if_ath.c revision 155492
1/*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 * 3. Neither the names of the above-listed copyright holders nor the names
16 *    of any contributors may be used to endorse or promote products derived
17 *    from this software without specific prior written permission.
18 *
19 * Alternatively, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") version 2 as published by the Free
21 * Software Foundation.
22 *
23 * NO WARRANTY
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34 * THE POSSIBILITY OF SUCH DAMAGES.
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 155492 2006-02-09 22:03:26Z sam $");
39
40/*
41 * Driver for the Atheros Wireless LAN controller.
42 *
43 * This software is derived from work of Atsushi Onoe; his contribution
44 * is greatly appreciated.
45 */
46
47#include "opt_inet.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/sysctl.h>
52#include <sys/mbuf.h>
53#include <sys/malloc.h>
54#include <sys/lock.h>
55#include <sys/mutex.h>
56#include <sys/kernel.h>
57#include <sys/socket.h>
58#include <sys/sockio.h>
59#include <sys/errno.h>
60#include <sys/callout.h>
61#include <sys/bus.h>
62#include <sys/endian.h>
63#include <sys/kthread.h>
64#include <sys/taskqueue.h>
65
66#include <machine/bus.h>
67
68#include <net/if.h>
69#include <net/if_dl.h>
70#include <net/if_media.h>
71#include <net/if_types.h>
72#include <net/if_arp.h>
73#include <net/ethernet.h>
74#include <net/if_llc.h>
75
76#include <net80211/ieee80211_var.h>
77
78#include <net/bpf.h>
79
80#ifdef INET
81#include <netinet/in.h>
82#include <netinet/if_ether.h>
83#endif
84
85#define	AR_DEBUG
86#include <dev/ath/if_athvar.h>
87#include <contrib/dev/ath/ah_desc.h>
88#include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
89
90#ifdef ATH_TX99_DIAG
91#include <dev/ath/ath_tx99/ath_tx99.h>
92#endif
93
94/* unaligned little endian access */
95#define LE_READ_2(p)							\
96	((u_int16_t)							\
97	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
98#define LE_READ_4(p)							\
99	((u_int32_t)							\
100	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
101	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
102
103enum {
104	ATH_LED_TX,
105	ATH_LED_RX,
106	ATH_LED_POLL,
107};
108
109static void	ath_init(void *);
110static void	ath_stop_locked(struct ifnet *);
111static void	ath_stop(struct ifnet *);
112static void	ath_start(struct ifnet *);
113static int	ath_reset(struct ifnet *);
114static int	ath_media_change(struct ifnet *);
115static void	ath_watchdog(struct ifnet *);
116static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
117static void	ath_fatal_proc(void *, int);
118static void	ath_rxorn_proc(void *, int);
119static void	ath_bmiss_proc(void *, int);
120static int	ath_key_alloc(struct ieee80211com *,
121			const struct ieee80211_key *,
122			ieee80211_keyix *, ieee80211_keyix *);
123static int	ath_key_delete(struct ieee80211com *,
124			const struct ieee80211_key *);
125static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
126			const u_int8_t mac[IEEE80211_ADDR_LEN]);
127static void	ath_key_update_begin(struct ieee80211com *);
128static void	ath_key_update_end(struct ieee80211com *);
129static void	ath_mode_init(struct ath_softc *);
130static void	ath_setslottime(struct ath_softc *);
131static void	ath_updateslot(struct ifnet *);
132static int	ath_beaconq_setup(struct ath_hal *);
133static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
134static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
135static void	ath_beacon_proc(void *, int);
136static void	ath_bstuck_proc(void *, int);
137static void	ath_beacon_free(struct ath_softc *);
138static void	ath_beacon_config(struct ath_softc *);
139static void	ath_descdma_cleanup(struct ath_softc *sc,
140			struct ath_descdma *, ath_bufhead *);
141static int	ath_desc_alloc(struct ath_softc *);
142static void	ath_desc_free(struct ath_softc *);
143static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
144static void	ath_node_free(struct ieee80211_node *);
145static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
146static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
147static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
148			struct ieee80211_node *ni,
149			int subtype, int rssi, u_int32_t rstamp);
150static void	ath_setdefantenna(struct ath_softc *, u_int);
151static void	ath_rx_proc(void *, int);
152static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
153static int	ath_tx_setup(struct ath_softc *, int, int);
154static int	ath_wme_update(struct ieee80211com *);
155static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
156static void	ath_tx_cleanup(struct ath_softc *);
157static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
158			     struct ath_buf *, struct mbuf *);
159static void	ath_tx_proc_q0(void *, int);
160static void	ath_tx_proc_q0123(void *, int);
161static void	ath_tx_proc(void *, int);
162static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
163static void	ath_draintxq(struct ath_softc *);
164static void	ath_stoprecv(struct ath_softc *);
165static int	ath_startrecv(struct ath_softc *);
166static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
167static void	ath_next_scan(void *);
168static void	ath_calibrate(void *);
169static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
170static void	ath_setup_stationkey(struct ieee80211_node *);
171static void	ath_newassoc(struct ieee80211_node *, int);
172static int	ath_getchannels(struct ath_softc *, u_int cc,
173			HAL_BOOL outdoor, HAL_BOOL xchanmode);
174static void	ath_led_event(struct ath_softc *, int);
175static void	ath_update_txpow(struct ath_softc *);
176
177static int	ath_rate_setup(struct ath_softc *, u_int mode);
178static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
179
180static void	ath_sysctlattach(struct ath_softc *);
181static void	ath_bpfattach(struct ath_softc *);
182static void	ath_announce(struct ath_softc *);
183
184SYSCTL_DECL(_hw_ath);
185
186/* XXX validate sysctl values */
187static	int ath_dwelltime = 200;		/* 5 channels/second */
188SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
189	    0, "channel dwell time (ms) for AP/station scanning");
190static	int ath_calinterval = 30;		/* calibrate every 30 secs */
191SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
192	    0, "chip calibration interval (secs)");
193static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
194SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
195	    0, "outdoor operation");
196TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
197static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
198SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
199	    0, "extended channel mode");
200TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
201static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
202SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
203	    0, "country code");
204TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
205static	int ath_regdomain = 0;			/* regulatory domain */
206SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
207	    0, "regulatory domain");
208
209static	int ath_rxbuf = ATH_RXBUF;		/* # rx buffers to allocate */
210SYSCTL_INT(_hw_ath, OID_AUTO, rxbuf, CTLFLAG_RD, &ath_rxbuf,
211	    0, "rx buffers allocated");
212TUNABLE_INT("hw.ath.rxbuf", &ath_rxbuf);
213static	int ath_txbuf = ATH_TXBUF;		/* # tx buffers to allocate */
214SYSCTL_INT(_hw_ath, OID_AUTO, txbuf, CTLFLAG_RD, &ath_txbuf,
215	    0, "tx buffers allocated");
216TUNABLE_INT("hw.ath.txbuf", &ath_txbuf);
217
218#ifdef AR_DEBUG
219static	int ath_debug = 0;
220SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
221	    0, "control debugging printfs");
222TUNABLE_INT("hw.ath.debug", &ath_debug);
223enum {
224	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
225	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
226	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
227	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
228	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
229	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
230	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
231	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
232	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
233	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
234	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
235	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
236	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
237	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
238	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
239	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
240	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
241	ATH_DEBUG_LED		= 0x00100000,	/* led management */
242	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
243	ATH_DEBUG_ANY		= 0xffffffff
244};
245#define	IFF_DUMPPKTS(sc, m) \
246	((sc->sc_debug & (m)) || \
247	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
248#define	DPRINTF(sc, m, fmt, ...) do {				\
249	if (sc->sc_debug & (m))					\
250		printf(fmt, __VA_ARGS__);			\
251} while (0)
252#define	KEYPRINTF(sc, ix, hk, mac) do {				\
253	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
254		ath_keyprint(__func__, ix, hk, mac);		\
255} while (0)
256static	void ath_printrxbuf(struct ath_buf *bf, int);
257static	void ath_printtxbuf(struct ath_buf *bf, int);
258#else
259#define	IFF_DUMPPKTS(sc, m) \
260	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
261#define	DPRINTF(m, fmt, ...)
262#define	KEYPRINTF(sc, k, ix, mac)
263#endif
264
265MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
266
267int
268ath_attach(u_int16_t devid, struct ath_softc *sc)
269{
270	struct ifnet *ifp;
271	struct ieee80211com *ic = &sc->sc_ic;
272	struct ath_hal *ah = NULL;
273	HAL_STATUS status;
274	int error = 0, i;
275
276	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
277
278	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
279	if (ifp == NULL) {
280		device_printf(sc->sc_dev, "can not if_alloc()\n");
281		error = ENOSPC;
282		goto bad;
283	}
284
285	/* set these up early for if_printf use */
286	if_initname(ifp, device_get_name(sc->sc_dev),
287		device_get_unit(sc->sc_dev));
288
289	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
290	if (ah == NULL) {
291		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
292			status);
293		error = ENXIO;
294		goto bad;
295	}
296	if (ah->ah_abi != HAL_ABI_VERSION) {
297		if_printf(ifp, "HAL ABI mismatch detected "
298			"(HAL:0x%x != driver:0x%x)\n",
299			ah->ah_abi, HAL_ABI_VERSION);
300		error = ENXIO;
301		goto bad;
302	}
303	sc->sc_ah = ah;
304	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
305
306	/*
307	 * Check if the MAC has multi-rate retry support.
308	 * We do this by trying to setup a fake extended
309	 * descriptor.  MAC's that don't have support will
310	 * return false w/o doing anything.  MAC's that do
311	 * support it will return true w/o doing anything.
312	 */
313	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
314
315	/*
316	 * Check if the device has hardware counters for PHY
317	 * errors.  If so we need to enable the MIB interrupt
318	 * so we can act on stat triggers.
319	 */
320	if (ath_hal_hwphycounters(ah))
321		sc->sc_needmib = 1;
322
323	/*
324	 * Get the hardware key cache size.
325	 */
326	sc->sc_keymax = ath_hal_keycachesize(ah);
327	if (sc->sc_keymax > ATH_KEYMAX) {
328		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
329			ATH_KEYMAX, sc->sc_keymax);
330		sc->sc_keymax = ATH_KEYMAX;
331	}
332	/*
333	 * Reset the key cache since some parts do not
334	 * reset the contents on initial power up.
335	 */
336	for (i = 0; i < sc->sc_keymax; i++)
337		ath_hal_keyreset(ah, i);
338	/*
339	 * Mark key cache slots associated with global keys
340	 * as in use.  If we knew TKIP was not to be used we
341	 * could leave the +32, +64, and +32+64 slots free.
342	 * XXX only for splitmic.
343	 */
344	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
345		setbit(sc->sc_keymap, i);
346		setbit(sc->sc_keymap, i+32);
347		setbit(sc->sc_keymap, i+64);
348		setbit(sc->sc_keymap, i+32+64);
349	}
350
351	/*
352	 * Collect the channel list using the default country
353	 * code and including outdoor channels.  The 802.11 layer
354	 * is resposible for filtering this list based on settings
355	 * like the phy mode.
356	 */
357	error = ath_getchannels(sc, ath_countrycode,
358			ath_outdoor, ath_xchanmode);
359	if (error != 0)
360		goto bad;
361
362	/*
363	 * Setup rate tables for all potential media types.
364	 */
365	ath_rate_setup(sc, IEEE80211_MODE_11A);
366	ath_rate_setup(sc, IEEE80211_MODE_11B);
367	ath_rate_setup(sc, IEEE80211_MODE_11G);
368	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
369	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
370	/* NB: setup here so ath_rate_update is happy */
371	ath_setcurmode(sc, IEEE80211_MODE_11A);
372
373	/*
374	 * Allocate tx+rx descriptors and populate the lists.
375	 */
376	error = ath_desc_alloc(sc);
377	if (error != 0) {
378		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
379		goto bad;
380	}
381	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
382	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
383
384	ATH_TXBUF_LOCK_INIT(sc);
385
386	sc->sc_tq = taskqueue_create("ath_taskq", M_NOWAIT,
387		taskqueue_thread_enqueue, &sc->sc_tq);
388	taskqueue_start_threads(&sc->sc_tq, 1, PI_NET,
389		"%s taskq", ifp->if_xname);
390
391	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
392	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
393	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
394	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
395	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
396
397	/*
398	 * Allocate hardware transmit queues: one queue for
399	 * beacon frames and one data queue for each QoS
400	 * priority.  Note that the hal handles reseting
401	 * these queues at the needed time.
402	 *
403	 * XXX PS-Poll
404	 */
405	sc->sc_bhalq = ath_beaconq_setup(ah);
406	if (sc->sc_bhalq == (u_int) -1) {
407		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
408		error = EIO;
409		goto bad2;
410	}
411	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
412	if (sc->sc_cabq == NULL) {
413		if_printf(ifp, "unable to setup CAB xmit queue!\n");
414		error = EIO;
415		goto bad2;
416	}
417	/* NB: insure BK queue is the lowest priority h/w queue */
418	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
419		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
420			ieee80211_wme_acnames[WME_AC_BK]);
421		error = EIO;
422		goto bad2;
423	}
424	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
425	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
426	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
427		/*
428		 * Not enough hardware tx queues to properly do WME;
429		 * just punt and assign them all to the same h/w queue.
430		 * We could do a better job of this if, for example,
431		 * we allocate queues when we switch from station to
432		 * AP mode.
433		 */
434		if (sc->sc_ac2q[WME_AC_VI] != NULL)
435			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
436		if (sc->sc_ac2q[WME_AC_BE] != NULL)
437			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
438		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
439		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
440		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
441	}
442
443	/*
444	 * Special case certain configurations.  Note the
445	 * CAB queue is handled by these specially so don't
446	 * include them when checking the txq setup mask.
447	 */
448	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
449	case 0x01:
450		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
451		break;
452	case 0x0f:
453		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
454		break;
455	default:
456		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
457		break;
458	}
459
460	/*
461	 * Setup rate control.  Some rate control modules
462	 * call back to change the anntena state so expose
463	 * the necessary entry points.
464	 * XXX maybe belongs in struct ath_ratectrl?
465	 */
466	sc->sc_setdefantenna = ath_setdefantenna;
467	sc->sc_rc = ath_rate_attach(sc);
468	if (sc->sc_rc == NULL) {
469		error = EIO;
470		goto bad2;
471	}
472
473	sc->sc_blinking = 0;
474	sc->sc_ledstate = 1;
475	sc->sc_ledon = 0;			/* low true */
476	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
477	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
478	/*
479	 * Auto-enable soft led processing for IBM cards and for
480	 * 5211 minipci cards.  Users can also manually enable/disable
481	 * support with a sysctl.
482	 */
483	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
484	if (sc->sc_softled) {
485		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
486		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
487	}
488
489	ifp->if_softc = sc;
490	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
491	ifp->if_start = ath_start;
492	ifp->if_watchdog = ath_watchdog;
493	ifp->if_ioctl = ath_ioctl;
494	ifp->if_init = ath_init;
495	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
496	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
497	IFQ_SET_READY(&ifp->if_snd);
498
499	ic->ic_ifp = ifp;
500	ic->ic_reset = ath_reset;
501	ic->ic_newassoc = ath_newassoc;
502	ic->ic_updateslot = ath_updateslot;
503	ic->ic_wme.wme_update = ath_wme_update;
504	/* XXX not right but it's not used anywhere important */
505	ic->ic_phytype = IEEE80211_T_OFDM;
506	ic->ic_opmode = IEEE80211_M_STA;
507	ic->ic_caps =
508		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
509		| IEEE80211_C_HOSTAP		/* hostap mode */
510		| IEEE80211_C_MONITOR		/* monitor mode */
511		| IEEE80211_C_AHDEMO		/* adhoc demo mode */
512		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
513		| IEEE80211_C_SHSLOT		/* short slot time supported */
514		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
515		;
516	/*
517	 * Query the hal to figure out h/w crypto support.
518	 */
519	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
520		ic->ic_caps |= IEEE80211_C_WEP;
521	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
522		ic->ic_caps |= IEEE80211_C_AES;
523	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
524		ic->ic_caps |= IEEE80211_C_AES_CCM;
525	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
526		ic->ic_caps |= IEEE80211_C_CKIP;
527	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
528		ic->ic_caps |= IEEE80211_C_TKIP;
529		/*
530		 * Check if h/w does the MIC and/or whether the
531		 * separate key cache entries are required to
532		 * handle both tx+rx MIC keys.
533		 */
534		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
535			ic->ic_caps |= IEEE80211_C_TKIPMIC;
536		if (ath_hal_tkipsplit(ah))
537			sc->sc_splitmic = 1;
538	}
539	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
540	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
541	/*
542	 * TPC support can be done either with a global cap or
543	 * per-packet support.  The latter is not available on
544	 * all parts.  We're a bit pedantic here as all parts
545	 * support a global cap.
546	 */
547	if (ath_hal_hastpc(ah) || ath_hal_hastxpowlimit(ah))
548		ic->ic_caps |= IEEE80211_C_TXPMGT;
549
550	/*
551	 * Mark WME capability only if we have sufficient
552	 * hardware queues to do proper priority scheduling.
553	 */
554	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
555		ic->ic_caps |= IEEE80211_C_WME;
556	/*
557	 * Check for misc other capabilities.
558	 */
559	if (ath_hal_hasbursting(ah))
560		ic->ic_caps |= IEEE80211_C_BURST;
561
562	/*
563	 * Indicate we need the 802.11 header padded to a
564	 * 32-bit boundary for 4-address and QoS frames.
565	 */
566	ic->ic_flags |= IEEE80211_F_DATAPAD;
567
568	/*
569	 * Query the hal about antenna support.
570	 */
571	sc->sc_defant = ath_hal_getdefantenna(ah);
572
573	/*
574	 * Not all chips have the VEOL support we want to
575	 * use with IBSS beacons; check here for it.
576	 */
577	sc->sc_hasveol = ath_hal_hasveol(ah);
578
579	/* get mac address from hardware */
580	ath_hal_getmac(ah, ic->ic_myaddr);
581
582	/* call MI attach routine. */
583	ieee80211_ifattach(ic);
584	sc->sc_opmode = ic->ic_opmode;
585	/* override default methods */
586	ic->ic_node_alloc = ath_node_alloc;
587	sc->sc_node_free = ic->ic_node_free;
588	ic->ic_node_free = ath_node_free;
589	ic->ic_node_getrssi = ath_node_getrssi;
590	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
591	ic->ic_recv_mgmt = ath_recv_mgmt;
592	sc->sc_newstate = ic->ic_newstate;
593	ic->ic_newstate = ath_newstate;
594	ic->ic_crypto.cs_max_keyix = sc->sc_keymax;
595	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
596	ic->ic_crypto.cs_key_delete = ath_key_delete;
597	ic->ic_crypto.cs_key_set = ath_key_set;
598	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
599	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
600	/* complete initialization */
601	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
602
603	ath_bpfattach(sc);
604	/*
605	 * Setup dynamic sysctl's now that country code and
606	 * regdomain are available from the hal.
607	 */
608	ath_sysctlattach(sc);
609
610	if (bootverbose)
611		ieee80211_announce(ic);
612	ath_announce(sc);
613	return 0;
614bad2:
615	ath_tx_cleanup(sc);
616	ath_desc_free(sc);
617bad:
618	if (ah)
619		ath_hal_detach(ah);
620	if (ifp != NULL)
621		if_free(ifp);
622	sc->sc_invalid = 1;
623	return error;
624}
625
626int
627ath_detach(struct ath_softc *sc)
628{
629	struct ifnet *ifp = sc->sc_ifp;
630
631	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
632		__func__, ifp->if_flags);
633
634	ath_stop(ifp);
635	bpfdetach(ifp);
636	/*
637	 * NB: the order of these is important:
638	 * o call the 802.11 layer before detaching the hal to
639	 *   insure callbacks into the driver to delete global
640	 *   key cache entries can be handled
641	 * o reclaim the tx queue data structures after calling
642	 *   the 802.11 layer as we'll get called back to reclaim
643	 *   node state and potentially want to use them
644	 * o to cleanup the tx queues the hal is called, so detach
645	 *   it last
646	 * Other than that, it's straightforward...
647	 */
648	ieee80211_ifdetach(&sc->sc_ic);
649#ifdef ATH_TX99_DIAG
650	if (sc->sc_tx99 != NULL)
651		sc->sc_tx99->detach(sc->sc_tx99);
652#endif
653	taskqueue_free(sc->sc_tq);
654	ath_rate_detach(sc->sc_rc);
655	ath_desc_free(sc);
656	ath_tx_cleanup(sc);
657	ath_hal_detach(sc->sc_ah);
658	if_free(ifp);
659
660	return 0;
661}
662
663void
664ath_suspend(struct ath_softc *sc)
665{
666	struct ifnet *ifp = sc->sc_ifp;
667
668	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
669		__func__, ifp->if_flags);
670
671	ath_stop(ifp);
672}
673
674void
675ath_resume(struct ath_softc *sc)
676{
677	struct ifnet *ifp = sc->sc_ifp;
678
679	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
680		__func__, ifp->if_flags);
681
682	if (ifp->if_flags & IFF_UP) {
683		ath_init(sc);
684		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
685			ath_start(ifp);
686	}
687	if (sc->sc_softled) {
688		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
689		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
690	}
691}
692
693void
694ath_shutdown(struct ath_softc *sc)
695{
696	struct ifnet *ifp = sc->sc_ifp;
697
698	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
699		__func__, ifp->if_flags);
700
701	ath_stop(ifp);
702}
703
704/*
705 * Interrupt handler.  Most of the actual processing is deferred.
706 */
707void
708ath_intr(void *arg)
709{
710	struct ath_softc *sc = arg;
711	struct ifnet *ifp = sc->sc_ifp;
712	struct ath_hal *ah = sc->sc_ah;
713	HAL_INT status;
714
715	if (sc->sc_invalid) {
716		/*
717		 * The hardware is not ready/present, don't touch anything.
718		 * Note this can happen early on if the IRQ is shared.
719		 */
720		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
721		return;
722	}
723	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
724		return;
725	if (!((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags &
726	    IFF_DRV_RUNNING))) {
727		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
728			__func__, ifp->if_flags);
729		ath_hal_getisr(ah, &status);	/* clear ISR */
730		ath_hal_intrset(ah, 0);		/* disable further intr's */
731		return;
732	}
733	/*
734	 * Figure out the reason(s) for the interrupt.  Note
735	 * that the hal returns a pseudo-ISR that may include
736	 * bits we haven't explicitly enabled so we mask the
737	 * value to insure we only process bits we requested.
738	 */
739	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
740	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
741	status &= sc->sc_imask;			/* discard unasked for bits */
742	if (status & HAL_INT_FATAL) {
743		/*
744		 * Fatal errors are unrecoverable.  Typically
745		 * these are caused by DMA errors.  Unfortunately
746		 * the exact reason is not (presently) returned
747		 * by the hal.
748		 */
749		sc->sc_stats.ast_hardware++;
750		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
751		taskqueue_enqueue(sc->sc_tq, &sc->sc_fataltask);
752	} else if (status & HAL_INT_RXORN) {
753		sc->sc_stats.ast_rxorn++;
754		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
755		taskqueue_enqueue(sc->sc_tq, &sc->sc_rxorntask);
756	} else {
757		if (status & HAL_INT_SWBA) {
758			/*
759			 * Software beacon alert--time to send a beacon.
760			 * Handle beacon transmission directly; deferring
761			 * this is too slow to meet timing constraints
762			 * under load.
763			 */
764			ath_beacon_proc(sc, 0);
765		}
766		if (status & HAL_INT_RXEOL) {
767			/*
768			 * NB: the hardware should re-read the link when
769			 *     RXE bit is written, but it doesn't work at
770			 *     least on older hardware revs.
771			 */
772			sc->sc_stats.ast_rxeol++;
773			sc->sc_rxlink = NULL;
774		}
775		if (status & HAL_INT_TXURN) {
776			sc->sc_stats.ast_txurn++;
777			/* bump tx trigger level */
778			ath_hal_updatetxtriglevel(ah, AH_TRUE);
779		}
780		if (status & HAL_INT_RX)
781			taskqueue_enqueue(sc->sc_tq, &sc->sc_rxtask);
782		if (status & HAL_INT_TX)
783			taskqueue_enqueue(sc->sc_tq, &sc->sc_txtask);
784		if (status & HAL_INT_BMISS) {
785			sc->sc_stats.ast_bmiss++;
786			taskqueue_enqueue(sc->sc_tq, &sc->sc_bmisstask);
787		}
788		if (status & HAL_INT_MIB) {
789			sc->sc_stats.ast_mib++;
790			/*
791			 * Disable interrupts until we service the MIB
792			 * interrupt; otherwise it will continue to fire.
793			 */
794			ath_hal_intrset(ah, 0);
795			/*
796			 * Let the hal handle the event.  We assume it will
797			 * clear whatever condition caused the interrupt.
798			 */
799			ath_hal_mibevent(ah, &sc->sc_halstats);
800			ath_hal_intrset(ah, sc->sc_imask);
801		}
802	}
803}
804
805static void
806ath_fatal_proc(void *arg, int pending)
807{
808	struct ath_softc *sc = arg;
809	struct ifnet *ifp = sc->sc_ifp;
810
811	if_printf(ifp, "hardware error; resetting\n");
812	ath_reset(ifp);
813}
814
815static void
816ath_rxorn_proc(void *arg, int pending)
817{
818	struct ath_softc *sc = arg;
819	struct ifnet *ifp = sc->sc_ifp;
820
821	if_printf(ifp, "rx FIFO overrun; resetting\n");
822	ath_reset(ifp);
823}
824
825static void
826ath_bmiss_proc(void *arg, int pending)
827{
828	struct ath_softc *sc = arg;
829	struct ieee80211com *ic = &sc->sc_ic;
830
831	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
832	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
833		("unexpect operating mode %u", ic->ic_opmode));
834	if (ic->ic_state == IEEE80211_S_RUN) {
835		u_int64_t lastrx = sc->sc_lastrx;
836		u_int64_t tsf = ath_hal_gettsf64(sc->sc_ah);
837		u_int bmisstimeout =
838			ic->ic_bmissthreshold * ic->ic_bss->ni_intval * 1024;
839
840		DPRINTF(sc, ATH_DEBUG_BEACON,
841		    "%s: tsf %llu lastrx %lld (%llu) bmiss %u\n",
842		    __func__, (unsigned long long) tsf,
843		    (unsigned long long)(tsf - lastrx),
844		    (unsigned long long) lastrx, bmisstimeout);
845		/*
846		 * Workaround phantom bmiss interrupts by sanity-checking
847		 * the time of our last rx'd frame.  If it is within the
848		 * beacon miss interval then ignore the interrupt.  If it's
849		 * truly a bmiss we'll get another interrupt soon and that'll
850		 * be dispatched up for processing.
851		 */
852		if (tsf - lastrx > bmisstimeout) {
853			NET_LOCK_GIANT();
854			ieee80211_beacon_miss(ic);
855			NET_UNLOCK_GIANT();
856		} else
857			sc->sc_stats.ast_bmiss_phantom++;
858	}
859}
860
861static u_int
862ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
863{
864#define	N(a)	(sizeof(a) / sizeof(a[0]))
865	static const u_int modeflags[] = {
866		0,			/* IEEE80211_MODE_AUTO */
867		CHANNEL_A,		/* IEEE80211_MODE_11A */
868		CHANNEL_B,		/* IEEE80211_MODE_11B */
869		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
870		0,			/* IEEE80211_MODE_FH */
871		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
872		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
873	};
874	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
875
876	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
877	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
878	return modeflags[mode];
879#undef N
880}
881
882static void
883ath_init(void *arg)
884{
885	struct ath_softc *sc = (struct ath_softc *) arg;
886	struct ieee80211com *ic = &sc->sc_ic;
887	struct ifnet *ifp = sc->sc_ifp;
888	struct ath_hal *ah = sc->sc_ah;
889	HAL_STATUS status;
890
891	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
892		__func__, ifp->if_flags);
893
894	ATH_LOCK(sc);
895	/*
896	 * Stop anything previously setup.  This is safe
897	 * whether this is the first time through or not.
898	 */
899	ath_stop_locked(ifp);
900
901	/*
902	 * The basic interface to setting the hardware in a good
903	 * state is ``reset''.  On return the hardware is known to
904	 * be powered up and with interrupts disabled.  This must
905	 * be followed by initialization of the appropriate bits
906	 * and then setup of the interrupt mask.
907	 */
908	sc->sc_curchan.channel = ic->ic_curchan->ic_freq;
909	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_curchan);
910	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
911		if_printf(ifp, "unable to reset hardware; hal status %u\n",
912			status);
913		goto done;
914	}
915
916	/*
917	 * This is needed only to setup initial state
918	 * but it's best done after a reset.
919	 */
920	ath_update_txpow(sc);
921	/*
922	 * Likewise this is set during reset so update
923	 * state cached in the driver.
924	 */
925	sc->sc_diversity = ath_hal_getdiversity(ah);
926
927	/*
928	 * Setup the hardware after reset: the key cache
929	 * is filled as needed and the receive engine is
930	 * set going.  Frame transmit is handled entirely
931	 * in the frame output path; there's nothing to do
932	 * here except setup the interrupt mask.
933	 */
934	if (ath_startrecv(sc) != 0) {
935		if_printf(ifp, "unable to start recv logic\n");
936		goto done;
937	}
938
939	/*
940	 * Enable interrupts.
941	 */
942	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
943		  | HAL_INT_RXEOL | HAL_INT_RXORN
944		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
945	/*
946	 * Enable MIB interrupts when there are hardware phy counters.
947	 * Note we only do this (at the moment) for station mode.
948	 */
949	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
950		sc->sc_imask |= HAL_INT_MIB;
951	ath_hal_intrset(ah, sc->sc_imask);
952
953	ifp->if_drv_flags |= IFF_DRV_RUNNING;
954	ic->ic_state = IEEE80211_S_INIT;
955
956	/*
957	 * The hardware should be ready to go now so it's safe
958	 * to kick the 802.11 state machine as it's likely to
959	 * immediately call back to us to send mgmt frames.
960	 */
961	ath_chan_change(sc, ic->ic_curchan);
962#ifdef ATH_TX99_DIAG
963	if (sc->sc_tx99 != NULL)
964		sc->sc_tx99->start(sc->sc_tx99);
965	else
966#endif
967	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
968		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
969			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
970	} else
971		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
972done:
973	ATH_UNLOCK(sc);
974}
975
976static void
977ath_stop_locked(struct ifnet *ifp)
978{
979	struct ath_softc *sc = ifp->if_softc;
980	struct ieee80211com *ic = &sc->sc_ic;
981	struct ath_hal *ah = sc->sc_ah;
982
983	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
984		__func__, sc->sc_invalid, ifp->if_flags);
985
986	ATH_LOCK_ASSERT(sc);
987	if (ifp->if_drv_flags & IFF_DRV_RUNNING) {
988		/*
989		 * Shutdown the hardware and driver:
990		 *    reset 802.11 state machine
991		 *    turn off timers
992		 *    disable interrupts
993		 *    turn off the radio
994		 *    clear transmit machinery
995		 *    clear receive machinery
996		 *    drain and release tx queues
997		 *    reclaim beacon resources
998		 *    power down hardware
999		 *
1000		 * Note that some of this work is not possible if the
1001		 * hardware is gone (invalid).
1002		 */
1003#ifdef ATH_TX99_DIAG
1004		if (sc->sc_tx99 != NULL)
1005			sc->sc_tx99->stop(sc->sc_tx99);
1006#endif
1007		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
1008		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1009		ifp->if_timer = 0;
1010		if (!sc->sc_invalid) {
1011			if (sc->sc_softled) {
1012				callout_stop(&sc->sc_ledtimer);
1013				ath_hal_gpioset(ah, sc->sc_ledpin,
1014					!sc->sc_ledon);
1015				sc->sc_blinking = 0;
1016			}
1017			ath_hal_intrset(ah, 0);
1018		}
1019		ath_draintxq(sc);
1020		if (!sc->sc_invalid) {
1021			ath_stoprecv(sc);
1022			ath_hal_phydisable(ah);
1023		} else
1024			sc->sc_rxlink = NULL;
1025		IFQ_DRV_PURGE(&ifp->if_snd);
1026		ath_beacon_free(sc);
1027	}
1028}
1029
1030static void
1031ath_stop(struct ifnet *ifp)
1032{
1033	struct ath_softc *sc = ifp->if_softc;
1034
1035	ATH_LOCK(sc);
1036	ath_stop_locked(ifp);
1037	if (!sc->sc_invalid) {
1038		/*
1039		 * Set the chip in full sleep mode.  Note that we are
1040		 * careful to do this only when bringing the interface
1041		 * completely to a stop.  When the chip is in this state
1042		 * it must be carefully woken up or references to
1043		 * registers in the PCI clock domain may freeze the bus
1044		 * (and system).  This varies by chip and is mostly an
1045		 * issue with newer parts that go to sleep more quickly.
1046		 */
1047		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
1048	}
1049	ATH_UNLOCK(sc);
1050}
1051
1052/*
1053 * Reset the hardware w/o losing operational state.  This is
1054 * basically a more efficient way of doing ath_stop, ath_init,
1055 * followed by state transitions to the current 802.11
1056 * operational state.  Used to recover from various errors and
1057 * to reset or reload hardware state.
1058 */
1059static int
1060ath_reset(struct ifnet *ifp)
1061{
1062	struct ath_softc *sc = ifp->if_softc;
1063	struct ieee80211com *ic = &sc->sc_ic;
1064	struct ath_hal *ah = sc->sc_ah;
1065	struct ieee80211_channel *c;
1066	HAL_STATUS status;
1067
1068	/*
1069	 * Convert to a HAL channel description with the flags
1070	 * constrained to reflect the current operating mode.
1071	 */
1072	c = ic->ic_curchan;
1073	sc->sc_curchan.channel = c->ic_freq;
1074	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1075
1076	ath_hal_intrset(ah, 0);		/* disable interrupts */
1077	ath_draintxq(sc);		/* stop xmit side */
1078	ath_stoprecv(sc);		/* stop recv side */
1079	/* NB: indicate channel change so we do a full reset */
1080	if (!ath_hal_reset(ah, sc->sc_opmode, &sc->sc_curchan, AH_TRUE, &status))
1081		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1082			__func__, status);
1083	ath_update_txpow(sc);		/* update tx power state */
1084	sc->sc_diversity = ath_hal_getdiversity(ah);
1085	if (ath_startrecv(sc) != 0)	/* restart recv */
1086		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1087	/*
1088	 * We may be doing a reset in response to an ioctl
1089	 * that changes the channel so update any state that
1090	 * might change as a result.
1091	 */
1092	ath_chan_change(sc, c);
1093	if (ic->ic_state == IEEE80211_S_RUN)
1094		ath_beacon_config(sc);	/* restart beacons */
1095	ath_hal_intrset(ah, sc->sc_imask);
1096
1097	ath_start(ifp);			/* restart xmit */
1098	return 0;
1099}
1100
1101static void
1102ath_start(struct ifnet *ifp)
1103{
1104	struct ath_softc *sc = ifp->if_softc;
1105	struct ath_hal *ah = sc->sc_ah;
1106	struct ieee80211com *ic = &sc->sc_ic;
1107	struct ieee80211_node *ni;
1108	struct ath_buf *bf;
1109	struct mbuf *m;
1110	struct ieee80211_frame *wh;
1111	struct ether_header *eh;
1112
1113	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
1114		return;
1115	for (;;) {
1116		/*
1117		 * Grab a TX buffer and associated resources.
1118		 */
1119		ATH_TXBUF_LOCK(sc);
1120		bf = STAILQ_FIRST(&sc->sc_txbuf);
1121		if (bf != NULL)
1122			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1123		ATH_TXBUF_UNLOCK(sc);
1124		if (bf == NULL) {
1125			DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1126				__func__);
1127			sc->sc_stats.ast_tx_qstop++;
1128			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1129			break;
1130		}
1131		/*
1132		 * Poll the management queue for frames; they
1133		 * have priority over normal data frames.
1134		 */
1135		IF_DEQUEUE(&ic->ic_mgtq, m);
1136		if (m == NULL) {
1137			/*
1138			 * No data frames go out unless we're associated.
1139			 */
1140			if (ic->ic_state != IEEE80211_S_RUN) {
1141				DPRINTF(sc, ATH_DEBUG_ANY,
1142					"%s: ignore data packet, state %u\n",
1143					__func__, ic->ic_state);
1144				sc->sc_stats.ast_tx_discard++;
1145				ATH_TXBUF_LOCK(sc);
1146				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1147				ATH_TXBUF_UNLOCK(sc);
1148				break;
1149			}
1150			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1151			if (m == NULL) {
1152				ATH_TXBUF_LOCK(sc);
1153				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1154				ATH_TXBUF_UNLOCK(sc);
1155				break;
1156			}
1157			/*
1158			 * Find the node for the destination so we can do
1159			 * things like power save and fast frames aggregation.
1160			 */
1161			if (m->m_len < sizeof(struct ether_header) &&
1162			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1163				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1164				ni = NULL;
1165				goto bad;
1166			}
1167			eh = mtod(m, struct ether_header *);
1168			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1169			if (ni == NULL) {
1170				/* NB: ieee80211_find_txnode does stat+msg */
1171				m_freem(m);
1172				goto bad;
1173			}
1174			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1175			    (m->m_flags & M_PWR_SAV) == 0) {
1176				/*
1177				 * Station in power save mode; pass the frame
1178				 * to the 802.11 layer and continue.  We'll get
1179				 * the frame back when the time is right.
1180				 */
1181				ieee80211_pwrsave(ic, ni, m);
1182				goto reclaim;
1183			}
1184			/* calculate priority so we can find the tx queue */
1185			if (ieee80211_classify(ic, m, ni)) {
1186				DPRINTF(sc, ATH_DEBUG_XMIT,
1187					"%s: discard, classification failure\n",
1188					__func__);
1189				m_freem(m);
1190				goto bad;
1191			}
1192			ifp->if_opackets++;
1193			BPF_MTAP(ifp, m);
1194			/*
1195			 * Encapsulate the packet in prep for transmission.
1196			 */
1197			m = ieee80211_encap(ic, m, ni);
1198			if (m == NULL) {
1199				DPRINTF(sc, ATH_DEBUG_ANY,
1200					"%s: encapsulation failure\n",
1201					__func__);
1202				sc->sc_stats.ast_tx_encap++;
1203				goto bad;
1204			}
1205		} else {
1206			/*
1207			 * Hack!  The referenced node pointer is in the
1208			 * rcvif field of the packet header.  This is
1209			 * placed there by ieee80211_mgmt_output because
1210			 * we need to hold the reference with the frame
1211			 * and there's no other way (other than packet
1212			 * tags which we consider too expensive to use)
1213			 * to pass it along.
1214			 */
1215			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1216			m->m_pkthdr.rcvif = NULL;
1217
1218			wh = mtod(m, struct ieee80211_frame *);
1219			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1220			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1221				/* fill time stamp */
1222				u_int64_t tsf;
1223				u_int32_t *tstamp;
1224
1225				tsf = ath_hal_gettsf64(ah);
1226				/* XXX: adjust 100us delay to xmit */
1227				tsf += 100;
1228				tstamp = (u_int32_t *)&wh[1];
1229				tstamp[0] = htole32(tsf & 0xffffffff);
1230				tstamp[1] = htole32(tsf >> 32);
1231			}
1232			sc->sc_stats.ast_tx_mgmt++;
1233		}
1234
1235		if (ath_tx_start(sc, ni, bf, m)) {
1236	bad:
1237			ifp->if_oerrors++;
1238	reclaim:
1239			ATH_TXBUF_LOCK(sc);
1240			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1241			ATH_TXBUF_UNLOCK(sc);
1242			if (ni != NULL)
1243				ieee80211_free_node(ni);
1244			continue;
1245		}
1246
1247		sc->sc_tx_timer = 5;
1248		ifp->if_timer = 1;
1249	}
1250}
1251
1252static int
1253ath_media_change(struct ifnet *ifp)
1254{
1255#define	IS_UP(ifp) \
1256	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
1257	int error;
1258
1259	error = ieee80211_media_change(ifp);
1260	if (error == ENETRESET) {
1261		struct ath_softc *sc = ifp->if_softc;
1262		struct ieee80211com *ic = &sc->sc_ic;
1263
1264		if (ic->ic_opmode == IEEE80211_M_AHDEMO) {
1265			/*
1266			 * Adhoc demo mode is just ibss mode w/o beacons
1267			 * (mostly).  The hal knows nothing about it;
1268			 * tell it we're operating in ibss mode.
1269			 */
1270			sc->sc_opmode = HAL_M_IBSS;
1271		} else
1272			sc->sc_opmode = ic->ic_opmode;
1273		if (IS_UP(ifp))
1274			ath_init(ifp->if_softc);	/* XXX lose error */
1275		error = 0;
1276	}
1277	return error;
1278#undef IS_UP
1279}
1280
1281#ifdef AR_DEBUG
1282static void
1283ath_keyprint(const char *tag, u_int ix,
1284	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1285{
1286	static const char *ciphers[] = {
1287		"WEP",
1288		"AES-OCB",
1289		"AES-CCM",
1290		"CKIP",
1291		"TKIP",
1292		"CLR",
1293	};
1294	int i, n;
1295
1296	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1297	for (i = 0, n = hk->kv_len; i < n; i++)
1298		printf("%02x", hk->kv_val[i]);
1299	printf(" mac %s", ether_sprintf(mac));
1300	if (hk->kv_type == HAL_CIPHER_TKIP) {
1301		printf(" mic ");
1302		for (i = 0; i < sizeof(hk->kv_mic); i++)
1303			printf("%02x", hk->kv_mic[i]);
1304	}
1305	printf("\n");
1306}
1307#endif
1308
1309/*
1310 * Set a TKIP key into the hardware.  This handles the
1311 * potential distribution of key state to multiple key
1312 * cache slots for TKIP.
1313 */
1314static int
1315ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1316	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1317{
1318#define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1319	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1320	struct ath_hal *ah = sc->sc_ah;
1321
1322	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1323		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1324	KASSERT(sc->sc_splitmic, ("key cache !split"));
1325	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1326		/*
1327		 * TX key goes at first index, RX key at the rx index.
1328		 * The hal handles the MIC keys at index+64.
1329		 */
1330		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1331		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1332		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1333			return 0;
1334
1335		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1336		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1337		/* XXX delete tx key on failure? */
1338		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1339	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1340		/*
1341		 * TX/RX key goes at first index.
1342		 * The hal handles the MIC keys are index+64.
1343		 */
1344		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1345			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1346		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1347		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1348	}
1349	return 0;
1350#undef IEEE80211_KEY_XR
1351}
1352
1353/*
1354 * Set a net80211 key into the hardware.  This handles the
1355 * potential distribution of key state to multiple key
1356 * cache slots for TKIP with hardware MIC support.
1357 */
1358static int
1359ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1360	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1361	struct ieee80211_node *bss)
1362{
1363#define	N(a)	(sizeof(a)/sizeof(a[0]))
1364	static const u_int8_t ciphermap[] = {
1365		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1366		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1367		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1368		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1369		(u_int8_t) -1,		/* 4 is not allocated */
1370		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1371		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1372	};
1373	struct ath_hal *ah = sc->sc_ah;
1374	const struct ieee80211_cipher *cip = k->wk_cipher;
1375	u_int8_t gmac[IEEE80211_ADDR_LEN];
1376	const u_int8_t *mac;
1377	HAL_KEYVAL hk;
1378
1379	memset(&hk, 0, sizeof(hk));
1380	/*
1381	 * Software crypto uses a "clear key" so non-crypto
1382	 * state kept in the key cache are maintained and
1383	 * so that rx frames have an entry to match.
1384	 */
1385	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1386		KASSERT(cip->ic_cipher < N(ciphermap),
1387			("invalid cipher type %u", cip->ic_cipher));
1388		hk.kv_type = ciphermap[cip->ic_cipher];
1389		hk.kv_len = k->wk_keylen;
1390		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1391	} else
1392		hk.kv_type = HAL_CIPHER_CLR;
1393
1394	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1395		/*
1396		 * Group keys on hardware that supports multicast frame
1397		 * key search use a mac that is the sender's address with
1398		 * the high bit set instead of the app-specified address.
1399		 */
1400		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1401		gmac[0] |= 0x80;
1402		mac = gmac;
1403	} else
1404		mac = mac0;
1405
1406	if (hk.kv_type == HAL_CIPHER_TKIP &&
1407	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1408	    sc->sc_splitmic) {
1409		return ath_keyset_tkip(sc, k, &hk, mac);
1410	} else {
1411		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1412		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1413	}
1414#undef N
1415}
1416
1417/*
1418 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1419 * each key, one for decrypt/encrypt and the other for the MIC.
1420 */
1421static u_int16_t
1422key_alloc_2pair(struct ath_softc *sc,
1423	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1424{
1425#define	N(a)	(sizeof(a)/sizeof(a[0]))
1426	u_int i, keyix;
1427
1428	KASSERT(sc->sc_splitmic, ("key cache !split"));
1429	/* XXX could optimize */
1430	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1431		u_int8_t b = sc->sc_keymap[i];
1432		if (b != 0xff) {
1433			/*
1434			 * One or more slots in this byte are free.
1435			 */
1436			keyix = i*NBBY;
1437			while (b & 1) {
1438		again:
1439				keyix++;
1440				b >>= 1;
1441			}
1442			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1443			if (isset(sc->sc_keymap, keyix+32) ||
1444			    isset(sc->sc_keymap, keyix+64) ||
1445			    isset(sc->sc_keymap, keyix+32+64)) {
1446				/* full pair unavailable */
1447				/* XXX statistic */
1448				if (keyix == (i+1)*NBBY) {
1449					/* no slots were appropriate, advance */
1450					continue;
1451				}
1452				goto again;
1453			}
1454			setbit(sc->sc_keymap, keyix);
1455			setbit(sc->sc_keymap, keyix+64);
1456			setbit(sc->sc_keymap, keyix+32);
1457			setbit(sc->sc_keymap, keyix+32+64);
1458			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1459				"%s: key pair %u,%u %u,%u\n",
1460				__func__, keyix, keyix+64,
1461				keyix+32, keyix+32+64);
1462			*txkeyix = keyix;
1463			*rxkeyix = keyix+32;
1464			return 1;
1465		}
1466	}
1467	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1468	return 0;
1469#undef N
1470}
1471
1472/*
1473 * Allocate a single key cache slot.
1474 */
1475static int
1476key_alloc_single(struct ath_softc *sc,
1477	ieee80211_keyix *txkeyix, ieee80211_keyix *rxkeyix)
1478{
1479#define	N(a)	(sizeof(a)/sizeof(a[0]))
1480	u_int i, keyix;
1481
1482	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1483	for (i = 0; i < N(sc->sc_keymap); i++) {
1484		u_int8_t b = sc->sc_keymap[i];
1485		if (b != 0xff) {
1486			/*
1487			 * One or more slots are free.
1488			 */
1489			keyix = i*NBBY;
1490			while (b & 1)
1491				keyix++, b >>= 1;
1492			setbit(sc->sc_keymap, keyix);
1493			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1494				__func__, keyix);
1495			*txkeyix = *rxkeyix = keyix;
1496			return 1;
1497		}
1498	}
1499	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1500	return 0;
1501#undef N
1502}
1503
1504/*
1505 * Allocate one or more key cache slots for a uniacst key.  The
1506 * key itself is needed only to identify the cipher.  For hardware
1507 * TKIP with split cipher+MIC keys we allocate two key cache slot
1508 * pairs so that we can setup separate TX and RX MIC keys.  Note
1509 * that the MIC key for a TKIP key at slot i is assumed by the
1510 * hardware to be at slot i+64.  This limits TKIP keys to the first
1511 * 64 entries.
1512 */
1513static int
1514ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k,
1515	ieee80211_keyix *keyix, ieee80211_keyix *rxkeyix)
1516{
1517	struct ath_softc *sc = ic->ic_ifp->if_softc;
1518
1519	/*
1520	 * Group key allocation must be handled specially for
1521	 * parts that do not support multicast key cache search
1522	 * functionality.  For those parts the key id must match
1523	 * the h/w key index so lookups find the right key.  On
1524	 * parts w/ the key search facility we install the sender's
1525	 * mac address (with the high bit set) and let the hardware
1526	 * find the key w/o using the key id.  This is preferred as
1527	 * it permits us to support multiple users for adhoc and/or
1528	 * multi-station operation.
1529	 */
1530	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1531		if (!(&ic->ic_nw_keys[0] <= k &&
1532		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1533			/* should not happen */
1534			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1535				"%s: bogus group key\n", __func__);
1536			return 0;
1537		}
1538		/*
1539		 * XXX we pre-allocate the global keys so
1540		 * have no way to check if they've already been allocated.
1541		 */
1542		*keyix = *rxkeyix = k - ic->ic_nw_keys;
1543		return 1;
1544	}
1545
1546	/*
1547	 * We allocate two pair for TKIP when using the h/w to do
1548	 * the MIC.  For everything else, including software crypto,
1549	 * we allocate a single entry.  Note that s/w crypto requires
1550	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1551	 * not support pass-through cache entries and we map all
1552	 * those requests to slot 0.
1553	 */
1554	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1555		return key_alloc_single(sc, keyix, rxkeyix);
1556	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1557	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1558		return key_alloc_2pair(sc, keyix, rxkeyix);
1559	} else {
1560		return key_alloc_single(sc, keyix, rxkeyix);
1561	}
1562}
1563
1564/*
1565 * Delete an entry in the key cache allocated by ath_key_alloc.
1566 */
1567static int
1568ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1569{
1570	struct ath_softc *sc = ic->ic_ifp->if_softc;
1571	struct ath_hal *ah = sc->sc_ah;
1572	const struct ieee80211_cipher *cip = k->wk_cipher;
1573	u_int keyix = k->wk_keyix;
1574
1575	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1576
1577	ath_hal_keyreset(ah, keyix);
1578	/*
1579	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1580	 */
1581	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1582	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1583		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1584	if (keyix >= IEEE80211_WEP_NKID) {
1585		/*
1586		 * Don't touch keymap entries for global keys so
1587		 * they are never considered for dynamic allocation.
1588		 */
1589		clrbit(sc->sc_keymap, keyix);
1590		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1591		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1592		    sc->sc_splitmic) {
1593			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1594			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1595			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1596		}
1597	}
1598	return 1;
1599}
1600
1601/*
1602 * Set the key cache contents for the specified key.  Key cache
1603 * slot(s) must already have been allocated by ath_key_alloc.
1604 */
1605static int
1606ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1607	const u_int8_t mac[IEEE80211_ADDR_LEN])
1608{
1609	struct ath_softc *sc = ic->ic_ifp->if_softc;
1610
1611	return ath_keyset(sc, k, mac, ic->ic_bss);
1612}
1613
1614/*
1615 * Block/unblock tx+rx processing while a key change is done.
1616 * We assume the caller serializes key management operations
1617 * so we only need to worry about synchronization with other
1618 * uses that originate in the driver.
1619 */
1620static void
1621ath_key_update_begin(struct ieee80211com *ic)
1622{
1623	struct ifnet *ifp = ic->ic_ifp;
1624	struct ath_softc *sc = ifp->if_softc;
1625
1626	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1627#if 0
1628	tasklet_disable(&sc->sc_rxtq);
1629#endif
1630	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1631}
1632
1633static void
1634ath_key_update_end(struct ieee80211com *ic)
1635{
1636	struct ifnet *ifp = ic->ic_ifp;
1637	struct ath_softc *sc = ifp->if_softc;
1638
1639	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1640	IF_UNLOCK(&ifp->if_snd);
1641#if 0
1642	tasklet_enable(&sc->sc_rxtq);
1643#endif
1644}
1645
1646/*
1647 * Calculate the receive filter according to the
1648 * operating mode and state:
1649 *
1650 * o always accept unicast, broadcast, and multicast traffic
1651 * o maintain current state of phy error reception (the hal
1652 *   may enable phy error frames for noise immunity work)
1653 * o probe request frames are accepted only when operating in
1654 *   hostap, adhoc, or monitor modes
1655 * o enable promiscuous mode according to the interface state
1656 * o accept beacons:
1657 *   - when operating in adhoc mode so the 802.11 layer creates
1658 *     node table entries for peers,
1659 *   - when operating in station mode for collecting rssi data when
1660 *     the station is otherwise quiet, or
1661 *   - when scanning
1662 */
1663static u_int32_t
1664ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1665{
1666	struct ieee80211com *ic = &sc->sc_ic;
1667	struct ath_hal *ah = sc->sc_ah;
1668	struct ifnet *ifp = sc->sc_ifp;
1669	u_int32_t rfilt;
1670
1671	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1672	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1673	if (ic->ic_opmode != IEEE80211_M_STA)
1674		rfilt |= HAL_RX_FILTER_PROBEREQ;
1675	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1676	    (ifp->if_flags & IFF_PROMISC))
1677		rfilt |= HAL_RX_FILTER_PROM;
1678	if (ic->ic_opmode == IEEE80211_M_STA ||
1679	    ic->ic_opmode == IEEE80211_M_IBSS ||
1680	    state == IEEE80211_S_SCAN)
1681		rfilt |= HAL_RX_FILTER_BEACON;
1682	return rfilt;
1683}
1684
1685static void
1686ath_mode_init(struct ath_softc *sc)
1687{
1688	struct ieee80211com *ic = &sc->sc_ic;
1689	struct ath_hal *ah = sc->sc_ah;
1690	struct ifnet *ifp = sc->sc_ifp;
1691	u_int32_t rfilt, mfilt[2], val;
1692	u_int8_t pos;
1693	struct ifmultiaddr *ifma;
1694
1695	/* configure rx filter */
1696	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1697	ath_hal_setrxfilter(ah, rfilt);
1698
1699	/* configure operational mode */
1700	ath_hal_setopmode(ah);
1701
1702	/*
1703	 * Handle any link-level address change.  Note that we only
1704	 * need to force ic_myaddr; any other addresses are handled
1705	 * as a byproduct of the ifnet code marking the interface
1706	 * down then up.
1707	 *
1708	 * XXX should get from lladdr instead of arpcom but that's more work
1709	 */
1710	IEEE80211_ADDR_COPY(ic->ic_myaddr, IF_LLADDR(ifp));
1711	ath_hal_setmac(ah, ic->ic_myaddr);
1712
1713	/* calculate and install multicast filter */
1714	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1715		mfilt[0] = mfilt[1] = 0;
1716		IF_ADDR_LOCK(ifp);
1717		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1718			caddr_t dl;
1719
1720			/* calculate XOR of eight 6bit values */
1721			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1722			val = LE_READ_4(dl + 0);
1723			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1724			val = LE_READ_4(dl + 3);
1725			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1726			pos &= 0x3f;
1727			mfilt[pos / 32] |= (1 << (pos % 32));
1728		}
1729		IF_ADDR_UNLOCK(ifp);
1730	} else {
1731		mfilt[0] = mfilt[1] = ~0;
1732	}
1733	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1734	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1735		__func__, rfilt, mfilt[0], mfilt[1]);
1736}
1737
1738/*
1739 * Set the slot time based on the current setting.
1740 */
1741static void
1742ath_setslottime(struct ath_softc *sc)
1743{
1744	struct ieee80211com *ic = &sc->sc_ic;
1745	struct ath_hal *ah = sc->sc_ah;
1746
1747	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1748		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1749	else
1750		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1751	sc->sc_updateslot = OK;
1752}
1753
1754/*
1755 * Callback from the 802.11 layer to update the
1756 * slot time based on the current setting.
1757 */
1758static void
1759ath_updateslot(struct ifnet *ifp)
1760{
1761	struct ath_softc *sc = ifp->if_softc;
1762	struct ieee80211com *ic = &sc->sc_ic;
1763
1764	/*
1765	 * When not coordinating the BSS, change the hardware
1766	 * immediately.  For other operation we defer the change
1767	 * until beacon updates have propagated to the stations.
1768	 */
1769	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1770		sc->sc_updateslot = UPDATE;
1771	else
1772		ath_setslottime(sc);
1773}
1774
1775/*
1776 * Setup a h/w transmit queue for beacons.
1777 */
1778static int
1779ath_beaconq_setup(struct ath_hal *ah)
1780{
1781	HAL_TXQ_INFO qi;
1782
1783	memset(&qi, 0, sizeof(qi));
1784	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1785	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1786	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1787	/* NB: for dynamic turbo, don't enable any other interrupts */
1788	qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1789	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1790}
1791
1792/*
1793 * Setup the transmit queue parameters for the beacon queue.
1794 */
1795static int
1796ath_beaconq_config(struct ath_softc *sc)
1797{
1798#define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
1799	struct ieee80211com *ic = &sc->sc_ic;
1800	struct ath_hal *ah = sc->sc_ah;
1801	HAL_TXQ_INFO qi;
1802
1803	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1804	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1805		/*
1806		 * Always burst out beacon and CAB traffic.
1807		 */
1808		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1809		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1810		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1811	} else {
1812		struct wmeParams *wmep =
1813			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1814		/*
1815		 * Adhoc mode; important thing is to use 2x cwmin.
1816		 */
1817		qi.tqi_aifs = wmep->wmep_aifsn;
1818		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1819		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1820	}
1821
1822	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1823		device_printf(sc->sc_dev, "unable to update parameters for "
1824			"beacon hardware queue!\n");
1825		return 0;
1826	} else {
1827		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1828		return 1;
1829	}
1830#undef ATH_EXPONENT_TO_VALUE
1831}
1832
1833/*
1834 * Allocate and setup an initial beacon frame.
1835 */
1836static int
1837ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1838{
1839	struct ieee80211com *ic = ni->ni_ic;
1840	struct ath_buf *bf;
1841	struct mbuf *m;
1842	int error;
1843
1844	bf = STAILQ_FIRST(&sc->sc_bbuf);
1845	if (bf == NULL) {
1846		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1847		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1848		return ENOMEM;			/* XXX */
1849	}
1850	/*
1851	 * NB: the beacon data buffer must be 32-bit aligned;
1852	 * we assume the mbuf routines will return us something
1853	 * with this alignment (perhaps should assert).
1854	 */
1855	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1856	if (m == NULL) {
1857		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1858			__func__);
1859		sc->sc_stats.ast_be_nombuf++;
1860		return ENOMEM;
1861	}
1862	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1863				     bf->bf_segs, &bf->bf_nseg,
1864				     BUS_DMA_NOWAIT);
1865	if (error == 0) {
1866		bf->bf_m = m;
1867		bf->bf_node = ieee80211_ref_node(ni);
1868	} else {
1869		m_freem(m);
1870	}
1871	return error;
1872}
1873
1874/*
1875 * Setup the beacon frame for transmit.
1876 */
1877static void
1878ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1879{
1880#define	USE_SHPREAMBLE(_ic) \
1881	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1882		== IEEE80211_F_SHPREAMBLE)
1883	struct ieee80211_node *ni = bf->bf_node;
1884	struct ieee80211com *ic = ni->ni_ic;
1885	struct mbuf *m = bf->bf_m;
1886	struct ath_hal *ah = sc->sc_ah;
1887	struct ath_desc *ds;
1888	int flags, antenna;
1889	const HAL_RATE_TABLE *rt;
1890	u_int8_t rix, rate;
1891
1892	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1893		__func__, m, m->m_len);
1894
1895	/* setup descriptors */
1896	ds = bf->bf_desc;
1897
1898	flags = HAL_TXDESC_NOACK;
1899	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1900		ds->ds_link = bf->bf_daddr;	/* self-linked */
1901		flags |= HAL_TXDESC_VEOL;
1902		/*
1903		 * Let hardware handle antenna switching.
1904		 */
1905		antenna = sc->sc_txantenna;
1906	} else {
1907		ds->ds_link = 0;
1908		/*
1909		 * Switch antenna every 4 beacons.
1910		 * XXX assumes two antenna
1911		 */
1912		antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1913	}
1914
1915	KASSERT(bf->bf_nseg == 1,
1916		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1917	ds->ds_data = bf->bf_segs[0].ds_addr;
1918	/*
1919	 * Calculate rate code.
1920	 * XXX everything at min xmit rate
1921	 */
1922	rix = sc->sc_minrateix;
1923	rt = sc->sc_currates;
1924	rate = rt->info[rix].rateCode;
1925	if (USE_SHPREAMBLE(ic))
1926		rate |= rt->info[rix].shortPreamble;
1927	ath_hal_setuptxdesc(ah, ds
1928		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
1929		, sizeof(struct ieee80211_frame)/* header length */
1930		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1931		, ni->ni_txpower		/* txpower XXX */
1932		, rate, 1			/* series 0 rate/tries */
1933		, HAL_TXKEYIX_INVALID		/* no encryption */
1934		, antenna			/* antenna mode */
1935		, flags				/* no ack, veol for beacons */
1936		, 0				/* rts/cts rate */
1937		, 0				/* rts/cts duration */
1938	);
1939	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1940	ath_hal_filltxdesc(ah, ds
1941		, roundup(m->m_len, 4)		/* buffer length */
1942		, AH_TRUE			/* first segment */
1943		, AH_TRUE			/* last segment */
1944		, ds				/* first descriptor */
1945	);
1946#undef USE_SHPREAMBLE
1947}
1948
1949/*
1950 * Transmit a beacon frame at SWBA.  Dynamic updates to the
1951 * frame contents are done as needed and the slot time is
1952 * also adjusted based on current state.
1953 */
1954static void
1955ath_beacon_proc(void *arg, int pending)
1956{
1957	struct ath_softc *sc = arg;
1958	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
1959	struct ieee80211_node *ni = bf->bf_node;
1960	struct ieee80211com *ic = ni->ni_ic;
1961	struct ath_hal *ah = sc->sc_ah;
1962	struct mbuf *m;
1963	int ncabq, error, otherant;
1964
1965	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
1966		__func__, pending);
1967
1968	if (ic->ic_opmode == IEEE80211_M_STA ||
1969	    ic->ic_opmode == IEEE80211_M_MONITOR ||
1970	    bf == NULL || bf->bf_m == NULL) {
1971		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
1972			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
1973		return;
1974	}
1975	/*
1976	 * Check if the previous beacon has gone out.  If
1977	 * not don't don't try to post another, skip this
1978	 * period and wait for the next.  Missed beacons
1979	 * indicate a problem and should not occur.  If we
1980	 * miss too many consecutive beacons reset the device.
1981	 */
1982	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
1983		sc->sc_bmisscount++;
1984		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1985			"%s: missed %u consecutive beacons\n",
1986			__func__, sc->sc_bmisscount);
1987		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
1988			taskqueue_enqueue(sc->sc_tq, &sc->sc_bstucktask);
1989		return;
1990	}
1991	if (sc->sc_bmisscount != 0) {
1992		DPRINTF(sc, ATH_DEBUG_BEACON,
1993			"%s: resume beacon xmit after %u misses\n",
1994			__func__, sc->sc_bmisscount);
1995		sc->sc_bmisscount = 0;
1996	}
1997
1998	/*
1999	 * Update dynamic beacon contents.  If this returns
2000	 * non-zero then we need to remap the memory because
2001	 * the beacon frame changed size (probably because
2002	 * of the TIM bitmap).
2003	 */
2004	m = bf->bf_m;
2005	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
2006	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
2007		/* XXX too conservative? */
2008		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2009		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
2010					     bf->bf_segs, &bf->bf_nseg,
2011					     BUS_DMA_NOWAIT);
2012		if (error != 0) {
2013			if_printf(ic->ic_ifp,
2014			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
2015			    __func__, error);
2016			return;
2017		}
2018	}
2019
2020	/*
2021	 * Handle slot time change when a non-ERP station joins/leaves
2022	 * an 11g network.  The 802.11 layer notifies us via callback,
2023	 * we mark updateslot, then wait one beacon before effecting
2024	 * the change.  This gives associated stations at least one
2025	 * beacon interval to note the state change.
2026	 */
2027	/* XXX locking */
2028	if (sc->sc_updateslot == UPDATE)
2029		sc->sc_updateslot = COMMIT;	/* commit next beacon */
2030	else if (sc->sc_updateslot == COMMIT)
2031		ath_setslottime(sc);		/* commit change to h/w */
2032
2033	/*
2034	 * Check recent per-antenna transmit statistics and flip
2035	 * the default antenna if noticeably more frames went out
2036	 * on the non-default antenna.
2037	 * XXX assumes 2 anntenae
2038	 */
2039	otherant = sc->sc_defant & 1 ? 2 : 1;
2040	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
2041		ath_setdefantenna(sc, otherant);
2042	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
2043
2044	/*
2045	 * Construct tx descriptor.
2046	 */
2047	ath_beacon_setup(sc, bf);
2048
2049	/*
2050	 * Stop any current dma and put the new frame on the queue.
2051	 * This should never fail since we check above that no frames
2052	 * are still pending on the queue.
2053	 */
2054	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2055		DPRINTF(sc, ATH_DEBUG_ANY,
2056			"%s: beacon queue %u did not stop?\n",
2057			__func__, sc->sc_bhalq);
2058	}
2059	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2060
2061	/*
2062	 * Enable the CAB queue before the beacon queue to
2063	 * insure cab frames are triggered by this beacon.
2064	 */
2065	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
2066		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2067	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2068	ath_hal_txstart(ah, sc->sc_bhalq);
2069	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2070		"%s: TXDP[%u] = %p (%p)\n", __func__,
2071		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2072
2073	sc->sc_stats.ast_be_xmit++;
2074}
2075
2076/*
2077 * Reset the hardware after detecting beacons have stopped.
2078 */
2079static void
2080ath_bstuck_proc(void *arg, int pending)
2081{
2082	struct ath_softc *sc = arg;
2083	struct ifnet *ifp = sc->sc_ifp;
2084
2085	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2086		sc->sc_bmisscount);
2087	ath_reset(ifp);
2088}
2089
2090/*
2091 * Reclaim beacon resources.
2092 */
2093static void
2094ath_beacon_free(struct ath_softc *sc)
2095{
2096	struct ath_buf *bf;
2097
2098	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2099		if (bf->bf_m != NULL) {
2100			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2101			m_freem(bf->bf_m);
2102			bf->bf_m = NULL;
2103		}
2104		if (bf->bf_node != NULL) {
2105			ieee80211_free_node(bf->bf_node);
2106			bf->bf_node = NULL;
2107		}
2108	}
2109}
2110
2111/*
2112 * Configure the beacon and sleep timers.
2113 *
2114 * When operating as an AP this resets the TSF and sets
2115 * up the hardware to notify us when we need to issue beacons.
2116 *
2117 * When operating in station mode this sets up the beacon
2118 * timers according to the timestamp of the last received
2119 * beacon and the current TSF, configures PCF and DTIM
2120 * handling, programs the sleep registers so the hardware
2121 * will wakeup in time to receive beacons, and configures
2122 * the beacon miss handling so we'll receive a BMISS
2123 * interrupt when we stop seeing beacons from the AP
2124 * we've associated with.
2125 */
2126static void
2127ath_beacon_config(struct ath_softc *sc)
2128{
2129#define	TSF_TO_TU(_h,_l)	(((_h) << 22) | ((_l) >> 10))
2130	struct ath_hal *ah = sc->sc_ah;
2131	struct ieee80211com *ic = &sc->sc_ic;
2132	struct ieee80211_node *ni = ic->ic_bss;
2133	u_int32_t nexttbtt, intval;
2134
2135	/* extract tstamp from last beacon and convert to TU */
2136	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2137			     LE_READ_4(ni->ni_tstamp.data));
2138	/* NB: the beacon interval is kept internally in TU's */
2139	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2140	if (nexttbtt == 0)		/* e.g. for ap mode */
2141		nexttbtt = intval;
2142	else if (intval)		/* NB: can be 0 for monitor mode */
2143		nexttbtt = roundup(nexttbtt, intval);
2144	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2145		__func__, nexttbtt, intval, ni->ni_intval);
2146	if (ic->ic_opmode == IEEE80211_M_STA) {
2147		HAL_BEACON_STATE bs;
2148		u_int64_t tsf;
2149		u_int32_t tsftu;
2150		int dtimperiod, dtimcount;
2151		int cfpperiod, cfpcount;
2152
2153		/*
2154		 * Setup dtim and cfp parameters according to
2155		 * last beacon we received (which may be none).
2156		 */
2157		dtimperiod = ni->ni_dtim_period;
2158		if (dtimperiod <= 0)		/* NB: 0 if not known */
2159			dtimperiod = 1;
2160		dtimcount = ni->ni_dtim_count;
2161		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2162			dtimcount = 0;		/* XXX? */
2163		cfpperiod = 1;			/* NB: no PCF support yet */
2164		cfpcount = 0;
2165#define	FUDGE	2
2166		/*
2167		 * Pull nexttbtt forward to reflect the current
2168		 * TSF and calculate dtim+cfp state for the result.
2169		 */
2170		tsf = ath_hal_gettsf64(ah);
2171		tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE;
2172		do {
2173			nexttbtt += intval;
2174			if (--dtimcount < 0) {
2175				dtimcount = dtimperiod - 1;
2176				if (--cfpcount < 0)
2177					cfpcount = cfpperiod - 1;
2178			}
2179		} while (nexttbtt < tsftu);
2180#undef FUDGE
2181		memset(&bs, 0, sizeof(bs));
2182		bs.bs_intval = intval;
2183		bs.bs_nexttbtt = nexttbtt;
2184		bs.bs_dtimperiod = dtimperiod*intval;
2185		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2186		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2187		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2188		bs.bs_cfpmaxduration = 0;
2189#if 0
2190		/*
2191		 * The 802.11 layer records the offset to the DTIM
2192		 * bitmap while receiving beacons; use it here to
2193		 * enable h/w detection of our AID being marked in
2194		 * the bitmap vector (to indicate frames for us are
2195		 * pending at the AP).
2196		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2197		 * XXX enable based on h/w rev for newer chips
2198		 */
2199		bs.bs_timoffset = ni->ni_timoff;
2200#endif
2201		/*
2202		 * Calculate the number of consecutive beacons to miss
2203		 * before taking a BMISS interrupt.  The configuration
2204		 * is specified in ms, so we need to convert that to
2205		 * TU's and then calculate based on the beacon interval.
2206		 * Note that we clamp the result to at most 10 beacons.
2207		 */
2208		bs.bs_bmissthreshold = ic->ic_bmissthreshold;
2209		if (bs.bs_bmissthreshold > 10)
2210			bs.bs_bmissthreshold = 10;
2211		else if (bs.bs_bmissthreshold <= 0)
2212			bs.bs_bmissthreshold = 1;
2213
2214		/*
2215		 * Calculate sleep duration.  The configuration is
2216		 * given in ms.  We insure a multiple of the beacon
2217		 * period is used.  Also, if the sleep duration is
2218		 * greater than the DTIM period then it makes senses
2219		 * to make it a multiple of that.
2220		 *
2221		 * XXX fixed at 100ms
2222		 */
2223		bs.bs_sleepduration =
2224			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2225		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2226			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2227
2228		DPRINTF(sc, ATH_DEBUG_BEACON,
2229			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2230			, __func__
2231			, tsf, tsftu
2232			, bs.bs_intval
2233			, bs.bs_nexttbtt
2234			, bs.bs_dtimperiod
2235			, bs.bs_nextdtim
2236			, bs.bs_bmissthreshold
2237			, bs.bs_sleepduration
2238			, bs.bs_cfpperiod
2239			, bs.bs_cfpmaxduration
2240			, bs.bs_cfpnext
2241			, bs.bs_timoffset
2242		);
2243		ath_hal_intrset(ah, 0);
2244		ath_hal_beacontimers(ah, &bs);
2245		sc->sc_imask |= HAL_INT_BMISS;
2246		ath_hal_intrset(ah, sc->sc_imask);
2247	} else {
2248		ath_hal_intrset(ah, 0);
2249		if (nexttbtt == intval)
2250			intval |= HAL_BEACON_RESET_TSF;
2251		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2252			/*
2253			 * In IBSS mode enable the beacon timers but only
2254			 * enable SWBA interrupts if we need to manually
2255			 * prepare beacon frames.  Otherwise we use a
2256			 * self-linked tx descriptor and let the hardware
2257			 * deal with things.
2258			 */
2259			intval |= HAL_BEACON_ENA;
2260			if (!sc->sc_hasveol)
2261				sc->sc_imask |= HAL_INT_SWBA;
2262			ath_beaconq_config(sc);
2263		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2264			/*
2265			 * In AP mode we enable the beacon timers and
2266			 * SWBA interrupts to prepare beacon frames.
2267			 */
2268			intval |= HAL_BEACON_ENA;
2269			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2270			ath_beaconq_config(sc);
2271		}
2272		ath_hal_beaconinit(ah, nexttbtt, intval);
2273		sc->sc_bmisscount = 0;
2274		ath_hal_intrset(ah, sc->sc_imask);
2275		/*
2276		 * When using a self-linked beacon descriptor in
2277		 * ibss mode load it once here.
2278		 */
2279		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2280			ath_beacon_proc(sc, 0);
2281	}
2282#undef TSF_TO_TU
2283}
2284
2285static void
2286ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2287{
2288	bus_addr_t *paddr = (bus_addr_t*) arg;
2289	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2290	*paddr = segs->ds_addr;
2291}
2292
2293static int
2294ath_descdma_setup(struct ath_softc *sc,
2295	struct ath_descdma *dd, ath_bufhead *head,
2296	const char *name, int nbuf, int ndesc)
2297{
2298#define	DS2PHYS(_dd, _ds) \
2299	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2300	struct ifnet *ifp = sc->sc_ifp;
2301	struct ath_desc *ds;
2302	struct ath_buf *bf;
2303	int i, bsize, error;
2304
2305	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2306	    __func__, name, nbuf, ndesc);
2307
2308	dd->dd_name = name;
2309	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2310
2311	/*
2312	 * Setup DMA descriptor area.
2313	 */
2314	error = bus_dma_tag_create(NULL,	/* parent */
2315		       PAGE_SIZE, 0,		/* alignment, bounds */
2316		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2317		       BUS_SPACE_MAXADDR,	/* highaddr */
2318		       NULL, NULL,		/* filter, filterarg */
2319		       dd->dd_desc_len,		/* maxsize */
2320		       1,			/* nsegments */
2321		       BUS_SPACE_MAXADDR,	/* maxsegsize */
2322		       BUS_DMA_ALLOCNOW,	/* flags */
2323		       NULL,			/* lockfunc */
2324		       NULL,			/* lockarg */
2325		       &dd->dd_dmat);
2326	if (error != 0) {
2327		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2328		return error;
2329	}
2330
2331	/* allocate descriptors */
2332	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2333	if (error != 0) {
2334		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2335			"error %u\n", dd->dd_name, error);
2336		goto fail0;
2337	}
2338
2339	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2340				 BUS_DMA_NOWAIT, &dd->dd_dmamap);
2341	if (error != 0) {
2342		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2343			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2344		goto fail1;
2345	}
2346
2347	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2348				dd->dd_desc, dd->dd_desc_len,
2349				ath_load_cb, &dd->dd_desc_paddr,
2350				BUS_DMA_NOWAIT);
2351	if (error != 0) {
2352		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2353			dd->dd_name, error);
2354		goto fail2;
2355	}
2356
2357	ds = dd->dd_desc;
2358	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2359	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2360	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2361
2362	/* allocate rx buffers */
2363	bsize = sizeof(struct ath_buf) * nbuf;
2364	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2365	if (bf == NULL) {
2366		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2367			dd->dd_name, bsize);
2368		goto fail3;
2369	}
2370	dd->dd_bufptr = bf;
2371
2372	STAILQ_INIT(head);
2373	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2374		bf->bf_desc = ds;
2375		bf->bf_daddr = DS2PHYS(dd, ds);
2376		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2377				&bf->bf_dmamap);
2378		if (error != 0) {
2379			if_printf(ifp, "unable to create dmamap for %s "
2380				"buffer %u, error %u\n", dd->dd_name, i, error);
2381			ath_descdma_cleanup(sc, dd, head);
2382			return error;
2383		}
2384		STAILQ_INSERT_TAIL(head, bf, bf_list);
2385	}
2386	return 0;
2387fail3:
2388	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2389fail2:
2390	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2391fail1:
2392	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2393fail0:
2394	bus_dma_tag_destroy(dd->dd_dmat);
2395	memset(dd, 0, sizeof(*dd));
2396	return error;
2397#undef DS2PHYS
2398}
2399
2400static void
2401ath_descdma_cleanup(struct ath_softc *sc,
2402	struct ath_descdma *dd, ath_bufhead *head)
2403{
2404	struct ath_buf *bf;
2405	struct ieee80211_node *ni;
2406
2407	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2408	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2409	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2410	bus_dma_tag_destroy(dd->dd_dmat);
2411
2412	STAILQ_FOREACH(bf, head, bf_list) {
2413		if (bf->bf_m) {
2414			m_freem(bf->bf_m);
2415			bf->bf_m = NULL;
2416		}
2417		if (bf->bf_dmamap != NULL) {
2418			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2419			bf->bf_dmamap = NULL;
2420		}
2421		ni = bf->bf_node;
2422		bf->bf_node = NULL;
2423		if (ni != NULL) {
2424			/*
2425			 * Reclaim node reference.
2426			 */
2427			ieee80211_free_node(ni);
2428		}
2429	}
2430
2431	STAILQ_INIT(head);
2432	free(dd->dd_bufptr, M_ATHDEV);
2433	memset(dd, 0, sizeof(*dd));
2434}
2435
2436static int
2437ath_desc_alloc(struct ath_softc *sc)
2438{
2439	int error;
2440
2441	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2442			"rx", ath_rxbuf, 1);
2443	if (error != 0)
2444		return error;
2445
2446	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2447			"tx", ath_txbuf, ATH_TXDESC);
2448	if (error != 0) {
2449		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2450		return error;
2451	}
2452
2453	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2454			"beacon", 1, 1);
2455	if (error != 0) {
2456		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2457		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2458		return error;
2459	}
2460	return 0;
2461}
2462
2463static void
2464ath_desc_free(struct ath_softc *sc)
2465{
2466
2467	if (sc->sc_bdma.dd_desc_len != 0)
2468		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2469	if (sc->sc_txdma.dd_desc_len != 0)
2470		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2471	if (sc->sc_rxdma.dd_desc_len != 0)
2472		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2473}
2474
2475static struct ieee80211_node *
2476ath_node_alloc(struct ieee80211_node_table *nt)
2477{
2478	struct ieee80211com *ic = nt->nt_ic;
2479	struct ath_softc *sc = ic->ic_ifp->if_softc;
2480	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2481	struct ath_node *an;
2482
2483	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2484	if (an == NULL) {
2485		/* XXX stat+msg */
2486		return NULL;
2487	}
2488	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2489	ath_rate_node_init(sc, an);
2490
2491	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2492	return &an->an_node;
2493}
2494
2495static void
2496ath_node_free(struct ieee80211_node *ni)
2497{
2498	struct ieee80211com *ic = ni->ni_ic;
2499        struct ath_softc *sc = ic->ic_ifp->if_softc;
2500
2501	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2502
2503	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2504	sc->sc_node_free(ni);
2505}
2506
2507static u_int8_t
2508ath_node_getrssi(const struct ieee80211_node *ni)
2509{
2510#define	HAL_EP_RND(x, mul) \
2511	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2512	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2513	int32_t rssi;
2514
2515	/*
2516	 * When only one frame is received there will be no state in
2517	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2518	 */
2519	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2520		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2521	else
2522		rssi = ni->ni_rssi;
2523	/* NB: theoretically we shouldn't need this, but be paranoid */
2524	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2525#undef HAL_EP_RND
2526}
2527
2528static int
2529ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2530{
2531	struct ath_hal *ah = sc->sc_ah;
2532	int error;
2533	struct mbuf *m;
2534	struct ath_desc *ds;
2535
2536	m = bf->bf_m;
2537	if (m == NULL) {
2538		/*
2539		 * NB: by assigning a page to the rx dma buffer we
2540		 * implicitly satisfy the Atheros requirement that
2541		 * this buffer be cache-line-aligned and sized to be
2542		 * multiple of the cache line size.  Not doing this
2543		 * causes weird stuff to happen (for the 5210 at least).
2544		 */
2545		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2546		if (m == NULL) {
2547			DPRINTF(sc, ATH_DEBUG_ANY,
2548				"%s: no mbuf/cluster\n", __func__);
2549			sc->sc_stats.ast_rx_nombuf++;
2550			return ENOMEM;
2551		}
2552		bf->bf_m = m;
2553		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2554
2555		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
2556					     bf->bf_dmamap, m,
2557					     bf->bf_segs, &bf->bf_nseg,
2558					     BUS_DMA_NOWAIT);
2559		if (error != 0) {
2560			DPRINTF(sc, ATH_DEBUG_ANY,
2561			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
2562			    __func__, error);
2563			sc->sc_stats.ast_rx_busdma++;
2564			return error;
2565		}
2566		KASSERT(bf->bf_nseg == 1,
2567			("multi-segment packet; nseg %u", bf->bf_nseg));
2568	}
2569	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2570
2571	/*
2572	 * Setup descriptors.  For receive we always terminate
2573	 * the descriptor list with a self-linked entry so we'll
2574	 * not get overrun under high load (as can happen with a
2575	 * 5212 when ANI processing enables PHY error frames).
2576	 *
2577	 * To insure the last descriptor is self-linked we create
2578	 * each descriptor as self-linked and add it to the end.  As
2579	 * each additional descriptor is added the previous self-linked
2580	 * entry is ``fixed'' naturally.  This should be safe even
2581	 * if DMA is happening.  When processing RX interrupts we
2582	 * never remove/process the last, self-linked, entry on the
2583	 * descriptor list.  This insures the hardware always has
2584	 * someplace to write a new frame.
2585	 */
2586	ds = bf->bf_desc;
2587	ds->ds_link = bf->bf_daddr;	/* link to self */
2588	ds->ds_data = bf->bf_segs[0].ds_addr;
2589	ath_hal_setuprxdesc(ah, ds
2590		, m->m_len		/* buffer size */
2591		, 0
2592	);
2593
2594	if (sc->sc_rxlink != NULL)
2595		*sc->sc_rxlink = bf->bf_daddr;
2596	sc->sc_rxlink = &ds->ds_link;
2597	return 0;
2598}
2599
2600/*
2601 * Extend 15-bit time stamp from rx descriptor to
2602 * a full 64-bit TSF using the specified TSF.
2603 */
2604static __inline u_int64_t
2605ath_extend_tsf(u_int32_t rstamp, u_int64_t tsf)
2606{
2607	if ((tsf & 0x7fff) < rstamp)
2608		tsf -= 0x8000;
2609	return ((tsf &~ 0x7fff) | rstamp);
2610}
2611
2612/*
2613 * Intercept management frames to collect beacon rssi data
2614 * and to do ibss merges.
2615 */
2616static void
2617ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2618	struct ieee80211_node *ni,
2619	int subtype, int rssi, u_int32_t rstamp)
2620{
2621	struct ath_softc *sc = ic->ic_ifp->if_softc;
2622
2623	/*
2624	 * Call up first so subsequent work can use information
2625	 * potentially stored in the node (e.g. for ibss merge).
2626	 */
2627	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2628	switch (subtype) {
2629	case IEEE80211_FC0_SUBTYPE_BEACON:
2630		/* update rssi statistics for use by the hal */
2631		ATH_RSSI_LPF(sc->sc_halstats.ns_avgbrssi, rssi);
2632		/* fall thru... */
2633	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2634		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2635		    ic->ic_state == IEEE80211_S_RUN) {
2636			u_int64_t tsf = ath_extend_tsf(rstamp,
2637				ath_hal_gettsf64(sc->sc_ah));
2638			/*
2639			 * Handle ibss merge as needed; check the tsf on the
2640			 * frame before attempting the merge.  The 802.11 spec
2641			 * says the station should change it's bssid to match
2642			 * the oldest station with the same ssid, where oldest
2643			 * is determined by the tsf.  Note that hardware
2644			 * reconfiguration happens through callback to
2645			 * ath_newstate as the state machine will go from
2646			 * RUN -> RUN when this happens.
2647			 */
2648			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2649				DPRINTF(sc, ATH_DEBUG_STATE,
2650				    "ibss merge, rstamp %u tsf %ju "
2651				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2652				    (uintmax_t)ni->ni_tstamp.tsf);
2653				(void) ieee80211_ibss_merge(ni);
2654			}
2655		}
2656		break;
2657	}
2658}
2659
2660/*
2661 * Set the default antenna.
2662 */
2663static void
2664ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2665{
2666	struct ath_hal *ah = sc->sc_ah;
2667
2668	/* XXX block beacon interrupts */
2669	ath_hal_setdefantenna(ah, antenna);
2670	if (sc->sc_defant != antenna)
2671		sc->sc_stats.ast_ant_defswitch++;
2672	sc->sc_defant = antenna;
2673	sc->sc_rxotherant = 0;
2674}
2675
2676static int
2677ath_rx_tap(struct ath_softc *sc, struct mbuf *m,
2678	const struct ath_desc *ds, u_int64_t tsf, int16_t nf)
2679{
2680	u_int8_t rix;
2681
2682	KASSERT(sc->sc_drvbpf != NULL, ("no tap"));
2683
2684	/*
2685	 * Discard anything shorter than an ack or cts.
2686	 */
2687	if (m->m_pkthdr.len < IEEE80211_ACK_LEN) {
2688		DPRINTF(sc, ATH_DEBUG_RECV, "%s: runt packet %d\n",
2689			__func__, m->m_pkthdr.len);
2690		sc->sc_stats.ast_rx_tooshort++;
2691		return 0;
2692	}
2693	sc->sc_rx_th.wr_tsf = htole64(
2694		ath_extend_tsf(ds->ds_rxstat.rs_tstamp, tsf));
2695	rix = ds->ds_rxstat.rs_rate;
2696	sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2697	if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2698		sc->sc_rx_th.wr_flags |= IEEE80211_RADIOTAP_F_BADFCS;
2699	/* XXX propagate other error flags from descriptor */
2700	sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2701	sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi + nf;
2702	sc->sc_rx_th.wr_antnoise = nf;
2703	sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2704
2705	bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx_th, sc->sc_rx_th_len, m);
2706
2707	return 1;
2708}
2709
2710static void
2711ath_rx_proc(void *arg, int npending)
2712{
2713#define	PA2DESC(_sc, _pa) \
2714	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2715		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2716	struct ath_softc *sc = arg;
2717	struct ath_buf *bf;
2718	struct ieee80211com *ic = &sc->sc_ic;
2719	struct ifnet *ifp = sc->sc_ifp;
2720	struct ath_hal *ah = sc->sc_ah;
2721	struct ath_desc *ds;
2722	struct mbuf *m;
2723	struct ieee80211_node *ni;
2724	struct ath_node *an;
2725	int len, type, ngood;
2726	u_int phyerr;
2727	HAL_STATUS status;
2728	int16_t nf;
2729	u_int64_t tsf;
2730
2731	NET_LOCK_GIANT();		/* XXX */
2732
2733	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2734	ngood = 0;
2735	nf = ath_hal_getchannoise(ah, &sc->sc_curchan);
2736	tsf = ath_hal_gettsf64(ah);
2737	do {
2738		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2739		if (bf == NULL) {		/* NB: shouldn't happen */
2740			if_printf(ifp, "%s: no buffer!\n", __func__);
2741			break;
2742		}
2743		ds = bf->bf_desc;
2744		if (ds->ds_link == bf->bf_daddr) {
2745			/* NB: never process the self-linked entry at the end */
2746			break;
2747		}
2748		m = bf->bf_m;
2749		if (m == NULL) {		/* NB: shouldn't happen */
2750			if_printf(ifp, "%s: no mbuf!\n", __func__);
2751			continue;
2752		}
2753		/* XXX sync descriptor memory */
2754		/*
2755		 * Must provide the virtual address of the current
2756		 * descriptor, the physical address, and the virtual
2757		 * address of the next descriptor in the h/w chain.
2758		 * This allows the HAL to look ahead to see if the
2759		 * hardware is done with a descriptor by checking the
2760		 * done bit in the following descriptor and the address
2761		 * of the current descriptor the DMA engine is working
2762		 * on.  All this is necessary because of our use of
2763		 * a self-linked list to avoid rx overruns.
2764		 */
2765		status = ath_hal_rxprocdesc(ah, ds,
2766				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2767#ifdef AR_DEBUG
2768		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2769			ath_printrxbuf(bf, status == HAL_OK);
2770#endif
2771		if (status == HAL_EINPROGRESS)
2772			break;
2773		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2774		if (ds->ds_rxstat.rs_more) {
2775			/*
2776			 * Frame spans multiple descriptors; this
2777			 * cannot happen yet as we don't support
2778			 * jumbograms.  If not in monitor mode,
2779			 * discard the frame.
2780			 */
2781			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2782				sc->sc_stats.ast_rx_toobig++;
2783				goto rx_next;
2784			}
2785			/* fall thru for monitor mode handling... */
2786		} else if (ds->ds_rxstat.rs_status != 0) {
2787			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2788				sc->sc_stats.ast_rx_crcerr++;
2789			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2790				sc->sc_stats.ast_rx_fifoerr++;
2791			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2792				sc->sc_stats.ast_rx_phyerr++;
2793				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2794				sc->sc_stats.ast_rx_phy[phyerr]++;
2795				goto rx_next;
2796			}
2797			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2798				/*
2799				 * Decrypt error.  If the error occurred
2800				 * because there was no hardware key, then
2801				 * let the frame through so the upper layers
2802				 * can process it.  This is necessary for 5210
2803				 * parts which have no way to setup a ``clear''
2804				 * key cache entry.
2805				 *
2806				 * XXX do key cache faulting
2807				 */
2808				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2809					goto rx_accept;
2810				sc->sc_stats.ast_rx_badcrypt++;
2811			}
2812			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2813				sc->sc_stats.ast_rx_badmic++;
2814				/*
2815				 * Do minimal work required to hand off
2816				 * the 802.11 header for notifcation.
2817				 */
2818				/* XXX frag's and qos frames */
2819				len = ds->ds_rxstat.rs_datalen;
2820				if (len >= sizeof (struct ieee80211_frame)) {
2821					bus_dmamap_sync(sc->sc_dmat,
2822					    bf->bf_dmamap,
2823					    BUS_DMASYNC_POSTREAD);
2824					ieee80211_notify_michael_failure(ic,
2825					    mtod(m, struct ieee80211_frame *),
2826					    sc->sc_splitmic ?
2827					        ds->ds_rxstat.rs_keyix-32 :
2828					        ds->ds_rxstat.rs_keyix
2829					);
2830				}
2831			}
2832			ifp->if_ierrors++;
2833			/*
2834			 * When a tap is present pass error frames
2835			 * that have been requested.  By default we
2836			 * pass decrypt+mic errors but others may be
2837			 * interesting (e.g. crc).
2838			 */
2839			if (sc->sc_drvbpf != NULL &&
2840			    (ds->ds_rxstat.rs_status & sc->sc_monpass)) {
2841				bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2842				    BUS_DMASYNC_POSTREAD);
2843				/* NB: bpf needs the mbuf length setup */
2844				len = ds->ds_rxstat.rs_datalen;
2845				m->m_pkthdr.len = m->m_len = len;
2846				(void) ath_rx_tap(sc, m, ds, tsf, nf);
2847			}
2848			/* XXX pass MIC errors up for s/w reclaculation */
2849			goto rx_next;
2850		}
2851rx_accept:
2852		/*
2853		 * Sync and unmap the frame.  At this point we're
2854		 * committed to passing the mbuf somewhere so clear
2855		 * bf_m; this means a new sk_buff must be allocated
2856		 * when the rx descriptor is setup again to receive
2857		 * another frame.
2858		 */
2859		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2860		    BUS_DMASYNC_POSTREAD);
2861		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2862		bf->bf_m = NULL;
2863
2864		m->m_pkthdr.rcvif = ifp;
2865		len = ds->ds_rxstat.rs_datalen;
2866		m->m_pkthdr.len = m->m_len = len;
2867
2868		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2869
2870		if (sc->sc_drvbpf != NULL && !ath_rx_tap(sc, m, ds, tsf, nf)) {
2871			m_freem(m);		/* XXX reclaim */
2872			goto rx_next;
2873		}
2874
2875		/*
2876		 * From this point on we assume the frame is at least
2877		 * as large as ieee80211_frame_min; verify that.
2878		 */
2879		if (len < IEEE80211_MIN_LEN) {
2880			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2881				__func__, len);
2882			sc->sc_stats.ast_rx_tooshort++;
2883			m_freem(m);
2884			goto rx_next;
2885		}
2886
2887		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2888			ieee80211_dump_pkt(mtod(m, caddr_t), len,
2889				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2890				   ds->ds_rxstat.rs_rssi);
2891		}
2892
2893		m_adj(m, -IEEE80211_CRC_LEN);
2894
2895		/*
2896		 * Locate the node for sender, track state, and then
2897		 * pass the (referenced) node up to the 802.11 layer
2898		 * for its use.
2899		 */
2900		ni = ieee80211_find_rxnode_withkey(ic,
2901			mtod(m, const struct ieee80211_frame_min *),
2902			ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID ?
2903				IEEE80211_KEYIX_NONE : ds->ds_rxstat.rs_keyix);
2904		/*
2905		 * Track rx rssi and do any rx antenna management.
2906		 */
2907		an = ATH_NODE(ni);
2908		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2909		ATH_RSSI_LPF(sc->sc_halstats.ns_avgrssi, ds->ds_rxstat.rs_rssi);
2910		/*
2911		 * Send frame up for processing.
2912		 */
2913		type = ieee80211_input(ic, m, ni,
2914			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2915		ieee80211_free_node(ni);
2916		if (sc->sc_diversity) {
2917			/*
2918			 * When using fast diversity, change the default rx
2919			 * antenna if diversity chooses the other antenna 3
2920			 * times in a row.
2921			 */
2922			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2923				if (++sc->sc_rxotherant >= 3)
2924					ath_setdefantenna(sc,
2925						ds->ds_rxstat.rs_antenna);
2926			} else
2927				sc->sc_rxotherant = 0;
2928		}
2929		if (sc->sc_softled) {
2930			/*
2931			 * Blink for any data frame.  Otherwise do a
2932			 * heartbeat-style blink when idle.  The latter
2933			 * is mainly for station mode where we depend on
2934			 * periodic beacon frames to trigger the poll event.
2935			 */
2936			if (type == IEEE80211_FC0_TYPE_DATA) {
2937				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
2938				ath_led_event(sc, ATH_LED_RX);
2939			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
2940				ath_led_event(sc, ATH_LED_POLL);
2941		}
2942		/*
2943		 * Arrange to update the last rx timestamp only for
2944		 * frames from our ap when operating in station mode.
2945		 * This assumes the rx key is always setup when associated.
2946		 */
2947		if (ic->ic_opmode == IEEE80211_M_STA &&
2948		    ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID)
2949			ngood++;
2950rx_next:
2951		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2952	} while (ath_rxbuf_init(sc, bf) == 0);
2953
2954	/* rx signal state monitoring */
2955	ath_hal_rxmonitor(ah, &sc->sc_halstats);
2956	if (ngood)
2957		sc->sc_lastrx = tsf;
2958
2959	NET_UNLOCK_GIANT();		/* XXX */
2960#undef PA2DESC
2961}
2962
2963/*
2964 * Setup a h/w transmit queue.
2965 */
2966static struct ath_txq *
2967ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2968{
2969#define	N(a)	(sizeof(a)/sizeof(a[0]))
2970	struct ath_hal *ah = sc->sc_ah;
2971	HAL_TXQ_INFO qi;
2972	int qnum;
2973
2974	memset(&qi, 0, sizeof(qi));
2975	qi.tqi_subtype = subtype;
2976	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2977	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2978	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2979	/*
2980	 * Enable interrupts only for EOL and DESC conditions.
2981	 * We mark tx descriptors to receive a DESC interrupt
2982	 * when a tx queue gets deep; otherwise waiting for the
2983	 * EOL to reap descriptors.  Note that this is done to
2984	 * reduce interrupt load and this only defers reaping
2985	 * descriptors, never transmitting frames.  Aside from
2986	 * reducing interrupts this also permits more concurrency.
2987	 * The only potential downside is if the tx queue backs
2988	 * up in which case the top half of the kernel may backup
2989	 * due to a lack of tx descriptors.
2990	 */
2991	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
2992	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
2993	if (qnum == -1) {
2994		/*
2995		 * NB: don't print a message, this happens
2996		 * normally on parts with too few tx queues
2997		 */
2998		return NULL;
2999	}
3000	if (qnum >= N(sc->sc_txq)) {
3001		device_printf(sc->sc_dev,
3002			"hal qnum %u out of range, max %zu!\n",
3003			qnum, N(sc->sc_txq));
3004		ath_hal_releasetxqueue(ah, qnum);
3005		return NULL;
3006	}
3007	if (!ATH_TXQ_SETUP(sc, qnum)) {
3008		struct ath_txq *txq = &sc->sc_txq[qnum];
3009
3010		txq->axq_qnum = qnum;
3011		txq->axq_depth = 0;
3012		txq->axq_intrcnt = 0;
3013		txq->axq_link = NULL;
3014		STAILQ_INIT(&txq->axq_q);
3015		ATH_TXQ_LOCK_INIT(sc, txq);
3016		sc->sc_txqsetup |= 1<<qnum;
3017	}
3018	return &sc->sc_txq[qnum];
3019#undef N
3020}
3021
3022/*
3023 * Setup a hardware data transmit queue for the specified
3024 * access control.  The hal may not support all requested
3025 * queues in which case it will return a reference to a
3026 * previously setup queue.  We record the mapping from ac's
3027 * to h/w queues for use by ath_tx_start and also track
3028 * the set of h/w queues being used to optimize work in the
3029 * transmit interrupt handler and related routines.
3030 */
3031static int
3032ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
3033{
3034#define	N(a)	(sizeof(a)/sizeof(a[0]))
3035	struct ath_txq *txq;
3036
3037	if (ac >= N(sc->sc_ac2q)) {
3038		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
3039			ac, N(sc->sc_ac2q));
3040		return 0;
3041	}
3042	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
3043	if (txq != NULL) {
3044		sc->sc_ac2q[ac] = txq;
3045		return 1;
3046	} else
3047		return 0;
3048#undef N
3049}
3050
3051/*
3052 * Update WME parameters for a transmit queue.
3053 */
3054static int
3055ath_txq_update(struct ath_softc *sc, int ac)
3056{
3057#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
3058#define	ATH_TXOP_TO_US(v)		(v<<5)
3059	struct ieee80211com *ic = &sc->sc_ic;
3060	struct ath_txq *txq = sc->sc_ac2q[ac];
3061	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3062	struct ath_hal *ah = sc->sc_ah;
3063	HAL_TXQ_INFO qi;
3064
3065	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3066	qi.tqi_aifs = wmep->wmep_aifsn;
3067	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3068	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3069	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3070
3071	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3072		device_printf(sc->sc_dev, "unable to update hardware queue "
3073			"parameters for %s traffic!\n",
3074			ieee80211_wme_acnames[ac]);
3075		return 0;
3076	} else {
3077		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3078		return 1;
3079	}
3080#undef ATH_TXOP_TO_US
3081#undef ATH_EXPONENT_TO_VALUE
3082}
3083
3084/*
3085 * Callback from the 802.11 layer to update WME parameters.
3086 */
3087static int
3088ath_wme_update(struct ieee80211com *ic)
3089{
3090	struct ath_softc *sc = ic->ic_ifp->if_softc;
3091
3092	return !ath_txq_update(sc, WME_AC_BE) ||
3093	    !ath_txq_update(sc, WME_AC_BK) ||
3094	    !ath_txq_update(sc, WME_AC_VI) ||
3095	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3096}
3097
3098/*
3099 * Reclaim resources for a setup queue.
3100 */
3101static void
3102ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3103{
3104
3105	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3106	ATH_TXQ_LOCK_DESTROY(txq);
3107	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3108}
3109
3110/*
3111 * Reclaim all tx queue resources.
3112 */
3113static void
3114ath_tx_cleanup(struct ath_softc *sc)
3115{
3116	int i;
3117
3118	ATH_TXBUF_LOCK_DESTROY(sc);
3119	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3120		if (ATH_TXQ_SETUP(sc, i))
3121			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3122}
3123
3124/*
3125 * Defragment an mbuf chain, returning at most maxfrags separate
3126 * mbufs+clusters.  If this is not possible NULL is returned and
3127 * the original mbuf chain is left in it's present (potentially
3128 * modified) state.  We use two techniques: collapsing consecutive
3129 * mbufs and replacing consecutive mbufs by a cluster.
3130 */
3131static struct mbuf *
3132ath_defrag(struct mbuf *m0, int how, int maxfrags)
3133{
3134	struct mbuf *m, *n, *n2, **prev;
3135	u_int curfrags;
3136
3137	/*
3138	 * Calculate the current number of frags.
3139	 */
3140	curfrags = 0;
3141	for (m = m0; m != NULL; m = m->m_next)
3142		curfrags++;
3143	/*
3144	 * First, try to collapse mbufs.  Note that we always collapse
3145	 * towards the front so we don't need to deal with moving the
3146	 * pkthdr.  This may be suboptimal if the first mbuf has much
3147	 * less data than the following.
3148	 */
3149	m = m0;
3150again:
3151	for (;;) {
3152		n = m->m_next;
3153		if (n == NULL)
3154			break;
3155		if ((m->m_flags & M_RDONLY) == 0 &&
3156		    n->m_len < M_TRAILINGSPACE(m)) {
3157			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3158				n->m_len);
3159			m->m_len += n->m_len;
3160			m->m_next = n->m_next;
3161			m_free(n);
3162			if (--curfrags <= maxfrags)
3163				return m0;
3164		} else
3165			m = n;
3166	}
3167	KASSERT(maxfrags > 1,
3168		("maxfrags %u, but normal collapse failed", maxfrags));
3169	/*
3170	 * Collapse consecutive mbufs to a cluster.
3171	 */
3172	prev = &m0->m_next;		/* NB: not the first mbuf */
3173	while ((n = *prev) != NULL) {
3174		if ((n2 = n->m_next) != NULL &&
3175		    n->m_len + n2->m_len < MCLBYTES) {
3176			m = m_getcl(how, MT_DATA, 0);
3177			if (m == NULL)
3178				goto bad;
3179			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3180			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3181				n2->m_len);
3182			m->m_len = n->m_len + n2->m_len;
3183			m->m_next = n2->m_next;
3184			*prev = m;
3185			m_free(n);
3186			m_free(n2);
3187			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3188				return m0;
3189			/*
3190			 * Still not there, try the normal collapse
3191			 * again before we allocate another cluster.
3192			 */
3193			goto again;
3194		}
3195		prev = &n->m_next;
3196	}
3197	/*
3198	 * No place where we can collapse to a cluster; punt.
3199	 * This can occur if, for example, you request 2 frags
3200	 * but the packet requires that both be clusters (we
3201	 * never reallocate the first mbuf to avoid moving the
3202	 * packet header).
3203	 */
3204bad:
3205	return NULL;
3206}
3207
3208/*
3209 * Return h/w rate index for an IEEE rate (w/o basic rate bit).
3210 */
3211static int
3212ath_tx_findrix(const HAL_RATE_TABLE *rt, int rate)
3213{
3214	int i;
3215
3216	for (i = 0; i < rt->rateCount; i++)
3217		if ((rt->info[i].dot11Rate & IEEE80211_RATE_VAL) == rate)
3218			return i;
3219	return 0;		/* NB: lowest rate */
3220}
3221
3222static int
3223ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3224    struct mbuf *m0)
3225{
3226	struct ieee80211com *ic = &sc->sc_ic;
3227	struct ath_hal *ah = sc->sc_ah;
3228	struct ifnet *ifp = sc->sc_ifp;
3229	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3230	int i, error, iswep, ismcast, ismrr;
3231	int keyix, hdrlen, pktlen, try0;
3232	u_int8_t rix, txrate, ctsrate;
3233	u_int8_t cix = 0xff;		/* NB: silence compiler */
3234	struct ath_desc *ds, *ds0;
3235	struct ath_txq *txq;
3236	struct ieee80211_frame *wh;
3237	u_int subtype, flags, ctsduration;
3238	HAL_PKT_TYPE atype;
3239	const HAL_RATE_TABLE *rt;
3240	HAL_BOOL shortPreamble;
3241	struct ath_node *an;
3242	struct mbuf *m;
3243	u_int pri;
3244
3245	wh = mtod(m0, struct ieee80211_frame *);
3246	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3247	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3248	hdrlen = ieee80211_anyhdrsize(wh);
3249	/*
3250	 * Packet length must not include any
3251	 * pad bytes; deduct them here.
3252	 */
3253	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3254
3255	if (iswep) {
3256		const struct ieee80211_cipher *cip;
3257		struct ieee80211_key *k;
3258
3259		/*
3260		 * Construct the 802.11 header+trailer for an encrypted
3261		 * frame. The only reason this can fail is because of an
3262		 * unknown or unsupported cipher/key type.
3263		 */
3264		k = ieee80211_crypto_encap(ic, ni, m0);
3265		if (k == NULL) {
3266			/*
3267			 * This can happen when the key is yanked after the
3268			 * frame was queued.  Just discard the frame; the
3269			 * 802.11 layer counts failures and provides
3270			 * debugging/diagnostics.
3271			 */
3272			m_freem(m0);
3273			return EIO;
3274		}
3275		/*
3276		 * Adjust the packet + header lengths for the crypto
3277		 * additions and calculate the h/w key index.  When
3278		 * a s/w mic is done the frame will have had any mic
3279		 * added to it prior to entry so skb->len above will
3280		 * account for it. Otherwise we need to add it to the
3281		 * packet length.
3282		 */
3283		cip = k->wk_cipher;
3284		hdrlen += cip->ic_header;
3285		pktlen += cip->ic_header + cip->ic_trailer;
3286		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3287			pktlen += cip->ic_miclen;
3288		keyix = k->wk_keyix;
3289
3290		/* packet header may have moved, reset our local pointer */
3291		wh = mtod(m0, struct ieee80211_frame *);
3292	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3293		/*
3294		 * Use station key cache slot, if assigned.
3295		 */
3296		keyix = ni->ni_ucastkey.wk_keyix;
3297		if (keyix == IEEE80211_KEYIX_NONE)
3298			keyix = HAL_TXKEYIX_INVALID;
3299	} else
3300		keyix = HAL_TXKEYIX_INVALID;
3301
3302	pktlen += IEEE80211_CRC_LEN;
3303
3304	/*
3305	 * Load the DMA map so any coalescing is done.  This
3306	 * also calculates the number of descriptors we need.
3307	 */
3308	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3309				     bf->bf_segs, &bf->bf_nseg,
3310				     BUS_DMA_NOWAIT);
3311	if (error == EFBIG) {
3312		/* XXX packet requires too many descriptors */
3313		bf->bf_nseg = ATH_TXDESC+1;
3314	} else if (error != 0) {
3315		sc->sc_stats.ast_tx_busdma++;
3316		m_freem(m0);
3317		return error;
3318	}
3319	/*
3320	 * Discard null packets and check for packets that
3321	 * require too many TX descriptors.  We try to convert
3322	 * the latter to a cluster.
3323	 */
3324	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
3325		sc->sc_stats.ast_tx_linear++;
3326		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3327		if (m == NULL) {
3328			m_freem(m0);
3329			sc->sc_stats.ast_tx_nombuf++;
3330			return ENOMEM;
3331		}
3332		m0 = m;
3333		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3334					     bf->bf_segs, &bf->bf_nseg,
3335					     BUS_DMA_NOWAIT);
3336		if (error != 0) {
3337			sc->sc_stats.ast_tx_busdma++;
3338			m_freem(m0);
3339			return error;
3340		}
3341		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3342		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3343	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3344		sc->sc_stats.ast_tx_nodata++;
3345		m_freem(m0);
3346		return EIO;
3347	}
3348	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3349	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3350	bf->bf_m = m0;
3351	bf->bf_node = ni;			/* NB: held reference */
3352
3353	/* setup descriptors */
3354	ds = bf->bf_desc;
3355	rt = sc->sc_currates;
3356	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3357
3358	/*
3359	 * NB: the 802.11 layer marks whether or not we should
3360	 * use short preamble based on the current mode and
3361	 * negotiated parameters.
3362	 */
3363	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3364	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3365		shortPreamble = AH_TRUE;
3366		sc->sc_stats.ast_tx_shortpre++;
3367	} else {
3368		shortPreamble = AH_FALSE;
3369	}
3370
3371	an = ATH_NODE(ni);
3372	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3373	ismrr = 0;				/* default no multi-rate retry*/
3374	/*
3375	 * Calculate Atheros packet type from IEEE80211 packet header,
3376	 * setup for rate calculations, and select h/w transmit queue.
3377	 */
3378	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3379	case IEEE80211_FC0_TYPE_MGT:
3380		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3381		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3382			atype = HAL_PKT_TYPE_BEACON;
3383		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3384			atype = HAL_PKT_TYPE_PROBE_RESP;
3385		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3386			atype = HAL_PKT_TYPE_ATIM;
3387		else
3388			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3389		rix = sc->sc_minrateix;
3390		txrate = rt->info[rix].rateCode;
3391		if (shortPreamble)
3392			txrate |= rt->info[rix].shortPreamble;
3393		try0 = ATH_TXMGTTRY;
3394		/* NB: force all management frames to highest queue */
3395		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3396			/* NB: force all management frames to highest queue */
3397			pri = WME_AC_VO;
3398		} else
3399			pri = WME_AC_BE;
3400		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3401		break;
3402	case IEEE80211_FC0_TYPE_CTL:
3403		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3404		rix = sc->sc_minrateix;
3405		txrate = rt->info[rix].rateCode;
3406		if (shortPreamble)
3407			txrate |= rt->info[rix].shortPreamble;
3408		try0 = ATH_TXMGTTRY;
3409		/* NB: force all ctl frames to highest queue */
3410		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3411			/* NB: force all ctl frames to highest queue */
3412			pri = WME_AC_VO;
3413		} else
3414			pri = WME_AC_BE;
3415		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3416		break;
3417	case IEEE80211_FC0_TYPE_DATA:
3418		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3419		/*
3420		 * Data frames: multicast frames go out at a fixed rate,
3421		 * otherwise consult the rate control module for the
3422		 * rate to use.
3423		 */
3424		if (ismcast) {
3425			/*
3426			 * Check mcast rate setting in case it's changed.
3427			 * XXX move out of fastpath
3428			 */
3429			if (ic->ic_mcast_rate != sc->sc_mcastrate) {
3430				sc->sc_mcastrix =
3431					ath_tx_findrix(rt, ic->ic_mcast_rate);
3432				sc->sc_mcastrate = ic->ic_mcast_rate;
3433			}
3434			rix = sc->sc_mcastrix;
3435			txrate = rt->info[rix].rateCode;
3436			if (shortPreamble)
3437				txrate |= rt->info[rix].shortPreamble;
3438			try0 = 1;
3439		} else {
3440			ath_rate_findrate(sc, an, shortPreamble, pktlen,
3441				&rix, &try0, &txrate);
3442			sc->sc_txrate = txrate;		/* for LED blinking */
3443			if (try0 != ATH_TXMAXTRY)
3444				ismrr = 1;
3445		}
3446		/*
3447		 * Default all non-QoS traffic to the background queue.
3448		 */
3449		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3450			pri = M_WME_GETAC(m0);
3451			if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3452				flags |= HAL_TXDESC_NOACK;
3453				sc->sc_stats.ast_tx_noack++;
3454			}
3455		} else
3456			pri = WME_AC_BE;
3457		break;
3458	default:
3459		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3460			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3461		/* XXX statistic */
3462		m_freem(m0);
3463		return EIO;
3464	}
3465	txq = sc->sc_ac2q[pri];
3466
3467	/*
3468	 * When servicing one or more stations in power-save mode
3469	 * multicast frames must be buffered until after the beacon.
3470	 * We use the CAB queue for that.
3471	 */
3472	if (ismcast && ic->ic_ps_sta) {
3473		txq = sc->sc_cabq;
3474		/* XXX? more bit in 802.11 frame header */
3475	}
3476
3477	/*
3478	 * Calculate miscellaneous flags.
3479	 */
3480	if (ismcast) {
3481		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3482		sc->sc_stats.ast_tx_noack++;
3483	} else if (pktlen > ic->ic_rtsthreshold) {
3484		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3485		cix = rt->info[rix].controlRate;
3486		sc->sc_stats.ast_tx_rts++;
3487	}
3488
3489	/*
3490	 * If 802.11g protection is enabled, determine whether
3491	 * to use RTS/CTS or just CTS.  Note that this is only
3492	 * done for OFDM unicast frames.
3493	 */
3494	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3495	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3496	    (flags & HAL_TXDESC_NOACK) == 0) {
3497		/* XXX fragments must use CCK rates w/ protection */
3498		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3499			flags |= HAL_TXDESC_RTSENA;
3500		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3501			flags |= HAL_TXDESC_CTSENA;
3502		cix = rt->info[sc->sc_protrix].controlRate;
3503		sc->sc_stats.ast_tx_protect++;
3504	}
3505
3506	/*
3507	 * Calculate duration.  This logically belongs in the 802.11
3508	 * layer but it lacks sufficient information to calculate it.
3509	 */
3510	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3511	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3512		u_int16_t dur;
3513		/*
3514		 * XXX not right with fragmentation.
3515		 */
3516		if (shortPreamble)
3517			dur = rt->info[rix].spAckDuration;
3518		else
3519			dur = rt->info[rix].lpAckDuration;
3520		*(u_int16_t *)wh->i_dur = htole16(dur);
3521	}
3522
3523	/*
3524	 * Calculate RTS/CTS rate and duration if needed.
3525	 */
3526	ctsduration = 0;
3527	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3528		/*
3529		 * CTS transmit rate is derived from the transmit rate
3530		 * by looking in the h/w rate table.  We must also factor
3531		 * in whether or not a short preamble is to be used.
3532		 */
3533		/* NB: cix is set above where RTS/CTS is enabled */
3534		KASSERT(cix != 0xff, ("cix not setup"));
3535		ctsrate = rt->info[cix].rateCode;
3536		/*
3537		 * Compute the transmit duration based on the frame
3538		 * size and the size of an ACK frame.  We call into the
3539		 * HAL to do the computation since it depends on the
3540		 * characteristics of the actual PHY being used.
3541		 *
3542		 * NB: CTS is assumed the same size as an ACK so we can
3543		 *     use the precalculated ACK durations.
3544		 */
3545		if (shortPreamble) {
3546			ctsrate |= rt->info[cix].shortPreamble;
3547			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3548				ctsduration += rt->info[cix].spAckDuration;
3549			ctsduration += ath_hal_computetxtime(ah,
3550				rt, pktlen, rix, AH_TRUE);
3551			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3552				ctsduration += rt->info[rix].spAckDuration;
3553		} else {
3554			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3555				ctsduration += rt->info[cix].lpAckDuration;
3556			ctsduration += ath_hal_computetxtime(ah,
3557				rt, pktlen, rix, AH_FALSE);
3558			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3559				ctsduration += rt->info[rix].lpAckDuration;
3560		}
3561		/*
3562		 * Must disable multi-rate retry when using RTS/CTS.
3563		 */
3564		ismrr = 0;
3565		try0 = ATH_TXMGTTRY;		/* XXX */
3566	} else
3567		ctsrate = 0;
3568
3569	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3570		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3571			sc->sc_hwmap[txrate].ieeerate, -1);
3572
3573	if (ic->ic_rawbpf)
3574		bpf_mtap(ic->ic_rawbpf, m0);
3575	if (sc->sc_drvbpf) {
3576		u_int64_t tsf = ath_hal_gettsf64(ah);
3577
3578		sc->sc_tx_th.wt_tsf = htole64(tsf);
3579		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3580		if (iswep)
3581			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3582		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3583		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3584		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3585
3586		bpf_mtap2(sc->sc_drvbpf,
3587			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3588	}
3589
3590	/*
3591	 * Determine if a tx interrupt should be generated for
3592	 * this descriptor.  We take a tx interrupt to reap
3593	 * descriptors when the h/w hits an EOL condition or
3594	 * when the descriptor is specifically marked to generate
3595	 * an interrupt.  We periodically mark descriptors in this
3596	 * way to insure timely replenishing of the supply needed
3597	 * for sending frames.  Defering interrupts reduces system
3598	 * load and potentially allows more concurrent work to be
3599	 * done but if done to aggressively can cause senders to
3600	 * backup.
3601	 *
3602	 * NB: use >= to deal with sc_txintrperiod changing
3603	 *     dynamically through sysctl.
3604	 */
3605	if (flags & HAL_TXDESC_INTREQ) {
3606		txq->axq_intrcnt = 0;
3607	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3608		flags |= HAL_TXDESC_INTREQ;
3609		txq->axq_intrcnt = 0;
3610	}
3611
3612	/*
3613	 * Formulate first tx descriptor with tx controls.
3614	 */
3615	/* XXX check return value? */
3616	ath_hal_setuptxdesc(ah, ds
3617		, pktlen		/* packet length */
3618		, hdrlen		/* header length */
3619		, atype			/* Atheros packet type */
3620		, ni->ni_txpower	/* txpower */
3621		, txrate, try0		/* series 0 rate/tries */
3622		, keyix			/* key cache index */
3623		, sc->sc_txantenna	/* antenna mode */
3624		, flags			/* flags */
3625		, ctsrate		/* rts/cts rate */
3626		, ctsduration		/* rts/cts duration */
3627	);
3628	bf->bf_flags = flags;
3629	/*
3630	 * Setup the multi-rate retry state only when we're
3631	 * going to use it.  This assumes ath_hal_setuptxdesc
3632	 * initializes the descriptors (so we don't have to)
3633	 * when the hardware supports multi-rate retry and
3634	 * we don't use it.
3635	 */
3636	if (ismrr)
3637		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3638
3639	/*
3640	 * Fillin the remainder of the descriptor info.
3641	 */
3642	ds0 = ds;
3643	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3644		ds->ds_data = bf->bf_segs[i].ds_addr;
3645		if (i == bf->bf_nseg - 1)
3646			ds->ds_link = 0;
3647		else
3648			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3649		ath_hal_filltxdesc(ah, ds
3650			, bf->bf_segs[i].ds_len	/* segment length */
3651			, i == 0		/* first segment */
3652			, i == bf->bf_nseg - 1	/* last segment */
3653			, ds0			/* first descriptor */
3654		);
3655		DPRINTF(sc, ATH_DEBUG_XMIT,
3656			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3657			__func__, i, ds->ds_link, ds->ds_data,
3658			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3659	}
3660	/*
3661	 * Insert the frame on the outbound list and
3662	 * pass it on to the hardware.
3663	 */
3664	ATH_TXQ_LOCK(txq);
3665	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3666	if (txq->axq_link == NULL) {
3667		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3668		DPRINTF(sc, ATH_DEBUG_XMIT,
3669			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3670			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3671			txq->axq_depth);
3672	} else {
3673		*txq->axq_link = bf->bf_daddr;
3674		DPRINTF(sc, ATH_DEBUG_XMIT,
3675			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3676			txq->axq_qnum, txq->axq_link,
3677			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3678	}
3679	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3680	/*
3681	 * The CAB queue is started from the SWBA handler since
3682	 * frames only go out on DTIM and to avoid possible races.
3683	 */
3684	if (txq != sc->sc_cabq)
3685		ath_hal_txstart(ah, txq->axq_qnum);
3686	ATH_TXQ_UNLOCK(txq);
3687
3688	return 0;
3689}
3690
3691/*
3692 * Process completed xmit descriptors from the specified queue.
3693 */
3694static int
3695ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3696{
3697	struct ath_hal *ah = sc->sc_ah;
3698	struct ieee80211com *ic = &sc->sc_ic;
3699	struct ath_buf *bf;
3700	struct ath_desc *ds, *ds0;
3701	struct ieee80211_node *ni;
3702	struct ath_node *an;
3703	int sr, lr, pri, nacked;
3704	HAL_STATUS status;
3705
3706	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3707		__func__, txq->axq_qnum,
3708		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3709		txq->axq_link);
3710	nacked = 0;
3711	for (;;) {
3712		ATH_TXQ_LOCK(txq);
3713		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3714		bf = STAILQ_FIRST(&txq->axq_q);
3715		if (bf == NULL) {
3716			txq->axq_link = NULL;
3717			ATH_TXQ_UNLOCK(txq);
3718			break;
3719		}
3720		ds0 = &bf->bf_desc[0];
3721		ds = &bf->bf_desc[bf->bf_nseg - 1];
3722		status = ath_hal_txprocdesc(ah, ds);
3723#ifdef AR_DEBUG
3724		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3725			ath_printtxbuf(bf, status == HAL_OK);
3726#endif
3727		if (status == HAL_EINPROGRESS) {
3728			ATH_TXQ_UNLOCK(txq);
3729			break;
3730		}
3731		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3732		ATH_TXQ_UNLOCK(txq);
3733
3734		ni = bf->bf_node;
3735		if (ni != NULL) {
3736			an = ATH_NODE(ni);
3737			if (ds->ds_txstat.ts_status == 0) {
3738				u_int8_t txant = ds->ds_txstat.ts_antenna;
3739				sc->sc_stats.ast_ant_tx[txant]++;
3740				sc->sc_ant_tx[txant]++;
3741				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3742					sc->sc_stats.ast_tx_altrate++;
3743				sc->sc_stats.ast_tx_rssi =
3744					ds->ds_txstat.ts_rssi;
3745				ATH_RSSI_LPF(sc->sc_halstats.ns_avgtxrssi,
3746					ds->ds_txstat.ts_rssi);
3747				pri = M_WME_GETAC(bf->bf_m);
3748				if (pri >= WME_AC_VO)
3749					ic->ic_wme.wme_hipri_traffic++;
3750				ni->ni_inact = ni->ni_inact_reload;
3751			} else {
3752				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3753					sc->sc_stats.ast_tx_xretries++;
3754				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3755					sc->sc_stats.ast_tx_fifoerr++;
3756				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3757					sc->sc_stats.ast_tx_filtered++;
3758			}
3759			sr = ds->ds_txstat.ts_shortretry;
3760			lr = ds->ds_txstat.ts_longretry;
3761			sc->sc_stats.ast_tx_shortretry += sr;
3762			sc->sc_stats.ast_tx_longretry += lr;
3763			/*
3764			 * Hand the descriptor to the rate control algorithm.
3765			 */
3766			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3767			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0) {
3768				/*
3769				 * If frame was ack'd update the last rx time
3770				 * used to workaround phantom bmiss interrupts.
3771				 */
3772				if (ds->ds_txstat.ts_status == 0)
3773					nacked++;
3774				ath_rate_tx_complete(sc, an, ds, ds0);
3775			}
3776			/*
3777			 * Reclaim reference to node.
3778			 *
3779			 * NB: the node may be reclaimed here if, for example
3780			 *     this is a DEAUTH message that was sent and the
3781			 *     node was timed out due to inactivity.
3782			 */
3783			ieee80211_free_node(ni);
3784		}
3785		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3786		    BUS_DMASYNC_POSTWRITE);
3787		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3788		m_freem(bf->bf_m);
3789		bf->bf_m = NULL;
3790		bf->bf_node = NULL;
3791
3792		ATH_TXBUF_LOCK(sc);
3793		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3794		ATH_TXBUF_UNLOCK(sc);
3795	}
3796	return nacked;
3797}
3798
3799static __inline int
3800txqactive(struct ath_hal *ah, int qnum)
3801{
3802	/* XXX not yet */
3803	return 1;
3804}
3805
3806/*
3807 * Deferred processing of transmit interrupt; special-cased
3808 * for a single hardware transmit queue (e.g. 5210 and 5211).
3809 */
3810static void
3811ath_tx_proc_q0(void *arg, int npending)
3812{
3813	struct ath_softc *sc = arg;
3814	struct ifnet *ifp = sc->sc_ifp;
3815
3816	if (txqactive(sc->sc_ah, 0) && ath_tx_processq(sc, &sc->sc_txq[0]))
3817		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3818	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
3819		ath_tx_processq(sc, sc->sc_cabq);
3820	ath_tx_processq(sc, sc->sc_cabq);
3821	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3822	sc->sc_tx_timer = 0;
3823
3824	if (sc->sc_softled)
3825		ath_led_event(sc, ATH_LED_TX);
3826
3827	ath_start(ifp);
3828}
3829
3830/*
3831 * Deferred processing of transmit interrupt; special-cased
3832 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3833 */
3834static void
3835ath_tx_proc_q0123(void *arg, int npending)
3836{
3837	struct ath_softc *sc = arg;
3838	struct ifnet *ifp = sc->sc_ifp;
3839	int nacked;
3840
3841	/*
3842	 * Process each active queue.
3843	 */
3844	nacked = 0;
3845	if (txqactive(sc->sc_ah, 0))
3846		nacked += ath_tx_processq(sc, &sc->sc_txq[0]);
3847	if (txqactive(sc->sc_ah, 1))
3848		nacked += ath_tx_processq(sc, &sc->sc_txq[1]);
3849	if (txqactive(sc->sc_ah, 2))
3850		nacked += ath_tx_processq(sc, &sc->sc_txq[2]);
3851	if (txqactive(sc->sc_ah, 3))
3852		nacked += ath_tx_processq(sc, &sc->sc_txq[3]);
3853	if (txqactive(sc->sc_ah, sc->sc_cabq->axq_qnum))
3854		ath_tx_processq(sc, sc->sc_cabq);
3855	if (nacked)
3856		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3857
3858	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3859	sc->sc_tx_timer = 0;
3860
3861	if (sc->sc_softled)
3862		ath_led_event(sc, ATH_LED_TX);
3863
3864	ath_start(ifp);
3865}
3866
3867/*
3868 * Deferred processing of transmit interrupt.
3869 */
3870static void
3871ath_tx_proc(void *arg, int npending)
3872{
3873	struct ath_softc *sc = arg;
3874	struct ifnet *ifp = sc->sc_ifp;
3875	int i, nacked;
3876
3877	/*
3878	 * Process each active queue.
3879	 */
3880	nacked = 0;
3881	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3882		if (ATH_TXQ_SETUP(sc, i) && txqactive(sc->sc_ah, i))
3883			nacked += ath_tx_processq(sc, &sc->sc_txq[i]);
3884	if (nacked)
3885		sc->sc_lastrx = ath_hal_gettsf64(sc->sc_ah);
3886
3887	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3888	sc->sc_tx_timer = 0;
3889
3890	if (sc->sc_softled)
3891		ath_led_event(sc, ATH_LED_TX);
3892
3893	ath_start(ifp);
3894}
3895
3896static void
3897ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3898{
3899	struct ath_hal *ah = sc->sc_ah;
3900	struct ieee80211_node *ni;
3901	struct ath_buf *bf;
3902
3903	/*
3904	 * NB: this assumes output has been stopped and
3905	 *     we do not need to block ath_tx_tasklet
3906	 */
3907	for (;;) {
3908		ATH_TXQ_LOCK(txq);
3909		bf = STAILQ_FIRST(&txq->axq_q);
3910		if (bf == NULL) {
3911			txq->axq_link = NULL;
3912			ATH_TXQ_UNLOCK(txq);
3913			break;
3914		}
3915		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3916		ATH_TXQ_UNLOCK(txq);
3917#ifdef AR_DEBUG
3918		if (sc->sc_debug & ATH_DEBUG_RESET)
3919			ath_printtxbuf(bf,
3920				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3921#endif /* AR_DEBUG */
3922		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3923		m_freem(bf->bf_m);
3924		bf->bf_m = NULL;
3925		ni = bf->bf_node;
3926		bf->bf_node = NULL;
3927		if (ni != NULL) {
3928			/*
3929			 * Reclaim node reference.
3930			 */
3931			ieee80211_free_node(ni);
3932		}
3933		ATH_TXBUF_LOCK(sc);
3934		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3935		ATH_TXBUF_UNLOCK(sc);
3936	}
3937}
3938
3939static void
3940ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3941{
3942	struct ath_hal *ah = sc->sc_ah;
3943
3944	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3945	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3946	    __func__, txq->axq_qnum,
3947	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3948	    txq->axq_link);
3949}
3950
3951/*
3952 * Drain the transmit queues and reclaim resources.
3953 */
3954static void
3955ath_draintxq(struct ath_softc *sc)
3956{
3957	struct ath_hal *ah = sc->sc_ah;
3958	struct ifnet *ifp = sc->sc_ifp;
3959	int i;
3960
3961	/* XXX return value */
3962	if (!sc->sc_invalid) {
3963		/* don't touch the hardware if marked invalid */
3964		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3965		DPRINTF(sc, ATH_DEBUG_RESET,
3966		    "%s: beacon queue %p\n", __func__,
3967		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
3968		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3969			if (ATH_TXQ_SETUP(sc, i))
3970				ath_tx_stopdma(sc, &sc->sc_txq[i]);
3971	}
3972	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3973		if (ATH_TXQ_SETUP(sc, i))
3974			ath_tx_draintxq(sc, &sc->sc_txq[i]);
3975	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
3976	sc->sc_tx_timer = 0;
3977}
3978
3979/*
3980 * Disable the receive h/w in preparation for a reset.
3981 */
3982static void
3983ath_stoprecv(struct ath_softc *sc)
3984{
3985#define	PA2DESC(_sc, _pa) \
3986	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3987		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3988	struct ath_hal *ah = sc->sc_ah;
3989
3990	ath_hal_stoppcurecv(ah);	/* disable PCU */
3991	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
3992	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
3993	DELAY(3000);			/* 3ms is long enough for 1 frame */
3994#ifdef AR_DEBUG
3995	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
3996		struct ath_buf *bf;
3997
3998		printf("%s: rx queue %p, link %p\n", __func__,
3999			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
4000		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4001			struct ath_desc *ds = bf->bf_desc;
4002			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
4003				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
4004			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
4005				ath_printrxbuf(bf, status == HAL_OK);
4006		}
4007	}
4008#endif
4009	sc->sc_rxlink = NULL;		/* just in case */
4010#undef PA2DESC
4011}
4012
4013/*
4014 * Enable the receive h/w following a reset.
4015 */
4016static int
4017ath_startrecv(struct ath_softc *sc)
4018{
4019	struct ath_hal *ah = sc->sc_ah;
4020	struct ath_buf *bf;
4021
4022	sc->sc_rxlink = NULL;
4023	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
4024		int error = ath_rxbuf_init(sc, bf);
4025		if (error != 0) {
4026			DPRINTF(sc, ATH_DEBUG_RECV,
4027				"%s: ath_rxbuf_init failed %d\n",
4028				__func__, error);
4029			return error;
4030		}
4031	}
4032
4033	bf = STAILQ_FIRST(&sc->sc_rxbuf);
4034	ath_hal_putrxbuf(ah, bf->bf_daddr);
4035	ath_hal_rxena(ah);		/* enable recv descriptors */
4036	ath_mode_init(sc);		/* set filters, etc. */
4037	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
4038	return 0;
4039}
4040
4041/*
4042 * Update internal state after a channel change.
4043 */
4044static void
4045ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
4046{
4047	struct ieee80211com *ic = &sc->sc_ic;
4048	enum ieee80211_phymode mode;
4049	u_int16_t flags;
4050
4051	/*
4052	 * Change channels and update the h/w rate map
4053	 * if we're switching; e.g. 11a to 11b/g.
4054	 */
4055	mode = ieee80211_chan2mode(ic, chan);
4056	if (mode != sc->sc_curmode)
4057		ath_setcurmode(sc, mode);
4058	/*
4059	 * Update BPF state.  NB: ethereal et. al. don't handle
4060	 * merged flags well so pick a unique mode for their use.
4061	 */
4062	if (IEEE80211_IS_CHAN_A(chan))
4063		flags = IEEE80211_CHAN_A;
4064	/* XXX 11g schizophrenia */
4065	else if (IEEE80211_IS_CHAN_G(chan) ||
4066	    IEEE80211_IS_CHAN_PUREG(chan))
4067		flags = IEEE80211_CHAN_G;
4068	else
4069		flags = IEEE80211_CHAN_B;
4070	if (IEEE80211_IS_CHAN_T(chan))
4071		flags |= IEEE80211_CHAN_TURBO;
4072	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
4073		htole16(chan->ic_freq);
4074	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
4075		htole16(flags);
4076}
4077
4078/*
4079 * Set/change channels.  If the channel is really being changed,
4080 * it's done by reseting the chip.  To accomplish this we must
4081 * first cleanup any pending DMA, then restart stuff after a la
4082 * ath_init.
4083 */
4084static int
4085ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4086{
4087	struct ath_hal *ah = sc->sc_ah;
4088	struct ieee80211com *ic = &sc->sc_ic;
4089	HAL_CHANNEL hchan;
4090
4091	/*
4092	 * Convert to a HAL channel description with
4093	 * the flags constrained to reflect the current
4094	 * operating mode.
4095	 */
4096	hchan.channel = chan->ic_freq;
4097	hchan.channelFlags = ath_chan2flags(ic, chan);
4098
4099	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
4100	    __func__,
4101	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
4102		sc->sc_curchan.channelFlags),
4103	    	sc->sc_curchan.channel,
4104	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
4105	if (hchan.channel != sc->sc_curchan.channel ||
4106	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4107		HAL_STATUS status;
4108
4109		/*
4110		 * To switch channels clear any pending DMA operations;
4111		 * wait long enough for the RX fifo to drain, reset the
4112		 * hardware at the new frequency, and then re-enable
4113		 * the relevant bits of the h/w.
4114		 */
4115		ath_hal_intrset(ah, 0);		/* disable interrupts */
4116		ath_draintxq(sc);		/* clear pending tx frames */
4117		ath_stoprecv(sc);		/* turn off frame recv */
4118		if (!ath_hal_reset(ah, sc->sc_opmode, &hchan, AH_TRUE, &status)) {
4119			if_printf(ic->ic_ifp, "ath_chan_set: unable to reset "
4120				"channel %u (%u Mhz)\n",
4121				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
4122			return EIO;
4123		}
4124		sc->sc_curchan = hchan;
4125		ath_update_txpow(sc);		/* update tx power state */
4126		sc->sc_diversity = ath_hal_getdiversity(ah);
4127
4128		/*
4129		 * Re-enable rx framework.
4130		 */
4131		if (ath_startrecv(sc) != 0) {
4132			if_printf(ic->ic_ifp,
4133				"ath_chan_set: unable to restart recv logic\n");
4134			return EIO;
4135		}
4136
4137		/*
4138		 * Change channels and update the h/w rate map
4139		 * if we're switching; e.g. 11a to 11b/g.
4140		 */
4141		ic->ic_ibss_chan = chan;
4142		ath_chan_change(sc, chan);
4143
4144		/*
4145		 * Re-enable interrupts.
4146		 */
4147		ath_hal_intrset(ah, sc->sc_imask);
4148	}
4149	return 0;
4150}
4151
4152static void
4153ath_next_scan(void *arg)
4154{
4155	struct ath_softc *sc = arg;
4156	struct ieee80211com *ic = &sc->sc_ic;
4157
4158	if (ic->ic_state == IEEE80211_S_SCAN)
4159		ieee80211_next_scan(ic);
4160}
4161
4162/*
4163 * Periodically recalibrate the PHY to account
4164 * for temperature/environment changes.
4165 */
4166static void
4167ath_calibrate(void *arg)
4168{
4169	struct ath_softc *sc = arg;
4170	struct ath_hal *ah = sc->sc_ah;
4171
4172	sc->sc_stats.ast_per_cal++;
4173
4174	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
4175		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
4176
4177	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4178		/*
4179		 * Rfgain is out of bounds, reset the chip
4180		 * to load new gain values.
4181		 */
4182		sc->sc_stats.ast_per_rfgain++;
4183		ath_reset(sc->sc_ifp);
4184	}
4185	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
4186		DPRINTF(sc, ATH_DEBUG_ANY,
4187			"%s: calibration of channel %u failed\n",
4188			__func__, sc->sc_curchan.channel);
4189		sc->sc_stats.ast_per_calfail++;
4190	}
4191	/*
4192	 * Calibrate noise floor data again in case of change.
4193	 */
4194	ath_hal_process_noisefloor(ah);
4195	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
4196}
4197
4198static int
4199ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4200{
4201	struct ifnet *ifp = ic->ic_ifp;
4202	struct ath_softc *sc = ifp->if_softc;
4203	struct ath_hal *ah = sc->sc_ah;
4204	struct ieee80211_node *ni;
4205	int i, error;
4206	const u_int8_t *bssid;
4207	u_int32_t rfilt;
4208	static const HAL_LED_STATE leds[] = {
4209	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4210	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4211	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4212	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4213	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4214	};
4215
4216	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4217		ieee80211_state_name[ic->ic_state],
4218		ieee80211_state_name[nstate]);
4219
4220	callout_stop(&sc->sc_scan_ch);
4221	callout_stop(&sc->sc_cal_ch);
4222	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4223
4224	if (nstate == IEEE80211_S_INIT) {
4225		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4226		/*
4227		 * NB: disable interrupts so we don't rx frames.
4228		 */
4229		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4230		/*
4231		 * Notify the rate control algorithm.
4232		 */
4233		ath_rate_newstate(sc, nstate);
4234		goto done;
4235	}
4236	ni = ic->ic_bss;
4237	error = ath_chan_set(sc, ic->ic_curchan);
4238	if (error != 0)
4239		goto bad;
4240	rfilt = ath_calcrxfilter(sc, nstate);
4241	if (nstate == IEEE80211_S_SCAN)
4242		bssid = ifp->if_broadcastaddr;
4243	else
4244		bssid = ni->ni_bssid;
4245	ath_hal_setrxfilter(ah, rfilt);
4246	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4247		 __func__, rfilt, ether_sprintf(bssid));
4248
4249	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4250		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4251	else
4252		ath_hal_setassocid(ah, bssid, 0);
4253	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4254		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4255			if (ath_hal_keyisvalid(ah, i))
4256				ath_hal_keysetmac(ah, i, bssid);
4257	}
4258
4259	/*
4260	 * Notify the rate control algorithm so rates
4261	 * are setup should ath_beacon_alloc be called.
4262	 */
4263	ath_rate_newstate(sc, nstate);
4264
4265	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4266		/* nothing to do */;
4267	} else if (nstate == IEEE80211_S_RUN) {
4268		DPRINTF(sc, ATH_DEBUG_STATE,
4269			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4270			"capinfo=0x%04x chan=%d\n"
4271			 , __func__
4272			 , ic->ic_flags
4273			 , ni->ni_intval
4274			 , ether_sprintf(ni->ni_bssid)
4275			 , ni->ni_capinfo
4276			 , ieee80211_chan2ieee(ic, ic->ic_curchan));
4277
4278		switch (ic->ic_opmode) {
4279		case IEEE80211_M_HOSTAP:
4280		case IEEE80211_M_IBSS:
4281			/*
4282			 * Allocate and setup the beacon frame.
4283			 *
4284			 * Stop any previous beacon DMA.  This may be
4285			 * necessary, for example, when an ibss merge
4286			 * causes reconfiguration; there will be a state
4287			 * transition from RUN->RUN that means we may
4288			 * be called with beacon transmission active.
4289			 */
4290			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4291			ath_beacon_free(sc);
4292			error = ath_beacon_alloc(sc, ni);
4293			if (error != 0)
4294				goto bad;
4295			/*
4296			 * Configure the beacon and sleep timers.
4297			 */
4298			ath_beacon_config(sc);
4299			break;
4300		case IEEE80211_M_STA:
4301			/*
4302			 * Allocate a key cache slot to the station.
4303			 */
4304			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4305			    sc->sc_hasclrkey &&
4306			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4307				ath_setup_stationkey(ni);
4308			/*
4309			 * Configure the beacon and sleep timers.
4310			 */
4311			ath_beacon_config(sc);
4312			break;
4313		default:
4314			break;
4315		}
4316
4317		/*
4318		 * Let the hal process statistics collected during a
4319		 * scan so it can provide calibrated noise floor data.
4320		 */
4321		ath_hal_process_noisefloor(ah);
4322		/*
4323		 * Reset rssi stats; maybe not the best place...
4324		 */
4325		sc->sc_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
4326		sc->sc_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
4327		sc->sc_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
4328	} else {
4329		ath_hal_intrset(ah,
4330			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4331		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4332	}
4333done:
4334	/*
4335	 * Invoke the parent method to complete the work.
4336	 */
4337	error = sc->sc_newstate(ic, nstate, arg);
4338	/*
4339	 * Finally, start any timers.
4340	 */
4341	if (nstate == IEEE80211_S_RUN) {
4342		/* start periodic recalibration timer */
4343		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4344			ath_calibrate, sc);
4345	} else if (nstate == IEEE80211_S_SCAN) {
4346		/* start ap/neighbor scan timer */
4347		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4348			ath_next_scan, sc);
4349	}
4350bad:
4351	return error;
4352}
4353
4354/*
4355 * Allocate a key cache slot to the station so we can
4356 * setup a mapping from key index to node. The key cache
4357 * slot is needed for managing antenna state and for
4358 * compression when stations do not use crypto.  We do
4359 * it uniliaterally here; if crypto is employed this slot
4360 * will be reassigned.
4361 */
4362static void
4363ath_setup_stationkey(struct ieee80211_node *ni)
4364{
4365	struct ieee80211com *ic = ni->ni_ic;
4366	struct ath_softc *sc = ic->ic_ifp->if_softc;
4367	ieee80211_keyix keyix, rxkeyix;
4368
4369	if (!ath_key_alloc(ic, &ni->ni_ucastkey, &keyix, &rxkeyix)) {
4370		/*
4371		 * Key cache is full; we'll fall back to doing
4372		 * the more expensive lookup in software.  Note
4373		 * this also means no h/w compression.
4374		 */
4375		/* XXX msg+statistic */
4376	} else {
4377		/* XXX locking? */
4378		ni->ni_ucastkey.wk_keyix = keyix;
4379		ni->ni_ucastkey.wk_rxkeyix = rxkeyix;
4380		/* NB: this will create a pass-thru key entry */
4381		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4382	}
4383}
4384
4385/*
4386 * Setup driver-specific state for a newly associated node.
4387 * Note that we're called also on a re-associate, the isnew
4388 * param tells us if this is the first time or not.
4389 */
4390static void
4391ath_newassoc(struct ieee80211_node *ni, int isnew)
4392{
4393	struct ieee80211com *ic = ni->ni_ic;
4394	struct ath_softc *sc = ic->ic_ifp->if_softc;
4395
4396	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4397	if (isnew &&
4398	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4399		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4400		    ("new assoc with a unicast key already setup (keyix %u)",
4401		    ni->ni_ucastkey.wk_keyix));
4402		ath_setup_stationkey(ni);
4403	}
4404}
4405
4406static int
4407ath_getchannels(struct ath_softc *sc, u_int cc,
4408	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4409{
4410	struct ieee80211com *ic = &sc->sc_ic;
4411	struct ifnet *ifp = sc->sc_ifp;
4412	struct ath_hal *ah = sc->sc_ah;
4413	HAL_CHANNEL *chans;
4414	int i, ix, nchan;
4415
4416	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4417			M_TEMP, M_NOWAIT);
4418	if (chans == NULL) {
4419		if_printf(ifp, "unable to allocate channel table\n");
4420		return ENOMEM;
4421	}
4422	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4423	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4424		u_int32_t rd;
4425
4426		ath_hal_getregdomain(ah, &rd);
4427		if_printf(ifp, "unable to collect channel list from hal; "
4428			"regdomain likely %u country code %u\n", rd, cc);
4429		free(chans, M_TEMP);
4430		return EINVAL;
4431	}
4432
4433	/*
4434	 * Convert HAL channels to ieee80211 ones and insert
4435	 * them in the table according to their channel number.
4436	 */
4437	for (i = 0; i < nchan; i++) {
4438		HAL_CHANNEL *c = &chans[i];
4439		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4440		if (ix > IEEE80211_CHAN_MAX) {
4441			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4442				ix, c->channel, c->channelFlags);
4443			continue;
4444		}
4445		/* NB: flags are known to be compatible */
4446		if (ic->ic_channels[ix].ic_freq == 0) {
4447			ic->ic_channels[ix].ic_freq = c->channel;
4448			ic->ic_channels[ix].ic_flags = c->channelFlags;
4449		} else {
4450			/* channels overlap; e.g. 11g and 11b */
4451			ic->ic_channels[ix].ic_flags |= c->channelFlags;
4452		}
4453	}
4454	free(chans, M_TEMP);
4455	return 0;
4456}
4457
4458static void
4459ath_led_done(void *arg)
4460{
4461	struct ath_softc *sc = arg;
4462
4463	sc->sc_blinking = 0;
4464}
4465
4466/*
4467 * Turn the LED off: flip the pin and then set a timer so no
4468 * update will happen for the specified duration.
4469 */
4470static void
4471ath_led_off(void *arg)
4472{
4473	struct ath_softc *sc = arg;
4474
4475	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4476	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4477}
4478
4479/*
4480 * Blink the LED according to the specified on/off times.
4481 */
4482static void
4483ath_led_blink(struct ath_softc *sc, int on, int off)
4484{
4485	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4486	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4487	sc->sc_blinking = 1;
4488	sc->sc_ledoff = off;
4489	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4490}
4491
4492static void
4493ath_led_event(struct ath_softc *sc, int event)
4494{
4495
4496	sc->sc_ledevent = ticks;	/* time of last event */
4497	if (sc->sc_blinking)		/* don't interrupt active blink */
4498		return;
4499	switch (event) {
4500	case ATH_LED_POLL:
4501		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4502			sc->sc_hwmap[0].ledoff);
4503		break;
4504	case ATH_LED_TX:
4505		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4506			sc->sc_hwmap[sc->sc_txrate].ledoff);
4507		break;
4508	case ATH_LED_RX:
4509		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4510			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4511		break;
4512	}
4513}
4514
4515static void
4516ath_update_txpow(struct ath_softc *sc)
4517{
4518	struct ieee80211com *ic = &sc->sc_ic;
4519	struct ath_hal *ah = sc->sc_ah;
4520	u_int32_t txpow;
4521
4522	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4523		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4524		/* read back in case value is clamped */
4525		ath_hal_gettxpowlimit(ah, &txpow);
4526		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4527	}
4528	/*
4529	 * Fetch max tx power level for status requests.
4530	 */
4531	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4532	ic->ic_bss->ni_txpower = txpow;
4533}
4534
4535static void
4536rate_setup(struct ath_softc *sc,
4537	const HAL_RATE_TABLE *rt, struct ieee80211_rateset *rs)
4538{
4539	int i, maxrates;
4540
4541	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4542		DPRINTF(sc, ATH_DEBUG_ANY,
4543			"%s: rate table too small (%u > %u)\n",
4544		       __func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4545		maxrates = IEEE80211_RATE_MAXSIZE;
4546	} else
4547		maxrates = rt->rateCount;
4548	for (i = 0; i < maxrates; i++)
4549		rs->rs_rates[i] = rt->info[i].dot11Rate;
4550	rs->rs_nrates = maxrates;
4551}
4552
4553static int
4554ath_rate_setup(struct ath_softc *sc, u_int mode)
4555{
4556	struct ath_hal *ah = sc->sc_ah;
4557	struct ieee80211com *ic = &sc->sc_ic;
4558	const HAL_RATE_TABLE *rt;
4559
4560	switch (mode) {
4561	case IEEE80211_MODE_11A:
4562		rt = ath_hal_getratetable(ah, HAL_MODE_11A);
4563		break;
4564	case IEEE80211_MODE_11B:
4565		rt = ath_hal_getratetable(ah, HAL_MODE_11B);
4566		break;
4567	case IEEE80211_MODE_11G:
4568		rt = ath_hal_getratetable(ah, HAL_MODE_11G);
4569		break;
4570	case IEEE80211_MODE_TURBO_A:
4571		/* XXX until static/dynamic turbo is fixed */
4572		rt = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4573		break;
4574	case IEEE80211_MODE_TURBO_G:
4575		rt = ath_hal_getratetable(ah, HAL_MODE_108G);
4576		break;
4577	default:
4578		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4579			__func__, mode);
4580		return 0;
4581	}
4582	sc->sc_rates[mode] = rt;
4583	if (rt != NULL) {
4584		rate_setup(sc, rt, &ic->ic_sup_rates[mode]);
4585		return 1;
4586	} else
4587		return 0;
4588}
4589
4590static void
4591ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4592{
4593#define	N(a)	(sizeof(a)/sizeof(a[0]))
4594	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4595	static const struct {
4596		u_int		rate;		/* tx/rx 802.11 rate */
4597		u_int16_t	timeOn;		/* LED on time (ms) */
4598		u_int16_t	timeOff;	/* LED off time (ms) */
4599	} blinkrates[] = {
4600		{ 108,  40,  10 },
4601		{  96,  44,  11 },
4602		{  72,  50,  13 },
4603		{  48,  57,  14 },
4604		{  36,  67,  16 },
4605		{  24,  80,  20 },
4606		{  22, 100,  25 },
4607		{  18, 133,  34 },
4608		{  12, 160,  40 },
4609		{  10, 200,  50 },
4610		{   6, 240,  58 },
4611		{   4, 267,  66 },
4612		{   2, 400, 100 },
4613		{   0, 500, 130 },
4614	};
4615	const HAL_RATE_TABLE *rt;
4616	int i, j;
4617
4618	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4619	rt = sc->sc_rates[mode];
4620	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4621	for (i = 0; i < rt->rateCount; i++)
4622		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4623	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4624	for (i = 0; i < 32; i++) {
4625		u_int8_t ix = rt->rateCodeToIndex[i];
4626		if (ix == 0xff) {
4627			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4628			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4629			continue;
4630		}
4631		sc->sc_hwmap[i].ieeerate =
4632			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4633		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4634		if (rt->info[ix].shortPreamble ||
4635		    rt->info[ix].phy == IEEE80211_T_OFDM)
4636			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4637		/* NB: receive frames include FCS */
4638		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4639			IEEE80211_RADIOTAP_F_FCS;
4640		/* setup blink rate table to avoid per-packet lookup */
4641		for (j = 0; j < N(blinkrates)-1; j++)
4642			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4643				break;
4644		/* NB: this uses the last entry if the rate isn't found */
4645		/* XXX beware of overlow */
4646		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4647		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4648	}
4649	sc->sc_currates = rt;
4650	sc->sc_curmode = mode;
4651	/*
4652	 * All protection frames are transmited at 2Mb/s for
4653	 * 11g, otherwise at 1Mb/s.
4654	 */
4655	if (mode == IEEE80211_MODE_11G)
4656		sc->sc_protrix = ath_tx_findrix(rt, 2*2);
4657	else
4658		sc->sc_protrix = ath_tx_findrix(rt, 2*1);
4659	/* rate index used to send management frames */
4660	sc->sc_minrateix = 0;
4661	/*
4662	 * Setup multicast rate state.
4663	 */
4664	/* XXX layering violation */
4665	sc->sc_mcastrix = ath_tx_findrix(rt, sc->sc_ic.ic_mcast_rate);
4666	sc->sc_mcastrate = sc->sc_ic.ic_mcast_rate;
4667	/* NB: caller is responsible for reseting rate control state */
4668#undef N
4669}
4670
4671#ifdef AR_DEBUG
4672static void
4673ath_printrxbuf(struct ath_buf *bf, int done)
4674{
4675	struct ath_desc *ds;
4676	int i;
4677
4678	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4679		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4680		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4681		    ds->ds_link, ds->ds_data,
4682		    ds->ds_ctl0, ds->ds_ctl1,
4683		    ds->ds_hw[0], ds->ds_hw[1],
4684		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4685	}
4686}
4687
4688static void
4689ath_printtxbuf(struct ath_buf *bf, int done)
4690{
4691	struct ath_desc *ds;
4692	int i;
4693
4694	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4695		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4696		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4697		    ds->ds_link, ds->ds_data,
4698		    ds->ds_ctl0, ds->ds_ctl1,
4699		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4700		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4701	}
4702}
4703#endif /* AR_DEBUG */
4704
4705static void
4706ath_watchdog(struct ifnet *ifp)
4707{
4708	struct ath_softc *sc = ifp->if_softc;
4709	struct ieee80211com *ic = &sc->sc_ic;
4710
4711	ifp->if_timer = 0;
4712	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || sc->sc_invalid)
4713		return;
4714	if (sc->sc_tx_timer) {
4715		if (--sc->sc_tx_timer == 0) {
4716			if_printf(ifp, "device timeout\n");
4717			ath_reset(ifp);
4718			ifp->if_oerrors++;
4719			sc->sc_stats.ast_watchdog++;
4720		} else
4721			ifp->if_timer = 1;
4722	}
4723	ieee80211_watchdog(ic);
4724}
4725
4726/*
4727 * Diagnostic interface to the HAL.  This is used by various
4728 * tools to do things like retrieve register contents for
4729 * debugging.  The mechanism is intentionally opaque so that
4730 * it can change frequently w/o concern for compatiblity.
4731 */
4732static int
4733ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4734{
4735	struct ath_hal *ah = sc->sc_ah;
4736	u_int id = ad->ad_id & ATH_DIAG_ID;
4737	void *indata = NULL;
4738	void *outdata = NULL;
4739	u_int32_t insize = ad->ad_in_size;
4740	u_int32_t outsize = ad->ad_out_size;
4741	int error = 0;
4742
4743	if (ad->ad_id & ATH_DIAG_IN) {
4744		/*
4745		 * Copy in data.
4746		 */
4747		indata = malloc(insize, M_TEMP, M_NOWAIT);
4748		if (indata == NULL) {
4749			error = ENOMEM;
4750			goto bad;
4751		}
4752		error = copyin(ad->ad_in_data, indata, insize);
4753		if (error)
4754			goto bad;
4755	}
4756	if (ad->ad_id & ATH_DIAG_DYN) {
4757		/*
4758		 * Allocate a buffer for the results (otherwise the HAL
4759		 * returns a pointer to a buffer where we can read the
4760		 * results).  Note that we depend on the HAL leaving this
4761		 * pointer for us to use below in reclaiming the buffer;
4762		 * may want to be more defensive.
4763		 */
4764		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4765		if (outdata == NULL) {
4766			error = ENOMEM;
4767			goto bad;
4768		}
4769	}
4770	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4771		if (outsize < ad->ad_out_size)
4772			ad->ad_out_size = outsize;
4773		if (outdata != NULL)
4774			error = copyout(outdata, ad->ad_out_data,
4775					ad->ad_out_size);
4776	} else {
4777		error = EINVAL;
4778	}
4779bad:
4780	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4781		free(indata, M_TEMP);
4782	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4783		free(outdata, M_TEMP);
4784	return error;
4785}
4786
4787static int
4788ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4789{
4790#define	IS_RUNNING(ifp) \
4791	((ifp->if_flags & IFF_UP) && (ifp->if_drv_flags & IFF_DRV_RUNNING))
4792	struct ath_softc *sc = ifp->if_softc;
4793	struct ieee80211com *ic = &sc->sc_ic;
4794	struct ifreq *ifr = (struct ifreq *)data;
4795	int error = 0;
4796
4797	ATH_LOCK(sc);
4798	switch (cmd) {
4799	case SIOCSIFFLAGS:
4800		if (IS_RUNNING(ifp)) {
4801			/*
4802			 * To avoid rescanning another access point,
4803			 * do not call ath_init() here.  Instead,
4804			 * only reflect promisc mode settings.
4805			 */
4806			ath_mode_init(sc);
4807		} else if (ifp->if_flags & IFF_UP) {
4808			/*
4809			 * Beware of being called during attach/detach
4810			 * to reset promiscuous mode.  In that case we
4811			 * will still be marked UP but not RUNNING.
4812			 * However trying to re-init the interface
4813			 * is the wrong thing to do as we've already
4814			 * torn down much of our state.  There's
4815			 * probably a better way to deal with this.
4816			 */
4817			if (!sc->sc_invalid && ic->ic_bss != NULL)
4818				ath_init(sc);	/* XXX lose error */
4819		} else
4820			ath_stop_locked(ifp);
4821		break;
4822	case SIOCADDMULTI:
4823	case SIOCDELMULTI:
4824		/*
4825		 * The upper layer has already installed/removed
4826		 * the multicast address(es), just recalculate the
4827		 * multicast filter for the card.
4828		 */
4829		if (ifp->if_drv_flags & IFF_DRV_RUNNING)
4830			ath_mode_init(sc);
4831		break;
4832	case SIOCGATHSTATS:
4833		/* NB: embed these numbers to get a consistent view */
4834		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4835		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4836		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4837		ATH_UNLOCK(sc);
4838		/*
4839		 * NB: Drop the softc lock in case of a page fault;
4840		 * we'll accept any potential inconsisentcy in the
4841		 * statistics.  The alternative is to copy the data
4842		 * to a local structure.
4843		 */
4844		return copyout(&sc->sc_stats,
4845				ifr->ifr_data, sizeof (sc->sc_stats));
4846	case SIOCGATHDIAG:
4847		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4848		break;
4849	default:
4850		error = ieee80211_ioctl(ic, cmd, data);
4851		if (error == ENETRESET) {
4852			if (IS_RUNNING(ifp) &&
4853			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4854				ath_init(sc);	/* XXX lose error */
4855			error = 0;
4856		}
4857		if (error == ERESTART)
4858			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4859		break;
4860	}
4861	ATH_UNLOCK(sc);
4862	return error;
4863#undef IS_RUNNING
4864}
4865
4866static int
4867ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
4868{
4869	struct ath_softc *sc = arg1;
4870	u_int slottime = ath_hal_getslottime(sc->sc_ah);
4871	int error;
4872
4873	error = sysctl_handle_int(oidp, &slottime, 0, req);
4874	if (error || !req->newptr)
4875		return error;
4876	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
4877}
4878
4879static int
4880ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
4881{
4882	struct ath_softc *sc = arg1;
4883	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
4884	int error;
4885
4886	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
4887	if (error || !req->newptr)
4888		return error;
4889	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
4890}
4891
4892static int
4893ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
4894{
4895	struct ath_softc *sc = arg1;
4896	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
4897	int error;
4898
4899	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
4900	if (error || !req->newptr)
4901		return error;
4902	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
4903}
4904
4905static int
4906ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
4907{
4908	struct ath_softc *sc = arg1;
4909	int softled = sc->sc_softled;
4910	int error;
4911
4912	error = sysctl_handle_int(oidp, &softled, 0, req);
4913	if (error || !req->newptr)
4914		return error;
4915	softled = (softled != 0);
4916	if (softled != sc->sc_softled) {
4917		if (softled) {
4918			/* NB: handle any sc_ledpin change */
4919			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
4920			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
4921				!sc->sc_ledon);
4922		}
4923		sc->sc_softled = softled;
4924	}
4925	return 0;
4926}
4927
4928static int
4929ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
4930{
4931	struct ath_softc *sc = arg1;
4932	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
4933	int error;
4934
4935	error = sysctl_handle_int(oidp, &defantenna, 0, req);
4936	if (!error && req->newptr)
4937		ath_hal_setdefantenna(sc->sc_ah, defantenna);
4938	return error;
4939}
4940
4941static int
4942ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
4943{
4944	struct ath_softc *sc = arg1;
4945	u_int diversity = ath_hal_getdiversity(sc->sc_ah);
4946	int error;
4947
4948	error = sysctl_handle_int(oidp, &diversity, 0, req);
4949	if (error || !req->newptr)
4950		return error;
4951	if (!ath_hal_setdiversity(sc->sc_ah, diversity))
4952		return EINVAL;
4953	sc->sc_diversity = diversity;
4954	return 0;
4955}
4956
4957static int
4958ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
4959{
4960	struct ath_softc *sc = arg1;
4961	u_int32_t diag;
4962	int error;
4963
4964	if (!ath_hal_getdiag(sc->sc_ah, &diag))
4965		return EINVAL;
4966	error = sysctl_handle_int(oidp, &diag, 0, req);
4967	if (error || !req->newptr)
4968		return error;
4969	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
4970}
4971
4972static int
4973ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
4974{
4975	struct ath_softc *sc = arg1;
4976	struct ifnet *ifp = sc->sc_ifp;
4977	u_int32_t scale;
4978	int error;
4979
4980	ath_hal_gettpscale(sc->sc_ah, &scale);
4981	error = sysctl_handle_int(oidp, &scale, 0, req);
4982	if (error || !req->newptr)
4983		return error;
4984	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
4985}
4986
4987static int
4988ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
4989{
4990	struct ath_softc *sc = arg1;
4991	u_int tpc = ath_hal_gettpc(sc->sc_ah);
4992	int error;
4993
4994	error = sysctl_handle_int(oidp, &tpc, 0, req);
4995	if (error || !req->newptr)
4996		return error;
4997	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
4998}
4999
5000static int
5001ath_sysctl_regdomain(SYSCTL_HANDLER_ARGS)
5002{
5003	struct ath_softc *sc = arg1;
5004	u_int32_t rd;
5005	int error;
5006
5007	if (!ath_hal_getregdomain(sc->sc_ah, &rd))
5008		return EINVAL;
5009	error = sysctl_handle_int(oidp, &rd, 0, req);
5010	if (error || !req->newptr)
5011		return error;
5012	return !ath_hal_setregdomain(sc->sc_ah, rd) ? EINVAL : 0;
5013}
5014
5015static void
5016ath_sysctlattach(struct ath_softc *sc)
5017{
5018	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
5019	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
5020	struct ath_hal *ah = sc->sc_ah;
5021
5022	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
5023	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5024		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
5025		"EEPROM country code");
5026	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5027		"regdomain", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5028		ath_sysctl_regdomain, "I", "EEPROM regdomain code");
5029	sc->sc_debug = ath_debug;
5030	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5031		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
5032		"control debugging printfs");
5033
5034	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5035		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5036		ath_sysctl_slottime, "I", "802.11 slot time (us)");
5037	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5038		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5039		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
5040	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5041		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5042		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
5043	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5044		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5045		ath_sysctl_softled, "I", "enable/disable software LED support");
5046	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5047		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
5048		"GPIO pin connected to LED");
5049	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5050		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
5051		"setting to turn LED on");
5052	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5053		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
5054		"idle time for inactivity LED (ticks)");
5055	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5056		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
5057		"tx antenna (0=auto)");
5058	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5059		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5060		ath_sysctl_rxantenna, "I", "default/rx antenna");
5061	if (ath_hal_hasdiversity(ah))
5062		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5063			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5064			ath_sysctl_diversity, "I", "antenna diversity");
5065	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
5066	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5067		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
5068		"tx descriptor batching");
5069	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5070		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5071		ath_sysctl_diag, "I", "h/w diagnostic control");
5072	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5073		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5074		ath_sysctl_tpscale, "I", "tx power scaling");
5075	if (ath_hal_hastpc(ah))
5076		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5077			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
5078			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
5079	sc->sc_monpass = HAL_RXERR_DECRYPT | HAL_RXERR_MIC;
5080	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
5081		"monpass", CTLFLAG_RW, &sc->sc_monpass, 0,
5082		"mask of error frames to pass when monitoring");
5083}
5084
5085static void
5086ath_bpfattach(struct ath_softc *sc)
5087{
5088	struct ifnet *ifp = sc->sc_ifp;
5089
5090	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
5091		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
5092		&sc->sc_drvbpf);
5093	/*
5094	 * Initialize constant fields.
5095	 * XXX make header lengths a multiple of 32-bits so subsequent
5096	 *     headers are properly aligned; this is a kludge to keep
5097	 *     certain applications happy.
5098	 *
5099	 * NB: the channel is setup each time we transition to the
5100	 *     RUN state to avoid filling it in for each frame.
5101	 */
5102	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
5103	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
5104	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
5105
5106	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
5107	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
5108	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
5109}
5110
5111/*
5112 * Announce various information on device/driver attach.
5113 */
5114static void
5115ath_announce(struct ath_softc *sc)
5116{
5117#define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
5118	struct ifnet *ifp = sc->sc_ifp;
5119	struct ath_hal *ah = sc->sc_ah;
5120	u_int modes, cc;
5121
5122	if_printf(ifp, "mac %d.%d phy %d.%d",
5123		ah->ah_macVersion, ah->ah_macRev,
5124		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
5125	/*
5126	 * Print radio revision(s).  We check the wireless modes
5127	 * to avoid falsely printing revs for inoperable parts.
5128	 * Dual-band radio revs are returned in the 5Ghz rev number.
5129	 */
5130	ath_hal_getcountrycode(ah, &cc);
5131	modes = ath_hal_getwirelessmodes(ah, cc);
5132	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
5133		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
5134			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
5135				ah->ah_analog5GhzRev >> 4,
5136				ah->ah_analog5GhzRev & 0xf,
5137				ah->ah_analog2GhzRev >> 4,
5138				ah->ah_analog2GhzRev & 0xf);
5139		else
5140			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5141				ah->ah_analog5GhzRev & 0xf);
5142	} else
5143		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5144			ah->ah_analog5GhzRev & 0xf);
5145	printf("\n");
5146	if (bootverbose) {
5147		int i;
5148		for (i = 0; i <= WME_AC_VO; i++) {
5149			struct ath_txq *txq = sc->sc_ac2q[i];
5150			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5151				txq->axq_qnum, ieee80211_wme_acnames[i]);
5152		}
5153		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5154			sc->sc_cabq->axq_qnum);
5155		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5156	}
5157	if (ath_rxbuf != ATH_RXBUF)
5158		if_printf(ifp, "using %u rx buffers\n", ath_rxbuf);
5159	if (ath_txbuf != ATH_TXBUF)
5160		if_printf(ifp, "using %u tx buffers\n", ath_txbuf);
5161#undef HAL_MODE_DUALBAND
5162}
5163