2(ifp->if_bpf, &sc->sc_rx_th, sc->sc_rx_th_len, m);
3943
3944	return 1;
3945#undef CHAN_HT
3946#undef CHAN_HT20
3947#undef CHAN_HT40U
3948#undef CHAN_HT40D
3949}
3950
3951static void
3952ath_handle_micerror(struct ieee80211com *ic,
3953	struct ieee80211_frame *wh, int keyix)
3954{
3955	struct ieee80211_node *ni;
3956
3957	/* XXX recheck MIC to deal w/ chips that lie */
3958	/* XXX discard MIC errors on !data frames */
3959	ni = ieee80211_find_rxnode(ic, (const struct ieee80211_frame_min *) wh);
3960	if (ni != NULL) {
3961		ieee80211_notify_michael_failure(ni->ni_vap, wh, keyix);
3962		ieee80211_free_node(ni);
3963	}
3964}
3965
3966static void
3967ath_rx_proc(void *arg, int npending)
3968{
3969#define	PA2DESC(_sc, _pa) \
3970	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3971		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3972	struct ath_softc *sc = arg;
3973	struct ath_buf *bf;
3974	struct ifnet *ifp = sc->sc_ifp;
3975	struct ieee80211com *ic = ifp->if_l2com;
3976	struct ath_hal *ah = sc->sc_ah;
3977	struct ath_desc *ds;
3978	struct ath_rx_status *rs;
3979	struct mbuf *m;
3980	struct ieee80211_node *ni;
3981	int len, type, ngood;
3982	u_int phyerr;
3983	HAL_STATUS status;
3984	int16_t nf;
3985	u_int64_t tsf;
3986
3987	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
3988	ngood = 0;
3989	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
3990	sc->sc_stats.ast_rx_noise = nf;
3991	tsf = ath_hal_gettsf64(ah);
3992	do {
3993		bf = STAILQ_FIRST(&sc->sc_rxbuf);
3994		if (bf == NULL) {		/* NB: shouldn't happen */
3995			if_printf(ifp, "%s: no buffer!\n", __func__);
3996			break;
3997		}
3998		m = bf->bf_m;
3999		if (m == NULL) {		/* NB: shouldn't happen */
4000			/*
4001			 * If mbuf allocation failed previously there
4002			 * will be no mbuf; try again to re-populate it.
4003			 */
4004			/* XXX make debug msg */
4005			if_printf(ifp, "%s: no mbuf!\n", __func__);
4006			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
4007			goto rx_next;
4008		}
4009		ds = bf->bf_desc;
4010		if (ds->ds_link == bf->bf_daddr) {
4011			/* NB: never process the self-linked entry at the end */
4012			break;
4013		}
4014		/* XXX sync descriptor memory */
4015		/*
4016		 * Must provide the virtual address of the current
4017		 * descriptor, the physical address, and the virtual
4018		 * address of the next descriptor in the h/w chain.
4019		 * This allows the HAL to look ahead to see if the
4020		 * hardware is done with a descriptor by checking the
4021		 * done bit in the following descriptor and the address
4022		 * of the current descriptor the DMA engine is working
4023		 * on.  All this is necessary because of our use of
4024		 * a self-linked list to avoid rx overruns.
4025		 */
4026		rs = &bf->bf_status.ds_rxstat;
4027		status = ath_hal_rxprocdesc(ah, ds,
4028				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
4029#ifdef ATH_DEBUG
4030		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
4031			ath_printrxbuf(bf, 0, status == HAL_OK);
4032#endif
4033		if (status == HAL_EINPROGRESS)
4034			break;
4035		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
4036		if (rs->rs_status != 0) {
4037			if (rs->rs_status & HAL_RXERR_CRC)
4038				sc->sc_stats.ast_rx_crcerr++;
4039			if (rs->rs_status & HAL_RXERR_FIFO)
4040				sc->sc_stats.ast_rx_fifoerr++;
4041			if (rs->rs_status & HAL_RXERR_PHY) {
4042				sc->sc_stats.ast_rx_phyerr++;
4043				phyerr = rs->rs_phyerr & 0x1f;
4044				sc->sc_stats.ast_rx_phy[phyerr]++;
4045				goto rx_error;	/* NB: don't count in ierrors */
4046			}
4047			if (rs->rs_status & HAL_RXERR_DECRYPT) {
4048				/*
4049				 * Decrypt error.  If the error occurred
4050				 * because there was no hardware key, then
4051				 * let the frame through so the upper layers
4052				 * can process it.  This is necessary for 5210
4053				 * parts which have no way to setup a ``clear''
4054				 * key cache entry.
4055				 *
4056				 * XXX do key cache faulting
4057				 */
4058				if (rs->rs_keyix == HAL_RXKEYIX_INVALID)
4059					goto rx_accept;
4060				sc->sc_stats.ast_rx_badcrypt++;
4061			}
4062			if (rs->rs_status & HAL_RXERR_MIC) {
4063				sc->sc_stats.ast_rx_badmic++;
4064				/*
4065				 * Do minimal work required to hand off
4066				 * the 802.11 header for notifcation.
4067				 */
4068				/* XXX frag's and qos frames */
4069				len = rs->rs_datalen;
4070				if (len >= sizeof (struct ieee80211_frame)) {
4071					bus_dmamap_sync(sc->sc_dmat,
4072					    bf->bf_dmamap,
4073					    BUS_DMASYNC_POSTREAD);
4074					ath_handle_micerror(ic,
4075					    mtod(m, struct ieee80211_frame *),
4076					    sc->sc_splitmic ?
4077						rs->rs_keyix-32 : rs->rs_keyix);
4078				}
4079			}
4080			ifp->if_ierrors++;
4081rx_error:
4082			/*
4083			 * Cleanup any pending partial frame.
4084			 */
4085			if (sc->sc_rxpending != NULL) {
4086				m_freem(sc->sc_rxpending);
4087				sc->sc_rxpending = NULL;
4088			}
4089			/*
4090			 * When a tap is present pass error frames
4091			 * that have been requested.  By default we
4092			 * pass decrypt+mic errors but others may be
4093			 * interesting (e.g. crc).
4094			 */
4095			if (bpf_peers_present(ifp->if_bpf) &&
4096			    (rs->rs_status & sc->sc_monpass)) {
4097				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4098				    BUS_DMASYNC_POSTREAD);
4099				/* NB: bpf needs the mbuf length setup */
4100				len = rs->rs_datalen;
4101				m->m_pkthdr.len = m->m_len = len;
4102				(void) ath_rx_tap(ifp, m, rs, tsf, nf);
4103			}
4104			/* XXX pass MIC errors up for s/w reclaculation */
4105			goto rx_next;
4106		}
4107rx_accept:
4108		/*
4109		 * Sync and unmap the frame.  At this point we're
4110		 * committed to passing the mbuf somewhere so clear
4111		 * bf_m; this means a new mbuf must be allocated
4112		 * when the rx descriptor is setup again to receive
4113		 * another frame.
4114		 */
4115		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
4116		    BUS_DMASYNC_POSTREAD);
4117		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
4118		bf->bf_m = NULL;
4119
4120		len = rs->rs_datalen;
4121		m->m_len = len;
4122
4123		if (rs->rs_more) {
4124			/*
4125			 * Frame spans multiple descriptors; save
4126			 * it for the next completed descriptor, it
4127			 * will be used to construct a jumbogram.
4128			 */
4129			if (sc->sc_rxpending != NULL) {
4130				/* NB: max frame size is currently 2 clusters */
4131				sc->sc_stats.ast_rx_toobig++;
4132				m_freem(sc->sc_rxpending);
4133			}
4134			m->m_pkthdr.rcvif = ifp;
4135			m->m_pkthdr.len = len;
4136			sc->sc_rxpending = m;
4137			goto rx_next;
4138		} else if (sc->sc_rxpending != NULL) {
4139			/*
4140			 * This is the second part of a jumbogram,
4141			 * chain it to the first mbuf, adjust the
4142			 * frame length, and clear the rxpending state.
4143			 */
4144			sc->sc_rxpending->m_next = m;
4145			sc->sc_rxpending->m_pkthdr.len += len;
4146			m = sc->sc_rxpending;
4147			sc->sc_rxpending = NULL;
4148		} else {
4149			/*
4150			 * Normal single-descriptor receive; setup
4151			 * the rcvif and packet length.
4152			 */
4153			m->m_pkthdr.rcvif = ifp;
4154			m->m_pkthdr.len = len;
4155		}
4156
4157		ifp->if_ipackets++;
4158		sc->sc_stats.ast_ant_rx[rs->rs_antenna]++;
4159
4160		if (bpf_peers_present(ifp->if_bpf) &&
4161		    !ath_rx_tap(ifp, m, rs, tsf, nf)) {
4162			m_freem(m);		/* XXX reclaim */
4163			goto rx_next;
4164		}
4165
4166		/*
4167		 * From this point on we assume the frame is at least
4168		 * as large as ieee80211_frame_min; verify that.
4169		 */
4170		if (len < IEEE80211_MIN_LEN) {
4171			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
4172				__func__, len);
4173			sc->sc_stats.ast_rx_tooshort++;
4174			m_freem(m);
4175			goto rx_next;
4176		}
4177
4178		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
4179			const HAL_RATE_TABLE *rt = sc->sc_currates;
4180			uint8_t rix = rt->rateCodeToIndex[rs->rs_rate];
4181
4182			ieee80211_dump_pkt(ic, mtod(m, caddr_t), len,
4183			    sc->sc_hwmap[rix].ieeerate, rs->rs_rssi);
4184		}
4185
4186		m_adj(m, -IEEE80211_CRC_LEN);
4187
4188		/*
4189		 * Locate the node for sender, track state, and then
4190		 * pass the (referenced) node up to the 802.11 layer
4191		 * for its use.
4192		 */
4193		ni = ieee80211_find_rxnode_withkey(ic,
4194			mtod(m, const struct ieee80211_frame_min *),
4195			rs->rs_keyix == HAL_RXKEYIX_INVALID ?
4196				IEEE80211_KEYIX_NONE : rs->rs_keyix);
4197		if (ni != NULL) {
4198			/*
4199			 * Sending station is known, dispatch directly.
4200			 */
4201			type = ieee80211_input(ni, m,
4202			    rs->rs_rssi, nf, rs->rs_tstamp);
4203			ieee80211_free_node(ni);
4204			/*
4205			 * Arrange to update the last rx timestamp only for
4206			 * frames from our ap when operating in station mode.
4207			 * This assumes the rx key is always setup when
4208			 * associated.
4209			 */
4210			if (ic->ic_opmode == IEEE80211_M_STA &&
4211			    rs->rs_keyix != HAL_RXKEYIX_INVALID)
4212				ngood++;
4213		} else {
4214			type = ieee80211_input_all(ic, m,
4215			    rs->rs_rssi, nf, rs->rs_tstamp);
4216		}
4217		/*
4218		 * Track rx rssi and do any rx antenna management.
4219		 */
4220		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, rs->rs_rssi);
4221		if (sc->sc_diversity) {
4222			/*
4223			 * When using fast diversity, change the default rx
4224			 * antenna if diversity chooses the other antenna 3
4225			 * times in a row.
4226			 */
4227			if (sc->sc_defant != rs->rs_antenna) {
4228				if (++sc->sc_rxotherant >= 3)
4229					ath_setdefantenna(sc, rs->rs_antenna);
4230			} else
4231				sc->sc_rxotherant = 0;
4232		}
4233		if (sc->sc_softled) {
4234			/*
4235			 * Blink for any data frame.  Otherwise do a
4236			 * heartbeat-style blink when idle.  The latter
4237			 * is mainly for station mode where we depend on
4238			 * periodic beacon frames to trigger the poll event.
4239			 */
4240			if (type == IEEE80211_FC0_TYPE_DATA) {
4241				const HAL_RATE_TABLE *rt = sc->sc_currates;
4242				ath_led_event(sc,
4243				    rt->rateCodeToIndex[rs->rs_rate]);
4244			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
4245				ath_led_event(sc, 0);
4246		}
4247rx_next:
4248		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
4249	} while (ath_rxbuf_init(sc, bf) == 0);
4250
4251	/* rx signal state monitoring */
4252	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
4253	if (ngood)
4254		sc->sc_lastrx = tsf;
4255
4256	if ((ifp->if_drv_flags & IFF_DRV_OACTIVE) == 0 &&
4257	    !IFQ_IS_EMPTY(&ifp->if_snd))
4258		ath_start(ifp);
4259
4260#undef PA2DESC
4261}
4262
4263static void
4264ath_txq_init(struct ath_softc *sc, struct ath_txq *txq, int qnum)
4265{
4266	txq->axq_qnum = qnum;
4267	txq->axq_depth = 0;
4268	txq->axq_intrcnt = 0;
4269	txq->axq_link = NULL;
4270	STAILQ_INIT(&txq->axq_q);
4271	ATH_TXQ_LOCK_INIT(sc, txq);
4272	TAILQ_INIT(&txq->axq_stageq);
4273	txq->axq_curage = 0;
4274}
4275
4276/*
4277 * Setup a h/w transmit queue.
4278 */
4279static struct ath_txq *
4280ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
4281{
4282#define	N(a)	(sizeof(a)/sizeof(a[0]))
4283	struct ath_hal *ah = sc->sc_ah;
4284	HAL_TXQ_INFO qi;
4285	int qnum;
4286
4287	memset(&qi, 0, sizeof(qi));
4288	qi.tqi_subtype = subtype;
4289	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
4290	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
4291	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
4292	/*
4293	 * Enable interrupts only for EOL and DESC conditions.
4294	 * We mark tx descriptors to receive a DESC interrupt
4295	 * when a tx queue gets deep; otherwise waiting for the
4296	 * EOL to reap descriptors.  Note that this is done to
4297	 * reduce interrupt load and this only defers reaping
4298	 * descriptors, never transmitting frames.  Aside from
4299	 * reducing interrupts this also permits more concurrency.
4300	 * The only potential downside is if the tx queue backs
4301	 * up in which case the top half of the kernel may backup
4302	 * due to a lack of tx descriptors.
4303	 */
4304	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
4305	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
4306	if (qnum == -1) {
4307		/*
4308		 * NB: don't print a message, this happens
4309		 * normally on parts with too few tx queues
4310		 */
4311		return NULL;
4312	}
4313	if (qnum >= N(sc->sc_txq)) {
4314		device_printf(sc->sc_dev,
4315			"hal qnum %u out of range, max %zu!\n",
4316			qnum, N(sc->sc_txq));
4317		ath_hal_releasetxqueue(ah, qnum);
4318		return NULL;
4319	}
4320	if (!ATH_TXQ_SETUP(sc, qnum)) {
4321		ath_txq_init(sc, &sc->sc_txq[qnum], qnum);
4322		sc->sc_txqsetup |= 1<<qnum;
4323	}
4324	return &sc->sc_txq[qnum];
4325#undef N
4326}
4327
4328/*
4329 * Setup a hardware data transmit queue for the specified
4330 * access control.  The hal may not support all requested
4331 * queues in which case it will return a reference to a
4332 * previously setup queue.  We record the mapping from ac's
4333 * to h/w queues for use by ath_tx_start and also track
4334 * the set of h/w queues being used to optimize work in the
4335 * transmit interrupt handler and related routines.
4336 */
4337static int
4338ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
4339{
4340#define	N(a)	(sizeof(a)/sizeof(a[0]))
4341	struct ath_txq *txq;
4342
4343	if (ac >= N(sc->sc_ac2q)) {
4344		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
4345			ac, N(sc->sc_ac2q));
4346		return 0;
4347	}
4348	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
4349	if (txq != NULL) {
4350		sc->sc_ac2q[ac] = txq;
4351		return 1;
4352	} else
4353		return 0;
4354#undef N
4355}
4356
4357/*
4358 * Update WME parameters for a transmit queue.
4359 */
4360static int
4361ath_txq_update(struct ath_softc *sc, int ac)
4362{
4363#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
4364#define	ATH_TXOP_TO_US(v)		(v<<5)
4365	struct ifnet *ifp = sc->sc_ifp;
4366	struct ieee80211com *ic = ifp->if_l2com;
4367	struct ath_txq *txq = sc->sc_ac2q[ac];
4368	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
4369	struct ath_hal *ah = sc->sc_ah;
4370	HAL_TXQ_INFO qi;
4371
4372	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
4373	qi.tqi_aifs = wmep->wmep_aifsn;
4374	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
4375	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
4376	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
4377
4378	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
4379		if_printf(ifp, "unable to update hardware queue "
4380			"parameters for %s traffic!\n",
4381			ieee80211_wme_acnames[ac]);
4382		return 0;
4383	} else {
4384		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
4385		return 1;
4386	}
4387#undef ATH_TXOP_TO_US
4388#undef ATH_EXPONENT_TO_VALUE
4389}
4390
4391/*
4392 * Callback from the 802.11 layer to update WME parameters.
4393 */
4394static int
4395ath_wme_update(struct ieee80211com *ic)
4396{
4397	struct ath_softc *sc = ic->ic_ifp->if_softc;
4398
4399	return !ath_txq_update(sc, WME_AC_BE) ||
4400	    !ath_txq_update(sc, WME_AC_BK) ||
4401	    !ath_txq_update(sc, WME_AC_VI) ||
4402	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
4403}
4404
4405/*
4406 * Reclaim resources for a setup queue.
4407 */
4408static void
4409ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
4410{
4411
4412	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
4413	ATH_TXQ_LOCK_DESTROY(txq);
4414	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
4415}
4416
4417/*
4418 * Reclaim all tx queue resources.
4419 */
4420static void
4421ath_tx_cleanup(struct ath_softc *sc)
4422{
4423	int i;
4424
4425	ATH_TXBUF_LOCK_DESTROY(sc);
4426	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4427		if (ATH_TXQ_SETUP(sc, i))
4428			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
4429}
4430
4431/*
4432 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
4433 */
4434static int
4435ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
4436{
4437	int i;
4438
4439	for (i = 0; i < rt->rateCount; i++)
4440		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
4441			return i;
4442	return 0;		/* NB: lowest rate */
4443}
4444
4445/*
4446 * Reclaim mbuf resources.  For fragmented frames we
4447 * need to claim each frag chained with m_nextpkt.
4448 */
4449static void
4450ath_freetx(struct mbuf *m)
4451{
4452	struct mbuf *next;
4453
4454	do {
4455		next = m->m_nextpkt;
4456		m->m_nextpkt = NULL;
4457		m_freem(m);
4458	} while ((m = next) != NULL);
4459}
4460
4461static int
4462ath_tx_dmasetup(struct ath_softc *sc, struct ath_buf *bf, struct mbuf *m0)
4463{
4464	struct mbuf *m;
4465	int error;
4466
4467	/*
4468	 * Load the DMA map so any coalescing is done.  This
4469	 * also calculates the number of descriptors we need.
4470	 */
4471	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4472				     bf->bf_segs, &bf->bf_nseg,
4473				     BUS_DMA_NOWAIT);
4474	if (error == EFBIG) {
4475		/* XXX packet requires too many descriptors */
4476		bf->bf_nseg = ATH_TXDESC+1;
4477	} else if (error != 0) {
4478		sc->sc_stats.ast_tx_busdma++;
4479		ath_freetx(m0);
4480		return error;
4481	}
4482	/*
4483	 * Discard null packets and check for packets that
4484	 * require too many TX descriptors.  We try to convert
4485	 * the latter to a cluster.
4486	 */
4487	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
4488		sc->sc_stats.ast_tx_linear++;
4489		m = m_collapse(m0, M_DONTWAIT, ATH_TXDESC);
4490		if (m == NULL) {
4491			ath_freetx(m0);
4492			sc->sc_stats.ast_tx_nombuf++;
4493			return ENOMEM;
4494		}
4495		m0 = m;
4496		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
4497					     bf->bf_segs, &bf->bf_nseg,
4498					     BUS_DMA_NOWAIT);
4499		if (error != 0) {
4500			sc->sc_stats.ast_tx_busdma++;
4501			ath_freetx(m0);
4502			return error;
4503		}
4504		KASSERT(bf->bf_nseg <= ATH_TXDESC,
4505		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
4506	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
4507		sc->sc_stats.ast_tx_nodata++;
4508		ath_freetx(m0);
4509		return EIO;
4510	}
4511	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n",
4512		__func__, m0, m0->m_pkthdr.len);
4513	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
4514	bf->bf_m = m0;
4515
4516	return 0;
4517}
4518
4519static void
4520ath_tx_handoff(struct ath_softc *sc, struct ath_txq *txq, struct ath_buf *bf)
4521{
4522	struct ath_hal *ah = sc->sc_ah;
4523	struct ath_desc *ds, *ds0;
4524	int i;
4525
4526	/*
4527	 * Fillin the remainder of the descriptor info.
4528	 */
4529	ds0 = ds = bf->bf_desc;
4530	for (i = 0; i < bf->bf_nseg; i++, ds++) {
4531		ds->ds_data = bf->bf_segs[i].ds_addr;
4532		if (i == bf->bf_nseg - 1)
4533			ds->ds_link = 0;
4534		else
4535			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
4536		ath_hal_filltxdesc(ah, ds
4537			, bf->bf_segs[i].ds_len	/* segment length */
4538			, i == 0		/* first segment */
4539			, i == bf->bf_nseg - 1	/* last segment */
4540			, ds0			/* first descriptor */
4541		);
4542		DPRINTF(sc, ATH_DEBUG_XMIT,
4543			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
4544			__func__, i, ds->ds_link, ds->ds_data,
4545			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
4546	}
4547	/*
4548	 * Insert the frame on the outbound list and pass it on
4549	 * to the hardware.  Multicast frames buffered for power
4550	 * save stations and transmit from the CAB queue are stored
4551	 * on a s/w only queue and loaded on to the CAB queue in
4552	 * the SWBA handler since frames only go out on DTIM and
4553	 * to avoid possible races.
4554	 */
4555	ATH_TXQ_LOCK(txq);
4556	if (txq->axq_qnum != ATH_TXQ_SWQ) {
4557		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4558		if (txq->axq_link == NULL) {
4559			ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
4560			DPRINTF(sc, ATH_DEBUG_XMIT,
4561			    "%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
4562			    txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
4563			    txq->axq_depth);
4564		} else {
4565			*txq->axq_link = bf->bf_daddr;
4566			DPRINTF(sc, ATH_DEBUG_XMIT,
4567			    "%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
4568			    txq->axq_qnum, txq->axq_link,
4569			    (caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
4570		}
4571		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4572		ath_hal_txstart(ah, txq->axq_qnum);
4573	} else {
4574		if (txq->axq_link != NULL) {
4575			struct ath_buf *last = ATH_TXQ_LAST(txq);
4576			struct ieee80211_frame *wh;
4577
4578			/* mark previous frame */
4579			wh = mtod(last->bf_m, struct ieee80211_frame *);
4580			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
4581			bus_dmamap_sync(sc->sc_dmat, last->bf_dmamap,
4582			    BUS_DMASYNC_PREWRITE);
4583
4584			/* link descriptor */
4585			*txq->axq_link = bf->bf_daddr;
4586		}
4587		ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
4588		txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
4589	}
4590	ATH_TXQ_UNLOCK(txq);
4591}
4592
4593static int
4594ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
4595    struct mbuf *m0)
4596{
4597	struct ieee80211vap *vap = ni->ni_vap;
4598	struct ath_vap *avp = ATH_VAP(vap);
4599	struct ath_hal *ah = sc->sc_ah;
4600	struct ifnet *ifp = sc->sc_ifp;
4601	struct ieee80211com *ic = ifp->if_l2com;
4602	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
4603	int error, iswep, ismcast, isfrag, ismrr;
4604	int keyix, hdrlen, pktlen, try0;
4605	u_int8_t rix, txrate, ctsrate;
4606	u_int8_t cix = 0xff;		/* NB: silence compiler */
4607	struct ath_desc *ds;
4608	struct ath_txq *txq;
4609	struct ieee80211_frame *wh;
4610	u_int subtype, flags, ctsduration;
4611	HAL_PKT_TYPE atype;
4612	const HAL_RATE_TABLE *rt;
4613	HAL_BOOL shortPreamble;
4614	struct ath_node *an;
4615	u_int pri;
4616
4617	wh = mtod(m0, struct ieee80211_frame *);
4618	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
4619	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
4620	isfrag = m0->m_flags & M_FRAG;
4621	hdrlen = ieee80211_anyhdrsize(wh);
4622	/*
4623	 * Packet length must not include any
4624	 * pad bytes; deduct them here.
4625	 */
4626	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
4627
4628	if (iswep) {
4629		const struct ieee80211_cipher *cip;
4630		struct ieee80211_key *k;
4631
4632		/*
4633		 * Construct the 802.11 header+trailer for an encrypted
4634		 * frame. The only reason this can fail is because of an
4635		 * unknown or unsupported cipher/key type.
4636		 */
4637		k = ieee80211_crypto_encap(ni, m0);
4638		if (k == NULL) {
4639			/*
4640			 * This can happen when the key is yanked after the
4641			 * frame was queued.  Just discard the frame; the
4642			 * 802.11 layer counts failures and provides
4643			 * debugging/diagnostics.
4644			 */
4645			ath_freetx(m0);
4646			return EIO;
4647		}
4648		/*
4649		 * Adjust the packet + header lengths for the crypto
4650		 * additions and calculate the h/w key index.  When
4651		 * a s/w mic is done the frame will have had any mic
4652		 * added to it prior to entry so m0->m_pkthdr.len will
4653		 * account for it. Otherwise we need to add it to the
4654		 * packet length.
4655		 */
4656		cip = k->wk_cipher;
4657		hdrlen += cip->ic_header;
4658		pktlen += cip->ic_header + cip->ic_trailer;
4659		/* NB: frags always have any TKIP MIC done in s/w */
4660		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && !isfrag)
4661			pktlen += cip->ic_miclen;
4662		keyix = k->wk_keyix;
4663
4664		/* packet header may have moved, reset our local pointer */
4665		wh = mtod(m0, struct ieee80211_frame *);
4666	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
4667		/*
4668		 * Use station key cache slot, if assigned.
4669		 */
4670		keyix = ni->ni_ucastkey.wk_keyix;
4671		if (keyix == IEEE80211_KEYIX_NONE)
4672			keyix = HAL_TXKEYIX_INVALID;
4673	} else
4674		keyix = HAL_TXKEYIX_INVALID;
4675
4676	pktlen += IEEE80211_CRC_LEN;
4677
4678	/*
4679	 * Load the DMA map so any coalescing is done.  This
4680	 * also calculates the number of descriptors we need.
4681	 */
4682	error = ath_tx_dmasetup(sc, bf, m0);
4683	if (error != 0)
4684		return error;
4685	bf->bf_node = ni;			/* NB: held reference */
4686	m0 = bf->bf_m;				/* NB: may have changed */
4687	wh = mtod(m0, struct ieee80211_frame *);
4688
4689	/* setup descriptors */
4690	ds = bf->bf_desc;
4691	rt = sc->sc_currates;
4692	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
4693
4694	/*
4695	 * NB: the 802.11 layer marks whether or not we should
4696	 * use short preamble based on the current mode and
4697	 * negotiated parameters.
4698	 */
4699	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
4700	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
4701		shortPreamble = AH_TRUE;
4702		sc->sc_stats.ast_tx_shortpre++;
4703	} else {
4704		shortPreamble = AH_FALSE;
4705	}
4706
4707	an = ATH_NODE(ni);
4708	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
4709	ismrr = 0;				/* default no multi-rate retry*/
4710	pri = M_WME_GETAC(m0);			/* honor classification */
4711	/* XXX use txparams instead of fixed values */
4712	/*
4713	 * Calculate Atheros packet type from IEEE80211 packet header,
4714	 * setup for rate calculations, and select h/w transmit queue.
4715	 */
4716	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
4717	case IEEE80211_FC0_TYPE_MGT:
4718		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
4719		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
4720			atype = HAL_PKT_TYPE_BEACON;
4721		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
4722			atype = HAL_PKT_TYPE_PROBE_RESP;
4723		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
4724			atype = HAL_PKT_TYPE_ATIM;
4725		else
4726			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
4727		rix = an->an_mgmtrix;
4728		txrate = rt->info[rix].rateCode;
4729		if (shortPreamble)
4730			txrate |= rt->info[rix].shortPreamble;
4731		try0 = ATH_TXMGTTRY;
4732		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4733		break;
4734	case IEEE80211_FC0_TYPE_CTL:
4735		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
4736		rix = an->an_mgmtrix;
4737		txrate = rt->info[rix].rateCode;
4738		if (shortPreamble)
4739			txrate |= rt->info[rix].shortPreamble;
4740		try0 = ATH_TXMGTTRY;
4741		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
4742		break;
4743	case IEEE80211_FC0_TYPE_DATA:
4744		atype = HAL_PKT_TYPE_NORMAL;		/* default */
4745		/*
4746		 * Data frames: multicast frames go out at a fixed rate,
4747		 * EAPOL frames use the mgmt frame rate; otherwise consult
4748		 * the rate control module for the rate to use.
4749		 */
4750		if (ismcast) {
4751			rix = an->an_mcastrix;
4752			txrate = rt->info[rix].rateCode;
4753			if (shortPreamble)
4754				txrate |= rt->info[rix].shortPreamble;
4755			try0 = 1;
4756		} else if (m0->m_flags & M_EAPOL) {
4757			/* XXX? maybe always use long preamble? */
4758			rix = an->an_mgmtrix;
4759			txrate = rt->info[rix].rateCode;
4760			if (shortPreamble)
4761				txrate |= rt->info[rix].shortPreamble;
4762			try0 = ATH_TXMAXTRY;	/* XXX?too many? */
4763		} else {
4764			ath_rate_findrate(sc, an, shortPreamble, pktlen,
4765				&rix, &try0, &txrate);
4766			sc->sc_txrix = rix;		/* for LED blinking */
4767			sc->sc_lastdatarix = rix;	/* for fast frames */
4768			if (try0 != ATH_TXMAXTRY)
4769				ismrr = 1;
4770		}
4771		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
4772			flags |= HAL_TXDESC_NOACK;
4773		break;
4774	default:
4775		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
4776			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
4777		/* XXX statistic */
4778		ath_freetx(m0);
4779		return EIO;
4780	}
4781	txq = sc->sc_ac2q[pri];
4782
4783	/*
4784	 * When servicing one or more stations in power-save mode
4785	 * (or) if there is some mcast data waiting on the mcast
4786	 * queue (to prevent out of order delivery) multicast
4787	 * frames must be buffered until after the beacon.
4788	 */
4789	if (ismcast && (vap->iv_ps_sta || avp->av_mcastq.axq_depth))
4790		txq = &avp->av_mcastq;
4791
4792	/*
4793	 * Calculate miscellaneous flags.
4794	 */
4795	if (ismcast) {
4796		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
4797	} else if (pktlen > vap->iv_rtsthreshold &&
4798	    (ni->ni_ath_flags & IEEE80211_NODE_FF) == 0) {
4799		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
4800		cix = rt->info[rix].controlRate;
4801		sc->sc_stats.ast_tx_rts++;
4802	}
4803	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
4804		sc->sc_stats.ast_tx_noack++;
4805
4806	/*
4807	 * If 802.11g protection is enabled, determine whether
4808	 * to use RTS/CTS or just CTS.  Note that this is only
4809	 * done for OFDM unicast frames.
4810	 */
4811	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
4812	    rt->info[rix].phy == IEEE80211_T_OFDM &&
4813	    (flags & HAL_TXDESC_NOACK) == 0) {
4814		/* XXX fragments must use CCK rates w/ protection */
4815		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
4816			flags |= HAL_TXDESC_RTSENA;
4817		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
4818			flags |= HAL_TXDESC_CTSENA;
4819		if (isfrag) {
4820			/*
4821			 * For frags it would be desirable to use the
4822			 * highest CCK rate for RTS/CTS.  But stations
4823			 * farther away may detect it at a lower CCK rate
4824			 * so use the configured protection rate instead
4825			 * (for now).
4826			 */
4827			cix = rt->info[sc->sc_protrix].controlRate;
4828		} else
4829			cix = rt->info[sc->sc_protrix].controlRate;
4830		sc->sc_stats.ast_tx_protect++;
4831	}
4832
4833	/*
4834	 * Calculate duration.  This logically belongs in the 802.11
4835	 * layer but it lacks sufficient information to calculate it.
4836	 */
4837	if ((flags & HAL_TXDESC_NOACK) == 0 &&
4838	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
4839		u_int16_t dur;
4840		if (shortPreamble)
4841			dur = rt->info[rix].spAckDuration;
4842		else
4843			dur = rt->info[rix].lpAckDuration;
4844		if (wh->i_fc[1] & IEEE80211_FC1_MORE_FRAG) {
4845			dur += dur;		/* additional SIFS+ACK */
4846			KASSERT(m0->m_nextpkt != NULL, ("no fragment"));
4847			/*
4848			 * Include the size of next fragment so NAV is
4849			 * updated properly.  The last fragment uses only
4850			 * the ACK duration
4851			 */
4852			dur += ath_hal_computetxtime(ah, rt,
4853					m0->m_nextpkt->m_pkthdr.len,
4854					rix, shortPreamble);
4855		}
4856		if (isfrag) {
4857			/*
4858			 * Force hardware to use computed duration for next
4859			 * fragment by disabling multi-rate retry which updates
4860			 * duration based on the multi-rate duration table.
4861			 */
4862			ismrr = 0;
4863			try0 = ATH_TXMGTTRY;	/* XXX? */
4864		}
4865		*(u_int16_t *)wh->i_dur = htole16(dur);
4866	}
4867
4868	/*
4869	 * Calculate RTS/CTS rate and duration if needed.
4870	 */
4871	ctsduration = 0;
4872	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
4873		/*
4874		 * CTS transmit rate is derived from the transmit rate
4875		 * by looking in the h/w rate table.  We must also factor
4876		 * in whether or not a short preamble is to be used.
4877		 */
4878		/* NB: cix is set above where RTS/CTS is enabled */
4879		KASSERT(cix != 0xff, ("cix not setup"));
4880		ctsrate = rt->info[cix].rateCode;
4881		/*
4882		 * Compute the transmit duration based on the frame
4883		 * size and the size of an ACK frame.  We call into the
4884		 * HAL to do the computation since it depends on the
4885		 * characteristics of the actual PHY being used.
4886		 *
4887		 * NB: CTS is assumed the same size as an ACK so we can
4888		 *     use the precalculated ACK durations.
4889		 */
4890		if (shortPreamble) {
4891			ctsrate |= rt->info[cix].shortPreamble;
4892			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4893				ctsduration += rt->info[cix].spAckDuration;
4894			ctsduration += ath_hal_computetxtime(ah,
4895				rt, pktlen, rix, AH_TRUE);
4896			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4897				ctsduration += rt->info[rix].spAckDuration;
4898		} else {
4899			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
4900				ctsduration += rt->info[cix].lpAckDuration;
4901			ctsduration += ath_hal_computetxtime(ah,
4902				rt, pktlen, rix, AH_FALSE);
4903			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
4904				ctsduration += rt->info[rix].lpAckDuration;
4905		}
4906		/*
4907		 * Must disable multi-rate retry when using RTS/CTS.
4908		 */
4909		ismrr = 0;
4910		try0 = ATH_TXMGTTRY;		/* XXX */
4911	} else
4912		ctsrate = 0;
4913
4914	/*
4915	 * At this point we are committed to sending the frame
4916	 * and we don't need to look at m_nextpkt; clear it in
4917	 * case this frame is part of frag chain.
4918	 */
4919	m0->m_nextpkt = NULL;
4920
4921	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
4922		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
4923			sc->sc_hwmap[rix].ieeerate, -1);
4924
4925	if (bpf_peers_present(ifp->if_bpf)) {
4926		u_int64_t tsf = ath_hal_gettsf64(ah);
4927
4928		sc->sc_tx_th.wt_tsf = htole64(tsf);
4929		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
4930		if (iswep)
4931			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
4932		if (isfrag)
4933			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_FRAG;
4934		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
4935		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
4936		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
4937
4938		bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
4939	}
4940
4941	/*
4942	 * Determine if a tx interrupt should be generated for
4943	 * this descriptor.  We take a tx interrupt to reap
4944	 * descriptors when the h/w hits an EOL condition or
4945	 * when the descriptor is specifically marked to generate
4946	 * an interrupt.  We periodically mark descriptors in this
4947	 * way to insure timely replenishing of the supply needed
4948	 * for sending frames.  Defering interrupts reduces system
4949	 * load and potentially allows more concurrent work to be
4950	 * done but if done to aggressively can cause senders to
4951	 * backup.
4952	 *
4953	 * NB: use >= to deal with sc_txintrperiod changing
4954	 *     dynamically through sysctl.
4955	 */
4956	if (flags & HAL_TXDESC_INTREQ) {
4957		txq->axq_intrcnt = 0;
4958	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
4959		flags |= HAL_TXDESC_INTREQ;
4960		txq->axq_intrcnt = 0;
4961	}
4962
4963	/*
4964	 * Formulate first tx descriptor with tx controls.
4965	 */
4966	/* XXX check return value? */
4967	ath_hal_setuptxdesc(ah, ds
4968		, pktlen		/* packet length */
4969		, hdrlen		/* header length */
4970		, atype			/* Atheros packet type */
4971		, ni->ni_txpower	/* txpower */
4972		, txrate, try0		/* series 0 rate/tries */
4973		, keyix			/* key cache index */
4974		, sc->sc_txantenna	/* antenna mode */
4975		, flags			/* flags */
4976		, ctsrate		/* rts/cts rate */
4977		, ctsduration		/* rts/cts duration */
4978	);
4979	bf->bf_txflags = flags;
4980	/*
4981	 * Setup the multi-rate retry state only when we're
4982	 * going to use it.  This assumes ath_hal_setuptxdesc
4983	 * initializes the descriptors (so we don't have to)
4984	 * when the hardware supports multi-rate retry and
4985	 * we don't use it.
4986	 */
4987	if (ismrr)
4988		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
4989
4990	ath_tx_handoff(sc, txq, bf);
4991	return 0;
4992}
4993
4994/*
4995 * Process completed xmit descriptors from the specified queue.
4996 */
4997static int
4998ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
4999{
5000	struct ath_hal *ah = sc->sc_ah;
5001	struct ifnet *ifp = sc->sc_ifp;
5002	struct ieee80211com *ic = ifp->if_l2com;
5003	struct ath_buf *bf;
5004	struct ath_desc *ds, *ds0;
5005	struct ath_tx_status *ts;
5006	struct ieee80211_node *ni;
5007	struct ath_node *an;
5008	int sr, lr, pri, nacked;
5009	HAL_STATUS status;
5010
5011	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
5012		__func__, txq->axq_qnum,
5013		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
5014		txq->axq_link);
5015	nacked = 0;
5016	for (;;) {
5017		ATH_TXQ_LOCK(txq);
5018		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
5019		bf = STAILQ_FIRST(&txq->axq_q);
5020		if (bf == NULL) {
5021			ATH_TXQ_UNLOCK(txq);
5022			break;
5023		}
5024		ds0 = &bf->bf_desc[0];
5025		ds = &bf->bf_desc[bf->bf_nseg - 1];
5026		ts = &bf->bf_status.ds_txstat;
5027		status = ath_hal_txprocdesc(ah, ds, ts);
5028#ifdef ATH_DEBUG
5029		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
5030			ath_printtxbuf(bf, txq->axq_qnum, 0, status == HAL_OK);
5031#endif
5032		if (status == HAL_EINPROGRESS) {
5033			ATH_TXQ_UNLOCK(txq);
5034			break;
5035		}
5036		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5037		if (txq->axq_depth == 0)
5038			txq->axq_link = NULL;
5039		ATH_TXQ_UNLOCK(txq);
5040
5041		ni = bf->bf_node;
5042		if (ni != NULL) {
5043			an = ATH_NODE(ni);
5044			if (ts->ts_status == 0) {
5045				u_int8_t txant = ts->ts_antenna;
5046				sc->sc_stats.ast_ant_tx[txant]++;
5047				sc->sc_ant_tx[txant]++;
5048				if (ts->ts_rate & HAL_TXSTAT_ALTRATE)
5049					sc->sc_stats.ast_tx_altrate++;
5050				pri = M_WME_GETAC(bf->bf_m);
5051				if (pri >= WME_AC_VO)
5052					ic->ic_wme.wme_hipri_traffic++;
5053				if ((bf->bf_txflags & HAL_TXDESC_NOACK) == 0)
5054					ni->ni_inact = ni->ni_inact_reload;
5055			} else {
5056				if (ts->ts_status & HAL_TXERR_XRETRY)
5057					sc->sc_stats.ast_tx_xretries++;
5058				if (ts->ts_status & HAL_TXERR_FIFO)
5059					sc->sc_stats.ast_tx_fifoerr++;
5060				if (ts->ts_status & HAL_TXERR_FILT)
5061					sc->sc_stats.ast_tx_filtered++;
5062				if (bf->bf_m->m_flags & M_FF)
5063					sc->sc_stats.ast_ff_txerr++;
5064			}
5065			sr = ts->ts_shortretry;
5066			lr = ts->ts_longretry;
5067			sc->sc_stats.ast_tx_shortretry += sr;
5068			sc->sc_stats.ast_tx_longretry += lr;
5069			/*
5070			 * Hand the descriptor to the rate control algorithm.
5071			 */
5072			if ((ts->ts_status & HAL_TXERR_FILT) == 0 &&
5073			    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0) {
5074				/*
5075				 * If frame was ack'd update statistics,
5076				 * including the last rx time used to
5077				 * workaround phantom bmiss interrupts.
5078				 */
5079				if (ts->ts_status == 0) {
5080					nacked++;
5081					sc->sc_stats.ast_tx_rssi = ts->ts_rssi;
5082					ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
5083						ts->ts_rssi);
5084				}
5085				ath_rate_tx_complete(sc, an, bf);
5086			}
5087			/*
5088			 * Do any tx complete callback.  Note this must
5089			 * be done before releasing the node reference.
5090			 */
5091			if (bf->bf_m->m_flags & M_TXCB)
5092				ieee80211_process_callback(ni, bf->bf_m,
5093				    (bf->bf_txflags & HAL_TXDESC_NOACK) == 0 ?
5094				        ts->ts_status : HAL_TXERR_XRETRY);
5095			/*
5096			 * Reclaim reference to node.
5097			 *
5098			 * NB: the node may be reclaimed here if, for example
5099			 *     this is a DEAUTH message that was sent and the
5100			 *     node was timed out due to inactivity.
5101			 */
5102			ieee80211_free_node(ni);
5103		}
5104		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
5105		    BUS_DMASYNC_POSTWRITE);
5106		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5107
5108		m_freem(bf->bf_m);
5109		bf->bf_m = NULL;
5110		bf->bf_node = NULL;
5111
5112		ATH_TXBUF_LOCK(sc);
5113		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5114		ATH_TXBUF_UNLOCK(sc);
5115	}
5116	/*
5117	 * Flush fast-frame staging queue when traffic slows.
5118	 */
5119	if (txq->axq_depth <= 1)
5120		ath_ff_stageq_flush(sc, txq, ath_ff_always);
5121	return nacked;
5122}
5123
5124static __inline int
5125txqactive(struct ath_hal *ah, int qnum)
5126{
5127	u_int32_t txqs = 1<<qnum;
5128	ath_hal_gettxintrtxqs(ah, &txqs);
5129	return (txqs & (1<<qnum));
5130}
5131
5132/*
5133 * Deferred processing of transmit interrupt; special-cased
5134 * for a single hardware transmit queue (e.g. 5210 and 5211).
5135 */
5136static void
5137ath_tx_proc_q0(void *arg, int npending)
5138{
5139	struct ath_softc *sc = arg;
5140	struct ifnet *ifp = sc->sc_ifp;
5141
5142	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
5143		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5144	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5145		ath_tx_processq(sc, sc->sc_cabq);
5146	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5147	ifp->if_timer = 0;
5148
5149	if (sc->sc_softled)
5150		ath_led_event(sc, sc->sc_txrix);
5151
5152	ath_start(ifp);
5153}
5154
5155/*
5156 * Deferred processing of transmit interrupt; special-cased
5157 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
5158 */
5159static void
5160ath_tx_proc_q0123(void *arg, int npending)
5161{
5162	struct ath_softc *sc = arg;
5163	struct ifnet *ifp = sc->sc_ifp;
5164	int nacked;
5165
5166	/*
5167	 * Process each active queue.
5168	 */
5169	nacked = 0;
5170	if (txqactive(sc->sc_ah, 0))
5171		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
5172	if (txqactive(sc->sc_ah, 1))
5173		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
5174	if (txqactive(sc->sc_ah, 2))
5175		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
5176	if (txqactive(sc->sc_ah, 3))
5177		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
5178	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
5179		ath_tx_processq(sc, sc->sc_cabq);
5180	if (nacked)
5181		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5182
5183	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5184	ifp->if_timer = 0;
5185
5186	if (sc->sc_softled)
5187		ath_led_event(sc, sc->sc_txrix);
5188
5189	ath_start(ifp);
5190}
5191
5192/*
5193 * Deferred processing of transmit interrupt.
5194 */
5195static void
5196ath_tx_proc(void *arg, int npending)
5197{
5198	struct ath_softc *sc = arg;
5199	struct ifnet *ifp = sc->sc_ifp;
5200	int i, nacked;
5201
5202	/*
5203	 * Process each active queue.
5204	 */
5205	nacked = 0;
5206	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5207		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
5208			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
5209	if (nacked)
5210		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
5211
5212	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5213	ifp->if_timer = 0;
5214
5215	if (sc->sc_softled)
5216		ath_led_event(sc, sc->sc_txrix);
5217
5218	ath_start(ifp);
5219}
5220
5221static void
5222ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
5223{
5224#ifdef ATH_DEBUG
5225	struct ath_hal *ah = sc->sc_ah;
5226#endif
5227	struct ieee80211_node *ni;
5228	struct ath_buf *bf;
5229	u_int ix;
5230
5231	/*
5232	 * NB: this assumes output has been stopped and
5233	 *     we do not need to block ath_tx_proc
5234	 */
5235	for (ix = 0;; ix++) {
5236		ATH_TXQ_LOCK(txq);
5237		bf = STAILQ_FIRST(&txq->axq_q);
5238		if (bf == NULL) {
5239			txq->axq_link = NULL;
5240			ATH_TXQ_UNLOCK(txq);
5241			break;
5242		}
5243		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
5244		ATH_TXQ_UNLOCK(txq);
5245#ifdef ATH_DEBUG
5246		if (sc->sc_debug & ATH_DEBUG_RESET) {
5247			struct ieee80211com *ic = sc->sc_ifp->if_l2com;
5248
5249			ath_printtxbuf(bf, txq->axq_qnum, ix,
5250				ath_hal_txprocdesc(ah, bf->bf_desc,
5251				    &bf->bf_status.ds_txstat) == HAL_OK);
5252			ieee80211_dump_pkt(ic, mtod(bf->bf_m, caddr_t),
5253				bf->bf_m->m_len, 0, -1);
5254		}
5255#endif /* ATH_DEBUG */
5256		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
5257		ni = bf->bf_node;
5258		bf->bf_node = NULL;
5259		if (ni != NULL) {
5260			/*
5261			 * Do any callback and reclaim the node reference.
5262			 */
5263			if (bf->bf_m->m_flags & M_TXCB)
5264				ieee80211_process_callback(ni, bf->bf_m, -1);
5265			ieee80211_free_node(ni);
5266		}
5267		m_freem(bf->bf_m);
5268		bf->bf_m = NULL;
5269
5270		ATH_TXBUF_LOCK(sc);
5271		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
5272		ATH_TXBUF_UNLOCK(sc);
5273	}
5274}
5275
5276static void
5277ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
5278{
5279	struct ath_hal *ah = sc->sc_ah;
5280
5281	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5282	    __func__, txq->axq_qnum,
5283	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
5284	    txq->axq_link);
5285	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
5286}
5287
5288/*
5289 * Drain the transmit queues and reclaim resources.
5290 */
5291static void
5292ath_draintxq(struct ath_softc *sc)
5293{
5294	struct ath_hal *ah = sc->sc_ah;
5295	struct ifnet *ifp = sc->sc_ifp;
5296	int i;
5297
5298	/* XXX return value */
5299	if (!sc->sc_invalid) {
5300		/* don't touch the hardware if marked invalid */
5301		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
5302		    __func__, sc->sc_bhalq,
5303		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
5304		    NULL);
5305		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
5306		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5307			if (ATH_TXQ_SETUP(sc, i))
5308				ath_tx_stopdma(sc, &sc->sc_txq[i]);
5309	}
5310	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
5311		if (ATH_TXQ_SETUP(sc, i))
5312			ath_tx_draintxq(sc, &sc->sc_txq[i]);
5313#ifdef ATH_DEBUG
5314	if (sc->sc_debug & ATH_DEBUG_RESET) {
5315		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
5316		if (bf != NULL && bf->bf_m != NULL) {
5317			ath_printtxbuf(bf, sc->sc_bhalq, 0,
5318				ath_hal_txprocdesc(ah, bf->bf_desc,
5319				    &bf->bf_status.ds_txstat) == HAL_OK);
5320			ieee80211_dump_pkt(ifp->if_l2com, mtod(bf->bf_m, caddr_t),
5321				bf->bf_m->m_len, 0, -1);
5322		}
5323	}
5324#endif /* ATH_DEBUG */
5325	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
5326	ifp->if_timer = 0;
5327}
5328
5329/*
5330 * Disable the receive h/w in preparation for a reset.
5331 */
5332static void
5333ath_stoprecv(struct ath_softc *sc)
5334{
5335#define	PA2DESC(_sc, _pa) \
5336	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
5337		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
5338	struct ath_hal *ah = sc->sc_ah;
5339
5340	ath_hal_stoppcurecv(ah);	/* disable PCU */
5341	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
5342	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
5343	DELAY(3000);			/* 3ms is long enough for 1 frame */
5344#ifdef ATH_DEBUG
5345	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
5346		struct ath_buf *bf;
5347		u_int ix;
5348
5349		printf("%s: rx queue %p, link %p\n", __func__,
5350			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
5351		ix = 0;
5352		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5353			struct ath_desc *ds = bf->bf_desc;
5354			struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
5355			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
5356				bf->bf_daddr, PA2DESC(sc, ds->ds_link), rs);
5357			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
5358				ath_printrxbuf(bf, ix, status == HAL_OK);
5359			ix++;
5360		}
5361	}
5362#endif
5363	if (sc->sc_rxpending != NULL) {
5364		m_freem(sc->sc_rxpending);
5365		sc->sc_rxpending = NULL;
5366	}
5367	sc->sc_rxlink = NULL;		/* just in case */
5368#undef PA2DESC
5369}
5370
5371/*
5372 * Enable the receive h/w following a reset.
5373 */
5374static int
5375ath_startrecv(struct ath_softc *sc)
5376{
5377	struct ath_hal *ah = sc->sc_ah;
5378	struct ath_buf *bf;
5379
5380	sc->sc_rxlink = NULL;
5381	sc->sc_rxpending = NULL;
5382	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
5383		int error = ath_rxbuf_init(sc, bf);
5384		if (error != 0) {
5385			DPRINTF(sc, ATH_DEBUG_RECV,
5386				"%s: ath_rxbuf_init failed %d\n",
5387				__func__, error);
5388			return error;
5389		}
5390	}
5391
5392	bf = STAILQ_FIRST(&sc->sc_rxbuf);
5393	ath_hal_putrxbuf(ah, bf->bf_daddr);
5394	ath_hal_rxena(ah);		/* enable recv descriptors */
5395	ath_mode_init(sc);		/* set filters, etc. */
5396	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
5397	return 0;
5398}
5399
5400/*
5401 * Update internal state after a channel change.
5402 */
5403static void
5404ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
5405{
5406	enum ieee80211_phymode mode;
5407
5408	/*
5409	 * Change channels and update the h/w rate map
5410	 * if we're switching; e.g. 11a to 11b/g.
5411	 */
5412	if (IEEE80211_IS_CHAN_HALF(chan))
5413		mode = IEEE80211_MODE_HALF;
5414	else if (IEEE80211_IS_CHAN_QUARTER(chan))
5415		mode = IEEE80211_MODE_QUARTER;
5416	else
5417		mode = ieee80211_chan2mode(chan);
5418	if (mode != sc->sc_curmode)
5419		ath_setcurmode(sc, mode);
5420
5421	sc->sc_rx_th.wr_chan_flags = htole32(chan->ic_flags);
5422	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags;
5423	sc->sc_rx_th.wr_chan_freq = htole16(chan->ic_freq);
5424	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq;
5425	sc->sc_rx_th.wr_chan_ieee = chan->ic_ieee;
5426	sc->sc_tx_th.wt_chan_ieee = sc->sc_rx_th.wr_chan_ieee;
5427	sc->sc_rx_th.wr_chan_maxpow = chan->ic_maxregpower;
5428	sc->sc_tx_th.wt_chan_maxpow = sc->sc_rx_th.wr_chan_maxpow;
5429}
5430
5431/*
5432 * Set/change channels.  If the channel is really being changed,
5433 * it's done by reseting the chip.  To accomplish this we must
5434 * first cleanup any pending DMA, then restart stuff after a la
5435 * ath_init.
5436 */
5437static int
5438ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
5439{
5440	struct ifnet *ifp = sc->sc_ifp;
5441	struct ieee80211com *ic = ifp->if_l2com;
5442	struct ath_hal *ah = sc->sc_ah;
5443	HAL_CHANNEL hchan;
5444
5445	/*
5446	 * Convert to a HAL channel description with
5447	 * the flags constrained to reflect the current
5448	 * operating mode.
5449	 */
5450	ath_mapchan(ic, &hchan, chan);
5451
5452	DPRINTF(sc, ATH_DEBUG_RESET,
5453	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
5454	    __func__,
5455	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
5456		sc->sc_curchan.channelFlags),
5457	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
5458	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
5459	        hchan.channel, hchan.channelFlags);
5460	if (hchan.channel != sc->sc_curchan.channel ||
5461	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
5462		HAL_STATUS status;
5463
5464		/*
5465		 * To switch channels clear any pending DMA operations;
5466		 * wait long enough for the RX fifo to drain, reset the
5467		 * hardware at the new frequency, and then re-enable
5468		 * the relevant bits of the h/w.
5469		 */
5470		ath_hal_intrset(ah, 0);		/* disable interrupts */
5471		ath_draintxq(sc);		/* clear pending tx frames */
5472		ath_stoprecv(sc);		/* turn off frame recv */
5473		if (!ath_hal_reset(ah, sc->sc_opmode, &hchan, AH_TRUE, &status)) {
5474			if_printf(ifp, "%s: unable to reset "
5475			    "channel %u (%u Mhz, flags 0x%x hal flags 0x%x), "
5476			    "hal status %u\n", __func__,
5477			    ieee80211_chan2ieee(ic, chan), chan->ic_freq,
5478			    chan->ic_flags, hchan.channelFlags, status);
5479			return EIO;
5480		}
5481		sc->sc_curchan = hchan;
5482		sc->sc_diversity = ath_hal_getdiversity(ah);
5483		sc->sc_calinterval = 1;
5484		sc->sc_caltries = 0;
5485
5486		/*
5487		 * Re-enable rx framework.
5488		 */
5489		if (ath_startrecv(sc) != 0) {
5490			if_printf(ifp, "%s: unable to restart recv logic\n",
5491			    __func__);
5492			return EIO;
5493		}
5494
5495		/*
5496		 * Change channels and update the h/w rate map
5497		 * if we're switching; e.g. 11a to 11b/g.
5498		 */
5499		ath_chan_change(sc, chan);
5500
5501		/*
5502		 * Re-enable interrupts.
5503		 */
5504		ath_hal_intrset(ah, sc->sc_imask);
5505	}
5506	return 0;
5507}
5508
5509/*
5510 * Periodically recalibrate the PHY to account
5511 * for temperature/environment changes.
5512 */
5513static void
5514ath_calibrate(void *arg)
5515{
5516	struct ath_softc *sc = arg;
5517	struct ath_hal *ah = sc->sc_ah;
5518	HAL_BOOL iqCalDone;
5519
5520	sc->sc_stats.ast_per_cal++;
5521
5522	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
5523		/*
5524		 * Rfgain is out of bounds, reset the chip
5525		 * to load new gain values.
5526		 */
5527		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5528			"%s: rfgain change\n", __func__);
5529		sc->sc_stats.ast_per_rfgain++;
5530		ath_reset(sc->sc_ifp);
5531	}
5532	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
5533		DPRINTF(sc, ATH_DEBUG_ANY,
5534			"%s: calibration of channel %u failed\n",
5535			__func__, sc->sc_curchan.channel);
5536		sc->sc_stats.ast_per_calfail++;
5537	}
5538	/*
5539	 * Calibrate noise floor data again in case of change.
5540	 */
5541	ath_hal_process_noisefloor(ah);
5542	/*
5543	 * Poll more frequently when the IQ calibration is in
5544	 * progress to speedup loading the final settings.
5545	 * We temper this aggressive polling with an exponential
5546	 * back off after 4 tries up to ath_calinterval.
5547	 */
5548	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
5549		sc->sc_caltries = 0;
5550		sc->sc_calinterval = ath_calinterval;
5551	} else if (sc->sc_caltries > 4) {
5552		sc->sc_caltries = 0;
5553		sc->sc_calinterval <<= 1;
5554		if (sc->sc_calinterval > ath_calinterval)
5555			sc->sc_calinterval = ath_calinterval;
5556	}
5557	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
5558		("bad calibration interval %u", sc->sc_calinterval));
5559
5560	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
5561		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
5562		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
5563	sc->sc_caltries++;
5564	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
5565		ath_calibrate, sc);
5566}
5567
5568static void
5569ath_scan_start(struct ieee80211com *ic)
5570{
5571	struct ifnet *ifp = ic->ic_ifp;
5572	struct ath_softc *sc = ifp->if_softc;
5573	struct ath_hal *ah = sc->sc_ah;
5574	u_int32_t rfilt;
5575
5576	/* XXX calibration timer? */
5577
5578	sc->sc_scanning = 1;
5579	sc->sc_syncbeacon = 0;
5580	rfilt = ath_calcrxfilter(sc);
5581	ath_hal_setrxfilter(ah, rfilt);
5582	ath_hal_setassocid(ah, ifp->if_broadcastaddr, 0);
5583
5584	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0\n",
5585		 __func__, rfilt, ether_sprintf(ifp->if_broadcastaddr));
5586}
5587
5588static void
5589ath_scan_end(struct ieee80211com *ic)
5590{
5591	struct ifnet *ifp = ic->ic_ifp;
5592	struct ath_softc *sc = ifp->if_softc;
5593	struct ath_hal *ah = sc->sc_ah;
5594	u_int32_t rfilt;
5595
5596	sc->sc_scanning = 0;
5597	rfilt = ath_calcrxfilter(sc);
5598	ath_hal_setrxfilter(ah, rfilt);
5599	ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5600
5601	ath_hal_process_noisefloor(ah);
5602
5603	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5604		 __func__, rfilt, ether_sprintf(sc->sc_curbssid),
5605		 sc->sc_curaid);
5606}
5607
5608static void
5609ath_set_channel(struct ieee80211com *ic)
5610{
5611	struct ifnet *ifp = ic->ic_ifp;
5612	struct ath_softc *sc = ifp->if_softc;
5613
5614	(void) ath_chan_set(sc, ic->ic_curchan);
5615	/*
5616	 * If we are returning to our bss channel then mark state
5617	 * so the next recv'd beacon's tsf will be used to sync the
5618	 * beacon timers.  Note that since we only hear beacons in
5619	 * sta/ibss mode this has no effect in other operating modes.
5620	 */
5621	if (!sc->sc_scanning && ic->ic_curchan == ic->ic_bsschan)
5622		sc->sc_syncbeacon = 1;
5623}
5624
5625/*
5626 * Walk the vap list and check if there any vap's in RUN state.
5627 */
5628static int
5629ath_isanyrunningvaps(struct ieee80211vap *this)
5630{
5631	struct ieee80211com *ic = this->iv_ic;
5632	struct ieee80211vap *vap;
5633
5634	IEEE80211_LOCK_ASSERT(ic);
5635
5636	TAILQ_FOREACH(vap, &ic->ic_vaps, iv_next) {
5637		if (vap != this && vap->iv_state == IEEE80211_S_RUN)
5638			return 1;
5639	}
5640	return 0;
5641}
5642
5643static int
5644ath_newstate(struct ieee80211vap *vap, enum ieee80211_state nstate, int arg)
5645{
5646	struct ieee80211com *ic = vap->iv_ic;
5647	struct ath_softc *sc = ic->ic_ifp->if_softc;
5648	struct ath_vap *avp = ATH_VAP(vap);
5649	struct ath_hal *ah = sc->sc_ah;
5650	struct ieee80211_node *ni = NULL;
5651	int i, error, stamode;
5652	u_int32_t rfilt;
5653	static const HAL_LED_STATE leds[] = {
5654	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
5655	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
5656	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
5657	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
5658	    HAL_LED_RUN, 	/* IEEE80211_S_CAC */
5659	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
5660	    HAL_LED_RUN, 	/* IEEE80211_S_CSA */
5661	    HAL_LED_RUN, 	/* IEEE80211_S_SLEEP */
5662	};
5663
5664	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
5665		ieee80211_state_name[vap->iv_state],
5666		ieee80211_state_name[nstate]);
5667
5668	callout_stop(&sc->sc_cal_ch);
5669	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
5670
5671	if (nstate == IEEE80211_S_SCAN) {
5672		/*
5673		 * Scanning: turn off beacon miss and don't beacon.
5674		 * Mark beacon state so when we reach RUN state we'll
5675		 * [re]setup beacons.  Unblock the task q thread so
5676		 * deferred interrupt processing is done.
5677		 */
5678		ath_hal_intrset(ah,
5679		    sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
5680		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5681		sc->sc_beacons = 0;
5682		taskqueue_unblock(sc->sc_tq);
5683	}
5684
5685	ni = vap->iv_bss;
5686	rfilt = ath_calcrxfilter(sc);
5687	stamode = (vap->iv_opmode == IEEE80211_M_STA ||
5688		   vap->iv_opmode == IEEE80211_M_AHDEMO ||
5689		   vap->iv_opmode == IEEE80211_M_IBSS);
5690	if (stamode && nstate == IEEE80211_S_RUN) {
5691		sc->sc_curaid = ni->ni_associd;
5692		IEEE80211_ADDR_COPY(sc->sc_curbssid, ni->ni_bssid);
5693		ath_hal_setassocid(ah, sc->sc_curbssid, sc->sc_curaid);
5694	}
5695	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s aid 0x%x\n",
5696	   __func__, rfilt, ether_sprintf(sc->sc_curbssid), sc->sc_curaid);
5697	ath_hal_setrxfilter(ah, rfilt);
5698
5699	/* XXX is this to restore keycache on resume? */
5700	if (vap->iv_opmode != IEEE80211_M_STA &&
5701	    (vap->iv_flags & IEEE80211_F_PRIVACY)) {
5702		for (i = 0; i < IEEE80211_WEP_NKID; i++)
5703			if (ath_hal_keyisvalid(ah, i))
5704				ath_hal_keysetmac(ah, i, ni->ni_bssid);
5705	}
5706
5707	/*
5708	 * Invoke the parent method to do net80211 work.
5709	 */
5710	error = avp->av_newstate(vap, nstate, arg);
5711	if (error != 0)
5712		goto bad;
5713
5714	if (nstate == IEEE80211_S_RUN) {
5715		/* NB: collect bss node again, it may have changed */
5716		ni = vap->iv_bss;
5717
5718		DPRINTF(sc, ATH_DEBUG_STATE,
5719		    "%s(RUN): iv_flags 0x%08x bintvl %d bssid %s "
5720		    "capinfo 0x%04x chan %d\n", __func__,
5721		    vap->iv_flags, ni->ni_intval, ether_sprintf(ni->ni_bssid),
5722		    ni->ni_capinfo, ieee80211_chan2ieee(ic, ic->ic_curchan));
5723
5724		switch (vap->iv_opmode) {
5725		case IEEE80211_M_HOSTAP:
5726		case IEEE80211_M_IBSS:
5727			/*
5728			 * Allocate and setup the beacon frame.
5729			 *
5730			 * Stop any previous beacon DMA.  This may be
5731			 * necessary, for example, when an ibss merge
5732			 * causes reconfiguration; there will be a state
5733			 * transition from RUN->RUN that means we may
5734			 * be called with beacon transmission active.
5735			 */
5736			ath_hal_stoptxdma(ah, sc->sc_bhalq);
5737
5738			error = ath_beacon_alloc(sc, ni);
5739			if (error != 0)
5740				goto bad;
5741			/*
5742			 * If joining an adhoc network defer beacon timer
5743			 * configuration to the next beacon frame so we
5744			 * have a current TSF to use.  Otherwise we're
5745			 * starting an ibss/bss so there's no need to delay;
5746			 * if this is the first vap moving to RUN state, then
5747			 * beacon state needs to be [re]configured.
5748			 */
5749			if (vap->iv_opmode == IEEE80211_M_IBSS &&
5750			    ni->ni_tstamp.tsf != 0) {
5751				sc->sc_syncbeacon = 1;
5752			} else if (!sc->sc_beacons) {
5753				ath_beacon_config(sc, vap);
5754				sc->sc_beacons = 1;
5755			}
5756			break;
5757		case IEEE80211_M_STA:
5758			/*
5759			 * Defer beacon timer configuration to the next
5760			 * beacon frame so we have a current TSF to use
5761			 * (any TSF collected when scanning is likely old).
5762			 */
5763			sc->sc_syncbeacon = 1;
5764			break;
5765		case IEEE80211_M_MONITOR:
5766			/*
5767			 * Monitor mode vaps have only INIT->RUN and RUN->RUN
5768			 * transitions so we must re-enable interrupts here to
5769			 * handle the case of a single monitor mode vap.
5770			 */
5771			ath_hal_intrset(ah, sc->sc_imask);
5772			break;
5773		case IEEE80211_M_WDS:
5774			break;
5775		default:
5776			break;
5777		}
5778		/*
5779		 * Let the hal process statistics collected during a
5780		 * scan so it can provide calibrated noise floor data.
5781		 */
5782		ath_hal_process_noisefloor(ah);
5783		/*
5784		 * Reset rssi stats; maybe not the best place...
5785		 */
5786		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
5787		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
5788		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
5789		/*
5790		 * Finally, start any timers and the task q thread
5791		 * (in case we didn't go through SCAN state).
5792		 */
5793		if (sc->sc_calinterval != 0) {
5794			/* start periodic recalibration timer */
5795			callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
5796				ath_calibrate, sc);
5797		}
5798		taskqueue_unblock(sc->sc_tq);
5799	} else if (nstate == IEEE80211_S_INIT) {
5800		/*
5801		 * If there are no vaps left in RUN state then
5802		 * shutdown host/driver operation:
5803		 * o disable interrupts
5804		 * o disable the task queue thread
5805		 * o mark beacon processing as stopped
5806		 */
5807		if (!ath_isanyrunningvaps(vap)) {
5808			sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
5809			/* disable interrupts  */
5810			ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
5811			taskqueue_block(sc->sc_tq);
5812			sc->sc_beacons = 0;
5813		}
5814	}
5815bad:
5816	return error;
5817}
5818
5819/*
5820 * Allocate a key cache slot to the station so we can
5821 * setup a mapping from key index to node. The key cache
5822 * slot is needed for managing antenna state and for
5823 * compression when stations do not use crypto.  We do
5824 * it uniliaterally here; if crypto is employed this slot
5825 * will be reassigned.
5826 */
5827static void
5828ath_setup_stationkey(struct ieee80211_node *ni)
5829{
5830	struct ieee80211vap *vap = ni->ni_vap;
5831	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5832	ieee80211_keyix keyix, rxkeyix;
5833
5834	if (!ath_key_alloc(vap, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
5835		/*
5836		 * Key cache is full; we'll fall back to doing
5837		 * the more expensive lookup in software.  Note
5838		 * this also means no h/w compression.
5839		 */
5840		/* XXX msg+statistic */
5841	} else {
5842		/* XXX locking? */
5843		ni->ni_ucastkey.wk_keyix = keyix;
5844		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
5845		IEEE80211_ADDR_COPY(ni->ni_ucastkey.wk_macaddr, ni->ni_macaddr);
5846		/* NB: this will create a pass-thru key entry */
5847		ath_keyset(sc, &ni->ni_ucastkey, vap->iv_bss);
5848	}
5849}
5850
5851/*
5852 * Setup driver-specific state for a newly associated node.
5853 * Note that we're called also on a re-associate, the isnew
5854 * param tells us if this is the first time or not.
5855 */
5856static void
5857ath_newassoc(struct ieee80211_node *ni, int isnew)
5858{
5859	struct ath_node *an = ATH_NODE(ni);
5860	struct ieee80211vap *vap = ni->ni_vap;
5861	struct ath_softc *sc = vap->iv_ic->ic_ifp->if_softc;
5862	const struct ieee80211_txparam *tp = ni->ni_txparms;
5863
5864	an->an_mcastrix = ath_tx_findrix(sc->sc_currates, tp->mcastrate);
5865	an->an_mgmtrix = ath_tx_findrix(sc->sc_currates, tp->mgmtrate);
5866
5867	ath_rate_newassoc(sc, an, isnew);
5868	if (isnew &&
5869	    (vap->iv_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey &&
5870	    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
5871		ath_setup_stationkey(ni);
5872}
5873
5874static int
5875getchannels(struct ath_softc *sc, int *nchans, struct ieee80211_channel chans[],
5876	int cc, int ecm, int outdoor)
5877{
5878	struct ath_hal *ah = sc->sc_ah;
5879	HAL_CHANNEL *halchans;
5880	int i, nhalchans, error;
5881
5882	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: cc %u outdoor %u ecm %u\n",
5883	    __func__, cc, outdoor, ecm);
5884
5885	halchans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
5886			M_TEMP, M_NOWAIT | M_ZERO);
5887	if (halchans == NULL) {
5888		device_printf(sc->sc_dev,
5889		    "%s: unable to allocate channel table\n", __func__);
5890		return ENOMEM;
5891	}
5892	error = 0;
5893	if (!ath_hal_init_channels(ah, halchans, IEEE80211_CHAN_MAX, &nhalchans,
5894	    NULL, 0, NULL, cc, HAL_MODE_ALL, outdoor, ecm)) {
5895		u_int32_t rd;
5896		(void) ath_hal_getregdomain(ah, &rd);
5897		device_printf(sc->sc_dev, "ath_hal_init_channels failed, "
5898		    "rd %d cc %u outdoor %u ecm %u\n", rd, cc, outdoor, ecm);
5899		error = EINVAL;
5900		goto done;
5901	}
5902	if (nchans == NULL)		/* no table requested */
5903		goto done;
5904
5905	/*
5906	 * Convert HAL channels to ieee80211 ones.
5907	 */
5908	for (i = 0; i < nhalchans; i++) {
5909		HAL_CHANNEL *c = &halchans[i];
5910		struct ieee80211_channel *ichan = &chans[i];
5911
5912		ichan->ic_ieee = ath_hal_mhz2ieee(ah, c->channel,
5913					c->channelFlags);
5914		if (bootverbose)
5915			device_printf(sc->sc_dev, "hal channel %u/%x -> %u "
5916			    "maxpow %d minpow %d maxreg %d\n",
5917			    c->channel, c->channelFlags, ichan->ic_ieee,
5918			    c->maxTxPower, c->minTxPower, c->maxRegTxPower);
5919		ichan->ic_freq = c->channel;
5920
5921		if ((c->channelFlags & CHANNEL_PUREG) == CHANNEL_PUREG) {
5922			/*
5923			 * Except for AR5211, HAL's PUREG means mixed
5924			 * DSSS and OFDM.
5925			 */
5926			ichan->ic_flags = c->channelFlags &~ CHANNEL_PUREG;
5927			ichan->ic_flags |= IEEE80211_CHAN_G;
5928		} else {
5929			ichan->ic_flags = c->channelFlags;
5930		}
5931
5932		if (ath_hal_isgsmsku(ah)) {
5933			/*
5934			 * Remap to true frequencies: Ubiquiti XR9 cards use a
5935			 * frequency mapping different from their SR9 cards.
5936			 * We define special country codes to deal with this.
5937			 */
5938			if (cc == CTRY_XR9)
5939				ichan->ic_freq = 907 + (ichan->ic_freq - 2427);
5940			else
5941				ichan->ic_freq = 922 + (2422 - ichan->ic_freq);
5942			ichan->ic_flags |= IEEE80211_CHAN_GSM;
5943			ichan->ic_ieee = ieee80211_mhz2ieee(ichan->ic_freq,
5944						    ichan->ic_flags);
5945		}
5946		ichan->ic_maxregpower = c->maxRegTxPower;	/* dBm */
5947		/* XXX: old hal's don't provide maxTxPower for some parts */
5948		ichan->ic_maxpower = (c->maxTxPower != 0) ?
5949		    c->maxTxPower : 2*c->maxRegTxPower;		/* 1/2 dBm */
5950		ichan->ic_minpower = c->minTxPower;		/* 1/2 dBm */
5951	}
5952	*nchans = nhalchans;
5953done:
5954	free(halchans, M_TEMP);
5955	return error;
5956}
5957
5958/* XXX hard to include ieee80211_regdomain.h right now */
5959#define	SKU_DEBUG	0x1ff
5960
5961static void
5962ath_maprd(const struct ieee80211_regdomain *rd,
5963	u_int32_t *ath_rd, u_int32_t *ath_cc)
5964{
5965	/* map SKU's to Atheros sku's */
5966	switch (rd->regdomain) {
5967	case SKU_DEBUG:
5968		if (rd->country == 0) {
5969			*ath_rd = 0;
5970			*ath_cc = CTRY_DEBUG;
5971			return;
5972		}
5973		break;
5974	}
5975	*ath_rd = rd->regdomain;
5976	*ath_cc = rd->country;
5977}
5978
5979static int
5980ath_setregdomain(struct ieee80211com *ic, struct ieee80211_regdomain *rd,
5981	int nchans, struct ieee80211_channel chans[])
5982{
5983	struct ath_softc *sc = ic->ic_ifp->if_softc;
5984	struct ath_hal *ah = sc->sc_ah;
5985	u_int32_t ord, regdomain, cc;
5986	int error;
5987
5988	(void) ath_hal_getregdomain(ah, &ord);
5989	ath_maprd(rd, &regdomain, &cc);
5990	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
5991	    "%s: rd %u cc %u location %c ecm %u (mapped rd %u cc %u)\n",
5992	    __func__, rd->regdomain, rd->country, rd->location, rd->ecm,
5993	    regdomain, cc);
5994	ath_hal_setregdomain(ah, regdomain);
5995
5996	error = getchannels(sc, &nchans, chans, cc,
5997	     rd->ecm ? AH_TRUE : AH_FALSE,
5998	     rd->location != 'I' ? AH_TRUE : AH_FALSE);
5999	if (error != 0) {
6000		/*
6001		 * Restore previous state.
6002		 */
6003		ath_hal_setregdomain(ah, ord);
6004		(void) getchannels(sc, NULL, NULL, ic->ic_regdomain.country,
6005		     ic->ic_regdomain.ecm ? AH_TRUE : AH_FALSE,
6006		     ic->ic_regdomain.location != 'I' ? AH_TRUE : AH_FALSE);
6007		return error;
6008	}
6009	return 0;
6010}
6011
6012static void
6013ath_getradiocaps(struct ieee80211com *ic,
6014	int *nchans, struct ieee80211_channel chans[])
6015{
6016	struct ath_softc *sc = ic->ic_ifp->if_softc;
6017	struct ath_hal *ah = sc->sc_ah;
6018	u_int32_t ord;
6019
6020	(void) ath_hal_getregdomain(ah, &ord);
6021
6022	DPRINTF(sc, ATH_DEBUG_REGDOMAIN, "%s: use rd %u cc %d, ord %u\n",
6023	    __func__, 0, CTRY_DEBUG, ord);
6024
6025	ath_hal_setregdomain(ah, 0);
6026	/* XXX not quite right but close enough for now */
6027	getchannels(sc, nchans, chans, CTRY_DEBUG, AH_TRUE, AH_FALSE);
6028
6029	/* NB: restore previous state */
6030	ath_hal_setregdomain(ah, ord);
6031	(void) getchannels(sc, NULL, NULL, ic->ic_regdomain.country,
6032	     ic->ic_regdomain.ecm ? AH_TRUE : AH_FALSE,
6033	     ic->ic_regdomain.location != 'I' ? AH_TRUE : AH_FALSE);
6034}
6035
6036static void
6037ath_mapsku(u_int32_t ath_rd, u_int32_t ath_cc, struct ieee80211_regdomain *rd)
6038{
6039	rd->isocc[0] = ' ';	/* XXX don't know */
6040	rd->isocc[1] = ' ';
6041
6042	/* map Atheros sku's to SKU's */
6043	switch (ath_rd) {
6044	case 0:
6045		if (ath_cc == CTRY_DEBUG) {
6046			rd->regdomain = SKU_DEBUG;
6047			rd->country = 0;
6048			return;
6049		}
6050		break;
6051	}
6052	/* XXX net80211 types too small */
6053	rd->regdomain = (uint16_t) ath_rd;
6054	rd->country = (uint16_t) ath_cc;
6055}
6056
6057static int
6058ath_getchannels(struct ath_softc *sc)
6059{
6060	struct ifnet *ifp = sc->sc_ifp;
6061	struct ieee80211com *ic = ifp->if_l2com;
6062	struct ath_hal *ah = sc->sc_ah;
6063	int error;
6064
6065	/*
6066	 * Convert HAL channels to ieee80211 ones.
6067	 */
6068	error = getchannels(sc, &ic->ic_nchans, ic->ic_channels,
6069	    CTRY_DEFAULT, AH_TRUE, AH_FALSE);
6070	(void) ath_hal_getregdomain(ah, &sc->sc_eerd);
6071	ath_hal_getcountrycode(ah, &sc->sc_eecc);	/* NB: cannot fail */
6072	if (error) {
6073		if_printf(ifp, "%s: unable to collect channel list from hal, "
6074		    "error %d\n", __func__, error);
6075		if (error == EINVAL) {
6076			if_printf(ifp, "%s: regdomain likely %u country code %u\n",
6077			    __func__, sc->sc_eerd, sc->sc_eecc);
6078		}
6079		return error;
6080	}
6081	ic->ic_regdomain.ecm = 1;
6082	ic->ic_regdomain.location = 'I';
6083	ath_mapsku(sc->sc_eerd, sc->sc_eecc, &ic->ic_regdomain);
6084
6085	DPRINTF(sc, ATH_DEBUG_REGDOMAIN,
6086	    "%s: eeprom rd %u cc %u (mapped rd %u cc %u) location %c ecm %u\n",
6087	    __func__, sc->sc_eerd, sc->sc_eecc,
6088	    ic->ic_regdomain.regdomain, ic->ic_regdomain.country,
6089	    ic->ic_regdomain.location, ic->ic_regdomain.ecm);
6090	return 0;
6091}
6092
6093static void
6094ath_led_done(void *arg)
6095{
6096	struct ath_softc *sc = arg;
6097
6098	sc->sc_blinking = 0;
6099}
6100
6101/*
6102 * Turn the LED off: flip the pin and then set a timer so no
6103 * update will happen for the specified duration.
6104 */
6105static void
6106ath_led_off(void *arg)
6107{
6108	struct ath_softc *sc = arg;
6109
6110	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
6111	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
6112}
6113
6114/*
6115 * Blink the LED according to the specified on/off times.
6116 */
6117static void
6118ath_led_blink(struct ath_softc *sc, int on, int off)
6119{
6120	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
6121	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
6122	sc->sc_blinking = 1;
6123	sc->sc_ledoff = off;
6124	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
6125}
6126
6127static void
6128ath_led_event(struct ath_softc *sc, int rix)
6129{
6130	sc->sc_ledevent = ticks;	/* time of last event */
6131	if (sc->sc_blinking)		/* don't interrupt active blink */
6132		return;
6133	ath_led_blink(sc, sc->sc_hwmap[rix].ledon, sc->sc_hwmap[rix].ledoff);
6134}
6135
6136static int
6137ath_rate_setup(struct ath_softc *sc, u_int mode)
6138{
6139	struct ath_hal *ah = sc->sc_ah;
6140	const HAL_RATE_TABLE *rt;
6141
6142	switch (mode) {
6143	case IEEE80211_MODE_11A:
6144		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
6145		break;
6146	case IEEE80211_MODE_HALF:
6147		rt = ath_hal_getratetable(ah, HAL_MODE_11A_HALF_RATE);
6148		break;
6149	case IEEE80211_MODE_QUARTER:
6150		rt = ath_hal_getratetable(ah, HAL_MODE_11A_QUARTER_RATE);
6151		break;
6152	case IEEE80211_MODE_11B:
6153		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
6154		break;
6155	case IEEE80211_MODE_11G:
6156		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
6157		break;
6158	case IEEE80211_MODE_TURBO_A:
6159		rt = ath_hal_getratetable(ah, HAL_MODE_108A);
6160#if HAL_ABI_VERSION < 0x07013100
6161		if (rt == NULL)		/* XXX bandaid for old hal's */
6162			rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6163#endif
6164		break;
6165	case IEEE80211_MODE_TURBO_G:
6166		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
6167		break;
6168	case IEEE80211_MODE_STURBO_A:
6169		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
6170		break;
6171	case IEEE80211_MODE_11NA:
6172		rt = ath_hal_getratetable(ah, HAL_MODE_11NA_HT20);
6173		break;
6174	case IEEE80211_MODE_11NG:
6175		rt = ath_hal_getratetable(ah, HAL_MODE_11NG_HT20);
6176		break;
6177	default:
6178		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
6179			__func__, mode);
6180		return 0;
6181	}
6182	sc->sc_rates[mode] = rt;
6183	return (rt != NULL);
6184}
6185
6186static void
6187ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
6188{
6189#define	N(a)	(sizeof(a)/sizeof(a[0]))
6190	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
6191	static const struct {
6192		u_int		rate;		/* tx/rx 802.11 rate */
6193		u_int16_t	timeOn;		/* LED on time (ms) */
6194		u_int16_t	timeOff;	/* LED off time (ms) */
6195	} blinkrates[] = {
6196		{ 108,  40,  10 },
6197		{  96,  44,  11 },
6198		{  72,  50,  13 },
6199		{  48,  57,  14 },
6200		{  36,  67,  16 },
6201		{  24,  80,  20 },
6202		{  22, 100,  25 },
6203		{  18, 133,  34 },
6204		{  12, 160,  40 },
6205		{  10, 200,  50 },
6206		{   6, 240,  58 },
6207		{   4, 267,  66 },
6208		{   2, 400, 100 },
6209		{   0, 500, 130 },
6210		/* XXX half/quarter rates */
6211	};
6212	const HAL_RATE_TABLE *rt;
6213	int i, j;
6214
6215	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
6216	rt = sc->sc_rates[mode];
6217	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
6218	for (i = 0; i < rt->rateCount; i++) {
6219		uint8_t ieeerate = rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6220		if (rt->info[i].phy != IEEE80211_T_HT)
6221			sc->sc_rixmap[ieeerate] = i;
6222		else
6223			sc->sc_rixmap[ieeerate | IEEE80211_RATE_MCS] = i;
6224	}
6225	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
6226	for (i = 0; i < N(sc->sc_hwmap); i++) {
6227		if (i >= rt->rateCount) {
6228			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
6229			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
6230			continue;
6231		}
6232		sc->sc_hwmap[i].ieeerate =
6233			rt->info[i].dot11Rate & IEEE80211_RATE_VAL;
6234		if (rt->info[i].phy == IEEE80211_T_HT)
6235			sc->sc_hwmap[i].ieeerate |= IEEE80211_RATE_MCS;
6236		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
6237		if (rt->info[i].shortPreamble ||
6238		    rt->info[i].phy == IEEE80211_T_OFDM)
6239			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
6240		/* NB: receive frames include FCS */
6241		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
6242			IEEE80211_RADIOTAP_F_FCS;
6243		/* setup blink rate table to avoid per-packet lookup */
6244		for (j = 0; j < N(blinkrates)-1; j++)
6245			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
6246				break;
6247		/* NB: this uses the last entry if the rate isn't found */
6248		/* XXX beware of overlow */
6249		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
6250		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
6251	}
6252	sc->sc_currates = rt;
6253	sc->sc_curmode = mode;
6254	/*
6255	 * All protection frames are transmited at 2Mb/s for
6256	 * 11g, otherwise at 1Mb/s.
6257	 */
6258	if (mode == IEEE80211_MODE_11G)
6259		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
6260	else
6261		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
6262	/* NB: caller is responsible for reseting rate control state */
6263#undef N
6264}
6265
6266#ifdef ATH_DEBUG
6267static void
6268ath_printrxbuf(const struct ath_buf *bf, u_int ix, int done)
6269{
6270	const struct ath_rx_status *rs = &bf->bf_status.ds_rxstat;
6271	const struct ath_desc *ds;
6272	int i;
6273
6274	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6275		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
6276		       "      %08x %08x %08x %08x\n",
6277		    ix, ds, (const struct ath_desc *)bf->bf_daddr + i,
6278		    ds->ds_link, ds->ds_data,
6279		    !done ? "" : (rs->rs_status == 0) ? " *" : " !",
6280		    ds->ds_ctl0, ds->ds_ctl1,
6281		    ds->ds_hw[0], ds->ds_hw[1]);
6282	}
6283}
6284
6285static void
6286ath_printtxbuf(const struct ath_buf *bf, u_int qnum, u_int ix, int done)
6287{
6288	const struct ath_tx_status *ts = &bf->bf_status.ds_txstat;
6289	const struct ath_desc *ds;
6290	int i;
6291
6292	printf("Q%u[%3u]", qnum, ix);
6293	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
6294		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
6295		       "        %08x %08x %08x %08x %08x %08x\n",
6296		    ds, (const struct ath_desc *)bf->bf_daddr + i,
6297		    ds->ds_link, ds->ds_data, bf->bf_txflags,
6298		    !done ? "" : (ts->ts_status == 0) ? " *" : " !",
6299		    ds->ds_ctl0, ds->ds_ctl1,
6300		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
6301	}
6302}
6303#endif /* ATH_DEBUG */
6304
6305static void
6306ath_watchdog(struct ifnet *ifp)
6307{
6308	struct ath_softc *sc = ifp->if_softc;
6309
6310	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) && !sc->sc_invalid) {
6311		if_printf(ifp, "device timeout\n");
6312		ath_reset(ifp);
6313		ifp->if_oerrors++;
6314		sc->sc_stats.ast_watchdog++;
6315	}
6316}
6317
6318#ifdef ATH_DIAGAPI
6319/*
6320 * Diagnostic interface to the HAL.  This is used by various
6321 * tools to do things like retrieve register contents for
6322 * debugging.  The mechanism is intentionally opaque so that
6323 * it can change frequently w/o concern for compatiblity.
6324 */
6325static int
6326ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
6327{
6328	struct ath_hal *ah = sc->sc_ah;
6329	u_int id = ad->ad_id & ATH_DIAG_ID;
6330	void *indata = NULL;
6331	void *outdata = NULL;
6332	u_int32_t insize = ad->ad_in_size;
6333	u_int32_t outsize = ad->ad_out_size;
6334	int error = 0;
6335
6336	if (ad->ad_id & ATH_DIAG_IN) {
6337		/*
6338		 * Copy in data.
6339		 */
6340		indata = malloc(insize, M_TEMP, M_NOWAIT);
6341		if (indata == NULL) {
6342			error = ENOMEM;
6343			goto bad;
6344		}
6345		error = copyin(ad->ad_in_data, indata, insize);
6346		if (error)
6347			goto bad;
6348	}
6349	if (ad->ad_id & ATH_DIAG_DYN) {
6350		/*
6351		 * Allocate a buffer for the results (otherwise the HAL
6352		 * returns a pointer to a buffer where we can read the
6353		 * results).  Note that we depend on the HAL leaving this
6354		 * pointer for us to use below in reclaiming the buffer;
6355		 * may want to be more defensive.
6356		 */
6357		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
6358		if (outdata == NULL) {
6359			error = ENOMEM;
6360			goto bad;
6361		}
6362	}
6363	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
6364		if (outsize < ad->ad_out_size)
6365			ad->ad_out_size = outsize;
6366		if (outdata != NULL)
6367			error = copyout(outdata, ad->ad_out_data,
6368					ad->ad_out_size);
6369	} else {
6370		error = EINVAL;
6371	}
6372bad:
6373	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
6374		free(indata, M_TEMP);
6375	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
6376		free(outdata, M_TEMP);
6377	return error;
6378}
6379#endif /* ATH_DIAGAPI */
6380
6381static int
6382ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
6383{
6384#define	IS_RUNNING(ifp) \
6385	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
6386	struct ath_softc *sc = ifp->if_softc;
6387	struct ieee80211com *ic = ifp->if_l2com;
6388	struct ifreq *ifr = (struct ifreq *)data;
6389	const HAL_RATE_TABLE *rt;
6390	int error = 0;
6391
6392	switch (cmd) {
6393	case SIOCSIFFLAGS:
6394		ATH_LOCK(sc);
6395		if (IS_RUNNING(ifp)) {
6396			/*
6397			 * To avoid rescanning another access point,
6398			 * do not call ath_init() here.  Instead,
6399			 * only reflect promisc mode settings.
6400			 */
6401			ath_mode_init(sc);
6402		} else if (ifp->if_flags & IFF_UP) {
6403			/*
6404			 * Beware of being called during attach/detach
6405			 * to reset promiscuous mode.  In that case we
6406			 * will still be marked UP but not RUNNING.
6407			 * However trying to re-init the interface
6408			 * is the wrong thing to do as we've already
6409			 * torn down much of our state.  There's
6410			 * probably a better way to deal with this.
6411			 */
6412			if (!sc->sc_invalid)
6413				ath_init(sc);	/* XXX lose error */
6414		} else {
6415			ath_stop_locked(ifp);
6416#ifdef notyet
6417			/* XXX must wakeup in places like ath_vap_delete */
6418			if (!sc->sc_invalid)
6419				ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
6420#endif
6421		}
6422		ATH_UNLOCK(sc);
6423		break;
6424	case SIOCGIFMEDIA:
6425	case SIOCSIFMEDIA:
6426		error = ifmedia_ioctl(ifp, ifr, &ic->ic_media, cmd);
6427		break;
6428	case SIOCGATHSTATS:
6429		/* NB: embed these numbers to get a consistent view */
6430		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
6431		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
6432		sc->sc_stats.ast_tx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgtxrssi);
6433		sc->sc_stats.ast_rx_rssi = ATH_RSSI(sc->sc_halstats.ns_avgrssi);
6434		rt = sc->sc_currates;
6435		/* XXX HT rates */
6436		sc->sc_stats.ast_tx_rate =
6437		    rt->info[sc->sc_txrix].dot11Rate &~ IEEE80211_RATE_BASIC;
6438		return copyout(&sc->sc_stats,
6439		    ifr->ifr_data, sizeof (sc->sc_stats));
6440#ifdef ATH_DIAGAPI
6441	case SIOCGATHDIAG:
6442		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
6443		break;
6444#endif
6445	case SIOCGIFADDR:
6446		error = ether_ioctl(ifp, cmd, data);
6447		break;
6448	default:
6449		error = EINVAL;
6450		break;
6451	}
6452	return error;
6453#undef IS_RUNNING
6454}
6455
6456static int
6457ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
6458{
6459	struct ath_softc *sc = arg1;
6460	u_int slottime = ath_hal_getslottime(sc->sc_ah);
6461	int error;
6462
6463	error = sysctl_handle_int(oidp, &slottime, 0, req);
6464	if (error || !req->newptr)
6465		return error;
6466	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
6467}
6468
6469static int
6470ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
6471{
6472	struct ath_softc *sc = arg1;
6473	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
6474	int error;
6475
6476	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
6477	if (error || !req->newptr)
6478		return error;
6479	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
6480}
6481
6482static int
6483ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
6484{
6485	struct ath_softc *sc = arg1;
6486	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
6487	int error;
6488
6489	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
6490	if (error || !req->newptr)
6491		return error;
6492	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
6493}
6494
6495static int
6496ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
6497{
6498	struct ath_softc *sc = arg1;
6499	int softled = sc->sc_softled;
6500	int error;
6501
6502	error = sysctl_handle_int(oidp, &softled, 0, req);
6503	if (error || !req->newptr)
6504		return error;
6505	softled = (softled != 0);
6506	if (softled != sc->sc_softled) {
6507		if (softled) {
6508			/* NB: handle any sc_ledpin change */
6509			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
6510			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6511				!sc->sc_ledon);
6512		}
6513		sc->sc_softled = softled;
6514	}
6515	return 0;
6516}
6517
6518static int
6519ath_sysctl_ledpin(SYSCTL_HANDLER_ARGS)
6520{
6521	struct ath_softc *sc = arg1;
6522	int ledpin = sc->sc_ledpin;
6523	int error;
6524
6525	error = sysctl_handle_int(oidp, &ledpin, 0, req);
6526	if (error || !req->newptr)
6527		return error;
6528	if (ledpin != sc->sc_ledpin) {
6529		sc->sc_ledpin = ledpin;
6530		if (sc->sc_softled) {
6531			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
6532			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
6533				!sc->sc_ledon);
6534		}
6535	}
6536	return 0;
6537}
6538
6539static int
6540ath_sysctl_txantenna(SYSCTL_HANDLER_ARGS)
6541{
6542	struct ath_softc *sc = arg1;
6543	u_int txantenna = ath_hal_getantennaswitch(sc->sc_ah);
6544	int error;
6545
6546	error = sysctl_handle_int(oidp, &txantenna, 0, req);
6547	if (!error && req->newptr) {
6548		/* XXX assumes 2 antenna ports */
6549		if (txantenna < HAL_ANT_VARIABLE || txantenna > HAL_ANT_FIXED_B)
6550			return EINVAL;
6551		ath_hal_setantennaswitch(sc->sc_ah, txantenna);
6552		/*
6553		 * NB: with the switch locked this isn't meaningful,
6554		 *     but set it anyway so things like radiotap get
6555		 *     consistent info in their data.
6556		 */
6557		sc->sc_txantenna = txantenna;
6558	}
6559	return error;
6560}
6561
6562static int
6563ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
6564{
6565	struct ath_softc *sc = arg1;
6566	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
6567	int error;
6568
6569	error = sysctl_handle_int(oidp, &defantenna, 0, req);
6570	if (!error && req->newptr)
6571		ath_hal_setdefantenna(sc->sc_ah, defantenna);
6572	return error;
6573}
6574
6575static int
6576ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
6577{
6578	struct ath_softc *sc = arg1;
6579	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
6580	int error;
6581
6582	error = sysctl_handle_int(oidp, &diversity, 0, req);
6583	if (error || !req->newptr)
6584		return error;
6585	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
6586		return EINVAL;
6587	sc->sc_diversity = diversity;
6588	return 0;
6589}
6590
6591static int
6592ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
6593{
6594	struct ath_softc *sc = arg1;
6595	u_int32_t diag;
6596	int error;
6597
6598	if (!ath_hal_getdiag(sc->sc_ah, &diag))
6599		return EINVAL;
6600	error = sysctl_handle_int(oidp, &diag, 0, req);
6601	if (error || !req->newptr)
6602		return error;
6603	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
6604}
6605
6606static int
6607ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
6608{
6609	struct ath_softc *sc = arg1;
6610	struct ifnet *ifp = sc->sc_ifp;
6611	u_int32_t scale;
6612	int error;
6613
6614	(void) ath_hal_gettpscale(sc->sc_ah, &scale);
6615	error = sysctl_handle_int(oidp, &scale, 0, req);
6616	if (error || !req->newptr)
6617		return error;
6618	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL :
6619	    (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6620}
6621
6622static int
6623ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
6624{
6625	struct ath_softc *sc = arg1;
6626	u_int tpc = ath_hal_gettpc(sc->sc_ah);
6627	int error;
6628
6629	error = sysctl_handle_int(oidp, &tpc, 0, req);
6630	if (error || !req->newptr)
6631		return error;
6632	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
6633}
6634
6635static int
6636ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
6637{
6638	struct ath_softc *sc = arg1;
6639	struct ifnet *ifp = sc->sc_ifp;
6640	struct ath_hal *ah = sc->sc_ah;
6641	u_int rfkill = ath_hal_getrfkill(ah);
6642	int error;
6643
6644	error = sysctl_handle_int(oidp, &rfkill, 0, req);
6645	if (error || !req->newptr)
6646		return error;
6647	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
6648		return 0;
6649	if (!ath_hal_setrfkill(ah, rfkill))
6650		return EINVAL;
6651	return (ifp->if_drv_flags & IFF_DRV_RUNNING) ? ath_reset(ifp) : 0;
6652}
6653
6654static int
6655ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
6656{
6657	struct ath_softc *sc = arg1;
6658	u_int rfsilent;
6659	int error;
6660
6661	(void) ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
6662	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
6663	if (error || !req->newptr)
6664		return error;
6665	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
6666		return EINVAL;
6667	sc->sc_rfsilentpin = rfsilent & 0x1c;
6668	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
6669	return 0;
6670}
6671
6672static int
6673ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
6674{
6675	struct ath_softc *sc = arg1;
6676	u_int32_t tpack;
6677	int error;
6678
6679	(void) ath_hal_gettpack(sc->sc_ah, &tpack);
6680	error = sysctl_handle_int(oidp, &tpack, 0, req);
6681	if (error || !req->newptr)
6682		return error;
6683	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
6684}
6685
6686static int
6687ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
6688{
6689	struct ath_softc *sc = arg1;
6690	u_int32_t tpcts;
6691	int error;
6692
6693	(void) ath_hal_gettpcts(sc->sc_ah, &tpcts);
6694	error = sysctl_handle_int(oidp, &tpcts, 0, req);
6695	if (error || !req->newptr)
6696		return error;
6697	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
6698}
6699
6700static int
6701ath_sysctl_intmit(SYSCTL_HANDLER_ARGS)
6702{
6703	struct ath_softc *sc = arg1;
6704	int intmit, error;
6705
6706	intmit = ath_hal_getintmit(sc->sc_ah);
6707	error = sysctl_handle_int(oidp, &intmit, 0, req);
6708	if (error || !req->newptr)
6709		return error;
6710	return !ath_hal_setintmit(sc->sc_ah, intmit) ? EINVAL : 0;
6711}
6712
6713static void
6714ath_sysctlattach(struct ath_softc *sc)
6715{
6716	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
6717	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
6718	struct ath_hal *ah = sc->sc_ah;
6719
6720	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6721		"countrycode", CTLFLAG_RD, &sc->sc_eecc, 0,
6722		"EEPROM country code");
6723	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6724		"regdomain", CTLFLAG_RD, &sc->sc_eerd, 0,
6725		"EEPROM regdomain code");
6726#ifdef	ATH_DEBUG
6727	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6728		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
6729		"control debugging printfs");
6730#endif
6731	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6732		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6733		ath_sysctl_slottime, "I", "802.11 slot time (us)");
6734	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6735		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6736		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
6737	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6738		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6739		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
6740	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6741		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6742		ath_sysctl_softled, "I", "enable/disable software LED support");
6743	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6744		"ledpin", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6745		ath_sysctl_ledpin, "I", "GPIO pin connected to LED");
6746	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6747		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
6748		"setting to turn LED on");
6749	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6750		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
6751		"idle time for inactivity LED (ticks)");
6752	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6753		"txantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6754		ath_sysctl_txantenna, "I", "antenna switch");
6755	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6756		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6757		ath_sysctl_rxantenna, "I", "default/rx antenna");
6758	if (ath_hal_hasdiversity(ah))
6759		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6760			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6761			ath_sysctl_diversity, "I", "antenna diversity");
6762	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
6763	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6764		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
6765		"tx descriptor batching");
6766	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6767		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6768		ath_sysctl_diag, "I", "h/w diagnostic control");
6769	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6770		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6771		ath_sysctl_tpscale, "I", "tx power scaling");
6772	if (ath_hal_hastpc(ah)) {
6773		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6774			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6775			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
6776		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6777			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6778			ath_sysctl_tpack, "I", "tx power for ack frames");
6779		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6780			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6781			ath_sysctl_tpcts, "I", "tx power for cts frames");
6782	}
6783	if (ath_hal_hasfastframes(sc->sc_ah)) {
6784		sc->sc_fftxqmin = ATH_FF_TXQMIN;
6785		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6786			"fftxqmin", CTLFLAG_RW, &sc->sc_fftxqmin, 0,
6787			"min frames before fast-frame staging");
6788		sc->sc_fftxqmax = ATH_FF_TXQMAX;
6789		SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6790			"fftxqmax", CTLFLAG_RW, &sc->sc_fftxqmax, 0,
6791			"max queued frames before tail drop");
6792	}
6793	if (ath_hal_hasrfsilent(ah)) {
6794		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6795			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6796			ath_sysctl_rfsilent, "I", "h/w RF silent config");
6797		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6798			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6799			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
6800	}
6801	if (ath_hal_hasintmit(ah)) {
6802		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6803			"intmit", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
6804			ath_sysctl_intmit, "I", "interference mitigation");
6805	}
6806	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
6807	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
6808		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
6809		"mask of error frames to pass when monitoring");
6810}
6811
6812static void
6813ath_bpfattach(struct ath_softc *sc)
6814{
6815	struct ifnet *ifp = sc->sc_ifp;
6816
6817	bpfattach(ifp, DLT_IEEE802_11_RADIO,
6818		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th));
6819	/*
6820	 * Initialize constant fields.
6821	 * XXX make header lengths a multiple of 32-bits so subsequent
6822	 *     headers are properly aligned; this is a kludge to keep
6823	 *     certain applications happy.
6824	 *
6825	 * NB: the channel is setup each time we transition to the
6826	 *     RUN state to avoid filling it in for each frame.
6827	 */
6828	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
6829	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
6830	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
6831
6832	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
6833	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
6834	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
6835}
6836
6837static int
6838ath_tx_raw_start(struct ath_softc *sc, struct ieee80211_node *ni,
6839	struct ath_buf *bf, struct mbuf *m0,
6840	const struct ieee80211_bpf_params *params)
6841{
6842	struct ifnet *ifp = sc->sc_ifp;
6843	struct ieee80211com *ic = ifp->if_l2com;
6844	struct ath_hal *ah = sc->sc_ah;
6845	int error, ismcast, ismrr;
6846	int hdrlen, pktlen, try0, txantenna;
6847	u_int8_t rix, cix, txrate, ctsrate, rate1, rate2, rate3;
6848	struct ieee80211_frame *wh;
6849	u_int flags, ctsduration;
6850	HAL_PKT_TYPE atype;
6851	const HAL_RATE_TABLE *rt;
6852	struct ath_desc *ds;
6853	u_int pri;
6854
6855	wh = mtod(m0, struct ieee80211_frame *);
6856	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
6857	hdrlen = ieee80211_anyhdrsize(wh);
6858	/*
6859	 * Packet length must not include any
6860	 * pad bytes; deduct them here.
6861	 */
6862	/* XXX honor IEEE80211_BPF_DATAPAD */
6863	pktlen = m0->m_pkthdr.len - (hdrlen & 3) + IEEE80211_CRC_LEN;
6864
6865	error = ath_tx_dmasetup(sc, bf, m0);
6866	if (error != 0)
6867		return error;
6868	m0 = bf->bf_m;				/* NB: may have changed */
6869	wh = mtod(m0, struct ieee80211_frame *);
6870	bf->bf_node = ni;			/* NB: held reference */
6871
6872	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
6873	flags |= HAL_TXDESC_INTREQ;		/* force interrupt */
6874	if (params->ibp_flags & IEEE80211_BPF_RTS)
6875		flags |= HAL_TXDESC_RTSENA;
6876	else if (params->ibp_flags & IEEE80211_BPF_CTS)
6877		flags |= HAL_TXDESC_CTSENA;
6878	/* XXX leave ismcast to injector? */
6879	if ((params->ibp_flags & IEEE80211_BPF_NOACK) || ismcast)
6880		flags |= HAL_TXDESC_NOACK;
6881
6882	rt = sc->sc_currates;
6883	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
6884	rix = ath_tx_findrix(rt, params->ibp_rate0);
6885	txrate = rt->info[rix].rateCode;
6886	if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6887		txrate |= rt->info[rix].shortPreamble;
6888	sc->sc_txrix = rix;
6889	try0 = params->ibp_try0;
6890	ismrr = (params->ibp_try1 != 0);
6891	txantenna = params->ibp_pri >> 2;
6892	if (txantenna == 0)			/* XXX? */
6893		txantenna = sc->sc_txantenna;
6894	ctsduration = 0;
6895	if (flags & (HAL_TXDESC_CTSENA | HAL_TXDESC_RTSENA)) {
6896		cix = ath_tx_findrix(rt, params->ibp_ctsrate);
6897		ctsrate = rt->info[cix].rateCode;
6898		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE) {
6899			ctsrate |= rt->info[cix].shortPreamble;
6900			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6901				ctsduration += rt->info[cix].spAckDuration;
6902			ctsduration += ath_hal_computetxtime(ah,
6903				rt, pktlen, rix, AH_TRUE);
6904			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6905				ctsduration += rt->info[rix].spAckDuration;
6906		} else {
6907			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
6908				ctsduration += rt->info[cix].lpAckDuration;
6909			ctsduration += ath_hal_computetxtime(ah,
6910				rt, pktlen, rix, AH_FALSE);
6911			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
6912				ctsduration += rt->info[rix].lpAckDuration;
6913		}
6914		ismrr = 0;			/* XXX */
6915	} else
6916		ctsrate = 0;
6917	pri = params->ibp_pri & 3;
6918	/*
6919	 * NB: we mark all packets as type PSPOLL so the h/w won't
6920	 * set the sequence number, duration, etc.
6921	 */
6922	atype = HAL_PKT_TYPE_PSPOLL;
6923
6924	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
6925		ieee80211_dump_pkt(ic, mtod(m0, caddr_t), m0->m_len,
6926			sc->sc_hwmap[rix].ieeerate, -1);
6927
6928	if (bpf_peers_present(ifp->if_bpf)) {
6929		u_int64_t tsf = ath_hal_gettsf64(ah);
6930
6931		sc->sc_tx_th.wt_tsf = htole64(tsf);
6932		sc->sc_tx_th.wt_flags = sc->sc_hwmap[rix].txflags;
6933		if (wh->i_fc[1] & IEEE80211_FC1_WEP)
6934			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
6935		sc->sc_tx_th.wt_rate = sc->sc_hwmap[rix].ieeerate;
6936		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
6937		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
6938
6939		bpf_mtap2(ifp->if_bpf, &sc->sc_tx_th, sc->sc_tx_th_len, m0);
6940	}
6941
6942	/*
6943	 * Formulate first tx descriptor with tx controls.
6944	 */
6945	ds = bf->bf_desc;
6946	/* XXX check return value? */
6947	ath_hal_setuptxdesc(ah, ds
6948		, pktlen		/* packet length */
6949		, hdrlen		/* header length */
6950		, atype			/* Atheros packet type */
6951		, params->ibp_power	/* txpower */
6952		, txrate, try0		/* series 0 rate/tries */
6953		, HAL_TXKEYIX_INVALID	/* key cache index */
6954		, txantenna		/* antenna mode */
6955		, flags			/* flags */
6956		, ctsrate		/* rts/cts rate */
6957		, ctsduration		/* rts/cts duration */
6958	);
6959	bf->bf_txflags = flags;
6960
6961	if (ismrr) {
6962		rix = ath_tx_findrix(rt, params->ibp_rate1);
6963		rate1 = rt->info[rix].rateCode;
6964		if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6965			rate1 |= rt->info[rix].shortPreamble;
6966		if (params->ibp_try2) {
6967			rix = ath_tx_findrix(rt, params->ibp_rate2);
6968			rate2 = rt->info[rix].rateCode;
6969			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6970				rate2 |= rt->info[rix].shortPreamble;
6971		} else
6972			rate2 = 0;
6973		if (params->ibp_try3) {
6974			rix = ath_tx_findrix(rt, params->ibp_rate3);
6975			rate3 = rt->info[rix].rateCode;
6976			if (params->ibp_flags & IEEE80211_BPF_SHORTPRE)
6977				rate3 |= rt->info[rix].shortPreamble;
6978		} else
6979			rate3 = 0;
6980		ath_hal_setupxtxdesc(ah, ds
6981			, rate1, params->ibp_try1	/* series 1 */
6982			, rate2, params->ibp_try2	/* series 2 */
6983			, rate3, params->ibp_try3	/* series 3 */
6984		);
6985	}
6986
6987	/* NB: no buffered multicast in power save support */
6988	ath_tx_handoff(sc, sc->sc_ac2q[pri], bf);
6989	return 0;
6990}
6991
6992static int
6993ath_raw_xmit(struct ieee80211_node *ni, struct mbuf *m,
6994	const struct ieee80211_bpf_params *params)
6995{
6996	struct ieee80211com *ic = ni->ni_ic;
6997	struct ifnet *ifp = ic->ic_ifp;
6998	struct ath_softc *sc = ifp->if_softc;
6999	struct ath_buf *bf;
7000
7001	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid) {
7002		ieee80211_free_node(ni);
7003		m_freem(m);
7004		return ENETDOWN;
7005	}
7006	/*
7007	 * Grab a TX buffer and associated resources.
7008	 */
7009	ATH_TXBUF_LOCK(sc);
7010	bf = STAILQ_FIRST(&sc->sc_txbuf);
7011	if (bf != NULL)
7012		STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
7013	ATH_TXBUF_UNLOCK(sc);
7014	if (bf == NULL) {
7015		DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
7016			__func__);
7017		sc->sc_stats.ast_tx_qstop++;
7018		ifp->if_drv_flags |= IFF_DRV_OACTIVE;
7019		ieee80211_free_node(ni);
7020		m_freem(m);
7021		return ENOBUFS;
7022	}
7023
7024	ifp->if_opackets++;
7025	sc->sc_stats.ast_tx_raw++;
7026
7027	if (params == NULL) {
7028		/*
7029		 * Legacy path; interpret frame contents to decide
7030		 * precisely how to send the frame.
7031		 */
7032		if (ath_tx_start(sc, ni, bf, m))
7033			goto bad;
7034	} else {
7035		/*
7036		 * Caller supplied explicit parameters to use in
7037		 * sending the frame.
7038		 */
7039		if (ath_tx_raw_start(sc, ni, bf, m, params))
7040			goto bad;
7041	}
7042	ifp->if_timer = 5;
7043
7044	return 0;
7045bad:
7046	ifp->if_oerrors++;
7047	ATH_TXBUF_LOCK(sc);
7048	STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
7049	ATH_TXBUF_UNLOCK(sc);
7050	ieee80211_free_node(ni);
7051	return EIO;		/* XXX */
7052}
7053
7054/*
7055 * Announce various information on device/driver attach.
7056 */
7057static void
7058ath_announce(struct ath_softc *sc)
7059{
7060#define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
7061	struct ifnet *ifp = sc->sc_ifp;
7062	struct ath_hal *ah = sc->sc_ah;
7063	u_int modes, cc;
7064
7065	if_printf(ifp, "mac %d.%d phy %d.%d",
7066		ah->ah_macVersion, ah->ah_macRev,
7067		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
7068	/*
7069	 * Print radio revision(s).  We check the wireless modes
7070	 * to avoid falsely printing revs for inoperable parts.
7071	 * Dual-band radio revs are returned in the 5Ghz rev number.
7072	 */
7073	ath_hal_getcountrycode(ah, &cc);
7074	modes = ath_hal_getwirelessmodes(ah, cc);
7075	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
7076		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
7077			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
7078				ah->ah_analog5GhzRev >> 4,
7079				ah->ah_analog5GhzRev & 0xf,
7080				ah->ah_analog2GhzRev >> 4,
7081				ah->ah_analog2GhzRev & 0xf);
7082		else
7083			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
7084				ah->ah_analog5GhzRev & 0xf);
7085	} else
7086		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
7087			ah->ah_analog5GhzRev & 0xf);
7088	printf("\n");
7089	if (bootverbose) {
7090		int i;
7091		for (i = 0; i <= WME_AC_VO; i++) {
7092			struct ath_txq *txq = sc->sc_ac2q[i];
7093			if_printf(ifp, "Use hw queue %u for %s traffic\n",
7094				txq->axq_qnum, ieee80211_wme_acnames[i]);
7095		}
7096		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
7097			sc->sc_cabq->axq_qnum);
7098		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
7099	}
7100	if (ath_rxbuf != ATH_RXBUF)
7101		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
7102	if (ath_txbuf != ATH_TXBUF)
7103		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
7104#undef HAL_MODE_DUALBAND
7105}
7106