if_ath.c revision 148306
1/*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 * 3. Neither the names of the above-listed copyright holders nor the names
16 *    of any contributors may be used to endorse or promote products derived
17 *    from this software without specific prior written permission.
18 *
19 * Alternatively, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") version 2 as published by the Free
21 * Software Foundation.
22 *
23 * NO WARRANTY
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34 * THE POSSIBILITY OF SUCH DAMAGES.
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 148306 2005-07-22 17:54:40Z sam $");
39
40/*
41 * Driver for the Atheros Wireless LAN controller.
42 *
43 * This software is derived from work of Atsushi Onoe; his contribution
44 * is greatly appreciated.
45 */
46
47#include "opt_inet.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/sysctl.h>
52#include <sys/mbuf.h>
53#include <sys/malloc.h>
54#include <sys/lock.h>
55#include <sys/mutex.h>
56#include <sys/kernel.h>
57#include <sys/socket.h>
58#include <sys/sockio.h>
59#include <sys/errno.h>
60#include <sys/callout.h>
61#include <sys/bus.h>
62#include <sys/endian.h>
63
64#include <machine/bus.h>
65
66#include <net/if.h>
67#include <net/if_dl.h>
68#include <net/if_media.h>
69#include <net/if_types.h>
70#include <net/if_arp.h>
71#include <net/ethernet.h>
72#include <net/if_llc.h>
73
74#include <net80211/ieee80211_var.h>
75
76#include <net/bpf.h>
77
78#ifdef INET
79#include <netinet/in.h>
80#include <netinet/if_ether.h>
81#endif
82
83#define	AR_DEBUG
84#include <dev/ath/if_athvar.h>
85#include <contrib/dev/ath/ah_desc.h>
86#include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
87
88/* unaligned little endian access */
89#define LE_READ_2(p)							\
90	((u_int16_t)							\
91	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
92#define LE_READ_4(p)							\
93	((u_int32_t)							\
94	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
95	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
96
97enum {
98	ATH_LED_TX,
99	ATH_LED_RX,
100	ATH_LED_POLL,
101};
102
103static void	ath_init(void *);
104static void	ath_stop_locked(struct ifnet *);
105static void	ath_stop(struct ifnet *);
106static void	ath_start(struct ifnet *);
107static int	ath_reset(struct ifnet *);
108static int	ath_media_change(struct ifnet *);
109static void	ath_watchdog(struct ifnet *);
110static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
111static void	ath_fatal_proc(void *, int);
112static void	ath_rxorn_proc(void *, int);
113static void	ath_bmiss_proc(void *, int);
114static int	ath_key_alloc(struct ieee80211com *,
115			const struct ieee80211_key *);
116static int	ath_key_delete(struct ieee80211com *,
117			const struct ieee80211_key *);
118static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
119			const u_int8_t mac[IEEE80211_ADDR_LEN]);
120static void	ath_key_update_begin(struct ieee80211com *);
121static void	ath_key_update_end(struct ieee80211com *);
122static void	ath_mode_init(struct ath_softc *);
123static void	ath_setslottime(struct ath_softc *);
124static void	ath_updateslot(struct ifnet *);
125static int	ath_beaconq_setup(struct ath_hal *);
126static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
127static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
128static void	ath_beacon_proc(void *, int);
129static void	ath_bstuck_proc(void *, int);
130static void	ath_beacon_free(struct ath_softc *);
131static void	ath_beacon_config(struct ath_softc *);
132static void	ath_descdma_cleanup(struct ath_softc *sc,
133			struct ath_descdma *, ath_bufhead *);
134static int	ath_desc_alloc(struct ath_softc *);
135static void	ath_desc_free(struct ath_softc *);
136static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
137static void	ath_node_free(struct ieee80211_node *);
138static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
139static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
140static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
141			struct ieee80211_node *ni,
142			int subtype, int rssi, u_int32_t rstamp);
143static void	ath_setdefantenna(struct ath_softc *, u_int);
144static void	ath_rx_proc(void *, int);
145static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
146static int	ath_tx_setup(struct ath_softc *, int, int);
147static int	ath_wme_update(struct ieee80211com *);
148static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
149static void	ath_tx_cleanup(struct ath_softc *);
150static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
151			     struct ath_buf *, struct mbuf *);
152static void	ath_tx_proc_q0(void *, int);
153static void	ath_tx_proc_q0123(void *, int);
154static void	ath_tx_proc(void *, int);
155static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
156static void	ath_draintxq(struct ath_softc *);
157static void	ath_stoprecv(struct ath_softc *);
158static int	ath_startrecv(struct ath_softc *);
159static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
160static void	ath_next_scan(void *);
161static void	ath_calibrate(void *);
162static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
163static void	ath_setup_stationkey(struct ieee80211_node *);
164static void	ath_newassoc(struct ieee80211com *,
165			struct ieee80211_node *, int);
166static int	ath_getchannels(struct ath_softc *, u_int cc,
167			HAL_BOOL outdoor, HAL_BOOL xchanmode);
168static void	ath_led_event(struct ath_softc *, int);
169static void	ath_update_txpow(struct ath_softc *);
170
171static int	ath_rate_setup(struct ath_softc *, u_int mode);
172static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
173
174static void	ath_sysctlattach(struct ath_softc *);
175static void	ath_bpfattach(struct ath_softc *);
176static void	ath_announce(struct ath_softc *);
177
178SYSCTL_DECL(_hw_ath);
179
180/* XXX validate sysctl values */
181static	int ath_dwelltime = 200;		/* 5 channels/second */
182SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
183	    0, "channel dwell time (ms) for AP/station scanning");
184static	int ath_calinterval = 30;		/* calibrate every 30 secs */
185SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
186	    0, "chip calibration interval (secs)");
187static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
188SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
189	    0, "outdoor operation");
190TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
191static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
192SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
193	    0, "extended channel mode");
194TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
195static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
196SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
197	    0, "country code");
198TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
199static	int ath_regdomain = 0;			/* regulatory domain */
200SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
201	    0, "regulatory domain");
202
203#ifdef AR_DEBUG
204static	int ath_debug = 0;
205SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
206	    0, "control debugging printfs");
207TUNABLE_INT("hw.ath.debug", &ath_debug);
208enum {
209	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
210	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
211	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
212	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
213	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
214	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
215	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
216	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
217	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
218	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
219	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
220	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
221	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
222	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
223	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
224	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
225	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
226	ATH_DEBUG_LED		= 0x00100000,	/* led management */
227	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
228	ATH_DEBUG_ANY		= 0xffffffff
229};
230#define	IFF_DUMPPKTS(sc, m) \
231	((sc->sc_debug & (m)) || \
232	    (sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
233#define	DPRINTF(sc, m, fmt, ...) do {				\
234	if (sc->sc_debug & (m))					\
235		printf(fmt, __VA_ARGS__);			\
236} while (0)
237#define	KEYPRINTF(sc, ix, hk, mac) do {				\
238	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
239		ath_keyprint(__func__, ix, hk, mac);		\
240} while (0)
241static	void ath_printrxbuf(struct ath_buf *bf, int);
242static	void ath_printtxbuf(struct ath_buf *bf, int);
243#else
244#define	IFF_DUMPPKTS(sc, m) \
245	((sc->sc_ifp->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
246#define	DPRINTF(m, fmt, ...)
247#define	KEYPRINTF(sc, k, ix, mac)
248#endif
249
250MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
251
252int
253ath_attach(u_int16_t devid, struct ath_softc *sc)
254{
255	struct ifnet *ifp;
256	struct ieee80211com *ic = &sc->sc_ic;
257	struct ath_hal *ah = NULL;
258	HAL_STATUS status;
259	int error = 0, i;
260
261	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
262
263	ifp = sc->sc_ifp = if_alloc(IFT_ETHER);
264	if (ifp == NULL) {
265		device_printf(sc->sc_dev, "can not if_alloc()\n");
266		error = ENOSPC;
267		goto bad;
268	}
269
270	/* set these up early for if_printf use */
271	if_initname(ifp, device_get_name(sc->sc_dev),
272		device_get_unit(sc->sc_dev));
273
274	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
275	if (ah == NULL) {
276		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
277			status);
278		error = ENXIO;
279		goto bad;
280	}
281	if (ah->ah_abi != HAL_ABI_VERSION) {
282		if_printf(ifp, "HAL ABI mismatch detected "
283			"(HAL:0x%x != driver:0x%x)\n",
284			ah->ah_abi, HAL_ABI_VERSION);
285		error = ENXIO;
286		goto bad;
287	}
288	sc->sc_ah = ah;
289	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
290
291	/*
292	 * Check if the MAC has multi-rate retry support.
293	 * We do this by trying to setup a fake extended
294	 * descriptor.  MAC's that don't have support will
295	 * return false w/o doing anything.  MAC's that do
296	 * support it will return true w/o doing anything.
297	 */
298	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
299
300	/*
301	 * Check if the device has hardware counters for PHY
302	 * errors.  If so we need to enable the MIB interrupt
303	 * so we can act on stat triggers.
304	 */
305	if (ath_hal_hwphycounters(ah))
306		sc->sc_needmib = 1;
307
308	/*
309	 * Get the hardware key cache size.
310	 */
311	sc->sc_keymax = ath_hal_keycachesize(ah);
312	if (sc->sc_keymax > ATH_KEYMAX) {
313		if_printf(ifp, "Warning, using only %u of %u key cache slots\n",
314			ATH_KEYMAX, sc->sc_keymax);
315		sc->sc_keymax = ATH_KEYMAX;
316	}
317	/*
318	 * Reset the key cache since some parts do not
319	 * reset the contents on initial power up.
320	 */
321	for (i = 0; i < sc->sc_keymax; i++)
322		ath_hal_keyreset(ah, i);
323	/*
324	 * Mark key cache slots associated with global keys
325	 * as in use.  If we knew TKIP was not to be used we
326	 * could leave the +32, +64, and +32+64 slots free.
327	 * XXX only for splitmic.
328	 */
329	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
330		setbit(sc->sc_keymap, i);
331		setbit(sc->sc_keymap, i+32);
332		setbit(sc->sc_keymap, i+64);
333		setbit(sc->sc_keymap, i+32+64);
334	}
335
336	/*
337	 * Collect the channel list using the default country
338	 * code and including outdoor channels.  The 802.11 layer
339	 * is resposible for filtering this list based on settings
340	 * like the phy mode.
341	 */
342	error = ath_getchannels(sc, ath_countrycode,
343			ath_outdoor, ath_xchanmode);
344	if (error != 0)
345		goto bad;
346	/*
347	 * Setup dynamic sysctl's now that country code and
348	 * regdomain are available from the hal.
349	 */
350	ath_sysctlattach(sc);
351
352	/*
353	 * Setup rate tables for all potential media types.
354	 */
355	ath_rate_setup(sc, IEEE80211_MODE_11A);
356	ath_rate_setup(sc, IEEE80211_MODE_11B);
357	ath_rate_setup(sc, IEEE80211_MODE_11G);
358	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
359	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
360	/* NB: setup here so ath_rate_update is happy */
361	ath_setcurmode(sc, IEEE80211_MODE_11A);
362
363	/*
364	 * Allocate tx+rx descriptors and populate the lists.
365	 */
366	error = ath_desc_alloc(sc);
367	if (error != 0) {
368		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
369		goto bad;
370	}
371	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
372	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
373
374	ATH_TXBUF_LOCK_INIT(sc);
375
376	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
377	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
378	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
379	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
380	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
381
382	/*
383	 * Allocate hardware transmit queues: one queue for
384	 * beacon frames and one data queue for each QoS
385	 * priority.  Note that the hal handles reseting
386	 * these queues at the needed time.
387	 *
388	 * XXX PS-Poll
389	 */
390	sc->sc_bhalq = ath_beaconq_setup(ah);
391	if (sc->sc_bhalq == (u_int) -1) {
392		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
393		error = EIO;
394		goto bad2;
395	}
396	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
397	if (sc->sc_cabq == NULL) {
398		if_printf(ifp, "unable to setup CAB xmit queue!\n");
399		error = EIO;
400		goto bad2;
401	}
402	/* NB: insure BK queue is the lowest priority h/w queue */
403	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
404		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
405			ieee80211_wme_acnames[WME_AC_BK]);
406		error = EIO;
407		goto bad2;
408	}
409	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
410	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
411	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
412		/*
413		 * Not enough hardware tx queues to properly do WME;
414		 * just punt and assign them all to the same h/w queue.
415		 * We could do a better job of this if, for example,
416		 * we allocate queues when we switch from station to
417		 * AP mode.
418		 */
419		if (sc->sc_ac2q[WME_AC_VI] != NULL)
420			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
421		if (sc->sc_ac2q[WME_AC_BE] != NULL)
422			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
423		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
424		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
425		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
426	}
427
428	/*
429	 * Special case certain configurations.  Note the
430	 * CAB queue is handled by these specially so don't
431	 * include them when checking the txq setup mask.
432	 */
433	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
434	case 0x01:
435		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
436		break;
437	case 0x0f:
438		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
439		break;
440	default:
441		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
442		break;
443	}
444
445	/*
446	 * Setup rate control.  Some rate control modules
447	 * call back to change the anntena state so expose
448	 * the necessary entry points.
449	 * XXX maybe belongs in struct ath_ratectrl?
450	 */
451	sc->sc_setdefantenna = ath_setdefantenna;
452	sc->sc_rc = ath_rate_attach(sc);
453	if (sc->sc_rc == NULL) {
454		error = EIO;
455		goto bad2;
456	}
457
458	sc->sc_blinking = 0;
459	sc->sc_ledstate = 1;
460	sc->sc_ledon = 0;			/* low true */
461	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
462	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
463	/*
464	 * Auto-enable soft led processing for IBM cards and for
465	 * 5211 minipci cards.  Users can also manually enable/disable
466	 * support with a sysctl.
467	 */
468	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
469	if (sc->sc_softled) {
470		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
471		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
472	}
473
474	ifp->if_softc = sc;
475	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
476	ifp->if_start = ath_start;
477	ifp->if_watchdog = ath_watchdog;
478	ifp->if_ioctl = ath_ioctl;
479	ifp->if_init = ath_init;
480	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
481	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
482	IFQ_SET_READY(&ifp->if_snd);
483
484	ic->ic_ifp = ifp;
485	ic->ic_reset = ath_reset;
486	ic->ic_newassoc = ath_newassoc;
487	ic->ic_updateslot = ath_updateslot;
488	ic->ic_wme.wme_update = ath_wme_update;
489	/* XXX not right but it's not used anywhere important */
490	ic->ic_phytype = IEEE80211_T_OFDM;
491	ic->ic_opmode = IEEE80211_M_STA;
492	ic->ic_caps =
493		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
494		| IEEE80211_C_HOSTAP		/* hostap mode */
495		| IEEE80211_C_MONITOR		/* monitor mode */
496		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
497		| IEEE80211_C_SHSLOT		/* short slot time supported */
498		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
499		;
500	/*
501	 * Query the hal to figure out h/w crypto support.
502	 */
503	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
504		ic->ic_caps |= IEEE80211_C_WEP;
505	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
506		ic->ic_caps |= IEEE80211_C_AES;
507	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
508		ic->ic_caps |= IEEE80211_C_AES_CCM;
509	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
510		ic->ic_caps |= IEEE80211_C_CKIP;
511	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
512		ic->ic_caps |= IEEE80211_C_TKIP;
513		/*
514		 * Check if h/w does the MIC and/or whether the
515		 * separate key cache entries are required to
516		 * handle both tx+rx MIC keys.
517		 */
518		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
519			ic->ic_caps |= IEEE80211_C_TKIPMIC;
520		if (ath_hal_tkipsplit(ah))
521			sc->sc_splitmic = 1;
522	}
523	sc->sc_hasclrkey = ath_hal_ciphersupported(ah, HAL_CIPHER_CLR);
524	sc->sc_mcastkey = ath_hal_getmcastkeysearch(ah);
525	/*
526	 * TPC support can be done either with a global cap or
527	 * per-packet support.  The latter is not available on
528	 * all parts.  We're a bit pedantic here as all parts
529	 * support a global cap.
530	 */
531	sc->sc_hastpc = ath_hal_hastpc(ah);
532	if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
533		ic->ic_caps |= IEEE80211_C_TXPMGT;
534
535	/*
536	 * Mark WME capability only if we have sufficient
537	 * hardware queues to do proper priority scheduling.
538	 */
539	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
540		ic->ic_caps |= IEEE80211_C_WME;
541	/*
542	 * Check for misc other capabilities.
543	 */
544	if (ath_hal_hasbursting(ah))
545		ic->ic_caps |= IEEE80211_C_BURST;
546
547	/*
548	 * Indicate we need the 802.11 header padded to a
549	 * 32-bit boundary for 4-address and QoS frames.
550	 */
551	ic->ic_flags |= IEEE80211_F_DATAPAD;
552
553	/*
554	 * Query the hal about antenna support.
555	 */
556	if (ath_hal_hasdiversity(ah)) {
557		sc->sc_hasdiversity = 1;
558		sc->sc_diversity = ath_hal_getdiversity(ah);
559	}
560	sc->sc_defant = ath_hal_getdefantenna(ah);
561
562	/*
563	 * Not all chips have the VEOL support we want to
564	 * use with IBSS beacons; check here for it.
565	 */
566	sc->sc_hasveol = ath_hal_hasveol(ah);
567
568	/* get mac address from hardware */
569	ath_hal_getmac(ah, ic->ic_myaddr);
570
571	/* call MI attach routine. */
572	ieee80211_ifattach(ic);
573	/* override default methods */
574	ic->ic_node_alloc = ath_node_alloc;
575	sc->sc_node_free = ic->ic_node_free;
576	ic->ic_node_free = ath_node_free;
577	ic->ic_node_getrssi = ath_node_getrssi;
578	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
579	ic->ic_recv_mgmt = ath_recv_mgmt;
580	sc->sc_newstate = ic->ic_newstate;
581	ic->ic_newstate = ath_newstate;
582	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
583	ic->ic_crypto.cs_key_delete = ath_key_delete;
584	ic->ic_crypto.cs_key_set = ath_key_set;
585	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
586	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
587	/* complete initialization */
588	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
589
590	ath_bpfattach(sc);
591
592	if (bootverbose)
593		ieee80211_announce(ic);
594	ath_announce(sc);
595	return 0;
596bad2:
597	ath_tx_cleanup(sc);
598	ath_desc_free(sc);
599bad:
600	if (ah)
601		ath_hal_detach(ah);
602	if (ifp != NULL)
603		if_free(ifp);
604	sc->sc_invalid = 1;
605	return error;
606}
607
608int
609ath_detach(struct ath_softc *sc)
610{
611	struct ifnet *ifp = sc->sc_ifp;
612
613	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
614		__func__, ifp->if_flags);
615
616	ath_stop(ifp);
617	bpfdetach(ifp);
618	/*
619	 * NB: the order of these is important:
620	 * o call the 802.11 layer before detaching the hal to
621	 *   insure callbacks into the driver to delete global
622	 *   key cache entries can be handled
623	 * o reclaim the tx queue data structures after calling
624	 *   the 802.11 layer as we'll get called back to reclaim
625	 *   node state and potentially want to use them
626	 * o to cleanup the tx queues the hal is called, so detach
627	 *   it last
628	 * Other than that, it's straightforward...
629	 */
630	ieee80211_ifdetach(&sc->sc_ic);
631	ath_rate_detach(sc->sc_rc);
632	ath_desc_free(sc);
633	ath_tx_cleanup(sc);
634	ath_hal_detach(sc->sc_ah);
635
636	return 0;
637}
638
639void
640ath_suspend(struct ath_softc *sc)
641{
642	struct ifnet *ifp = sc->sc_ifp;
643
644	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
645		__func__, ifp->if_flags);
646
647	ath_stop(ifp);
648}
649
650void
651ath_resume(struct ath_softc *sc)
652{
653	struct ifnet *ifp = sc->sc_ifp;
654
655	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
656		__func__, ifp->if_flags);
657
658	if (ifp->if_flags & IFF_UP) {
659		ath_init(sc);
660		if (ifp->if_flags & IFF_RUNNING)
661			ath_start(ifp);
662	}
663	if (sc->sc_softled) {
664		ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
665		ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
666	}
667}
668
669void
670ath_shutdown(struct ath_softc *sc)
671{
672	struct ifnet *ifp = sc->sc_ifp;
673
674	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
675		__func__, ifp->if_flags);
676
677	ath_stop(ifp);
678}
679
680/*
681 * Interrupt handler.  Most of the actual processing is deferred.
682 */
683void
684ath_intr(void *arg)
685{
686	struct ath_softc *sc = arg;
687	struct ifnet *ifp = sc->sc_ifp;
688	struct ath_hal *ah = sc->sc_ah;
689	HAL_INT status;
690
691	if (sc->sc_invalid) {
692		/*
693		 * The hardware is not ready/present, don't touch anything.
694		 * Note this can happen early on if the IRQ is shared.
695		 */
696		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
697		return;
698	}
699	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
700		return;
701	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
702		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
703			__func__, ifp->if_flags);
704		ath_hal_getisr(ah, &status);	/* clear ISR */
705		ath_hal_intrset(ah, 0);		/* disable further intr's */
706		return;
707	}
708	/*
709	 * Figure out the reason(s) for the interrupt.  Note
710	 * that the hal returns a pseudo-ISR that may include
711	 * bits we haven't explicitly enabled so we mask the
712	 * value to insure we only process bits we requested.
713	 */
714	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
715	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
716	status &= sc->sc_imask;			/* discard unasked for bits */
717	if (status & HAL_INT_FATAL) {
718		/*
719		 * Fatal errors are unrecoverable.  Typically
720		 * these are caused by DMA errors.  Unfortunately
721		 * the exact reason is not (presently) returned
722		 * by the hal.
723		 */
724		sc->sc_stats.ast_hardware++;
725		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
726		taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
727	} else if (status & HAL_INT_RXORN) {
728		sc->sc_stats.ast_rxorn++;
729		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
730		taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
731	} else {
732		if (status & HAL_INT_SWBA) {
733			/*
734			 * Software beacon alert--time to send a beacon.
735			 * Handle beacon transmission directly; deferring
736			 * this is too slow to meet timing constraints
737			 * under load.
738			 */
739			ath_beacon_proc(sc, 0);
740		}
741		if (status & HAL_INT_RXEOL) {
742			/*
743			 * NB: the hardware should re-read the link when
744			 *     RXE bit is written, but it doesn't work at
745			 *     least on older hardware revs.
746			 */
747			sc->sc_stats.ast_rxeol++;
748			sc->sc_rxlink = NULL;
749		}
750		if (status & HAL_INT_TXURN) {
751			sc->sc_stats.ast_txurn++;
752			/* bump tx trigger level */
753			ath_hal_updatetxtriglevel(ah, AH_TRUE);
754		}
755		if (status & HAL_INT_RX)
756			taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
757		if (status & HAL_INT_TX)
758			taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
759		if (status & HAL_INT_BMISS) {
760			sc->sc_stats.ast_bmiss++;
761			taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
762		}
763		if (status & HAL_INT_MIB) {
764			sc->sc_stats.ast_mib++;
765			/*
766			 * Disable interrupts until we service the MIB
767			 * interrupt; otherwise it will continue to fire.
768			 */
769			ath_hal_intrset(ah, 0);
770			/*
771			 * Let the hal handle the event.  We assume it will
772			 * clear whatever condition caused the interrupt.
773			 */
774			ath_hal_mibevent(ah,
775				&ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
776			ath_hal_intrset(ah, sc->sc_imask);
777		}
778	}
779}
780
781static void
782ath_fatal_proc(void *arg, int pending)
783{
784	struct ath_softc *sc = arg;
785	struct ifnet *ifp = sc->sc_ifp;
786
787	if_printf(ifp, "hardware error; resetting\n");
788	ath_reset(ifp);
789}
790
791static void
792ath_rxorn_proc(void *arg, int pending)
793{
794	struct ath_softc *sc = arg;
795	struct ifnet *ifp = sc->sc_ifp;
796
797	if_printf(ifp, "rx FIFO overrun; resetting\n");
798	ath_reset(ifp);
799}
800
801static void
802ath_bmiss_proc(void *arg, int pending)
803{
804	struct ath_softc *sc = arg;
805	struct ieee80211com *ic = &sc->sc_ic;
806
807	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
808	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
809		("unexpect operating mode %u", ic->ic_opmode));
810	if (ic->ic_state == IEEE80211_S_RUN) {
811		/*
812		 * Rather than go directly to scan state, try to
813		 * reassociate first.  If that fails then the state
814		 * machine will drop us into scanning after timing
815		 * out waiting for a probe response.
816		 */
817		NET_LOCK_GIANT();
818		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
819		NET_UNLOCK_GIANT();
820	}
821}
822
823static u_int
824ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
825{
826#define	N(a)	(sizeof(a) / sizeof(a[0]))
827	static const u_int modeflags[] = {
828		0,			/* IEEE80211_MODE_AUTO */
829		CHANNEL_A,		/* IEEE80211_MODE_11A */
830		CHANNEL_B,		/* IEEE80211_MODE_11B */
831		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
832		0,			/* IEEE80211_MODE_FH */
833		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
834		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
835	};
836	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
837
838	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
839	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
840	return modeflags[mode];
841#undef N
842}
843
844static void
845ath_init(void *arg)
846{
847	struct ath_softc *sc = (struct ath_softc *) arg;
848	struct ieee80211com *ic = &sc->sc_ic;
849	struct ifnet *ifp = sc->sc_ifp;
850	struct ieee80211_node *ni;
851	struct ath_hal *ah = sc->sc_ah;
852	HAL_STATUS status;
853
854	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
855		__func__, ifp->if_flags);
856
857	ATH_LOCK(sc);
858	/*
859	 * Stop anything previously setup.  This is safe
860	 * whether this is the first time through or not.
861	 */
862	ath_stop_locked(ifp);
863
864	/*
865	 * The basic interface to setting the hardware in a good
866	 * state is ``reset''.  On return the hardware is known to
867	 * be powered up and with interrupts disabled.  This must
868	 * be followed by initialization of the appropriate bits
869	 * and then setup of the interrupt mask.
870	 */
871	sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
872	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
873	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
874		if_printf(ifp, "unable to reset hardware; hal status %u\n",
875			status);
876		goto done;
877	}
878
879	/*
880	 * This is needed only to setup initial state
881	 * but it's best done after a reset.
882	 */
883	ath_update_txpow(sc);
884
885	/*
886	 * Setup the hardware after reset: the key cache
887	 * is filled as needed and the receive engine is
888	 * set going.  Frame transmit is handled entirely
889	 * in the frame output path; there's nothing to do
890	 * here except setup the interrupt mask.
891	 */
892	if (ath_startrecv(sc) != 0) {
893		if_printf(ifp, "unable to start recv logic\n");
894		goto done;
895	}
896
897	/*
898	 * Enable interrupts.
899	 */
900	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
901		  | HAL_INT_RXEOL | HAL_INT_RXORN
902		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
903	/*
904	 * Enable MIB interrupts when there are hardware phy counters.
905	 * Note we only do this (at the moment) for station mode.
906	 */
907	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
908		sc->sc_imask |= HAL_INT_MIB;
909	ath_hal_intrset(ah, sc->sc_imask);
910
911	ifp->if_flags |= IFF_RUNNING;
912	ic->ic_state = IEEE80211_S_INIT;
913
914	/*
915	 * The hardware should be ready to go now so it's safe
916	 * to kick the 802.11 state machine as it's likely to
917	 * immediately call back to us to send mgmt frames.
918	 */
919	ni = ic->ic_bss;
920	ni->ni_chan = ic->ic_ibss_chan;
921	ath_chan_change(sc, ni->ni_chan);
922	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
923		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
924			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
925	} else
926		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
927done:
928	ATH_UNLOCK(sc);
929}
930
931static void
932ath_stop_locked(struct ifnet *ifp)
933{
934	struct ath_softc *sc = ifp->if_softc;
935	struct ieee80211com *ic = &sc->sc_ic;
936	struct ath_hal *ah = sc->sc_ah;
937
938	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
939		__func__, sc->sc_invalid, ifp->if_flags);
940
941	ATH_LOCK_ASSERT(sc);
942	if (ifp->if_flags & IFF_RUNNING) {
943		/*
944		 * Shutdown the hardware and driver:
945		 *    reset 802.11 state machine
946		 *    turn off timers
947		 *    disable interrupts
948		 *    turn off the radio
949		 *    clear transmit machinery
950		 *    clear receive machinery
951		 *    drain and release tx queues
952		 *    reclaim beacon resources
953		 *    power down hardware
954		 *
955		 * Note that some of this work is not possible if the
956		 * hardware is gone (invalid).
957		 */
958		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
959		ifp->if_flags &= ~IFF_RUNNING;
960		ifp->if_timer = 0;
961		if (!sc->sc_invalid) {
962			if (sc->sc_softled) {
963				callout_stop(&sc->sc_ledtimer);
964				ath_hal_gpioset(ah, sc->sc_ledpin,
965					!sc->sc_ledon);
966				sc->sc_blinking = 0;
967			}
968			ath_hal_intrset(ah, 0);
969		}
970		ath_draintxq(sc);
971		if (!sc->sc_invalid) {
972			ath_stoprecv(sc);
973			ath_hal_phydisable(ah);
974		} else
975			sc->sc_rxlink = NULL;
976		IFQ_DRV_PURGE(&ifp->if_snd);
977		ath_beacon_free(sc);
978	}
979}
980
981static void
982ath_stop(struct ifnet *ifp)
983{
984	struct ath_softc *sc = ifp->if_softc;
985
986	ATH_LOCK(sc);
987	ath_stop_locked(ifp);
988	if (!sc->sc_invalid) {
989		/*
990		 * Set the chip in full sleep mode.  Note that we are
991		 * careful to do this only when bringing the interface
992		 * completely to a stop.  When the chip is in this state
993		 * it must be carefully woken up or references to
994		 * registers in the PCI clock domain may freeze the bus
995		 * (and system).  This varies by chip and is mostly an
996		 * issue with newer parts that go to sleep more quickly.
997		 */
998		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
999	}
1000	ATH_UNLOCK(sc);
1001}
1002
1003/*
1004 * Reset the hardware w/o losing operational state.  This is
1005 * basically a more efficient way of doing ath_stop, ath_init,
1006 * followed by state transitions to the current 802.11
1007 * operational state.  Used to recover from various errors and
1008 * to reset or reload hardware state.
1009 */
1010static int
1011ath_reset(struct ifnet *ifp)
1012{
1013	struct ath_softc *sc = ifp->if_softc;
1014	struct ieee80211com *ic = &sc->sc_ic;
1015	struct ath_hal *ah = sc->sc_ah;
1016	struct ieee80211_channel *c;
1017	HAL_STATUS status;
1018
1019	/*
1020	 * Convert to a HAL channel description with the flags
1021	 * constrained to reflect the current operating mode.
1022	 */
1023	c = ic->ic_ibss_chan;
1024	sc->sc_curchan.channel = c->ic_freq;
1025	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1026
1027	ath_hal_intrset(ah, 0);		/* disable interrupts */
1028	ath_draintxq(sc);		/* stop xmit side */
1029	ath_stoprecv(sc);		/* stop recv side */
1030	/* NB: indicate channel change so we do a full reset */
1031	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1032		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1033			__func__, status);
1034	ath_update_txpow(sc);		/* update tx power state */
1035	if (ath_startrecv(sc) != 0)	/* restart recv */
1036		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1037	/*
1038	 * We may be doing a reset in response to an ioctl
1039	 * that changes the channel so update any state that
1040	 * might change as a result.
1041	 */
1042	ath_chan_change(sc, c);
1043	if (ic->ic_state == IEEE80211_S_RUN)
1044		ath_beacon_config(sc);	/* restart beacons */
1045	ath_hal_intrset(ah, sc->sc_imask);
1046
1047	ath_start(ifp);			/* restart xmit */
1048	return 0;
1049}
1050
1051static void
1052ath_start(struct ifnet *ifp)
1053{
1054	struct ath_softc *sc = ifp->if_softc;
1055	struct ath_hal *ah = sc->sc_ah;
1056	struct ieee80211com *ic = &sc->sc_ic;
1057	struct ieee80211_node *ni;
1058	struct ath_buf *bf;
1059	struct mbuf *m;
1060	struct ieee80211_frame *wh;
1061	struct ether_header *eh;
1062
1063	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1064		return;
1065	for (;;) {
1066		/*
1067		 * Grab a TX buffer and associated resources.
1068		 */
1069		ATH_TXBUF_LOCK(sc);
1070		bf = STAILQ_FIRST(&sc->sc_txbuf);
1071		if (bf != NULL)
1072			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1073		ATH_TXBUF_UNLOCK(sc);
1074		if (bf == NULL) {
1075			DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1076				__func__);
1077			sc->sc_stats.ast_tx_qstop++;
1078			ifp->if_flags |= IFF_OACTIVE;
1079			break;
1080		}
1081		/*
1082		 * Poll the management queue for frames; they
1083		 * have priority over normal data frames.
1084		 */
1085		IF_DEQUEUE(&ic->ic_mgtq, m);
1086		if (m == NULL) {
1087			/*
1088			 * No data frames go out unless we're associated.
1089			 */
1090			if (ic->ic_state != IEEE80211_S_RUN) {
1091				DPRINTF(sc, ATH_DEBUG_ANY,
1092					"%s: ignore data packet, state %u\n",
1093					__func__, ic->ic_state);
1094				sc->sc_stats.ast_tx_discard++;
1095				ATH_TXBUF_LOCK(sc);
1096				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1097				ATH_TXBUF_UNLOCK(sc);
1098				break;
1099			}
1100			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1101			if (m == NULL) {
1102				ATH_TXBUF_LOCK(sc);
1103				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1104				ATH_TXBUF_UNLOCK(sc);
1105				break;
1106			}
1107			/*
1108			 * Find the node for the destination so we can do
1109			 * things like power save and fast frames aggregation.
1110			 */
1111			if (m->m_len < sizeof(struct ether_header) &&
1112			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1113				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1114				ni = NULL;
1115				goto bad;
1116			}
1117			eh = mtod(m, struct ether_header *);
1118			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1119			if (ni == NULL) {
1120				/* NB: ieee80211_find_txnode does stat+msg */
1121				m_freem(m);
1122				goto bad;
1123			}
1124			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1125			    (m->m_flags & M_PWR_SAV) == 0) {
1126				/*
1127				 * Station in power save mode; pass the frame
1128				 * to the 802.11 layer and continue.  We'll get
1129				 * the frame back when the time is right.
1130				 */
1131				ieee80211_pwrsave(ic, ni, m);
1132				goto reclaim;
1133			}
1134			/* calculate priority so we can find the tx queue */
1135			if (ieee80211_classify(ic, m, ni)) {
1136				DPRINTF(sc, ATH_DEBUG_XMIT,
1137					"%s: discard, classification failure\n",
1138					__func__);
1139				m_freem(m);
1140				goto bad;
1141			}
1142			ifp->if_opackets++;
1143			BPF_MTAP(ifp, m);
1144			/*
1145			 * Encapsulate the packet in prep for transmission.
1146			 */
1147			m = ieee80211_encap(ic, m, ni);
1148			if (m == NULL) {
1149				DPRINTF(sc, ATH_DEBUG_ANY,
1150					"%s: encapsulation failure\n",
1151					__func__);
1152				sc->sc_stats.ast_tx_encap++;
1153				goto bad;
1154			}
1155		} else {
1156			/*
1157			 * Hack!  The referenced node pointer is in the
1158			 * rcvif field of the packet header.  This is
1159			 * placed there by ieee80211_mgmt_output because
1160			 * we need to hold the reference with the frame
1161			 * and there's no other way (other than packet
1162			 * tags which we consider too expensive to use)
1163			 * to pass it along.
1164			 */
1165			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1166			m->m_pkthdr.rcvif = NULL;
1167
1168			wh = mtod(m, struct ieee80211_frame *);
1169			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1170			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1171				/* fill time stamp */
1172				u_int64_t tsf;
1173				u_int32_t *tstamp;
1174
1175				tsf = ath_hal_gettsf64(ah);
1176				/* XXX: adjust 100us delay to xmit */
1177				tsf += 100;
1178				tstamp = (u_int32_t *)&wh[1];
1179				tstamp[0] = htole32(tsf & 0xffffffff);
1180				tstamp[1] = htole32(tsf >> 32);
1181			}
1182			sc->sc_stats.ast_tx_mgmt++;
1183		}
1184
1185		if (ath_tx_start(sc, ni, bf, m)) {
1186	bad:
1187			ifp->if_oerrors++;
1188	reclaim:
1189			ATH_TXBUF_LOCK(sc);
1190			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1191			ATH_TXBUF_UNLOCK(sc);
1192			if (ni != NULL)
1193				ieee80211_free_node(ni);
1194			continue;
1195		}
1196
1197		sc->sc_tx_timer = 5;
1198		ifp->if_timer = 1;
1199	}
1200}
1201
1202static int
1203ath_media_change(struct ifnet *ifp)
1204{
1205#define	IS_UP(ifp) \
1206	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
1207	int error;
1208
1209	error = ieee80211_media_change(ifp);
1210	if (error == ENETRESET) {
1211		if (IS_UP(ifp))
1212			ath_init(ifp->if_softc);	/* XXX lose error */
1213		error = 0;
1214	}
1215	return error;
1216#undef IS_UP
1217}
1218
1219#ifdef AR_DEBUG
1220static void
1221ath_keyprint(const char *tag, u_int ix,
1222	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1223{
1224	static const char *ciphers[] = {
1225		"WEP",
1226		"AES-OCB",
1227		"AES-CCM",
1228		"CKIP",
1229		"TKIP",
1230		"CLR",
1231	};
1232	int i, n;
1233
1234	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1235	for (i = 0, n = hk->kv_len; i < n; i++)
1236		printf("%02x", hk->kv_val[i]);
1237	printf(" mac %s", ether_sprintf(mac));
1238	if (hk->kv_type == HAL_CIPHER_TKIP) {
1239		printf(" mic ");
1240		for (i = 0; i < sizeof(hk->kv_mic); i++)
1241			printf("%02x", hk->kv_mic[i]);
1242	}
1243	printf("\n");
1244}
1245#endif
1246
1247/*
1248 * Set a TKIP key into the hardware.  This handles the
1249 * potential distribution of key state to multiple key
1250 * cache slots for TKIP.
1251 */
1252static int
1253ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1254	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1255{
1256#define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1257	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1258	struct ath_hal *ah = sc->sc_ah;
1259
1260	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1261		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1262	KASSERT(sc->sc_splitmic, ("key cache !split"));
1263	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1264		/*
1265		 * TX key goes at first index, RX key at +32.
1266		 * The hal handles the MIC keys at index+64.
1267		 */
1268		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1269		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1270		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1271			return 0;
1272
1273		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1274		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1275		/* XXX delete tx key on failure? */
1276		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1277	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1278		/*
1279		 * TX/RX key goes at first index.
1280		 * The hal handles the MIC keys are index+64.
1281		 */
1282		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1283			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1284		KEYPRINTF(sc, k->wk_keyix, hk, mac);
1285		return ath_hal_keyset(ah, k->wk_keyix, hk, mac);
1286	}
1287	return 0;
1288#undef IEEE80211_KEY_XR
1289}
1290
1291/*
1292 * Set a net80211 key into the hardware.  This handles the
1293 * potential distribution of key state to multiple key
1294 * cache slots for TKIP with hardware MIC support.
1295 */
1296static int
1297ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1298	const u_int8_t mac0[IEEE80211_ADDR_LEN],
1299	struct ieee80211_node *bss)
1300{
1301#define	N(a)	(sizeof(a)/sizeof(a[0]))
1302	static const u_int8_t ciphermap[] = {
1303		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1304		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1305		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1306		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1307		(u_int8_t) -1,		/* 4 is not allocated */
1308		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1309		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1310	};
1311	struct ath_hal *ah = sc->sc_ah;
1312	const struct ieee80211_cipher *cip = k->wk_cipher;
1313	u_int8_t gmac[IEEE80211_ADDR_LEN];
1314	const u_int8_t *mac;
1315	HAL_KEYVAL hk;
1316
1317	memset(&hk, 0, sizeof(hk));
1318	/*
1319	 * Software crypto uses a "clear key" so non-crypto
1320	 * state kept in the key cache are maintained and
1321	 * so that rx frames have an entry to match.
1322	 */
1323	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1324		KASSERT(cip->ic_cipher < N(ciphermap),
1325			("invalid cipher type %u", cip->ic_cipher));
1326		hk.kv_type = ciphermap[cip->ic_cipher];
1327		hk.kv_len = k->wk_keylen;
1328		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1329	} else
1330		hk.kv_type = HAL_CIPHER_CLR;
1331
1332	if ((k->wk_flags & IEEE80211_KEY_GROUP) && sc->sc_mcastkey) {
1333		/*
1334		 * Group keys on hardware that supports multicast frame
1335		 * key search use a mac that is the sender's address with
1336		 * the high bit set instead of the app-specified address.
1337		 */
1338		IEEE80211_ADDR_COPY(gmac, bss->ni_macaddr);
1339		gmac[0] |= 0x80;
1340		mac = gmac;
1341	} else
1342		mac = mac0;
1343
1344	if (hk.kv_type == HAL_CIPHER_TKIP &&
1345	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1346	    sc->sc_splitmic) {
1347		return ath_keyset_tkip(sc, k, &hk, mac);
1348	} else {
1349		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1350		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1351	}
1352#undef N
1353}
1354
1355/*
1356 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1357 * each key, one for decrypt/encrypt and the other for the MIC.
1358 */
1359static u_int16_t
1360key_alloc_2pair(struct ath_softc *sc)
1361{
1362#define	N(a)	(sizeof(a)/sizeof(a[0]))
1363	u_int i, keyix;
1364
1365	KASSERT(sc->sc_splitmic, ("key cache !split"));
1366	/* XXX could optimize */
1367	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1368		u_int8_t b = sc->sc_keymap[i];
1369		if (b != 0xff) {
1370			/*
1371			 * One or more slots in this byte are free.
1372			 */
1373			keyix = i*NBBY;
1374			while (b & 1) {
1375		again:
1376				keyix++;
1377				b >>= 1;
1378			}
1379			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1380			if (isset(sc->sc_keymap, keyix+32) ||
1381			    isset(sc->sc_keymap, keyix+64) ||
1382			    isset(sc->sc_keymap, keyix+32+64)) {
1383				/* full pair unavailable */
1384				/* XXX statistic */
1385				if (keyix == (i+1)*NBBY) {
1386					/* no slots were appropriate, advance */
1387					continue;
1388				}
1389				goto again;
1390			}
1391			setbit(sc->sc_keymap, keyix);
1392			setbit(sc->sc_keymap, keyix+64);
1393			setbit(sc->sc_keymap, keyix+32);
1394			setbit(sc->sc_keymap, keyix+32+64);
1395			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1396				"%s: key pair %u,%u %u,%u\n",
1397				__func__, keyix, keyix+64,
1398				keyix+32, keyix+32+64);
1399			return keyix;
1400		}
1401	}
1402	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1403	return IEEE80211_KEYIX_NONE;
1404#undef N
1405}
1406
1407/*
1408 * Allocate a single key cache slot.
1409 */
1410static u_int16_t
1411key_alloc_single(struct ath_softc *sc)
1412{
1413#define	N(a)	(sizeof(a)/sizeof(a[0]))
1414	u_int i, keyix;
1415
1416	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1417	for (i = 0; i < N(sc->sc_keymap); i++) {
1418		u_int8_t b = sc->sc_keymap[i];
1419		if (b != 0xff) {
1420			/*
1421			 * One or more slots are free.
1422			 */
1423			keyix = i*NBBY;
1424			while (b & 1)
1425				keyix++, b >>= 1;
1426			setbit(sc->sc_keymap, keyix);
1427			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1428				__func__, keyix);
1429			return keyix;
1430		}
1431	}
1432	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1433	return IEEE80211_KEYIX_NONE;
1434#undef N
1435}
1436
1437/*
1438 * Allocate one or more key cache slots for a uniacst key.  The
1439 * key itself is needed only to identify the cipher.  For hardware
1440 * TKIP with split cipher+MIC keys we allocate two key cache slot
1441 * pairs so that we can setup separate TX and RX MIC keys.  Note
1442 * that the MIC key for a TKIP key at slot i is assumed by the
1443 * hardware to be at slot i+64.  This limits TKIP keys to the first
1444 * 64 entries.
1445 */
1446static int
1447ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
1448{
1449	struct ath_softc *sc = ic->ic_ifp->if_softc;
1450
1451	/*
1452	 * Group key allocation must be handled specially for
1453	 * parts that do not support multicast key cache search
1454	 * functionality.  For those parts the key id must match
1455	 * the h/w key index so lookups find the right key.  On
1456	 * parts w/ the key search facility we install the sender's
1457	 * mac address (with the high bit set) and let the hardware
1458	 * find the key w/o using the key id.  This is preferred as
1459	 * it permits us to support multiple users for adhoc and/or
1460	 * multi-station operation.
1461	 */
1462	if ((k->wk_flags & IEEE80211_KEY_GROUP) && !sc->sc_mcastkey) {
1463		u_int keyix;
1464
1465		if (!(&ic->ic_nw_keys[0] <= k &&
1466		      k < &ic->ic_nw_keys[IEEE80211_WEP_NKID])) {
1467			/* should not happen */
1468			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1469				"%s: bogus group key\n", __func__);
1470			return IEEE80211_KEYIX_NONE;
1471		}
1472		keyix = k - ic->ic_nw_keys;
1473		/*
1474		 * XXX we pre-allocate the global keys so
1475		 * have no way to check if they've already been allocated.
1476		 */
1477		return keyix;
1478	}
1479
1480	/*
1481	 * We allocate two pair for TKIP when using the h/w to do
1482	 * the MIC.  For everything else, including software crypto,
1483	 * we allocate a single entry.  Note that s/w crypto requires
1484	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1485	 * not support pass-through cache entries and we map all
1486	 * those requests to slot 0.
1487	 */
1488	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1489		return key_alloc_single(sc);
1490	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1491	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1492		return key_alloc_2pair(sc);
1493	} else {
1494		return key_alloc_single(sc);
1495	}
1496}
1497
1498/*
1499 * Delete an entry in the key cache allocated by ath_key_alloc.
1500 */
1501static int
1502ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1503{
1504	struct ath_softc *sc = ic->ic_ifp->if_softc;
1505	struct ath_hal *ah = sc->sc_ah;
1506	const struct ieee80211_cipher *cip = k->wk_cipher;
1507	struct ieee80211_node *ni;
1508	u_int keyix = k->wk_keyix;
1509
1510	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1511
1512	ath_hal_keyreset(ah, keyix);
1513	/*
1514	 * Check the key->node map and flush any ref.
1515	 */
1516	ni = sc->sc_keyixmap[keyix];
1517	if (ni != NULL) {
1518		ieee80211_free_node(ni);
1519		sc->sc_keyixmap[keyix] = NULL;
1520	}
1521	/*
1522	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1523	 */
1524	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1525	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1526		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1527		ni = sc->sc_keyixmap[keyix+32];
1528		if (ni != NULL) {			/* as above... */
1529			ieee80211_free_node(ni);
1530			sc->sc_keyixmap[keyix+32] = NULL;
1531		}
1532	}
1533	if (keyix >= IEEE80211_WEP_NKID) {
1534		/*
1535		 * Don't touch keymap entries for global keys so
1536		 * they are never considered for dynamic allocation.
1537		 */
1538		clrbit(sc->sc_keymap, keyix);
1539		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1540		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1541		    sc->sc_splitmic) {
1542			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1543			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1544			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1545		}
1546	}
1547	return 1;
1548}
1549
1550/*
1551 * Set the key cache contents for the specified key.  Key cache
1552 * slot(s) must already have been allocated by ath_key_alloc.
1553 */
1554static int
1555ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1556	const u_int8_t mac[IEEE80211_ADDR_LEN])
1557{
1558	struct ath_softc *sc = ic->ic_ifp->if_softc;
1559
1560	return ath_keyset(sc, k, mac, ic->ic_bss);
1561}
1562
1563/*
1564 * Block/unblock tx+rx processing while a key change is done.
1565 * We assume the caller serializes key management operations
1566 * so we only need to worry about synchronization with other
1567 * uses that originate in the driver.
1568 */
1569static void
1570ath_key_update_begin(struct ieee80211com *ic)
1571{
1572	struct ifnet *ifp = ic->ic_ifp;
1573	struct ath_softc *sc = ifp->if_softc;
1574
1575	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1576#if 0
1577	tasklet_disable(&sc->sc_rxtq);
1578#endif
1579	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1580}
1581
1582static void
1583ath_key_update_end(struct ieee80211com *ic)
1584{
1585	struct ifnet *ifp = ic->ic_ifp;
1586	struct ath_softc *sc = ifp->if_softc;
1587
1588	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1589	IF_UNLOCK(&ifp->if_snd);
1590#if 0
1591	tasklet_enable(&sc->sc_rxtq);
1592#endif
1593}
1594
1595/*
1596 * Calculate the receive filter according to the
1597 * operating mode and state:
1598 *
1599 * o always accept unicast, broadcast, and multicast traffic
1600 * o maintain current state of phy error reception (the hal
1601 *   may enable phy error frames for noise immunity work)
1602 * o probe request frames are accepted only when operating in
1603 *   hostap, adhoc, or monitor modes
1604 * o enable promiscuous mode according to the interface state
1605 * o accept beacons:
1606 *   - when operating in adhoc mode so the 802.11 layer creates
1607 *     node table entries for peers,
1608 *   - when operating in station mode for collecting rssi data when
1609 *     the station is otherwise quiet, or
1610 *   - when scanning
1611 */
1612static u_int32_t
1613ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1614{
1615	struct ieee80211com *ic = &sc->sc_ic;
1616	struct ath_hal *ah = sc->sc_ah;
1617	struct ifnet *ifp = sc->sc_ifp;
1618	u_int32_t rfilt;
1619
1620	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1621	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1622	if (ic->ic_opmode != IEEE80211_M_STA)
1623		rfilt |= HAL_RX_FILTER_PROBEREQ;
1624	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1625	    (ifp->if_flags & IFF_PROMISC))
1626		rfilt |= HAL_RX_FILTER_PROM;
1627	if (ic->ic_opmode == IEEE80211_M_STA ||
1628	    ic->ic_opmode == IEEE80211_M_IBSS ||
1629	    state == IEEE80211_S_SCAN)
1630		rfilt |= HAL_RX_FILTER_BEACON;
1631	return rfilt;
1632}
1633
1634static void
1635ath_mode_init(struct ath_softc *sc)
1636{
1637	struct ieee80211com *ic = &sc->sc_ic;
1638	struct ath_hal *ah = sc->sc_ah;
1639	struct ifnet *ifp = sc->sc_ifp;
1640	u_int32_t rfilt, mfilt[2], val;
1641	u_int8_t pos;
1642	struct ifmultiaddr *ifma;
1643
1644	/* configure rx filter */
1645	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1646	ath_hal_setrxfilter(ah, rfilt);
1647
1648	/* configure operational mode */
1649	ath_hal_setopmode(ah);
1650
1651	/*
1652	 * Handle any link-level address change.  Note that we only
1653	 * need to force ic_myaddr; any other addresses are handled
1654	 * as a byproduct of the ifnet code marking the interface
1655	 * down then up.
1656	 *
1657	 * XXX should get from lladdr instead of arpcom but that's more work
1658	 */
1659	IEEE80211_ADDR_COPY(ic->ic_myaddr, IFP2ENADDR(ifp));
1660	ath_hal_setmac(ah, ic->ic_myaddr);
1661
1662	/* calculate and install multicast filter */
1663	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1664		mfilt[0] = mfilt[1] = 0;
1665		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1666			caddr_t dl;
1667
1668			/* calculate XOR of eight 6bit values */
1669			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1670			val = LE_READ_4(dl + 0);
1671			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1672			val = LE_READ_4(dl + 3);
1673			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1674			pos &= 0x3f;
1675			mfilt[pos / 32] |= (1 << (pos % 32));
1676		}
1677	} else {
1678		mfilt[0] = mfilt[1] = ~0;
1679	}
1680	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1681	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1682		__func__, rfilt, mfilt[0], mfilt[1]);
1683}
1684
1685/*
1686 * Set the slot time based on the current setting.
1687 */
1688static void
1689ath_setslottime(struct ath_softc *sc)
1690{
1691	struct ieee80211com *ic = &sc->sc_ic;
1692	struct ath_hal *ah = sc->sc_ah;
1693
1694	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1695		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1696	else
1697		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1698	sc->sc_updateslot = OK;
1699}
1700
1701/*
1702 * Callback from the 802.11 layer to update the
1703 * slot time based on the current setting.
1704 */
1705static void
1706ath_updateslot(struct ifnet *ifp)
1707{
1708	struct ath_softc *sc = ifp->if_softc;
1709	struct ieee80211com *ic = &sc->sc_ic;
1710
1711	/*
1712	 * When not coordinating the BSS, change the hardware
1713	 * immediately.  For other operation we defer the change
1714	 * until beacon updates have propagated to the stations.
1715	 */
1716	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1717		sc->sc_updateslot = UPDATE;
1718	else
1719		ath_setslottime(sc);
1720}
1721
1722/*
1723 * Setup a h/w transmit queue for beacons.
1724 */
1725static int
1726ath_beaconq_setup(struct ath_hal *ah)
1727{
1728	HAL_TXQ_INFO qi;
1729
1730	memset(&qi, 0, sizeof(qi));
1731	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1732	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1733	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1734	/* NB: for dynamic turbo, don't enable any other interrupts */
1735	qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1736	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1737}
1738
1739/*
1740 * Setup the transmit queue parameters for the beacon queue.
1741 */
1742static int
1743ath_beaconq_config(struct ath_softc *sc)
1744{
1745#define	ATH_EXPONENT_TO_VALUE(v)	((1<<(v))-1)
1746	struct ieee80211com *ic = &sc->sc_ic;
1747	struct ath_hal *ah = sc->sc_ah;
1748	HAL_TXQ_INFO qi;
1749
1750	ath_hal_gettxqueueprops(ah, sc->sc_bhalq, &qi);
1751	if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
1752		/*
1753		 * Always burst out beacon and CAB traffic.
1754		 */
1755		qi.tqi_aifs = ATH_BEACON_AIFS_DEFAULT;
1756		qi.tqi_cwmin = ATH_BEACON_CWMIN_DEFAULT;
1757		qi.tqi_cwmax = ATH_BEACON_CWMAX_DEFAULT;
1758	} else {
1759		struct wmeParams *wmep =
1760			&ic->ic_wme.wme_chanParams.cap_wmeParams[WME_AC_BE];
1761		/*
1762		 * Adhoc mode; important thing is to use 2x cwmin.
1763		 */
1764		qi.tqi_aifs = wmep->wmep_aifsn;
1765		qi.tqi_cwmin = 2*ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
1766		qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
1767	}
1768
1769	if (!ath_hal_settxqueueprops(ah, sc->sc_bhalq, &qi)) {
1770		device_printf(sc->sc_dev, "unable to update parameters for "
1771			"beacon hardware queue!\n");
1772		return 0;
1773	} else {
1774		ath_hal_resettxqueue(ah, sc->sc_bhalq); /* push to h/w */
1775		return 1;
1776	}
1777#undef ATH_EXPONENT_TO_VALUE
1778}
1779
1780/*
1781 * Allocate and setup an initial beacon frame.
1782 */
1783static int
1784ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1785{
1786	struct ieee80211com *ic = ni->ni_ic;
1787	struct ath_buf *bf;
1788	struct mbuf *m;
1789	int error;
1790
1791	bf = STAILQ_FIRST(&sc->sc_bbuf);
1792	if (bf == NULL) {
1793		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1794		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1795		return ENOMEM;			/* XXX */
1796	}
1797	/*
1798	 * NB: the beacon data buffer must be 32-bit aligned;
1799	 * we assume the mbuf routines will return us something
1800	 * with this alignment (perhaps should assert).
1801	 */
1802	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1803	if (m == NULL) {
1804		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1805			__func__);
1806		sc->sc_stats.ast_be_nombuf++;
1807		return ENOMEM;
1808	}
1809	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1810				     bf->bf_segs, &bf->bf_nseg,
1811				     BUS_DMA_NOWAIT);
1812	if (error == 0) {
1813		bf->bf_m = m;
1814		bf->bf_node = ieee80211_ref_node(ni);
1815	} else {
1816		m_freem(m);
1817	}
1818	return error;
1819}
1820
1821/*
1822 * Setup the beacon frame for transmit.
1823 */
1824static void
1825ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1826{
1827#define	USE_SHPREAMBLE(_ic) \
1828	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1829		== IEEE80211_F_SHPREAMBLE)
1830	struct ieee80211_node *ni = bf->bf_node;
1831	struct ieee80211com *ic = ni->ni_ic;
1832	struct mbuf *m = bf->bf_m;
1833	struct ath_hal *ah = sc->sc_ah;
1834	struct ath_node *an = ATH_NODE(ni);
1835	struct ath_desc *ds;
1836	int flags, antenna;
1837	u_int8_t rate;
1838
1839	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1840		__func__, m, m->m_len);
1841
1842	/* setup descriptors */
1843	ds = bf->bf_desc;
1844
1845	flags = HAL_TXDESC_NOACK;
1846	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1847		ds->ds_link = bf->bf_daddr;	/* self-linked */
1848		flags |= HAL_TXDESC_VEOL;
1849		/*
1850		 * Let hardware handle antenna switching.
1851		 */
1852		antenna = 0;
1853	} else {
1854		ds->ds_link = 0;
1855		/*
1856		 * Switch antenna every 4 beacons.
1857		 * XXX assumes two antenna
1858		 */
1859		antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1860	}
1861
1862	KASSERT(bf->bf_nseg == 1,
1863		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1864	ds->ds_data = bf->bf_segs[0].ds_addr;
1865	/*
1866	 * Calculate rate code.
1867	 * XXX everything at min xmit rate
1868	 */
1869	if (USE_SHPREAMBLE(ic))
1870		rate = an->an_tx_mgtratesp;
1871	else
1872		rate = an->an_tx_mgtrate;
1873	ath_hal_setuptxdesc(ah, ds
1874		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
1875		, sizeof(struct ieee80211_frame)/* header length */
1876		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1877		, ni->ni_txpower		/* txpower XXX */
1878		, rate, 1			/* series 0 rate/tries */
1879		, HAL_TXKEYIX_INVALID		/* no encryption */
1880		, antenna			/* antenna mode */
1881		, flags				/* no ack, veol for beacons */
1882		, 0				/* rts/cts rate */
1883		, 0				/* rts/cts duration */
1884	);
1885	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1886	ath_hal_filltxdesc(ah, ds
1887		, roundup(m->m_len, 4)		/* buffer length */
1888		, AH_TRUE			/* first segment */
1889		, AH_TRUE			/* last segment */
1890		, ds				/* first descriptor */
1891	);
1892#undef USE_SHPREAMBLE
1893}
1894
1895/*
1896 * Transmit a beacon frame at SWBA.  Dynamic updates to the
1897 * frame contents are done as needed and the slot time is
1898 * also adjusted based on current state.
1899 */
1900static void
1901ath_beacon_proc(void *arg, int pending)
1902{
1903	struct ath_softc *sc = arg;
1904	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
1905	struct ieee80211_node *ni = bf->bf_node;
1906	struct ieee80211com *ic = ni->ni_ic;
1907	struct ath_hal *ah = sc->sc_ah;
1908	struct mbuf *m;
1909	int ncabq, error, otherant;
1910
1911	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
1912		__func__, pending);
1913
1914	if (ic->ic_opmode == IEEE80211_M_STA ||
1915	    ic->ic_opmode == IEEE80211_M_MONITOR ||
1916	    bf == NULL || bf->bf_m == NULL) {
1917		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
1918			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
1919		return;
1920	}
1921	/*
1922	 * Check if the previous beacon has gone out.  If
1923	 * not don't don't try to post another, skip this
1924	 * period and wait for the next.  Missed beacons
1925	 * indicate a problem and should not occur.  If we
1926	 * miss too many consecutive beacons reset the device.
1927	 */
1928	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
1929		sc->sc_bmisscount++;
1930		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1931			"%s: missed %u consecutive beacons\n",
1932			__func__, sc->sc_bmisscount);
1933		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
1934			taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask);
1935		return;
1936	}
1937	if (sc->sc_bmisscount != 0) {
1938		DPRINTF(sc, ATH_DEBUG_BEACON,
1939			"%s: resume beacon xmit after %u misses\n",
1940			__func__, sc->sc_bmisscount);
1941		sc->sc_bmisscount = 0;
1942	}
1943
1944	/*
1945	 * Update dynamic beacon contents.  If this returns
1946	 * non-zero then we need to remap the memory because
1947	 * the beacon frame changed size (probably because
1948	 * of the TIM bitmap).
1949	 */
1950	m = bf->bf_m;
1951	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
1952	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
1953		/* XXX too conservative? */
1954		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1955		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1956					     bf->bf_segs, &bf->bf_nseg,
1957					     BUS_DMA_NOWAIT);
1958		if (error != 0) {
1959			if_printf(ic->ic_ifp,
1960			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
1961			    __func__, error);
1962			return;
1963		}
1964	}
1965
1966	/*
1967	 * Handle slot time change when a non-ERP station joins/leaves
1968	 * an 11g network.  The 802.11 layer notifies us via callback,
1969	 * we mark updateslot, then wait one beacon before effecting
1970	 * the change.  This gives associated stations at least one
1971	 * beacon interval to note the state change.
1972	 */
1973	/* XXX locking */
1974	if (sc->sc_updateslot == UPDATE)
1975		sc->sc_updateslot = COMMIT;	/* commit next beacon */
1976	else if (sc->sc_updateslot == COMMIT)
1977		ath_setslottime(sc);		/* commit change to h/w */
1978
1979	/*
1980	 * Check recent per-antenna transmit statistics and flip
1981	 * the default antenna if noticeably more frames went out
1982	 * on the non-default antenna.
1983	 * XXX assumes 2 anntenae
1984	 */
1985	otherant = sc->sc_defant & 1 ? 2 : 1;
1986	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
1987		ath_setdefantenna(sc, otherant);
1988	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
1989
1990	/*
1991	 * Construct tx descriptor.
1992	 */
1993	ath_beacon_setup(sc, bf);
1994
1995	/*
1996	 * Stop any current dma and put the new frame on the queue.
1997	 * This should never fail since we check above that no frames
1998	 * are still pending on the queue.
1999	 */
2000	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
2001		DPRINTF(sc, ATH_DEBUG_ANY,
2002			"%s: beacon queue %u did not stop?\n",
2003			__func__, sc->sc_bhalq);
2004	}
2005	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
2006
2007	/*
2008	 * Enable the CAB queue before the beacon queue to
2009	 * insure cab frames are triggered by this beacon.
2010	 */
2011	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
2012		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
2013	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
2014	ath_hal_txstart(ah, sc->sc_bhalq);
2015	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
2016		"%s: TXDP[%u] = %p (%p)\n", __func__,
2017		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
2018
2019	sc->sc_stats.ast_be_xmit++;
2020}
2021
2022/*
2023 * Reset the hardware after detecting beacons have stopped.
2024 */
2025static void
2026ath_bstuck_proc(void *arg, int pending)
2027{
2028	struct ath_softc *sc = arg;
2029	struct ifnet *ifp = sc->sc_ifp;
2030
2031	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
2032		sc->sc_bmisscount);
2033	ath_reset(ifp);
2034}
2035
2036/*
2037 * Reclaim beacon resources.
2038 */
2039static void
2040ath_beacon_free(struct ath_softc *sc)
2041{
2042	struct ath_buf *bf;
2043
2044	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
2045		if (bf->bf_m != NULL) {
2046			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2047			m_freem(bf->bf_m);
2048			bf->bf_m = NULL;
2049		}
2050		if (bf->bf_node != NULL) {
2051			ieee80211_free_node(bf->bf_node);
2052			bf->bf_node = NULL;
2053		}
2054	}
2055}
2056
2057/*
2058 * Configure the beacon and sleep timers.
2059 *
2060 * When operating as an AP this resets the TSF and sets
2061 * up the hardware to notify us when we need to issue beacons.
2062 *
2063 * When operating in station mode this sets up the beacon
2064 * timers according to the timestamp of the last received
2065 * beacon and the current TSF, configures PCF and DTIM
2066 * handling, programs the sleep registers so the hardware
2067 * will wakeup in time to receive beacons, and configures
2068 * the beacon miss handling so we'll receive a BMISS
2069 * interrupt when we stop seeing beacons from the AP
2070 * we've associated with.
2071 */
2072static void
2073ath_beacon_config(struct ath_softc *sc)
2074{
2075#define	TSF_TO_TU(_h,_l)	(((_h) << 22) | ((_l) >> 10))
2076	struct ath_hal *ah = sc->sc_ah;
2077	struct ieee80211com *ic = &sc->sc_ic;
2078	struct ieee80211_node *ni = ic->ic_bss;
2079	u_int32_t nexttbtt, intval;
2080
2081	/* extract tstamp from last beacon and convert to TU */
2082	nexttbtt = TSF_TO_TU(LE_READ_4(ni->ni_tstamp.data + 4),
2083			     LE_READ_4(ni->ni_tstamp.data));
2084	/* NB: the beacon interval is kept internally in TU's */
2085	intval = ni->ni_intval & HAL_BEACON_PERIOD;
2086	if (nexttbtt == 0)		/* e.g. for ap mode */
2087		nexttbtt = intval;
2088	else if (intval)		/* NB: can be 0 for monitor mode */
2089		nexttbtt = roundup(nexttbtt, intval);
2090	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2091		__func__, nexttbtt, intval, ni->ni_intval);
2092	if (ic->ic_opmode == IEEE80211_M_STA) {
2093		HAL_BEACON_STATE bs;
2094		u_int64_t tsf;
2095		u_int32_t tsftu;
2096		int dtimperiod, dtimcount;
2097		int cfpperiod, cfpcount;
2098
2099		/*
2100		 * Setup dtim and cfp parameters according to
2101		 * last beacon we received (which may be none).
2102		 */
2103		dtimperiod = ni->ni_dtim_period;
2104		if (dtimperiod <= 0)		/* NB: 0 if not known */
2105			dtimperiod = 1;
2106		dtimcount = ni->ni_dtim_count;
2107		if (dtimcount >= dtimperiod)	/* NB: sanity check */
2108			dtimcount = 0;		/* XXX? */
2109		cfpperiod = 1;			/* NB: no PCF support yet */
2110		cfpcount = 0;
2111#define	FUDGE	2
2112		/*
2113		 * Pull nexttbtt forward to reflect the current
2114		 * TSF and calculate dtim+cfp state for the result.
2115		 */
2116		tsf = ath_hal_gettsf64(ah);
2117		tsftu = TSF_TO_TU((u_int32_t)(tsf>>32), (u_int32_t)tsf) + FUDGE;
2118		do {
2119			nexttbtt += intval;
2120			if (--dtimcount < 0) {
2121				dtimcount = dtimperiod - 1;
2122				if (--cfpcount < 0)
2123					cfpcount = cfpperiod - 1;
2124			}
2125		} while (nexttbtt < tsftu);
2126#undef FUDGE
2127		memset(&bs, 0, sizeof(bs));
2128		bs.bs_intval = intval;
2129		bs.bs_nexttbtt = nexttbtt;
2130		bs.bs_dtimperiod = dtimperiod*intval;
2131		bs.bs_nextdtim = bs.bs_nexttbtt + dtimcount*intval;
2132		bs.bs_cfpperiod = cfpperiod*bs.bs_dtimperiod;
2133		bs.bs_cfpnext = bs.bs_nextdtim + cfpcount*bs.bs_dtimperiod;
2134		bs.bs_cfpmaxduration = 0;
2135#if 0
2136		/*
2137		 * The 802.11 layer records the offset to the DTIM
2138		 * bitmap while receiving beacons; use it here to
2139		 * enable h/w detection of our AID being marked in
2140		 * the bitmap vector (to indicate frames for us are
2141		 * pending at the AP).
2142		 * XXX do DTIM handling in s/w to WAR old h/w bugs
2143		 * XXX enable based on h/w rev for newer chips
2144		 */
2145		bs.bs_timoffset = ni->ni_timoff;
2146#endif
2147		/*
2148		 * Calculate the number of consecutive beacons to miss
2149		 * before taking a BMISS interrupt.  The configuration
2150		 * is specified in ms, so we need to convert that to
2151		 * TU's and then calculate based on the beacon interval.
2152		 * Note that we clamp the result to at most 10 beacons.
2153		 */
2154		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2155		if (bs.bs_bmissthreshold > 10)
2156			bs.bs_bmissthreshold = 10;
2157		else if (bs.bs_bmissthreshold <= 0)
2158			bs.bs_bmissthreshold = 1;
2159
2160		/*
2161		 * Calculate sleep duration.  The configuration is
2162		 * given in ms.  We insure a multiple of the beacon
2163		 * period is used.  Also, if the sleep duration is
2164		 * greater than the DTIM period then it makes senses
2165		 * to make it a multiple of that.
2166		 *
2167		 * XXX fixed at 100ms
2168		 */
2169		bs.bs_sleepduration =
2170			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2171		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2172			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2173
2174		DPRINTF(sc, ATH_DEBUG_BEACON,
2175			"%s: tsf %ju tsf:tu %u intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2176			, __func__
2177			, tsf, tsftu
2178			, bs.bs_intval
2179			, bs.bs_nexttbtt
2180			, bs.bs_dtimperiod
2181			, bs.bs_nextdtim
2182			, bs.bs_bmissthreshold
2183			, bs.bs_sleepduration
2184			, bs.bs_cfpperiod
2185			, bs.bs_cfpmaxduration
2186			, bs.bs_cfpnext
2187			, bs.bs_timoffset
2188		);
2189		ath_hal_intrset(ah, 0);
2190		ath_hal_beacontimers(ah, &bs);
2191		sc->sc_imask |= HAL_INT_BMISS;
2192		ath_hal_intrset(ah, sc->sc_imask);
2193	} else {
2194		ath_hal_intrset(ah, 0);
2195		if (nexttbtt == intval)
2196			intval |= HAL_BEACON_RESET_TSF;
2197		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2198			/*
2199			 * In IBSS mode enable the beacon timers but only
2200			 * enable SWBA interrupts if we need to manually
2201			 * prepare beacon frames.  Otherwise we use a
2202			 * self-linked tx descriptor and let the hardware
2203			 * deal with things.
2204			 */
2205			intval |= HAL_BEACON_ENA;
2206			if (!sc->sc_hasveol)
2207				sc->sc_imask |= HAL_INT_SWBA;
2208			ath_beaconq_config(sc);
2209		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2210			/*
2211			 * In AP mode we enable the beacon timers and
2212			 * SWBA interrupts to prepare beacon frames.
2213			 */
2214			intval |= HAL_BEACON_ENA;
2215			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2216			ath_beaconq_config(sc);
2217		}
2218		ath_hal_beaconinit(ah, nexttbtt, intval);
2219		sc->sc_bmisscount = 0;
2220		ath_hal_intrset(ah, sc->sc_imask);
2221		/*
2222		 * When using a self-linked beacon descriptor in
2223		 * ibss mode load it once here.
2224		 */
2225		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2226			ath_beacon_proc(sc, 0);
2227	}
2228#undef TSF_TO_TU
2229}
2230
2231static void
2232ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2233{
2234	bus_addr_t *paddr = (bus_addr_t*) arg;
2235	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2236	*paddr = segs->ds_addr;
2237}
2238
2239static int
2240ath_descdma_setup(struct ath_softc *sc,
2241	struct ath_descdma *dd, ath_bufhead *head,
2242	const char *name, int nbuf, int ndesc)
2243{
2244#define	DS2PHYS(_dd, _ds) \
2245	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2246	struct ifnet *ifp = sc->sc_ifp;
2247	struct ath_desc *ds;
2248	struct ath_buf *bf;
2249	int i, bsize, error;
2250
2251	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2252	    __func__, name, nbuf, ndesc);
2253
2254	dd->dd_name = name;
2255	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2256
2257	/*
2258	 * Setup DMA descriptor area.
2259	 */
2260	error = bus_dma_tag_create(NULL,	/* parent */
2261		       PAGE_SIZE, 0,		/* alignment, bounds */
2262		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2263		       BUS_SPACE_MAXADDR,	/* highaddr */
2264		       NULL, NULL,		/* filter, filterarg */
2265		       dd->dd_desc_len,		/* maxsize */
2266		       1,			/* nsegments */
2267		       BUS_SPACE_MAXADDR,	/* maxsegsize */
2268		       BUS_DMA_ALLOCNOW,	/* flags */
2269		       NULL,			/* lockfunc */
2270		       NULL,			/* lockarg */
2271		       &dd->dd_dmat);
2272	if (error != 0) {
2273		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2274		return error;
2275	}
2276
2277	/* allocate descriptors */
2278	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2279	if (error != 0) {
2280		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2281			"error %u\n", dd->dd_name, error);
2282		goto fail0;
2283	}
2284
2285	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2286				 BUS_DMA_NOWAIT, &dd->dd_dmamap);
2287	if (error != 0) {
2288		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2289			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2290		goto fail1;
2291	}
2292
2293	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2294				dd->dd_desc, dd->dd_desc_len,
2295				ath_load_cb, &dd->dd_desc_paddr,
2296				BUS_DMA_NOWAIT);
2297	if (error != 0) {
2298		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2299			dd->dd_name, error);
2300		goto fail2;
2301	}
2302
2303	ds = dd->dd_desc;
2304	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2305	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2306	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2307
2308	/* allocate rx buffers */
2309	bsize = sizeof(struct ath_buf) * nbuf;
2310	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2311	if (bf == NULL) {
2312		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2313			dd->dd_name, bsize);
2314		goto fail3;
2315	}
2316	dd->dd_bufptr = bf;
2317
2318	STAILQ_INIT(head);
2319	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2320		bf->bf_desc = ds;
2321		bf->bf_daddr = DS2PHYS(dd, ds);
2322		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2323				&bf->bf_dmamap);
2324		if (error != 0) {
2325			if_printf(ifp, "unable to create dmamap for %s "
2326				"buffer %u, error %u\n", dd->dd_name, i, error);
2327			ath_descdma_cleanup(sc, dd, head);
2328			return error;
2329		}
2330		STAILQ_INSERT_TAIL(head, bf, bf_list);
2331	}
2332	return 0;
2333fail3:
2334	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2335fail2:
2336	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2337fail1:
2338	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2339fail0:
2340	bus_dma_tag_destroy(dd->dd_dmat);
2341	memset(dd, 0, sizeof(*dd));
2342	return error;
2343#undef DS2PHYS
2344}
2345
2346static void
2347ath_descdma_cleanup(struct ath_softc *sc,
2348	struct ath_descdma *dd, ath_bufhead *head)
2349{
2350	struct ath_buf *bf;
2351	struct ieee80211_node *ni;
2352
2353	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2354	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2355	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2356	bus_dma_tag_destroy(dd->dd_dmat);
2357
2358	STAILQ_FOREACH(bf, head, bf_list) {
2359		if (bf->bf_m) {
2360			m_freem(bf->bf_m);
2361			bf->bf_m = NULL;
2362		}
2363		if (bf->bf_dmamap != NULL) {
2364			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2365			bf->bf_dmamap = NULL;
2366		}
2367		ni = bf->bf_node;
2368		bf->bf_node = NULL;
2369		if (ni != NULL) {
2370			/*
2371			 * Reclaim node reference.
2372			 */
2373			ieee80211_free_node(ni);
2374		}
2375	}
2376
2377	STAILQ_INIT(head);
2378	free(dd->dd_bufptr, M_ATHDEV);
2379	memset(dd, 0, sizeof(*dd));
2380}
2381
2382static int
2383ath_desc_alloc(struct ath_softc *sc)
2384{
2385	int error;
2386
2387	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2388			"rx", ATH_RXBUF, 1);
2389	if (error != 0)
2390		return error;
2391
2392	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2393			"tx", ATH_TXBUF, ATH_TXDESC);
2394	if (error != 0) {
2395		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2396		return error;
2397	}
2398
2399	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2400			"beacon", 1, 1);
2401	if (error != 0) {
2402		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2403		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2404		return error;
2405	}
2406	return 0;
2407}
2408
2409static void
2410ath_desc_free(struct ath_softc *sc)
2411{
2412
2413	if (sc->sc_bdma.dd_desc_len != 0)
2414		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2415	if (sc->sc_txdma.dd_desc_len != 0)
2416		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2417	if (sc->sc_rxdma.dd_desc_len != 0)
2418		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2419}
2420
2421static struct ieee80211_node *
2422ath_node_alloc(struct ieee80211_node_table *nt)
2423{
2424	struct ieee80211com *ic = nt->nt_ic;
2425	struct ath_softc *sc = ic->ic_ifp->if_softc;
2426	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2427	struct ath_node *an;
2428
2429	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2430	if (an == NULL) {
2431		/* XXX stat+msg */
2432		return NULL;
2433	}
2434	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2435	an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2436	an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2437	an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2438	ath_rate_node_init(sc, an);
2439
2440	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2441	return &an->an_node;
2442}
2443
2444static void
2445ath_node_free(struct ieee80211_node *ni)
2446{
2447	struct ieee80211com *ic = ni->ni_ic;
2448        struct ath_softc *sc = ic->ic_ifp->if_softc;
2449
2450	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2451
2452	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2453	sc->sc_node_free(ni);
2454}
2455
2456static u_int8_t
2457ath_node_getrssi(const struct ieee80211_node *ni)
2458{
2459#define	HAL_EP_RND(x, mul) \
2460	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2461	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2462	int32_t rssi;
2463
2464	/*
2465	 * When only one frame is received there will be no state in
2466	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2467	 */
2468	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2469		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2470	else
2471		rssi = ni->ni_rssi;
2472	/* NB: theoretically we shouldn't need this, but be paranoid */
2473	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2474#undef HAL_EP_RND
2475}
2476
2477static int
2478ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2479{
2480	struct ath_hal *ah = sc->sc_ah;
2481	int error;
2482	struct mbuf *m;
2483	struct ath_desc *ds;
2484
2485	m = bf->bf_m;
2486	if (m == NULL) {
2487		/*
2488		 * NB: by assigning a page to the rx dma buffer we
2489		 * implicitly satisfy the Atheros requirement that
2490		 * this buffer be cache-line-aligned and sized to be
2491		 * multiple of the cache line size.  Not doing this
2492		 * causes weird stuff to happen (for the 5210 at least).
2493		 */
2494		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2495		if (m == NULL) {
2496			DPRINTF(sc, ATH_DEBUG_ANY,
2497				"%s: no mbuf/cluster\n", __func__);
2498			sc->sc_stats.ast_rx_nombuf++;
2499			return ENOMEM;
2500		}
2501		bf->bf_m = m;
2502		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2503
2504		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
2505					     bf->bf_dmamap, m,
2506					     bf->bf_segs, &bf->bf_nseg,
2507					     BUS_DMA_NOWAIT);
2508		if (error != 0) {
2509			DPRINTF(sc, ATH_DEBUG_ANY,
2510			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
2511			    __func__, error);
2512			sc->sc_stats.ast_rx_busdma++;
2513			return error;
2514		}
2515		KASSERT(bf->bf_nseg == 1,
2516			("multi-segment packet; nseg %u", bf->bf_nseg));
2517	}
2518	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2519
2520	/*
2521	 * Setup descriptors.  For receive we always terminate
2522	 * the descriptor list with a self-linked entry so we'll
2523	 * not get overrun under high load (as can happen with a
2524	 * 5212 when ANI processing enables PHY error frames).
2525	 *
2526	 * To insure the last descriptor is self-linked we create
2527	 * each descriptor as self-linked and add it to the end.  As
2528	 * each additional descriptor is added the previous self-linked
2529	 * entry is ``fixed'' naturally.  This should be safe even
2530	 * if DMA is happening.  When processing RX interrupts we
2531	 * never remove/process the last, self-linked, entry on the
2532	 * descriptor list.  This insures the hardware always has
2533	 * someplace to write a new frame.
2534	 */
2535	ds = bf->bf_desc;
2536	ds->ds_link = bf->bf_daddr;	/* link to self */
2537	ds->ds_data = bf->bf_segs[0].ds_addr;
2538	ath_hal_setuprxdesc(ah, ds
2539		, m->m_len		/* buffer size */
2540		, 0
2541	);
2542
2543	if (sc->sc_rxlink != NULL)
2544		*sc->sc_rxlink = bf->bf_daddr;
2545	sc->sc_rxlink = &ds->ds_link;
2546	return 0;
2547}
2548
2549/*
2550 * Extend 15-bit time stamp from rx descriptor to
2551 * a full 64-bit TSF using the current h/w TSF.
2552 */
2553static __inline u_int64_t
2554ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
2555{
2556	u_int64_t tsf;
2557
2558	tsf = ath_hal_gettsf64(ah);
2559	if ((tsf & 0x7fff) < rstamp)
2560		tsf -= 0x8000;
2561	return ((tsf &~ 0x7fff) | rstamp);
2562}
2563
2564/*
2565 * Intercept management frames to collect beacon rssi data
2566 * and to do ibss merges.
2567 */
2568static void
2569ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2570	struct ieee80211_node *ni,
2571	int subtype, int rssi, u_int32_t rstamp)
2572{
2573	struct ath_softc *sc = ic->ic_ifp->if_softc;
2574
2575	/*
2576	 * Call up first so subsequent work can use information
2577	 * potentially stored in the node (e.g. for ibss merge).
2578	 */
2579	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2580	switch (subtype) {
2581	case IEEE80211_FC0_SUBTYPE_BEACON:
2582		/* update rssi statistics for use by the hal */
2583		ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2584		/* fall thru... */
2585	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2586		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2587		    ic->ic_state == IEEE80211_S_RUN) {
2588			u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp);
2589			/*
2590			 * Handle ibss merge as needed; check the tsf on the
2591			 * frame before attempting the merge.  The 802.11 spec
2592			 * says the station should change it's bssid to match
2593			 * the oldest station with the same ssid, where oldest
2594			 * is determined by the tsf.  Note that hardware
2595			 * reconfiguration happens through callback to
2596			 * ath_newstate as the state machine will go from
2597			 * RUN -> RUN when this happens.
2598			 */
2599			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2600				DPRINTF(sc, ATH_DEBUG_STATE,
2601				    "ibss merge, rstamp %u tsf %ju "
2602				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2603				    (uintmax_t)ni->ni_tstamp.tsf);
2604				(void) ieee80211_ibss_merge(ni);
2605			}
2606		}
2607		break;
2608	}
2609}
2610
2611/*
2612 * Set the default antenna.
2613 */
2614static void
2615ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2616{
2617	struct ath_hal *ah = sc->sc_ah;
2618
2619	/* XXX block beacon interrupts */
2620	ath_hal_setdefantenna(ah, antenna);
2621	if (sc->sc_defant != antenna)
2622		sc->sc_stats.ast_ant_defswitch++;
2623	sc->sc_defant = antenna;
2624	sc->sc_rxotherant = 0;
2625}
2626
2627static void
2628ath_rx_proc(void *arg, int npending)
2629{
2630#define	PA2DESC(_sc, _pa) \
2631	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2632		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2633	struct ath_softc *sc = arg;
2634	struct ath_buf *bf;
2635	struct ieee80211com *ic = &sc->sc_ic;
2636	struct ifnet *ifp = sc->sc_ifp;
2637	struct ath_hal *ah = sc->sc_ah;
2638	struct ath_desc *ds;
2639	struct mbuf *m;
2640	struct ieee80211_node *ni;
2641	struct ath_node *an;
2642	int len, type;
2643	u_int phyerr;
2644	HAL_STATUS status;
2645
2646	NET_LOCK_GIANT();		/* XXX */
2647
2648	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2649	do {
2650		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2651		if (bf == NULL) {		/* NB: shouldn't happen */
2652			if_printf(ifp, "%s: no buffer!\n", __func__);
2653			break;
2654		}
2655		ds = bf->bf_desc;
2656		if (ds->ds_link == bf->bf_daddr) {
2657			/* NB: never process the self-linked entry at the end */
2658			break;
2659		}
2660		m = bf->bf_m;
2661		if (m == NULL) {		/* NB: shouldn't happen */
2662			if_printf(ifp, "%s: no mbuf!\n", __func__);
2663			continue;
2664		}
2665		/* XXX sync descriptor memory */
2666		/*
2667		 * Must provide the virtual address of the current
2668		 * descriptor, the physical address, and the virtual
2669		 * address of the next descriptor in the h/w chain.
2670		 * This allows the HAL to look ahead to see if the
2671		 * hardware is done with a descriptor by checking the
2672		 * done bit in the following descriptor and the address
2673		 * of the current descriptor the DMA engine is working
2674		 * on.  All this is necessary because of our use of
2675		 * a self-linked list to avoid rx overruns.
2676		 */
2677		status = ath_hal_rxprocdesc(ah, ds,
2678				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2679#ifdef AR_DEBUG
2680		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2681			ath_printrxbuf(bf, status == HAL_OK);
2682#endif
2683		if (status == HAL_EINPROGRESS)
2684			break;
2685		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2686		if (ds->ds_rxstat.rs_more) {
2687			/*
2688			 * Frame spans multiple descriptors; this
2689			 * cannot happen yet as we don't support
2690			 * jumbograms.  If not in monitor mode,
2691			 * discard the frame.
2692			 */
2693			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2694				sc->sc_stats.ast_rx_toobig++;
2695				goto rx_next;
2696			}
2697			/* fall thru for monitor mode handling... */
2698		} else if (ds->ds_rxstat.rs_status != 0) {
2699			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2700				sc->sc_stats.ast_rx_crcerr++;
2701			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2702				sc->sc_stats.ast_rx_fifoerr++;
2703			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2704				sc->sc_stats.ast_rx_phyerr++;
2705				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2706				sc->sc_stats.ast_rx_phy[phyerr]++;
2707				goto rx_next;
2708			}
2709			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2710				/*
2711				 * Decrypt error.  If the error occurred
2712				 * because there was no hardware key, then
2713				 * let the frame through so the upper layers
2714				 * can process it.  This is necessary for 5210
2715				 * parts which have no way to setup a ``clear''
2716				 * key cache entry.
2717				 *
2718				 * XXX do key cache faulting
2719				 */
2720				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2721					goto rx_accept;
2722				sc->sc_stats.ast_rx_badcrypt++;
2723			}
2724			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2725				sc->sc_stats.ast_rx_badmic++;
2726				/*
2727				 * Do minimal work required to hand off
2728				 * the 802.11 header for notifcation.
2729				 */
2730				/* XXX frag's and qos frames */
2731				len = ds->ds_rxstat.rs_datalen;
2732				if (len >= sizeof (struct ieee80211_frame)) {
2733					bus_dmamap_sync(sc->sc_dmat,
2734					    bf->bf_dmamap,
2735					    BUS_DMASYNC_POSTREAD);
2736					ieee80211_notify_michael_failure(ic,
2737					    mtod(m, struct ieee80211_frame *),
2738					    sc->sc_splitmic ?
2739					        ds->ds_rxstat.rs_keyix-32 :
2740					        ds->ds_rxstat.rs_keyix
2741					);
2742				}
2743			}
2744			ifp->if_ierrors++;
2745			/*
2746			 * Reject error frames, we normally don't want
2747			 * to see them in monitor mode (in monitor mode
2748			 * allow through packets that have crypto problems).
2749			 */
2750			if ((ds->ds_rxstat.rs_status &~
2751				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2752			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2753				goto rx_next;
2754		}
2755rx_accept:
2756		/*
2757		 * Sync and unmap the frame.  At this point we're
2758		 * committed to passing the mbuf somewhere so clear
2759		 * bf_m; this means a new sk_buff must be allocated
2760		 * when the rx descriptor is setup again to receive
2761		 * another frame.
2762		 */
2763		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2764		    BUS_DMASYNC_POSTREAD);
2765		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2766		bf->bf_m = NULL;
2767
2768		m->m_pkthdr.rcvif = ifp;
2769		len = ds->ds_rxstat.rs_datalen;
2770		m->m_pkthdr.len = m->m_len = len;
2771
2772		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2773
2774		if (sc->sc_drvbpf) {
2775			u_int8_t rix;
2776
2777			/*
2778			 * Discard anything shorter than an ack or cts.
2779			 */
2780			if (len < IEEE80211_ACK_LEN) {
2781				DPRINTF(sc, ATH_DEBUG_RECV,
2782					"%s: runt packet %d\n",
2783					__func__, len);
2784				sc->sc_stats.ast_rx_tooshort++;
2785				m_freem(m);
2786				goto rx_next;
2787			}
2788			rix = ds->ds_rxstat.rs_rate;
2789			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2790			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2791			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2792			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2793			/* XXX TSF */
2794
2795			bpf_mtap2(sc->sc_drvbpf,
2796				&sc->sc_rx_th, sc->sc_rx_th_len, m);
2797		}
2798
2799		/*
2800		 * From this point on we assume the frame is at least
2801		 * as large as ieee80211_frame_min; verify that.
2802		 */
2803		if (len < IEEE80211_MIN_LEN) {
2804			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2805				__func__, len);
2806			sc->sc_stats.ast_rx_tooshort++;
2807			m_freem(m);
2808			goto rx_next;
2809		}
2810
2811		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2812			ieee80211_dump_pkt(mtod(m, caddr_t), len,
2813				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2814				   ds->ds_rxstat.rs_rssi);
2815		}
2816
2817		m_adj(m, -IEEE80211_CRC_LEN);
2818
2819		/*
2820		 * Locate the node for sender, track state, and then
2821		 * pass the (referenced) node up to the 802.11 layer
2822		 * for its use.  If the sender is unknown spam the
2823		 * frame; it'll be dropped where it's not wanted.
2824		 */
2825		if (ds->ds_rxstat.rs_keyix != HAL_RXKEYIX_INVALID &&
2826		    (ni = sc->sc_keyixmap[ds->ds_rxstat.rs_keyix]) != NULL) {
2827			/*
2828			 * Fast path: node is present in the key map;
2829			 * grab a reference for processing the frame.
2830			 */
2831			an = ATH_NODE(ieee80211_ref_node(ni));
2832			ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2833			type = ieee80211_input(ic, m, ni,
2834				ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2835		} else {
2836			/*
2837			 * Locate the node for sender, track state, and then
2838			 * pass the (referenced) node up to the 802.11 layer
2839			 * for its use.
2840			 */
2841			ni = ieee80211_find_rxnode(ic,
2842				mtod(m, const struct ieee80211_frame_min *));
2843			/*
2844			 * Track rx rssi and do any rx antenna management.
2845			 */
2846			an = ATH_NODE(ni);
2847			ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2848			/*
2849			 * Send frame up for processing.
2850			 */
2851			type = ieee80211_input(ic, m, ni,
2852				ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2853			if (ni != ic->ic_bss) {
2854				u_int16_t keyix;
2855				/*
2856				 * If the station has a key cache slot assigned
2857				 * update the key->node mapping table.
2858				 */
2859				keyix = ni->ni_ucastkey.wk_keyix;
2860				if (keyix != IEEE80211_KEYIX_NONE &&
2861				    sc->sc_keyixmap[keyix] == NULL)
2862					sc->sc_keyixmap[keyix] =
2863						ieee80211_ref_node(ni);
2864			}
2865		}
2866		ieee80211_free_node(ni);
2867		if (sc->sc_diversity) {
2868			/*
2869			 * When using fast diversity, change the default rx
2870			 * antenna if diversity chooses the other antenna 3
2871			 * times in a row.
2872			 */
2873			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2874				if (++sc->sc_rxotherant >= 3)
2875					ath_setdefantenna(sc,
2876						ds->ds_rxstat.rs_antenna);
2877			} else
2878				sc->sc_rxotherant = 0;
2879		}
2880		if (sc->sc_softled) {
2881			/*
2882			 * Blink for any data frame.  Otherwise do a
2883			 * heartbeat-style blink when idle.  The latter
2884			 * is mainly for station mode where we depend on
2885			 * periodic beacon frames to trigger the poll event.
2886			 */
2887			if (type == IEEE80211_FC0_TYPE_DATA) {
2888				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
2889				ath_led_event(sc, ATH_LED_RX);
2890			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
2891				ath_led_event(sc, ATH_LED_POLL);
2892		}
2893rx_next:
2894		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2895	} while (ath_rxbuf_init(sc, bf) == 0);
2896
2897	/* rx signal state monitoring */
2898	ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
2899
2900	NET_UNLOCK_GIANT();		/* XXX */
2901#undef PA2DESC
2902}
2903
2904/*
2905 * Setup a h/w transmit queue.
2906 */
2907static struct ath_txq *
2908ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2909{
2910#define	N(a)	(sizeof(a)/sizeof(a[0]))
2911	struct ath_hal *ah = sc->sc_ah;
2912	HAL_TXQ_INFO qi;
2913	int qnum;
2914
2915	memset(&qi, 0, sizeof(qi));
2916	qi.tqi_subtype = subtype;
2917	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2918	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2919	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2920	/*
2921	 * Enable interrupts only for EOL and DESC conditions.
2922	 * We mark tx descriptors to receive a DESC interrupt
2923	 * when a tx queue gets deep; otherwise waiting for the
2924	 * EOL to reap descriptors.  Note that this is done to
2925	 * reduce interrupt load and this only defers reaping
2926	 * descriptors, never transmitting frames.  Aside from
2927	 * reducing interrupts this also permits more concurrency.
2928	 * The only potential downside is if the tx queue backs
2929	 * up in which case the top half of the kernel may backup
2930	 * due to a lack of tx descriptors.
2931	 */
2932	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
2933	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
2934	if (qnum == -1) {
2935		/*
2936		 * NB: don't print a message, this happens
2937		 * normally on parts with too few tx queues
2938		 */
2939		return NULL;
2940	}
2941	if (qnum >= N(sc->sc_txq)) {
2942		device_printf(sc->sc_dev,
2943			"hal qnum %u out of range, max %zu!\n",
2944			qnum, N(sc->sc_txq));
2945		ath_hal_releasetxqueue(ah, qnum);
2946		return NULL;
2947	}
2948	if (!ATH_TXQ_SETUP(sc, qnum)) {
2949		struct ath_txq *txq = &sc->sc_txq[qnum];
2950
2951		txq->axq_qnum = qnum;
2952		txq->axq_depth = 0;
2953		txq->axq_intrcnt = 0;
2954		txq->axq_link = NULL;
2955		STAILQ_INIT(&txq->axq_q);
2956		ATH_TXQ_LOCK_INIT(sc, txq);
2957		sc->sc_txqsetup |= 1<<qnum;
2958	}
2959	return &sc->sc_txq[qnum];
2960#undef N
2961}
2962
2963/*
2964 * Setup a hardware data transmit queue for the specified
2965 * access control.  The hal may not support all requested
2966 * queues in which case it will return a reference to a
2967 * previously setup queue.  We record the mapping from ac's
2968 * to h/w queues for use by ath_tx_start and also track
2969 * the set of h/w queues being used to optimize work in the
2970 * transmit interrupt handler and related routines.
2971 */
2972static int
2973ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
2974{
2975#define	N(a)	(sizeof(a)/sizeof(a[0]))
2976	struct ath_txq *txq;
2977
2978	if (ac >= N(sc->sc_ac2q)) {
2979		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2980			ac, N(sc->sc_ac2q));
2981		return 0;
2982	}
2983	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
2984	if (txq != NULL) {
2985		sc->sc_ac2q[ac] = txq;
2986		return 1;
2987	} else
2988		return 0;
2989#undef N
2990}
2991
2992/*
2993 * Update WME parameters for a transmit queue.
2994 */
2995static int
2996ath_txq_update(struct ath_softc *sc, int ac)
2997{
2998#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
2999#define	ATH_TXOP_TO_US(v)		(v<<5)
3000	struct ieee80211com *ic = &sc->sc_ic;
3001	struct ath_txq *txq = sc->sc_ac2q[ac];
3002	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
3003	struct ath_hal *ah = sc->sc_ah;
3004	HAL_TXQ_INFO qi;
3005
3006	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
3007	qi.tqi_aifs = wmep->wmep_aifsn;
3008	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
3009	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
3010	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
3011
3012	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
3013		device_printf(sc->sc_dev, "unable to update hardware queue "
3014			"parameters for %s traffic!\n",
3015			ieee80211_wme_acnames[ac]);
3016		return 0;
3017	} else {
3018		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
3019		return 1;
3020	}
3021#undef ATH_TXOP_TO_US
3022#undef ATH_EXPONENT_TO_VALUE
3023}
3024
3025/*
3026 * Callback from the 802.11 layer to update WME parameters.
3027 */
3028static int
3029ath_wme_update(struct ieee80211com *ic)
3030{
3031	struct ath_softc *sc = ic->ic_ifp->if_softc;
3032
3033	return !ath_txq_update(sc, WME_AC_BE) ||
3034	    !ath_txq_update(sc, WME_AC_BK) ||
3035	    !ath_txq_update(sc, WME_AC_VI) ||
3036	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
3037}
3038
3039/*
3040 * Reclaim resources for a setup queue.
3041 */
3042static void
3043ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
3044{
3045
3046	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
3047	ATH_TXQ_LOCK_DESTROY(txq);
3048	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
3049}
3050
3051/*
3052 * Reclaim all tx queue resources.
3053 */
3054static void
3055ath_tx_cleanup(struct ath_softc *sc)
3056{
3057	int i;
3058
3059	ATH_TXBUF_LOCK_DESTROY(sc);
3060	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3061		if (ATH_TXQ_SETUP(sc, i))
3062			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
3063}
3064
3065/*
3066 * Defragment an mbuf chain, returning at most maxfrags separate
3067 * mbufs+clusters.  If this is not possible NULL is returned and
3068 * the original mbuf chain is left in it's present (potentially
3069 * modified) state.  We use two techniques: collapsing consecutive
3070 * mbufs and replacing consecutive mbufs by a cluster.
3071 */
3072static struct mbuf *
3073ath_defrag(struct mbuf *m0, int how, int maxfrags)
3074{
3075	struct mbuf *m, *n, *n2, **prev;
3076	u_int curfrags;
3077
3078	/*
3079	 * Calculate the current number of frags.
3080	 */
3081	curfrags = 0;
3082	for (m = m0; m != NULL; m = m->m_next)
3083		curfrags++;
3084	/*
3085	 * First, try to collapse mbufs.  Note that we always collapse
3086	 * towards the front so we don't need to deal with moving the
3087	 * pkthdr.  This may be suboptimal if the first mbuf has much
3088	 * less data than the following.
3089	 */
3090	m = m0;
3091again:
3092	for (;;) {
3093		n = m->m_next;
3094		if (n == NULL)
3095			break;
3096		if ((m->m_flags & M_RDONLY) == 0 &&
3097		    n->m_len < M_TRAILINGSPACE(m)) {
3098			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
3099				n->m_len);
3100			m->m_len += n->m_len;
3101			m->m_next = n->m_next;
3102			m_free(n);
3103			if (--curfrags <= maxfrags)
3104				return m0;
3105		} else
3106			m = n;
3107	}
3108	KASSERT(maxfrags > 1,
3109		("maxfrags %u, but normal collapse failed", maxfrags));
3110	/*
3111	 * Collapse consecutive mbufs to a cluster.
3112	 */
3113	prev = &m0->m_next;		/* NB: not the first mbuf */
3114	while ((n = *prev) != NULL) {
3115		if ((n2 = n->m_next) != NULL &&
3116		    n->m_len + n2->m_len < MCLBYTES) {
3117			m = m_getcl(how, MT_DATA, 0);
3118			if (m == NULL)
3119				goto bad;
3120			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
3121			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
3122				n2->m_len);
3123			m->m_len = n->m_len + n2->m_len;
3124			m->m_next = n2->m_next;
3125			*prev = m;
3126			m_free(n);
3127			m_free(n2);
3128			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
3129				return m0;
3130			/*
3131			 * Still not there, try the normal collapse
3132			 * again before we allocate another cluster.
3133			 */
3134			goto again;
3135		}
3136		prev = &n->m_next;
3137	}
3138	/*
3139	 * No place where we can collapse to a cluster; punt.
3140	 * This can occur if, for example, you request 2 frags
3141	 * but the packet requires that both be clusters (we
3142	 * never reallocate the first mbuf to avoid moving the
3143	 * packet header).
3144	 */
3145bad:
3146	return NULL;
3147}
3148
3149static int
3150ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3151    struct mbuf *m0)
3152{
3153#define	CTS_DURATION \
3154	ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
3155#define	updateCTSForBursting(_ah, _ds, _txq) \
3156	ath_hal_updateCTSForBursting(_ah, _ds, \
3157	    _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
3158	    _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
3159	    txopLimit, CTS_DURATION)
3160	struct ieee80211com *ic = &sc->sc_ic;
3161	struct ath_hal *ah = sc->sc_ah;
3162	struct ifnet *ifp = sc->sc_ifp;
3163	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3164	int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
3165	u_int8_t rix, txrate, ctsrate;
3166	u_int8_t cix = 0xff;		/* NB: silence compiler */
3167	struct ath_desc *ds, *ds0;
3168	struct ath_txq *txq;
3169	struct ieee80211_frame *wh;
3170	u_int subtype, flags, ctsduration;
3171	HAL_PKT_TYPE atype;
3172	const HAL_RATE_TABLE *rt;
3173	HAL_BOOL shortPreamble;
3174	struct ath_node *an;
3175	struct mbuf *m;
3176	u_int pri;
3177
3178	wh = mtod(m0, struct ieee80211_frame *);
3179	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3180	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3181	hdrlen = ieee80211_anyhdrsize(wh);
3182	/*
3183	 * Packet length must not include any
3184	 * pad bytes; deduct them here.
3185	 */
3186	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3187
3188	if (iswep) {
3189		const struct ieee80211_cipher *cip;
3190		struct ieee80211_key *k;
3191
3192		/*
3193		 * Construct the 802.11 header+trailer for an encrypted
3194		 * frame. The only reason this can fail is because of an
3195		 * unknown or unsupported cipher/key type.
3196		 */
3197		k = ieee80211_crypto_encap(ic, ni, m0);
3198		if (k == NULL) {
3199			/*
3200			 * This can happen when the key is yanked after the
3201			 * frame was queued.  Just discard the frame; the
3202			 * 802.11 layer counts failures and provides
3203			 * debugging/diagnostics.
3204			 */
3205			m_freem(m0);
3206			return EIO;
3207		}
3208		/*
3209		 * Adjust the packet + header lengths for the crypto
3210		 * additions and calculate the h/w key index.  When
3211		 * a s/w mic is done the frame will have had any mic
3212		 * added to it prior to entry so skb->len above will
3213		 * account for it. Otherwise we need to add it to the
3214		 * packet length.
3215		 */
3216		cip = k->wk_cipher;
3217		hdrlen += cip->ic_header;
3218		pktlen += cip->ic_header + cip->ic_trailer;
3219		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3220			pktlen += cip->ic_miclen;
3221		keyix = k->wk_keyix;
3222
3223		/* packet header may have moved, reset our local pointer */
3224		wh = mtod(m0, struct ieee80211_frame *);
3225	} else if (ni->ni_ucastkey.wk_cipher == &ieee80211_cipher_none) {
3226		/*
3227		 * Use station key cache slot, if assigned.
3228		 */
3229		keyix = ni->ni_ucastkey.wk_keyix;
3230		if (keyix == IEEE80211_KEYIX_NONE)
3231			keyix = HAL_TXKEYIX_INVALID;
3232	} else
3233		keyix = HAL_TXKEYIX_INVALID;
3234
3235	pktlen += IEEE80211_CRC_LEN;
3236
3237	/*
3238	 * Load the DMA map so any coalescing is done.  This
3239	 * also calculates the number of descriptors we need.
3240	 */
3241	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3242				     bf->bf_segs, &bf->bf_nseg,
3243				     BUS_DMA_NOWAIT);
3244	if (error == EFBIG) {
3245		/* XXX packet requires too many descriptors */
3246		bf->bf_nseg = ATH_TXDESC+1;
3247	} else if (error != 0) {
3248		sc->sc_stats.ast_tx_busdma++;
3249		m_freem(m0);
3250		return error;
3251	}
3252	/*
3253	 * Discard null packets and check for packets that
3254	 * require too many TX descriptors.  We try to convert
3255	 * the latter to a cluster.
3256	 */
3257	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
3258		sc->sc_stats.ast_tx_linear++;
3259		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3260		if (m == NULL) {
3261			m_freem(m0);
3262			sc->sc_stats.ast_tx_nombuf++;
3263			return ENOMEM;
3264		}
3265		m0 = m;
3266		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3267					     bf->bf_segs, &bf->bf_nseg,
3268					     BUS_DMA_NOWAIT);
3269		if (error != 0) {
3270			sc->sc_stats.ast_tx_busdma++;
3271			m_freem(m0);
3272			return error;
3273		}
3274		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3275		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3276	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3277		sc->sc_stats.ast_tx_nodata++;
3278		m_freem(m0);
3279		return EIO;
3280	}
3281	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3282	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3283	bf->bf_m = m0;
3284	bf->bf_node = ni;			/* NB: held reference */
3285
3286	/* setup descriptors */
3287	ds = bf->bf_desc;
3288	rt = sc->sc_currates;
3289	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3290
3291	/*
3292	 * NB: the 802.11 layer marks whether or not we should
3293	 * use short preamble based on the current mode and
3294	 * negotiated parameters.
3295	 */
3296	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3297	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3298		shortPreamble = AH_TRUE;
3299		sc->sc_stats.ast_tx_shortpre++;
3300	} else {
3301		shortPreamble = AH_FALSE;
3302	}
3303
3304	an = ATH_NODE(ni);
3305	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3306	/*
3307	 * Calculate Atheros packet type from IEEE80211 packet header,
3308	 * setup for rate calculations, and select h/w transmit queue.
3309	 */
3310	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3311	case IEEE80211_FC0_TYPE_MGT:
3312		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3313		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3314			atype = HAL_PKT_TYPE_BEACON;
3315		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3316			atype = HAL_PKT_TYPE_PROBE_RESP;
3317		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3318			atype = HAL_PKT_TYPE_ATIM;
3319		else
3320			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3321		rix = 0;			/* XXX lowest rate */
3322		try0 = ATH_TXMAXTRY;
3323		if (shortPreamble)
3324			txrate = an->an_tx_mgtratesp;
3325		else
3326			txrate = an->an_tx_mgtrate;
3327		/* NB: force all management frames to highest queue */
3328		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3329			/* NB: force all management frames to highest queue */
3330			pri = WME_AC_VO;
3331		} else
3332			pri = WME_AC_BE;
3333		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3334		break;
3335	case IEEE80211_FC0_TYPE_CTL:
3336		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3337		rix = 0;			/* XXX lowest rate */
3338		try0 = ATH_TXMAXTRY;
3339		if (shortPreamble)
3340			txrate = an->an_tx_mgtratesp;
3341		else
3342			txrate = an->an_tx_mgtrate;
3343		/* NB: force all ctl frames to highest queue */
3344		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3345			/* NB: force all ctl frames to highest queue */
3346			pri = WME_AC_VO;
3347		} else
3348			pri = WME_AC_BE;
3349		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3350		break;
3351	case IEEE80211_FC0_TYPE_DATA:
3352		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3353		/*
3354		 * Data frames; consult the rate control module.
3355		 */
3356		ath_rate_findrate(sc, an, shortPreamble, pktlen,
3357			&rix, &try0, &txrate);
3358		sc->sc_txrate = txrate;			/* for LED blinking */
3359		/*
3360		 * Default all non-QoS traffic to the background queue.
3361		 */
3362		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3363			pri = M_WME_GETAC(m0);
3364			if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3365				flags |= HAL_TXDESC_NOACK;
3366				sc->sc_stats.ast_tx_noack++;
3367			}
3368		} else
3369			pri = WME_AC_BE;
3370		break;
3371	default:
3372		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3373			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3374		/* XXX statistic */
3375		m_freem(m0);
3376		return EIO;
3377	}
3378	txq = sc->sc_ac2q[pri];
3379
3380	/*
3381	 * When servicing one or more stations in power-save mode
3382	 * multicast frames must be buffered until after the beacon.
3383	 * We use the CAB queue for that.
3384	 */
3385	if (ismcast && ic->ic_ps_sta) {
3386		txq = sc->sc_cabq;
3387		/* XXX? more bit in 802.11 frame header */
3388	}
3389
3390	/*
3391	 * Calculate miscellaneous flags.
3392	 */
3393	if (ismcast) {
3394		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3395		sc->sc_stats.ast_tx_noack++;
3396	} else if (pktlen > ic->ic_rtsthreshold) {
3397		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3398		cix = rt->info[rix].controlRate;
3399		sc->sc_stats.ast_tx_rts++;
3400	}
3401
3402	/*
3403	 * If 802.11g protection is enabled, determine whether
3404	 * to use RTS/CTS or just CTS.  Note that this is only
3405	 * done for OFDM unicast frames.
3406	 */
3407	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3408	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3409	    (flags & HAL_TXDESC_NOACK) == 0) {
3410		/* XXX fragments must use CCK rates w/ protection */
3411		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3412			flags |= HAL_TXDESC_RTSENA;
3413		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3414			flags |= HAL_TXDESC_CTSENA;
3415		cix = rt->info[sc->sc_protrix].controlRate;
3416		sc->sc_stats.ast_tx_protect++;
3417	}
3418
3419	/*
3420	 * Calculate duration.  This logically belongs in the 802.11
3421	 * layer but it lacks sufficient information to calculate it.
3422	 */
3423	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3424	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3425		u_int16_t dur;
3426		/*
3427		 * XXX not right with fragmentation.
3428		 */
3429		if (shortPreamble)
3430			dur = rt->info[rix].spAckDuration;
3431		else
3432			dur = rt->info[rix].lpAckDuration;
3433		*(u_int16_t *)wh->i_dur = htole16(dur);
3434	}
3435
3436	/*
3437	 * Calculate RTS/CTS rate and duration if needed.
3438	 */
3439	ctsduration = 0;
3440	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3441		/*
3442		 * CTS transmit rate is derived from the transmit rate
3443		 * by looking in the h/w rate table.  We must also factor
3444		 * in whether or not a short preamble is to be used.
3445		 */
3446		/* NB: cix is set above where RTS/CTS is enabled */
3447		KASSERT(cix != 0xff, ("cix not setup"));
3448		ctsrate = rt->info[cix].rateCode;
3449		/*
3450		 * Compute the transmit duration based on the frame
3451		 * size and the size of an ACK frame.  We call into the
3452		 * HAL to do the computation since it depends on the
3453		 * characteristics of the actual PHY being used.
3454		 *
3455		 * NB: CTS is assumed the same size as an ACK so we can
3456		 *     use the precalculated ACK durations.
3457		 */
3458		if (shortPreamble) {
3459			ctsrate |= rt->info[cix].shortPreamble;
3460			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3461				ctsduration += rt->info[cix].spAckDuration;
3462			ctsduration += ath_hal_computetxtime(ah,
3463				rt, pktlen, rix, AH_TRUE);
3464			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3465				ctsduration += rt->info[cix].spAckDuration;
3466		} else {
3467			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3468				ctsduration += rt->info[cix].lpAckDuration;
3469			ctsduration += ath_hal_computetxtime(ah,
3470				rt, pktlen, rix, AH_FALSE);
3471			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3472				ctsduration += rt->info[cix].lpAckDuration;
3473		}
3474		/*
3475		 * Must disable multi-rate retry when using RTS/CTS.
3476		 */
3477		try0 = ATH_TXMAXTRY;
3478	} else
3479		ctsrate = 0;
3480
3481	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3482		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3483			sc->sc_hwmap[txrate].ieeerate, -1);
3484
3485	if (ic->ic_rawbpf)
3486		bpf_mtap(ic->ic_rawbpf, m0);
3487	if (sc->sc_drvbpf) {
3488		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3489		if (iswep)
3490			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3491		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3492		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3493		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3494
3495		bpf_mtap2(sc->sc_drvbpf,
3496			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3497	}
3498
3499	/*
3500	 * Determine if a tx interrupt should be generated for
3501	 * this descriptor.  We take a tx interrupt to reap
3502	 * descriptors when the h/w hits an EOL condition or
3503	 * when the descriptor is specifically marked to generate
3504	 * an interrupt.  We periodically mark descriptors in this
3505	 * way to insure timely replenishing of the supply needed
3506	 * for sending frames.  Defering interrupts reduces system
3507	 * load and potentially allows more concurrent work to be
3508	 * done but if done to aggressively can cause senders to
3509	 * backup.
3510	 *
3511	 * NB: use >= to deal with sc_txintrperiod changing
3512	 *     dynamically through sysctl.
3513	 */
3514	if (flags & HAL_TXDESC_INTREQ) {
3515		txq->axq_intrcnt = 0;
3516	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3517		flags |= HAL_TXDESC_INTREQ;
3518		txq->axq_intrcnt = 0;
3519	}
3520
3521	/*
3522	 * Formulate first tx descriptor with tx controls.
3523	 */
3524	/* XXX check return value? */
3525	ath_hal_setuptxdesc(ah, ds
3526		, pktlen		/* packet length */
3527		, hdrlen		/* header length */
3528		, atype			/* Atheros packet type */
3529		, ni->ni_txpower	/* txpower */
3530		, txrate, try0		/* series 0 rate/tries */
3531		, keyix			/* key cache index */
3532		, sc->sc_txantenna	/* antenna mode */
3533		, flags			/* flags */
3534		, ctsrate		/* rts/cts rate */
3535		, ctsduration		/* rts/cts duration */
3536	);
3537	bf->bf_flags = flags;
3538	/*
3539	 * Setup the multi-rate retry state only when we're
3540	 * going to use it.  This assumes ath_hal_setuptxdesc
3541	 * initializes the descriptors (so we don't have to)
3542	 * when the hardware supports multi-rate retry and
3543	 * we don't use it.
3544	 */
3545	if (try0 != ATH_TXMAXTRY)
3546		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3547
3548	/*
3549	 * Fillin the remainder of the descriptor info.
3550	 */
3551	ds0 = ds;
3552	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3553		ds->ds_data = bf->bf_segs[i].ds_addr;
3554		if (i == bf->bf_nseg - 1)
3555			ds->ds_link = 0;
3556		else
3557			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3558		ath_hal_filltxdesc(ah, ds
3559			, bf->bf_segs[i].ds_len	/* segment length */
3560			, i == 0		/* first segment */
3561			, i == bf->bf_nseg - 1	/* last segment */
3562			, ds0			/* first descriptor */
3563		);
3564		DPRINTF(sc, ATH_DEBUG_XMIT,
3565			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3566			__func__, i, ds->ds_link, ds->ds_data,
3567			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3568	}
3569	/*
3570	 * Insert the frame on the outbound list and
3571	 * pass it on to the hardware.
3572	 */
3573	ATH_TXQ_LOCK(txq);
3574	if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
3575		u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
3576			cap->cap_wmeParams[pri].wmep_txopLimit);
3577		/*
3578		 * When bursting, potentially extend the CTS duration
3579		 * of a previously queued frame to cover this frame
3580		 * and not exceed the txopLimit.  If that can be done
3581		 * then disable RTS/CTS on this frame since it's now
3582		 * covered (burst extension).  Otherwise we must terminate
3583		 * the burst before this frame goes out so as not to
3584		 * violate the WME parameters.  All this is complicated
3585		 * as we need to update the state of packets on the
3586		 * (live) hardware queue.  The logic is buried in the hal
3587		 * because it's highly chip-specific.
3588		 */
3589		if (txopLimit != 0) {
3590			sc->sc_stats.ast_tx_ctsburst++;
3591			if (updateCTSForBursting(ah, ds0, txq) == 0) {
3592				/*
3593				 * This frame was not covered by RTS/CTS from
3594				 * the previous frame in the burst; update the
3595				 * descriptor pointers so this frame is now
3596				 * treated as the last frame for extending a
3597				 * burst.
3598				 */
3599				txq->axq_lastdsWithCTS = ds0;
3600				/* set gating Desc to final desc */
3601				txq->axq_gatingds =
3602					(struct ath_desc *)txq->axq_link;
3603			} else
3604				sc->sc_stats.ast_tx_ctsext++;
3605		}
3606	}
3607	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3608	if (txq->axq_link == NULL) {
3609		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3610		DPRINTF(sc, ATH_DEBUG_XMIT,
3611			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3612			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3613			txq->axq_depth);
3614	} else {
3615		*txq->axq_link = bf->bf_daddr;
3616		DPRINTF(sc, ATH_DEBUG_XMIT,
3617			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3618			txq->axq_qnum, txq->axq_link,
3619			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3620	}
3621	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3622	/*
3623	 * The CAB queue is started from the SWBA handler since
3624	 * frames only go out on DTIM and to avoid possible races.
3625	 */
3626	if (txq != sc->sc_cabq)
3627		ath_hal_txstart(ah, txq->axq_qnum);
3628	ATH_TXQ_UNLOCK(txq);
3629
3630	return 0;
3631#undef updateCTSForBursting
3632#undef CTS_DURATION
3633}
3634
3635/*
3636 * Process completed xmit descriptors from the specified queue.
3637 */
3638static void
3639ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3640{
3641	struct ath_hal *ah = sc->sc_ah;
3642	struct ieee80211com *ic = &sc->sc_ic;
3643	struct ath_buf *bf;
3644	struct ath_desc *ds, *ds0;
3645	struct ieee80211_node *ni;
3646	struct ath_node *an;
3647	int sr, lr, pri;
3648	HAL_STATUS status;
3649
3650	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3651		__func__, txq->axq_qnum,
3652		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3653		txq->axq_link);
3654	for (;;) {
3655		ATH_TXQ_LOCK(txq);
3656		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3657		bf = STAILQ_FIRST(&txq->axq_q);
3658		if (bf == NULL) {
3659			txq->axq_link = NULL;
3660			ATH_TXQ_UNLOCK(txq);
3661			break;
3662		}
3663		ds0 = &bf->bf_desc[0];
3664		ds = &bf->bf_desc[bf->bf_nseg - 1];
3665		status = ath_hal_txprocdesc(ah, ds);
3666#ifdef AR_DEBUG
3667		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3668			ath_printtxbuf(bf, status == HAL_OK);
3669#endif
3670		if (status == HAL_EINPROGRESS) {
3671			ATH_TXQ_UNLOCK(txq);
3672			break;
3673		}
3674		if (ds0 == txq->axq_lastdsWithCTS)
3675			txq->axq_lastdsWithCTS = NULL;
3676		if (ds == txq->axq_gatingds)
3677			txq->axq_gatingds = NULL;
3678		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3679		ATH_TXQ_UNLOCK(txq);
3680
3681		ni = bf->bf_node;
3682		if (ni != NULL) {
3683			an = ATH_NODE(ni);
3684			if (ds->ds_txstat.ts_status == 0) {
3685				u_int8_t txant = ds->ds_txstat.ts_antenna;
3686				sc->sc_stats.ast_ant_tx[txant]++;
3687				sc->sc_ant_tx[txant]++;
3688				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3689					sc->sc_stats.ast_tx_altrate++;
3690				sc->sc_stats.ast_tx_rssi =
3691					ds->ds_txstat.ts_rssi;
3692				ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3693					ds->ds_txstat.ts_rssi);
3694				pri = M_WME_GETAC(bf->bf_m);
3695				if (pri >= WME_AC_VO)
3696					ic->ic_wme.wme_hipri_traffic++;
3697				ni->ni_inact = ni->ni_inact_reload;
3698			} else {
3699				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3700					sc->sc_stats.ast_tx_xretries++;
3701				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3702					sc->sc_stats.ast_tx_fifoerr++;
3703				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3704					sc->sc_stats.ast_tx_filtered++;
3705			}
3706			sr = ds->ds_txstat.ts_shortretry;
3707			lr = ds->ds_txstat.ts_longretry;
3708			sc->sc_stats.ast_tx_shortretry += sr;
3709			sc->sc_stats.ast_tx_longretry += lr;
3710			/*
3711			 * Hand the descriptor to the rate control algorithm.
3712			 */
3713			if ((ds->ds_txstat.ts_status & HAL_TXERR_FILT) == 0 &&
3714			    (bf->bf_flags & HAL_TXDESC_NOACK) == 0)
3715				ath_rate_tx_complete(sc, an, ds, ds0);
3716			/*
3717			 * Reclaim reference to node.
3718			 *
3719			 * NB: the node may be reclaimed here if, for example
3720			 *     this is a DEAUTH message that was sent and the
3721			 *     node was timed out due to inactivity.
3722			 */
3723			ieee80211_free_node(ni);
3724		}
3725		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3726		    BUS_DMASYNC_POSTWRITE);
3727		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3728		m_freem(bf->bf_m);
3729		bf->bf_m = NULL;
3730		bf->bf_node = NULL;
3731
3732		ATH_TXBUF_LOCK(sc);
3733		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3734		ATH_TXBUF_UNLOCK(sc);
3735	}
3736}
3737
3738/*
3739 * Deferred processing of transmit interrupt; special-cased
3740 * for a single hardware transmit queue (e.g. 5210 and 5211).
3741 */
3742static void
3743ath_tx_proc_q0(void *arg, int npending)
3744{
3745	struct ath_softc *sc = arg;
3746	struct ifnet *ifp = sc->sc_ifp;
3747
3748	ath_tx_processq(sc, &sc->sc_txq[0]);
3749	ath_tx_processq(sc, sc->sc_cabq);
3750	ifp->if_flags &= ~IFF_OACTIVE;
3751	sc->sc_tx_timer = 0;
3752
3753	if (sc->sc_softled)
3754		ath_led_event(sc, ATH_LED_TX);
3755
3756	ath_start(ifp);
3757}
3758
3759/*
3760 * Deferred processing of transmit interrupt; special-cased
3761 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3762 */
3763static void
3764ath_tx_proc_q0123(void *arg, int npending)
3765{
3766	struct ath_softc *sc = arg;
3767	struct ifnet *ifp = sc->sc_ifp;
3768
3769	/*
3770	 * Process each active queue.
3771	 */
3772	ath_tx_processq(sc, &sc->sc_txq[0]);
3773	ath_tx_processq(sc, &sc->sc_txq[1]);
3774	ath_tx_processq(sc, &sc->sc_txq[2]);
3775	ath_tx_processq(sc, &sc->sc_txq[3]);
3776	ath_tx_processq(sc, sc->sc_cabq);
3777
3778	ifp->if_flags &= ~IFF_OACTIVE;
3779	sc->sc_tx_timer = 0;
3780
3781	if (sc->sc_softled)
3782		ath_led_event(sc, ATH_LED_TX);
3783
3784	ath_start(ifp);
3785}
3786
3787/*
3788 * Deferred processing of transmit interrupt.
3789 */
3790static void
3791ath_tx_proc(void *arg, int npending)
3792{
3793	struct ath_softc *sc = arg;
3794	struct ifnet *ifp = sc->sc_ifp;
3795	int i;
3796
3797	/*
3798	 * Process each active queue.
3799	 */
3800	/* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3801	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3802		if (ATH_TXQ_SETUP(sc, i))
3803			ath_tx_processq(sc, &sc->sc_txq[i]);
3804
3805	ifp->if_flags &= ~IFF_OACTIVE;
3806	sc->sc_tx_timer = 0;
3807
3808	if (sc->sc_softled)
3809		ath_led_event(sc, ATH_LED_TX);
3810
3811	ath_start(ifp);
3812}
3813
3814static void
3815ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3816{
3817	struct ath_hal *ah = sc->sc_ah;
3818	struct ieee80211_node *ni;
3819	struct ath_buf *bf;
3820
3821	/*
3822	 * NB: this assumes output has been stopped and
3823	 *     we do not need to block ath_tx_tasklet
3824	 */
3825	for (;;) {
3826		ATH_TXQ_LOCK(txq);
3827		bf = STAILQ_FIRST(&txq->axq_q);
3828		if (bf == NULL) {
3829			txq->axq_link = NULL;
3830			ATH_TXQ_UNLOCK(txq);
3831			break;
3832		}
3833		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3834		ATH_TXQ_UNLOCK(txq);
3835#ifdef AR_DEBUG
3836		if (sc->sc_debug & ATH_DEBUG_RESET)
3837			ath_printtxbuf(bf,
3838				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3839#endif /* AR_DEBUG */
3840		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3841		m_freem(bf->bf_m);
3842		bf->bf_m = NULL;
3843		ni = bf->bf_node;
3844		bf->bf_node = NULL;
3845		if (ni != NULL) {
3846			/*
3847			 * Reclaim node reference.
3848			 */
3849			ieee80211_free_node(ni);
3850		}
3851		ATH_TXBUF_LOCK(sc);
3852		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3853		ATH_TXBUF_UNLOCK(sc);
3854	}
3855}
3856
3857static void
3858ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3859{
3860	struct ath_hal *ah = sc->sc_ah;
3861
3862	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3863	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3864	    __func__, txq->axq_qnum,
3865	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3866	    txq->axq_link);
3867}
3868
3869/*
3870 * Drain the transmit queues and reclaim resources.
3871 */
3872static void
3873ath_draintxq(struct ath_softc *sc)
3874{
3875	struct ath_hal *ah = sc->sc_ah;
3876	struct ifnet *ifp = sc->sc_ifp;
3877	int i;
3878
3879	/* XXX return value */
3880	if (!sc->sc_invalid) {
3881		/* don't touch the hardware if marked invalid */
3882		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3883		DPRINTF(sc, ATH_DEBUG_RESET,
3884		    "%s: beacon queue %p\n", __func__,
3885		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
3886		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3887			if (ATH_TXQ_SETUP(sc, i))
3888				ath_tx_stopdma(sc, &sc->sc_txq[i]);
3889	}
3890	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3891		if (ATH_TXQ_SETUP(sc, i))
3892			ath_tx_draintxq(sc, &sc->sc_txq[i]);
3893	ifp->if_flags &= ~IFF_OACTIVE;
3894	sc->sc_tx_timer = 0;
3895}
3896
3897/*
3898 * Disable the receive h/w in preparation for a reset.
3899 */
3900static void
3901ath_stoprecv(struct ath_softc *sc)
3902{
3903#define	PA2DESC(_sc, _pa) \
3904	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3905		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3906	struct ath_hal *ah = sc->sc_ah;
3907
3908	ath_hal_stoppcurecv(ah);	/* disable PCU */
3909	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
3910	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
3911	DELAY(3000);			/* 3ms is long enough for 1 frame */
3912#ifdef AR_DEBUG
3913	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
3914		struct ath_buf *bf;
3915
3916		printf("%s: rx queue %p, link %p\n", __func__,
3917			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3918		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3919			struct ath_desc *ds = bf->bf_desc;
3920			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
3921				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3922			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
3923				ath_printrxbuf(bf, status == HAL_OK);
3924		}
3925	}
3926#endif
3927	sc->sc_rxlink = NULL;		/* just in case */
3928#undef PA2DESC
3929}
3930
3931/*
3932 * Enable the receive h/w following a reset.
3933 */
3934static int
3935ath_startrecv(struct ath_softc *sc)
3936{
3937	struct ath_hal *ah = sc->sc_ah;
3938	struct ath_buf *bf;
3939
3940	sc->sc_rxlink = NULL;
3941	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3942		int error = ath_rxbuf_init(sc, bf);
3943		if (error != 0) {
3944			DPRINTF(sc, ATH_DEBUG_RECV,
3945				"%s: ath_rxbuf_init failed %d\n",
3946				__func__, error);
3947			return error;
3948		}
3949	}
3950
3951	bf = STAILQ_FIRST(&sc->sc_rxbuf);
3952	ath_hal_putrxbuf(ah, bf->bf_daddr);
3953	ath_hal_rxena(ah);		/* enable recv descriptors */
3954	ath_mode_init(sc);		/* set filters, etc. */
3955	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
3956	return 0;
3957}
3958
3959/*
3960 * Update internal state after a channel change.
3961 */
3962static void
3963ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3964{
3965	struct ieee80211com *ic = &sc->sc_ic;
3966	enum ieee80211_phymode mode;
3967	u_int16_t flags;
3968
3969	/*
3970	 * Change channels and update the h/w rate map
3971	 * if we're switching; e.g. 11a to 11b/g.
3972	 */
3973	mode = ieee80211_chan2mode(ic, chan);
3974	if (mode != sc->sc_curmode)
3975		ath_setcurmode(sc, mode);
3976	/*
3977	 * Update BPF state.  NB: ethereal et. al. don't handle
3978	 * merged flags well so pick a unique mode for their use.
3979	 */
3980	if (IEEE80211_IS_CHAN_A(chan))
3981		flags = IEEE80211_CHAN_A;
3982	/* XXX 11g schizophrenia */
3983	else if (IEEE80211_IS_CHAN_G(chan) ||
3984	    IEEE80211_IS_CHAN_PUREG(chan))
3985		flags = IEEE80211_CHAN_G;
3986	else
3987		flags = IEEE80211_CHAN_B;
3988	if (IEEE80211_IS_CHAN_T(chan))
3989		flags |= IEEE80211_CHAN_TURBO;
3990	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3991		htole16(chan->ic_freq);
3992	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3993		htole16(flags);
3994}
3995
3996/*
3997 * Set/change channels.  If the channel is really being changed,
3998 * it's done by reseting the chip.  To accomplish this we must
3999 * first cleanup any pending DMA, then restart stuff after a la
4000 * ath_init.
4001 */
4002static int
4003ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
4004{
4005	struct ath_hal *ah = sc->sc_ah;
4006	struct ieee80211com *ic = &sc->sc_ic;
4007	HAL_CHANNEL hchan;
4008
4009	/*
4010	 * Convert to a HAL channel description with
4011	 * the flags constrained to reflect the current
4012	 * operating mode.
4013	 */
4014	hchan.channel = chan->ic_freq;
4015	hchan.channelFlags = ath_chan2flags(ic, chan);
4016
4017	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
4018	    __func__,
4019	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
4020		sc->sc_curchan.channelFlags),
4021	    	sc->sc_curchan.channel,
4022	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
4023	if (hchan.channel != sc->sc_curchan.channel ||
4024	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
4025		HAL_STATUS status;
4026
4027		/*
4028		 * To switch channels clear any pending DMA operations;
4029		 * wait long enough for the RX fifo to drain, reset the
4030		 * hardware at the new frequency, and then re-enable
4031		 * the relevant bits of the h/w.
4032		 */
4033		ath_hal_intrset(ah, 0);		/* disable interrupts */
4034		ath_draintxq(sc);		/* clear pending tx frames */
4035		ath_stoprecv(sc);		/* turn off frame recv */
4036		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
4037			if_printf(ic->ic_ifp, "ath_chan_set: unable to reset "
4038				"channel %u (%u Mhz)\n",
4039				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
4040			return EIO;
4041		}
4042		sc->sc_curchan = hchan;
4043		ath_update_txpow(sc);		/* update tx power state */
4044
4045		/*
4046		 * Re-enable rx framework.
4047		 */
4048		if (ath_startrecv(sc) != 0) {
4049			if_printf(ic->ic_ifp,
4050				"ath_chan_set: unable to restart recv logic\n");
4051			return EIO;
4052		}
4053
4054		/*
4055		 * Change channels and update the h/w rate map
4056		 * if we're switching; e.g. 11a to 11b/g.
4057		 */
4058		ic->ic_ibss_chan = chan;
4059		ath_chan_change(sc, chan);
4060
4061		/*
4062		 * Re-enable interrupts.
4063		 */
4064		ath_hal_intrset(ah, sc->sc_imask);
4065	}
4066	return 0;
4067}
4068
4069static void
4070ath_next_scan(void *arg)
4071{
4072	struct ath_softc *sc = arg;
4073	struct ieee80211com *ic = &sc->sc_ic;
4074
4075	if (ic->ic_state == IEEE80211_S_SCAN)
4076		ieee80211_next_scan(ic);
4077}
4078
4079/*
4080 * Periodically recalibrate the PHY to account
4081 * for temperature/environment changes.
4082 */
4083static void
4084ath_calibrate(void *arg)
4085{
4086	struct ath_softc *sc = arg;
4087	struct ath_hal *ah = sc->sc_ah;
4088
4089	sc->sc_stats.ast_per_cal++;
4090
4091	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
4092		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
4093
4094	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
4095		/*
4096		 * Rfgain is out of bounds, reset the chip
4097		 * to load new gain values.
4098		 */
4099		sc->sc_stats.ast_per_rfgain++;
4100		ath_reset(sc->sc_ifp);
4101	}
4102	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
4103		DPRINTF(sc, ATH_DEBUG_ANY,
4104			"%s: calibration of channel %u failed\n",
4105			__func__, sc->sc_curchan.channel);
4106		sc->sc_stats.ast_per_calfail++;
4107	}
4108	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
4109}
4110
4111static int
4112ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
4113{
4114	struct ifnet *ifp = ic->ic_ifp;
4115	struct ath_softc *sc = ifp->if_softc;
4116	struct ath_hal *ah = sc->sc_ah;
4117	struct ieee80211_node *ni;
4118	int i, error;
4119	const u_int8_t *bssid;
4120	u_int32_t rfilt;
4121	static const HAL_LED_STATE leds[] = {
4122	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
4123	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
4124	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
4125	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
4126	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
4127	};
4128
4129	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
4130		ieee80211_state_name[ic->ic_state],
4131		ieee80211_state_name[nstate]);
4132
4133	callout_stop(&sc->sc_scan_ch);
4134	callout_stop(&sc->sc_cal_ch);
4135	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
4136
4137	if (nstate == IEEE80211_S_INIT) {
4138		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4139		/*
4140		 * NB: disable interrupts so we don't rx frames.
4141		 */
4142		ath_hal_intrset(ah, sc->sc_imask &~ HAL_INT_GLOBAL);
4143		/*
4144		 * Notify the rate control algorithm.
4145		 */
4146		ath_rate_newstate(sc, nstate);
4147		goto done;
4148	}
4149	ni = ic->ic_bss;
4150	error = ath_chan_set(sc, ni->ni_chan);
4151	if (error != 0)
4152		goto bad;
4153	rfilt = ath_calcrxfilter(sc, nstate);
4154	if (nstate == IEEE80211_S_SCAN)
4155		bssid = ifp->if_broadcastaddr;
4156	else
4157		bssid = ni->ni_bssid;
4158	ath_hal_setrxfilter(ah, rfilt);
4159	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
4160		 __func__, rfilt, ether_sprintf(bssid));
4161
4162	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4163		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4164	else
4165		ath_hal_setassocid(ah, bssid, 0);
4166	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4167		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4168			if (ath_hal_keyisvalid(ah, i))
4169				ath_hal_keysetmac(ah, i, bssid);
4170	}
4171
4172	/*
4173	 * Notify the rate control algorithm so rates
4174	 * are setup should ath_beacon_alloc be called.
4175	 */
4176	ath_rate_newstate(sc, nstate);
4177
4178	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4179		/* nothing to do */;
4180	} else if (nstate == IEEE80211_S_RUN) {
4181		DPRINTF(sc, ATH_DEBUG_STATE,
4182			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4183			"capinfo=0x%04x chan=%d\n"
4184			 , __func__
4185			 , ic->ic_flags
4186			 , ni->ni_intval
4187			 , ether_sprintf(ni->ni_bssid)
4188			 , ni->ni_capinfo
4189			 , ieee80211_chan2ieee(ic, ni->ni_chan));
4190
4191		switch (ic->ic_opmode) {
4192		case IEEE80211_M_HOSTAP:
4193		case IEEE80211_M_IBSS:
4194			/*
4195			 * Allocate and setup the beacon frame.
4196			 *
4197			 * Stop any previous beacon DMA.  This may be
4198			 * necessary, for example, when an ibss merge
4199			 * causes reconfiguration; there will be a state
4200			 * transition from RUN->RUN that means we may
4201			 * be called with beacon transmission active.
4202			 */
4203			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4204			ath_beacon_free(sc);
4205			error = ath_beacon_alloc(sc, ni);
4206			if (error != 0)
4207				goto bad;
4208			break;
4209		case IEEE80211_M_STA:
4210			/*
4211			 * Allocate a key cache slot to the station.
4212			 */
4213			if ((ic->ic_flags & IEEE80211_F_PRIVACY) == 0 &&
4214			    sc->sc_hasclrkey &&
4215			    ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE)
4216				ath_setup_stationkey(ni);
4217			break;
4218		default:
4219			break;
4220		}
4221
4222		/*
4223		 * Configure the beacon and sleep timers.
4224		 */
4225		ath_beacon_config(sc);
4226	} else {
4227		ath_hal_intrset(ah,
4228			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4229		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4230	}
4231done:
4232	/*
4233	 * Invoke the parent method to complete the work.
4234	 */
4235	error = sc->sc_newstate(ic, nstate, arg);
4236	/*
4237	 * Finally, start any timers.
4238	 */
4239	if (nstate == IEEE80211_S_RUN) {
4240		/* start periodic recalibration timer */
4241		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4242			ath_calibrate, sc);
4243	} else if (nstate == IEEE80211_S_SCAN) {
4244		/* start ap/neighbor scan timer */
4245		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4246			ath_next_scan, sc);
4247	}
4248bad:
4249	return error;
4250}
4251
4252/*
4253 * Allocate a key cache slot to the station so we can
4254 * setup a mapping from key index to node. The key cache
4255 * slot is needed for managing antenna state and for
4256 * compression when stations do not use crypto.  We do
4257 * it uniliaterally here; if crypto is employed this slot
4258 * will be reassigned.
4259 */
4260static void
4261ath_setup_stationkey(struct ieee80211_node *ni)
4262{
4263	struct ieee80211com *ic = ni->ni_ic;
4264	struct ath_softc *sc = ic->ic_ifp->if_softc;
4265	u_int16_t keyix;
4266
4267	keyix = ath_key_alloc(ic, &ni->ni_ucastkey);
4268	if (keyix == IEEE80211_KEYIX_NONE) {
4269		/*
4270		 * Key cache is full; we'll fall back to doing
4271		 * the more expensive lookup in software.  Note
4272		 * this also means no h/w compression.
4273		 */
4274		/* XXX msg+statistic */
4275	} else {
4276		ni->ni_ucastkey.wk_keyix = keyix;
4277		/* NB: this will create a pass-thru key entry */
4278		ath_keyset(sc, &ni->ni_ucastkey, ni->ni_macaddr, ic->ic_bss);
4279	}
4280}
4281
4282/*
4283 * Setup driver-specific state for a newly associated node.
4284 * Note that we're called also on a re-associate, the isnew
4285 * param tells us if this is the first time or not.
4286 */
4287static void
4288ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
4289{
4290	struct ath_softc *sc = ic->ic_ifp->if_softc;
4291
4292	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4293	if (isnew &&
4294	    (ic->ic_flags & IEEE80211_F_PRIVACY) == 0 && sc->sc_hasclrkey) {
4295		KASSERT(ni->ni_ucastkey.wk_keyix == IEEE80211_KEYIX_NONE,
4296		    ("new assoc with a unicast key already setup (keyix %u)",
4297		    ni->ni_ucastkey.wk_keyix));
4298		ath_setup_stationkey(ni);
4299	}
4300}
4301
4302static int
4303ath_getchannels(struct ath_softc *sc, u_int cc,
4304	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4305{
4306	struct ieee80211com *ic = &sc->sc_ic;
4307	struct ifnet *ifp = sc->sc_ifp;
4308	struct ath_hal *ah = sc->sc_ah;
4309	HAL_CHANNEL *chans;
4310	int i, ix, nchan;
4311
4312	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4313			M_TEMP, M_NOWAIT);
4314	if (chans == NULL) {
4315		if_printf(ifp, "unable to allocate channel table\n");
4316		return ENOMEM;
4317	}
4318	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4319	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4320		u_int32_t rd;
4321
4322		ath_hal_getregdomain(ah, &rd);
4323		if_printf(ifp, "unable to collect channel list from hal; "
4324			"regdomain likely %u country code %u\n", rd, cc);
4325		free(chans, M_TEMP);
4326		return EINVAL;
4327	}
4328
4329	/*
4330	 * Convert HAL channels to ieee80211 ones and insert
4331	 * them in the table according to their channel number.
4332	 */
4333	for (i = 0; i < nchan; i++) {
4334		HAL_CHANNEL *c = &chans[i];
4335		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4336		if (ix > IEEE80211_CHAN_MAX) {
4337			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4338				ix, c->channel, c->channelFlags);
4339			continue;
4340		}
4341		/* NB: flags are known to be compatible */
4342		if (ic->ic_channels[ix].ic_freq == 0) {
4343			ic->ic_channels[ix].ic_freq = c->channel;
4344			ic->ic_channels[ix].ic_flags = c->channelFlags;
4345		} else {
4346			/* channels overlap; e.g. 11g and 11b */
4347			ic->ic_channels[ix].ic_flags |= c->channelFlags;
4348		}
4349	}
4350	free(chans, M_TEMP);
4351	return 0;
4352}
4353
4354static void
4355ath_led_done(void *arg)
4356{
4357	struct ath_softc *sc = arg;
4358
4359	sc->sc_blinking = 0;
4360}
4361
4362/*
4363 * Turn the LED off: flip the pin and then set a timer so no
4364 * update will happen for the specified duration.
4365 */
4366static void
4367ath_led_off(void *arg)
4368{
4369	struct ath_softc *sc = arg;
4370
4371	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4372	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4373}
4374
4375/*
4376 * Blink the LED according to the specified on/off times.
4377 */
4378static void
4379ath_led_blink(struct ath_softc *sc, int on, int off)
4380{
4381	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4382	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4383	sc->sc_blinking = 1;
4384	sc->sc_ledoff = off;
4385	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4386}
4387
4388static void
4389ath_led_event(struct ath_softc *sc, int event)
4390{
4391
4392	sc->sc_ledevent = ticks;	/* time of last event */
4393	if (sc->sc_blinking)		/* don't interrupt active blink */
4394		return;
4395	switch (event) {
4396	case ATH_LED_POLL:
4397		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4398			sc->sc_hwmap[0].ledoff);
4399		break;
4400	case ATH_LED_TX:
4401		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4402			sc->sc_hwmap[sc->sc_txrate].ledoff);
4403		break;
4404	case ATH_LED_RX:
4405		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4406			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4407		break;
4408	}
4409}
4410
4411static void
4412ath_update_txpow(struct ath_softc *sc)
4413{
4414	struct ieee80211com *ic = &sc->sc_ic;
4415	struct ath_hal *ah = sc->sc_ah;
4416	u_int32_t txpow;
4417
4418	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4419		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4420		/* read back in case value is clamped */
4421		ath_hal_gettxpowlimit(ah, &txpow);
4422		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4423	}
4424	/*
4425	 * Fetch max tx power level for status requests.
4426	 */
4427	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4428	ic->ic_bss->ni_txpower = txpow;
4429}
4430
4431static int
4432ath_rate_setup(struct ath_softc *sc, u_int mode)
4433{
4434	struct ath_hal *ah = sc->sc_ah;
4435	struct ieee80211com *ic = &sc->sc_ic;
4436	const HAL_RATE_TABLE *rt;
4437	struct ieee80211_rateset *rs;
4438	int i, maxrates;
4439
4440	switch (mode) {
4441	case IEEE80211_MODE_11A:
4442		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4443		break;
4444	case IEEE80211_MODE_11B:
4445		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4446		break;
4447	case IEEE80211_MODE_11G:
4448		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4449		break;
4450	case IEEE80211_MODE_TURBO_A:
4451		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4452		break;
4453	case IEEE80211_MODE_TURBO_G:
4454		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4455		break;
4456	default:
4457		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4458			__func__, mode);
4459		return 0;
4460	}
4461	rt = sc->sc_rates[mode];
4462	if (rt == NULL)
4463		return 0;
4464	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4465		DPRINTF(sc, ATH_DEBUG_ANY,
4466			"%s: rate table too small (%u > %u)\n",
4467			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4468		maxrates = IEEE80211_RATE_MAXSIZE;
4469	} else
4470		maxrates = rt->rateCount;
4471	rs = &ic->ic_sup_rates[mode];
4472	for (i = 0; i < maxrates; i++)
4473		rs->rs_rates[i] = rt->info[i].dot11Rate;
4474	rs->rs_nrates = maxrates;
4475	return 1;
4476}
4477
4478static void
4479ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4480{
4481#define	N(a)	(sizeof(a)/sizeof(a[0]))
4482	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4483	static const struct {
4484		u_int		rate;		/* tx/rx 802.11 rate */
4485		u_int16_t	timeOn;		/* LED on time (ms) */
4486		u_int16_t	timeOff;	/* LED off time (ms) */
4487	} blinkrates[] = {
4488		{ 108,  40,  10 },
4489		{  96,  44,  11 },
4490		{  72,  50,  13 },
4491		{  48,  57,  14 },
4492		{  36,  67,  16 },
4493		{  24,  80,  20 },
4494		{  22, 100,  25 },
4495		{  18, 133,  34 },
4496		{  12, 160,  40 },
4497		{  10, 200,  50 },
4498		{   6, 240,  58 },
4499		{   4, 267,  66 },
4500		{   2, 400, 100 },
4501		{   0, 500, 130 },
4502	};
4503	const HAL_RATE_TABLE *rt;
4504	int i, j;
4505
4506	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4507	rt = sc->sc_rates[mode];
4508	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4509	for (i = 0; i < rt->rateCount; i++)
4510		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4511	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4512	for (i = 0; i < 32; i++) {
4513		u_int8_t ix = rt->rateCodeToIndex[i];
4514		if (ix == 0xff) {
4515			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4516			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4517			continue;
4518		}
4519		sc->sc_hwmap[i].ieeerate =
4520			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4521		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4522		if (rt->info[ix].shortPreamble ||
4523		    rt->info[ix].phy == IEEE80211_T_OFDM)
4524			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4525		/* NB: receive frames include FCS */
4526		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4527			IEEE80211_RADIOTAP_F_FCS;
4528		/* setup blink rate table to avoid per-packet lookup */
4529		for (j = 0; j < N(blinkrates)-1; j++)
4530			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4531				break;
4532		/* NB: this uses the last entry if the rate isn't found */
4533		/* XXX beware of overlow */
4534		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4535		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4536	}
4537	sc->sc_currates = rt;
4538	sc->sc_curmode = mode;
4539	/*
4540	 * All protection frames are transmited at 2Mb/s for
4541	 * 11g, otherwise at 1Mb/s.
4542	 * XXX select protection rate index from rate table.
4543	 */
4544	sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4545	/* NB: caller is responsible for reseting rate control state */
4546#undef N
4547}
4548
4549#ifdef AR_DEBUG
4550static void
4551ath_printrxbuf(struct ath_buf *bf, int done)
4552{
4553	struct ath_desc *ds;
4554	int i;
4555
4556	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4557		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4558		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4559		    ds->ds_link, ds->ds_data,
4560		    ds->ds_ctl0, ds->ds_ctl1,
4561		    ds->ds_hw[0], ds->ds_hw[1],
4562		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4563	}
4564}
4565
4566static void
4567ath_printtxbuf(struct ath_buf *bf, int done)
4568{
4569	struct ath_desc *ds;
4570	int i;
4571
4572	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4573		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4574		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4575		    ds->ds_link, ds->ds_data,
4576		    ds->ds_ctl0, ds->ds_ctl1,
4577		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4578		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4579	}
4580}
4581#endif /* AR_DEBUG */
4582
4583static void
4584ath_watchdog(struct ifnet *ifp)
4585{
4586	struct ath_softc *sc = ifp->if_softc;
4587	struct ieee80211com *ic = &sc->sc_ic;
4588
4589	ifp->if_timer = 0;
4590	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4591		return;
4592	if (sc->sc_tx_timer) {
4593		if (--sc->sc_tx_timer == 0) {
4594			if_printf(ifp, "device timeout\n");
4595			ath_reset(ifp);
4596			ifp->if_oerrors++;
4597			sc->sc_stats.ast_watchdog++;
4598		} else
4599			ifp->if_timer = 1;
4600	}
4601	ieee80211_watchdog(ic);
4602}
4603
4604/*
4605 * Diagnostic interface to the HAL.  This is used by various
4606 * tools to do things like retrieve register contents for
4607 * debugging.  The mechanism is intentionally opaque so that
4608 * it can change frequently w/o concern for compatiblity.
4609 */
4610static int
4611ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4612{
4613	struct ath_hal *ah = sc->sc_ah;
4614	u_int id = ad->ad_id & ATH_DIAG_ID;
4615	void *indata = NULL;
4616	void *outdata = NULL;
4617	u_int32_t insize = ad->ad_in_size;
4618	u_int32_t outsize = ad->ad_out_size;
4619	int error = 0;
4620
4621	if (ad->ad_id & ATH_DIAG_IN) {
4622		/*
4623		 * Copy in data.
4624		 */
4625		indata = malloc(insize, M_TEMP, M_NOWAIT);
4626		if (indata == NULL) {
4627			error = ENOMEM;
4628			goto bad;
4629		}
4630		error = copyin(ad->ad_in_data, indata, insize);
4631		if (error)
4632			goto bad;
4633	}
4634	if (ad->ad_id & ATH_DIAG_DYN) {
4635		/*
4636		 * Allocate a buffer for the results (otherwise the HAL
4637		 * returns a pointer to a buffer where we can read the
4638		 * results).  Note that we depend on the HAL leaving this
4639		 * pointer for us to use below in reclaiming the buffer;
4640		 * may want to be more defensive.
4641		 */
4642		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4643		if (outdata == NULL) {
4644			error = ENOMEM;
4645			goto bad;
4646		}
4647	}
4648	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4649		if (outsize < ad->ad_out_size)
4650			ad->ad_out_size = outsize;
4651		if (outdata != NULL)
4652			error = copyout(outdata, ad->ad_out_data,
4653					ad->ad_out_size);
4654	} else {
4655		error = EINVAL;
4656	}
4657bad:
4658	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4659		free(indata, M_TEMP);
4660	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4661		free(outdata, M_TEMP);
4662	return error;
4663}
4664
4665static int
4666ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4667{
4668#define	IS_RUNNING(ifp) \
4669	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
4670	struct ath_softc *sc = ifp->if_softc;
4671	struct ieee80211com *ic = &sc->sc_ic;
4672	struct ifreq *ifr = (struct ifreq *)data;
4673	int error = 0;
4674
4675	ATH_LOCK(sc);
4676	switch (cmd) {
4677	case SIOCSIFFLAGS:
4678		if (IS_RUNNING(ifp)) {
4679			/*
4680			 * To avoid rescanning another access point,
4681			 * do not call ath_init() here.  Instead,
4682			 * only reflect promisc mode settings.
4683			 */
4684			ath_mode_init(sc);
4685		} else if (ifp->if_flags & IFF_UP) {
4686			/*
4687			 * Beware of being called during attach/detach
4688			 * to reset promiscuous mode.  In that case we
4689			 * will still be marked UP but not RUNNING.
4690			 * However trying to re-init the interface
4691			 * is the wrong thing to do as we've already
4692			 * torn down much of our state.  There's
4693			 * probably a better way to deal with this.
4694			 */
4695			if (!sc->sc_invalid && ic->ic_bss != NULL)
4696				ath_init(sc);	/* XXX lose error */
4697		} else
4698			ath_stop_locked(ifp);
4699		break;
4700	case SIOCADDMULTI:
4701	case SIOCDELMULTI:
4702		/*
4703		 * The upper layer has already installed/removed
4704		 * the multicast address(es), just recalculate the
4705		 * multicast filter for the card.
4706		 */
4707		if (ifp->if_flags & IFF_RUNNING)
4708			ath_mode_init(sc);
4709		break;
4710	case SIOCGATHSTATS:
4711		/* NB: embed these numbers to get a consistent view */
4712		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4713		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4714		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4715		ATH_UNLOCK(sc);
4716		/*
4717		 * NB: Drop the softc lock in case of a page fault;
4718		 * we'll accept any potential inconsisentcy in the
4719		 * statistics.  The alternative is to copy the data
4720		 * to a local structure.
4721		 */
4722		return copyout(&sc->sc_stats,
4723				ifr->ifr_data, sizeof (sc->sc_stats));
4724	case SIOCGATHDIAG:
4725		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4726		break;
4727	default:
4728		error = ieee80211_ioctl(ic, cmd, data);
4729		if (error == ENETRESET) {
4730			if (IS_RUNNING(ifp) &&
4731			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4732				ath_init(sc);	/* XXX lose error */
4733			error = 0;
4734		}
4735		if (error == ERESTART)
4736			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4737		break;
4738	}
4739	ATH_UNLOCK(sc);
4740	return error;
4741#undef IS_RUNNING
4742}
4743
4744static int
4745ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
4746{
4747	struct ath_softc *sc = arg1;
4748	u_int slottime = ath_hal_getslottime(sc->sc_ah);
4749	int error;
4750
4751	error = sysctl_handle_int(oidp, &slottime, 0, req);
4752	if (error || !req->newptr)
4753		return error;
4754	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
4755}
4756
4757static int
4758ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
4759{
4760	struct ath_softc *sc = arg1;
4761	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
4762	int error;
4763
4764	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
4765	if (error || !req->newptr)
4766		return error;
4767	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
4768}
4769
4770static int
4771ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
4772{
4773	struct ath_softc *sc = arg1;
4774	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
4775	int error;
4776
4777	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
4778	if (error || !req->newptr)
4779		return error;
4780	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
4781}
4782
4783static int
4784ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
4785{
4786	struct ath_softc *sc = arg1;
4787	int softled = sc->sc_softled;
4788	int error;
4789
4790	error = sysctl_handle_int(oidp, &softled, 0, req);
4791	if (error || !req->newptr)
4792		return error;
4793	softled = (softled != 0);
4794	if (softled != sc->sc_softled) {
4795		if (softled) {
4796			/* NB: handle any sc_ledpin change */
4797			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
4798			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
4799				!sc->sc_ledon);
4800		}
4801		sc->sc_softled = softled;
4802	}
4803	return 0;
4804}
4805
4806static int
4807ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
4808{
4809	struct ath_softc *sc = arg1;
4810	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
4811	int error;
4812
4813	error = sysctl_handle_int(oidp, &defantenna, 0, req);
4814	if (!error && req->newptr)
4815		ath_hal_setdefantenna(sc->sc_ah, defantenna);
4816	return error;
4817}
4818
4819static int
4820ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
4821{
4822	struct ath_softc *sc = arg1;
4823	u_int diversity = sc->sc_diversity;
4824	int error;
4825
4826	error = sysctl_handle_int(oidp, &diversity, 0, req);
4827	if (error || !req->newptr)
4828		return error;
4829	sc->sc_diversity = diversity;
4830	return !ath_hal_setdiversity(sc->sc_ah, diversity) ? EINVAL : 0;
4831}
4832
4833static int
4834ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
4835{
4836	struct ath_softc *sc = arg1;
4837	u_int32_t diag;
4838	int error;
4839
4840	if (!ath_hal_getdiag(sc->sc_ah, &diag))
4841		return EINVAL;
4842	error = sysctl_handle_int(oidp, &diag, 0, req);
4843	if (error || !req->newptr)
4844		return error;
4845	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
4846}
4847
4848static int
4849ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
4850{
4851	struct ath_softc *sc = arg1;
4852	struct ifnet *ifp = sc->sc_ifp;
4853	u_int32_t scale;
4854	int error;
4855
4856	ath_hal_gettpscale(sc->sc_ah, &scale);
4857	error = sysctl_handle_int(oidp, &scale, 0, req);
4858	if (error || !req->newptr)
4859		return error;
4860	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
4861}
4862
4863static int
4864ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
4865{
4866	struct ath_softc *sc = arg1;
4867	u_int tpc = ath_hal_gettpc(sc->sc_ah);
4868	int error;
4869
4870	error = sysctl_handle_int(oidp, &tpc, 0, req);
4871	if (error || !req->newptr)
4872		return error;
4873	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
4874}
4875
4876static void
4877ath_sysctlattach(struct ath_softc *sc)
4878{
4879	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4880	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4881
4882	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
4883	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4884		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
4885		"EEPROM country code");
4886	ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain);
4887	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4888		"regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0,
4889		"EEPROM regdomain code");
4890	sc->sc_debug = ath_debug;
4891	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4892		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
4893		"control debugging printfs");
4894
4895	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4896		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4897		ath_sysctl_slottime, "I", "802.11 slot time (us)");
4898	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4899		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4900		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
4901	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4902		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4903		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
4904	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4905		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4906		ath_sysctl_softled, "I", "enable/disable software LED support");
4907	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4908		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
4909		"GPIO pin connected to LED");
4910	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4911		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
4912		"setting to turn LED on");
4913	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4914		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
4915		"idle time for inactivity LED (ticks)");
4916	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4917		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
4918		"tx antenna (0=auto)");
4919	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4920		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4921		ath_sysctl_rxantenna, "I", "default/rx antenna");
4922	if (sc->sc_hasdiversity)
4923		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4924			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4925			ath_sysctl_diversity, "I", "antenna diversity");
4926	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
4927	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4928		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
4929		"tx descriptor batching");
4930	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4931		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4932		ath_sysctl_diag, "I", "h/w diagnostic control");
4933	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4934		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4935		ath_sysctl_tpscale, "I", "tx power scaling");
4936	if (sc->sc_hastpc)
4937		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4938			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4939			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
4940}
4941
4942static void
4943ath_bpfattach(struct ath_softc *sc)
4944{
4945	struct ifnet *ifp = sc->sc_ifp;
4946
4947	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4948		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4949		&sc->sc_drvbpf);
4950	/*
4951	 * Initialize constant fields.
4952	 * XXX make header lengths a multiple of 32-bits so subsequent
4953	 *     headers are properly aligned; this is a kludge to keep
4954	 *     certain applications happy.
4955	 *
4956	 * NB: the channel is setup each time we transition to the
4957	 *     RUN state to avoid filling it in for each frame.
4958	 */
4959	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4960	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4961	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4962
4963	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4964	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4965	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4966}
4967
4968/*
4969 * Announce various information on device/driver attach.
4970 */
4971static void
4972ath_announce(struct ath_softc *sc)
4973{
4974#define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
4975	struct ifnet *ifp = sc->sc_ifp;
4976	struct ath_hal *ah = sc->sc_ah;
4977	u_int modes, cc;
4978
4979	if_printf(ifp, "mac %d.%d phy %d.%d",
4980		ah->ah_macVersion, ah->ah_macRev,
4981		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4982	/*
4983	 * Print radio revision(s).  We check the wireless modes
4984	 * to avoid falsely printing revs for inoperable parts.
4985	 * Dual-band radio revs are returned in the 5Ghz rev number.
4986	 */
4987	ath_hal_getcountrycode(ah, &cc);
4988	modes = ath_hal_getwirelessmodes(ah, cc);
4989	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4990		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4991			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4992				ah->ah_analog5GhzRev >> 4,
4993				ah->ah_analog5GhzRev & 0xf,
4994				ah->ah_analog2GhzRev >> 4,
4995				ah->ah_analog2GhzRev & 0xf);
4996		else
4997			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4998				ah->ah_analog5GhzRev & 0xf);
4999	} else
5000		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
5001			ah->ah_analog5GhzRev & 0xf);
5002	printf("\n");
5003	if (bootverbose) {
5004		int i;
5005		for (i = 0; i <= WME_AC_VO; i++) {
5006			struct ath_txq *txq = sc->sc_ac2q[i];
5007			if_printf(ifp, "Use hw queue %u for %s traffic\n",
5008				txq->axq_qnum, ieee80211_wme_acnames[i]);
5009		}
5010		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
5011			sc->sc_cabq->axq_qnum);
5012		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
5013	}
5014#undef HAL_MODE_DUALBAND
5015}
5016