if_ath.c revision 140433
1/*-
2 * Copyright (c) 2002-2005 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 * 3. Neither the names of the above-listed copyright holders nor the names
16 *    of any contributors may be used to endorse or promote products derived
17 *    from this software without specific prior written permission.
18 *
19 * Alternatively, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") version 2 as published by the Free
21 * Software Foundation.
22 *
23 * NO WARRANTY
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34 * THE POSSIBILITY OF SUCH DAMAGES.
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 140433 2005-01-18 19:10:17Z sam $");
39
40/*
41 * Driver for the Atheros Wireless LAN controller.
42 *
43 * This software is derived from work of Atsushi Onoe; his contribution
44 * is greatly appreciated.
45 */
46
47#include "opt_inet.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/sysctl.h>
52#include <sys/mbuf.h>
53#include <sys/malloc.h>
54#include <sys/lock.h>
55#include <sys/mutex.h>
56#include <sys/kernel.h>
57#include <sys/socket.h>
58#include <sys/sockio.h>
59#include <sys/errno.h>
60#include <sys/callout.h>
61#include <sys/bus.h>
62#include <sys/endian.h>
63
64#include <machine/bus.h>
65
66#include <net/if.h>
67#include <net/if_dl.h>
68#include <net/if_media.h>
69#include <net/if_arp.h>
70#include <net/ethernet.h>
71#include <net/if_llc.h>
72
73#include <net80211/ieee80211_var.h>
74
75#include <net/bpf.h>
76
77#ifdef INET
78#include <netinet/in.h>
79#include <netinet/if_ether.h>
80#endif
81
82#define	AR_DEBUG
83#include <dev/ath/if_athvar.h>
84#include <contrib/dev/ath/ah_desc.h>
85#include <contrib/dev/ath/ah_devid.h>		/* XXX for softled */
86
87/* unalligned little endian access */
88#define LE_READ_2(p)							\
89	((u_int16_t)							\
90	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
91#define LE_READ_4(p)							\
92	((u_int32_t)							\
93	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
94	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
95
96enum {
97	ATH_LED_TX,
98	ATH_LED_RX,
99	ATH_LED_POLL,
100};
101
102static void	ath_init(void *);
103static void	ath_stop_locked(struct ifnet *);
104static void	ath_stop(struct ifnet *);
105static void	ath_start(struct ifnet *);
106static int	ath_reset(struct ifnet *);
107static int	ath_media_change(struct ifnet *);
108static void	ath_watchdog(struct ifnet *);
109static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
110static void	ath_fatal_proc(void *, int);
111static void	ath_rxorn_proc(void *, int);
112static void	ath_bmiss_proc(void *, int);
113static void	ath_initkeytable(struct ath_softc *);
114static int	ath_key_alloc(struct ieee80211com *,
115			const struct ieee80211_key *);
116static int	ath_key_delete(struct ieee80211com *,
117			const struct ieee80211_key *);
118static int	ath_key_set(struct ieee80211com *, const struct ieee80211_key *,
119			const u_int8_t mac[IEEE80211_ADDR_LEN]);
120static void	ath_key_update_begin(struct ieee80211com *);
121static void	ath_key_update_end(struct ieee80211com *);
122static void	ath_mode_init(struct ath_softc *);
123static void	ath_setslottime(struct ath_softc *);
124static void	ath_updateslot(struct ifnet *);
125static int	ath_beaconq_setup(struct ath_hal *);
126static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
127static void	ath_beacon_setup(struct ath_softc *, struct ath_buf *);
128static void	ath_beacon_proc(void *, int);
129static void	ath_bstuck_proc(void *, int);
130static void	ath_beacon_free(struct ath_softc *);
131static void	ath_beacon_config(struct ath_softc *);
132static void	ath_descdma_cleanup(struct ath_softc *sc,
133			struct ath_descdma *, ath_bufhead *);
134static int	ath_desc_alloc(struct ath_softc *);
135static void	ath_desc_free(struct ath_softc *);
136static struct ieee80211_node *ath_node_alloc(struct ieee80211_node_table *);
137static void	ath_node_free(struct ieee80211_node *);
138static u_int8_t	ath_node_getrssi(const struct ieee80211_node *);
139static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
140static void	ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
141			struct ieee80211_node *ni,
142			int subtype, int rssi, u_int32_t rstamp);
143static void	ath_setdefantenna(struct ath_softc *, u_int);
144static void	ath_rx_proc(void *, int);
145static struct ath_txq *ath_txq_setup(struct ath_softc*, int qtype, int subtype);
146static int	ath_tx_setup(struct ath_softc *, int, int);
147static int	ath_wme_update(struct ieee80211com *);
148static void	ath_tx_cleanupq(struct ath_softc *, struct ath_txq *);
149static void	ath_tx_cleanup(struct ath_softc *);
150static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
151			     struct ath_buf *, struct mbuf *);
152static void	ath_tx_proc_q0(void *, int);
153static void	ath_tx_proc_q0123(void *, int);
154static void	ath_tx_proc(void *, int);
155static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
156static void	ath_draintxq(struct ath_softc *);
157static void	ath_stoprecv(struct ath_softc *);
158static int	ath_startrecv(struct ath_softc *);
159static void	ath_chan_change(struct ath_softc *, struct ieee80211_channel *);
160static void	ath_next_scan(void *);
161static void	ath_calibrate(void *);
162static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
163static void	ath_newassoc(struct ieee80211com *,
164			struct ieee80211_node *, int);
165static int	ath_getchannels(struct ath_softc *, u_int cc,
166			HAL_BOOL outdoor, HAL_BOOL xchanmode);
167static void	ath_led_event(struct ath_softc *, int);
168static void	ath_update_txpow(struct ath_softc *);
169
170static int	ath_rate_setup(struct ath_softc *, u_int mode);
171static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
172
173static void	ath_sysctlattach(struct ath_softc *);
174static void	ath_bpfattach(struct ath_softc *);
175static void	ath_announce(struct ath_softc *);
176
177SYSCTL_DECL(_hw_ath);
178
179/* XXX validate sysctl values */
180static	int ath_dwelltime = 200;		/* 5 channels/second */
181SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
182	    0, "channel dwell time (ms) for AP/station scanning");
183static	int ath_calinterval = 30;		/* calibrate every 30 secs */
184SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
185	    0, "chip calibration interval (secs)");
186static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
187SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
188	    0, "outdoor operation");
189TUNABLE_INT("hw.ath.outdoor", &ath_outdoor);
190static	int ath_xchanmode = AH_TRUE;		/* extended channel use */
191SYSCTL_INT(_hw_ath, OID_AUTO, xchanmode, CTLFLAG_RD, &ath_xchanmode,
192	    0, "extended channel mode");
193TUNABLE_INT("hw.ath.xchanmode", &ath_xchanmode);
194static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
195SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
196	    0, "country code");
197TUNABLE_INT("hw.ath.countrycode", &ath_countrycode);
198static	int ath_regdomain = 0;			/* regulatory domain */
199SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
200	    0, "regulatory domain");
201
202#ifdef AR_DEBUG
203static	int ath_debug = 0;
204SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
205	    0, "control debugging printfs");
206TUNABLE_INT("hw.ath.debug", &ath_debug);
207enum {
208	ATH_DEBUG_XMIT		= 0x00000001,	/* basic xmit operation */
209	ATH_DEBUG_XMIT_DESC	= 0x00000002,	/* xmit descriptors */
210	ATH_DEBUG_RECV		= 0x00000004,	/* basic recv operation */
211	ATH_DEBUG_RECV_DESC	= 0x00000008,	/* recv descriptors */
212	ATH_DEBUG_RATE		= 0x00000010,	/* rate control */
213	ATH_DEBUG_RESET		= 0x00000020,	/* reset processing */
214	ATH_DEBUG_MODE		= 0x00000040,	/* mode init/setup */
215	ATH_DEBUG_BEACON 	= 0x00000080,	/* beacon handling */
216	ATH_DEBUG_WATCHDOG 	= 0x00000100,	/* watchdog timeout */
217	ATH_DEBUG_INTR		= 0x00001000,	/* ISR */
218	ATH_DEBUG_TX_PROC	= 0x00002000,	/* tx ISR proc */
219	ATH_DEBUG_RX_PROC	= 0x00004000,	/* rx ISR proc */
220	ATH_DEBUG_BEACON_PROC	= 0x00008000,	/* beacon ISR proc */
221	ATH_DEBUG_CALIBRATE	= 0x00010000,	/* periodic calibration */
222	ATH_DEBUG_KEYCACHE	= 0x00020000,	/* key cache management */
223	ATH_DEBUG_STATE		= 0x00040000,	/* 802.11 state transitions */
224	ATH_DEBUG_NODE		= 0x00080000,	/* node management */
225	ATH_DEBUG_LED		= 0x00100000,	/* led management */
226	ATH_DEBUG_FATAL		= 0x80000000,	/* fatal errors */
227	ATH_DEBUG_ANY		= 0xffffffff
228};
229#define	IFF_DUMPPKTS(sc, m) \
230	((sc->sc_debug & (m)) || \
231	    (sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
232#define	DPRINTF(sc, m, fmt, ...) do {				\
233	if (sc->sc_debug & (m))					\
234		printf(fmt, __VA_ARGS__);			\
235} while (0)
236#define	KEYPRINTF(sc, ix, hk, mac) do {				\
237	if (sc->sc_debug & ATH_DEBUG_KEYCACHE)			\
238		ath_keyprint(__func__, ix, hk, mac);		\
239} while (0)
240static	void ath_printrxbuf(struct ath_buf *bf, int);
241static	void ath_printtxbuf(struct ath_buf *bf, int);
242#else
243#define	IFF_DUMPPKTS(sc, m) \
244	((sc->sc_if.if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
245#define	DPRINTF(m, fmt, ...)
246#define	KEYPRINTF(sc, k, ix, mac)
247#endif
248
249MALLOC_DEFINE(M_ATHDEV, "athdev", "ath driver dma buffers");
250
251int
252ath_attach(u_int16_t devid, struct ath_softc *sc)
253{
254	struct ifnet *ifp = &sc->sc_if;
255	struct ieee80211com *ic = &sc->sc_ic;
256	struct ath_hal *ah;
257	HAL_STATUS status;
258	int error = 0, i;
259
260	DPRINTF(sc, ATH_DEBUG_ANY, "%s: devid 0x%x\n", __func__, devid);
261
262	/* set these up early for if_printf use */
263	if_initname(ifp, device_get_name(sc->sc_dev),
264		device_get_unit(sc->sc_dev));
265
266	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
267	if (ah == NULL) {
268		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
269			status);
270		error = ENXIO;
271		goto bad;
272	}
273	if (ah->ah_abi != HAL_ABI_VERSION) {
274		if_printf(ifp, "HAL ABI mismatch detected "
275			"(HAL:0x%x != driver:0x%x)\n",
276			ah->ah_abi, HAL_ABI_VERSION);
277		error = ENXIO;
278		goto bad;
279	}
280	sc->sc_ah = ah;
281	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
282
283	/*
284	 * Check if the MAC has multi-rate retry support.
285	 * We do this by trying to setup a fake extended
286	 * descriptor.  MAC's that don't have support will
287	 * return false w/o doing anything.  MAC's that do
288	 * support it will return true w/o doing anything.
289	 */
290	sc->sc_mrretry = ath_hal_setupxtxdesc(ah, NULL, 0,0, 0,0, 0,0);
291
292	/*
293	 * Check if the device has hardware counters for PHY
294	 * errors.  If so we need to enable the MIB interrupt
295	 * so we can act on stat triggers.
296	 */
297	if (ath_hal_hwphycounters(ah))
298		sc->sc_needmib = 1;
299
300	/*
301	 * Get the hardware key cache size.
302	 */
303	sc->sc_keymax = ath_hal_keycachesize(ah);
304	if (sc->sc_keymax > sizeof(sc->sc_keymap) * NBBY) {
305		if_printf(ifp,
306			"Warning, using only %zu of %u key cache slots\n",
307			sizeof(sc->sc_keymap) * NBBY, sc->sc_keymax);
308		sc->sc_keymax = sizeof(sc->sc_keymap) * NBBY;
309	}
310	/*
311	 * Reset the key cache since some parts do not
312	 * reset the contents on initial power up.
313	 */
314	for (i = 0; i < sc->sc_keymax; i++)
315		ath_hal_keyreset(ah, i);
316	/*
317	 * Mark key cache slots associated with global keys
318	 * as in use.  If we knew TKIP was not to be used we
319	 * could leave the +32, +64, and +32+64 slots free.
320	 * XXX only for splitmic.
321	 */
322	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
323		setbit(sc->sc_keymap, i);
324		setbit(sc->sc_keymap, i+32);
325		setbit(sc->sc_keymap, i+64);
326		setbit(sc->sc_keymap, i+32+64);
327	}
328
329	/*
330	 * Collect the channel list using the default country
331	 * code and including outdoor channels.  The 802.11 layer
332	 * is resposible for filtering this list based on settings
333	 * like the phy mode.
334	 */
335	error = ath_getchannels(sc, ath_countrycode,
336			ath_outdoor, ath_xchanmode);
337	if (error != 0)
338		goto bad;
339	/*
340	 * Setup dynamic sysctl's now that country code and
341	 * regdomain are available from the hal.
342	 */
343	ath_sysctlattach(sc);
344
345	/*
346	 * Setup rate tables for all potential media types.
347	 */
348	ath_rate_setup(sc, IEEE80211_MODE_11A);
349	ath_rate_setup(sc, IEEE80211_MODE_11B);
350	ath_rate_setup(sc, IEEE80211_MODE_11G);
351	ath_rate_setup(sc, IEEE80211_MODE_TURBO_A);
352	ath_rate_setup(sc, IEEE80211_MODE_TURBO_G);
353	/* NB: setup here so ath_rate_update is happy */
354	ath_setcurmode(sc, IEEE80211_MODE_11A);
355
356	/*
357	 * Allocate tx+rx descriptors and populate the lists.
358	 */
359	error = ath_desc_alloc(sc);
360	if (error != 0) {
361		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
362		goto bad;
363	}
364	callout_init(&sc->sc_scan_ch, debug_mpsafenet ? CALLOUT_MPSAFE : 0);
365	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
366
367	ATH_TXBUF_LOCK_INIT(sc);
368
369	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
370	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
371	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
372	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
373	TASK_INIT(&sc->sc_bstucktask, 0, ath_bstuck_proc, sc);
374
375	/*
376	 * Allocate hardware transmit queues: one queue for
377	 * beacon frames and one data queue for each QoS
378	 * priority.  Note that the hal handles reseting
379	 * these queues at the needed time.
380	 *
381	 * XXX PS-Poll
382	 */
383	sc->sc_bhalq = ath_beaconq_setup(ah);
384	if (sc->sc_bhalq == (u_int) -1) {
385		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
386		error = EIO;
387		goto bad2;
388	}
389	sc->sc_cabq = ath_txq_setup(sc, HAL_TX_QUEUE_CAB, 0);
390	if (sc->sc_cabq == NULL) {
391		if_printf(ifp, "unable to setup CAB xmit queue!\n");
392		error = EIO;
393		goto bad2;
394	}
395	/* NB: insure BK queue is the lowest priority h/w queue */
396	if (!ath_tx_setup(sc, WME_AC_BK, HAL_WME_AC_BK)) {
397		if_printf(ifp, "unable to setup xmit queue for %s traffic!\n",
398			ieee80211_wme_acnames[WME_AC_BK]);
399		error = EIO;
400		goto bad2;
401	}
402	if (!ath_tx_setup(sc, WME_AC_BE, HAL_WME_AC_BE) ||
403	    !ath_tx_setup(sc, WME_AC_VI, HAL_WME_AC_VI) ||
404	    !ath_tx_setup(sc, WME_AC_VO, HAL_WME_AC_VO)) {
405		/*
406		 * Not enough hardware tx queues to properly do WME;
407		 * just punt and assign them all to the same h/w queue.
408		 * We could do a better job of this if, for example,
409		 * we allocate queues when we switch from station to
410		 * AP mode.
411		 */
412		if (sc->sc_ac2q[WME_AC_VI] != NULL)
413			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_VI]);
414		if (sc->sc_ac2q[WME_AC_BE] != NULL)
415			ath_tx_cleanupq(sc, sc->sc_ac2q[WME_AC_BE]);
416		sc->sc_ac2q[WME_AC_BE] = sc->sc_ac2q[WME_AC_BK];
417		sc->sc_ac2q[WME_AC_VI] = sc->sc_ac2q[WME_AC_BK];
418		sc->sc_ac2q[WME_AC_VO] = sc->sc_ac2q[WME_AC_BK];
419	}
420
421	/*
422	 * Special case certain configurations.  Note the
423	 * CAB queue is handled by these specially so don't
424	 * include them when checking the txq setup mask.
425	 */
426	switch (sc->sc_txqsetup &~ (1<<sc->sc_cabq->axq_qnum)) {
427	case 0x01:
428		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0, sc);
429		break;
430	case 0x0f:
431		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc_q0123, sc);
432		break;
433	default:
434		TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
435		break;
436	}
437
438	/*
439	 * Setup rate control.  Some rate control modules
440	 * call back to change the anntena state so expose
441	 * the necessary entry points.
442	 * XXX maybe belongs in struct ath_ratectrl?
443	 */
444	sc->sc_setdefantenna = ath_setdefantenna;
445	sc->sc_rc = ath_rate_attach(sc);
446	if (sc->sc_rc == NULL) {
447		error = EIO;
448		goto bad2;
449	}
450
451	sc->sc_blinking = 0;
452	sc->sc_ledstate = 1;
453	sc->sc_ledon = 0;			/* low true */
454	sc->sc_ledidle = (2700*hz)/1000;	/* 2.7sec */
455	callout_init(&sc->sc_ledtimer, CALLOUT_MPSAFE);
456	/*
457	 * Auto-enable soft led processing for IBM cards and for
458	 * 5211 minipci cards.  Users can also manually enable/disable
459	 * support with a sysctl.
460	 */
461	sc->sc_softled = (devid == AR5212_DEVID_IBM || devid == AR5211_DEVID);
462	if (sc->sc_softled) {
463		ath_hal_gpioCfgOutput(ah, sc->sc_ledpin);
464		ath_hal_gpioset(ah, sc->sc_ledpin, !sc->sc_ledon);
465	}
466
467	ifp->if_softc = sc;
468	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
469	ifp->if_start = ath_start;
470	ifp->if_watchdog = ath_watchdog;
471	ifp->if_ioctl = ath_ioctl;
472	ifp->if_init = ath_init;
473	IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
474	ifp->if_snd.ifq_drv_maxlen = IFQ_MAXLEN;
475	IFQ_SET_READY(&ifp->if_snd);
476
477	ic->ic_ifp = ifp;
478	ic->ic_reset = ath_reset;
479	ic->ic_newassoc = ath_newassoc;
480	ic->ic_updateslot = ath_updateslot;
481	ic->ic_wme.wme_update = ath_wme_update;
482	/* XXX not right but it's not used anywhere important */
483	ic->ic_phytype = IEEE80211_T_OFDM;
484	ic->ic_opmode = IEEE80211_M_STA;
485	ic->ic_caps =
486		  IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
487		| IEEE80211_C_HOSTAP		/* hostap mode */
488		| IEEE80211_C_MONITOR		/* monitor mode */
489		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
490		| IEEE80211_C_SHSLOT		/* short slot time supported */
491		| IEEE80211_C_WPA		/* capable of WPA1+WPA2 */
492		;
493	/*
494	 * Query the hal to figure out h/w crypto support.
495	 */
496	if (ath_hal_ciphersupported(ah, HAL_CIPHER_WEP))
497		ic->ic_caps |= IEEE80211_C_WEP;
498	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_OCB))
499		ic->ic_caps |= IEEE80211_C_AES;
500	if (ath_hal_ciphersupported(ah, HAL_CIPHER_AES_CCM))
501		ic->ic_caps |= IEEE80211_C_AES_CCM;
502	if (ath_hal_ciphersupported(ah, HAL_CIPHER_CKIP))
503		ic->ic_caps |= IEEE80211_C_CKIP;
504	if (ath_hal_ciphersupported(ah, HAL_CIPHER_TKIP)) {
505		ic->ic_caps |= IEEE80211_C_TKIP;
506		/*
507		 * Check if h/w does the MIC and/or whether the
508		 * separate key cache entries are required to
509		 * handle both tx+rx MIC keys.
510		 */
511		if (ath_hal_ciphersupported(ah, HAL_CIPHER_MIC))
512			ic->ic_caps |= IEEE80211_C_TKIPMIC;
513		if (ath_hal_tkipsplit(ah))
514			sc->sc_splitmic = 1;
515	}
516	/*
517	 * TPC support can be done either with a global cap or
518	 * per-packet support.  The latter is not available on
519	 * all parts.  We're a bit pedantic here as all parts
520	 * support a global cap.
521	 */
522	sc->sc_hastpc = ath_hal_hastpc(ah);
523	if (sc->sc_hastpc || ath_hal_hastxpowlimit(ah))
524		ic->ic_caps |= IEEE80211_C_TXPMGT;
525
526	/*
527	 * Mark WME capability only if we have sufficient
528	 * hardware queues to do proper priority scheduling.
529	 */
530	if (sc->sc_ac2q[WME_AC_BE] != sc->sc_ac2q[WME_AC_BK])
531		ic->ic_caps |= IEEE80211_C_WME;
532	/*
533	 * Check for frame bursting capability.
534	 */
535	if (ath_hal_hasbursting(ah))
536		ic->ic_caps |= IEEE80211_C_BURST;
537
538	/*
539	 * Indicate we need the 802.11 header padded to a
540	 * 32-bit boundary for 4-address and QoS frames.
541	 */
542	ic->ic_flags |= IEEE80211_F_DATAPAD;
543
544	/*
545	 * Query the hal about antenna support.
546	 */
547	if (ath_hal_hasdiversity(ah)) {
548		sc->sc_hasdiversity = 1;
549		sc->sc_diversity = ath_hal_getdiversity(ah);
550	}
551	sc->sc_defant = ath_hal_getdefantenna(ah);
552
553	/*
554	 * Not all chips have the VEOL support we want to
555	 * use with IBSS beacons; check here for it.
556	 */
557	sc->sc_hasveol = ath_hal_hasveol(ah);
558
559	/* get mac address from hardware */
560	ath_hal_getmac(ah, ic->ic_myaddr);
561
562	/* call MI attach routine. */
563	ieee80211_ifattach(ic);
564	/* override default methods */
565	ic->ic_node_alloc = ath_node_alloc;
566	sc->sc_node_free = ic->ic_node_free;
567	ic->ic_node_free = ath_node_free;
568	ic->ic_node_getrssi = ath_node_getrssi;
569	sc->sc_recv_mgmt = ic->ic_recv_mgmt;
570	ic->ic_recv_mgmt = ath_recv_mgmt;
571	sc->sc_newstate = ic->ic_newstate;
572	ic->ic_newstate = ath_newstate;
573	ic->ic_crypto.cs_key_alloc = ath_key_alloc;
574	ic->ic_crypto.cs_key_delete = ath_key_delete;
575	ic->ic_crypto.cs_key_set = ath_key_set;
576	ic->ic_crypto.cs_key_update_begin = ath_key_update_begin;
577	ic->ic_crypto.cs_key_update_end = ath_key_update_end;
578	/* complete initialization */
579	ieee80211_media_init(ic, ath_media_change, ieee80211_media_status);
580
581	ath_bpfattach(sc);
582
583	if (bootverbose)
584		ieee80211_announce(ic);
585	ath_announce(sc);
586	return 0;
587bad2:
588	ath_tx_cleanup(sc);
589	ath_desc_free(sc);
590bad:
591	if (ah)
592		ath_hal_detach(ah);
593	sc->sc_invalid = 1;
594	return error;
595}
596
597int
598ath_detach(struct ath_softc *sc)
599{
600	struct ifnet *ifp = &sc->sc_if;
601
602	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
603		__func__, ifp->if_flags);
604
605	ath_stop(ifp);
606	bpfdetach(ifp);
607	/*
608	 * NB: the order of these is important:
609	 * o call the 802.11 layer before detaching the hal to
610	 *   insure callbacks into the driver to delete global
611	 *   key cache entries can be handled
612	 * o reclaim the tx queue data structures after calling
613	 *   the 802.11 layer as we'll get called back to reclaim
614	 *   node state and potentially want to use them
615	 * o to cleanup the tx queues the hal is called, so detach
616	 *   it last
617	 * Other than that, it's straightforward...
618	 */
619	ieee80211_ifdetach(&sc->sc_ic);
620	ath_rate_detach(sc->sc_rc);
621	ath_desc_free(sc);
622	ath_tx_cleanup(sc);
623	ath_hal_detach(sc->sc_ah);
624
625	return 0;
626}
627
628void
629ath_suspend(struct ath_softc *sc)
630{
631	struct ifnet *ifp = &sc->sc_if;
632
633	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
634		__func__, ifp->if_flags);
635
636	ath_stop(ifp);
637}
638
639void
640ath_resume(struct ath_softc *sc)
641{
642	struct ifnet *ifp = &sc->sc_if;
643
644	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
645		__func__, ifp->if_flags);
646
647	if (ifp->if_flags & IFF_UP) {
648		ath_init(ifp);
649		if (ifp->if_flags & IFF_RUNNING)
650			ath_start(ifp);
651	}
652}
653
654void
655ath_shutdown(struct ath_softc *sc)
656{
657	struct ifnet *ifp = &sc->sc_if;
658
659	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags %x\n",
660		__func__, ifp->if_flags);
661
662	ath_stop(ifp);
663}
664
665/*
666 * Interrupt handler.  Most of the actual processing is deferred.
667 */
668void
669ath_intr(void *arg)
670{
671	struct ath_softc *sc = arg;
672	struct ifnet *ifp = &sc->sc_if;
673	struct ath_hal *ah = sc->sc_ah;
674	HAL_INT status;
675
676	if (sc->sc_invalid) {
677		/*
678		 * The hardware is not ready/present, don't touch anything.
679		 * Note this can happen early on if the IRQ is shared.
680		 */
681		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid; ignored\n", __func__);
682		return;
683	}
684	if (!ath_hal_intrpend(ah))		/* shared irq, not for us */
685		return;
686	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
687		DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
688			__func__, ifp->if_flags);
689		ath_hal_getisr(ah, &status);	/* clear ISR */
690		ath_hal_intrset(ah, 0);		/* disable further intr's */
691		return;
692	}
693	/*
694	 * Figure out the reason(s) for the interrupt.  Note
695	 * that the hal returns a pseudo-ISR that may include
696	 * bits we haven't explicitly enabled so we mask the
697	 * value to insure we only process bits we requested.
698	 */
699	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
700	DPRINTF(sc, ATH_DEBUG_INTR, "%s: status 0x%x\n", __func__, status);
701	status &= sc->sc_imask;			/* discard unasked for bits */
702	if (status & HAL_INT_FATAL) {
703		/*
704		 * Fatal errors are unrecoverable.  Typically
705		 * these are caused by DMA errors.  Unfortunately
706		 * the exact reason is not (presently) returned
707		 * by the hal.
708		 */
709		sc->sc_stats.ast_hardware++;
710		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
711		taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
712	} else if (status & HAL_INT_RXORN) {
713		sc->sc_stats.ast_rxorn++;
714		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
715		taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
716	} else {
717		if (status & HAL_INT_SWBA) {
718			/*
719			 * Software beacon alert--time to send a beacon.
720			 * Handle beacon transmission directly; deferring
721			 * this is too slow to meet timing constraints
722			 * under load.
723			 */
724			ath_beacon_proc(sc, 0);
725		}
726		if (status & HAL_INT_RXEOL) {
727			/*
728			 * NB: the hardware should re-read the link when
729			 *     RXE bit is written, but it doesn't work at
730			 *     least on older hardware revs.
731			 */
732			sc->sc_stats.ast_rxeol++;
733			sc->sc_rxlink = NULL;
734		}
735		if (status & HAL_INT_TXURN) {
736			sc->sc_stats.ast_txurn++;
737			/* bump tx trigger level */
738			ath_hal_updatetxtriglevel(ah, AH_TRUE);
739		}
740		if (status & HAL_INT_RX)
741			taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
742		if (status & HAL_INT_TX)
743			taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
744		if (status & HAL_INT_BMISS) {
745			sc->sc_stats.ast_bmiss++;
746			taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
747		}
748		if (status & HAL_INT_MIB) {
749			sc->sc_stats.ast_mib++;
750			/*
751			 * Disable interrupts until we service the MIB
752			 * interrupt; otherwise it will continue to fire.
753			 */
754			ath_hal_intrset(ah, 0);
755			/*
756			 * Let the hal handle the event.  We assume it will
757			 * clear whatever condition caused the interrupt.
758			 */
759			ath_hal_mibevent(ah,
760				&ATH_NODE(sc->sc_ic.ic_bss)->an_halstats);
761			ath_hal_intrset(ah, sc->sc_imask);
762		}
763	}
764}
765
766static void
767ath_fatal_proc(void *arg, int pending)
768{
769	struct ath_softc *sc = arg;
770	struct ifnet *ifp = &sc->sc_if;
771
772	if_printf(ifp, "hardware error; resetting\n");
773	ath_reset(ifp);
774}
775
776static void
777ath_rxorn_proc(void *arg, int pending)
778{
779	struct ath_softc *sc = arg;
780	struct ifnet *ifp = &sc->sc_if;
781
782	if_printf(ifp, "rx FIFO overrun; resetting\n");
783	ath_reset(ifp);
784}
785
786static void
787ath_bmiss_proc(void *arg, int pending)
788{
789	struct ath_softc *sc = arg;
790	struct ieee80211com *ic = &sc->sc_ic;
791
792	DPRINTF(sc, ATH_DEBUG_ANY, "%s: pending %u\n", __func__, pending);
793	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
794		("unexpect operating mode %u", ic->ic_opmode));
795	if (ic->ic_state == IEEE80211_S_RUN) {
796		/*
797		 * Rather than go directly to scan state, try to
798		 * reassociate first.  If that fails then the state
799		 * machine will drop us into scanning after timing
800		 * out waiting for a probe response.
801		 */
802		NET_LOCK_GIANT();
803		ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
804		NET_UNLOCK_GIANT();
805	}
806}
807
808static u_int
809ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
810{
811#define	N(a)	(sizeof(a) / sizeof(a[0]))
812	static const u_int modeflags[] = {
813		0,			/* IEEE80211_MODE_AUTO */
814		CHANNEL_A,		/* IEEE80211_MODE_11A */
815		CHANNEL_B,		/* IEEE80211_MODE_11B */
816		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
817		0,			/* IEEE80211_MODE_FH */
818		CHANNEL_T,		/* IEEE80211_MODE_TURBO_A */
819		CHANNEL_108G		/* IEEE80211_MODE_TURBO_G */
820	};
821	enum ieee80211_phymode mode = ieee80211_chan2mode(ic, chan);
822
823	KASSERT(mode < N(modeflags), ("unexpected phy mode %u", mode));
824	KASSERT(modeflags[mode] != 0, ("mode %u undefined", mode));
825	return modeflags[mode];
826#undef N
827}
828
829static void
830ath_init(void *arg)
831{
832	struct ath_softc *sc = (struct ath_softc *) arg;
833	struct ieee80211com *ic = &sc->sc_ic;
834	struct ifnet *ifp = &sc->sc_if;
835	struct ieee80211_node *ni;
836	struct ath_hal *ah = sc->sc_ah;
837	HAL_STATUS status;
838
839	DPRINTF(sc, ATH_DEBUG_ANY, "%s: if_flags 0x%x\n",
840		__func__, ifp->if_flags);
841
842	ATH_LOCK(sc);
843	/*
844	 * Stop anything previously setup.  This is safe
845	 * whether this is the first time through or not.
846	 */
847	ath_stop_locked(ifp);
848
849	/*
850	 * The basic interface to setting the hardware in a good
851	 * state is ``reset''.  On return the hardware is known to
852	 * be powered up and with interrupts disabled.  This must
853	 * be followed by initialization of the appropriate bits
854	 * and then setup of the interrupt mask.
855	 */
856	sc->sc_curchan.channel = ic->ic_ibss_chan->ic_freq;
857	sc->sc_curchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
858	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_FALSE, &status)) {
859		if_printf(ifp, "unable to reset hardware; hal status %u\n",
860			status);
861		goto done;
862	}
863
864	/*
865	 * This is needed only to setup initial state
866	 * but it's best done after a reset.
867	 */
868	ath_update_txpow(sc);
869
870	/*
871	 * Setup the hardware after reset: the key cache
872	 * is filled as needed and the receive engine is
873	 * set going.  Frame transmit is handled entirely
874	 * in the frame output path; there's nothing to do
875	 * here except setup the interrupt mask.
876	 */
877	ath_initkeytable(sc);		/* XXX still needed? */
878	if (ath_startrecv(sc) != 0) {
879		if_printf(ifp, "unable to start recv logic\n");
880		goto done;
881	}
882
883	/*
884	 * Enable interrupts.
885	 */
886	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
887		  | HAL_INT_RXEOL | HAL_INT_RXORN
888		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
889	/*
890	 * Enable MIB interrupts when there are hardware phy counters.
891	 * Note we only do this (at the moment) for station mode.
892	 */
893	if (sc->sc_needmib && ic->ic_opmode == IEEE80211_M_STA)
894		sc->sc_imask |= HAL_INT_MIB;
895	ath_hal_intrset(ah, sc->sc_imask);
896
897	ifp->if_flags |= IFF_RUNNING;
898	ic->ic_state = IEEE80211_S_INIT;
899
900	/*
901	 * The hardware should be ready to go now so it's safe
902	 * to kick the 802.11 state machine as it's likely to
903	 * immediately call back to us to send mgmt frames.
904	 */
905	ni = ic->ic_bss;
906	ni->ni_chan = ic->ic_ibss_chan;
907	ath_chan_change(sc, ni->ni_chan);
908	if (ic->ic_opmode != IEEE80211_M_MONITOR) {
909		if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
910			ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
911	} else
912		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
913done:
914	ATH_UNLOCK(sc);
915}
916
917static void
918ath_stop_locked(struct ifnet *ifp)
919{
920	struct ath_softc *sc = ifp->if_softc;
921	struct ieee80211com *ic = &sc->sc_ic;
922	struct ath_hal *ah = sc->sc_ah;
923
924	DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid %u if_flags 0x%x\n",
925		__func__, sc->sc_invalid, ifp->if_flags);
926
927	ATH_LOCK_ASSERT(sc);
928	if (ifp->if_flags & IFF_RUNNING) {
929		/*
930		 * Shutdown the hardware and driver:
931		 *    reset 802.11 state machine
932		 *    turn off timers
933		 *    disable interrupts
934		 *    turn off the radio
935		 *    clear transmit machinery
936		 *    clear receive machinery
937		 *    drain and release tx queues
938		 *    reclaim beacon resources
939		 *    power down hardware
940		 *
941		 * Note that some of this work is not possible if the
942		 * hardware is gone (invalid).
943		 */
944		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
945		ifp->if_flags &= ~IFF_RUNNING;
946		ifp->if_timer = 0;
947		if (!sc->sc_invalid) {
948			if (sc->sc_softled) {
949				callout_stop(&sc->sc_ledtimer);
950				ath_hal_gpioset(ah, sc->sc_ledpin,
951					!sc->sc_ledon);
952				sc->sc_blinking = 0;
953			}
954			ath_hal_intrset(ah, 0);
955		}
956		ath_draintxq(sc);
957		if (!sc->sc_invalid) {
958			ath_stoprecv(sc);
959			ath_hal_phydisable(ah);
960		} else
961			sc->sc_rxlink = NULL;
962		IFQ_DRV_PURGE(&ifp->if_snd);
963		ath_beacon_free(sc);
964	}
965}
966
967static void
968ath_stop(struct ifnet *ifp)
969{
970	struct ath_softc *sc = ifp->if_softc;
971
972	ATH_LOCK(sc);
973	ath_stop_locked(ifp);
974	if (!sc->sc_invalid) {
975		/*
976		 * Set the chip in full sleep mode.  Note that we are
977		 * careful to do this only when bringing the interface
978		 * completely to a stop.  When the chip is in this state
979		 * it must be carefully woken up or references to
980		 * registers in the PCI clock domain may freeze the bus
981		 * (and system).  This varies by chip and is mostly an
982		 * issue with newer parts that go to sleep more quickly.
983		 */
984		ath_hal_setpower(sc->sc_ah, HAL_PM_FULL_SLEEP, 0);
985	}
986	ATH_UNLOCK(sc);
987}
988
989/*
990 * Reset the hardware w/o losing operational state.  This is
991 * basically a more efficient way of doing ath_stop, ath_init,
992 * followed by state transitions to the current 802.11
993 * operational state.  Used to recover from various errors and
994 * to reset or reload hardware state.
995 */
996static int
997ath_reset(struct ifnet *ifp)
998{
999	struct ath_softc *sc = ifp->if_softc;
1000	struct ieee80211com *ic = &sc->sc_ic;
1001	struct ath_hal *ah = sc->sc_ah;
1002	struct ieee80211_channel *c;
1003	HAL_STATUS status;
1004
1005	/*
1006	 * Convert to a HAL channel description with the flags
1007	 * constrained to reflect the current operating mode.
1008	 */
1009	c = ic->ic_ibss_chan;
1010	sc->sc_curchan.channel = c->ic_freq;
1011	sc->sc_curchan.channelFlags = ath_chan2flags(ic, c);
1012
1013	ath_hal_intrset(ah, 0);		/* disable interrupts */
1014	ath_draintxq(sc);		/* stop xmit side */
1015	ath_stoprecv(sc);		/* stop recv side */
1016	/* NB: indicate channel change so we do a full reset */
1017	if (!ath_hal_reset(ah, ic->ic_opmode, &sc->sc_curchan, AH_TRUE, &status))
1018		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
1019			__func__, status);
1020	ath_update_txpow(sc);		/* update tx power state */
1021	if (ath_startrecv(sc) != 0)	/* restart recv */
1022		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
1023	/*
1024	 * We may be doing a reset in response to an ioctl
1025	 * that changes the channel so update any state that
1026	 * might change as a result.
1027	 */
1028	ath_chan_change(sc, c);
1029	if (ic->ic_state == IEEE80211_S_RUN)
1030		ath_beacon_config(sc);	/* restart beacons */
1031	ath_hal_intrset(ah, sc->sc_imask);
1032
1033	ath_start(ifp);			/* restart xmit */
1034	return 0;
1035}
1036
1037static void
1038ath_start(struct ifnet *ifp)
1039{
1040	struct ath_softc *sc = ifp->if_softc;
1041	struct ath_hal *ah = sc->sc_ah;
1042	struct ieee80211com *ic = &sc->sc_ic;
1043	struct ieee80211_node *ni;
1044	struct ath_buf *bf;
1045	struct mbuf *m;
1046	struct ieee80211_frame *wh;
1047	struct ether_header *eh;
1048
1049	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
1050		return;
1051	for (;;) {
1052		/*
1053		 * Grab a TX buffer and associated resources.
1054		 */
1055		ATH_TXBUF_LOCK(sc);
1056		bf = STAILQ_FIRST(&sc->sc_txbuf);
1057		if (bf != NULL)
1058			STAILQ_REMOVE_HEAD(&sc->sc_txbuf, bf_list);
1059		ATH_TXBUF_UNLOCK(sc);
1060		if (bf == NULL) {
1061			DPRINTF(sc, ATH_DEBUG_ANY, "%s: out of xmit buffers\n",
1062				__func__);
1063			sc->sc_stats.ast_tx_qstop++;
1064			ifp->if_flags |= IFF_OACTIVE;
1065			break;
1066		}
1067		/*
1068		 * Poll the management queue for frames; they
1069		 * have priority over normal data frames.
1070		 */
1071		IF_DEQUEUE(&ic->ic_mgtq, m);
1072		if (m == NULL) {
1073			/*
1074			 * No data frames go out unless we're associated.
1075			 */
1076			if (ic->ic_state != IEEE80211_S_RUN) {
1077				DPRINTF(sc, ATH_DEBUG_ANY,
1078					"%s: ignore data packet, state %u\n",
1079					__func__, ic->ic_state);
1080				sc->sc_stats.ast_tx_discard++;
1081				ATH_TXBUF_LOCK(sc);
1082				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1083				ATH_TXBUF_UNLOCK(sc);
1084				break;
1085			}
1086			IFQ_DRV_DEQUEUE(&ifp->if_snd, m);	/* XXX: LOCK */
1087			if (m == NULL) {
1088				ATH_TXBUF_LOCK(sc);
1089				STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1090				ATH_TXBUF_UNLOCK(sc);
1091				break;
1092			}
1093			/*
1094			 * Find the node for the destination so we can do
1095			 * things like power save and fast frames aggregation.
1096			 */
1097			if (m->m_len < sizeof(struct ether_header) &&
1098			   (m = m_pullup(m, sizeof(struct ether_header))) == NULL) {
1099				ic->ic_stats.is_tx_nobuf++;	/* XXX */
1100				ni = NULL;
1101				goto bad;
1102			}
1103			eh = mtod(m, struct ether_header *);
1104			ni = ieee80211_find_txnode(ic, eh->ether_dhost);
1105			if (ni == NULL) {
1106				/* NB: ieee80211_find_txnode does stat+msg */
1107				goto bad;
1108			}
1109			if ((ni->ni_flags & IEEE80211_NODE_PWR_MGT) &&
1110			    (m->m_flags & M_PWR_SAV) == 0) {
1111				/*
1112				 * Station in power save mode; pass the frame
1113				 * to the 802.11 layer and continue.  We'll get
1114				 * the frame back when the time is right.
1115				 */
1116				ieee80211_pwrsave(ic, ni, m);
1117				goto reclaim;
1118			}
1119			/* calculate priority so we can find the tx queue */
1120			if (ieee80211_classify(ic, m, ni)) {
1121				DPRINTF(sc, ATH_DEBUG_XMIT,
1122					"%s: discard, classification failure\n",
1123					__func__);
1124				goto bad;
1125			}
1126			ifp->if_opackets++;
1127			BPF_MTAP(ifp, m);
1128			/*
1129			 * Encapsulate the packet in prep for transmission.
1130			 */
1131			m = ieee80211_encap(ic, m, ni);
1132			if (m == NULL) {
1133				DPRINTF(sc, ATH_DEBUG_ANY,
1134					"%s: encapsulation failure\n",
1135					__func__);
1136				sc->sc_stats.ast_tx_encap++;
1137				goto bad;
1138			}
1139		} else {
1140			/*
1141			 * Hack!  The referenced node pointer is in the
1142			 * rcvif field of the packet header.  This is
1143			 * placed there by ieee80211_mgmt_output because
1144			 * we need to hold the reference with the frame
1145			 * and there's no other way (other than packet
1146			 * tags which we consider too expensive to use)
1147			 * to pass it along.
1148			 */
1149			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
1150			m->m_pkthdr.rcvif = NULL;
1151
1152			wh = mtod(m, struct ieee80211_frame *);
1153			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1154			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
1155				/* fill time stamp */
1156				u_int64_t tsf;
1157				u_int32_t *tstamp;
1158
1159				tsf = ath_hal_gettsf64(ah);
1160				/* XXX: adjust 100us delay to xmit */
1161				tsf += 100;
1162				tstamp = (u_int32_t *)&wh[1];
1163				tstamp[0] = htole32(tsf & 0xffffffff);
1164				tstamp[1] = htole32(tsf >> 32);
1165			}
1166			sc->sc_stats.ast_tx_mgmt++;
1167		}
1168
1169		if (ath_tx_start(sc, ni, bf, m)) {
1170	bad:
1171			ifp->if_oerrors++;
1172	reclaim:
1173			ATH_TXBUF_LOCK(sc);
1174			STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1175			ATH_TXBUF_UNLOCK(sc);
1176			if (ni != NULL)
1177				ieee80211_free_node(ni);
1178			continue;
1179		}
1180
1181		sc->sc_tx_timer = 5;
1182		ifp->if_timer = 1;
1183	}
1184}
1185
1186static int
1187ath_media_change(struct ifnet *ifp)
1188{
1189#define	IS_UP(ifp) \
1190	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
1191	int error;
1192
1193	error = ieee80211_media_change(ifp);
1194	if (error == ENETRESET) {
1195		if (IS_UP(ifp))
1196			ath_init(ifp);		/* XXX lose error */
1197		error = 0;
1198	}
1199	return error;
1200#undef IS_UP
1201}
1202
1203#ifdef AR_DEBUG
1204static void
1205ath_keyprint(const char *tag, u_int ix,
1206	const HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1207{
1208	static const char *ciphers[] = {
1209		"WEP",
1210		"AES-OCB",
1211		"AES-CCM",
1212		"CKIP",
1213		"TKIP",
1214		"CLR",
1215	};
1216	int i, n;
1217
1218	printf("%s: [%02u] %-7s ", tag, ix, ciphers[hk->kv_type]);
1219	for (i = 0, n = hk->kv_len; i < n; i++)
1220		printf("%02x", hk->kv_val[i]);
1221	printf(" mac %s", ether_sprintf(mac));
1222	if (hk->kv_type == HAL_CIPHER_TKIP) {
1223		printf(" mic ");
1224		for (i = 0; i < sizeof(hk->kv_mic); i++)
1225			printf("%02x", hk->kv_mic[i]);
1226	}
1227	printf("\n");
1228}
1229#endif
1230
1231/*
1232 * Set a TKIP key into the hardware.  This handles the
1233 * potential distribution of key state to multiple key
1234 * cache slots for TKIP.
1235 */
1236static int
1237ath_keyset_tkip(struct ath_softc *sc, const struct ieee80211_key *k,
1238	HAL_KEYVAL *hk, const u_int8_t mac[IEEE80211_ADDR_LEN])
1239{
1240#define	IEEE80211_KEY_XR	(IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV)
1241	static const u_int8_t zerobssid[IEEE80211_ADDR_LEN];
1242	struct ath_hal *ah = sc->sc_ah;
1243
1244	KASSERT(k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP,
1245		("got a non-TKIP key, cipher %u", k->wk_cipher->ic_cipher));
1246	KASSERT(sc->sc_splitmic, ("key cache !split"));
1247	if ((k->wk_flags & IEEE80211_KEY_XR) == IEEE80211_KEY_XR) {
1248		/*
1249		 * TX key goes at first index, RX key at +32.
1250		 * The hal handles the MIC keys at index+64.
1251		 */
1252		memcpy(hk->kv_mic, k->wk_txmic, sizeof(hk->kv_mic));
1253		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1254		if (!ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid))
1255			return 0;
1256
1257		memcpy(hk->kv_mic, k->wk_rxmic, sizeof(hk->kv_mic));
1258		KEYPRINTF(sc, k->wk_keyix+32, hk, mac);
1259		/* XXX delete tx key on failure? */
1260		return ath_hal_keyset(ah, k->wk_keyix+32, hk, mac);
1261	} else if (k->wk_flags & IEEE80211_KEY_XR) {
1262		/*
1263		 * TX/RX key goes at first index.
1264		 * The hal handles the MIC keys are index+64.
1265		 */
1266		KASSERT(k->wk_keyix < IEEE80211_WEP_NKID,
1267			("group key at index %u", k->wk_keyix));
1268		memcpy(hk->kv_mic, k->wk_flags & IEEE80211_KEY_XMIT ?
1269			k->wk_txmic : k->wk_rxmic, sizeof(hk->kv_mic));
1270		KEYPRINTF(sc, k->wk_keyix, hk, zerobssid);
1271		return ath_hal_keyset(ah, k->wk_keyix, hk, zerobssid);
1272	}
1273	/* XXX key w/o xmit/recv; need this for compression? */
1274	return 0;
1275#undef IEEE80211_KEY_XR
1276}
1277
1278/*
1279 * Set a net80211 key into the hardware.  This handles the
1280 * potential distribution of key state to multiple key
1281 * cache slots for TKIP with hardware MIC support.
1282 */
1283static int
1284ath_keyset(struct ath_softc *sc, const struct ieee80211_key *k,
1285	const u_int8_t mac[IEEE80211_ADDR_LEN])
1286{
1287#define	N(a)	(sizeof(a)/sizeof(a[0]))
1288	static const u_int8_t ciphermap[] = {
1289		HAL_CIPHER_WEP,		/* IEEE80211_CIPHER_WEP */
1290		HAL_CIPHER_TKIP,	/* IEEE80211_CIPHER_TKIP */
1291		HAL_CIPHER_AES_OCB,	/* IEEE80211_CIPHER_AES_OCB */
1292		HAL_CIPHER_AES_CCM,	/* IEEE80211_CIPHER_AES_CCM */
1293		(u_int8_t) -1,		/* 4 is not allocated */
1294		HAL_CIPHER_CKIP,	/* IEEE80211_CIPHER_CKIP */
1295		HAL_CIPHER_CLR,		/* IEEE80211_CIPHER_NONE */
1296	};
1297	struct ath_hal *ah = sc->sc_ah;
1298	const struct ieee80211_cipher *cip = k->wk_cipher;
1299	HAL_KEYVAL hk;
1300
1301	memset(&hk, 0, sizeof(hk));
1302	/*
1303	 * Software crypto uses a "clear key" so non-crypto
1304	 * state kept in the key cache are maintained and
1305	 * so that rx frames have an entry to match.
1306	 */
1307	if ((k->wk_flags & IEEE80211_KEY_SWCRYPT) == 0) {
1308		KASSERT(cip->ic_cipher < N(ciphermap),
1309			("invalid cipher type %u", cip->ic_cipher));
1310		hk.kv_type = ciphermap[cip->ic_cipher];
1311		hk.kv_len = k->wk_keylen;
1312		memcpy(hk.kv_val, k->wk_key, k->wk_keylen);
1313	} else
1314		hk.kv_type = HAL_CIPHER_CLR;
1315
1316	if (hk.kv_type == HAL_CIPHER_TKIP &&
1317	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1318	    sc->sc_splitmic) {
1319		return ath_keyset_tkip(sc, k, &hk, mac);
1320	} else {
1321		KEYPRINTF(sc, k->wk_keyix, &hk, mac);
1322		return ath_hal_keyset(ah, k->wk_keyix, &hk, mac);
1323	}
1324#undef N
1325}
1326
1327/*
1328 * Fill the hardware key cache with key entries.
1329 */
1330static void
1331ath_initkeytable(struct ath_softc *sc)
1332{
1333	struct ieee80211com *ic = &sc->sc_ic;
1334	struct ifnet *ifp = &sc->sc_if;
1335	struct ath_hal *ah = sc->sc_ah;
1336	const u_int8_t *bssid;
1337	int i;
1338
1339	/* XXX maybe should reset all keys when !PRIVACY */
1340	if (ic->ic_state == IEEE80211_S_SCAN)
1341		bssid = ifp->if_broadcastaddr;
1342	else
1343		bssid = ic->ic_bss->ni_bssid;
1344	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1345		struct ieee80211_key *k = &ic->ic_nw_keys[i];
1346
1347		if (k->wk_keylen == 0) {
1348			ath_hal_keyreset(ah, i);
1349			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: reset key %u\n",
1350				__func__, i);
1351		} else {
1352			ath_keyset(sc, k, bssid);
1353		}
1354	}
1355}
1356
1357/*
1358 * Allocate tx/rx key slots for TKIP.  We allocate two slots for
1359 * each key, one for decrypt/encrypt and the other for the MIC.
1360 */
1361static u_int16_t
1362key_alloc_2pair(struct ath_softc *sc)
1363{
1364#define	N(a)	(sizeof(a)/sizeof(a[0]))
1365	u_int i, keyix;
1366
1367	KASSERT(sc->sc_splitmic, ("key cache !split"));
1368	/* XXX could optimize */
1369	for (i = 0; i < N(sc->sc_keymap)/4; i++) {
1370		u_int8_t b = sc->sc_keymap[i];
1371		if (b != 0xff) {
1372			/*
1373			 * One or more slots in this byte are free.
1374			 */
1375			keyix = i*NBBY;
1376			while (b & 1) {
1377		again:
1378				keyix++;
1379				b >>= 1;
1380			}
1381			/* XXX IEEE80211_KEY_XMIT | IEEE80211_KEY_RECV */
1382			if (isset(sc->sc_keymap, keyix+32) ||
1383			    isset(sc->sc_keymap, keyix+64) ||
1384			    isset(sc->sc_keymap, keyix+32+64)) {
1385				/* full pair unavailable */
1386				/* XXX statistic */
1387				if (keyix == (i+1)*NBBY) {
1388					/* no slots were appropriate, advance */
1389					continue;
1390				}
1391				goto again;
1392			}
1393			setbit(sc->sc_keymap, keyix);
1394			setbit(sc->sc_keymap, keyix+64);
1395			setbit(sc->sc_keymap, keyix+32);
1396			setbit(sc->sc_keymap, keyix+32+64);
1397			DPRINTF(sc, ATH_DEBUG_KEYCACHE,
1398				"%s: key pair %u,%u %u,%u\n",
1399				__func__, keyix, keyix+64,
1400				keyix+32, keyix+32+64);
1401			return keyix;
1402		}
1403	}
1404	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of pair space\n", __func__);
1405	return IEEE80211_KEYIX_NONE;
1406#undef N
1407}
1408
1409/*
1410 * Allocate a single key cache slot.
1411 */
1412static u_int16_t
1413key_alloc_single(struct ath_softc *sc)
1414{
1415#define	N(a)	(sizeof(a)/sizeof(a[0]))
1416	u_int i, keyix;
1417
1418	/* XXX try i,i+32,i+64,i+32+64 to minimize key pair conflicts */
1419	for (i = 0; i < N(sc->sc_keymap); i++) {
1420		u_int8_t b = sc->sc_keymap[i];
1421		if (b != 0xff) {
1422			/*
1423			 * One or more slots are free.
1424			 */
1425			keyix = i*NBBY;
1426			while (b & 1)
1427				keyix++, b >>= 1;
1428			setbit(sc->sc_keymap, keyix);
1429			DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: key %u\n",
1430				__func__, keyix);
1431			return keyix;
1432		}
1433	}
1434	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: out of space\n", __func__);
1435	return IEEE80211_KEYIX_NONE;
1436#undef N
1437}
1438
1439/*
1440 * Allocate one or more key cache slots for a uniacst key.  The
1441 * key itself is needed only to identify the cipher.  For hardware
1442 * TKIP with split cipher+MIC keys we allocate two key cache slot
1443 * pairs so that we can setup separate TX and RX MIC keys.  Note
1444 * that the MIC key for a TKIP key at slot i is assumed by the
1445 * hardware to be at slot i+64.  This limits TKIP keys to the first
1446 * 64 entries.
1447 */
1448static int
1449ath_key_alloc(struct ieee80211com *ic, const struct ieee80211_key *k)
1450{
1451	struct ath_softc *sc = ic->ic_ifp->if_softc;
1452
1453	/*
1454	 * We allocate two pair for TKIP when using the h/w to do
1455	 * the MIC.  For everything else, including software crypto,
1456	 * we allocate a single entry.  Note that s/w crypto requires
1457	 * a pass-through slot on the 5211 and 5212.  The 5210 does
1458	 * not support pass-through cache entries and we map all
1459	 * those requests to slot 0.
1460	 */
1461	if (k->wk_flags & IEEE80211_KEY_SWCRYPT) {
1462		return key_alloc_single(sc);
1463	} else if (k->wk_cipher->ic_cipher == IEEE80211_CIPHER_TKIP &&
1464	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic) {
1465		return key_alloc_2pair(sc);
1466	} else {
1467		return key_alloc_single(sc);
1468	}
1469}
1470
1471/*
1472 * Delete an entry in the key cache allocated by ath_key_alloc.
1473 */
1474static int
1475ath_key_delete(struct ieee80211com *ic, const struct ieee80211_key *k)
1476{
1477	struct ath_softc *sc = ic->ic_ifp->if_softc;
1478	struct ath_hal *ah = sc->sc_ah;
1479	const struct ieee80211_cipher *cip = k->wk_cipher;
1480	u_int keyix = k->wk_keyix;
1481
1482	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s: delete key %u\n", __func__, keyix);
1483
1484	ath_hal_keyreset(ah, keyix);
1485	/*
1486	 * Handle split tx/rx keying required for TKIP with h/w MIC.
1487	 */
1488	if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1489	    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 && sc->sc_splitmic)
1490		ath_hal_keyreset(ah, keyix+32);		/* RX key */
1491	if (keyix >= IEEE80211_WEP_NKID) {
1492		/*
1493		 * Don't touch keymap entries for global keys so
1494		 * they are never considered for dynamic allocation.
1495		 */
1496		clrbit(sc->sc_keymap, keyix);
1497		if (cip->ic_cipher == IEEE80211_CIPHER_TKIP &&
1498		    (k->wk_flags & IEEE80211_KEY_SWMIC) == 0 &&
1499		    sc->sc_splitmic) {
1500			clrbit(sc->sc_keymap, keyix+64);	/* TX key MIC */
1501			clrbit(sc->sc_keymap, keyix+32);	/* RX key */
1502			clrbit(sc->sc_keymap, keyix+32+64);	/* RX key MIC */
1503		}
1504	}
1505	return 1;
1506}
1507
1508/*
1509 * Set the key cache contents for the specified key.  Key cache
1510 * slot(s) must already have been allocated by ath_key_alloc.
1511 */
1512static int
1513ath_key_set(struct ieee80211com *ic, const struct ieee80211_key *k,
1514	const u_int8_t mac[IEEE80211_ADDR_LEN])
1515{
1516	struct ath_softc *sc = ic->ic_ifp->if_softc;
1517
1518	return ath_keyset(sc, k, mac);
1519}
1520
1521/*
1522 * Block/unblock tx+rx processing while a key change is done.
1523 * We assume the caller serializes key management operations
1524 * so we only need to worry about synchronization with other
1525 * uses that originate in the driver.
1526 */
1527static void
1528ath_key_update_begin(struct ieee80211com *ic)
1529{
1530	struct ifnet *ifp = ic->ic_ifp;
1531	struct ath_softc *sc = ifp->if_softc;
1532
1533	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1534#if 0
1535	tasklet_disable(&sc->sc_rxtq);
1536#endif
1537	IF_LOCK(&ifp->if_snd);		/* NB: doesn't block mgmt frames */
1538}
1539
1540static void
1541ath_key_update_end(struct ieee80211com *ic)
1542{
1543	struct ifnet *ifp = ic->ic_ifp;
1544	struct ath_softc *sc = ifp->if_softc;
1545
1546	DPRINTF(sc, ATH_DEBUG_KEYCACHE, "%s:\n", __func__);
1547	IF_UNLOCK(&ifp->if_snd);
1548#if 0
1549	tasklet_enable(&sc->sc_rxtq);
1550#endif
1551}
1552
1553/*
1554 * Calculate the receive filter according to the
1555 * operating mode and state:
1556 *
1557 * o always accept unicast, broadcast, and multicast traffic
1558 * o maintain current state of phy error reception (the hal
1559 *   may enable phy error frames for noise immunity work)
1560 * o probe request frames are accepted only when operating in
1561 *   hostap, adhoc, or monitor modes
1562 * o enable promiscuous mode according to the interface state
1563 * o accept beacons:
1564 *   - when operating in adhoc mode so the 802.11 layer creates
1565 *     node table entries for peers,
1566 *   - when operating in station mode for collecting rssi data when
1567 *     the station is otherwise quiet, or
1568 *   - when scanning
1569 */
1570static u_int32_t
1571ath_calcrxfilter(struct ath_softc *sc, enum ieee80211_state state)
1572{
1573	struct ieee80211com *ic = &sc->sc_ic;
1574	struct ath_hal *ah = sc->sc_ah;
1575	struct ifnet *ifp = &sc->sc_if;
1576	u_int32_t rfilt;
1577
1578	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
1579	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
1580	if (ic->ic_opmode != IEEE80211_M_STA)
1581		rfilt |= HAL_RX_FILTER_PROBEREQ;
1582	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
1583	    (ifp->if_flags & IFF_PROMISC))
1584		rfilt |= HAL_RX_FILTER_PROM;
1585	if (ic->ic_opmode == IEEE80211_M_STA ||
1586	    ic->ic_opmode == IEEE80211_M_IBSS ||
1587	    state == IEEE80211_S_SCAN)
1588		rfilt |= HAL_RX_FILTER_BEACON;
1589	return rfilt;
1590}
1591
1592static void
1593ath_mode_init(struct ath_softc *sc)
1594{
1595	struct ieee80211com *ic = &sc->sc_ic;
1596	struct ath_hal *ah = sc->sc_ah;
1597	struct ifnet *ifp = &sc->sc_if;
1598	u_int32_t rfilt, mfilt[2], val;
1599	u_int8_t pos;
1600	struct ifmultiaddr *ifma;
1601
1602	/* configure rx filter */
1603	rfilt = ath_calcrxfilter(sc, ic->ic_state);
1604	ath_hal_setrxfilter(ah, rfilt);
1605
1606	/* configure operational mode */
1607	ath_hal_setopmode(ah);
1608
1609	/*
1610	 * Handle any link-level address change.  Note that we only
1611	 * need to force ic_myaddr; any other addresses are handled
1612	 * as a byproduct of the ifnet code marking the interface
1613	 * down then up.
1614	 *
1615	 * XXX should get from lladdr instead of arpcom but that's more work
1616	 */
1617	IEEE80211_ADDR_COPY(ic->ic_myaddr, IFP2AC(ifp)->ac_enaddr);
1618	ath_hal_setmac(ah, ic->ic_myaddr);
1619
1620	/* calculate and install multicast filter */
1621	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
1622		mfilt[0] = mfilt[1] = 0;
1623		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
1624			caddr_t dl;
1625
1626			/* calculate XOR of eight 6bit values */
1627			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1628			val = LE_READ_4(dl + 0);
1629			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1630			val = LE_READ_4(dl + 3);
1631			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1632			pos &= 0x3f;
1633			mfilt[pos / 32] |= (1 << (pos % 32));
1634		}
1635	} else {
1636		mfilt[0] = mfilt[1] = ~0;
1637	}
1638	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1639	DPRINTF(sc, ATH_DEBUG_MODE, "%s: RX filter 0x%x, MC filter %08x:%08x\n",
1640		__func__, rfilt, mfilt[0], mfilt[1]);
1641}
1642
1643static void
1644ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1645{
1646	struct ath_buf *bf = arg;
1647
1648	KASSERT(nseg <= ATH_MAX_SCATTER, ("too many DMA segments %u", nseg));
1649	KASSERT(error == 0, ("error %u on bus_dma callback", error));
1650	bf->bf_mapsize = mapsize;
1651	bf->bf_nseg = nseg;
1652	bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1653}
1654
1655/*
1656 * Set the slot time based on the current setting.
1657 */
1658static void
1659ath_setslottime(struct ath_softc *sc)
1660{
1661	struct ieee80211com *ic = &sc->sc_ic;
1662	struct ath_hal *ah = sc->sc_ah;
1663
1664	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1665		ath_hal_setslottime(ah, HAL_SLOT_TIME_9);
1666	else
1667		ath_hal_setslottime(ah, HAL_SLOT_TIME_20);
1668	sc->sc_updateslot = OK;
1669}
1670
1671/*
1672 * Callback from the 802.11 layer to update the
1673 * slot time based on the current setting.
1674 */
1675static void
1676ath_updateslot(struct ifnet *ifp)
1677{
1678	struct ath_softc *sc = ifp->if_softc;
1679	struct ieee80211com *ic = &sc->sc_ic;
1680
1681	/*
1682	 * When not coordinating the BSS, change the hardware
1683	 * immediately.  For other operation we defer the change
1684	 * until beacon updates have propagated to the stations.
1685	 */
1686	if (ic->ic_opmode == IEEE80211_M_HOSTAP)
1687		sc->sc_updateslot = UPDATE;
1688	else
1689		ath_setslottime(sc);
1690}
1691
1692/*
1693 * Setup a h/w transmit queue for beacons.
1694 */
1695static int
1696ath_beaconq_setup(struct ath_hal *ah)
1697{
1698	HAL_TXQ_INFO qi;
1699
1700	memset(&qi, 0, sizeof(qi));
1701	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
1702	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
1703	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
1704	/* NB: don't enable any interrupts */
1705	return ath_hal_setuptxqueue(ah, HAL_TX_QUEUE_BEACON, &qi);
1706}
1707
1708/*
1709 * Allocate and setup an initial beacon frame.
1710 */
1711static int
1712ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1713{
1714	struct ieee80211com *ic = ni->ni_ic;
1715	struct ath_buf *bf;
1716	struct mbuf *m;
1717	int error;
1718
1719	bf = STAILQ_FIRST(&sc->sc_bbuf);
1720	if (bf == NULL) {
1721		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: no dma buffers\n", __func__);
1722		sc->sc_stats.ast_be_nombuf++;	/* XXX */
1723		return ENOMEM;			/* XXX */
1724	}
1725	if (bf->bf_m != NULL) {
1726		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1727		m_freem(bf->bf_m);
1728		bf->bf_m = NULL;
1729		bf->bf_node = NULL;
1730	}
1731	/*
1732	 * NB: the beacon data buffer must be 32-bit aligned;
1733	 * we assume the mbuf routines will return us something
1734	 * with this alignment (perhaps should assert).
1735	 */
1736	m = ieee80211_beacon_alloc(ic, ni, &sc->sc_boff);
1737	if (m == NULL) {
1738		DPRINTF(sc, ATH_DEBUG_BEACON, "%s: cannot get mbuf\n",
1739			__func__);
1740		sc->sc_stats.ast_be_nombuf++;
1741		return ENOMEM;
1742	}
1743	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1744				     ath_mbuf_load_cb, bf,
1745				     BUS_DMA_NOWAIT);
1746	if (error == 0) {
1747		bf->bf_m = m;
1748		bf->bf_node = ni;		/* NB: no held reference */
1749	} else {
1750		m_freem(m);
1751	}
1752	return error;
1753}
1754
1755/*
1756 * Setup the beacon frame for transmit.
1757 */
1758static void
1759ath_beacon_setup(struct ath_softc *sc, struct ath_buf *bf)
1760{
1761#define	USE_SHPREAMBLE(_ic) \
1762	(((_ic)->ic_flags & (IEEE80211_F_SHPREAMBLE | IEEE80211_F_USEBARKER))\
1763		== IEEE80211_F_SHPREAMBLE)
1764	struct ieee80211_node *ni = bf->bf_node;
1765	struct ieee80211com *ic = ni->ni_ic;
1766	struct mbuf *m = bf->bf_m;
1767	struct ath_hal *ah = sc->sc_ah;
1768	struct ath_node *an = ATH_NODE(ni);
1769	struct ath_desc *ds;
1770	int flags, antenna;
1771	u_int8_t rate;
1772
1773	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: m %p len %u\n",
1774		__func__, m, m->m_len);
1775
1776	/* setup descriptors */
1777	ds = bf->bf_desc;
1778
1779	flags = HAL_TXDESC_NOACK;
1780	if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol) {
1781		ds->ds_link = bf->bf_daddr;	/* self-linked */
1782		flags |= HAL_TXDESC_VEOL;
1783		/*
1784		 * Let hardware handle antenna switching.
1785		 */
1786		antenna = 0;
1787	} else {
1788		ds->ds_link = 0;
1789		/*
1790		 * Switch antenna every 4 beacons.
1791		 * XXX assumes two antenna
1792		 */
1793		antenna = (sc->sc_stats.ast_be_xmit & 4 ? 2 : 1);
1794	}
1795
1796	KASSERT(bf->bf_nseg == 1,
1797		("multi-segment beacon frame; nseg %u", bf->bf_nseg));
1798	ds->ds_data = bf->bf_segs[0].ds_addr;
1799	/*
1800	 * Calculate rate code.
1801	 * XXX everything at min xmit rate
1802	 */
1803	if (USE_SHPREAMBLE(ic))
1804		rate = an->an_tx_mgtratesp;
1805	else
1806		rate = an->an_tx_mgtrate;
1807	ath_hal_setuptxdesc(ah, ds
1808		, m->m_len + IEEE80211_CRC_LEN	/* frame length */
1809		, sizeof(struct ieee80211_frame)/* header length */
1810		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1811		, ni->ni_txpower		/* txpower XXX */
1812		, rate, 1			/* series 0 rate/tries */
1813		, HAL_TXKEYIX_INVALID		/* no encryption */
1814		, antenna			/* antenna mode */
1815		, flags				/* no ack, veol for beacons */
1816		, 0				/* rts/cts rate */
1817		, 0				/* rts/cts duration */
1818	);
1819	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1820	ath_hal_filltxdesc(ah, ds
1821		, roundup(m->m_len, 4)		/* buffer length */
1822		, AH_TRUE			/* first segment */
1823		, AH_TRUE			/* last segment */
1824		, ds				/* first descriptor */
1825	);
1826#undef USE_SHPREAMBLE
1827}
1828
1829/*
1830 * Transmit a beacon frame at SWBA.  Dynamic updates to the
1831 * frame contents are done as needed and the slot time is
1832 * also adjusted based on current state.
1833 */
1834static void
1835ath_beacon_proc(void *arg, int pending)
1836{
1837	struct ath_softc *sc = arg;
1838	struct ath_buf *bf = STAILQ_FIRST(&sc->sc_bbuf);
1839	struct ieee80211_node *ni = bf->bf_node;
1840	struct ieee80211com *ic = ni->ni_ic;
1841	struct ath_hal *ah = sc->sc_ah;
1842	struct mbuf *m;
1843	int ncabq, error, otherant;
1844
1845	DPRINTF(sc, ATH_DEBUG_BEACON_PROC, "%s: pending %u\n",
1846		__func__, pending);
1847
1848	if (ic->ic_opmode == IEEE80211_M_STA ||
1849	    ic->ic_opmode == IEEE80211_M_MONITOR ||
1850	    bf == NULL || bf->bf_m == NULL) {
1851		DPRINTF(sc, ATH_DEBUG_ANY, "%s: ic_flags=%x bf=%p bf_m=%p\n",
1852			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL);
1853		return;
1854	}
1855	/*
1856	 * Check if the previous beacon has gone out.  If
1857	 * not don't don't try to post another, skip this
1858	 * period and wait for the next.  Missed beacons
1859	 * indicate a problem and should not occur.  If we
1860	 * miss too many consecutive beacons reset the device.
1861	 */
1862	if (ath_hal_numtxpending(ah, sc->sc_bhalq) != 0) {
1863		sc->sc_bmisscount++;
1864		DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1865			"%s: missed %u consecutive beacons\n",
1866			__func__, sc->sc_bmisscount);
1867		if (sc->sc_bmisscount > 3)		/* NB: 3 is a guess */
1868			taskqueue_enqueue(taskqueue_swi, &sc->sc_bstucktask);
1869		return;
1870	}
1871	if (sc->sc_bmisscount != 0) {
1872		DPRINTF(sc, ATH_DEBUG_BEACON,
1873			"%s: resume beacon xmit after %u misses\n",
1874			__func__, sc->sc_bmisscount);
1875		sc->sc_bmisscount = 0;
1876	}
1877
1878	/*
1879	 * Update dynamic beacon contents.  If this returns
1880	 * non-zero then we need to remap the memory because
1881	 * the beacon frame changed size (probably because
1882	 * of the TIM bitmap).
1883	 */
1884	m = bf->bf_m;
1885	ncabq = ath_hal_numtxpending(ah, sc->sc_cabq->axq_qnum);
1886	if (ieee80211_beacon_update(ic, bf->bf_node, &sc->sc_boff, m, ncabq)) {
1887		/* XXX too conservative? */
1888		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1889		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1890					     ath_mbuf_load_cb, bf,
1891					     BUS_DMA_NOWAIT);
1892		if (error != 0) {
1893			if_printf(ic->ic_ifp,
1894			    "%s: bus_dmamap_load_mbuf failed, error %u\n",
1895			    __func__, error);
1896			return;
1897		}
1898	}
1899
1900	/*
1901	 * Handle slot time change when a non-ERP station joins/leaves
1902	 * an 11g network.  The 802.11 layer notifies us via callback,
1903	 * we mark updateslot, then wait one beacon before effecting
1904	 * the change.  This gives associated stations at least one
1905	 * beacon interval to note the state change.
1906	 */
1907	/* XXX locking */
1908	if (sc->sc_updateslot == UPDATE)
1909		sc->sc_updateslot = COMMIT;	/* commit next beacon */
1910	else if (sc->sc_updateslot == COMMIT)
1911		ath_setslottime(sc);		/* commit change to h/w */
1912
1913	/*
1914	 * Check recent per-antenna transmit statistics and flip
1915	 * the default antenna if noticeably more frames went out
1916	 * on the non-default antenna.
1917	 * XXX assumes 2 anntenae
1918	 */
1919	otherant = sc->sc_defant & 1 ? 2 : 1;
1920	if (sc->sc_ant_tx[otherant] > sc->sc_ant_tx[sc->sc_defant] + 2)
1921		ath_setdefantenna(sc, otherant);
1922	sc->sc_ant_tx[1] = sc->sc_ant_tx[2] = 0;
1923
1924	/*
1925	 * Construct tx descriptor.
1926	 */
1927	ath_beacon_setup(sc, bf);
1928
1929	/*
1930	 * Stop any current dma and put the new frame on the queue.
1931	 * This should never fail since we check above that no frames
1932	 * are still pending on the queue.
1933	 */
1934	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1935		DPRINTF(sc, ATH_DEBUG_ANY,
1936			"%s: beacon queue %u did not stop?\n",
1937			__func__, sc->sc_bhalq);
1938	}
1939	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1940
1941	/*
1942	 * Enable the CAB queue before the beacon queue to
1943	 * insure cab frames are triggered by this beacon.
1944	 */
1945	if (sc->sc_boff.bo_tim[4] & 1)		/* NB: only at DTIM */
1946		ath_hal_txstart(ah, sc->sc_cabq->axq_qnum);
1947	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1948	ath_hal_txstart(ah, sc->sc_bhalq);
1949	DPRINTF(sc, ATH_DEBUG_BEACON_PROC,
1950		"%s: TXDP[%u] = %p (%p)\n", __func__,
1951		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc);
1952
1953	sc->sc_stats.ast_be_xmit++;
1954}
1955
1956/*
1957 * Reset the hardware after detecting beacons have stopped.
1958 */
1959static void
1960ath_bstuck_proc(void *arg, int pending)
1961{
1962	struct ath_softc *sc = arg;
1963	struct ifnet *ifp = &sc->sc_if;
1964
1965	if_printf(ifp, "stuck beacon; resetting (bmiss count %u)\n",
1966		sc->sc_bmisscount);
1967	ath_reset(ifp);
1968}
1969
1970/*
1971 * Reclaim beacon resources.
1972 */
1973static void
1974ath_beacon_free(struct ath_softc *sc)
1975{
1976	struct ath_buf *bf;
1977
1978	STAILQ_FOREACH(bf, &sc->sc_bbuf, bf_list)
1979		if (bf->bf_m != NULL) {
1980			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1981			m_freem(bf->bf_m);
1982			bf->bf_m = NULL;
1983			bf->bf_node = NULL;
1984		}
1985}
1986
1987/*
1988 * Configure the beacon and sleep timers.
1989 *
1990 * When operating as an AP this resets the TSF and sets
1991 * up the hardware to notify us when we need to issue beacons.
1992 *
1993 * When operating in station mode this sets up the beacon
1994 * timers according to the timestamp of the last received
1995 * beacon and the current TSF, configures PCF and DTIM
1996 * handling, programs the sleep registers so the hardware
1997 * will wakeup in time to receive beacons, and configures
1998 * the beacon miss handling so we'll receive a BMISS
1999 * interrupt when we stop seeing beacons from the AP
2000 * we've associated with.
2001 */
2002static void
2003ath_beacon_config(struct ath_softc *sc)
2004{
2005#define	MS_TO_TU(x)	(((x) * 1000) / 1024)
2006	struct ath_hal *ah = sc->sc_ah;
2007	struct ieee80211com *ic = &sc->sc_ic;
2008	struct ieee80211_node *ni = ic->ic_bss;
2009	u_int32_t nexttbtt, intval;
2010
2011	nexttbtt = (LE_READ_4(ni->ni_tstamp.data + 4) << 22) |
2012	    (LE_READ_4(ni->ni_tstamp.data) >> 10);
2013	intval = MS_TO_TU(ni->ni_intval) & HAL_BEACON_PERIOD;
2014	if (nexttbtt == 0)		/* e.g. for ap mode */
2015		nexttbtt = intval;
2016	else if (intval)		/* NB: can be 0 for monitor mode */
2017		nexttbtt = roundup(nexttbtt, intval);
2018	DPRINTF(sc, ATH_DEBUG_BEACON, "%s: nexttbtt %u intval %u (%u)\n",
2019		__func__, nexttbtt, intval, ni->ni_intval);
2020	if (ic->ic_opmode == IEEE80211_M_STA) {
2021		HAL_BEACON_STATE bs;
2022		u_int32_t bmisstime;
2023
2024		/* NB: no PCF support right now */
2025		memset(&bs, 0, sizeof(bs));
2026		bs.bs_intval = intval;
2027		bs.bs_nexttbtt = nexttbtt;
2028		bs.bs_dtimperiod = bs.bs_intval;
2029		bs.bs_nextdtim = nexttbtt;
2030		/*
2031		 * The 802.11 layer records the offset to the DTIM
2032		 * bitmap while receiving beacons; use it here to
2033		 * enable h/w detection of our AID being marked in
2034		 * the bitmap vector (to indicate frames for us are
2035		 * pending at the AP).
2036		 */
2037		bs.bs_timoffset = ni->ni_timoff;
2038		/*
2039		 * Calculate the number of consecutive beacons to miss
2040		 * before taking a BMISS interrupt.  The configuration
2041		 * is specified in ms, so we need to convert that to
2042		 * TU's and then calculate based on the beacon interval.
2043		 * Note that we clamp the result to at most 10 beacons.
2044		 */
2045		bmisstime = MS_TO_TU(ic->ic_bmisstimeout);
2046		bs.bs_bmissthreshold = howmany(bmisstime, intval);
2047		if (bs.bs_bmissthreshold > 10)
2048			bs.bs_bmissthreshold = 10;
2049		else if (bs.bs_bmissthreshold <= 0)
2050			bs.bs_bmissthreshold = 1;
2051
2052		/*
2053		 * Calculate sleep duration.  The configuration is
2054		 * given in ms.  We insure a multiple of the beacon
2055		 * period is used.  Also, if the sleep duration is
2056		 * greater than the DTIM period then it makes senses
2057		 * to make it a multiple of that.
2058		 *
2059		 * XXX fixed at 100ms
2060		 */
2061		bs.bs_sleepduration = roundup(MS_TO_TU(100), bs.bs_intval);
2062		if (bs.bs_sleepduration > bs.bs_dtimperiod)
2063			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
2064
2065		DPRINTF(sc, ATH_DEBUG_BEACON,
2066			"%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u cfp:period %u maxdur %u next %u timoffset %u\n"
2067			, __func__
2068			, bs.bs_intval
2069			, bs.bs_nexttbtt
2070			, bs.bs_dtimperiod
2071			, bs.bs_nextdtim
2072			, bs.bs_bmissthreshold
2073			, bs.bs_sleepduration
2074			, bs.bs_cfpperiod
2075			, bs.bs_cfpmaxduration
2076			, bs.bs_cfpnext
2077			, bs.bs_timoffset
2078		);
2079		ath_hal_intrset(ah, 0);
2080		ath_hal_beacontimers(ah, &bs);
2081		sc->sc_imask |= HAL_INT_BMISS;
2082		ath_hal_intrset(ah, sc->sc_imask);
2083	} else {
2084		ath_hal_intrset(ah, 0);
2085		if (nexttbtt == intval)
2086			intval |= HAL_BEACON_RESET_TSF;
2087		if (ic->ic_opmode == IEEE80211_M_IBSS) {
2088			/*
2089			 * In IBSS mode enable the beacon timers but only
2090			 * enable SWBA interrupts if we need to manually
2091			 * prepare beacon frames.  Otherwise we use a
2092			 * self-linked tx descriptor and let the hardware
2093			 * deal with things.
2094			 */
2095			intval |= HAL_BEACON_ENA;
2096			if (!sc->sc_hasveol)
2097				sc->sc_imask |= HAL_INT_SWBA;
2098		} else if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
2099			/*
2100			 * In AP mode we enable the beacon timers and
2101			 * SWBA interrupts to prepare beacon frames.
2102			 */
2103			intval |= HAL_BEACON_ENA;
2104			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
2105		}
2106		ath_hal_beaconinit(ah, nexttbtt, intval);
2107		sc->sc_bmisscount = 0;
2108		ath_hal_intrset(ah, sc->sc_imask);
2109		/*
2110		 * When using a self-linked beacon descriptor in
2111		 * ibss mode load it once here.
2112		 */
2113		if (ic->ic_opmode == IEEE80211_M_IBSS && sc->sc_hasveol)
2114			ath_beacon_proc(sc, 0);
2115	}
2116#undef MS_TO_TU
2117}
2118
2119static void
2120ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
2121{
2122	bus_addr_t *paddr = (bus_addr_t*) arg;
2123	KASSERT(error == 0, ("error %u on bus_dma callback", error));
2124	*paddr = segs->ds_addr;
2125}
2126
2127static int
2128ath_descdma_setup(struct ath_softc *sc,
2129	struct ath_descdma *dd, ath_bufhead *head,
2130	const char *name, int nbuf, int ndesc)
2131{
2132#define	DS2PHYS(_dd, _ds) \
2133	((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
2134	struct ifnet *ifp = &sc->sc_if;
2135	struct ath_desc *ds;
2136	struct ath_buf *bf;
2137	int i, bsize, error;
2138
2139	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA: %u buffers %u desc/buf\n",
2140	    __func__, name, nbuf, ndesc);
2141
2142	dd->dd_name = name;
2143	dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
2144
2145	/*
2146	 * Setup DMA descriptor area.
2147	 */
2148	error = bus_dma_tag_create(NULL,	/* parent */
2149		       PAGE_SIZE, 0,		/* alignment, bounds */
2150		       BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
2151		       BUS_SPACE_MAXADDR,	/* highaddr */
2152		       NULL, NULL,		/* filter, filterarg */
2153		       dd->dd_desc_len,		/* maxsize */
2154		       1,			/* nsegments */
2155		       BUS_SPACE_MAXADDR,	/* maxsegsize */
2156		       BUS_DMA_ALLOCNOW,	/* flags */
2157		       NULL,			/* lockfunc */
2158		       NULL,			/* lockarg */
2159		       &dd->dd_dmat);
2160	if (error != 0) {
2161		if_printf(ifp, "cannot allocate %s DMA tag\n", dd->dd_name);
2162		return error;
2163	}
2164
2165	/* allocate descriptors */
2166	error = bus_dmamap_create(dd->dd_dmat, BUS_DMA_NOWAIT, &dd->dd_dmamap);
2167	if (error != 0) {
2168		if_printf(ifp, "unable to create dmamap for %s descriptors, "
2169			"error %u\n", dd->dd_name, error);
2170		goto fail0;
2171	}
2172
2173	error = bus_dmamem_alloc(dd->dd_dmat, (void**) &dd->dd_desc,
2174				 BUS_DMA_NOWAIT, &dd->dd_dmamap);
2175	if (error != 0) {
2176		if_printf(ifp, "unable to alloc memory for %u %s descriptors, "
2177			"error %u\n", nbuf * ndesc, dd->dd_name, error);
2178		goto fail1;
2179	}
2180
2181	error = bus_dmamap_load(dd->dd_dmat, dd->dd_dmamap,
2182				dd->dd_desc, dd->dd_desc_len,
2183				ath_load_cb, &dd->dd_desc_paddr,
2184				BUS_DMA_NOWAIT);
2185	if (error != 0) {
2186		if_printf(ifp, "unable to map %s descriptors, error %u\n",
2187			dd->dd_name, error);
2188		goto fail2;
2189	}
2190
2191	ds = dd->dd_desc;
2192	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %s DMA map: %p (%lu) -> %p (%lu)\n",
2193	    __func__, dd->dd_name, ds, (u_long) dd->dd_desc_len,
2194	    (caddr_t) dd->dd_desc_paddr, /*XXX*/ (u_long) dd->dd_desc_len);
2195
2196	/* allocate rx buffers */
2197	bsize = sizeof(struct ath_buf) * nbuf;
2198	bf = malloc(bsize, M_ATHDEV, M_NOWAIT | M_ZERO);
2199	if (bf == NULL) {
2200		if_printf(ifp, "malloc of %s buffers failed, size %u\n",
2201			dd->dd_name, bsize);
2202		goto fail3;
2203	}
2204	dd->dd_bufptr = bf;
2205
2206	STAILQ_INIT(head);
2207	for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
2208		bf->bf_desc = ds;
2209		bf->bf_daddr = DS2PHYS(dd, ds);
2210		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
2211				&bf->bf_dmamap);
2212		if (error != 0) {
2213			if_printf(ifp, "unable to create dmamap for %s "
2214				"buffer %u, error %u\n", dd->dd_name, i, error);
2215			ath_descdma_cleanup(sc, dd, head);
2216			return error;
2217		}
2218		STAILQ_INSERT_TAIL(head, bf, bf_list);
2219	}
2220	return 0;
2221fail3:
2222	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2223fail2:
2224	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2225fail1:
2226	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2227fail0:
2228	bus_dma_tag_destroy(dd->dd_dmat);
2229	memset(dd, 0, sizeof(*dd));
2230	return error;
2231#undef DS2PHYS
2232}
2233
2234static void
2235ath_descdma_cleanup(struct ath_softc *sc,
2236	struct ath_descdma *dd, ath_bufhead *head)
2237{
2238	struct ath_buf *bf;
2239	struct ieee80211_node *ni;
2240
2241	bus_dmamap_unload(dd->dd_dmat, dd->dd_dmamap);
2242	bus_dmamem_free(dd->dd_dmat, dd->dd_desc, dd->dd_dmamap);
2243	bus_dmamap_destroy(dd->dd_dmat, dd->dd_dmamap);
2244	bus_dma_tag_destroy(dd->dd_dmat);
2245
2246	STAILQ_FOREACH(bf, head, bf_list) {
2247		if (bf->bf_m) {
2248			m_freem(bf->bf_m);
2249			bf->bf_m = NULL;
2250		}
2251		if (bf->bf_dmamap != NULL) {
2252			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
2253			bf->bf_dmamap = NULL;
2254		}
2255		ni = bf->bf_node;
2256		bf->bf_node = NULL;
2257		if (ni != NULL) {
2258			/*
2259			 * Reclaim node reference.
2260			 */
2261			ieee80211_free_node(ni);
2262		}
2263	}
2264
2265	STAILQ_INIT(head);
2266	free(dd->dd_bufptr, M_ATHDEV);
2267	memset(dd, 0, sizeof(*dd));
2268}
2269
2270static int
2271ath_desc_alloc(struct ath_softc *sc)
2272{
2273	int error;
2274
2275	error = ath_descdma_setup(sc, &sc->sc_rxdma, &sc->sc_rxbuf,
2276			"rx", ATH_RXBUF, 1);
2277	if (error != 0)
2278		return error;
2279
2280	error = ath_descdma_setup(sc, &sc->sc_txdma, &sc->sc_txbuf,
2281			"tx", ATH_TXBUF, ATH_TXDESC);
2282	if (error != 0) {
2283		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2284		return error;
2285	}
2286
2287	error = ath_descdma_setup(sc, &sc->sc_bdma, &sc->sc_bbuf,
2288			"beacon", 1, 1);
2289	if (error != 0) {
2290		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2291		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2292		return error;
2293	}
2294	return 0;
2295}
2296
2297static void
2298ath_desc_free(struct ath_softc *sc)
2299{
2300
2301	if (sc->sc_bdma.dd_desc_len != 0)
2302		ath_descdma_cleanup(sc, &sc->sc_bdma, &sc->sc_bbuf);
2303	if (sc->sc_txdma.dd_desc_len != 0)
2304		ath_descdma_cleanup(sc, &sc->sc_txdma, &sc->sc_txbuf);
2305	if (sc->sc_rxdma.dd_desc_len != 0)
2306		ath_descdma_cleanup(sc, &sc->sc_rxdma, &sc->sc_rxbuf);
2307}
2308
2309static struct ieee80211_node *
2310ath_node_alloc(struct ieee80211_node_table *nt)
2311{
2312	struct ieee80211com *ic = nt->nt_ic;
2313	struct ath_softc *sc = ic->ic_ifp->if_softc;
2314	const size_t space = sizeof(struct ath_node) + sc->sc_rc->arc_space;
2315	struct ath_node *an;
2316
2317	an = malloc(space, M_80211_NODE, M_NOWAIT|M_ZERO);
2318	if (an == NULL) {
2319		/* XXX stat+msg */
2320		return NULL;
2321	}
2322	an->an_avgrssi = ATH_RSSI_DUMMY_MARKER;
2323	an->an_halstats.ns_avgbrssi = ATH_RSSI_DUMMY_MARKER;
2324	an->an_halstats.ns_avgrssi = ATH_RSSI_DUMMY_MARKER;
2325	an->an_halstats.ns_avgtxrssi = ATH_RSSI_DUMMY_MARKER;
2326	ath_rate_node_init(sc, an);
2327
2328	DPRINTF(sc, ATH_DEBUG_NODE, "%s: an %p\n", __func__, an);
2329	return &an->an_node;
2330}
2331
2332static void
2333ath_node_free(struct ieee80211_node *ni)
2334{
2335	struct ieee80211com *ic = ni->ni_ic;
2336        struct ath_softc *sc = ic->ic_ifp->if_softc;
2337
2338	DPRINTF(sc, ATH_DEBUG_NODE, "%s: ni %p\n", __func__, ni);
2339
2340	ath_rate_node_cleanup(sc, ATH_NODE(ni));
2341	sc->sc_node_free(ni);
2342}
2343
2344static u_int8_t
2345ath_node_getrssi(const struct ieee80211_node *ni)
2346{
2347#define	HAL_EP_RND(x, mul) \
2348	((((x)%(mul)) >= ((mul)/2)) ? ((x) + ((mul) - 1)) / (mul) : (x)/(mul))
2349	u_int32_t avgrssi = ATH_NODE_CONST(ni)->an_avgrssi;
2350	int32_t rssi;
2351
2352	/*
2353	 * When only one frame is received there will be no state in
2354	 * avgrssi so fallback on the value recorded by the 802.11 layer.
2355	 */
2356	if (avgrssi != ATH_RSSI_DUMMY_MARKER)
2357		rssi = HAL_EP_RND(avgrssi, HAL_RSSI_EP_MULTIPLIER);
2358	else
2359		rssi = ni->ni_rssi;
2360	/* NB: theoretically we shouldn't need this, but be paranoid */
2361	return rssi < 0 ? 0 : rssi > 127 ? 127 : rssi;
2362#undef HAL_EP_RND
2363}
2364
2365static int
2366ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
2367{
2368	struct ath_hal *ah = sc->sc_ah;
2369	int error;
2370	struct mbuf *m;
2371	struct ath_desc *ds;
2372
2373	m = bf->bf_m;
2374	if (m == NULL) {
2375		/*
2376		 * NB: by assigning a page to the rx dma buffer we
2377		 * implicitly satisfy the Atheros requirement that
2378		 * this buffer be cache-line-aligned and sized to be
2379		 * multiple of the cache line size.  Not doing this
2380		 * causes weird stuff to happen (for the 5210 at least).
2381		 */
2382		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
2383		if (m == NULL) {
2384			DPRINTF(sc, ATH_DEBUG_ANY,
2385				"%s: no mbuf/cluster\n", __func__);
2386			sc->sc_stats.ast_rx_nombuf++;
2387			return ENOMEM;
2388		}
2389		bf->bf_m = m;
2390		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
2391
2392		error = bus_dmamap_load_mbuf(sc->sc_dmat,
2393					     bf->bf_dmamap, m,
2394					     ath_mbuf_load_cb, bf,
2395					     BUS_DMA_NOWAIT);
2396		if (error != 0) {
2397			DPRINTF(sc, ATH_DEBUG_ANY,
2398				"%s: bus_dmamap_load_mbuf failed; error %d\n",
2399				__func__, error);
2400			sc->sc_stats.ast_rx_busdma++;
2401			return error;
2402		}
2403		KASSERT(bf->bf_nseg == 1,
2404			("multi-segment packet; nseg %u", bf->bf_nseg));
2405	}
2406	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
2407
2408	/*
2409	 * Setup descriptors.  For receive we always terminate
2410	 * the descriptor list with a self-linked entry so we'll
2411	 * not get overrun under high load (as can happen with a
2412	 * 5212 when ANI processing enables PHY error frames).
2413	 *
2414	 * To insure the last descriptor is self-linked we create
2415	 * each descriptor as self-linked and add it to the end.  As
2416	 * each additional descriptor is added the previous self-linked
2417	 * entry is ``fixed'' naturally.  This should be safe even
2418	 * if DMA is happening.  When processing RX interrupts we
2419	 * never remove/process the last, self-linked, entry on the
2420	 * descriptor list.  This insures the hardware always has
2421	 * someplace to write a new frame.
2422	 */
2423	ds = bf->bf_desc;
2424	ds->ds_link = bf->bf_daddr;	/* link to self */
2425	ds->ds_data = bf->bf_segs[0].ds_addr;
2426	ath_hal_setuprxdesc(ah, ds
2427		, m->m_len		/* buffer size */
2428		, 0
2429	);
2430
2431	if (sc->sc_rxlink != NULL)
2432		*sc->sc_rxlink = bf->bf_daddr;
2433	sc->sc_rxlink = &ds->ds_link;
2434	return 0;
2435}
2436
2437/*
2438 * Intercept management frames to collect beacon rssi data
2439 * and to do ibss merges.
2440 */
2441static void
2442ath_recv_mgmt(struct ieee80211com *ic, struct mbuf *m,
2443	struct ieee80211_node *ni,
2444	int subtype, int rssi, u_int32_t rstamp)
2445{
2446	struct ath_softc *sc = ic->ic_ifp->if_softc;
2447
2448	/*
2449	 * Call up first so subsequent work can use information
2450	 * potentially stored in the node (e.g. for ibss merge).
2451	 */
2452	sc->sc_recv_mgmt(ic, m, ni, subtype, rssi, rstamp);
2453	switch (subtype) {
2454	case IEEE80211_FC0_SUBTYPE_BEACON:
2455		/* update rssi statistics for use by the hal */
2456		ATH_RSSI_LPF(ATH_NODE(ni)->an_halstats.ns_avgbrssi, rssi);
2457		/* fall thru... */
2458	case IEEE80211_FC0_SUBTYPE_PROBE_RESP:
2459		if (ic->ic_opmode == IEEE80211_M_IBSS &&
2460		    ic->ic_state == IEEE80211_S_RUN) {
2461			struct ath_hal *ah = sc->sc_ah;
2462			/* XXX extend rstamp */
2463			u_int64_t tsf = ath_hal_gettsf64(ah);
2464
2465			/*
2466			 * Handle ibss merge as needed; check the tsf on the
2467			 * frame before attempting the merge.  The 802.11 spec
2468			 * says the station should change it's bssid to match
2469			 * the oldest station with the same ssid, where oldest
2470			 * is determined by the tsf.
2471			 */
2472			if (le64toh(ni->ni_tstamp.tsf) >= tsf &&
2473			    ieee80211_ibss_merge(ic, ni))
2474				ath_hal_setassocid(ah, ic->ic_bss->ni_bssid, 0);
2475		}
2476		break;
2477	}
2478}
2479
2480/*
2481 * Set the default antenna.
2482 */
2483static void
2484ath_setdefantenna(struct ath_softc *sc, u_int antenna)
2485{
2486	struct ath_hal *ah = sc->sc_ah;
2487
2488	/* XXX block beacon interrupts */
2489	ath_hal_setdefantenna(ah, antenna);
2490	if (sc->sc_defant != antenna)
2491		sc->sc_stats.ast_ant_defswitch++;
2492	sc->sc_defant = antenna;
2493	sc->sc_rxotherant = 0;
2494}
2495
2496static void
2497ath_rx_proc(void *arg, int npending)
2498{
2499#define	PA2DESC(_sc, _pa) \
2500	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
2501		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
2502	struct ath_softc *sc = arg;
2503	struct ath_buf *bf;
2504	struct ieee80211com *ic = &sc->sc_ic;
2505	struct ifnet *ifp = &sc->sc_if;
2506	struct ath_hal *ah = sc->sc_ah;
2507	struct ath_desc *ds;
2508	struct mbuf *m;
2509	struct ieee80211_node *ni;
2510	struct ath_node *an;
2511	int len;
2512	u_int phyerr;
2513	HAL_STATUS status;
2514
2515	NET_LOCK_GIANT();		/* XXX */
2516
2517	DPRINTF(sc, ATH_DEBUG_RX_PROC, "%s: pending %u\n", __func__, npending);
2518	do {
2519		bf = STAILQ_FIRST(&sc->sc_rxbuf);
2520		if (bf == NULL) {		/* NB: shouldn't happen */
2521			if_printf(ifp, "%s: no buffer!\n", __func__);
2522			break;
2523		}
2524		ds = bf->bf_desc;
2525		if (ds->ds_link == bf->bf_daddr) {
2526			/* NB: never process the self-linked entry at the end */
2527			break;
2528		}
2529		m = bf->bf_m;
2530		if (m == NULL) {		/* NB: shouldn't happen */
2531			if_printf(ifp, "%s: no mbuf!\n", __func__);
2532			continue;
2533		}
2534		/* XXX sync descriptor memory */
2535		/*
2536		 * Must provide the virtual address of the current
2537		 * descriptor, the physical address, and the virtual
2538		 * address of the next descriptor in the h/w chain.
2539		 * This allows the HAL to look ahead to see if the
2540		 * hardware is done with a descriptor by checking the
2541		 * done bit in the following descriptor and the address
2542		 * of the current descriptor the DMA engine is working
2543		 * on.  All this is necessary because of our use of
2544		 * a self-linked list to avoid rx overruns.
2545		 */
2546		status = ath_hal_rxprocdesc(ah, ds,
2547				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
2548#ifdef AR_DEBUG
2549		if (sc->sc_debug & ATH_DEBUG_RECV_DESC)
2550			ath_printrxbuf(bf, status == HAL_OK);
2551#endif
2552		if (status == HAL_EINPROGRESS)
2553			break;
2554		STAILQ_REMOVE_HEAD(&sc->sc_rxbuf, bf_list);
2555		if (ds->ds_rxstat.rs_more) {
2556			/*
2557			 * Frame spans multiple descriptors; this
2558			 * cannot happen yet as we don't support
2559			 * jumbograms.  If not in monitor mode,
2560			 * discard the frame.
2561			 */
2562			if (ic->ic_opmode != IEEE80211_M_MONITOR) {
2563				sc->sc_stats.ast_rx_toobig++;
2564				goto rx_next;
2565			}
2566			/* fall thru for monitor mode handling... */
2567		} else if (ds->ds_rxstat.rs_status != 0) {
2568			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
2569				sc->sc_stats.ast_rx_crcerr++;
2570			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
2571				sc->sc_stats.ast_rx_fifoerr++;
2572			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
2573				sc->sc_stats.ast_rx_phyerr++;
2574				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
2575				sc->sc_stats.ast_rx_phy[phyerr]++;
2576				goto rx_next;
2577			}
2578			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT) {
2579				/*
2580				 * Decrypt error.  If the error occurred
2581				 * because there was no hardware key, then
2582				 * let the frame through so the upper layers
2583				 * can process it.  This is necessary for 5210
2584				 * parts which have no way to setup a ``clear''
2585				 * key cache entry.
2586				 *
2587				 * XXX do key cache faulting
2588				 */
2589				if (ds->ds_rxstat.rs_keyix == HAL_RXKEYIX_INVALID)
2590					goto rx_accept;
2591				sc->sc_stats.ast_rx_badcrypt++;
2592			}
2593			if (ds->ds_rxstat.rs_status & HAL_RXERR_MIC) {
2594				sc->sc_stats.ast_rx_badmic++;
2595				/*
2596				 * Do minimal work required to hand off
2597				 * the 802.11 header for notifcation.
2598				 */
2599				/* XXX frag's and qos frames */
2600				len = ds->ds_rxstat.rs_datalen;
2601				if (len >= sizeof (struct ieee80211_frame)) {
2602					bus_dmamap_sync(sc->sc_dmat,
2603					    bf->bf_dmamap,
2604					    BUS_DMASYNC_POSTREAD);
2605					ieee80211_notify_michael_failure(ic,
2606					    mtod(m, struct ieee80211_frame *),
2607					    sc->sc_splitmic ?
2608					        ds->ds_rxstat.rs_keyix-32 :
2609					        ds->ds_rxstat.rs_keyix
2610					);
2611				}
2612			}
2613			ifp->if_ierrors++;
2614			/*
2615			 * Reject error frames, we normally don't want
2616			 * to see them in monitor mode (in monitor mode
2617			 * allow through packets that have crypto problems).
2618			 */
2619			if ((ds->ds_rxstat.rs_status &~
2620				(HAL_RXERR_DECRYPT|HAL_RXERR_MIC)) ||
2621			    sc->sc_ic.ic_opmode != IEEE80211_M_MONITOR)
2622				goto rx_next;
2623		}
2624rx_accept:
2625		/*
2626		 * Sync and unmap the frame.  At this point we're
2627		 * committed to passing the mbuf somewhere so clear
2628		 * bf_m; this means a new sk_buff must be allocated
2629		 * when the rx descriptor is setup again to receive
2630		 * another frame.
2631		 */
2632		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2633		    BUS_DMASYNC_POSTREAD);
2634		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2635		bf->bf_m = NULL;
2636
2637		m->m_pkthdr.rcvif = ifp;
2638		len = ds->ds_rxstat.rs_datalen;
2639		m->m_pkthdr.len = m->m_len = len;
2640
2641		sc->sc_stats.ast_ant_rx[ds->ds_rxstat.rs_antenna]++;
2642
2643		if (sc->sc_drvbpf) {
2644			const void *data;
2645			int hdrsize, hdrspace;
2646			u_int8_t rix;
2647
2648			/*
2649			 * Discard anything shorter than an ack or cts.
2650			 */
2651			if (len < IEEE80211_ACK_LEN) {
2652				DPRINTF(sc, ATH_DEBUG_RECV,
2653					"%s: runt packet %d\n",
2654					__func__, len);
2655				sc->sc_stats.ast_rx_tooshort++;
2656				m_freem(m);
2657				goto rx_next;
2658			}
2659			rix = ds->ds_rxstat.rs_rate;
2660			sc->sc_rx_th.wr_flags = sc->sc_hwmap[rix].flags;
2661			sc->sc_rx_th.wr_rate = sc->sc_hwmap[rix].ieeerate;
2662			sc->sc_rx_th.wr_antsignal = ds->ds_rxstat.rs_rssi;
2663			sc->sc_rx_th.wr_antenna = ds->ds_rxstat.rs_antenna;
2664			/* XXX TSF */
2665
2666			/*
2667			 * Gag, deal with hardware padding of headers. This
2668			 * only happens for QoS frames.  We copy the 802.11
2669			 * header out-of-line and supply it separately, then
2670			 * adjust the mbuf chain.  It would be better if we
2671			 * could just flag the packet in the radiotap header
2672			 * and have applications DTRT.
2673			 */
2674			if (len > sizeof(struct ieee80211_qosframe)) {
2675				data = mtod(m, const void *);
2676				hdrsize = ieee80211_anyhdrsize(data);
2677				if (hdrsize & 3) {
2678					bcopy(data, &sc->sc_rx_wh, hdrsize);
2679					hdrspace = roundup(hdrsize,
2680						sizeof(u_int32_t));
2681					m->m_data += hdrspace;
2682					m->m_len -= hdrspace;
2683					bpf_mtap2(sc->sc_drvbpf, &sc->sc_rx,
2684						sc->sc_rx_rt_len + hdrsize, m);
2685					m->m_data -= hdrspace;
2686					m->m_len += hdrspace;
2687				} else
2688					bpf_mtap2(sc->sc_drvbpf,
2689					     &sc->sc_rx, sc->sc_rx_rt_len, m);
2690			} else
2691				bpf_mtap2(sc->sc_drvbpf,
2692				    &sc->sc_rx, sc->sc_rx_rt_len, m);
2693		}
2694
2695		/*
2696		 * From this point on we assume the frame is at least
2697		 * as large as ieee80211_frame_min; verify that.
2698		 */
2699		if (len < IEEE80211_MIN_LEN) {
2700			DPRINTF(sc, ATH_DEBUG_RECV, "%s: short packet %d\n",
2701				__func__, len);
2702			sc->sc_stats.ast_rx_tooshort++;
2703			m_freem(m);
2704			goto rx_next;
2705		}
2706
2707		if (IFF_DUMPPKTS(sc, ATH_DEBUG_RECV)) {
2708			ieee80211_dump_pkt(mtod(m, caddr_t), len,
2709				   sc->sc_hwmap[ds->ds_rxstat.rs_rate].ieeerate,
2710				   ds->ds_rxstat.rs_rssi);
2711		}
2712
2713		m_adj(m, -IEEE80211_CRC_LEN);
2714
2715		/*
2716		 * Locate the node for sender, track state, and then
2717		 * pass the (referenced) node up to the 802.11 layer
2718		 * for its use.
2719		 */
2720		ni = ieee80211_find_rxnode(ic,
2721			mtod(m, const struct ieee80211_frame_min *));
2722
2723		/*
2724		 * Track rx rssi and do any rx antenna management.
2725		 */
2726		an = ATH_NODE(ni);
2727		ATH_RSSI_LPF(an->an_avgrssi, ds->ds_rxstat.rs_rssi);
2728		if (sc->sc_diversity) {
2729			/*
2730			 * When using fast diversity, change the default rx
2731			 * antenna if diversity chooses the other antenna 3
2732			 * times in a row.
2733			 */
2734			if (sc->sc_defant != ds->ds_rxstat.rs_antenna) {
2735				if (++sc->sc_rxotherant >= 3)
2736					ath_setdefantenna(sc,
2737						ds->ds_rxstat.rs_antenna);
2738			} else
2739				sc->sc_rxotherant = 0;
2740		}
2741
2742		/*
2743		 * Send frame up for processing.
2744		 */
2745		ieee80211_input(ic, m, ni,
2746			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
2747
2748		if (sc->sc_softled) {
2749			/*
2750			 * Blink for any data frame.  Otherwise do a
2751			 * heartbeat-style blink when idle.  The latter
2752			 * is mainly for station mode where we depend on
2753			 * periodic beacon frames to trigger the poll event.
2754			 */
2755			if (sc->sc_ipackets != ifp->if_ipackets) {
2756				sc->sc_ipackets = ifp->if_ipackets;
2757				sc->sc_rxrate = ds->ds_rxstat.rs_rate;
2758				ath_led_event(sc, ATH_LED_RX);
2759			} else if (ticks - sc->sc_ledevent >= sc->sc_ledidle)
2760				ath_led_event(sc, ATH_LED_POLL);
2761		}
2762
2763		/*
2764		 * Reclaim node reference.
2765		 */
2766		ieee80211_free_node(ni);
2767rx_next:
2768		STAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
2769	} while (ath_rxbuf_init(sc, bf) == 0);
2770
2771	/* rx signal state monitoring */
2772	ath_hal_rxmonitor(ah, &ATH_NODE(ic->ic_bss)->an_halstats);
2773
2774	NET_UNLOCK_GIANT();		/* XXX */
2775#undef PA2DESC
2776}
2777
2778/*
2779 * Setup a h/w transmit queue.
2780 */
2781static struct ath_txq *
2782ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
2783{
2784#define	N(a)	(sizeof(a)/sizeof(a[0]))
2785	struct ath_hal *ah = sc->sc_ah;
2786	HAL_TXQ_INFO qi;
2787	int qnum;
2788
2789	memset(&qi, 0, sizeof(qi));
2790	qi.tqi_subtype = subtype;
2791	qi.tqi_aifs = HAL_TXQ_USEDEFAULT;
2792	qi.tqi_cwmin = HAL_TXQ_USEDEFAULT;
2793	qi.tqi_cwmax = HAL_TXQ_USEDEFAULT;
2794	/*
2795	 * Enable interrupts only for EOL and DESC conditions.
2796	 * We mark tx descriptors to receive a DESC interrupt
2797	 * when a tx queue gets deep; otherwise waiting for the
2798	 * EOL to reap descriptors.  Note that this is done to
2799	 * reduce interrupt load and this only defers reaping
2800	 * descriptors, never transmitting frames.  Aside from
2801	 * reducing interrupts this also permits more concurrency.
2802	 * The only potential downside is if the tx queue backs
2803	 * up in which case the top half of the kernel may backup
2804	 * due to a lack of tx descriptors.
2805	 */
2806	qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | TXQ_FLAG_TXDESCINT_ENABLE;
2807	qnum = ath_hal_setuptxqueue(ah, qtype, &qi);
2808	if (qnum == -1) {
2809		/*
2810		 * NB: don't print a message, this happens
2811		 * normally on parts with too few tx queues
2812		 */
2813		return NULL;
2814	}
2815	if (qnum >= N(sc->sc_txq)) {
2816		device_printf(sc->sc_dev,
2817			"hal qnum %u out of range, max %zu!\n",
2818			qnum, N(sc->sc_txq));
2819		ath_hal_releasetxqueue(ah, qnum);
2820		return NULL;
2821	}
2822	if (!ATH_TXQ_SETUP(sc, qnum)) {
2823		struct ath_txq *txq = &sc->sc_txq[qnum];
2824
2825		txq->axq_qnum = qnum;
2826		txq->axq_depth = 0;
2827		txq->axq_intrcnt = 0;
2828		txq->axq_link = NULL;
2829		STAILQ_INIT(&txq->axq_q);
2830		ATH_TXQ_LOCK_INIT(sc, txq);
2831		sc->sc_txqsetup |= 1<<qnum;
2832	}
2833	return &sc->sc_txq[qnum];
2834#undef N
2835}
2836
2837/*
2838 * Setup a hardware data transmit queue for the specified
2839 * access control.  The hal may not support all requested
2840 * queues in which case it will return a reference to a
2841 * previously setup queue.  We record the mapping from ac's
2842 * to h/w queues for use by ath_tx_start and also track
2843 * the set of h/w queues being used to optimize work in the
2844 * transmit interrupt handler and related routines.
2845 */
2846static int
2847ath_tx_setup(struct ath_softc *sc, int ac, int haltype)
2848{
2849#define	N(a)	(sizeof(a)/sizeof(a[0]))
2850	struct ath_txq *txq;
2851
2852	if (ac >= N(sc->sc_ac2q)) {
2853		device_printf(sc->sc_dev, "AC %u out of range, max %zu!\n",
2854			ac, N(sc->sc_ac2q));
2855		return 0;
2856	}
2857	txq = ath_txq_setup(sc, HAL_TX_QUEUE_DATA, haltype);
2858	if (txq != NULL) {
2859		sc->sc_ac2q[ac] = txq;
2860		return 1;
2861	} else
2862		return 0;
2863#undef N
2864}
2865
2866/*
2867 * Update WME parameters for a transmit queue.
2868 */
2869static int
2870ath_txq_update(struct ath_softc *sc, int ac)
2871{
2872#define	ATH_EXPONENT_TO_VALUE(v)	((1<<v)-1)
2873#define	ATH_TXOP_TO_US(v)		(v<<5)
2874	struct ieee80211com *ic = &sc->sc_ic;
2875	struct ath_txq *txq = sc->sc_ac2q[ac];
2876	struct wmeParams *wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
2877	struct ath_hal *ah = sc->sc_ah;
2878	HAL_TXQ_INFO qi;
2879
2880	ath_hal_gettxqueueprops(ah, txq->axq_qnum, &qi);
2881	qi.tqi_aifs = wmep->wmep_aifsn;
2882	qi.tqi_cwmin = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmin);
2883	qi.tqi_cwmax = ATH_EXPONENT_TO_VALUE(wmep->wmep_logcwmax);
2884	qi.tqi_burstTime = ATH_TXOP_TO_US(wmep->wmep_txopLimit);
2885
2886	if (!ath_hal_settxqueueprops(ah, txq->axq_qnum, &qi)) {
2887		device_printf(sc->sc_dev, "unable to update hardware queue "
2888			"parameters for %s traffic!\n",
2889			ieee80211_wme_acnames[ac]);
2890		return 0;
2891	} else {
2892		ath_hal_resettxqueue(ah, txq->axq_qnum); /* push to h/w */
2893		return 1;
2894	}
2895#undef ATH_TXOP_TO_US
2896#undef ATH_EXPONENT_TO_VALUE
2897}
2898
2899/*
2900 * Callback from the 802.11 layer to update WME parameters.
2901 */
2902static int
2903ath_wme_update(struct ieee80211com *ic)
2904{
2905	struct ath_softc *sc = ic->ic_ifp->if_softc;
2906
2907	return !ath_txq_update(sc, WME_AC_BE) ||
2908	    !ath_txq_update(sc, WME_AC_BK) ||
2909	    !ath_txq_update(sc, WME_AC_VI) ||
2910	    !ath_txq_update(sc, WME_AC_VO) ? EIO : 0;
2911}
2912
2913/*
2914 * Reclaim resources for a setup queue.
2915 */
2916static void
2917ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
2918{
2919
2920	ath_hal_releasetxqueue(sc->sc_ah, txq->axq_qnum);
2921	ATH_TXQ_LOCK_DESTROY(txq);
2922	sc->sc_txqsetup &= ~(1<<txq->axq_qnum);
2923}
2924
2925/*
2926 * Reclaim all tx queue resources.
2927 */
2928static void
2929ath_tx_cleanup(struct ath_softc *sc)
2930{
2931	int i;
2932
2933	ATH_TXBUF_LOCK_DESTROY(sc);
2934	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
2935		if (ATH_TXQ_SETUP(sc, i))
2936			ath_tx_cleanupq(sc, &sc->sc_txq[i]);
2937}
2938
2939static int
2940ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
2941    struct mbuf *m0)
2942{
2943	struct ieee80211com *ic = &sc->sc_ic;
2944	struct ath_hal *ah = sc->sc_ah;
2945	struct ifnet *ifp = &sc->sc_if;
2946	int i, error, iswep, ismcast, keyix, hdrlen, pktlen, try0;
2947	u_int8_t rix, txrate, ctsrate;
2948	u_int8_t cix = 0xff;		/* NB: silence compiler */
2949	struct ath_desc *ds, *ds0;
2950	struct ath_txq *txq;
2951	struct mbuf *m;
2952	struct ieee80211_frame *wh;
2953	u_int subtype, flags, ctsduration;
2954	HAL_PKT_TYPE atype;
2955	const HAL_RATE_TABLE *rt;
2956	HAL_BOOL shortPreamble;
2957	struct ath_node *an;
2958
2959	wh = mtod(m0, struct ieee80211_frame *);
2960	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
2961	ismcast = IEEE80211_IS_MULTICAST(wh->i_addr1);
2962	hdrlen = ieee80211_anyhdrsize(wh);
2963	/*
2964	 * Packet length must not include any
2965	 * pad bytes; deduct them here.
2966	 */
2967	pktlen = m0->m_pkthdr.len - (hdrlen & 3);
2968
2969	if (iswep) {
2970		const struct ieee80211_cipher *cip;
2971		struct ieee80211_key *k;
2972
2973		/*
2974		 * Construct the 802.11 header+trailer for an encrypted
2975		 * frame. The only reason this can fail is because of an
2976		 * unknown or unsupported cipher/key type.
2977		 */
2978		k = ieee80211_crypto_encap(ic, ni, m0);
2979		if (k == NULL) {
2980			/*
2981			 * This can happen when the key is yanked after the
2982			 * frame was queued.  Just discard the frame; the
2983			 * 802.11 layer counts failures and provides
2984			 * debugging/diagnostics.
2985			 */
2986			return EIO;
2987		}
2988		/*
2989		 * Adjust the packet + header lengths for the crypto
2990		 * additions and calculate the h/w key index.  When
2991		 * a s/w mic is done the frame will have had any mic
2992		 * added to it prior to entry so skb->len above will
2993		 * account for it. Otherwise we need to add it to the
2994		 * packet length.
2995		 */
2996		cip = k->wk_cipher;
2997		hdrlen += cip->ic_header;
2998		pktlen += cip->ic_header + cip->ic_trailer;
2999		if ((k->wk_flags & IEEE80211_KEY_SWMIC) == 0)
3000			pktlen += cip->ic_miclen;
3001		keyix = k->wk_keyix;
3002
3003		/* packet header may have moved, reset our local pointer */
3004		wh = mtod(m0, struct ieee80211_frame *);
3005	} else
3006		keyix = HAL_TXKEYIX_INVALID;
3007
3008	pktlen += IEEE80211_CRC_LEN;
3009
3010	/*
3011	 * Load the DMA map so any coalescing is done.  This
3012	 * also calculates the number of descriptors we need.
3013	 */
3014	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3015				     ath_mbuf_load_cb, bf,
3016				     BUS_DMA_NOWAIT);
3017	if (error == EFBIG) {
3018		/* XXX packet requires too many descriptors */
3019		bf->bf_nseg = ATH_TXDESC+1;
3020	} else if (error != 0) {
3021		sc->sc_stats.ast_tx_busdma++;
3022		m_freem(m0);
3023		return error;
3024	}
3025	/*
3026	 * Discard null packets and check for packets that
3027	 * require too many TX descriptors.  We try to convert
3028	 * the latter to a cluster.
3029	 */
3030	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
3031		sc->sc_stats.ast_tx_linear++;
3032		MGETHDR(m, M_DONTWAIT, MT_DATA);
3033		if (m == NULL) {
3034			sc->sc_stats.ast_tx_nombuf++;
3035			m_freem(m0);
3036			return ENOMEM;
3037		}
3038		M_MOVE_PKTHDR(m, m0);
3039		MCLGET(m, M_DONTWAIT);
3040		if ((m->m_flags & M_EXT) == 0) {
3041			sc->sc_stats.ast_tx_nomcl++;
3042			m_freem(m0);
3043			m_free(m);
3044			return ENOMEM;
3045		}
3046		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
3047		m_freem(m0);
3048		m->m_len = m->m_pkthdr.len;
3049		m0 = m;
3050		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
3051					     ath_mbuf_load_cb, bf,
3052					     BUS_DMA_NOWAIT);
3053		if (error != 0) {
3054			sc->sc_stats.ast_tx_busdma++;
3055			m_freem(m0);
3056			return error;
3057		}
3058		KASSERT(bf->bf_nseg == 1,
3059			("packet not one segment; nseg %u", bf->bf_nseg));
3060	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
3061		sc->sc_stats.ast_tx_nodata++;
3062		m_freem(m0);
3063		return EIO;
3064	}
3065	DPRINTF(sc, ATH_DEBUG_XMIT, "%s: m %p len %u\n", __func__, m0, pktlen);
3066	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
3067	bf->bf_m = m0;
3068	bf->bf_node = ni;			/* NB: held reference */
3069
3070	/* setup descriptors */
3071	ds = bf->bf_desc;
3072	rt = sc->sc_currates;
3073	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
3074
3075	/*
3076	 * NB: the 802.11 layer marks whether or not we should
3077	 * use short preamble based on the current mode and
3078	 * negotiated parameters.
3079	 */
3080	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
3081	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
3082		shortPreamble = AH_TRUE;
3083		sc->sc_stats.ast_tx_shortpre++;
3084	} else {
3085		shortPreamble = AH_FALSE;
3086	}
3087
3088	an = ATH_NODE(ni);
3089	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for crypto errs */
3090	/*
3091	 * Calculate Atheros packet type from IEEE80211 packet header,
3092	 * setup for rate calculations, and select h/w transmit queue.
3093	 */
3094	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
3095	case IEEE80211_FC0_TYPE_MGT:
3096		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
3097		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
3098			atype = HAL_PKT_TYPE_BEACON;
3099		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
3100			atype = HAL_PKT_TYPE_PROBE_RESP;
3101		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
3102			atype = HAL_PKT_TYPE_ATIM;
3103		else
3104			atype = HAL_PKT_TYPE_NORMAL;	/* XXX */
3105		rix = 0;			/* XXX lowest rate */
3106		try0 = ATH_TXMAXTRY;
3107		if (shortPreamble)
3108			txrate = an->an_tx_mgtratesp;
3109		else
3110			txrate = an->an_tx_mgtrate;
3111		/* NB: force all management frames to highest queue */
3112		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3113			/* NB: force all management frames to highest queue */
3114			txq = sc->sc_ac2q[WME_AC_VO];
3115		} else
3116			txq = sc->sc_ac2q[WME_AC_BE];
3117		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3118		break;
3119	case IEEE80211_FC0_TYPE_CTL:
3120		atype = HAL_PKT_TYPE_PSPOLL;	/* stop setting of duration */
3121		rix = 0;			/* XXX lowest rate */
3122		try0 = ATH_TXMAXTRY;
3123		if (shortPreamble)
3124			txrate = an->an_tx_mgtratesp;
3125		else
3126			txrate = an->an_tx_mgtrate;
3127		/* NB: force all ctl frames to highest queue */
3128		if (ni->ni_flags & IEEE80211_NODE_QOS) {
3129			/* NB: force all ctl frames to highest queue */
3130			txq = sc->sc_ac2q[WME_AC_VO];
3131		} else
3132			txq = sc->sc_ac2q[WME_AC_BE];
3133		flags |= HAL_TXDESC_INTREQ;	/* force interrupt */
3134		break;
3135	case IEEE80211_FC0_TYPE_DATA:
3136		atype = HAL_PKT_TYPE_NORMAL;		/* default */
3137		/*
3138		 * Data frames; consult the rate control module.
3139		 */
3140		ath_rate_findrate(sc, an, shortPreamble, pktlen,
3141			&rix, &try0, &txrate);
3142		sc->sc_txrate = txrate;			/* for LED blinking */
3143		/*
3144		 * Default all non-QoS traffic to the background queue.
3145		 */
3146		if (wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_QOS) {
3147			u_int pri = M_WME_GETAC(m0);
3148			txq = sc->sc_ac2q[pri];
3149			if (ic->ic_wme.wme_wmeChanParams.cap_wmeParams[pri].wmep_noackPolicy)
3150				 flags |= HAL_TXDESC_NOACK;
3151		} else
3152			txq = sc->sc_ac2q[WME_AC_BE];
3153		break;
3154	default:
3155		if_printf(ifp, "bogus frame type 0x%x (%s)\n",
3156			wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK, __func__);
3157		/* XXX statistic */
3158		m_freem(m0);
3159		return EIO;
3160	}
3161
3162	/*
3163	 * When servicing one or more stations in power-save mode
3164	 * multicast frames must be buffered until after the beacon.
3165	 * We use the CAB queue for that.
3166	 */
3167	if (ismcast && ic->ic_ps_sta) {
3168		txq = sc->sc_cabq;
3169		/* XXX? more bit in 802.11 frame header */
3170	}
3171
3172	/*
3173	 * Calculate miscellaneous flags.
3174	 */
3175	if (ismcast) {
3176		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
3177		sc->sc_stats.ast_tx_noack++;
3178	} else if (pktlen > ic->ic_rtsthreshold) {
3179		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
3180		cix = rt->info[rix].controlRate;
3181		sc->sc_stats.ast_tx_rts++;
3182	}
3183
3184	/*
3185	 * If 802.11g protection is enabled, determine whether
3186	 * to use RTS/CTS or just CTS.  Note that this is only
3187	 * done for OFDM unicast frames.
3188	 */
3189	if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
3190	    rt->info[rix].phy == IEEE80211_T_OFDM &&
3191	    (flags & HAL_TXDESC_NOACK) == 0) {
3192		/* XXX fragments must use CCK rates w/ protection */
3193		if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
3194			flags |= HAL_TXDESC_RTSENA;
3195		else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
3196			flags |= HAL_TXDESC_CTSENA;
3197		cix = rt->info[sc->sc_protrix].controlRate;
3198		sc->sc_stats.ast_tx_protect++;
3199	}
3200
3201	/*
3202	 * Calculate duration.  This logically belongs in the 802.11
3203	 * layer but it lacks sufficient information to calculate it.
3204	 */
3205	if ((flags & HAL_TXDESC_NOACK) == 0 &&
3206	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
3207		u_int16_t dur;
3208		/*
3209		 * XXX not right with fragmentation.
3210		 */
3211		if (shortPreamble)
3212			dur = rt->info[rix].spAckDuration;
3213		else
3214			dur = rt->info[rix].lpAckDuration;
3215		*(u_int16_t *)wh->i_dur = htole16(dur);
3216	}
3217
3218	/*
3219	 * Calculate RTS/CTS rate and duration if needed.
3220	 */
3221	ctsduration = 0;
3222	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
3223		/*
3224		 * CTS transmit rate is derived from the transmit rate
3225		 * by looking in the h/w rate table.  We must also factor
3226		 * in whether or not a short preamble is to be used.
3227		 */
3228		/* NB: cix is set above where RTS/CTS is enabled */
3229		KASSERT(cix != 0xff, ("cix not setup"));
3230		ctsrate = rt->info[cix].rateCode;
3231		/*
3232		 * Compute the transmit duration based on the frame
3233		 * size and the size of an ACK frame.  We call into the
3234		 * HAL to do the computation since it depends on the
3235		 * characteristics of the actual PHY being used.
3236		 *
3237		 * NB: CTS is assumed the same size as an ACK so we can
3238		 *     use the precalculated ACK durations.
3239		 */
3240		if (shortPreamble) {
3241			ctsrate |= rt->info[cix].shortPreamble;
3242			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3243				ctsduration += rt->info[cix].spAckDuration;
3244			ctsduration += ath_hal_computetxtime(ah,
3245				rt, pktlen, rix, AH_TRUE);
3246			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3247				ctsduration += rt->info[cix].spAckDuration;
3248		} else {
3249			if (flags & HAL_TXDESC_RTSENA)		/* SIFS + CTS */
3250				ctsduration += rt->info[cix].lpAckDuration;
3251			ctsduration += ath_hal_computetxtime(ah,
3252				rt, pktlen, rix, AH_FALSE);
3253			if ((flags & HAL_TXDESC_NOACK) == 0)	/* SIFS + ACK */
3254				ctsduration += rt->info[cix].lpAckDuration;
3255		}
3256		/*
3257		 * Must disable multi-rate retry when using RTS/CTS.
3258		 */
3259		try0 = ATH_TXMAXTRY;
3260	} else
3261		ctsrate = 0;
3262
3263	if (IFF_DUMPPKTS(sc, ATH_DEBUG_XMIT))
3264		ieee80211_dump_pkt(mtod(m0, caddr_t), m0->m_len,
3265			sc->sc_hwmap[txrate].ieeerate, -1);
3266
3267	if (ic->ic_rawbpf)
3268		bpf_mtap(ic->ic_rawbpf, m0);
3269	if (sc->sc_drvbpf) {
3270		sc->sc_tx_th.wt_flags = sc->sc_hwmap[txrate].flags;
3271		if (iswep)
3272			sc->sc_tx_th.wt_flags |= IEEE80211_RADIOTAP_F_WEP;
3273		sc->sc_tx_th.wt_rate = sc->sc_hwmap[txrate].ieeerate;
3274		sc->sc_tx_th.wt_txpower = ni->ni_txpower;
3275		sc->sc_tx_th.wt_antenna = sc->sc_txantenna;
3276
3277		bpf_mtap2(sc->sc_drvbpf,
3278			&sc->sc_tx_th, sc->sc_tx_th_len, m0);
3279	}
3280
3281	/*
3282	 * Determine if a tx interrupt should be generated for
3283	 * this descriptor.  We take a tx interrupt to reap
3284	 * descriptors when the h/w hits an EOL condition or
3285	 * when the descriptor is specifically marked to generate
3286	 * an interrupt.  We periodically mark descriptors in this
3287	 * way to insure timely replenishing of the supply needed
3288	 * for sending frames.  Defering interrupts reduces system
3289	 * load and potentially allows more concurrent work to be
3290	 * done but if done to aggressively can cause senders to
3291	 * backup.
3292	 *
3293	 * NB: use >= to deal with sc_txintrperiod changing
3294	 *     dynamically through sysctl.
3295	 */
3296	if (flags & HAL_TXDESC_INTREQ) {
3297		txq->axq_intrcnt = 0;
3298	} else if (++txq->axq_intrcnt >= sc->sc_txintrperiod) {
3299		flags |= HAL_TXDESC_INTREQ;
3300		txq->axq_intrcnt = 0;
3301	}
3302
3303	/*
3304	 * Formulate first tx descriptor with tx controls.
3305	 */
3306	/* XXX check return value? */
3307	ath_hal_setuptxdesc(ah, ds
3308		, pktlen		/* packet length */
3309		, hdrlen		/* header length */
3310		, atype			/* Atheros packet type */
3311		, ni->ni_txpower	/* txpower */
3312		, txrate, try0		/* series 0 rate/tries */
3313		, keyix			/* key cache index */
3314		, sc->sc_txantenna	/* antenna mode */
3315		, flags			/* flags */
3316		, ctsrate		/* rts/cts rate */
3317		, ctsduration		/* rts/cts duration */
3318	);
3319	/*
3320	 * Setup the multi-rate retry state only when we're
3321	 * going to use it.  This assumes ath_hal_setuptxdesc
3322	 * initializes the descriptors (so we don't have to)
3323	 * when the hardware supports multi-rate retry and
3324	 * we don't use it.
3325	 */
3326	if (try0 != ATH_TXMAXTRY)
3327		ath_rate_setupxtxdesc(sc, an, ds, shortPreamble, rix);
3328
3329	/*
3330	 * Fillin the remainder of the descriptor info.
3331	 */
3332	ds0 = ds;
3333	for (i = 0; i < bf->bf_nseg; i++, ds++) {
3334		ds->ds_data = bf->bf_segs[i].ds_addr;
3335		if (i == bf->bf_nseg - 1)
3336			ds->ds_link = 0;
3337		else
3338			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
3339		ath_hal_filltxdesc(ah, ds
3340			, bf->bf_segs[i].ds_len	/* segment length */
3341			, i == 0		/* first segment */
3342			, i == bf->bf_nseg - 1	/* last segment */
3343			, ds0			/* first descriptor */
3344		);
3345		DPRINTF(sc, ATH_DEBUG_XMIT,
3346			"%s: %d: %08x %08x %08x %08x %08x %08x\n",
3347			__func__, i, ds->ds_link, ds->ds_data,
3348			ds->ds_ctl0, ds->ds_ctl1, ds->ds_hw[0], ds->ds_hw[1]);
3349	}
3350#if 0
3351	if ((flags & (HAL_TXDESC_RTSENA | HAL_TXDESC_CTSENA)) &&
3352  	    !ath_hal_updateCTSForBursting(ah, ds
3353		     , txq->axq_linkbuf != NULL ?
3354			txq->axq_linkbuf->bf_desc : NULL
3355		     , txq->axq_lastdsWithCTS
3356		     , txq->axq_gatingds
3357		     , IEEE80211_TXOP_TO_US(ic->ic_chanParams.cap_wmeParams[skb->priority].wmep_txopLimit)
3358		     , ath_hal_computetxtime(ah, rt, IEEE80211_ACK_LEN, cix, AH_TRUE))) {
3359		ATH_TXQ_LOCK(txq);
3360		txq->axq_lastdsWithCTS = ds;
3361		/* set gating Desc to final desc */
3362		txq->axq_gatingds = (struct ath_desc *)txq->axq_link;
3363		ATH_TXQ_UNLOCK(txq);
3364	}
3365#endif
3366	/*
3367	 * Insert the frame on the outbound list and
3368	 * pass it on to the hardware.
3369	 */
3370	ATH_TXQ_LOCK(txq);
3371	ATH_TXQ_INSERT_TAIL(txq, bf, bf_list);
3372	if (txq->axq_link == NULL) {
3373		ath_hal_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
3374		DPRINTF(sc, ATH_DEBUG_XMIT,
3375			"%s: TXDP[%u] = %p (%p) depth %d\n", __func__,
3376			txq->axq_qnum, (caddr_t)bf->bf_daddr, bf->bf_desc,
3377			txq->axq_depth);
3378	} else {
3379		*txq->axq_link = bf->bf_daddr;
3380		DPRINTF(sc, ATH_DEBUG_XMIT,
3381			"%s: link[%u](%p)=%p (%p) depth %d\n", __func__,
3382			txq->axq_qnum, txq->axq_link,
3383			(caddr_t)bf->bf_daddr, bf->bf_desc, txq->axq_depth);
3384	}
3385	txq->axq_link = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
3386	ATH_TXQ_UNLOCK(txq);
3387
3388	/*
3389	 * The CAB queue is started from the SWBA handler since
3390	 * frames only go out on DTIM and to avoid possible races.
3391	 */
3392	if (txq != sc->sc_cabq)
3393		ath_hal_txstart(ah, txq->axq_qnum);
3394	return 0;
3395}
3396
3397/*
3398 * Process completed xmit descriptors from the specified queue.
3399 */
3400static void
3401ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
3402{
3403	struct ath_hal *ah = sc->sc_ah;
3404	struct ieee80211com *ic = &sc->sc_ic;
3405	struct ath_buf *bf;
3406	struct ath_desc *ds;
3407	struct ieee80211_node *ni;
3408	struct ath_node *an;
3409	int sr, lr, pri;
3410	HAL_STATUS status;
3411
3412	DPRINTF(sc, ATH_DEBUG_TX_PROC, "%s: tx queue %u head %p link %p\n",
3413		__func__, txq->axq_qnum,
3414		(caddr_t)(uintptr_t) ath_hal_gettxbuf(sc->sc_ah, txq->axq_qnum),
3415		txq->axq_link);
3416	for (;;) {
3417		ATH_TXQ_LOCK(txq);
3418		txq->axq_intrcnt = 0;	/* reset periodic desc intr count */
3419		bf = STAILQ_FIRST(&txq->axq_q);
3420		if (bf == NULL) {
3421			txq->axq_link = NULL;
3422			ATH_TXQ_UNLOCK(txq);
3423			break;
3424		}
3425		/* only the last descriptor is needed */
3426		ds = &bf->bf_desc[bf->bf_nseg - 1];
3427		status = ath_hal_txprocdesc(ah, ds);
3428#ifdef AR_DEBUG
3429		if (sc->sc_debug & ATH_DEBUG_XMIT_DESC)
3430			ath_printtxbuf(bf, status == HAL_OK);
3431#endif
3432		if (status == HAL_EINPROGRESS) {
3433			ATH_TXQ_UNLOCK(txq);
3434			break;
3435		}
3436#if 0
3437		if (bf->bf_desc == txq->axq_lastdsWithCTS)
3438			txq->axq_lastdsWithCTS = NULL;
3439		if (ds == txq->axq_gatingds)
3440			txq->axq_gatingds = NULL;
3441#endif
3442		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3443		ATH_TXQ_UNLOCK(txq);
3444
3445		ni = bf->bf_node;
3446		if (ni != NULL) {
3447			an = ATH_NODE(ni);
3448			if (ds->ds_txstat.ts_status == 0) {
3449				u_int8_t txant = ds->ds_txstat.ts_antenna;
3450				sc->sc_stats.ast_ant_tx[txant]++;
3451				sc->sc_ant_tx[txant]++;
3452				if (ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)
3453					sc->sc_stats.ast_tx_altrate++;
3454				sc->sc_stats.ast_tx_rssi =
3455					ds->ds_txstat.ts_rssi;
3456				ATH_RSSI_LPF(an->an_halstats.ns_avgtxrssi,
3457					ds->ds_txstat.ts_rssi);
3458				pri = M_WME_GETAC(bf->bf_m);
3459				if (pri >= WME_AC_VO)
3460					ic->ic_wme.wme_hipri_traffic++;
3461				ni->ni_inact = ni->ni_inact_reload;
3462			} else {
3463				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
3464					sc->sc_stats.ast_tx_xretries++;
3465				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
3466					sc->sc_stats.ast_tx_fifoerr++;
3467				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
3468					sc->sc_stats.ast_tx_filtered++;
3469			}
3470			sr = ds->ds_txstat.ts_shortretry;
3471			lr = ds->ds_txstat.ts_longretry;
3472			sc->sc_stats.ast_tx_shortretry += sr;
3473			sc->sc_stats.ast_tx_longretry += lr;
3474			/*
3475			 * Hand the descriptor to the rate control algorithm.
3476			 */
3477			ath_rate_tx_complete(sc, an, ds);
3478			/*
3479			 * Reclaim reference to node.
3480			 *
3481			 * NB: the node may be reclaimed here if, for example
3482			 *     this is a DEAUTH message that was sent and the
3483			 *     node was timed out due to inactivity.
3484			 */
3485			ieee80211_free_node(ni);
3486		}
3487		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
3488		    BUS_DMASYNC_POSTWRITE);
3489		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3490		m_freem(bf->bf_m);
3491		bf->bf_m = NULL;
3492		bf->bf_node = NULL;
3493
3494		ATH_TXBUF_LOCK(sc);
3495		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3496		ATH_TXBUF_UNLOCK(sc);
3497	}
3498}
3499
3500/*
3501 * Deferred processing of transmit interrupt; special-cased
3502 * for a single hardware transmit queue (e.g. 5210 and 5211).
3503 */
3504static void
3505ath_tx_proc_q0(void *arg, int npending)
3506{
3507	struct ath_softc *sc = arg;
3508	struct ifnet *ifp = &sc->sc_if;
3509
3510	ath_tx_processq(sc, &sc->sc_txq[0]);
3511	ath_tx_processq(sc, sc->sc_cabq);
3512	ifp->if_flags &= ~IFF_OACTIVE;
3513	sc->sc_tx_timer = 0;
3514
3515	if (sc->sc_softled)
3516		ath_led_event(sc, ATH_LED_TX);
3517
3518	ath_start(ifp);
3519}
3520
3521/*
3522 * Deferred processing of transmit interrupt; special-cased
3523 * for four hardware queues, 0-3 (e.g. 5212 w/ WME support).
3524 */
3525static void
3526ath_tx_proc_q0123(void *arg, int npending)
3527{
3528	struct ath_softc *sc = arg;
3529	struct ifnet *ifp = &sc->sc_if;
3530
3531	/*
3532	 * Process each active queue.
3533	 */
3534	ath_tx_processq(sc, &sc->sc_txq[0]);
3535	ath_tx_processq(sc, &sc->sc_txq[1]);
3536	ath_tx_processq(sc, &sc->sc_txq[2]);
3537	ath_tx_processq(sc, &sc->sc_txq[3]);
3538	ath_tx_processq(sc, sc->sc_cabq);
3539
3540	ifp->if_flags &= ~IFF_OACTIVE;
3541	sc->sc_tx_timer = 0;
3542
3543	if (sc->sc_softled)
3544		ath_led_event(sc, ATH_LED_TX);
3545
3546	ath_start(ifp);
3547}
3548
3549/*
3550 * Deferred processing of transmit interrupt.
3551 */
3552static void
3553ath_tx_proc(void *arg, int npending)
3554{
3555	struct ath_softc *sc = arg;
3556	struct ifnet *ifp = &sc->sc_if;
3557	int i;
3558
3559	/*
3560	 * Process each active queue.
3561	 */
3562	/* XXX faster to read ISR_S0_S and ISR_S1_S to determine q's? */
3563	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3564		if (ATH_TXQ_SETUP(sc, i))
3565			ath_tx_processq(sc, &sc->sc_txq[i]);
3566
3567	ifp->if_flags &= ~IFF_OACTIVE;
3568	sc->sc_tx_timer = 0;
3569
3570	if (sc->sc_softled)
3571		ath_led_event(sc, ATH_LED_TX);
3572
3573	ath_start(ifp);
3574}
3575
3576static void
3577ath_tx_draintxq(struct ath_softc *sc, struct ath_txq *txq)
3578{
3579	struct ath_hal *ah = sc->sc_ah;
3580	struct ieee80211_node *ni;
3581	struct ath_buf *bf;
3582
3583	/*
3584	 * NB: this assumes output has been stopped and
3585	 *     we do not need to block ath_tx_tasklet
3586	 */
3587	for (;;) {
3588		ATH_TXQ_LOCK(txq);
3589		bf = STAILQ_FIRST(&txq->axq_q);
3590		if (bf == NULL) {
3591			txq->axq_link = NULL;
3592			ATH_TXQ_UNLOCK(txq);
3593			break;
3594		}
3595		ATH_TXQ_REMOVE_HEAD(txq, bf_list);
3596		ATH_TXQ_UNLOCK(txq);
3597#ifdef AR_DEBUG
3598		if (sc->sc_debug & ATH_DEBUG_RESET)
3599			ath_printtxbuf(bf,
3600				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
3601#endif /* AR_DEBUG */
3602		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
3603		m_freem(bf->bf_m);
3604		bf->bf_m = NULL;
3605		ni = bf->bf_node;
3606		bf->bf_node = NULL;
3607		if (ni != NULL) {
3608			/*
3609			 * Reclaim node reference.
3610			 */
3611			ieee80211_free_node(ni);
3612		}
3613		ATH_TXBUF_LOCK(sc);
3614		STAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
3615		ATH_TXBUF_UNLOCK(sc);
3616	}
3617}
3618
3619static void
3620ath_tx_stopdma(struct ath_softc *sc, struct ath_txq *txq)
3621{
3622	struct ath_hal *ah = sc->sc_ah;
3623
3624	(void) ath_hal_stoptxdma(ah, txq->axq_qnum);
3625	DPRINTF(sc, ATH_DEBUG_RESET, "%s: tx queue [%u] %p, link %p\n",
3626	    __func__, txq->axq_qnum,
3627	    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, txq->axq_qnum),
3628	    txq->axq_link);
3629}
3630
3631/*
3632 * Drain the transmit queues and reclaim resources.
3633 */
3634static void
3635ath_draintxq(struct ath_softc *sc)
3636{
3637	struct ath_hal *ah = sc->sc_ah;
3638	struct ifnet *ifp = &sc->sc_if;
3639	int i;
3640
3641	/* XXX return value */
3642	if (!sc->sc_invalid) {
3643		/* don't touch the hardware if marked invalid */
3644		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
3645		DPRINTF(sc, ATH_DEBUG_RESET,
3646		    "%s: beacon queue %p\n", __func__,
3647		    (caddr_t)(uintptr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq));
3648		for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3649			if (ATH_TXQ_SETUP(sc, i))
3650				ath_tx_stopdma(sc, &sc->sc_txq[i]);
3651	}
3652	for (i = 0; i < HAL_NUM_TX_QUEUES; i++)
3653		if (ATH_TXQ_SETUP(sc, i))
3654			ath_tx_draintxq(sc, &sc->sc_txq[i]);
3655	ifp->if_flags &= ~IFF_OACTIVE;
3656	sc->sc_tx_timer = 0;
3657}
3658
3659/*
3660 * Disable the receive h/w in preparation for a reset.
3661 */
3662static void
3663ath_stoprecv(struct ath_softc *sc)
3664{
3665#define	PA2DESC(_sc, _pa) \
3666	((struct ath_desc *)((caddr_t)(_sc)->sc_rxdma.dd_desc + \
3667		((_pa) - (_sc)->sc_rxdma.dd_desc_paddr)))
3668	struct ath_hal *ah = sc->sc_ah;
3669
3670	ath_hal_stoppcurecv(ah);	/* disable PCU */
3671	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
3672	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
3673	DELAY(3000);			/* 3ms is long enough for 1 frame */
3674#ifdef AR_DEBUG
3675	if (sc->sc_debug & (ATH_DEBUG_RESET | ATH_DEBUG_FATAL)) {
3676		struct ath_buf *bf;
3677
3678		printf("%s: rx queue %p, link %p\n", __func__,
3679			(caddr_t)(uintptr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink);
3680		STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3681			struct ath_desc *ds = bf->bf_desc;
3682			HAL_STATUS status = ath_hal_rxprocdesc(ah, ds,
3683				bf->bf_daddr, PA2DESC(sc, ds->ds_link));
3684			if (status == HAL_OK || (sc->sc_debug & ATH_DEBUG_FATAL))
3685				ath_printrxbuf(bf, status == HAL_OK);
3686		}
3687	}
3688#endif
3689	sc->sc_rxlink = NULL;		/* just in case */
3690#undef PA2DESC
3691}
3692
3693/*
3694 * Enable the receive h/w following a reset.
3695 */
3696static int
3697ath_startrecv(struct ath_softc *sc)
3698{
3699	struct ath_hal *ah = sc->sc_ah;
3700	struct ath_buf *bf;
3701
3702	sc->sc_rxlink = NULL;
3703	STAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
3704		int error = ath_rxbuf_init(sc, bf);
3705		if (error != 0) {
3706			DPRINTF(sc, ATH_DEBUG_RECV,
3707				"%s: ath_rxbuf_init failed %d\n",
3708				__func__, error);
3709			return error;
3710		}
3711	}
3712
3713	bf = STAILQ_FIRST(&sc->sc_rxbuf);
3714	ath_hal_putrxbuf(ah, bf->bf_daddr);
3715	ath_hal_rxena(ah);		/* enable recv descriptors */
3716	ath_mode_init(sc);		/* set filters, etc. */
3717	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
3718	return 0;
3719}
3720
3721/*
3722 * Update internal state after a channel change.
3723 */
3724static void
3725ath_chan_change(struct ath_softc *sc, struct ieee80211_channel *chan)
3726{
3727	struct ieee80211com *ic = &sc->sc_ic;
3728	enum ieee80211_phymode mode;
3729	u_int16_t flags;
3730
3731	/*
3732	 * Change channels and update the h/w rate map
3733	 * if we're switching; e.g. 11a to 11b/g.
3734	 */
3735	mode = ieee80211_chan2mode(ic, chan);
3736	if (mode != sc->sc_curmode)
3737		ath_setcurmode(sc, mode);
3738	/*
3739	 * Update BPF state.  NB: ethereal et. al. don't handle
3740	 * merged flags well so pick a unique mode for their use.
3741	 */
3742	if (IEEE80211_IS_CHAN_A(chan))
3743		flags = IEEE80211_CHAN_A;
3744	/* XXX 11g schizophrenia */
3745	else if (IEEE80211_IS_CHAN_G(chan) ||
3746	    IEEE80211_IS_CHAN_PUREG(chan))
3747		flags = IEEE80211_CHAN_G;
3748	else
3749		flags = IEEE80211_CHAN_B;
3750	if (IEEE80211_IS_CHAN_T(chan))
3751		flags |= IEEE80211_CHAN_TURBO;
3752	sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
3753		htole16(chan->ic_freq);
3754	sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
3755		htole16(flags);
3756}
3757
3758/*
3759 * Set/change channels.  If the channel is really being changed,
3760 * it's done by reseting the chip.  To accomplish this we must
3761 * first cleanup any pending DMA, then restart stuff after a la
3762 * ath_init.
3763 */
3764static int
3765ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
3766{
3767	struct ath_hal *ah = sc->sc_ah;
3768	struct ieee80211com *ic = &sc->sc_ic;
3769	HAL_CHANNEL hchan;
3770
3771	/*
3772	 * Convert to a HAL channel description with
3773	 * the flags constrained to reflect the current
3774	 * operating mode.
3775	 */
3776	hchan.channel = chan->ic_freq;
3777	hchan.channelFlags = ath_chan2flags(ic, chan);
3778
3779	DPRINTF(sc, ATH_DEBUG_RESET, "%s: %u (%u MHz) -> %u (%u MHz)\n",
3780	    __func__,
3781	    ath_hal_mhz2ieee(sc->sc_curchan.channel,
3782		sc->sc_curchan.channelFlags),
3783	    	sc->sc_curchan.channel,
3784	    ath_hal_mhz2ieee(hchan.channel, hchan.channelFlags), hchan.channel);
3785	if (hchan.channel != sc->sc_curchan.channel ||
3786	    hchan.channelFlags != sc->sc_curchan.channelFlags) {
3787		HAL_STATUS status;
3788
3789		/*
3790		 * To switch channels clear any pending DMA operations;
3791		 * wait long enough for the RX fifo to drain, reset the
3792		 * hardware at the new frequency, and then re-enable
3793		 * the relevant bits of the h/w.
3794		 */
3795		ath_hal_intrset(ah, 0);		/* disable interrupts */
3796		ath_draintxq(sc);		/* clear pending tx frames */
3797		ath_stoprecv(sc);		/* turn off frame recv */
3798		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
3799			if_printf(ic->ic_ifp, "ath_chan_set: unable to reset "
3800				"channel %u (%u Mhz)\n",
3801				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
3802			return EIO;
3803		}
3804		sc->sc_curchan = hchan;
3805		ath_update_txpow(sc);		/* update tx power state */
3806
3807		/*
3808		 * Re-enable rx framework.
3809		 */
3810		if (ath_startrecv(sc) != 0) {
3811			if_printf(ic->ic_ifp,
3812				"ath_chan_set: unable to restart recv logic\n");
3813			return EIO;
3814		}
3815
3816		/*
3817		 * Change channels and update the h/w rate map
3818		 * if we're switching; e.g. 11a to 11b/g.
3819		 */
3820		ic->ic_ibss_chan = chan;
3821		ath_chan_change(sc, chan);
3822
3823		/*
3824		 * Re-enable interrupts.
3825		 */
3826		ath_hal_intrset(ah, sc->sc_imask);
3827	}
3828	return 0;
3829}
3830
3831static void
3832ath_next_scan(void *arg)
3833{
3834	struct ath_softc *sc = arg;
3835	struct ieee80211com *ic = &sc->sc_ic;
3836
3837	if (ic->ic_state == IEEE80211_S_SCAN)
3838		ieee80211_next_scan(ic);
3839}
3840
3841/*
3842 * Periodically recalibrate the PHY to account
3843 * for temperature/environment changes.
3844 */
3845static void
3846ath_calibrate(void *arg)
3847{
3848	struct ath_softc *sc = arg;
3849	struct ath_hal *ah = sc->sc_ah;
3850
3851	sc->sc_stats.ast_per_cal++;
3852
3853	DPRINTF(sc, ATH_DEBUG_CALIBRATE, "%s: channel %u/%x\n",
3854		__func__, sc->sc_curchan.channel, sc->sc_curchan.channelFlags);
3855
3856	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
3857		/*
3858		 * Rfgain is out of bounds, reset the chip
3859		 * to load new gain values.
3860		 */
3861		sc->sc_stats.ast_per_rfgain++;
3862		ath_reset(&sc->sc_if);
3863	}
3864	if (!ath_hal_calibrate(ah, &sc->sc_curchan)) {
3865		DPRINTF(sc, ATH_DEBUG_ANY,
3866			"%s: calibration of channel %u failed\n",
3867			__func__, sc->sc_curchan.channel);
3868		sc->sc_stats.ast_per_calfail++;
3869	}
3870	callout_reset(&sc->sc_cal_ch, ath_calinterval * hz, ath_calibrate, sc);
3871}
3872
3873static int
3874ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
3875{
3876	struct ifnet *ifp = ic->ic_ifp;
3877	struct ath_softc *sc = ifp->if_softc;
3878	struct ath_hal *ah = sc->sc_ah;
3879	struct ieee80211_node *ni;
3880	int i, error;
3881	const u_int8_t *bssid;
3882	u_int32_t rfilt;
3883	static const HAL_LED_STATE leds[] = {
3884	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
3885	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
3886	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
3887	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
3888	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
3889	};
3890
3891	DPRINTF(sc, ATH_DEBUG_STATE, "%s: %s -> %s\n", __func__,
3892		ieee80211_state_name[ic->ic_state],
3893		ieee80211_state_name[nstate]);
3894
3895	callout_stop(&sc->sc_scan_ch);
3896	callout_stop(&sc->sc_cal_ch);
3897	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
3898
3899	if (nstate == IEEE80211_S_INIT) {
3900		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3901		ath_hal_intrset(ah, sc->sc_imask);
3902		/*
3903		 * Notify the rate control algorithm.
3904		 */
3905		ath_rate_newstate(sc, nstate);
3906		goto done;
3907	}
3908	ni = ic->ic_bss;
3909	error = ath_chan_set(sc, ni->ni_chan);
3910	if (error != 0)
3911		goto bad;
3912	rfilt = ath_calcrxfilter(sc, nstate);
3913	if (nstate == IEEE80211_S_SCAN)
3914		bssid = ifp->if_broadcastaddr;
3915	else
3916		bssid = ni->ni_bssid;
3917	ath_hal_setrxfilter(ah, rfilt);
3918	DPRINTF(sc, ATH_DEBUG_STATE, "%s: RX filter 0x%x bssid %s\n",
3919		 __func__, rfilt, ether_sprintf(bssid));
3920
3921	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
3922		ath_hal_setassocid(ah, bssid, ni->ni_associd);
3923	else
3924		ath_hal_setassocid(ah, bssid, 0);
3925	if (ic->ic_flags & IEEE80211_F_PRIVACY) {
3926		for (i = 0; i < IEEE80211_WEP_NKID; i++)
3927			if (ath_hal_keyisvalid(ah, i))
3928				ath_hal_keysetmac(ah, i, bssid);
3929	}
3930
3931	/*
3932	 * Notify the rate control algorithm so rates
3933	 * are setup should ath_beacon_alloc be called.
3934	 */
3935	ath_rate_newstate(sc, nstate);
3936
3937	if (ic->ic_opmode == IEEE80211_M_MONITOR) {
3938		/* nothing to do */;
3939	} else if (nstate == IEEE80211_S_RUN) {
3940		DPRINTF(sc, ATH_DEBUG_STATE,
3941			"%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
3942			"capinfo=0x%04x chan=%d\n"
3943			 , __func__
3944			 , ic->ic_flags
3945			 , ni->ni_intval
3946			 , ether_sprintf(ni->ni_bssid)
3947			 , ni->ni_capinfo
3948			 , ieee80211_chan2ieee(ic, ni->ni_chan));
3949
3950		/*
3951		 * Allocate and setup the beacon frame for AP or adhoc mode.
3952		 */
3953		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
3954		    ic->ic_opmode == IEEE80211_M_IBSS) {
3955			error = ath_beacon_alloc(sc, ni);
3956			if (error != 0)
3957				goto bad;
3958		}
3959
3960		/*
3961		 * Configure the beacon and sleep timers.
3962		 */
3963		ath_beacon_config(sc);
3964	} else {
3965		ath_hal_intrset(ah,
3966			sc->sc_imask &~ (HAL_INT_SWBA | HAL_INT_BMISS));
3967		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
3968	}
3969done:
3970	/*
3971	 * Invoke the parent method to complete the work.
3972	 */
3973	error = sc->sc_newstate(ic, nstate, arg);
3974	/*
3975	 * Finally, start any timers.
3976	 */
3977	if (nstate == IEEE80211_S_RUN) {
3978		/* start periodic recalibration timer */
3979		callout_reset(&sc->sc_cal_ch, ath_calinterval * hz,
3980			ath_calibrate, sc);
3981	} else if (nstate == IEEE80211_S_SCAN) {
3982		/* start ap/neighbor scan timer */
3983		callout_reset(&sc->sc_scan_ch, (ath_dwelltime * hz) / 1000,
3984			ath_next_scan, sc);
3985	}
3986bad:
3987	return error;
3988}
3989
3990/*
3991 * Setup driver-specific state for a newly associated node.
3992 * Note that we're called also on a re-associate, the isnew
3993 * param tells us if this is the first time or not.
3994 */
3995static void
3996ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
3997{
3998	struct ath_softc *sc = ic->ic_ifp->if_softc;
3999
4000	ath_rate_newassoc(sc, ATH_NODE(ni), isnew);
4001}
4002
4003static int
4004ath_getchannels(struct ath_softc *sc, u_int cc,
4005	HAL_BOOL outdoor, HAL_BOOL xchanmode)
4006{
4007	struct ieee80211com *ic = &sc->sc_ic;
4008	struct ifnet *ifp = &sc->sc_if;
4009	struct ath_hal *ah = sc->sc_ah;
4010	HAL_CHANNEL *chans;
4011	int i, ix, nchan;
4012
4013	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
4014			M_TEMP, M_NOWAIT);
4015	if (chans == NULL) {
4016		if_printf(ifp, "unable to allocate channel table\n");
4017		return ENOMEM;
4018	}
4019	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
4020	    cc, HAL_MODE_ALL, outdoor, xchanmode)) {
4021		u_int32_t rd;
4022
4023		ath_hal_getregdomain(ah, &rd);
4024		if_printf(ifp, "unable to collect channel list from hal; "
4025			"regdomain likely %u country code %u\n", rd, cc);
4026		free(chans, M_TEMP);
4027		return EINVAL;
4028	}
4029
4030	/*
4031	 * Convert HAL channels to ieee80211 ones and insert
4032	 * them in the table according to their channel number.
4033	 */
4034	for (i = 0; i < nchan; i++) {
4035		HAL_CHANNEL *c = &chans[i];
4036		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
4037		if (ix > IEEE80211_CHAN_MAX) {
4038			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
4039				ix, c->channel, c->channelFlags);
4040			continue;
4041		}
4042		/* NB: flags are known to be compatible */
4043		if (ic->ic_channels[ix].ic_freq == 0) {
4044			ic->ic_channels[ix].ic_freq = c->channel;
4045			ic->ic_channels[ix].ic_flags = c->channelFlags;
4046		} else {
4047			/* channels overlap; e.g. 11g and 11b */
4048			ic->ic_channels[ix].ic_flags |= c->channelFlags;
4049		}
4050	}
4051	free(chans, M_TEMP);
4052	return 0;
4053}
4054
4055static void
4056ath_led_done(void *arg)
4057{
4058	struct ath_softc *sc = arg;
4059
4060	sc->sc_blinking = 0;
4061}
4062
4063/*
4064 * Turn the LED off: flip the pin and then set a timer so no
4065 * update will happen for the specified duration.
4066 */
4067static void
4068ath_led_off(void *arg)
4069{
4070	struct ath_softc *sc = arg;
4071
4072	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, !sc->sc_ledon);
4073	callout_reset(&sc->sc_ledtimer, sc->sc_ledoff, ath_led_done, sc);
4074}
4075
4076/*
4077 * Blink the LED according to the specified on/off times.
4078 */
4079static void
4080ath_led_blink(struct ath_softc *sc, int on, int off)
4081{
4082	DPRINTF(sc, ATH_DEBUG_LED, "%s: on %u off %u\n", __func__, on, off);
4083	ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin, sc->sc_ledon);
4084	sc->sc_blinking = 1;
4085	sc->sc_ledoff = off;
4086	callout_reset(&sc->sc_ledtimer, on, ath_led_off, sc);
4087}
4088
4089static void
4090ath_led_event(struct ath_softc *sc, int event)
4091{
4092
4093	sc->sc_ledevent = ticks;	/* time of last event */
4094	if (sc->sc_blinking)		/* don't interrupt active blink */
4095		return;
4096	switch (event) {
4097	case ATH_LED_POLL:
4098		ath_led_blink(sc, sc->sc_hwmap[0].ledon,
4099			sc->sc_hwmap[0].ledoff);
4100		break;
4101	case ATH_LED_TX:
4102		ath_led_blink(sc, sc->sc_hwmap[sc->sc_txrate].ledon,
4103			sc->sc_hwmap[sc->sc_txrate].ledoff);
4104		break;
4105	case ATH_LED_RX:
4106		ath_led_blink(sc, sc->sc_hwmap[sc->sc_rxrate].ledon,
4107			sc->sc_hwmap[sc->sc_rxrate].ledoff);
4108		break;
4109	}
4110}
4111
4112static void
4113ath_update_txpow(struct ath_softc *sc)
4114{
4115	struct ieee80211com *ic = &sc->sc_ic;
4116	struct ath_hal *ah = sc->sc_ah;
4117	u_int32_t txpow;
4118
4119	if (sc->sc_curtxpow != ic->ic_txpowlimit) {
4120		ath_hal_settxpowlimit(ah, ic->ic_txpowlimit);
4121		/* read back in case value is clamped */
4122		ath_hal_gettxpowlimit(ah, &txpow);
4123		ic->ic_txpowlimit = sc->sc_curtxpow = txpow;
4124	}
4125	/*
4126	 * Fetch max tx power level for status requests.
4127	 */
4128	ath_hal_getmaxtxpow(sc->sc_ah, &txpow);
4129	ic->ic_bss->ni_txpower = txpow;
4130}
4131
4132static int
4133ath_rate_setup(struct ath_softc *sc, u_int mode)
4134{
4135	struct ath_hal *ah = sc->sc_ah;
4136	struct ieee80211com *ic = &sc->sc_ic;
4137	const HAL_RATE_TABLE *rt;
4138	struct ieee80211_rateset *rs;
4139	int i, maxrates;
4140
4141	switch (mode) {
4142	case IEEE80211_MODE_11A:
4143		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
4144		break;
4145	case IEEE80211_MODE_11B:
4146		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
4147		break;
4148	case IEEE80211_MODE_11G:
4149		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
4150		break;
4151	case IEEE80211_MODE_TURBO_A:
4152		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
4153		break;
4154	case IEEE80211_MODE_TURBO_G:
4155		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_108G);
4156		break;
4157	default:
4158		DPRINTF(sc, ATH_DEBUG_ANY, "%s: invalid mode %u\n",
4159			__func__, mode);
4160		return 0;
4161	}
4162	rt = sc->sc_rates[mode];
4163	if (rt == NULL)
4164		return 0;
4165	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
4166		DPRINTF(sc, ATH_DEBUG_ANY,
4167			"%s: rate table too small (%u > %u)\n",
4168			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE);
4169		maxrates = IEEE80211_RATE_MAXSIZE;
4170	} else
4171		maxrates = rt->rateCount;
4172	rs = &ic->ic_sup_rates[mode];
4173	for (i = 0; i < maxrates; i++)
4174		rs->rs_rates[i] = rt->info[i].dot11Rate;
4175	rs->rs_nrates = maxrates;
4176	return 1;
4177}
4178
4179static void
4180ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
4181{
4182#define	N(a)	(sizeof(a)/sizeof(a[0]))
4183	/* NB: on/off times from the Atheros NDIS driver, w/ permission */
4184	static const struct {
4185		u_int		rate;		/* tx/rx 802.11 rate */
4186		u_int16_t	timeOn;		/* LED on time (ms) */
4187		u_int16_t	timeOff;	/* LED off time (ms) */
4188	} blinkrates[] = {
4189		{ 108,  40,  10 },
4190		{  96,  44,  11 },
4191		{  72,  50,  13 },
4192		{  48,  57,  14 },
4193		{  36,  67,  16 },
4194		{  24,  80,  20 },
4195		{  22, 100,  25 },
4196		{  18, 133,  34 },
4197		{  12, 160,  40 },
4198		{  10, 200,  50 },
4199		{   6, 240,  58 },
4200		{   4, 267,  66 },
4201		{   2, 400, 100 },
4202		{   0, 500, 130 },
4203	};
4204	const HAL_RATE_TABLE *rt;
4205	int i, j;
4206
4207	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
4208	rt = sc->sc_rates[mode];
4209	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
4210	for (i = 0; i < rt->rateCount; i++)
4211		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
4212	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
4213	for (i = 0; i < 32; i++) {
4214		u_int8_t ix = rt->rateCodeToIndex[i];
4215		if (ix == 0xff) {
4216			sc->sc_hwmap[i].ledon = (500 * hz) / 1000;
4217			sc->sc_hwmap[i].ledoff = (130 * hz) / 1000;
4218			continue;
4219		}
4220		sc->sc_hwmap[i].ieeerate =
4221			rt->info[ix].dot11Rate & IEEE80211_RATE_VAL;
4222		if (rt->info[ix].shortPreamble ||
4223		    rt->info[ix].phy == IEEE80211_T_OFDM)
4224			sc->sc_hwmap[i].flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
4225		/* setup blink rate table to avoid per-packet lookup */
4226		for (j = 0; j < N(blinkrates)-1; j++)
4227			if (blinkrates[j].rate == sc->sc_hwmap[i].ieeerate)
4228				break;
4229		/* NB: this uses the last entry if the rate isn't found */
4230		/* XXX beware of overlow */
4231		sc->sc_hwmap[i].ledon = (blinkrates[j].timeOn * hz) / 1000;
4232		sc->sc_hwmap[i].ledoff = (blinkrates[j].timeOff * hz) / 1000;
4233	}
4234	sc->sc_currates = rt;
4235	sc->sc_curmode = mode;
4236	/*
4237	 * All protection frames are transmited at 2Mb/s for
4238	 * 11g, otherwise at 1Mb/s.
4239	 * XXX select protection rate index from rate table.
4240	 */
4241	sc->sc_protrix = (mode == IEEE80211_MODE_11G ? 1 : 0);
4242	/* NB: caller is responsible for reseting rate control state */
4243#undef N
4244}
4245
4246#ifdef AR_DEBUG
4247static void
4248ath_printrxbuf(struct ath_buf *bf, int done)
4249{
4250	struct ath_desc *ds;
4251	int i;
4252
4253	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4254		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
4255		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4256		    ds->ds_link, ds->ds_data,
4257		    ds->ds_ctl0, ds->ds_ctl1,
4258		    ds->ds_hw[0], ds->ds_hw[1],
4259		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
4260	}
4261}
4262
4263static void
4264ath_printtxbuf(struct ath_buf *bf, int done)
4265{
4266	struct ath_desc *ds;
4267	int i;
4268
4269	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
4270		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
4271		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
4272		    ds->ds_link, ds->ds_data,
4273		    ds->ds_ctl0, ds->ds_ctl1,
4274		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
4275		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
4276	}
4277}
4278#endif /* AR_DEBUG */
4279
4280static void
4281ath_watchdog(struct ifnet *ifp)
4282{
4283	struct ath_softc *sc = ifp->if_softc;
4284	struct ieee80211com *ic = &sc->sc_ic;
4285
4286	ifp->if_timer = 0;
4287	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
4288		return;
4289	if (sc->sc_tx_timer) {
4290		if (--sc->sc_tx_timer == 0) {
4291			if_printf(ifp, "device timeout\n");
4292			ath_reset(ifp);
4293			ifp->if_oerrors++;
4294			sc->sc_stats.ast_watchdog++;
4295		} else
4296			ifp->if_timer = 1;
4297	}
4298	ieee80211_watchdog(ic);
4299}
4300
4301/*
4302 * Diagnostic interface to the HAL.  This is used by various
4303 * tools to do things like retrieve register contents for
4304 * debugging.  The mechanism is intentionally opaque so that
4305 * it can change frequently w/o concern for compatiblity.
4306 */
4307static int
4308ath_ioctl_diag(struct ath_softc *sc, struct ath_diag *ad)
4309{
4310	struct ath_hal *ah = sc->sc_ah;
4311	u_int id = ad->ad_id & ATH_DIAG_ID;
4312	void *indata = NULL;
4313	void *outdata = NULL;
4314	u_int32_t insize = ad->ad_in_size;
4315	u_int32_t outsize = ad->ad_out_size;
4316	int error = 0;
4317
4318	if (ad->ad_id & ATH_DIAG_IN) {
4319		/*
4320		 * Copy in data.
4321		 */
4322		indata = malloc(insize, M_TEMP, M_NOWAIT);
4323		if (indata == NULL) {
4324			error = ENOMEM;
4325			goto bad;
4326		}
4327		error = copyin(ad->ad_in_data, indata, insize);
4328		if (error)
4329			goto bad;
4330	}
4331	if (ad->ad_id & ATH_DIAG_DYN) {
4332		/*
4333		 * Allocate a buffer for the results (otherwise the HAL
4334		 * returns a pointer to a buffer where we can read the
4335		 * results).  Note that we depend on the HAL leaving this
4336		 * pointer for us to use below in reclaiming the buffer;
4337		 * may want to be more defensive.
4338		 */
4339		outdata = malloc(outsize, M_TEMP, M_NOWAIT);
4340		if (outdata == NULL) {
4341			error = ENOMEM;
4342			goto bad;
4343		}
4344	}
4345	if (ath_hal_getdiagstate(ah, id, indata, insize, &outdata, &outsize)) {
4346		if (outsize < ad->ad_out_size)
4347			ad->ad_out_size = outsize;
4348		if (outdata != NULL)
4349			error = copyout(outdata, ad->ad_out_data,
4350					ad->ad_out_size);
4351	} else {
4352		error = EINVAL;
4353	}
4354bad:
4355	if ((ad->ad_id & ATH_DIAG_IN) && indata != NULL)
4356		free(indata, M_TEMP);
4357	if ((ad->ad_id & ATH_DIAG_DYN) && outdata != NULL)
4358		free(outdata, M_TEMP);
4359	return error;
4360}
4361
4362static int
4363ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
4364{
4365#define	IS_RUNNING(ifp) \
4366	((ifp->if_flags & (IFF_RUNNING|IFF_UP)) == (IFF_RUNNING|IFF_UP))
4367	struct ath_softc *sc = ifp->if_softc;
4368	struct ieee80211com *ic = &sc->sc_ic;
4369	struct ifreq *ifr = (struct ifreq *)data;
4370	int error = 0;
4371
4372	ATH_LOCK(sc);
4373	switch (cmd) {
4374	case SIOCSIFFLAGS:
4375		if (IS_RUNNING(ifp)) {
4376			/*
4377			 * To avoid rescanning another access point,
4378			 * do not call ath_init() here.  Instead,
4379			 * only reflect promisc mode settings.
4380			 */
4381			ath_mode_init(sc);
4382		} else if (ifp->if_flags & IFF_UP) {
4383			/*
4384			 * Beware of being called during attach/detach
4385			 * to reset promiscuous mode.  In that case we
4386			 * will still be marked UP but not RUNNING.
4387			 * However trying to re-init the interface
4388			 * is the wrong thing to do as we've already
4389			 * torn down much of our state.  There's
4390			 * probably a better way to deal with this.
4391			 */
4392			if (!sc->sc_invalid && ic->ic_bss != NULL)
4393				ath_init(ifp);	/* XXX lose error */
4394		} else
4395			ath_stop_locked(ifp);
4396		break;
4397	case SIOCADDMULTI:
4398	case SIOCDELMULTI:
4399		/*
4400		 * The upper layer has already installed/removed
4401		 * the multicast address(es), just recalculate the
4402		 * multicast filter for the card.
4403		 */
4404		if (ifp->if_flags & IFF_RUNNING)
4405			ath_mode_init(sc);
4406		break;
4407	case SIOCGATHSTATS:
4408		/* NB: embed these numbers to get a consistent view */
4409		sc->sc_stats.ast_tx_packets = ifp->if_opackets;
4410		sc->sc_stats.ast_rx_packets = ifp->if_ipackets;
4411		sc->sc_stats.ast_rx_rssi = ieee80211_getrssi(ic);
4412		ATH_UNLOCK(sc);
4413		/*
4414		 * NB: Drop the softc lock in case of a page fault;
4415		 * we'll accept any potential inconsisentcy in the
4416		 * statistics.  The alternative is to copy the data
4417		 * to a local structure.
4418		 */
4419		return copyout(&sc->sc_stats,
4420				ifr->ifr_data, sizeof (sc->sc_stats));
4421	case SIOCGATHDIAG:
4422		error = ath_ioctl_diag(sc, (struct ath_diag *) ifr);
4423		break;
4424	default:
4425		error = ieee80211_ioctl(ic, cmd, data);
4426		if (error == ENETRESET) {
4427			if (IS_RUNNING(ifp) &&
4428			    ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
4429				ath_init(ifp);	/* XXX lose error */
4430			error = 0;
4431		}
4432		if (error == ERESTART)
4433			error = IS_RUNNING(ifp) ? ath_reset(ifp) : 0;
4434		break;
4435	}
4436	ATH_UNLOCK(sc);
4437	return error;
4438#undef IS_RUNNING
4439}
4440
4441static int
4442ath_sysctl_slottime(SYSCTL_HANDLER_ARGS)
4443{
4444	struct ath_softc *sc = arg1;
4445	u_int slottime = ath_hal_getslottime(sc->sc_ah);
4446	int error;
4447
4448	error = sysctl_handle_int(oidp, &slottime, 0, req);
4449	if (error || !req->newptr)
4450		return error;
4451	return !ath_hal_setslottime(sc->sc_ah, slottime) ? EINVAL : 0;
4452}
4453
4454static int
4455ath_sysctl_acktimeout(SYSCTL_HANDLER_ARGS)
4456{
4457	struct ath_softc *sc = arg1;
4458	u_int acktimeout = ath_hal_getacktimeout(sc->sc_ah);
4459	int error;
4460
4461	error = sysctl_handle_int(oidp, &acktimeout, 0, req);
4462	if (error || !req->newptr)
4463		return error;
4464	return !ath_hal_setacktimeout(sc->sc_ah, acktimeout) ? EINVAL : 0;
4465}
4466
4467static int
4468ath_sysctl_ctstimeout(SYSCTL_HANDLER_ARGS)
4469{
4470	struct ath_softc *sc = arg1;
4471	u_int ctstimeout = ath_hal_getctstimeout(sc->sc_ah);
4472	int error;
4473
4474	error = sysctl_handle_int(oidp, &ctstimeout, 0, req);
4475	if (error || !req->newptr)
4476		return error;
4477	return !ath_hal_setctstimeout(sc->sc_ah, ctstimeout) ? EINVAL : 0;
4478}
4479
4480static int
4481ath_sysctl_softled(SYSCTL_HANDLER_ARGS)
4482{
4483	struct ath_softc *sc = arg1;
4484	int softled = sc->sc_softled;
4485	int error;
4486
4487	error = sysctl_handle_int(oidp, &softled, 0, req);
4488	if (error || !req->newptr)
4489		return error;
4490	softled = (softled != 0);
4491	if (softled != sc->sc_softled) {
4492		if (softled) {
4493			/* NB: handle any sc_ledpin change */
4494			ath_hal_gpioCfgOutput(sc->sc_ah, sc->sc_ledpin);
4495			ath_hal_gpioset(sc->sc_ah, sc->sc_ledpin,
4496				!sc->sc_ledon);
4497		}
4498		sc->sc_softled = softled;
4499	}
4500	return 0;
4501}
4502
4503static int
4504ath_sysctl_rxantenna(SYSCTL_HANDLER_ARGS)
4505{
4506	struct ath_softc *sc = arg1;
4507	u_int defantenna = ath_hal_getdefantenna(sc->sc_ah);
4508	int error;
4509
4510	error = sysctl_handle_int(oidp, &defantenna, 0, req);
4511	if (!error && req->newptr)
4512		ath_hal_setdefantenna(sc->sc_ah, defantenna);
4513	return error;
4514}
4515
4516static int
4517ath_sysctl_diversity(SYSCTL_HANDLER_ARGS)
4518{
4519	struct ath_softc *sc = arg1;
4520	u_int diversity = sc->sc_diversity;
4521	int error;
4522
4523	error = sysctl_handle_int(oidp, &diversity, 0, req);
4524	if (error || !req->newptr)
4525		return error;
4526	sc->sc_diversity = diversity;
4527	return !ath_hal_setdiversity(sc->sc_ah, diversity) ? EINVAL : 0;
4528}
4529
4530static int
4531ath_sysctl_diag(SYSCTL_HANDLER_ARGS)
4532{
4533	struct ath_softc *sc = arg1;
4534	u_int32_t diag;
4535	int error;
4536
4537	if (!ath_hal_getdiag(sc->sc_ah, &diag))
4538		return EINVAL;
4539	error = sysctl_handle_int(oidp, &diag, 0, req);
4540	if (error || !req->newptr)
4541		return error;
4542	return !ath_hal_setdiag(sc->sc_ah, diag) ? EINVAL : 0;
4543}
4544
4545static int
4546ath_sysctl_tpscale(SYSCTL_HANDLER_ARGS)
4547{
4548	struct ath_softc *sc = arg1;
4549	struct ifnet *ifp = &sc->sc_if;
4550	u_int32_t scale;
4551	int error;
4552
4553	ath_hal_gettpscale(sc->sc_ah, &scale);
4554	error = sysctl_handle_int(oidp, &scale, 0, req);
4555	if (error || !req->newptr)
4556		return error;
4557	return !ath_hal_settpscale(sc->sc_ah, scale) ? EINVAL : ath_reset(ifp);
4558}
4559
4560static int
4561ath_sysctl_tpc(SYSCTL_HANDLER_ARGS)
4562{
4563	struct ath_softc *sc = arg1;
4564	u_int tpc = ath_hal_gettpc(sc->sc_ah);
4565	int error;
4566
4567	error = sysctl_handle_int(oidp, &tpc, 0, req);
4568	if (error || !req->newptr)
4569		return error;
4570	return !ath_hal_settpc(sc->sc_ah, tpc) ? EINVAL : 0;
4571}
4572
4573static void
4574ath_sysctlattach(struct ath_softc *sc)
4575{
4576	struct sysctl_ctx_list *ctx = device_get_sysctl_ctx(sc->sc_dev);
4577	struct sysctl_oid *tree = device_get_sysctl_tree(sc->sc_dev);
4578
4579	ath_hal_getcountrycode(sc->sc_ah, &sc->sc_countrycode);
4580	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4581		"countrycode", CTLFLAG_RD, &sc->sc_countrycode, 0,
4582		"EEPROM country code");
4583	ath_hal_getregdomain(sc->sc_ah, &sc->sc_regdomain);
4584	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4585		"regdomain", CTLFLAG_RD, &sc->sc_regdomain, 0,
4586		"EEPROM regdomain code");
4587	sc->sc_debug = ath_debug;
4588	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4589		"debug", CTLFLAG_RW, &sc->sc_debug, 0,
4590		"control debugging printfs");
4591
4592	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4593		"slottime", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4594		ath_sysctl_slottime, "I", "802.11 slot time (us)");
4595	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4596		"acktimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4597		ath_sysctl_acktimeout, "I", "802.11 ACK timeout (us)");
4598	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4599		"ctstimeout", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4600		ath_sysctl_ctstimeout, "I", "802.11 CTS timeout (us)");
4601	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4602		"softled", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4603		ath_sysctl_softled, "I", "enable/disable software LED support");
4604	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4605		"ledpin", CTLFLAG_RW, &sc->sc_ledpin, 0,
4606		"GPIO pin connected to LED");
4607	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4608		"ledon", CTLFLAG_RW, &sc->sc_ledon, 0,
4609		"setting to turn LED on");
4610	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4611		"ledidle", CTLFLAG_RW, &sc->sc_ledidle, 0,
4612		"idle time for inactivity LED (ticks)");
4613	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4614		"txantenna", CTLFLAG_RW, &sc->sc_txantenna, 0,
4615		"tx antenna (0=auto)");
4616	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4617		"rxantenna", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4618		ath_sysctl_rxantenna, "I", "default/rx antenna");
4619	if (sc->sc_hasdiversity)
4620		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4621			"diversity", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4622			ath_sysctl_diversity, "I", "antenna diversity");
4623	sc->sc_txintrperiod = ATH_TXINTR_PERIOD;
4624	SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4625		"txintrperiod", CTLFLAG_RW, &sc->sc_txintrperiod, 0,
4626		"tx descriptor batching");
4627	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4628		"diag", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4629		ath_sysctl_diag, "I", "h/w diagnostic control");
4630	SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4631		"tpscale", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4632		ath_sysctl_tpscale, "I", "tx power scaling");
4633	if (sc->sc_hastpc)
4634		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(tree), OID_AUTO,
4635			"tpc", CTLTYPE_INT | CTLFLAG_RW, sc, 0,
4636			ath_sysctl_tpc, "I", "enable/disable per-packet TPC");
4637}
4638
4639static void
4640ath_bpfattach(struct ath_softc *sc)
4641{
4642	struct ifnet *ifp = &sc->sc_if;
4643
4644	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
4645		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
4646		&sc->sc_drvbpf);
4647	/*
4648	 * Initialize constant fields.
4649	 * XXX make header lengths a multiple of 32-bits so subsequent
4650	 *     headers are properly aligned; this is a kludge to keep
4651	 *     certain applications happy.
4652	 *
4653	 * NB: the channel is setup each time we transition to the
4654	 *     RUN state to avoid filling it in for each frame.
4655	 */
4656	sc->sc_tx_th_len = roundup(sizeof(sc->sc_tx_th), sizeof(u_int32_t));
4657	sc->sc_tx_th.wt_ihdr.it_len = htole16(sc->sc_tx_th_len);
4658	sc->sc_tx_th.wt_ihdr.it_present = htole32(ATH_TX_RADIOTAP_PRESENT);
4659
4660	sc->sc_rx_rt_len = roundup(sizeof(sc->sc_rx_th), sizeof(u_int32_t));
4661	sc->sc_rx_th.wr_ihdr.it_len = htole16(sc->sc_rx_rt_len);
4662	sc->sc_rx_th.wr_ihdr.it_present = htole32(ATH_RX_RADIOTAP_PRESENT);
4663}
4664
4665/*
4666 * Announce various information on device/driver attach.
4667 */
4668static void
4669ath_announce(struct ath_softc *sc)
4670{
4671#define	HAL_MODE_DUALBAND	(HAL_MODE_11A|HAL_MODE_11B)
4672	struct ifnet *ifp = &sc->sc_if;
4673	struct ath_hal *ah = sc->sc_ah;
4674	u_int modes, cc;
4675
4676	if_printf(ifp, "mac %d.%d phy %d.%d",
4677		ah->ah_macVersion, ah->ah_macRev,
4678		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
4679	/*
4680	 * Print radio revision(s).  We check the wireless modes
4681	 * to avoid falsely printing revs for inoperable parts.
4682	 * Dual-band radio revs are returned in the 5Ghz rev number.
4683	 */
4684	ath_hal_getcountrycode(ah, &cc);
4685	modes = ath_hal_getwirelessmodes(ah, cc);
4686	if ((modes & HAL_MODE_DUALBAND) == HAL_MODE_DUALBAND) {
4687		if (ah->ah_analog5GhzRev && ah->ah_analog2GhzRev)
4688			printf(" 5ghz radio %d.%d 2ghz radio %d.%d",
4689				ah->ah_analog5GhzRev >> 4,
4690				ah->ah_analog5GhzRev & 0xf,
4691				ah->ah_analog2GhzRev >> 4,
4692				ah->ah_analog2GhzRev & 0xf);
4693		else
4694			printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4695				ah->ah_analog5GhzRev & 0xf);
4696	} else
4697		printf(" radio %d.%d", ah->ah_analog5GhzRev >> 4,
4698			ah->ah_analog5GhzRev & 0xf);
4699	printf("\n");
4700	if (bootverbose) {
4701		int i;
4702		for (i = 0; i <= WME_AC_VO; i++) {
4703			struct ath_txq *txq = sc->sc_ac2q[i];
4704			if_printf(ifp, "Use hw queue %u for %s traffic\n",
4705				txq->axq_qnum, ieee80211_wme_acnames[i]);
4706		}
4707		if_printf(ifp, "Use hw queue %u for CAB traffic\n",
4708			sc->sc_cabq->axq_qnum);
4709		if_printf(ifp, "Use hw queue %u for beacons\n", sc->sc_bhalq);
4710	}
4711#undef HAL_MODE_DUALBAND
4712}
4713