if_ath.c revision 144350
1/*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 * 3. Neither the names of the above-listed copyright holders nor the names
16 *    of any contributors may be used to endorse or promote products derived
17 *    from this software without specific prior written permission.
18 *
19 * Alternatively, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") version 2 as published by the Free
21 * Software Foundation.
22 *
23 * NO WARRANTY
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34 * THE POSSIBILITY OF SUCH DAMAGES.
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 144350 2005-03-30 20:29:02Z sam $");
39
40/*
41 * Driver for the Atheros Wireless LAN controller.
42 *
43 * This software is derived from work of Atsushi Onoe; his contribution
44 * is greatly appreciated.
45 */
46
47#include "opt_inet.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/sysctl.h>
52#include <sys/mbuf.h>
53#include <sys/malloc.h>
54#include <sys/lock.h>
55#include <sys/mutex.h>
56#include <sys/kernel.h>
57#include <sys/socket.h>
58#include <sys/sockio.h>
59#include <sys/errno.h>
60#include <sys/callout.h>
61#include <sys/bus.h>
62#include <sys/endian.h>
63
64#include <machine/bus.h>
65
66#include <net/if.h>
67#include <net/if_dl.h>
68#include <net/if_media.h>
69#include <net/if_arp.h>
70#include <net/ethernet.h>
71#include <net/if_llc.h>
72
73#include <net80211/ieee80211_var.h>
74
75#include <net/bpf.h>
76
77#ifdef INET
78#include <netinet/in.h>
79#include <netinet/if_ether.h>
80#endif
81
82#define	AR_DEBUG
83#include <dev/ath/if_athvar.h>
84#include <contrib/dev/ath/ah_desc.h>
85#include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
86
87/* unalligned little endian access */
88#define LE_READ_2(p)							\
89	((u_int16_t)							\
90	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
91#define LE_READ_4(p)							\
92	((u_int32_t)							\
93	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
94	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
95
96enum {
97	ATH_LED_TX,
98	ATH_LED_RX,
99	ATH_LED_POLL,
100};
101
102static void	ath_init(void *);
103static void	ath_stop_locked(struct ifnet *);
104static void	ath_stop(struct ifnet *);
105static void	ath_start(struct ifnet *);
106static int	ath_reset(struct ifnet *);
107static int	ath_media_change(struct ifnet *);
108static void	ath_watchdog(struct ifnet *);
109static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
110static void	ath_fatal_proc(void *, int);
111static void	ath_rxorn_proc(void *, int);
112static void	ath_bmiss_proc(void *, int);
113static void	ath_initkeytable(struct ath_softc *);
114static int	ath_key_alloc(struct ieee80211com *,
115			const struct ieee80211_key *);
116static int	ath_key_delete(struct ieee80211com *,
117			const struct ieee80211_key *);
118static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
119			const u_int8_t mac[IEEE80211_ADDR_LEN]);
120static void	ath_key_update_begin(struct ieee80211com *);
121static void	ath_key_update_end(struct ieee80211com *);
122static void	ath_mode_init(struct ath_softc *);
123static void	ath_setslottime(struct ath_softc *);
124static void	ath_updateslot(struct ifnet *);
125static int	ath_beaconq_setup(struct ath_hal *);
126static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
127static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
128static void	ath_beacon_proc(void *, int);
129static void	ath_bstuck_proc(void *, int);
130static void	ath_beacon_free(struct ath_softc *);
131static void	ath_beacon_config(struct ath_softc *);
132static void	ath_descdma_cleanup(struct ath_softc *sc,
133			struct ath_descdma *, ath_bufhead *);
134static int	ath_desc_alloc(struct ath_softc *);
135static void	ath_desc_free(struct ath_softc *);
136static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
137static void	ath_node_free(struct ieee80211_node *);
138static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
139static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
140static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
141			struct ieee80211_node *ni,
142			int subtype, int rssi, u_int32_t rstamp);
143static void	ath_setdefantenna(struct ath_softc *, u_int);
144static void	ath_rx_proc(void *, int);
145static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
146static int	ath_tx_setup(struct ath_softc *, int, int);
147static int	ath_wme_update(struct ieee80211com *);
148static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
149static void	ath_tx_cleanup(struct ath_softc *);
150static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
151			     struct ath_buf *, struct mbuf *);
152static void	ath_tx_proc_q0(void *, int);
153static void	ath_tx_proc_q0123(void *, int);
154static void	ath_tx_proc(void *, int);
155static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
156static void	ath_draintxq(struct ath_softc *);
157static void	ath_stoprecv(struct ath_softc *);
158static int	ath_startrecv(struct ath_softc *);
159static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
160static void	ath_next_scan(void *);
161static void	ath_calibrate(void *);
162static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
163static void	ath_newassoc(struct ieee80211com *,
164			struct ieee80211_node *, int);
165static int	ath_getchannels(struct ath_softc *, u_int cc,
166			HAL_BOOL outdoor, HAL_BOOL xchanmode);
167static void	ath_led_event(struct ath_softc *, int);
168static void	ath_update_txpow(struct ath_softc *);
169
170static int	ath_rate_setup(struct ath_softc *, u_int mode);
171static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
172
173static void	ath_sysctlattach(struct ath_softc *);
174static void	ath_bpfattach(struct ath_softc *);
175static void	ath_announce(struct ath_softc *);
176
177SYSCTL_DECL(_hw_ath);
178
179/* XXX validate sysctl values */
180static	int ath_dwelltime = 200;		/* 5 channels/second */
181SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
182	    0, "channel dwell time (ms) for AP/station scanning");
183static	int ath_calinterval = 30;		/* calibrate every 30 secs */
184SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
185	    0, "chip calibration interval (secs)");
186static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
187SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
188	    0, "outdoor operation");
189TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
190static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
191SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
192	    0, "extended channel mode");
193TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
194static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
195SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
196	    0, "country code");
197TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
198static	int ath_regdomain = 0;			/* regulatory domain */
199SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
200	    0, "regulatory domain");
201
202#ifdef AR_DEBUG
203static	int ath_debug = 0;
204SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
205	    0, "control debugging printfs");
206TUNABLE_INT("hw.ath.debug", &ath_debug);
207enum {
208	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
209	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
210	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
211	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
212	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
213	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
214	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
215	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
216	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
217	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
218	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
219	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
220	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
221	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
222	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
223	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
224	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
225	ATH_DEBUG_LED		= 0x00100000,	/* led management */
226	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
227	ATH_DEBUG_ANY		= 0xffffffff
228};
229#define	IFF_DUMPPKTS(sc, m) \
230	((sc->sc_debug & (m)) || \
231	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
232#define	DPRINTF(sc, m, fmt, ...) do {				\
233	if (sc->sc_debug & (m))					\
234		printf(fmt, __VA_ARGS__);			\
235} while (0)
236#define	KEYPRINTF(sc, ix, hk, mac) do {				\
237	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
238		ath_keyprint(__func__, ix, hk, mac);		\
239} while (0)
240static	void ath_printrxbuf(struct ath_buf *bf, int);
241static	void ath_printtxbuf(struct ath_buf *bf, int);
242#else
243#define	IFF_DUMPPKTS(sc, m) \
244	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
245#define	DPRINTF(m, fmt, ...)
246#define	KEYPRINTF(sc, k, ix, mac)
247#endif
248
249MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
250
251int
252ath_attach(u_int16_t devid, struct ath_softc *sc)
253{
254	struct ifnet *ifp = &sc->sc_if;
255	struct ieee80211com *ic = &sc->sc_ic;
256	struct ath_hal *ah;
257	HAL_STATUS status;
258	int error = 0, i;
259
260	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
261
262	/* set these up early for if_printf use */
263	if_initname(ifp, device_get_name(sc->sc_dev),
264		device_get_unit(sc->sc_dev));
265
266	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
267	if (ah == NULL) {
268		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
269			status);
270		error = ENXIO;
271		goto bad;
272	}
273	if (ah->ah_abi != HAL_ABI_VERSION) {
274		if_printf(ifp, "HAL ABI mismatch detected "
275			"(HAL:0x%x != driver:0x%x)\n",
276			ah->ah_abi, HAL_ABI_VERSION);
277		error = ENXIO;
278		goto bad;
279	}
280	sc->sc_ah = ah;
281	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
282
283	/*
284	 * Check if the MAC has multi-rate retry support.
285	 * We do this by trying to setup a fake extended
286	 * descriptor.  MAC's that don't have support will
287	 * return false w/o doing anything.  MAC's that do
288	 * support it will return true w/o doing anything.
289	 */
290	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
291
292	/*
293	 * Check if the device has hardware counters for PHY
294	 * errors.  If so we need to enable the MIB interrupt
295	 * so we can act on stat triggers.
296	 */
297	if (ath_hal_hwphycounters(ah))
298		sc->sc_needmib = 1;
299
300	/*
301	 * Get the hardware key cache size.
302	 */
303	sc->sc_keymax = ath_hal_keycachesize(ah);
304	if (sc->sc_keymax > sizeof(sc->sc_keymap) * NBBY) {
305		if_printf(ifp,
306			"Warning, using only %zu of %u key cache slots\n",
307			sizeof(sc->sc_keymap) * NBBY, sc->sc_keymax);
308		sc->sc_keymax = sizeof(sc->sc_keymap) * NBBY;
309	}
310	/*
311	 * Reset the key cache since some parts do not
312	 * reset the contents on initial power up.
313	 */
314	for (i = 0; i < sc->sc_keymax; i++)
315		ath_hal_keyreset(ah, i);
316	/*
317	 * Mark key cache slots associated with global keys
318	 * as in use.  If we knew TKIP was not to be used we
319	 * could leave the +32, +64, and +32+64 slots free.
320	 * XXX only for splitmic.
321	 */
322	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
323		setbit(sc->sc_keymap, i);
324		setbit(sc->sc_keymap, i+32);
325		setbit(sc->sc_keymap, i+64);
326		setbit(sc->sc_keymap, i+32+64);
327	}
328
329	/*
330	 * Collect the channel list using the default country
331	 * code and including outdoor channels.  The 802.11 layer
332	 * is resposible for filtering this list based on settings
333	 * like the phy mode.
334	 */
335	error = ath_getchannels(sc, ath_countrycode,
336			ath_outdoor, ath_xchanmode);
337	if (error != 0)
338		goto bad;
339	/*
340	 * Setup dynamic sysctl's now that country code and
341	 * regdomain are available from the hal.
342	 */
343	ath_sysctlattach(sc);
344
345	/*
346	 * Setup rate tables for all potential media types.
347	 */
348	ath_rate_setup(sc, IEEE80211_MODE_11A);
349	ath_rate_setup(sc, IEEE80211_MODE_11B);
350	ath_rate_setup(sc, IEEE80211_MODE_11G);
351	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
352	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
353	/* NB: setup here so ath_rate_update is happy */
354	ath_setcurmode(sc, IEEE80211_MODE_11A);
355
356	/*
357	 * Allocate tx+rx descriptors and populate the lists.
358	 */
359	error = ath_desc_alloc(sc);
360	if (error != 0) {
361		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
362		goto bad;
363	}
364	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
365	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
366
367	ATH_TXBUF_LOCK_INIT(sc);
368
369	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
370	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
371	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
372	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
373	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
374
375	/*
376	 * Allocate hardware transmit queues: one queue for
377	 * beacon frames and one data queue for each QoS
378	 * priority.  Note that the hal handles reseting
379	 * these queues at the needed time.
380	 *
381	 * XXX PS-Poll
382	 */
383	sc->sc_bhalq = ath_beaconq_setup(ah);
384	if (sc->sc_bhalq == (u_int) -1) {
385		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
386		error = EIO;
387		goto bad2;
388	}
389	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
390	if (sc->sc_cabq == NULL) {
391		if_printf(ifp, "unable to setup CAB xmit queue!\n");
392		error = EIO;
393		goto bad2;
394	}
395	/* NB: insure BK queue is the lowest priority h/w queue */
396	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
397		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
398			ieee80211_wme_acnames[WME_AC_BK]);
399		error = EIO;
400		goto bad2;
401	}
402	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
403	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
404	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
405		/*
406		 * Not enough hardware tx queues to properly do WME;
407		 * just punt and assign them all to the same h/w queue.
408		 * We could do a better job of this if, for example,
409		 * we allocate queues when we switch from station to
410		 * AP mode.
411		 */
412		if (sc->sc_ac2q[WME_AC_VI] != NULL)
413			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
414		if (sc->sc_ac2q[WME_AC_BE] != NULL)
415			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
416		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
417		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
418		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
419	}
420
421	/*
422	 * Special case certain configurations.  Note the
423	 * CAB queue is handled by these specially so don't
424	 * include them when checking the txq setup mask.
425	 */
426	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
427	case 0x01:
428		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
429		break;
430	case 0x0f:
431		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
432		break;
433	default:
434		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
435		break;
436	}
437
438	/*
439	 * Setup rate control.  Some rate control modules
440	 * call back to change the anntena state so expose
441	 * the necessary entry points.
442	 * XXX maybe belongs in struct ath_ratectrl?
443	 */
444	sc->sc_setdefantenna = ath_setdefantenna;
445	sc->sc_rc = ath_rate_attach(sc);
446	if (sc->sc_rc == NULL) {
447		error = EIO;
448		goto bad2;
449	}
450
451	sc->sc_blinking = 0;
452	sc->sc_ledstate = 1;
453	sc->sc_ledon = 0;			/* low true */
454	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
455	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
456	/*
457	 * Auto-enable soft led processing for IBM cards and for
458	 * 5211 minipci cards.  Users can also manually enable/disable
459	 * support with a sysctl.
460	 */
461	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
462	if (sc->sc_softled) {
463		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
464		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
465	}
466
467	ifp->if_softc = sc;
468	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
469	ifp->if_start = ath_start;
470	ifp->if_watchdog = ath_watchdog;
471	ifp->if_ioctl = ath_ioctl;
472	ifp->if_init = ath_init;
473	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
474	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
475	IFQ_SET_READY(&ifp->if_snd);
476
477	ic->ic_ifp = ifp;
478	ic->ic_reset = ath_reset;
479	ic->ic_newassoc = ath_newassoc;
480	ic->ic_updateslot = ath_updateslot;
481	ic->ic_wme.wme_update = ath_wme_update;
482	/* XXX not right but it's not used anywhere important */
483	ic->ic_phytype = IEEE80211_T_OFDM;
484	ic->ic_opmode = IEEE80211_M_STA;
485	ic->ic_caps =
486		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
487		| IEEE80211_C_HOSTAP		/* hostap mode */
488		| IEEE80211_C_MONITOR		/* monitor mode */
489		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
490		| IEEE80211_C_SHSLOT		/* short slot time supported */
491		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
492		;
493	/*
494	 * Query the hal to figure out h/w crypto support.
495	 */
496	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
497		ic->ic_caps |= IEEE80211_C_WEP;
498	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
499		ic->ic_caps |= IEEE80211_C_AES;
500	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
501		ic->ic_caps |= IEEE80211_C_AES_CCM;
502	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
503		ic->ic_caps |= IEEE80211_C_CKIP;
504	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
505		ic->ic_caps |= IEEE80211_C_TKIP;
506		/*
507		 * Check if h/w does the MIC and/or whether the
508		 * separate key cache entries are required to
509		 * handle both tx+rx MIC keys.
510		 */
511		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
512			ic->ic_caps |= IEEE80211_C_TKIPMIC;
513		if (ath_hal_tkipsplit(ah))
514			sc->sc_splitmic = 1;
515	}
516	/*
517	 * TPC support can be done either with a global cap or
518	 * per-packet support.  The latter is not available on
519	 * all parts.  We're a bit pedantic here as all parts
520	 * support a global cap.
521	 */
522	sc->sc_hastpc = ath_hal_hastpc(ah);
523	if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
524		ic->ic_caps |= IEEE80211_C_TXPMGT;
525
526	/*
527	 * Mark WME capability only if we have sufficient
528	 * hardware queues to do proper priority scheduling.
529	 */
530	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
531		ic->ic_caps |= IEEE80211_C_WME;
532	/*
533	 * Check for frame bursting capability.
534	 */
535	if (ath_hal_hasbursting(ah))
536		ic->ic_caps |= IEEE80211_C_BURST;
537
538	/*
539	 * Indicate we need the 802.11 header padded to a
540	 * 32-bit boundary for 4-address and QoS frames.
541	 */
542	ic->ic_flags |= IEEE80211_F_DATAPAD;
543
544	/*
545	 * Query the hal about antenna support.
546	 */
547	if (ath_hal_hasdiversity(ah)) {
548		sc->sc_hasdiversity = 1;
549		sc->sc_diversity = ath_hal_getdiversity(ah);
550	}
551	sc->sc_defant = ath_hal_getdefantenna(ah);
552
553	/*
554	 * Not all chips have the VEOL support we want to
555	 * use with IBSS beacons; check here for it.
556	 */
557	sc->sc_hasveol = ath_hal_hasveol(ah);
558
559	/* get mac address from hardware */
560	ath_hal_getmac(ah, ic->ic_myaddr);
561
562	/* call MI attach routine. */
563	ieee80211_ifattach(ic);
564	/* override default methods */
565	ic->ic_node_alloc = ath_node_alloc;
566	sc->sc_node_free = ic->ic_node_free;
567	ic->ic_node_free = ath_node_free;
568	ic->ic_node_getrssi = ath_node_getrssi;
569	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
570	ic->ic_recv_mgmt = ath_recv_mgmt;
571	sc->sc_newstate = ic->ic_newstate;
572	ic->ic_newstate = ath_newstate;
573	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
574	ic->ic_crypto.cs_key_delete = ath_key_delete;
575	ic->ic_crypto.cs_key_set = ath_key_set;
576	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
577	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
578	/* complete initialization */
579	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
580
581	ath_bpfattach(sc);
582
583	if (bootverbose)
584		ieee80211_announce(ic);
585	ath_announce(sc);
586	return 0;
587bad2:
588	ath_tx_cleanup(sc);
589	ath_desc_free(sc);
590bad:
591	if (ah)
592		ath_hal_detach(ah);
593	sc->sc_invalid = 1;
594	return error;
595}
596
597int
598ath_detach(struct ath_softc *sc)
599{
600	struct ifnet *ifp = &sc->sc_if;
601
602	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
603		__func__, ifp->if_flags);
604
605	ath_stop(ifp);
606	bpfdetach(ifp);
607	/*
608	 * NB: the order of these is important:
609	 * o call the 802.11 layer before detaching the hal to
610	 *   insure callbacks into the driver to delete global
611	 *   key cache entries can be handled
612	 * o reclaim the tx queue data structures after calling
613	 *   the 802.11 layer as we'll get called back to reclaim
614	 *   node state and potentially want to use them
615	 * o to cleanup the tx queues the hal is called, so detach
616	 *   it last
617	 * Other than that, it's straightforward...
618	 */
619	ieee80211_ifdetach(&sc->sc_ic);
620	ath_rate_detach(sc->sc_rc);
621	ath_desc_free(sc);
622	ath_tx_cleanup(sc);
623	ath_hal_detach(sc->sc_ah);
624
625	return 0;
626}
627
628void
629ath_suspend(struct ath_softc *sc)
630{
631	struct ifnet *ifp = &sc->sc_if;
632
633	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
634		__func__, ifp->if_flags);
635
636	ath_stop(ifp);
637}
638
639void
640ath_resume(struct ath_softc *sc)
641{
642	struct ifnet *ifp = &sc->sc_if;
643
644	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
645		__func__, ifp->if_flags);
646
647	if (ifp->if_flags & IFF_UP) {
648		ath_init(ifp);
649		if (ifp->if_flags & IFF_RUNNING)
650			ath_start(ifp);
651	}
652}
653
654void
655ath_shutdown(struct ath_softc *sc)
656{
657	struct ifnet *ifp = &sc->sc_if;
658
659	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
660		__func__, ifp->if_flags);
661
662	ath_stop(ifp);
663}
664
665/*
666 * Interrupt handler.  Most of the actual processing is deferred.
667 */
668void
669ath_intr(void *arg)
670{
671	struct ath_softc *sc = arg;
672	struct ifnet *ifp = &sc->sc_if;
673	struct ath_hal *ah = sc->sc_ah;
674	HAL_INT status;
675
676	if (sc->sc_invalid) {
677		/*
678		 * The hardware is not ready/present, don't touch anything.
679		 * Note this can happen early on if the IRQ is shared.
680		 */
681		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
682		return;
683	}
684	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
685		return;
686	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
687		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
688			__func__, ifp->if_flags);
689		ath_hal_getisr(ah, &status);	/* clear ISR */
690		ath_hal_intrset(ah, 0);		/* disable further intr's */
691		return;
692	}
693	/*
694	 * Figure out the reason(s) for the interrupt.  Note
695	 * that the hal returns a pseudo-ISR that may include
696	 * bits we haven't explicitly enabled so we mask the
697	 * value to insure we only process bits we requested.
698	 */
699	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
700	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
701	status &= sc->sc_imask;			/* discard unasked for bits */
702	if (status & HAL_INT_FATAL) {
703		/*
704		 * Fatal errors are unrecoverable.  Typically
705		 * these are caused by DMA errors.  Unfortunately
706		 * the exact reason is not (presently) returned
707		 * by the hal.
708		 */
709		sc->sc_stats.ast_hardware++;
710		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
711		taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
712	} else if (status & HAL_INT_RXORN) {
713		sc->sc_stats.ast_rxorn++;
714		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
715		taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
716	} else {
717		if (status & HAL_INT_SWBA) {
718			/*
719			 * Software beacon alert--time to send a beacon.
720			 * Handle beacon transmission directly; deferring
721			 * this is too slow to meet timing constraints
722			 * under load.
723			 */
724			ath_beacon_proc(sc, 0);
725		}
726		if (status & HAL_INT_RXEOL) {
727			/*
728			 * NB: the hardware should re-read the link when
729			 *     RXE bit is written, but it doesn't work at
730			 *     least on older hardware revs.
731			 */
732			sc->sc_stats.ast_rxeol++;
733			sc->sc_rxlink = NULL;
734		}
735		if (status & HAL_INT_TXURN) {
736			sc->sc_stats.ast_txurn++;
737			/* bump tx trigger level */
738			ath_hal_updatetxtriglevel(ah, AH_TRUE);
739		}
740		if (status & HAL_INT_RX)
741			taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
742		if (status & HAL_INT_TX)
743			taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
744		if (status & HAL_INT_BMISS) {
745			sc->sc_stats.ast_bmiss++;
746			taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
747		}
748		if (status & HAL_INT_MIB) {
749			sc->sc_stats.ast_mib++;
750			/*
751			 * Disable interrupts until we service the MIB
752			 * interrupt; otherwise it will continue to fire.
753			 */
754			ath_hal_intrset(ah, 0);
755			/*
756			 * Let the hal handle the event.  We assume it will
757			 * clear whatever condition caused the interrupt.
758			 */
759			ath_hal_mibevent(ah,
760				&ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
761			ath_hal_intrset(ah, sc->sc_imask);
762		}
763	}
764}
765
766static void
767ath_fatal_proc(void *arg, int pending)
768{
769	struct ath_softc *sc = arg;
770	struct ifnet *ifp = &sc->sc_if;
771
772	if_printf(ifp, "hardware error; resetting\n");
773	ath_reset(ifp);
774}
775
776static void
777ath_rxorn_proc(void *arg, int pending)
778{
779	struct ath_softc *sc = arg;
780	struct ifnet *ifp = &sc->sc_if;
781
782	if_printf(ifp, "rx FIFO overrun; resetting\n");
783	ath_reset(ifp);
784}
785
786static void
787ath_bmiss_proc(void *arg, int pending)
788{
789	struct ath_softc *sc = arg;
790	struct ieee80211com *ic = &sc->sc_ic;
791
792	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
793	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
794		("unexpect operating mode %u", ic->ic_opmode));
795	if (ic->ic_state == IEEE80211_S_RUN) {
796		/*
797		 * Rather than go directly to scan state, try to
798		 * reassociate first.  If that fails then the state
799		 * machine will drop us into scanning after timing
800		 * out waiting for a probe response.
801		 */
802		NET_LOCK_GIANT();
803		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
804		NET_UNLOCK_GIANT();
805	}
806}
807
808static u_int
809ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
810{
811#define	N(a)	(sizeof(a) / sizeof(a[0]))
812	static const u_int modeflags[] = {
813		0,			/* IEEE80211_MODE_AUTO */
814		CHANNEL_A,		/* IEEE80211_MODE_11A */
815		CHANNEL_B,		/* IEEE80211_MODE_11B */
816		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
817		0,			/* IEEE80211_MODE_FH */
818		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
819		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
820	};
821	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
822
823	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
824	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
825	return modeflags[mode];
826#undef N
827}
828
829static void
830ath_init(void *arg)
831{
832	struct ath_softc *sc = (struct ath_softc *) arg;
833	struct ieee80211com *ic = &sc->sc_ic;
834	struct ifnet *ifp = &sc->sc_if;
835	struct ieee80211_node *ni;
836	struct ath_hal *ah = sc->sc_ah;
837	HAL_STATUS status;
838
839	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
840		__func__, ifp->if_flags);
841
842	ATH_LOCK(sc);
843	/*
844	 * Stop anything previously setup.  This is safe
845	 * whether this is the first time through or not.
846	 */
847	ath_stop_locked(ifp);
848
849	/*
850	 * The basic interface to setting the hardware in a good
851	 * state is ``reset''.  On return the hardware is known to
852	 * be powered up and with interrupts disabled.  This must
853	 * be followed by initialization of the appropriate bits
854	 * and then setup of the interrupt mask.
855	 */
856	sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
857	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
858	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
859		if_printf(ifp, "unable to reset hardware; hal status %u\n",
860			status);
861		goto done;
862	}
863
864	/*
865	 * This is needed only to setup initial state
866	 * but it's best done after a reset.
867	 */
868	ath_update_txpow(sc);
869
870	/*
871	 * Setup the hardware after reset: the key cache
872	 * is filled as needed and the receive engine is
873	 * set going.  Frame transmit is handled entirely
874	 * in the frame output path; there's nothing to do
875	 * here except setup the interrupt mask.
876	 */
877	ath_initkeytable(sc);		/* XXX still needed? */
878	if (ath_startrecv(sc) != 0) {
879		if_printf(ifp, "unable to start recv logic\n");
880		goto done;
881	}
882
883	/*
884	 * Enable interrupts.
885	 */
886	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
887		  | HAL_INT_RXEOL | HAL_INT_RXORN
888		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
889	/*
890	 * Enable MIB interrupts when there are hardware phy counters.
891	 * Note we only do this (at the moment) for station mode.
892	 */
893	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
894		sc->sc_imask |= HAL_INT_MIB;
895	ath_hal_intrset(ah, sc->sc_imask);
896
897	ifp->if_flags |= IFF_RUNNING;
898	ic->ic_state = IEEE80211_S_INIT;
899
900	/*
901	 * The hardware should be ready to go now so it's safe
902	 * to kick the 802.11 state machine as it's likely to
903	 * immediately call back to us to send mgmt frames.
904	 */
905	ni = ic->ic_bss;
906	ni->ni_chan = ic->ic_ibss_chan;
907	ath_chan_change(sc, ni->ni_chan);
908	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
909		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
910			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
911	} else
912		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
913done:
914	ATH_UNLOCK(sc);
915}
916
917static void
918ath_stop_locked(struct ifnet *ifp)
919{
920	struct ath_softc *sc = ifp->if_softc;
921	struct ieee80211com *ic = &sc->sc_ic;
922	struct ath_hal *ah = sc->sc_ah;
923
924	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
925		__func__, sc->sc_invalid, ifp->if_flags);
926
927	ATH_LOCK_ASSERT(sc);
928	if (ifp->if_flags & IFF_RUNNING) {
929		/*
930		 * Shutdown the hardware and driver:
931		 *    reset 802.11 state machine
932		 *    turn off timers
933		 *    disable interrupts
934		 *    turn off the radio
935		 *    clear transmit machinery
936		 *    clear receive machinery
937		 *    drain and release tx queues
938		 *    reclaim beacon resources
939		 *    power down hardware
940		 *
941		 * Note that some of this work is not possible if the
942		 * hardware is gone (invalid).
943		 */
944		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
945		ifp->if_flags &= ~IFF_RUNNING;
946		ifp->if_timer = 0;
947		if (!sc->sc_invalid) {
948			if (sc->sc_softled) {
949				callout_stop(&sc->sc_ledtimer);
950				ath_hal_gpioset(ah, sc->sc_ledpin,
951					!sc->sc_ledon);
952				sc->sc_blinking = 0;
953			}
954			ath_hal_intrset(ah, 0);
955		}
956		ath_draintxq(sc);
957		if (!sc->sc_invalid) {
958			ath_stoprecv(sc);
959			ath_hal_phydisable(ah);
960		} else
961			sc->sc_rxlink = NULL;
962		IFQ_DRV_PURGE(&ifp->if_snd);
963		ath_beacon_free(sc);
964	}
965}
966
967static void
968ath_stop(struct ifnet *ifp)
969{
970	struct ath_softc *sc = ifp->if_softc;
971
972	ATH_LOCK(sc);
973	ath_stop_locked(ifp);
974	if (!sc->sc_invalid) {
975		/*
976		 * Set the chip in full sleep mode.  Note that we are
977		 * careful to do this only when bringing the interface
978		 * completely to a stop.  When the chip is in this state
979		 * it must be carefully woken up or references to
980		 * registers in the PCI clock domain may freeze the bus
981		 * (and system).  This varies by chip and is mostly an
982		 * issue with newer parts that go to sleep more quickly.
983		 */
984		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
985	}
986	ATH_UNLOCK(sc);
987}
988
989/*
990 * Reset the hardware w/o losing operational state.  This is
991 * basically a more efficient way of doing ath_stop, ath_init,
992 * followed by state transitions to the current 802.11
993 * operational state.  Used to recover from various errors and
994 * to reset or reload hardware state.
995 */
996static int
997ath_reset(struct ifnet *ifp)
998{
999	struct ath_softc *sc = ifp->if_softc;
1000	struct ieee80211com *ic = &sc->sc_ic;
1001	struct ath_hal *ah = sc->sc_ah;
1002	struct ieee80211_channel *c;
1003	HAL_STATUS status;
1004
1005	/*
1006	 * Convert to a HAL channel description with the flags
1007	 * constrained to reflect the current operating mode.
1008	 */
1009	c = ic->ic_ibss_chan;
1010	sc->sc_curchan.channel = c->ic_freq;
1011	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1012
1013	ath_hal_intrset(ah, 0);		/* disable interrupts */
1014	ath_draintxq(sc);		/* stop xmit side */
1015	ath_stoprecv(sc);		/* stop recv side */
1016	/* NB: indicate channel change so we do a full reset */
1017	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1018		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1019			__func__, status);
1020	ath_update_txpow(sc);		/* update tx power state */
1021	if (ath_startrecv(sc) != 0)	/* restart recv */
1022		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1023	/*
1024	 * We may be doing a reset in response to an ioctl
1025	 * that changes the channel so update any state that
1026	 * might change as a result.
1027	 */
1028	ath_chan_change(sc, c);
1029	if (ic->ic_state == IEEE80211_S_RUN)
1030		ath_beacon_config(sc);	/* restart beacons */
1031	ath_hal_intrset(ah, sc->sc_imask);
1032
1033	ath_start(ifp);			/* restart xmit */
1034	return 0;
1035}
1036
1037static void
1038ath_start(struct ifnet *ifp)
1039{
1040	struct ath_softc *sc = ifp->if_softc;
1041	struct ath_hal *ah = sc->sc_ah;
1042	struct ieee80211com *ic = &sc->sc_ic;
1043	struct ieee80211_node *ni;
1044	struct ath_buf *bf;
1045	struct mbuf *m;
1046	struct ieee80211_frame *wh;
1047	struct ether_header *eh;
1048
1049	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1050		return;
1051	for (;;) {
1052		/*
1053		 * Grab a TX buffer and associated resources.
1054		 */
1055		ATH_TXBUF_LOCK(sc);
1056		bf = STAILQ_FIRST(&sc->sc_txbuf);
1057		if (bf != NULL)
1058			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1059		ATH_TXBUF_UNLOCK(sc);
1060		if (bf == NULL) {
1061			DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1062				__func__);
1063			sc->sc_stats.ast_tx_qstop++;
1064			ifp->if_flags |= IFF_OACTIVE;
1065			break;
1066		}
1067		/*
1068		 * Poll the management queue for frames; they
1069		 * have priority over normal data frames.
1070		 */
1071		IF_DEQUEUE(&ic->ic_mgtq, m);
1072		if (m == NULL) {
1073			/*
1074			 * No data frames go out unless we're associated.
1075			 */
1076			if (ic->ic_state != IEEE80211_S_RUN) {
1077				DPRINTF(sc, ATH_DEBUG_ANY,
1078					"%s: ignore data packet, state %u\n",
1079					__func__, ic->ic_state);
1080				sc->sc_stats.ast_tx_discard++;
1081				ATH_TXBUF_LOCK(sc);
1082				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1083				ATH_TXBUF_UNLOCK(sc);
1084				break;
1085			}
1086			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1087			if (m == NULL) {
1088				ATH_TXBUF_LOCK(sc);
1089				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1090				ATH_TXBUF_UNLOCK(sc);
1091				break;
1092			}
1093			/*
1094			 * Find the node for the destination so we can do
1095			 * things like power save and fast frames aggregation.
1096			 */
1097			if (m->m_len < sizeof(struct ether_header) &&
1098			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1099				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1100				ni = NULL;
1101				goto bad;
1102			}
1103			eh = mtod(m, struct ether_header *);
1104			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1105			if (ni == NULL) {
1106				/* NB: ieee80211_find_txnode does stat+msg */
1107				goto bad;
1108			}
1109			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1110			    (m->m_flags & M_PWR_SAV) == 0) {
1111				/*
1112				 * Station in power save mode; pass the frame
1113				 * to the 802.11 layer and continue.  We'll get
1114				 * the frame back when the time is right.
1115				 */
1116				ieee80211_pwrsave(ic, ni, m);
1117				goto reclaim;
1118			}
1119			/* calculate priority so we can find the tx queue */
1120			if (ieee80211_classify(ic, m, ni)) {
1121				DPRINTF(sc, ATH_DEBUG_XMIT,
1122					"%s: discard, classification failure\n",
1123					__func__);
1124				goto bad;
1125			}
1126			ifp->if_opackets++;
1127			BPF_MTAP(ifp, m);
1128			/*
1129			 * Encapsulate the packet in prep for transmission.
1130			 */
1131			m = ieee80211_encap(ic, m, ni);
1132			if (m == NULL) {
1133				DPRINTF(sc, ATH_DEBUG_ANY,
1134					"%s: encapsulation failure\n",
1135					__func__);
1136				sc->sc_stats.ast_tx_encap++;
1137				goto bad;
1138			}
1139		} else {
1140			/*
1141			 * Hack!  The referenced node pointer is in the
1142			 * rcvif field of the packet header.  This is
1143			 * placed there by ieee80211_mgmt_output because
1144			 * we need to hold the reference with the frame
1145			 * and there's no other way (other than packet
1146			 * tags which we consider too expensive to use)
1147			 * to pass it along.
1148			 */
1149			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1150			m->m_pkthdr.rcvif = NULL;
1151
1152			wh = mtod(m, struct ieee80211_frame *);
1153			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1154			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1155				/* fill time stamp */
1156				u_int64_t tsf;
1157				u_int32_t *tstamp;
1158
1159				tsf = ath_hal_gettsf64(ah);
1160				/* XXX: adjust 100us delay to xmit */
1161				tsf += 100;
1162				tstamp = (u_int32_t *)&wh[1];
1163				tstamp[0] = htole32(tsf & 0xffffffff);
1164				tstamp[1] = htole32(tsf >> 32);
1165			}
1166			sc->sc_stats.ast_tx_mgmt++;
1167		}
1168
1169		if (ath_tx_start(sc, ni, bf, m)) {
1170	bad:
1171			ifp->if_oerrors++;
1172	reclaim:
1173			ATH_TXBUF_LOCK(sc);
1174			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1175			ATH_TXBUF_UNLOCK(sc);
1176			if (ni != NULL)
1177				ieee80211_free_node(ni);
1178			continue;
1179		}
1180
1181		sc->sc_tx_timer = 5;
1182		ifp->if_timer = 1;
1183	}
1184}
1185
1186static int
1187ath_media_change(struct ifnet *ifp)
1188{
1189#define	IS_UP(ifp) \
1190	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
1191	int error;
1192
1193	error = ieee80211_media_change(ifp);
1194	if (error == ENETRESET) {
1195		if (IS_UP(ifp))
1196			ath_init(ifp);		/* XXX lose error */
1197		error = 0;
1198	}
1199	return error;
1200#undef IS_UP
1201}
1202
1203#ifdef AR_DEBUG
1204static void
1205ath_keyprint(const char *tag, u_int ix,
1206	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1207{
1208	static const char *ciphers[] = {
1209		"WEP",
1210		"AES-OCB",
1211		"AES-CCM",
1212		"CKIP",
1213		"TKIP",
1214		"CLR",
1215	};
1216	int i, n;
1217
1218	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1219	for (i = 0, n = hk->kv_len; i < n; i++)
1220		printf("%02x", hk->kv_val[i]);
1221	printf(" mac %s", ether_sprintf(mac));
1222	if (hk->kv_type == HAL_CIPHER_TKIP) {
1223		printf(" mic ");
1224		for (i = 0; i < sizeof(hk->kv_mic); i++)
1225			printf("%02x", hk->kv_mic[i]);
1226	}
1227	printf("\n");
1228}
1229#endif
1230
1231/*
1232 * Set a TKIP key into the hardware.  This handles the
1233 * potential distribution of key state to multiple key
1234 * cache slots for TKIP.
1235 */
1236static int
1237ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1238	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1239{
1240#define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1241	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1242	struct ath_hal *ah = sc->sc_ah;
1243
1244	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1245		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1246	KASSERT(sc->sc_splitmic, ("key cache !split"));
1247	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1248		/*
1249		 * TX key goes at first index, RX key at +32.
1250		 * The hal handles the MIC keys at index+64.
1251		 */
1252		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1253		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1254		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1255			return 0;
1256
1257		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1258		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1259		/* XXX delete tx key on failure? */
1260		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1261	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1262		/*
1263		 * TX/RX key goes at first index.
1264		 * The hal handles the MIC keys are index+64.
1265		 */
1266		KASSERT(k->wk_keyix < IEEE80211_WEP_NKID,
1267			("group key at index %u", k->wk_keyix));
1268		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1269			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1270		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1271		return ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid);
1272	}
1273	/* XXX key w/o xmit/recv; need this for compression? */
1274	return 0;
1275#undef IEEE80211_KEY_XR
1276}
1277
1278/*
1279 * Set a net80211 key into the hardware.  This handles the
1280 * potential distribution of key state to multiple key
1281 * cache slots for TKIP with hardware MIC support.
1282 */
1283static int
1284ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1285	const u_int8_t mac[IEEE80211_ADDR_LEN])
1286{
1287#define	N(a)	(sizeof(a)/sizeof(a[0]))
1288	static const u_int8_t ciphermap[] = {
1289		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1290		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1291		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1292		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1293		(u_int8_t) -1,		/* 4 is not allocated */
1294		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1295		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1296	};
1297	struct ath_hal *ah = sc->sc_ah;
1298	const struct ieee80211_cipher *cip = k->wk_cipher;
1299	HAL_KEYVAL hk;
1300
1301	memset(&hk, 0, sizeof(hk));
1302	/*
1303	 * Software crypto uses a "clear key" so non-crypto
1304	 * state kept in the key cache are maintained and
1305	 * so that rx frames have an entry to match.
1306	 */
1307	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1308		KASSERT(cip->ic_cipher < N(ciphermap),
1309			("invalid cipher type %u", cip->ic_cipher));
1310		hk.kv_type = ciphermap[cip->ic_cipher];
1311		hk.kv_len = k->wk_keylen;
1312		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1313	} else
1314		hk.kv_type = HAL_CIPHER_CLR;
1315
1316	if (hk.kv_type == HAL_CIPHER_TKIP &&
1317	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1318	    sc->sc_splitmic) {
1319		return ath_keyset_tkip(sc, k, &hk, mac);
1320	} else {
1321		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1322		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1323	}
1324#undef N
1325}
1326
1327/*
1328 * Fill the hardware key cache with key entries.
1329 */
1330static void
1331ath_initkeytable(struct ath_softc *sc)
1332{
1333	struct ieee80211com *ic = &sc->sc_ic;
1334	struct ifnet *ifp = &sc->sc_if;
1335	struct ath_hal *ah = sc->sc_ah;
1336	const u_int8_t *bssid;
1337	int i;
1338
1339	/* XXX maybe should reset all keys when !PRIVACY */
1340	if (ic->ic_state == IEEE80211_S_SCAN)
1341		bssid = ifp->if_broadcastaddr;
1342	else
1343		bssid = ic->ic_bss->ni_bssid;
1344	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1345		struct ieee80211_key *k = &ic->ic_nw_keys[i];
1346
1347		if (k->wk_keylen == 0) {
1348			ath_hal_keyreset(ah, i);
1349			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: reset key %u\n",
1350				__func__, i);
1351		} else {
1352			ath_keyset(sc, k, bssid);
1353		}
1354	}
1355}
1356
1357/*
1358 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1359 * each key, one for decrypt/encrypt and the other for the MIC.
1360 */
1361static u_int16_t
1362key_alloc_2pair(struct ath_softc *sc)
1363{
1364#define	N(a)	(sizeof(a)/sizeof(a[0]))
1365	u_int i, keyix;
1366
1367	KASSERT(sc->sc_splitmic, ("key cache !split"));
1368	/* XXX could optimize */
1369	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1370		u_int8_t b = sc->sc_keymap[i];
1371		if (b != 0xff) {
1372			/*
1373			 * One or more slots in this byte are free.
1374			 */
1375			keyix = i*NBBY;
1376			while (b & 1) {
1377		again:
1378				keyix++;
1379				b >>= 1;
1380			}
1381			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1382			if (isset(sc->sc_keymap, keyix+32) ||
1383			    isset(sc->sc_keymap, keyix+64) ||
1384			    isset(sc->sc_keymap, keyix+32+64)) {
1385				/* full pair unavailable */
1386				/* XXX statistic */
1387				if (keyix == (i+1)*NBBY) {
1388					/* no slots were appropriate, advance */
1389					continue;
1390				}
1391				goto again;
1392			}
1393			setbit(sc->sc_keymap, keyix);
1394			setbit(sc->sc_keymap, keyix+64);
1395			setbit(sc->sc_keymap, keyix+32);
1396			setbit(sc->sc_keymap, keyix+32+64);
1397			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1398				"%s: key pair %u,%u %u,%u\n",
1399				__func__, keyix, keyix+64,
1400				keyix+32, keyix+32+64);
1401			return keyix;
1402		}
1403	}
1404	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1405	return IEEE80211_KEYIX_NONE;
1406#undef N
1407}
1408
1409/*
1410 * Allocate a single key cache slot.
1411 */
1412static u_int16_t
1413key_alloc_single(struct ath_softc *sc)
1414{
1415#define	N(a)	(sizeof(a)/sizeof(a[0]))
1416	u_int i, keyix;
1417
1418	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1419	for (i = 0; i < N(sc->sc_keymap); i++) {
1420		u_int8_t b = sc->sc_keymap[i];
1421		if (b != 0xff) {
1422			/*
1423			 * One or more slots are free.
1424			 */
1425			keyix = i*NBBY;
1426			while (b & 1)
1427				keyix++, b >>= 1;
1428			setbit(sc->sc_keymap, keyix);
1429			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1430				__func__, keyix);
1431			return keyix;
1432		}
1433	}
1434	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1435	return IEEE80211_KEYIX_NONE;
1436#undef N
1437}
1438
1439/*
1440 * Allocate one or more key cache slots for a uniacst key.  The
1441 * key itself is needed only to identify the cipher.  For hardware
1442 * TKIP with split cipher+MIC keys we allocate two key cache slot
1443 * pairs so that we can setup separate TX and RX MIC keys.  Note
1444 * that the MIC key for a TKIP key at slot i is assumed by the
1445 * hardware to be at slot i+64.  This limits TKIP keys to the first
1446 * 64 entries.
1447 */
1448static int
1449ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
1450{
1451	struct ath_softc *sc = ic->ic_ifp->if_softc;
1452
1453	/*
1454	 * We allocate two pair for TKIP when using the h/w to do
1455	 * the MIC.  For everything else, including software crypto,
1456	 * we allocate a single entry.  Note that s/w crypto requires
1457	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1458	 * not support pass-through cache entries and we map all
1459	 * those requests to slot 0.
1460	 */
1461	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1462		return key_alloc_single(sc);
1463	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1464	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1465		return key_alloc_2pair(sc);
1466	} else {
1467		return key_alloc_single(sc);
1468	}
1469}
1470
1471/*
1472 * Delete an entry in the key cache allocated by ath_key_alloc.
1473 */
1474static int
1475ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1476{
1477	struct ath_softc *sc = ic->ic_ifp->if_softc;
1478	struct ath_hal *ah = sc->sc_ah;
1479	const struct ieee80211_cipher *cip = k->wk_cipher;
1480	u_int keyix = k->wk_keyix;
1481
1482	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1483
1484	ath_hal_keyreset(ah, keyix);
1485	/*
1486	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1487	 */
1488	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1489	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1490		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1491	if (keyix >= IEEE80211_WEP_NKID) {
1492		/*
1493		 * Don't touch keymap entries for global keys so
1494		 * they are never considered for dynamic allocation.
1495		 */
1496		clrbit(sc->sc_keymap, keyix);
1497		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1498		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1499		    sc->sc_splitmic) {
1500			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1501			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1502			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1503		}
1504	}
1505	return 1;
1506}
1507
1508/*
1509 * Set the key cache contents for the specified key.  Key cache
1510 * slot(s) must already have been allocated by ath_key_alloc.
1511 */
1512static int
1513ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1514	const u_int8_t mac[IEEE80211_ADDR_LEN])
1515{
1516	struct ath_softc *sc = ic->ic_ifp->if_softc;
1517
1518	return ath_keyset(sc, k, mac);
1519}
1520
1521/*
1522 * Block/unblock tx+rx processing while a key change is done.
1523 * We assume the caller serializes key management operations
1524 * so we only need to worry about synchronization with other
1525 * uses that originate in the driver.
1526 */
1527static void
1528ath_key_update_begin(struct ieee80211com *ic)
1529{
1530	struct ifnet *ifp = ic->ic_ifp;
1531	struct ath_softc *sc = ifp->if_softc;
1532
1533	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1534#if 0
1535	tasklet_disable(&sc->sc_rxtq);
1536#endif
1537	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1538}
1539
1540static void
1541ath_key_update_end(struct ieee80211com *ic)
1542{
1543	struct ifnet *ifp = ic->ic_ifp;
1544	struct ath_softc *sc = ifp->if_softc;
1545
1546	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1547	IF_UNLOCK(&ifp->if_snd);
1548#if 0
1549	tasklet_enable(&sc->sc_rxtq);
1550#endif
1551}
1552
1553/*
1554 * Calculate the receive filter according to the
1555 * operating mode and state:
1556 *
1557 * o always accept unicast, broadcast, and multicast traffic
1558 * o maintain current state of phy error reception (the hal
1559 *   may enable phy error frames for noise immunity work)
1560 * o probe request frames are accepted only when operating in
1561 *   hostap, adhoc, or monitor modes
1562 * o enable promiscuous mode according to the interface state
1563 * o accept beacons:
1564 *   - when operating in adhoc mode so the 802.11 layer creates
1565 *     node table entries for peers,
1566 *   - when operating in station mode for collecting rssi data when
1567 *     the station is otherwise quiet, or
1568 *   - when scanning
1569 */
1570static u_int32_t
1571ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1572{
1573	struct ieee80211com *ic = &sc->sc_ic;
1574	struct ath_hal *ah = sc->sc_ah;
1575	struct ifnet *ifp = &sc->sc_if;
1576	u_int32_t rfilt;
1577
1578	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1579	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1580	if (ic->ic_opmode != IEEE80211_M_STA)
1581		rfilt |= HAL_RX_FILTER_PROBEREQ;
1582	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1583	    (ifp->if_flags & IFF_PROMISC))
1584		rfilt |= HAL_RX_FILTER_PROM;
1585	if (ic->ic_opmode == IEEE80211_M_STA ||
1586	    ic->ic_opmode == IEEE80211_M_IBSS ||
1587	    state == IEEE80211_S_SCAN)
1588		rfilt |= HAL_RX_FILTER_BEACON;
1589	return rfilt;
1590}
1591
1592static void
1593ath_mode_init(struct ath_softc *sc)
1594{
1595	struct ieee80211com *ic = &sc->sc_ic;
1596	struct ath_hal *ah = sc->sc_ah;
1597	struct ifnet *ifp = &sc->sc_if;
1598	u_int32_t rfilt, mfilt[2], val;
1599	u_int8_t pos;
1600	struct ifmultiaddr *ifma;
1601
1602	/* configure rx filter */
1603	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1604	ath_hal_setrxfilter(ah, rfilt);
1605
1606	/* configure operational mode */
1607	ath_hal_setopmode(ah);
1608
1609	/*
1610	 * Handle any link-level address change.  Note that we only
1611	 * need to force ic_myaddr; any other addresses are handled
1612	 * as a byproduct of the ifnet code marking the interface
1613	 * down then up.
1614	 *
1615	 * XXX should get from lladdr instead of arpcom but that's more work
1616	 */
1617	IEEE80211_ADDR_COPY(ic->ic_myaddr, IFP2AC(ifp)->ac_enaddr);
1618	ath_hal_setmac(ah, ic->ic_myaddr);
1619
1620	/* calculate and install multicast filter */
1621	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1622		mfilt[0] = mfilt[1] = 0;
1623		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1624			caddr_t dl;
1625
1626			/* calculate XOR of eight 6bit values */
1627			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1628			val = LE_READ_4(dl + 0);
1629			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1630			val = LE_READ_4(dl + 3);
1631			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1632			pos &= 0x3f;
1633			mfilt[pos / 32] |= (1 << (pos % 32));
1634		}
1635	} else {
1636		mfilt[0] = mfilt[1] = ~0;
1637	}
1638	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1639	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1640		__func__, rfilt, mfilt[0], mfilt[1]);
1641}
1642
1643/*
1644 * Set the slot time based on the current setting.
1645 */
1646static void
1647ath_setslottime(struct ath_softc *sc)
1648{
1649	struct ieee80211com *ic = &sc->sc_ic;
1650	struct ath_hal *ah = sc->sc_ah;
1651
1652	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1653		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1654	else
1655		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1656	sc->sc_updateslot = OK;
1657}
1658
1659/*
1660 * Callback from the 802.11 layer to update the
1661 * slot time based on the current setting.
1662 */
1663static void
1664ath_updateslot(struct ifnet *ifp)
1665{
1666	struct ath_softc *sc = ifp->if_softc;
1667	struct ieee80211com *ic = &sc->sc_ic;
1668
1669	/*
1670	 * When not coordinating the BSS, change the hardware
1671	 * immediately.  For other operation we defer the change
1672	 * until beacon updates have propagated to the stations.
1673	 */
1674	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1675		sc->sc_updateslot = UPDATE;
1676	else
1677		ath_setslottime(sc);
1678}
1679
1680/*
1681 * Setup a h/w transmit queue for beacons.
1682 */
1683static int
1684ath_beaconq_setup(struct ath_hal *ah)
1685{
1686	HAL_TXQ_INFO qi;
1687
1688	memset(&qi, 0, sizeof(qi));
1689	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1690	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1691	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1692	/* NB: don't enable any interrupts */
1693	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1694}
1695
1696/*
1697 * Allocate and setup an initial beacon frame.
1698 */
1699static int
1700ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1701{
1702	struct ieee80211com *ic = ni->ni_ic;
1703	struct ath_buf *bf;
1704	struct mbuf *m;
1705	int error;
1706
1707	bf = STAILQ_FIRST(&sc->sc_bbuf);
1708	if (bf == NULL) {
1709		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1710		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1711		return ENOMEM;			/* XXX */
1712	}
1713	/*
1714	 * NB: the beacon data buffer must be 32-bit aligned;
1715	 * we assume the mbuf routines will return us something
1716	 * with this alignment (perhaps should assert).
1717	 */
1718	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1719	if (m == NULL) {
1720		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1721			__func__);
1722		sc->sc_stats.ast_be_nombuf++;
1723		return ENOMEM;
1724	}
1725	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1726				     bf->bf_segs, &bf->bf_nseg,
1727				     BUS_DMA_NOWAIT);
1728	if (error == 0) {
1729		bf->bf_m = m;
1730		bf->bf_node = ieee80211_ref_node(ni);
1731	} else {
1732		m_freem(m);
1733	}
1734	return error;
1735}
1736
1737/*
1738 * Setup the beacon frame for transmit.
1739 */
1740static void
1741ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1742{
1743#define	USE_SHPREAMBLE(_ic) \
1744	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1745		== IEEE80211_F_SHPREAMBLE)
1746	struct ieee80211_node *ni = bf->bf_node;
1747	struct ieee80211com *ic = ni->ni_ic;
1748	struct mbuf *m = bf->bf_m;
1749	struct ath_hal *ah = sc->sc_ah;
1750	struct ath_node *an = ATH_NODE(ni);
1751	struct ath_desc *ds;
1752	int flags, antenna;
1753	u_int8_t rate;
1754
1755	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1756		__func__, m, m->m_len);
1757
1758	/* setup descriptors */
1759	ds = bf->bf_desc;
1760
1761	flags = HAL_TXDESC_NOACK;
1762	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1763		ds->ds_link = bf->bf_daddr;	/* self-linked */
1764		flags |= HAL_TXDESC_VEOL;
1765		/*
1766		 * Let hardware handle antenna switching.
1767		 */
1768		antenna = 0;
1769	} else {
1770		ds->ds_link = 0;
1771		/*
1772		 * Switch antenna every 4 beacons.
1773		 * XXX assumes two antenna
1774		 */
1775		antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1776	}
1777
1778	KASSERT(bf->bf_nseg == 1,
1779		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1780	ds->ds_data = bf->bf_segs[0].ds_addr;
1781	/*
1782	 * Calculate rate code.
1783	 * XXX everything at min xmit rate
1784	 */
1785	if (USE_SHPREAMBLE(ic))
1786		rate = an->an_tx_mgtratesp;
1787	else
1788		rate = an->an_tx_mgtrate;
1789	ath_hal_setuptxdesc(ah, ds
1790		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
1791		, sizeof(struct ieee80211_frame)/* header length */
1792		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1793		, ni->ni_txpower		/* txpower XXX */
1794		, rate, 1			/* series 0 rate/tries */
1795		, HAL_TXKEYIX_INVALID		/* no encryption */
1796		, antenna			/* antenna mode */
1797		, flags				/* no ack, veol for beacons */
1798		, 0				/* rts/cts rate */
1799		, 0				/* rts/cts duration */
1800	);
1801	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1802	ath_hal_filltxdesc(ah, ds
1803		, roundup(m->m_len, 4)		/* buffer length */
1804		, AH_TRUE			/* first segment */
1805		, AH_TRUE			/* last segment */
1806		, ds				/* first descriptor */
1807	);
1808#undef USE_SHPREAMBLE
1809}
1810
1811/*
1812 * Transmit a beacon frame at SWBA.  Dynamic updates to the
1813 * frame contents are done as needed and the slot time is
1814 * also adjusted based on current state.
1815 */
1816static void
1817ath_beacon_proc(void *arg, int pending)
1818{
1819	struct ath_softc *sc = arg;
1820	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
1821	struct ieee80211_node *ni = bf->bf_node;
1822	struct ieee80211com *ic = ni->ni_ic;
1823	struct ath_hal *ah = sc->sc_ah;
1824	struct mbuf *m;
1825	int ncabq, error, otherant;
1826
1827	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
1828		__func__, pending);
1829
1830	if (ic->ic_opmode == IEEE80211_M_STA ||
1831	    ic->ic_opmode == IEEE80211_M_MONITOR ||
1832	    bf == NULL || bf->bf_m == NULL) {
1833		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
1834			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
1835		return;
1836	}
1837	/*
1838	 * Check if the previous beacon has gone out.  If
1839	 * not don't don't try to post another, skip this
1840	 * period and wait for the next.  Missed beacons
1841	 * indicate a problem and should not occur.  If we
1842	 * miss too many consecutive beacons reset the device.
1843	 */
1844	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
1845		sc->sc_bmisscount++;
1846		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1847			"%s: missed %u consecutive beacons\n",
1848			__func__, sc->sc_bmisscount);
1849		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
1850			taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask);
1851		return;
1852	}
1853	if (sc->sc_bmisscount != 0) {
1854		DPRINTF(sc, ATH_DEBUG_BEACON,
1855			"%s: resume beacon xmit after %u misses\n",
1856			__func__, sc->sc_bmisscount);
1857		sc->sc_bmisscount = 0;
1858	}
1859
1860	/*
1861	 * Update dynamic beacon contents.  If this returns
1862	 * non-zero then we need to remap the memory because
1863	 * the beacon frame changed size (probably because
1864	 * of the TIM bitmap).
1865	 */
1866	m = bf->bf_m;
1867	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
1868	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
1869		/* XXX too conservative? */
1870		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1871		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m,
1872					     bf->bf_segs, &bf->bf_nseg,
1873					     BUS_DMA_NOWAIT);
1874		if (error != 0) {
1875			if_printf(ic->ic_ifp,
1876			    "%s: bus_dmamap_load_mbuf_sg failed, error %u\n",
1877			    __func__, error);
1878			return;
1879		}
1880	}
1881
1882	/*
1883	 * Handle slot time change when a non-ERP station joins/leaves
1884	 * an 11g network.  The 802.11 layer notifies us via callback,
1885	 * we mark updateslot, then wait one beacon before effecting
1886	 * the change.  This gives associated stations at least one
1887	 * beacon interval to note the state change.
1888	 */
1889	/* XXX locking */
1890	if (sc->sc_updateslot == UPDATE)
1891		sc->sc_updateslot = COMMIT;	/* commit next beacon */
1892	else if (sc->sc_updateslot == COMMIT)
1893		ath_setslottime(sc);		/* commit change to h/w */
1894
1895	/*
1896	 * Check recent per-antenna transmit statistics and flip
1897	 * the default antenna if noticeably more frames went out
1898	 * on the non-default antenna.
1899	 * XXX assumes 2 anntenae
1900	 */
1901	otherant = sc->sc_defant & 1 ? 2 : 1;
1902	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
1903		ath_setdefantenna(sc, otherant);
1904	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
1905
1906	/*
1907	 * Construct tx descriptor.
1908	 */
1909	ath_beacon_setup(sc, bf);
1910
1911	/*
1912	 * Stop any current dma and put the new frame on the queue.
1913	 * This should never fail since we check above that no frames
1914	 * are still pending on the queue.
1915	 */
1916	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1917		DPRINTF(sc, ATH_DEBUG_ANY,
1918			"%s: beacon queue %u did not stop?\n",
1919			__func__, sc->sc_bhalq);
1920	}
1921	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1922
1923	/*
1924	 * Enable the CAB queue before the beacon queue to
1925	 * insure cab frames are triggered by this beacon.
1926	 */
1927	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
1928		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
1929	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1930	ath_hal_txstart(ah, sc->sc_bhalq);
1931	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1932		"%s: TXDP[%u] = %p (%p)\n", __func__,
1933		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
1934
1935	sc->sc_stats.ast_be_xmit++;
1936}
1937
1938/*
1939 * Reset the hardware after detecting beacons have stopped.
1940 */
1941static void
1942ath_bstuck_proc(void *arg, int pending)
1943{
1944	struct ath_softc *sc = arg;
1945	struct ifnet *ifp = &sc->sc_if;
1946
1947	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
1948		sc->sc_bmisscount);
1949	ath_reset(ifp);
1950}
1951
1952/*
1953 * Reclaim beacon resources.
1954 */
1955static void
1956ath_beacon_free(struct ath_softc *sc)
1957{
1958	struct ath_buf *bf;
1959
1960	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list) {
1961		if (bf->bf_m != NULL) {
1962			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1963			m_freem(bf->bf_m);
1964			bf->bf_m = NULL;
1965		}
1966		if (bf->bf_node != NULL) {
1967			ieee80211_free_node(bf->bf_node);
1968			bf->bf_node = NULL;
1969		}
1970	}
1971}
1972
1973/*
1974 * Configure the beacon and sleep timers.
1975 *
1976 * When operating as an AP this resets the TSF and sets
1977 * up the hardware to notify us when we need to issue beacons.
1978 *
1979 * When operating in station mode this sets up the beacon
1980 * timers according to the timestamp of the last received
1981 * beacon and the current TSF, configures PCF and DTIM
1982 * handling, programs the sleep registers so the hardware
1983 * will wakeup in time to receive beacons, and configures
1984 * the beacon miss handling so we'll receive a BMISS
1985 * interrupt when we stop seeing beacons from the AP
1986 * we've associated with.
1987 */
1988static void
1989ath_beacon_config(struct ath_softc *sc)
1990{
1991	struct ath_hal *ah = sc->sc_ah;
1992	struct ieee80211com *ic = &sc->sc_ic;
1993	struct ieee80211_node *ni = ic->ic_bss;
1994	u_int32_t nexttbtt, intval;
1995
1996	nexttbtt = (LE_READ_4(ni->ni_tstamp.data + 4) << 22) |
1997	    (LE_READ_4(ni->ni_tstamp.data) >> 10);
1998	intval = ni->ni_intval & HAL_BEACON_PERIOD;
1999	if (nexttbtt == 0)		/* e.g. for ap mode */
2000		nexttbtt = intval;
2001	else if (intval)		/* NB: can be 0 for monitor mode */
2002		nexttbtt = roundup(nexttbtt, intval);
2003	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2004		__func__, nexttbtt, intval, ni->ni_intval);
2005	if (ic->ic_opmode == IEEE80211_M_STA) {
2006		HAL_BEACON_STATE bs;
2007
2008		/* NB: no PCF support right now */
2009		memset(&bs, 0, sizeof(bs));
2010		bs.bs_intval = intval;
2011		bs.bs_nexttbtt = nexttbtt;
2012		bs.bs_dtimperiod = bs.bs_intval;
2013		bs.bs_nextdtim = nexttbtt;
2014		/*
2015		 * The 802.11 layer records the offset to the DTIM
2016		 * bitmap while receiving beacons; use it here to
2017		 * enable h/w detection of our AID being marked in
2018		 * the bitmap vector (to indicate frames for us are
2019		 * pending at the AP).
2020		 */
2021		bs.bs_timoffset = ni->ni_timoff;
2022		/*
2023		 * Calculate the number of consecutive beacons to miss
2024		 * before taking a BMISS interrupt.  The configuration
2025		 * is specified in ms, so we need to convert that to
2026		 * TU's and then calculate based on the beacon interval.
2027		 * Note that we clamp the result to at most 10 beacons.
2028		 */
2029		bs.bs_bmissthreshold = howmany(ic->ic_bmisstimeout, intval);
2030		if (bs.bs_bmissthreshold > 10)
2031			bs.bs_bmissthreshold = 10;
2032		else if (bs.bs_bmissthreshold <= 0)
2033			bs.bs_bmissthreshold = 1;
2034
2035		/*
2036		 * Calculate sleep duration.  The configuration is
2037		 * given in ms.  We insure a multiple of the beacon
2038		 * period is used.  Also, if the sleep duration is
2039		 * greater than the DTIM period then it makes senses
2040		 * to make it a multiple of that.
2041		 *
2042		 * XXX fixed at 100ms
2043		 */
2044		bs.bs_sleepduration =
2045			roundup(IEEE80211_MS_TO_TU(100), bs.bs_intval);
2046		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2047			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2048
2049		DPRINTF(sc, ATH_DEBUG_BEACON,
2050			"%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2051			, __func__
2052			, bs.bs_intval
2053			, bs.bs_nexttbtt
2054			, bs.bs_dtimperiod
2055			, bs.bs_nextdtim
2056			, bs.bs_bmissthreshold
2057			, bs.bs_sleepduration
2058			, bs.bs_cfpperiod
2059			, bs.bs_cfpmaxduration
2060			, bs.bs_cfpnext
2061			, bs.bs_timoffset
2062		);
2063		ath_hal_intrset(ah, 0);
2064		ath_hal_beacontimers(ah, &bs);
2065		sc->sc_imask |= HAL_INT_BMISS;
2066		ath_hal_intrset(ah, sc->sc_imask);
2067	} else {
2068		ath_hal_intrset(ah, 0);
2069		if (nexttbtt == intval)
2070			intval |= HAL_BEACON_RESET_TSF;
2071		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2072			/*
2073			 * In IBSS mode enable the beacon timers but only
2074			 * enable SWBA interrupts if we need to manually
2075			 * prepare beacon frames.  Otherwise we use a
2076			 * self-linked tx descriptor and let the hardware
2077			 * deal with things.
2078			 */
2079			intval |= HAL_BEACON_ENA;
2080			if (!sc->sc_hasveol)
2081				sc->sc_imask |= HAL_INT_SWBA;
2082		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2083			/*
2084			 * In AP mode we enable the beacon timers and
2085			 * SWBA interrupts to prepare beacon frames.
2086			 */
2087			intval |= HAL_BEACON_ENA;
2088			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2089		}
2090		ath_hal_beaconinit(ah, nexttbtt, intval);
2091		sc->sc_bmisscount = 0;
2092		ath_hal_intrset(ah, sc->sc_imask);
2093		/*
2094		 * When using a self-linked beacon descriptor in
2095		 * ibss mode load it once here.
2096		 */
2097		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2098			ath_beacon_proc(sc, 0);
2099	}
2100}
2101
2102static void
2103ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2104{
2105	bus_addr_t *paddr = (bus_addr_t*) arg;
2106	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2107	*paddr = segs->ds_addr;
2108}
2109
2110static int
2111ath_descdma_setup(struct ath_softc *sc,
2112	struct ath_descdma *dd, ath_bufhead *head,
2113	const char *name, int nbuf, int ndesc)
2114{
2115#define	DS2PHYS(_dd, _ds) \
2116	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2117	struct ifnet *ifp = &sc->sc_if;
2118	struct ath_desc *ds;
2119	struct ath_buf *bf;
2120	int i, bsize, error;
2121
2122	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2123	    __func__, name, nbuf, ndesc);
2124
2125	dd->dd_name = name;
2126	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2127
2128	/*
2129	 * Setup DMA descriptor area.
2130	 */
2131	error = bus_dma_tag_create(NULL,	/* parent */
2132		       PAGE_SIZE, 0,		/* alignment, bounds */
2133		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2134		       BUS_SPACE_MAXADDR,	/* highaddr */
2135		       NULL, NULL,		/* filter, filterarg */
2136		       dd->dd_desc_len,		/* maxsize */
2137		       1,			/* nsegments */
2138		       BUS_SPACE_MAXADDR,	/* maxsegsize */
2139		       BUS_DMA_ALLOCNOW,	/* flags */
2140		       NULL,			/* lockfunc */
2141		       NULL,			/* lockarg */
2142		       &dd->dd_dmat);
2143	if (error != 0) {
2144		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2145		return error;
2146	}
2147
2148	/* allocate descriptors */
2149	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2150	if (error != 0) {
2151		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2152			"error %u\n", dd->dd_name, error);
2153		goto fail0;
2154	}
2155
2156	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2157				 BUS_DMA_NOWAIT, &dd->dd_dmamap);
2158	if (error != 0) {
2159		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2160			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2161		goto fail1;
2162	}
2163
2164	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2165				dd->dd_desc, dd->dd_desc_len,
2166				ath_load_cb, &dd->dd_desc_paddr,
2167				BUS_DMA_NOWAIT);
2168	if (error != 0) {
2169		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2170			dd->dd_name, error);
2171		goto fail2;
2172	}
2173
2174	ds = dd->dd_desc;
2175	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2176	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2177	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2178
2179	/* allocate rx buffers */
2180	bsize = sizeof(struct ath_buf) * nbuf;
2181	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2182	if (bf == NULL) {
2183		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2184			dd->dd_name, bsize);
2185		goto fail3;
2186	}
2187	dd->dd_bufptr = bf;
2188
2189	STAILQ_INIT(head);
2190	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2191		bf->bf_desc = ds;
2192		bf->bf_daddr = DS2PHYS(dd, ds);
2193		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2194				&bf->bf_dmamap);
2195		if (error != 0) {
2196			if_printf(ifp, "unable to create dmamap for %s "
2197				"buffer %u, error %u\n", dd->dd_name, i, error);
2198			ath_descdma_cleanup(sc, dd, head);
2199			return error;
2200		}
2201		STAILQ_INSERT_TAIL(head, bf, bf_list);
2202	}
2203	return 0;
2204fail3:
2205	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2206fail2:
2207	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2208fail1:
2209	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2210fail0:
2211	bus_dma_tag_destroy(dd->dd_dmat);
2212	memset(dd, 0, sizeof(*dd));
2213	return error;
2214#undef DS2PHYS
2215}
2216
2217static void
2218ath_descdma_cleanup(struct ath_softc *sc,
2219	struct ath_descdma *dd, ath_bufhead *head)
2220{
2221	struct ath_buf *bf;
2222	struct ieee80211_node *ni;
2223
2224	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2225	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2226	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2227	bus_dma_tag_destroy(dd->dd_dmat);
2228
2229	STAILQ_FOREACH(bf, head, bf_list) {
2230		if (bf->bf_m) {
2231			m_freem(bf->bf_m);
2232			bf->bf_m = NULL;
2233		}
2234		if (bf->bf_dmamap != NULL) {
2235			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2236			bf->bf_dmamap = NULL;
2237		}
2238		ni = bf->bf_node;
2239		bf->bf_node = NULL;
2240		if (ni != NULL) {
2241			/*
2242			 * Reclaim node reference.
2243			 */
2244			ieee80211_free_node(ni);
2245		}
2246	}
2247
2248	STAILQ_INIT(head);
2249	free(dd->dd_bufptr, M_ATHDEV);
2250	memset(dd, 0, sizeof(*dd));
2251}
2252
2253static int
2254ath_desc_alloc(struct ath_softc *sc)
2255{
2256	int error;
2257
2258	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2259			"rx", ATH_RXBUF, 1);
2260	if (error != 0)
2261		return error;
2262
2263	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2264			"tx", ATH_TXBUF, ATH_TXDESC);
2265	if (error != 0) {
2266		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2267		return error;
2268	}
2269
2270	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2271			"beacon", 1, 1);
2272	if (error != 0) {
2273		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2274		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2275		return error;
2276	}
2277	return 0;
2278}
2279
2280static void
2281ath_desc_free(struct ath_softc *sc)
2282{
2283
2284	if (sc->sc_bdma.dd_desc_len != 0)
2285		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2286	if (sc->sc_txdma.dd_desc_len != 0)
2287		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2288	if (sc->sc_rxdma.dd_desc_len != 0)
2289		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2290}
2291
2292static struct ieee80211_node *
2293ath_node_alloc(struct ieee80211_node_table *nt)
2294{
2295	struct ieee80211com *ic = nt->nt_ic;
2296	struct ath_softc *sc = ic->ic_ifp->if_softc;
2297	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2298	struct ath_node *an;
2299
2300	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2301	if (an == NULL) {
2302		/* XXX stat+msg */
2303		return NULL;
2304	}
2305	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2306	an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2307	an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2308	an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2309	ath_rate_node_init(sc, an);
2310
2311	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2312	return &an->an_node;
2313}
2314
2315static void
2316ath_node_free(struct ieee80211_node *ni)
2317{
2318	struct ieee80211com *ic = ni->ni_ic;
2319        struct ath_softc *sc = ic->ic_ifp->if_softc;
2320
2321	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2322
2323	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2324	sc->sc_node_free(ni);
2325}
2326
2327static u_int8_t
2328ath_node_getrssi(const struct ieee80211_node *ni)
2329{
2330#define	HAL_EP_RND(x, mul) \
2331	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2332	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2333	int32_t rssi;
2334
2335	/*
2336	 * When only one frame is received there will be no state in
2337	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2338	 */
2339	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2340		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2341	else
2342		rssi = ni->ni_rssi;
2343	/* NB: theoretically we shouldn't need this, but be paranoid */
2344	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2345#undef HAL_EP_RND
2346}
2347
2348static int
2349ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2350{
2351	struct ath_hal *ah = sc->sc_ah;
2352	int error;
2353	struct mbuf *m;
2354	struct ath_desc *ds;
2355
2356	m = bf->bf_m;
2357	if (m == NULL) {
2358		/*
2359		 * NB: by assigning a page to the rx dma buffer we
2360		 * implicitly satisfy the Atheros requirement that
2361		 * this buffer be cache-line-aligned and sized to be
2362		 * multiple of the cache line size.  Not doing this
2363		 * causes weird stuff to happen (for the 5210 at least).
2364		 */
2365		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2366		if (m == NULL) {
2367			DPRINTF(sc, ATH_DEBUG_ANY,
2368				"%s: no mbuf/cluster\n", __func__);
2369			sc->sc_stats.ast_rx_nombuf++;
2370			return ENOMEM;
2371		}
2372		bf->bf_m = m;
2373		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2374
2375		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat,
2376					     bf->bf_dmamap, m,
2377					     bf->bf_segs, &bf->bf_nseg,
2378					     BUS_DMA_NOWAIT);
2379		if (error != 0) {
2380			DPRINTF(sc, ATH_DEBUG_ANY,
2381			    "%s: bus_dmamap_load_mbuf_sg failed; error %d\n",
2382			    __func__, error);
2383			sc->sc_stats.ast_rx_busdma++;
2384			return error;
2385		}
2386		KASSERT(bf->bf_nseg == 1,
2387			("multi-segment packet; nseg %u", bf->bf_nseg));
2388	}
2389	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2390
2391	/*
2392	 * Setup descriptors.  For receive we always terminate
2393	 * the descriptor list with a self-linked entry so we'll
2394	 * not get overrun under high load (as can happen with a
2395	 * 5212 when ANI processing enables PHY error frames).
2396	 *
2397	 * To insure the last descriptor is self-linked we create
2398	 * each descriptor as self-linked and add it to the end.  As
2399	 * each additional descriptor is added the previous self-linked
2400	 * entry is ``fixed'' naturally.  This should be safe even
2401	 * if DMA is happening.  When processing RX interrupts we
2402	 * never remove/process the last, self-linked, entry on the
2403	 * descriptor list.  This insures the hardware always has
2404	 * someplace to write a new frame.
2405	 */
2406	ds = bf->bf_desc;
2407	ds->ds_link = bf->bf_daddr;	/* link to self */
2408	ds->ds_data = bf->bf_segs[0].ds_addr;
2409	ath_hal_setuprxdesc(ah, ds
2410		, m->m_len		/* buffer size */
2411		, 0
2412	);
2413
2414	if (sc->sc_rxlink != NULL)
2415		*sc->sc_rxlink = bf->bf_daddr;
2416	sc->sc_rxlink = &ds->ds_link;
2417	return 0;
2418}
2419
2420/*
2421 * Extend 15-bit time stamp from rx descriptor to
2422 * a full 64-bit TSF using the current h/w TSF.
2423 */
2424static __inline u_int64_t
2425ath_extend_tsf(struct ath_hal *ah, u_int32_t rstamp)
2426{
2427	u_int64_t tsf;
2428
2429	tsf = ath_hal_gettsf64(ah);
2430	if ((tsf & 0x7fff) < rstamp)
2431		tsf -= 0x8000;
2432	return ((tsf &~ 0x7fff) | rstamp);
2433}
2434
2435/*
2436 * Intercept management frames to collect beacon rssi data
2437 * and to do ibss merges.
2438 */
2439static void
2440ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2441	struct ieee80211_node *ni,
2442	int subtype, int rssi, u_int32_t rstamp)
2443{
2444	struct ath_softc *sc = ic->ic_ifp->if_softc;
2445
2446	/*
2447	 * Call up first so subsequent work can use information
2448	 * potentially stored in the node (e.g. for ibss merge).
2449	 */
2450	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2451	switch (subtype) {
2452	case IEEE80211_FC0_SUBTYPE_BEACON:
2453		/* update rssi statistics for use by the hal */
2454		ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2455		/* fall thru... */
2456	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2457		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2458		    ic->ic_state == IEEE80211_S_RUN) {
2459			u_int64_t tsf = ath_extend_tsf(sc->sc_ah, rstamp);
2460			/*
2461			 * Handle ibss merge as needed; check the tsf on the
2462			 * frame before attempting the merge.  The 802.11 spec
2463			 * says the station should change it's bssid to match
2464			 * the oldest station with the same ssid, where oldest
2465			 * is determined by the tsf.  Note that hardware
2466			 * reconfiguration happens through callback to
2467			 * ath_newstate as the state machine will go from
2468			 * RUN -> RUN when this happens.
2469			 */
2470			if (le64toh(ni->ni_tstamp.tsf) >= tsf) {
2471				DPRINTF(sc, ATH_DEBUG_STATE,
2472				    "ibss merge, rstamp %u tsf %ju "
2473				    "tstamp %ju\n", rstamp, (uintmax_t)tsf,
2474				    (uintmax_t)ni->ni_tstamp.tsf);
2475				(void) ieee80211_ibss_merge(ic, ni);
2476			}
2477		}
2478		break;
2479	}
2480}
2481
2482/*
2483 * Set the default antenna.
2484 */
2485static void
2486ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2487{
2488	struct ath_hal *ah = sc->sc_ah;
2489
2490	/* XXX block beacon interrupts */
2491	ath_hal_setdefantenna(ah, antenna);
2492	if (sc->sc_defant != antenna)
2493		sc->sc_stats.ast_ant_defswitch++;
2494	sc->sc_defant = antenna;
2495	sc->sc_rxotherant = 0;
2496}
2497
2498static void
2499ath_rx_proc(void *arg, int npending)
2500{
2501#define	PA2DESC(_sc, _pa) \
2502	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2503		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2504	struct ath_softc *sc = arg;
2505	struct ath_buf *bf;
2506	struct ieee80211com *ic = &sc->sc_ic;
2507	struct ifnet *ifp = &sc->sc_if;
2508	struct ath_hal *ah = sc->sc_ah;
2509	struct ath_desc *ds;
2510	struct mbuf *m;
2511	struct ieee80211_node *ni;
2512	struct ath_node *an;
2513	int len;
2514	u_int phyerr;
2515	HAL_STATUS status;
2516
2517	NET_LOCK_GIANT();		/* XXX */
2518
2519	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2520	do {
2521		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2522		if (bf == NULL) {		/* NB: shouldn't happen */
2523			if_printf(ifp, "%s: no buffer!\n", __func__);
2524			break;
2525		}
2526		ds = bf->bf_desc;
2527		if (ds->ds_link == bf->bf_daddr) {
2528			/* NB: never process the self-linked entry at the end */
2529			break;
2530		}
2531		m = bf->bf_m;
2532		if (m == NULL) {		/* NB: shouldn't happen */
2533			if_printf(ifp, "%s: no mbuf!\n", __func__);
2534			continue;
2535		}
2536		/* XXX sync descriptor memory */
2537		/*
2538		 * Must provide the virtual address of the current
2539		 * descriptor, the physical address, and the virtual
2540		 * address of the next descriptor in the h/w chain.
2541		 * This allows the HAL to look ahead to see if the
2542		 * hardware is done with a descriptor by checking the
2543		 * done bit in the following descriptor and the address
2544		 * of the current descriptor the DMA engine is working
2545		 * on.  All this is necessary because of our use of
2546		 * a self-linked list to avoid rx overruns.
2547		 */
2548		status = ath_hal_rxprocdesc(ah, ds,
2549				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2550#ifdef AR_DEBUG
2551		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2552			ath_printrxbuf(bf, status == HAL_OK);
2553#endif
2554		if (status == HAL_EINPROGRESS)
2555			break;
2556		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2557		if (ds->ds_rxstat.rs_more) {
2558			/*
2559			 * Frame spans multiple descriptors; this
2560			 * cannot happen yet as we don't support
2561			 * jumbograms.  If not in monitor mode,
2562			 * discard the frame.
2563			 */
2564			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2565				sc->sc_stats.ast_rx_toobig++;
2566				goto rx_next;
2567			}
2568			/* fall thru for monitor mode handling... */
2569		} else if (ds->ds_rxstat.rs_status != 0) {
2570			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2571				sc->sc_stats.ast_rx_crcerr++;
2572			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2573				sc->sc_stats.ast_rx_fifoerr++;
2574			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2575				sc->sc_stats.ast_rx_phyerr++;
2576				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2577				sc->sc_stats.ast_rx_phy[phyerr]++;
2578				goto rx_next;
2579			}
2580			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2581				/*
2582				 * Decrypt error.  If the error occurred
2583				 * because there was no hardware key, then
2584				 * let the frame through so the upper layers
2585				 * can process it.  This is necessary for 5210
2586				 * parts which have no way to setup a ``clear''
2587				 * key cache entry.
2588				 *
2589				 * XXX do key cache faulting
2590				 */
2591				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2592					goto rx_accept;
2593				sc->sc_stats.ast_rx_badcrypt++;
2594			}
2595			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2596				sc->sc_stats.ast_rx_badmic++;
2597				/*
2598				 * Do minimal work required to hand off
2599				 * the 802.11 header for notifcation.
2600				 */
2601				/* XXX frag's and qos frames */
2602				len = ds->ds_rxstat.rs_datalen;
2603				if (len >= sizeof (struct ieee80211_frame)) {
2604					bus_dmamap_sync(sc->sc_dmat,
2605					    bf->bf_dmamap,
2606					    BUS_DMASYNC_POSTREAD);
2607					ieee80211_notify_michael_failure(ic,
2608					    mtod(m, struct ieee80211_frame *),
2609					    sc->sc_splitmic ?
2610					        ds->ds_rxstat.rs_keyix-32 :
2611					        ds->ds_rxstat.rs_keyix
2612					);
2613				}
2614			}
2615			ifp->if_ierrors++;
2616			/*
2617			 * Reject error frames, we normally don't want
2618			 * to see them in monitor mode (in monitor mode
2619			 * allow through packets that have crypto problems).
2620			 */
2621			if ((ds->ds_rxstat.rs_status &~
2622				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2623			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2624				goto rx_next;
2625		}
2626rx_accept:
2627		/*
2628		 * Sync and unmap the frame.  At this point we're
2629		 * committed to passing the mbuf somewhere so clear
2630		 * bf_m; this means a new sk_buff must be allocated
2631		 * when the rx descriptor is setup again to receive
2632		 * another frame.
2633		 */
2634		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2635		    BUS_DMASYNC_POSTREAD);
2636		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2637		bf->bf_m = NULL;
2638
2639		m->m_pkthdr.rcvif = ifp;
2640		len = ds->ds_rxstat.rs_datalen;
2641		m->m_pkthdr.len = m->m_len = len;
2642
2643		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2644
2645		if (sc->sc_drvbpf) {
2646			u_int8_t rix;
2647
2648			/*
2649			 * Discard anything shorter than an ack or cts.
2650			 */
2651			if (len < IEEE80211_ACK_LEN) {
2652				DPRINTF(sc, ATH_DEBUG_RECV,
2653					"%s: runt packet %d\n",
2654					__func__, len);
2655				sc->sc_stats.ast_rx_tooshort++;
2656				m_freem(m);
2657				goto rx_next;
2658			}
2659			rix = ds->ds_rxstat.rs_rate;
2660			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].rxflags;
2661			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2662			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2663			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2664			/* XXX TSF */
2665
2666			bpf_mtap2(sc->sc_drvbpf,
2667				&sc->sc_rx_th, sc->sc_rx_th_len, m);
2668		}
2669
2670		/*
2671		 * From this point on we assume the frame is at least
2672		 * as large as ieee80211_frame_min; verify that.
2673		 */
2674		if (len < IEEE80211_MIN_LEN) {
2675			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2676				__func__, len);
2677			sc->sc_stats.ast_rx_tooshort++;
2678			m_freem(m);
2679			goto rx_next;
2680		}
2681
2682		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2683			ieee80211_dump_pkt(mtod(m, caddr_t), len,
2684				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2685				   ds->ds_rxstat.rs_rssi);
2686		}
2687
2688		m_adj(m, -IEEE80211_CRC_LEN);
2689
2690		/*
2691		 * Locate the node for sender, track state, and then
2692		 * pass the (referenced) node up to the 802.11 layer
2693		 * for its use.
2694		 */
2695		ni = ieee80211_find_rxnode(ic,
2696			mtod(m, const struct ieee80211_frame_min *));
2697
2698		/*
2699		 * Track rx rssi and do any rx antenna management.
2700		 */
2701		an = ATH_NODE(ni);
2702		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2703		if (sc->sc_diversity) {
2704			/*
2705			 * When using fast diversity, change the default rx
2706			 * antenna if diversity chooses the other antenna 3
2707			 * times in a row.
2708			 */
2709			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2710				if (++sc->sc_rxotherant >= 3)
2711					ath_setdefantenna(sc,
2712						ds->ds_rxstat.rs_antenna);
2713			} else
2714				sc->sc_rxotherant = 0;
2715		}
2716
2717		/*
2718		 * Send frame up for processing.
2719		 */
2720		ieee80211_input(ic, m, ni,
2721			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2722
2723		if (sc->sc_softled) {
2724			/*
2725			 * Blink for any data frame.  Otherwise do a
2726			 * heartbeat-style blink when idle.  The latter
2727			 * is mainly for station mode where we depend on
2728			 * periodic beacon frames to trigger the poll event.
2729			 */
2730			if (sc->sc_ipackets != ifp->if_ipackets) {
2731				sc->sc_ipackets = ifp->if_ipackets;
2732				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
2733				ath_led_event(sc, ATH_LED_RX);
2734			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
2735				ath_led_event(sc, ATH_LED_POLL);
2736		}
2737
2738		/*
2739		 * Reclaim node reference.
2740		 */
2741		ieee80211_free_node(ni);
2742rx_next:
2743		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2744	} while (ath_rxbuf_init(sc, bf) == 0);
2745
2746	/* rx signal state monitoring */
2747	ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
2748
2749	NET_UNLOCK_GIANT();		/* XXX */
2750#undef PA2DESC
2751}
2752
2753/*
2754 * Setup a h/w transmit queue.
2755 */
2756static struct ath_txq *
2757ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2758{
2759#define	N(a)	(sizeof(a)/sizeof(a[0]))
2760	struct ath_hal *ah = sc->sc_ah;
2761	HAL_TXQ_INFO qi;
2762	int qnum;
2763
2764	memset(&qi, 0, sizeof(qi));
2765	qi.tqi_subtype = subtype;
2766	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2767	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2768	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2769	/*
2770	 * Enable interrupts only for EOL and DESC conditions.
2771	 * We mark tx descriptors to receive a DESC interrupt
2772	 * when a tx queue gets deep; otherwise waiting for the
2773	 * EOL to reap descriptors.  Note that this is done to
2774	 * reduce interrupt load and this only defers reaping
2775	 * descriptors, never transmitting frames.  Aside from
2776	 * reducing interrupts this also permits more concurrency.
2777	 * The only potential downside is if the tx queue backs
2778	 * up in which case the top half of the kernel may backup
2779	 * due to a lack of tx descriptors.
2780	 */
2781	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
2782	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
2783	if (qnum == -1) {
2784		/*
2785		 * NB: don't print a message, this happens
2786		 * normally on parts with too few tx queues
2787		 */
2788		return NULL;
2789	}
2790	if (qnum >= N(sc->sc_txq)) {
2791		device_printf(sc->sc_dev,
2792			"hal qnum %u out of range, max %zu!\n",
2793			qnum, N(sc->sc_txq));
2794		ath_hal_releasetxqueue(ah, qnum);
2795		return NULL;
2796	}
2797	if (!ATH_TXQ_SETUP(sc, qnum)) {
2798		struct ath_txq *txq = &sc->sc_txq[qnum];
2799
2800		txq->axq_qnum = qnum;
2801		txq->axq_depth = 0;
2802		txq->axq_intrcnt = 0;
2803		txq->axq_link = NULL;
2804		STAILQ_INIT(&txq->axq_q);
2805		ATH_TXQ_LOCK_INIT(sc, txq);
2806		sc->sc_txqsetup |= 1<<qnum;
2807	}
2808	return &sc->sc_txq[qnum];
2809#undef N
2810}
2811
2812/*
2813 * Setup a hardware data transmit queue for the specified
2814 * access control.  The hal may not support all requested
2815 * queues in which case it will return a reference to a
2816 * previously setup queue.  We record the mapping from ac's
2817 * to h/w queues for use by ath_tx_start and also track
2818 * the set of h/w queues being used to optimize work in the
2819 * transmit interrupt handler and related routines.
2820 */
2821static int
2822ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
2823{
2824#define	N(a)	(sizeof(a)/sizeof(a[0]))
2825	struct ath_txq *txq;
2826
2827	if (ac >= N(sc->sc_ac2q)) {
2828		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2829			ac, N(sc->sc_ac2q));
2830		return 0;
2831	}
2832	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
2833	if (txq != NULL) {
2834		sc->sc_ac2q[ac] = txq;
2835		return 1;
2836	} else
2837		return 0;
2838#undef N
2839}
2840
2841/*
2842 * Update WME parameters for a transmit queue.
2843 */
2844static int
2845ath_txq_update(struct ath_softc *sc, int ac)
2846{
2847#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
2848#define	ATH_TXOP_TO_US(v)		(v<<5)
2849	struct ieee80211com *ic = &sc->sc_ic;
2850	struct ath_txq *txq = sc->sc_ac2q[ac];
2851	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2852	struct ath_hal *ah = sc->sc_ah;
2853	HAL_TXQ_INFO qi;
2854
2855	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
2856	qi.tqi_aifs = wmep->wmep_aifsn;
2857	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2858	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2859	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
2860
2861	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
2862		device_printf(sc->sc_dev, "unable to update hardware queue "
2863			"parameters for %s traffic!\n",
2864			ieee80211_wme_acnames[ac]);
2865		return 0;
2866	} else {
2867		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
2868		return 1;
2869	}
2870#undef ATH_TXOP_TO_US
2871#undef ATH_EXPONENT_TO_VALUE
2872}
2873
2874/*
2875 * Callback from the 802.11 layer to update WME parameters.
2876 */
2877static int
2878ath_wme_update(struct ieee80211com *ic)
2879{
2880	struct ath_softc *sc = ic->ic_ifp->if_softc;
2881
2882	return !ath_txq_update(sc, WME_AC_BE) ||
2883	    !ath_txq_update(sc, WME_AC_BK) ||
2884	    !ath_txq_update(sc, WME_AC_VI) ||
2885	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
2886}
2887
2888/*
2889 * Reclaim resources for a setup queue.
2890 */
2891static void
2892ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
2893{
2894
2895	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
2896	ATH_TXQ_LOCK_DESTROY(txq);
2897	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
2898}
2899
2900/*
2901 * Reclaim all tx queue resources.
2902 */
2903static void
2904ath_tx_cleanup(struct ath_softc *sc)
2905{
2906	int i;
2907
2908	ATH_TXBUF_LOCK_DESTROY(sc);
2909	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
2910		if (ATH_TXQ_SETUP(sc, i))
2911			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
2912}
2913
2914/*
2915 * Defragment an mbuf chain, returning at most maxfrags separate
2916 * mbufs+clusters.  If this is not possible NULL is returned and
2917 * the original mbuf chain is left in it's present (potentially
2918 * modified) state.  We use two techniques: collapsing consecutive
2919 * mbufs and replacing consecutive mbufs by a cluster.
2920 */
2921static struct mbuf *
2922ath_defrag(struct mbuf *m0, int how, int maxfrags)
2923{
2924	struct mbuf *m, *n, *n2, **prev;
2925	u_int curfrags;
2926
2927	/*
2928	 * Calculate the current number of frags.
2929	 */
2930	curfrags = 0;
2931	for (m = m0; m != NULL; m = m->m_next)
2932		curfrags++;
2933	/*
2934	 * First, try to collapse mbufs.  Note that we always collapse
2935	 * towards the front so we don't need to deal with moving the
2936	 * pkthdr.  This may be suboptimal if the first mbuf has much
2937	 * less data than the following.
2938	 */
2939	m = m0;
2940again:
2941	for (;;) {
2942		n = m->m_next;
2943		if (n == NULL)
2944			break;
2945		if ((m->m_flags & M_RDONLY) == 0 &&
2946		    n->m_len < M_TRAILINGSPACE(m)) {
2947			bcopy(mtod(n, void *), mtod(m, char *) + m->m_len,
2948				n->m_len);
2949			m->m_len += n->m_len;
2950			m->m_next = n->m_next;
2951			m_free(n);
2952			if (--curfrags <= maxfrags)
2953				return m0;
2954		} else
2955			m = n;
2956	}
2957	KASSERT(maxfrags > 1,
2958		("maxfrags %u, but normal collapse failed", maxfrags));
2959	/*
2960	 * Collapse consecutive mbufs to a cluster.
2961	 */
2962	prev = &m0->m_next;		/* NB: not the first mbuf */
2963	while ((n = *prev) != NULL) {
2964		if ((n2 = n->m_next) != NULL &&
2965		    n->m_len + n2->m_len < MCLBYTES) {
2966			m = m_getcl(how, MT_DATA, 0);
2967			if (m == NULL)
2968				goto bad;
2969			bcopy(mtod(n, void *), mtod(m, void *), n->m_len);
2970			bcopy(mtod(n2, void *), mtod(m, char *) + n->m_len,
2971				n2->m_len);
2972			m->m_len = n->m_len + n2->m_len;
2973			m->m_next = n2->m_next;
2974			*prev = m;
2975			m_free(n);
2976			m_free(n2);
2977			if (--curfrags <= maxfrags)	/* +1 cl -2 mbufs */
2978				return m0;
2979			/*
2980			 * Still not there, try the normal collapse
2981			 * again before we allocate another cluster.
2982			 */
2983			goto again;
2984		}
2985		prev = &n->m_next;
2986	}
2987	/*
2988	 * No place where we can collapse to a cluster; punt.
2989	 * This can occur if, for example, you request 2 frags
2990	 * but the packet requires that both be clusters (we
2991	 * never reallocate the first mbuf to avoid moving the
2992	 * packet header).
2993	 */
2994bad:
2995	return NULL;
2996}
2997
2998static int
2999ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
3000    struct mbuf *m0)
3001{
3002#define	CTS_DURATION \
3003	ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE)
3004#define	updateCTSForBursting(_ah, _ds, _txq) \
3005	ath_hal_updateCTSForBursting(_ah, _ds, \
3006	    _txq->axq_linkbuf != NULL ? _txq->axq_linkbuf->bf_desc : NULL, \
3007	    _txq->axq_lastdsWithCTS, _txq->axq_gatingds, \
3008	    txopLimit, CTS_DURATION)
3009	struct ieee80211com *ic = &sc->sc_ic;
3010	struct ath_hal *ah = sc->sc_ah;
3011	struct ifnet *ifp = &sc->sc_if;
3012	const struct chanAccParams *cap = &ic->ic_wme.wme_chanParams;
3013	int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
3014	u_int8_t rix, txrate, ctsrate;
3015	u_int8_t cix = 0xff;		/* NB: silence compiler */
3016	struct ath_desc *ds, *ds0;
3017	struct ath_txq *txq;
3018	struct ieee80211_frame *wh;
3019	u_int subtype, flags, ctsduration;
3020	HAL_PKT_TYPE atype;
3021	const HAL_RATE_TABLE *rt;
3022	HAL_BOOL shortPreamble;
3023	struct ath_node *an;
3024	struct mbuf *m;
3025	u_int pri;
3026
3027	wh = mtod(m0, struct ieee80211_frame *);
3028	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
3029	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
3030	hdrlen = ieee80211_anyhdrsize(wh);
3031	/*
3032	 * Packet length must not include any
3033	 * pad bytes; deduct them here.
3034	 */
3035	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
3036
3037	if (iswep) {
3038		const struct ieee80211_cipher *cip;
3039		struct ieee80211_key *k;
3040
3041		/*
3042		 * Construct the 802.11 header+trailer for an encrypted
3043		 * frame. The only reason this can fail is because of an
3044		 * unknown or unsupported cipher/key type.
3045		 */
3046		k = ieee80211_crypto_encap(ic, ni, m0);
3047		if (k == NULL) {
3048			/*
3049			 * This can happen when the key is yanked after the
3050			 * frame was queued.  Just discard the frame; the
3051			 * 802.11 layer counts failures and provides
3052			 * debugging/diagnostics.
3053			 */
3054			m_freem(m0);
3055			return EIO;
3056		}
3057		/*
3058		 * Adjust the packet + header lengths for the crypto
3059		 * additions and calculate the h/w key index.  When
3060		 * a s/w mic is done the frame will have had any mic
3061		 * added to it prior to entry so skb->len above will
3062		 * account for it. Otherwise we need to add it to the
3063		 * packet length.
3064		 */
3065		cip = k->wk_cipher;
3066		hdrlen += cip->ic_header;
3067		pktlen += cip->ic_header + cip->ic_trailer;
3068		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3069			pktlen += cip->ic_miclen;
3070		keyix = k->wk_keyix;
3071
3072		/* packet header may have moved, reset our local pointer */
3073		wh = mtod(m0, struct ieee80211_frame *);
3074	} else
3075		keyix = HAL_TXKEYIX_INVALID;
3076
3077	pktlen += IEEE80211_CRC_LEN;
3078
3079	/*
3080	 * Load the DMA map so any coalescing is done.  This
3081	 * also calculates the number of descriptors we need.
3082	 */
3083	error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3084				     bf->bf_segs, &bf->bf_nseg,
3085				     BUS_DMA_NOWAIT);
3086	if (error == EFBIG) {
3087		/* XXX packet requires too many descriptors */
3088		bf->bf_nseg = ATH_TXDESC+1;
3089	} else if (error != 0) {
3090		sc->sc_stats.ast_tx_busdma++;
3091		m_freem(m0);
3092		return error;
3093	}
3094	/*
3095	 * Discard null packets and check for packets that
3096	 * require too many TX descriptors.  We try to convert
3097	 * the latter to a cluster.
3098	 */
3099	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
3100		sc->sc_stats.ast_tx_linear++;
3101		m = ath_defrag(m0, M_DONTWAIT, ATH_TXDESC);
3102		if (m == NULL) {
3103			m_freem(m0);
3104			sc->sc_stats.ast_tx_nombuf++;
3105			return ENOMEM;
3106		}
3107		m0 = m;
3108		error = bus_dmamap_load_mbuf_sg(sc->sc_dmat, bf->bf_dmamap, m0,
3109					     bf->bf_segs, &bf->bf_nseg,
3110					     BUS_DMA_NOWAIT);
3111		if (error != 0) {
3112			sc->sc_stats.ast_tx_busdma++;
3113			m_freem(m0);
3114			return error;
3115		}
3116		KASSERT(bf->bf_nseg <= ATH_TXDESC,
3117		    ("too many segments after defrag; nseg %u", bf->bf_nseg));
3118	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3119		sc->sc_stats.ast_tx_nodata++;
3120		m_freem(m0);
3121		return EIO;
3122	}
3123	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3124	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3125	bf->bf_m = m0;
3126	bf->bf_node = ni;			/* NB: held reference */
3127
3128	/* setup descriptors */
3129	ds = bf->bf_desc;
3130	rt = sc->sc_currates;
3131	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3132
3133	/*
3134	 * NB: the 802.11 layer marks whether or not we should
3135	 * use short preamble based on the current mode and
3136	 * negotiated parameters.
3137	 */
3138	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3139	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3140		shortPreamble = AH_TRUE;
3141		sc->sc_stats.ast_tx_shortpre++;
3142	} else {
3143		shortPreamble = AH_FALSE;
3144	}
3145
3146	an = ATH_NODE(ni);
3147	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3148	/*
3149	 * Calculate Atheros packet type from IEEE80211 packet header,
3150	 * setup for rate calculations, and select h/w transmit queue.
3151	 */
3152	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3153	case IEEE80211_FC0_TYPE_MGT:
3154		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3155		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3156			atype = HAL_PKT_TYPE_BEACON;
3157		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3158			atype = HAL_PKT_TYPE_PROBE_RESP;
3159		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3160			atype = HAL_PKT_TYPE_ATIM;
3161		else
3162			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3163		rix = 0;			/* XXX lowest rate */
3164		try0 = ATH_TXMAXTRY;
3165		if (shortPreamble)
3166			txrate = an->an_tx_mgtratesp;
3167		else
3168			txrate = an->an_tx_mgtrate;
3169		/* NB: force all management frames to highest queue */
3170		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3171			/* NB: force all management frames to highest queue */
3172			pri = WME_AC_VO;
3173		} else
3174			pri = WME_AC_BE;
3175		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3176		break;
3177	case IEEE80211_FC0_TYPE_CTL:
3178		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3179		rix = 0;			/* XXX lowest rate */
3180		try0 = ATH_TXMAXTRY;
3181		if (shortPreamble)
3182			txrate = an->an_tx_mgtratesp;
3183		else
3184			txrate = an->an_tx_mgtrate;
3185		/* NB: force all ctl frames to highest queue */
3186		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3187			/* NB: force all ctl frames to highest queue */
3188			pri = WME_AC_VO;
3189		} else
3190			pri = WME_AC_BE;
3191		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3192		break;
3193	case IEEE80211_FC0_TYPE_DATA:
3194		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3195		/*
3196		 * Data frames; consult the rate control module.
3197		 */
3198		ath_rate_findrate(sc, an, shortPreamble, pktlen,
3199			&rix, &try0, &txrate);
3200		sc->sc_txrate = txrate;			/* for LED blinking */
3201		/*
3202		 * Default all non-QoS traffic to the background queue.
3203		 */
3204		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3205			pri = M_WME_GETAC(m0);
3206			if (cap->cap_wmeParams[pri].wmep_noackPolicy) {
3207				flags |= HAL_TXDESC_NOACK;
3208				sc->sc_stats.ast_tx_noack++;
3209			}
3210		} else
3211			pri = WME_AC_BE;
3212		break;
3213	default:
3214		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3215			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3216		/* XXX statistic */
3217		m_freem(m0);
3218		return EIO;
3219	}
3220	txq = sc->sc_ac2q[pri];
3221
3222	/*
3223	 * When servicing one or more stations in power-save mode
3224	 * multicast frames must be buffered until after the beacon.
3225	 * We use the CAB queue for that.
3226	 */
3227	if (ismcast && ic->ic_ps_sta) {
3228		txq = sc->sc_cabq;
3229		/* XXX? more bit in 802.11 frame header */
3230	}
3231
3232	/*
3233	 * Calculate miscellaneous flags.
3234	 */
3235	if (ismcast) {
3236		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3237		sc->sc_stats.ast_tx_noack++;
3238	} else if (pktlen > ic->ic_rtsthreshold) {
3239		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3240		cix = rt->info[rix].controlRate;
3241		sc->sc_stats.ast_tx_rts++;
3242	}
3243
3244	/*
3245	 * If 802.11g protection is enabled, determine whether
3246	 * to use RTS/CTS or just CTS.  Note that this is only
3247	 * done for OFDM unicast frames.
3248	 */
3249	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3250	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3251	    (flags & HAL_TXDESC_NOACK) == 0) {
3252		/* XXX fragments must use CCK rates w/ protection */
3253		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3254			flags |= HAL_TXDESC_RTSENA;
3255		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3256			flags |= HAL_TXDESC_CTSENA;
3257		cix = rt->info[sc->sc_protrix].controlRate;
3258		sc->sc_stats.ast_tx_protect++;
3259	}
3260
3261	/*
3262	 * Calculate duration.  This logically belongs in the 802.11
3263	 * layer but it lacks sufficient information to calculate it.
3264	 */
3265	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3266	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3267		u_int16_t dur;
3268		/*
3269		 * XXX not right with fragmentation.
3270		 */
3271		if (shortPreamble)
3272			dur = rt->info[rix].spAckDuration;
3273		else
3274			dur = rt->info[rix].lpAckDuration;
3275		*(u_int16_t *)wh->i_dur = htole16(dur);
3276	}
3277
3278	/*
3279	 * Calculate RTS/CTS rate and duration if needed.
3280	 */
3281	ctsduration = 0;
3282	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3283		/*
3284		 * CTS transmit rate is derived from the transmit rate
3285		 * by looking in the h/w rate table.  We must also factor
3286		 * in whether or not a short preamble is to be used.
3287		 */
3288		/* NB: cix is set above where RTS/CTS is enabled */
3289		KASSERT(cix != 0xff, ("cix not setup"));
3290		ctsrate = rt->info[cix].rateCode;
3291		/*
3292		 * Compute the transmit duration based on the frame
3293		 * size and the size of an ACK frame.  We call into the
3294		 * HAL to do the computation since it depends on the
3295		 * characteristics of the actual PHY being used.
3296		 *
3297		 * NB: CTS is assumed the same size as an ACK so we can
3298		 *     use the precalculated ACK durations.
3299		 */
3300		if (shortPreamble) {
3301			ctsrate |= rt->info[cix].shortPreamble;
3302			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3303				ctsduration += rt->info[cix].spAckDuration;
3304			ctsduration += ath_hal_computetxtime(ah,
3305				rt, pktlen, rix, AH_TRUE);
3306			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3307				ctsduration += rt->info[cix].spAckDuration;
3308		} else {
3309			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3310				ctsduration += rt->info[cix].lpAckDuration;
3311			ctsduration += ath_hal_computetxtime(ah,
3312				rt, pktlen, rix, AH_FALSE);
3313			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3314				ctsduration += rt->info[cix].lpAckDuration;
3315		}
3316		/*
3317		 * Must disable multi-rate retry when using RTS/CTS.
3318		 */
3319		try0 = ATH_TXMAXTRY;
3320	} else
3321		ctsrate = 0;
3322
3323	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3324		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3325			sc->sc_hwmap[txrate].ieeerate, -1);
3326
3327	if (ic->ic_rawbpf)
3328		bpf_mtap(ic->ic_rawbpf, m0);
3329	if (sc->sc_drvbpf) {
3330		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].txflags;
3331		if (iswep)
3332			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3333		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3334		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3335		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3336
3337		bpf_mtap2(sc->sc_drvbpf,
3338			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3339	}
3340
3341	/*
3342	 * Determine if a tx interrupt should be generated for
3343	 * this descriptor.  We take a tx interrupt to reap
3344	 * descriptors when the h/w hits an EOL condition or
3345	 * when the descriptor is specifically marked to generate
3346	 * an interrupt.  We periodically mark descriptors in this
3347	 * way to insure timely replenishing of the supply needed
3348	 * for sending frames.  Defering interrupts reduces system
3349	 * load and potentially allows more concurrent work to be
3350	 * done but if done to aggressively can cause senders to
3351	 * backup.
3352	 *
3353	 * NB: use >= to deal with sc_txintrperiod changing
3354	 *     dynamically through sysctl.
3355	 */
3356	if (flags & HAL_TXDESC_INTREQ) {
3357		txq->axq_intrcnt = 0;
3358	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3359		flags |= HAL_TXDESC_INTREQ;
3360		txq->axq_intrcnt = 0;
3361	}
3362
3363	/*
3364	 * Formulate first tx descriptor with tx controls.
3365	 */
3366	/* XXX check return value? */
3367	ath_hal_setuptxdesc(ah, ds
3368		, pktlen		/* packet length */
3369		, hdrlen		/* header length */
3370		, atype			/* Atheros packet type */
3371		, ni->ni_txpower	/* txpower */
3372		, txrate, try0		/* series 0 rate/tries */
3373		, keyix			/* key cache index */
3374		, sc->sc_txantenna	/* antenna mode */
3375		, flags			/* flags */
3376		, ctsrate		/* rts/cts rate */
3377		, ctsduration		/* rts/cts duration */
3378	);
3379	/*
3380	 * Setup the multi-rate retry state only when we're
3381	 * going to use it.  This assumes ath_hal_setuptxdesc
3382	 * initializes the descriptors (so we don't have to)
3383	 * when the hardware supports multi-rate retry and
3384	 * we don't use it.
3385	 */
3386	if (try0 != ATH_TXMAXTRY)
3387		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3388
3389	/*
3390	 * Fillin the remainder of the descriptor info.
3391	 */
3392	ds0 = ds;
3393	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3394		ds->ds_data = bf->bf_segs[i].ds_addr;
3395		if (i == bf->bf_nseg - 1)
3396			ds->ds_link = 0;
3397		else
3398			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3399		ath_hal_filltxdesc(ah, ds
3400			, bf->bf_segs[i].ds_len	/* segment length */
3401			, i == 0		/* first segment */
3402			, i == bf->bf_nseg - 1	/* last segment */
3403			, ds0			/* first descriptor */
3404		);
3405		DPRINTF(sc, ATH_DEBUG_XMIT,
3406			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3407			__func__, i, ds->ds_link, ds->ds_data,
3408			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3409	}
3410	/*
3411	 * Insert the frame on the outbound list and
3412	 * pass it on to the hardware.
3413	 */
3414	ATH_TXQ_LOCK(txq);
3415	if (flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) {
3416		u_int32_t txopLimit = IEEE80211_TXOP_TO_US(
3417			cap->cap_wmeParams[pri].wmep_txopLimit);
3418		/*
3419		 * When bursting, potentially extend the CTS duration
3420		 * of a previously queued frame to cover this frame
3421		 * and not exceed the txopLimit.  If that can be done
3422		 * then disable RTS/CTS on this frame since it's now
3423		 * covered (burst extension).  Otherwise we must terminate
3424		 * the burst before this frame goes out so as not to
3425		 * violate the WME parameters.  All this is complicated
3426		 * as we need to update the state of packets on the
3427		 * (live) hardware queue.  The logic is buried in the hal
3428		 * because it's highly chip-specific.
3429		 */
3430		if (txopLimit != 0) {
3431			sc->sc_stats.ast_tx_ctsburst++;
3432			if (updateCTSForBursting(ah, ds0, txq) == 0) {
3433				/*
3434				 * This frame was not covered by RTS/CTS from
3435				 * the previous frame in the burst; update the
3436				 * descriptor pointers so this frame is now
3437				 * treated as the last frame for extending a
3438				 * burst.
3439				 */
3440				txq->axq_lastdsWithCTS = ds0;
3441				/* set gating Desc to final desc */
3442				txq->axq_gatingds =
3443					(struct ath_desc *)txq->axq_link;
3444			} else
3445				sc->sc_stats.ast_tx_ctsext++;
3446		}
3447	}
3448	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3449	if (txq->axq_link == NULL) {
3450		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3451		DPRINTF(sc, ATH_DEBUG_XMIT,
3452			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3453			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3454			txq->axq_depth);
3455	} else {
3456		*txq->axq_link = bf->bf_daddr;
3457		DPRINTF(sc, ATH_DEBUG_XMIT,
3458			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3459			txq->axq_qnum, txq->axq_link,
3460			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3461	}
3462	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3463	ATH_TXQ_UNLOCK(txq);
3464
3465	/*
3466	 * The CAB queue is started from the SWBA handler since
3467	 * frames only go out on DTIM and to avoid possible races.
3468	 */
3469	if (txq != sc->sc_cabq)
3470		ath_hal_txstart(ah, txq->axq_qnum);
3471	return 0;
3472#undef updateCTSForBursting
3473#undef CTS_DURATION
3474}
3475
3476/*
3477 * Process completed xmit descriptors from the specified queue.
3478 */
3479static void
3480ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3481{
3482	struct ath_hal *ah = sc->sc_ah;
3483	struct ieee80211com *ic = &sc->sc_ic;
3484	struct ath_buf *bf;
3485	struct ath_desc *ds, *ds0;
3486	struct ieee80211_node *ni;
3487	struct ath_node *an;
3488	int sr, lr, pri;
3489	HAL_STATUS status;
3490
3491	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3492		__func__, txq->axq_qnum,
3493		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3494		txq->axq_link);
3495	for (;;) {
3496		ATH_TXQ_LOCK(txq);
3497		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3498		bf = STAILQ_FIRST(&txq->axq_q);
3499		if (bf == NULL) {
3500			txq->axq_link = NULL;
3501			ATH_TXQ_UNLOCK(txq);
3502			break;
3503		}
3504		ds0 = &bf->bf_desc[0];
3505		ds = &bf->bf_desc[bf->bf_nseg - 1];
3506		status = ath_hal_txprocdesc(ah, ds);
3507#ifdef AR_DEBUG
3508		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3509			ath_printtxbuf(bf, status == HAL_OK);
3510#endif
3511		if (status == HAL_EINPROGRESS) {
3512			ATH_TXQ_UNLOCK(txq);
3513			break;
3514		}
3515		if (ds0 == txq->axq_lastdsWithCTS)
3516			txq->axq_lastdsWithCTS = NULL;
3517		if (ds == txq->axq_gatingds)
3518			txq->axq_gatingds = NULL;
3519		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3520		ATH_TXQ_UNLOCK(txq);
3521
3522		ni = bf->bf_node;
3523		if (ni != NULL) {
3524			an = ATH_NODE(ni);
3525			if (ds->ds_txstat.ts_status == 0) {
3526				u_int8_t txant = ds->ds_txstat.ts_antenna;
3527				sc->sc_stats.ast_ant_tx[txant]++;
3528				sc->sc_ant_tx[txant]++;
3529				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3530					sc->sc_stats.ast_tx_altrate++;
3531				sc->sc_stats.ast_tx_rssi =
3532					ds->ds_txstat.ts_rssi;
3533				ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3534					ds->ds_txstat.ts_rssi);
3535				pri = M_WME_GETAC(bf->bf_m);
3536				if (pri >= WME_AC_VO)
3537					ic->ic_wme.wme_hipri_traffic++;
3538				ni->ni_inact = ni->ni_inact_reload;
3539			} else {
3540				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3541					sc->sc_stats.ast_tx_xretries++;
3542				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3543					sc->sc_stats.ast_tx_fifoerr++;
3544				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3545					sc->sc_stats.ast_tx_filtered++;
3546			}
3547			sr = ds->ds_txstat.ts_shortretry;
3548			lr = ds->ds_txstat.ts_longretry;
3549			sc->sc_stats.ast_tx_shortretry += sr;
3550			sc->sc_stats.ast_tx_longretry += lr;
3551			/*
3552			 * Hand the descriptor to the rate control algorithm.
3553			 */
3554			ath_rate_tx_complete(sc, an, ds, ds0);
3555			/*
3556			 * Reclaim reference to node.
3557			 *
3558			 * NB: the node may be reclaimed here if, for example
3559			 *     this is a DEAUTH message that was sent and the
3560			 *     node was timed out due to inactivity.
3561			 */
3562			ieee80211_free_node(ni);
3563		}
3564		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3565		    BUS_DMASYNC_POSTWRITE);
3566		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3567		m_freem(bf->bf_m);
3568		bf->bf_m = NULL;
3569		bf->bf_node = NULL;
3570
3571		ATH_TXBUF_LOCK(sc);
3572		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3573		ATH_TXBUF_UNLOCK(sc);
3574	}
3575}
3576
3577/*
3578 * Deferred processing of transmit interrupt; special-cased
3579 * for a single hardware transmit queue (e.g. 5210 and 5211).
3580 */
3581static void
3582ath_tx_proc_q0(void *arg, int npending)
3583{
3584	struct ath_softc *sc = arg;
3585	struct ifnet *ifp = &sc->sc_if;
3586
3587	ath_tx_processq(sc, &sc->sc_txq[0]);
3588	ath_tx_processq(sc, sc->sc_cabq);
3589	ifp->if_flags &= ~IFF_OACTIVE;
3590	sc->sc_tx_timer = 0;
3591
3592	if (sc->sc_softled)
3593		ath_led_event(sc, ATH_LED_TX);
3594
3595	ath_start(ifp);
3596}
3597
3598/*
3599 * Deferred processing of transmit interrupt; special-cased
3600 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3601 */
3602static void
3603ath_tx_proc_q0123(void *arg, int npending)
3604{
3605	struct ath_softc *sc = arg;
3606	struct ifnet *ifp = &sc->sc_if;
3607
3608	/*
3609	 * Process each active queue.
3610	 */
3611	ath_tx_processq(sc, &sc->sc_txq[0]);
3612	ath_tx_processq(sc, &sc->sc_txq[1]);
3613	ath_tx_processq(sc, &sc->sc_txq[2]);
3614	ath_tx_processq(sc, &sc->sc_txq[3]);
3615	ath_tx_processq(sc, sc->sc_cabq);
3616
3617	ifp->if_flags &= ~IFF_OACTIVE;
3618	sc->sc_tx_timer = 0;
3619
3620	if (sc->sc_softled)
3621		ath_led_event(sc, ATH_LED_TX);
3622
3623	ath_start(ifp);
3624}
3625
3626/*
3627 * Deferred processing of transmit interrupt.
3628 */
3629static void
3630ath_tx_proc(void *arg, int npending)
3631{
3632	struct ath_softc *sc = arg;
3633	struct ifnet *ifp = &sc->sc_if;
3634	int i;
3635
3636	/*
3637	 * Process each active queue.
3638	 */
3639	/* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3640	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3641		if (ATH_TXQ_SETUP(sc, i))
3642			ath_tx_processq(sc, &sc->sc_txq[i]);
3643
3644	ifp->if_flags &= ~IFF_OACTIVE;
3645	sc->sc_tx_timer = 0;
3646
3647	if (sc->sc_softled)
3648		ath_led_event(sc, ATH_LED_TX);
3649
3650	ath_start(ifp);
3651}
3652
3653static void
3654ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3655{
3656	struct ath_hal *ah = sc->sc_ah;
3657	struct ieee80211_node *ni;
3658	struct ath_buf *bf;
3659
3660	/*
3661	 * NB: this assumes output has been stopped and
3662	 *     we do not need to block ath_tx_tasklet
3663	 */
3664	for (;;) {
3665		ATH_TXQ_LOCK(txq);
3666		bf = STAILQ_FIRST(&txq->axq_q);
3667		if (bf == NULL) {
3668			txq->axq_link = NULL;
3669			ATH_TXQ_UNLOCK(txq);
3670			break;
3671		}
3672		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3673		ATH_TXQ_UNLOCK(txq);
3674#ifdef AR_DEBUG
3675		if (sc->sc_debug & ATH_DEBUG_RESET)
3676			ath_printtxbuf(bf,
3677				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3678#endif /* AR_DEBUG */
3679		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3680		m_freem(bf->bf_m);
3681		bf->bf_m = NULL;
3682		ni = bf->bf_node;
3683		bf->bf_node = NULL;
3684		if (ni != NULL) {
3685			/*
3686			 * Reclaim node reference.
3687			 */
3688			ieee80211_free_node(ni);
3689		}
3690		ATH_TXBUF_LOCK(sc);
3691		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3692		ATH_TXBUF_UNLOCK(sc);
3693	}
3694}
3695
3696static void
3697ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3698{
3699	struct ath_hal *ah = sc->sc_ah;
3700
3701	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3702	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3703	    __func__, txq->axq_qnum,
3704	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3705	    txq->axq_link);
3706}
3707
3708/*
3709 * Drain the transmit queues and reclaim resources.
3710 */
3711static void
3712ath_draintxq(struct ath_softc *sc)
3713{
3714	struct ath_hal *ah = sc->sc_ah;
3715	struct ifnet *ifp = &sc->sc_if;
3716	int i;
3717
3718	/* XXX return value */
3719	if (!sc->sc_invalid) {
3720		/* don't touch the hardware if marked invalid */
3721		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3722		DPRINTF(sc, ATH_DEBUG_RESET,
3723		    "%s: beacon queue %p\n", __func__,
3724		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
3725		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3726			if (ATH_TXQ_SETUP(sc, i))
3727				ath_tx_stopdma(sc, &sc->sc_txq[i]);
3728	}
3729	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3730		if (ATH_TXQ_SETUP(sc, i))
3731			ath_tx_draintxq(sc, &sc->sc_txq[i]);
3732	ifp->if_flags &= ~IFF_OACTIVE;
3733	sc->sc_tx_timer = 0;
3734}
3735
3736/*
3737 * Disable the receive h/w in preparation for a reset.
3738 */
3739static void
3740ath_stoprecv(struct ath_softc *sc)
3741{
3742#define	PA2DESC(_sc, _pa) \
3743	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3744		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3745	struct ath_hal *ah = sc->sc_ah;
3746
3747	ath_hal_stoppcurecv(ah);	/* disable PCU */
3748	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
3749	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
3750	DELAY(3000);			/* 3ms is long enough for 1 frame */
3751#ifdef AR_DEBUG
3752	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
3753		struct ath_buf *bf;
3754
3755		printf("%s: rx queue %p, link %p\n", __func__,
3756			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3757		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3758			struct ath_desc *ds = bf->bf_desc;
3759			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
3760				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3761			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
3762				ath_printrxbuf(bf, status == HAL_OK);
3763		}
3764	}
3765#endif
3766	sc->sc_rxlink = NULL;		/* just in case */
3767#undef PA2DESC
3768}
3769
3770/*
3771 * Enable the receive h/w following a reset.
3772 */
3773static int
3774ath_startrecv(struct ath_softc *sc)
3775{
3776	struct ath_hal *ah = sc->sc_ah;
3777	struct ath_buf *bf;
3778
3779	sc->sc_rxlink = NULL;
3780	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3781		int error = ath_rxbuf_init(sc, bf);
3782		if (error != 0) {
3783			DPRINTF(sc, ATH_DEBUG_RECV,
3784				"%s: ath_rxbuf_init failed %d\n",
3785				__func__, error);
3786			return error;
3787		}
3788	}
3789
3790	bf = STAILQ_FIRST(&sc->sc_rxbuf);
3791	ath_hal_putrxbuf(ah, bf->bf_daddr);
3792	ath_hal_rxena(ah);		/* enable recv descriptors */
3793	ath_mode_init(sc);		/* set filters, etc. */
3794	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
3795	return 0;
3796}
3797
3798/*
3799 * Update internal state after a channel change.
3800 */
3801static void
3802ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3803{
3804	struct ieee80211com *ic = &sc->sc_ic;
3805	enum ieee80211_phymode mode;
3806	u_int16_t flags;
3807
3808	/*
3809	 * Change channels and update the h/w rate map
3810	 * if we're switching; e.g. 11a to 11b/g.
3811	 */
3812	mode = ieee80211_chan2mode(ic, chan);
3813	if (mode != sc->sc_curmode)
3814		ath_setcurmode(sc, mode);
3815	/*
3816	 * Update BPF state.  NB: ethereal et. al. don't handle
3817	 * merged flags well so pick a unique mode for their use.
3818	 */
3819	if (IEEE80211_IS_CHAN_A(chan))
3820		flags = IEEE80211_CHAN_A;
3821	/* XXX 11g schizophrenia */
3822	else if (IEEE80211_IS_CHAN_G(chan) ||
3823	    IEEE80211_IS_CHAN_PUREG(chan))
3824		flags = IEEE80211_CHAN_G;
3825	else
3826		flags = IEEE80211_CHAN_B;
3827	if (IEEE80211_IS_CHAN_T(chan))
3828		flags |= IEEE80211_CHAN_TURBO;
3829	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3830		htole16(chan->ic_freq);
3831	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3832		htole16(flags);
3833}
3834
3835/*
3836 * Set/change channels.  If the channel is really being changed,
3837 * it's done by reseting the chip.  To accomplish this we must
3838 * first cleanup any pending DMA, then restart stuff after a la
3839 * ath_init.
3840 */
3841static int
3842ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3843{
3844	struct ath_hal *ah = sc->sc_ah;
3845	struct ieee80211com *ic = &sc->sc_ic;
3846	HAL_CHANNEL hchan;
3847
3848	/*
3849	 * Convert to a HAL channel description with
3850	 * the flags constrained to reflect the current
3851	 * operating mode.
3852	 */
3853	hchan.channel = chan->ic_freq;
3854	hchan.channelFlags = ath_chan2flags(ic, chan);
3855
3856	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
3857	    __func__,
3858	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
3859		sc->sc_curchan.channelFlags),
3860	    	sc->sc_curchan.channel,
3861	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
3862	if (hchan.channel != sc->sc_curchan.channel ||
3863	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
3864		HAL_STATUS status;
3865
3866		/*
3867		 * To switch channels clear any pending DMA operations;
3868		 * wait long enough for the RX fifo to drain, reset the
3869		 * hardware at the new frequency, and then re-enable
3870		 * the relevant bits of the h/w.
3871		 */
3872		ath_hal_intrset(ah, 0);		/* disable interrupts */
3873		ath_draintxq(sc);		/* clear pending tx frames */
3874		ath_stoprecv(sc);		/* turn off frame recv */
3875		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
3876			if_printf(ic->ic_ifp, "ath_chan_set: unable to reset "
3877				"channel %u (%u Mhz)\n",
3878				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
3879			return EIO;
3880		}
3881		sc->sc_curchan = hchan;
3882		ath_update_txpow(sc);		/* update tx power state */
3883
3884		/*
3885		 * Re-enable rx framework.
3886		 */
3887		if (ath_startrecv(sc) != 0) {
3888			if_printf(ic->ic_ifp,
3889				"ath_chan_set: unable to restart recv logic\n");
3890			return EIO;
3891		}
3892
3893		/*
3894		 * Change channels and update the h/w rate map
3895		 * if we're switching; e.g. 11a to 11b/g.
3896		 */
3897		ic->ic_ibss_chan = chan;
3898		ath_chan_change(sc, chan);
3899
3900		/*
3901		 * Re-enable interrupts.
3902		 */
3903		ath_hal_intrset(ah, sc->sc_imask);
3904	}
3905	return 0;
3906}
3907
3908static void
3909ath_next_scan(void *arg)
3910{
3911	struct ath_softc *sc = arg;
3912	struct ieee80211com *ic = &sc->sc_ic;
3913
3914	if (ic->ic_state == IEEE80211_S_SCAN)
3915		ieee80211_next_scan(ic);
3916}
3917
3918/*
3919 * Periodically recalibrate the PHY to account
3920 * for temperature/environment changes.
3921 */
3922static void
3923ath_calibrate(void *arg)
3924{
3925	struct ath_softc *sc = arg;
3926	struct ath_hal *ah = sc->sc_ah;
3927
3928	sc->sc_stats.ast_per_cal++;
3929
3930	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
3931		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
3932
3933	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
3934		/*
3935		 * Rfgain is out of bounds, reset the chip
3936		 * to load new gain values.
3937		 */
3938		sc->sc_stats.ast_per_rfgain++;
3939		ath_reset(&sc->sc_if);
3940	}
3941	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
3942		DPRINTF(sc, ATH_DEBUG_ANY,
3943			"%s: calibration of channel %u failed\n",
3944			__func__, sc->sc_curchan.channel);
3945		sc->sc_stats.ast_per_calfail++;
3946	}
3947	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
3948}
3949
3950static int
3951ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3952{
3953	struct ifnet *ifp = ic->ic_ifp;
3954	struct ath_softc *sc = ifp->if_softc;
3955	struct ath_hal *ah = sc->sc_ah;
3956	struct ieee80211_node *ni;
3957	int i, error;
3958	const u_int8_t *bssid;
3959	u_int32_t rfilt;
3960	static const HAL_LED_STATE leds[] = {
3961	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
3962	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
3963	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
3964	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
3965	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
3966	};
3967
3968	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
3969		ieee80211_state_name[ic->ic_state],
3970		ieee80211_state_name[nstate]);
3971
3972	callout_stop(&sc->sc_scan_ch);
3973	callout_stop(&sc->sc_cal_ch);
3974	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
3975
3976	if (nstate == IEEE80211_S_INIT) {
3977		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3978		/*
3979		 * NB: disable interrupts so we don't rx frames.
3980		 */
3981		ath_hal_intrset(ah, sc->sc_imask &~ ~HAL_INT_GLOBAL);
3982		/*
3983		 * Notify the rate control algorithm.
3984		 */
3985		ath_rate_newstate(sc, nstate);
3986		goto done;
3987	}
3988	ni = ic->ic_bss;
3989	error = ath_chan_set(sc, ni->ni_chan);
3990	if (error != 0)
3991		goto bad;
3992	rfilt = ath_calcrxfilter(sc, nstate);
3993	if (nstate == IEEE80211_S_SCAN)
3994		bssid = ifp->if_broadcastaddr;
3995	else
3996		bssid = ni->ni_bssid;
3997	ath_hal_setrxfilter(ah, rfilt);
3998	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
3999		 __func__, rfilt, ether_sprintf(bssid));
4000
4001	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
4002		ath_hal_setassocid(ah, bssid, ni->ni_associd);
4003	else
4004		ath_hal_setassocid(ah, bssid, 0);
4005	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
4006		for (i = 0; i < IEEE80211_WEP_NKID; i++)
4007			if (ath_hal_keyisvalid(ah, i))
4008				ath_hal_keysetmac(ah, i, bssid);
4009	}
4010
4011	/*
4012	 * Notify the rate control algorithm so rates
4013	 * are setup should ath_beacon_alloc be called.
4014	 */
4015	ath_rate_newstate(sc, nstate);
4016
4017	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
4018		/* nothing to do */;
4019	} else if (nstate == IEEE80211_S_RUN) {
4020		DPRINTF(sc, ATH_DEBUG_STATE,
4021			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
4022			"capinfo=0x%04x chan=%d\n"
4023			 , __func__
4024			 , ic->ic_flags
4025			 , ni->ni_intval
4026			 , ether_sprintf(ni->ni_bssid)
4027			 , ni->ni_capinfo
4028			 , ieee80211_chan2ieee(ic, ni->ni_chan));
4029
4030		/*
4031		 * Allocate and setup the beacon frame for AP or adhoc mode.
4032		 */
4033		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
4034		    ic->ic_opmode == IEEE80211_M_IBSS) {
4035			/*
4036			 * Stop any previous beacon DMA.  This may be
4037			 * necessary, for example, when an ibss merge
4038			 * causes reconfiguration; there will be a state
4039			 * transition from RUN->RUN that means we may
4040			 * be called with beacon transmission active.
4041			 */
4042			ath_hal_stoptxdma(ah, sc->sc_bhalq);
4043			ath_beacon_free(sc);
4044			error = ath_beacon_alloc(sc, ni);
4045			if (error != 0)
4046				goto bad;
4047		}
4048
4049		/*
4050		 * Configure the beacon and sleep timers.
4051		 */
4052		ath_beacon_config(sc);
4053	} else {
4054		ath_hal_intrset(ah,
4055			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
4056		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
4057	}
4058done:
4059	/*
4060	 * Invoke the parent method to complete the work.
4061	 */
4062	error = sc->sc_newstate(ic, nstate, arg);
4063	/*
4064	 * Finally, start any timers.
4065	 */
4066	if (nstate == IEEE80211_S_RUN) {
4067		/* start periodic recalibration timer */
4068		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
4069			ath_calibrate, sc);
4070	} else if (nstate == IEEE80211_S_SCAN) {
4071		/* start ap/neighbor scan timer */
4072		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
4073			ath_next_scan, sc);
4074	}
4075bad:
4076	return error;
4077}
4078
4079/*
4080 * Setup driver-specific state for a newly associated node.
4081 * Note that we're called also on a re-associate, the isnew
4082 * param tells us if this is the first time or not.
4083 */
4084static void
4085ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
4086{
4087	struct ath_softc *sc = ic->ic_ifp->if_softc;
4088
4089	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4090}
4091
4092static int
4093ath_getchannels(struct ath_softc *sc, u_int cc,
4094	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4095{
4096	struct ieee80211com *ic = &sc->sc_ic;
4097	struct ifnet *ifp = &sc->sc_if;
4098	struct ath_hal *ah = sc->sc_ah;
4099	HAL_CHANNEL *chans;
4100	int i, ix, nchan;
4101
4102	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4103			M_TEMP, M_NOWAIT);
4104	if (chans == NULL) {
4105		if_printf(ifp, "unable to allocate channel table\n");
4106		return ENOMEM;
4107	}
4108	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4109	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4110		u_int32_t rd;
4111
4112		ath_hal_getregdomain(ah, &rd);
4113		if_printf(ifp, "unable to collect channel list from hal; "
4114			"regdomain likely %u country code %u\n", rd, cc);
4115		free(chans, M_TEMP);
4116		return EINVAL;
4117	}
4118
4119	/*
4120	 * Convert HAL channels to ieee80211 ones and insert
4121	 * them in the table according to their channel number.
4122	 */
4123	for (i = 0; i < nchan; i++) {
4124		HAL_CHANNEL *c = &chans[i];
4125		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4126		if (ix > IEEE80211_CHAN_MAX) {
4127			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4128				ix, c->channel, c->channelFlags);
4129			continue;
4130		}
4131		/* NB: flags are known to be compatible */
4132		if (ic->ic_channels[ix].ic_freq == 0) {
4133			ic->ic_channels[ix].ic_freq = c->channel;
4134			ic->ic_channels[ix].ic_flags = c->channelFlags;
4135		} else {
4136			/* channels overlap; e.g. 11g and 11b */
4137			ic->ic_channels[ix].ic_flags |= c->channelFlags;
4138		}
4139	}
4140	free(chans, M_TEMP);
4141	return 0;
4142}
4143
4144static void
4145ath_led_done(void *arg)
4146{
4147	struct ath_softc *sc = arg;
4148
4149	sc->sc_blinking = 0;
4150}
4151
4152/*
4153 * Turn the LED off: flip the pin and then set a timer so no
4154 * update will happen for the specified duration.
4155 */
4156static void
4157ath_led_off(void *arg)
4158{
4159	struct ath_softc *sc = arg;
4160
4161	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4162	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4163}
4164
4165/*
4166 * Blink the LED according to the specified on/off times.
4167 */
4168static void
4169ath_led_blink(struct ath_softc *sc, int on, int off)
4170{
4171	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4172	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4173	sc->sc_blinking = 1;
4174	sc->sc_ledoff = off;
4175	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4176}
4177
4178static void
4179ath_led_event(struct ath_softc *sc, int event)
4180{
4181
4182	sc->sc_ledevent = ticks;	/* time of last event */
4183	if (sc->sc_blinking)		/* don't interrupt active blink */
4184		return;
4185	switch (event) {
4186	case ATH_LED_POLL:
4187		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4188			sc->sc_hwmap[0].ledoff);
4189		break;
4190	case ATH_LED_TX:
4191		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4192			sc->sc_hwmap[sc->sc_txrate].ledoff);
4193		break;
4194	case ATH_LED_RX:
4195		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4196			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4197		break;
4198	}
4199}
4200
4201static void
4202ath_update_txpow(struct ath_softc *sc)
4203{
4204	struct ieee80211com *ic = &sc->sc_ic;
4205	struct ath_hal *ah = sc->sc_ah;
4206	u_int32_t txpow;
4207
4208	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4209		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4210		/* read back in case value is clamped */
4211		ath_hal_gettxpowlimit(ah, &txpow);
4212		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4213	}
4214	/*
4215	 * Fetch max tx power level for status requests.
4216	 */
4217	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4218	ic->ic_bss->ni_txpower = txpow;
4219}
4220
4221static int
4222ath_rate_setup(struct ath_softc *sc, u_int mode)
4223{
4224	struct ath_hal *ah = sc->sc_ah;
4225	struct ieee80211com *ic = &sc->sc_ic;
4226	const HAL_RATE_TABLE *rt;
4227	struct ieee80211_rateset *rs;
4228	int i, maxrates;
4229
4230	switch (mode) {
4231	case IEEE80211_MODE_11A:
4232		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4233		break;
4234	case IEEE80211_MODE_11B:
4235		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4236		break;
4237	case IEEE80211_MODE_11G:
4238		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4239		break;
4240	case IEEE80211_MODE_TURBO_A:
4241		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4242		break;
4243	case IEEE80211_MODE_TURBO_G:
4244		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4245		break;
4246	default:
4247		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4248			__func__, mode);
4249		return 0;
4250	}
4251	rt = sc->sc_rates[mode];
4252	if (rt == NULL)
4253		return 0;
4254	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4255		DPRINTF(sc, ATH_DEBUG_ANY,
4256			"%s: rate table too small (%u > %u)\n",
4257			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4258		maxrates = IEEE80211_RATE_MAXSIZE;
4259	} else
4260		maxrates = rt->rateCount;
4261	rs = &ic->ic_sup_rates[mode];
4262	for (i = 0; i < maxrates; i++)
4263		rs->rs_rates[i] = rt->info[i].dot11Rate;
4264	rs->rs_nrates = maxrates;
4265	return 1;
4266}
4267
4268static void
4269ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4270{
4271#define	N(a)	(sizeof(a)/sizeof(a[0]))
4272	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4273	static const struct {
4274		u_int		rate;		/* tx/rx 802.11 rate */
4275		u_int16_t	timeOn;		/* LED on time (ms) */
4276		u_int16_t	timeOff;	/* LED off time (ms) */
4277	} blinkrates[] = {
4278		{ 108,  40,  10 },
4279		{  96,  44,  11 },
4280		{  72,  50,  13 },
4281		{  48,  57,  14 },
4282		{  36,  67,  16 },
4283		{  24,  80,  20 },
4284		{  22, 100,  25 },
4285		{  18, 133,  34 },
4286		{  12, 160,  40 },
4287		{  10, 200,  50 },
4288		{   6, 240,  58 },
4289		{   4, 267,  66 },
4290		{   2, 400, 100 },
4291		{   0, 500, 130 },
4292	};
4293	const HAL_RATE_TABLE *rt;
4294	int i, j;
4295
4296	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4297	rt = sc->sc_rates[mode];
4298	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4299	for (i = 0; i < rt->rateCount; i++)
4300		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4301	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4302	for (i = 0; i < 32; i++) {
4303		u_int8_t ix = rt->rateCodeToIndex[i];
4304		if (ix == 0xff) {
4305			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4306			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4307			continue;
4308		}
4309		sc->sc_hwmap[i].ieeerate =
4310			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4311		sc->sc_hwmap[i].txflags = IEEE80211_RADIOTAP_F_DATAPAD;
4312		if (rt->info[ix].shortPreamble ||
4313		    rt->info[ix].phy == IEEE80211_T_OFDM)
4314			sc->sc_hwmap[i].txflags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4315		/* NB: receive frames include FCS */
4316		sc->sc_hwmap[i].rxflags = sc->sc_hwmap[i].txflags |
4317			IEEE80211_RADIOTAP_F_FCS;
4318		/* setup blink rate table to avoid per-packet lookup */
4319		for (j = 0; j < N(blinkrates)-1; j++)
4320			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4321				break;
4322		/* NB: this uses the last entry if the rate isn't found */
4323		/* XXX beware of overlow */
4324		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4325		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4326	}
4327	sc->sc_currates = rt;
4328	sc->sc_curmode = mode;
4329	/*
4330	 * All protection frames are transmited at 2Mb/s for
4331	 * 11g, otherwise at 1Mb/s.
4332	 * XXX select protection rate index from rate table.
4333	 */
4334	sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4335	/* NB: caller is responsible for reseting rate control state */
4336#undef N
4337}
4338
4339#ifdef AR_DEBUG
4340static void
4341ath_printrxbuf(struct ath_buf *bf, int done)
4342{
4343	struct ath_desc *ds;
4344	int i;
4345
4346	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4347		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4348		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4349		    ds->ds_link, ds->ds_data,
4350		    ds->ds_ctl0, ds->ds_ctl1,
4351		    ds->ds_hw[0], ds->ds_hw[1],
4352		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4353	}
4354}
4355
4356static void
4357ath_printtxbuf(struct ath_buf *bf, int done)
4358{
4359	struct ath_desc *ds;
4360	int i;
4361
4362	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4363		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4364		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4365		    ds->ds_link, ds->ds_data,
4366		    ds->ds_ctl0, ds->ds_ctl1,
4367		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4368		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4369	}
4370}
4371#endif /* AR_DEBUG */
4372
4373static void
4374ath_watchdog(struct ifnet *ifp)
4375{
4376	struct ath_softc *sc = ifp->if_softc;
4377	struct ieee80211com *ic = &sc->sc_ic;
4378
4379	ifp->if_timer = 0;
4380	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4381		return;
4382	if (sc->sc_tx_timer) {
4383		if (--sc->sc_tx_timer == 0) {
4384			if_printf(ifp, "device timeout\n");
4385			ath_reset(ifp);
4386			ifp->if_oerrors++;
4387			sc->sc_stats.ast_watchdog++;
4388		} else
4389			ifp->if_timer = 1;
4390	}
4391	ieee80211_watchdog(ic);
4392}
4393
4394/*
4395 * Diagnostic interface to the HAL.  This is used by various
4396 * tools to do things like retrieve register contents for
4397 * debugging.  The mechanism is intentionally opaque so that
4398 * it can change frequently w/o concern for compatiblity.
4399 */
4400static int
4401ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4402{
4403	struct ath_hal *ah = sc->sc_ah;
4404	u_int id = ad->ad_id & ATH_DIAG_ID;
4405	void *indata = NULL;
4406	void *outdata = NULL;
4407	u_int32_t insize = ad->ad_in_size;
4408	u_int32_t outsize = ad->ad_out_size;
4409	int error = 0;
4410
4411	if (ad->ad_id & ATH_DIAG_IN) {
4412		/*
4413		 * Copy in data.
4414		 */
4415		indata = malloc(insize, M_TEMP, M_NOWAIT);
4416		if (indata == NULL) {
4417			error = ENOMEM;
4418			goto bad;
4419		}
4420		error = copyin(ad->ad_in_data, indata, insize);
4421		if (error)
4422			goto bad;
4423	}
4424	if (ad->ad_id & ATH_DIAG_DYN) {
4425		/*
4426		 * Allocate a buffer for the results (otherwise the HAL
4427		 * returns a pointer to a buffer where we can read the
4428		 * results).  Note that we depend on the HAL leaving this
4429		 * pointer for us to use below in reclaiming the buffer;
4430		 * may want to be more defensive.
4431		 */
4432		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4433		if (outdata == NULL) {
4434			error = ENOMEM;
4435			goto bad;
4436		}
4437	}
4438	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4439		if (outsize < ad->ad_out_size)
4440			ad->ad_out_size = outsize;
4441		if (outdata != NULL)
4442			error = copyout(outdata, ad->ad_out_data,
4443					ad->ad_out_size);
4444	} else {
4445		error = EINVAL;
4446	}
4447bad:
4448	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4449		free(indata, M_TEMP);
4450	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4451		free(outdata, M_TEMP);
4452	return error;
4453}
4454
4455static int
4456ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4457{
4458#define	IS_RUNNING(ifp) \
4459	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
4460	struct ath_softc *sc = ifp->if_softc;
4461	struct ieee80211com *ic = &sc->sc_ic;
4462	struct ifreq *ifr = (struct ifreq *)data;
4463	int error = 0;
4464
4465	ATH_LOCK(sc);
4466	switch (cmd) {
4467	case SIOCSIFFLAGS:
4468		if (IS_RUNNING(ifp)) {
4469			/*
4470			 * To avoid rescanning another access point,
4471			 * do not call ath_init() here.  Instead,
4472			 * only reflect promisc mode settings.
4473			 */
4474			ath_mode_init(sc);
4475		} else if (ifp->if_flags & IFF_UP) {
4476			/*
4477			 * Beware of being called during attach/detach
4478			 * to reset promiscuous mode.  In that case we
4479			 * will still be marked UP but not RUNNING.
4480			 * However trying to re-init the interface
4481			 * is the wrong thing to do as we've already
4482			 * torn down much of our state.  There's
4483			 * probably a better way to deal with this.
4484			 */
4485			if (!sc->sc_invalid && ic->ic_bss != NULL)
4486				ath_init(ifp);	/* XXX lose error */
4487		} else
4488			ath_stop_locked(ifp);
4489		break;
4490	case SIOCADDMULTI:
4491	case SIOCDELMULTI:
4492		/*
4493		 * The upper layer has already installed/removed
4494		 * the multicast address(es), just recalculate the
4495		 * multicast filter for the card.
4496		 */
4497		if (ifp->if_flags & IFF_RUNNING)
4498			ath_mode_init(sc);
4499		break;
4500	case SIOCGATHSTATS:
4501		/* NB: embed these numbers to get a consistent view */
4502		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4503		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4504		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4505		ATH_UNLOCK(sc);
4506		/*
4507		 * NB: Drop the softc lock in case of a page fault;
4508		 * we'll accept any potential inconsisentcy in the
4509		 * statistics.  The alternative is to copy the data
4510		 * to a local structure.
4511		 */
4512		return copyout(&sc->sc_stats,
4513				ifr->ifr_data, sizeof (sc->sc_stats));
4514	case SIOCGATHDIAG:
4515		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4516		break;
4517	default:
4518		error = ieee80211_ioctl(ic, cmd, data);
4519		if (error == ENETRESET) {
4520			if (IS_RUNNING(ifp) &&
4521			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4522				ath_init(ifp);	/* XXX lose error */
4523			error = 0;
4524		}
4525		if (error == ERESTART)
4526			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4527		break;
4528	}
4529	ATH_UNLOCK(sc);
4530	return error;
4531#undef IS_RUNNING
4532}
4533
4534static int
4535ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
4536{
4537	struct ath_softc *sc = arg1;
4538	u_int slottime = ath_hal_getslottime(sc->sc_ah);
4539	int error;
4540
4541	error = sysctl_handle_int(oidp, &slottime, 0, req);
4542	if (error || !req->newptr)
4543		return error;
4544	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
4545}
4546
4547static int
4548ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
4549{
4550	struct ath_softc *sc = arg1;
4551	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
4552	int error;
4553
4554	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
4555	if (error || !req->newptr)
4556		return error;
4557	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
4558}
4559
4560static int
4561ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
4562{
4563	struct ath_softc *sc = arg1;
4564	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
4565	int error;
4566
4567	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
4568	if (error || !req->newptr)
4569		return error;
4570	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
4571}
4572
4573static int
4574ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
4575{
4576	struct ath_softc *sc = arg1;
4577	int softled = sc->sc_softled;
4578	int error;
4579
4580	error = sysctl_handle_int(oidp, &softled, 0, req);
4581	if (error || !req->newptr)
4582		return error;
4583	softled = (softled != 0);
4584	if (softled != sc->sc_softled) {
4585		if (softled) {
4586			/* NB: handle any sc_ledpin change */
4587			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
4588			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
4589				!sc->sc_ledon);
4590		}
4591		sc->sc_softled = softled;
4592	}
4593	return 0;
4594}
4595
4596static int
4597ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
4598{
4599	struct ath_softc *sc = arg1;
4600	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
4601	int error;
4602
4603	error = sysctl_handle_int(oidp, &defantenna, 0, req);
4604	if (!error && req->newptr)
4605		ath_hal_setdefantenna(sc->sc_ah, defantenna);
4606	return error;
4607}
4608
4609static int
4610ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
4611{
4612	struct ath_softc *sc = arg1;
4613	u_int diversity = sc->sc_diversity;
4614	int error;
4615
4616	error = sysctl_handle_int(oidp, &diversity, 0, req);
4617	if (error || !req->newptr)
4618		return error;
4619	sc->sc_diversity = diversity;
4620	return !ath_hal_setdiversity(sc->sc_ah, diversity) ? EINVAL : 0;
4621}
4622
4623static int
4624ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
4625{
4626	struct ath_softc *sc = arg1;
4627	u_int32_t diag;
4628	int error;
4629
4630	if (!ath_hal_getdiag(sc->sc_ah, &diag))
4631		return EINVAL;
4632	error = sysctl_handle_int(oidp, &diag, 0, req);
4633	if (error || !req->newptr)
4634		return error;
4635	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
4636}
4637
4638static int
4639ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
4640{
4641	struct ath_softc *sc = arg1;
4642	struct ifnet *ifp = &sc->sc_if;
4643	u_int32_t scale;
4644	int error;
4645
4646	ath_hal_gettpscale(sc->sc_ah, &scale);
4647	error = sysctl_handle_int(oidp, &scale, 0, req);
4648	if (error || !req->newptr)
4649		return error;
4650	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
4651}
4652
4653static int
4654ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
4655{
4656	struct ath_softc *sc = arg1;
4657	u_int tpc = ath_hal_gettpc(sc->sc_ah);
4658	int error;
4659
4660	error = sysctl_handle_int(oidp, &tpc, 0, req);
4661	if (error || !req->newptr)
4662		return error;
4663	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
4664}
4665
4666static void
4667ath_sysctlattach(struct ath_softc *sc)
4668{
4669	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4670	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4671
4672	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
4673	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4674		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
4675		"EEPROM country code");
4676	ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain);
4677	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4678		"regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0,
4679		"EEPROM regdomain code");
4680	sc->sc_debug = ath_debug;
4681	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4682		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
4683		"control debugging printfs");
4684
4685	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4686		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4687		ath_sysctl_slottime, "I", "802.11 slot time (us)");
4688	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4689		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4690		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
4691	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4692		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4693		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
4694	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4695		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4696		ath_sysctl_softled, "I", "enable/disable software LED support");
4697	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4698		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
4699		"GPIO pin connected to LED");
4700	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4701		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
4702		"setting to turn LED on");
4703	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4704		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
4705		"idle time for inactivity LED (ticks)");
4706	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4707		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
4708		"tx antenna (0=auto)");
4709	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4710		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4711		ath_sysctl_rxantenna, "I", "default/rx antenna");
4712	if (sc->sc_hasdiversity)
4713		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4714			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4715			ath_sysctl_diversity, "I", "antenna diversity");
4716	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
4717	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4718		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
4719		"tx descriptor batching");
4720	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4721		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4722		ath_sysctl_diag, "I", "h/w diagnostic control");
4723	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4724		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4725		ath_sysctl_tpscale, "I", "tx power scaling");
4726	if (sc->sc_hastpc)
4727		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4728			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4729			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
4730}
4731
4732static void
4733ath_bpfattach(struct ath_softc *sc)
4734{
4735	struct ifnet *ifp = &sc->sc_if;
4736
4737	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4738		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4739		&sc->sc_drvbpf);
4740	/*
4741	 * Initialize constant fields.
4742	 * XXX make header lengths a multiple of 32-bits so subsequent
4743	 *     headers are properly aligned; this is a kludge to keep
4744	 *     certain applications happy.
4745	 *
4746	 * NB: the channel is setup each time we transition to the
4747	 *     RUN state to avoid filling it in for each frame.
4748	 */
4749	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4750	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4751	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4752
4753	sc->sc_rx_th_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4754	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_th_len);
4755	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4756}
4757
4758/*
4759 * Announce various information on device/driver attach.
4760 */
4761static void
4762ath_announce(struct ath_softc *sc)
4763{
4764#define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
4765	struct ifnet *ifp = &sc->sc_if;
4766	struct ath_hal *ah = sc->sc_ah;
4767	u_int modes, cc;
4768
4769	if_printf(ifp, "mac %d.%d phy %d.%d",
4770		ah->ah_macVersion, ah->ah_macRev,
4771		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4772	/*
4773	 * Print radio revision(s).  We check the wireless modes
4774	 * to avoid falsely printing revs for inoperable parts.
4775	 * Dual-band radio revs are returned in the 5Ghz rev number.
4776	 */
4777	ath_hal_getcountrycode(ah, &cc);
4778	modes = ath_hal_getwirelessmodes(ah, cc);
4779	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4780		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4781			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4782				ah->ah_analog5GhzRev >> 4,
4783				ah->ah_analog5GhzRev & 0xf,
4784				ah->ah_analog2GhzRev >> 4,
4785				ah->ah_analog2GhzRev & 0xf);
4786		else
4787			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4788				ah->ah_analog5GhzRev & 0xf);
4789	} else
4790		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4791			ah->ah_analog5GhzRev & 0xf);
4792	printf("\n");
4793	if (bootverbose) {
4794		int i;
4795		for (i = 0; i <= WME_AC_VO; i++) {
4796			struct ath_txq *txq = sc->sc_ac2q[i];
4797			if_printf(ifp, "Use hw queue %u for %s traffic\n",
4798				txq->axq_qnum, ieee80211_wme_acnames[i]);
4799		}
4800		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4801			sc->sc_cabq->axq_qnum);
4802		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4803	}
4804#undef HAL_MODE_DUALBAND
4805}
4806