if_ath.c revision 148307
1/*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 * 3. Neither the names of the above-listed copyright holders nor the names
16 *    of any contributors may be used to endorse or promote products derived
17 *    from this software without specific prior written permission.
18 *
19 * Alternatively, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") version 2 as published by the Free
21 * Software Foundation.
22 *
23 * NO WARRANTY
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34 * THE POSSIBILITY OF SUCH DAMAGES.
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 148307 2005-07-22 17:57:16Z sam $");
39
40/*
41 * Driver for the Atheros Wireless LAN controller.
42 *
43 * This software is derived from work of Atsushi Onoe; his contribution
44 * is greatly appreciated.
45 */
46
47#include "opt_inet.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/sysctl.h>
52#include <sys/mbuf.h>
53#include <sys/malloc.h>
54#include <sys/lock.h>
55#include <sys/mutex.h>
56#include <sys/kernel.h>
57#include <sys/socket.h>
58#include <sys/sockio.h>
59#include <sys/errno.h>
60#include <sys/callout.h>
61#include <sys/bus.h>
62#include <sys/endian.h>
63
64#include <machine/bus.h>
65
66#include <net/if.h>
67#include <net/if_dl.h>
68#include <net/if_media.h>
69#include <net/if_types.h>
70#include <net/if_arp.h>
71#include <net/ethernet.h>
72#include <net/if_llc.h>
73
74#include <net80211/ieee80211_var.h>
75
76#include <net/bpf.h>
77
78#ifdef INET
79#include <netinet/in.h>
80#include <netinet/if_ether.h>
81#endif
82
83#define	AR_DEBUG
84#include <dev/ath/if_athvar.h>
85#include <contrib/dev/ath/ah_desc.h>
86#include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
87
88/* unaligned little endian access */
89#define LE_READ_2(p)							\
90	((u_int16_t)							\
91	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
92#define LE_READ_4(p)							\
93	((u_int32_t)							\
94	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
95	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
96
97enum {
98	ATH_LED_TX,
99	ATH_LED_RX,
100	ATH_LED_POLL,
101};
102
103static void	ath_init(void *);
104static void	ath_stop_locked(struct ifnet *);
105static void	ath_stop(struct ifnet *);
106static void	ath_start(struct ifnet *);
107static int	ath_reset(struct ifnet *);
108static int	ath_media_change(struct ifnet *);
109static void	ath_watchdog(struct ifnet *);
110static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
111static void	ath_fatal_proc(void *, int);
112static void	ath_rxorn_proc(void *, int);
113static void	ath_bmiss_proc(void *, int);
114static int	ath_key_alloc(struct ieee80211com *,
115			const struct ieee80211_key *);
116static int	ath_key_delete(struct ieee80211com *,
117			const struct ieee80211_key *);
118static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
119			const u_int8_t mac[IEEE80211_ADDR_LEN]);
120static void	ath_key_update_begin(struct ieee80211com *);
121static void	ath_key_update_end(struct ieee80211com *);
122static void	ath_mode_init(struct ath_softc *);
123static void	ath_setslottime(struct ath_softc *);
124static void	ath_updateslot(struct ifnet *);
125static int	ath_beaconq_setup(struct ath_hal *);
126static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
127static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
128static void	ath_beacon_proc(void *, int);
129static void	ath_bstuck_proc(void *, int);
130static void	ath_beacon_free(struct ath_softc *);
131static void	ath_beacon_config(struct ath_softc *);
132static void	ath_descdma_cleanup(struct ath_softc *sc,
133			struct ath_descdma *, ath_bufhead *);
134static int	ath_desc_alloc(struct ath_softc *);
135static void	ath_desc_free(struct ath_softc *);
136static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
137static void	ath_node_free(struct ieee80211_node *);
138static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
139static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
140static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
141			struct ieee80211_node *ni,
142			int subtype, int rssi, u_int32_t rstamp);
143static void	ath_setdefantenna(struct ath_softc *, u_int);
144static void	ath_rx_proc(void *, int);
145static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
146static int	ath_tx_setup(struct ath_softc *, int, int);
147static int	ath_wme_update(struct ieee80211com *);
148static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
149static void	ath_tx_cleanup(struct ath_softc *);
150static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
151			     struct ath_buf *, struct mbuf *);
152static void	ath_tx_proc_q0(void *, int);
153static void	ath_tx_proc_q0123(void *, int);
154static void	ath_tx_proc(void *, int);
155static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
156static void	ath_draintxq(struct ath_softc *);
157static void	ath_stoprecv(struct ath_softc *);
158static int	ath_startrecv(struct ath_softc *);
159static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
160static void	ath_next_scan(void *);
161static void	ath_calibrate(void *);
162static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
163static void	ath_setup_stationkey(struct ieee80211_node *);
164static void	ath_newassoc(struct ieee80211_node *, int);
165static int	ath_getchannels(struct ath_softc *, u_int cc,
166			HAL_BOOL outdoor, HAL_BOOL xchanmode);
167static void	ath_led_event(struct ath_softc *, int);
168static void	ath_update_txpow(struct ath_softc *);
169
170static int	ath_rate_setup(struct ath_softc *, u_int mode);
171static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
172
173static void	ath_sysctlattach(struct ath_softc *);
174static void	ath_bpfattach(struct ath_softc *);
175static void	ath_announce(struct ath_softc *);
176
177SYSCTL_DECL(_hw_ath);
178
179/* XXX validate sysctl values */
180static	int ath_dwelltime = 200;		/* 5 channels/second */
181SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
182	    0, "channel dwell time (ms) for AP/station scanning");
183static	int ath_calinterval = 30;		/* calibrate every 30 secs */
184SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
185	    0, "chip calibration interval (secs)");
186static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
187SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
188	    0, "outdoor operation");
189TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
190static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
191SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
192	    0, "extended channel mode");
193TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
194static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
195SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
196	    0, "country code");
197TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
198static	int ath_regdomain = 0;			/* regulatory domain */
199SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
200	    0, "regulatory domain");
201
202#ifdef AR_DEBUG
203static	int ath_debug = 0;
204SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
205	    0, "control debugging printfs");
206TUNABLE_INT("hw.ath.debug", &ath_debug);
207enum {
208	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
209	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
210	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
211	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
212	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
213	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
214	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
215	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
216	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
217	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
218	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
219	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
220	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
221	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
222	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
223	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
224	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
225	ATH_DEBUG_LED		= 0x00100000,	/* led management */
226	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
227	ATH_DEBUG_ANY		= 0xffffffff
228};
229#define	IFF_DUMPPKTS(sc, m) \
230	((sc->sc_debug & (m)) || \
231	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
232#define	DPRINTF(sc, m, fmt, ...) do {				\
233	if (sc->sc_debug & (m))					\
234		printf(fmt, __VA_ARGS__);			\
235} while (0)
236#define	KEYPRINTF(sc, ix, hk, mac) do {				\
237	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
238		ath_keyprint(__func__, ix, hk, mac);		\
239} while (0)
240static	void ath_printrxbuf(struct ath_buf *bf, int);
241static	void ath_printtxbuf(struct ath_buf *bf, int);
242#else
243#define	IFF_DUMPPKTS(sc, m) \
244	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
245#define	DPRINTF(m, fmt, ...)
246#define	KEYPRINTF(sc, k, ix, mac)
247#endif
248
249MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
250
251int
252ath_attach(u_int16_t devid, struct ath_softc *sc)
253{
254	struct ifnet *ifp;
255	struct ieee80211com *ic = &sc->sc_ic;
256	struct ath_hal *ah = NULL;
257	HAL_STATUS status;
258	int error = 0, i;
259
260	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
261
262	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
263	if (ifp == NULL) {
264		device_printf(sc->sc_dev, "can not if_alloc()\n");
265		error = ENOSPC;
266		goto bad;
267	}
268
269	/* set these up early for if_printf use */
270	if_initname(ifp, device_get_name(sc->sc_dev),
271		device_get_unit(sc->sc_dev));
272
273	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
274	if (ah == NULL) {
275		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
276			status);
277		error = ENXIO;
278		goto bad;
279	}
280	if (ah->ah_abi != HAL_ABI_VERSION) {
281		if_printf(ifp, "HAL ABI mismatch detected "
282			"(HAL:0x%x != driver:0x%x)\n",
283			ah->ah_abi, HAL_ABI_VERSION);
284		error = ENXIO;
285		goto bad;
286	}
287	sc->sc_ah = ah;
288	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
289
290	/*
291	 * Check if the MAC has multi-rate retry support.
292	 * We do this by trying to setup a fake extended
293	 * descriptor.  MAC's that don't have support will
294	 * return false w/o doing anything.  MAC's that do
295	 * support it will return true w/o doing anything.
296	 */
297	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
298
299	/*
300	 * Check if the device has hardware counters for PHY
301	 * errors.  If so we need to enable the MIB interrupt
302	 * so we can act on stat triggers.
303	 */
304	if (ath_hal_hwphycounters(ah))
305		sc->sc_needmib = 1;
306
307	/*
308	 * Get the hardware key cache size.
309	 */
310	sc->sc_keymax = ath_hal_keycachesize(ah);
311	if (sc->sc_keymax > ATH_KEYMAX) {
312		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
313			ATH_KEYMAX, sc->sc_keymax);
314		sc->sc_keymax = ATH_KEYMAX;
315	}
316	/*
317	 * Reset the key cache since some parts do not
318	 * reset the contents on initial power up.
319	 */
320	for (i = 0; i < sc->sc_keymax; i++)
321		ath_hal_keyreset(ah, i);
322	/*
323	 * Mark key cache slots associated with global keys
324	 * as in use.  If we knew TKIP was not to be used we
325	 * could leave the +32, +64, and +32+64 slots free.
326	 * XXX only for splitmic.
327	 */
328	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
329		setbit(sc->sc_keymap, i);
330		setbit(sc->sc_keymap, i+32);
331		setbit(sc->sc_keymap, i+64);
332		setbit(sc->sc_keymap, i+32+64);
333	}
334
335	/*
336	 * Collect the channel list using the default country
337	 * code and including outdoor channels.  The 802.11 layer
338	 * is resposible for filtering this list based on settings
339	 * like the phy mode.
340	 */
341	error = ath_getchannels(sc, ath_countrycode,
342			ath_outdoor, ath_xchanmode);
343	if (error != 0)
344		goto bad;
345	/*
346	 * Setup dynamic sysctl's now that country code and
347	 * regdomain are available from the hal.
348	 */
349	ath_sysctlattach(sc);
350
351	/*
352	 * Setup rate tables for all potential media types.
353	 */
354	ath_rate_setup(sc, IEEE80211_MODE_11A);
355	ath_rate_setup(sc, IEEE80211_MODE_11B);
356	ath_rate_setup(sc, IEEE80211_MODE_11G);
357	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
358	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
359	/* NB: setup here so ath_rate_update is happy */
360	ath_setcurmode(sc, IEEE80211_MODE_11A);
361
362	/*
363	 * Allocate tx+rx descriptors and populate the lists.
364	 */
365	error = ath_desc_alloc(sc);
366	if (error != 0) {
367		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
368		goto bad;
369	}
370	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
371	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
372
373	ATH_TXBUF_LOCK_INIT(sc);
374
375	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
376	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
377	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
378	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
379	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
380
381	/*
382	 * Allocate hardware transmit queues: one queue for
383	 * beacon frames and one data queue for each QoS
384	 * priority.  Note that the hal handles reseting
385	 * these queues at the needed time.
386	 *
387	 * XXX PS-Poll
388	 */
389	sc->sc_bhalq = ath_beaconq_setup(ah);
390	if (sc->sc_bhalq == (u_int) -1) {
391		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
392		error = EIO;
393		goto bad2;
394	}
395	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
396	if (sc->sc_cabq == NULL) {
397		if_printf(ifp, "unable to setup CAB xmit queue!\n");
398		error = EIO;
399		goto bad2;
400	}
401	/* NB: insure BK queue is the lowest priority h/w queue */
402	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
403		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
404			ieee80211_wme_acnames[WME_AC_BK]);
405		error = EIO;
406		goto bad2;
407	}
408	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
409	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
410	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
411		/*
412		 * Not enough hardware tx queues to properly do WME;
413		 * just punt and assign them all to the same h/w queue.
414		 * We could do a better job of this if, for example,
415		 * we allocate queues when we switch from station to
416		 * AP mode.
417		 */
418		if (sc->sc_ac2q[WME_AC_VI] != NULL)
419			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
420		if (sc->sc_ac2q[WME_AC_BE] != NULL)
421			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
422		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
423		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
424		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
425	}
426
427	/*
428	 * Special case certain configurations.  Note the
429	 * CAB queue is handled by these specially so don't
430	 * include them when checking the txq setup mask.
431	 */
432	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
433	case 0x01:
434		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
435		break;
436	case 0x0f:
437		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
438		break;
439	default:
440		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
441		break;
442	}
443
444	/*
445	 * Setup rate control.  Some rate control modules
446	 * call back to change the anntena state so expose
447	 * the necessary entry points.
448	 * XXX maybe belongs in struct ath_ratectrl?
449	 */
450	sc->sc_setdefantenna = ath_setdefantenna;
451	sc->sc_rc = ath_rate_attach(sc);
452	if (sc->sc_rc == NULL) {
453		error = EIO;
454		goto bad2;
455	}
456
457	sc->sc_blinking = 0;
458	sc->sc_ledstate = 1;
459	sc->sc_ledon = 0;			/* low true */
460	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
461	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
462	/*
463	 * Auto-enable soft led processing for IBM cards and for
464	 * 5211 minipci cards.  Users can also manually enable/disable
465	 * support with a sysctl.
466	 */
467	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
468	if (sc->sc_softled) {
469		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
470		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
471	}
472
473	ifp->if_softc = sc;
474	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
475	ifp->if_start = ath_start;
476	ifp->if_watchdog = ath_watchdog;
477	ifp->if_ioctl = ath_ioctl;
478	ifp->if_init = ath_init;
479	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
480	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
481	IFQ_SET_READY(&ifp->if_snd);
482
483	ic->ic_ifp = ifp;
484	ic->ic_reset = ath_reset;
485	ic->ic_newassoc = ath_newassoc;
486	ic->ic_updateslot = ath_updateslot;
487	ic->ic_wme.wme_update = ath_wme_update;
488	/* XXX not right but it's not used anywhere important */
489	ic->ic_phytype = IEEE80211_T_OFDM;
490	ic->ic_opmode = IEEE80211_M_STA;
491	ic->ic_caps =
492		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
493		| IEEE80211_C_HOSTAP		/* hostap mode */
494		| IEEE80211_C_MONITOR		/* monitor mode */
495		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
496		| IEEE80211_C_SHSLOT		/* short slot time supported */
497		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
498		;
499	/*
500	 * Query the hal to figure out h/w crypto support.
501	 */
502	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
503		ic->ic_caps |= IEEE80211_C_WEP;
504	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
505		ic->ic_caps |= IEEE80211_C_AES;
506	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
507		ic->ic_caps |= IEEE80211_C_AES_CCM;
508	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
509		ic->ic_caps |= IEEE80211_C_CKIP;
510	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
511		ic->ic_caps |= IEEE80211_C_TKIP;
512		/*
513		 * Check if h/w does the MIC and/or whether the
514		 * separate key cache entries are required to
515		 * handle both tx+rx MIC keys.
516		 */
517		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
518			ic->ic_caps |= IEEE80211_C_TKIPMIC;
519		if (ath_hal_tkipsplit(ah))
520			sc->sc_splitmic = 1;
521	}
522	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
523	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
524	/*
525	 * TPC support can be done either with a global cap or
526	 * per-packet support.  The latter is not available on
527	 * all parts.  We're a bit pedantic here as all parts
528	 * support a global cap.
529	 */
530	sc->sc_hastpc = ath_hal_hastpc(ah);
531	if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
532		ic->ic_caps |= IEEE80211_C_TXPMGT;
533
534	/*
535	 * Mark WME capability only if we have sufficient
536	 * hardware queues to do proper priority scheduling.
537	 */
538	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
539		ic->ic_caps |= IEEE80211_C_WME;
540	/*
541	 * Check for misc other capabilities.
542	 */
543	if (ath_hal_hasbursting(ah))
544		ic->ic_caps |= IEEE80211_C_BURST;
545
546	/*
547	 * Indicate we need the 802.11 header padded to a
548	 * 32-bit boundary for 4-address and QoS frames.
549	 */
550	ic->ic_flags |= IEEE80211_F_DATAPAD;
551
552	/*
553	 * Query the hal about antenna support.
554	 */
555	if (ath_hal_hasdiversity(ah)) {
556		sc->sc_hasdiversity = 1;
557		sc->sc_diversity = ath_hal_getdiversity(ah);
558	}
559	sc->sc_defant = ath_hal_getdefantenna(ah);
560
561	/*
562	 * Not all chips have the VEOL support we want to
563	 * use with IBSS beacons; check here for it.
564	 */
565	sc->sc_hasveol = ath_hal_hasveol(ah);
566
567	/* get mac address from hardware */
568	ath_hal_getmac(ah, ic->ic_myaddr);
569
570	/* call MI attach routine. */
571	ieee80211_ifattach(ic);
572	/* override default methods */
573	ic->ic_node_alloc = ath_node_alloc;
574	sc->sc_node_free = ic->ic_node_free;
575	ic->ic_node_free = ath_node_free;
576	ic->ic_node_getrssi = ath_node_getrssi;
577	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
578	ic->ic_recv_mgmt = ath_recv_mgmt;
579	sc->sc_newstate = ic->ic_newstate;
580	ic->ic_newstate = ath_newstate;
581	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
582	ic->ic_crypto.cs_key_delete = ath_key_delete;
583	ic->ic_crypto.cs_key_set = ath_key_set;
584	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
585	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
586	/* complete initialization */
587	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
588
589	ath_bpfattach(sc);
590
591	if (bootverbose)
592		ieee80211_announce(ic);
593	ath_announce(sc);
594	return 0;
595bad2:
596	ath_tx_cleanup(sc);
597	ath_desc_free(sc);
598bad:
599	if (ah)
600		ath_hal_detach(ah);
601	if (ifp != NULL)
602		if_free(ifp);
603	sc->sc_invalid = 1;
604	return error;
605}
606
607int
608ath_detach(struct ath_softc *sc)
609{
610	struct ifnet *ifp = sc->sc_ifp;
611
612	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
613		__func__, ifp->if_flags);
614
615	ath_stop(ifp);
616	bpfdetach(ifp);
617	/*
618	 * NB: the order of these is important:
619	 * o call the 802.11 layer before detaching the hal to
620	 *   insure callbacks into the driver to delete global
621	 *   key cache entries can be handled
622	 * o reclaim the tx queue data structures after calling
623	 *   the 802.11 layer as we'll get called back to reclaim
624	 *   node state and potentially want to use them
625	 * o to cleanup the tx queues the hal is called, so detach
626	 *   it last
627	 * Other than that, it's straightforward...
628	 */
629	ieee80211_ifdetach(&sc->sc_ic);
630	ath_rate_detach(sc->sc_rc);
631	ath_desc_free(sc);
632	ath_tx_cleanup(sc);
633	ath_hal_detach(sc->sc_ah);
634
635	return 0;
636}
637
638void
639ath_suspend(struct ath_softc *sc)
640{
641	struct ifnet *ifp = sc->sc_ifp;
642
643	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
644		__func__, ifp->if_flags);
645
646	ath_stop(ifp);
647}
648
649void
650ath_resume(struct ath_softc *sc)
651{
652	struct ifnet *ifp = sc->sc_ifp;
653
654	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
655		__func__, ifp->if_flags);
656
657	if (ifp->if_flags & IFF_UP) {
658		ath_init(sc);
659		if (ifp->if_flags & IFF_RUNNING)
660			ath_start(ifp);
661	}
662	if (sc->sc_softled) {
663		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
664		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
665	}
666}
667
668void
669ath_shutdown(struct ath_softc *sc)
670{
671	struct ifnet *ifp = sc->sc_ifp;
672
673	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
674		__func__, ifp->if_flags);
675
676	ath_stop(ifp);
677}
678
679/*
680 * Interrupt handler.  Most of the actual processing is deferred.
681 */
682void
683ath_intr(void *arg)
684{
685	struct ath_softc *sc = arg;
686	struct ifnet *ifp = sc->sc_ifp;
687	struct ath_hal *ah = sc->sc_ah;
688	HAL_INT status;
689
690	if (sc->sc_invalid) {
691		/*
692		 * The hardware is not ready/present, don't touch anything.
693		 * Note this can happen early on if the IRQ is shared.
694		 */
695		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
696		return;
697	}
698	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
699		return;
700	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
701		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
702			__func__, ifp->if_flags);
703		ath_hal_getisr(ah, &status);	/* clear ISR */
704		ath_hal_intrset(ah, 0);		/* disable further intr's */
705		return;
706	}
707	/*
708	 * Figure out the reason(s) for the interrupt.  Note
709	 * that the hal returns a pseudo-ISR that may include
710	 * bits we haven't explicitly enabled so we mask the
711	 * value to insure we only process bits we requested.
712	 */
713	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
714	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
715	status &= sc->sc_imask;			/* discard unasked for bits */
716	if (status & HAL_INT_FATAL) {
717		/*
718		 * Fatal errors are unrecoverable.  Typically
719		 * these are caused by DMA errors.  Unfortunately
720		 * the exact reason is not (presently) returned
721		 * by the hal.
722		 */
723		sc->sc_stats.ast_hardware++;
724		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
725		taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
726	} else if (status & HAL_INT_RXORN) {
727		sc->sc_stats.ast_rxorn++;
728		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
729		taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
730	} else {
731		if (status & HAL_INT_SWBA) {
732			/*
733			 * Software beacon alert--time to send a beacon.
734			 * Handle beacon transmission directly; deferring
735			 * this is too slow to meet timing constraints
736			 * under load.
737			 */
738			ath_beacon_proc(sc, 0);
739		}
740		if (status & HAL_INT_RXEOL) {
741			/*
742			 * NB: the hardware should re-read the link when
743			 *     RXE bit is written, but it doesn't work at
744			 *     least on older hardware revs.
745			 */
746			sc->sc_stats.ast_rxeol++;
747			sc->sc_rxlink = NULL;
748		}
749		if (status & HAL_INT_TXURN) {
750			sc->sc_stats.ast_txurn++;
751			/* bump tx trigger level */
752			ath_hal_updatetxtriglevel(ah, AH_TRUE);
753		}
754		if (status & HAL_INT_RX)
755			taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
756		if (status & HAL_INT_TX)
757			taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
758		if (status & HAL_INT_BMISS) {
759			sc->sc_stats.ast_bmiss++;
760			taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
761		}
762		if (status & HAL_INT_MIB) {
763			sc->sc_stats.ast_mib++;
764			/*
765			 * Disable interrupts until we service the MIB
766			 * interrupt; otherwise it will continue to fire.
767			 */
768			ath_hal_intrset(ah, 0);
769			/*
770			 * Let the hal handle the event.  We assume it will
771			 * clear whatever condition caused the interrupt.
772			 */
773			ath_hal_mibevent(ah,
774				&ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
775			ath_hal_intrset(ah, sc->sc_imask);
776		}
777	}
778}
779
780static void
781ath_fatal_proc(void *arg, int pending)
782{
783	struct ath_softc *sc = arg;
784	struct ifnet *ifp = sc->sc_ifp;
785
786	if_printf(ifp, "hardware error; resetting\n");
787	ath_reset(ifp);
788}
789
790static void
791ath_rxorn_proc(void *arg, int pending)
792{
793	struct ath_softc *sc = arg;
794	struct ifnet *ifp = sc->sc_ifp;
795
796	if_printf(ifp, "rx FIFO overrun; resetting\n");
797	ath_reset(ifp);
798}
799
800static void
801ath_bmiss_proc(void *arg, int pending)
802{
803	struct ath_softc *sc = arg;
804	struct ieee80211com *ic = &sc->sc_ic;
805
806	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
807	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
808		("unexpect operating mode %u", ic->ic_opmode));
809	if (ic->ic_state == IEEE80211_S_RUN) {
810		/*
811		 * Rather than go directly to scan state, try to
812		 * reassociate first.  If that fails then the state
813		 * machine will drop us into scanning after timing
814		 * out waiting for a probe response.
815		 */
816		NET_LOCK_GIANT();
817		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
818		NET_UNLOCK_GIANT();
819	}
820}
821
822static u_int
823ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
824{
825#define	N(a)	(sizeof(a) / sizeof(a[0]))
826	static const u_int modeflags[] = {
827		0,			/* IEEE80211_MODE_AUTO */
828		CHANNEL_A,		/* IEEE80211_MODE_11A */
829		CHANNEL_B,		/* IEEE80211_MODE_11B */
830		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
831		0,			/* IEEE80211_MODE_FH */
832		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
833		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
834	};
835	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
836
837	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
838	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
839	return modeflags[mode];
840#undef N
841}
842
843static void
844ath_init(void *arg)
845{
846	struct ath_softc *sc = (struct ath_softc *) arg;
847	struct ieee80211com *ic = &sc->sc_ic;
848	struct ifnet *ifp = sc->sc_ifp;
849	struct ieee80211_node *ni;
850	struct ath_hal *ah = sc->sc_ah;
851	HAL_STATUS status;
852
853	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
854		__func__, ifp->if_flags);
855
856	ATH_LOCK(sc);
857	/*
858	 * Stop anything previously setup.  This is safe
859	 * whether this is the first time through or not.
860	 */
861	ath_stop_locked(ifp);
862
863	/*
864	 * The basic interface to setting the hardware in a good
865	 * state is ``reset''.  On return the hardware is known to
866	 * be powered up and with interrupts disabled.  This must
867	 * be followed by initialization of the appropriate bits
868	 * and then setup of the interrupt mask.
869	 */
870	sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
871	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
872	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
873		if_printf(ifp, "unable to reset hardware; hal status %u\n",
874			status);
875		goto done;
876	}
877
878	/*
879	 * This is needed only to setup initial state
880	 * but it's best done after a reset.
881	 */
882	ath_update_txpow(sc);
883
884	/*
885	 * Setup the hardware after reset: the key cache
886	 * is filled as needed and the receive engine is
887	 * set going.  Frame transmit is handled entirely
888	 * in the frame output path; there's nothing to do
889	 * here except setup the interrupt mask.
890	 */
891	if (ath_startrecv(sc) != 0) {
892		if_printf(ifp, "unable to start recv logic\n");
893		goto done;
894	}
895
896	/*
897	 * Enable interrupts.
898	 */
899	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
900		  | HAL_INT_RXEOL | HAL_INT_RXORN
901		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
902	/*
903	 * Enable MIB interrupts when there are hardware phy counters.
904	 * Note we only do this (at the moment) for station mode.
905	 */
906	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
907		sc->sc_imask |= HAL_INT_MIB;
908	ath_hal_intrset(ah, sc->sc_imask);
909
910	ifp->if_flags |= IFF_RUNNING;
911	ic->ic_state = IEEE80211_S_INIT;
912
913	/*
914	 * The hardware should be ready to go now so it's safe
915	 * to kick the 802.11 state machine as it's likely to
916	 * immediately call back to us to send mgmt frames.
917	 */
918	ni = ic->ic_bss;
919	ni->ni_chan = ic->ic_ibss_chan;
920	ath_chan_change(sc, ni->ni_chan);
921	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
922		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
923			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
924	} else
925		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
926done:
927	ATH_UNLOCK(sc);
928}
929
930static void
931ath_stop_locked(struct ifnet *ifp)
932{
933	struct ath_softc *sc = ifp->if_softc;
934	struct ieee80211com *ic = &sc->sc_ic;
935	struct ath_hal *ah = sc->sc_ah;
936
937	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
938		__func__, sc->sc_invalid, ifp->if_flags);
939
940	ATH_LOCK_ASSERT(sc);
941	if (ifp->if_flags & IFF_RUNNING) {
942		/*
943		 * Shutdown the hardware and driver:
944		 *    reset 802.11 state machine
945		 *    turn off timers
946		 *    disable interrupts
947		 *    turn off the radio
948		 *    clear transmit machinery
949		 *    clear receive machinery
950		 *    drain and release tx queues
951		 *    reclaim beacon resources
952		 *    power down hardware
953		 *
954		 * Note that some of this work is not possible if the
955		 * hardware is gone (invalid).
956		 */
957		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
958		ifp->if_flags &= ~IFF_RUNNING;
959		ifp->if_timer = 0;
960		if (!sc->sc_invalid) {
961			if (sc->sc_softled) {
962				callout_stop(&sc->sc_ledtimer);
963				ath_hal_gpioset(ah, sc->sc_ledpin,
964					!sc->sc_ledon);
965				sc->sc_blinking = 0;
966			}
967			ath_hal_intrset(ah, 0);
968		}
969		ath_draintxq(sc);
970		if (!sc->sc_invalid) {
971			ath_stoprecv(sc);
972			ath_hal_phydisable(ah);
973		} else
974			sc->sc_rxlink = NULL;
975		IFQ_DRV_PURGE(&ifp->if_snd);
976		ath_beacon_free(sc);
977	}
978}
979
980static void
981ath_stop(struct ifnet *ifp)
982{
983	struct ath_softc *sc = ifp->if_softc;
984
985	ATH_LOCK(sc);
986	ath_stop_locked(ifp);
987	if (!sc->sc_invalid) {
988		/*
989		 * Set the chip in full sleep mode.  Note that we are
990		 * careful to do this only when bringing the interface
991		 * completely to a stop.  When the chip is in this state
992		 * it must be carefully woken up or references to
993		 * registers in the PCI clock domain may freeze the bus
994		 * (and system).  This varies by chip and is mostly an
995		 * issue with newer parts that go to sleep more quickly.
996		 */
997		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
998	}
999	ATH_UNLOCK(sc);
1000}
1001
1002/*
1003 * Reset the hardware w/o losing operational state.  This is
1004 * basically a more efficient way of doing ath_stop, ath_init,
1005 * followed by state transitions to the current 802.11
1006 * operational state.  Used to recover from various errors and
1007 * to reset or reload hardware state.
1008 */
1009static int
1010ath_reset(struct ifnet *ifp)
1011{
1012	struct ath_softc *sc = ifp->if_softc;
1013	struct ieee80211com *ic = &sc->sc_ic;
1014	struct ath_hal *ah = sc->sc_ah;
1015	struct ieee80211_channel *c;
1016	HAL_STATUS status;
1017
1018	/*
1019	 * Convert to a HAL channel description with the flags
1020	 * constrained to reflect the current operating mode.
1021	 */
1022	c = ic->ic_ibss_chan;
1023	sc->sc_curchan.channel = c->ic_freq;
1024	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1025
1026	ath_hal_intrset(ah, 0);		/* disable interrupts */
1027	ath_draintxq(sc);		/* stop xmit side */
1028	ath_stoprecv(sc);		/* stop recv side */
1029	/* NB: indicate channel change so we do a full reset */
1030	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1031		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1032			__func__, status);
1033	ath_update_txpow(sc);		/* update tx power state */
1034	if (ath_startrecv(sc) != 0)	/* restart recv */
1035		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1036	/*
1037	 * We may be doing a reset in response to an ioctl
1038	 * that changes the channel so update any state that
1039	 * might change as a result.
1040	 */
1041	ath_chan_change(sc, c);
1042	if (ic->ic_state == IEEE80211_S_RUN)
1043		ath_beacon_config(sc);	/* restart beacons */
1044	ath_hal_intrset(ah, sc->sc_imask);
1045
1046	ath_start(ifp);			/* restart xmit */
1047	return 0;
1048}
1049
1050static void
1051ath_start(struct ifnet *ifp)
1052{
1053	struct ath_softc *sc = ifp->if_softc;
1054	struct ath_hal *ah = sc->sc_ah;
1055	struct ieee80211com *ic = &sc->sc_ic;
1056	struct ieee80211_node *ni;
1057	struct ath_buf *bf;
1058	struct mbuf *m;
1059	struct ieee80211_frame *wh;
1060	struct ether_header *eh;
1061
1062	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1063		return;
1064	for (;;) {
1065		/*
1066		 * Grab a TX buffer and associated resources.
1067		 */
1068		ATH_TXBUF_LOCK(sc);
1069		bf = STAILQ_FIRST(&sc->sc_txbuf);
1070		if (bf != NULL)
1071			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1072		ATH_TXBUF_UNLOCK(sc);
1073		if (bf == NULL) {
1074			DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1075				__func__);
1076			sc->sc_stats.ast_tx_qstop++;
1077			ifp->if_flags |= IFF_OACTIVE;
1078			break;
1079		}
1080		/*
1081		 * Poll the management queue for frames; they
1082		 * have priority over normal data frames.
1083		 */
1084		IF_DEQUEUE(&ic->ic_mgtq, m);
1085		if (m == NULL) {
1086			/*
1087			 * No data frames go out unless we're associated.
1088			 */
1089			if (ic->ic_state != IEEE80211_S_RUN) {
1090				DPRINTF(sc, ATH_DEBUG_ANY,
1091					"%s: ignore data packet, state %u\n",
1092					__func__, ic->ic_state);
1093				sc->sc_stats.ast_tx_discard++;
1094				ATH_TXBUF_LOCK(sc);
1095				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1096				ATH_TXBUF_UNLOCK(sc);
1097				break;
1098			}
1099			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1100			if (m == NULL) {
1101				ATH_TXBUF_LOCK(sc);
1102				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1103				ATH_TXBUF_UNLOCK(sc);
1104				break;
1105			}
1106			/*
1107			 * Find the node for the destination so we can do
1108			 * things like power save and fast frames aggregation.
1109			 */
1110			if (m->m_len < sizeof(struct ether_header) &&
1111			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1112				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1113				ni = NULL;
1114				goto bad;
1115			}
1116			eh = mtod(m, struct ether_header *);
1117			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1118			if (ni == NULL) {
1119				/* NB: ieee80211_find_txnode does stat+msg */
1120				m_freem(m);
1121				goto bad;
1122			}
1123			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1124			    (m->m_flags & M_PWR_SAV) == 0) {
1125				/*
1126				 * Station in power save mode; pass the frame
1127				 * to the 802.11 layer and continue.  We'll get
1128				 * the frame back when the time is right.
1129				 */
1130				ieee80211_pwrsave(ic, ni, m);
1131				goto reclaim;
1132			}
1133			/* calculate priority so we can find the tx queue */
1134			if (ieee80211_classify(ic, m, ni)) {
1135				DPRINTF(sc, ATH_DEBUG_XMIT,
1136					"%s: discard, classification failure\n",
1137					__func__);
1138				m_freem(m);
1139				goto bad;
1140			}
1141			ifp->if_opackets++;
1142			BPF_MTAP(ifp, m);
1143			/*
1144			 * Encapsulate the packet in prep for transmission.
1145			 */
1146			m = ieee80211_encap(ic, m, ni);
1147			if (m == NULL) {
1148				DPRINTF(sc, ATH_DEBUG_ANY,
1149					"%s: encapsulation failure\n",
1150					__func__);
1151				sc->sc_stats.ast_tx_encap++;
1152				goto bad;
1153			}
1154		} else {
1155			/*
1156			 * Hack!  The referenced node pointer is in the
1157			 * rcvif field of the packet header.  This is
1158			 * placed there by ieee80211_mgmt_output because
1159			 * we need to hold the reference with the frame
1160			 * and there's no other way (other than packet
1161			 * tags which we consider too expensive to use)
1162			 * to pass it along.
1163			 */
1164			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1165			m->m_pkthdr.rcvif = NULL;
1166
1167			wh = mtod(m, struct ieee80211_frame *);
1168			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1169			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1170				/* fill time stamp */
1171				u_int64_t tsf;
1172				u_int32_t *tstamp;
1173
1174				tsf = ath_hal_gettsf64(ah);
1175				/* XXX: adjust 100us delay to xmit */
1176				tsf += 100;
1177				tstamp = (u_int32_t *)&wh[1];
1178				tstamp[0] = htole32(tsf & 0xffffffff);
1179				tstamp[1] = htole32(tsf >> 32);
1180			}
1181			sc->sc_stats.ast_tx_mgmt++;
1182		}
1183
1184		if (ath_tx_start(sc, ni, bf, m)) {
1185	bad:
1186			ifp->if_oerrors++;
1187	reclaim:
1188			ATH_TXBUF_LOCK(sc);
1189			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1190			ATH_TXBUF_UNLOCK(sc);
1191			if (ni != NULL)
1192				ieee80211_free_node(ni);
1193			continue;
1194		}
1195
1196		sc->sc_tx_timer = 5;
1197		ifp->if_timer = 1;
1198	}
1199}
1200
1201static int
1202ath_media_change(struct ifnet *ifp)
1203{
1204#define	IS_UP(ifp) \
1205	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
1206	int error;
1207
1208	error = ieee80211_media_change(ifp);
1209	if (error == ENETRESET) {
1210		if (IS_UP(ifp))
1211			ath_init(ifp->if_softc);	/* XXX lose error */
1212		error = 0;
1213	}
1214	return error;
1215#undef IS_UP
1216}
1217
1218#ifdef AR_DEBUG
1219static void
1220ath_keyprint(const char *tag, u_int ix,
1221	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1222{
1223	static const char *ciphers[] = {
1224		"WEP",
1225		"AES-OCB",
1226		"AES-CCM",
1227		"CKIP",
1228		"TKIP",
1229		"CLR",
1230	};
1231	int i, n;
1232
1233	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1234	for (i = 0, n = hk->kv_len; i < n; i++)
1235		printf("%02x", hk->kv_val[i]);
1236	printf(" mac %s", ether_sprintf(mac));
1237	if (hk->kv_type == HAL_CIPHER_TKIP) {
1238		printf(" mic ");
1239		for (i = 0; i < sizeof(hk->kv_mic); i++)
1240			printf("%02x", hk->kv_mic[i]);
1241	}
1242	printf("\n");
1243}
1244#endif
1245
1246/*
1247 * Set a TKIP key into the hardware.  This handles the
1248 * potential distribution of key state to multiple key
1249 * cache slots for TKIP.
1250 */
1251static int
1252ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1253	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1254{
1255#define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1256	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1257	struct ath_hal *ah = sc->sc_ah;
1258
1259	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1260		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1261	KASSERT(sc->sc_splitmic, ("key cache !split"));
1262	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1263		/*
1264		 * TX key goes at first index, RX key at +32.
1265		 * The hal handles the MIC keys at index+64.
1266		 */
1267		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1268		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1269		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1270			return 0;
1271
1272		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1273		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1274		/* XXX delete tx key on failure? */
1275		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1276	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1277		/*
1278		 * TX/RX key goes at first index.
1279		 * The hal handles the MIC keys are index+64.
1280		 */
1281		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1282			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1283		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1284		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1285	}
1286	return 0;
1287#undef IEEE80211_KEY_XR
1288}
1289
1290/*
1291 * Set a net80211 key into the hardware.  This handles the
1292 * potential distribution of key state to multiple key
1293 * cache slots for TKIP with hardware MIC support.
1294 */
1295static int
1296ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1297	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1298	struct ieee80211_node *bss)
1299{
1300#define	N(a)	(sizeof(a)/sizeof(a[0]))
1301	static const u_int8_t ciphermap[] = {
1302		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1303		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1304		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1305		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1306		(u_int8_t) -1,		/* 4 is not allocated */
1307		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1308		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1309	};
1310	struct ath_hal *ah = sc->sc_ah;
1311	const struct ieee80211_cipher *cip = k->wk_cipher;
1312	u_int8_t gmac[IEEE80211_ADDR_LEN];
1313	const u_int8_t *mac;
1314	HAL_KEYVAL hk;
1315
1316	memset(&hk, 0, sizeof(hk));
1317	/*
1318	 * Software crypto uses a "clear key" so non-crypto
1319	 * state kept in the key cache are maintained and
1320	 * so that rx frames have an entry to match.
1321	 */
1322	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1323		KASSERT(cip->ic_cipher < N(ciphermap),
1324			("invalid cipher type %u", cip->ic_cipher));
1325		hk.kv_type = ciphermap[cip->ic_cipher];
1326		hk.kv_len = k->wk_keylen;
1327		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1328	} else
1329		hk.kv_type = HAL_CIPHER_CLR;
1330
1331	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1332		/*
1333		 * Group keys on hardware that supports multicast frame
1334		 * key search use a mac that is the sender's address with
1335		 * the high bit set instead of the app-specified address.
1336		 */
1337		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1338		gmac[0] |= 0x80;
1339		mac = gmac;
1340	} else
1341		mac = mac0;
1342
1343	if (hk.kv_type == HAL_CIPHER_TKIP &&
1344	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1345	    sc->sc_splitmic) {
1346		return ath_keyset_tkip(sc, k, &hk, mac);
1347	} else {
1348		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1349		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1350	}
1351#undef N
1352}
1353
1354/*
1355 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1356 * each key, one for decrypt/encrypt and the other for the MIC.
1357 */
1358static u_int16_t
1359key_alloc_2pair(struct ath_softc *sc)
1360{
1361#define	N(a)	(sizeof(a)/sizeof(a[0]))
1362	u_int i, keyix;
1363
1364	KASSERT(sc->sc_splitmic, ("key cache !split"));
1365	/* XXX could optimize */
1366	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1367		u_int8_t b = sc->sc_keymap[i];
1368		if (b != 0xff) {
1369			/*
1370			 * One or more slots in this byte are free.
1371			 */
1372			keyix = i*NBBY;
1373			while (b & 1) {
1374		again:
1375				keyix++;
1376				b >>= 1;
1377			}
1378			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1379			if (isset(sc->sc_keymap, keyix+32) ||
1380			    isset(sc->sc_keymap, keyix+64) ||
1381			    isset(sc->sc_keymap, keyix+32+64)) {
1382				/* full pair unavailable */
1383				/* XXX statistic */
1384				if (keyix == (i+1)*NBBY) {
1385					/* no slots were appropriate, advance */
1386					continue;
1387				}
1388				goto again;
1389			}
1390			setbit(sc->sc_keymap, keyix);
1391			setbit(sc->sc_keymap, keyix+64);
1392			setbit(sc->sc_keymap, keyix+32);
1393			setbit(sc->sc_keymap, keyix+32+64);
1394			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1395				"%s: key pair %u,%u %u,%u\n",
1396				__func__, keyix, keyix+64,
1397				keyix+32, keyix+32+64);
1398			return keyix;
1399		}
1400	}
1401	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1402	return IEEE80211_KEYIX_NONE;
1403#undef N
1404}
1405
1406/*
1407 * Allocate a single key cache slot.
1408 */
1409static u_int16_t
1410key_alloc_single(struct ath_softc *sc)
1411{
1412#define	N(a)	(sizeof(a)/sizeof(a[0]))
1413	u_int i, keyix;
1414
1415	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1416	for (i = 0; i < N(sc->sc_keymap); i++) {
1417		u_int8_t b = sc->sc_keymap[i];
1418		if (b != 0xff) {
1419			/*
1420			 * One or more slots are free.
1421			 */
1422			keyix = i*NBBY;
1423			while (b & 1)
1424				keyix++, b >>= 1;
1425			setbit(sc->sc_keymap, keyix);
1426			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1427				__func__, keyix);
1428			return keyix;
1429		}
1430	}
1431	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1432	return IEEE80211_KEYIX_NONE;
1433#undef N
1434}
1435
1436/*
1437 * Allocate one or more key cache slots for a uniacst key.  The
1438 * key itself is needed only to identify the cipher.  For hardware
1439 * TKIP with split cipher+MIC keys we allocate two key cache slot
1440 * pairs so that we can setup separate TX and RX MIC keys.  Note
1441 * that the MIC key for a TKIP key at slot i is assumed by the
1442 * hardware to be at slot i+64.  This limits TKIP keys to the first
1443 * 64 entries.
1444 */
1445static int
1446ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
1447{
1448	struct ath_softc *sc = ic->ic_ifp->if_softc;
1449
1450	/*
1451	 * Group key allocation must be handled specially for
1452	 * parts that do not support multicast key cache search
1453	 * functionality.  For those parts the key id must match
1454	 * the h/w key index so lookups find the right key.  On
1455	 * parts w/ the key search facility we install the sender's
1456	 * mac address (with the high bit set) and let the hardware
1457	 * find the key w/o using the key id.  This is preferred as
1458	 * it permits us to support multiple users for adhoc and/or
1459	 * multi-station operation.
1460	 */
1461	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1462		u_int keyix;
1463
1464		if (!(&ic->ic_nw_keys[0] <= k &&
1465		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1466			/* should not happen */
1467			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1468				"%s: bogus group key\n", __func__);
1469			return IEEE80211_KEYIX_NONE;
1470		}
1471		keyix = k - ic->ic_nw_keys;
1472		/*
1473		 * XXX we pre-allocate the global keys so
1474		 * have no way to check if they've already been allocated.
1475		 */
1476		return keyix;
1477	}
1478
1479	/*
1480	 * We allocate two pair for TKIP when using the h/w to do
1481	 * the MIC.  For everything else, including software crypto,
1482	 * we allocate a single entry.  Note that s/w crypto requires
1483	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1484	 * not support pass-through cache entries and we map all
1485	 * those requests to slot 0.
1486	 */
1487	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1488		return key_alloc_single(sc);
1489	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1490	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1491		return key_alloc_2pair(sc);
1492	} else {
1493		return key_alloc_single(sc);
1494	}
1495}
1496
1497/*
1498 * Delete an entry in the key cache allocated by ath_key_alloc.
1499 */
1500static int
1501ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1502{
1503	struct ath_softc *sc = ic->ic_ifp->if_softc;
1504	struct ath_hal *ah = sc->sc_ah;
1505	const struct ieee80211_cipher *cip = k->wk_cipher;
1506	struct ieee80211_node *ni;
1507	u_int keyix = k->wk_keyix;
1508
1509	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1510
1511	ath_hal_keyreset(ah, keyix);
1512	/*
1513	 * Check the key->node map and flush any ref.
1514	 */
1515	ni = sc->sc_keyixmap[keyix];
1516	if (ni != NULL) {
1517		ieee80211_free_node(ni);
1518		sc->sc_keyixmap[keyix] = NULL;
1519	}
1520	/*
1521	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1522	 */
1523	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1524	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1525		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1526		ni = sc->sc_keyixmap[keyix+32];
1527		if (ni != NULL) {			/* as above... */
1528			ieee80211_free_node(ni);
1529			sc->sc_keyixmap[keyix+32] = NULL;
1530		}
1531	}
1532	if (keyix >= IEEE80211_WEP_NKID) {
1533		/*
1534		 * Don't touch keymap entries for global keys so
1535		 * they are never considered for dynamic allocation.
1536		 */
1537		clrbit(sc->sc_keymap, keyix);
1538		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1539		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1540		    sc->sc_splitmic) {
1541			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1542			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1543			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1544		}
1545	}
1546	return 1;
1547}
1548
1549/*
1550 * Set the key cache contents for the specified key.  Key cache
1551 * slot(s) must already have been allocated by ath_key_alloc.
1552 */
1553static int
1554ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1555	const u_int8_t mac[IEEE80211_ADDR_LEN])
1556{
1557	struct ath_softc *sc = ic->ic_ifp->if_softc;
1558
1559	return ath_keyset(sc, k, mac, ic->ic_bss);
1560}
1561
1562/*
1563 * Block/unblock tx+rx processing while a key change is done.
1564 * We assume the caller serializes key management operations
1565 * so we only need to worry about synchronization with other
1566 * uses that originate in the driver.
1567 */
1568static void
1569ath_key_update_begin(struct ieee80211com *ic)
1570{
1571	struct ifnet *ifp = ic->ic_ifp;
1572	struct ath_softc *sc = ifp->if_softc;
1573
1574	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1575#if 0
1576	tasklet_disable(&sc->sc_rxtq);
1577#endif
1578	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1579}
1580
1581static void
1582ath_key_update_end(struct ieee80211com *ic)
1583{
1584	struct ifnet *ifp = ic->ic_ifp;
1585	struct ath_softc *sc = ifp->if_softc;
1586
1587	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1588	IF_UNLOCK(&ifp->if_snd);
1589#if 0
1590	tasklet_enable(&sc->sc_rxtq);
1591#endif
1592}
1593
1594/*
1595 * Calculate the receive filter according to the
1596 * operating mode and state:
1597 *
1598 * o always accept unicast, broadcast, and multicast traffic
1599 * o maintain current state of phy error reception (the hal
1600 *   may enable phy error frames for noise immunity work)
1601 * o probe request frames are accepted only when operating in
1602 *   hostap, adhoc, or monitor modes
1603 * o enable promiscuous mode according to the interface state
1604 * o accept beacons:
1605 *   - when operating in adhoc mode so the 802.11 layer creates
1606 *     node table entries for peers,
1607 *   - when operating in station mode for collecting rssi data when
1608 *     the station is otherwise quiet, or
1609 *   - when scanning
1610 */
1611static u_int32_t
1612ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1613{
1614	struct ieee80211com *ic = &sc->sc_ic;
1615	struct ath_hal *ah = sc->sc_ah;
1616	struct ifnet *ifp = sc->sc_ifp;
1617	u_int32_t rfilt;
1618
1619	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1620	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1621	if (ic->ic_opmode != IEEE80211_M_STA)
1622		rfilt |= HAL_RX_FILTER_PROBEREQ;
1623	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1624	    (ifp->if_flags & IFF_PROMISC))
1625		rfilt |= HAL_RX_FILTER_PROM;
1626	if (ic->ic_opmode == IEEE80211_M_STA ||
1627	    ic->ic_opmode == IEEE80211_M_IBSS ||
1628	    state == IEEE80211_S_SCAN)
1629		rfilt |= HAL_RX_FILTER_BEACON;
1630	return rfilt;
1631}
1632
1633static void
1634ath_mode_init(struct ath_softc *sc)
1635{
1636	struct ieee80211com *ic = &sc->sc_ic;
1637	struct ath_hal *ah = sc->sc_ah;
1638	struct ifnet *ifp = sc->sc_ifp;
1639	u_int32_t rfilt, mfilt[2], val;
1640	u_int8_t pos;
1641	struct ifmultiaddr *ifma;
1642
1643	/* configure rx filter */
1644	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1645	ath_hal_setrxfilter(ah, rfilt);
1646
1647	/* configure operational mode */
1648	ath_hal_setopmode(ah);
1649
1650	/*
1651	 * Handle any link-level address change.  Note that we only
1652	 * need to force ic_myaddr; any other addresses are handled
1653	 * as a byproduct of the ifnet code marking the interface
1654	 * down then up.
1655	 *
1656	 * XXX should get from lladdr instead of arpcom but that's more work
1657	 */
1658	IEEE80211_ADDR_COPY(ic->ic_myaddr, IFP2ENADDR(ifp));
1659	ath_hal_setmac(ah, ic->ic_myaddr);
1660
1661	/* calculate and install multicast filter */
1662	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1663		mfilt[0] = mfilt[1] = 0;
1664		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1665			caddr_t dl;
1666
1667			/* calculate XOR of eight 6bit values */
1668			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1669			val = LE_READ_4(dl + 0);
1670			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1671			val = LE_READ_4(dl + 3);
1672			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1673			pos &= 0x3f;
1674			mfilt[pos / 32] |= (1 << (pos % 32));
1675		}
1676	} else {
1677		mfilt[0] = mfilt[1] = ~0;
1678	}
1679	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1680	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1681		__func__, rfilt, mfilt[0], mfilt[1]);
1682}
1683
1684/*
1685 * Set the slot time based on the current setting.
1686 */
1687static void
1688ath_setslottime(struct ath_softc *sc)
1689{
1690	struct ieee80211com *ic = &sc->sc_ic;
1691	struct ath_hal *ah = sc->sc_ah;
1692
1693	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1694		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1695	else
1696		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1697	sc->sc_updateslot = OK;
1698}
1699
1700/*
1701 * Callback from the 802.11 layer to update the
1702 * slot time based on the current setting.
1703 */
1704static void
1705ath_updateslot(struct ifnet *ifp)
1706{
1707	struct ath_softc *sc = ifp->if_softc;
1708	struct ieee80211com *ic = &sc->sc_ic;
1709
1710	/*
1711	 * When not coordinating the BSS, change the hardware
1712	 * immediately.  For other operation we defer the change
1713	 * until beacon updates have propagated to the stations.
1714	 */
1715	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1716		sc->sc_updateslot = UPDATE;
1717	else
1718		ath_setslottime(sc);
1719}
1720
1721/*
1722 * Setup a h/w transmit queue for beacons.
1723 */
1724static int
1725ath_beaconq_setup(struct ath_hal *ah)
1726{
1727	HAL_TXQ_INFO qi;
1728
1729	memset(&qi, 0, sizeof(qi));
1730	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1731	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1732	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1733	/* NB: for dynamic turbo, don't enable any other interrupts */
1734	qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1735	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1736}
1737
1738/*
1739 * Setup the transmit queue parameters for the beacon queue.
1740 */
1741static int
1742ath_beaconq_config(struct ath_softc *sc)
1743{
1744#define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
1745	struct ieee80211com *ic = &sc->sc_ic;
1746	struct ath_hal *ah = sc->sc_ah;
1747	HAL_TXQ_INFO qi;
1748
1749	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1750	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1751		/*
1752		 * Always burst out beacon and CAB traffic.
1753		 */
1754		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1755		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1756		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1757	} else {
1758		struct wmeParams *wmep =
1759			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1760		/*
1761		 * Adhoc mode; important thing is to use 2x cwmin.
1762		 */
1763		qi.tqi_aifs = wmep->wmep_aifsn;
1764		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1765		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1766	}
1767
1768	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1769		device_printf(sc->sc_dev, "unable to update parameters for "
1770			"beacon hardware queue!\n");
1771		return 0;
1772	} else {
1773		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1774		return 1;
1775	}
1776#undef ATH_EXPONENT_TO_VALUE
1777}
1778
1779/*
1780 * Allocate and setup an initial beacon frame.
1781 */
1782static int
1783ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1784{
1785	struct ieee80211com *ic = ni->ni_ic;
1786	struct ath_buf *bf;
1787	struct mbuf *m;
1788	int error;
1789
1790	bf = STAILQ_FIRST(&sc->sc_bbuf);
1791	if (bf == NULL) {
1792		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1793		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1794		return ENOMEM;			/* XXX */
1795	}
1796	/*
1797	 * NB: the beacon data buffer must be 32-bit aligned;
1798	 * we assume the mbuf routines will return us something
1799	 * with this alignment (perhaps should assert).
1800	 */
1801	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1802	if (m == NULL) {
1803		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1804			__func__);
1805		sc->sc_stats.ast_be_nombuf++;
1806		return ENOMEM;
1807	}
1808	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1809				     bf->bf_segs, &bf->bf_nseg,
1810				     BUS_DMA_NOWAIT);
1811	if (error == 0) {
1812		bf->bf_m = m;
1813		bf->bf_node = ieee80211_ref_node(ni);
1814	} else {
1815		m_freem(m);
1816	}
1817	return error;
1818}
1819
1820/*
1821 * Setup the beacon frame for transmit.
1822 */
1823static void
1824ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1825{
1826#define	USE_SHPREAMBLE(_ic) \
1827	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1828		== IEEE80211_F_SHPREAMBLE)
1829	struct ieee80211_node *ni = bf->bf_node;
1830	struct ieee80211com *ic = ni->ni_ic;
1831	struct mbuf *m = bf->bf_m;
1832	struct ath_hal *ah = sc->sc_ah;
1833	struct ath_node *an = ATH_NODE(ni);
1834	struct ath_desc *ds;
1835	int flags, antenna;
1836	u_int8_t rate;
1837
1838	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1839		__func__, m, m->m_len);
1840
1841	/* setup descriptors */
1842	ds = bf->bf_desc;
1843
1844	flags = HAL_TXDESC_NOACK;
1845	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1846		ds->ds_link = bf->bf_daddr;	/* self-linked */
1847		flags |= HAL_TXDESC_VEOL;
1848		/*
1849		 * Let hardware handle antenna switching.
1850		 */
1851		antenna = 0;
1852	} else {
1853		ds->ds_link = 0;
1854		/*
1855		 * Switch antenna every 4 beacons.
1856		 * XXX assumes two antenna
1857		 */
1858		antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1859	}
1860
1861	KASSERT(bf->bf_nseg == 1,
1862		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1863	ds->ds_data = bf->bf_segs[0].ds_addr;
1864	/*
1865	 * Calculate rate code.
1866	 * XXX everything at min xmit rate
1867	 */
1868	if (USE_SHPREAMBLE(ic))
1869		rate = an->an_tx_mgtratesp;
1870	else
1871		rate = an->an_tx_mgtrate;
1872	ath_hal_setuptxdesc(ah, ds
1873		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
1874		, sizeof(struct ieee80211_frame)/* header length */
1875		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1876		, ni->ni_txpower		/* txpower XXX */
1877		, rate, 1			/* series 0 rate/tries */
1878		, HAL_TXKEYIX_INVALID		/* no encryption */
1879		, antenna			/* antenna mode */
1880		, flags				/* no ack, veol for beacons */
1881		, 0				/* rts/cts rate */
1882		, 0				/* rts/cts duration */
1883	);
1884	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1885	ath_hal_filltxdesc(ah, ds
1886		, roundup(m->m_len, 4)		/* buffer length */
1887		, AH_TRUE			/* first segment */
1888		, AH_TRUE			/* last segment */
1889		, ds				/* first descriptor */
1890	);
1891#undef USE_SHPREAMBLE
1892}
1893
1894/*
1895 * Transmit a beacon frame at SWBA.  Dynamic updates to the
1896 * frame contents are done as needed and the slot time is
1897 * also adjusted based on current state.
1898 */
1899static void
1900ath_beacon_proc(void *arg, int pending)
1901{
1902	struct ath_softc *sc = arg;
1903	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
1904	struct ieee80211_node *ni = bf->bf_node;
1905	struct ieee80211com *ic = ni->ni_ic;
1906	struct ath_hal *ah = sc->sc_ah;
1907	struct mbuf *m;
1908	int ncabq, error, otherant;
1909
1910	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
1911		__func__, pending);
1912
1913	if (ic->ic_opmode == IEEE80211_M_STA ||
1914	    ic->ic_opmode == IEEE80211_M_MONITOR ||
1915	    bf == NULL || bf->bf_m == NULL) {
1916		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
1917			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
1918		return;
1919	}
1920	/*
1921	 * Check if the previous beacon has gone out.  If
1922	 * not don't don't try to post another, skip this
1923	 * period and wait for the next.  Missed beacons
1924	 * indicate a problem and should not occur.  If we
1925	 * miss too many consecutive beacons reset the device.
1926	 */
1927	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
1928		sc->sc_bmisscount++;
1929		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1930			"%s: missed %u consecutive beacons\n",
1931			__func__, sc->sc_bmisscount);
1932		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
1933			taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask);
1934		return;
1935	}
1936	if (sc->sc_bmisscount != 0) {
1937		DPRINTF(sc, ATH_DEBUG_BEACON,
1938			"%s: resume beacon xmit after %u misses\n",
1939			__func__, sc->sc_bmisscount);
1940		sc->sc_bmisscount = 0;
1941	}
1942
1943	/*
1944	 * Update dynamic beacon contents.  If this returns
1945	 * non-zero then we need to remap the memory because
1946	 * the beacon frame changed size (probably because
1947	 * of the TIM bitmap).
1948	 */
1949	m = bf->bf_m;
1950	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
1951	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
1952		/* XXX too conservative? */
1953		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1954		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1955					     bf->bf_segs, &bf->bf_nseg,
1956					     BUS_DMA_NOWAIT);
1957		if (error != 0) {
1958			if_printf(ic->ic_ifp,
1959			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
1960			    __func__, error);
1961			return;
1962		}
1963	}
1964
1965	/*
1966	 * Handle slot time change when a non-ERP station joins/leaves
1967	 * an 11g network.  The 802.11 layer notifies us via callback,
1968	 * we mark updateslot, then wait one beacon before effecting
1969	 * the change.  This gives associated stations at least one
1970	 * beacon interval to note the state change.
1971	 */
1972	/* XXX locking */
1973	if (sc->sc_updateslot == UPDATE)
1974		sc->sc_updateslot = COMMIT;	/* commit next beacon */
1975	else if (sc->sc_updateslot == COMMIT)
1976		ath_setslottime(sc);		/* commit change to h/w */
1977
1978	/*
1979	 * Check recent per-antenna transmit statistics and flip
1980	 * the default antenna if noticeably more frames went out
1981	 * on the non-default antenna.
1982	 * XXX assumes 2 anntenae
1983	 */
1984	otherant = sc->sc_defant & 1 ? 2 : 1;
1985	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
1986		ath_setdefantenna(sc, otherant);
1987	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
1988
1989	/*
1990	 * Construct tx descriptor.
1991	 */
1992	ath_beacon_setup(sc, bf);
1993
1994	/*
1995	 * Stop any current dma and put the new frame on the queue.
1996	 * This should never fail since we check above that no frames
1997	 * are still pending on the queue.
1998	 */
1999	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2000		DPRINTF(sc, ATH_DEBUG_ANY,
2001			"%s: beacon queue %u did not stop?\n",
2002			__func__, sc->sc_bhalq);
2003	}
2004	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2005
2006	/*
2007	 * Enable the CAB queue before the beacon queue to
2008	 * insure cab frames are triggered by this beacon.
2009	 */
2010	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
2011		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2012	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2013	ath_hal_txstart(ah, sc->sc_bhalq);
2014	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2015		"%s: TXDP[%u] = %p (%p)\n", __func__,
2016		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2017
2018	sc->sc_stats.ast_be_xmit++;
2019}
2020
2021/*
2022 * Reset the hardware after detecting beacons have stopped.
2023 */
2024static void
2025ath_bstuck_proc(void *arg, int pending)
2026{
2027	struct ath_softc *sc = arg;
2028	struct ifnet *ifp = sc->sc_ifp;
2029
2030	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2031		sc->sc_bmisscount);
2032	ath_reset(ifp);
2033}
2034
2035/*
2036 * Reclaim beacon resources.
2037 */
2038static void
2039ath_beacon_free(struct ath_softc *sc)
2040{
2041	struct ath_buf *bf;
2042
2043	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2044		if (bf->bf_m != NULL) {
2045			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2046			m_freem(bf->bf_m);
2047			bf->bf_m = NULL;
2048		}
2049		if (bf->bf_node != NULL) {
2050			ieee80211_free_node(bf->bf_node);
2051			bf->bf_node = NULL;
2052		}
2053	}
2054}
2055
2056/*
2057 * Configure the beacon and sleep timers.
2058 *
2059 * When operating as an AP this resets the TSF and sets
2060 * up the hardware to notify us when we need to issue beacons.
2061 *
2062 * When operating in station mode this sets up the beacon
2063 * timers according to the timestamp of the last received
2064 * beacon and the current TSF, configures PCF and DTIM
2065 * handling, programs the sleep registers so the hardware
2066 * will wakeup in time to receive beacons, and configures
2067 * the beacon miss handling so we'll receive a BMISS
2068 * interrupt when we stop seeing beacons from the AP
2069 * we've associated with.
2070 */
2071static void
2072ath_beacon_config(struct ath_softc *sc)
2073{
2074#define	TSF_TO_TU(_h,_l)	(((_h) << 22) | ((_l) >> 10))
2075	struct ath_hal *ah = sc->sc_ah;
2076	struct ieee80211com *ic = &sc->sc_ic;
2077	struct ieee80211_node *ni = ic->ic_bss;
2078	u_int32_t nexttbtt, intval;
2079
2080	/* extract tstamp from last beacon and convert to TU */
2081	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2082			     LE_READ_4(ni->ni_tstamp.data));
2083	/* NB: the beacon interval is kept internally in TU's */
2084	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2085	if (nexttbtt == 0)		/* e.g. for ap mode */
2086		nexttbtt = intval;
2087	else if (intval)		/* NB: can be 0 for monitor mode */
2088		nexttbtt = roundup(nexttbtt, intval);
2089	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2090		__func__, nexttbtt, intval, ni->ni_intval);
2091	if (ic->ic_opmode == IEEE80211_M_STA) {
2092		HAL_BEACON_STATE bs;
2093		u_int64_t tsf;
2094		u_int32_t tsftu;
2095		int dtimperiod, dtimcount;
2096		int cfpperiod, cfpcount;
2097
2098		/*
2099		 * Setup dtim and cfp parameters according to
2100		 * last beacon we received (which may be none).
2101		 */
2102		dtimperiod = ni->ni_dtim_period;
2103		if (dtimperiod <= 0)		/* NB: 0 if not known */
2104			dtimperiod = 1;
2105		dtimcount = ni->ni_dtim_count;
2106		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2107			dtimcount = 0;		/* XXX? */
2108		cfpperiod = 1;			/* NB: no PCF support yet */
2109		cfpcount = 0;
2110#define	FUDGE	2
2111		/*
2112		 * Pull nexttbtt forward to reflect the current
2113		 * TSF and calculate dtim+cfp state for the result.
2114		 */
2115		tsf = ath_hal_gettsf64(ah);
2116		tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE;
2117		do {
2118			nexttbtt += intval;
2119			if (--dtimcount < 0) {
2120				dtimcount = dtimperiod - 1;
2121				if (--cfpcount < 0)
2122					cfpcount = cfpperiod - 1;
2123			}
2124		} while (nexttbtt < tsftu);
2125#undef FUDGE
2126		memset(&bs, 0, sizeof(bs));
2127		bs.bs_intval = intval;
2128		bs.bs_nexttbtt = nexttbtt;
2129		bs.bs_dtimperiod = dtimperiod*intval;
2130		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2131		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2132		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2133		bs.bs_cfpmaxduration = 0;
2134#if 0
2135		/*
2136		 * The 802.11 layer records the offset to the DTIM
2137		 * bitmap while receiving beacons; use it here to
2138		 * enable h/w detection of our AID being marked in
2139		 * the bitmap vector (to indicate frames for us are
2140		 * pending at the AP).
2141		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2142		 * XXX enable based on h/w rev for newer chips
2143		 */
2144		bs.bs_timoffset = ni->ni_timoff;
2145#endif
2146		/*
2147		 * Calculate the number of consecutive beacons to miss
2148		 * before taking a BMISS interrupt.  The configuration
2149		 * is specified in ms, so we need to convert that to
2150		 * TU's and then calculate based on the beacon interval.
2151		 * Note that we clamp the result to at most 10 beacons.
2152		 */
2153		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2154		if (bs.bs_bmissthreshold > 10)
2155			bs.bs_bmissthreshold = 10;
2156		else if (bs.bs_bmissthreshold <= 0)
2157			bs.bs_bmissthreshold = 1;
2158
2159		/*
2160		 * Calculate sleep duration.  The configuration is
2161		 * given in ms.  We insure a multiple of the beacon
2162		 * period is used.  Also, if the sleep duration is
2163		 * greater than the DTIM period then it makes senses
2164		 * to make it a multiple of that.
2165		 *
2166		 * XXX fixed at 100ms
2167		 */
2168		bs.bs_sleepduration =
2169			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2170		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2171			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2172
2173		DPRINTF(sc, ATH_DEBUG_BEACON,
2174			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2175			, __func__
2176			, tsf, tsftu
2177			, bs.bs_intval
2178			, bs.bs_nexttbtt
2179			, bs.bs_dtimperiod
2180			, bs.bs_nextdtim
2181			, bs.bs_bmissthreshold
2182			, bs.bs_sleepduration
2183			, bs.bs_cfpperiod
2184			, bs.bs_cfpmaxduration
2185			, bs.bs_cfpnext
2186			, bs.bs_timoffset
2187		);
2188		ath_hal_intrset(ah, 0);
2189		ath_hal_beacontimers(ah, &bs);
2190		sc->sc_imask |= HAL_INT_BMISS;
2191		ath_hal_intrset(ah, sc->sc_imask);
2192	} else {
2193		ath_hal_intrset(ah, 0);
2194		if (nexttbtt == intval)
2195			intval |= HAL_BEACON_RESET_TSF;
2196		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2197			/*
2198			 * In IBSS mode enable the beacon timers but only
2199			 * enable SWBA interrupts if we need to manually
2200			 * prepare beacon frames.  Otherwise we use a
2201			 * self-linked tx descriptor and let the hardware
2202			 * deal with things.
2203			 */
2204			intval |= HAL_BEACON_ENA;
2205			if (!sc->sc_hasveol)
2206				sc->sc_imask |= HAL_INT_SWBA;
2207			ath_beaconq_config(sc);
2208		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2209			/*
2210			 * In AP mode we enable the beacon timers and
2211			 * SWBA interrupts to prepare beacon frames.
2212			 */
2213			intval |= HAL_BEACON_ENA;
2214			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2215			ath_beaconq_config(sc);
2216		}
2217		ath_hal_beaconinit(ah, nexttbtt, intval);
2218		sc->sc_bmisscount = 0;
2219		ath_hal_intrset(ah, sc->sc_imask);
2220		/*
2221		 * When using a self-linked beacon descriptor in
2222		 * ibss mode load it once here.
2223		 */
2224		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2225			ath_beacon_proc(sc, 0);
2226	}
2227#undef TSF_TO_TU
2228}
2229
2230static void
2231ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2232{
2233	bus_addr_t *paddr = (bus_addr_t*) arg;
2234	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2235	*paddr = segs->ds_addr;
2236}
2237
2238static int
2239ath_descdma_setup(struct ath_softc *sc,
2240	struct ath_descdma *dd, ath_bufhead *head,
2241	const char *name, int nbuf, int ndesc)
2242{
2243#define	DS2PHYS(_dd, _ds) \
2244	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2245	struct ifnet *ifp = sc->sc_ifp;
2246	struct ath_desc *ds;
2247	struct ath_buf *bf;
2248	int i, bsize, error;
2249
2250	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2251	    __func__, name, nbuf, ndesc);
2252
2253	dd->dd_name = name;
2254	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2255
2256	/*
2257	 * Setup DMA descriptor area.
2258	 */
2259	error = bus_dma_tag_create(NULL,	/* parent */
2260		       PAGE_SIZE, 0,		/* alignment, bounds */
2261		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2262		       BUS_SPACE_MAXADDR,	/* highaddr */
2263		       NULL, NULL,		/* filter, filterarg */
2264		       dd->dd_desc_len,		/* maxsize */
2265		       1,			/* nsegments */
2266		       BUS_SPACE_MAXADDR,	/* maxsegsize */
2267		       BUS_DMA_ALLOCNOW,	/* flags */
2268		       NULL,			/* lockfunc */
2269		       NULL,			/* lockarg */
2270		       &dd->dd_dmat);
2271	if (error != 0) {
2272		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2273		return error;
2274	}
2275
2276	/* allocate descriptors */
2277	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2278	if (error != 0) {
2279		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2280			"error %u\n", dd->dd_name, error);
2281		goto fail0;
2282	}
2283
2284	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2285				 BUS_DMA_NOWAIT, &dd->dd_dmamap);
2286	if (error != 0) {
2287		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2288			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2289		goto fail1;
2290	}
2291
2292	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2293				dd->dd_desc, dd->dd_desc_len,
2294				ath_load_cb, &dd->dd_desc_paddr,
2295				BUS_DMA_NOWAIT);
2296	if (error != 0) {
2297		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2298			dd->dd_name, error);
2299		goto fail2;
2300	}
2301
2302	ds = dd->dd_desc;
2303	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2304	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2305	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2306
2307	/* allocate rx buffers */
2308	bsize = sizeof(struct ath_buf) * nbuf;
2309	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2310	if (bf == NULL) {
2311		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2312			dd->dd_name, bsize);
2313		goto fail3;
2314	}
2315	dd->dd_bufptr = bf;
2316
2317	STAILQ_INIT(head);
2318	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2319		bf->bf_desc = ds;
2320		bf->bf_daddr = DS2PHYS(dd, ds);
2321		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2322				&bf->bf_dmamap);
2323		if (error != 0) {
2324			if_printf(ifp, "unable to create dmamap for %s "
2325				"buffer %u, error %u\n", dd->dd_name, i, error);
2326			ath_descdma_cleanup(sc, dd, head);
2327			return error;
2328		}
2329		STAILQ_INSERT_TAIL(head, bf, bf_list);
2330	}
2331	return 0;
2332fail3:
2333	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2334fail2:
2335	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2336fail1:
2337	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2338fail0:
2339	bus_dma_tag_destroy(dd->dd_dmat);
2340	memset(dd, 0, sizeof(*dd));
2341	return error;
2342#undef DS2PHYS
2343}
2344
2345static void
2346ath_descdma_cleanup(struct ath_softc *sc,
2347	struct ath_descdma *dd, ath_bufhead *head)
2348{
2349	struct ath_buf *bf;
2350	struct ieee80211_node *ni;
2351
2352	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2353	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2354	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2355	bus_dma_tag_destroy(dd->dd_dmat);
2356
2357	STAILQ_FOREACH(bf, head, bf_list) {
2358		if (bf->bf_m) {
2359			m_freem(bf->bf_m);
2360			bf->bf_m = NULL;
2361		}
2362		if (bf->bf_dmamap != NULL) {
2363			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2364			bf->bf_dmamap = NULL;
2365		}
2366		ni = bf->bf_node;
2367		bf->bf_node = NULL;
2368		if (ni != NULL) {
2369			/*
2370			 * Reclaim node reference.
2371			 */
2372			ieee80211_free_node(ni);
2373		}
2374	}
2375
2376	STAILQ_INIT(head);
2377	free(dd->dd_bufptr, M_ATHDEV);
2378	memset(dd, 0, sizeof(*dd));
2379}
2380
2381static int
2382ath_desc_alloc(struct ath_softc *sc)
2383{
2384	int error;
2385
2386	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2387			"rx", ATH_RXBUF, 1);
2388	if (error != 0)
2389		return error;
2390
2391	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2392			"tx", ATH_TXBUF, ATH_TXDESC);
2393	if (error != 0) {
2394		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2395		return error;
2396	}
2397
2398	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2399			"beacon", 1, 1);
2400	if (error != 0) {
2401		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2402		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2403		return error;
2404	}
2405	return 0;
2406}
2407
2408static void
2409ath_desc_free(struct ath_softc *sc)
2410{
2411
2412	if (sc->sc_bdma.dd_desc_len != 0)
2413		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2414	if (sc->sc_txdma.dd_desc_len != 0)
2415		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2416	if (sc->sc_rxdma.dd_desc_len != 0)
2417		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2418}
2419
2420static struct ieee80211_node *
2421ath_node_alloc(struct ieee80211_node_table *nt)
2422{
2423	struct ieee80211com *ic = nt->nt_ic;
2424	struct ath_softc *sc = ic->ic_ifp->if_softc;
2425	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2426	struct ath_node *an;
2427
2428	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2429	if (an == NULL) {
2430		/* XXX stat+msg */
2431		return NULL;
2432	}
2433	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2434	an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2435	an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2436	an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2437	ath_rate_node_init(sc, an);
2438
2439	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2440	return &an->an_node;
2441}
2442
2443static void
2444ath_node_free(struct ieee80211_node *ni)
2445{
2446	struct ieee80211com *ic = ni->ni_ic;
2447        struct ath_softc *sc = ic->ic_ifp->if_softc;
2448
2449	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2450
2451	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2452	sc->sc_node_free(ni);
2453}
2454
2455static u_int8_t
2456ath_node_getrssi(const struct ieee80211_node *ni)
2457{
2458#define	HAL_EP_RND(x, mul) \
2459	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2460	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2461	int32_t rssi;
2462
2463	/*
2464	 * When only one frame is received there will be no state in
2465	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2466	 */
2467	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2468		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2469	else
2470		rssi = ni->ni_rssi;
2471	/* NB: theoretically we shouldn't need this, but be paranoid */
2472	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2473#undef HAL_EP_RND
2474}
2475
2476static int
2477ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2478{
2479	struct ath_hal *ah = sc->sc_ah;
2480	int error;
2481	struct mbuf *m;
2482	struct ath_desc *ds;
2483
2484	m = bf->bf_m;
2485	if (m == NULL) {
2486		/*
2487		 * NB: by assigning a page to the rx dma buffer we
2488		 * implicitly satisfy the Atheros requirement that
2489		 * this buffer be cache-line-aligned and sized to be
2490		 * multiple of the cache line size.  Not doing this
2491		 * causes weird stuff to happen (for the 5210 at least).
2492		 */
2493		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2494		if (m == NULL) {
2495			DPRINTF(sc, ATH_DEBUG_ANY,
2496				"%s: no mbuf/cluster\n", __func__);
2497			sc->sc_stats.ast_rx_nombuf++;
2498			return ENOMEM;
2499		}
2500		bf->bf_m = m;
2501		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2502
2503		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
2504					     bf->bf_dmamap, m,
2505					     bf->bf_segs, &bf->bf_nseg,
2506					     BUS_DMA_NOWAIT);
2507		if (error != 0) {
2508			DPRINTF(sc, ATH_DEBUG_ANY,
2509			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
2510			    __func__, error);
2511			sc->sc_stats.ast_rx_busdma++;
2512			return error;
2513		}
2514		KASSERT(bf->bf_nseg == 1,
2515			("multi-segment packet; nseg %u", bf->bf_nseg));
2516	}
2517	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2518
2519	/*
2520	 * Setup descriptors.  For receive we always terminate
2521	 * the descriptor list with a self-linked entry so we'll
2522	 * not get overrun under high load (as can happen with a
2523	 * 5212 when ANI processing enables PHY error frames).
2524	 *
2525	 * To insure the last descriptor is self-linked we create
2526	 * each descriptor as self-linked and add it to the end.  As
2527	 * each additional descriptor is added the previous self-linked
2528	 * entry is ``fixed'' naturally.  This should be safe even
2529	 * if DMA is happening.  When processing RX interrupts we
2530	 * never remove/process the last, self-linked, entry on the
2531	 * descriptor list.  This insures the hardware always has
2532	 * someplace to write a new frame.
2533	 */
2534	ds = bf->bf_desc;
2535	ds->ds_link = bf->bf_daddr;	/* link to self */
2536	ds->ds_data = bf->bf_segs[0].ds_addr;
2537	ath_hal_setuprxdesc(ah, ds
2538		, m->m_len		/* buffer size */
2539		, 0
2540	);
2541
2542	if (sc->sc_rxlink != NULL)
2543		*sc->sc_rxlink = bf->bf_daddr;
2544	sc->sc_rxlink = &ds->ds_link;
2545	return 0;
2546}
2547
2548/*
2549 * Extend 15-bit time stamp from rx descriptor to
2550 * a full 64-bit TSF using the current h/w TSF.
2551 */
2552static __inline u_int64_t
2553ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
2554{
2555	u_int64_t tsf;
2556
2557	tsf = ath_hal_gettsf64(ah);
2558	if ((tsf & 0x7fff) < rstamp)
2559		tsf -= 0x8000;
2560	return ((tsf &~ 0x7fff) | rstamp);
2561}
2562
2563/*
2564 * Intercept management frames to collect beacon rssi data
2565 * and to do ibss merges.
2566 */
2567static void
2568ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2569	struct ieee80211_node *ni,
2570	int subtype, int rssi, u_int32_t rstamp)
2571{
2572	struct ath_softc *sc = ic->ic_ifp->if_softc;
2573
2574	/*
2575	 * Call up first so subsequent work can use information
2576	 * potentially stored in the node (e.g. for ibss merge).
2577	 */
2578	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2579	switch (subtype) {
2580	case IEEE80211_FC0_SUBTYPE_BEACON:
2581		/* update rssi statistics for use by the hal */
2582		ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2583		/* fall thru... */
2584	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2585		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2586		    ic->ic_state == IEEE80211_S_RUN) {
2587			u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp);
2588			/*
2589			 * Handle ibss merge as needed; check the tsf on the
2590			 * frame before attempting the merge.  The 802.11 spec
2591			 * says the station should change it's bssid to match
2592			 * the oldest station with the same ssid, where oldest
2593			 * is determined by the tsf.  Note that hardware
2594			 * reconfiguration happens through callback to
2595			 * ath_newstate as the state machine will go from
2596			 * RUN -> RUN when this happens.
2597			 */
2598			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2599				DPRINTF(sc, ATH_DEBUG_STATE,
2600				    "ibss merge, rstamp %u tsf %ju "
2601				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2602				    (uintmax_t)ni->ni_tstamp.tsf);
2603				(void) ieee80211_ibss_merge(ni);
2604			}
2605		}
2606		break;
2607	}
2608}
2609
2610/*
2611 * Set the default antenna.
2612 */
2613static void
2614ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2615{
2616	struct ath_hal *ah = sc->sc_ah;
2617
2618	/* XXX block beacon interrupts */
2619	ath_hal_setdefantenna(ah, antenna);
2620	if (sc->sc_defant != antenna)
2621		sc->sc_stats.ast_ant_defswitch++;
2622	sc->sc_defant = antenna;
2623	sc->sc_rxotherant = 0;
2624}
2625
2626static void
2627ath_rx_proc(void *arg, int npending)
2628{
2629#define	PA2DESC(_sc, _pa) \
2630	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2631		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2632	struct ath_softc *sc = arg;
2633	struct ath_buf *bf;
2634	struct ieee80211com *ic = &sc->sc_ic;
2635	struct ifnet *ifp = sc->sc_ifp;
2636	struct ath_hal *ah = sc->sc_ah;
2637	struct ath_desc *ds;
2638	struct mbuf *m;
2639	struct ieee80211_node *ni;
2640	struct ath_node *an;
2641	int len, type;
2642	u_int phyerr;
2643	HAL_STATUS status;
2644
2645	NET_LOCK_GIANT();		/* XXX */
2646
2647	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2648	do {
2649		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2650		if (bf == NULL) {		/* NB: shouldn't happen */
2651			if_printf(ifp, "%s: no buffer!\n", __func__);
2652			break;
2653		}
2654		ds = bf->bf_desc;
2655		if (ds->ds_link == bf->bf_daddr) {
2656			/* NB: never process the self-linked entry at the end */
2657			break;
2658		}
2659		m = bf->bf_m;
2660		if (m == NULL) {		/* NB: shouldn't happen */
2661			if_printf(ifp, "%s: no mbuf!\n", __func__);
2662			continue;
2663		}
2664		/* XXX sync descriptor memory */
2665		/*
2666		 * Must provide the virtual address of the current
2667		 * descriptor, the physical address, and the virtual
2668		 * address of the next descriptor in the h/w chain.
2669		 * This allows the HAL to look ahead to see if the
2670		 * hardware is done with a descriptor by checking the
2671		 * done bit in the following descriptor and the address
2672		 * of the current descriptor the DMA engine is working
2673		 * on.  All this is necessary because of our use of
2674		 * a self-linked list to avoid rx overruns.
2675		 */
2676		status = ath_hal_rxprocdesc(ah, ds,
2677				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2678#ifdef AR_DEBUG
2679		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2680			ath_printrxbuf(bf, status == HAL_OK);
2681#endif
2682		if (status == HAL_EINPROGRESS)
2683			break;
2684		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2685		if (ds->ds_rxstat.rs_more) {
2686			/*
2687			 * Frame spans multiple descriptors; this
2688			 * cannot happen yet as we don't support
2689			 * jumbograms.  If not in monitor mode,
2690			 * discard the frame.
2691			 */
2692			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2693				sc->sc_stats.ast_rx_toobig++;
2694				goto rx_next;
2695			}
2696			/* fall thru for monitor mode handling... */
2697		} else if (ds->ds_rxstat.rs_status != 0) {
2698			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2699				sc->sc_stats.ast_rx_crcerr++;
2700			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2701				sc->sc_stats.ast_rx_fifoerr++;
2702			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2703				sc->sc_stats.ast_rx_phyerr++;
2704				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2705				sc->sc_stats.ast_rx_phy[phyerr]++;
2706				goto rx_next;
2707			}
2708			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2709				/*
2710				 * Decrypt error.  If the error occurred
2711				 * because there was no hardware key, then
2712				 * let the frame through so the upper layers
2713				 * can process it.  This is necessary for 5210
2714				 * parts which have no way to setup a ``clear''
2715				 * key cache entry.
2716				 *
2717				 * XXX do key cache faulting
2718				 */
2719				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2720					goto rx_accept;
2721				sc->sc_stats.ast_rx_badcrypt++;
2722			}
2723			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2724				sc->sc_stats.ast_rx_badmic++;
2725				/*
2726				 * Do minimal work required to hand off
2727				 * the 802.11 header for notifcation.
2728				 */
2729				/* XXX frag's and qos frames */
2730				len = ds->ds_rxstat.rs_datalen;
2731				if (len >= sizeof (struct ieee80211_frame)) {
2732					bus_dmamap_sync(sc->sc_dmat,
2733					    bf->bf_dmamap,
2734					    BUS_DMASYNC_POSTREAD);
2735					ieee80211_notify_michael_failure(ic,
2736					    mtod(m, struct ieee80211_frame *),
2737					    sc->sc_splitmic ?
2738					        ds->ds_rxstat.rs_keyix-32 :
2739					        ds->ds_rxstat.rs_keyix
2740					);
2741				}
2742			}
2743			ifp->if_ierrors++;
2744			/*
2745			 * Reject error frames, we normally don't want
2746			 * to see them in monitor mode (in monitor mode
2747			 * allow through packets that have crypto problems).
2748			 */
2749			if ((ds->ds_rxstat.rs_status &~
2750				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2751			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2752				goto rx_next;
2753		}
2754rx_accept:
2755		/*
2756		 * Sync and unmap the frame.  At this point we're
2757		 * committed to passing the mbuf somewhere so clear
2758		 * bf_m; this means a new sk_buff must be allocated
2759		 * when the rx descriptor is setup again to receive
2760		 * another frame.
2761		 */
2762		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2763		    BUS_DMASYNC_POSTREAD);
2764		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2765		bf->bf_m = NULL;
2766
2767		m->m_pkthdr.rcvif = ifp;
2768		len = ds->ds_rxstat.rs_datalen;
2769		m->m_pkthdr.len = m->m_len = len;
2770
2771		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2772
2773		if (sc->sc_drvbpf) {
2774			u_int8_t rix;
2775
2776			/*
2777			 * Discard anything shorter than an ack or cts.
2778			 */
2779			if (len < IEEE80211_ACK_LEN) {
2780				DPRINTF(sc, ATH_DEBUG_RECV,
2781					"%s: runt packet %d\n",
2782					__func__, len);
2783				sc->sc_stats.ast_rx_tooshort++;
2784				m_freem(m);
2785				goto rx_next;
2786			}
2787			rix = ds->ds_rxstat.rs_rate;
2788			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2789			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2790			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2791			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2792			/* XXX TSF */
2793
2794			bpf_mtap2(sc->sc_drvbpf,
2795				&sc->sc_rx_th, sc->sc_rx_th_len, m);
2796		}
2797
2798		/*
2799		 * From this point on we assume the frame is at least
2800		 * as large as ieee80211_frame_min; verify that.
2801		 */
2802		if (len < IEEE80211_MIN_LEN) {
2803			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2804				__func__, len);
2805			sc->sc_stats.ast_rx_tooshort++;
2806			m_freem(m);
2807			goto rx_next;
2808		}
2809
2810		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2811			ieee80211_dump_pkt(mtod(m, caddr_t), len,
2812				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2813				   ds->ds_rxstat.rs_rssi);
2814		}
2815
2816		m_adj(m, -IEEE80211_CRC_LEN);
2817
2818		/*
2819		 * Locate the node for sender, track state, and then
2820		 * pass the (referenced) node up to the 802.11 layer
2821		 * for its use.  If the sender is unknown spam the
2822		 * frame; it'll be dropped where it's not wanted.
2823		 */
2824		if (ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID &&
2825		    (ni = sc->sc_keyixmap[ds->ds_rxstat.rs_keyix]) != NULL) {
2826			/*
2827			 * Fast path: node is present in the key map;
2828			 * grab a reference for processing the frame.
2829			 */
2830			an = ATH_NODE(ieee80211_ref_node(ni));
2831			ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2832			type = ieee80211_input(ic, m, ni,
2833				ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2834		} else {
2835			/*
2836			 * Locate the node for sender, track state, and then
2837			 * pass the (referenced) node up to the 802.11 layer
2838			 * for its use.
2839			 */
2840			ni = ieee80211_find_rxnode(ic,
2841				mtod(m, const struct ieee80211_frame_min *));
2842			/*
2843			 * Track rx rssi and do any rx antenna management.
2844			 */
2845			an = ATH_NODE(ni);
2846			ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2847			/*
2848			 * Send frame up for processing.
2849			 */
2850			type = ieee80211_input(ic, m, ni,
2851				ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2852			if (ni != ic->ic_bss) {
2853				u_int16_t keyix;
2854				/*
2855				 * If the station has a key cache slot assigned
2856				 * update the key->node mapping table.
2857				 */
2858				keyix = ni->ni_ucastkey.wk_keyix;
2859				if (keyix != IEEE80211_KEYIX_NONE &&
2860				    sc->sc_keyixmap[keyix] == NULL)
2861					sc->sc_keyixmap[keyix] =
2862						ieee80211_ref_node(ni);
2863			}
2864		}
2865		ieee80211_free_node(ni);
2866		if (sc->sc_diversity) {
2867			/*
2868			 * When using fast diversity, change the default rx
2869			 * antenna if diversity chooses the other antenna 3
2870			 * times in a row.
2871			 */
2872			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2873				if (++sc->sc_rxotherant >= 3)
2874					ath_setdefantenna(sc,
2875						ds->ds_rxstat.rs_antenna);
2876			} else
2877				sc->sc_rxotherant = 0;
2878		}
2879		if (sc->sc_softled) {
2880			/*
2881			 * Blink for any data frame.  Otherwise do a
2882			 * heartbeat-style blink when idle.  The latter
2883			 * is mainly for station mode where we depend on
2884			 * periodic beacon frames to trigger the poll event.
2885			 */
2886			if (type == IEEE80211_FC0_TYPE_DATA) {
2887				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
2888				ath_led_event(sc, ATH_LED_RX);
2889			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
2890				ath_led_event(sc, ATH_LED_POLL);
2891		}
2892rx_next:
2893		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2894	} while (ath_rxbuf_init(sc, bf) == 0);
2895
2896	/* rx signal state monitoring */
2897	ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
2898
2899	NET_UNLOCK_GIANT();		/* XXX */
2900#undef PA2DESC
2901}
2902
2903/*
2904 * Setup a h/w transmit queue.
2905 */
2906static struct ath_txq *
2907ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2908{
2909#define	N(a)	(sizeof(a)/sizeof(a[0]))
2910	struct ath_hal *ah = sc->sc_ah;
2911	HAL_TXQ_INFO qi;
2912	int qnum;
2913
2914	memset(&qi, 0, sizeof(qi));
2915	qi.tqi_subtype = subtype;
2916	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2917	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2918	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2919	/*
2920	 * Enable interrupts only for EOL and DESC conditions.
2921	 * We mark tx descriptors to receive a DESC interrupt
2922	 * when a tx queue gets deep; otherwise waiting for the
2923	 * EOL to reap descriptors.  Note that this is done to
2924	 * reduce interrupt load and this only defers reaping
2925	 * descriptors, never transmitting frames.  Aside from
2926	 * reducing interrupts this also permits more concurrency.
2927	 * The only potential downside is if the tx queue backs
2928	 * up in which case the top half of the kernel may backup
2929	 * due to a lack of tx descriptors.
2930	 */
2931	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
2932	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
2933	if (qnum == -1) {
2934		/*
2935		 * NB: don't print a message, this happens
2936		 * normally on parts with too few tx queues
2937		 */
2938		return NULL;
2939	}
2940	if (qnum >= N(sc->sc_txq)) {
2941		device_printf(sc->sc_dev,
2942			"hal qnum %u out of range, max %zu!\n",
2943			qnum, N(sc->sc_txq));
2944		ath_hal_releasetxqueue(ah, qnum);
2945		return NULL;
2946	}
2947	if (!ATH_TXQ_SETUP(sc, qnum)) {
2948		struct ath_txq *txq = &sc->sc_txq[qnum];
2949
2950		txq->axq_qnum = qnum;
2951		txq->axq_depth = 0;
2952		txq->axq_intrcnt = 0;
2953		txq->axq_link = NULL;
2954		STAILQ_INIT(&txq->axq_q);
2955		ATH_TXQ_LOCK_INIT(sc, txq);
2956		sc->sc_txqsetup |= 1<<qnum;
2957	}
2958	return &sc->sc_txq[qnum];
2959#undef N
2960}
2961
2962/*
2963 * Setup a hardware data transmit queue for the specified
2964 * access control.  The hal may not support all requested
2965 * queues in which case it will return a reference to a
2966 * previously setup queue.  We record the mapping from ac's
2967 * to h/w queues for use by ath_tx_start and also track
2968 * the set of h/w queues being used to optimize work in the
2969 * transmit interrupt handler and related routines.
2970 */
2971static int
2972ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
2973{
2974#define	N(a)	(sizeof(a)/sizeof(a[0]))
2975	struct ath_txq *txq;
2976
2977	if (ac >= N(sc->sc_ac2q)) {
2978		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2979			ac, N(sc->sc_ac2q));
2980		return 0;
2981	}
2982	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
2983	if (txq != NULL) {
2984		sc->sc_ac2q[ac] = txq;
2985		return 1;
2986	} else
2987		return 0;
2988#undef N
2989}
2990
2991/*
2992 * Update WME parameters for a transmit queue.
2993 */
2994static int
2995ath_txq_update(struct ath_softc *sc, int ac)
2996{
2997#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
2998#define	ATH_TXOP_TO_US(v)		(v<<5)
2999	struct ieee80211com *ic = &sc->sc_ic;
3000	struct ath_txq *txq = sc->sc_ac2q[ac];
3001	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3002	struct ath_hal *ah = sc->sc_ah;
3003	HAL_TXQ_INFO qi;
3004
3005	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3006	qi.tqi_aifs = wmep->wmep_aifsn;
3007	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3008	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3009	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3010
3011	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3012		device_printf(sc->sc_dev, "unable to update hardware queue "
3013			"parameters for %s traffic!\n",
3014			ieee80211_wme_acnames[ac]);
3015		return 0;
3016	} else {
3017		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3018		return 1;
3019	}
3020#undef ATH_TXOP_TO_US
3021#undef ATH_EXPONENT_TO_VALUE
3022}
3023
3024/*
3025 * Callback from the 802.11 layer to update WME parameters.
3026 */
3027static int
3028ath_wme_update(struct ieee80211com *ic)
3029{
3030	struct ath_softc *sc = ic->ic_ifp->if_softc;
3031
3032	return !ath_txq_update(sc, WME_AC_BE) ||
3033	    !ath_txq_update(sc, WME_AC_BK) ||
3034	    !ath_txq_update(sc, WME_AC_VI) ||
3035	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3036}
3037
3038/*
3039 * Reclaim resources for a setup queue.
3040 */
3041static void
3042ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3043{
3044
3045	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3046	ATH_TXQ_LOCK_DESTROY(txq);
3047	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3048}
3049
3050/*
3051 * Reclaim all tx queue resources.
3052 */
3053static void
3054ath_tx_cleanup(struct ath_softc *sc)
3055{
3056	int i;
3057
3058	ATH_TXBUF_LOCK_DESTROY(sc);
3059	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3060		if (ATH_TXQ_SETUP(sc, i))
3061			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3062}
3063
3064/*
3065 * Defragment an mbuf chain, returning at most maxfrags separate
3066 * mbufs+clusters.  If this is not possible NULL is returned and
3067 * the original mbuf chain is left in it's present (potentially
3068 * modified) state.  We use two techniques: collapsing consecutive
3069 * mbufs and replacing consecutive mbufs by a cluster.
3070 */
3071static struct mbuf *
3072ath_defrag(struct mbuf *m0, int how, int maxfrags)
3073{
3074	struct mbuf *m, *n, *n2, **prev;
3075	u_int curfrags;
3076
3077	/*
3078	 * Calculate the current number of frags.
3079	 */
3080	curfrags = 0;
3081	for (m = m0; m != NULL; m = m->m_next)
3082		curfrags++;
3083	/*
3084	 * First, try to collapse mbufs.  Note that we always collapse
3085	 * towards the front so we don't need to deal with moving the
3086	 * pkthdr.  This may be suboptimal if the first mbuf has much
3087	 * less data than the following.
3088	 */
3089	m = m0;
3090again:
3091	for (;;) {
3092		n = m->m_next;
3093		if (n == NULL)
3094			break;
3095		if ((m->m_flags & M_RDONLY) == 0 &&
3096		    n->m_len < M_TRAILINGSPACE(m)) {
3097			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3098				n->m_len);
3099			m->m_len += n->m_len;
3100			m->m_next = n->m_next;
3101			m_free(n);
3102			if (--curfrags <= maxfrags)
3103				return m0;
3104		} else
3105			m = n;
3106	}
3107	KASSERT(maxfrags > 1,
3108		("maxfrags %u, but normal collapse failed", maxfrags));
3109	/*
3110	 * Collapse consecutive mbufs to a cluster.
3111	 */
3112	prev = &m0->m_next;		/* NB: not the first mbuf */
3113	while ((n = *prev) != NULL) {
3114		if ((n2 = n->m_next) != NULL &&
3115		    n->m_len + n2->m_len < MCLBYTES) {
3116			m = m_getcl(how, MT_DATA, 0);
3117			if (m == NULL)
3118				goto bad;
3119			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3120			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3121				n2->m_len);
3122			m->m_len = n->m_len + n2->m_len;
3123			m->m_next = n2->m_next;
3124			*prev = m;
3125			m_free(n);
3126			m_free(n2);
3127			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3128				return m0;
3129			/*
3130			 * Still not there, try the normal collapse
3131			 * again before we allocate another cluster.
3132			 */
3133			goto again;
3134		}
3135		prev = &n->m_next;
3136	}
3137	/*
3138	 * No place where we can collapse to a cluster; punt.
3139	 * This can occur if, for example, you request 2 frags
3140	 * but the packet requires that both be clusters (we
3141	 * never reallocate the first mbuf to avoid moving the
3142	 * packet header).
3143	 */
3144bad:
3145	return NULL;
3146}
3147
3148static int
3149ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3150    struct mbuf *m0)
3151{
3152#define	CTS_DURATION \
3153	ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
3154#define	updateCTSForBursting(_ah, _ds, _txq) \
3155	ath_hal_updateCTSForBursting(_ah, _ds, \
3156	    _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
3157	    _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
3158	    txopLimit, CTS_DURATION)
3159	struct ieee80211com *ic = &sc->sc_ic;
3160	struct ath_hal *ah = sc->sc_ah;
3161	struct ifnet *ifp = sc->sc_ifp;
3162	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3163	int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
3164	u_int8_t rix, txrate, ctsrate;
3165	u_int8_t cix = 0xff;		/* NB: silence compiler */
3166	struct ath_desc *ds, *ds0;
3167	struct ath_txq *txq;
3168	struct ieee80211_frame *wh;
3169	u_int subtype, flags, ctsduration;
3170	HAL_PKT_TYPE atype;
3171	const HAL_RATE_TABLE *rt;
3172	HAL_BOOL shortPreamble;
3173	struct ath_node *an;
3174	struct mbuf *m;
3175	u_int pri;
3176
3177	wh = mtod(m0, struct ieee80211_frame *);
3178	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3179	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3180	hdrlen = ieee80211_anyhdrsize(wh);
3181	/*
3182	 * Packet length must not include any
3183	 * pad bytes; deduct them here.
3184	 */
3185	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3186
3187	if (iswep) {
3188		const struct ieee80211_cipher *cip;
3189		struct ieee80211_key *k;
3190
3191		/*
3192		 * Construct the 802.11 header+trailer for an encrypted
3193		 * frame. The only reason this can fail is because of an
3194		 * unknown or unsupported cipher/key type.
3195		 */
3196		k = ieee80211_crypto_encap(ic, ni, m0);
3197		if (k == NULL) {
3198			/*
3199			 * This can happen when the key is yanked after the
3200			 * frame was queued.  Just discard the frame; the
3201			 * 802.11 layer counts failures and provides
3202			 * debugging/diagnostics.
3203			 */
3204			m_freem(m0);
3205			return EIO;
3206		}
3207		/*
3208		 * Adjust the packet + header lengths for the crypto
3209		 * additions and calculate the h/w key index.  When
3210		 * a s/w mic is done the frame will have had any mic
3211		 * added to it prior to entry so skb->len above will
3212		 * account for it. Otherwise we need to add it to the
3213		 * packet length.
3214		 */
3215		cip = k->wk_cipher;
3216		hdrlen += cip->ic_header;
3217		pktlen += cip->ic_header + cip->ic_trailer;
3218		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3219			pktlen += cip->ic_miclen;
3220		keyix = k->wk_keyix;
3221
3222		/* packet header may have moved, reset our local pointer */
3223		wh = mtod(m0, struct ieee80211_frame *);
3224	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3225		/*
3226		 * Use station key cache slot, if assigned.
3227		 */
3228		keyix = ni->ni_ucastkey.wk_keyix;
3229		if (keyix == IEEE80211_KEYIX_NONE)
3230			keyix = HAL_TXKEYIX_INVALID;
3231	} else
3232		keyix = HAL_TXKEYIX_INVALID;
3233
3234	pktlen += IEEE80211_CRC_LEN;
3235
3236	/*
3237	 * Load the DMA map so any coalescing is done.  This
3238	 * also calculates the number of descriptors we need.
3239	 */
3240	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3241				     bf->bf_segs, &bf->bf_nseg,
3242				     BUS_DMA_NOWAIT);
3243	if (error == EFBIG) {
3244		/* XXX packet requires too many descriptors */
3245		bf->bf_nseg = ATH_TXDESC+1;
3246	} else if (error != 0) {
3247		sc->sc_stats.ast_tx_busdma++;
3248		m_freem(m0);
3249		return error;
3250	}
3251	/*
3252	 * Discard null packets and check for packets that
3253	 * require too many TX descriptors.  We try to convert
3254	 * the latter to a cluster.
3255	 */
3256	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
3257		sc->sc_stats.ast_tx_linear++;
3258		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3259		if (m == NULL) {
3260			m_freem(m0);
3261			sc->sc_stats.ast_tx_nombuf++;
3262			return ENOMEM;
3263		}
3264		m0 = m;
3265		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3266					     bf->bf_segs, &bf->bf_nseg,
3267					     BUS_DMA_NOWAIT);
3268		if (error != 0) {
3269			sc->sc_stats.ast_tx_busdma++;
3270			m_freem(m0);
3271			return error;
3272		}
3273		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3274		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3275	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3276		sc->sc_stats.ast_tx_nodata++;
3277		m_freem(m0);
3278		return EIO;
3279	}
3280	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3281	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3282	bf->bf_m = m0;
3283	bf->bf_node = ni;			/* NB: held reference */
3284
3285	/* setup descriptors */
3286	ds = bf->bf_desc;
3287	rt = sc->sc_currates;
3288	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3289
3290	/*
3291	 * NB: the 802.11 layer marks whether or not we should
3292	 * use short preamble based on the current mode and
3293	 * negotiated parameters.
3294	 */
3295	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3296	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3297		shortPreamble = AH_TRUE;
3298		sc->sc_stats.ast_tx_shortpre++;
3299	} else {
3300		shortPreamble = AH_FALSE;
3301	}
3302
3303	an = ATH_NODE(ni);
3304	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3305	/*
3306	 * Calculate Atheros packet type from IEEE80211 packet header,
3307	 * setup for rate calculations, and select h/w transmit queue.
3308	 */
3309	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3310	case IEEE80211_FC0_TYPE_MGT:
3311		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3312		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3313			atype = HAL_PKT_TYPE_BEACON;
3314		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3315			atype = HAL_PKT_TYPE_PROBE_RESP;
3316		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3317			atype = HAL_PKT_TYPE_ATIM;
3318		else
3319			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3320		rix = 0;			/* XXX lowest rate */
3321		try0 = ATH_TXMAXTRY;
3322		if (shortPreamble)
3323			txrate = an->an_tx_mgtratesp;
3324		else
3325			txrate = an->an_tx_mgtrate;
3326		/* NB: force all management frames to highest queue */
3327		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3328			/* NB: force all management frames to highest queue */
3329			pri = WME_AC_VO;
3330		} else
3331			pri = WME_AC_BE;
3332		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3333		break;
3334	case IEEE80211_FC0_TYPE_CTL:
3335		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3336		rix = 0;			/* XXX lowest rate */
3337		try0 = ATH_TXMAXTRY;
3338		if (shortPreamble)
3339			txrate = an->an_tx_mgtratesp;
3340		else
3341			txrate = an->an_tx_mgtrate;
3342		/* NB: force all ctl frames to highest queue */
3343		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3344			/* NB: force all ctl frames to highest queue */
3345			pri = WME_AC_VO;
3346		} else
3347			pri = WME_AC_BE;
3348		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3349		break;
3350	case IEEE80211_FC0_TYPE_DATA:
3351		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3352		/*
3353		 * Data frames; consult the rate control module.
3354		 */
3355		ath_rate_findrate(sc, an, shortPreamble, pktlen,
3356			&rix, &try0, &txrate);
3357		sc->sc_txrate = txrate;			/* for LED blinking */
3358		/*
3359		 * Default all non-QoS traffic to the background queue.
3360		 */
3361		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3362			pri = M_WME_GETAC(m0);
3363			if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3364				flags |= HAL_TXDESC_NOACK;
3365				sc->sc_stats.ast_tx_noack++;
3366			}
3367		} else
3368			pri = WME_AC_BE;
3369		break;
3370	default:
3371		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3372			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3373		/* XXX statistic */
3374		m_freem(m0);
3375		return EIO;
3376	}
3377	txq = sc->sc_ac2q[pri];
3378
3379	/*
3380	 * When servicing one or more stations in power-save mode
3381	 * multicast frames must be buffered until after the beacon.
3382	 * We use the CAB queue for that.
3383	 */
3384	if (ismcast && ic->ic_ps_sta) {
3385		txq = sc->sc_cabq;
3386		/* XXX? more bit in 802.11 frame header */
3387	}
3388
3389	/*
3390	 * Calculate miscellaneous flags.
3391	 */
3392	if (ismcast) {
3393		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3394		sc->sc_stats.ast_tx_noack++;
3395	} else if (pktlen > ic->ic_rtsthreshold) {
3396		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3397		cix = rt->info[rix].controlRate;
3398		sc->sc_stats.ast_tx_rts++;
3399	}
3400
3401	/*
3402	 * If 802.11g protection is enabled, determine whether
3403	 * to use RTS/CTS or just CTS.  Note that this is only
3404	 * done for OFDM unicast frames.
3405	 */
3406	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3407	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3408	    (flags & HAL_TXDESC_NOACK) == 0) {
3409		/* XXX fragments must use CCK rates w/ protection */
3410		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3411			flags |= HAL_TXDESC_RTSENA;
3412		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3413			flags |= HAL_TXDESC_CTSENA;
3414		cix = rt->info[sc->sc_protrix].controlRate;
3415		sc->sc_stats.ast_tx_protect++;
3416	}
3417
3418	/*
3419	 * Calculate duration.  This logically belongs in the 802.11
3420	 * layer but it lacks sufficient information to calculate it.
3421	 */
3422	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3423	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3424		u_int16_t dur;
3425		/*
3426		 * XXX not right with fragmentation.
3427		 */
3428		if (shortPreamble)
3429			dur = rt->info[rix].spAckDuration;
3430		else
3431			dur = rt->info[rix].lpAckDuration;
3432		*(u_int16_t *)wh->i_dur = htole16(dur);
3433	}
3434
3435	/*
3436	 * Calculate RTS/CTS rate and duration if needed.
3437	 */
3438	ctsduration = 0;
3439	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3440		/*
3441		 * CTS transmit rate is derived from the transmit rate
3442		 * by looking in the h/w rate table.  We must also factor
3443		 * in whether or not a short preamble is to be used.
3444		 */
3445		/* NB: cix is set above where RTS/CTS is enabled */
3446		KASSERT(cix != 0xff, ("cix not setup"));
3447		ctsrate = rt->info[cix].rateCode;
3448		/*
3449		 * Compute the transmit duration based on the frame
3450		 * size and the size of an ACK frame.  We call into the
3451		 * HAL to do the computation since it depends on the
3452		 * characteristics of the actual PHY being used.
3453		 *
3454		 * NB: CTS is assumed the same size as an ACK so we can
3455		 *     use the precalculated ACK durations.
3456		 */
3457		if (shortPreamble) {
3458			ctsrate |= rt->info[cix].shortPreamble;
3459			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3460				ctsduration += rt->info[cix].spAckDuration;
3461			ctsduration += ath_hal_computetxtime(ah,
3462				rt, pktlen, rix, AH_TRUE);
3463			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3464				ctsduration += rt->info[cix].spAckDuration;
3465		} else {
3466			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3467				ctsduration += rt->info[cix].lpAckDuration;
3468			ctsduration += ath_hal_computetxtime(ah,
3469				rt, pktlen, rix, AH_FALSE);
3470			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3471				ctsduration += rt->info[cix].lpAckDuration;
3472		}
3473		/*
3474		 * Must disable multi-rate retry when using RTS/CTS.
3475		 */
3476		try0 = ATH_TXMAXTRY;
3477	} else
3478		ctsrate = 0;
3479
3480	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3481		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3482			sc->sc_hwmap[txrate].ieeerate, -1);
3483
3484	if (ic->ic_rawbpf)
3485		bpf_mtap(ic->ic_rawbpf, m0);
3486	if (sc->sc_drvbpf) {
3487		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3488		if (iswep)
3489			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3490		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3491		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3492		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3493
3494		bpf_mtap2(sc->sc_drvbpf,
3495			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3496	}
3497
3498	/*
3499	 * Determine if a tx interrupt should be generated for
3500	 * this descriptor.  We take a tx interrupt to reap
3501	 * descriptors when the h/w hits an EOL condition or
3502	 * when the descriptor is specifically marked to generate
3503	 * an interrupt.  We periodically mark descriptors in this
3504	 * way to insure timely replenishing of the supply needed
3505	 * for sending frames.  Defering interrupts reduces system
3506	 * load and potentially allows more concurrent work to be
3507	 * done but if done to aggressively can cause senders to
3508	 * backup.
3509	 *
3510	 * NB: use >= to deal with sc_txintrperiod changing
3511	 *     dynamically through sysctl.
3512	 */
3513	if (flags & HAL_TXDESC_INTREQ) {
3514		txq->axq_intrcnt = 0;
3515	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3516		flags |= HAL_TXDESC_INTREQ;
3517		txq->axq_intrcnt = 0;
3518	}
3519
3520	/*
3521	 * Formulate first tx descriptor with tx controls.
3522	 */
3523	/* XXX check return value? */
3524	ath_hal_setuptxdesc(ah, ds
3525		, pktlen		/* packet length */
3526		, hdrlen		/* header length */
3527		, atype			/* Atheros packet type */
3528		, ni->ni_txpower	/* txpower */
3529		, txrate, try0		/* series 0 rate/tries */
3530		, keyix			/* key cache index */
3531		, sc->sc_txantenna	/* antenna mode */
3532		, flags			/* flags */
3533		, ctsrate		/* rts/cts rate */
3534		, ctsduration		/* rts/cts duration */
3535	);
3536	bf->bf_flags = flags;
3537	/*
3538	 * Setup the multi-rate retry state only when we're
3539	 * going to use it.  This assumes ath_hal_setuptxdesc
3540	 * initializes the descriptors (so we don't have to)
3541	 * when the hardware supports multi-rate retry and
3542	 * we don't use it.
3543	 */
3544	if (try0 != ATH_TXMAXTRY)
3545		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3546
3547	/*
3548	 * Fillin the remainder of the descriptor info.
3549	 */
3550	ds0 = ds;
3551	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3552		ds->ds_data = bf->bf_segs[i].ds_addr;
3553		if (i == bf->bf_nseg - 1)
3554			ds->ds_link = 0;
3555		else
3556			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3557		ath_hal_filltxdesc(ah, ds
3558			, bf->bf_segs[i].ds_len	/* segment length */
3559			, i == 0		/* first segment */
3560			, i == bf->bf_nseg - 1	/* last segment */
3561			, ds0			/* first descriptor */
3562		);
3563		DPRINTF(sc, ATH_DEBUG_XMIT,
3564			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3565			__func__, i, ds->ds_link, ds->ds_data,
3566			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3567	}
3568	/*
3569	 * Insert the frame on the outbound list and
3570	 * pass it on to the hardware.
3571	 */
3572	ATH_TXQ_LOCK(txq);
3573	if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
3574		u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
3575			cap->cap_wmeParams[pri].wmep_txopLimit);
3576		/*
3577		 * When bursting, potentially extend the CTS duration
3578		 * of a previously queued frame to cover this frame
3579		 * and not exceed the txopLimit.  If that can be done
3580		 * then disable RTS/CTS on this frame since it's now
3581		 * covered (burst extension).  Otherwise we must terminate
3582		 * the burst before this frame goes out so as not to
3583		 * violate the WME parameters.  All this is complicated
3584		 * as we need to update the state of packets on the
3585		 * (live) hardware queue.  The logic is buried in the hal
3586		 * because it's highly chip-specific.
3587		 */
3588		if (txopLimit != 0) {
3589			sc->sc_stats.ast_tx_ctsburst++;
3590			if (updateCTSForBursting(ah, ds0, txq) == 0) {
3591				/*
3592				 * This frame was not covered by RTS/CTS from
3593				 * the previous frame in the burst; update the
3594				 * descriptor pointers so this frame is now
3595				 * treated as the last frame for extending a
3596				 * burst.
3597				 */
3598				txq->axq_lastdsWithCTS = ds0;
3599				/* set gating Desc to final desc */
3600				txq->axq_gatingds =
3601					(struct ath_desc *)txq->axq_link;
3602			} else
3603				sc->sc_stats.ast_tx_ctsext++;
3604		}
3605	}
3606	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3607	if (txq->axq_link == NULL) {
3608		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3609		DPRINTF(sc, ATH_DEBUG_XMIT,
3610			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3611			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3612			txq->axq_depth);
3613	} else {
3614		*txq->axq_link = bf->bf_daddr;
3615		DPRINTF(sc, ATH_DEBUG_XMIT,
3616			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3617			txq->axq_qnum, txq->axq_link,
3618			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3619	}
3620	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3621	/*
3622	 * The CAB queue is started from the SWBA handler since
3623	 * frames only go out on DTIM and to avoid possible races.
3624	 */
3625	if (txq != sc->sc_cabq)
3626		ath_hal_txstart(ah, txq->axq_qnum);
3627	ATH_TXQ_UNLOCK(txq);
3628
3629	return 0;
3630#undef updateCTSForBursting
3631#undef CTS_DURATION
3632}
3633
3634/*
3635 * Process completed xmit descriptors from the specified queue.
3636 */
3637static void
3638ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3639{
3640	struct ath_hal *ah = sc->sc_ah;
3641	struct ieee80211com *ic = &sc->sc_ic;
3642	struct ath_buf *bf;
3643	struct ath_desc *ds, *ds0;
3644	struct ieee80211_node *ni;
3645	struct ath_node *an;
3646	int sr, lr, pri;
3647	HAL_STATUS status;
3648
3649	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3650		__func__, txq->axq_qnum,
3651		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3652		txq->axq_link);
3653	for (;;) {
3654		ATH_TXQ_LOCK(txq);
3655		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3656		bf = STAILQ_FIRST(&txq->axq_q);
3657		if (bf == NULL) {
3658			txq->axq_link = NULL;
3659			ATH_TXQ_UNLOCK(txq);
3660			break;
3661		}
3662		ds0 = &bf->bf_desc[0];
3663		ds = &bf->bf_desc[bf->bf_nseg - 1];
3664		status = ath_hal_txprocdesc(ah, ds);
3665#ifdef AR_DEBUG
3666		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3667			ath_printtxbuf(bf, status == HAL_OK);
3668#endif
3669		if (status == HAL_EINPROGRESS) {
3670			ATH_TXQ_UNLOCK(txq);
3671			break;
3672		}
3673		if (ds0 == txq->axq_lastdsWithCTS)
3674			txq->axq_lastdsWithCTS = NULL;
3675		if (ds == txq->axq_gatingds)
3676			txq->axq_gatingds = NULL;
3677		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3678		ATH_TXQ_UNLOCK(txq);
3679
3680		ni = bf->bf_node;
3681		if (ni != NULL) {
3682			an = ATH_NODE(ni);
3683			if (ds->ds_txstat.ts_status == 0) {
3684				u_int8_t txant = ds->ds_txstat.ts_antenna;
3685				sc->sc_stats.ast_ant_tx[txant]++;
3686				sc->sc_ant_tx[txant]++;
3687				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3688					sc->sc_stats.ast_tx_altrate++;
3689				sc->sc_stats.ast_tx_rssi =
3690					ds->ds_txstat.ts_rssi;
3691				ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3692					ds->ds_txstat.ts_rssi);
3693				pri = M_WME_GETAC(bf->bf_m);
3694				if (pri >= WME_AC_VO)
3695					ic->ic_wme.wme_hipri_traffic++;
3696				ni->ni_inact = ni->ni_inact_reload;
3697			} else {
3698				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3699					sc->sc_stats.ast_tx_xretries++;
3700				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3701					sc->sc_stats.ast_tx_fifoerr++;
3702				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3703					sc->sc_stats.ast_tx_filtered++;
3704			}
3705			sr = ds->ds_txstat.ts_shortretry;
3706			lr = ds->ds_txstat.ts_longretry;
3707			sc->sc_stats.ast_tx_shortretry += sr;
3708			sc->sc_stats.ast_tx_longretry += lr;
3709			/*
3710			 * Hand the descriptor to the rate control algorithm.
3711			 */
3712			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3713			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0)
3714				ath_rate_tx_complete(sc, an, ds, ds0);
3715			/*
3716			 * Reclaim reference to node.
3717			 *
3718			 * NB: the node may be reclaimed here if, for example
3719			 *     this is a DEAUTH message that was sent and the
3720			 *     node was timed out due to inactivity.
3721			 */
3722			ieee80211_free_node(ni);
3723		}
3724		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3725		    BUS_DMASYNC_POSTWRITE);
3726		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3727		m_freem(bf->bf_m);
3728		bf->bf_m = NULL;
3729		bf->bf_node = NULL;
3730
3731		ATH_TXBUF_LOCK(sc);
3732		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3733		ATH_TXBUF_UNLOCK(sc);
3734	}
3735}
3736
3737/*
3738 * Deferred processing of transmit interrupt; special-cased
3739 * for a single hardware transmit queue (e.g. 5210 and 5211).
3740 */
3741static void
3742ath_tx_proc_q0(void *arg, int npending)
3743{
3744	struct ath_softc *sc = arg;
3745	struct ifnet *ifp = sc->sc_ifp;
3746
3747	ath_tx_processq(sc, &sc->sc_txq[0]);
3748	ath_tx_processq(sc, sc->sc_cabq);
3749	ifp->if_flags &= ~IFF_OACTIVE;
3750	sc->sc_tx_timer = 0;
3751
3752	if (sc->sc_softled)
3753		ath_led_event(sc, ATH_LED_TX);
3754
3755	ath_start(ifp);
3756}
3757
3758/*
3759 * Deferred processing of transmit interrupt; special-cased
3760 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3761 */
3762static void
3763ath_tx_proc_q0123(void *arg, int npending)
3764{
3765	struct ath_softc *sc = arg;
3766	struct ifnet *ifp = sc->sc_ifp;
3767
3768	/*
3769	 * Process each active queue.
3770	 */
3771	ath_tx_processq(sc, &sc->sc_txq[0]);
3772	ath_tx_processq(sc, &sc->sc_txq[1]);
3773	ath_tx_processq(sc, &sc->sc_txq[2]);
3774	ath_tx_processq(sc, &sc->sc_txq[3]);
3775	ath_tx_processq(sc, sc->sc_cabq);
3776
3777	ifp->if_flags &= ~IFF_OACTIVE;
3778	sc->sc_tx_timer = 0;
3779
3780	if (sc->sc_softled)
3781		ath_led_event(sc, ATH_LED_TX);
3782
3783	ath_start(ifp);
3784}
3785
3786/*
3787 * Deferred processing of transmit interrupt.
3788 */
3789static void
3790ath_tx_proc(void *arg, int npending)
3791{
3792	struct ath_softc *sc = arg;
3793	struct ifnet *ifp = sc->sc_ifp;
3794	int i;
3795
3796	/*
3797	 * Process each active queue.
3798	 */
3799	/* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3800	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3801		if (ATH_TXQ_SETUP(sc, i))
3802			ath_tx_processq(sc, &sc->sc_txq[i]);
3803
3804	ifp->if_flags &= ~IFF_OACTIVE;
3805	sc->sc_tx_timer = 0;
3806
3807	if (sc->sc_softled)
3808		ath_led_event(sc, ATH_LED_TX);
3809
3810	ath_start(ifp);
3811}
3812
3813static void
3814ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3815{
3816	struct ath_hal *ah = sc->sc_ah;
3817	struct ieee80211_node *ni;
3818	struct ath_buf *bf;
3819
3820	/*
3821	 * NB: this assumes output has been stopped and
3822	 *     we do not need to block ath_tx_tasklet
3823	 */
3824	for (;;) {
3825		ATH_TXQ_LOCK(txq);
3826		bf = STAILQ_FIRST(&txq->axq_q);
3827		if (bf == NULL) {
3828			txq->axq_link = NULL;
3829			ATH_TXQ_UNLOCK(txq);
3830			break;
3831		}
3832		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3833		ATH_TXQ_UNLOCK(txq);
3834#ifdef AR_DEBUG
3835		if (sc->sc_debug & ATH_DEBUG_RESET)
3836			ath_printtxbuf(bf,
3837				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3838#endif /* AR_DEBUG */
3839		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3840		m_freem(bf->bf_m);
3841		bf->bf_m = NULL;
3842		ni = bf->bf_node;
3843		bf->bf_node = NULL;
3844		if (ni != NULL) {
3845			/*
3846			 * Reclaim node reference.
3847			 */
3848			ieee80211_free_node(ni);
3849		}
3850		ATH_TXBUF_LOCK(sc);
3851		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3852		ATH_TXBUF_UNLOCK(sc);
3853	}
3854}
3855
3856static void
3857ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3858{
3859	struct ath_hal *ah = sc->sc_ah;
3860
3861	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3862	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3863	    __func__, txq->axq_qnum,
3864	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3865	    txq->axq_link);
3866}
3867
3868/*
3869 * Drain the transmit queues and reclaim resources.
3870 */
3871static void
3872ath_draintxq(struct ath_softc *sc)
3873{
3874	struct ath_hal *ah = sc->sc_ah;
3875	struct ifnet *ifp = sc->sc_ifp;
3876	int i;
3877
3878	/* XXX return value */
3879	if (!sc->sc_invalid) {
3880		/* don't touch the hardware if marked invalid */
3881		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3882		DPRINTF(sc, ATH_DEBUG_RESET,
3883		    "%s: beacon queue %p\n", __func__,
3884		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
3885		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3886			if (ATH_TXQ_SETUP(sc, i))
3887				ath_tx_stopdma(sc, &sc->sc_txq[i]);
3888	}
3889	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3890		if (ATH_TXQ_SETUP(sc, i))
3891			ath_tx_draintxq(sc, &sc->sc_txq[i]);
3892	ifp->if_flags &= ~IFF_OACTIVE;
3893	sc->sc_tx_timer = 0;
3894}
3895
3896/*
3897 * Disable the receive h/w in preparation for a reset.
3898 */
3899static void
3900ath_stoprecv(struct ath_softc *sc)
3901{
3902#define	PA2DESC(_sc, _pa) \
3903	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3904		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3905	struct ath_hal *ah = sc->sc_ah;
3906
3907	ath_hal_stoppcurecv(ah);	/* disable PCU */
3908	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
3909	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
3910	DELAY(3000);			/* 3ms is long enough for 1 frame */
3911#ifdef AR_DEBUG
3912	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
3913		struct ath_buf *bf;
3914
3915		printf("%s: rx queue %p, link %p\n", __func__,
3916			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3917		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3918			struct ath_desc *ds = bf->bf_desc;
3919			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
3920				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3921			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
3922				ath_printrxbuf(bf, status == HAL_OK);
3923		}
3924	}
3925#endif
3926	sc->sc_rxlink = NULL;		/* just in case */
3927#undef PA2DESC
3928}
3929
3930/*
3931 * Enable the receive h/w following a reset.
3932 */
3933static int
3934ath_startrecv(struct ath_softc *sc)
3935{
3936	struct ath_hal *ah = sc->sc_ah;
3937	struct ath_buf *bf;
3938
3939	sc->sc_rxlink = NULL;
3940	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3941		int error = ath_rxbuf_init(sc, bf);
3942		if (error != 0) {
3943			DPRINTF(sc, ATH_DEBUG_RECV,
3944				"%s: ath_rxbuf_init failed %d\n",
3945				__func__, error);
3946			return error;
3947		}
3948	}
3949
3950	bf = STAILQ_FIRST(&sc->sc_rxbuf);
3951	ath_hal_putrxbuf(ah, bf->bf_daddr);
3952	ath_hal_rxena(ah);		/* enable recv descriptors */
3953	ath_mode_init(sc);		/* set filters, etc. */
3954	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
3955	return 0;
3956}
3957
3958/*
3959 * Update internal state after a channel change.
3960 */
3961static void
3962ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3963{
3964	struct ieee80211com *ic = &sc->sc_ic;
3965	enum ieee80211_phymode mode;
3966	u_int16_t flags;
3967
3968	/*
3969	 * Change channels and update the h/w rate map
3970	 * if we're switching; e.g. 11a to 11b/g.
3971	 */
3972	mode = ieee80211_chan2mode(ic, chan);
3973	if (mode != sc->sc_curmode)
3974		ath_setcurmode(sc, mode);
3975	/*
3976	 * Update BPF state.  NB: ethereal et. al. don't handle
3977	 * merged flags well so pick a unique mode for their use.
3978	 */
3979	if (IEEE80211_IS_CHAN_A(chan))
3980		flags = IEEE80211_CHAN_A;
3981	/* XXX 11g schizophrenia */
3982	else if (IEEE80211_IS_CHAN_G(chan) ||
3983	    IEEE80211_IS_CHAN_PUREG(chan))
3984		flags = IEEE80211_CHAN_G;
3985	else
3986		flags = IEEE80211_CHAN_B;
3987	if (IEEE80211_IS_CHAN_T(chan))
3988		flags |= IEEE80211_CHAN_TURBO;
3989	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3990		htole16(chan->ic_freq);
3991	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3992		htole16(flags);
3993}
3994
3995/*
3996 * Set/change channels.  If the channel is really being changed,
3997 * it's done by reseting the chip.  To accomplish this we must
3998 * first cleanup any pending DMA, then restart stuff after a la
3999 * ath_init.
4000 */
4001static int
4002ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4003{
4004	struct ath_hal *ah = sc->sc_ah;
4005	struct ieee80211com *ic = &sc->sc_ic;
4006	HAL_CHANNEL hchan;
4007
4008	/*
4009	 * Convert to a HAL channel description with
4010	 * the flags constrained to reflect the current
4011	 * operating mode.
4012	 */
4013	hchan.channel = chan->ic_freq;
4014	hchan.channelFlags = ath_chan2flags(ic, chan);
4015
4016	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
4017	    __func__,
4018	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
4019		sc->sc_curchan.channelFlags),
4020	    	sc->sc_curchan.channel,
4021	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
4022	if (hchan.channel != sc->sc_curchan.channel ||
4023	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4024		HAL_STATUS status;
4025
4026		/*
4027		 * To switch channels clear any pending DMA operations;
4028		 * wait long enough for the RX fifo to drain, reset the
4029		 * hardware at the new frequency, and then re-enable
4030		 * the relevant bits of the h/w.
4031		 */
4032		ath_hal_intrset(ah, 0);		/* disable interrupts */
4033		ath_draintxq(sc);		/* clear pending tx frames */
4034		ath_stoprecv(sc);		/* turn off frame recv */
4035		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4036			if_printf(ic->ic_ifp, "ath_chan_set: unable to reset "
4037				"channel %u (%u Mhz)\n",
4038				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
4039			return EIO;
4040		}
4041		sc->sc_curchan = hchan;
4042		ath_update_txpow(sc);		/* update tx power state */
4043
4044		/*
4045		 * Re-enable rx framework.
4046		 */
4047		if (ath_startrecv(sc) != 0) {
4048			if_printf(ic->ic_ifp,
4049				"ath_chan_set: unable to restart recv logic\n");
4050			return EIO;
4051		}
4052
4053		/*
4054		 * Change channels and update the h/w rate map
4055		 * if we're switching; e.g. 11a to 11b/g.
4056		 */
4057		ic->ic_ibss_chan = chan;
4058		ath_chan_change(sc, chan);
4059
4060		/*
4061		 * Re-enable interrupts.
4062		 */
4063		ath_hal_intrset(ah, sc->sc_imask);
4064	}
4065	return 0;
4066}
4067
4068static void
4069ath_next_scan(void *arg)
4070{
4071	struct ath_softc *sc = arg;
4072	struct ieee80211com *ic = &sc->sc_ic;
4073
4074	if (ic->ic_state == IEEE80211_S_SCAN)
4075		ieee80211_next_scan(ic);
4076}
4077
4078/*
4079 * Periodically recalibrate the PHY to account
4080 * for temperature/environment changes.
4081 */
4082static void
4083ath_calibrate(void *arg)
4084{
4085	struct ath_softc *sc = arg;
4086	struct ath_hal *ah = sc->sc_ah;
4087
4088	sc->sc_stats.ast_per_cal++;
4089
4090	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
4091		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
4092
4093	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4094		/*
4095		 * Rfgain is out of bounds, reset the chip
4096		 * to load new gain values.
4097		 */
4098		sc->sc_stats.ast_per_rfgain++;
4099		ath_reset(sc->sc_ifp);
4100	}
4101	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
4102		DPRINTF(sc, ATH_DEBUG_ANY,
4103			"%s: calibration of channel %u failed\n",
4104			__func__, sc->sc_curchan.channel);
4105		sc->sc_stats.ast_per_calfail++;
4106	}
4107	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
4108}
4109
4110static int
4111ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4112{
4113	struct ifnet *ifp = ic->ic_ifp;
4114	struct ath_softc *sc = ifp->if_softc;
4115	struct ath_hal *ah = sc->sc_ah;
4116	struct ieee80211_node *ni;
4117	int i, error;
4118	const u_int8_t *bssid;
4119	u_int32_t rfilt;
4120	static const HAL_LED_STATE leds[] = {
4121	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4122	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4123	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4124	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4125	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4126	};
4127
4128	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4129		ieee80211_state_name[ic->ic_state],
4130		ieee80211_state_name[nstate]);
4131
4132	callout_stop(&sc->sc_scan_ch);
4133	callout_stop(&sc->sc_cal_ch);
4134	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4135
4136	if (nstate == IEEE80211_S_INIT) {
4137		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4138		/*
4139		 * NB: disable interrupts so we don't rx frames.
4140		 */
4141		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4142		/*
4143		 * Notify the rate control algorithm.
4144		 */
4145		ath_rate_newstate(sc, nstate);
4146		goto done;
4147	}
4148	ni = ic->ic_bss;
4149	error = ath_chan_set(sc, ni->ni_chan);
4150	if (error != 0)
4151		goto bad;
4152	rfilt = ath_calcrxfilter(sc, nstate);
4153	if (nstate == IEEE80211_S_SCAN)
4154		bssid = ifp->if_broadcastaddr;
4155	else
4156		bssid = ni->ni_bssid;
4157	ath_hal_setrxfilter(ah, rfilt);
4158	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4159		 __func__, rfilt, ether_sprintf(bssid));
4160
4161	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4162		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4163	else
4164		ath_hal_setassocid(ah, bssid, 0);
4165	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4166		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4167			if (ath_hal_keyisvalid(ah, i))
4168				ath_hal_keysetmac(ah, i, bssid);
4169	}
4170
4171	/*
4172	 * Notify the rate control algorithm so rates
4173	 * are setup should ath_beacon_alloc be called.
4174	 */
4175	ath_rate_newstate(sc, nstate);
4176
4177	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4178		/* nothing to do */;
4179	} else if (nstate == IEEE80211_S_RUN) {
4180		DPRINTF(sc, ATH_DEBUG_STATE,
4181			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4182			"capinfo=0x%04x chan=%d\n"
4183			 , __func__
4184			 , ic->ic_flags
4185			 , ni->ni_intval
4186			 , ether_sprintf(ni->ni_bssid)
4187			 , ni->ni_capinfo
4188			 , ieee80211_chan2ieee(ic, ni->ni_chan));
4189
4190		switch (ic->ic_opmode) {
4191		case IEEE80211_M_HOSTAP:
4192		case IEEE80211_M_IBSS:
4193			/*
4194			 * Allocate and setup the beacon frame.
4195			 *
4196			 * Stop any previous beacon DMA.  This may be
4197			 * necessary, for example, when an ibss merge
4198			 * causes reconfiguration; there will be a state
4199			 * transition from RUN->RUN that means we may
4200			 * be called with beacon transmission active.
4201			 */
4202			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4203			ath_beacon_free(sc);
4204			error = ath_beacon_alloc(sc, ni);
4205			if (error != 0)
4206				goto bad;
4207			break;
4208		case IEEE80211_M_STA:
4209			/*
4210			 * Allocate a key cache slot to the station.
4211			 */
4212			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4213			    sc->sc_hasclrkey &&
4214			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4215				ath_setup_stationkey(ni);
4216			break;
4217		default:
4218			break;
4219		}
4220
4221		/*
4222		 * Configure the beacon and sleep timers.
4223		 */
4224		ath_beacon_config(sc);
4225	} else {
4226		ath_hal_intrset(ah,
4227			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4228		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4229	}
4230done:
4231	/*
4232	 * Invoke the parent method to complete the work.
4233	 */
4234	error = sc->sc_newstate(ic, nstate, arg);
4235	/*
4236	 * Finally, start any timers.
4237	 */
4238	if (nstate == IEEE80211_S_RUN) {
4239		/* start periodic recalibration timer */
4240		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4241			ath_calibrate, sc);
4242	} else if (nstate == IEEE80211_S_SCAN) {
4243		/* start ap/neighbor scan timer */
4244		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4245			ath_next_scan, sc);
4246	}
4247bad:
4248	return error;
4249}
4250
4251/*
4252 * Allocate a key cache slot to the station so we can
4253 * setup a mapping from key index to node. The key cache
4254 * slot is needed for managing antenna state and for
4255 * compression when stations do not use crypto.  We do
4256 * it uniliaterally here; if crypto is employed this slot
4257 * will be reassigned.
4258 */
4259static void
4260ath_setup_stationkey(struct ieee80211_node *ni)
4261{
4262	struct ieee80211com *ic = ni->ni_ic;
4263	struct ath_softc *sc = ic->ic_ifp->if_softc;
4264	u_int16_t keyix;
4265
4266	keyix = ath_key_alloc(ic, &ni->ni_ucastkey);
4267	if (keyix == IEEE80211_KEYIX_NONE) {
4268		/*
4269		 * Key cache is full; we'll fall back to doing
4270		 * the more expensive lookup in software.  Note
4271		 * this also means no h/w compression.
4272		 */
4273		/* XXX msg+statistic */
4274	} else {
4275		ni->ni_ucastkey.wk_keyix = keyix;
4276		/* NB: this will create a pass-thru key entry */
4277		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4278	}
4279}
4280
4281/*
4282 * Setup driver-specific state for a newly associated node.
4283 * Note that we're called also on a re-associate, the isnew
4284 * param tells us if this is the first time or not.
4285 */
4286static void
4287ath_newassoc(struct ieee80211_node *ni, int isnew)
4288{
4289	struct ieee80211com *ic = ni->ni_ic;
4290	struct ath_softc *sc = ic->ic_ifp->if_softc;
4291
4292	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4293	if (isnew &&
4294	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4295		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4296		    ("new assoc with a unicast key already setup (keyix %u)",
4297		    ni->ni_ucastkey.wk_keyix));
4298		ath_setup_stationkey(ni);
4299	}
4300}
4301
4302static int
4303ath_getchannels(struct ath_softc *sc, u_int cc,
4304	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4305{
4306	struct ieee80211com *ic = &sc->sc_ic;
4307	struct ifnet *ifp = sc->sc_ifp;
4308	struct ath_hal *ah = sc->sc_ah;
4309	HAL_CHANNEL *chans;
4310	int i, ix, nchan;
4311
4312	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4313			M_TEMP, M_NOWAIT);
4314	if (chans == NULL) {
4315		if_printf(ifp, "unable to allocate channel table\n");
4316		return ENOMEM;
4317	}
4318	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4319	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4320		u_int32_t rd;
4321
4322		ath_hal_getregdomain(ah, &rd);
4323		if_printf(ifp, "unable to collect channel list from hal; "
4324			"regdomain likely %u country code %u\n", rd, cc);
4325		free(chans, M_TEMP);
4326		return EINVAL;
4327	}
4328
4329	/*
4330	 * Convert HAL channels to ieee80211 ones and insert
4331	 * them in the table according to their channel number.
4332	 */
4333	for (i = 0; i < nchan; i++) {
4334		HAL_CHANNEL *c = &chans[i];
4335		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4336		if (ix > IEEE80211_CHAN_MAX) {
4337			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4338				ix, c->channel, c->channelFlags);
4339			continue;
4340		}
4341		/* NB: flags are known to be compatible */
4342		if (ic->ic_channels[ix].ic_freq == 0) {
4343			ic->ic_channels[ix].ic_freq = c->channel;
4344			ic->ic_channels[ix].ic_flags = c->channelFlags;
4345		} else {
4346			/* channels overlap; e.g. 11g and 11b */
4347			ic->ic_channels[ix].ic_flags |= c->channelFlags;
4348		}
4349	}
4350	free(chans, M_TEMP);
4351	return 0;
4352}
4353
4354static void
4355ath_led_done(void *arg)
4356{
4357	struct ath_softc *sc = arg;
4358
4359	sc->sc_blinking = 0;
4360}
4361
4362/*
4363 * Turn the LED off: flip the pin and then set a timer so no
4364 * update will happen for the specified duration.
4365 */
4366static void
4367ath_led_off(void *arg)
4368{
4369	struct ath_softc *sc = arg;
4370
4371	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4372	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4373}
4374
4375/*
4376 * Blink the LED according to the specified on/off times.
4377 */
4378static void
4379ath_led_blink(struct ath_softc *sc, int on, int off)
4380{
4381	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4382	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4383	sc->sc_blinking = 1;
4384	sc->sc_ledoff = off;
4385	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4386}
4387
4388static void
4389ath_led_event(struct ath_softc *sc, int event)
4390{
4391
4392	sc->sc_ledevent = ticks;	/* time of last event */
4393	if (sc->sc_blinking)		/* don't interrupt active blink */
4394		return;
4395	switch (event) {
4396	case ATH_LED_POLL:
4397		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4398			sc->sc_hwmap[0].ledoff);
4399		break;
4400	case ATH_LED_TX:
4401		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4402			sc->sc_hwmap[sc->sc_txrate].ledoff);
4403		break;
4404	case ATH_LED_RX:
4405		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4406			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4407		break;
4408	}
4409}
4410
4411static void
4412ath_update_txpow(struct ath_softc *sc)
4413{
4414	struct ieee80211com *ic = &sc->sc_ic;
4415	struct ath_hal *ah = sc->sc_ah;
4416	u_int32_t txpow;
4417
4418	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4419		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4420		/* read back in case value is clamped */
4421		ath_hal_gettxpowlimit(ah, &txpow);
4422		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4423	}
4424	/*
4425	 * Fetch max tx power level for status requests.
4426	 */
4427	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4428	ic->ic_bss->ni_txpower = txpow;
4429}
4430
4431static int
4432ath_rate_setup(struct ath_softc *sc, u_int mode)
4433{
4434	struct ath_hal *ah = sc->sc_ah;
4435	struct ieee80211com *ic = &sc->sc_ic;
4436	const HAL_RATE_TABLE *rt;
4437	struct ieee80211_rateset *rs;
4438	int i, maxrates;
4439
4440	switch (mode) {
4441	case IEEE80211_MODE_11A:
4442		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4443		break;
4444	case IEEE80211_MODE_11B:
4445		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4446		break;
4447	case IEEE80211_MODE_11G:
4448		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4449		break;
4450	case IEEE80211_MODE_TURBO_A:
4451		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4452		break;
4453	case IEEE80211_MODE_TURBO_G:
4454		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4455		break;
4456	default:
4457		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4458			__func__, mode);
4459		return 0;
4460	}
4461	rt = sc->sc_rates[mode];
4462	if (rt == NULL)
4463		return 0;
4464	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4465		DPRINTF(sc, ATH_DEBUG_ANY,
4466			"%s: rate table too small (%u > %u)\n",
4467			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4468		maxrates = IEEE80211_RATE_MAXSIZE;
4469	} else
4470		maxrates = rt->rateCount;
4471	rs = &ic->ic_sup_rates[mode];
4472	for (i = 0; i < maxrates; i++)
4473		rs->rs_rates[i] = rt->info[i].dot11Rate;
4474	rs->rs_nrates = maxrates;
4475	return 1;
4476}
4477
4478static void
4479ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4480{
4481#define	N(a)	(sizeof(a)/sizeof(a[0]))
4482	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4483	static const struct {
4484		u_int		rate;		/* tx/rx 802.11 rate */
4485		u_int16_t	timeOn;		/* LED on time (ms) */
4486		u_int16_t	timeOff;	/* LED off time (ms) */
4487	} blinkrates[] = {
4488		{ 108,  40,  10 },
4489		{  96,  44,  11 },
4490		{  72,  50,  13 },
4491		{  48,  57,  14 },
4492		{  36,  67,  16 },
4493		{  24,  80,  20 },
4494		{  22, 100,  25 },
4495		{  18, 133,  34 },
4496		{  12, 160,  40 },
4497		{  10, 200,  50 },
4498		{   6, 240,  58 },
4499		{   4, 267,  66 },
4500		{   2, 400, 100 },
4501		{   0, 500, 130 },
4502	};
4503	const HAL_RATE_TABLE *rt;
4504	int i, j;
4505
4506	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4507	rt = sc->sc_rates[mode];
4508	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4509	for (i = 0; i < rt->rateCount; i++)
4510		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4511	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4512	for (i = 0; i < 32; i++) {
4513		u_int8_t ix = rt->rateCodeToIndex[i];
4514		if (ix == 0xff) {
4515			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4516			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4517			continue;
4518		}
4519		sc->sc_hwmap[i].ieeerate =
4520			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4521		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4522		if (rt->info[ix].shortPreamble ||
4523		    rt->info[ix].phy == IEEE80211_T_OFDM)
4524			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4525		/* NB: receive frames include FCS */
4526		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4527			IEEE80211_RADIOTAP_F_FCS;
4528		/* setup blink rate table to avoid per-packet lookup */
4529		for (j = 0; j < N(blinkrates)-1; j++)
4530			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4531				break;
4532		/* NB: this uses the last entry if the rate isn't found */
4533		/* XXX beware of overlow */
4534		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4535		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4536	}
4537	sc->sc_currates = rt;
4538	sc->sc_curmode = mode;
4539	/*
4540	 * All protection frames are transmited at 2Mb/s for
4541	 * 11g, otherwise at 1Mb/s.
4542	 * XXX select protection rate index from rate table.
4543	 */
4544	sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4545	/* NB: caller is responsible for reseting rate control state */
4546#undef N
4547}
4548
4549#ifdef AR_DEBUG
4550static void
4551ath_printrxbuf(struct ath_buf *bf, int done)
4552{
4553	struct ath_desc *ds;
4554	int i;
4555
4556	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4557		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4558		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4559		    ds->ds_link, ds->ds_data,
4560		    ds->ds_ctl0, ds->ds_ctl1,
4561		    ds->ds_hw[0], ds->ds_hw[1],
4562		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4563	}
4564}
4565
4566static void
4567ath_printtxbuf(struct ath_buf *bf, int done)
4568{
4569	struct ath_desc *ds;
4570	int i;
4571
4572	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4573		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4574		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4575		    ds->ds_link, ds->ds_data,
4576		    ds->ds_ctl0, ds->ds_ctl1,
4577		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4578		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4579	}
4580}
4581#endif /* AR_DEBUG */
4582
4583static void
4584ath_watchdog(struct ifnet *ifp)
4585{
4586	struct ath_softc *sc = ifp->if_softc;
4587	struct ieee80211com *ic = &sc->sc_ic;
4588
4589	ifp->if_timer = 0;
4590	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4591		return;
4592	if (sc->sc_tx_timer) {
4593		if (--sc->sc_tx_timer == 0) {
4594			if_printf(ifp, "device timeout\n");
4595			ath_reset(ifp);
4596			ifp->if_oerrors++;
4597			sc->sc_stats.ast_watchdog++;
4598		} else
4599			ifp->if_timer = 1;
4600	}
4601	ieee80211_watchdog(ic);
4602}
4603
4604/*
4605 * Diagnostic interface to the HAL.  This is used by various
4606 * tools to do things like retrieve register contents for
4607 * debugging.  The mechanism is intentionally opaque so that
4608 * it can change frequently w/o concern for compatiblity.
4609 */
4610static int
4611ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4612{
4613	struct ath_hal *ah = sc->sc_ah;
4614	u_int id = ad->ad_id & ATH_DIAG_ID;
4615	void *indata = NULL;
4616	void *outdata = NULL;
4617	u_int32_t insize = ad->ad_in_size;
4618	u_int32_t outsize = ad->ad_out_size;
4619	int error = 0;
4620
4621	if (ad->ad_id & ATH_DIAG_IN) {
4622		/*
4623		 * Copy in data.
4624		 */
4625		indata = malloc(insize, M_TEMP, M_NOWAIT);
4626		if (indata == NULL) {
4627			error = ENOMEM;
4628			goto bad;
4629		}
4630		error = copyin(ad->ad_in_data, indata, insize);
4631		if (error)
4632			goto bad;
4633	}
4634	if (ad->ad_id & ATH_DIAG_DYN) {
4635		/*
4636		 * Allocate a buffer for the results (otherwise the HAL
4637		 * returns a pointer to a buffer where we can read the
4638		 * results).  Note that we depend on the HAL leaving this
4639		 * pointer for us to use below in reclaiming the buffer;
4640		 * may want to be more defensive.
4641		 */
4642		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4643		if (outdata == NULL) {
4644			error = ENOMEM;
4645			goto bad;
4646		}
4647	}
4648	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4649		if (outsize < ad->ad_out_size)
4650			ad->ad_out_size = outsize;
4651		if (outdata != NULL)
4652			error = copyout(outdata, ad->ad_out_data,
4653					ad->ad_out_size);
4654	} else {
4655		error = EINVAL;
4656	}
4657bad:
4658	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4659		free(indata, M_TEMP);
4660	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4661		free(outdata, M_TEMP);
4662	return error;
4663}
4664
4665static int
4666ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4667{
4668#define	IS_RUNNING(ifp) \
4669	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
4670	struct ath_softc *sc = ifp->if_softc;
4671	struct ieee80211com *ic = &sc->sc_ic;
4672	struct ifreq *ifr = (struct ifreq *)data;
4673	int error = 0;
4674
4675	ATH_LOCK(sc);
4676	switch (cmd) {
4677	case SIOCSIFFLAGS:
4678		if (IS_RUNNING(ifp)) {
4679			/*
4680			 * To avoid rescanning another access point,
4681			 * do not call ath_init() here.  Instead,
4682			 * only reflect promisc mode settings.
4683			 */
4684			ath_mode_init(sc);
4685		} else if (ifp->if_flags & IFF_UP) {
4686			/*
4687			 * Beware of being called during attach/detach
4688			 * to reset promiscuous mode.  In that case we
4689			 * will still be marked UP but not RUNNING.
4690			 * However trying to re-init the interface
4691			 * is the wrong thing to do as we've already
4692			 * torn down much of our state.  There's
4693			 * probably a better way to deal with this.
4694			 */
4695			if (!sc->sc_invalid && ic->ic_bss != NULL)
4696				ath_init(sc);	/* XXX lose error */
4697		} else
4698			ath_stop_locked(ifp);
4699		break;
4700	case SIOCADDMULTI:
4701	case SIOCDELMULTI:
4702		/*
4703		 * The upper layer has already installed/removed
4704		 * the multicast address(es), just recalculate the
4705		 * multicast filter for the card.
4706		 */
4707		if (ifp->if_flags & IFF_RUNNING)
4708			ath_mode_init(sc);
4709		break;
4710	case SIOCGATHSTATS:
4711		/* NB: embed these numbers to get a consistent view */
4712		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4713		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4714		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4715		ATH_UNLOCK(sc);
4716		/*
4717		 * NB: Drop the softc lock in case of a page fault;
4718		 * we'll accept any potential inconsisentcy in the
4719		 * statistics.  The alternative is to copy the data
4720		 * to a local structure.
4721		 */
4722		return copyout(&sc->sc_stats,
4723				ifr->ifr_data, sizeof (sc->sc_stats));
4724	case SIOCGATHDIAG:
4725		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4726		break;
4727	default:
4728		error = ieee80211_ioctl(ic, cmd, data);
4729		if (error == ENETRESET) {
4730			if (IS_RUNNING(ifp) &&
4731			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4732				ath_init(sc);	/* XXX lose error */
4733			error = 0;
4734		}
4735		if (error == ERESTART)
4736			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4737		break;
4738	}
4739	ATH_UNLOCK(sc);
4740	return error;
4741#undef IS_RUNNING
4742}
4743
4744static int
4745ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
4746{
4747	struct ath_softc *sc = arg1;
4748	u_int slottime = ath_hal_getslottime(sc->sc_ah);
4749	int error;
4750
4751	error = sysctl_handle_int(oidp, &slottime, 0, req);
4752	if (error || !req->newptr)
4753		return error;
4754	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
4755}
4756
4757static int
4758ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
4759{
4760	struct ath_softc *sc = arg1;
4761	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
4762	int error;
4763
4764	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
4765	if (error || !req->newptr)
4766		return error;
4767	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
4768}
4769
4770static int
4771ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
4772{
4773	struct ath_softc *sc = arg1;
4774	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
4775	int error;
4776
4777	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
4778	if (error || !req->newptr)
4779		return error;
4780	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
4781}
4782
4783static int
4784ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
4785{
4786	struct ath_softc *sc = arg1;
4787	int softled = sc->sc_softled;
4788	int error;
4789
4790	error = sysctl_handle_int(oidp, &softled, 0, req);
4791	if (error || !req->newptr)
4792		return error;
4793	softled = (softled != 0);
4794	if (softled != sc->sc_softled) {
4795		if (softled) {
4796			/* NB: handle any sc_ledpin change */
4797			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
4798			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
4799				!sc->sc_ledon);
4800		}
4801		sc->sc_softled = softled;
4802	}
4803	return 0;
4804}
4805
4806static int
4807ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
4808{
4809	struct ath_softc *sc = arg1;
4810	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
4811	int error;
4812
4813	error = sysctl_handle_int(oidp, &defantenna, 0, req);
4814	if (!error && req->newptr)
4815		ath_hal_setdefantenna(sc->sc_ah, defantenna);
4816	return error;
4817}
4818
4819static int
4820ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
4821{
4822	struct ath_softc *sc = arg1;
4823	u_int diversity = sc->sc_diversity;
4824	int error;
4825
4826	error = sysctl_handle_int(oidp, &diversity, 0, req);
4827	if (error || !req->newptr)
4828		return error;
4829	sc->sc_diversity = diversity;
4830	return !ath_hal_setdiversity(sc->sc_ah, diversity) ? EINVAL : 0;
4831}
4832
4833static int
4834ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
4835{
4836	struct ath_softc *sc = arg1;
4837	u_int32_t diag;
4838	int error;
4839
4840	if (!ath_hal_getdiag(sc->sc_ah, &diag))
4841		return EINVAL;
4842	error = sysctl_handle_int(oidp, &diag, 0, req);
4843	if (error || !req->newptr)
4844		return error;
4845	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
4846}
4847
4848static int
4849ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
4850{
4851	struct ath_softc *sc = arg1;
4852	struct ifnet *ifp = sc->sc_ifp;
4853	u_int32_t scale;
4854	int error;
4855
4856	ath_hal_gettpscale(sc->sc_ah, &scale);
4857	error = sysctl_handle_int(oidp, &scale, 0, req);
4858	if (error || !req->newptr)
4859		return error;
4860	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
4861}
4862
4863static int
4864ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
4865{
4866	struct ath_softc *sc = arg1;
4867	u_int tpc = ath_hal_gettpc(sc->sc_ah);
4868	int error;
4869
4870	error = sysctl_handle_int(oidp, &tpc, 0, req);
4871	if (error || !req->newptr)
4872		return error;
4873	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
4874}
4875
4876static void
4877ath_sysctlattach(struct ath_softc *sc)
4878{
4879	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4880	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4881
4882	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
4883	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4884		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
4885		"EEPROM country code");
4886	ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain);
4887	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4888		"regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0,
4889		"EEPROM regdomain code");
4890	sc->sc_debug = ath_debug;
4891	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4892		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
4893		"control debugging printfs");
4894
4895	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4896		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4897		ath_sysctl_slottime, "I", "802.11 slot time (us)");
4898	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4899		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4900		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
4901	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4902		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4903		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
4904	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4905		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4906		ath_sysctl_softled, "I", "enable/disable software LED support");
4907	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4908		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
4909		"GPIO pin connected to LED");
4910	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4911		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
4912		"setting to turn LED on");
4913	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4914		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
4915		"idle time for inactivity LED (ticks)");
4916	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4917		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
4918		"tx antenna (0=auto)");
4919	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4920		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4921		ath_sysctl_rxantenna, "I", "default/rx antenna");
4922	if (sc->sc_hasdiversity)
4923		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4924			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4925			ath_sysctl_diversity, "I", "antenna diversity");
4926	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
4927	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4928		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
4929		"tx descriptor batching");
4930	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4931		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4932		ath_sysctl_diag, "I", "h/w diagnostic control");
4933	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4934		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4935		ath_sysctl_tpscale, "I", "tx power scaling");
4936	if (sc->sc_hastpc)
4937		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4938			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4939			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
4940}
4941
4942static void
4943ath_bpfattach(struct ath_softc *sc)
4944{
4945	struct ifnet *ifp = sc->sc_ifp;
4946
4947	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4948		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4949		&sc->sc_drvbpf);
4950	/*
4951	 * Initialize constant fields.
4952	 * XXX make header lengths a multiple of 32-bits so subsequent
4953	 *     headers are properly aligned; this is a kludge to keep
4954	 *     certain applications happy.
4955	 *
4956	 * NB: the channel is setup each time we transition to the
4957	 *     RUN state to avoid filling it in for each frame.
4958	 */
4959	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4960	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4961	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4962
4963	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4964	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4965	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4966}
4967
4968/*
4969 * Announce various information on device/driver attach.
4970 */
4971static void
4972ath_announce(struct ath_softc *sc)
4973{
4974#define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
4975	struct ifnet *ifp = sc->sc_ifp;
4976	struct ath_hal *ah = sc->sc_ah;
4977	u_int modes, cc;
4978
4979	if_printf(ifp, "mac %d.%d phy %d.%d",
4980		ah->ah_macVersion, ah->ah_macRev,
4981		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4982	/*
4983	 * Print radio revision(s).  We check the wireless modes
4984	 * to avoid falsely printing revs for inoperable parts.
4985	 * Dual-band radio revs are returned in the 5Ghz rev number.
4986	 */
4987	ath_hal_getcountrycode(ah, &cc);
4988	modes = ath_hal_getwirelessmodes(ah, cc);
4989	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4990		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4991			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4992				ah->ah_analog5GhzRev >> 4,
4993				ah->ah_analog5GhzRev & 0xf,
4994				ah->ah_analog2GhzRev >> 4,
4995				ah->ah_analog2GhzRev & 0xf);
4996		else
4997			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4998				ah->ah_analog5GhzRev & 0xf);
4999	} else
5000		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5001			ah->ah_analog5GhzRev & 0xf);
5002	printf("\n");
5003	if (bootverbose) {
5004		int i;
5005		for (i = 0; i <= WME_AC_VO; i++) {
5006			struct ath_txq *txq = sc->sc_ac2q[i];
5007			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5008				txq->axq_qnum, ieee80211_wme_acnames[i]);
5009		}
5010		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5011			sc->sc_cabq->axq_qnum);
5012		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5013	}
5014#undef HAL_MODE_DUALBAND
5015}
5016