ar5212_misc.c revision 187831
1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD: head/sys/dev/ath/ath_hal/ar5212/ar5212_misc.c 187831 2009-01-28 18:00:22Z sam $
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23#include "ah_devid.h"
24#ifdef AH_DEBUG
25#include "ah_desc.h"			/* NB: for HAL_PHYERR* */
26#endif
27
28#include "ar5212/ar5212.h"
29#include "ar5212/ar5212reg.h"
30#include "ar5212/ar5212phy.h"
31
32#include "ah_eeprom_v3.h"
33
34#define	AR_NUM_GPIO	6		/* 6 GPIO pins */
35#define	AR_GPIOD_MASK	0x0000002F	/* GPIO data reg r/w mask */
36
37void
38ar5212GetMacAddress(struct ath_hal *ah, uint8_t *mac)
39{
40	struct ath_hal_5212 *ahp = AH5212(ah);
41
42	OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
43}
44
45HAL_BOOL
46ar5212SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
47{
48	struct ath_hal_5212 *ahp = AH5212(ah);
49
50	OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
51	return AH_TRUE;
52}
53
54void
55ar5212GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
56{
57	struct ath_hal_5212 *ahp = AH5212(ah);
58
59	OS_MEMCPY(mask, ahp->ah_bssidmask, IEEE80211_ADDR_LEN);
60}
61
62HAL_BOOL
63ar5212SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
64{
65	struct ath_hal_5212 *ahp = AH5212(ah);
66
67	/* save it since it must be rewritten on reset */
68	OS_MEMCPY(ahp->ah_bssidmask, mask, IEEE80211_ADDR_LEN);
69
70	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
71	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
72	return AH_TRUE;
73}
74
75/*
76 * Attempt to change the cards operating regulatory domain to the given value
77 */
78HAL_BOOL
79ar5212SetRegulatoryDomain(struct ath_hal *ah,
80	uint16_t regDomain, HAL_STATUS *status)
81{
82	HAL_STATUS ecode;
83
84	if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
85		ecode = HAL_EINVAL;
86		goto bad;
87	}
88	if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
89		ecode = HAL_EEWRITE;
90		goto bad;
91	}
92#ifdef AH_SUPPORT_WRITE_REGDOMAIN
93	if (ath_hal_eepromWrite(ah, AR_EEPROM_REG_DOMAIN, regDomain)) {
94		HALDEBUG(ah, HAL_DEBUG_ANY,
95		    "%s: set regulatory domain to %u (0x%x)\n",
96		    __func__, regDomain, regDomain);
97		AH_PRIVATE(ah)->ah_currentRD = regDomain;
98		return AH_TRUE;
99	}
100#endif
101	ecode = HAL_EIO;
102bad:
103	if (status)
104		*status = ecode;
105	return AH_FALSE;
106}
107
108/*
109 * Return the wireless modes (a,b,g,t) supported by hardware.
110 *
111 * This value is what is actually supported by the hardware
112 * and is unaffected by regulatory/country code settings.
113 */
114u_int
115ar5212GetWirelessModes(struct ath_hal *ah)
116{
117	u_int mode = 0;
118
119	if (ath_hal_eepromGetFlag(ah, AR_EEP_AMODE)) {
120		mode = HAL_MODE_11A;
121		if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO5DISABLE))
122			mode |= HAL_MODE_TURBO | HAL_MODE_108A;
123		if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate)
124			mode |= HAL_MODE_11A_HALF_RATE;
125		if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate)
126			mode |= HAL_MODE_11A_QUARTER_RATE;
127	}
128	if (ath_hal_eepromGetFlag(ah, AR_EEP_BMODE))
129		mode |= HAL_MODE_11B;
130	if (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) &&
131	    AH_PRIVATE(ah)->ah_subvendorid != AR_SUBVENDOR_ID_NOG) {
132		mode |= HAL_MODE_11G;
133		if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO2DISABLE))
134			mode |= HAL_MODE_108G;
135		if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate)
136			mode |= HAL_MODE_11G_HALF_RATE;
137		if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate)
138			mode |= HAL_MODE_11G_QUARTER_RATE;
139	}
140	return mode;
141}
142
143/*
144 * Set the interrupt and GPIO values so the ISR can disable RF
145 * on a switch signal.  Assumes GPIO port and interrupt polarity
146 * are set prior to call.
147 */
148void
149ar5212EnableRfKill(struct ath_hal *ah)
150{
151	uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
152	int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
153	int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
154
155	/*
156	 * Configure the desired GPIO port for input
157	 * and enable baseband rf silence.
158	 */
159	ath_hal_gpioCfgInput(ah, select);
160	OS_REG_SET_BIT(ah, AR_PHY(0), 0x00002000);
161	/*
162	 * If radio disable switch connection to GPIO bit x is enabled
163	 * program GPIO interrupt.
164	 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
165	 * verified that it is a later version of eeprom, it has a place for
166	 * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
167	 * connection is present.
168	 */
169	ath_hal_gpioSetIntr(ah, select,
170	    (ath_hal_gpioGet(ah, select) == polarity ? !polarity : polarity));
171}
172
173/*
174 * Change the LED blinking pattern to correspond to the connectivity
175 */
176void
177ar5212SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
178{
179	static const uint32_t ledbits[8] = {
180		AR_PCICFG_LEDCTL_NONE,	/* HAL_LED_INIT */
181		AR_PCICFG_LEDCTL_PEND,	/* HAL_LED_SCAN */
182		AR_PCICFG_LEDCTL_PEND,	/* HAL_LED_AUTH */
183		AR_PCICFG_LEDCTL_ASSOC,	/* HAL_LED_ASSOC*/
184		AR_PCICFG_LEDCTL_ASSOC,	/* HAL_LED_RUN */
185		AR_PCICFG_LEDCTL_NONE,
186		AR_PCICFG_LEDCTL_NONE,
187		AR_PCICFG_LEDCTL_NONE,
188	};
189	uint32_t bits;
190
191	bits = OS_REG_READ(ah, AR_PCICFG);
192	if (IS_2417(ah)) {
193		/*
194		 * Enable LED for Nala. There is a bit marked reserved
195		 * that must be set and we also turn on the power led.
196		 * Because we mark s/w LED control setting the control
197		 * status bits below is meangless (the driver must flash
198		 * the LED(s) using the GPIO lines).
199		 */
200		bits = (bits &~ AR_PCICFG_LEDMODE)
201		     | SM(AR_PCICFG_LEDMODE_POWON, AR_PCICFG_LEDMODE)
202#if 0
203		     | SM(AR_PCICFG_LEDMODE_NETON, AR_PCICFG_LEDMODE)
204#endif
205		     | 0x08000000;
206	}
207	bits = (bits &~ AR_PCICFG_LEDCTL)
208	     | SM(ledbits[state & 0x7], AR_PCICFG_LEDCTL);
209	OS_REG_WRITE(ah, AR_PCICFG, bits);
210}
211
212/*
213 * Change association related fields programmed into the hardware.
214 * Writing a valid BSSID to the hardware effectively enables the hardware
215 * to synchronize its TSF to the correct beacons and receive frames coming
216 * from that BSSID. It is called by the SME JOIN operation.
217 */
218void
219ar5212WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
220{
221	struct ath_hal_5212 *ahp = AH5212(ah);
222
223	/* XXX save bssid for possible re-use on reset */
224	OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
225	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
226	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
227				     ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
228}
229
230/*
231 * Get the current hardware tsf for stamlme
232 */
233uint64_t
234ar5212GetTsf64(struct ath_hal *ah)
235{
236	uint32_t low1, low2, u32;
237
238	/* sync multi-word read */
239	low1 = OS_REG_READ(ah, AR_TSF_L32);
240	u32 = OS_REG_READ(ah, AR_TSF_U32);
241	low2 = OS_REG_READ(ah, AR_TSF_L32);
242	if (low2 < low1) {	/* roll over */
243		/*
244		 * If we are not preempted this will work.  If we are
245		 * then we re-reading AR_TSF_U32 does no good as the
246		 * low bits will be meaningless.  Likewise reading
247		 * L32, U32, U32, then comparing the last two reads
248		 * to check for rollover doesn't help if preempted--so
249		 * we take this approach as it costs one less PCI read
250		 * which can be noticeable when doing things like
251		 * timestamping packets in monitor mode.
252		 */
253		u32++;
254	}
255	return (((uint64_t) u32) << 32) | ((uint64_t) low2);
256}
257
258/*
259 * Get the current hardware tsf for stamlme
260 */
261uint32_t
262ar5212GetTsf32(struct ath_hal *ah)
263{
264	return OS_REG_READ(ah, AR_TSF_L32);
265}
266
267/*
268 * Reset the current hardware tsf for stamlme.
269 */
270void
271ar5212ResetTsf(struct ath_hal *ah)
272{
273
274	uint32_t val = OS_REG_READ(ah, AR_BEACON);
275
276	OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
277	/*
278	 * When resetting the TSF, write twice to the
279	 * corresponding register; each write to the RESET_TSF bit toggles
280	 * the internal signal to cause a reset of the TSF - but if the signal
281	 * is left high, it will reset the TSF on the next chip reset also!
282	 * writing the bit an even number of times fixes this issue
283	 */
284	OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
285}
286
287/*
288 * Set or clear hardware basic rate bit
289 * Set hardware basic rate set if basic rate is found
290 * and basic rate is equal or less than 2Mbps
291 */
292void
293ar5212SetBasicRate(struct ath_hal *ah, HAL_RATE_SET *rs)
294{
295	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
296	uint32_t reg;
297	uint8_t xset;
298	int i;
299
300	if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan))
301		return;
302	xset = 0;
303	for (i = 0; i < rs->rs_count; i++) {
304		uint8_t rset = rs->rs_rates[i];
305		/* Basic rate defined? */
306		if ((rset & 0x80) && (rset &= 0x7f) >= xset)
307			xset = rset;
308	}
309	/*
310	 * Set the h/w bit to reflect whether or not the basic
311	 * rate is found to be equal or less than 2Mbps.
312	 */
313	reg = OS_REG_READ(ah, AR_STA_ID1);
314	if (xset && xset/2 <= 2)
315		OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
316	else
317		OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
318}
319
320/*
321 * Grab a semi-random value from hardware registers - may not
322 * change often
323 */
324uint32_t
325ar5212GetRandomSeed(struct ath_hal *ah)
326{
327	uint32_t nf;
328
329	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
330	if (nf & 0x100)
331		nf = 0 - ((nf ^ 0x1ff) + 1);
332	return (OS_REG_READ(ah, AR_TSF_U32) ^
333		OS_REG_READ(ah, AR_TSF_L32) ^ nf);
334}
335
336/*
337 * Detect if our card is present
338 */
339HAL_BOOL
340ar5212DetectCardPresent(struct ath_hal *ah)
341{
342	uint16_t macVersion, macRev;
343	uint32_t v;
344
345	/*
346	 * Read the Silicon Revision register and compare that
347	 * to what we read at attach time.  If the same, we say
348	 * a card/device is present.
349	 */
350	v = OS_REG_READ(ah, AR_SREV) & AR_SREV_ID;
351	macVersion = v >> AR_SREV_ID_S;
352	macRev = v & AR_SREV_REVISION;
353	return (AH_PRIVATE(ah)->ah_macVersion == macVersion &&
354		AH_PRIVATE(ah)->ah_macRev == macRev);
355}
356
357void
358ar5212EnableMibCounters(struct ath_hal *ah)
359{
360	/* NB: this just resets the mib counter machinery */
361	OS_REG_WRITE(ah, AR_MIBC,
362	    ~(AR_MIBC_COW | AR_MIBC_FMC | AR_MIBC_CMC | AR_MIBC_MCS) & 0x0f);
363}
364
365void
366ar5212DisableMibCounters(struct ath_hal *ah)
367{
368	OS_REG_WRITE(ah, AR_MIBC,  AR_MIBC | AR_MIBC_CMC);
369}
370
371/*
372 * Update MIB Counters
373 */
374void
375ar5212UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS* stats)
376{
377	stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
378	stats->rts_bad	  += OS_REG_READ(ah, AR_RTS_FAIL);
379	stats->fcs_bad	  += OS_REG_READ(ah, AR_FCS_FAIL);
380	stats->rts_good	  += OS_REG_READ(ah, AR_RTS_OK);
381	stats->beacons	  += OS_REG_READ(ah, AR_BEACON_CNT);
382}
383
384/*
385 * Detect if the HW supports spreading a CCK signal on channel 14
386 */
387HAL_BOOL
388ar5212IsJapanChannelSpreadSupported(struct ath_hal *ah)
389{
390	return AH_TRUE;
391}
392
393/*
394 * Get the rssi of frame curently being received.
395 */
396uint32_t
397ar5212GetCurRssi(struct ath_hal *ah)
398{
399	return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
400}
401
402u_int
403ar5212GetDefAntenna(struct ath_hal *ah)
404{
405	return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
406}
407
408void
409ar5212SetDefAntenna(struct ath_hal *ah, u_int antenna)
410{
411	OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
412}
413
414HAL_ANT_SETTING
415ar5212GetAntennaSwitch(struct ath_hal *ah)
416{
417	return AH5212(ah)->ah_antControl;
418}
419
420HAL_BOOL
421ar5212SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING setting)
422{
423	struct ath_hal_5212 *ahp = AH5212(ah);
424	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
425
426	if (!ahp->ah_phyPowerOn || chan == AH_NULL) {
427		/* PHY powered off, just stash settings */
428		ahp->ah_antControl = setting;
429		ahp->ah_diversity = (setting == HAL_ANT_VARIABLE);
430		return AH_TRUE;
431	}
432	return ar5212SetAntennaSwitchInternal(ah, setting, chan);
433}
434
435HAL_BOOL
436ar5212IsSleepAfterBeaconBroken(struct ath_hal *ah)
437{
438	return AH_TRUE;
439}
440
441HAL_BOOL
442ar5212SetSifsTime(struct ath_hal *ah, u_int us)
443{
444	struct ath_hal_5212 *ahp = AH5212(ah);
445
446	if (us > ath_hal_mac_usec(ah, 0xffff)) {
447		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
448		    __func__, us);
449		ahp->ah_sifstime = (u_int) -1;	/* restore default handling */
450		return AH_FALSE;
451	} else {
452		/* convert to system clocks */
453		OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, ath_hal_mac_clks(ah, us));
454		ahp->ah_slottime = us;
455		return AH_TRUE;
456	}
457}
458
459u_int
460ar5212GetSifsTime(struct ath_hal *ah)
461{
462	u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SIFS) & 0xffff;
463	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
464}
465
466HAL_BOOL
467ar5212SetSlotTime(struct ath_hal *ah, u_int us)
468{
469	struct ath_hal_5212 *ahp = AH5212(ah);
470
471	if (us < HAL_SLOT_TIME_6 || us > ath_hal_mac_usec(ah, 0xffff)) {
472		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
473		    __func__, us);
474		ahp->ah_slottime = (u_int) -1;	/* restore default handling */
475		return AH_FALSE;
476	} else {
477		/* convert to system clocks */
478		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath_hal_mac_clks(ah, us));
479		ahp->ah_slottime = us;
480		return AH_TRUE;
481	}
482}
483
484u_int
485ar5212GetSlotTime(struct ath_hal *ah)
486{
487	u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SLOT) & 0xffff;
488	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
489}
490
491HAL_BOOL
492ar5212SetAckTimeout(struct ath_hal *ah, u_int us)
493{
494	struct ath_hal_5212 *ahp = AH5212(ah);
495
496	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
497		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
498		    __func__, us);
499		ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
500		return AH_FALSE;
501	} else {
502		/* convert to system clocks */
503		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
504			AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
505		ahp->ah_acktimeout = us;
506		return AH_TRUE;
507	}
508}
509
510u_int
511ar5212GetAckTimeout(struct ath_hal *ah)
512{
513	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
514	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
515}
516
517u_int
518ar5212GetAckCTSRate(struct ath_hal *ah)
519{
520	return ((AH5212(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
521}
522
523HAL_BOOL
524ar5212SetAckCTSRate(struct ath_hal *ah, u_int high)
525{
526	struct ath_hal_5212 *ahp = AH5212(ah);
527
528	if (high) {
529		OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
530		ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
531	} else {
532		OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
533		ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
534	}
535	return AH_TRUE;
536}
537
538HAL_BOOL
539ar5212SetCTSTimeout(struct ath_hal *ah, u_int us)
540{
541	struct ath_hal_5212 *ahp = AH5212(ah);
542
543	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
544		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
545		    __func__, us);
546		ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
547		return AH_FALSE;
548	} else {
549		/* convert to system clocks */
550		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
551			AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
552		ahp->ah_ctstimeout = us;
553		return AH_TRUE;
554	}
555}
556
557u_int
558ar5212GetCTSTimeout(struct ath_hal *ah)
559{
560	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
561	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
562}
563
564/* Setup decompression for given key index */
565HAL_BOOL
566ar5212SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
567{
568	struct ath_hal_5212 *ahp = AH5212(ah);
569
570        if (keyidx >= HAL_DECOMP_MASK_SIZE)
571                return HAL_EINVAL;
572        OS_REG_WRITE(ah, AR_DCM_A, keyidx);
573        OS_REG_WRITE(ah, AR_DCM_D, en ? AR_DCM_D_EN : 0);
574        ahp->ah_decompMask[keyidx] = en;
575
576        return AH_TRUE;
577}
578
579/* Setup coverage class */
580void
581ar5212SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
582{
583	uint32_t slot, timeout, eifs;
584	u_int clkRate;
585
586	AH_PRIVATE(ah)->ah_coverageClass = coverageclass;
587
588	if (now) {
589		if (AH_PRIVATE(ah)->ah_coverageClass == 0)
590			return;
591
592		/* Don't apply coverage class to non A channels */
593		if (!IEEE80211_IS_CHAN_A(AH_PRIVATE(ah)->ah_curchan))
594			return;
595
596		/* Get core clock rate */
597		clkRate = ath_hal_mac_clks(ah, 1);
598
599		/* Compute EIFS */
600		slot = coverageclass * 3 * clkRate;
601		eifs = coverageclass * 6 * clkRate;
602		if (IEEE80211_IS_CHAN_HALF(AH_PRIVATE(ah)->ah_curchan)) {
603			slot += IFS_SLOT_HALF_RATE;
604			eifs += IFS_EIFS_HALF_RATE;
605		} else if (IEEE80211_IS_CHAN_QUARTER(AH_PRIVATE(ah)->ah_curchan)) {
606			slot += IFS_SLOT_QUARTER_RATE;
607			eifs += IFS_EIFS_QUARTER_RATE;
608		} else { /* full rate */
609			slot += IFS_SLOT_FULL_RATE;
610			eifs += IFS_EIFS_FULL_RATE;
611		}
612
613		/*
614		 * Add additional time for air propagation for ACK and CTS
615		 * timeouts. This value is in core clocks.
616  		 */
617		timeout = ACK_CTS_TIMEOUT_11A + (coverageclass * 3 * clkRate);
618
619		/*
620		 * Write the values: slot, eifs, ack/cts timeouts.
621		 */
622		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
623		OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
624		OS_REG_WRITE(ah, AR_TIME_OUT,
625			  SM(timeout, AR_TIME_OUT_CTS)
626			| SM(timeout, AR_TIME_OUT_ACK));
627	}
628}
629
630void
631ar5212SetPCUConfig(struct ath_hal *ah)
632{
633	ar5212SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
634}
635
636/*
637 * Return whether an external 32KHz crystal should be used
638 * to reduce power consumption when sleeping.  We do so if
639 * the crystal is present (obtained from EEPROM) and if we
640 * are not running as an AP and are configured to use it.
641 */
642HAL_BOOL
643ar5212Use32KHzclock(struct ath_hal *ah, HAL_OPMODE opmode)
644{
645	if (opmode != HAL_M_HOSTAP) {
646		struct ath_hal_5212 *ahp = AH5212(ah);
647		return ath_hal_eepromGetFlag(ah, AR_EEP_32KHZCRYSTAL) &&
648		       (ahp->ah_enable32kHzClock == USE_32KHZ ||
649		        ahp->ah_enable32kHzClock == AUTO_32KHZ);
650	} else
651		return AH_FALSE;
652}
653
654/*
655 * If 32KHz clock exists, use it to lower power consumption during sleep
656 *
657 * Note: If clock is set to 32 KHz, delays on accessing certain
658 *       baseband registers (27-31, 124-127) are required.
659 */
660void
661ar5212SetupClock(struct ath_hal *ah, HAL_OPMODE opmode)
662{
663	if (ar5212Use32KHzclock(ah, opmode)) {
664		/*
665		 * Enable clocks to be turned OFF in BB during sleep
666		 * and also enable turning OFF 32MHz/40MHz Refclk
667		 * from A2.
668		 */
669		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
670		OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
671		    IS_RAD5112_ANY(ah) || IS_5413(ah) ? 0x14 : 0x18);
672		OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32, 1);
673		OS_REG_WRITE(ah, AR_TSF_PARM, 61);  /* 32 KHz TSF incr */
674		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 1);
675
676		if (IS_2413(ah) || IS_5413(ah) || IS_2417(ah)) {
677			OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x26);
678			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL,        0x0d);
679			OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x07);
680			OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0x3f);
681			/* # Set sleep clock rate to 32 KHz. */
682			OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x2);
683		} else {
684			OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x0a);
685			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL,        0x0c);
686			OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x03);
687			OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0x20);
688			OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x3);
689		}
690	} else {
691		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x0);
692		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
693
694		OS_REG_WRITE(ah, AR_TSF_PARM, 1);	/* 32MHz TSF inc */
695
696		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
697		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x7f);
698
699		if (IS_2417(ah))
700			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0a);
701		else if (IS_HB63(ah))
702			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x32);
703		else
704			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
705		OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x0c);
706		OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0xff);
707		OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
708		    IS_RAD5112_ANY(ah) || IS_5413(ah) || IS_2417(ah) ? 0x14 : 0x18);
709		OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32,
710		    IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31);
711	}
712}
713
714/*
715 * If 32KHz clock exists, turn it off and turn back on the 32Mhz
716 */
717void
718ar5212RestoreClock(struct ath_hal *ah, HAL_OPMODE opmode)
719{
720	if (ar5212Use32KHzclock(ah, opmode)) {
721		/* # Set sleep clock rate back to 32 MHz. */
722		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0);
723		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
724
725		OS_REG_WRITE(ah, AR_TSF_PARM, 1);	/* 32 MHz TSF incr */
726		OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32,
727		    IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31);
728
729		/*
730		 * Restore BB registers to power-on defaults
731		 */
732		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
733		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x7f);
734		OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL,        0x0e);
735		OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x0c);
736		OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0xff);
737		OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
738		    IS_RAD5112_ANY(ah) || IS_5413(ah) ?  0x14 : 0x18);
739	}
740}
741
742/*
743 * Adjust NF based on statistical values for 5GHz frequencies.
744 * Default method: this may be overridden by the rf backend.
745 */
746int16_t
747ar5212GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
748{
749	static const struct {
750		uint16_t freqLow;
751		int16_t	  adjust;
752	} adjustDef[] = {
753		{ 5790,	11 },	/* NB: ordered high -> low */
754		{ 5730, 10 },
755		{ 5690,  9 },
756		{ 5660,  8 },
757		{ 5610,  7 },
758		{ 5530,  5 },
759		{ 5450,  4 },
760		{ 5379,  2 },
761		{ 5209,  0 },
762		{ 3000,  1 },
763		{    0,  0 },
764	};
765	int i;
766
767	for (i = 0; c->channel <= adjustDef[i].freqLow; i++)
768		;
769	return adjustDef[i].adjust;
770}
771
772HAL_STATUS
773ar5212GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
774	uint32_t capability, uint32_t *result)
775{
776#define	MACVERSION(ah)	AH_PRIVATE(ah)->ah_macVersion
777	struct ath_hal_5212 *ahp = AH5212(ah);
778	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
779	const struct ar5212AniState *ani;
780
781	switch (type) {
782	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
783		switch (capability) {
784		case HAL_CIPHER_AES_CCM:
785			return pCap->halCipherAesCcmSupport ?
786				HAL_OK : HAL_ENOTSUPP;
787		case HAL_CIPHER_AES_OCB:
788		case HAL_CIPHER_TKIP:
789		case HAL_CIPHER_WEP:
790		case HAL_CIPHER_MIC:
791		case HAL_CIPHER_CLR:
792			return HAL_OK;
793		default:
794			return HAL_ENOTSUPP;
795		}
796	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
797		switch (capability) {
798		case 0:			/* hardware capability */
799			return HAL_OK;
800		case 1:
801			return (ahp->ah_staId1Defaults &
802			    AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
803		}
804		return HAL_EINVAL;
805	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
806		switch (capability) {
807		case 0:			/* hardware capability */
808			return pCap->halTkipMicTxRxKeySupport ?
809				HAL_ENXIO : HAL_OK;
810		case 1:			/* current setting */
811			return (ahp->ah_miscMode &
812			    AR_MISC_MODE_MIC_NEW_LOC_ENABLE) ? HAL_ENXIO : HAL_OK;
813		}
814		return HAL_EINVAL;
815	case HAL_CAP_WME_TKIPMIC:	/* hardware can do TKIP MIC w/ WMM */
816		/* XXX move to capability bit */
817		return MACVERSION(ah) > AR_SREV_VERSION_VENICE ||
818		    (MACVERSION(ah) == AR_SREV_VERSION_VENICE &&
819		     AH_PRIVATE(ah)->ah_macRev >= 8) ? HAL_OK : HAL_ENOTSUPP;
820	case HAL_CAP_DIVERSITY:		/* hardware supports fast diversity */
821		switch (capability) {
822		case 0:			/* hardware capability */
823			return HAL_OK;
824		case 1:			/* current setting */
825			return ahp->ah_diversity ? HAL_OK : HAL_ENXIO;
826		}
827		return HAL_EINVAL;
828	case HAL_CAP_DIAG:
829		*result = AH_PRIVATE(ah)->ah_diagreg;
830		return HAL_OK;
831	case HAL_CAP_TPC:
832		switch (capability) {
833		case 0:			/* hardware capability */
834			return HAL_OK;
835		case 1:
836			return ahp->ah_tpcEnabled ? HAL_OK : HAL_ENXIO;
837		}
838		return HAL_OK;
839	case HAL_CAP_PHYDIAG:		/* radar pulse detection capability */
840		switch (capability) {
841		case HAL_CAP_RADAR:
842			return ath_hal_eepromGetFlag(ah, AR_EEP_AMODE) ?
843			    HAL_OK: HAL_ENXIO;
844		case HAL_CAP_AR:
845			return (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) ||
846			    ath_hal_eepromGetFlag(ah, AR_EEP_BMODE)) ?
847			       HAL_OK: HAL_ENXIO;
848		}
849		return HAL_ENXIO;
850	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
851		switch (capability) {
852		case 0:			/* hardware capability */
853			return HAL_OK;
854		case 1:
855			return (ahp->ah_staId1Defaults &
856			    AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
857		}
858		return HAL_EINVAL;
859	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
860		switch (capability) {
861		case 0:			/* hardware capability */
862			return pCap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
863		case 1:
864			return (ahp->ah_miscMode & AR_MISC_MODE_TX_ADD_TSF) ?
865				HAL_OK : HAL_ENXIO;
866		}
867		return HAL_EINVAL;
868	case HAL_CAP_TPC_ACK:
869		*result = MS(ahp->ah_macTPC, AR_TPC_ACK);
870		return HAL_OK;
871	case HAL_CAP_TPC_CTS:
872		*result = MS(ahp->ah_macTPC, AR_TPC_CTS);
873		return HAL_OK;
874	case HAL_CAP_INTMIT:		/* interference mitigation */
875		switch (capability) {
876		case 0:			/* hardware capability */
877			return HAL_OK;
878		case 1:
879			return (ahp->ah_procPhyErr & HAL_ANI_ENA) ?
880				HAL_OK : HAL_ENXIO;
881		case 2:			/* HAL_ANI_NOISE_IMMUNITY_LEVEL */
882		case 3:			/* HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION */
883		case 4:			/* HAL_ANI_CCK_WEAK_SIGNAL_THR */
884		case 5:			/* HAL_ANI_FIRSTEP_LEVEL */
885		case 6:			/* HAL_ANI_SPUR_IMMUNITY_LEVEL */
886			ani = ar5212AniGetCurrentState(ah);
887			if (ani == AH_NULL)
888				return HAL_ENXIO;
889			switch (capability) {
890			case 2:	*result = ani->noiseImmunityLevel; break;
891			case 3: *result = !ani->ofdmWeakSigDetectOff; break;
892			case 4: *result = ani->cckWeakSigThreshold; break;
893			case 5: *result = ani->firstepLevel; break;
894			case 6: *result = ani->spurImmunityLevel; break;
895			}
896			return HAL_OK;
897		}
898		return HAL_EINVAL;
899	default:
900		return ath_hal_getcapability(ah, type, capability, result);
901	}
902#undef MACVERSION
903}
904
905HAL_BOOL
906ar5212SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
907	uint32_t capability, uint32_t setting, HAL_STATUS *status)
908{
909#define	N(a)	(sizeof(a)/sizeof(a[0]))
910	struct ath_hal_5212 *ahp = AH5212(ah);
911	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
912	uint32_t v;
913
914	switch (type) {
915	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
916		if (setting)
917			ahp->ah_staId1Defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
918		else
919			ahp->ah_staId1Defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
920		return AH_TRUE;
921	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
922		if (!pCap->halTkipMicTxRxKeySupport)
923			return AH_FALSE;
924		/* NB: true =>'s use split key cache layout */
925		if (setting)
926			ahp->ah_miscMode &= ~AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
927		else
928			ahp->ah_miscMode |= AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
929		/* NB: write here so keys can be setup w/o a reset */
930		OS_REG_WRITE(ah, AR_MISC_MODE, ahp->ah_miscMode);
931		return AH_TRUE;
932	case HAL_CAP_DIVERSITY:
933		if (ahp->ah_phyPowerOn) {
934			v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
935			if (setting)
936				v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
937			else
938				v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
939			OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
940		}
941		ahp->ah_diversity = (setting != 0);
942		return AH_TRUE;
943	case HAL_CAP_DIAG:		/* hardware diagnostic support */
944		/*
945		 * NB: could split this up into virtual capabilities,
946		 *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
947		 *     seems worth the additional complexity.
948		 */
949		AH_PRIVATE(ah)->ah_diagreg = setting;
950		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
951		return AH_TRUE;
952	case HAL_CAP_TPC:
953		ahp->ah_tpcEnabled = (setting != 0);
954		return AH_TRUE;
955	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
956		if (setting)
957			ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH;
958		else
959			ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH;
960		return AH_TRUE;
961	case HAL_CAP_TPC_ACK:
962	case HAL_CAP_TPC_CTS:
963		setting += ahp->ah_txPowerIndexOffset;
964		if (setting > 63)
965			setting = 63;
966		if (type == HAL_CAP_TPC_ACK) {
967			ahp->ah_macTPC &= AR_TPC_ACK;
968			ahp->ah_macTPC |= MS(setting, AR_TPC_ACK);
969		} else {
970			ahp->ah_macTPC &= AR_TPC_CTS;
971			ahp->ah_macTPC |= MS(setting, AR_TPC_CTS);
972		}
973		OS_REG_WRITE(ah, AR_TPC, ahp->ah_macTPC);
974		return AH_TRUE;
975	case HAL_CAP_INTMIT: {		/* interference mitigation */
976		static const HAL_ANI_CMD cmds[] = {
977			HAL_ANI_PRESENT,
978			HAL_ANI_MODE,
979			HAL_ANI_NOISE_IMMUNITY_LEVEL,
980			HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
981			HAL_ANI_CCK_WEAK_SIGNAL_THR,
982			HAL_ANI_FIRSTEP_LEVEL,
983			HAL_ANI_SPUR_IMMUNITY_LEVEL,
984		};
985		return capability < N(cmds) ?
986			ar5212AniControl(ah, cmds[capability], setting) :
987			AH_FALSE;
988	}
989	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
990		if (pCap->halTsfAddSupport) {
991			if (setting)
992				ahp->ah_miscMode |= AR_MISC_MODE_TX_ADD_TSF;
993			else
994				ahp->ah_miscMode &= ~AR_MISC_MODE_TX_ADD_TSF;
995			return AH_TRUE;
996		}
997		/* fall thru... */
998	default:
999		return ath_hal_setcapability(ah, type, capability,
1000				setting, status);
1001	}
1002#undef N
1003}
1004
1005HAL_BOOL
1006ar5212GetDiagState(struct ath_hal *ah, int request,
1007	const void *args, uint32_t argsize,
1008	void **result, uint32_t *resultsize)
1009{
1010	struct ath_hal_5212 *ahp = AH5212(ah);
1011
1012	(void) ahp;
1013	if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
1014		return AH_TRUE;
1015	switch (request) {
1016	case HAL_DIAG_EEPROM:
1017	case HAL_DIAG_EEPROM_EXP_11A:
1018	case HAL_DIAG_EEPROM_EXP_11B:
1019	case HAL_DIAG_EEPROM_EXP_11G:
1020	case HAL_DIAG_RFGAIN:
1021		return ath_hal_eepromDiag(ah, request,
1022		    args, argsize, result, resultsize);
1023	case HAL_DIAG_RFGAIN_CURSTEP:
1024		*result = __DECONST(void *, ahp->ah_gainValues.currStep);
1025		*resultsize = (*result == AH_NULL) ?
1026			0 : sizeof(GAIN_OPTIMIZATION_STEP);
1027		return AH_TRUE;
1028	case HAL_DIAG_PCDAC:
1029		*result = ahp->ah_pcdacTable;
1030		*resultsize = ahp->ah_pcdacTableSize;
1031		return AH_TRUE;
1032	case HAL_DIAG_TXRATES:
1033		*result = &ahp->ah_ratesArray[0];
1034		*resultsize = sizeof(ahp->ah_ratesArray);
1035		return AH_TRUE;
1036	case HAL_DIAG_ANI_CURRENT:
1037		*result = ar5212AniGetCurrentState(ah);
1038		*resultsize = (*result == AH_NULL) ?
1039			0 : sizeof(struct ar5212AniState);
1040		return AH_TRUE;
1041	case HAL_DIAG_ANI_STATS:
1042		*result = ar5212AniGetCurrentStats(ah);
1043		*resultsize = (*result == AH_NULL) ?
1044			0 : sizeof(struct ar5212Stats);
1045		return AH_TRUE;
1046	case HAL_DIAG_ANI_CMD:
1047		if (argsize != 2*sizeof(uint32_t))
1048			return AH_FALSE;
1049		ar5212AniControl(ah, ((const uint32_t *)args)[0],
1050			((const uint32_t *)args)[1]);
1051		return AH_TRUE;
1052	case HAL_DIAG_ANI_PARAMS:
1053		/*
1054		 * NB: We assume struct ar5212AniParams is identical
1055		 * to HAL_ANI_PARAMS; if they diverge then we'll need
1056		 * to handle it here
1057		 */
1058		if (argsize == 0 && args == AH_NULL) {
1059			struct ar5212AniState *aniState =
1060			    ar5212AniGetCurrentState(ah);
1061			if (aniState == AH_NULL)
1062				return AH_FALSE;
1063			*result = __DECONST(void *, aniState->params);
1064			*resultsize = sizeof(struct ar5212AniParams);
1065			return AH_TRUE;
1066		} else {
1067			if (argsize != sizeof(struct ar5212AniParams))
1068				return AH_FALSE;
1069			return ar5212AniSetParams(ah, args, args);
1070		}
1071	}
1072	return AH_FALSE;
1073}
1074