if_ath.c revision 121840
1/*-
2 * Copyright (c) 2002, 2003 Sam Leffler, Errno Consulting
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice, this list of conditions and the following disclaimer,
10 *    without modification.
11 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
12 *    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
13 *    redistribution must be conditioned upon including a substantially
14 *    similar Disclaimer requirement for further binary redistribution.
15 * 3. Neither the names of the above-listed copyright holders nor the names
16 *    of any contributors may be used to endorse or promote products derived
17 *    from this software without specific prior written permission.
18 *
19 * Alternatively, this software may be distributed under the terms of the
20 * GNU General Public License ("GPL") version 2 as published by the Free
21 * Software Foundation.
22 *
23 * NO WARRANTY
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26 * LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
27 * AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
28 * THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
29 * OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
32 * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
34 * THE POSSIBILITY OF SUCH DAMAGES.
35 */
36
37#include <sys/cdefs.h>
38__FBSDID("$FreeBSD: head/sys/dev/ath/if_ath.c 121840 2003-11-01 03:37:33Z sam $");
39
40/*
41 * Driver for the Atheros Wireless LAN controller.
42 *
43 * This software is derived from work of Atsushi Onoe; his contribution
44 * is greatly appreciated.
45 */
46
47#include "opt_inet.h"
48
49#include <sys/param.h>
50#include <sys/systm.h>
51#include <sys/sysctl.h>
52#include <sys/mbuf.h>
53#include <sys/malloc.h>
54#include <sys/lock.h>
55#include <sys/mutex.h>
56#include <sys/kernel.h>
57#include <sys/socket.h>
58#include <sys/sockio.h>
59#include <sys/errno.h>
60#include <sys/callout.h>
61#include <sys/bus.h>
62#include <sys/endian.h>
63
64#include <machine/bus.h>
65
66#include <net/if.h>
67#include <net/if_dl.h>
68#include <net/if_media.h>
69#include <net/if_arp.h>
70#include <net/ethernet.h>
71#include <net/if_llc.h>
72
73#include <net80211/ieee80211_var.h>
74
75#include <net/bpf.h>
76
77#ifdef INET
78#include <netinet/in.h>
79#include <netinet/if_ether.h>
80#endif
81
82#define	AR_DEBUG
83#include <dev/ath/if_athvar.h>
84#include <contrib/dev/ath/ah_desc.h>
85
86/* unalligned little endian access */
87#define LE_READ_2(p)							\
88	((u_int16_t)							\
89	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8)))
90#define LE_READ_4(p)							\
91	((u_int32_t)							\
92	 ((((u_int8_t *)(p))[0]      ) | (((u_int8_t *)(p))[1] <<  8) |	\
93	  (((u_int8_t *)(p))[2] << 16) | (((u_int8_t *)(p))[3] << 24)))
94
95static void	ath_init(void *);
96static void	ath_stop(struct ifnet *);
97static void	ath_start(struct ifnet *);
98static void	ath_reset(struct ath_softc *);
99static int	ath_media_change(struct ifnet *);
100static void	ath_watchdog(struct ifnet *);
101static int	ath_ioctl(struct ifnet *, u_long, caddr_t);
102static void	ath_fatal_proc(void *, int);
103static void	ath_rxorn_proc(void *, int);
104static void	ath_bmiss_proc(void *, int);
105static void	ath_initkeytable(struct ath_softc *);
106static void	ath_mode_init(struct ath_softc *);
107static int	ath_beacon_alloc(struct ath_softc *, struct ieee80211_node *);
108static void	ath_beacon_proc(void *, int);
109static void	ath_beacon_free(struct ath_softc *);
110static void	ath_beacon_config(struct ath_softc *);
111static int	ath_desc_alloc(struct ath_softc *);
112static void	ath_desc_free(struct ath_softc *);
113static struct ieee80211_node *ath_node_alloc(struct ieee80211com *);
114static void	ath_node_free(struct ieee80211com *, struct ieee80211_node *);
115static void	ath_node_copy(struct ieee80211com *,
116			struct ieee80211_node *, const struct ieee80211_node *);
117static u_int8_t	ath_node_getrssi(struct ieee80211com *,
118			struct ieee80211_node *);
119static int	ath_rxbuf_init(struct ath_softc *, struct ath_buf *);
120static void	ath_rx_proc(void *, int);
121static int	ath_tx_start(struct ath_softc *, struct ieee80211_node *,
122			     struct ath_buf *, struct mbuf *);
123static void	ath_tx_proc(void *, int);
124static int	ath_chan_set(struct ath_softc *, struct ieee80211_channel *);
125static void	ath_draintxq(struct ath_softc *);
126static void	ath_stoprecv(struct ath_softc *);
127static int	ath_startrecv(struct ath_softc *);
128static void	ath_next_scan(void *);
129static void	ath_calibrate(void *);
130static int	ath_newstate(struct ieee80211com *, enum ieee80211_state, int);
131static void	ath_newassoc(struct ieee80211com *,
132			struct ieee80211_node *, int);
133static int	ath_getchannels(struct ath_softc *, u_int cc, HAL_BOOL outdoor);
134
135static int	ath_rate_setup(struct ath_softc *sc, u_int mode);
136static void	ath_setcurmode(struct ath_softc *, enum ieee80211_phymode);
137static void	ath_rate_ctl_reset(struct ath_softc *, enum ieee80211_state);
138static void	ath_rate_ctl(void *, struct ieee80211_node *);
139
140SYSCTL_DECL(_hw_ath);
141
142/* XXX validate sysctl values */
143static	int ath_dwelltime = 200;		/* 5 channels/second */
144SYSCTL_INT(_hw_ath, OID_AUTO, dwell, CTLFLAG_RW, &ath_dwelltime,
145	    0, "channel dwell time (ms) for AP/station scanning");
146static	int ath_calinterval = 30;		/* calibrate every 30 secs */
147SYSCTL_INT(_hw_ath, OID_AUTO, calibrate, CTLFLAG_RW, &ath_calinterval,
148	    0, "chip calibration interval (secs)");
149static	int ath_outdoor = AH_TRUE;		/* outdoor operation */
150SYSCTL_INT(_hw_ath, OID_AUTO, outdoor, CTLFLAG_RD, &ath_outdoor,
151	    0, "enable/disable outdoor operation");
152static	int ath_countrycode = CTRY_DEFAULT;	/* country code */
153SYSCTL_INT(_hw_ath, OID_AUTO, countrycode, CTLFLAG_RD, &ath_countrycode,
154	    0, "country code");
155static	int ath_regdomain = 0;			/* regulatory domain */
156SYSCTL_INT(_hw_ath, OID_AUTO, regdomain, CTLFLAG_RD, &ath_regdomain,
157	    0, "regulatory domain");
158
159#ifdef AR_DEBUG
160int	ath_debug = 0;
161SYSCTL_INT(_hw_ath, OID_AUTO, debug, CTLFLAG_RW, &ath_debug,
162	    0, "control debugging printfs");
163#define	IFF_DUMPPKTS(_ifp) \
164	(ath_debug || \
165	    ((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
166static	void ath_printrxbuf(struct ath_buf *bf, int);
167static	void ath_printtxbuf(struct ath_buf *bf, int);
168#define	DPRINTF(X)	if (ath_debug) printf X
169#define	DPRINTF2(X)	if (ath_debug > 1) printf X
170#else
171#define	IFF_DUMPPKTS(_ifp) \
172	(((_ifp)->if_flags & (IFF_DEBUG|IFF_LINK2)) == (IFF_DEBUG|IFF_LINK2))
173#define	DPRINTF(X)
174#define	DPRINTF2(X)
175#endif
176
177int
178ath_attach(u_int16_t devid, struct ath_softc *sc)
179{
180	struct ieee80211com *ic = &sc->sc_ic;
181	struct ifnet *ifp = &ic->ic_if;
182	struct ath_hal *ah;
183	HAL_STATUS status;
184	int error = 0;
185
186	DPRINTF(("ath_attach: devid 0x%x\n", devid));
187
188	/* set these up early for if_printf use */
189	if_initname(ifp, device_get_name(sc->sc_dev),
190	    device_get_unit(sc->sc_dev));
191
192	ah = ath_hal_attach(devid, sc, sc->sc_st, sc->sc_sh, &status);
193	if (ah == NULL) {
194		if_printf(ifp, "unable to attach hardware; HAL status %u\n",
195			status);
196		error = ENXIO;
197		goto bad;
198	}
199	if (ah->ah_abi != HAL_ABI_VERSION) {
200		if_printf(ifp, "HAL ABI mismatch detected (0x%x != 0x%x)\n",
201			ah->ah_abi, HAL_ABI_VERSION);
202		error = ENXIO;
203		goto bad;
204	}
205	if_printf(ifp, "mac %d.%d phy %d.%d",
206		ah->ah_macVersion, ah->ah_macRev,
207		ah->ah_phyRev >> 4, ah->ah_phyRev & 0xf);
208	if (ah->ah_analog5GhzRev)
209		printf(" 5ghz radio %d.%d",
210			ah->ah_analog5GhzRev >> 4, ah->ah_analog5GhzRev & 0xf);
211	if (ah->ah_analog2GhzRev)
212		printf(" 2ghz radio %d.%d",
213			ah->ah_analog2GhzRev >> 4, ah->ah_analog2GhzRev & 0xf);
214	printf("\n");
215	sc->sc_ah = ah;
216	sc->sc_invalid = 0;	/* ready to go, enable interrupt handling */
217
218	/*
219	 * Collect the channel list using the default country
220	 * code and including outdoor channels.  The 802.11 layer
221	 * is resposible for filtering this list based on settings
222	 * like the phy mode.
223	 */
224	error = ath_getchannels(sc, ath_countrycode, ath_outdoor);
225	if (error != 0)
226		goto bad;
227	/*
228	 * Copy these back; they are set as a side effect
229	 * of constructing the channel list.
230	 */
231	ath_regdomain = ath_hal_getregdomain(ah);
232	ath_countrycode = ath_hal_getcountrycode(ah);
233
234	/*
235	 * Setup rate tables for all potential media types.
236	 */
237	ath_rate_setup(sc, IEEE80211_MODE_11A);
238	ath_rate_setup(sc, IEEE80211_MODE_11B);
239	ath_rate_setup(sc, IEEE80211_MODE_11G);
240	ath_rate_setup(sc, IEEE80211_MODE_TURBO);
241
242	error = ath_desc_alloc(sc);
243	if (error != 0) {
244		if_printf(ifp, "failed to allocate descriptors: %d\n", error);
245		goto bad;
246	}
247	callout_init(&sc->sc_scan_ch, CALLOUT_MPSAFE);
248	callout_init(&sc->sc_cal_ch, CALLOUT_MPSAFE);
249
250	ATH_TXBUF_LOCK_INIT(sc);
251	ATH_TXQ_LOCK_INIT(sc);
252
253	TASK_INIT(&sc->sc_txtask, 0, ath_tx_proc, sc);
254	TASK_INIT(&sc->sc_rxtask, 0, ath_rx_proc, sc);
255	TASK_INIT(&sc->sc_swbatask, 0, ath_beacon_proc, sc);
256	TASK_INIT(&sc->sc_rxorntask, 0, ath_rxorn_proc, sc);
257	TASK_INIT(&sc->sc_fataltask, 0, ath_fatal_proc, sc);
258	TASK_INIT(&sc->sc_bmisstask, 0, ath_bmiss_proc, sc);
259
260	/*
261	 * For now just pre-allocate one data queue and one
262	 * beacon queue.  Note that the HAL handles resetting
263	 * them at the needed time.  Eventually we'll want to
264	 * allocate more tx queues for splitting management
265	 * frames and for QOS support.
266	 */
267	sc->sc_txhalq = ath_hal_setuptxqueue(ah,
268		HAL_TX_QUEUE_DATA,
269		AH_TRUE			/* enable interrupts */
270	);
271	if (sc->sc_txhalq == (u_int) -1) {
272		if_printf(ifp, "unable to setup a data xmit queue!\n");
273		goto bad;
274	}
275	sc->sc_bhalq = ath_hal_setuptxqueue(ah,
276		HAL_TX_QUEUE_BEACON,
277		AH_TRUE			/* enable interrupts */
278	);
279	if (sc->sc_bhalq == (u_int) -1) {
280		if_printf(ifp, "unable to setup a beacon xmit queue!\n");
281		goto bad;
282	}
283
284	ifp->if_softc = sc;
285	ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
286	ifp->if_start = ath_start;
287	ifp->if_watchdog = ath_watchdog;
288	ifp->if_ioctl = ath_ioctl;
289	ifp->if_init = ath_init;
290	ifp->if_snd.ifq_maxlen = IFQ_MAXLEN;
291
292	ic->ic_softc = sc;
293	ic->ic_newassoc = ath_newassoc;
294	/* XXX not right but it's not used anywhere important */
295	ic->ic_phytype = IEEE80211_T_OFDM;
296	ic->ic_opmode = IEEE80211_M_STA;
297	ic->ic_caps = IEEE80211_C_WEP		/* wep supported */
298		| IEEE80211_C_IBSS		/* ibss, nee adhoc, mode */
299		| IEEE80211_C_HOSTAP		/* hostap mode */
300		| IEEE80211_C_MONITOR		/* monitor mode */
301		| IEEE80211_C_SHPREAMBLE	/* short preamble supported */
302		| IEEE80211_C_RCVMGT;		/* recv management frames */
303
304	/* get mac address from hardware */
305	ath_hal_getmac(ah, ic->ic_myaddr);
306
307	/* call MI attach routine. */
308	ieee80211_ifattach(ifp);
309	/* override default methods */
310	ic->ic_node_alloc = ath_node_alloc;
311	ic->ic_node_free = ath_node_free;
312	ic->ic_node_copy = ath_node_copy;
313	ic->ic_node_getrssi = ath_node_getrssi;
314	sc->sc_newstate = ic->ic_newstate;
315	ic->ic_newstate = ath_newstate;
316	/* complete initialization */
317	ieee80211_media_init(ifp, ath_media_change, ieee80211_media_status);
318
319	bpfattach2(ifp, DLT_IEEE802_11_RADIO,
320		sizeof(struct ieee80211_frame) + sizeof(sc->sc_tx_th),
321		&sc->sc_drvbpf);
322	/*
323	 * Initialize constant fields.
324	 *
325	 * NB: the channel is setup each time we transition to the
326	 *     RUN state to avoid filling it in for each frame.
327	 */
328	sc->sc_tx_th.wt_ihdr.it_len = sizeof(sc->sc_tx_th);
329	sc->sc_tx_th.wt_ihdr.it_present = ATH_TX_RADIOTAP_PRESENT;
330
331	sc->sc_rx_th.wr_ihdr.it_len = sizeof(sc->sc_rx_th);
332	sc->sc_rx_th.wr_ihdr.it_present = ATH_RX_RADIOTAP_PRESENT;
333
334	if_printf(ifp, "802.11 address: %s\n", ether_sprintf(ic->ic_myaddr));
335
336	return 0;
337bad:
338	if (ah)
339		ath_hal_detach(ah);
340	sc->sc_invalid = 1;
341	return error;
342}
343
344int
345ath_detach(struct ath_softc *sc)
346{
347	struct ifnet *ifp = &sc->sc_ic.ic_if;
348
349	DPRINTF(("ath_detach: if_flags %x\n", ifp->if_flags));
350
351	ath_stop(ifp);
352	bpfdetach(ifp);
353	ath_desc_free(sc);
354	ath_hal_detach(sc->sc_ah);
355	ieee80211_ifdetach(ifp);
356
357	ATH_TXBUF_LOCK_DESTROY(sc);
358	ATH_TXQ_LOCK_DESTROY(sc);
359
360	return 0;
361}
362
363void
364ath_suspend(struct ath_softc *sc)
365{
366	struct ifnet *ifp = &sc->sc_ic.ic_if;
367
368	DPRINTF(("ath_suspend: if_flags %x\n", ifp->if_flags));
369
370	ath_stop(ifp);
371}
372
373void
374ath_resume(struct ath_softc *sc)
375{
376	struct ifnet *ifp = &sc->sc_ic.ic_if;
377
378	DPRINTF(("ath_resume: if_flags %x\n", ifp->if_flags));
379
380	if (ifp->if_flags & IFF_UP) {
381		ath_init(ifp);
382		if (ifp->if_flags & IFF_RUNNING)
383			ath_start(ifp);
384	}
385}
386
387void
388ath_shutdown(struct ath_softc *sc)
389{
390	struct ifnet *ifp = &sc->sc_ic.ic_if;
391
392	DPRINTF(("ath_shutdown: if_flags %x\n", ifp->if_flags));
393
394	ath_stop(ifp);
395}
396
397void
398ath_intr(void *arg)
399{
400	struct ath_softc *sc = arg;
401	struct ieee80211com *ic = &sc->sc_ic;
402	struct ifnet *ifp = &ic->ic_if;
403	struct ath_hal *ah = sc->sc_ah;
404	HAL_INT status;
405
406	if (sc->sc_invalid) {
407		/*
408		 * The hardware is not ready/present, don't touch anything.
409		 * Note this can happen early on if the IRQ is shared.
410		 */
411		DPRINTF(("ath_intr: invalid; ignored\n"));
412		return;
413	}
414	if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) != (IFF_RUNNING|IFF_UP)) {
415		DPRINTF(("ath_intr: if_flags 0x%x\n", ifp->if_flags));
416		ath_hal_getisr(ah, &status);	/* clear ISR */
417		ath_hal_intrset(ah, 0);		/* disable further intr's */
418		return;
419	}
420	ath_hal_getisr(ah, &status);		/* NB: clears ISR too */
421	DPRINTF2(("ath_intr: status 0x%x\n", status));
422#ifdef AR_DEBUG
423	if (ath_debug &&
424	    (status & (HAL_INT_FATAL|HAL_INT_RXORN|HAL_INT_BMISS))) {
425		if_printf(ifp, "ath_intr: status 0x%x\n", status);
426		ath_hal_dumpstate(ah);
427	}
428#endif /* AR_DEBUG */
429	status &= sc->sc_imask;			/* discard unasked for bits */
430	if (status & HAL_INT_FATAL) {
431		sc->sc_stats.ast_hardware++;
432		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
433		taskqueue_enqueue(taskqueue_swi, &sc->sc_fataltask);
434	} else if (status & HAL_INT_RXORN) {
435		sc->sc_stats.ast_rxorn++;
436		ath_hal_intrset(ah, 0);		/* disable intr's until reset */
437		taskqueue_enqueue(taskqueue_swi, &sc->sc_rxorntask);
438	} else {
439		if (status & HAL_INT_RXEOL) {
440			/*
441			 * NB: the hardware should re-read the link when
442			 *     RXE bit is written, but it doesn't work at
443			 *     least on older hardware revs.
444			 */
445			sc->sc_stats.ast_rxeol++;
446			sc->sc_rxlink = NULL;
447		}
448		if (status & HAL_INT_TXURN) {
449			sc->sc_stats.ast_txurn++;
450			/* bump tx trigger level */
451			ath_hal_updatetxtriglevel(ah, AH_TRUE);
452		}
453		if (status & HAL_INT_RX)
454			taskqueue_enqueue(taskqueue_swi, &sc->sc_rxtask);
455		if (status & HAL_INT_TX)
456			taskqueue_enqueue(taskqueue_swi, &sc->sc_txtask);
457		if (status & HAL_INT_SWBA)
458			taskqueue_enqueue(taskqueue_swi, &sc->sc_swbatask);
459		if (status & HAL_INT_BMISS) {
460			sc->sc_stats.ast_bmiss++;
461			taskqueue_enqueue(taskqueue_swi, &sc->sc_bmisstask);
462		}
463	}
464}
465
466static void
467ath_fatal_proc(void *arg, int pending)
468{
469	struct ath_softc *sc = arg;
470
471	device_printf(sc->sc_dev, "hardware error; resetting\n");
472	ath_reset(sc);
473}
474
475static void
476ath_rxorn_proc(void *arg, int pending)
477{
478	struct ath_softc *sc = arg;
479
480	device_printf(sc->sc_dev, "rx FIFO overrun; resetting\n");
481	ath_reset(sc);
482}
483
484static void
485ath_bmiss_proc(void *arg, int pending)
486{
487	struct ath_softc *sc = arg;
488	struct ieee80211com *ic = &sc->sc_ic;
489
490	DPRINTF(("ath_bmiss_proc: pending %u\n", pending));
491	KASSERT(ic->ic_opmode == IEEE80211_M_STA,
492		("unexpect operating mode %u", ic->ic_opmode));
493	if (ic->ic_state == IEEE80211_S_RUN)
494		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
495}
496
497static u_int
498ath_chan2flags(struct ieee80211com *ic, struct ieee80211_channel *chan)
499{
500	static const u_int modeflags[] = {
501		0,			/* IEEE80211_MODE_AUTO */
502		CHANNEL_A,		/* IEEE80211_MODE_11A */
503		CHANNEL_B,		/* IEEE80211_MODE_11B */
504		CHANNEL_PUREG,		/* IEEE80211_MODE_11G */
505		CHANNEL_T		/* IEEE80211_MODE_TURBO */
506	};
507	return modeflags[ieee80211_chan2mode(ic, chan)];
508}
509
510static void
511ath_init(void *arg)
512{
513	struct ath_softc *sc = (struct ath_softc *) arg;
514	struct ieee80211com *ic = &sc->sc_ic;
515	struct ifnet *ifp = &ic->ic_if;
516	struct ieee80211_node *ni;
517	enum ieee80211_phymode mode;
518	struct ath_hal *ah = sc->sc_ah;
519	HAL_STATUS status;
520	HAL_CHANNEL hchan;
521
522	DPRINTF(("ath_init: if_flags 0x%x\n", ifp->if_flags));
523
524	ATH_LOCK(sc);
525	/*
526	 * Stop anything previously setup.  This is safe
527	 * whether this is the first time through or not.
528	 */
529	ath_stop(ifp);
530
531	/*
532	 * The basic interface to setting the hardware in a good
533	 * state is ``reset''.  On return the hardware is known to
534	 * be powered up and with interrupts disabled.  This must
535	 * be followed by initialization of the appropriate bits
536	 * and then setup of the interrupt mask.
537	 */
538	hchan.channel = ic->ic_ibss_chan->ic_freq;
539	hchan.channelFlags = ath_chan2flags(ic, ic->ic_ibss_chan);
540	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_FALSE, &status)) {
541		if_printf(ifp, "unable to reset hardware; hal status %u\n",
542			status);
543		goto done;
544	}
545
546	/*
547	 * Setup the hardware after reset: the key cache
548	 * is filled as needed and the receive engine is
549	 * set going.  Frame transmit is handled entirely
550	 * in the frame output path; there's nothing to do
551	 * here except setup the interrupt mask.
552	 */
553	if (ic->ic_flags & IEEE80211_F_WEPON)
554		ath_initkeytable(sc);
555	if (ath_startrecv(sc) != 0) {
556		if_printf(ifp, "unable to start recv logic\n");
557		goto done;
558	}
559
560	/*
561	 * Enable interrupts.
562	 */
563	sc->sc_imask = HAL_INT_RX | HAL_INT_TX
564		  | HAL_INT_RXEOL | HAL_INT_RXORN
565		  | HAL_INT_FATAL | HAL_INT_GLOBAL;
566	ath_hal_intrset(ah, sc->sc_imask);
567
568	ifp->if_flags |= IFF_RUNNING;
569	ic->ic_state = IEEE80211_S_INIT;
570
571	/*
572	 * The hardware should be ready to go now so it's safe
573	 * to kick the 802.11 state machine as it's likely to
574	 * immediately call back to us to send mgmt frames.
575	 */
576	ni = ic->ic_bss;
577	ni->ni_chan = ic->ic_ibss_chan;
578	mode = ieee80211_chan2mode(ic, ni->ni_chan);
579	if (mode != sc->sc_curmode)
580		ath_setcurmode(sc, mode);
581	if (ic->ic_opmode != IEEE80211_M_MONITOR)
582		ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
583	else
584		ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
585done:
586	ATH_UNLOCK(sc);
587}
588
589static void
590ath_stop(struct ifnet *ifp)
591{
592	struct ieee80211com *ic = (struct ieee80211com *) ifp;
593	struct ath_softc *sc = ifp->if_softc;
594	struct ath_hal *ah = sc->sc_ah;
595
596	DPRINTF(("ath_stop: invalid %u if_flags 0x%x\n",
597		sc->sc_invalid, ifp->if_flags));
598
599	ATH_LOCK(sc);
600	if (ifp->if_flags & IFF_RUNNING) {
601		/*
602		 * Shutdown the hardware and driver:
603		 *    disable interrupts
604		 *    turn off timers
605		 *    clear transmit machinery
606		 *    clear receive machinery
607		 *    drain and release tx queues
608		 *    reclaim beacon resources
609		 *    reset 802.11 state machine
610		 *    power down hardware
611		 *
612		 * Note that some of this work is not possible if the
613		 * hardware is gone (invalid).
614		 */
615		ifp->if_flags &= ~IFF_RUNNING;
616		ifp->if_timer = 0;
617		if (!sc->sc_invalid)
618			ath_hal_intrset(ah, 0);
619		ath_draintxq(sc);
620		if (!sc->sc_invalid)
621			ath_stoprecv(sc);
622		else
623			sc->sc_rxlink = NULL;
624		IF_DRAIN(&ifp->if_snd);
625		ath_beacon_free(sc);
626		ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
627		if (!sc->sc_invalid)
628			ath_hal_setpower(ah, HAL_PM_FULL_SLEEP, 0);
629	}
630	ATH_UNLOCK(sc);
631}
632
633/*
634 * Reset the hardware w/o losing operational state.  This is
635 * basically a more efficient way of doing ath_stop, ath_init,
636 * followed by state transitions to the current 802.11
637 * operational state.  Used to recover from errors rx overrun
638 * and to reset the hardware when rf gain settings must be reset.
639 */
640static void
641ath_reset(struct ath_softc *sc)
642{
643	struct ieee80211com *ic = &sc->sc_ic;
644	struct ifnet *ifp = &ic->ic_if;
645	struct ath_hal *ah = sc->sc_ah;
646	struct ieee80211_channel *c;
647	HAL_STATUS status;
648	HAL_CHANNEL hchan;
649
650	/*
651	 * Convert to a HAL channel description with the flags
652	 * constrained to reflect the current operating mode.
653	 */
654	c = ic->ic_ibss_chan;
655	hchan.channel = c->ic_freq;
656	hchan.channelFlags = ath_chan2flags(ic, c);
657
658	ath_hal_intrset(ah, 0);		/* disable interrupts */
659	ath_draintxq(sc);		/* stop xmit side */
660	ath_stoprecv(sc);		/* stop recv side */
661	/* NB: indicate channel change so we do a full reset */
662	if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status))
663		if_printf(ifp, "%s: unable to reset hardware; hal status %u\n",
664			__func__, status);
665	ath_hal_intrset(ah, sc->sc_imask);
666	if (ath_startrecv(sc) != 0)	/* restart recv */
667		if_printf(ifp, "%s: unable to start recv logic\n", __func__);
668	ath_start(ifp);			/* restart xmit */
669	if (ic->ic_state == IEEE80211_S_RUN)
670		ath_beacon_config(sc);	/* restart beacons */
671}
672
673static void
674ath_start(struct ifnet *ifp)
675{
676	struct ath_softc *sc = ifp->if_softc;
677	struct ath_hal *ah = sc->sc_ah;
678	struct ieee80211com *ic = &sc->sc_ic;
679	struct ieee80211_node *ni;
680	struct ath_buf *bf;
681	struct mbuf *m;
682	struct ieee80211_frame *wh;
683
684	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
685		return;
686	for (;;) {
687		/*
688		 * Grab a TX buffer and associated resources.
689		 */
690		ATH_TXBUF_LOCK(sc);
691		bf = TAILQ_FIRST(&sc->sc_txbuf);
692		if (bf != NULL)
693			TAILQ_REMOVE(&sc->sc_txbuf, bf, bf_list);
694		ATH_TXBUF_UNLOCK(sc);
695		if (bf == NULL) {
696			DPRINTF(("ath_start: out of xmit buffers\n"));
697			sc->sc_stats.ast_tx_qstop++;
698			ifp->if_flags |= IFF_OACTIVE;
699			break;
700		}
701		/*
702		 * Poll the management queue for frames; they
703		 * have priority over normal data frames.
704		 */
705		IF_DEQUEUE(&ic->ic_mgtq, m);
706		if (m == NULL) {
707			/*
708			 * No data frames go out unless we're associated.
709			 */
710			if (ic->ic_state != IEEE80211_S_RUN) {
711				DPRINTF(("ath_start: ignore data packet, "
712					"state %u\n", ic->ic_state));
713				sc->sc_stats.ast_tx_discard++;
714				ATH_TXBUF_LOCK(sc);
715				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
716				ATH_TXBUF_UNLOCK(sc);
717				break;
718			}
719			IF_DEQUEUE(&ifp->if_snd, m);
720			if (m == NULL) {
721				ATH_TXBUF_LOCK(sc);
722				TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
723				ATH_TXBUF_UNLOCK(sc);
724				break;
725			}
726			ifp->if_opackets++;
727			BPF_MTAP(ifp, m);
728			/*
729			 * Encapsulate the packet in prep for transmission.
730			 */
731			m = ieee80211_encap(ifp, m, &ni);
732			if (m == NULL) {
733				DPRINTF(("ath_start: encapsulation failure\n"));
734				sc->sc_stats.ast_tx_encap++;
735				goto bad;
736			}
737			wh = mtod(m, struct ieee80211_frame *);
738			if (ic->ic_flags & IEEE80211_F_WEPON)
739				wh->i_fc[1] |= IEEE80211_FC1_WEP;
740		} else {
741			/*
742			 * Hack!  The referenced node pointer is in the
743			 * rcvif field of the packet header.  This is
744			 * placed there by ieee80211_mgmt_output because
745			 * we need to hold the reference with the frame
746			 * and there's no other way (other than packet
747			 * tags which we consider too expensive to use)
748			 * to pass it along.
749			 */
750			ni = (struct ieee80211_node *) m->m_pkthdr.rcvif;
751			m->m_pkthdr.rcvif = NULL;
752
753			wh = mtod(m, struct ieee80211_frame *);
754			if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
755			    IEEE80211_FC0_SUBTYPE_PROBE_RESP) {
756				/* fill time stamp */
757				u_int64_t tsf;
758				u_int32_t *tstamp;
759
760				tsf = ath_hal_gettsf64(ah);
761				/* XXX: adjust 100us delay to xmit */
762				tsf += 100;
763				tstamp = (u_int32_t *)&wh[1];
764				tstamp[0] = htole32(tsf & 0xffffffff);
765				tstamp[1] = htole32(tsf >> 32);
766			}
767			sc->sc_stats.ast_tx_mgmt++;
768		}
769		if (ic->ic_rawbpf)
770			bpf_mtap(ic->ic_rawbpf, m);
771
772		if (sc->sc_drvbpf) {
773			struct mbuf *mb;
774
775			MGETHDR(mb, M_DONTWAIT, m->m_type);
776			if (mb != NULL) {
777				sc->sc_tx_th.wt_rate =
778					ni->ni_rates.rs_rates[ni->ni_txrate];
779
780				mb->m_next = m;
781				mb->m_data = (caddr_t)&sc->sc_tx_th;
782				mb->m_len = sizeof(sc->sc_tx_th);
783				mb->m_pkthdr.len += mb->m_len;
784				bpf_mtap(sc->sc_drvbpf, mb);
785				m_free(mb);
786			}
787		}
788
789		if (ath_tx_start(sc, ni, bf, m)) {
790	bad:
791			ATH_TXBUF_LOCK(sc);
792			TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
793			ATH_TXBUF_UNLOCK(sc);
794			ifp->if_oerrors++;
795			if (ni && ni != ic->ic_bss)
796				ieee80211_free_node(ic, ni);
797			continue;
798		}
799
800		sc->sc_tx_timer = 5;
801		ifp->if_timer = 1;
802	}
803}
804
805static int
806ath_media_change(struct ifnet *ifp)
807{
808	int error;
809
810	error = ieee80211_media_change(ifp);
811	if (error == ENETRESET) {
812		if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
813		    (IFF_RUNNING|IFF_UP))
814			ath_init(ifp);		/* XXX lose error */
815		error = 0;
816	}
817	return error;
818}
819
820static void
821ath_watchdog(struct ifnet *ifp)
822{
823	struct ath_softc *sc = ifp->if_softc;
824	struct ieee80211com *ic = &sc->sc_ic;
825
826	ifp->if_timer = 0;
827	if ((ifp->if_flags & IFF_RUNNING) == 0 || sc->sc_invalid)
828		return;
829	if (sc->sc_tx_timer) {
830		if (--sc->sc_tx_timer == 0) {
831			if_printf(ifp, "device timeout\n");
832#ifdef AR_DEBUG
833			if (ath_debug)
834				ath_hal_dumpstate(sc->sc_ah);
835#endif /* AR_DEBUG */
836			ath_init(ifp);		/* XXX ath_reset??? */
837			ifp->if_oerrors++;
838			sc->sc_stats.ast_watchdog++;
839			return;
840		}
841		ifp->if_timer = 1;
842	}
843	if (ic->ic_fixed_rate == -1) {
844		/*
845		 * Run the rate control algorithm if we're not
846		 * locked at a fixed rate.
847		 */
848		if (ic->ic_opmode == IEEE80211_M_STA)
849			ath_rate_ctl(sc, ic->ic_bss);
850		else
851			ieee80211_iterate_nodes(ic, ath_rate_ctl, sc);
852	}
853	ieee80211_watchdog(ifp);
854}
855
856static int
857ath_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
858{
859	struct ath_softc *sc = ifp->if_softc;
860	struct ifreq *ifr = (struct ifreq *)data;
861	int error = 0;
862
863	ATH_LOCK(sc);
864	switch (cmd) {
865	case SIOCSIFFLAGS:
866		if (ifp->if_flags & IFF_UP) {
867			if (ifp->if_flags & IFF_RUNNING) {
868				/*
869				 * To avoid rescanning another access point,
870				 * do not call ath_init() here.  Instead,
871				 * only reflect promisc mode settings.
872				 */
873				ath_mode_init(sc);
874			} else {
875				/*
876				 * Beware of being called during detach to
877				 * reset promiscuous mode.  In that case we
878				 * will still be marked UP but not RUNNING.
879				 * However trying to re-init the interface
880				 * is the wrong thing to do as we've already
881				 * torn down much of our state.  There's
882				 * probably a better way to deal with this.
883				 */
884				if (!sc->sc_invalid)
885					ath_init(ifp);	/* XXX lose error */
886			}
887		} else
888			ath_stop(ifp);
889		break;
890	case SIOCADDMULTI:
891	case SIOCDELMULTI:
892		/*
893		 * The upper layer has already installed/removed
894		 * the multicast address(es), just recalculate the
895		 * multicast filter for the card.
896		 */
897		if (ifp->if_flags & IFF_RUNNING)
898			ath_mode_init(sc);
899		break;
900	case SIOCGATHSTATS:
901		copyout(&sc->sc_stats, ifr->ifr_data, sizeof (sc->sc_stats));
902		break;
903	default:
904		error = ieee80211_ioctl(ifp, cmd, data);
905		if (error == ENETRESET) {
906			if ((ifp->if_flags & (IFF_RUNNING|IFF_UP)) ==
907			    (IFF_RUNNING|IFF_UP))
908				ath_init(ifp);		/* XXX lose error */
909			error = 0;
910		}
911		break;
912	}
913	ATH_UNLOCK(sc);
914	return error;
915}
916
917/*
918 * Fill the hardware key cache with key entries.
919 */
920static void
921ath_initkeytable(struct ath_softc *sc)
922{
923	struct ieee80211com *ic = &sc->sc_ic;
924	struct ath_hal *ah = sc->sc_ah;
925	int i;
926
927	for (i = 0; i < IEEE80211_WEP_NKID; i++) {
928		struct ieee80211_wepkey *k = &ic->ic_nw_keys[i];
929		if (k->wk_len == 0)
930			ath_hal_keyreset(ah, i);
931		else
932			/* XXX return value */
933			/* NB: this uses HAL_KEYVAL == ieee80211_wepkey */
934			ath_hal_keyset(ah, i, (const HAL_KEYVAL *) k);
935	}
936}
937
938/*
939 * Calculate the receive filter according to the
940 * operating mode and state:
941 *
942 * o always accept unicast, broadcast, and multicast traffic
943 * o maintain current state of phy error reception
944 * o probe request frames are accepted only when operating in
945 *   hostap, adhoc, or monitor modes
946 * o enable promiscuous mode according to the interface state
947 * o accept beacons:
948 *   - when operating in adhoc mode so the 802.11 layer creates
949 *     node table entries for peers,
950 *   - when operating in station mode for collecting rssi data when
951 *     the station is otherwise quiet, or
952 *   - when scanning
953 */
954static u_int32_t
955ath_calcrxfilter(struct ath_softc *sc)
956{
957	struct ieee80211com *ic = &sc->sc_ic;
958	struct ath_hal *ah = sc->sc_ah;
959	struct ifnet *ifp = &ic->ic_if;
960	u_int32_t rfilt;
961
962	rfilt = (ath_hal_getrxfilter(ah) & HAL_RX_FILTER_PHYERR)
963	      | HAL_RX_FILTER_UCAST | HAL_RX_FILTER_BCAST | HAL_RX_FILTER_MCAST;
964	if (ic->ic_opmode != IEEE80211_M_STA)
965		rfilt |= HAL_RX_FILTER_PROBEREQ;
966	if (ic->ic_opmode != IEEE80211_M_HOSTAP &&
967	    (ifp->if_flags & IFF_PROMISC))
968		rfilt |= HAL_RX_FILTER_PROM;
969	if (ic->ic_opmode == IEEE80211_M_STA ||
970	    ic->ic_opmode == IEEE80211_M_IBSS ||
971	    ic->ic_state == IEEE80211_S_SCAN)
972		rfilt |= HAL_RX_FILTER_BEACON;
973	return rfilt;
974}
975
976static void
977ath_mode_init(struct ath_softc *sc)
978{
979	struct ieee80211com *ic = &sc->sc_ic;
980	struct ath_hal *ah = sc->sc_ah;
981	struct ifnet *ifp = &ic->ic_if;
982	u_int32_t rfilt, mfilt[2], val;
983	u_int8_t pos;
984	struct ifmultiaddr *ifma;
985
986	/* configure rx filter */
987	rfilt = ath_calcrxfilter(sc);
988	ath_hal_setrxfilter(ah, rfilt);
989
990	/* configure operational mode */
991	ath_hal_setopmode(ah, ic->ic_opmode);
992
993	/* calculate and install multicast filter */
994	if ((ifp->if_flags & IFF_ALLMULTI) == 0) {
995		mfilt[0] = mfilt[1] = 0;
996		TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) {
997			caddr_t dl;
998
999			/* calculate XOR of eight 6bit values */
1000			dl = LLADDR((struct sockaddr_dl *) ifma->ifma_addr);
1001			val = LE_READ_4(dl + 0);
1002			pos = (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1003			val = LE_READ_4(dl + 3);
1004			pos ^= (val >> 18) ^ (val >> 12) ^ (val >> 6) ^ val;
1005			pos &= 0x3f;
1006			mfilt[pos / 32] |= (1 << (pos % 32));
1007		}
1008	} else {
1009		mfilt[0] = mfilt[1] = ~0;
1010	}
1011	ath_hal_setmcastfilter(ah, mfilt[0], mfilt[1]);
1012	DPRINTF(("ath_mode_init: RX filter 0x%x, MC filter %08x:%08x\n",
1013		rfilt, mfilt[0], mfilt[1]));
1014}
1015
1016static void
1017ath_mbuf_load_cb(void *arg, bus_dma_segment_t *seg, int nseg, bus_size_t mapsize, int error)
1018{
1019	struct ath_buf *bf = arg;
1020
1021	KASSERT(nseg <= ATH_MAX_SCATTER,
1022		("ath_mbuf_load_cb: too many DMA segments %u", nseg));
1023	bf->bf_mapsize = mapsize;
1024	bf->bf_nseg = nseg;
1025	bcopy(seg, bf->bf_segs, nseg * sizeof (seg[0]));
1026}
1027
1028static int
1029ath_beacon_alloc(struct ath_softc *sc, struct ieee80211_node *ni)
1030{
1031	struct ieee80211com *ic = &sc->sc_ic;
1032	struct ifnet *ifp = &ic->ic_if;
1033	struct ath_hal *ah = sc->sc_ah;
1034	struct ieee80211_frame *wh;
1035	struct ath_buf *bf;
1036	struct ath_desc *ds;
1037	struct mbuf *m;
1038	int error, pktlen;
1039	u_int8_t *frm, rate;
1040	u_int16_t capinfo;
1041	struct ieee80211_rateset *rs;
1042	const HAL_RATE_TABLE *rt;
1043
1044	bf = sc->sc_bcbuf;
1045	if (bf->bf_m != NULL) {
1046		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1047		m_freem(bf->bf_m);
1048		bf->bf_m = NULL;
1049		bf->bf_node = NULL;
1050	}
1051	/*
1052	 * NB: the beacon data buffer must be 32-bit aligned;
1053	 * we assume the mbuf routines will return us something
1054	 * with this alignment (perhaps should assert).
1055	 */
1056	rs = &ni->ni_rates;
1057	pktlen = sizeof (struct ieee80211_frame)
1058	       + 8 + 2 + 2 + 2+ni->ni_esslen + 2+rs->rs_nrates + 3 + 6;
1059	if (rs->rs_nrates > IEEE80211_RATE_SIZE)
1060		pktlen += 2;
1061	if (pktlen <= MHLEN)
1062		MGETHDR(m, M_DONTWAIT, MT_DATA);
1063	else
1064		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1065	if (m == NULL) {
1066		DPRINTF(("ath_beacon_alloc: cannot get mbuf/cluster; size %u\n",
1067			pktlen));
1068		sc->sc_stats.ast_be_nombuf++;
1069		return ENOMEM;
1070	}
1071
1072	wh = mtod(m, struct ieee80211_frame *);
1073	wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
1074	    IEEE80211_FC0_SUBTYPE_BEACON;
1075	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
1076	*(u_int16_t *)wh->i_dur = 0;
1077	memcpy(wh->i_addr1, ifp->if_broadcastaddr, IEEE80211_ADDR_LEN);
1078	memcpy(wh->i_addr2, ic->ic_myaddr, IEEE80211_ADDR_LEN);
1079	memcpy(wh->i_addr3, ni->ni_bssid, IEEE80211_ADDR_LEN);
1080	*(u_int16_t *)wh->i_seq = 0;
1081
1082	/*
1083	 * beacon frame format
1084	 *	[8] time stamp
1085	 *	[2] beacon interval
1086	 *	[2] cabability information
1087	 *	[tlv] ssid
1088	 *	[tlv] supported rates
1089	 *	[tlv] parameter set (IBSS)
1090	 *	[tlv] extended supported rates
1091	 */
1092	frm = (u_int8_t *)&wh[1];
1093	memset(frm, 0, 8);	/* timestamp is set by hardware */
1094	frm += 8;
1095	*(u_int16_t *)frm = htole16(ni->ni_intval);
1096	frm += 2;
1097	if (ic->ic_opmode == IEEE80211_M_IBSS)
1098		capinfo = IEEE80211_CAPINFO_IBSS;
1099	else
1100		capinfo = IEEE80211_CAPINFO_ESS;
1101	if (ic->ic_flags & IEEE80211_F_WEPON)
1102		capinfo |= IEEE80211_CAPINFO_PRIVACY;
1103	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1104	    IEEE80211_IS_CHAN_2GHZ(ni->ni_chan))
1105		capinfo |= IEEE80211_CAPINFO_SHORT_PREAMBLE;
1106	if (ic->ic_flags & IEEE80211_F_SHSLOT)
1107		capinfo |= IEEE80211_CAPINFO_SHORT_SLOTTIME;
1108	*(u_int16_t *)frm = htole16(capinfo);
1109	frm += 2;
1110	*frm++ = IEEE80211_ELEMID_SSID;
1111	*frm++ = ni->ni_esslen;
1112	memcpy(frm, ni->ni_essid, ni->ni_esslen);
1113	frm += ni->ni_esslen;
1114	frm = ieee80211_add_rates(frm, rs);
1115	*frm++ = IEEE80211_ELEMID_DSPARMS;
1116	*frm++ = 1;
1117	*frm++ = ieee80211_chan2ieee(ic, ni->ni_chan);
1118	if (ic->ic_opmode == IEEE80211_M_IBSS) {
1119		*frm++ = IEEE80211_ELEMID_IBSSPARMS;
1120		*frm++ = 2;
1121		*frm++ = 0; *frm++ = 0;		/* TODO: ATIM window */
1122	} else {
1123		/* TODO: TIM */
1124		*frm++ = IEEE80211_ELEMID_TIM;
1125		*frm++ = 4;	/* length */
1126		*frm++ = 0;	/* DTIM count */
1127		*frm++ = 1;	/* DTIM period */
1128		*frm++ = 0;	/* bitmap control */
1129		*frm++ = 0;	/* Partial Virtual Bitmap (variable length) */
1130	}
1131	frm = ieee80211_add_xrates(frm, rs);
1132	m->m_pkthdr.len = m->m_len = frm - mtod(m, u_int8_t *);
1133	KASSERT(m->m_pkthdr.len <= pktlen,
1134		("beacon bigger than expected, len %u calculated %u",
1135		m->m_pkthdr.len, pktlen));
1136
1137	DPRINTF2(("ath_beacon_alloc: m %p len %u\n", m, m->m_len));
1138	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1139				     ath_mbuf_load_cb, bf,
1140				     BUS_DMA_NOWAIT);
1141	if (error != 0) {
1142		m_freem(m);
1143		return error;
1144	}
1145	KASSERT(bf->bf_nseg == 1,
1146		("ath_beacon_alloc: multi-segment packet; nseg %u",
1147		bf->bf_nseg));
1148	bf->bf_m = m;
1149
1150	/* setup descriptors */
1151	ds = bf->bf_desc;
1152
1153	ds->ds_link = 0;
1154	ds->ds_data = bf->bf_segs[0].ds_addr;
1155	/*
1156	 * Calculate rate code.
1157	 * XXX everything at min xmit rate
1158	 */
1159	rt = sc->sc_currates;
1160	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1161	if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
1162		rate = rt->info[0].rateCode | rt->info[0].shortPreamble;
1163	else
1164		rate = rt->info[0].rateCode;
1165	ath_hal_setuptxdesc(ah, ds
1166		, m->m_pkthdr.len + IEEE80211_CRC_LEN	/* packet length */
1167		, sizeof(struct ieee80211_frame)	/* header length */
1168		, HAL_PKT_TYPE_BEACON		/* Atheros packet type */
1169		, 0x20				/* txpower XXX */
1170		, rate, 1			/* series 0 rate/tries */
1171		, HAL_TXKEYIX_INVALID		/* no encryption */
1172		, 0				/* antenna mode */
1173		, HAL_TXDESC_NOACK		/* no ack for beacons */
1174		, 0				/* rts/cts rate */
1175		, 0				/* rts/cts duration */
1176	);
1177	/* NB: beacon's BufLen must be a multiple of 4 bytes */
1178	/* XXX verify mbuf data area covers this roundup */
1179	ath_hal_filltxdesc(ah, ds
1180		, roundup(bf->bf_segs[0].ds_len, 4)	/* buffer length */
1181		, AH_TRUE				/* first segment */
1182		, AH_TRUE				/* last segment */
1183	);
1184
1185	return 0;
1186}
1187
1188static void
1189ath_beacon_proc(void *arg, int pending)
1190{
1191	struct ath_softc *sc = arg;
1192	struct ieee80211com *ic = &sc->sc_ic;
1193	struct ath_buf *bf = sc->sc_bcbuf;
1194	struct ath_hal *ah = sc->sc_ah;
1195
1196	DPRINTF2(("%s: pending %u\n", __func__, pending));
1197	if (ic->ic_opmode == IEEE80211_M_STA ||
1198	    bf == NULL || bf->bf_m == NULL) {
1199		DPRINTF(("%s: ic_flags=%x bf=%p bf_m=%p\n",
1200			__func__, ic->ic_flags, bf, bf ? bf->bf_m : NULL));
1201		return;
1202	}
1203	/* TODO: update beacon to reflect PS poll state */
1204	if (!ath_hal_stoptxdma(ah, sc->sc_bhalq)) {
1205		DPRINTF(("%s: beacon queue %u did not stop?",
1206			__func__, sc->sc_bhalq));
1207		return;			/* busy, XXX is this right? */
1208	}
1209	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1210
1211	ath_hal_puttxbuf(ah, sc->sc_bhalq, bf->bf_daddr);
1212	ath_hal_txstart(ah, sc->sc_bhalq);
1213	DPRINTF2(("%s: TXDP%u = %p (%p)\n", __func__,
1214		sc->sc_bhalq, (caddr_t)bf->bf_daddr, bf->bf_desc));
1215}
1216
1217static void
1218ath_beacon_free(struct ath_softc *sc)
1219{
1220	struct ath_buf *bf = sc->sc_bcbuf;
1221
1222	if (bf->bf_m != NULL) {
1223		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1224		m_freem(bf->bf_m);
1225		bf->bf_m = NULL;
1226		bf->bf_node = NULL;
1227	}
1228}
1229
1230/*
1231 * Configure the beacon and sleep timers.
1232 *
1233 * When operating as an AP this resets the TSF and sets
1234 * up the hardware to notify us when we need to issue beacons.
1235 *
1236 * When operating in station mode this sets up the beacon
1237 * timers according to the timestamp of the last received
1238 * beacon and the current TSF, configures PCF and DTIM
1239 * handling, programs the sleep registers so the hardware
1240 * will wakeup in time to receive beacons, and configures
1241 * the beacon miss handling so we'll receive a BMISS
1242 * interrupt when we stop seeing beacons from the AP
1243 * we've associated with.
1244 */
1245static void
1246ath_beacon_config(struct ath_softc *sc)
1247{
1248	struct ath_hal *ah = sc->sc_ah;
1249	struct ieee80211com *ic = &sc->sc_ic;
1250	struct ieee80211_node *ni = ic->ic_bss;
1251	u_int32_t nexttbtt;
1252
1253	nexttbtt = (LE_READ_4(ni->ni_tstamp + 4) << 22) |
1254	    (LE_READ_4(ni->ni_tstamp) >> 10);
1255	DPRINTF(("%s: nexttbtt=%u\n", __func__, nexttbtt));
1256	nexttbtt += ni->ni_intval;
1257	if (ic->ic_opmode == IEEE80211_M_STA) {
1258		HAL_BEACON_STATE bs;
1259		u_int32_t bmisstime;
1260
1261		/* NB: no PCF support right now */
1262		memset(&bs, 0, sizeof(bs));
1263		bs.bs_intval = ni->ni_intval;
1264		bs.bs_nexttbtt = nexttbtt;
1265		bs.bs_dtimperiod = bs.bs_intval;
1266		bs.bs_nextdtim = nexttbtt;
1267		/*
1268		 * Calculate the number of consecutive beacons to miss
1269		 * before taking a BMISS interrupt.  The configuration
1270		 * is specified in ms, so we need to convert that to
1271		 * TU's and then calculate based on the beacon interval.
1272		 * Note that we clamp the result to at most 10 beacons.
1273		 */
1274		bmisstime = (ic->ic_bmisstimeout * 1000) / 1024;
1275		bs.bs_bmissthreshold = howmany(bmisstime,ni->ni_intval);
1276		if (bs.bs_bmissthreshold > 10)
1277			bs.bs_bmissthreshold = 10;
1278		else if (bs.bs_bmissthreshold <= 0)
1279			bs.bs_bmissthreshold = 1;
1280
1281		/*
1282		 * Calculate sleep duration.  The configuration is
1283		 * given in ms.  We insure a multiple of the beacon
1284		 * period is used.  Also, if the sleep duration is
1285		 * greater than the DTIM period then it makes senses
1286		 * to make it a multiple of that.
1287		 *
1288		 * XXX fixed at 100ms
1289		 */
1290		bs.bs_sleepduration =
1291			roundup((100 * 1000) / 1024, bs.bs_intval);
1292		if (bs.bs_sleepduration > bs.bs_dtimperiod)
1293			bs.bs_sleepduration = roundup(bs.bs_sleepduration, bs.bs_dtimperiod);
1294
1295		DPRINTF(("%s: intval %u nexttbtt %u dtim %u nextdtim %u bmiss %u sleep %u\n"
1296			, __func__
1297			, bs.bs_intval
1298			, bs.bs_nexttbtt
1299			, bs.bs_dtimperiod
1300			, bs.bs_nextdtim
1301			, bs.bs_bmissthreshold
1302			, bs.bs_sleepduration
1303		));
1304		ath_hal_intrset(ah, 0);
1305		/*
1306		 * Reset our tsf so the hardware will update the
1307		 * tsf register to reflect timestamps found in
1308		 * received beacons.
1309		 */
1310		ath_hal_resettsf(ah);
1311		ath_hal_beacontimers(ah, &bs, 0/*XXX*/, 0, 0);
1312		sc->sc_imask |= HAL_INT_BMISS;
1313		ath_hal_intrset(ah, sc->sc_imask);
1314	} else {
1315		DPRINTF(("%s: intval %u nexttbtt %u\n",
1316			__func__, ni->ni_intval, nexttbtt));
1317		ath_hal_intrset(ah, 0);
1318		ath_hal_beaconinit(ah, ic->ic_opmode,
1319			nexttbtt, ni->ni_intval);
1320		if (ic->ic_opmode != IEEE80211_M_MONITOR)
1321			sc->sc_imask |= HAL_INT_SWBA;	/* beacon prepare */
1322		ath_hal_intrset(ah, sc->sc_imask);
1323	}
1324}
1325
1326static void
1327ath_load_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
1328{
1329	bus_addr_t *paddr = (bus_addr_t*) arg;
1330	*paddr = segs->ds_addr;
1331}
1332
1333static int
1334ath_desc_alloc(struct ath_softc *sc)
1335{
1336	int i, bsize, error;
1337	struct ath_desc *ds;
1338	struct ath_buf *bf;
1339
1340	/* allocate descriptors */
1341	sc->sc_desc_len = sizeof(struct ath_desc) *
1342				(ATH_TXBUF * ATH_TXDESC + ATH_RXBUF + 1);
1343	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1344	if (error != 0)
1345		return error;
1346
1347	error = bus_dmamem_alloc(sc->sc_dmat, (void**) &sc->sc_desc,
1348				 BUS_DMA_NOWAIT, &sc->sc_ddmamap);
1349	if (error != 0)
1350		goto fail0;
1351
1352	error = bus_dmamap_load(sc->sc_dmat, sc->sc_ddmamap,
1353				sc->sc_desc, sc->sc_desc_len,
1354				ath_load_cb, &sc->sc_desc_paddr,
1355				BUS_DMA_NOWAIT);
1356	if (error != 0)
1357		goto fail1;
1358
1359	ds = sc->sc_desc;
1360	DPRINTF(("ath_desc_alloc: DMA map: %p (%d) -> %p (%lu)\n",
1361	    ds, sc->sc_desc_len,
1362	    (caddr_t) sc->sc_desc_paddr, /*XXX*/ (u_long) sc->sc_desc_len));
1363
1364	/* allocate buffers */
1365	bsize = sizeof(struct ath_buf) * (ATH_TXBUF + ATH_RXBUF + 1);
1366	bf = malloc(bsize, M_DEVBUF, M_NOWAIT | M_ZERO);
1367	if (bf == NULL)
1368		goto fail2;
1369	sc->sc_bufptr = bf;
1370
1371	TAILQ_INIT(&sc->sc_rxbuf);
1372	for (i = 0; i < ATH_RXBUF; i++, bf++, ds++) {
1373		bf->bf_desc = ds;
1374		bf->bf_daddr = sc->sc_desc_paddr +
1375		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1376		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1377					  &bf->bf_dmamap);
1378		if (error != 0)
1379			break;
1380		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1381	}
1382
1383	TAILQ_INIT(&sc->sc_txbuf);
1384	for (i = 0; i < ATH_TXBUF; i++, bf++, ds += ATH_TXDESC) {
1385		bf->bf_desc = ds;
1386		bf->bf_daddr = sc->sc_desc_paddr +
1387		    ((caddr_t)ds - (caddr_t)sc->sc_desc);
1388		error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT,
1389					  &bf->bf_dmamap);
1390		if (error != 0)
1391			break;
1392		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
1393	}
1394	TAILQ_INIT(&sc->sc_txq);
1395
1396	/* beacon buffer */
1397	bf->bf_desc = ds;
1398	bf->bf_daddr = sc->sc_desc_paddr + ((caddr_t)ds - (caddr_t)sc->sc_desc);
1399	error = bus_dmamap_create(sc->sc_dmat, BUS_DMA_NOWAIT, &bf->bf_dmamap);
1400	if (error != 0)
1401		return error;
1402	sc->sc_bcbuf = bf;
1403	return 0;
1404
1405fail2:
1406	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1407fail1:
1408	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1409fail0:
1410	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1411	sc->sc_ddmamap = NULL;
1412	return error;
1413}
1414
1415static void
1416ath_desc_free(struct ath_softc *sc)
1417{
1418	struct ath_buf *bf;
1419
1420	bus_dmamap_unload(sc->sc_dmat, sc->sc_ddmamap);
1421	bus_dmamem_free(sc->sc_dmat, sc->sc_desc, sc->sc_ddmamap);
1422	bus_dmamap_destroy(sc->sc_dmat, sc->sc_ddmamap);
1423
1424	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1425		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1426		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1427		m_freem(bf->bf_m);
1428	}
1429	TAILQ_FOREACH(bf, &sc->sc_txbuf, bf_list)
1430		bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1431	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
1432		if (bf->bf_m) {
1433			bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1434			bus_dmamap_destroy(sc->sc_dmat, bf->bf_dmamap);
1435			m_freem(bf->bf_m);
1436			bf->bf_m = NULL;
1437		}
1438	}
1439	if (sc->sc_bcbuf != NULL) {
1440		bus_dmamap_unload(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1441		bus_dmamap_destroy(sc->sc_dmat, sc->sc_bcbuf->bf_dmamap);
1442		sc->sc_bcbuf = NULL;
1443	}
1444
1445	TAILQ_INIT(&sc->sc_rxbuf);
1446	TAILQ_INIT(&sc->sc_txbuf);
1447	TAILQ_INIT(&sc->sc_txq);
1448	free(sc->sc_bufptr, M_DEVBUF);
1449	sc->sc_bufptr = NULL;
1450}
1451
1452static struct ieee80211_node *
1453ath_node_alloc(struct ieee80211com *ic)
1454{
1455	struct ath_node *an =
1456		malloc(sizeof(struct ath_node), M_DEVBUF, M_NOWAIT | M_ZERO);
1457	if (an) {
1458		int i;
1459		for (i = 0; i < ATH_RHIST_SIZE; i++)
1460			an->an_rx_hist[i].arh_ticks = ATH_RHIST_NOTIME;
1461		an->an_rx_hist_next = ATH_RHIST_SIZE-1;
1462		return &an->an_node;
1463	} else
1464		return NULL;
1465}
1466
1467static void
1468ath_node_free(struct ieee80211com *ic, struct ieee80211_node *ni)
1469{
1470        struct ath_softc *sc = ic->ic_if.if_softc;
1471	struct ath_buf *bf;
1472
1473	TAILQ_FOREACH(bf, &sc->sc_txq, bf_list) {
1474		if (bf->bf_node == ni)
1475			bf->bf_node = NULL;
1476	}
1477	free(ni, M_DEVBUF);
1478}
1479
1480static void
1481ath_node_copy(struct ieee80211com *ic,
1482	struct ieee80211_node *dst, const struct ieee80211_node *src)
1483{
1484	*(struct ath_node *)dst = *(const struct ath_node *)src;
1485}
1486
1487
1488static u_int8_t
1489ath_node_getrssi(struct ieee80211com *ic, struct ieee80211_node *ni)
1490{
1491	struct ath_node *an = ATH_NODE(ni);
1492	int i, now, nsamples, rssi;
1493
1494	/*
1495	 * Calculate the average over the last second of sampled data.
1496	 */
1497	now = ticks;
1498	nsamples = 0;
1499	rssi = 0;
1500	i = an->an_rx_hist_next;
1501	do {
1502		struct ath_recv_hist *rh = &an->an_rx_hist[i];
1503		if (rh->arh_ticks == ATH_RHIST_NOTIME)
1504			goto done;
1505		if (now - rh->arh_ticks > hz)
1506			goto done;
1507		rssi += rh->arh_rssi;
1508		nsamples++;
1509		if (i == 0)
1510			i = ATH_RHIST_SIZE-1;
1511		else
1512			i--;
1513	} while (i != an->an_rx_hist_next);
1514done:
1515	/*
1516	 * Return either the average or the last known
1517	 * value if there is no recent data.
1518	 */
1519	return (nsamples ? rssi / nsamples : an->an_rx_hist[i].arh_rssi);
1520}
1521
1522static int
1523ath_rxbuf_init(struct ath_softc *sc, struct ath_buf *bf)
1524{
1525	struct ath_hal *ah = sc->sc_ah;
1526	int error;
1527	struct mbuf *m;
1528	struct ath_desc *ds;
1529
1530	m = bf->bf_m;
1531	if (m == NULL) {
1532		/*
1533		 * NB: by assigning a page to the rx dma buffer we
1534		 * implicitly satisfy the Atheros requirement that
1535		 * this buffer be cache-line-aligned and sized to be
1536		 * multiple of the cache line size.  Not doing this
1537		 * causes weird stuff to happen (for the 5210 at least).
1538		 */
1539		m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
1540		if (m == NULL) {
1541			DPRINTF(("ath_rxbuf_init: no mbuf/cluster\n"));
1542			sc->sc_stats.ast_rx_nombuf++;
1543			return ENOMEM;
1544		}
1545		bf->bf_m = m;
1546		m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
1547
1548		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m,
1549					     ath_mbuf_load_cb, bf,
1550					     BUS_DMA_NOWAIT);
1551		if (error != 0) {
1552			DPRINTF(("ath_rxbuf_init: bus_dmamap_load_mbuf failed;"
1553				" error %d\n", error));
1554			sc->sc_stats.ast_rx_busdma++;
1555			return error;
1556		}
1557		KASSERT(bf->bf_nseg == 1,
1558			("ath_rxbuf_init: multi-segment packet; nseg %u",
1559			bf->bf_nseg));
1560	}
1561	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREREAD);
1562
1563	/*
1564	 * Setup descriptors.  For receive we always terminate
1565	 * the descriptor list with a self-linked entry so we'll
1566	 * not get overrun under high load (as can happen with a
1567	 * 5212 when ANI processing enables PHY errors).
1568	 *
1569	 * To insure the last descriptor is self-linked we create
1570	 * each descriptor as self-linked and add it to the end.  As
1571	 * each additional descriptor is added the previous self-linked
1572	 * entry is ``fixed'' naturally.  This should be safe even
1573	 * if DMA is happening.  When processing RX interrupts we
1574	 * never remove/process the last, self-linked, entry on the
1575	 * descriptor list.  This insures the hardware always has
1576	 * someplace to write a new frame.
1577	 */
1578	ds = bf->bf_desc;
1579	ds->ds_link = bf->bf_daddr;	/* link to self */
1580	ds->ds_data = bf->bf_segs[0].ds_addr;
1581	ath_hal_setuprxdesc(ah, ds
1582		, m->m_len		/* buffer size */
1583		, 0
1584	);
1585
1586	if (sc->sc_rxlink != NULL)
1587		*sc->sc_rxlink = bf->bf_daddr;
1588	sc->sc_rxlink = &ds->ds_link;
1589	return 0;
1590}
1591
1592static void
1593ath_rx_proc(void *arg, int npending)
1594{
1595	struct ath_softc *sc = arg;
1596	struct ath_buf *bf;
1597	struct ieee80211com *ic = &sc->sc_ic;
1598	struct ifnet *ifp = &ic->ic_if;
1599	struct ath_hal *ah = sc->sc_ah;
1600	struct ath_desc *ds;
1601	struct mbuf *m;
1602	struct ieee80211_frame *wh, whbuf;
1603	struct ieee80211_node *ni;
1604	struct ath_node *an;
1605	struct ath_recv_hist *rh;
1606	int len;
1607	u_int phyerr;
1608	HAL_STATUS status;
1609
1610	DPRINTF2(("ath_rx_proc: pending %u\n", npending));
1611	do {
1612		bf = TAILQ_FIRST(&sc->sc_rxbuf);
1613		if (bf == NULL) {		/* NB: shouldn't happen */
1614			if_printf(ifp, "ath_rx_proc: no buffer!\n");
1615			break;
1616		}
1617		ds = bf->bf_desc;
1618		if (ds->ds_link == bf->bf_daddr) {
1619			/* NB: never process the self-linked entry at the end */
1620			break;
1621		}
1622		m = bf->bf_m;
1623		if (m == NULL) {		/* NB: shouldn't happen */
1624			if_printf(ifp, "ath_rx_proc: no mbuf!\n");
1625			continue;
1626		}
1627		status = ath_hal_rxprocdesc(ah, ds);
1628#ifdef AR_DEBUG
1629		if (ath_debug > 1)
1630			ath_printrxbuf(bf, status == HAL_OK);
1631#endif
1632		if (status == HAL_EINPROGRESS)
1633			break;
1634		TAILQ_REMOVE(&sc->sc_rxbuf, bf, bf_list);
1635		if (ds->ds_rxstat.rs_status != 0) {
1636			ifp->if_ierrors++;
1637			if (ds->ds_rxstat.rs_status & HAL_RXERR_CRC)
1638				sc->sc_stats.ast_rx_crcerr++;
1639			if (ds->ds_rxstat.rs_status & HAL_RXERR_FIFO)
1640				sc->sc_stats.ast_rx_fifoerr++;
1641			if (ds->ds_rxstat.rs_status & HAL_RXERR_DECRYPT)
1642				sc->sc_stats.ast_rx_badcrypt++;
1643			if (ds->ds_rxstat.rs_status & HAL_RXERR_PHY) {
1644				sc->sc_stats.ast_rx_phyerr++;
1645				phyerr = ds->ds_rxstat.rs_phyerr & 0x1f;
1646				sc->sc_stats.ast_rx_phy[phyerr]++;
1647			}
1648			goto rx_next;
1649		}
1650
1651		len = ds->ds_rxstat.rs_datalen;
1652		if (len < IEEE80211_MIN_LEN) {
1653			DPRINTF(("ath_rx_proc: short packet %d\n", len));
1654			sc->sc_stats.ast_rx_tooshort++;
1655			goto rx_next;
1656		}
1657
1658		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
1659		    BUS_DMASYNC_POSTREAD);
1660
1661		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
1662		bf->bf_m = NULL;
1663		m->m_pkthdr.rcvif = ifp;
1664		m->m_pkthdr.len = m->m_len = len;
1665
1666		if (sc->sc_drvbpf) {
1667			struct mbuf *mb;
1668
1669			/* XXX pre-allocate space when setting up recv's */
1670			MGETHDR(mb, M_DONTWAIT, m->m_type);
1671			if (mb != NULL) {
1672				sc->sc_rx_th.wr_rate =
1673					sc->sc_hwmap[ds->ds_rxstat.rs_rate];
1674				sc->sc_rx_th.wr_antsignal =
1675					ds->ds_rxstat.rs_rssi;
1676				sc->sc_rx_th.wr_antenna =
1677					ds->ds_rxstat.rs_antenna;
1678				/* XXX TSF */
1679
1680				(void) m_dup_pkthdr(mb, m, M_DONTWAIT);
1681				mb->m_next = m;
1682				mb->m_data = (caddr_t)&sc->sc_rx_th;
1683				mb->m_len = sizeof(sc->sc_rx_th);
1684				mb->m_pkthdr.len += mb->m_len;
1685				bpf_mtap(sc->sc_drvbpf, mb);
1686				m_free(mb);
1687			}
1688		}
1689
1690		m_adj(m, -IEEE80211_CRC_LEN);
1691		wh = mtod(m, struct ieee80211_frame *);
1692		if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
1693			/*
1694			 * WEP is decrypted by hardware. Clear WEP bit
1695			 * and trim WEP header for ieee80211_input().
1696			 */
1697			wh->i_fc[1] &= ~IEEE80211_FC1_WEP;
1698			memcpy(&whbuf, wh, sizeof(whbuf));
1699			m_adj(m, IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN);
1700			memcpy(mtod(m, caddr_t), &whbuf, sizeof(whbuf));
1701			/*
1702			 * Also trim WEP ICV from the tail.
1703			 */
1704			m_adj(m, -IEEE80211_WEP_CRCLEN);
1705		}
1706
1707		/*
1708		 * Locate the node for sender, track state, and
1709		 * then pass this node (referenced) up to the 802.11
1710		 * layer for its use.  We are required to pass
1711		 * something so we fall back to ic_bss when this frame
1712		 * is from an unknown sender.
1713		 */
1714		if (ic->ic_opmode != IEEE80211_M_STA) {
1715			ni = ieee80211_find_node(ic, wh->i_addr2);
1716			if (ni == NULL)
1717				ni = ieee80211_ref_node(ic->ic_bss);
1718		} else
1719			ni = ieee80211_ref_node(ic->ic_bss);
1720
1721		/*
1722		 * Record driver-specific state.
1723		 */
1724		an = ATH_NODE(ni);
1725		if (++(an->an_rx_hist_next) == ATH_RHIST_SIZE)
1726			an->an_rx_hist_next = 0;
1727		rh = &an->an_rx_hist[an->an_rx_hist_next];
1728		rh->arh_ticks = ticks;
1729		rh->arh_rssi = ds->ds_rxstat.rs_rssi;
1730		rh->arh_antenna = ds->ds_rxstat.rs_antenna;
1731
1732		/*
1733		 * Send frame up for processing.
1734		 */
1735		ieee80211_input(ifp, m, ni,
1736			ds->ds_rxstat.rs_rssi, ds->ds_rxstat.rs_tstamp);
1737
1738		/*
1739		 * The frame may have caused the node to be marked for
1740		 * reclamation (e.g. in response to a DEAUTH message)
1741		 * so use free_node here instead of unref_node.
1742		 */
1743		if (ni == ic->ic_bss)
1744			ieee80211_unref_node(&ni);
1745		else
1746			ieee80211_free_node(ic, ni);
1747  rx_next:
1748		TAILQ_INSERT_TAIL(&sc->sc_rxbuf, bf, bf_list);
1749	} while (ath_rxbuf_init(sc, bf) == 0);
1750
1751	ath_hal_rxmonitor(ah);			/* rx signal state monitoring */
1752	ath_hal_rxena(ah);			/* in case of RXEOL */
1753}
1754
1755/*
1756 * XXX Size of an ACK control frame in bytes.
1757 */
1758#define	IEEE80211_ACK_SIZE	(2+2+IEEE80211_ADDR_LEN+4)
1759
1760static int
1761ath_tx_start(struct ath_softc *sc, struct ieee80211_node *ni, struct ath_buf *bf,
1762    struct mbuf *m0)
1763{
1764	struct ieee80211com *ic = &sc->sc_ic;
1765	struct ath_hal *ah = sc->sc_ah;
1766	struct ifnet *ifp = &sc->sc_ic.ic_if;
1767	int i, error, iswep, hdrlen, pktlen;
1768	u_int8_t rix, cix, txrate, ctsrate;
1769	struct ath_desc *ds;
1770	struct mbuf *m;
1771	struct ieee80211_frame *wh;
1772	u_int32_t iv;
1773	u_int8_t *ivp;
1774	u_int8_t hdrbuf[sizeof(struct ieee80211_frame) +
1775	    IEEE80211_WEP_IVLEN + IEEE80211_WEP_KIDLEN];
1776	u_int subtype, flags, ctsduration, antenna;
1777	HAL_PKT_TYPE atype;
1778	const HAL_RATE_TABLE *rt;
1779	HAL_BOOL shortPreamble;
1780	struct ath_node *an;
1781
1782	wh = mtod(m0, struct ieee80211_frame *);
1783	iswep = wh->i_fc[1] & IEEE80211_FC1_WEP;
1784	hdrlen = sizeof(struct ieee80211_frame);
1785	pktlen = m0->m_pkthdr.len;
1786
1787	if (iswep) {
1788		memcpy(hdrbuf, mtod(m0, caddr_t), hdrlen);
1789		m_adj(m0, hdrlen);
1790		M_PREPEND(m0, sizeof(hdrbuf), M_DONTWAIT);
1791		if (m0 == NULL) {
1792			sc->sc_stats.ast_tx_nombuf++;
1793			return ENOMEM;
1794		}
1795		ivp = hdrbuf + hdrlen;
1796		wh = mtod(m0, struct ieee80211_frame *);
1797		/*
1798		 * XXX
1799		 * IV must not duplicate during the lifetime of the key.
1800		 * But no mechanism to renew keys is defined in IEEE 802.11
1801		 * WEP.  And IV may be duplicated between other stations
1802		 * because of the session key itself is shared.
1803		 * So we use pseudo random IV for now, though it is not the
1804		 * right way.
1805		 */
1806                iv = ic->ic_iv;
1807		/*
1808		 * Skip 'bad' IVs from Fluhrer/Mantin/Shamir:
1809		 * (B, 255, N) with 3 <= B < 8
1810		 */
1811		if (iv >= 0x03ff00 && (iv & 0xf8ff00) == 0x00ff00)
1812			iv += 0x000100;
1813		ic->ic_iv = iv + 1;
1814		for (i = 0; i < IEEE80211_WEP_IVLEN; i++) {
1815			ivp[i] = iv;
1816			iv >>= 8;
1817		}
1818		ivp[i] = sc->sc_ic.ic_wep_txkey << 6;	/* Key ID and pad */
1819		memcpy(mtod(m0, caddr_t), hdrbuf, sizeof(hdrbuf));
1820		/*
1821		 * The ICV length must be included into hdrlen and pktlen.
1822		 */
1823		hdrlen = sizeof(hdrbuf) + IEEE80211_WEP_CRCLEN;
1824		pktlen = m0->m_pkthdr.len + IEEE80211_WEP_CRCLEN;
1825	}
1826	pktlen += IEEE80211_CRC_LEN;
1827
1828	/*
1829	 * Load the DMA map so any coalescing is done.  This
1830	 * also calculates the number of descriptors we need.
1831	 */
1832	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
1833				     ath_mbuf_load_cb, bf,
1834				     BUS_DMA_NOWAIT);
1835	if (error == EFBIG) {
1836		/* XXX packet requires too many descriptors */
1837		bf->bf_nseg = ATH_TXDESC+1;
1838	} else if (error != 0) {
1839		sc->sc_stats.ast_tx_busdma++;
1840		m_freem(m0);
1841		return error;
1842	}
1843	/*
1844	 * Discard null packets and check for packets that
1845	 * require too many TX descriptors.  We try to convert
1846	 * the latter to a cluster.
1847	 */
1848	if (bf->bf_nseg > ATH_TXDESC) {		/* too many desc's, linearize */
1849		sc->sc_stats.ast_tx_linear++;
1850		MGETHDR(m, M_DONTWAIT, MT_DATA);
1851		if (m == NULL) {
1852			sc->sc_stats.ast_tx_nombuf++;
1853			m_freem(m0);
1854			return ENOMEM;
1855		}
1856		M_MOVE_PKTHDR(m, m0);
1857		MCLGET(m, M_DONTWAIT);
1858		if ((m->m_flags & M_EXT) == 0) {
1859			sc->sc_stats.ast_tx_nomcl++;
1860			m_freem(m0);
1861			m_free(m);
1862			return ENOMEM;
1863		}
1864		m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, caddr_t));
1865		m_freem(m0);
1866		m->m_len = m->m_pkthdr.len;
1867		m0 = m;
1868		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_dmamap, m0,
1869					     ath_mbuf_load_cb, bf,
1870					     BUS_DMA_NOWAIT);
1871		if (error != 0) {
1872			sc->sc_stats.ast_tx_busdma++;
1873			m_freem(m0);
1874			return error;
1875		}
1876		KASSERT(bf->bf_nseg == 1,
1877			("ath_tx_start: packet not one segment; nseg %u",
1878			bf->bf_nseg));
1879	} else if (bf->bf_nseg == 0) {		/* null packet, discard */
1880		sc->sc_stats.ast_tx_nodata++;
1881		m_freem(m0);
1882		return EIO;
1883	}
1884	DPRINTF2(("ath_tx_start: m %p len %u\n", m0, pktlen));
1885	bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap, BUS_DMASYNC_PREWRITE);
1886	bf->bf_m = m0;
1887	bf->bf_node = ni;			/* NB: held reference */
1888
1889	/* setup descriptors */
1890	ds = bf->bf_desc;
1891	rt = sc->sc_currates;
1892	KASSERT(rt != NULL, ("no rate table, mode %u", sc->sc_curmode));
1893
1894	/*
1895	 * Calculate Atheros packet type from IEEE80211 packet header
1896	 * and setup for rate calculations.
1897	 */
1898	atype = HAL_PKT_TYPE_NORMAL;			/* default */
1899	switch (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) {
1900	case IEEE80211_FC0_TYPE_MGT:
1901		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1902		if (subtype == IEEE80211_FC0_SUBTYPE_BEACON)
1903			atype = HAL_PKT_TYPE_BEACON;
1904		else if (subtype == IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1905			atype = HAL_PKT_TYPE_PROBE_RESP;
1906		else if (subtype == IEEE80211_FC0_SUBTYPE_ATIM)
1907			atype = HAL_PKT_TYPE_ATIM;
1908		rix = 0;			/* XXX lowest rate */
1909		break;
1910	case IEEE80211_FC0_TYPE_CTL:
1911		subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
1912		if (subtype == IEEE80211_FC0_SUBTYPE_PS_POLL)
1913			atype = HAL_PKT_TYPE_PSPOLL;
1914		rix = 0;			/* XXX lowest rate */
1915		break;
1916	default:
1917		rix = sc->sc_rixmap[ni->ni_rates.rs_rates[ni->ni_txrate] &
1918				IEEE80211_RATE_VAL];
1919		if (rix == 0xff) {
1920			if_printf(ifp, "bogus xmit rate 0x%x\n",
1921				ni->ni_rates.rs_rates[ni->ni_txrate]);
1922			sc->sc_stats.ast_tx_badrate++;
1923			m_freem(m0);
1924			return EIO;
1925		}
1926		break;
1927	}
1928	/*
1929	 * NB: the 802.11 layer marks whether or not we should
1930	 * use short preamble based on the current mode and
1931	 * negotiated parameters.
1932	 */
1933	if ((ic->ic_flags & IEEE80211_F_SHPREAMBLE) &&
1934	    (ni->ni_capinfo & IEEE80211_CAPINFO_SHORT_PREAMBLE)) {
1935		txrate = rt->info[rix].rateCode | rt->info[rix].shortPreamble;
1936		shortPreamble = AH_TRUE;
1937		sc->sc_stats.ast_tx_shortpre++;
1938	} else {
1939		txrate = rt->info[rix].rateCode;
1940		shortPreamble = AH_FALSE;
1941	}
1942
1943	/*
1944	 * Calculate miscellaneous flags.
1945	 */
1946	flags = HAL_TXDESC_CLRDMASK;		/* XXX needed for wep errors */
1947	if (IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1948		flags |= HAL_TXDESC_NOACK;	/* no ack on broad/multicast */
1949		sc->sc_stats.ast_tx_noack++;
1950	} else if (pktlen > ic->ic_rtsthreshold) {
1951		flags |= HAL_TXDESC_RTSENA;	/* RTS based on frame length */
1952		sc->sc_stats.ast_tx_rts++;
1953	}
1954
1955	/*
1956	 * Calculate duration.  This logically belongs in the 802.11
1957	 * layer but it lacks sufficient information to calculate it.
1958	 */
1959	if ((flags & HAL_TXDESC_NOACK) == 0 &&
1960	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_CTL) {
1961		u_int16_t dur;
1962		/*
1963		 * XXX not right with fragmentation.
1964		 */
1965		dur = ath_hal_computetxtime(ah, rt, IEEE80211_ACK_SIZE,
1966				rix, shortPreamble);
1967		*((u_int16_t*) wh->i_dur) = htole16(dur);
1968	}
1969
1970	/*
1971	 * Calculate RTS/CTS rate and duration if needed.
1972	 */
1973	ctsduration = 0;
1974	if (flags & (HAL_TXDESC_RTSENA|HAL_TXDESC_CTSENA)) {
1975		/*
1976		 * CTS transmit rate is derived from the transmit rate
1977		 * by looking in the h/w rate table.  We must also factor
1978		 * in whether or not a short preamble is to be used.
1979		 */
1980		cix = rt->info[rix].controlRate;
1981		ctsrate = rt->info[cix].rateCode;
1982		if (shortPreamble)
1983			ctsrate |= rt->info[cix].shortPreamble;
1984		/*
1985		 * Compute the transmit duration based on the size
1986		 * of an ACK frame.  We call into the HAL to do the
1987		 * computation since it depends on the characteristics
1988		 * of the actual PHY being used.
1989		 */
1990		if (flags & HAL_TXDESC_RTSENA) {	/* SIFS + CTS */
1991			ctsduration += ath_hal_computetxtime(ah,
1992				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
1993		}
1994		/* SIFS + data */
1995		ctsduration += ath_hal_computetxtime(ah,
1996			rt, pktlen, rix, shortPreamble);
1997		if ((flags & HAL_TXDESC_NOACK) == 0) {	/* SIFS + ACK */
1998			ctsduration += ath_hal_computetxtime(ah,
1999				rt, IEEE80211_ACK_SIZE, cix, shortPreamble);
2000		}
2001	} else
2002		ctsrate = 0;
2003
2004	/*
2005	 * For now use the antenna on which the last good
2006	 * frame was received on.  We assume this field is
2007	 * initialized to 0 which gives us ``auto'' or the
2008	 * ``default'' antenna.
2009	 */
2010	an = (struct ath_node *) ni;
2011	if (an->an_tx_antenna)
2012		antenna = an->an_tx_antenna;
2013	else
2014		antenna = an->an_rx_hist[an->an_rx_hist_next].arh_antenna;
2015
2016	/*
2017	 * Formulate first tx descriptor with tx controls.
2018	 */
2019	/* XXX check return value? */
2020	ath_hal_setuptxdesc(ah, ds
2021		, pktlen		/* packet length */
2022		, hdrlen		/* header length */
2023		, atype			/* Atheros packet type */
2024		, 60			/* txpower XXX */
2025		, txrate, 1+10		/* series 0 rate/tries */
2026		, iswep ? sc->sc_ic.ic_wep_txkey : HAL_TXKEYIX_INVALID
2027		, antenna		/* antenna mode */
2028		, flags			/* flags */
2029		, ctsrate		/* rts/cts rate */
2030		, ctsduration		/* rts/cts duration */
2031	);
2032#ifdef notyet
2033	ath_hal_setupxtxdesc(ah, ds
2034		, AH_FALSE		/* short preamble */
2035		, 0, 0			/* series 1 rate/tries */
2036		, 0, 0			/* series 2 rate/tries */
2037		, 0, 0			/* series 3 rate/tries */
2038	);
2039#endif
2040	/*
2041	 * Fillin the remainder of the descriptor info.
2042	 */
2043	for (i = 0; i < bf->bf_nseg; i++, ds++) {
2044		ds->ds_data = bf->bf_segs[i].ds_addr;
2045		if (i == bf->bf_nseg - 1)
2046			ds->ds_link = 0;
2047		else
2048			ds->ds_link = bf->bf_daddr + sizeof(*ds) * (i + 1);
2049		ath_hal_filltxdesc(ah, ds
2050			, bf->bf_segs[i].ds_len	/* segment length */
2051			, i == 0		/* first segment */
2052			, i == bf->bf_nseg - 1	/* last segment */
2053		);
2054		DPRINTF2(("ath_tx_start: %d: %08x %08x %08x %08x %08x %08x\n",
2055		    i, ds->ds_link, ds->ds_data, ds->ds_ctl0, ds->ds_ctl1,
2056		    ds->ds_hw[0], ds->ds_hw[1]));
2057	}
2058
2059	/*
2060	 * Insert the frame on the outbound list and
2061	 * pass it on to the hardware.
2062	 */
2063	ATH_TXQ_LOCK(sc);
2064	TAILQ_INSERT_TAIL(&sc->sc_txq, bf, bf_list);
2065	if (sc->sc_txlink == NULL) {
2066		ath_hal_puttxbuf(ah, sc->sc_txhalq, bf->bf_daddr);
2067		DPRINTF2(("ath_tx_start: TXDP0 = %p (%p)\n",
2068		    (caddr_t)bf->bf_daddr, bf->bf_desc));
2069	} else {
2070		*sc->sc_txlink = bf->bf_daddr;
2071		DPRINTF2(("ath_tx_start: link(%p)=%p (%p)\n",
2072		    sc->sc_txlink, (caddr_t)bf->bf_daddr, bf->bf_desc));
2073	}
2074	sc->sc_txlink = &bf->bf_desc[bf->bf_nseg - 1].ds_link;
2075	ATH_TXQ_UNLOCK(sc);
2076
2077	ath_hal_txstart(ah, sc->sc_txhalq);
2078	return 0;
2079}
2080
2081static void
2082ath_tx_proc(void *arg, int npending)
2083{
2084	struct ath_softc *sc = arg;
2085	struct ath_hal *ah = sc->sc_ah;
2086	struct ath_buf *bf;
2087	struct ieee80211com *ic = &sc->sc_ic;
2088	struct ifnet *ifp = &ic->ic_if;
2089	struct ath_desc *ds;
2090	struct ieee80211_node *ni;
2091	struct ath_node *an;
2092	int sr, lr;
2093	HAL_STATUS status;
2094
2095	DPRINTF2(("ath_tx_proc: pending %u tx queue %p, link %p\n",
2096		npending, (caddr_t) ath_hal_gettxbuf(sc->sc_ah, sc->sc_txhalq),
2097		sc->sc_txlink));
2098	for (;;) {
2099		ATH_TXQ_LOCK(sc);
2100		bf = TAILQ_FIRST(&sc->sc_txq);
2101		if (bf == NULL) {
2102			sc->sc_txlink = NULL;
2103			ATH_TXQ_UNLOCK(sc);
2104			break;
2105		}
2106		/* only the last descriptor is needed */
2107		ds = &bf->bf_desc[bf->bf_nseg - 1];
2108		status = ath_hal_txprocdesc(ah, ds);
2109#ifdef AR_DEBUG
2110		if (ath_debug > 1)
2111			ath_printtxbuf(bf, status == HAL_OK);
2112#endif
2113		if (status == HAL_EINPROGRESS) {
2114			ATH_TXQ_UNLOCK(sc);
2115			break;
2116		}
2117		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2118		ATH_TXQ_UNLOCK(sc);
2119
2120		ni = bf->bf_node;
2121		if (ni != NULL) {
2122			an = (struct ath_node *) ni;
2123			if (ds->ds_txstat.ts_status == 0) {
2124				an->an_tx_ok++;
2125				an->an_tx_antenna = ds->ds_txstat.ts_antenna;
2126			} else {
2127				an->an_tx_err++;
2128				ifp->if_oerrors++;
2129				if (ds->ds_txstat.ts_status & HAL_TXERR_XRETRY)
2130					sc->sc_stats.ast_tx_xretries++;
2131				if (ds->ds_txstat.ts_status & HAL_TXERR_FIFO)
2132					sc->sc_stats.ast_tx_fifoerr++;
2133				if (ds->ds_txstat.ts_status & HAL_TXERR_FILT)
2134					sc->sc_stats.ast_tx_filtered++;
2135				an->an_tx_antenna = 0;	/* invalidate */
2136			}
2137			sr = ds->ds_txstat.ts_shortretry;
2138			lr = ds->ds_txstat.ts_longretry;
2139			sc->sc_stats.ast_tx_shortretry += sr;
2140			sc->sc_stats.ast_tx_longretry += lr;
2141			if (sr + lr)
2142				an->an_tx_retr++;
2143			/*
2144			 * Reclaim reference to node.
2145			 *
2146			 * NB: the node may be reclaimed here if, for example
2147			 *     this is a DEAUTH message that was sent and the
2148			 *     node was timed out due to inactivity.
2149			 */
2150			if (ni != ic->ic_bss)
2151				ieee80211_free_node(ic, ni);
2152		}
2153		bus_dmamap_sync(sc->sc_dmat, bf->bf_dmamap,
2154		    BUS_DMASYNC_POSTWRITE);
2155		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2156		m_freem(bf->bf_m);
2157		bf->bf_m = NULL;
2158		bf->bf_node = NULL;
2159
2160		ATH_TXBUF_LOCK(sc);
2161		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2162		ATH_TXBUF_UNLOCK(sc);
2163	}
2164	ifp->if_flags &= ~IFF_OACTIVE;
2165	sc->sc_tx_timer = 0;
2166
2167	ath_start(ifp);
2168}
2169
2170/*
2171 * Drain the transmit queue and reclaim resources.
2172 */
2173static void
2174ath_draintxq(struct ath_softc *sc)
2175{
2176	struct ath_hal *ah = sc->sc_ah;
2177	struct ifnet *ifp = &sc->sc_ic.ic_if;
2178	struct ath_buf *bf;
2179
2180	/* XXX return value */
2181	if (!sc->sc_invalid) {
2182		/* don't touch the hardware if marked invalid */
2183		(void) ath_hal_stoptxdma(ah, sc->sc_txhalq);
2184		DPRINTF(("ath_draintxq: tx queue %p, link %p\n",
2185		    (caddr_t) ath_hal_gettxbuf(ah, sc->sc_txhalq),
2186		    sc->sc_txlink));
2187		(void) ath_hal_stoptxdma(ah, sc->sc_bhalq);
2188		DPRINTF(("ath_draintxq: beacon queue %p\n",
2189		    (caddr_t) ath_hal_gettxbuf(ah, sc->sc_bhalq)));
2190	}
2191	for (;;) {
2192		ATH_TXQ_LOCK(sc);
2193		bf = TAILQ_FIRST(&sc->sc_txq);
2194		if (bf == NULL) {
2195			sc->sc_txlink = NULL;
2196			ATH_TXQ_UNLOCK(sc);
2197			break;
2198		}
2199		TAILQ_REMOVE(&sc->sc_txq, bf, bf_list);
2200		ATH_TXQ_UNLOCK(sc);
2201#ifdef AR_DEBUG
2202		if (ath_debug)
2203			ath_printtxbuf(bf,
2204				ath_hal_txprocdesc(ah, bf->bf_desc) == HAL_OK);
2205#endif /* AR_DEBUG */
2206		bus_dmamap_unload(sc->sc_dmat, bf->bf_dmamap);
2207		m_freem(bf->bf_m);
2208		bf->bf_m = NULL;
2209		bf->bf_node = NULL;
2210		ATH_TXBUF_LOCK(sc);
2211		TAILQ_INSERT_TAIL(&sc->sc_txbuf, bf, bf_list);
2212		ATH_TXBUF_UNLOCK(sc);
2213	}
2214	ifp->if_flags &= ~IFF_OACTIVE;
2215	sc->sc_tx_timer = 0;
2216}
2217
2218/*
2219 * Disable the receive h/w in preparation for a reset.
2220 */
2221static void
2222ath_stoprecv(struct ath_softc *sc)
2223{
2224	struct ath_hal *ah = sc->sc_ah;
2225
2226	ath_hal_stoppcurecv(ah);	/* disable PCU */
2227	ath_hal_setrxfilter(ah, 0);	/* clear recv filter */
2228	ath_hal_stopdmarecv(ah);	/* disable DMA engine */
2229	DELAY(3000);			/* long enough for 1 frame */
2230#ifdef AR_DEBUG
2231	if (ath_debug) {
2232		struct ath_buf *bf;
2233
2234		DPRINTF(("ath_stoprecv: rx queue %p, link %p\n",
2235		    (caddr_t) ath_hal_getrxbuf(ah), sc->sc_rxlink));
2236		TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2237			if (ath_hal_rxprocdesc(ah, bf->bf_desc) == HAL_OK)
2238				ath_printrxbuf(bf, 1);
2239		}
2240	}
2241#endif
2242	sc->sc_rxlink = NULL;		/* just in case */
2243}
2244
2245/*
2246 * Enable the receive h/w following a reset.
2247 */
2248static int
2249ath_startrecv(struct ath_softc *sc)
2250{
2251	struct ath_hal *ah = sc->sc_ah;
2252	struct ath_buf *bf;
2253
2254	sc->sc_rxlink = NULL;
2255	TAILQ_FOREACH(bf, &sc->sc_rxbuf, bf_list) {
2256		int error = ath_rxbuf_init(sc, bf);
2257		if (error != 0) {
2258			DPRINTF(("ath_startrecv: ath_rxbuf_init failed %d\n",
2259				error));
2260			return error;
2261		}
2262	}
2263
2264	bf = TAILQ_FIRST(&sc->sc_rxbuf);
2265	ath_hal_putrxbuf(ah, bf->bf_daddr);
2266	ath_hal_rxena(ah);		/* enable recv descriptors */
2267	ath_mode_init(sc);		/* set filters, etc. */
2268	ath_hal_startpcurecv(ah);	/* re-enable PCU/DMA engine */
2269	return 0;
2270}
2271
2272/*
2273 * Set/change channels.  If the channel is really being changed,
2274 * it's done by resetting the chip.  To accomplish this we must
2275 * first cleanup any pending DMA, then restart stuff after a la
2276 * ath_init.
2277 */
2278static int
2279ath_chan_set(struct ath_softc *sc, struct ieee80211_channel *chan)
2280{
2281	struct ath_hal *ah = sc->sc_ah;
2282	struct ieee80211com *ic = &sc->sc_ic;
2283
2284	DPRINTF(("ath_chan_set: %u (%u MHz) -> %u (%u MHz)\n",
2285	    ieee80211_chan2ieee(ic, ic->ic_ibss_chan),
2286		ic->ic_ibss_chan->ic_freq,
2287	    ieee80211_chan2ieee(ic, chan), chan->ic_freq));
2288	if (chan != ic->ic_ibss_chan) {
2289		HAL_STATUS status;
2290		HAL_CHANNEL hchan;
2291		enum ieee80211_phymode mode;
2292
2293		/*
2294		 * To switch channels clear any pending DMA operations;
2295		 * wait long enough for the RX fifo to drain, reset the
2296		 * hardware at the new frequency, and then re-enable
2297		 * the relevant bits of the h/w.
2298		 */
2299		ath_hal_intrset(ah, 0);		/* disable interrupts */
2300		ath_draintxq(sc);		/* clear pending tx frames */
2301		ath_stoprecv(sc);		/* turn off frame recv */
2302		/*
2303		 * Convert to a HAL channel description with
2304		 * the flags constrained to reflect the current
2305		 * operating mode.
2306		 */
2307		hchan.channel = chan->ic_freq;
2308		hchan.channelFlags = ath_chan2flags(ic, chan);
2309		if (!ath_hal_reset(ah, ic->ic_opmode, &hchan, AH_TRUE, &status)) {
2310			if_printf(&ic->ic_if, "ath_chan_set: unable to reset "
2311				"channel %u (%u Mhz)\n",
2312				ieee80211_chan2ieee(ic, chan), chan->ic_freq);
2313			return EIO;
2314		}
2315		/*
2316		 * Re-enable rx framework.
2317		 */
2318		if (ath_startrecv(sc) != 0) {
2319			if_printf(&ic->ic_if,
2320				"ath_chan_set: unable to restart recv logic\n");
2321			return EIO;
2322		}
2323
2324		/*
2325		 * Update BPF state.
2326		 */
2327		sc->sc_tx_th.wt_chan_freq = sc->sc_rx_th.wr_chan_freq =
2328			htole16(chan->ic_freq);
2329		sc->sc_tx_th.wt_chan_flags = sc->sc_rx_th.wr_chan_flags =
2330			htole16(chan->ic_flags);
2331
2332		/*
2333		 * Change channels and update the h/w rate map
2334		 * if we're switching; e.g. 11a to 11b/g.
2335		 */
2336		ic->ic_ibss_chan = chan;
2337		mode = ieee80211_chan2mode(ic, chan);
2338		if (mode != sc->sc_curmode)
2339			ath_setcurmode(sc, mode);
2340
2341		/*
2342		 * Re-enable interrupts.
2343		 */
2344		ath_hal_intrset(ah, sc->sc_imask);
2345	}
2346	return 0;
2347}
2348
2349static void
2350ath_next_scan(void *arg)
2351{
2352	struct ath_softc *sc = arg;
2353	struct ieee80211com *ic = &sc->sc_ic;
2354	struct ifnet *ifp = &ic->ic_if;
2355
2356	if (ic->ic_state == IEEE80211_S_SCAN)
2357		ieee80211_next_scan(ifp);
2358}
2359
2360/*
2361 * Periodically recalibrate the PHY to account
2362 * for temperature/environment changes.
2363 */
2364static void
2365ath_calibrate(void *arg)
2366{
2367	struct ath_softc *sc = arg;
2368	struct ath_hal *ah = sc->sc_ah;
2369	struct ieee80211com *ic = &sc->sc_ic;
2370	struct ieee80211_channel *c;
2371	HAL_CHANNEL hchan;
2372
2373	sc->sc_stats.ast_per_cal++;
2374
2375	/*
2376	 * Convert to a HAL channel description with the flags
2377	 * constrained to reflect the current operating mode.
2378	 */
2379	c = ic->ic_ibss_chan;
2380	hchan.channel = c->ic_freq;
2381	hchan.channelFlags = ath_chan2flags(ic, c);
2382
2383	DPRINTF(("%s: channel %u/%x\n", __func__, c->ic_freq, c->ic_flags));
2384
2385	if (ath_hal_getrfgain(ah) == HAL_RFGAIN_NEED_CHANGE) {
2386		/*
2387		 * Rfgain is out of bounds, reset the chip
2388		 * to load new gain values.
2389		 */
2390		sc->sc_stats.ast_per_rfgain++;
2391		ath_reset(sc);
2392	}
2393	if (!ath_hal_calibrate(ah, &hchan)) {
2394		DPRINTF(("%s: calibration of channel %u failed\n",
2395			__func__, c->ic_freq));
2396		sc->sc_stats.ast_per_calfail++;
2397	}
2398	callout_reset(&sc->sc_cal_ch, hz * ath_calinterval, ath_calibrate, sc);
2399}
2400
2401static int
2402ath_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
2403{
2404	struct ifnet *ifp = &ic->ic_if;
2405	struct ath_softc *sc = ifp->if_softc;
2406	struct ath_hal *ah = sc->sc_ah;
2407	struct ieee80211_node *ni;
2408	int i, error;
2409	u_int8_t *bssid;
2410	u_int32_t rfilt;
2411	static const HAL_LED_STATE leds[] = {
2412	    HAL_LED_INIT,	/* IEEE80211_S_INIT */
2413	    HAL_LED_SCAN,	/* IEEE80211_S_SCAN */
2414	    HAL_LED_AUTH,	/* IEEE80211_S_AUTH */
2415	    HAL_LED_ASSOC, 	/* IEEE80211_S_ASSOC */
2416	    HAL_LED_RUN, 	/* IEEE80211_S_RUN */
2417	};
2418
2419	DPRINTF(("%s: %s -> %s\n", __func__,
2420		ieee80211_state_name[ic->ic_state],
2421		ieee80211_state_name[nstate]));
2422
2423	ath_hal_setledstate(ah, leds[nstate]);	/* set LED */
2424
2425	if (nstate == IEEE80211_S_INIT) {
2426		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2427		ath_hal_intrset(ah, sc->sc_imask);
2428		callout_stop(&sc->sc_scan_ch);
2429		callout_stop(&sc->sc_cal_ch);
2430		return (*sc->sc_newstate)(ic, nstate, arg);
2431	}
2432	ni = ic->ic_bss;
2433	error = ath_chan_set(sc, ni->ni_chan);
2434	if (error != 0)
2435		goto bad;
2436	rfilt = ath_calcrxfilter(sc);
2437	if (nstate == IEEE80211_S_SCAN) {
2438		callout_reset(&sc->sc_scan_ch, (hz * ath_dwelltime) / 1000,
2439			ath_next_scan, sc);
2440		bssid = ifp->if_broadcastaddr;
2441	} else {
2442		callout_stop(&sc->sc_scan_ch);
2443		bssid = ni->ni_bssid;
2444	}
2445	ath_hal_setrxfilter(ah, rfilt);
2446	DPRINTF(("%s: RX filter 0x%x bssid %s\n",
2447		 __func__, rfilt, ether_sprintf(bssid)));
2448
2449	if (nstate == IEEE80211_S_RUN && ic->ic_opmode == IEEE80211_M_STA)
2450		ath_hal_setassocid(ah, bssid, ni->ni_associd);
2451	else
2452		ath_hal_setassocid(ah, bssid, 0);
2453	if (ic->ic_flags & IEEE80211_F_WEPON) {
2454		for (i = 0; i < IEEE80211_WEP_NKID; i++)
2455			if (ath_hal_keyisvalid(ah, i))
2456				ath_hal_keysetmac(ah, i, bssid);
2457	}
2458
2459	if (nstate == IEEE80211_S_RUN) {
2460		DPRINTF(("%s(RUN): ic_flags=0x%08x iv=%d bssid=%s "
2461			"capinfo=0x%04x chan=%d\n"
2462			 , __func__
2463			 , ic->ic_flags
2464			 , ni->ni_intval
2465			 , ether_sprintf(ni->ni_bssid)
2466			 , ni->ni_capinfo
2467			 , ieee80211_chan2ieee(ic, ni->ni_chan)));
2468
2469		/*
2470		 * Allocate and setup the beacon frame for AP or adhoc mode.
2471		 */
2472		if (ic->ic_opmode == IEEE80211_M_HOSTAP ||
2473		    ic->ic_opmode == IEEE80211_M_IBSS) {
2474			error = ath_beacon_alloc(sc, ni);
2475			if (error != 0)
2476				goto bad;
2477		}
2478
2479		/*
2480		 * Configure the beacon and sleep timers.
2481		 */
2482		ath_beacon_config(sc);
2483
2484		/* start periodic recalibration timer */
2485		callout_reset(&sc->sc_cal_ch, hz * ath_calinterval,
2486			ath_calibrate, sc);
2487	} else {
2488		sc->sc_imask &= ~(HAL_INT_SWBA | HAL_INT_BMISS);
2489		ath_hal_intrset(ah, sc->sc_imask);
2490		callout_stop(&sc->sc_cal_ch);		/* no calibration */
2491	}
2492	/*
2493	 * Reset the rate control state.
2494	 */
2495	ath_rate_ctl_reset(sc, nstate);
2496	/*
2497	 * Invoke the parent method to complete the work.
2498	 */
2499	return (*sc->sc_newstate)(ic, nstate, arg);
2500bad:
2501	callout_stop(&sc->sc_scan_ch);
2502	callout_stop(&sc->sc_cal_ch);
2503	/* NB: do not invoke the parent */
2504	return error;
2505}
2506
2507/*
2508 * Setup driver-specific state for a newly associated node.
2509 * Note that we're called also on a re-associate, the isnew
2510 * param tells us if this is the first time or not.
2511 */
2512static void
2513ath_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew)
2514{
2515	if (isnew) {
2516		struct ath_node *an = (struct ath_node *) ni;
2517
2518		an->an_tx_ok = an->an_tx_err =
2519			an->an_tx_retr = an->an_tx_upper = 0;
2520		/* start with highest negotiated rate */
2521		/*
2522		 * XXX should do otherwise but only when
2523		 * the rate control algorithm is better.
2524		 */
2525		KASSERT(ni->ni_rates.rs_nrates > 0,
2526			("new association w/ no rates!"));
2527		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
2528	}
2529}
2530
2531static int
2532ath_getchannels(struct ath_softc *sc, u_int cc, HAL_BOOL outdoor)
2533{
2534	struct ieee80211com *ic = &sc->sc_ic;
2535	struct ifnet *ifp = &ic->ic_if;
2536	struct ath_hal *ah = sc->sc_ah;
2537	HAL_CHANNEL *chans;
2538	int i, ix, nchan;
2539
2540	chans = malloc(IEEE80211_CHAN_MAX * sizeof(HAL_CHANNEL),
2541			M_TEMP, M_NOWAIT);
2542	if (chans == NULL) {
2543		if_printf(ifp, "unable to allocate channel table\n");
2544		return ENOMEM;
2545	}
2546	if (!ath_hal_init_channels(ah, chans, IEEE80211_CHAN_MAX, &nchan,
2547	    cc, HAL_MODE_ALL, outdoor)) {
2548		if_printf(ifp, "unable to collect channel list from hal\n");
2549		free(chans, M_TEMP);
2550		return EINVAL;
2551	}
2552
2553	/*
2554	 * Convert HAL channels to ieee80211 ones and insert
2555	 * them in the table according to their channel number.
2556	 */
2557	for (i = 0; i < nchan; i++) {
2558		HAL_CHANNEL *c = &chans[i];
2559		ix = ath_hal_mhz2ieee(c->channel, c->channelFlags);
2560		if (ix > IEEE80211_CHAN_MAX) {
2561			if_printf(ifp, "bad hal channel %u (%u/%x) ignored\n",
2562				ix, c->channel, c->channelFlags);
2563			continue;
2564		}
2565		/* NB: flags are known to be compatible */
2566		if (ic->ic_channels[ix].ic_freq == 0) {
2567			ic->ic_channels[ix].ic_freq = c->channel;
2568			ic->ic_channels[ix].ic_flags = c->channelFlags;
2569		} else {
2570			/* channels overlap; e.g. 11g and 11b */
2571			ic->ic_channels[ix].ic_flags |= c->channelFlags;
2572		}
2573	}
2574	free(chans, M_TEMP);
2575	return 0;
2576}
2577
2578static int
2579ath_rate_setup(struct ath_softc *sc, u_int mode)
2580{
2581	struct ath_hal *ah = sc->sc_ah;
2582	struct ieee80211com *ic = &sc->sc_ic;
2583	const HAL_RATE_TABLE *rt;
2584	struct ieee80211_rateset *rs;
2585	int i, maxrates;
2586
2587	switch (mode) {
2588	case IEEE80211_MODE_11A:
2589		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11A);
2590		break;
2591	case IEEE80211_MODE_11B:
2592		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11B);
2593		break;
2594	case IEEE80211_MODE_11G:
2595		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_11G);
2596		break;
2597	case IEEE80211_MODE_TURBO:
2598		sc->sc_rates[mode] = ath_hal_getratetable(ah, HAL_MODE_TURBO);
2599		break;
2600	default:
2601		DPRINTF(("%s: invalid mode %u\n", __func__, mode));
2602		return 0;
2603	}
2604	rt = sc->sc_rates[mode];
2605	if (rt == NULL)
2606		return 0;
2607	if (rt->rateCount > IEEE80211_RATE_MAXSIZE) {
2608		DPRINTF(("%s: rate table too small (%u > %u)\n",
2609			__func__, rt->rateCount, IEEE80211_RATE_MAXSIZE));
2610		maxrates = IEEE80211_RATE_MAXSIZE;
2611	} else
2612		maxrates = rt->rateCount;
2613	rs = &ic->ic_sup_rates[mode];
2614	for (i = 0; i < maxrates; i++)
2615		rs->rs_rates[i] = rt->info[i].dot11Rate;
2616	rs->rs_nrates = maxrates;
2617	return 1;
2618}
2619
2620static void
2621ath_setcurmode(struct ath_softc *sc, enum ieee80211_phymode mode)
2622{
2623	const HAL_RATE_TABLE *rt;
2624	int i;
2625
2626	memset(sc->sc_rixmap, 0xff, sizeof(sc->sc_rixmap));
2627	rt = sc->sc_rates[mode];
2628	KASSERT(rt != NULL, ("no h/w rate set for phy mode %u", mode));
2629	for (i = 0; i < rt->rateCount; i++)
2630		sc->sc_rixmap[rt->info[i].dot11Rate & IEEE80211_RATE_VAL] = i;
2631	memset(sc->sc_hwmap, 0, sizeof(sc->sc_hwmap));
2632	for (i = 0; i < 32; i++)
2633		sc->sc_hwmap[i] = rt->info[rt->rateCodeToIndex[i]].dot11Rate;
2634	sc->sc_currates = rt;
2635	sc->sc_curmode = mode;
2636}
2637
2638/*
2639 * Reset the rate control state for each 802.11 state transition.
2640 */
2641static void
2642ath_rate_ctl_reset(struct ath_softc *sc, enum ieee80211_state state)
2643{
2644	struct ieee80211com *ic = &sc->sc_ic;
2645	struct ieee80211_node *ni;
2646	struct ath_node *an;
2647
2648	if (ic->ic_opmode != IEEE80211_M_STA) {
2649		/*
2650		 * When operating as a station the node table holds
2651		 * the AP's that were discovered during scanning.
2652		 * For any other operating mode we want to reset the
2653		 * tx rate state of each node.
2654		 */
2655		TAILQ_FOREACH(ni, &ic->ic_node, ni_list) {
2656			ni->ni_txrate = 0;		/* use lowest rate */
2657			an = (struct ath_node *) ni;
2658			an->an_tx_ok = an->an_tx_err = an->an_tx_retr =
2659			    an->an_tx_upper = 0;
2660		}
2661	}
2662	/*
2663	 * Reset local xmit state; this is really only meaningful
2664	 * when operating in station or adhoc mode.
2665	 */
2666	ni = ic->ic_bss;
2667	an = (struct ath_node *) ni;
2668	an->an_tx_ok = an->an_tx_err = an->an_tx_retr = an->an_tx_upper = 0;
2669	if (state == IEEE80211_S_RUN) {
2670		/* start with highest negotiated rate */
2671		KASSERT(ni->ni_rates.rs_nrates > 0,
2672			("transition to RUN state w/ no rates!"));
2673		ni->ni_txrate = ni->ni_rates.rs_nrates - 1;
2674	} else {
2675		/* use lowest rate */
2676		ni->ni_txrate = 0;
2677	}
2678}
2679
2680/*
2681 * Examine and potentially adjust the transmit rate.
2682 */
2683static void
2684ath_rate_ctl(void *arg, struct ieee80211_node *ni)
2685{
2686	struct ath_softc *sc = arg;
2687	struct ath_node *an = (struct ath_node *) ni;
2688	struct ieee80211_rateset *rs = &ni->ni_rates;
2689	int mod = 0, orate, enough;
2690
2691	/*
2692	 * Rate control
2693	 * XXX: very primitive version.
2694	 */
2695	sc->sc_stats.ast_rate_calls++;
2696
2697	enough = (an->an_tx_ok + an->an_tx_err >= 10);
2698
2699	/* no packet reached -> down */
2700	if (an->an_tx_err > 0 && an->an_tx_ok == 0)
2701		mod = -1;
2702
2703	/* all packets needs retry in average -> down */
2704	if (enough && an->an_tx_ok < an->an_tx_retr)
2705		mod = -1;
2706
2707	/* no error and less than 10% of packets needs retry -> up */
2708	if (enough && an->an_tx_err == 0 && an->an_tx_ok > an->an_tx_retr * 10)
2709		mod = 1;
2710
2711	orate = ni->ni_txrate;
2712	switch (mod) {
2713	case 0:
2714		if (enough && an->an_tx_upper > 0)
2715			an->an_tx_upper--;
2716		break;
2717	case -1:
2718		if (ni->ni_txrate > 0) {
2719			ni->ni_txrate--;
2720			sc->sc_stats.ast_rate_drop++;
2721		}
2722		an->an_tx_upper = 0;
2723		break;
2724	case 1:
2725		if (++an->an_tx_upper < 2)
2726			break;
2727		an->an_tx_upper = 0;
2728		if (ni->ni_txrate + 1 < rs->rs_nrates) {
2729			ni->ni_txrate++;
2730			sc->sc_stats.ast_rate_raise++;
2731		}
2732		break;
2733	}
2734
2735	if (ni->ni_txrate != orate) {
2736		printf("%s: %dM -> %dM (%d ok, %d err, %d retr)\n",
2737		    __func__,
2738		    (rs->rs_rates[orate] & IEEE80211_RATE_VAL) / 2,
2739		    (rs->rs_rates[ni->ni_txrate] & IEEE80211_RATE_VAL) / 2,
2740		    an->an_tx_ok, an->an_tx_err, an->an_tx_retr);
2741	}
2742	if (ni->ni_txrate != orate || enough)
2743		an->an_tx_ok = an->an_tx_err = an->an_tx_retr = 0;
2744}
2745
2746#ifdef AR_DEBUG
2747static int
2748sysctl_hw_ath_dump(SYSCTL_HANDLER_ARGS)
2749{
2750	char dmode[64];
2751	int error;
2752
2753	strncpy(dmode, "", sizeof(dmode) - 1);
2754	dmode[sizeof(dmode) - 1] = '\0';
2755	error = sysctl_handle_string(oidp, &dmode[0], sizeof(dmode), req);
2756
2757	if (error == 0 && req->newptr != NULL) {
2758		struct ifnet *ifp;
2759		struct ath_softc *sc;
2760
2761		ifp = ifunit("ath0");		/* XXX */
2762		if (!ifp)
2763			return EINVAL;
2764		sc = ifp->if_softc;
2765		if (strcmp(dmode, "hal") == 0)
2766			ath_hal_dumpstate(sc->sc_ah);
2767		else if (strcmp(dmode, "eeprom") == 0)
2768			ath_hal_dumpeeprom(sc->sc_ah);
2769		else if (strcmp(dmode, "rfgain") == 0)
2770			ath_hal_dumprfgain(sc->sc_ah);
2771		else if (strcmp(dmode, "ani") == 0)
2772			ath_hal_dumpani(sc->sc_ah);
2773		else
2774			return EINVAL;
2775	}
2776	return error;
2777}
2778SYSCTL_PROC(_hw_ath, OID_AUTO, dump, CTLTYPE_STRING | CTLFLAG_RW,
2779	0, 0, sysctl_hw_ath_dump, "A", "Dump driver state");
2780
2781static void
2782ath_printrxbuf(struct ath_buf *bf, int done)
2783{
2784	struct ath_desc *ds;
2785	int i;
2786
2787	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
2788		printf("R%d (%p %p) %08x %08x %08x %08x %08x %08x %c\n",
2789		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
2790		    ds->ds_link, ds->ds_data,
2791		    ds->ds_ctl0, ds->ds_ctl1,
2792		    ds->ds_hw[0], ds->ds_hw[1],
2793		    !done ? ' ' : (ds->ds_rxstat.rs_status == 0) ? '*' : '!');
2794	}
2795}
2796
2797static void
2798ath_printtxbuf(struct ath_buf *bf, int done)
2799{
2800	struct ath_desc *ds;
2801	int i;
2802
2803	for (i = 0, ds = bf->bf_desc; i < bf->bf_nseg; i++, ds++) {
2804		printf("T%d (%p %p) %08x %08x %08x %08x %08x %08x %08x %08x %c\n",
2805		    i, ds, (struct ath_desc *)bf->bf_daddr + i,
2806		    ds->ds_link, ds->ds_data,
2807		    ds->ds_ctl0, ds->ds_ctl1,
2808		    ds->ds_hw[0], ds->ds_hw[1], ds->ds_hw[2], ds->ds_hw[3],
2809		    !done ? ' ' : (ds->ds_txstat.ts_status == 0) ? '*' : '!');
2810	}
2811}
2812#endif /* AR_DEBUG */
2813