1/*
2 * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD$
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23#include "ah_devid.h"
24#include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
25
26#include "ar5416/ar5416.h"
27#include "ar5416/ar5416reg.h"
28#include "ar5416/ar5416phy.h"
29
30#include "ah_eeprom_v14.h"	/* for owl_get_ntxchains() */
31
32/*
33 * Return the wireless modes (a,b,g,n,t) supported by hardware.
34 *
35 * This value is what is actually supported by the hardware
36 * and is unaffected by regulatory/country code settings.
37 *
38 */
39u_int
40ar5416GetWirelessModes(struct ath_hal *ah)
41{
42	u_int mode;
43	struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
44	HAL_CAPABILITIES *pCap = &ahpriv->ah_caps;
45
46	mode = ar5212GetWirelessModes(ah);
47
48	/* Only enable HT modes if the NIC supports HT */
49	if (pCap->halHTSupport == AH_TRUE && (mode & HAL_MODE_11A))
50		mode |= HAL_MODE_11NA_HT20
51		     |  HAL_MODE_11NA_HT40PLUS
52		     |  HAL_MODE_11NA_HT40MINUS
53		     ;
54	if (pCap->halHTSupport == AH_TRUE && (mode & HAL_MODE_11G))
55		mode |= HAL_MODE_11NG_HT20
56		     |  HAL_MODE_11NG_HT40PLUS
57		     |  HAL_MODE_11NG_HT40MINUS
58		     ;
59	return mode;
60}
61
62/*
63 * Change the LED blinking pattern to correspond to the connectivity
64 */
65void
66ar5416SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
67{
68	static const uint32_t ledbits[8] = {
69		AR_MAC_LED_ASSOC_NONE,		/* HAL_LED_INIT */
70		AR_MAC_LED_ASSOC_PEND,		/* HAL_LED_SCAN */
71		AR_MAC_LED_ASSOC_PEND,		/* HAL_LED_AUTH */
72		AR_MAC_LED_ASSOC_ACTIVE,	/* HAL_LED_ASSOC*/
73		AR_MAC_LED_ASSOC_ACTIVE,	/* HAL_LED_RUN */
74		AR_MAC_LED_ASSOC_NONE,
75		AR_MAC_LED_ASSOC_NONE,
76		AR_MAC_LED_ASSOC_NONE,
77	};
78
79	if (AR_SREV_HOWL(ah))
80		return;
81
82	/*
83	 * Set the blink operating mode.
84	 */
85	OS_REG_RMW_FIELD(ah, AR_MAC_LED,
86	    AR_MAC_LED_ASSOC, ledbits[state & 0x7]);
87
88	/* XXX Blink slow mode? */
89	/* XXX Blink threshold? */
90	/* XXX Blink sleep hystersis? */
91
92	/*
93	 * Set the LED blink configuration to be proportional
94	 * to the current TX and RX filter bytes.  (Ie, RX'ed
95	 * frames that don't match the filter are ignored.)
96	 * This means that higher TX/RX throughput will result
97	 * in the blink rate increasing.
98	 */
99	OS_REG_RMW_FIELD(ah, AR_MAC_LED, AR_MAC_LED_MODE,
100	    AR_MAC_LED_MODE_PROP);
101}
102
103/*
104 * Get the current hardware tsf for stamlme
105 */
106uint64_t
107ar5416GetTsf64(struct ath_hal *ah)
108{
109	uint32_t low1, low2, u32;
110
111	/* sync multi-word read */
112	low1 = OS_REG_READ(ah, AR_TSF_L32);
113	u32 = OS_REG_READ(ah, AR_TSF_U32);
114	low2 = OS_REG_READ(ah, AR_TSF_L32);
115	if (low2 < low1) {	/* roll over */
116		/*
117		 * If we are not preempted this will work.  If we are
118		 * then we re-reading AR_TSF_U32 does no good as the
119		 * low bits will be meaningless.  Likewise reading
120		 * L32, U32, U32, then comparing the last two reads
121		 * to check for rollover doesn't help if preempted--so
122		 * we take this approach as it costs one less PCI read
123		 * which can be noticeable when doing things like
124		 * timestamping packets in monitor mode.
125		 */
126		u32++;
127	}
128	return (((uint64_t) u32) << 32) | ((uint64_t) low2);
129}
130
131/*
132 * Update the TSF.
133 *
134 * The full TSF is only updated once the upper 32 bits have
135 * been written.  Writing only the lower 32 bits of the TSF
136 * will not actually correctly update the TSF.
137 *
138 * The #if 0'ed code is to check whether the previous TSF
139 * reset or write has completed before writing to the
140 * TSF.  Strictly speaking, it should be also checked before
141 * reading the TSF as the write/reset may not have completed.
142 */
143void
144ar5416SetTsf64(struct ath_hal *ah, uint64_t tsf64)
145{
146	/* XXX check if this is correct! */
147#if 0
148	int i;
149	uint32_t v;
150
151	for (i = 0; i < 10; i++) {
152		v = OS_REG_READ(ah, AR_SLP32_MODE);
153		if ((v & AR_SLP32_TSF_WRITE_STATUS) == 0)
154			break;
155		OS_DELAY(10);
156	}
157	if (i == 10)
158		ath_hal_printf(ah, "%s: couldn't slew things right!\n", __func__);
159#endif
160
161	OS_REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
162	OS_REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
163}
164
165/*
166 * Reset the current hardware tsf for stamlme.
167 */
168void
169ar5416ResetTsf(struct ath_hal *ah)
170{
171	uint32_t v;
172	int i;
173
174	for (i = 0; i < 10; i++) {
175		v = OS_REG_READ(ah, AR_SLP32_MODE);
176		if ((v & AR_SLP32_TSF_WRITE_STATUS) == 0)
177			break;
178		OS_DELAY(10);
179	}
180	OS_REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
181}
182
183uint32_t
184ar5416GetCurRssi(struct ath_hal *ah)
185{
186	if (AR_SREV_OWL(ah))
187		return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
188	return (OS_REG_READ(ah, AR9130_PHY_CURRENT_RSSI) & 0xff);
189}
190
191HAL_BOOL
192ar5416SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING settings)
193{
194	return AH_TRUE;
195}
196
197/* Setup decompression for given key index */
198HAL_BOOL
199ar5416SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
200{
201	return AH_TRUE;
202}
203
204/* Setup coverage class */
205void
206ar5416SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
207{
208
209	ar5212SetCoverageClass(ah, coverageclass, now);
210}
211
212/*
213 * Return the busy for rx_frame, rx_clear, and tx_frame
214 */
215HAL_BOOL
216ar5416GetMibCycleCounts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hsample)
217{
218	struct ath_hal_5416 *ahp = AH5416(ah);
219	u_int32_t good = AH_TRUE;
220
221	/* XXX freeze/unfreeze mib counters */
222	uint32_t rc = OS_REG_READ(ah, AR_RCCNT);
223	uint32_t ec = OS_REG_READ(ah, AR_EXTRCCNT);
224	uint32_t rf = OS_REG_READ(ah, AR_RFCNT);
225	uint32_t tf = OS_REG_READ(ah, AR_TFCNT);
226	uint32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
227
228	if (ahp->ah_cycleCount == 0 || ahp->ah_cycleCount > cc) {
229		/*
230		 * Cycle counter wrap (or initial call); it's not possible
231		 * to accurately calculate a value because the registers
232		 * right shift rather than wrap--so punt and return 0.
233		 */
234		HALDEBUG(ah, HAL_DEBUG_ANY,
235			    "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
236			good = AH_FALSE;
237	} else {
238		hsample->cycle_count = cc - ahp->ah_cycleCount;
239		hsample->chan_busy = rc - ahp->ah_ctlBusy;
240		hsample->ext_chan_busy = ec - ahp->ah_extBusy;
241		hsample->rx_busy = rf - ahp->ah_rxBusy;
242		hsample->tx_busy = tf - ahp->ah_txBusy;
243	}
244
245	/*
246	 * Keep a copy of the MIB results so the next sample has something
247	 * to work from.
248	 */
249	ahp->ah_cycleCount = cc;
250	ahp->ah_rxBusy = rf;
251	ahp->ah_ctlBusy = rc;
252	ahp->ah_txBusy = tf;
253	ahp->ah_extBusy = ec;
254
255	return (good);
256}
257
258/*
259 * Setup the TX/RX chainmasks - this needs to be done before a call
260 * to the reset method as it doesn't update the hardware.
261 */
262void
263ar5416SetChainMasks(struct ath_hal *ah, uint32_t tx_chainmask,
264    uint32_t rx_chainmask)
265{
266	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
267
268	AH5416(ah)->ah_tx_chainmask = tx_chainmask & pCap->halTxChainMask;
269	AH5416(ah)->ah_rx_chainmask = rx_chainmask & pCap->halRxChainMask;
270}
271
272/*
273 * Return approximation of extension channel busy over an time interval
274 * 0% (clear) -> 100% (busy)
275 *
276 * XXX TODO: update this to correctly sample all the counters,
277 *           rather than a subset of it.
278 */
279uint32_t
280ar5416Get11nExtBusy(struct ath_hal *ah)
281{
282    struct ath_hal_5416 *ahp = AH5416(ah);
283    uint32_t busy; /* percentage */
284    uint32_t cycleCount, ctlBusy, extBusy;
285
286    ctlBusy = OS_REG_READ(ah, AR_RCCNT);
287    extBusy = OS_REG_READ(ah, AR_EXTRCCNT);
288    cycleCount = OS_REG_READ(ah, AR_CCCNT);
289
290    if (ahp->ah_cycleCount == 0 || ahp->ah_cycleCount > cycleCount) {
291        /*
292         * Cycle counter wrap (or initial call); it's not possible
293         * to accurately calculate a value because the registers
294         * right shift rather than wrap--so punt and return 0.
295         */
296        busy = 0;
297        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cycle counter wrap. ExtBusy = 0\n",
298	    __func__);
299
300    } else {
301        uint32_t cycleDelta = cycleCount - ahp->ah_cycleCount;
302        uint32_t ctlBusyDelta = ctlBusy - ahp->ah_ctlBusy;
303        uint32_t extBusyDelta = extBusy - ahp->ah_extBusy;
304        uint32_t ctlClearDelta = 0;
305
306        /* Compute control channel rxclear.
307         * The cycle delta may be less than the control channel delta.
308         * This could be solved by freezing the timers (or an atomic read,
309         * if one was available). Checking for the condition should be
310         * sufficient.
311         */
312        if (cycleDelta > ctlBusyDelta) {
313            ctlClearDelta = cycleDelta - ctlBusyDelta;
314        }
315
316        /* Compute ratio of extension channel busy to control channel clear
317         * as an approximation to extension channel cleanliness.
318         *
319         * According to the hardware folks, ext rxclear is undefined
320         * if the ctrl rxclear is de-asserted (i.e. busy)
321         */
322        if (ctlClearDelta) {
323            busy = (extBusyDelta * 100) / ctlClearDelta;
324        } else {
325            busy = 100;
326        }
327        if (busy > 100) {
328            busy = 100;
329        }
330#if 0
331        HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cycleDelta 0x%x, ctlBusyDelta 0x%x, "
332             "extBusyDelta 0x%x, ctlClearDelta 0x%x, "
333             "busy %d\n",
334              __func__, cycleDelta, ctlBusyDelta, extBusyDelta, ctlClearDelta, busy);
335#endif
336    }
337
338    ahp->ah_cycleCount = cycleCount;
339    ahp->ah_ctlBusy = ctlBusy;
340    ahp->ah_extBusy = extBusy;
341
342    return busy;
343}
344
345/*
346 * Configure 20/40 operation
347 *
348 * 20/40 = joint rx clear (control and extension)
349 * 20    = rx clear (control)
350 *
351 * - NOTE: must stop MAC (tx) and requeue 40 MHz packets as 20 MHz when changing
352 *         from 20/40 => 20 only
353 */
354void
355ar5416Set11nMac2040(struct ath_hal *ah, HAL_HT_MACMODE mode)
356{
357    uint32_t macmode;
358
359    /* Configure MAC for 20/40 operation */
360    if (mode == HAL_HT_MACMODE_2040) {
361        macmode = AR_2040_JOINED_RX_CLEAR;
362    } else {
363        macmode = 0;
364    }
365    OS_REG_WRITE(ah, AR_2040_MODE, macmode);
366}
367
368/*
369 * Get Rx clear (control/extension channel)
370 *
371 * Returns active low (busy) for ctrl/ext channel
372 * Owl 2.0
373 */
374HAL_HT_RXCLEAR
375ar5416Get11nRxClear(struct ath_hal *ah)
376{
377    HAL_HT_RXCLEAR rxclear = 0;
378    uint32_t val;
379
380    val = OS_REG_READ(ah, AR_DIAG_SW);
381
382    /* control channel */
383    if (val & AR_DIAG_RXCLEAR_CTL_LOW) {
384        rxclear |= HAL_RX_CLEAR_CTL_LOW;
385    }
386    /* extension channel */
387    if (val & AR_DIAG_RXCLEAR_EXT_LOW) {
388        rxclear |= HAL_RX_CLEAR_EXT_LOW;
389    }
390    return rxclear;
391}
392
393/*
394 * Set Rx clear (control/extension channel)
395 *
396 * Useful for forcing the channel to appear busy for
397 * debugging/diagnostics
398 * Owl 2.0
399 */
400void
401ar5416Set11nRxClear(struct ath_hal *ah, HAL_HT_RXCLEAR rxclear)
402{
403    /* control channel */
404    if (rxclear & HAL_RX_CLEAR_CTL_LOW) {
405        OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_CTL_LOW);
406    } else {
407        OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_CTL_LOW);
408    }
409    /* extension channel */
410    if (rxclear & HAL_RX_CLEAR_EXT_LOW) {
411        OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_EXT_LOW);
412    } else {
413        OS_REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_RXCLEAR_EXT_LOW);
414    }
415}
416
417/* XXX shouldn't be here! */
418#define	TU_TO_USEC(_tu)		((_tu) << 10)
419
420HAL_STATUS
421ar5416SetQuiet(struct ath_hal *ah, uint32_t period, uint32_t duration,
422    uint32_t nextStart, HAL_QUIET_FLAG flag)
423{
424	uint32_t period_us = TU_TO_USEC(period); /* convert to us unit */
425	uint32_t nextStart_us = TU_TO_USEC(nextStart); /* convert to us unit */
426	if (flag & HAL_QUIET_ENABLE) {
427		if ((!nextStart) || (flag & HAL_QUIET_ADD_CURRENT_TSF)) {
428			/* Add the nextStart offset to the current TSF */
429			nextStart_us += OS_REG_READ(ah, AR_TSF_L32);
430		}
431		if (flag & HAL_QUIET_ADD_SWBA_RESP_TIME) {
432			nextStart_us += ah->ah_config.ah_sw_beacon_response_time;
433		}
434		OS_REG_RMW_FIELD(ah, AR_QUIET1, AR_QUIET1_QUIET_ACK_CTS_ENABLE, 1);
435		OS_REG_WRITE(ah, AR_QUIET2, SM(duration, AR_QUIET2_QUIET_DUR));
436		OS_REG_WRITE(ah, AR_QUIET_PERIOD, period_us);
437		OS_REG_WRITE(ah, AR_NEXT_QUIET, nextStart_us);
438		OS_REG_SET_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
439	} else {
440		OS_REG_CLR_BIT(ah, AR_TIMER_MODE, AR_TIMER_MODE_QUIET);
441	}
442	return HAL_OK;
443}
444#undef	TU_TO_USEC
445
446HAL_STATUS
447ar5416GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
448        uint32_t capability, uint32_t *result)
449{
450	switch (type) {
451	case HAL_CAP_BB_HANG:
452		switch (capability) {
453		case HAL_BB_HANG_RIFS:
454			return (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) ? HAL_OK : HAL_ENOTSUPP;
455		case HAL_BB_HANG_DFS:
456			return (AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) ? HAL_OK : HAL_ENOTSUPP;
457		case HAL_BB_HANG_RX_CLEAR:
458			return AR_SREV_MERLIN(ah) ? HAL_OK : HAL_ENOTSUPP;
459		}
460		break;
461	case HAL_CAP_MAC_HANG:
462		return ((ah->ah_macVersion == AR_XSREV_VERSION_OWL_PCI) ||
463		    (ah->ah_macVersion == AR_XSREV_VERSION_OWL_PCIE) ||
464		    AR_SREV_HOWL(ah) || AR_SREV_SOWL(ah)) ?
465			HAL_OK : HAL_ENOTSUPP;
466	case HAL_CAP_DIVERSITY:		/* disable classic fast diversity */
467		return HAL_ENXIO;
468	case HAL_CAP_ENFORCE_TXOP:
469		if (capability == 0)
470			return (HAL_OK);
471		if (capability != 1)
472			return (HAL_ENOTSUPP);
473		(*result) =
474		    !! (AH5212(ah)->ah_miscMode & AR_PCU_TXOP_TBTT_LIMIT_ENA);
475		return (HAL_OK);
476	default:
477		break;
478	}
479	return ar5212GetCapability(ah, type, capability, result);
480}
481
482HAL_BOOL
483ar5416SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
484    u_int32_t capability, u_int32_t setting, HAL_STATUS *status)
485{
486	HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
487
488	switch (type) {
489	case HAL_CAP_RX_CHAINMASK:
490		setting &= ath_hal_eepromGet(ah, AR_EEP_RXMASK, NULL);
491		pCap->halRxChainMask = setting;
492		if (owl_get_ntxchains(setting) > 2)
493			pCap->halRxStreams = 2;
494		else
495			pCap->halRxStreams = 1;
496		return AH_TRUE;
497	case HAL_CAP_TX_CHAINMASK:
498		setting &= ath_hal_eepromGet(ah, AR_EEP_TXMASK, NULL);
499		pCap->halTxChainMask = setting;
500		if (owl_get_ntxchains(setting) > 2)
501			pCap->halTxStreams = 2;
502		else
503			pCap->halTxStreams = 1;
504		return AH_TRUE;
505	case HAL_CAP_ENFORCE_TXOP:
506		if (capability != 1)
507			return AH_FALSE;
508		if (setting) {
509			AH5212(ah)->ah_miscMode
510			    |= AR_PCU_TXOP_TBTT_LIMIT_ENA;
511			OS_REG_SET_BIT(ah, AR_MISC_MODE,
512			    AR_PCU_TXOP_TBTT_LIMIT_ENA);
513		} else {
514			AH5212(ah)->ah_miscMode
515			    &= ~AR_PCU_TXOP_TBTT_LIMIT_ENA;
516			OS_REG_CLR_BIT(ah, AR_MISC_MODE,
517			    AR_PCU_TXOP_TBTT_LIMIT_ENA);
518		}
519		return AH_TRUE;
520	default:
521		break;
522	}
523	return ar5212SetCapability(ah, type, capability, setting, status);
524}
525
526static int ar5416DetectMacHang(struct ath_hal *ah);
527static int ar5416DetectBBHang(struct ath_hal *ah);
528
529HAL_BOOL
530ar5416GetDiagState(struct ath_hal *ah, int request,
531	const void *args, uint32_t argsize,
532	void **result, uint32_t *resultsize)
533{
534	struct ath_hal_5416 *ahp = AH5416(ah);
535	int hangs;
536
537	if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
538		return AH_TRUE;
539	switch (request) {
540	case HAL_DIAG_EEPROM:
541		return ath_hal_eepromDiag(ah, request,
542		    args, argsize, result, resultsize);
543	case HAL_DIAG_CHECK_HANGS:
544		if (argsize != sizeof(int))
545			return AH_FALSE;
546		hangs = *(const int *) args;
547		ahp->ah_hangs = 0;
548		if (hangs & HAL_BB_HANGS)
549			ahp->ah_hangs |= ar5416DetectBBHang(ah);
550		/* NB: if BB is hung MAC will be hung too so skip check */
551		if (ahp->ah_hangs == 0 && (hangs & HAL_MAC_HANGS))
552			ahp->ah_hangs |= ar5416DetectMacHang(ah);
553		*result = &ahp->ah_hangs;
554		*resultsize = sizeof(ahp->ah_hangs);
555		return AH_TRUE;
556	}
557	return ar5212GetDiagState(ah, request,
558	    args, argsize, result, resultsize);
559}
560
561HAL_BOOL
562ar5416SetRifsDelay(struct ath_hal *ah, const struct ieee80211_channel *chan,
563    HAL_BOOL enable)
564{
565	uint32_t val;
566	HAL_BOOL is_chan_2g = AH_FALSE;
567	HAL_BOOL is_ht40 = AH_FALSE;
568
569	if (chan)
570		is_chan_2g = IEEE80211_IS_CHAN_2GHZ(chan);
571
572	if (chan)
573		is_ht40 = IEEE80211_IS_CHAN_HT40(chan);
574
575	/* Only support disabling RIFS delay for now */
576	HALASSERT(enable == AH_FALSE);
577
578	if (enable == AH_TRUE)
579		return AH_FALSE;
580
581	/* Change RIFS init delay to 0 */
582	val = OS_REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
583	val &= ~AR_PHY_RIFS_INIT_DELAY;
584	OS_REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
585
586	/*
587	 * For Owl, RIFS RX parameters are controlled differently;
588	 * it isn't enabled in the inivals by default.
589	 *
590	 * For Sowl/Howl, RIFS RX is enabled in the inivals by default;
591	 * the following code sets them back to non-RIFS values.
592	 *
593	 * For > Sowl/Howl, RIFS RX can be left on by default and so
594	 * this function shouldn't be called.
595	 */
596	if ((! AR_SREV_SOWL(ah)) && (! AR_SREV_HOWL(ah)))
597		return AH_TRUE;
598
599	/* Reset search delay to default values */
600	if (is_chan_2g)
601		if (is_ht40)
602			OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x268);
603		else
604			OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x134);
605	else
606		if (is_ht40)
607			OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x370);
608		else
609			OS_REG_WRITE(ah, AR_PHY_SEARCH_START_DELAY, 0x1b8);
610
611	return AH_TRUE;
612}
613
614static HAL_BOOL
615ar5416CompareDbgHang(struct ath_hal *ah, const mac_dbg_regs_t *regs,
616    const hal_mac_hang_check_t *check)
617{
618	int found_states;
619
620	found_states = 0;
621	if (check->states & dcu_chain_state) {
622		int i;
623
624		for (i = 0; i < 6; i++) {
625			if (((regs->dma_dbg_4 >> (5*i)) & 0x1f) ==
626			    check->dcu_chain_state)
627				found_states |= dcu_chain_state;
628		}
629		for (i = 0; i < 4; i++) {
630			if (((regs->dma_dbg_5 >> (5*i)) & 0x1f) ==
631			    check->dcu_chain_state)
632				found_states |= dcu_chain_state;
633		}
634	}
635	if (check->states & dcu_complete_state) {
636		if ((regs->dma_dbg_6 & 0x3) == check->dcu_complete_state)
637			found_states |= dcu_complete_state;
638	}
639	if (check->states & qcu_stitch_state) {
640		if (((regs->dma_dbg_3 >> 18) & 0xf) == check->qcu_stitch_state)
641			found_states |= qcu_stitch_state;
642	}
643	if (check->states & qcu_fetch_state) {
644		if (((regs->dma_dbg_3 >> 22) & 0xf) == check->qcu_fetch_state)
645			found_states |= qcu_fetch_state;
646	}
647	if (check->states & qcu_complete_state) {
648		if (((regs->dma_dbg_3 >> 26) & 0x7) == check->qcu_complete_state)
649			found_states |= qcu_complete_state;
650	}
651	return (found_states == check->states);
652}
653
654#define NUM_STATUS_READS 50
655
656static int
657ar5416DetectMacHang(struct ath_hal *ah)
658{
659	static const hal_mac_hang_check_t hang_sig1 = {
660		.dcu_chain_state	= 0x6,
661		.dcu_complete_state	= 0x1,
662		.states			= dcu_chain_state
663					| dcu_complete_state,
664	};
665	static const hal_mac_hang_check_t hang_sig2 = {
666		.qcu_stitch_state	= 0x9,
667		.qcu_fetch_state	= 0x8,
668		.qcu_complete_state	= 0x4,
669		.states			= qcu_stitch_state
670					| qcu_fetch_state
671					| qcu_complete_state,
672        };
673	mac_dbg_regs_t mac_dbg;
674	int i;
675
676	mac_dbg.dma_dbg_3 = OS_REG_READ(ah, AR_DMADBG_3);
677	mac_dbg.dma_dbg_4 = OS_REG_READ(ah, AR_DMADBG_4);
678	mac_dbg.dma_dbg_5 = OS_REG_READ(ah, AR_DMADBG_5);
679	mac_dbg.dma_dbg_6 = OS_REG_READ(ah, AR_DMADBG_6);
680	for (i = 1; i <= NUM_STATUS_READS; i++) {
681		if (mac_dbg.dma_dbg_3 != OS_REG_READ(ah, AR_DMADBG_3) ||
682		    mac_dbg.dma_dbg_4 != OS_REG_READ(ah, AR_DMADBG_4) ||
683		    mac_dbg.dma_dbg_5 != OS_REG_READ(ah, AR_DMADBG_5) ||
684		    mac_dbg.dma_dbg_6 != OS_REG_READ(ah, AR_DMADBG_6))
685			return 0;
686	}
687
688	if (ar5416CompareDbgHang(ah, &mac_dbg, &hang_sig1))
689		return HAL_MAC_HANG_SIG1;
690	if (ar5416CompareDbgHang(ah, &mac_dbg, &hang_sig2))
691		return HAL_MAC_HANG_SIG2;
692
693	HALDEBUG(ah, HAL_DEBUG_HANG, "%s Found an unknown MAC hang signature "
694	    "DMADBG_3=0x%x DMADBG_4=0x%x DMADBG_5=0x%x DMADBG_6=0x%x\n",
695	    __func__, mac_dbg.dma_dbg_3, mac_dbg.dma_dbg_4, mac_dbg.dma_dbg_5,
696	    mac_dbg.dma_dbg_6);
697
698	return 0;
699}
700
701/*
702 * Determine if the baseband using the Observation Bus Register
703 */
704static int
705ar5416DetectBBHang(struct ath_hal *ah)
706{
707#define N(a) (sizeof(a)/sizeof(a[0]))
708	/*
709	 * Check the PCU Observation Bus 1 register (0x806c)
710	 * NUM_STATUS_READS times
711	 *
712	 * 4 known BB hang signatures -
713	 * [1] bits 8,9,11 are 0. State machine state (bits 25-31) is 0x1E
714	 * [2] bits 8,9 are 1, bit 11 is 0. State machine state
715	 *     (bits 25-31) is 0x52
716	 * [3] bits 8,9 are 1, bit 11 is 0. State machine state
717	 *     (bits 25-31) is 0x18
718	 * [4] bit 10 is 1, bit 11 is 0. WEP state (bits 12-17) is 0x2,
719	 *     Rx State (bits 20-24) is 0x7.
720	 */
721	static const struct {
722		uint32_t val;
723		uint32_t mask;
724		int code;
725	} hang_list[] = {
726		/* Reg Value   Reg Mask    Hang Code XXX */
727		{ 0x1E000000, 0x7E000B00, HAL_BB_HANG_DFS },
728		{ 0x52000B00, 0x7E000B00, HAL_BB_HANG_RIFS },
729		{ 0x18000B00, 0x7E000B00, HAL_BB_HANG_RX_CLEAR },
730		{ 0x00702400, 0x7E7FFFEF, HAL_BB_HANG_RX_CLEAR }
731	};
732	uint32_t hang_sig;
733	int i;
734
735	hang_sig = OS_REG_READ(ah, AR_OBSERV_1);
736	for (i = 1; i <= NUM_STATUS_READS; i++) {
737		if (hang_sig != OS_REG_READ(ah, AR_OBSERV_1))
738			return 0;
739	}
740	for (i = 0; i < N(hang_list); i++)
741		if ((hang_sig & hang_list[i].mask) == hang_list[i].val) {
742			HALDEBUG(ah, HAL_DEBUG_HANG,
743			    "%s BB hang, signature 0x%x, code 0x%x\n",
744			    __func__, hang_sig, hang_list[i].code);
745			return hang_list[i].code;
746		}
747
748	HALDEBUG(ah, HAL_DEBUG_HANG, "%s Found an unknown BB hang signature! "
749	    "<0x806c>=0x%x\n", __func__, hang_sig);
750
751	return 0;
752#undef N
753}
754#undef NUM_STATUS_READS
755