if_ath.c revision 158366
1/*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 * 3. Neither the names of the above-listed copyright holders nor the names
16 *    of any contributors may be used to endorse or promote products derived
17 *    from this software without specific prior written permission.
18 *
19 * Alternatively, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") version 2 as published by the Free
21 * Software Foundation.
22 *
23 * NO WARRANTY
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34 * THE POSSIBILITY OF SUCH DAMAGES.
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 158366 2006-05-08 20:11:09Z sam $");
39
40/*
41 * Driver for the Atheros Wireless LAN controller.
42 *
43 * This software is derived from work of Atsushi Onoe; his contribution
44 * is greatly appreciated.
45 */
46
47#include "opt_inet.h"
48#include "opt_ath.h"
49
50#include <sys/param.h>
51#include <sys/systm.h>
52#include <sys/sysctl.h>
53#include <sys/mbuf.h>
54#include <sys/malloc.h>
55#include <sys/lock.h>
56#include <sys/mutex.h>
57#include <sys/kernel.h>
58#include <sys/socket.h>
59#include <sys/sockio.h>
60#include <sys/errno.h>
61#include <sys/callout.h>
62#include <sys/bus.h>
63#include <sys/endian.h>
64#include <sys/kthread.h>
65#include <sys/taskqueue.h>
66
67#include <machine/bus.h>
68
69#include <net/if.h>
70#include <net/if_dl.h>
71#include <net/if_media.h>
72#include <net/if_types.h>
73#include <net/if_arp.h>
74#include <net/ethernet.h>
75#include <net/if_llc.h>
76
77#include <net80211/ieee80211_var.h>
78
79#include <net/bpf.h>
80
81#ifdef INET
82#include <netinet/in.h>
83#include <netinet/if_ether.h>
84#endif
85
86#include <dev/ath/if_athvar.h>
87#include <contrib/dev/ath/ah_desc.h>
88#include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
89
90#ifdef ATH_TX99_DIAG
91#include <dev/ath/ath_tx99/ath_tx99.h>
92#endif
93
94/* unaligned little endian access */
95#define LE_READ_2(p)							\
96	((u_int16_t)							\
97	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
98#define LE_READ_4(p)							\
99	((u_int32_t)							\
100	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
101	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
102
103enum {
104	ATH_LED_TX,
105	ATH_LED_RX,
106	ATH_LED_POLL,
107};
108
109static void	ath_init(void *);
110static void	ath_stop_locked(struct ifnet *);
111static void	ath_stop(struct ifnet *);
112static void	ath_start(struct ifnet *);
113static int	ath_reset(struct ifnet *);
114static int	ath_media_change(struct ifnet *);
115static void	ath_watchdog(struct ifnet *);
116static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
117static void	ath_fatal_proc(void *, int);
118static void	ath_rxorn_proc(void *, int);
119static void	ath_bmiss_proc(void *, int);
120static void	ath_radar_proc(void *, int);
121static int	ath_key_alloc(struct ieee80211com *,
122			const struct ieee80211_key *,
123			ieee80211_keyix *, ieee80211_keyix *);
124static int	ath_key_delete(struct ieee80211com *,
125			const struct ieee80211_key *);
126static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
127			const u_int8_t mac[IEEE80211_ADDR_LEN]);
128static void	ath_key_update_begin(struct ieee80211com *);
129static void	ath_key_update_end(struct ieee80211com *);
130static void	ath_mode_init(struct ath_softc *);
131static void	ath_setslottime(struct ath_softc *);
132static void	ath_updateslot(struct ifnet *);
133static int	ath_beaconq_setup(struct ath_hal *);
134static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
135static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
136static void	ath_beacon_proc(void *, int);
137static void	ath_bstuck_proc(void *, int);
138static void	ath_beacon_free(struct ath_softc *);
139static void	ath_beacon_config(struct ath_softc *);
140static void	ath_descdma_cleanup(struct ath_softc *sc,
141			struct ath_descdma *, ath_bufhead *);
142static int	ath_desc_alloc(struct ath_softc *);
143static void	ath_desc_free(struct ath_softc *);
144static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
145static void	ath_node_free(struct ieee80211_node *);
146static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
147static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
148static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
149			struct ieee80211_node *ni,
150			int subtype, int rssi, u_int32_t rstamp);
151static void	ath_setdefantenna(struct ath_softc *, u_int);
152static void	ath_rx_proc(void *, int);
153static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
154static int	ath_tx_setup(struct ath_softc *, int, int);
155static int	ath_wme_update(struct ieee80211com *);
156static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
157static void	ath_tx_cleanup(struct ath_softc *);
158static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
159			     struct ath_buf *, struct mbuf *);
160static void	ath_tx_proc_q0(void *, int);
161static void	ath_tx_proc_q0123(void *, int);
162static void	ath_tx_proc(void *, int);
163static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
164static void	ath_draintxq(struct ath_softc *);
165static void	ath_stoprecv(struct ath_softc *);
166static int	ath_startrecv(struct ath_softc *);
167static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
168static void	ath_next_scan(void *);
169static void	ath_calibrate(void *);
170static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
171static void	ath_setup_stationkey(struct ieee80211_node *);
172static void	ath_newassoc(struct ieee80211_node *, int);
173static int	ath_getchannels(struct ath_softc *, u_int cc,
174			HAL_BOOL outdoor, HAL_BOOL xchanmode);
175static void	ath_led_event(struct ath_softc *, int);
176static void	ath_update_txpow(struct ath_softc *);
177
178static int	ath_rate_setup(struct ath_softc *, u_int mode);
179static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
180
181static void	ath_sysctlattach(struct ath_softc *);
182static void	ath_bpfattach(struct ath_softc *);
183static void	ath_announce(struct ath_softc *);
184
185SYSCTL_DECL(_hw_ath);
186
187/* XXX validate sysctl values */
188static	int ath_dwelltime = 200;		/* 5 channels/second */
189SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
190	    0, "channel dwell time (ms) for AP/station scanning");
191static	int ath_calinterval = 30;		/* calibrate every 30 secs */
192SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
193	    0, "chip calibration interval (secs)");
194static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
195SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
196	    0, "outdoor operation");
197TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
198static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
199SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
200	    0, "extended channel mode");
201TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
202static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
203SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
204	    0, "country code");
205TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
206static	int ath_regdomain = 0;			/* regulatory domain */
207SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
208	    0, "regulatory domain");
209
210static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
211SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RD, &ath_rxbuf,
212	    0, "rx buffers allocated");
213TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
214static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
215SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RD, &ath_txbuf,
216	    0, "tx buffers allocated");
217TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
218
219#ifdef ATH_DEBUG
220static	int ath_debug = 0;
221SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
222	    0, "control debugging printfs");
223TUNABLE_INT("hw.ath.debug", &ath_debug);
224enum {
225	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
226	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
227	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
228	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
229	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
230	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
231	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
232	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
233	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
234	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
235	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
236	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
237	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
238	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
239	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
240	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
241	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
242	ATH_DEBUG_LED		= 0x00100000,	/* led management */
243	ATH_DEBUG_FF		= 0x00200000,	/* fast frames */
244	ATH_DEBUG_DFS		= 0x00400000,	/* DFS processing */
245	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
246	ATH_DEBUG_ANY		= 0xffffffff
247};
248#define	IFF_DUMPPKTS(sc, m) \
249	((sc->sc_debug & (m)) || \
250	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
251#define	DPRINTF(sc, m, fmt, ...) do {				\
252	if (sc->sc_debug & (m))					\
253		printf(fmt, __VA_ARGS__);			\
254} while (0)
255#define	KEYPRINTF(sc, ix, hk, mac) do {				\
256	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
257		ath_keyprint(__func__, ix, hk, mac);		\
258} while (0)
259static	void ath_printrxbuf(struct ath_buf *bf, u_int ix, int);
260static	void ath_printtxbuf(struct ath_buf *bf, u_int qnum, u_int ix, int done);
261#else
262#define	IFF_DUMPPKTS(sc, m) \
263	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
264#define	DPRINTF(sc, m, fmt, ...) do {				\
265	(void) sc;						\
266} while (0)
267#define	KEYPRINTF(sc, k, ix, mac) do {				\
268	(void) sc;						\
269} while (0)
270#endif
271
272MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
273
274int
275ath_attach(u_int16_t devid, struct ath_softc *sc)
276{
277	struct ifnet *ifp;
278	struct ieee80211com *ic = &sc->sc_ic;
279	struct ath_hal *ah = NULL;
280	HAL_STATUS status;
281	int error = 0, i;
282
283	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
284
285	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
286	if (ifp == NULL) {
287		device_printf(sc->sc_dev, "can not if_alloc()\n");
288		error = ENOSPC;
289		goto bad;
290	}
291
292	/* set these up early for if_printf use */
293	if_initname(ifp, device_get_name(sc->sc_dev),
294		device_get_unit(sc->sc_dev));
295
296	ah = ath_hal_attach(devid, sc, (HAL_BUS_TAG) sc->sc_st,
297		(HAL_BUS_HANDLE) sc->sc_sh, &status);
298	if (ah == NULL) {
299		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
300			status);
301		error = ENXIO;
302		goto bad;
303	}
304	if (ah->ah_abi != HAL_ABI_VERSION) {
305		if_printf(ifp, "HAL ABI mismatch detected "
306			"(HAL:0x%x != driver:0x%x)\n",
307			ah->ah_abi, HAL_ABI_VERSION);
308		error = ENXIO;
309		goto bad;
310	}
311	sc->sc_ah = ah;
312	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
313
314	/*
315	 * Check if the MAC has multi-rate retry support.
316	 * We do this by trying to setup a fake extended
317	 * descriptor.  MAC's that don't have support will
318	 * return false w/o doing anything.  MAC's that do
319	 * support it will return true w/o doing anything.
320	 */
321	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
322
323	/*
324	 * Check if the device has hardware counters for PHY
325	 * errors.  If so we need to enable the MIB interrupt
326	 * so we can act on stat triggers.
327	 */
328	if (ath_hal_hwphycounters(ah))
329		sc->sc_needmib = 1;
330
331	/*
332	 * Get the hardware key cache size.
333	 */
334	sc->sc_keymax = ath_hal_keycachesize(ah);
335	if (sc->sc_keymax > ATH_KEYMAX) {
336		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
337			ATH_KEYMAX, sc->sc_keymax);
338		sc->sc_keymax = ATH_KEYMAX;
339	}
340	/*
341	 * Reset the key cache since some parts do not
342	 * reset the contents on initial power up.
343	 */
344	for (i = 0; i < sc->sc_keymax; i++)
345		ath_hal_keyreset(ah, i);
346	/*
347	 * Mark key cache slots associated with global keys
348	 * as in use.  If we knew TKIP was not to be used we
349	 * could leave the +32, +64, and +32+64 slots free.
350	 * XXX only for splitmic.
351	 */
352	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
353		setbit(sc->sc_keymap, i);
354		setbit(sc->sc_keymap, i+32);
355		setbit(sc->sc_keymap, i+64);
356		setbit(sc->sc_keymap, i+32+64);
357	}
358
359	/*
360	 * Collect the channel list using the default country
361	 * code and including outdoor channels.  The 802.11 layer
362	 * is resposible for filtering this list based on settings
363	 * like the phy mode.
364	 */
365	error = ath_getchannels(sc, ath_countrycode,
366			ath_outdoor, ath_xchanmode);
367	if (error != 0)
368		goto bad;
369
370	/*
371	 * Setup rate tables for all potential media types.
372	 */
373	ath_rate_setup(sc, IEEE80211_MODE_11A);
374	ath_rate_setup(sc, IEEE80211_MODE_11B);
375	ath_rate_setup(sc, IEEE80211_MODE_11G);
376	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
377	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
378	/* NB: setup here so ath_rate_update is happy */
379	ath_setcurmode(sc, IEEE80211_MODE_11A);
380
381	/*
382	 * Allocate tx+rx descriptors and populate the lists.
383	 */
384	error = ath_desc_alloc(sc);
385	if (error != 0) {
386		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
387		goto bad;
388	}
389	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
390	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
391	callout_init(&sc->sc_dfs_ch, CALLOUT_MPSAFE);
392
393	ATH_TXBUF_LOCK_INIT(sc);
394
395	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
396		taskqueue_thread_enqueue, &sc->sc_tq);
397	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
398		"%s taskq", ifp->if_xname);
399
400	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
401	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
402	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
403	TASK_INIT(&sc->sc_bstucktask,0, ath_bstuck_proc, sc);
404	TASK_INIT(&sc->sc_radartask, 0, ath_radar_proc, sc);
405
406	/*
407	 * Allocate hardware transmit queues: one queue for
408	 * beacon frames and one data queue for each QoS
409	 * priority.  Note that the hal handles reseting
410	 * these queues at the needed time.
411	 *
412	 * XXX PS-Poll
413	 */
414	sc->sc_bhalq = ath_beaconq_setup(ah);
415	if (sc->sc_bhalq == (u_int) -1) {
416		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
417		error = EIO;
418		goto bad2;
419	}
420	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
421	if (sc->sc_cabq == NULL) {
422		if_printf(ifp, "unable to setup CAB xmit queue!\n");
423		error = EIO;
424		goto bad2;
425	}
426	/* NB: insure BK queue is the lowest priority h/w queue */
427	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
428		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
429			ieee80211_wme_acnames[WME_AC_BK]);
430		error = EIO;
431		goto bad2;
432	}
433	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
434	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
435	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
436		/*
437		 * Not enough hardware tx queues to properly do WME;
438		 * just punt and assign them all to the same h/w queue.
439		 * We could do a better job of this if, for example,
440		 * we allocate queues when we switch from station to
441		 * AP mode.
442		 */
443		if (sc->sc_ac2q[WME_AC_VI] != NULL)
444			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
445		if (sc->sc_ac2q[WME_AC_BE] != NULL)
446			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
447		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
448		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
449		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
450	}
451
452	/*
453	 * Special case certain configurations.  Note the
454	 * CAB queue is handled by these specially so don't
455	 * include them when checking the txq setup mask.
456	 */
457	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
458	case 0x01:
459		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
460		break;
461	case 0x0f:
462		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
463		break;
464	default:
465		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
466		break;
467	}
468
469	/*
470	 * Setup rate control.  Some rate control modules
471	 * call back to change the anntena state so expose
472	 * the necessary entry points.
473	 * XXX maybe belongs in struct ath_ratectrl?
474	 */
475	sc->sc_setdefantenna = ath_setdefantenna;
476	sc->sc_rc = ath_rate_attach(sc);
477	if (sc->sc_rc == NULL) {
478		error = EIO;
479		goto bad2;
480	}
481
482	sc->sc_blinking = 0;
483	sc->sc_ledstate = 1;
484	sc->sc_ledon = 0;			/* low true */
485	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
486	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
487	/*
488	 * Auto-enable soft led processing for IBM cards and for
489	 * 5211 minipci cards.  Users can also manually enable/disable
490	 * support with a sysctl.
491	 */
492	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
493	if (sc->sc_softled) {
494		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
495		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
496	}
497
498	ifp->if_softc = sc;
499	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
500	ifp->if_start = ath_start;
501	ifp->if_watchdog = ath_watchdog;
502	ifp->if_ioctl = ath_ioctl;
503	ifp->if_init = ath_init;
504	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
505	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
506	IFQ_SET_READY(&ifp->if_snd);
507
508	ic->ic_ifp = ifp;
509	ic->ic_reset = ath_reset;
510	ic->ic_newassoc = ath_newassoc;
511	ic->ic_updateslot = ath_updateslot;
512	ic->ic_wme.wme_update = ath_wme_update;
513	/* XXX not right but it's not used anywhere important */
514	ic->ic_phytype = IEEE80211_T_OFDM;
515	ic->ic_opmode = IEEE80211_M_STA;
516	ic->ic_caps =
517		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
518		| IEEE80211_C_HOSTAP		/* hostap mode */
519		| IEEE80211_C_MONITOR		/* monitor mode */
520		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
521		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
522		| IEEE80211_C_SHSLOT		/* short slot time supported */
523		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
524		;
525	/*
526	 * Query the hal to figure out h/w crypto support.
527	 */
528	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
529		ic->ic_caps |= IEEE80211_C_WEP;
530	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
531		ic->ic_caps |= IEEE80211_C_AES;
532	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
533		ic->ic_caps |= IEEE80211_C_AES_CCM;
534	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
535		ic->ic_caps |= IEEE80211_C_CKIP;
536	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
537		ic->ic_caps |= IEEE80211_C_TKIP;
538		/*
539		 * Check if h/w does the MIC and/or whether the
540		 * separate key cache entries are required to
541		 * handle both tx+rx MIC keys.
542		 */
543		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
544			ic->ic_caps |= IEEE80211_C_TKIPMIC;
545		if (ath_hal_tkipsplit(ah))
546			sc->sc_splitmic = 1;
547	}
548	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
549	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
550	/*
551	 * TPC support can be done either with a global cap or
552	 * per-packet support.  The latter is not available on
553	 * all parts.  We're a bit pedantic here as all parts
554	 * support a global cap.
555	 */
556	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
557		ic->ic_caps |= IEEE80211_C_TXPMGT;
558
559	/*
560	 * Mark WME capability only if we have sufficient
561	 * hardware queues to do proper priority scheduling.
562	 */
563	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
564		ic->ic_caps |= IEEE80211_C_WME;
565	/*
566	 * Check for misc other capabilities.
567	 */
568	if (ath_hal_hasbursting(ah))
569		ic->ic_caps |= IEEE80211_C_BURST;
570
571	/*
572	 * Indicate we need the 802.11 header padded to a
573	 * 32-bit boundary for 4-address and QoS frames.
574	 */
575	ic->ic_flags |= IEEE80211_F_DATAPAD;
576
577	/*
578	 * Query the hal about antenna support.
579	 */
580	sc->sc_defant = ath_hal_getdefantenna(ah);
581
582	/*
583	 * Not all chips have the VEOL support we want to
584	 * use with IBSS beacons; check here for it.
585	 */
586	sc->sc_hasveol = ath_hal_hasveol(ah);
587
588	/* get mac address from hardware */
589	ath_hal_getmac(ah, ic->ic_myaddr);
590
591	/* call MI attach routine. */
592	ieee80211_ifattach(ic);
593	sc->sc_opmode = ic->ic_opmode;
594	/* override default methods */
595	ic->ic_node_alloc = ath_node_alloc;
596	sc->sc_node_free = ic->ic_node_free;
597	ic->ic_node_free = ath_node_free;
598	ic->ic_node_getrssi = ath_node_getrssi;
599	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
600	ic->ic_recv_mgmt = ath_recv_mgmt;
601	sc->sc_newstate = ic->ic_newstate;
602	ic->ic_newstate = ath_newstate;
603	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
604	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
605	ic->ic_crypto.cs_key_delete = ath_key_delete;
606	ic->ic_crypto.cs_key_set = ath_key_set;
607	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
608	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
609	/* complete initialization */
610	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
611
612	ath_bpfattach(sc);
613	/*
614	 * Setup dynamic sysctl's now that country code and
615	 * regdomain are available from the hal.
616	 */
617	ath_sysctlattach(sc);
618
619	if (bootverbose)
620		ieee80211_announce(ic);
621	ath_announce(sc);
622	return 0;
623bad2:
624	ath_tx_cleanup(sc);
625	ath_desc_free(sc);
626bad:
627	if (ah)
628		ath_hal_detach(ah);
629	if (ifp != NULL)
630		if_free(ifp);
631	sc->sc_invalid = 1;
632	return error;
633}
634
635int
636ath_detach(struct ath_softc *sc)
637{
638	struct ifnet *ifp = sc->sc_ifp;
639
640	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
641		__func__, ifp->if_flags);
642
643	ath_stop(ifp);
644	bpfdetach(ifp);
645	/*
646	 * NB: the order of these is important:
647	 * o call the 802.11 layer before detaching the hal to
648	 *   insure callbacks into the driver to delete global
649	 *   key cache entries can be handled
650	 * o reclaim the tx queue data structures after calling
651	 *   the 802.11 layer as we'll get called back to reclaim
652	 *   node state and potentially want to use them
653	 * o to cleanup the tx queues the hal is called, so detach
654	 *   it last
655	 * Other than that, it's straightforward...
656	 */
657	ieee80211_ifdetach(&sc->sc_ic);
658#ifdef ATH_TX99_DIAG
659	if (sc->sc_tx99 != NULL)
660		sc->sc_tx99->detach(sc->sc_tx99);
661#endif
662	taskqueue_free(sc->sc_tq);
663	ath_rate_detach(sc->sc_rc);
664	ath_desc_free(sc);
665	ath_tx_cleanup(sc);
666	ath_hal_detach(sc->sc_ah);
667	if_free(ifp);
668
669	return 0;
670}
671
672void
673ath_suspend(struct ath_softc *sc)
674{
675	struct ifnet *ifp = sc->sc_ifp;
676
677	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
678		__func__, ifp->if_flags);
679
680	ath_stop(ifp);
681}
682
683void
684ath_resume(struct ath_softc *sc)
685{
686	struct ifnet *ifp = sc->sc_ifp;
687
688	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
689		__func__, ifp->if_flags);
690
691	if (ifp->if_flags & IFF_UP) {
692		ath_init(sc);
693		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
694			ath_start(ifp);
695	}
696	if (sc->sc_softled) {
697		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
698		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
699	}
700}
701
702void
703ath_shutdown(struct ath_softc *sc)
704{
705	struct ifnet *ifp = sc->sc_ifp;
706
707	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
708		__func__, ifp->if_flags);
709
710	ath_stop(ifp);
711}
712
713/*
714 * Interrupt handler.  Most of the actual processing is deferred.
715 */
716void
717ath_intr(void *arg)
718{
719	struct ath_softc *sc = arg;
720	struct ifnet *ifp = sc->sc_ifp;
721	struct ath_hal *ah = sc->sc_ah;
722	HAL_INT status;
723
724	if (sc->sc_invalid) {
725		/*
726		 * The hardware is not ready/present, don't touch anything.
727		 * Note this can happen early on if the IRQ is shared.
728		 */
729		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
730		return;
731	}
732	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
733		return;
734	if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags &
735	    IFF_DRV_RUNNING))) {
736		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
737			__func__, ifp->if_flags);
738		ath_hal_getisr(ah, &status);	/* clear ISR */
739		ath_hal_intrset(ah, 0);		/* disable further intr's */
740		return;
741	}
742	/*
743	 * Figure out the reason(s) for the interrupt.  Note
744	 * that the hal returns a pseudo-ISR that may include
745	 * bits we haven't explicitly enabled so we mask the
746	 * value to insure we only process bits we requested.
747	 */
748	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
749	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
750	status &= sc->sc_imask;			/* discard unasked for bits */
751	if (status & HAL_INT_FATAL) {
752		sc->sc_stats.ast_hardware++;
753		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
754		ath_fatal_proc(sc, 0);
755	} else if (status & HAL_INT_RXORN) {
756		sc->sc_stats.ast_rxorn++;
757		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
758		taskqueue_enqueue(sc->sc_tq, &sc->sc_rxorntask);
759	} else {
760		if (status & HAL_INT_SWBA) {
761			/*
762			 * Software beacon alert--time to send a beacon.
763			 * Handle beacon transmission directly; deferring
764			 * this is too slow to meet timing constraints
765			 * under load.
766			 */
767			ath_beacon_proc(sc, 0);
768		}
769		if (status & HAL_INT_RXEOL) {
770			/*
771			 * NB: the hardware should re-read the link when
772			 *     RXE bit is written, but it doesn't work at
773			 *     least on older hardware revs.
774			 */
775			sc->sc_stats.ast_rxeol++;
776			sc->sc_rxlink = NULL;
777		}
778		if (status & HAL_INT_TXURN) {
779			sc->sc_stats.ast_txurn++;
780			/* bump tx trigger level */
781			ath_hal_updatetxtriglevel(ah, AH_TRUE);
782		}
783		if (status & HAL_INT_RX)
784			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
785		if (status & HAL_INT_TX)
786			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
787		if (status & HAL_INT_BMISS) {
788			sc->sc_stats.ast_bmiss++;
789			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
790		}
791		if (status & HAL_INT_MIB) {
792			sc->sc_stats.ast_mib++;
793			/*
794			 * Disable interrupts until we service the MIB
795			 * interrupt; otherwise it will continue to fire.
796			 */
797			ath_hal_intrset(ah, 0);
798			/*
799			 * Let the hal handle the event.  We assume it will
800			 * clear whatever condition caused the interrupt.
801			 */
802			ath_hal_mibevent(ah, &sc->sc_halstats);
803			ath_hal_intrset(ah, sc->sc_imask);
804		}
805	}
806}
807
808static void
809ath_fatal_proc(void *arg, int pending)
810{
811	struct ath_softc *sc = arg;
812	struct ifnet *ifp = sc->sc_ifp;
813	u_int32_t *state;
814	u_int32_t len;
815
816	if_printf(ifp, "hardware error; resetting\n");
817	/*
818	 * Fatal errors are unrecoverable.  Typically these
819	 * are caused by DMA errors.  Collect h/w state from
820	 * the hal so we can diagnose what's going on.
821	 */
822	if (ath_hal_getfatalstate(sc->sc_ah, &state, &len)) {
823		KASSERT(len >= 6*sizeof(u_int32_t), ("len %u bytes", len));
824		if_printf(ifp, "0x%08x 0x%08x 0x%08x, 0x%08x 0x%08x 0x%08x\n",
825		    state[0], state[1] , state[2], state[3],
826		    state[4], state[5]);
827	}
828	ath_reset(ifp);
829}
830
831static void
832ath_rxorn_proc(void *arg, int pending)
833{
834	struct ath_softc *sc = arg;
835	struct ifnet *ifp = sc->sc_ifp;
836
837	if_printf(ifp, "rx FIFO overrun; resetting\n");
838	ath_reset(ifp);
839}
840
841static void
842ath_bmiss_proc(void *arg, int pending)
843{
844	struct ath_softc *sc = arg;
845	struct ieee80211com *ic = &sc->sc_ic;
846
847	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
848	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
849		("unexpect operating mode %u", ic->ic_opmode));
850	if (ic->ic_state == IEEE80211_S_RUN) {
851		u_int64_t lastrx = sc->sc_lastrx;
852		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
853		u_int bmisstimeout =
854			ic->ic_bmissthreshold * ic->ic_bss->ni_intval * 1024;
855
856		DPRINTF(sc, ATH_DEBUG_BEACON,
857		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
858		    __func__, (unsigned long long) tsf,
859		    (unsigned long long)(tsf - lastrx),
860		    (unsigned long long) lastrx, bmisstimeout);
861		/*
862		 * Workaround phantom bmiss interrupts by sanity-checking
863		 * the time of our last rx'd frame.  If it is within the
864		 * beacon miss interval then ignore the interrupt.  If it's
865		 * truly a bmiss we'll get another interrupt soon and that'll
866		 * be dispatched up for processing.
867		 */
868		if (tsf - lastrx > bmisstimeout) {
869			NET_LOCK_GIANT();
870			ieee80211_beacon_miss(ic);
871			NET_UNLOCK_GIANT();
872		} else
873			sc->sc_stats.ast_bmiss_phantom++;
874	}
875}
876
877static void
878ath_radar_proc(void *arg, int pending)
879{
880	struct ath_softc *sc = arg;
881	struct ifnet *ifp = sc->sc_ifp;
882	struct ath_hal *ah = sc->sc_ah;
883	HAL_CHANNEL hchan;
884
885	if (ath_hal_procdfs(ah, &hchan)) {
886		if_printf(ifp, "radar detected on channel %u/0x%x/0x%x\n",
887			hchan.channel, hchan.channelFlags, hchan.privFlags);
888		/*
889		 * Initiate channel change.
890		 */
891		/* XXX not yet */
892	}
893}
894
895static u_int
896ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
897{
898#define	N(a)	(sizeof(a) / sizeof(a[0]))
899	static const u_int modeflags[] = {
900		0,			/* IEEE80211_MODE_AUTO */
901		CHANNEL_A,		/* IEEE80211_MODE_11A */
902		CHANNEL_B,		/* IEEE80211_MODE_11B */
903		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
904		0,			/* IEEE80211_MODE_FH */
905		CHANNEL_ST,		/* IEEE80211_MODE_TURBO_A */
906		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
907	};
908	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
909
910	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
911	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
912	return modeflags[mode];
913#undef N
914}
915
916static void
917ath_init(void *arg)
918{
919	struct ath_softc *sc = (struct ath_softc *) arg;
920	struct ieee80211com *ic = &sc->sc_ic;
921	struct ifnet *ifp = sc->sc_ifp;
922	struct ath_hal *ah = sc->sc_ah;
923	HAL_STATUS status;
924
925	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
926		__func__, ifp->if_flags);
927
928	ATH_LOCK(sc);
929	/*
930	 * Stop anything previously setup.  This is safe
931	 * whether this is the first time through or not.
932	 */
933	ath_stop_locked(ifp);
934
935	/*
936	 * The basic interface to setting the hardware in a good
937	 * state is ``reset''.  On return the hardware is known to
938	 * be powered up and with interrupts disabled.  This must
939	 * be followed by initialization of the appropriate bits
940	 * and then setup of the interrupt mask.
941	 */
942	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
943	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
944	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
945		if_printf(ifp, "unable to reset hardware; hal status %u\n",
946			status);
947		goto done;
948	}
949
950	/*
951	 * This is needed only to setup initial state
952	 * but it's best done after a reset.
953	 */
954	ath_update_txpow(sc);
955	/*
956	 * Likewise this is set during reset so update
957	 * state cached in the driver.
958	 */
959	sc->sc_diversity = ath_hal_getdiversity(ah);
960	sc->sc_calinterval = 1;
961	sc->sc_caltries = 0;
962
963	/*
964	 * Setup the hardware after reset: the key cache
965	 * is filled as needed and the receive engine is
966	 * set going.  Frame transmit is handled entirely
967	 * in the frame output path; there's nothing to do
968	 * here except setup the interrupt mask.
969	 */
970	if (ath_startrecv(sc) != 0) {
971		if_printf(ifp, "unable to start recv logic\n");
972		goto done;
973	}
974
975	/*
976	 * Enable interrupts.
977	 */
978	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
979		  | HAL_INT_RXEOL | HAL_INT_RXORN
980		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
981	/*
982	 * Enable MIB interrupts when there are hardware phy counters.
983	 * Note we only do this (at the moment) for station mode.
984	 */
985	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
986		sc->sc_imask |= HAL_INT_MIB;
987	ath_hal_intrset(ah, sc->sc_imask);
988
989	ifp->if_drv_flags |= IFF_DRV_RUNNING;
990	ic->ic_state = IEEE80211_S_INIT;
991
992	/*
993	 * The hardware should be ready to go now so it's safe
994	 * to kick the 802.11 state machine as it's likely to
995	 * immediately call back to us to send mgmt frames.
996	 */
997	ath_chan_change(sc, ic->ic_curchan);
998#ifdef ATH_TX99_DIAG
999	if (sc->sc_tx99 != NULL)
1000		sc->sc_tx99->start(sc->sc_tx99);
1001	else
1002#endif
1003	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
1004		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
1005			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
1006	} else
1007		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
1008done:
1009	ATH_UNLOCK(sc);
1010}
1011
1012static void
1013ath_stop_locked(struct ifnet *ifp)
1014{
1015	struct ath_softc *sc = ifp->if_softc;
1016	struct ieee80211com *ic = &sc->sc_ic;
1017	struct ath_hal *ah = sc->sc_ah;
1018
1019	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
1020		__func__, sc->sc_invalid, ifp->if_flags);
1021
1022	ATH_LOCK_ASSERT(sc);
1023	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
1024		/*
1025		 * Shutdown the hardware and driver:
1026		 *    reset 802.11 state machine
1027		 *    turn off timers
1028		 *    disable interrupts
1029		 *    turn off the radio
1030		 *    clear transmit machinery
1031		 *    clear receive machinery
1032		 *    drain and release tx queues
1033		 *    reclaim beacon resources
1034		 *    power down hardware
1035		 *
1036		 * Note that some of this work is not possible if the
1037		 * hardware is gone (invalid).
1038		 */
1039#ifdef ATH_TX99_DIAG
1040		if (sc->sc_tx99 != NULL)
1041			sc->sc_tx99->stop(sc->sc_tx99);
1042#endif
1043		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1044		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1045		ifp->if_timer = 0;
1046		if (!sc->sc_invalid) {
1047			if (sc->sc_softled) {
1048				callout_stop(&sc->sc_ledtimer);
1049				ath_hal_gpioset(ah, sc->sc_ledpin,
1050					!sc->sc_ledon);
1051				sc->sc_blinking = 0;
1052			}
1053			ath_hal_intrset(ah, 0);
1054		}
1055		ath_draintxq(sc);
1056		if (!sc->sc_invalid) {
1057			ath_stoprecv(sc);
1058			ath_hal_phydisable(ah);
1059		} else
1060			sc->sc_rxlink = NULL;
1061		IFQ_DRV_PURGE(&ifp->if_snd);
1062		ath_beacon_free(sc);
1063	}
1064}
1065
1066static void
1067ath_stop(struct ifnet *ifp)
1068{
1069	struct ath_softc *sc = ifp->if_softc;
1070
1071	ATH_LOCK(sc);
1072	ath_stop_locked(ifp);
1073	if (!sc->sc_invalid) {
1074		/*
1075		 * Set the chip in full sleep mode.  Note that we are
1076		 * careful to do this only when bringing the interface
1077		 * completely to a stop.  When the chip is in this state
1078		 * it must be carefully woken up or references to
1079		 * registers in the PCI clock domain may freeze the bus
1080		 * (and system).  This varies by chip and is mostly an
1081		 * issue with newer parts that go to sleep more quickly.
1082		 */
1083		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP);
1084	}
1085	ATH_UNLOCK(sc);
1086}
1087
1088/*
1089 * Reset the hardware w/o losing operational state.  This is
1090 * basically a more efficient way of doing ath_stop, ath_init,
1091 * followed by state transitions to the current 802.11
1092 * operational state.  Used to recover from various errors and
1093 * to reset or reload hardware state.
1094 */
1095static int
1096ath_reset(struct ifnet *ifp)
1097{
1098	struct ath_softc *sc = ifp->if_softc;
1099	struct ieee80211com *ic = &sc->sc_ic;
1100	struct ath_hal *ah = sc->sc_ah;
1101	struct ieee80211_channel *c;
1102	HAL_STATUS status;
1103
1104	/*
1105	 * Convert to a HAL channel description with the flags
1106	 * constrained to reflect the current operating mode.
1107	 */
1108	c = ic->ic_curchan;
1109	sc->sc_curchan.channel = c->ic_freq;
1110	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1111
1112	ath_hal_intrset(ah, 0);		/* disable interrupts */
1113	ath_draintxq(sc);		/* stop xmit side */
1114	ath_stoprecv(sc);		/* stop recv side */
1115	/* NB: indicate channel change so we do a full reset */
1116	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_TRUE, &status))
1117		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1118			__func__, status);
1119	ath_update_txpow(sc);		/* update tx power state */
1120	sc->sc_diversity = ath_hal_getdiversity(ah);
1121	sc->sc_calinterval = 1;
1122	sc->sc_caltries = 0;
1123	/*
1124	 * We may be doing a reset in response to an ioctl
1125	 * that changes the channel so update any state that
1126	 * might change as a result.
1127	 */
1128	ath_chan_change(sc, c);
1129	if (ath_startrecv(sc) != 0)	/* restart recv */
1130		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1131	if (ic->ic_state == IEEE80211_S_RUN)
1132		ath_beacon_config(sc);	/* restart beacons */
1133	ath_hal_intrset(ah, sc->sc_imask);
1134
1135	ath_start(ifp);			/* restart xmit */
1136	return 0;
1137}
1138
1139static void
1140ath_start(struct ifnet *ifp)
1141{
1142	struct ath_softc *sc = ifp->if_softc;
1143	struct ath_hal *ah = sc->sc_ah;
1144	struct ieee80211com *ic = &sc->sc_ic;
1145	struct ieee80211_node *ni;
1146	struct ath_buf *bf;
1147	struct mbuf *m;
1148	struct ieee80211_frame *wh;
1149	struct ether_header *eh;
1150
1151	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1152		return;
1153	for (;;) {
1154		/*
1155		 * Grab a TX buffer and associated resources.
1156		 */
1157		ATH_TXBUF_LOCK(sc);
1158		bf = STAILQ_FIRST(&sc->sc_txbuf);
1159		if (bf != NULL)
1160			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1161		ATH_TXBUF_UNLOCK(sc);
1162		if (bf == NULL) {
1163			DPRINTF(sc, ATH_DEBUG_XMIT, "%s: out of xmit buffers\n",
1164				__func__);
1165			sc->sc_stats.ast_tx_qstop++;
1166			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1167			break;
1168		}
1169		/*
1170		 * Poll the management queue for frames; they
1171		 * have priority over normal data frames.
1172		 */
1173		IF_DEQUEUE(&ic->ic_mgtq, m);
1174		if (m == NULL) {
1175			/*
1176			 * No data frames go out unless we're associated.
1177			 */
1178			if (ic->ic_state != IEEE80211_S_RUN) {
1179				DPRINTF(sc, ATH_DEBUG_XMIT,
1180				    "%s: discard data packet, state %s\n",
1181				    __func__,
1182				    ieee80211_state_name[ic->ic_state]);
1183				sc->sc_stats.ast_tx_discard++;
1184				ATH_TXBUF_LOCK(sc);
1185				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1186				ATH_TXBUF_UNLOCK(sc);
1187				break;
1188			}
1189			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1190			if (m == NULL) {
1191				ATH_TXBUF_LOCK(sc);
1192				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1193				ATH_TXBUF_UNLOCK(sc);
1194				break;
1195			}
1196			/*
1197			 * Find the node for the destination so we can do
1198			 * things like power save and fast frames aggregation.
1199			 */
1200			if (m->m_len < sizeof(struct ether_header) &&
1201			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1202				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1203				ni = NULL;
1204				goto bad;
1205			}
1206			eh = mtod(m, struct ether_header *);
1207			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1208			if (ni == NULL) {
1209				/* NB: ieee80211_find_txnode does stat+msg */
1210				m_freem(m);
1211				goto bad;
1212			}
1213			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1214			    (m->m_flags & M_PWR_SAV) == 0) {
1215				/*
1216				 * Station in power save mode; pass the frame
1217				 * to the 802.11 layer and continue.  We'll get
1218				 * the frame back when the time is right.
1219				 */
1220				ieee80211_pwrsave(ic, ni, m);
1221				goto reclaim;
1222			}
1223			/* calculate priority so we can find the tx queue */
1224			if (ieee80211_classify(ic, m, ni)) {
1225				DPRINTF(sc, ATH_DEBUG_XMIT,
1226					"%s: discard, classification failure\n",
1227					__func__);
1228				m_freem(m);
1229				goto bad;
1230			}
1231			ifp->if_opackets++;
1232			BPF_MTAP(ifp, m);
1233			/*
1234			 * Encapsulate the packet in prep for transmission.
1235			 */
1236			m = ieee80211_encap(ic, m, ni);
1237			if (m == NULL) {
1238				DPRINTF(sc, ATH_DEBUG_XMIT,
1239					"%s: encapsulation failure\n",
1240					__func__);
1241				sc->sc_stats.ast_tx_encap++;
1242				goto bad;
1243			}
1244		} else {
1245			/*
1246			 * Hack!  The referenced node pointer is in the
1247			 * rcvif field of the packet header.  This is
1248			 * placed there by ieee80211_mgmt_output because
1249			 * we need to hold the reference with the frame
1250			 * and there's no other way (other than packet
1251			 * tags which we consider too expensive to use)
1252			 * to pass it along.
1253			 */
1254			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1255			m->m_pkthdr.rcvif = NULL;
1256
1257			wh = mtod(m, struct ieee80211_frame *);
1258			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1259			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1260				/* fill time stamp */
1261				u_int64_t tsf;
1262				u_int32_t *tstamp;
1263
1264				tsf = ath_hal_gettsf64(ah);
1265				/* XXX: adjust 100us delay to xmit */
1266				tsf += 100;
1267				tstamp = (u_int32_t *)&wh[1];
1268				tstamp[0] = htole32(tsf & 0xffffffff);
1269				tstamp[1] = htole32(tsf >> 32);
1270			}
1271			sc->sc_stats.ast_tx_mgmt++;
1272		}
1273
1274		if (ath_tx_start(sc, ni, bf, m)) {
1275	bad:
1276			ifp->if_oerrors++;
1277	reclaim:
1278			ATH_TXBUF_LOCK(sc);
1279			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1280			ATH_TXBUF_UNLOCK(sc);
1281			if (ni != NULL)
1282				ieee80211_free_node(ni);
1283			continue;
1284		}
1285
1286		sc->sc_tx_timer = 5;
1287		ifp->if_timer = 1;
1288	}
1289}
1290
1291static int
1292ath_media_change(struct ifnet *ifp)
1293{
1294#define	IS_UP(ifp) \
1295	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1296	int error;
1297
1298	error = ieee80211_media_change(ifp);
1299	if (error == ENETRESET) {
1300		struct ath_softc *sc = ifp->if_softc;
1301		struct ieee80211com *ic = &sc->sc_ic;
1302
1303		if (ic->ic_opmode == IEEE80211_M_AHDEMO) {
1304			/*
1305			 * Adhoc demo mode is just ibss mode w/o beacons
1306			 * (mostly).  The hal knows nothing about it;
1307			 * tell it we're operating in ibss mode.
1308			 */
1309			sc->sc_opmode = HAL_M_IBSS;
1310		} else
1311			sc->sc_opmode = ic->ic_opmode;
1312		if (IS_UP(ifp))
1313			ath_init(ifp->if_softc);	/* XXX lose error */
1314		error = 0;
1315	}
1316	return error;
1317#undef IS_UP
1318}
1319
1320#ifdef ATH_DEBUG
1321static void
1322ath_keyprint(const char *tag, u_int ix,
1323	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1324{
1325	static const char *ciphers[] = {
1326		"WEP",
1327		"AES-OCB",
1328		"AES-CCM",
1329		"CKIP",
1330		"TKIP",
1331		"CLR",
1332	};
1333	int i, n;
1334
1335	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1336	for (i = 0, n = hk->kv_len; i < n; i++)
1337		printf("%02x", hk->kv_val[i]);
1338	printf(" mac %s", ether_sprintf(mac));
1339	if (hk->kv_type == HAL_CIPHER_TKIP) {
1340		printf(" mic ");
1341		for (i = 0; i < sizeof(hk->kv_mic); i++)
1342			printf("%02x", hk->kv_mic[i]);
1343	}
1344	printf("\n");
1345}
1346#endif
1347
1348/*
1349 * Set a TKIP key into the hardware.  This handles the
1350 * potential distribution of key state to multiple key
1351 * cache slots for TKIP.
1352 */
1353static int
1354ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1355	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1356{
1357#define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1358	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1359	struct ath_hal *ah = sc->sc_ah;
1360
1361	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1362		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1363	KASSERT(sc->sc_splitmic, ("key cache !split"));
1364	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1365		/*
1366		 * TX key goes at first index, RX key at the rx index.
1367		 * The hal handles the MIC keys at index+64.
1368		 */
1369		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1370		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1371		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1372			return 0;
1373
1374		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1375		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1376		/* XXX delete tx key on failure? */
1377		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1378	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1379		/*
1380		 * TX/RX key goes at first index.
1381		 * The hal handles the MIC keys are index+64.
1382		 */
1383		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1384			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1385		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1386		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1387	}
1388	return 0;
1389#undef IEEE80211_KEY_XR
1390}
1391
1392/*
1393 * Set a net80211 key into the hardware.  This handles the
1394 * potential distribution of key state to multiple key
1395 * cache slots for TKIP with hardware MIC support.
1396 */
1397static int
1398ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1399	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1400	struct ieee80211_node *bss)
1401{
1402#define	N(a)	(sizeof(a)/sizeof(a[0]))
1403	static const u_int8_t ciphermap[] = {
1404		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1405		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1406		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1407		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1408		(u_int8_t) -1,		/* 4 is not allocated */
1409		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1410		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1411	};
1412	struct ath_hal *ah = sc->sc_ah;
1413	const struct ieee80211_cipher *cip = k->wk_cipher;
1414	u_int8_t gmac[IEEE80211_ADDR_LEN];
1415	const u_int8_t *mac;
1416	HAL_KEYVAL hk;
1417
1418	memset(&hk, 0, sizeof(hk));
1419	/*
1420	 * Software crypto uses a "clear key" so non-crypto
1421	 * state kept in the key cache are maintained and
1422	 * so that rx frames have an entry to match.
1423	 */
1424	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1425		KASSERT(cip->ic_cipher < N(ciphermap),
1426			("invalid cipher type %u", cip->ic_cipher));
1427		hk.kv_type = ciphermap[cip->ic_cipher];
1428		hk.kv_len = k->wk_keylen;
1429		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1430	} else
1431		hk.kv_type = HAL_CIPHER_CLR;
1432
1433	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1434		/*
1435		 * Group keys on hardware that supports multicast frame
1436		 * key search use a mac that is the sender's address with
1437		 * the high bit set instead of the app-specified address.
1438		 */
1439		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1440		gmac[0] |= 0x80;
1441		mac = gmac;
1442	} else
1443		mac = mac0;
1444
1445	if (hk.kv_type == HAL_CIPHER_TKIP &&
1446	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1447	    sc->sc_splitmic) {
1448		return ath_keyset_tkip(sc, k, &hk, mac);
1449	} else {
1450		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1451		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1452	}
1453#undef N
1454}
1455
1456/*
1457 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1458 * each key, one for decrypt/encrypt and the other for the MIC.
1459 */
1460static u_int16_t
1461key_alloc_2pair(struct ath_softc *sc,
1462	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1463{
1464#define	N(a)	(sizeof(a)/sizeof(a[0]))
1465	u_int i, keyix;
1466
1467	KASSERT(sc->sc_splitmic, ("key cache !split"));
1468	/* XXX could optimize */
1469	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1470		u_int8_t b = sc->sc_keymap[i];
1471		if (b != 0xff) {
1472			/*
1473			 * One or more slots in this byte are free.
1474			 */
1475			keyix = i*NBBY;
1476			while (b & 1) {
1477		again:
1478				keyix++;
1479				b >>= 1;
1480			}
1481			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1482			if (isset(sc->sc_keymap, keyix+32) ||
1483			    isset(sc->sc_keymap, keyix+64) ||
1484			    isset(sc->sc_keymap, keyix+32+64)) {
1485				/* full pair unavailable */
1486				/* XXX statistic */
1487				if (keyix == (i+1)*NBBY) {
1488					/* no slots were appropriate, advance */
1489					continue;
1490				}
1491				goto again;
1492			}
1493			setbit(sc->sc_keymap, keyix);
1494			setbit(sc->sc_keymap, keyix+64);
1495			setbit(sc->sc_keymap, keyix+32);
1496			setbit(sc->sc_keymap, keyix+32+64);
1497			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1498				"%s: key pair %u,%u %u,%u\n",
1499				__func__, keyix, keyix+64,
1500				keyix+32, keyix+32+64);
1501			*txkeyix = keyix;
1502			*rxkeyix = keyix+32;
1503			return 1;
1504		}
1505	}
1506	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1507	return 0;
1508#undef N
1509}
1510
1511/*
1512 * Allocate a single key cache slot.
1513 */
1514static int
1515key_alloc_single(struct ath_softc *sc,
1516	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1517{
1518#define	N(a)	(sizeof(a)/sizeof(a[0]))
1519	u_int i, keyix;
1520
1521	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1522	for (i = 0; i < N(sc->sc_keymap); i++) {
1523		u_int8_t b = sc->sc_keymap[i];
1524		if (b != 0xff) {
1525			/*
1526			 * One or more slots are free.
1527			 */
1528			keyix = i*NBBY;
1529			while (b & 1)
1530				keyix++, b >>= 1;
1531			setbit(sc->sc_keymap, keyix);
1532			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1533				__func__, keyix);
1534			*txkeyix = *rxkeyix = keyix;
1535			return 1;
1536		}
1537	}
1538	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1539	return 0;
1540#undef N
1541}
1542
1543/*
1544 * Allocate one or more key cache slots for a uniacst key.  The
1545 * key itself is needed only to identify the cipher.  For hardware
1546 * TKIP with split cipher+MIC keys we allocate two key cache slot
1547 * pairs so that we can setup separate TX and RX MIC keys.  Note
1548 * that the MIC key for a TKIP key at slot i is assumed by the
1549 * hardware to be at slot i+64.  This limits TKIP keys to the first
1550 * 64 entries.
1551 */
1552static int
1553ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1554	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1555{
1556	struct ath_softc *sc = ic->ic_ifp->if_softc;
1557
1558	/*
1559	 * Group key allocation must be handled specially for
1560	 * parts that do not support multicast key cache search
1561	 * functionality.  For those parts the key id must match
1562	 * the h/w key index so lookups find the right key.  On
1563	 * parts w/ the key search facility we install the sender's
1564	 * mac address (with the high bit set) and let the hardware
1565	 * find the key w/o using the key id.  This is preferred as
1566	 * it permits us to support multiple users for adhoc and/or
1567	 * multi-station operation.
1568	 */
1569	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1570		if (!(&ic->ic_nw_keys[0] <= k &&
1571		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1572			/* should not happen */
1573			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1574				"%s: bogus group key\n", __func__);
1575			return 0;
1576		}
1577		/*
1578		 * XXX we pre-allocate the global keys so
1579		 * have no way to check if they've already been allocated.
1580		 */
1581		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1582		return 1;
1583	}
1584
1585	/*
1586	 * We allocate two pair for TKIP when using the h/w to do
1587	 * the MIC.  For everything else, including software crypto,
1588	 * we allocate a single entry.  Note that s/w crypto requires
1589	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1590	 * not support pass-through cache entries and we map all
1591	 * those requests to slot 0.
1592	 */
1593	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1594		return key_alloc_single(sc, keyix, rxkeyix);
1595	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1596	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1597		return key_alloc_2pair(sc, keyix, rxkeyix);
1598	} else {
1599		return key_alloc_single(sc, keyix, rxkeyix);
1600	}
1601}
1602
1603/*
1604 * Delete an entry in the key cache allocated by ath_key_alloc.
1605 */
1606static int
1607ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1608{
1609	struct ath_softc *sc = ic->ic_ifp->if_softc;
1610	struct ath_hal *ah = sc->sc_ah;
1611	const struct ieee80211_cipher *cip = k->wk_cipher;
1612	u_int keyix = k->wk_keyix;
1613
1614	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1615
1616	ath_hal_keyreset(ah, keyix);
1617	/*
1618	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1619	 */
1620	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1621	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1622		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1623	if (keyix >= IEEE80211_WEP_NKID) {
1624		/*
1625		 * Don't touch keymap entries for global keys so
1626		 * they are never considered for dynamic allocation.
1627		 */
1628		clrbit(sc->sc_keymap, keyix);
1629		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1630		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1631		    sc->sc_splitmic) {
1632			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1633			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1634			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1635		}
1636	}
1637	return 1;
1638}
1639
1640/*
1641 * Set the key cache contents for the specified key.  Key cache
1642 * slot(s) must already have been allocated by ath_key_alloc.
1643 */
1644static int
1645ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1646	const u_int8_t mac[IEEE80211_ADDR_LEN])
1647{
1648	struct ath_softc *sc = ic->ic_ifp->if_softc;
1649
1650	return ath_keyset(sc, k, mac, ic->ic_bss);
1651}
1652
1653/*
1654 * Block/unblock tx+rx processing while a key change is done.
1655 * We assume the caller serializes key management operations
1656 * so we only need to worry about synchronization with other
1657 * uses that originate in the driver.
1658 */
1659static void
1660ath_key_update_begin(struct ieee80211com *ic)
1661{
1662	struct ifnet *ifp = ic->ic_ifp;
1663	struct ath_softc *sc = ifp->if_softc;
1664
1665	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1666#if 0
1667	tasklet_disable(&sc->sc_rxtq);
1668#endif
1669	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1670}
1671
1672static void
1673ath_key_update_end(struct ieee80211com *ic)
1674{
1675	struct ifnet *ifp = ic->ic_ifp;
1676	struct ath_softc *sc = ifp->if_softc;
1677
1678	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1679	IF_UNLOCK(&ifp->if_snd);
1680#if 0
1681	tasklet_enable(&sc->sc_rxtq);
1682#endif
1683}
1684
1685/*
1686 * Calculate the receive filter according to the
1687 * operating mode and state:
1688 *
1689 * o always accept unicast, broadcast, and multicast traffic
1690 * o maintain current state of phy error reception (the hal
1691 *   may enable phy error frames for noise immunity work)
1692 * o probe request frames are accepted only when operating in
1693 *   hostap, adhoc, or monitor modes
1694 * o enable promiscuous mode according to the interface state
1695 * o accept beacons:
1696 *   - when operating in adhoc mode so the 802.11 layer creates
1697 *     node table entries for peers,
1698 *   - when operating in station mode for collecting rssi data when
1699 *     the station is otherwise quiet, or
1700 *   - when scanning
1701 */
1702static u_int32_t
1703ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1704{
1705#define	RX_FILTER_PRESERVE	(HAL_RX_FILTER_PHYERR | HAL_RX_FILTER_PHYRADAR)
1706	struct ieee80211com *ic = &sc->sc_ic;
1707	struct ath_hal *ah = sc->sc_ah;
1708	struct ifnet *ifp = sc->sc_ifp;
1709	u_int32_t rfilt;
1710
1711	rfilt = (ath_hal_getrxfilter(ah) & RX_FILTER_PRESERVE)
1712	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1713	if (ic->ic_opmode != IEEE80211_M_STA)
1714		rfilt |= HAL_RX_FILTER_PROBEREQ;
1715	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1716	    (ifp->if_flags & IFF_PROMISC))
1717		rfilt |= HAL_RX_FILTER_PROM;
1718	if (ic->ic_opmode == IEEE80211_M_STA ||
1719	    ic->ic_opmode == IEEE80211_M_IBSS ||
1720	    state == IEEE80211_S_SCAN)
1721		rfilt |= HAL_RX_FILTER_BEACON;
1722	return rfilt;
1723#undef RX_FILTER_PRESERVE
1724}
1725
1726static void
1727ath_mode_init(struct ath_softc *sc)
1728{
1729	struct ieee80211com *ic = &sc->sc_ic;
1730	struct ath_hal *ah = sc->sc_ah;
1731	struct ifnet *ifp = sc->sc_ifp;
1732	u_int32_t rfilt, mfilt[2], val;
1733	u_int8_t pos;
1734	struct ifmultiaddr *ifma;
1735
1736	/* configure rx filter */
1737	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1738	ath_hal_setrxfilter(ah, rfilt);
1739
1740	/* configure operational mode */
1741	ath_hal_setopmode(ah);
1742
1743	/*
1744	 * Handle any link-level address change.  Note that we only
1745	 * need to force ic_myaddr; any other addresses are handled
1746	 * as a byproduct of the ifnet code marking the interface
1747	 * down then up.
1748	 *
1749	 * XXX should get from lladdr instead of arpcom but that's more work
1750	 */
1751	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1752	ath_hal_setmac(ah, ic->ic_myaddr);
1753
1754	/* calculate and install multicast filter */
1755	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1756		mfilt[0] = mfilt[1] = 0;
1757		IF_ADDR_LOCK(ifp);
1758		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1759			caddr_t dl;
1760
1761			/* calculate XOR of eight 6bit values */
1762			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1763			val = LE_READ_4(dl + 0);
1764			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1765			val = LE_READ_4(dl + 3);
1766			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1767			pos &= 0x3f;
1768			mfilt[pos / 32] |= (1 << (pos % 32));
1769		}
1770		IF_ADDR_UNLOCK(ifp);
1771	} else {
1772		mfilt[0] = mfilt[1] = ~0;
1773	}
1774	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1775	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1776		__func__, rfilt, mfilt[0], mfilt[1]);
1777}
1778
1779/*
1780 * Set the slot time based on the current setting.
1781 */
1782static void
1783ath_setslottime(struct ath_softc *sc)
1784{
1785	struct ieee80211com *ic = &sc->sc_ic;
1786	struct ath_hal *ah = sc->sc_ah;
1787
1788	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1789		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1790	else
1791		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1792	sc->sc_updateslot = OK;
1793}
1794
1795/*
1796 * Callback from the 802.11 layer to update the
1797 * slot time based on the current setting.
1798 */
1799static void
1800ath_updateslot(struct ifnet *ifp)
1801{
1802	struct ath_softc *sc = ifp->if_softc;
1803	struct ieee80211com *ic = &sc->sc_ic;
1804
1805	/*
1806	 * When not coordinating the BSS, change the hardware
1807	 * immediately.  For other operation we defer the change
1808	 * until beacon updates have propagated to the stations.
1809	 */
1810	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1811		sc->sc_updateslot = UPDATE;
1812	else
1813		ath_setslottime(sc);
1814}
1815
1816/*
1817 * Setup a h/w transmit queue for beacons.
1818 */
1819static int
1820ath_beaconq_setup(struct ath_hal *ah)
1821{
1822	HAL_TXQ_INFO qi;
1823
1824	memset(&qi, 0, sizeof(qi));
1825	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1826	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1827	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1828	/* NB: for dynamic turbo, don't enable any other interrupts */
1829	qi.tqi_qflags = HAL_TXQ_TXDESCINT_ENABLE;
1830	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1831}
1832
1833/*
1834 * Setup the transmit queue parameters for the beacon queue.
1835 */
1836static int
1837ath_beaconq_config(struct ath_softc *sc)
1838{
1839#define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
1840	struct ieee80211com *ic = &sc->sc_ic;
1841	struct ath_hal *ah = sc->sc_ah;
1842	HAL_TXQ_INFO qi;
1843
1844	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1845	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1846		/*
1847		 * Always burst out beacon and CAB traffic.
1848		 */
1849		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1850		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1851		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1852	} else {
1853		struct wmeParams *wmep =
1854			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1855		/*
1856		 * Adhoc mode; important thing is to use 2x cwmin.
1857		 */
1858		qi.tqi_aifs = wmep->wmep_aifsn;
1859		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1860		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1861	}
1862
1863	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1864		device_printf(sc->sc_dev, "unable to update parameters for "
1865			"beacon hardware queue!\n");
1866		return 0;
1867	} else {
1868		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1869		return 1;
1870	}
1871#undef ATH_EXPONENT_TO_VALUE
1872}
1873
1874/*
1875 * Allocate and setup an initial beacon frame.
1876 */
1877static int
1878ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1879{
1880	struct ieee80211com *ic = ni->ni_ic;
1881	struct ath_buf *bf;
1882	struct mbuf *m;
1883	int error;
1884
1885	bf = STAILQ_FIRST(&sc->sc_bbuf);
1886	if (bf == NULL) {
1887		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1888		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1889		return ENOMEM;			/* XXX */
1890	}
1891	/*
1892	 * NB: the beacon data buffer must be 32-bit aligned;
1893	 * we assume the mbuf routines will return us something
1894	 * with this alignment (perhaps should assert).
1895	 */
1896	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1897	if (m == NULL) {
1898		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1899			__func__);
1900		sc->sc_stats.ast_be_nombuf++;
1901		return ENOMEM;
1902	}
1903	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1904				     bf->bf_segs, &bf->bf_nseg,
1905				     BUS_DMA_NOWAIT);
1906	if (error == 0) {
1907		bf->bf_m = m;
1908		bf->bf_node = ieee80211_ref_node(ni);
1909	} else {
1910		m_freem(m);
1911	}
1912	return error;
1913}
1914
1915/*
1916 * Setup the beacon frame for transmit.
1917 */
1918static void
1919ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1920{
1921#define	USE_SHPREAMBLE(_ic) \
1922	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1923		== IEEE80211_F_SHPREAMBLE)
1924	struct ieee80211_node *ni = bf->bf_node;
1925	struct ieee80211com *ic = ni->ni_ic;
1926	struct mbuf *m = bf->bf_m;
1927	struct ath_hal *ah = sc->sc_ah;
1928	struct ath_desc *ds;
1929	int flags, antenna;
1930	const HAL_RATE_TABLE *rt;
1931	u_int8_t rix, rate;
1932
1933	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: m %p len %u\n",
1934		__func__, m, m->m_len);
1935
1936	/* setup descriptors */
1937	ds = bf->bf_desc;
1938
1939	flags = HAL_TXDESC_NOACK;
1940	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1941		ds->ds_link = bf->bf_daddr;	/* self-linked */
1942		flags |= HAL_TXDESC_VEOL;
1943		/*
1944		 * Let hardware handle antenna switching.
1945		 */
1946		antenna = sc->sc_txantenna;
1947	} else {
1948		ds->ds_link = 0;
1949		/*
1950		 * Switch antenna every 4 beacons.
1951		 * XXX assumes two antenna
1952		 */
1953		antenna = sc->sc_txantenna != 0 ? sc->sc_txantenna
1954			: (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1955	}
1956
1957	KASSERT(bf->bf_nseg == 1,
1958		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1959	ds->ds_data = bf->bf_segs[0].ds_addr;
1960	/*
1961	 * Calculate rate code.
1962	 * XXX everything at min xmit rate
1963	 */
1964	rix = sc->sc_minrateix;
1965	rt = sc->sc_currates;
1966	rate = rt->info[rix].rateCode;
1967	if (USE_SHPREAMBLE(ic))
1968		rate |= rt->info[rix].shortPreamble;
1969	ath_hal_setuptxdesc(ah, ds
1970		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
1971		, sizeof(struct ieee80211_frame)/* header length */
1972		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1973		, ni->ni_txpower		/* txpower XXX */
1974		, rate, 1			/* series 0 rate/tries */
1975		, HAL_TXKEYIX_INVALID		/* no encryption */
1976		, antenna			/* antenna mode */
1977		, flags				/* no ack, veol for beacons */
1978		, 0				/* rts/cts rate */
1979		, 0				/* rts/cts duration */
1980	);
1981	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1982	ath_hal_filltxdesc(ah, ds
1983		, roundup(m->m_len, 4)		/* buffer length */
1984		, AH_TRUE			/* first segment */
1985		, AH_TRUE			/* last segment */
1986		, ds				/* first descriptor */
1987	);
1988#undef USE_SHPREAMBLE
1989}
1990
1991/*
1992 * Transmit a beacon frame at SWBA.  Dynamic updates to the
1993 * frame contents are done as needed and the slot time is
1994 * also adjusted based on current state.
1995 */
1996static void
1997ath_beacon_proc(void *arg, int pending)
1998{
1999	struct ath_softc *sc = arg;
2000	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
2001	struct ieee80211_node *ni = bf->bf_node;
2002	struct ieee80211com *ic = ni->ni_ic;
2003	struct ath_hal *ah = sc->sc_ah;
2004	struct mbuf *m;
2005	int ncabq, error, otherant;
2006
2007	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
2008		__func__, pending);
2009
2010	if (ic->ic_opmode == IEEE80211_M_STA ||
2011	    ic->ic_opmode == IEEE80211_M_MONITOR ||
2012	    bf == NULL || bf->bf_m == NULL) {
2013		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
2014			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
2015		return;
2016	}
2017	/*
2018	 * Check if the previous beacon has gone out.  If
2019	 * not don't try to post another, skip this period
2020	 * and wait for the next.  Missed beacons indicate
2021	 * a problem and should not occur.  If we miss too
2022	 * many consecutive beacons reset the device.
2023	 */
2024	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
2025		sc->sc_bmisscount++;
2026		DPRINTF(sc, ATH_DEBUG_BEACON,
2027			"%s: missed %u consecutive beacons\n",
2028			__func__, sc->sc_bmisscount);
2029		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
2030			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
2031		return;
2032	}
2033	if (sc->sc_bmisscount != 0) {
2034		DPRINTF(sc, ATH_DEBUG_BEACON,
2035			"%s: resume beacon xmit after %u misses\n",
2036			__func__, sc->sc_bmisscount);
2037		sc->sc_bmisscount = 0;
2038	}
2039
2040	/*
2041	 * Update dynamic beacon contents.  If this returns
2042	 * non-zero then we need to remap the memory because
2043	 * the beacon frame changed size (probably because
2044	 * of the TIM bitmap).
2045	 */
2046	m = bf->bf_m;
2047	ncabq = sc->sc_cabq->axq_depth;
2048	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2049		/* XXX too conservative? */
2050		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2051		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2052					     bf->bf_segs, &bf->bf_nseg,
2053					     BUS_DMA_NOWAIT);
2054		if (error != 0) {
2055			if_printf(ic->ic_ifp,
2056			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2057			    __func__, error);
2058			return;
2059		}
2060	}
2061
2062	/*
2063	 * Handle slot time change when a non-ERP station joins/leaves
2064	 * an 11g network.  The 802.11 layer notifies us via callback,
2065	 * we mark updateslot, then wait one beacon before effecting
2066	 * the change.  This gives associated stations at least one
2067	 * beacon interval to note the state change.
2068	 */
2069	/* XXX locking */
2070	if (sc->sc_updateslot == UPDATE)
2071		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2072	else if (sc->sc_updateslot == COMMIT)
2073		ath_setslottime(sc);		/* commit change to h/w */
2074
2075	/*
2076	 * Check recent per-antenna transmit statistics and flip
2077	 * the default antenna if noticeably more frames went out
2078	 * on the non-default antenna.
2079	 * XXX assumes 2 anntenae
2080	 */
2081	otherant = sc->sc_defant & 1 ? 2 : 1;
2082	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2083		ath_setdefantenna(sc, otherant);
2084	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2085
2086	/*
2087	 * Construct tx descriptor.
2088	 */
2089	ath_beacon_setup(sc, bf);
2090
2091	/*
2092	 * Stop any current dma and put the new frame on the queue.
2093	 * This should never fail since we check above that no frames
2094	 * are still pending on the queue.
2095	 */
2096	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2097		DPRINTF(sc, ATH_DEBUG_ANY,
2098			"%s: beacon queue %u did not stop?\n",
2099			__func__, sc->sc_bhalq);
2100	}
2101	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2102
2103	/*
2104	 * Enable the CAB queue before the beacon queue to
2105	 * insure cab frames are triggered by this beacon.
2106	 */
2107	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
2108		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2109	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2110	ath_hal_txstart(ah, sc->sc_bhalq);
2111	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2112		"%s: TXDP[%u] = %p (%p)\n", __func__,
2113		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2114
2115	sc->sc_stats.ast_be_xmit++;
2116}
2117
2118/*
2119 * Reset the hardware after detecting beacons have stopped.
2120 */
2121static void
2122ath_bstuck_proc(void *arg, int pending)
2123{
2124	struct ath_softc *sc = arg;
2125	struct ifnet *ifp = sc->sc_ifp;
2126
2127	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2128		sc->sc_bmisscount);
2129	ath_reset(ifp);
2130}
2131
2132/*
2133 * Reclaim beacon resources.
2134 */
2135static void
2136ath_beacon_free(struct ath_softc *sc)
2137{
2138	struct ath_buf *bf;
2139
2140	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2141		if (bf->bf_m != NULL) {
2142			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2143			m_freem(bf->bf_m);
2144			bf->bf_m = NULL;
2145		}
2146		if (bf->bf_node != NULL) {
2147			ieee80211_free_node(bf->bf_node);
2148			bf->bf_node = NULL;
2149		}
2150	}
2151}
2152
2153/*
2154 * Configure the beacon and sleep timers.
2155 *
2156 * When operating as an AP this resets the TSF and sets
2157 * up the hardware to notify us when we need to issue beacons.
2158 *
2159 * When operating in station mode this sets up the beacon
2160 * timers according to the timestamp of the last received
2161 * beacon and the current TSF, configures PCF and DTIM
2162 * handling, programs the sleep registers so the hardware
2163 * will wakeup in time to receive beacons, and configures
2164 * the beacon miss handling so we'll receive a BMISS
2165 * interrupt when we stop seeing beacons from the AP
2166 * we've associated with.
2167 */
2168static void
2169ath_beacon_config(struct ath_softc *sc)
2170{
2171#define	TSF_TO_TU(_h,_l) \
2172	((((u_int32_t)(_h)) << 22) | (((u_int32_t)(_l)) >> 10))
2173#define	FUDGE	2
2174	struct ath_hal *ah = sc->sc_ah;
2175	struct ieee80211com *ic = &sc->sc_ic;
2176	struct ieee80211_node *ni = ic->ic_bss;
2177	u_int32_t nexttbtt, intval, tsftu;
2178	u_int64_t tsf;
2179
2180	/* extract tstamp from last beacon and convert to TU */
2181	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2182			     LE_READ_4(ni->ni_tstamp.data));
2183	/* NB: the beacon interval is kept internally in TU's */
2184	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2185	if (nexttbtt == 0)		/* e.g. for ap mode */
2186		nexttbtt = intval;
2187	else if (intval)		/* NB: can be 0 for monitor mode */
2188		nexttbtt = roundup(nexttbtt, intval);
2189	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2190		__func__, nexttbtt, intval, ni->ni_intval);
2191	if (ic->ic_opmode == IEEE80211_M_STA) {
2192		HAL_BEACON_STATE bs;
2193		int dtimperiod, dtimcount;
2194		int cfpperiod, cfpcount;
2195
2196		/*
2197		 * Setup dtim and cfp parameters according to
2198		 * last beacon we received (which may be none).
2199		 */
2200		dtimperiod = ni->ni_dtim_period;
2201		if (dtimperiod <= 0)		/* NB: 0 if not known */
2202			dtimperiod = 1;
2203		dtimcount = ni->ni_dtim_count;
2204		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2205			dtimcount = 0;		/* XXX? */
2206		cfpperiod = 1;			/* NB: no PCF support yet */
2207		cfpcount = 0;
2208		/*
2209		 * Pull nexttbtt forward to reflect the current
2210		 * TSF and calculate dtim+cfp state for the result.
2211		 */
2212		tsf = ath_hal_gettsf64(ah);
2213		tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2214		do {
2215			nexttbtt += intval;
2216			if (--dtimcount < 0) {
2217				dtimcount = dtimperiod - 1;
2218				if (--cfpcount < 0)
2219					cfpcount = cfpperiod - 1;
2220			}
2221		} while (nexttbtt < tsftu);
2222		memset(&bs, 0, sizeof(bs));
2223		bs.bs_intval = intval;
2224		bs.bs_nexttbtt = nexttbtt;
2225		bs.bs_dtimperiod = dtimperiod*intval;
2226		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2227		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2228		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2229		bs.bs_cfpmaxduration = 0;
2230#if 0
2231		/*
2232		 * The 802.11 layer records the offset to the DTIM
2233		 * bitmap while receiving beacons; use it here to
2234		 * enable h/w detection of our AID being marked in
2235		 * the bitmap vector (to indicate frames for us are
2236		 * pending at the AP).
2237		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2238		 * XXX enable based on h/w rev for newer chips
2239		 */
2240		bs.bs_timoffset = ni->ni_timoff;
2241#endif
2242		/*
2243		 * Calculate the number of consecutive beacons to miss
2244		 * before taking a BMISS interrupt.  The configuration
2245		 * is specified in ms, so we need to convert that to
2246		 * TU's and then calculate based on the beacon interval.
2247		 * Note that we clamp the result to at most 10 beacons.
2248		 */
2249		bs.bs_bmissthreshold = ic->ic_bmissthreshold;
2250		if (bs.bs_bmissthreshold > 10)
2251			bs.bs_bmissthreshold = 10;
2252		else if (bs.bs_bmissthreshold <= 0)
2253			bs.bs_bmissthreshold = 1;
2254
2255		/*
2256		 * Calculate sleep duration.  The configuration is
2257		 * given in ms.  We insure a multiple of the beacon
2258		 * period is used.  Also, if the sleep duration is
2259		 * greater than the DTIM period then it makes senses
2260		 * to make it a multiple of that.
2261		 *
2262		 * XXX fixed at 100ms
2263		 */
2264		bs.bs_sleepduration =
2265			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2266		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2267			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2268
2269		DPRINTF(sc, ATH_DEBUG_BEACON,
2270			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2271			, __func__
2272			, tsf, tsftu
2273			, bs.bs_intval
2274			, bs.bs_nexttbtt
2275			, bs.bs_dtimperiod
2276			, bs.bs_nextdtim
2277			, bs.bs_bmissthreshold
2278			, bs.bs_sleepduration
2279			, bs.bs_cfpperiod
2280			, bs.bs_cfpmaxduration
2281			, bs.bs_cfpnext
2282			, bs.bs_timoffset
2283		);
2284		ath_hal_intrset(ah, 0);
2285		ath_hal_beacontimers(ah, &bs);
2286		sc->sc_imask |= HAL_INT_BMISS;
2287		ath_hal_intrset(ah, sc->sc_imask);
2288	} else {
2289		ath_hal_intrset(ah, 0);
2290		if (nexttbtt == intval)
2291			intval |= HAL_BEACON_RESET_TSF;
2292		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2293			/*
2294			 * In IBSS mode enable the beacon timers but only
2295			 * enable SWBA interrupts if we need to manually
2296			 * prepare beacon frames.  Otherwise we use a
2297			 * self-linked tx descriptor and let the hardware
2298			 * deal with things.
2299			 */
2300			intval |= HAL_BEACON_ENA;
2301			if (!sc->sc_hasveol)
2302				sc->sc_imask |= HAL_INT_SWBA;
2303			if ((intval & HAL_BEACON_RESET_TSF) == 0) {
2304				/*
2305				 * Pull nexttbtt forward to reflect
2306				 * the current TSF.
2307				 */
2308				tsf = ath_hal_gettsf64(ah);
2309				tsftu = TSF_TO_TU(tsf>>32, tsf) + FUDGE;
2310				do {
2311					nexttbtt += intval;
2312				} while (nexttbtt < tsftu);
2313			}
2314			ath_beaconq_config(sc);
2315		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2316			/*
2317			 * In AP mode we enable the beacon timers and
2318			 * SWBA interrupts to prepare beacon frames.
2319			 */
2320			intval |= HAL_BEACON_ENA;
2321			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2322			ath_beaconq_config(sc);
2323		}
2324		ath_hal_beaconinit(ah, nexttbtt, intval);
2325		sc->sc_bmisscount = 0;
2326		ath_hal_intrset(ah, sc->sc_imask);
2327		/*
2328		 * When using a self-linked beacon descriptor in
2329		 * ibss mode load it once here.
2330		 */
2331		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2332			ath_beacon_proc(sc, 0);
2333	}
2334	sc->sc_syncbeacon = 0;
2335#undef FUDGE
2336#undef TSF_TO_TU
2337}
2338
2339static void
2340ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2341{
2342	bus_addr_t *paddr = (bus_addr_t*) arg;
2343	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2344	*paddr = segs->ds_addr;
2345}
2346
2347static int
2348ath_descdma_setup(struct ath_softc *sc,
2349	struct ath_descdma *dd, ath_bufhead *head,
2350	const char *name, int nbuf, int ndesc)
2351{
2352#define	DS2PHYS(_dd, _ds) \
2353	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2354	struct ifnet *ifp = sc->sc_ifp;
2355	struct ath_desc *ds;
2356	struct ath_buf *bf;
2357	int i, bsize, error;
2358
2359	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2360	    __func__, name, nbuf, ndesc);
2361
2362	dd->dd_name = name;
2363	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2364
2365	/*
2366	 * Setup DMA descriptor area.
2367	 */
2368	error = bus_dma_tag_create(NULL,	/* parent */
2369		       PAGE_SIZE, 0,		/* alignment, bounds */
2370		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2371		       BUS_SPACE_MAXADDR,	/* highaddr */
2372		       NULL, NULL,		/* filter, filterarg */
2373		       dd->dd_desc_len,		/* maxsize */
2374		       1,			/* nsegments */
2375		       dd->dd_desc_len,		/* maxsegsize */
2376		       BUS_DMA_ALLOCNOW,	/* flags */
2377		       NULL,			/* lockfunc */
2378		       NULL,			/* lockarg */
2379		       &dd->dd_dmat);
2380	if (error != 0) {
2381		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2382		return error;
2383	}
2384
2385	/* allocate descriptors */
2386	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2387	if (error != 0) {
2388		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2389			"error %u\n", dd->dd_name, error);
2390		goto fail0;
2391	}
2392
2393	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2394				 BUS_DMA_NOWAIT, &dd->dd_dmamap);
2395	if (error != 0) {
2396		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2397			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2398		goto fail1;
2399	}
2400
2401	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2402				dd->dd_desc, dd->dd_desc_len,
2403				ath_load_cb, &dd->dd_desc_paddr,
2404				BUS_DMA_NOWAIT);
2405	if (error != 0) {
2406		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2407			dd->dd_name, error);
2408		goto fail2;
2409	}
2410
2411	ds = dd->dd_desc;
2412	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2413	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2414	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2415
2416	/* allocate rx buffers */
2417	bsize = sizeof(struct ath_buf) * nbuf;
2418	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2419	if (bf == NULL) {
2420		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2421			dd->dd_name, bsize);
2422		goto fail3;
2423	}
2424	dd->dd_bufptr = bf;
2425
2426	STAILQ_INIT(head);
2427	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2428		bf->bf_desc = ds;
2429		bf->bf_daddr = DS2PHYS(dd, ds);
2430		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2431				&bf->bf_dmamap);
2432		if (error != 0) {
2433			if_printf(ifp, "unable to create dmamap for %s "
2434				"buffer %u, error %u\n", dd->dd_name, i, error);
2435			ath_descdma_cleanup(sc, dd, head);
2436			return error;
2437		}
2438		STAILQ_INSERT_TAIL(head, bf, bf_list);
2439	}
2440	return 0;
2441fail3:
2442	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2443fail2:
2444	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2445fail1:
2446	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2447fail0:
2448	bus_dma_tag_destroy(dd->dd_dmat);
2449	memset(dd, 0, sizeof(*dd));
2450	return error;
2451#undef DS2PHYS
2452}
2453
2454static void
2455ath_descdma_cleanup(struct ath_softc *sc,
2456	struct ath_descdma *dd, ath_bufhead *head)
2457{
2458	struct ath_buf *bf;
2459	struct ieee80211_node *ni;
2460
2461	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2462	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2463	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2464	bus_dma_tag_destroy(dd->dd_dmat);
2465
2466	STAILQ_FOREACH(bf, head, bf_list) {
2467		if (bf->bf_m) {
2468			m_freem(bf->bf_m);
2469			bf->bf_m = NULL;
2470		}
2471		if (bf->bf_dmamap != NULL) {
2472			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2473			bf->bf_dmamap = NULL;
2474		}
2475		ni = bf->bf_node;
2476		bf->bf_node = NULL;
2477		if (ni != NULL) {
2478			/*
2479			 * Reclaim node reference.
2480			 */
2481			ieee80211_free_node(ni);
2482		}
2483	}
2484
2485	STAILQ_INIT(head);
2486	free(dd->dd_bufptr, M_ATHDEV);
2487	memset(dd, 0, sizeof(*dd));
2488}
2489
2490static int
2491ath_desc_alloc(struct ath_softc *sc)
2492{
2493	int error;
2494
2495	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2496			"rx", ath_rxbuf, 1);
2497	if (error != 0)
2498		return error;
2499
2500	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2501			"tx", ath_txbuf, ATH_TXDESC);
2502	if (error != 0) {
2503		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2504		return error;
2505	}
2506
2507	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2508			"beacon", 1, 1);
2509	if (error != 0) {
2510		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2511		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2512		return error;
2513	}
2514	return 0;
2515}
2516
2517static void
2518ath_desc_free(struct ath_softc *sc)
2519{
2520
2521	if (sc->sc_bdma.dd_desc_len != 0)
2522		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2523	if (sc->sc_txdma.dd_desc_len != 0)
2524		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2525	if (sc->sc_rxdma.dd_desc_len != 0)
2526		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2527}
2528
2529static struct ieee80211_node *
2530ath_node_alloc(struct ieee80211_node_table *nt)
2531{
2532	struct ieee80211com *ic = nt->nt_ic;
2533	struct ath_softc *sc = ic->ic_ifp->if_softc;
2534	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2535	struct ath_node *an;
2536
2537	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2538	if (an == NULL) {
2539		/* XXX stat+msg */
2540		return NULL;
2541	}
2542	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2543	ath_rate_node_init(sc, an);
2544
2545	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2546	return &an->an_node;
2547}
2548
2549static void
2550ath_node_free(struct ieee80211_node *ni)
2551{
2552	struct ieee80211com *ic = ni->ni_ic;
2553        struct ath_softc *sc = ic->ic_ifp->if_softc;
2554
2555	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2556
2557	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2558	sc->sc_node_free(ni);
2559}
2560
2561static u_int8_t
2562ath_node_getrssi(const struct ieee80211_node *ni)
2563{
2564#define	HAL_EP_RND(x, mul) \
2565	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2566	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2567	int32_t rssi;
2568
2569	/*
2570	 * When only one frame is received there will be no state in
2571	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2572	 */
2573	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2574		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2575	else
2576		rssi = ni->ni_rssi;
2577	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2578#undef HAL_EP_RND
2579}
2580
2581static int
2582ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2583{
2584	struct ath_hal *ah = sc->sc_ah;
2585	int error;
2586	struct mbuf *m;
2587	struct ath_desc *ds;
2588
2589	m = bf->bf_m;
2590	if (m == NULL) {
2591		/*
2592		 * NB: by assigning a page to the rx dma buffer we
2593		 * implicitly satisfy the Atheros requirement that
2594		 * this buffer be cache-line-aligned and sized to be
2595		 * multiple of the cache line size.  Not doing this
2596		 * causes weird stuff to happen (for the 5210 at least).
2597		 */
2598		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2599		if (m == NULL) {
2600			DPRINTF(sc, ATH_DEBUG_ANY,
2601				"%s: no mbuf/cluster\n", __func__);
2602			sc->sc_stats.ast_rx_nombuf++;
2603			return ENOMEM;
2604		}
2605		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2606
2607		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
2608					     bf->bf_dmamap, m,
2609					     bf->bf_segs, &bf->bf_nseg,
2610					     BUS_DMA_NOWAIT);
2611		if (error != 0) {
2612			DPRINTF(sc, ATH_DEBUG_ANY,
2613			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
2614			    __func__, error);
2615			sc->sc_stats.ast_rx_busdma++;
2616			m_freem(m);
2617			return error;
2618		}
2619		KASSERT(bf->bf_nseg == 1,
2620			("multi-segment packet; nseg %u", bf->bf_nseg));
2621		bf->bf_m = m;
2622	}
2623	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2624
2625	/*
2626	 * Setup descriptors.  For receive we always terminate
2627	 * the descriptor list with a self-linked entry so we'll
2628	 * not get overrun under high load (as can happen with a
2629	 * 5212 when ANI processing enables PHY error frames).
2630	 *
2631	 * To insure the last descriptor is self-linked we create
2632	 * each descriptor as self-linked and add it to the end.  As
2633	 * each additional descriptor is added the previous self-linked
2634	 * entry is ``fixed'' naturally.  This should be safe even
2635	 * if DMA is happening.  When processing RX interrupts we
2636	 * never remove/process the last, self-linked, entry on the
2637	 * descriptor list.  This insures the hardware always has
2638	 * someplace to write a new frame.
2639	 */
2640	ds = bf->bf_desc;
2641	ds->ds_link = bf->bf_daddr;	/* link to self */
2642	ds->ds_data = bf->bf_segs[0].ds_addr;
2643	ds->ds_vdata = mtod(m, void *);	/* for radar */
2644	ath_hal_setuprxdesc(ah, ds
2645		, m->m_len		/* buffer size */
2646		, 0
2647	);
2648
2649	if (sc->sc_rxlink != NULL)
2650		*sc->sc_rxlink = bf->bf_daddr;
2651	sc->sc_rxlink = &ds->ds_link;
2652	return 0;
2653}
2654
2655/*
2656 * Extend 15-bit time stamp from rx descriptor to
2657 * a full 64-bit TSF using the specified TSF.
2658 */
2659static __inline u_int64_t
2660ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2661{
2662	if ((tsf & 0x7fff) < rstamp)
2663		tsf -= 0x8000;
2664	return ((tsf &~ 0x7fff) | rstamp);
2665}
2666
2667/*
2668 * Intercept management frames to collect beacon rssi data
2669 * and to do ibss merges.
2670 */
2671static void
2672ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2673	struct ieee80211_node *ni,
2674	int subtype, int rssi, u_int32_t rstamp)
2675{
2676	struct ath_softc *sc = ic->ic_ifp->if_softc;
2677
2678	/*
2679	 * Call up first so subsequent work can use information
2680	 * potentially stored in the node (e.g. for ibss merge).
2681	 */
2682	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2683	switch (subtype) {
2684	case IEEE80211_FC0_SUBTYPE_BEACON:
2685		/* update rssi statistics for use by the hal */
2686		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2687		if (sc->sc_syncbeacon &&
2688		    ni == ic->ic_bss && ic->ic_state == IEEE80211_S_RUN) {
2689			/*
2690			 * Resync beacon timers using the tsf of the beacon
2691			 * frame we just received.
2692			 */
2693			ath_beacon_config(sc);
2694		}
2695		/* fall thru... */
2696	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2697		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2698		    ic->ic_state == IEEE80211_S_RUN) {
2699			u_int64_t tsf = ath_extend_tsf(rstamp,
2700				ath_hal_gettsf64(sc->sc_ah));
2701			/*
2702			 * Handle ibss merge as needed; check the tsf on the
2703			 * frame before attempting the merge.  The 802.11 spec
2704			 * says the station should change it's bssid to match
2705			 * the oldest station with the same ssid, where oldest
2706			 * is determined by the tsf.  Note that hardware
2707			 * reconfiguration happens through callback to
2708			 * ath_newstate as the state machine will go from
2709			 * RUN -> RUN when this happens.
2710			 */
2711			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2712				DPRINTF(sc, ATH_DEBUG_STATE,
2713				    "ibss merge, rstamp %u tsf %ju "
2714				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2715				    (uintmax_t)ni->ni_tstamp.tsf);
2716				(void) ieee80211_ibss_merge(ni);
2717			}
2718		}
2719		break;
2720	}
2721}
2722
2723/*
2724 * Set the default antenna.
2725 */
2726static void
2727ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2728{
2729	struct ath_hal *ah = sc->sc_ah;
2730
2731	/* XXX block beacon interrupts */
2732	ath_hal_setdefantenna(ah, antenna);
2733	if (sc->sc_defant != antenna)
2734		sc->sc_stats.ast_ant_defswitch++;
2735	sc->sc_defant = antenna;
2736	sc->sc_rxotherant = 0;
2737}
2738
2739static int
2740ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
2741	const struct ath_desc *ds, u_int64_t tsf, int16_t nf)
2742{
2743	u_int8_t rix;
2744
2745	KASSERT(sc->sc_drvbpf != NULL, ("no tap"));
2746
2747	/*
2748	 * Discard anything shorter than an ack or cts.
2749	 */
2750	if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
2751		DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
2752			__func__, m->m_pkthdr.len);
2753		sc->sc_stats.ast_rx_tooshort++;
2754		return 0;
2755	}
2756	sc->sc_rx_th.wr_tsf = htole64(
2757		ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
2758	rix = ds->ds_rxstat.rs_rate;
2759	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2760	if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2761		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2762	/* XXX propagate other error flags from descriptor */
2763	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2764	sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
2765	sc->sc_rx_th.wr_antnoise = nf;
2766	sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2767
2768	bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th, sc->sc_rx_th_len, m);
2769
2770	return 1;
2771}
2772
2773static void
2774ath_rx_proc(void *arg, int npending)
2775{
2776#define	PA2DESC(_sc, _pa) \
2777	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2778		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2779	struct ath_softc *sc = arg;
2780	struct ath_buf *bf;
2781	struct ieee80211com *ic = &sc->sc_ic;
2782	struct ifnet *ifp = sc->sc_ifp;
2783	struct ath_hal *ah = sc->sc_ah;
2784	struct ath_desc *ds;
2785	struct mbuf *m;
2786	struct ieee80211_node *ni;
2787	struct ath_node *an;
2788	int len, type, ngood;
2789	u_int phyerr;
2790	HAL_STATUS status;
2791	int16_t nf;
2792	u_int64_t tsf;
2793
2794	NET_LOCK_GIANT();		/* XXX */
2795
2796	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2797	ngood = 0;
2798	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2799	tsf = ath_hal_gettsf64(ah);
2800	do {
2801		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2802		if (bf == NULL) {		/* NB: shouldn't happen */
2803			if_printf(ifp, "%s: no buffer!\n", __func__);
2804			break;
2805		}
2806		m = bf->bf_m;
2807		if (m == NULL) {		/* NB: shouldn't happen */
2808			/*
2809			 * If mbuf allocation failed previously there
2810			 * will be no mbuf; try again to re-populate it.
2811			 */
2812			/* XXX make debug msg */
2813			if_printf(ifp, "%s: no mbuf!\n", __func__);
2814			STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2815			goto rx_next;
2816		}
2817		ds = bf->bf_desc;
2818		if (ds->ds_link == bf->bf_daddr) {
2819			/* NB: never process the self-linked entry at the end */
2820			break;
2821		}
2822		/* XXX sync descriptor memory */
2823		/*
2824		 * Must provide the virtual address of the current
2825		 * descriptor, the physical address, and the virtual
2826		 * address of the next descriptor in the h/w chain.
2827		 * This allows the HAL to look ahead to see if the
2828		 * hardware is done with a descriptor by checking the
2829		 * done bit in the following descriptor and the address
2830		 * of the current descriptor the DMA engine is working
2831		 * on.  All this is necessary because of our use of
2832		 * a self-linked list to avoid rx overruns.
2833		 */
2834		status = ath_hal_rxprocdesc(ah, ds,
2835				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2836#ifdef ATH_DEBUG
2837		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2838			ath_printrxbuf(bf, 0, status == HAL_OK);
2839#endif
2840		if (status == HAL_EINPROGRESS)
2841			break;
2842		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2843		if (ds->ds_rxstat.rs_more) {
2844			/*
2845			 * Frame spans multiple descriptors; this
2846			 * cannot happen yet as we don't support
2847			 * jumbograms.  If not in monitor mode,
2848			 * discard the frame.
2849			 */
2850			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2851				sc->sc_stats.ast_rx_toobig++;
2852				goto rx_next;
2853			}
2854			/* fall thru for monitor mode handling... */
2855		} else if (ds->ds_rxstat.rs_status != 0) {
2856			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2857				sc->sc_stats.ast_rx_crcerr++;
2858			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2859				sc->sc_stats.ast_rx_fifoerr++;
2860			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2861				sc->sc_stats.ast_rx_phyerr++;
2862				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2863				sc->sc_stats.ast_rx_phy[phyerr]++;
2864				goto rx_next;
2865			}
2866			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2867				/*
2868				 * Decrypt error.  If the error occurred
2869				 * because there was no hardware key, then
2870				 * let the frame through so the upper layers
2871				 * can process it.  This is necessary for 5210
2872				 * parts which have no way to setup a ``clear''
2873				 * key cache entry.
2874				 *
2875				 * XXX do key cache faulting
2876				 */
2877				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2878					goto rx_accept;
2879				sc->sc_stats.ast_rx_badcrypt++;
2880			}
2881			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2882				sc->sc_stats.ast_rx_badmic++;
2883				/*
2884				 * Do minimal work required to hand off
2885				 * the 802.11 header for notifcation.
2886				 */
2887				/* XXX frag's and qos frames */
2888				len = ds->ds_rxstat.rs_datalen;
2889				if (len >= sizeof (struct ieee80211_frame)) {
2890					bus_dmamap_sync(sc->sc_dmat,
2891					    bf->bf_dmamap,
2892					    BUS_DMASYNC_POSTREAD);
2893					ieee80211_notify_michael_failure(ic,
2894					    mtod(m, struct ieee80211_frame *),
2895					    sc->sc_splitmic ?
2896					        ds->ds_rxstat.rs_keyix-32 :
2897					        ds->ds_rxstat.rs_keyix
2898					);
2899				}
2900			}
2901			ifp->if_ierrors++;
2902			/*
2903			 * When a tap is present pass error frames
2904			 * that have been requested.  By default we
2905			 * pass decrypt+mic errors but others may be
2906			 * interesting (e.g. crc).
2907			 */
2908			if (sc->sc_drvbpf != NULL &&
2909			    (ds->ds_rxstat.rs_status & sc->sc_monpass)) {
2910				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2911				    BUS_DMASYNC_POSTREAD);
2912				/* NB: bpf needs the mbuf length setup */
2913				len = ds->ds_rxstat.rs_datalen;
2914				m->m_pkthdr.len = m->m_len = len;
2915				(void) ath_rx_tap(sc, m, ds, tsf, nf);
2916			}
2917			/* XXX pass MIC errors up for s/w reclaculation */
2918			goto rx_next;
2919		}
2920rx_accept:
2921		/*
2922		 * Sync and unmap the frame.  At this point we're
2923		 * committed to passing the mbuf somewhere so clear
2924		 * bf_m; this means a new mbuf must be allocated
2925		 * when the rx descriptor is setup again to receive
2926		 * another frame.
2927		 */
2928		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2929		    BUS_DMASYNC_POSTREAD);
2930		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2931		bf->bf_m = NULL;
2932
2933		m->m_pkthdr.rcvif = ifp;
2934		len = ds->ds_rxstat.rs_datalen;
2935		m->m_pkthdr.len = m->m_len = len;
2936
2937		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2938
2939		if (sc->sc_drvbpf != NULL && !ath_rx_tap(sc, m, ds, tsf, nf)) {
2940			m_freem(m);		/* XXX reclaim */
2941			goto rx_next;
2942		}
2943
2944		/*
2945		 * From this point on we assume the frame is at least
2946		 * as large as ieee80211_frame_min; verify that.
2947		 */
2948		if (len < IEEE80211_MIN_LEN) {
2949			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2950				__func__, len);
2951			sc->sc_stats.ast_rx_tooshort++;
2952			m_freem(m);
2953			goto rx_next;
2954		}
2955
2956		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2957			ieee80211_dump_pkt(mtod(m, caddr_t), len,
2958				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2959				   ds->ds_rxstat.rs_rssi);
2960		}
2961
2962		m_adj(m, -IEEE80211_CRC_LEN);
2963
2964		/*
2965		 * Locate the node for sender, track state, and then
2966		 * pass the (referenced) node up to the 802.11 layer
2967		 * for its use.
2968		 */
2969		ni = ieee80211_find_rxnode_withkey(ic,
2970			mtod(m, const struct ieee80211_frame_min *),
2971			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
2972				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
2973		/*
2974		 * Track rx rssi and do any rx antenna management.
2975		 */
2976		an = ATH_NODE(ni);
2977		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2978		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
2979		/*
2980		 * Send frame up for processing.
2981		 */
2982		type = ieee80211_input(ic, m, ni,
2983			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2984		ieee80211_free_node(ni);
2985		if (sc->sc_diversity) {
2986			/*
2987			 * When using fast diversity, change the default rx
2988			 * antenna if diversity chooses the other antenna 3
2989			 * times in a row.
2990			 */
2991			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2992				if (++sc->sc_rxotherant >= 3)
2993					ath_setdefantenna(sc,
2994						ds->ds_rxstat.rs_antenna);
2995			} else
2996				sc->sc_rxotherant = 0;
2997		}
2998		if (sc->sc_softled) {
2999			/*
3000			 * Blink for any data frame.  Otherwise do a
3001			 * heartbeat-style blink when idle.  The latter
3002			 * is mainly for station mode where we depend on
3003			 * periodic beacon frames to trigger the poll event.
3004			 */
3005			if (type == IEEE80211_FC0_TYPE_DATA) {
3006				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
3007				ath_led_event(sc, ATH_LED_RX);
3008			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
3009				ath_led_event(sc, ATH_LED_POLL);
3010		}
3011		/*
3012		 * Arrange to update the last rx timestamp only for
3013		 * frames from our ap when operating in station mode.
3014		 * This assumes the rx key is always setup when associated.
3015		 */
3016		if (ic->ic_opmode == IEEE80211_M_STA &&
3017		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
3018			ngood++;
3019rx_next:
3020		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
3021	} while (ath_rxbuf_init(sc, bf) == 0);
3022
3023	/* rx signal state monitoring */
3024	ath_hal_rxmonitor(ah, &sc->sc_halstats, &sc->sc_curchan);
3025	if (ath_hal_radar_event(ah))
3026		taskqueue_enqueue(sc->sc_tq, &sc->sc_radartask);
3027	if (ngood)
3028		sc->sc_lastrx = tsf;
3029
3030	NET_UNLOCK_GIANT();		/* XXX */
3031#undef PA2DESC
3032}
3033
3034/*
3035 * Setup a h/w transmit queue.
3036 */
3037static struct ath_txq *
3038ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
3039{
3040#define	N(a)	(sizeof(a)/sizeof(a[0]))
3041	struct ath_hal *ah = sc->sc_ah;
3042	HAL_TXQ_INFO qi;
3043	int qnum;
3044
3045	memset(&qi, 0, sizeof(qi));
3046	qi.tqi_subtype = subtype;
3047	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
3048	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
3049	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
3050	/*
3051	 * Enable interrupts only for EOL and DESC conditions.
3052	 * We mark tx descriptors to receive a DESC interrupt
3053	 * when a tx queue gets deep; otherwise waiting for the
3054	 * EOL to reap descriptors.  Note that this is done to
3055	 * reduce interrupt load and this only defers reaping
3056	 * descriptors, never transmitting frames.  Aside from
3057	 * reducing interrupts this also permits more concurrency.
3058	 * The only potential downside is if the tx queue backs
3059	 * up in which case the top half of the kernel may backup
3060	 * due to a lack of tx descriptors.
3061	 */
3062	qi.tqi_qflags = HAL_TXQ_TXEOLINT_ENABLE | HAL_TXQ_TXDESCINT_ENABLE;
3063	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
3064	if (qnum == -1) {
3065		/*
3066		 * NB: don't print a message, this happens
3067		 * normally on parts with too few tx queues
3068		 */
3069		return NULL;
3070	}
3071	if (qnum >= N(sc->sc_txq)) {
3072		device_printf(sc->sc_dev,
3073			"hal qnum %u out of range, max %zu!\n",
3074			qnum, N(sc->sc_txq));
3075		ath_hal_releasetxqueue(ah, qnum);
3076		return NULL;
3077	}
3078	if (!ATH_TXQ_SETUP(sc, qnum)) {
3079		struct ath_txq *txq = &sc->sc_txq[qnum];
3080
3081		txq->axq_qnum = qnum;
3082		txq->axq_depth = 0;
3083		txq->axq_intrcnt = 0;
3084		txq->axq_link = NULL;
3085		STAILQ_INIT(&txq->axq_q);
3086		ATH_TXQ_LOCK_INIT(sc, txq);
3087		sc->sc_txqsetup |= 1<<qnum;
3088	}
3089	return &sc->sc_txq[qnum];
3090#undef N
3091}
3092
3093/*
3094 * Setup a hardware data transmit queue for the specified
3095 * access control.  The hal may not support all requested
3096 * queues in which case it will return a reference to a
3097 * previously setup queue.  We record the mapping from ac's
3098 * to h/w queues for use by ath_tx_start and also track
3099 * the set of h/w queues being used to optimize work in the
3100 * transmit interrupt handler and related routines.
3101 */
3102static int
3103ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3104{
3105#define	N(a)	(sizeof(a)/sizeof(a[0]))
3106	struct ath_txq *txq;
3107
3108	if (ac >= N(sc->sc_ac2q)) {
3109		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3110			ac, N(sc->sc_ac2q));
3111		return 0;
3112	}
3113	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3114	if (txq != NULL) {
3115		sc->sc_ac2q[ac] = txq;
3116		return 1;
3117	} else
3118		return 0;
3119#undef N
3120}
3121
3122/*
3123 * Update WME parameters for a transmit queue.
3124 */
3125static int
3126ath_txq_update(struct ath_softc *sc, int ac)
3127{
3128#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3129#define	ATH_TXOP_TO_US(v)		(v<<5)
3130	struct ieee80211com *ic = &sc->sc_ic;
3131	struct ath_txq *txq = sc->sc_ac2q[ac];
3132	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3133	struct ath_hal *ah = sc->sc_ah;
3134	HAL_TXQ_INFO qi;
3135
3136	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3137	qi.tqi_aifs = wmep->wmep_aifsn;
3138	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3139	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3140	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3141
3142	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3143		device_printf(sc->sc_dev, "unable to update hardware queue "
3144			"parameters for %s traffic!\n",
3145			ieee80211_wme_acnames[ac]);
3146		return 0;
3147	} else {
3148		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3149		return 1;
3150	}
3151#undef ATH_TXOP_TO_US
3152#undef ATH_EXPONENT_TO_VALUE
3153}
3154
3155/*
3156 * Callback from the 802.11 layer to update WME parameters.
3157 */
3158static int
3159ath_wme_update(struct ieee80211com *ic)
3160{
3161	struct ath_softc *sc = ic->ic_ifp->if_softc;
3162
3163	return !ath_txq_update(sc, WME_AC_BE) ||
3164	    !ath_txq_update(sc, WME_AC_BK) ||
3165	    !ath_txq_update(sc, WME_AC_VI) ||
3166	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3167}
3168
3169/*
3170 * Reclaim resources for a setup queue.
3171 */
3172static void
3173ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3174{
3175
3176	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3177	ATH_TXQ_LOCK_DESTROY(txq);
3178	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3179}
3180
3181/*
3182 * Reclaim all tx queue resources.
3183 */
3184static void
3185ath_tx_cleanup(struct ath_softc *sc)
3186{
3187	int i;
3188
3189	ATH_TXBUF_LOCK_DESTROY(sc);
3190	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3191		if (ATH_TXQ_SETUP(sc, i))
3192			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3193}
3194
3195/*
3196 * Defragment an mbuf chain, returning at most maxfrags separate
3197 * mbufs+clusters.  If this is not possible NULL is returned and
3198 * the original mbuf chain is left in it's present (potentially
3199 * modified) state.  We use two techniques: collapsing consecutive
3200 * mbufs and replacing consecutive mbufs by a cluster.
3201 */
3202static struct mbuf *
3203ath_defrag(struct mbuf *m0, int how, int maxfrags)
3204{
3205	struct mbuf *m, *n, *n2, **prev;
3206	u_int curfrags;
3207
3208	/*
3209	 * Calculate the current number of frags.
3210	 */
3211	curfrags = 0;
3212	for (m = m0; m != NULL; m = m->m_next)
3213		curfrags++;
3214	/*
3215	 * First, try to collapse mbufs.  Note that we always collapse
3216	 * towards the front so we don't need to deal with moving the
3217	 * pkthdr.  This may be suboptimal if the first mbuf has much
3218	 * less data than the following.
3219	 */
3220	m = m0;
3221again:
3222	for (;;) {
3223		n = m->m_next;
3224		if (n == NULL)
3225			break;
3226		if ((m->m_flags & M_RDONLY) == 0 &&
3227		    n->m_len < M_TRAILINGSPACE(m)) {
3228			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3229				n->m_len);
3230			m->m_len += n->m_len;
3231			m->m_next = n->m_next;
3232			m_free(n);
3233			if (--curfrags <= maxfrags)
3234				return m0;
3235		} else
3236			m = n;
3237	}
3238	KASSERT(maxfrags > 1,
3239		("maxfrags %u, but normal collapse failed", maxfrags));
3240	/*
3241	 * Collapse consecutive mbufs to a cluster.
3242	 */
3243	prev = &m0->m_next;		/* NB: not the first mbuf */
3244	while ((n = *prev) != NULL) {
3245		if ((n2 = n->m_next) != NULL &&
3246		    n->m_len + n2->m_len < MCLBYTES) {
3247			m = m_getcl(how, MT_DATA, 0);
3248			if (m == NULL)
3249				goto bad;
3250			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3251			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3252				n2->m_len);
3253			m->m_len = n->m_len + n2->m_len;
3254			m->m_next = n2->m_next;
3255			*prev = m;
3256			m_free(n);
3257			m_free(n2);
3258			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3259				return m0;
3260			/*
3261			 * Still not there, try the normal collapse
3262			 * again before we allocate another cluster.
3263			 */
3264			goto again;
3265		}
3266		prev = &n->m_next;
3267	}
3268	/*
3269	 * No place where we can collapse to a cluster; punt.
3270	 * This can occur if, for example, you request 2 frags
3271	 * but the packet requires that both be clusters (we
3272	 * never reallocate the first mbuf to avoid moving the
3273	 * packet header).
3274	 */
3275bad:
3276	return NULL;
3277}
3278
3279/*
3280 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3281 */
3282static int
3283ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3284{
3285	int i;
3286
3287	for (i = 0; i < rt->rateCount; i++)
3288		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3289			return i;
3290	return 0;		/* NB: lowest rate */
3291}
3292
3293static int
3294ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3295    struct mbuf *m0)
3296{
3297	struct ieee80211com *ic = &sc->sc_ic;
3298	struct ath_hal *ah = sc->sc_ah;
3299	struct ifnet *ifp = sc->sc_ifp;
3300	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3301	int i, error, iswep, ismcast, ismrr;
3302	int keyix, hdrlen, pktlen, try0;
3303	u_int8_t rix, txrate, ctsrate;
3304	u_int8_t cix = 0xff;		/* NB: silence compiler */
3305	struct ath_desc *ds, *ds0;
3306	struct ath_txq *txq;
3307	struct ieee80211_frame *wh;
3308	u_int subtype, flags, ctsduration;
3309	HAL_PKT_TYPE atype;
3310	const HAL_RATE_TABLE *rt;
3311	HAL_BOOL shortPreamble;
3312	struct ath_node *an;
3313	struct mbuf *m;
3314	u_int pri;
3315
3316	wh = mtod(m0, struct ieee80211_frame *);
3317	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3318	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3319	hdrlen = ieee80211_anyhdrsize(wh);
3320	/*
3321	 * Packet length must not include any
3322	 * pad bytes; deduct them here.
3323	 */
3324	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3325
3326	if (iswep) {
3327		const struct ieee80211_cipher *cip;
3328		struct ieee80211_key *k;
3329
3330		/*
3331		 * Construct the 802.11 header+trailer for an encrypted
3332		 * frame. The only reason this can fail is because of an
3333		 * unknown or unsupported cipher/key type.
3334		 */
3335		k = ieee80211_crypto_encap(ic, ni, m0);
3336		if (k == NULL) {
3337			/*
3338			 * This can happen when the key is yanked after the
3339			 * frame was queued.  Just discard the frame; the
3340			 * 802.11 layer counts failures and provides
3341			 * debugging/diagnostics.
3342			 */
3343			m_freem(m0);
3344			return EIO;
3345		}
3346		/*
3347		 * Adjust the packet + header lengths for the crypto
3348		 * additions and calculate the h/w key index.  When
3349		 * a s/w mic is done the frame will have had any mic
3350		 * added to it prior to entry so m0->m_pkthdr.len above will
3351		 * account for it. Otherwise we need to add it to the
3352		 * packet length.
3353		 */
3354		cip = k->wk_cipher;
3355		hdrlen += cip->ic_header;
3356		pktlen += cip->ic_header + cip->ic_trailer;
3357		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3358			pktlen += cip->ic_miclen;
3359		keyix = k->wk_keyix;
3360
3361		/* packet header may have moved, reset our local pointer */
3362		wh = mtod(m0, struct ieee80211_frame *);
3363	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3364		/*
3365		 * Use station key cache slot, if assigned.
3366		 */
3367		keyix = ni->ni_ucastkey.wk_keyix;
3368		if (keyix == IEEE80211_KEYIX_NONE)
3369			keyix = HAL_TXKEYIX_INVALID;
3370	} else
3371		keyix = HAL_TXKEYIX_INVALID;
3372
3373	pktlen += IEEE80211_CRC_LEN;
3374
3375	/*
3376	 * Load the DMA map so any coalescing is done.  This
3377	 * also calculates the number of descriptors we need.
3378	 */
3379	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3380				     bf->bf_segs, &bf->bf_nseg,
3381				     BUS_DMA_NOWAIT);
3382	if (error == EFBIG) {
3383		/* XXX packet requires too many descriptors */
3384		bf->bf_nseg = ATH_TXDESC+1;
3385	} else if (error != 0) {
3386		sc->sc_stats.ast_tx_busdma++;
3387		m_freem(m0);
3388		return error;
3389	}
3390	/*
3391	 * Discard null packets and check for packets that
3392	 * require too many TX descriptors.  We try to convert
3393	 * the latter to a cluster.
3394	 */
3395	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
3396		sc->sc_stats.ast_tx_linear++;
3397		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3398		if (m == NULL) {
3399			m_freem(m0);
3400			sc->sc_stats.ast_tx_nombuf++;
3401			return ENOMEM;
3402		}
3403		m0 = m;
3404		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3405					     bf->bf_segs, &bf->bf_nseg,
3406					     BUS_DMA_NOWAIT);
3407		if (error != 0) {
3408			sc->sc_stats.ast_tx_busdma++;
3409			m_freem(m0);
3410			return error;
3411		}
3412		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3413		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3414	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3415		sc->sc_stats.ast_tx_nodata++;
3416		m_freem(m0);
3417		return EIO;
3418	}
3419	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3420	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3421	bf->bf_m = m0;
3422	bf->bf_node = ni;			/* NB: held reference */
3423
3424	/* setup descriptors */
3425	ds = bf->bf_desc;
3426	rt = sc->sc_currates;
3427	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3428
3429	/*
3430	 * NB: the 802.11 layer marks whether or not we should
3431	 * use short preamble based on the current mode and
3432	 * negotiated parameters.
3433	 */
3434	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3435	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3436		shortPreamble = AH_TRUE;
3437		sc->sc_stats.ast_tx_shortpre++;
3438	} else {
3439		shortPreamble = AH_FALSE;
3440	}
3441
3442	an = ATH_NODE(ni);
3443	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3444	ismrr = 0;				/* default no multi-rate retry*/
3445	/*
3446	 * Calculate Atheros packet type from IEEE80211 packet header,
3447	 * setup for rate calculations, and select h/w transmit queue.
3448	 */
3449	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3450	case IEEE80211_FC0_TYPE_MGT:
3451		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3452		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3453			atype = HAL_PKT_TYPE_BEACON;
3454		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3455			atype = HAL_PKT_TYPE_PROBE_RESP;
3456		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3457			atype = HAL_PKT_TYPE_ATIM;
3458		else
3459			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3460		rix = sc->sc_minrateix;
3461		txrate = rt->info[rix].rateCode;
3462		if (shortPreamble)
3463			txrate |= rt->info[rix].shortPreamble;
3464		try0 = ATH_TXMGTTRY;
3465		/* NB: force all management frames to highest queue */
3466		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3467			/* NB: force all management frames to highest queue */
3468			pri = WME_AC_VO;
3469		} else
3470			pri = WME_AC_BE;
3471		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3472		break;
3473	case IEEE80211_FC0_TYPE_CTL:
3474		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3475		rix = sc->sc_minrateix;
3476		txrate = rt->info[rix].rateCode;
3477		if (shortPreamble)
3478			txrate |= rt->info[rix].shortPreamble;
3479		try0 = ATH_TXMGTTRY;
3480		/* NB: force all ctl frames to highest queue */
3481		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3482			/* NB: force all ctl frames to highest queue */
3483			pri = WME_AC_VO;
3484		} else
3485			pri = WME_AC_BE;
3486		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3487		break;
3488	case IEEE80211_FC0_TYPE_DATA:
3489		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3490		/*
3491		 * Data frames: multicast frames go out at a fixed rate,
3492		 * otherwise consult the rate control module for the
3493		 * rate to use.
3494		 */
3495		if (ismcast) {
3496			/*
3497			 * Check mcast rate setting in case it's changed.
3498			 * XXX move out of fastpath
3499			 */
3500			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3501				sc->sc_mcastrix =
3502					ath_tx_findrix(rt, ic->ic_mcast_rate);
3503				sc->sc_mcastrate = ic->ic_mcast_rate;
3504			}
3505			rix = sc->sc_mcastrix;
3506			txrate = rt->info[rix].rateCode;
3507			if (shortPreamble)
3508				txrate |= rt->info[rix].shortPreamble;
3509			try0 = 1;
3510		} else {
3511			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3512				&rix, &try0, &txrate);
3513			sc->sc_txrate = txrate;		/* for LED blinking */
3514			if (try0 != ATH_TXMAXTRY)
3515				ismrr = 1;
3516		}
3517		pri = M_WME_GETAC(m0);
3518		if (cap->cap_wmeParams[pri].wmep_noackPolicy)
3519			flags |= HAL_TXDESC_NOACK;
3520		break;
3521	default:
3522		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3523			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3524		/* XXX statistic */
3525		m_freem(m0);
3526		return EIO;
3527	}
3528	txq = sc->sc_ac2q[pri];
3529
3530	/*
3531	 * When servicing one or more stations in power-save mode
3532	 * multicast frames must be buffered until after the beacon.
3533	 * We use the CAB queue for that.
3534	 */
3535	if (ismcast && ic->ic_ps_sta) {
3536		txq = sc->sc_cabq;
3537		/* XXX? more bit in 802.11 frame header */
3538	}
3539
3540	/*
3541	 * Calculate miscellaneous flags.
3542	 */
3543	if (ismcast) {
3544		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3545	} else if (pktlen > ic->ic_rtsthreshold) {
3546		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3547		cix = rt->info[rix].controlRate;
3548		sc->sc_stats.ast_tx_rts++;
3549	}
3550	if (flags & HAL_TXDESC_NOACK)		/* NB: avoid double counting */
3551		sc->sc_stats.ast_tx_noack++;
3552
3553	/*
3554	 * If 802.11g protection is enabled, determine whether
3555	 * to use RTS/CTS or just CTS.  Note that this is only
3556	 * done for OFDM unicast frames.
3557	 */
3558	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3559	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3560	    (flags & HAL_TXDESC_NOACK) == 0) {
3561		/* XXX fragments must use CCK rates w/ protection */
3562		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3563			flags |= HAL_TXDESC_RTSENA;
3564		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3565			flags |= HAL_TXDESC_CTSENA;
3566		cix = rt->info[sc->sc_protrix].controlRate;
3567		sc->sc_stats.ast_tx_protect++;
3568	}
3569
3570	/*
3571	 * Calculate duration.  This logically belongs in the 802.11
3572	 * layer but it lacks sufficient information to calculate it.
3573	 */
3574	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3575	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3576		u_int16_t dur;
3577		/*
3578		 * XXX not right with fragmentation.
3579		 */
3580		if (shortPreamble)
3581			dur = rt->info[rix].spAckDuration;
3582		else
3583			dur = rt->info[rix].lpAckDuration;
3584		*(u_int16_t *)wh->i_dur = htole16(dur);
3585	}
3586
3587	/*
3588	 * Calculate RTS/CTS rate and duration if needed.
3589	 */
3590	ctsduration = 0;
3591	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3592		/*
3593		 * CTS transmit rate is derived from the transmit rate
3594		 * by looking in the h/w rate table.  We must also factor
3595		 * in whether or not a short preamble is to be used.
3596		 */
3597		/* NB: cix is set above where RTS/CTS is enabled */
3598		KASSERT(cix != 0xff, ("cix not setup"));
3599		ctsrate = rt->info[cix].rateCode;
3600		/*
3601		 * Compute the transmit duration based on the frame
3602		 * size and the size of an ACK frame.  We call into the
3603		 * HAL to do the computation since it depends on the
3604		 * characteristics of the actual PHY being used.
3605		 *
3606		 * NB: CTS is assumed the same size as an ACK so we can
3607		 *     use the precalculated ACK durations.
3608		 */
3609		if (shortPreamble) {
3610			ctsrate |= rt->info[cix].shortPreamble;
3611			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3612				ctsduration += rt->info[cix].spAckDuration;
3613			ctsduration += ath_hal_computetxtime(ah,
3614				rt, pktlen, rix, AH_TRUE);
3615			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3616				ctsduration += rt->info[rix].spAckDuration;
3617		} else {
3618			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3619				ctsduration += rt->info[cix].lpAckDuration;
3620			ctsduration += ath_hal_computetxtime(ah,
3621				rt, pktlen, rix, AH_FALSE);
3622			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3623				ctsduration += rt->info[rix].lpAckDuration;
3624		}
3625		/*
3626		 * Must disable multi-rate retry when using RTS/CTS.
3627		 */
3628		ismrr = 0;
3629		try0 = ATH_TXMGTTRY;		/* XXX */
3630	} else
3631		ctsrate = 0;
3632
3633	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3634		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3635			sc->sc_hwmap[txrate].ieeerate, -1);
3636
3637	if (ic->ic_rawbpf)
3638		bpf_mtap(ic->ic_rawbpf, m0);
3639	if (sc->sc_drvbpf) {
3640		u_int64_t tsf = ath_hal_gettsf64(ah);
3641
3642		sc->sc_tx_th.wt_tsf = htole64(tsf);
3643		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3644		if (iswep)
3645			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3646		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3647		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3648		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3649
3650		bpf_mtap2(sc->sc_drvbpf,
3651			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3652	}
3653
3654	/*
3655	 * Determine if a tx interrupt should be generated for
3656	 * this descriptor.  We take a tx interrupt to reap
3657	 * descriptors when the h/w hits an EOL condition or
3658	 * when the descriptor is specifically marked to generate
3659	 * an interrupt.  We periodically mark descriptors in this
3660	 * way to insure timely replenishing of the supply needed
3661	 * for sending frames.  Defering interrupts reduces system
3662	 * load and potentially allows more concurrent work to be
3663	 * done but if done to aggressively can cause senders to
3664	 * backup.
3665	 *
3666	 * NB: use >= to deal with sc_txintrperiod changing
3667	 *     dynamically through sysctl.
3668	 */
3669	if (flags & HAL_TXDESC_INTREQ) {
3670		txq->axq_intrcnt = 0;
3671	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3672		flags |= HAL_TXDESC_INTREQ;
3673		txq->axq_intrcnt = 0;
3674	}
3675
3676	/*
3677	 * Formulate first tx descriptor with tx controls.
3678	 */
3679	/* XXX check return value? */
3680	ath_hal_setuptxdesc(ah, ds
3681		, pktlen		/* packet length */
3682		, hdrlen		/* header length */
3683		, atype			/* Atheros packet type */
3684		, ni->ni_txpower	/* txpower */
3685		, txrate, try0		/* series 0 rate/tries */
3686		, keyix			/* key cache index */
3687		, sc->sc_txantenna	/* antenna mode */
3688		, flags			/* flags */
3689		, ctsrate		/* rts/cts rate */
3690		, ctsduration		/* rts/cts duration */
3691	);
3692	bf->bf_flags = flags;
3693	/*
3694	 * Setup the multi-rate retry state only when we're
3695	 * going to use it.  This assumes ath_hal_setuptxdesc
3696	 * initializes the descriptors (so we don't have to)
3697	 * when the hardware supports multi-rate retry and
3698	 * we don't use it.
3699	 */
3700	if (ismrr)
3701		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3702
3703	/*
3704	 * Fillin the remainder of the descriptor info.
3705	 */
3706	ds0 = ds;
3707	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3708		ds->ds_data = bf->bf_segs[i].ds_addr;
3709		if (i == bf->bf_nseg - 1)
3710			ds->ds_link = 0;
3711		else
3712			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3713		ath_hal_filltxdesc(ah, ds
3714			, bf->bf_segs[i].ds_len	/* segment length */
3715			, i == 0		/* first segment */
3716			, i == bf->bf_nseg - 1	/* last segment */
3717			, ds0			/* first descriptor */
3718		);
3719		DPRINTF(sc, ATH_DEBUG_XMIT,
3720			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3721			__func__, i, ds->ds_link, ds->ds_data,
3722			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3723	}
3724	/*
3725	 * Insert the frame on the outbound list and
3726	 * pass it on to the hardware.
3727	 */
3728	ATH_TXQ_LOCK(txq);
3729	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3730	if (txq->axq_link == NULL) {
3731		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3732		DPRINTF(sc, ATH_DEBUG_XMIT,
3733			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3734			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3735			txq->axq_depth);
3736	} else {
3737		*txq->axq_link = bf->bf_daddr;
3738		DPRINTF(sc, ATH_DEBUG_XMIT,
3739			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3740			txq->axq_qnum, txq->axq_link,
3741			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3742	}
3743	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3744	/*
3745	 * The CAB queue is started from the SWBA handler since
3746	 * frames only go out on DTIM and to avoid possible races.
3747	 */
3748	if (txq != sc->sc_cabq)
3749		ath_hal_txstart(ah, txq->axq_qnum);
3750	ATH_TXQ_UNLOCK(txq);
3751
3752	return 0;
3753}
3754
3755/*
3756 * Process completed xmit descriptors from the specified queue.
3757 */
3758static int
3759ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3760{
3761	struct ath_hal *ah = sc->sc_ah;
3762	struct ieee80211com *ic = &sc->sc_ic;
3763	struct ath_buf *bf;
3764	struct ath_desc *ds, *ds0;
3765	struct ieee80211_node *ni;
3766	struct ath_node *an;
3767	int sr, lr, pri, nacked;
3768	HAL_STATUS status;
3769
3770	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3771		__func__, txq->axq_qnum,
3772		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3773		txq->axq_link);
3774	nacked = 0;
3775	for (;;) {
3776		ATH_TXQ_LOCK(txq);
3777		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3778		bf = STAILQ_FIRST(&txq->axq_q);
3779		if (bf == NULL) {
3780			ATH_TXQ_UNLOCK(txq);
3781			break;
3782		}
3783		ds0 = &bf->bf_desc[0];
3784		ds = &bf->bf_desc[bf->bf_nseg - 1];
3785		status = ath_hal_txprocdesc(ah, ds);
3786#ifdef ATH_DEBUG
3787		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3788			ath_printtxbuf(bf, txq->axq_qnum, 0, status == HAL_OK);
3789#endif
3790		if (status == HAL_EINPROGRESS) {
3791			ATH_TXQ_UNLOCK(txq);
3792			break;
3793		}
3794		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3795		if (txq->axq_depth == 0)
3796			txq->axq_link = NULL;
3797		ATH_TXQ_UNLOCK(txq);
3798
3799		ni = bf->bf_node;
3800		if (ni != NULL) {
3801			an = ATH_NODE(ni);
3802			if (ds->ds_txstat.ts_status == 0) {
3803				u_int8_t txant = ds->ds_txstat.ts_antenna;
3804				sc->sc_stats.ast_ant_tx[txant]++;
3805				sc->sc_ant_tx[txant]++;
3806				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3807					sc->sc_stats.ast_tx_altrate++;
3808				sc->sc_stats.ast_tx_rssi =
3809					ds->ds_txstat.ts_rssi;
3810				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3811					ds->ds_txstat.ts_rssi);
3812				pri = M_WME_GETAC(bf->bf_m);
3813				if (pri >= WME_AC_VO)
3814					ic->ic_wme.wme_hipri_traffic++;
3815				ni->ni_inact = ni->ni_inact_reload;
3816			} else {
3817				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3818					sc->sc_stats.ast_tx_xretries++;
3819				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3820					sc->sc_stats.ast_tx_fifoerr++;
3821				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3822					sc->sc_stats.ast_tx_filtered++;
3823			}
3824			sr = ds->ds_txstat.ts_shortretry;
3825			lr = ds->ds_txstat.ts_longretry;
3826			sc->sc_stats.ast_tx_shortretry += sr;
3827			sc->sc_stats.ast_tx_longretry += lr;
3828			/*
3829			 * Hand the descriptor to the rate control algorithm.
3830			 */
3831			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3832			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
3833				/*
3834				 * If frame was ack'd update the last rx time
3835				 * used to workaround phantom bmiss interrupts.
3836				 */
3837				if (ds->ds_txstat.ts_status == 0)
3838					nacked++;
3839				ath_rate_tx_complete(sc, an, ds, ds0);
3840			}
3841			/*
3842			 * Reclaim reference to node.
3843			 *
3844			 * NB: the node may be reclaimed here if, for example
3845			 *     this is a DEAUTH message that was sent and the
3846			 *     node was timed out due to inactivity.
3847			 */
3848			ieee80211_free_node(ni);
3849		}
3850		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3851		    BUS_DMASYNC_POSTWRITE);
3852		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3853		m_freem(bf->bf_m);
3854		bf->bf_m = NULL;
3855		bf->bf_node = NULL;
3856
3857		ATH_TXBUF_LOCK(sc);
3858		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3859		ATH_TXBUF_UNLOCK(sc);
3860	}
3861	return nacked;
3862}
3863
3864static __inline int
3865txqactive(struct ath_hal *ah, int qnum)
3866{
3867	u_int32_t txqs = 1<<qnum;
3868	ath_hal_gettxintrtxqs(ah, &txqs);
3869	return (txqs & (1<<qnum));
3870}
3871
3872/*
3873 * Deferred processing of transmit interrupt; special-cased
3874 * for a single hardware transmit queue (e.g. 5210 and 5211).
3875 */
3876static void
3877ath_tx_proc_q0(void *arg, int npending)
3878{
3879	struct ath_softc *sc = arg;
3880	struct ifnet *ifp = sc->sc_ifp;
3881
3882	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
3883		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3884	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
3885		ath_tx_processq(sc, sc->sc_cabq);
3886	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3887	sc->sc_tx_timer = 0;
3888
3889	if (sc->sc_softled)
3890		ath_led_event(sc, ATH_LED_TX);
3891
3892	ath_start(ifp);
3893}
3894
3895/*
3896 * Deferred processing of transmit interrupt; special-cased
3897 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3898 */
3899static void
3900ath_tx_proc_q0123(void *arg, int npending)
3901{
3902	struct ath_softc *sc = arg;
3903	struct ifnet *ifp = sc->sc_ifp;
3904	int nacked;
3905
3906	/*
3907	 * Process each active queue.
3908	 */
3909	nacked = 0;
3910	if (txqactive(sc->sc_ah, 0))
3911		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
3912	if (txqactive(sc->sc_ah, 1))
3913		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
3914	if (txqactive(sc->sc_ah, 2))
3915		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
3916	if (txqactive(sc->sc_ah, 3))
3917		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
3918	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
3919		ath_tx_processq(sc, sc->sc_cabq);
3920	if (nacked)
3921		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3922
3923	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3924	sc->sc_tx_timer = 0;
3925
3926	if (sc->sc_softled)
3927		ath_led_event(sc, ATH_LED_TX);
3928
3929	ath_start(ifp);
3930}
3931
3932/*
3933 * Deferred processing of transmit interrupt.
3934 */
3935static void
3936ath_tx_proc(void *arg, int npending)
3937{
3938	struct ath_softc *sc = arg;
3939	struct ifnet *ifp = sc->sc_ifp;
3940	int i, nacked;
3941
3942	/*
3943	 * Process each active queue.
3944	 */
3945	nacked = 0;
3946	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3947		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
3948			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
3949	if (nacked)
3950		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3951
3952	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3953	sc->sc_tx_timer = 0;
3954
3955	if (sc->sc_softled)
3956		ath_led_event(sc, ATH_LED_TX);
3957
3958	ath_start(ifp);
3959}
3960
3961static void
3962ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3963{
3964#ifdef ATH_DEBUG
3965	struct ath_hal *ah = sc->sc_ah;
3966#endif
3967	struct ieee80211_node *ni;
3968	struct ath_buf *bf;
3969	u_int ix;
3970
3971	/*
3972	 * NB: this assumes output has been stopped and
3973	 *     we do not need to block ath_tx_tasklet
3974	 */
3975	for (ix = 0;; ix++) {
3976		ATH_TXQ_LOCK(txq);
3977		bf = STAILQ_FIRST(&txq->axq_q);
3978		if (bf == NULL) {
3979			txq->axq_link = NULL;
3980			ATH_TXQ_UNLOCK(txq);
3981			break;
3982		}
3983		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3984		ATH_TXQ_UNLOCK(txq);
3985#ifdef ATH_DEBUG
3986		if (sc->sc_debug & ATH_DEBUG_RESET) {
3987			ath_printtxbuf(bf, txq->axq_qnum, ix,
3988				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3989			ieee80211_dump_pkt(mtod(bf->bf_m, caddr_t),
3990				bf->bf_m->m_len, 0, -1);
3991		}
3992#endif /* ATH_DEBUG */
3993		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3994		m_freem(bf->bf_m);
3995		bf->bf_m = NULL;
3996		ni = bf->bf_node;
3997		bf->bf_node = NULL;
3998		if (ni != NULL) {
3999			/*
4000			 * Reclaim node reference.
4001			 */
4002			ieee80211_free_node(ni);
4003		}
4004		ATH_TXBUF_LOCK(sc);
4005		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
4006		ATH_TXBUF_UNLOCK(sc);
4007	}
4008}
4009
4010static void
4011ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
4012{
4013	struct ath_hal *ah = sc->sc_ah;
4014
4015	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4016	    __func__, txq->axq_qnum,
4017	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
4018	    txq->axq_link);
4019	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
4020}
4021
4022/*
4023 * Drain the transmit queues and reclaim resources.
4024 */
4025static void
4026ath_draintxq(struct ath_softc *sc)
4027{
4028	struct ath_hal *ah = sc->sc_ah;
4029	struct ifnet *ifp = sc->sc_ifp;
4030	int i;
4031
4032	/* XXX return value */
4033	if (!sc->sc_invalid) {
4034		/* don't touch the hardware if marked invalid */
4035		DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
4036		    __func__, sc->sc_bhalq,
4037		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq),
4038		    NULL);
4039		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
4040		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4041			if (ATH_TXQ_SETUP(sc, i))
4042				ath_tx_stopdma(sc, &sc->sc_txq[i]);
4043	}
4044	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
4045		if (ATH_TXQ_SETUP(sc, i))
4046			ath_tx_draintxq(sc, &sc->sc_txq[i]);
4047#ifdef ATH_DEBUG
4048	if (sc->sc_debug & ATH_DEBUG_RESET) {
4049		struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
4050		if (bf != NULL && bf->bf_m != NULL) {
4051			ath_printtxbuf(bf, sc->sc_bhalq, 0,
4052				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
4053			ieee80211_dump_pkt(mtod(bf->bf_m, caddr_t),
4054				bf->bf_m->m_len, 0, -1);
4055		}
4056	}
4057#endif /* ATH_DEBUG */
4058	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4059	sc->sc_tx_timer = 0;
4060}
4061
4062/*
4063 * Disable the receive h/w in preparation for a reset.
4064 */
4065static void
4066ath_stoprecv(struct ath_softc *sc)
4067{
4068#define	PA2DESC(_sc, _pa) \
4069	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
4070		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
4071	struct ath_hal *ah = sc->sc_ah;
4072
4073	ath_hal_stoppcurecv(ah);	/* disable PCU */
4074	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
4075	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
4076	DELAY(3000);			/* 3ms is long enough for 1 frame */
4077#ifdef ATH_DEBUG
4078	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
4079		struct ath_buf *bf;
4080		u_int ix;
4081
4082		printf("%s: rx queue %p, link %p\n", __func__,
4083			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4084		ix = 0;
4085		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4086			struct ath_desc *ds = bf->bf_desc;
4087			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4088				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4089			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4090				ath_printrxbuf(bf, ix, status == HAL_OK);
4091			ix++;
4092		}
4093	}
4094#endif
4095	sc->sc_rxlink = NULL;		/* just in case */
4096#undef PA2DESC
4097}
4098
4099/*
4100 * Enable the receive h/w following a reset.
4101 */
4102static int
4103ath_startrecv(struct ath_softc *sc)
4104{
4105	struct ath_hal *ah = sc->sc_ah;
4106	struct ath_buf *bf;
4107
4108	sc->sc_rxlink = NULL;
4109	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4110		int error = ath_rxbuf_init(sc, bf);
4111		if (error != 0) {
4112			DPRINTF(sc, ATH_DEBUG_RECV,
4113				"%s: ath_rxbuf_init failed %d\n",
4114				__func__, error);
4115			return error;
4116		}
4117	}
4118
4119	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4120	ath_hal_putrxbuf(ah, bf->bf_daddr);
4121	ath_hal_rxena(ah);		/* enable recv descriptors */
4122	ath_mode_init(sc);		/* set filters, etc. */
4123	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4124	return 0;
4125}
4126
4127/*
4128 * Update internal state after a channel change.
4129 */
4130static void
4131ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4132{
4133	struct ieee80211com *ic = &sc->sc_ic;
4134	enum ieee80211_phymode mode;
4135	u_int16_t flags;
4136
4137	/*
4138	 * Change channels and update the h/w rate map
4139	 * if we're switching; e.g. 11a to 11b/g.
4140	 */
4141	mode = ieee80211_chan2mode(ic, chan);
4142	if (mode != sc->sc_curmode)
4143		ath_setcurmode(sc, mode);
4144	/*
4145	 * Update BPF state.  NB: ethereal et. al. don't handle
4146	 * merged flags well so pick a unique mode for their use.
4147	 */
4148	if (IEEE80211_IS_CHAN_A(chan))
4149		flags = IEEE80211_CHAN_A;
4150	/* XXX 11g schizophrenia */
4151	else if (IEEE80211_IS_CHAN_G(chan) ||
4152	    IEEE80211_IS_CHAN_PUREG(chan))
4153		flags = IEEE80211_CHAN_G;
4154	else
4155		flags = IEEE80211_CHAN_B;
4156	if (IEEE80211_IS_CHAN_T(chan))
4157		flags |= IEEE80211_CHAN_TURBO;
4158	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4159		htole16(chan->ic_freq);
4160	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4161		htole16(flags);
4162}
4163
4164/*
4165 * Poll for a channel clear indication; this is required
4166 * for channels requiring DFS and not previously visited
4167 * and/or with a recent radar detection.
4168 */
4169static void
4170ath_dfswait(void *arg)
4171{
4172	struct ath_softc *sc = arg;
4173	struct ath_hal *ah = sc->sc_ah;
4174	HAL_CHANNEL hchan;
4175
4176	ath_hal_radar_wait(ah, &hchan);
4177	DPRINTF(sc, ATH_DEBUG_DFS, "%s: radar_wait %u/%x/%x\n",
4178	    __func__, hchan.channel, hchan.channelFlags, hchan.privFlags);
4179
4180	if (hchan.privFlags & CHANNEL_INTERFERENCE) {
4181		if_printf(sc->sc_ifp,
4182		    "channel %u/0x%x/0x%x has interference\n",
4183		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4184		return;
4185	}
4186	if ((hchan.privFlags & CHANNEL_DFS) == 0) {
4187		/* XXX should not happen */
4188		return;
4189	}
4190	if (hchan.privFlags & CHANNEL_DFS_CLEAR) {
4191		sc->sc_curchan.privFlags |= CHANNEL_DFS_CLEAR;
4192		sc->sc_ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
4193		if_printf(sc->sc_ifp,
4194		    "channel %u/0x%x/0x%x marked clear\n",
4195		    hchan.channel, hchan.channelFlags, hchan.privFlags);
4196	} else
4197		callout_reset(&sc->sc_dfs_ch, 2 * hz, ath_dfswait, sc);
4198}
4199
4200/*
4201 * Set/change channels.  If the channel is really being changed,
4202 * it's done by reseting the chip.  To accomplish this we must
4203 * first cleanup any pending DMA, then restart stuff after a la
4204 * ath_init.
4205 */
4206static int
4207ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4208{
4209	struct ath_hal *ah = sc->sc_ah;
4210	struct ieee80211com *ic = &sc->sc_ic;
4211	HAL_CHANNEL hchan;
4212
4213	/*
4214	 * Convert to a HAL channel description with
4215	 * the flags constrained to reflect the current
4216	 * operating mode.
4217	 */
4218	hchan.channel = chan->ic_freq;
4219	hchan.channelFlags = ath_chan2flags(ic, chan);
4220
4221	DPRINTF(sc, ATH_DEBUG_RESET,
4222	    "%s: %u (%u MHz, hal flags 0x%x) -> %u (%u MHz, hal flags 0x%x)\n",
4223	    __func__,
4224	    ath_hal_mhz2ieee(ah, sc->sc_curchan.channel,
4225		sc->sc_curchan.channelFlags),
4226	    	sc->sc_curchan.channel, sc->sc_curchan.channelFlags,
4227	    ath_hal_mhz2ieee(ah, hchan.channel, hchan.channelFlags),
4228	        hchan.channel, hchan.channelFlags);
4229	if (hchan.channel != sc->sc_curchan.channel ||
4230	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4231		HAL_STATUS status;
4232
4233		/*
4234		 * To switch channels clear any pending DMA operations;
4235		 * wait long enough for the RX fifo to drain, reset the
4236		 * hardware at the new frequency, and then re-enable
4237		 * the relevant bits of the h/w.
4238		 */
4239		ath_hal_intrset(ah, 0);		/* disable interrupts */
4240		ath_draintxq(sc);		/* clear pending tx frames */
4241		ath_stoprecv(sc);		/* turn off frame recv */
4242		if (!ath_hal_reset(ah, sc->sc_opmode, &hchan, AH_TRUE, &status)) {
4243			if_printf(ic->ic_ifp, "%s: unable to reset "
4244			    "channel %u (%u Mhz, flags 0x%x hal flags 0x%x)\n",
4245			    __func__, ieee80211_chan2ieee(ic, chan),
4246			    chan->ic_freq, chan->ic_flags, hchan.channelFlags);
4247			return EIO;
4248		}
4249		sc->sc_curchan = hchan;
4250		ath_update_txpow(sc);		/* update tx power state */
4251		sc->sc_diversity = ath_hal_getdiversity(ah);
4252		sc->sc_calinterval = 1;
4253		sc->sc_caltries = 0;
4254
4255		/*
4256		 * Re-enable rx framework.
4257		 */
4258		if (ath_startrecv(sc) != 0) {
4259			if_printf(ic->ic_ifp,
4260				"%s: unable to restart recv logic\n", __func__);
4261			return EIO;
4262		}
4263
4264		/*
4265		 * Change channels and update the h/w rate map
4266		 * if we're switching; e.g. 11a to 11b/g.
4267		 */
4268		ic->ic_ibss_chan = chan;
4269		ath_chan_change(sc, chan);
4270
4271		/*
4272		 * Handle DFS required waiting period to determine
4273		 * if channel is clear of radar traffic.
4274		 */
4275		if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
4276#define	DFS_AND_NOT_CLEAR(_c) \
4277	(((_c)->privFlags & (CHANNEL_DFS | CHANNEL_DFS_CLEAR)) == CHANNEL_DFS)
4278			if (DFS_AND_NOT_CLEAR(&sc->sc_curchan)) {
4279				if_printf(sc->sc_ifp,
4280					"wait for DFS clear channel signal\n");
4281				/* XXX stop sndq */
4282				sc->sc_ifp->if_drv_flags |= IFF_DRV_OACTIVE;
4283				callout_reset(&sc->sc_dfs_ch,
4284					2 * hz, ath_dfswait, sc);
4285			} else
4286				callout_stop(&sc->sc_dfs_ch);
4287#undef DFS_NOT_CLEAR
4288		}
4289
4290		/*
4291		 * Re-enable interrupts.
4292		 */
4293		ath_hal_intrset(ah, sc->sc_imask);
4294	}
4295	return 0;
4296}
4297
4298static void
4299ath_next_scan(void *arg)
4300{
4301	struct ath_softc *sc = arg;
4302	struct ieee80211com *ic = &sc->sc_ic;
4303
4304	if (ic->ic_state == IEEE80211_S_SCAN)
4305		ieee80211_next_scan(ic);
4306}
4307
4308/*
4309 * Periodically recalibrate the PHY to account
4310 * for temperature/environment changes.
4311 */
4312static void
4313ath_calibrate(void *arg)
4314{
4315	struct ath_softc *sc = arg;
4316	struct ath_hal *ah = sc->sc_ah;
4317	HAL_BOOL iqCalDone;
4318
4319	sc->sc_stats.ast_per_cal++;
4320
4321	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4322		/*
4323		 * Rfgain is out of bounds, reset the chip
4324		 * to load new gain values.
4325		 */
4326		DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4327			"%s: rfgain change\n", __func__);
4328		sc->sc_stats.ast_per_rfgain++;
4329		ath_reset(sc->sc_ifp);
4330	}
4331	if (!ath_hal_calibrate(ah, &sc->sc_curchan, &iqCalDone)) {
4332		DPRINTF(sc, ATH_DEBUG_ANY,
4333			"%s: calibration of channel %u failed\n",
4334			__func__, sc->sc_curchan.channel);
4335		sc->sc_stats.ast_per_calfail++;
4336	}
4337	/*
4338	 * Calibrate noise floor data again in case of change.
4339	 */
4340	ath_hal_process_noisefloor(ah);
4341	/*
4342	 * Poll more frequently when the IQ calibration is in
4343	 * progress to speedup loading the final settings.
4344	 * We temper this aggressive polling with an exponential
4345	 * back off after 4 tries up to ath_calinterval.
4346	 */
4347	if (iqCalDone || sc->sc_calinterval >= ath_calinterval) {
4348		sc->sc_caltries = 0;
4349		sc->sc_calinterval = ath_calinterval;
4350	} else if (sc->sc_caltries > 4) {
4351		sc->sc_caltries = 0;
4352		sc->sc_calinterval <<= 1;
4353		if (sc->sc_calinterval > ath_calinterval)
4354			sc->sc_calinterval = ath_calinterval;
4355	}
4356	KASSERT(0 < sc->sc_calinterval && sc->sc_calinterval <= ath_calinterval,
4357		("bad calibration interval %u", sc->sc_calinterval));
4358
4359	DPRINTF(sc, ATH_DEBUG_CALIBRATE,
4360		"%s: next +%u (%siqCalDone tries %u)\n", __func__,
4361		sc->sc_calinterval, iqCalDone ? "" : "!", sc->sc_caltries);
4362	sc->sc_caltries++;
4363	callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4364		ath_calibrate, sc);
4365}
4366
4367static int
4368ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4369{
4370	struct ifnet *ifp = ic->ic_ifp;
4371	struct ath_softc *sc = ifp->if_softc;
4372	struct ath_hal *ah = sc->sc_ah;
4373	struct ieee80211_node *ni;
4374	int i, error;
4375	const u_int8_t *bssid;
4376	u_int32_t rfilt;
4377	static const HAL_LED_STATE leds[] = {
4378	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4379	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4380	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4381	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4382	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4383	};
4384
4385	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4386		ieee80211_state_name[ic->ic_state],
4387		ieee80211_state_name[nstate]);
4388
4389	callout_stop(&sc->sc_scan_ch);
4390	callout_stop(&sc->sc_cal_ch);
4391	callout_stop(&sc->sc_dfs_ch);
4392	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4393
4394	if (nstate == IEEE80211_S_INIT) {
4395		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4396		/*
4397		 * NB: disable interrupts so we don't rx frames.
4398		 */
4399		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4400		/*
4401		 * Notify the rate control algorithm.
4402		 */
4403		ath_rate_newstate(sc, nstate);
4404		goto done;
4405	}
4406	ni = ic->ic_bss;
4407	error = ath_chan_set(sc, ic->ic_curchan);
4408	if (error != 0)
4409		goto bad;
4410	rfilt = ath_calcrxfilter(sc, nstate);
4411	if (nstate == IEEE80211_S_SCAN)
4412		bssid = ifp->if_broadcastaddr;
4413	else
4414		bssid = ni->ni_bssid;
4415	ath_hal_setrxfilter(ah, rfilt);
4416	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4417		 __func__, rfilt, ether_sprintf(bssid));
4418
4419	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4420		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4421	else
4422		ath_hal_setassocid(ah, bssid, 0);
4423	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4424		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4425			if (ath_hal_keyisvalid(ah, i))
4426				ath_hal_keysetmac(ah, i, bssid);
4427	}
4428
4429	/*
4430	 * Notify the rate control algorithm so rates
4431	 * are setup should ath_beacon_alloc be called.
4432	 */
4433	ath_rate_newstate(sc, nstate);
4434
4435	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4436		/* nothing to do */;
4437	} else if (nstate == IEEE80211_S_RUN) {
4438		DPRINTF(sc, ATH_DEBUG_STATE,
4439			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4440			"capinfo=0x%04x chan=%d\n"
4441			 , __func__
4442			 , ic->ic_flags
4443			 , ni->ni_intval
4444			 , ether_sprintf(ni->ni_bssid)
4445			 , ni->ni_capinfo
4446			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4447
4448		switch (ic->ic_opmode) {
4449		case IEEE80211_M_HOSTAP:
4450		case IEEE80211_M_IBSS:
4451			/*
4452			 * Allocate and setup the beacon frame.
4453			 *
4454			 * Stop any previous beacon DMA.  This may be
4455			 * necessary, for example, when an ibss merge
4456			 * causes reconfiguration; there will be a state
4457			 * transition from RUN->RUN that means we may
4458			 * be called with beacon transmission active.
4459			 */
4460			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4461			ath_beacon_free(sc);
4462			error = ath_beacon_alloc(sc, ni);
4463			if (error != 0)
4464				goto bad;
4465			/*
4466			 * If joining an adhoc network defer beacon timer
4467			 * configuration to the next beacon frame so we
4468			 * have a current TSF to use.  Otherwise we're
4469			 * starting an ibss/bss so there's no need to delay.
4470			 */
4471			if (ic->ic_opmode == IEEE80211_M_IBSS &&
4472			    ic->ic_bss->ni_tstamp.tsf != 0)
4473				sc->sc_syncbeacon = 1;
4474			else
4475				ath_beacon_config(sc);
4476			break;
4477		case IEEE80211_M_STA:
4478			/*
4479			 * Allocate a key cache slot to the station.
4480			 */
4481			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4482			    sc->sc_hasclrkey &&
4483			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4484				ath_setup_stationkey(ni);
4485			/*
4486			 * Defer beacon timer configuration to the next
4487			 * beacon frame so we have a current TSF to use
4488			 * (any TSF collected when scanning is likely old).
4489			 */
4490			sc->sc_syncbeacon = 1;
4491			break;
4492		default:
4493			break;
4494		}
4495
4496		/*
4497		 * Let the hal process statistics collected during a
4498		 * scan so it can provide calibrated noise floor data.
4499		 */
4500		ath_hal_process_noisefloor(ah);
4501		/*
4502		 * Reset rssi stats; maybe not the best place...
4503		 */
4504		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4505		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4506		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4507	} else {
4508		ath_hal_intrset(ah,
4509			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4510		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4511	}
4512done:
4513	/*
4514	 * Invoke the parent method to complete the work.
4515	 */
4516	error = sc->sc_newstate(ic, nstate, arg);
4517	/*
4518	 * Finally, start any timers.
4519	 */
4520	if (nstate == IEEE80211_S_RUN) {
4521		/* start periodic recalibration timer */
4522		callout_reset(&sc->sc_cal_ch, sc->sc_calinterval * hz,
4523			ath_calibrate, sc);
4524	} else if (nstate == IEEE80211_S_SCAN) {
4525		/* start ap/neighbor scan timer */
4526		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4527			ath_next_scan, sc);
4528	}
4529bad:
4530	return error;
4531}
4532
4533/*
4534 * Allocate a key cache slot to the station so we can
4535 * setup a mapping from key index to node. The key cache
4536 * slot is needed for managing antenna state and for
4537 * compression when stations do not use crypto.  We do
4538 * it uniliaterally here; if crypto is employed this slot
4539 * will be reassigned.
4540 */
4541static void
4542ath_setup_stationkey(struct ieee80211_node *ni)
4543{
4544	struct ieee80211com *ic = ni->ni_ic;
4545	struct ath_softc *sc = ic->ic_ifp->if_softc;
4546	ieee80211_keyix keyix, rxkeyix;
4547
4548	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4549		/*
4550		 * Key cache is full; we'll fall back to doing
4551		 * the more expensive lookup in software.  Note
4552		 * this also means no h/w compression.
4553		 */
4554		/* XXX msg+statistic */
4555	} else {
4556		/* XXX locking? */
4557		ni->ni_ucastkey.wk_keyix = keyix;
4558		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4559		/* NB: this will create a pass-thru key entry */
4560		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4561	}
4562}
4563
4564/*
4565 * Setup driver-specific state for a newly associated node.
4566 * Note that we're called also on a re-associate, the isnew
4567 * param tells us if this is the first time or not.
4568 */
4569static void
4570ath_newassoc(struct ieee80211_node *ni, int isnew)
4571{
4572	struct ieee80211com *ic = ni->ni_ic;
4573	struct ath_softc *sc = ic->ic_ifp->if_softc;
4574
4575	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4576	if (isnew &&
4577	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4578		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4579		    ("new assoc with a unicast key already setup (keyix %u)",
4580		    ni->ni_ucastkey.wk_keyix));
4581		ath_setup_stationkey(ni);
4582	}
4583}
4584
4585static int
4586ath_getchannels(struct ath_softc *sc, u_int cc,
4587	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4588{
4589#define	COMPAT	(CHANNEL_ALL_NOTURBO|CHANNEL_PASSIVE)
4590#define IS_CHAN_PUBLIC_SAFETY(_c) \
4591	(((_c)->channelFlags & CHANNEL_5GHZ) && \
4592	 ((_c)->channel > 4940 && (_c)->channel < 4990))
4593	struct ieee80211com *ic = &sc->sc_ic;
4594	struct ifnet *ifp = sc->sc_ifp;
4595	struct ath_hal *ah = sc->sc_ah;
4596	HAL_CHANNEL *chans;
4597	int i, ix, nchan;
4598
4599	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4600			M_TEMP, M_NOWAIT);
4601	if (chans == NULL) {
4602		if_printf(ifp, "unable to allocate channel table\n");
4603		return ENOMEM;
4604	}
4605	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4606	    NULL, 0, NULL,
4607	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4608		u_int32_t rd;
4609
4610		ath_hal_getregdomain(ah, &rd);
4611		if_printf(ifp, "unable to collect channel list from hal; "
4612			"regdomain likely %u country code %u\n", rd, cc);
4613		free(chans, M_TEMP);
4614		return EINVAL;
4615	}
4616
4617	/*
4618	 * Convert HAL channels to ieee80211 ones and insert
4619	 * them in the table according to their channel number.
4620	 */
4621	for (i = 0; i < nchan; i++) {
4622		HAL_CHANNEL *c = &chans[i];
4623		u_int16_t flags;
4624
4625		/*
4626		 * XXX we're not ready to handle the ieee number mapping
4627		 * for public safety channels as they overlap with any
4628		 * 2GHz channels; for now use the non-public safety
4629		 * numbering which is non-overlapping.
4630		 */
4631		if (IS_CHAN_PUBLIC_SAFETY(c))
4632			ix = (c->channel - 4000) / 5;
4633		else
4634			ix = ath_hal_mhz2ieee(ah, c->channel, c->channelFlags);
4635		if (ix > IEEE80211_CHAN_MAX) {
4636			if_printf(ifp, "bad hal channel %d (%u/%x) ignored\n",
4637				ix, c->channel, c->channelFlags);
4638			continue;
4639		}
4640		if (ix < 0) {
4641			/* XXX can't handle stuff <2400 right now */
4642			if (bootverbose)
4643				if_printf(ifp, "hal channel %d (%u/%x) "
4644				    "cannot be handled; ignored\n",
4645				    ix, c->channel, c->channelFlags);
4646			continue;
4647		}
4648		/*
4649		 * Calculate net80211 flags; most are compatible
4650		 * but some need massaging.  Note the static turbo
4651		 * conversion can be removed once net80211 is updated
4652		 * to understand static vs. dynamic turbo.
4653		 */
4654		flags = c->channelFlags & COMPAT;
4655		if (c->channelFlags & CHANNEL_STURBO)
4656			flags |= IEEE80211_CHAN_TURBO;
4657		if (ic->ic_channels[ix].ic_freq == 0) {
4658			ic->ic_channels[ix].ic_freq = c->channel;
4659			ic->ic_channels[ix].ic_flags = flags;
4660		} else {
4661			/* channels overlap; e.g. 11g and 11b */
4662			ic->ic_channels[ix].ic_flags |= flags;
4663		}
4664	}
4665	free(chans, M_TEMP);
4666	return 0;
4667#undef IS_CHAN_PUBLIC_SAFETY
4668#undef COMPAT
4669}
4670
4671static void
4672ath_led_done(void *arg)
4673{
4674	struct ath_softc *sc = arg;
4675
4676	sc->sc_blinking = 0;
4677}
4678
4679/*
4680 * Turn the LED off: flip the pin and then set a timer so no
4681 * update will happen for the specified duration.
4682 */
4683static void
4684ath_led_off(void *arg)
4685{
4686	struct ath_softc *sc = arg;
4687
4688	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4689	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4690}
4691
4692/*
4693 * Blink the LED according to the specified on/off times.
4694 */
4695static void
4696ath_led_blink(struct ath_softc *sc, int on, int off)
4697{
4698	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4699	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4700	sc->sc_blinking = 1;
4701	sc->sc_ledoff = off;
4702	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4703}
4704
4705static void
4706ath_led_event(struct ath_softc *sc, int event)
4707{
4708
4709	sc->sc_ledevent = ticks;	/* time of last event */
4710	if (sc->sc_blinking)		/* don't interrupt active blink */
4711		return;
4712	switch (event) {
4713	case ATH_LED_POLL:
4714		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4715			sc->sc_hwmap[0].ledoff);
4716		break;
4717	case ATH_LED_TX:
4718		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4719			sc->sc_hwmap[sc->sc_txrate].ledoff);
4720		break;
4721	case ATH_LED_RX:
4722		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4723			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4724		break;
4725	}
4726}
4727
4728static void
4729ath_update_txpow(struct ath_softc *sc)
4730{
4731	struct ieee80211com *ic = &sc->sc_ic;
4732	struct ath_hal *ah = sc->sc_ah;
4733	u_int32_t txpow;
4734
4735	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4736		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4737		/* read back in case value is clamped */
4738		ath_hal_gettxpowlimit(ah, &txpow);
4739		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4740	}
4741	/*
4742	 * Fetch max tx power level for status requests.
4743	 */
4744	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4745	ic->ic_bss->ni_txpower = txpow;
4746}
4747
4748static void
4749rate_setup(struct ath_softc *sc,
4750	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4751{
4752	int i, maxrates;
4753
4754	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4755		DPRINTF(sc, ATH_DEBUG_ANY,
4756			"%s: rate table too small (%u > %u)\n",
4757		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4758		maxrates = IEEE80211_RATE_MAXSIZE;
4759	} else
4760		maxrates = rt->rateCount;
4761	for (i = 0; i < maxrates; i++)
4762		rs->rs_rates[i] = rt->info[i].dot11Rate;
4763	rs->rs_nrates = maxrates;
4764}
4765
4766static int
4767ath_rate_setup(struct ath_softc *sc, u_int mode)
4768{
4769	struct ath_hal *ah = sc->sc_ah;
4770	struct ieee80211com *ic = &sc->sc_ic;
4771	const HAL_RATE_TABLE *rt;
4772
4773	switch (mode) {
4774	case IEEE80211_MODE_11A:
4775		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4776		break;
4777	case IEEE80211_MODE_11B:
4778		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4779		break;
4780	case IEEE80211_MODE_11G:
4781		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4782		break;
4783	case IEEE80211_MODE_TURBO_A:
4784		/* XXX until static/dynamic turbo is fixed */
4785		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4786		break;
4787	case IEEE80211_MODE_TURBO_G:
4788		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4789		break;
4790	default:
4791		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4792			__func__, mode);
4793		return 0;
4794	}
4795	sc->sc_rates[mode] = rt;
4796	if (rt != NULL) {
4797		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4798		return 1;
4799	} else
4800		return 0;
4801}
4802
4803static void
4804ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4805{
4806#define	N(a)	(sizeof(a)/sizeof(a[0]))
4807	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4808	static const struct {
4809		u_int		rate;		/* tx/rx 802.11 rate */
4810		u_int16_t	timeOn;		/* LED on time (ms) */
4811		u_int16_t	timeOff;	/* LED off time (ms) */
4812	} blinkrates[] = {
4813		{ 108,  40,  10 },
4814		{  96,  44,  11 },
4815		{  72,  50,  13 },
4816		{  48,  57,  14 },
4817		{  36,  67,  16 },
4818		{  24,  80,  20 },
4819		{  22, 100,  25 },
4820		{  18, 133,  34 },
4821		{  12, 160,  40 },
4822		{  10, 200,  50 },
4823		{   6, 240,  58 },
4824		{   4, 267,  66 },
4825		{   2, 400, 100 },
4826		{   0, 500, 130 },
4827	};
4828	const HAL_RATE_TABLE *rt;
4829	int i, j;
4830
4831	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4832	rt = sc->sc_rates[mode];
4833	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4834	for (i = 0; i < rt->rateCount; i++)
4835		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4836	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4837	for (i = 0; i < 32; i++) {
4838		u_int8_t ix = rt->rateCodeToIndex[i];
4839		if (ix == 0xff) {
4840			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4841			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4842			continue;
4843		}
4844		sc->sc_hwmap[i].ieeerate =
4845			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4846		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4847		if (rt->info[ix].shortPreamble ||
4848		    rt->info[ix].phy == IEEE80211_T_OFDM)
4849			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4850		/* NB: receive frames include FCS */
4851		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4852			IEEE80211_RADIOTAP_F_FCS;
4853		/* setup blink rate table to avoid per-packet lookup */
4854		for (j = 0; j < N(blinkrates)-1; j++)
4855			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4856				break;
4857		/* NB: this uses the last entry if the rate isn't found */
4858		/* XXX beware of overlow */
4859		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4860		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4861	}
4862	sc->sc_currates = rt;
4863	sc->sc_curmode = mode;
4864	/*
4865	 * All protection frames are transmited at 2Mb/s for
4866	 * 11g, otherwise at 1Mb/s.
4867	 */
4868	if (mode == IEEE80211_MODE_11G)
4869		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
4870	else
4871		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
4872	/* rate index used to send management frames */
4873	sc->sc_minrateix = 0;
4874	/*
4875	 * Setup multicast rate state.
4876	 */
4877	/* XXX layering violation */
4878	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
4879	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
4880	/* NB: caller is responsible for reseting rate control state */
4881#undef N
4882}
4883
4884#ifdef ATH_DEBUG
4885static void
4886ath_printrxbuf(struct ath_buf *bf, u_int ix, int done)
4887{
4888	struct ath_desc *ds;
4889	int i;
4890
4891	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4892		printf("R[%2u] (DS.V:%p DS.P:%p) L:%08x D:%08x%s\n"
4893		       "      %08x %08x %08x %08x\n",
4894		    ix, ds, (struct ath_desc *)bf->bf_daddr + i,
4895		    ds->ds_link, ds->ds_data,
4896		    !done ? "" : (ds->ds_rxstat.rs_status == 0) ? " *" : " !",
4897		    ds->ds_ctl0, ds->ds_ctl1,
4898		    ds->ds_hw[0], ds->ds_hw[1]);
4899	}
4900}
4901
4902static void
4903ath_printtxbuf(struct ath_buf *bf, u_int qnum, u_int ix, int done)
4904{
4905	struct ath_desc *ds;
4906	int i;
4907
4908	printf("Q%u[%3u]", qnum, ix);
4909	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4910		printf(" (DS.V:%p DS.P:%p) L:%08x D:%08x F:04%x%s\n"
4911		       "        %08x %08x %08x %08x %08x %08x\n",
4912		    ds, (struct ath_desc *)bf->bf_daddr + i,
4913		    ds->ds_link, ds->ds_data, bf->bf_flags,
4914		    !done ? "" : (ds->ds_txstat.ts_status == 0) ? " *" : " !",
4915		    ds->ds_ctl0, ds->ds_ctl1,
4916		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3]);
4917	}
4918}
4919#endif /* ATH_DEBUG */
4920
4921static void
4922ath_watchdog(struct ifnet *ifp)
4923{
4924	struct ath_softc *sc = ifp->if_softc;
4925	struct ieee80211com *ic = &sc->sc_ic;
4926
4927	ifp->if_timer = 0;
4928	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
4929		return;
4930	if (sc->sc_tx_timer) {
4931		if (--sc->sc_tx_timer == 0) {
4932			if_printf(ifp, "device timeout\n");
4933			ath_reset(ifp);
4934			ifp->if_oerrors++;
4935			sc->sc_stats.ast_watchdog++;
4936		} else
4937			ifp->if_timer = 1;
4938	}
4939	ieee80211_watchdog(ic);
4940}
4941
4942#ifdef ATH_DIAGAPI
4943/*
4944 * Diagnostic interface to the HAL.  This is used by various
4945 * tools to do things like retrieve register contents for
4946 * debugging.  The mechanism is intentionally opaque so that
4947 * it can change frequently w/o concern for compatiblity.
4948 */
4949static int
4950ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4951{
4952	struct ath_hal *ah = sc->sc_ah;
4953	u_int id = ad->ad_id & ATH_DIAG_ID;
4954	void *indata = NULL;
4955	void *outdata = NULL;
4956	u_int32_t insize = ad->ad_in_size;
4957	u_int32_t outsize = ad->ad_out_size;
4958	int error = 0;
4959
4960	if (ad->ad_id & ATH_DIAG_IN) {
4961		/*
4962		 * Copy in data.
4963		 */
4964		indata = malloc(insize, M_TEMP, M_NOWAIT);
4965		if (indata == NULL) {
4966			error = ENOMEM;
4967			goto bad;
4968		}
4969		error = copyin(ad->ad_in_data, indata, insize);
4970		if (error)
4971			goto bad;
4972	}
4973	if (ad->ad_id & ATH_DIAG_DYN) {
4974		/*
4975		 * Allocate a buffer for the results (otherwise the HAL
4976		 * returns a pointer to a buffer where we can read the
4977		 * results).  Note that we depend on the HAL leaving this
4978		 * pointer for us to use below in reclaiming the buffer;
4979		 * may want to be more defensive.
4980		 */
4981		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4982		if (outdata == NULL) {
4983			error = ENOMEM;
4984			goto bad;
4985		}
4986	}
4987	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4988		if (outsize < ad->ad_out_size)
4989			ad->ad_out_size = outsize;
4990		if (outdata != NULL)
4991			error = copyout(outdata, ad->ad_out_data,
4992					ad->ad_out_size);
4993	} else {
4994		error = EINVAL;
4995	}
4996bad:
4997	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4998		free(indata, M_TEMP);
4999	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
5000		free(outdata, M_TEMP);
5001	return error;
5002}
5003#endif /* ATH_DIAGAPI */
5004
5005static int
5006ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
5007{
5008#define	IS_RUNNING(ifp) \
5009	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
5010	struct ath_softc *sc = ifp->if_softc;
5011	struct ieee80211com *ic = &sc->sc_ic;
5012	struct ifreq *ifr = (struct ifreq *)data;
5013	int error = 0;
5014
5015	ATH_LOCK(sc);
5016	switch (cmd) {
5017	case SIOCSIFFLAGS:
5018		if (IS_RUNNING(ifp)) {
5019			/*
5020			 * To avoid rescanning another access point,
5021			 * do not call ath_init() here.  Instead,
5022			 * only reflect promisc mode settings.
5023			 */
5024			ath_mode_init(sc);
5025		} else if (ifp->if_flags & IFF_UP) {
5026			/*
5027			 * Beware of being called during attach/detach
5028			 * to reset promiscuous mode.  In that case we
5029			 * will still be marked UP but not RUNNING.
5030			 * However trying to re-init the interface
5031			 * is the wrong thing to do as we've already
5032			 * torn down much of our state.  There's
5033			 * probably a better way to deal with this.
5034			 */
5035			if (!sc->sc_invalid && ic->ic_bss != NULL)
5036				ath_init(sc);	/* XXX lose error */
5037		} else
5038			ath_stop_locked(ifp);
5039		break;
5040	case SIOCADDMULTI:
5041	case SIOCDELMULTI:
5042		/*
5043		 * The upper layer has already installed/removed
5044		 * the multicast address(es), just recalculate the
5045		 * multicast filter for the card.
5046		 */
5047		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
5048			ath_mode_init(sc);
5049		break;
5050	case SIOCGATHSTATS:
5051		/* NB: embed these numbers to get a consistent view */
5052		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
5053		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
5054		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
5055		ATH_UNLOCK(sc);
5056		/*
5057		 * NB: Drop the softc lock in case of a page fault;
5058		 * we'll accept any potential inconsisentcy in the
5059		 * statistics.  The alternative is to copy the data
5060		 * to a local structure.
5061		 */
5062		return copyout(&sc->sc_stats,
5063				ifr->ifr_data, sizeof (sc->sc_stats));
5064#ifdef ATH_DIAGAPI
5065	case SIOCGATHDIAG:
5066		ATH_UNLOCK(sc);
5067		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
5068		ATH_LOCK(sc);
5069		break;
5070#endif
5071	default:
5072		error = ieee80211_ioctl(ic, cmd, data);
5073		if (error == ENETRESET) {
5074			if (IS_RUNNING(ifp) &&
5075			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
5076				ath_init(sc);	/* XXX lose error */
5077			error = 0;
5078		}
5079		if (error == ERESTART)
5080			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
5081		break;
5082	}
5083	ATH_UNLOCK(sc);
5084	return error;
5085#undef IS_RUNNING
5086}
5087
5088static int
5089ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
5090{
5091	struct ath_softc *sc = arg1;
5092	u_int slottime = ath_hal_getslottime(sc->sc_ah);
5093	int error;
5094
5095	error = sysctl_handle_int(oidp, &slottime, 0, req);
5096	if (error || !req->newptr)
5097		return error;
5098	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
5099}
5100
5101static int
5102ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
5103{
5104	struct ath_softc *sc = arg1;
5105	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
5106	int error;
5107
5108	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
5109	if (error || !req->newptr)
5110		return error;
5111	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
5112}
5113
5114static int
5115ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
5116{
5117	struct ath_softc *sc = arg1;
5118	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
5119	int error;
5120
5121	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
5122	if (error || !req->newptr)
5123		return error;
5124	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
5125}
5126
5127static int
5128ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
5129{
5130	struct ath_softc *sc = arg1;
5131	int softled = sc->sc_softled;
5132	int error;
5133
5134	error = sysctl_handle_int(oidp, &softled, 0, req);
5135	if (error || !req->newptr)
5136		return error;
5137	softled = (softled != 0);
5138	if (softled != sc->sc_softled) {
5139		if (softled) {
5140			/* NB: handle any sc_ledpin change */
5141			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
5142			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
5143				!sc->sc_ledon);
5144		}
5145		sc->sc_softled = softled;
5146	}
5147	return 0;
5148}
5149
5150static int
5151ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
5152{
5153	struct ath_softc *sc = arg1;
5154	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
5155	int error;
5156
5157	error = sysctl_handle_int(oidp, &defantenna, 0, req);
5158	if (!error && req->newptr)
5159		ath_hal_setdefantenna(sc->sc_ah, defantenna);
5160	return error;
5161}
5162
5163static int
5164ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
5165{
5166	struct ath_softc *sc = arg1;
5167	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
5168	int error;
5169
5170	error = sysctl_handle_int(oidp, &diversity, 0, req);
5171	if (error || !req->newptr)
5172		return error;
5173	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
5174		return EINVAL;
5175	sc->sc_diversity = diversity;
5176	return 0;
5177}
5178
5179static int
5180ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
5181{
5182	struct ath_softc *sc = arg1;
5183	u_int32_t diag;
5184	int error;
5185
5186	if (!ath_hal_getdiag(sc->sc_ah, &diag))
5187		return EINVAL;
5188	error = sysctl_handle_int(oidp, &diag, 0, req);
5189	if (error || !req->newptr)
5190		return error;
5191	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
5192}
5193
5194static int
5195ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
5196{
5197	struct ath_softc *sc = arg1;
5198	struct ifnet *ifp = sc->sc_ifp;
5199	u_int32_t scale;
5200	int error;
5201
5202	ath_hal_gettpscale(sc->sc_ah, &scale);
5203	error = sysctl_handle_int(oidp, &scale, 0, req);
5204	if (error || !req->newptr)
5205		return error;
5206	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
5207}
5208
5209static int
5210ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
5211{
5212	struct ath_softc *sc = arg1;
5213	u_int tpc = ath_hal_gettpc(sc->sc_ah);
5214	int error;
5215
5216	error = sysctl_handle_int(oidp, &tpc, 0, req);
5217	if (error || !req->newptr)
5218		return error;
5219	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
5220}
5221
5222static int
5223ath_sysctl_rfkill(SYSCTL_HANDLER_ARGS)
5224{
5225	struct ath_softc *sc = arg1;
5226	struct ath_hal *ah = sc->sc_ah;
5227	u_int rfkill = ath_hal_getrfkill(ah);
5228	int error;
5229
5230	error = sysctl_handle_int(oidp, &rfkill, 0, req);
5231	if (error || !req->newptr)
5232		return error;
5233	if (rfkill == ath_hal_getrfkill(ah))	/* unchanged */
5234		return 0;
5235	if (!ath_hal_setrfkill(ah, rfkill) || ath_reset(sc->sc_ifp) != 0)
5236		return EINVAL;
5237	else
5238		return 0;
5239}
5240
5241static int
5242ath_sysctl_rfsilent(SYSCTL_HANDLER_ARGS)
5243{
5244	struct ath_softc *sc = arg1;
5245	u_int rfsilent;
5246	int error;
5247
5248	ath_hal_getrfsilent(sc->sc_ah, &rfsilent);
5249	error = sysctl_handle_int(oidp, &rfsilent, 0, req);
5250	if (error || !req->newptr)
5251		return error;
5252	if (!ath_hal_setrfsilent(sc->sc_ah, rfsilent))
5253		return EINVAL;
5254	sc->sc_rfsilentpin = rfsilent & 0x1c;
5255	sc->sc_rfsilentpol = (rfsilent & 0x2) != 0;
5256	return 0;
5257}
5258
5259static int
5260ath_sysctl_regdomain(SYSCTL_HANDLER_ARGS)
5261{
5262	struct ath_softc *sc = arg1;
5263	u_int32_t rd;
5264	int error;
5265
5266	if (!ath_hal_getregdomain(sc->sc_ah, &rd))
5267		return EINVAL;
5268	error = sysctl_handle_int(oidp, &rd, 0, req);
5269	if (error || !req->newptr)
5270		return error;
5271	return !ath_hal_setregdomain(sc->sc_ah, rd) ? EINVAL : 0;
5272}
5273
5274static int
5275ath_sysctl_tpack(SYSCTL_HANDLER_ARGS)
5276{
5277	struct ath_softc *sc = arg1;
5278	u_int32_t tpack;
5279	int error;
5280
5281	ath_hal_gettpack(sc->sc_ah, &tpack);
5282	error = sysctl_handle_int(oidp, &tpack, 0, req);
5283	if (error || !req->newptr)
5284		return error;
5285	return !ath_hal_settpack(sc->sc_ah, tpack) ? EINVAL : 0;
5286}
5287
5288static int
5289ath_sysctl_tpcts(SYSCTL_HANDLER_ARGS)
5290{
5291	struct ath_softc *sc = arg1;
5292	u_int32_t tpcts;
5293	int error;
5294
5295	ath_hal_gettpcts(sc->sc_ah, &tpcts);
5296	error = sysctl_handle_int(oidp, &tpcts, 0, req);
5297	if (error || !req->newptr)
5298		return error;
5299	return !ath_hal_settpcts(sc->sc_ah, tpcts) ? EINVAL : 0;
5300}
5301
5302static void
5303ath_sysctlattach(struct ath_softc *sc)
5304{
5305	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
5306	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
5307	struct ath_hal *ah = sc->sc_ah;
5308
5309	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
5310	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5311		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
5312		"EEPROM country code");
5313	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5314		"regdomain", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5315		ath_sysctl_regdomain, "I", "EEPROM regdomain code");
5316#ifdef	ATH_DEBUG
5317	sc->sc_debug = ath_debug;
5318	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5319		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
5320		"control debugging printfs");
5321#endif
5322	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5323		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5324		ath_sysctl_slottime, "I", "802.11 slot time (us)");
5325	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5326		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5327		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
5328	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5329		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5330		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
5331	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5332		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5333		ath_sysctl_softled, "I", "enable/disable software LED support");
5334	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5335		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
5336		"GPIO pin connected to LED");
5337	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5338		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
5339		"setting to turn LED on");
5340	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5341		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
5342		"idle time for inactivity LED (ticks)");
5343	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5344		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
5345		"tx antenna (0=auto)");
5346	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5347		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5348		ath_sysctl_rxantenna, "I", "default/rx antenna");
5349	if (ath_hal_hasdiversity(ah))
5350		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5351			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5352			ath_sysctl_diversity, "I", "antenna diversity");
5353	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
5354	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5355		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
5356		"tx descriptor batching");
5357	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5358		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5359		ath_sysctl_diag, "I", "h/w diagnostic control");
5360	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5361		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5362		ath_sysctl_tpscale, "I", "tx power scaling");
5363	if (ath_hal_hastpc(ah)) {
5364		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5365			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5366			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
5367		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5368			"tpack", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5369			ath_sysctl_tpack, "I", "tx power for ack frames");
5370		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5371			"tpcts", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5372			ath_sysctl_tpcts, "I", "tx power for cts frames");
5373	}
5374	if (ath_hal_hasrfsilent(ah)) {
5375		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5376			"rfsilent", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5377			ath_sysctl_rfsilent, "I", "h/w RF silent config");
5378		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5379			"rfkill", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5380			ath_sysctl_rfkill, "I", "enable/disable RF kill switch");
5381	}
5382	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
5383	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5384		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
5385		"mask of error frames to pass when monitoring");
5386}
5387
5388static void
5389ath_bpfattach(struct ath_softc *sc)
5390{
5391	struct ifnet *ifp = sc->sc_ifp;
5392
5393	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5394		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5395		&sc->sc_drvbpf);
5396	/*
5397	 * Initialize constant fields.
5398	 * XXX make header lengths a multiple of 32-bits so subsequent
5399	 *     headers are properly aligned; this is a kludge to keep
5400	 *     certain applications happy.
5401	 *
5402	 * NB: the channel is setup each time we transition to the
5403	 *     RUN state to avoid filling it in for each frame.
5404	 */
5405	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5406	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5407	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5408
5409	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5410	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5411	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5412}
5413
5414/*
5415 * Announce various information on device/driver attach.
5416 */
5417static void
5418ath_announce(struct ath_softc *sc)
5419{
5420#define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5421	struct ifnet *ifp = sc->sc_ifp;
5422	struct ath_hal *ah = sc->sc_ah;
5423	u_int modes, cc;
5424
5425	if_printf(ifp, "mac %d.%d phy %d.%d",
5426		ah->ah_macVersion, ah->ah_macRev,
5427		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5428	/*
5429	 * Print radio revision(s).  We check the wireless modes
5430	 * to avoid falsely printing revs for inoperable parts.
5431	 * Dual-band radio revs are returned in the 5Ghz rev number.
5432	 */
5433	ath_hal_getcountrycode(ah, &cc);
5434	modes = ath_hal_getwirelessmodes(ah, cc);
5435	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5436		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5437			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
5438				ah->ah_analog5GhzRev >> 4,
5439				ah->ah_analog5GhzRev & 0xf,
5440				ah->ah_analog2GhzRev >> 4,
5441				ah->ah_analog2GhzRev & 0xf);
5442		else
5443			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5444				ah->ah_analog5GhzRev & 0xf);
5445	} else
5446		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5447			ah->ah_analog5GhzRev & 0xf);
5448	printf("\n");
5449	if (bootverbose) {
5450		int i;
5451		for (i = 0; i <= WME_AC_VO; i++) {
5452			struct ath_txq *txq = sc->sc_ac2q[i];
5453			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5454				txq->axq_qnum, ieee80211_wme_acnames[i]);
5455		}
5456		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5457			sc->sc_cabq->axq_qnum);
5458		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5459	}
5460	if (ath_rxbuf != ATH_RXBUF)
5461		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5462	if (ath_txbuf != ATH_TXBUF)
5463		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5464#undef HAL_MODE_DUALBAND
5465}
5466